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Abstract

The growth of the Internet impacts multiple areas of the world economy, and it

has become a permanent part of the economic landscape both at the macro- and at

microeconomic level. On-line traffic and information are currently assets with large

business value. Even though commercial Internet has been a part of our lives for

more than two decades, its impact on global, and everyday, economy still holds many

unknowns.

In this work we analyse important macro- and microeconomic aspects of the In-

ternet. First we investigate the characteristics of the interdomain traffic, which is an

important part of the macroscopic economy of the Internet. Finally, we investigate

the microeconomic phenomena of price discrimination in the Internet.

At the macroscopic level, we describe quantitatively the interdomain traffic matrix

(ITM), as seen from the perspective of a large research network. The ITM describes

the traffic flowing between autonomous systems (AS) in the Internet. It depicts the

traffic between the largest Internet business entities, therefore it has an important

impact on the Internet economy. In particular, we analyse the sparsity and statistical

distribution of the traffic, and observe that the shape of the statistical distribution

of the traffic sourced from an AS might be related to congestion within the network.

We also investigate the correlations between rows in the ITM. Finally, we propose a

novel method to model the interdomain traffic, that stems from first-principles and

recognizes the fact that the traffic is a mixture of different Internet applications, and

can have regional artifacts. We present and evaluate a tool to generate such matrices

from open and available data. Our results show that our first-principles approach

is a promising alternative to the existing solutions in this area, which enables the

investigation of what-if scenarios and their impact on the Internet economy.

At the microscopic level, we investigate the rising phenomena of price discrimi-

nation (PD). We find empirical evidences that Internet users can be subject to price

and search discrimination. In particular, we present examples of PD on several e-

commerce websites and uncover the information vectors facilitating PD. Later we

show that crowd-sourcing is a feasible method to help users to infer if they are subject

to PD. We also build and evaluate a system that allows any Internet user to examine

if she is subject to PD. The system has been deployed and used by multiple users

worldwide, and uncovered more examples of PD.

The methods presented in the following work are backed with thorough data anal-

ysis and experiments.
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Chapter 1: Introduction

The past decades witnessed the advent of the Internet and its evolution from a

research network to a web spanning across the world, interconnecting furthest

points of the globe. The Internet initiated or catalysed changes in many areas of

human activity and in parallel it heavily affected the global economy. With almost

40% of world population online [43], the economy of the Internet accounts for one

fifth of the global GDP growth in recent years [56]. The Internet reshaped the

economic landscape in many areas. It also affected the traditional, pre-Internet

industry. It is estimated that even 75% of Internet economic impact comes from

traditional industries [56]. For those companies the Internet became a new ad-

vertising channel, a new sales channel or a new way to manage business, but also

increased their exposure to global competition. However the Internet is not merely

a tool accelerating traditional economy. It created a new digital economy, with

economical phenomenas reflecting its unique nature. Although the size of the “In-

ternet economy” is hard to estimate, its share in global GDP lies between 3.4%

and 4.1% [56, 13]. If the Internet was a national economy, it would rank in the

global top five [13].

Some of the biggest Internet market players, like AT&T or Comcast, were

present on the Information and Communications Technology (ICT) field for years

and fit naturally to the new environment. Others companies, like Google or Ama-

zon, are children of the digital economy, and provide services that could not exist

without the network. Interactions between those highest level players, their In-

ternet business policies and the impact they have on network traffic, shape the

Internet macroeconomic landscape.

On the other side of this economic ecosystem there is the regular user who

creates demand for connectivity, content, and for various services. For a large
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user base, Internet is an important place of work, retail and social interaction [46].

At the same time, the user generates a wide spectrum of personal information.

This information, accumulated from the bulk of users is a valuable resource on its

own and is desired by network marketing companies and online retailers. Inter-

actions between the individual users, retailers and service providers contribute to

the Internet economy at micro-scale. Even though those two viewpoints seem dis-

tant, cumulative decisions of the bulk of unpredictable users can instantaneously

change the flow of the revenues. For instance, users that switched from phone

carrier messaging services to online messaging applications, had taken away $23

billion in revenue from carriers in 2012, and $33 billion in 2013 [16, 18]. This shows

how important is to investigate economic phenomenas at both macro- and micro-

scale together.

In this thesis we take a look at the Internet economy from two different per-

spectives. First, from the macro-scale standpoint, we examine the traffic flowing

between Autonomous Systems (AS). This is the highest level of communication

in the Internet, where Internet Service Providers transfer bulk data through their

infrastructure. At this level, a single user is not visible. Instead, large scale pat-

terns and phenomenas are observable, which allows a researcher to ask important

questions about evolution of the Internet [29] or network neutrality [84]. In this

work we characterize traffic between ASes, and later propose a method to gener-

ate synthetic traffic matrices that could be useful in simulations and in evaluating

different what-if scenarios. As the revenue of the biggest stakeholders on the Inter-

net is directly related to traffic volumes, understanding characteristics of the traffic

and being able to model it brings us closer to understand the macroeconomics of

the Internet.

Later, we look at the Internet economy from the micro-scale point of view and

we investigate microeconomic phenomenon at the intersection of areas of personal

information and retail business. Namely, we look at the Internet economy from a

perspective of a regular user and explore the issue of price discrimination. We look

for empirical evidence that this well known economic phenomenon [65] exists on

the Internet and present a feasible and scalable approach that can help Internet

users to determine if they are subject to price discrimination. We show that private

information is also part of a wide and growing economic landscape [64].
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Motivation and problem statement

Conducting data driven experiments requires excellence from the researchers in

handling large quantities of data. In addition to the previously described research

areas, and as a fruit of our initial exercises with processing bulk backbone data, we

present a novel algorithm to analyse backbone traffic on-line that allows to detect

malicious portscan activity. The experience gathered during this exercise became

the basis of the tools developed and used in the rest of the thesis to process massive

amounts of network traffic. This work is presented as appendix of this thesis.

1.1 Motivation and problem statement

Internet economics has many facets and can be analysed at different levels, as

discussed in the previous section. In this section we present the motivation and

challenges behind our research on interdomain traffic and price discrimination, as

two important aspects of the Internet macro- and microeconomics.

1.1.1 Macroscopic view

At its highest level the Internet is organized into Autonomous Systems, where an

“AS is a connected group of one or more IP prefixes run by one or more network

operators which has a single and clearly defined routing policy.” [41]. In most

cases it is a network operating on a large area (e.g., metropolitan, countrywide

or worldwide) under the government of a single organization. At this level of

Internet, the flow of the money is directly related to the flow of the traffic. The

better the knowledge about the traffic ASes have, the better peering decisions they

can make to be ahead of the competition. Not surprisingly, detailed information

on traffic volumes is considered to be a sensitive business information, and ASes

do not reveal such data publicly.

Despite of the dependence between Internet macroeconomics and the inter-

domain traffic, there is little knowledge about the properties of the latter. The

main obstacle for the researchers in this area is the scarcity of publicly avail-

able data. This creates a demand for insight into properties of the interdomain

traffic. Some invaluable works present different aspects of the interdomain traf-

fic [30, 33, 49, 74, 79].

17
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To this end, we aim to infer statistical properties of the Interdomain Traffic

Matrix. In our work in Chapter 2 we use passive NetFlow data from the European-

wide GÉANT network. We are aware that it depicts a small, and biased, fraction

of the interdomain traffic, but still it is one of the most complete data sets currently

available to the researchers.

Besides the knowledge of properties of the interdomain traffic, researchers and

network operators are interested in modelling the traffic. For instance, they would

like to know how the traffic will change when the user base changes, an application

starts being popular in a particular geographical region or when a new popular

application emerges.

A natural next research step would be to create a model that could produce

synthetic interdomain traffic matrix with specific properties. Given the scarcity

of data, such a model would be useful in Internet macroeconomics research, as

it would allow to generate a synthetic, but representative traffic matrix of an

arbitrary size, and would allow to evaluate various what-if scenarios.

There exist several methods to infer some information about interdomain traf-

fic. For instance, [34] presents a methodology to infer traffic from CDN logs and [23]

proposes a method to infer invisible elements of the traffic matrix. According to

our best knowledge, the trailblazing work of Chang et al. [26] is the only work pre-

senting a full approach to generate a synthetic traffic matrix. The authors of [26]

use a mixture of “utilities” and attribute the traffic to the considered AS types.

In contrast, we would like the model to reflect application-level characteristics of

the traffic. As discussed in the Introduction, popular applications used in large

scale (e.g. messaging applications, peer-to-peer file sharing, file hosting services,

video streaming) impact interdomain traffic, and thus Internet macroeconomics,

directly. Also, a macroscopic view on the Internet economy would require from a

model to recognize that different applications can generate different traffic patterns

in different geographical regions.

To this end, in Chapter 3 we strive to create a model that allows to generate a

synthetic traffic matrix. The model is based on first-principles and allows to include

different applications (e.g. web, P2P) by recognizing that those applications have

different forward and reverse traffic ratios. It also models differences in regional

popularity of the applications. Eventually we use this model to discuss a what-if

18



Motivation and problem statement

scenario, where we include “cloud storage” application in the model. We believe

that the above-mentioned traits of our model will make it applicable in the area

of the Internet economy.

1.1.2 Microscopic view

On the other end of the Internet economic pyramid there are regular users who

request content, use online services and interact with the other users. All those

activities generate network traffic which is handled by the service providers. At

the same time, each user’s move in the network leaves a small chunk of information

giving a hint about himself. Services and applications that collect those bits are

often accessible for “free”, with a stipulation that the user, in exchange to the

possibility of using a service, will share his personal information. This became the

prevalent business model in the Internet and for the first time the vast amount of

data about users behaviour is accessible so easy and on such large scale.

This automatically raises privacy concerns. The Internet allows profiling of the

end users on a scale without any precedence in history. The profiling information

on the users activity is a valuable business asset, especially for many companies in

the area of online marketing and advertising. The value of personal information is

reflected in financial success of the companies that offer free-of-charge, high quality

products in exchange of using its subscribers private information, with Facebook

being a prominent example. A natural question that appears is: what happens

to all the collected data? The popular answer is that this information is used for

targeted advertising. It is used to bin the users into specific marketing profiles (so

called “personas”) according to their needs, interests or preferences, so later the

companies can tailor their product offers, prepare personalised advertisements or

modify search results accordingly. This practice motivated the research commu-

nity to create tools to uncover correlations between personal information and the

delivered advertisements [50]. Moreover, search engines can use personal informa-

tion to personalize search results. This personalization can lead to filter bubble

effect [68], where the user is separated from the information that does not match

his profile, and in extreme case he is unable to access a particular information at

all. Hannak et al. in [39] tries to quantify this elusive phenomena, and presents

19



Introduction

empirical evidences of the filter bubble effect. Also, Xing et al. in [85] presents a

tool that enables Internet users to examine if they are subject to the filter bubble

effect.

In our work we evaluate different hypothesis, namely that this information is

used for price discrimination. In particular, this information can be used to esti-

mate the user’s willingness to buy a particular product, reflected by the reservation

price – the maximum price that the customer is willing to pay for the product. A

retailer that is able to estimate consumer’s reservation price, can alter the price

of the same good offered to different users. This practice, where exactly the same

product is offered to different users with different prices, is known as price dis-

crimination.

The economic phenomenon of price discrimination (PD) existed before the

Internet, but as the Internet enabled new ways of circulation of the information,

it also enabled new ways to price-discriminate [65]. It is considered desirable by

economists as positively affecting the effectiveness of the markets [64]. On the

other hand, PD is not well received by customers. For instance, in 2000 Amazon

was heavily criticised by the online community when it turned out that it showed

different prices for regular and accidental customers [27]. Price discrimination

practices in the area of academic journals are well known [66]. “Personalized

pricing” was even a subject of a patent filling by eBay [9]. Also, in 2012 Orbitz, a

large online travel agency, was criticised when they were found to present different

offers to regular users, and to Mac users. Although the second case is rather

search discrimination than price discrimination, both cases show that the online

consumer community is very sensitive to every symptom of using their personal

data to alter the offers and prices.

Different information vectors can be leveraged to facilitate price discrimination.

For instance, a user buying luxury products frequently, using a more expensive

computer to access the retail website, or whose Internet connection can be mapped

to a ZIP code associated with a reach neighbourhood, might be willing to pay

more than an average user. We empirically analyse those information vectors

(technological, geographical, and personal information) in Chapter 4. Although

we find empirical evidences of PD, we also conclude that analysing hand-picked

websites does not allow to scale such experiment effectively. Such methodology is
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limited by the researcher’s capability to run the experiments, and does not allow

to explore information vectors that are were not thought beforehand. Also, this

method does not allow a regular Internet user to examine if he is not subject

to price discrimination. To this end, in Chapter 5 we show that crowd sourcing

is a feasible method to investigate price discrimination. We build and deploy a

system that allows a regular user to compare an arbitrary price in the Internet from

different geographical locations. Existence of PD was reconfirmed in [40], where

the authors conduct a thorough study of personalized pricing and price steering.

The study shows inconsistencies in prices of products and services of some of the

top car rentals, hotel booking services and online retailers, presented to a control

group of accounts and to the real users. As more of the everyday activities move to

the Internet, circulation of the personal information and its impact on the Internet

economy becomes even more important research area.

1.2 Thesis organization and contributions

This thesis is divided into two parts, shedding light on two areas related to mea-

surements in the economy of the Internet.

Part I is devoted to the macroeconomic aspects of the Internet economy, namely

to characterizing and synthesizing the interdomain traffic matrix. In Chapter 2 we

analyse the interdomain traffic from a European-wide network and characterize

some important spatial properties of the ITM. We confirm previous findings about

sparsity and low effective rank of the traffic matrix. We find that traffic sourced

by AS-es is heavy-tailed, and that the statistical distribution of the traffic can be

modeled as either Pareto or LogNormal. We find some evidence of relation between

the shape of the traffic and congestion within the network. We also find significant

correlations between the rows in the ITM, which results from a high popularity of

a small set of prefixes. Later in Chapter 3 we analyse and model the interdomain

traffic at the level of connections and take into account the relative sizes of the

ASes. We model multiple application types by manipulating forward- and reverse

traffic ratios that the particular application produces. Moreover, we capture dif-

ferences in regional popularity of different content. Eventually we present a tool

to synthesize synthetic traffic matrices.
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Part II focuses on microeconomic aspects of the Internet economy, that is on

price and search discrimination. In Chapter 4 we empirically demonstrate the

existence of signs of both price and search discrimination, and we analyse the

information vectors used to facilitate them. In particular, we find evidence of

price differentiation based on geographical location, and based on the originating

URL (i.e., URL of a page that redirected to a particular product). We also find

signs of search differentiation based on personas’ traits. Next in Chapter 5 we

present a crowd-sourcing study on price differentiation, using a distributed system

called $heriff, especially built for that purpose. We show that crowd-sourcing is

a feasible way to find instances of price differentiation, and we analyse particular

instances of PD found using this system. We show a connection between different

location and pricing, and also that the customer profile can impact product price.

Working with network measurements implies processing large quantities of on-

line data. Findings that result from our initial exercise in this area are presented in

Appendix A. Although the work presented there does not concentrate on Internet

economy per se, the methodology developed during this exercise was later used to

effectively process large volumes of traffic data.

1.2.1 Publications and other activities

The following papers were published as an outcome of the research presented in

this thesis:

• “Towards a statistical characterization of the interdomain traffic matrix.”

Jakub Mikians, Amogh Dhamdhere, Constantine Dovrolis, Pere Barlet-Ros,

and Josep Solé-Pareta. IFIP Networking conference, Prague 2012.

• “ITMgen - A first-principles approach to generating synthetic interdomain

traffic matrices.” Jakub Mikians, Nikolaos Laoutaris, Amogh Dhamdhere,

and Pere Barlet-Ros. IEEE International Conference on Communications –

ICC, Budapest 2013.

• “Detecting price and search discrimination on the Internet.” Jakub Mikians,

László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris. The Workshop

on Hot Topics in Networks – ACM HotNets, Redmond 2012.
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• “Crowd-assisted search for price discrimination in e-commerce: first results.”

Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris.

International Conference on emerging Networking EXperiments and Tech-

nologies – ACM CoNEXT, Santa Barbara 2013.

• “A practical approach to portscan detection in very high-speed links.”

Jakub Mikians, Pere Barlet-Ros, Josep Sanjuas-Cuxart, and Josep Solé-

Pareta. Passive and Active Measurement – PAM, Atlanta 2011.

The other activities related to the research presented in this document:

• Our work on price discrimination on the Internet, presented in Chapter 4,

was mentioned in several The Wall Street Journal articles [14, 15, 17].

• Research described in Part II was presented at LAP/CPC/ICPEN conference

(Antwerp, 16-17 April 2013) as invited talk. London Action Plan (LAP) is a

network of anti-spam government authorities and leading technologists that

shares investigative intelligence, coordinates law enforcement, and develops

training to address spam and other cyber threats through civil and admin-

istrative enforcement. International Consumer Protection Enforcement Net-

work (ICPEN) and EU Consumer Protection Cooperation Network (CPC)

are focused on broad enforcement and policy consumer protection initiatives.

• I am co-author of a paper on personalized advertising: “Understanding

Interest-based Behavioural Targeted Advertising” Juan Miguel Carrascosa,

Jakub Mikians, Ruben Cuevas, Vijay Erramilli and Nikolaos Laoutaris, CoRR,

2014.

• I interned twice at Telefonica Research in Barcelona in 2012 and 2013. Dur-

ing the three month stays I worked on price discrimination and the results

presented in Part II are the direct outcome of those internships.

• In 2011 I conducted a two month stay at Georgia Tech, working on character-

ization of the Interdomain Traffic Matrix. Research described in Chapter 2

is the outcome of this stay.
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Chapter 2: Analysis of the Interdomain

Traffic Matrix

The knowledge of interdomain traffic characteristics is important for a number

of reasons, particularly related to economics and policy, as the flow of money on

the Internet typically follows the flow of traffic. Even though interdomain traffic

patterns significantly impact the evolution of interdomain topology and economics,

Internet pricing, and policy considerations (e.g., network neutrality), we have little

knowledge of the global Internet Interdomain Traffic Matrix (ITM) and of its

dynamics. The major obstacle to infer interdomain traffic characteristics has been

lack of data, at least in the research community. As such, accurately measuring

the complete ITM is likely to remain an elusive goal. Even if direct measurements

of the ITM are unlikely to be available, there is value in measuring qualitative

properties of the ITM that can then be used to better inform Internet economics

and policy research.

In this chapter we infer some statistical properties of the interdomain traffic

matrix. We rely on passive flow data from the GÉANT network, the largest

academic/research backbone in Europe that connects hundreds of universities and

research organizations to the global Internet. Using this data, we directly measure

the ITM elements that are routed via the GÉANT network. We emphasize that our

goal is not to accurately measure each entry of the ITM. Instead, we aim to infer

statistical properties of the ITM from the elements that we can observe at GÉANT.

We believe that such properties of the ITM can yield a better understanding of

its nature and can be used to generate synthetic, but realistic ITMs for simulation

and modeling purposes. We are aware of the limitations of the analysed dataset:

GÉANT, as a European academic network, it is not representative of the whole



Datasets

Internet. Nevertheless, it is one of the most complete datasets of interdomain traffic

available to the research community, and we hope that the findings presented here

will serve for a better understanding of interdomain traffic.

We focus on spatial properties of the ITM. In particular, we characterize the

visible portion of the AS-to-prefix traffic matrix. We confirm previous results about

the sparsity and low effective rank of the ITM. We find that the distribution of

traffic sourced by ASes is heavy-tailed, but the exact nature of the distribution can

be between Pareto and LogNormal, depending on the source AS. We conjecture

that the exact shape of the distribution could be related to congestion within the

source AS. We also find significant correlations across different rows of the ITM,

mostly due to relatively few highly popular prefixes.

2.1 Datasets

2.1.1 Traffic data

Our approach relies on using traffic data collected from a “network in the middle”,

i.e., a network that provides transit services to edge networks. To this end, we

use traffic data from the GÉANT network [79], a Europe-wide backbone provider

spanning 34 countries and connecting over 30 million researchers and students,

with an overall throughput of about 50 Gb/s. GÉANT customers are mainly uni-

versities and national research networks; consequently, the traffic at GÉANT does

carry an academic bias. Nevertheless, approximately half of the traffic is directed

to commercial networks. For most of the connected entities, GÉANT is not the

only network provider, so only a part of their traffic can be observed. Also, ASes

connected to GÉANT are usually not stub networks, but can contain many sub-

networks, e.g., National Research and Education Networks (NRENs) connecting

many national universities. In the rest of this chapter, all ASes for which we

analyse traffic are research and academic networks that GÉANT is serving.

We collect NetFlow traffic summaries from 18 routers at GÉANT points of

presence (POPs) for all traffic entering the GÉANT network. As GÉANT is a

transit network and the traffic is neither locally produced nor consumed, we mea-

sure all traffic entering and leaving the network by combining the information
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from the 18 POPs. Because the GÉANT NetFlow data is sampled at the rate

of 1/100, we estimate bytes and packets by dividing them by the sampling rate1.

We determine the source and destination ASes by mapping the source and desti-

nation IP addresses from NetFlow records to the corresponding ASes. Previous

work defined an ITM at the AS-to-AS granularity [26, 23], i.e., ITM element Ti,j

measures the traffic sent by a source AS i to destination AS j. However, as ASes

do not necessarily route all their traffic through GÉANT, we do not observe traffic

to all prefixes originated by the same destination AS. An AS-to-AS ITM would

underestimate the traffic to such destination ASes. Consequently, we work with

an AS-to-prefix ITM, i.e., we characterize the visible traffic sent from a source AS

to each destination prefix over a certain aggregation interval, where a row of the

matrix indicates the traffic produced by an AS, and a column indicates the traffic

consumed by the prefix. In the rest of the chapter we will concentrate mostly on

the rows, as characterizing ASes (rather than prefixes) is more relevant in the con-

text of Internet economics. Table 2.1 describes our traffic data. For trace W we

observe traffic for about 8 × 106 ITM elements, that is only about 0.06% of the

total number of elements in the AS-to-prefix matrix. During that week, the matrix

consisted of 36k rows (ASes) and 349k columns (prefixes).

Working with an AS-to-prefix definition of the ITM, we can classify ITM el-

ements into three groups. Unknown elements are those that we do not observe

in the NetFlow data, as the routing path i → j does not cross GÉANT. Visi-

ble non-zero elements are the ITM elements for which we observe some traffic, so

TMi,j > 0. Finally, we have visible zeros, the elements TMi,j = 0 for which the

routing path i → j crosses GÉANT, but they see no traffic in the aggregation

interval over which the ITM is constructed. In Section 2.2.1, we describe how we

identify visible elements.

We also collect NetFlow data from the UPC2 access link. We see all traffic

from UPC in that data because this is the only access link at UPC. We use UPC

data to validate the sparsity results in Section 2.2.1.

1We do not estimate the number of flows, because packet sampling does not sample flows
uniformly.

2Universitat Politècnica de Catalunya, BarcelonaTech
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trace W trace M trace Y

1 week 1 month 52 weeks
period Nov 22–28, 2010 Nov 1–30, 2010 from Jan 4, 2010

flows 3.91× 109 1.99× 1010 2.17 × 1011

packets 3.61 × 1012 1.74× 1013 1.70 × 1014

bytes 3.26 × 1015 1.55× 1016 1.45 × 1017

NetFlow data volume 111 GB 476 GB 5.75 TB

Table 2.1: Parameters of the GÉANT NetFlow traces.

2.1.2 Routing stability and snapshot length

As described in Section 2.1.1, the ITM is estimated over a certain time interval. If

the interdomain routing is stable during that interval, we can be certain that if we

observed some traffic for an element Ti,j, then this reflects all traffic sent from i to

j in that time interval. If, however, routing is not stable, then TMi,j may reflect

only a portion of the traffic sent from i to j during this interval. We need to find

an appropriate aggregation period that, on one hand, catches a significant volume

of the traffic, and, on the other hand, is affected by routing instability as little as

possible.

To examine routing stability, we use BGP data from RouteViews [80] collectors

that peer with several hundred ASes to collect BGP tables and updates. We

analyzed BGP table dumps from 4 collectors over one month. We are interested

only in the routes that cross GÉANT, and so we extracted 9000 AS-to-prefix paths,

each of which crossed GÉANT3 at least once in that month. For each path we

examined if it is stable, i.e., if it is routed via GÉANT in all BGP snapshots.

Note that a path may be seen by one BGP collector as crossing GÉANT, but not

crossing GÉANT by another collector.

We define routing stability ρ as the probability that a path through GÉANT

does not change during a specified time interval. We find that for a day ρ =

0.999, for a week ρ = 0.952, and for a month ρ = 0.750. We conclude that an

aggregation interval of one week provides a good trade-off between the volume of

traffic captured by the ITM snapshot and route stability.

3GÉANT’s AS number appears in the AS path.

29



Analysis of the Interdomain Traffic Matrix

2.2 Properties of the ITM

In this section we examine the statistical properties of the measured ITM, partic-

ularly sparsity (Section 2.2.1), statistical distribution of ITM rows (Section 2.2.2),

and possible causes for the differences across distributions for different source ASes

(Section 2.2.3 and 2.2.4).

2.2.1 Sparsity

For a given ITM snapshot, we estimate the sparsity S as the ratio of the number

of visible zeros (defined in Section 2.1.1) to the number of all visible elements. In

the case of our data this is problematic, since we cannot directly distinguish visible

zeros from unknown elements. We next describe an approach to estimate a lower

bound on the sparsity of the AS-to-prefix ITM.

Assume, initially, that the routing path between source i and destination prefix

j is stable. Let T refer to the AS-to-prefix ITMmeasured over a certain aggregation

interval, for which we estimate the sparsity. Let R be another instance of the AS-

to-prefix ITM, aggregated over a larger time interval. We refer to R as a reference

ITM. If Ti,j = 0 and the same element Ri,j > 0 then Ti,j is a visible zero - we are

sure that i → j is routed via GÉANT (because we saw some traffic in the reference

ITM). If the aggregation interval for snapshot R is larger than (and overlaps with)

that of T , we can identify some of the visible zeros in T . Let nR be the number

of visible non-zeros in R, and nT the number of visible non-zeros in T . Then

n0 = nR − nT is the number identified visible zeros in T . The lower bound of the

sparsity of T is then S = n0/nR. This is a lower bound, because not all visible

non-zeros in T can be identified (we cannot identify the elements that are visible

zeros both in R and T ).

The longer the aggregation interval for R, the more visible zeros in T we can

identify. However, the longer the aggregation interval, the lower the routing sta-

bility ρ (see Sec. 2.1.2). If path i → j is not stable, then we could see that Ri,j > 0

and Ti,j = 0, but the cause is that this path was routed via GÉANT for R and

not routed via GÉANT for T . The real number of visible zero elements in T

is lower bounded by ρ(nR − nT ). Therefore, the lower bound of the sparsity is
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S = ρ(nR − nT )/nR.

We estimate the sparsity for ITM snapshots aggregated over each week in

trace Y and over each day in trace W. In the former, we constructed the reference

snapshot by aggregating over one month, while in the latter the reference snapshot

was over one week. The average estimated lower bound of the sparsity for the

weekly snapshots in trace Y is 0.26, which means that at least 26% of the ITM

elements are always zero. For the daily snapshots in trace M, the lower bound of

the sparsity is 0.47. We also observed weekly trends in the sparsity – the estimated

sparsity of the daily ITM is higher during weekends (we omit the graphs due to

space constraints).

We also examined the traffic measured at the UPC access link, which is equiv-

alent to observing one fully visible ITM row. For a single week, we observed no

traffic to 45% of the destination prefixes, i.e., 45% of elements in this row were

visible zeros. The results we report here corroborate the observations by Gadkari

et al. [36]. Those authors observed that for the traffic sent from a regional ISP,

during a single day, 49% of the destination prefixes were not used.

2.2.2 Distribution of traffic generated from each AS

Heavy-tailed distributions are commonly observed in the Internet [25, 30, 20]. It is

not surprising that we also see heavy-tailed distributions for the generated traffic

from each AS in the AS-to-prefix ITM. We analysed the distribution of generated

traffic in ITM snapshots for each week in trace Y, selecting only those ASes (rows)

for which traffic to a significant number of prefixes is routed via GÉANT (we set

this threshold to 10k prefixes). In total, we analyze 3189 rows (119 distinct ASes

in all 52 weeks). We find evidence for heavy-tailed distributions in the majority of

the rows (94%) – the top 15% of the destination prefixes account for over 95% of

the traffic. For the remaining 6% of the rows, the top 15% of prefixes account for

over 71% of the traffic. In the remainder of the chapter, we refer to the “tail of

the traffic distribution” as the traffic sent to the top 15% of destination prefixes

by the corresponding AS.

Figure 2.1 shows the distribution of the traffic generated by three ASes, as an

example. The tail of the distribution in Figure 2.1a can be modeled as Pareto
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(a) Pareto-like (D = 0.88)
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(b) LogNormal-like (D = 0.27)
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(c) In the middle (D = 0.43)

Figure 2.1: Instances of the generated traffic distribution. The tail of the distri-
bution varies between the “straight” Pareto-like to the “bent” LogNormal-like.

(the CCDF in log-log scale resembles a straight line), while the distribution in

Figure 2.1b can be modeled as LogNormal. This confirms previous observations

of the heavy-tailed nature of sourced traffic distributions [20, 32, 63] with a more

recent dataset. On the other hand, the distribution in Figure 2.1c decays faster

than Pareto but slower than LogNormal. The values in the tail refer to “heavy”

prefixes, i.e., destinations that receive the largest fractions of traffic. The tail of

LogNormal decays faster than the tail of Pareto, and so there is a higher probabil-

ity of observing heavy destination prefixes at source ASes that follow the Pareto

distribution than the LogNormal. We analyze a potential cause for this difference

in the distribution shape in Sec. 2.2.4.

We next describe a method to determine whether the distribution of ITM

elements for a row follows the LogNormal or Pareto distributions. We could use

the Kolmogorov-Smirnov (K-S) or other goodness-of-fit tests. However, we are

mainly interested in characterizing the tail of these distributions, ignoring the

values in the main body of the distribution. This is because, due to NetFlow

sampling, the body of the distribution consists of small values that are noisy.

Let X be the examined sample and F be the empirical distribution of X . The

tail of X consists of all values in the top 15-percentile of the distribution, i.e., the

values above some “tail threshold” τ . Let F ′ be a candidate distribution (LogNor-

mal or Pareto) that we try to fit to the tail of X . From the candidate distribution

F ′ we generate a sample X ′. We then generate a sample X̂ by combining the tail
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of X and the body of X ′.

X̂ = {X ′ : X ′ < τ,X : X ≥ τ}

We now apply the K-S test under the null hypothesis H0 that X̂ is drawn from

the same distribution F ′. By construction, both X̂ and X ′ have the same bodies

and they differ only in their tails. Therefore, the differences between X̂ and X ′

reported by the K-S test should be caused by the differences in the tails. If H0

is rejected for a LogNormal candidate distribution and not rejected for Pareto,

we assume that the tail of the data fits Pareto. In the opposite case the tail is

modeled as LogNormal.

We applied this method on the traffic distributions of 3189 ASes, of which 504

were classified as LogNormal and 162 as Pareto. Our method does not classify

the majority of ASes as either Pareto or LogNormal. In those cases, the empirical

distribution seems to be between the previous two models.

2.2.3 Distribution parameters

To generate synthetic distributions of sourced traffic, we need to know the nature

of the distribution (Pareto or LogNormal) and the associated parameters. In

particular, we are interested in the “shape” parameter of these two distributions.

We investigated whether the shape of the measured distributions depends on

the AS traffic throughput, i.e., on the total traffic generated by that AS. The

shape of the Pareto distribution is represented by the α parameter; lower values

of α indicate a heavier tail. For LogNormal, we characterize the shape of the

distribution using the coefficient of variation (CoV); a higher CoV indicates a

heavier tail.

Figure 2.2a shows α and Figure 2.2b shows CoV as a function of the average AS

throughput. Clearly, in both cases, an increasing throughput causes a change in

the shape parameter – the tail becomes heavier, and the more popular destinations

receive even more traffic. This is not obvious, because the increasing traffic could

cause only changes in the scale, but not necessarily in the shape of the distribution.

The values of the Pareto α parameter are between 0.37 – 1.20, while the LogNormal

CoV varies between 0.13 – 0.38.
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Figure 2.2: Distribution parameters as a function of throughput.

2.2.4 What determines the shape of the tail?

In this section we investigate why the generated traffic distribution follows a Log-

Normal tail for some ASes, and a Pareto for others. We also show that this

difference could be related to congestion within the corresponding AS.

Shape and throughput

To compare the shape of the previous distribution, we define a metric D that

indicates if the tail is LogNormal-like or Pareto-like. Let F be an empirical CDF

of the sample, and let FP and FL be the CDFs of the Pareto and LogNormal

distributions that fit the tail of the sample. We measure the difference in the tail

using the Kolmogorov-Smirnov metric: KS(F1, F2) = max|F1(x)−F2(x)| only for

values of x that are in the tail. We define D as

D =
KS(F, FL)

KS(F, FL) +KS(F, FP )
(2.1)

where D = 0 indicates that the tail follows a LogNormal distribution, D = 1

indicates a Pareto distribution, and values in between represent how close the

sample is to each of those two distributions.

In Figure 2.3 we plot the metricD and the overall throughput for each examined

AS in a single week (trace W). The dot size indicates the number of visible-non
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Figure 2.3: Type of the distribution tail and average throughput. Each dot is a
separate AS. The dot size indicates the number of visible non-zero prefixes.

zero prefixes for that AS. Visually, we see that ASes with lower throughput are

more Pareto-like and ASes with larger throughput have a more LogNormal-like

tail.

The reader may be concerned that the relation seen in Fig. 2.3 is an artifact

of visibilty – the fact that we do not observe traffic from each source AS to the

same set of destination prefixes. We investigated this possibility by performing

the following experiment. Let ASP be an AS with Pareto-like distribution and let

ASL be an AS with LogNormal distribution. Let Q be the set of prefixes that are

visible non-zeros for both ASP and ASL. We determine whether the traffic sent

from ASL to prefixes Q follows the distribution of ASP or ASL. If it follows the

distribution of ASL, then it means that the distribution does not depend on the

number of observed prefixes. We selected 4 Pareto-like ASes (with between 19k and

57k visible non-zero prefixes) and 10 LogNormal-like ASes (with between 120k and

260k visible non-zeros) and examined all 40 pairwise combinations. Interestingly,

in all cases the distribution of the traffic sent by ASL to prefixes in Q retained the

properties of ASL. We thus reject the possibility that the shape of the generated

traffic distribution is a function of the number of observed prefixes.

Congestion

In this section, we investigate a possible reason why some ASes follow the Log-

Normal distribution and others the Pareto distribution. Cha et al. [25] show that
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Pareto “tail truncation” effect can be caused by bottlenecks. In the case of interdo-

main traffic, we suppose that tail truncation is caused by bandwidth bottlenecks.

Specifically, we conjecture that congestion can “push” the generated traffic dis-

tribution from the Pareto distribution towards the LogNormal distribution. It

would mean that congestion affects large ASes more than the small ones. Finding

evidence, and explanation, of congestion inside networks is a challenging task, as

we do not have any direct information about the ASes connected to GÉANT. We

only have NetFlow data collected at GÉANT for a subset of destination prefixes;

we plan to confirm these observations with more exact traffic samples as part of

future work.

To detect congestion, we follow the intuition that during periods of conges-

tion, every additional connection at the link will compete for throughput with

existing connections. Consequently, we should see a negative correlation between

the number of active connections at a link and the median throughout of each

connection. We analyzed NetFlow data for two ASes (one LogNormal-like and

the other Pareto-like) over three days at the time period that congestion is most

likely (10:00–20:00), with bins of 20 minutes. To reliably estimate flow throughput

and to discard TCP control flows, we only consider flows with at least 5 sampled

packets, at least 100B each. Figure 2.4 shows the number of flows and the median

throughput per flow for both ASes. For both ASes, we measured the Spearman cor-

relation coefficient for each day. For the LogNormal-like AS, the daily correlations

are −0.85, −0.77 and −0.82. For the Pareto-like AS we do not see any significant

correlation. In summary, there is some evidence that ASes with LogNormal traffic

distribution are subject to congestion, at least for certain time periods, while ASes

that follow the Pareto distribution are not subject to congestion.

2.3 AS correlations and popular prefixes

In this section we show that the ITM rows are not independent. For example, this

can be the case when a set of destinations is popular for several source ASes. Cor-

relations across rows are important in matrix completion techniques that attempt

to estimate unknown elements in one row using known values in other rows. The

correlations are also useful for generating synthetic ITMs.
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Figure 2.4: Number of flows and the median throughput for a LogNormal-like (a)
and Pareto-like (b) AS. 22–24 Nov 2010, 10:00–20:00. A few extreme outliers in
(b) are not drawn.

2.3.1 Correlations

The nature of our dataset makes it challenging to directly measure correlations

between rows, as two ITM rows can observe different sets of destination prefixes.

Even if we could observe two complete ITM rows, we should not expect to see very

high correlation between them, as each row consists of only few large values, with

the bulk of the distribution consisting of small and highly noisy values. Hence,

we restrict ourselves to studying correlations only for the set of heaviest prefixes

in each row. To measure correlations between two rows of the ITM, we retain the

top 15% of prefixes in each row, and calculate the Spearman correlation across

prefixes that are present in both rows. We calculate pairwise correlations in this

manner for each pair of rows in trace W. To obtain more accurate results, we

only consider rows with at least 3000 visible non-zero elements. To calculate the

correlation between two rows, we require that the overlap between them is at least

100 prefixes.

Using this method, we measure the correlations between 15146 pairs of rows.

10931 pairs give statistically significant correlations (p<0.01). 99% of the correla-

tions are positive; the average correlation is 0.28. The highest correlation is 0.85

and 408 pairs of rows have a correlation larger than 0.5. Interestingly, for 135

pairs of rows with an overlap of more than 10000 prefixes, we observe an average

37



Analysis of the Interdomain Traffic Matrix

0 2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

rank of prefix

p
re

fi
x
 s

ig
n
if
ic

a
n
c
e

 

 

q:0.85 K:1k
q:0.85 K:3k
q:0.85 K:10k
q:0.90 K:1k
q:0.90 K:3k
q:0.90 K:10k
q:0.95 K:1k
q:0.95 K:3k
q:0.95 K:10k

Figure 2.5: Significance of prefixes, ordered. Only prefixes observed in at least 20
rows are considered.

correlation of 0.44.

2.3.2 Popular prefixes

The previous section raises the question of whether there are some globally “sig-

nificant” (or popular) prefixes, i.e., prefixes that account for a large fraction of the

total traffic generated by each AS. We define a prefix p as significant for source

AS i if p is in the top-q quantile of the visible non-zero elements in row i. If n(p)

is the number of ASes that send traffic to p via GÉANT and nS(p) is the number

of ASes for which p is significant, then the significance of p is I(p) = nS(p)/n(p).

For the sake of accuracy, we consider only rows with at least K visible non-zero

elements, and prefixes with n(p) > 20. We experiment with different values of K

and q. Figure 2.5 shows, for each prefix p the significance value I(p), for different

values of K and q. The curves for different values of K and q are similar, at least

in shape. Interestingly, there are some prefixes that are significant for most ASes

(I values close to 1). For instance, for K=3000 and q=0.85, 460 out of 61000

prefixes have significance value of 0.8 or higher, and those very popular prefixes

receive on average 32% of the total traffic produced by the corresponding ASes.

8800 prefixes with I(p) > 0.5, account for about 78% of the traffic.

This implies that there is a small group of prefixes which are significant for

almost all source ASes. We found by manual inspection that more than 25% of

these very popular prefixes (I(p) > 0.8) belong to well known large Internet entities
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Figure 2.6: Eigenvalues of the submatrices (relative magnitudes). Only a small
number of the values is significant, what indicates a low effective rank.

(such as Google, NTL Virgin, OVH, Level 3, to name a few).

2.3.3 Low effective rank

A matrix that has low effective rank can be approximated by a linear combination

of a small number of independent rows or columns. Some techniques to estimate

invisible elements of the ITM (e.g., matrix completion [23, 87]) rely on the fact

that the ITM has low effective rank.

To study whether the AS-to-prefix ITM has a low effective rank, we used an

ITM snapshot from trace W, identifying visible zeroes using a monthly reference

snapshot (see Sec. 2.2.1). To examine the rank of the matrix, we adapted the

methodology used in [23]. From the observed ITM we extracted square visible

submatrices of various sizes, and calculated the eigenvalues for these submatrices.

Figure 2.6 shows the normalized (sum to 1) and averaged eigenvalues across the

extracted submatrices. Clearly, only about 10 eigenvalues are significant (even for

the submatrix that is 236-by-236 elements) , meaning that the ITM can be approx-

imated with a relatively small number of independent vectors. This observation

remains independent of the size of the submatrix, indicating that the global ITM

is also likely to be of low rank.
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2.4 Related Work

Given the importance of characterizing interdomain traffic demands, there has

been surprisingly little prior work on estimating the characteristics of the interdo-

main traffic matrix. The major reason for this, unfortunately, has been the lack

of publicly available data [79] to enable such a study by the research community.

An early study by Fang et al. [33] showed that interdomain traffic distributions

are highly non-uniform, an observation that has since been confirmed by others

[20, 63]. Feldmann et al. [35] described a method to estimate web traffic demands

using data from server logs at a large content delivery network. Chang et al. [26]

propose a method to estimate interdomain traffic demand by estimating the im-

portance of an AS in various roles – residential access, business access and web

hosting. In contrast, our work aims to extract relevant statistical properties of

the ITM from direct measurements, which resembles the approach in [63] for in-

tradomain traffic. Sen et al. [74] analysed P2P traffic in large networks. A recent

study from Arbor networks [49] revealed some important characteristics of inter-

domain traffic, such as the increasing dominance of large content providers. That

study does not, however, measure a traffic matrix. Gadkari et al. [36] study prefix

activity from a source AS, discovering that only a small fraction of destination

prefixes receive traffic during a day, indicating that the ITM is sparse. Bharti et

al. [23] also report on the sparseness of the ITM, and propose methods to infer the

invisible elements of the ITM. Our work confirms the sparsity and low effective

rank of the ITM seen in previous work [87].

2.5 Conclusions

In this chapter we analysed selected statistical properties of the Interdomain Traf-

fic Matrix using data from a large research network. First we investigated stability

of the routing in the network and found optimal aggregation intervals that allow

us to capture significant portions of traffic without being affected by changes in

the routing in GÉANT. After that we investigated sparsity of ITM. We deter-

mined that the lower bound of the sparsity is 47% for the weekly snapshots of

the traffic, and 26% for daily snapshots. Next we investigated shape of the sta-
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tistical distributions of the traffic generated by the ASes and we found that they

are predominantly heavy tailed. Among those distributions, we found examples of

both LogNormal and Pareto. We observed that the parameters of the distributions

vary with the throughput of the traffic, and that one possible explanation could

be congestion in the networks sourcing the traffic. Next we examined correlations

between rows of the matrix and found that the rows are highly correlated. This

high correlation is naturally related with high effective rank of the matrix, which

we investigated afterwards.
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Chapter 3: Synthesization of Interdomain

Traffic Matrices

In the previous chapter we focused on inferring statistical properties of the inter-

domain traffic matrix. This chapter focuses on generating synthetic interdomain

traffic matrices. We need realistic interdomain traffic matrices in order to model

and simulate new interdomain interconnection policies, pricing schemes, or rout-

ing protocols. Moreover, simulations of the interdomain Internet often need to

be at different scales than the real Internet (which consists of more than 40,000

networks), either “shrinking” the actual traffic matrix for scalable modeling and

simulation, or to investigate “what-if” scenarios in the evolution of the Internet.

Researchers have mostly had to rely on synthetic interdomain traffic matrices gen-

erated using ad-hoc methods, reproducing some high-level characteristics of the

interdomain traffic matrices such as heavy-tailed traffic volume distributions, or

the presence of large traffic sources and sinks [20, 33, 49]. However, the research

community lacks a configurable tool for producing synthetic traffic matrices of ar-

bitrary size that match basic real interdomain traffic characteristics in more detail.

To fill the gap, we present in this chapter the design and evaluation of ITMgen, a

new tool to generate representative synthetic interdomain traffic matrices. ITMgen

is based on first-principles, and incorporates several features that result in more

representative traffic matrices than the current state of the art [26]. First, we

model interdomain traffic at the level of connections, taking into account the rela-

tive sizes of ASes measured by the number of users they serve. Second, we model

multiple content (or application) types, and their effect on interdomain traffic in

terms of the ratio of forward to reverse traffic that each application type pro-

duces. Third, ITMgen captures the fact that the popularity of content objects
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shows regional effects - certain websites, for instance, may be more popular in

specific countries or geographical regions. Finally, ITMgen is designed to be pa-

rameterized with high-level input data that is available publicly, and we provide

such a canonical parameterization that represent present-day interdomain traffic

characteristics. ITMgen is designed to be highly configurable and extensible; when

new content types emerge and data about them becomes available, ITMgen can be

easily extended to incorporate the new data.

The remainder of this chapter is organized as follows. Sec. 3.5 discusses related

work. Sec. 3.1 describes the design of ITMgen. Sec. 3.2 describes the datasets used.

Sec. 3.3 demonstrates how ITMgen can be parametrized and how to synthesize a

matrix. The validation is presented in Sec. 3.4. Sec. 3.6 concludes the work.

3.1 ITMgen design

The design of ITMgen is based on first-principles, modeling traffic at the level of

connections and taking into account traffic asymmetries based on application type

and the effects of regional/global content popularity. We emphasize that we focus

on generating static snapshots of the interdomain traffic matrix. Although such

a static model might be sufficient for applications such as Internet economics or

network formation, other areas may requite a model that captures temporal effects.

We strive to expand the model along the temporal dimension. Next, we summarize

the key decisions underlying the design of ITMgen.

Connection-based

The interdomain traffic matrix, by definition, is concerned with the terminating

ends of the Internet, i.e., it measures the traffic that originates at an AS X and

terminates at AS Y. We recognize that such traffic is from connections that origi-

nate from and/or terminate at individual users. We thus make the design decision

to model interdomain traffic at the level of connections, and the traffic exchanged

by an AS will depend on the number of users in that AS.

Content types

The Internet caters to a variety of different applications, such as web, peer-to-

peer file sharing, streaming video, conferencing, etc. Given a connection, the ratio

of traffic flowing in the two directions (traffic asymmetry) over that connection
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depends on the nature of the application. For example, in the case of client-server

applications, the traffic asymmetry will be determined by the ratio of the size of

data packets to the size of acknowledgements. In the case of P2P traffic, we expect

more symmetric traffic. We explicitly model different application types in ITMgen.

Note, however, that we are considering different traffic types, and not necessarily

network types; the same network can thus host different applications.

Regional and global popularity

We recognize that content popularity on the Internet shows both global and re-

gional effects. With respect to web content, for example, websites such as Google

and Facebook are popular worldwide; on the other hand, some websites cater to

specific countries or regions. Such regional websites may be highly popular traffic

sources for ASes in the same region, but they are not popular for ASes in a different

region. ITMgen takes into account the global and regional popularity associated

with content objects.

Parameterizable using commonly available data

ITMgen can be parameterized using commonly available data sources, which mea-

sure interdomain traffic characteristics at a high level. Further, we have designed

ITMgen to be extensible to accommodate new application types that may emerge

in the future. A user can extend the tool whenever data about new application

types - the traffic parameters for the new application type, the global and regional

popularities of ASes w.r.t. that application type - are available.

3.1.1 Traffic model

ITMgen models the traffic between two ASes as an interaction between users and

content within the ASes, facilitated by a set of distinct applications. Consider an

example where users in ASes U1 and U2 are accessing objects stored on machines

in ASes M1 and M2, using an application A1. The volume of this user-to-machine

(U2M) traffic depends on the number of users in Ui, the popularity of content in

Mj , and the nature of traffic produced by application A1. Moreover, the popularity

of M1 can be different for U1 and U2, for example due to a regional bias. Users

in U1 and U2 also interact using application A2, generating user-to-user traffic

(U2U). The obvious examples of applications that produce U2M and U2U traffic
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are browser-based services and P2P, respectively. In our study we omit machine-

to-machine (M2M) traffic. The reason is twofold: traffic reports like [8] do not

indicate that M2M traffic volume is significant in access networks. Also, access

to the packet level data at the level of non-access ASes (i.e., business ASes) is

highly restricted. Therefore we only acknowledge that M2M traffic estimation will

require further effort.

The traffic represented in the ITM is thus an aggregate of all the individual

interactions between users and content in different ASes. There are two levels at

which these interactions need to be characterized in order to generate an ITM.

At the macro level, the traffic between two ASes depends on the number of users

and the popularity of the content hosted within those ASes. The common gravity

models [26, 73] operate at this level. This level of description is insufficient to

capture more elusive aspects of the traffic, namely what happens at the application

level. Therefore, we enhance the macro-information with the micro-level view

which describes the actual interaction between users and content objects.

Combining the macro and micro-level views, traffic from AS i to AS j can be

expressed as

Ti,j =
∑

κ

mκ

(

Sip
κ
i (j) + dκSjp

κ
j (i)

)

(3.1)

Si denotes the number of users in AS i. pκi (j) denotes the relative popularity of j

subjective to i and with respect to application κ. The two terms in the summation

represent the traffic from a user to an object due to application κ, and the traffic

produced by that application in the reverse direction. The (a)symmetry in the

two directions of traffic due to application κ is denoted by dκ, and this parameter

is application-dependent. The parameter mκ represents the contribution of each

application to the overall traffic mix.

In the rest of this chapter, we describe how to parameterize ITMgen with re-

spect to these two applications. Although both groups contain more applications

(Skype, mail, etc.), web and P2P in particular contribute to the bulk of interdo-

main traffic [49, 8]. ITMgen can easily be extended to add more application types,

as long as the relevant information to parameterize them (mκ, dκ and popularity)

is available.

A curious reader could notice that we do not consider network topology. Our
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goal is to model traffic resulting from an interaction between users and content;

the user’s decision to access a specific content does not depend on the topology.

3.2 Dataset description

We give a brief overview of the datasets we have used to parameterize (Sec. 3.3)

and validate (Sec. 3.4) ITMgen.

We use the Alexa [1] list of global top 1 million websites to measure the

popularity of ASes with respect to web content. Alexa also provides per-country

statistics1, which we use to determine the regional popularity of ASes. To estimate

the popularity of ASes with respect to peer-to-peer traffic, we rely on data obtained

by crawling the BitTorrent (BT) tracker (openbittorrent.com). To obtain the

number of users per AS, we relied on open marketing reports from ISPs [2].

To obtain the micro-level information regarding application characteristics (ra-

tio of forward to reverse traffic) and the fraction of traffic accounted for by var-

ious application types, we rely on a two-week long packet level trace from

CESCA [3]. Although CESCA is a fully fledged AS and access to the packet

level data at that level is difficult, we strive to confirm our results with other data

sources. We deliver ITMgen with preconfigured parameters in case a researcher

does not have access to the relevant low level data.

For validating ITMgen, we use traffic statistics for 3 ISP ASes from Telefonica,

a world-wide Internet connectivity provider. For those ISPs we analyze traffic

statistics for the top 1000 ASes; as the traffic distribution was heavy tailed, those

top entries contribute to more than 95% of the total traffic. The statistics come

from international access links, therefore some of the regional (country) traffic can

be undervalued and we use this data only where this shortcoming is insignificant.

3.3 Parameterization and synthesis

In this section we describe how each of the parameters in (3.1) can be estimated

from real-world measurements. We provide this measurement data and the asso-

1We use “page views” metric provided by Alexa, together with per-country breakdown.
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ciated parameterization as the canonical parmeterization of ITMgen.

3.3.1 Number of users: Si

Our model requires an estimate of the number of users in each AS, which we char-

acterize as follows. Using publicly available marketing data and annual reports, we

obtained the market shares of ISPs for the top-10 countries in the world according

to the number of Internet subscribers [11]. This gives us insight into ISP market

shares, but not per-AS estimates. For each ISP, we then obtained the set of ASes

belonging to that ISP using whois data. For these ASes we measured the number

of IP addresses in our BT logs, and split the subscribers of the ISP among different

ASes in proportion to the number of IP addresses seen from each of those ASes

in BT. The assumption is that approximately the same fraction of users in each

AS belonging to an ISP participate in BT file sharing. This gives us an empirical

distribution of the number of Internet users per AS, for about 400 ASes. Although

this represents only 1% of the total number of ASes, these contribute to about

60% of the total number of Internet subscribers in the world.

In addition to the number of users per AS, we need to determine the fraction

of ASes in the world that do not serve any users. Such ASes could host content

(pure content providers), or provide transit service (pure transit providers). Pure

transit providers do not appear in the interdomain traffic matrix, as they do not

source or sink any traffic. To find pure content providers, we obtain the set of

ASes that host websites represented in the Alexa list. Of these ASes, we separate

the ones that do not show any BT activity in our BT logs. We thus find that

at least 42% of ASes do not serve end users. We emphasize that these are rough

estimates and can be easily improved as more precise data becomes available.

3.3.2 Content Popularity: pκi (j)

Another macro-level parameter is the popularity of an AS with respect to various

content types. Vector pκi (j) describes the fraction of traffic generated by an

average user in AS i that is sent to AS j. Recall from Sec. 3.1.1 that the traffic

between two ASes is proportional to the popularity of the content objects hosted

by that AS. Moreover, the popularity can be subjective, i.e., some ASes are likely
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to be popular only in their own region, while others are globally popular. The bias

can be easily observed in the rankings of ASes calculated from Alexa: for top-10

most popular ASes in 20 examined regions, by average 53% of them were from that

region. As a result, we assign to each AS i a popularity vector pκi (j) :
∑

j p
κ
i (j) = 1

describing the subjective popularities of the other ASes, as visible from i.

Web popularity

To gain an insight into the popularity of the WEB traffic, we used Alexa page

views statistics. Although this metric does not reflect literally the actual traffic

volume for the AS, the number of page accesses per AS will impact the generated

traffic, and we believe that it can serve as the basis for comparison between ASes.

Figure 3.2 shows the distribution of AS popularity for different regions. Strikingly,

the underlying distribution appears to be similar for all 20 examined regions (not

shown in the figure) and the corresponding Zipf slope falls typically into range

(1.13, 1.28). Some ASes, e.g., Google, Facebook, etc. are expected to be popular

in many regions. Moreover, an AS that is among the most popular ASes in region A

can also be among the most popular ASes in region B. To confirm the intuition, we

computed the pairwise Spearman correlation of the rankings in all the considered

regions. We found a relatively high Spearman correlation (0.62), indicating that

there does exist correlation between the top ranking ASes in different regions.

To synthesize the ITM, we need to define a procedure to create pκi (j) that

(1) has a certain statistical distribution (resembling measurements), (2) keeps the

notion of local and global popularity of ASes (to distinguish between, for example,

a global content provider and large regional hosting provider), and (3) preserves

ordering (e.g., for two globally popular ASes X and Y , X will be always more

popular than Y ). The following procedure builds pκi (j) for an AS i that captures

those three properties. First, we split all ASes into three ordered groups: globally

popular, locally popular and the remaining ones. Next, from a Zipf distribution

we generate a random vector q (sorted in descending order) of length n, where n

is a number of ASes. This vector contains the popularities of remote ASes from

the perspective of AS i. Then, n times we pick an AS j from a random group

(globally popular, locally popular, or other) and assign the next value from q to

pκi (j). This way we build pκi (j) for a specific AS i.

P2P Popularity
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As we mentioned in Sec. 3.1.1 a prevailing U2U application is P2P file sharing,

which is responsible for most of U2U traffic between ISPs. In this section we

describe the parametrization of P2P popularity vector pP2P
i (·).

We estimate the relative popularity of different ASes for P2P content using BT

measurements. To this end, we measured the number of IP addresses from each AS

seen in our BT crawls. Figure 3.4 shows the distribution of the active P2P peers

per AS. The flat section of the plot suggests an underlying power-law distribution,

which is more evident after binning the data. The bent tail could be the effect of

an information bottleneck, e.g., insufficient measurement time [25]. To build the

popularity vector w.r.t. P2P traffic pP2P
i (·), we draw a vector of random variables

from the fitting Zipf distribution with slope 1.63 and assign the generated values,

from the highest to the lowest, to ASes in the order of descending number of users.

We refrain from modelling regional popularity in P2P traffic, as those effects are

difficult to estimate precisely from BT data. As P2P contributes a relatively small

fraction of overall Internet traffic [8, 49], we accept the error introduced by not

considering the locality of P2P. Nevertheless, it is possible to use measurement-

based insights on the regional distribution for P2P [73], together with a procedure

similar to the one used for WEB to assign regional P2P popularities.

3.3.3 Application mix: mκ, dκ

As mentioned in Sec. 3.1, ITMgen recognizes the fact that traffic at its micro level

is a mix of different applications, which is expressed in (3.1) by κ. There are two

crucial parameters we must estimate at the micro-level. The parameter dκ, which

describes the ratio between the two directions of traffic generated by application κ,

and mκ, the fraction of the traffic generated by an average user, due to application

κ. These application-specific characteristics cannot be obtained from the macro

level data; to this end, we monitored the CESCA access link for 14 days. To

classify the applications we used the commercial PACE [6] tool for deep packet

inspection, which in our case yielded only 13% of unclassified traffic2.

Our measurements indicate that in the case of WEB traffic the ratio per flow

2The overall accuracy was affected by the packet capturing process (e.g., packet drops and
truncated flows), which are not related with PACE.
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log10(dκ) typically falls into the range (0.4, 1.5) and for P2P traffic into the range

(−0.87, 1.25). It is unsurprising that dWEB is skewed, since for WEB one direction

of the traffic is predominant. Also the upper bound of dWEB is determined by MTU

as log10
MTU

TCP Ack
≈ 1.56. Interestingly, the ratio for P2P traffic is both positive

and negative, suggesting that some P2P clients use the same connections, once

established, to both upload and download the exchanged content. In the latter

examples we use the statistical distributions that best fit the measurements, i.e.,

normal dWEB and uniform and dP2P

To explain the exact role of mκ consider the following example: a user down-

loads a file from a server and dWEB = MTU
Ack

. Also, the same user exchanges P2P

traffic, and dP2P = 1. If both applications use the same total bandwidth, it does

not mean that the upstream flows (from the user to the object) are the same size:

the upstream flow of WEB is smaller than that of P2P. The parameter mκ reflects

this difference in the traffic mix originally generated by an average user. Based

on our measurements we choose mP2P = 0.65 and mWEB = 0.35. We strive to

compare those results with the data from other vantage points.

3.4 Validating ITMgen

In this section we validate ITMgen. First, we perform some sanity checks to show

that a synthetic ITM generated by ITMgen reproduces well-known characteristics

of the real ITM. Later, we discuss the advantages of ITMgen over a common gravity

model (GM) [26].

3.4.1 Sanity checks

One of the properties of the ITM observed in [23, 59] is it’s low rank, meaning

that the matrix can be approximated by a small number of independent vectors.

The reason of the low rank is that a small number of the most popular ASes

(rows/columns) capture the bulk of the traffic. To verify that ITMgen produces

ITMs with this property, we computed the eigenvalues of a synthetic ITM with

1,000 ASes. Less than 30 out of 1,000 values were significant, confirming that the

low rank property holds for ITMgen generated matrices.
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Figure 3.1: Statistical distribution of the traffic pro-
duced and consumed by the observed ASes, for the
Telefonica data (dashed line) and the model (solid)
for the synthetic ITMs of different sizes.
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Figure 3.3: Regional traffic exchange.
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distribution.

Next, we compare the statistical distributions of the traffic exchanged by ASes

in the synthetic ITM and that seen in the Telefonica dataset. Figure 3.1 shows

results for 3 ISPs from Telefonica, and selected ASes from the generated ITMs

that have a similar number of users, relatively to the total number of users in all

ASes. We perform this analysis for synthetic ITMs of different sizes. We observe

that the distribution of traffic produced by synthetic ASes is qualitatively similar

to that in the measurements. On the other hand, the traffic consumed by synthetic

ASes appears to be more skewed than in the measurement data (the slope of 0.89

for the measurements and 0.69 for the model). Although the mismatch is visible,

we do not aim to match exactly the special case visible in the plot. Simulation
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parameters, in particular content popularity distribution, can be adjusted to match

desired special cases.

3.4.2 Regional effects

ITMgen explicitly models regional biases in content popularity. We present those

effects introduced by ITMgen, and compare them with real measurements, and

with a synthetic ITM produced by GM. For this purpose, we model 10 regions

with equal number of ASes. As GM does not introduce locality, it will result in a

random assignment of ASes to the regions.

We analyze traffic locality for two types of ASes: ISP and CP. From the gen-

erated ITM, we select randomly 25 ASes with a similar relative number of users,

and calculate the traffic that those ASes exchange with the ASes within the same

region. We repeat the same procedure for the ITM generated by GM. We calculate

the regional traffic of each institution in CESCA. Figure 3.3a shows the fraction

of traffic that is exchanged with ASes in the same region for matrices of different

sizes generated by ITMgen, a synthetic ITM generated by GM, and measurement

data from CESCA. We observe that CESCA traffic is regionally biased - almost

40% of the traffic is exchanged with ASes within the same region. This bias is also

reflected in the synthetic matrices produced by ITMgen, regardless of their size, as

shown in Fig. 3.3a. We also observe that GM produces an ITM with significantly

less regional traffic.

Next, in Fig. 3.3b we compare local traffic from the point of view of CPs in the

CESCA data. Although we did not have access to a true CP AS, we analyzed the

traffic from/to the content servers inside the CESCA AS. The figure shows that

in the measurement data from CESCA, about 60% of traffic is local; the synthetic

ITM produced by ITMgen shows similar fractions, while GM clearly underestimates

regional traffic.

3.4.3 Application mix

An important feature of ITMgen is that it offers the possibility of modeling the

traffic mix in terms of applications. To this end, we show the application mix
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resulting from ITMgen, and later discuss a what-if scenario that considers a new

application.

Various reports [49, 8] and our DPI measurements at CESCA suggest that P2P

contributes between 9% and 21% of the overall traffic. In the synthetic ITM we

observe that P2P contributes an average of 27% of the traffic. The overestimation

can stem from the fact that we model only two applications, whereas the mentioned

measurements consider all possible applications.

3.4.4 Use case - cloud storage

Here we discuss how to introduce a new application to the ones already modeled

by ITMgen. We consider “cloud storage” (ST), a service that allows a user to

synchronize her data over a cloud that is managed by an external enterprise.

Recall that to model a new application, the user must specify both the macro

and micro-level properties of that application. First, we consider the macro level

characteristics of ST, expressed by the popularity vector pSTi (j) (see Sec. 3.3.2).

Recall that p describes the popularity of AS j, as seen from AS i. We consider a

hypothetical scenario where the storage is provided by three major global content

providers, and we assign pSTi (j) proportionally to pWEB
i (j) so that the more an

popular AS already is, the more ST traffic it will attract. Next, we specify the

micro level parameters. We simulate that the users generate an additional 5%

of upstream traffic due to ST (mST = 0.05). We also simulate that the traffic

generated by ST is skewed (upload files from one point and send to many points),

and we model the traffic ratio log10(dST ) with a normal distribution N(0.7, 0.2).

This information is sufficient to model the new application. We generated

synthetic ITMs with ITMgen, considering the new application in addition to Web

and P2P traffic. Analysis of the synthetic ITMs suggests that ASes providing

cloud storage will increase their traffic from 16% to 20%, and the overall traffic

generated by all ASes will increase by 9.1%. This example shows how ITMgen can

be used to model various what-if scenarios related to new application types.
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3.5 Related work

Most prior work on traffic matrix estimation and generation focused on intrado-

main traffic (see [23, 20, 63, 71, 86, 87] and references therein). Although those

solutions give useful hints about synthesizing interdomain traffic matrices, they

cannot be applied directly to the interdomain context. A prior paper on model-

ing intradomain traffic that inspired our work was by Erramilli et al. [32], which

modeled intradomain traffic at the level of individual connections.

Several studies have measured interdomain traffic characteristics. An early

study by Fang et al. [33], confirmed by [20, 63], showed that interdomain traffic

distributions are highly non-uniform. Labovitz et al. [49] reported that interdo-

main traffic has been consolidating. Maier et al. [52] characterized residential

broadband traffic. Bharti et al. [23] report on the sparseness of the ITM, and

propose methods to infer the invisible elements of the ITM. Mikians et al. [59]

confirmed the sparseness of ITM, heavy-tailed distribution of sent and received

traffic volumes, and measured the global and regional popularity associated with

content sources. Feldmann et al. [34] present a methodology to estimate web traf-

fic demands by analyzing CDN logs. While these studies do not directly measure

ITM, the research community has mostly relied on measurements reported in these

studies to synthesize ITM for modeling and simulation purposes.

The only work presenting a full approach to model interdomain traffic matrices

by Chang et al. [26], which uses the gravity model to estimate the traffic between

the ASes. The authors model ASes with a mix of “utilities” (business, residential,

web hosting) and attribute the traffic accordingly to the interacting AS types. In

contrast, we do not attribute types or “utilities”, but rather distribute users and

content, and model their interactions. A further difference is that our model is

topology agnostic, and does not require knowledge of the interdomain topology in

order to synthesize an ITM.

3.6 Conclusions

Modeling the interdomain traffic matrix is a challenging task, as it is impossible to

obtain its full view. In this chapter, we present ITMgen, a tool to build synthetic
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ITMs of arbitrary size. To the best of our knowledge, ITMgen is the only alterna-

tive to the current state of the art in interdomain traffic matrix estimation [26].

ITMgen takes a first-principles approach, and differs from that work in several sig-

nificant ways - it models traffic at the level of connections, is topology-agnostic,

and takes into account both regional and global popularity of content types. We

are aware that ITMgen has both advantages and disadvantages compared to GM.

ITMgen is extensible; it can be easily extended as the dominant application mix

of interdomain traffic changes, and data about new application types becomes

available. We show how to parameterize ITMgen using mostly data that is avail-

able publicly. On the other hand, it might be challenging to parameterize and it

describes only relative traffic between ASes. We are releasing ITMgen as a tool

to enable researchers to generate synthetic, but representative traffic matrices for

modeling and simulation purposes.
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Chapter 4: Detecting Price and Search

Discrimination on the Internet

In Part I we focused on measurements and modelling of interdomain traffic matrix,

which is directly related with macroeconomics of the Internet. In this part we focus

on describing phenomenas specific to Internet microeconomics.

The predominant economic model behind most Internet services is to offer the

service for free, attract users, collect information about and monitor these users,

and monetize this information. The collection of personal information is done using

increasingly sophisticated mechanisms [48] and this has attracted the attention of

privacy advocates, regulators, and the mainstream media. A natural question to

ask is: what is done with all the collected information? And the popular answer

is, the information is being used increasingly to drive targeted advertising.

Another hypothesis put forward for the wide-scale collection of information,

and the related “erosion of privacy” is to facilitate price discrimination [64]. Price

discrimination1 is defined as the ability to price a product on a per customer basis,

mostly using personal attributes of the customer. The collected information can be

used to estimate the price a customer is willing to pay. Thus, it can have a huge im-

pact on the e-commerce business, whose estimated market size is $961B [42]. The

question we deal with in this chapter is, “does price discrimination, facilitated by

personal information, exist on the Internet?”. In addition to price discrimination,

users can also be subjected to search discrimination, when users with a particular

profile are steered towards appropriately priced products.

Detecting price or search discrimination online is not trivial. First, we need to

1We use the terms “price discrimination” and “search discrimination” because these terms
are used in the economics literature to describe these phenomena; we are not taking a position
on whether these phenomena are harmful or unethical.
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decide which information vectors are relevant and can cause or trigger discrimi-

nation, if it exists. We look into three distinct vectors: technological differences,

geographical location, and personal information (Sec. 4.2). For system based dif-

ferences, the question is whether the underlying system used to query for prices

make a difference? For location, we check whether the price for exactly the same

product, sold by the same online site at the same time, differs based on the location

of the originating query. And for personal information, we are interested if there

is a difference in prices shown to users who have certain traits (affluent vs bud-

get conscious). Second, we need to be able to finely control the information that

is exposed while searching for price or search discrimination, to claim causality.

In order to uncover price/search discrimination while addressing these concerns,

we develop a comprehensive methodology and build a distributed measurement

system based on the methodology.

Using our distributed infrastructure, we collect data from multiple vantage

points over a period of 20 days (early July 2012), on a set of 200 online vendors.

Our main results are:

• We find no evidence of price/search discrimination for system based differences,

i.e., different OS/Browser combinations do not seem to impact on prices.

• We find price differences based on the geographical location of the customer,

primarily on digital products, up to 166%—e-books and video games. In addition,

we also see price differences for products on a popular office supplies vendor site,

when the queries originate from different locations within the same state (MA,

USA). However, we cannot claim with certainty that these differences are due to

price discrimination, since digital rights costs or competition could offer alternative

interpretations.

• When we use trained personas that possess certain attributes (affluent, budget

conscious), we find evidence of search discrimination. For some products, we

observe prices of products that were shown to be up to 4 times higher for affluent

than for budget conscious customer. We also observe this on a popular online

hotels/tickets vendor.

• We find evidence of price discrimination when we consider the origin URL of the

user. For some product categories, when a user visits a vendor site via a discount

aggregator site, the prices can be 23% lower as compared to visiting the same
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vendor site directly.

4.1 Background

Price Discrimination. Price discrimination is the practice of pricing the same

product differently to different buyers, depending on the maximum price (reserva-

tion price) that each respective buyer is willing to pay. For example, Alice and Bob

want to buy the same type of computer monitor and visit the same e-commerce

site at approximately the same time. Alice receives $179 as price while Bob gets

$199. The seller offers different prices to them by profiling them (see Sec. 4.2.4

for details) and realizing that Alice has already visited many electronics’ web-sites

and therefore might be more price sensitive than Bob.

From an economics point of view, price discrimination is the optimal method

of pricing and increases social welfare [81, 19, 54]. Despite its theoretical merits,

buyers generally dislike paying different prices than their peers for the same prod-

uct/service. From a legal point of view, the Robinson-Patman Act prohibits price

discrimination in the US under certain circumstances [10] but the possibility is

largely open in the current largely unregulated cross-boarder electronic retail mar-

ket on the Internet. Recently, a new congress bill aims to make price discrimination

on the Internet transparent to end users [76].

Historically, price discrimination has been practiced in myriad industries such

as the US railways in the 19th century, flight tickets, personal computers and

printers, and colleges fees [64]. Besides these examples, some minor instances

of price discrimination have emerged in the last decade on the Internet as well,

e.g., Amazon showed different prices to customers [77], and more recently, Orbitz

displayed search results in different orders to some group of customers [78]. We

emphasize that price discrimination and price dispersion2 are different concepts.

Price dispersion occurs when the same product has different prices across different

stores for reasons other than the intrinsic value of the product, e.g., because one

store wants to reduce its stock or has had a better deal with the manufacturer.

Search Discrimination. Another way to extract more revenue from buyers

2http://en.wikipedia.org/wiki/Price_dispersion
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with a higher willingness to pay is to return more expensive products when they

search within a product category. Search discrimination is different from price

discrimination because instead of operating on one product, it operates on multiple

products trying to steer buyers towards an appropriate price range. Ranking

of search results greatly impacts the result eventually chosen by the user; users

seldom go beyond the first page of results [45]. Hence the search provider, whether

a generic search engine or search on e-commerce sites, is in a position enable such

discrimination. For example, Alice and Bob are searching for a hotel in Redmond

during the same days and for the same type of room. Their searches are launched

at approximately the same time. A booking site offers Alice three hotels with

prices $180, $200, and $220, while Bob receives quotes from a slightly different set

of hotels with prices $160, $180, and $200. This can happen if the site has access to

historic data that indicates that Alice tends to stay in more expensive hotels, or by

other means such as system information [78]. While search personalization is not

entirely new3, in this chapter we draw attention to the economic ramifications of it,

and in particular study if the information vectors that cause price discrimination

also play a role in search discrimination.

Information leading to discrimination. In order to detect discrimination—

price or search—we first need to fix the different axes along which the discrimina-

tion can take place. We consider three distinct sources of information:

• Technological/System based differences: Does the combination of OS and/or

browser lead to being offered different prices?

• Geographic Location: Does the location of the originating query for the same

product and from the same vendor/site play a role? Note that we are not inter-

ested in the same product sold via local affiliates—for instance Amazon has sites

in multiple countries, often selling the same products.

• Personal Information: Does personal information, collected and inferred via be-

havioral tracking methods, impact on prices? For instance, does an ‘affluent’ user

see higher prices for the same product than a ‘budget-conscious’ user?

Requirements of the system. Based on the definition of price and search

discrimination, as well as the axes along which we seek to uncover discrimination,

we set the following requirements for our methodology:

3With new implications being discovered, for instance the Filter Bubble concept [37]
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• Sanitary and controlled system: In order to attribute causality, we need to have

clean, sanitary, and controlled systems. We should be able to test for one of the

axis described above, while keeping the others fixed. For all our measurements,

we keep time fixed, i.e., request all price quotations at nearly the same time.

• Distributed system: In order to have indicative results, we need a distributed

system where we can collect measurements from multiple vantage points.

• Automated: To scale the study in terms of customers and vendors we need to

automate the process.

4.2 Methodology

The test that we employ while searching for price discrimination is to select a web-

site, an associated product, and then study whether the website returns dynamic

prices based on who the potential buyer is. In all the experiments, we compare the

results (price or search) retrieved simultaneously to exclude the impact of time

from the analyses, i.e., all measurements for a single product happen within a

small time window.

4.2.1 Generic measurement framework

We have developed a measurement framework that uses three components: browsers,

a measurement server, and a proxy server.4 The browser(s) run on separate clean

local machines, with the possibility to run over different OSes. To access the pages,

we use a Javascript (JS) application that loads the pages in separate iFrames. We

use browsers and JS to ensure we can browse sites that need full features (as

opposed to issuing wget’s) and to ensure cross-browser compliance. The measure-

ment server controls the JS robot.

Role of the Proxy. We used a proxy for three reasons: (i) We are interested

in extracting prices embedded in the pages. Unfortunately JS cannot access and

store the content of the opened pages due to its internal Same Origin Policy.

Hence we configured the browsers to use the proxy server. The proxy then moni-

tored and stored all the traffic going through it. (ii) Some of the destination sites

4We modified Privoxy [7].
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(e.g. amazon.com) did not open in an iFrame by setting X-Frame-Options in the

HTTP response headers. The proxy modified the headers on the fly so the option

was removed before the page reached the browser. (iii) The proxies allowed us

to add additional privacy features, e.g., set the Do Not Track option in HTTP

headers. In order to mimic behavior of users for sites that need interaction, we

used iMacro [44].

Ensuring a Sanitary Environment. We made an effort to prevent any perma-

nent data from being stored in the browser, and thus allowing tracking of the user.

The proxy layer allowed us to remove the “Referer” field in the HTTP header that

would point to the measurement server, and block pixel bugs [7]. All the browsers

were configured to block 3rd party cookies, commonly used for tracking, and we

also dealt with flash cookies, etc.. Additionally, after each measurement round

we deleted the files that might have stored the browsers’ state. This restrictive

configuration was used for both the system- and the location-based studies.

4.2.2 System-based measurement specifics

We compared prices of various products accessed from different browsers running

on different OSes, from a single geographical location (Barcelona, Spain). We used

three systems: Windows 7 Professional, Ubuntu Linux 12.04 and Mac OS X 10.7

Lion with browsers: Firefox 14.0, Google Chrome 20.0 (for all the systems), Safari

5.1 (for OS X) and Internet Explorer 9.0 (Windows). Since we have fixed time and

location and prevented identity information leakage, we attribute price difference

to the employed system.

4.2.3 Location measurement specifics

To investigate the impact of a customer’s geographical location on the prices she

receives, we deployed several proxy servers at different Planetlab nodes. We chose

6 distinct sites: two sites in US (east and west coast), Germany, Spain, Korea,

and Brazil. For this experiment, we used 6 separate, identical virtual machines

with Windows 7 and Firefox. With this configuration, the only information that

distinguished the browsers externally was their IP. We assume that the IP address

is enough to identify the geographical location of the originating query and is
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Figure 4.1: Presence of third party resources on the sites used for training personas.

enough for price discrimination to take place. We fixed time when we conducted

our measurements across sites, syncing various sites using NTP.

4.2.4 Personal info measurement specifics

In order to uncover discrimination based on personal information, we follow two

methods that differ in the amount of information that they employ. In the first

we train “personas” that conform to two extreme customer segments: affluent

customers and budget conscious customer. The two profiles are quite distinct.

The budget conscious customer visits price aggregation and discount sites (like

nextag.com). The affluent customer visits sites selling high-end luxury products.

The customers might be tracked by third party aggregators (e.g., DoubleClick)

that have presence on many sites around the web and can chain such visits to

construct a profile of the user.

We train personas as follows. We obtain the generic traits followed by an afflu-

ent consumer and a budget conscious consumer from [21]. An affluent consumer

is more likely to visit “Retail–Jewelry/Luxury Goods/Accessories” sites as well as

“Automotive resources” and “Community Personals” sites than the average user.

For each of these categories, we use Alexa.com and Google to select top 100 pop-

ular sites, and configure a freshly installed system to visit these sites, and to train

the profile. In order to mimic a real human, we train only between 9AM-12PM

and use an exponential distribution (mean: 2 min) between requests. We do the

same to train the “budget conscious” consumer by using the relevant sites. We

train both profiles for 7 days, and we permit tracking and disable all blocking.

Note that we can train multiple personas resembling different segments—this is

left for future work. We show the distribution of third party trackers on the sites

we used for the training in Fig. 4.1.
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The second method that we use to test for discrimination based on personal

information uses the “Referer” header that reveals where a request came from.

Therefore, if you come from a discount site or a luxury site the e-commerce site

where you land knows about it and can use it as indication of your willingness to

pay. We fix one location—Los Angeles, USA—and fix one system—Windows 7

with Firefox—to run the personal information related measurements.

Assumptions: For the three sources of price discrimination we are studying,

we assume that the information vectors we use are sufficient in isolation for price

discrimination to kick-in. In reality, a composition of different vectors may be

needed for price discrimination. For instance, personas and a specific type of

system configuration may be needed together for price discrimination. Composing

different vectors and then testing for discrimination is left for future work.

4.2.5 Analyzed Products

To determine the types of products to focus on, we selected the product categories

from Alexa. In total, we examined 35 product categories (e.g., “clothing”) and

we choose 200 distinct vendors (e.g., gap.com). From the identified e-commerce

sites, we selected 3 concrete products with their unique URLs (e.g., specific piece

of clothing). For each vendor, we selected low/mid/high price products. In case

of hotels, we selected three different dates (low/mid/high season) at multiple lo-

cations. The 200 odd vendors we chose may appear to be a small set. However,

we limit ourselves to 200 to first understand issues with scaling. In addition, these

200 vendors also account for the vast majority of user traffic as they include large

vendors like amazon.com and bestbuy.com. We intend to increase these 200 ven-

dors to 1000+ vendors to also cover long-tail sites. In the end we had a total of

600 products.
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4.3 Empirical results

4.3.1 System based differences

We collected extensive measurements on 600 different products. We used the 8

distinct system–browser setups to examine the potential price differences. We ran

the measurements for four days, and collected over 20,000 distinct measurement

points in total. In addition, we queried Google and Bing to examine if the search

results differ based on the systems. For this, we used 26 different phrases related

to the products we analyze. The measurement did not reveal any price differences

between the end systems. Regarding search discrimination, although we noticed

slight deviations in the ordering of search results that were neither significant nor

reproducible.

4.3.2 Geographic location

Next, we looked into the impact of geographic location from where the user accesses

an e-commerce site. We issued queries through the proxies described in Sec. 4.2.3

on the same set of products/sites as before. In total, we accessed each product 10

times. The measurement results do not indicate significant differences, neither in

prices nor in search results, for the majority of the products. However, the prices

shown by three particular websites appeared to depend strongly on the users’

location. In particular, amazon.com and steampowered.com returned prices for

digital products (e-books and computer games, respectively) and staples.com for

office products that differ between buyers at different locations.

In the case of Amazon, we observed price differences only for Kindle e-books.

We queried the prices of books listed on the top 100 list of Amazon from six

locations.5 Only 27 out of these 100 books were available for purchase in their

original english version from Amazon.com (US site) to customers coming from all

the 6 locations we were testing. We illustrate the price differences of these products

in Fig. 4.2, where we plot the ratio of the products’ prices using the prices in New

York, USA as reference. In majority of the cases, the price difference is at least

5For both website, results for US/LA and US/NY overlap and are not shown.
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Figure 4.2: Price differences at Amazon based on the customer’s geographic location
using the prices in New York, USA as reference. For each of the considered products
there exist at least two locations with different prices.

21%; however, in extreme cases it can be as high as 166%.

For the Steam site, we examined more than 300 additional products. We

compared the prices of the products where their prices were displayed in the same

currency to avoid the bias of currency exchange. We observed price differences for

20% of the products in case of Spain and Germany (figure not shown). Moreover,

3.5% of the products had different prices in case of US, Brazil, and Korea.

Next we analyzed the impact of location on a finer scale, i.e., within the US

only. We used 67 Planetlab nodes in US acting as proxy servers. We accessed 10

random products from staples.com using the proxies. 4 products showed differ-

ent prices when accessed from different locations. In those cases, there were two

distinct prices for the same product. We did not observe a significant correlation

between the prices and population per state/city, population density per state,

income per state, or tax rates per state.

We extended the study of staples.com by taking measurements within the

same state (MA) to exclude inter-state tax differences. We selected 29 random

products and 200 random ZIP codes.6 Again, for 15 products the price varied up

to 11% above the base price between the locations.7

Fig. 4.3 shows the price differences geographically. The values on the map show

a mean price surplus calculated for a particular location over all the products. The

map shows that the outskirts are shown higher prices than the large cities.

6When accessing staples.com from outside of US, the service asks for the customer’s ZIP
code, giving equivalent results as coming from a certain location.

7Base price - smallest observed price for a product.

67

staples.com
staples.com
staples.com


Detecting Price and Search Discrimination on the Internet

Boston
Worcester

Springfield

Lowell

Figure 4.3: Price differences at staples.com. The dot sizes mark the mean price surplus
for the locations, from 0% (small dots) up to 3.9% (large dots)

Discussion: Our system ensures that the only bit of information that is exposed

is the IP address, hence the location. We see differences in prices for some dig-

ital goods as well as office supplies. We cannot claim to have discovered price

discrimination since the differences might be attributed to other reasons such as

intellectual property issues or increased competition between retailers or logistics.

Further investigation is required on this issue.

4.3.3 Personal information

Trained personas. We used the previously trained personas (Sec. 4.2.4) to

examine the discrepancies of products based on the browsing behavior. We also

used a clean profile as a baseline. We did not observe price discrimination in

our results; however, we observed different search results on two sites. First, we

examined 12 search queries in google.com, three times for each profile. For half

of the queries, the results included several suggested products, together with the

prices. There is a noticeable difference in the prices of these products as we show in

Fig. 4.4. For instance, the mean price was 4 times higher in case of “headphones”

for the affluent persona than for the budget one. Second, we examined the top-

10 hotel offers on Cheaptickets. We searched for hotels in 8 different cities on

8 different dates. The search engine of Cheaptickets returned offers with higher

prices for the affluent profile (Fig. 4.5).

Originating web page. Our hypothesis for studying the origin is that the site

that a customer uses to reach a product site can provide valuable information for

pricing purposes. For example, if the customer comes from a discount site, she
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Figure 4.5: Mean prices (with std. deviations) of top-10 results from Cheaptickets.com
returned to affluent and budget personas. The mean difference is 15%, and can be even
as high as 50%.

will be more likely to be price sensitive than someone coming from a luxury site

or a portal. Hence, we focus on price aggregator sites that provide a platform for

vendors of various products and also provide discounts to users. We looked into a

couple of aggregator sites (nextag.com, pricerunner.co.uk, getprice.com.au),

but we only present results of one large site: nextag.com. We used a clean profile,

with blocking enabled but enabled first party cookies. We examined 25 different

categories of products available on nextag.com. We found two online vendors

(shoplet.com, discountofficeitems.com) who returned different prices based

on the originating web page of the customers. Both retailers specialize in office

equipment. In case of shoplet.com, users get higher prices if they access a product

directly via the retailer’s website than when the price aggregator (nextag.com)

redirects the user to the store. In the latter case, the aggregator redirects the

user to an intermediate site that sets a cookie, and from this point on the user

starts getting lower prices. We quantify the price differences with- and without
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Figure 4.6: Price difference at the Shoplet.com online retailer site, with- and without
redirection from a price aggregator.

the redirection in Fig. 4.6. The mean difference between the prices is 23%.

Discussion: We noticed signs of search based discrimination in case of trained

personas. We stress that while we have not yet found price discrimination for

trained personas, we did observe signs of discrimination via origin URL. We note

that the entities who collect large amounts of information across the web (aggre-

gators like Doubleclick)—and hence can create a more accurate representation of

the user—do not actively engage in e-commerce. On the flipside, large vendors do

not track users across the web. Thus, the entities who could utilize information

of users for pricing are decoupled from those who collect such information. The

redirection mechanism, that uses one bit of information, can be used effectively to

narrow this information gap.

4.4 Related Work

Price discrimination is as old as retail itself [55] but online price discrimination is a

fairly new phenomenon. To the best of our knowledge one of the first to conjecture

the rise of online price discrimination driven by large scale collection of personal

information was A. Odlyzko [64].

There is little prior work on price discrimination on the Internet. Beyond price

discrimination, personalization of the web using personal information of users is an

active area of research with the study of the filter bubble effect [39]. In contrast,

we are interested in the economic implications of personalization – price discrimi-

nation on e-commerce domains. The notion of building large distributed systems

to understand the effect of personal information on services obtained has been
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done for various reasons [38, 37]. Guha, et al. [38] focused on the impact of user

characteristics on display advertisements. Our measurement framework presented

in this work is similar – however, we focus on the differences of product prices

instead of displayed ads. Our work is closely tied to online privacy, both in terms

of usage of privacy preserving tools in our methodology, as well as implications of

(loss of) privacy over price discrimination. For the former, we use the findings of

Krishnamurthy, et al. [48] to block known forms of tracking, on our proxy as well

as the browser. Besides cookies, other techniques can also uniquely identify users

with high probability such as the properties of the browsers [31] and the browsing

history [67], hence we take steps to counter such identification.

4.5 Conclusions

In this chapter we examined existence of Price Discrimination on the Internet.

We looked at different information vectors that could possibly be used to trigger

price discrimination, like technological differences or geographical location. We

also examined impact of personal information using trained personas. In order to

examine those information vectors, we followed rigorous methodology to control

what information about the hypothetical “user” is released to the Internet, in order

to be able to claim causality. We also built a distributed measurement system to

collect the data. This system allowed us to examine prices of over 600 products

offered by more than 200 on-line retailers, collecting over 20,000 measurement

points.

The collected data revealed many examples of price differentiation. We found

examples of differentiating prices based on geographical location of the customer

for retailers like steampowered.com, amazon.com or staples.com, even though it

cannot be unambiguously attributed to Price Discrimination since other factors

(like intellectual property issues or logistics) might matter as well. Later we ob-

served different search results presented to personas with certain attributes. In

particular, we observed that more expensive products were presented to affluent

than to budget conscious personas. We found examples of differentiating prices

based on URL of origin, where a person reaching a vendor (e.g. shoplet.com)

from a price aggregation (e.g. nextag.com) receives lower prices than a customer
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that reaches the vendor directly. The underlying assumption is that a person that

accesses the retailer from the aggregator is more price-sensitive, thus it has lower

reservation price.

In the next chapter we leverage this methodology and results to broaden the

scope of the measurements using crowd sourcing. In particular, we release a system

that helps the Internet users check if they are being discriminated.
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Chapter 5: Using Crowd Sourcing to De-

tect Price Discrimination

In Chapter 4 we focused on finding empirical evidence that price discrimination

indeed exists on the Internet. In this chapter we concentrate on broadening scope

of the measurements and showing that crowd sourcing is a feasible method to

enable wide-scale measurements on PD.

With the rise of e-commerce in the last decade many expected prices to move

strictly in one direction – downwards – as a result of more intense competition

fueled by the customers’ ability to compare online the prices of different retailers.

It was not long before the first concerns appeared with the conjecture that online

shopping could backfire for customers in the form of price discrimination driven

by the personal information of users collected by various online entities [64]. Such

a possibility would further erode online privacy. For example, users frequenting

luxury product websites or geo-located to certain ZIP codes could be tagged as

affluent or price insensitive and consequently be displayed inflated prices.

We tested this conjecture in Chapter 4 and were able to demonstrate a few

examples in which the prices of online offerings seemed to vary (please refer to [61]

for concrete examples). In order to broaden the scope of our measurements so

that we can derive general conclusions regarding the frequency and magnitude of

suspected price discrimination, we turn to crowdsourcing. Crowdsourcing enables

end-users to (i) point us to products and e-retailers that might be engaging in

price discrimination, and (ii) aid us in extracting the prices of products from web

pages without requiring manual intervention (Sec. 5.1). Crowdsourcing, therefore

helps us in scaling up the search process. This is achieved by a browser extension

called $heriff [60], (Sec. 5.2.1).
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In this chapter we present the results obtained from $heriff collected for a three

month period (Sec. 5.2.2). These results pointed to price variations observed in

well known, but also in relatively unpopular sites and categories as well, different

from our observations in [61], consistently over time and across different locations,

underscoring the effectiveness of the crowdsourcing approach. We then perform a

systematic measurement study of products on this set of e-retailers by performing

a large crawl (Sec. 5.3) and understand the conditions that can lead to price varia-

tions Our main results include the magnitude of price variations for most e-retailers

is between 10%–30%, the cheapest products often face the highest variation (×3)

with the most expensive ones having lower variation (×1.5) , and physical location

plays a role in price variations for different categories of products.

Note that there is little prior work in the area presented in this chapter. There-

fore, for sake of conciseness, related work presented in Section 4.4 also applies here.

5.1 Setting the context

In this section, we set the context for our study by first discussing the questions

we tackle, the challenges in answering these questions, and how we address them.

5.1.1 Open questions

• Do we see persistent, reproducible price variations and which e-retailers en-

gage in price variation?

• How frequent and large are the observed variations? Which products expe-

rience price variations (cheaper or more expensive ones) and what type of

variation (additive/multiplicative) do we see?

• Can we attribute price variation to actual price discrimination? In general,

it is impossible to assert without access to the code that generates the prices

that any price variation we observe is in reality price discrimination. How-

ever, we can eliminate several alternative causes that might explain them as

discussed later.
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• Finally, when there are price variations, can we attribute them to specific

personal information traits (location, browsing history, etc.)?

5.1.2 Challenges

Any system wanting to perform large scale search for price discrimination has to

parse product pages, extract the location of the price from web pages, and fan out

queries to the same product page from other vantage points in order to compare

the results.

The challenges that need to be addressed are as follows: (i) Different retailers

have different web templates for presenting their products. Extracting the price

of a product from an unknown template is non-trivial: a simple search for dollar

or euro sign would fail since typically product pages include additional recom-

mended or advertised products along with their prices. Therefore, for each retailer

one needs to understand its template format and then write a specialized script

for extracting the price. The problem with this is that it cannot scale with the

number of retailers. (ii) Minimize noise as well as other possible reasons for price

variations. Sources of noise include the retailer conducting A/B testing, timing

difference between original and additional requests for comparison, and pricing

format differences (different currencies, etc.). There are also reasons like taxation,

logistics, shipping costs, intellectual property issues that can cause price differences

that are not due to discrimination. For proper attribution of price discrimination,

we need to ensure the known reasons cannot explain the variations. (iii) In order

to better explain price discrimination, we need to control for factors like physical

location, system issues, and browsing history.

Addressing challenges

To address scaling issues, we resorted to crowdsourcing, using $heriff a browser

extension for Firefox and Chrome. Crowdsourcing enables us to outsource the

search for price variations and cover a larger part of the web. We describe the

tool briefly in Sec. 5.2.1. The results from the tool uncover e-retailers that engage

more in varying prices and this lets us focus more on these e-retailers, expanding

scope and depth.

We took several steps in order to deal with noise. First of all, we synchronized
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the measurements from different vantage points so that they occur almost at the

same time. This reduces the chance that an observed variation is because of time

spread, availability, etc.. Also we repeated the same set of measurements multiple

times to guarantee that the results are repeatable. This decreases the possibility

of A/B testing and small-scale temporal effects being the cause of price variations.

Our different vantage points access always the same retailer site, but can be

displayed prices on different currencies (the local one) because retailers typically

geo-locate their IP address. We convert the prices obtained by the different vantage

points for the same product into US dollars using the daily lowest and highest

exchange rates. We keep only products whose price variation is strictly greater

than the maximum gap that can exist given the two extreme exchange rates in

our dataset. This guarantees that the observed price differences are not due to

currency translation issues.

For factors like taxation, shipping costs, and custom duties, we manually

checked to ensure these reasons cannot explain the price differences. Most e-

retailers do not include shipping and taxing before checkout thus the great ma-

jority of our measurements was not affected by such issues. Custom duties are in

most cases paid post sale directly between the customer and the custom authority

without the intervention of the retailer.

5.2 Crowd-sourcing

In this section, we first describe the tool that was used to enable crowdsourcing

and then detail the data we have collected using the tool. We end this section

with an analysis of the collected data, which points to the retailers where price

variations are prevalent, as seen by users around the world.

5.2.1 $heriff

We used a browser extension for Firefox and Chrome called $heriff. The extension

performs the following tasks: (i) Enables the user to highlight a price of a product

on an e-retailer, (ii) once the price is highlighted, the extension enables the user to

check for price variations via a small click button, (iii) when the button is clicked,
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the exact URI is sent to 14 vantage points around the world where the same URI is

requested and the entire webpage is downloaded, (iv) given the user has highlighted

the price on the page, we use that information to extract the price from the down-

loaded page at different locations, (v) we send these prices back to the user from

various locations. The user, therefore can observe if there are any variations for

the exact product she searched for. Hence, the users have an incentive to return to

$heriff time to time to check prices again. (vi) We store the pages for analysis in a

database. The extension can be found at: http://pdexperiment.cba.upc.edu/.

As can be observed, we cannot control for the physical locations when the

original query comes from, nor can we control for the system and/or the browsing

history of the user who originated the query.

5.2.2 Collected data and analysis

We use a crowdsourced dataset collected by $heriff that contains 1500 requests

(between Jan-May 2013) to check the prices of different products. The requests

were issued by 340 different users from 18 countries. In total, the users of $heriff

checked products from 600 domains. Afterwards, we systematically crawled the

sites of retailers where $heriff revealed price differences. Before the analyses,

we removed the noise from the crowdsourced dataset. Causes behind the noise

include diverse number and date formats across countries, product customization

not encoded on the URI, etc.. The crawled dataset focuses on 21 retailers. We

randomly picked up to 100 products per retailer and checked the prices of these

products on a daily basis for a week. The crawled dataset has 188K extracted

prices in aggregate.

Which retailers return dynamic prices?

Fig. 5.1 lists the retailers with the highest number of instances of price vari-

ations in the crowdsourced dataset. The list includes a diverse set of sites that

include bookstores, cloth retailers/manufacturers, office supplies/electronics, car

dealers, department stores, hotel and travel agencies, etc.. For each one of these

retailers, and for each one of the products checked on these retailers, we com-

puted the ratio between the maximum and minimum price observed across the

different measurement points. In Fig. 5.2 we plot the basic statistics (median,
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Figure 5.1: Domains with the highest number of request where price differences
occurred
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Figure 5.2: Magnitude of price differences per domains

25-, 75-percentile, and extreme values) of this ratio across all checked products in

the dataset for each one of the retailers with the highest frequency of price varia-

tion. One can note that a variety of stores return prices that may vary anywhere

between 15%-40% depending on the retailer, whereas there also exist few cases

where the difference approaches a factor of ×2! We note here that several of these

retailers are not very popular (www.elnaturalista.com) and, in many cases, local

(store.refrigiwear.it), underscoring the usefulness of crowdsourcing, as these

retailers were not observed in previous studies [61].
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Figure 5.3: Measure extent of price variations for different domains

5.3 Crawling specific e-retailers

5.3.1 Retailers

Fig. 5.3 and Fig. 5.4 depict the same metrics with Fig. 5.1 and Fig. 5.2 but for

the crawled instead of the crowdsourced dataset (Sec. 5.2.2). Fig. 5.3 shows the

fraction of requests we sent out to each retailer that had price variation. In some

cases, we see a 100% coverage, pointing to the fact that price variations are a

persistent and repeatable phenomenon. Indeed, for the majority of retailers in the

crawled dataset, we see the extent of price variation to be near complete (100%).

In terms of the magnitude of price variability, Fig. 5.4 depicts values between 10%

and 30% for most of the retailers—a non-trivial amount.

5.3.2 Looking into products

We now characterize price variations from the perspective of products. One open

question is to understand if there is any correlation between the price of a product

and the magnitude of the price variations associated with that product. For each

product in crawled dataset (across all retailers) we compute the ratio between the

maximum and minimum price across our measurement vantage points and plot

them in Fig. 5.5 against the minimum observed price of each product. The figure
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Figure 5.4: Magnitude of price variability per domain

1
2

3
4

5

Minimal price of the product ($)

M
a
x
im

a
l 
ra

ti
o
 o

f 
p
ri

c
e
 d

if
fe

re
n
c
e

1 100 10K

Figure 5.5: Maximal ratio of price differences per product price (all stores)

shows price differences occurring in the entire range of products costing from $10

to $10K. The highest differences are observed with cheaper products in the order

of tenths of dollars, in which case differences up to ×3 are observed. We also

observe differences up to ×2 for expensive products( in the $1K range). For the

most expensive products going into the multiple thousands, the price gap appears

to be always smaller than ×1.5.

In Fig. 5.5 the practices of a diverse set of retailers are mixed together. In

order to unearth if there are difference strategies that are employed behind varying

prices, we focus on individual retailers. In Fig. 5.6(a) we look at a retailer of

photography equipment. For each one of the products from the retailer we studied,

we plot a number of dots that is equal to the number of measurement points using
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Figure 5.6: Ratio of price differences per product price

different colors to indicate each one of the vantage points. The x-axis denotes the

minimum price of the product across all locations whereas the y-axis denotes the

ratio between the price at the location of the dot and the minimum price. One

can see parallel (to the x-axis) lines of different colors. This in effect means that

the price variations between locations is multiplicative, equal to the gap between

two lines on the y-axis, and this applies for the whole range of products (cheap

as well as expensive ones). In Fig. 5.6(b) we show the same information from a

clothes manufacturer. In this case we see a similar behavior for all but one location

(green color). In that location the prices vary by an additive term compared to

other locations. As the products become more expensive, the effect of the additive

terms is progressively eliminated and the lines become parallel from $100 and

onwards. We have other examples of retailers that apply a mix of multiplicative

and additive pricing across our vantage points.

5.3.3 Does location have an impact?

Next we focus our attention on location. At a high level the question that we

want to answer is whether users from certain locations tend to pay more for the

same product than others. As with our previous analysis around products, we

begin by showing aggregate results across all the retailers we focused on. For each

product we compute the ratio of its price at a certain location over the minimum

price across all locations for the same product. In Fig. 5.7 we present box-plots

summarizing the main statistics of the above ratio for each one of the locations
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Figure 5.7: Magnitude of price differences per location (all)

where we had a measurement vantage point. From a first glance it seems that

locations in USA and Brazil tend to get lower prices than locations in Europe.

Within Europe, Finland stands out as the most expensive location.

To delve deeper into the effect of location we will refine the presented results

by (i) focusing on specific retailers, and by (ii) presenting pair-wise comparisons of

how a retailer prices its products at two different locations. We start with a retailer

of home improvement appliances and equipments and look at its pricing across 6

US cities (Albany, Boston, LA, Chicago, Lincoln, New York). Fig. 5.8 (a) presents

a grid of pairwise comparison subplots. The y-axis for each plot corresponds to

the location represented in the row, while the x-axis for each plot represents the

location shown in the column. For example subplot(1,2) has Albany on the y-axis

and Boston on the x-axis. Within a subplot there exist points that correspond

to individual products of the said retailer. The y-axis denotes the ratio between

the price of the product at the y-axis location of the subplot and the minimum

price of the product across all locations where we have vantage points. The x-axis

denotes the same ratio with respect to the x-axis location of the subplot. Given

these definitions, it is easy to note that a subplot where most of the dots fall along

the main diagonal of the subplot signifies two locations that get similar prices from

the said retailer across its products. If the dots cluster closer to the y-axis, then

this is a sign that the y-axis location is more expensive than the x-axis location

and inversely if the dots cluster along the x-axis.

With the above in mind we can identify a diverse set of pricing relationships.
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Figure 5.8: Magnitude of price difference per location

For example, we see that LA and Boston (subplot(3,2)) get similar prices, since

most of the dots are aligned across the main diagonal (similarly with Albany and

Boston (subplot(1,2) or (2,1)). On the other hand there exist examples where one

location observes higher prices than the other – New York for example, appears

to be consistently more expensive than Chicago (subplot(6,4)). There also exist

mixed cases of pairs where one location is more expensive for some of the products

but cheaper for some others, e.g., Boston and Lincoln (subplot(2,5)). It is inter-

esting to note that with different retailers these relationships change. Also, there

exist retailers that have constant prices across US but vary them across countries,

for example amazon.com, whose pairwise grid is shown in Fig. 5.8 (b). A diverse

set of behaviors include equal price, more expensive/cheaper, and mixed can be

observed across different countries. A third example from a clothes retailer is

depicted in Fig. 5.8 (c).

In both the aggregate plot across all retailers (Fig. 5.7) as well as in the specific

retailers of Fig. 5.8, Finland appears to be getting consistently the higher prices

among other locations. For this reason, we are tempted to examine whether this

is indeed true across each and every retailer in the crawled dataset. For this

reason we plot in Fig. 5.9 the ratio between the price in Finland and the minimum

price across all locations, for all the retailers of crawled. The results indicate that

Finland is almost never the cheaper location (exceptions with mauijim.com and

tuscanyleather.it).
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Figure 5.9: Magnitude of price differences per domains in Tampere, Finland

5.3.4 Personal information

In order to check if the personal information of users plays a role in price variations,

we first train personas as described in an earlier paper [61]; we use an affluent and a

budget conscious persona. We check for prices of different products at these specific

e-retailers, taking measurements while keeping the location and time fixed, but we

find no price differences.

We do, however find some price variations for Kindle ebooks on www.amazon.com,

depending on if the user is logged in to the site or not. We present our results of

collecting prices for three users with different profiles and compare that against

the price observed when there is no login. Our measurements are conducted at

the same time and from the same location, and are plotted in Fig. 5.10. We

note price variations for the same product and it would appear there is little

correlation to being logged in or not. There has been anecdotal evidence about

amazon.com varying prices dynamically in the past [83], but for us to dig deeper

for reasons is currently beyond the scope of this chapter.

As a first step towards understanding the mechanism behind varying prices

and the parties that can possibly enable this, we investigate the frequency of

third parties that are present on the retailers we study. It would appear that
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Figure 5.10: The impact of login on the price of Kindle ebooks at www.amazon.com

Google is present on most e-retailers with their analytics (95%) and doubleclick

(65%) domains. Social networks have also significant presence on the retailers’

sites through their widgets: Facebook (80%), Pinterest (45%), and Twitter (40%).

While we do not see browsing history leading to price variations, it would be

relatively easy for popular third parties to assist in price variations, fueled by the

information they collect across the web. We leave this to future work.

5.4 Conclusions

In this chapter we demonstrated that crowd-sourcing is a feasible approach to

help Internet users detect if they are subject to price discrimination. We also

demonstrated that crowd-sourcing can be used to analyse long tail of the retailers.

We presented results collected using dedicated browser extension – $heriff. Later

we discussed results obtained using a large crawl on retailers indicated by $heriff.

We also followed the rigorous methodology developed in Chapter 4 in order to

reduce the measurement noise.

Using $heriff we collected data from 600 domains, indicated by the users from

18 countries. Next we focused on 21 retailers, collecting information for 100 prod-

ucts per retailer for a full week. Eventually this dataset consisted of 188K data

points. The list of e-commerce websites that showed to differentiate prices in-

cludes bookstores, cloth retailers, office supplies, car dealers, department stores,

hotel and travel agencies, etc. The differences were observed for products costing

from $10$ up to $10,000K. For instance, for the examined retailers the price vari-

ation between the minimum and maximum prices presented for the same product
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depending on user’s location varies between 10% and 30%. We observed that the

price difference can be either additive or multiplicative. We also identified and

analysed a set of interesting pricing relationships between the particular retail-

ers and selected locations in US and worldwide. We didn’t find any significant

differences of pricing for trained, affluent and budget conscious personas.

86



Chapter 6: Conclusions and Future Work

This chapter describes the conclusions drawn from the research presented in this

thesis and proposes future directions where this work can be expanded.

The scarcity of the data necessary to study the interdomain traffic makes this

research difficult, but not impossible. Although direct measures of the ITM are

unlikely to be available, there is value in measuring qualitative properties of the

ITM. In Chapter 2 we analysed properties of the ITM derived from GÉANT data.

Practically every large scale dataset available to the researchers, even as large as

the one from GÉANT, when compared with scale and variety of the Internet, can-

not be called representative. Therefore, our research allows us to draw only limited

conclusion about ITM, which is inherent to every research on wide-scale Internet

based on a limited data sample. That said, cooperation with industry would allow

to analyse other profiles of the traffic and would allow to explicitly draw boundaries

of the research based on the traffic from research sources like GÉANT. In Part I

we focused on spatial properties of the ITM which leave open questions about tem-

poral properties. This research path could shed light on the long term evolution

of the interdomain traffic matrix. Further works should also include large-scale

research on the relations between the traffic matrix and the AS topology. Also

in Chapter 2 we showed that there might exist a correlation between statistical

properties of the traffic sourced by a network, and congestions inside that network.

This suggests possibility to infer properties of the surrounding networks based on

passive measurements of the traffic. Exploring this direction of the research would

have a practical value for the network operators. Creating measurement tools

that would give an insight into other networks could, for instance, affect peering

decisions, optimize network operations, or give other business advantage.

As a next step we created a model that allows to generate synthetic snapshots
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of traffic matrices. A practical model should be a trade-off between the desired

accuracy of the output and quality of the input. In Chapter 3 we show that openly

available data combined with direct measurements can be used to generate syn-

thetic snapshots of the traffic matrices. We acknowledge that static snapshots of

the ITM might be insufficient in many applications – research on routing algo-

rithms or network performance might require emphasis on temporal aspect of the

traffic, which our model does not reproduce. On the other hand research on eco-

nomics, pricing strategies, policy or peering strategies does not necessarily require

the time series and we believe that is the area where our model can be applica-

ble. Nevertheless, further research should put emphasis on recreating temporal

properties of the ITM, once those are uncovered.

In our work we took a topology-agnostic approach towards generating the traf-

fic matrices. We acknowledge that there might exist correlations between the

interdomain traffic and the underlying topology, which should be examined in the

further research. It should be also examined how to generate synthetic topolo-

gies matching the synthetic ITM, while preserving selected properties of the real

network topology.

In Chapter 3 we show an alternative to the existing solutions to generate syn-

thetic traffic matrices. Nevertheless, research community still lacks an established,

standard method to model the interdomain traffic matrix. We believe that our

work, together with existing findings, bring us a step closer to this elusive goal.

In Part II we show empirical evidence that price discrimination exists in the

Internet. In Chapter 4 we analysed different information vectors that could lead

to PD. We did not find evidence that shows that the user’s operating system or

browser might lead to differentiation in prices. On the other hand, we found ex-

amples of differentiation based on geographical location, even within the same US

state. We also found examples of changes is prices based on personal information.

For instance, a price can depend on the URL of origin – a particular originating

web page could be a hint for a retailer that the customer is price-sensitive.

In Chapter 5 we argue that crowd-sourcing is a feasible method to conduct

large-scale experiments on PD. We present an on-line tool that allows the Internet

user to examine if any arbitrary price he observes varies in different geographical

locations, with different operating systems and browser combinations. A natural
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next step would be to scale the experiment to cover a larger user and product

base. Conducting such a large scale experiment would depend on delivering a

non-trivial system, backed with significant design and engineering effort. Letting

the experiment into public domain would also create challenges in analysing the

gathered data. A successful and truly scalable platform should contain a crowd-

based mechanism both to collect and to assess the collected data. Such a system

should include incentives encouraging users to collect and analyse the data, which

could be achieved for example by gamification [28]. This way the system would

not be bound by the researcher’s effort to process the garnered information.

Although price discrimination is probably as old as the first financial transac-

tion, Internet gives the unique opportunity to explore vectors of price discrimina-

tion and how the personal information that enables PD circulates in the Internet.

Research on PD naturally complements the broad and emerging research area re-

lated to personal information in the Internet, and its impact on search results [68]

or advertising. To this end, future work could include uncovering the technologi-

cal and economical mechanisms behind this kind of data marketing. As the issue

of personal information in the Internet is gaining public attention, it would be

also reasonable to work with policymakers to define practical bounds of the price

discrimination research.
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Chapter A: Effective Processing of Back-

bone Traffic to Detect Portscans

Conducting work presented in the previous chapters required processing vast

amount of online and offline data. While processing offline data requires merely

computing time, capturing and processing online data from a working backbone

link requires an extra effort. Improper configuration of the monitoring equipment

or using resource consuming algorithms will result in lost packets or truncated

flows and eventually will reduce usefulness of such data. In order to gain practical

knowledge on how to handle such traffic, we performed an early exercise on

detecting malicious activity in university backbone link. The results of our work

on detecting portscans are presented in the following chapter. The tools and

methodology developed during this work were used in the other parts of the

thesis.

A.1 Introduction and Related Work

Every day both individuals and companies depend more on the reliability and

safety of Internet connections. However, even today, entire industry branches or

countries can be a target of an attack (e.g., Stuxnet [12]). Most attacks start with

a recognition phase, where an attacker looks for attack vectors in one or several

victim systems. Port scanning is arguably the most widely used technique by both

worms and human attackers to probe for vulnerabilities in Internet systems.

Given the large implications in network security, several previous works have

addressed the problem of how to efficiently and reliably detect port scans. Most

proposed solutions require tracking individual network connections (e.g., [47, 75,
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72]). This approach however does not scale to very high-speed links, where the

number of concurrent flows can be extremely large. For example, a naive solution

based on a hash table would require large amounts of DRAM (e.g., to store flow

identifiers) and several memory accesses per packet (e.g., to handle collisions).

Nevertheless, access times of current DRAM technology cannot keep up with worst-

case packet interarrival times of very high-speed links (e.g., 32 ns in OC-192 or 8

ns in OC-768 links).

Traffic sampling is considered as the standard solution to this problem. Un-

fortunately, recent studies [51, 24] have shown that the impact of sampling on

portscan detection algorithms is extremely large. Another alternative is the use of

probabilistic, space-efficient data structures, such as Bloom filters [82, 62], which

significantly reduce the memory requirements of detection algorithms. This way,

the required data structures can fit in fast SRAM, which has access times below

10 ns. Although we are not aware of any survey paper covering the use of Bloom

Filters for portscan detection, [62, 75] provide a good overview on the work in this

area.

In this chapter, we present a practical method to detect TCP port scans in very

high-speed links that follows this second approach. A key assumption behind our

method is that, apart from data traffic, we can even discard most TCP handshake

packets and still be able to successfully detect port scans.

First, we ignore legitimate handshakes using a whitelist of active server IP-

port pairs. Second, we discard those failed connections that do not correspond

to scans, such as TCP retransmissions, packets from other network attacks (e.g.,

SYN floods) or configuration errors (e.g., P2P nodes down or misconfigured domain

servers). In order to discard handshake packets, we use two Bloom filters. Sur-

prisingly, we show that this simple solution can drop about 85% of all handshake

packets with negligible loss in accuracy. This significantly reduces the number of

memory accesses, CPU and memory requirements of our algorithm.

After filtering most part of the traffic, we still need to track the number of

failed connections for the remaining sources. Although there is a potentially very

large number of active sources, most of them will fail very few handshakes, while

scanners will fail many. Thus, the detection problem can be seen as the well-

known problem of finding the top-k elements from a data stream [53]. In order to
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efficiently detect port scans, we use an efficient top-k data structure based on the

Stream-Summary proposed in [57], which has a constant memory usage.

We evaluated our algorithm in 1 and 10 GigE academic networks [4]. Our

results show that our method requires less than 1 MB to accurately monitor a

10 Gb/s link. Therefore, it can be implemented in fast SRAM and integrated in

router line cards, or reside in cache memory of general-purpose processors.

The rest of this chapter is organized as follows. Sec. A.2 describes our portscan

detection algorithm in detail. Sec. A.3 evaluates the performance of the algorithm

with both packet traces and live network traffic. Finally, Sec. A.4 concludes the

chapter and outlines our future work.

A.2 Detection Algorithm

Port scans are characterized by a simple feature: they attempt to connect to many

targets but only get few responses. This imbalance in the number of attempts

and successes is the basis of several portscan detection algorithms. A portscan

detection algorithm can then be divided into two different problems: (1) detecting

failed connections, and (2) tracking the sources responsible for them. Both (1) and

(2) are challenging in high-speed networks, since they require a significant amount

of memory and computing power to process packets at line speed. As already

discussed in Sec. A.1, a naive solution based on a hash table is impractical in this

case, although it can be used in small networks.

In this section, we present a practical solution that copes with these two prob-

lems by reducing both the volume of processed traffic and the memory requirements

of the detection algorithm. In Sec. A.2.1, we describe a simple method to discard

unnecessary traffic using Bloom filters, which significantly simplifies problem (1),

while Sec. A.2.2 concentrates on identifying scanners using a lightweight counting

structure that addresses problem (2).

For the sake of clarity, throughout this section, we will refer to the client host

that initiates the handshake as A, with IP address Aip, and to the server that

receives the connection as B, with address Bip and port Bport.

93



Effective Processing of Backbone Traffic to Detect Portscans

Figure A.1: Algorithm description.

A.2.1 Detecting Failed Connections

We can define a failed connection as one for which a client does not get a SynAck

response from the server after having sent the corresponding Syn packet. There-

fore, to detect failed connections, we can ignore data traffic and focus only on

Syn/SynAck packets. According to our traces (described later in Sec. A.3), these

control packets represent only 1.5% of all TCP traffic.

In addition, we can ignore legitimate handshakes to detect port scans, given

that a scanner will always fail a large number of connections compared to a normal

host. In order to efficiently discard connections directed towards a working service,

we can use a Bloom filter that maintains a whitelist of active server IP-port pairs

(bf whitelist). In particular, for every new SynAck response, we add the tuple

[Bip, Bport] into this Bloom filter.

Since we are especially interested in those clients that connect to many unique

destination addresses and ports, we can also discard those repeated connection

attempts to the same destination. Besides standard TCP retransmissions, many

applications try to reconnect several times (even hundreds) to the same destination

after a failed connection (e.g., P2P nodes, misconfigured proxies, mail servers or

VPN applications). Surprisingly, repeated Syn packets are extremely common

according to our traces (see Sec. A.3). In order to efficiently drop duplicated Syn

packets to the same destination IP-port pair, we use a second Bloom filter (bf syn).

For every Syn packet observed, we store the tuple [Aip, Bip, Bport] in the Bloom

filter. As we will see later, using this second filter has the additional advantage of
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protecting the bf whitelist from being saturated by many SynAck packets sent by

a malicious user (i.e., SynAck packets are ignored if they are not an answer from

a previous Syn).

Although Bloom filters can have false positives, they have a negligible impact

on our method as we show in Sec. A.3. In addition, in case that one or both

filters get saturated (e.g., if they are not properly dimensioned), the algorithm will

produce False Negatives instead of False Positives, which is an important feature

for systems automatically blocking port scanners [82].

Fig. A.1 presents our algorithm in detail. After a packet arrival, we check if

it is a Syn or a SynAck packet. Otherwise, the packet is dropped. In case it is a

Syn packet, we check if the [Bip, Bport] tuple corresponds to a known destination

in the bf whitelist. In this case, the packet is directly dropped. If not, we check

if it is a repeated connection attempt in the bf syn filter. In this case, the packet

is also dropped. Otherwise, the [Aip, Bip, Bport] tuple is stored in the bf syn filter

and the Aip source is incremented in the counting structure (described later in

Sec. A.2.2). For a SynAck packet, we first check if it is a response from a previous

Syn packet in the bf syn filter. Otherwise, the packet is dropped. Next, we check if

the [Bip, Bport] tuple is already in the bf whitelist. If not, the destination [Bip, Bport]

is stored in the whitelist and the [Aip] source is decremented. Therefore, we use

the bf whitelist for two different purposes: (i) to keep track of active destinations,

and (ii) to check if a source needs to be decremented after the connection has been

established.1

A.2.2 Identifying Scanners

The algorithm described in Sec. A.2.1 produces a series of increments and decre-

ments for new connections and completed handshakes respectively. From this se-

quence, we want to identify the most active producers of failed connections, which

will very likely correspond to port scanners. This can be seen as the well-known

problem of identifying the top-k most frequent elements in a data stream.

1Note that using bf whitelist to check which decrements are needed can introduce errors of 1
unit in the counting structure if several Syn packets from different sources are sent to an active
destination before it enters the whitelist. Although this unusual situation cannot be exploited
by an attacker, it could be easily solved by adding a filter similar to bf syn for SynAck packets.
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For this purpose, we need a data structure that has limited memory usage and

supports both incrementing and decrementing. Fortunately, the recent literature

provides us with several efficient top-k algorithms [53]. From those, we selected the

Stream-Summary data structure [57], since it uses a constant (and small) amount of

memory. However, our algorithm is not bound to a particular top-k data structure.

Although the original Stream-Summary does not support decrementing, we made

a straightforward extension to support a limited number of decrements. We called

this extension Span-Dec. As we will see in Sec. A.3, in the particular context of

portscan detection, the data structure behaves almost like an ideal hash table, but

using much less memory. Although the particular implementation details of the

top-k data structure are not essential to understand our algorithm, for the sake of

completeness, we include below a short description of both mentioned structures.

Stream-Summary. This structure is part of the Space-Saving algorithm [57]

that finds the most frequent elements in a data stream. It is able to observe up to

elemmax distinct elements at once. Every element ei has an assigned counter cnti.

All counters with the same value are linked into the same bucket. The buckets

are linked together and they can be dynamically created and destroyed. When an

element ei is incremented, it is detached from its bucket and attached to a neighbor

bucket with the new value. When the maximum number of observed elements

(elemmax) is reached, a new incoming element evicts the element with the smallest

counter. Each element has a maximum overestimation εi that depends on the value

of the evicted element. The element frequency is estimated as freq(ei) = cnti−εi.

The algorithm is lightweight and it requires only 1

ǫ
counters for a specified error

rate ǫ. See [57] for a more detailed description.

Span-Dec. The original Stream-Summary does not support decrementing. How-

ever, we need to discount those established connections for which the correspond-

ing Syn has passed both Bloom filters. Therefore, we made a simple modification

to the original Stream-Summary to support a limited number of decrements. In

particular, instead of having a single counter per element, we use two counters:

cntL(ei) and cntH(ei). We also specify a maximum allowed difference between

both counters spanmax, which controls the tradeoff between the number of allowed

decrements and the error εi of the estimate. When an element is incremented,
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Table A.1: Statistics of the traces. trace C only accounts for Syn/SynAck packets.

trace A trace B trace C trace A0

30min @ 1GigE 2h @ OC-3 30min @ 10GigE 30min @ 1GigE

date 2010-05-18 2010-04-16 2010-07-29 2010-05-18

TCP packets 228,848,927 144,885,865 13,978,845 97,380,742

TCP sources 188,136 263,055 467,264 89,086

TCP flows 2,892,334 5,199,928 11,526,323 1,133,392

average usage 879.1 Mb/s 185 Mb/s 3.5 Gb/s n/a

cntH(ei) is moved as in the original Stream-Summary. In case that the difference

between both counters is greater than spanmax, the cntL(ei) is also incremented.

In order to decrement an element ei, the cntH(ei) is decremented, but never below

the value of cntL(ei). This solution can be understood as an “undo” operation,

where spanmax is the “undo” depth. The frequency of an element ei is estimated as

freq(ei) = cntH(ei)− εi. The technical report [58] provides a detailed description

of this extension.

As shown in Fig. A.1, our detection algorithm uses Span-Dec to maintain the

count of failed connections per source [Aip]. This solution is useful to detect both

horizontal and vertical port scans. However, if we are interested only in a particular

type of scan, we can use instead [Aip, Bport] to detect horizontal port scans and

[Aip, Bip] to detect vertical ones.

A.3 Results

In the evaluation we used four traces. trace A was captured from the 1GigE

access link of UPC, which connects about 50,000 users. trace A0 is a modified

version of trace A that we describe later. trace B was taken from the MAWI

Working Group Traffic Archive [5]. trace C was captured from the 10GigE link

that connects the Catalan Research and Education Network to the Internet. This

link connects more than seventy universities and research centers. Due to the link

speed, for trace C we only collected Syn/SynAck packets. Statistics of the traces

are presented in Tab. A.1. We published all the packet traces used in this work,

with anonymized IP addresses, at [4].
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For the evaluation, we needed a ground truth trace to check if a detected

scanner was a real scanner or a (misclassified) legitimate source. For this purpose,

we modified trace A by removing all real scanners. We scanned the trace using

Bro [69] with both its standard algorithm and the TRW algorithm. Although Bro

is an online tool that does not guarantee an accurate ground truth, we used a low

alarm threshold (25) and removed all the flows from the reported IP addresses to

make sure that no scanning traffic is left, even if some legitimate traffic was also

removed. Later, following the methodology proposed in [62], we injected artificial

scans to build a ground truth: 1000 scanners with success ratio 0.2 and 1000 benign

sources with success ratio 0.8. The interval between Syn-SynAck packets was

taken uniformly from the range (0, 450ms), while the backoff time between Syns

was modeled using an exponential distribution [62]. All modifications resulted in

trace A0 that serves as the ground truth for Sec. A.3.1. Traces B and C were not

modified.

A.3.1 Evaluation

This section covers the evaluation of our algorithm. First, we present an example

of how it is dimensioned. Next, we check the performance and validate its accuracy

with packet traces. Finally, we deploy it in an operational 10 GigE link.

Dimensioning. We followed a conservative approach to handle an unexpected

growth of traffic or peaks. For bf whitelist, we checked the mean number of dis-

tinct [Bip, Bport] tuples in the trace, multiplied this value by 3 and we assumed a

maximum collision probability of pcoll = 0.01. We used an arbitrary length of the

measurement window of 2 minutes. Although in this chapter we do not evaluate

this parameter, its value is important. As the filters are reset at the end of every

period, the window size represents a tradeoff between the memory usage of the

algorithm and its ability to detect slow scanners. With those values, we calculated

the optimal size of the Bloom filter. We repeated the procedure for bf syn using

the unique number of [Aip, Bip, Bport] tuples. The value of spanmax depends on

the number of Syn packets concurrently sent by a source to distinct active desti-

nations, which are not yet in the whitelist. We set this value according to 95th

percentile of the traffic. For topk we arbitrarily set elemmax to 10000 elements,
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Table A.2: Configuration parameters for the evaluated traces.

trace A trace B trace C trace A0

bf syn size 256KB 256KB 1MB 64KB

bf whitelist size 128KB 128KB 512KB 32KB

spanmax 6 4 10 5

unless otherwise noted. Resulting parameters are presented in Tab. A.2. More

details about the dimensioning procedure can be found in [58].

Detection threshold. To present the results for traces A, B and C, we follow the

methodology used in [70]. Fig. A.2 depicts the results when running the algorithm

on our traces with the parameters described in Tab. A.2. We plot the total number

of sources reported as scanners as a function of the detection threshold. The

threshold is the number of failed connections over which we classify a source as

a scanner. The embedded plots show the whole range of data in a log-log scale,

while the main plot presents only the part where the number of reported sources

grows rapidly, in a linear scale. The “hash table” line presents the results obtained

using hash tables to count distinct Syn and SynAck packets. In this scenario, all

packets are counted with perfect accuracy. Results placed above this line indicate

the presence of False Positives (FP), while those placed below the line imply False

Negatives (FN). “Span-dec” line plots the results obtained when our counting

structure was used. Both lines almost overlap indicating that our algorithm is

close to an ideal tracking scheme using a hash table, but without its memory

constraints. In particular, for high threshold values our algorithm features almost

perfect performance. “Original top-k” shows the results obtained with the original

Stream-Summary structure [57]. The large number of FP shows the necessity of

supporting decrements in the counting structure.

Accuracy. The results in Fig. A.2 were not enough to validate the actual accuracy

of our algorithm. For this purpose, we used the ground truth trace A0, for which

we knew the actual scanners and legitimate hosts. Our results show that, for

thresholds higher than 20, the algorithm obtained perfect accuracy (i.e., 0 FP,

0 FN, and 100% detected scanners). More details about the accuracy of our

algorithm and the impact of each configuration parameter are given in [58].
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(a) trace A - 1 Gb/s UPC link
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(b) trace B - MAWI traffic
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(c) trace C - 10 Gb/s CESCA link
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Figure A.2: Evaluation results on the traces - number of sources reported as
scanners vs. detection threshold. Main graphs show a part of the data in a linear
scale, embedded graphs show the whole range of data in a logarithmic scale.

Filter performance. Tab. A.3 presents the performance of the filters. The Space

usage row shows the maximum space usage of each Bloom filter and (in brackets)

the empirical collision probability. The probabilities are very small, even negligible.

The evictions row shows the rate of traffic dropped by each filter (relative to the

input packets of that filter). Total packets evicted gives the total ratio of handshake

packets discarded by any of the two filters. Both filters together drop about 85%

of all handshake packets. Thus, only 15% of all Syn/SynAck packets result in

increments or decrements in the counting structure. Given that the counting error
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Table A.3: Usage of the filters during the evaluation (evictions: Syn / SynAck)

trace A trace B trace C

space usage: bf whitelist 6.78% (6.59e-09) 1.90% (8.94e-13) 4.66% (4.77e-10)

space usage: bf syn 13.27% (7.25e-07) 29.07% (1.75e-4) 11.02% (1.97e-07)

evictions: bf whitelist 52.7% / 67.1% 24.7% / 76.2% 54.3% / 77.9%

evictions: bf syn 61.2% / 65.0% 54.3% / 72.0% 55.4% / 64.2%

total packets evicted 84.3% 73.5% 84.4%
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Figure A.3: Impact of the memory size compared to an ideal scheme (trace C).

depends directly on the number of introduced elements, with a smaller number of

entries we achieve better accuracy with less space.

Memory size. Finally, we evaluated the impact of the memory size on the ac-

curacy of the detection algorithm using trace C. First, we examined the impact

of the size of the Bloom filters using 10000 entries in the topk structure. Results

are presented in Fig. A.3a. Filters below 96KB present FN due to collisions, as

discussed in Sec. A.2.1. With filters of 192KB (128KB+64KB) and a threshold

above 100, the algorithm performs very close to the optimal. Using these filters,

we examined the influence of the maximum number of elements (elemmax) in the

topk. The results are presented in Fig. A.3b. We can see that, for thresholds above

100, even with 2500 elements in the topk we still obtain very good accuracy. In

our implementation, this configuration occupies only 417KB for a 10 GigE link.

Online deployment. In order to evaluate the real-time performance of the algo-
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rithm, we implemented it in the CoMo system [22] and deployed it on the 10GigE

link from where trace C was collected. The hardware platform consisted of a PC

with an Intel Xeon at 2.40GHz with two DAG 5.2SXA cards. A filter to discard

non-Syn/SynAck packets was set in both cards. The filtering also can be done eas-

ily in software, since it requires only checking Syn and Ack flags in a TCP header.

We run the program for 100 min. (13-12-2010 at 10:50). The average traffic in the

link was 5.4 Gb/s. The CPU load was about 5% during the whole experiment. For

both filters, the maximum usage was 18.5% with a maximum collision probability

of 7.31e-06. The threshold-alarm graph is presented in Fig. A.2d.

A.4 Conclusions

In this chapter, we presented a practical approach to detect port scans in very

high-speed links. The key idea behind our approach was to discard as much traffic

as possible at early processing stages in order to reduce both the CPU and memory

requirements of our algorithm. We used two simple Bloom filters that maintain

a whitelist of active destinations and efficiently track TCP handshakes, and com-

bined them with an efficient top-k data structure to track failed connections. Both

Bloom filters together can early discard about 85% of all handshake packets in our

traces.

Our evaluation with four traces from different scenarios showed that our al-

gorithm can achieve almost perfect accuracy with very little memory. We also

deployed our algorithm in an operational 10GigE link and showed that it can

work online. Also, we made a new dataset available to the research community,

so that our results can be validated and compared with other solutions.
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