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1. Introduction




“Men love to wonder,
and that is the seed of science.”

Ralph Waldo Emerson



Introduction

1.1. Biological and biomedical importance
of proteins

Accounting for about half of the total dry mass of cells, proteins play a
major role in nature (Alberts, 1998). Often described as the factories
of the cell, proteins are large biomolecules that play essential

functional and structural roles within cells.

The building blocks of proteins are the amino acids, which are
small molecules composed of an amine and a carboxylic group and
differ in the side chain they carry on the alpha carbon (Ca) atom.
Amino acids polymerize by forming a peptide bond between the
carboxyl group of one amino acid and the amide group of another
one, yielding large polypeptide chains. Through transcription and
translation, the information carried by DNA is transformed into a
polypeptide chain that might eventually be chemically modified by
post-translational modifications. A total of 20 amino acids are

encoded in the genome.

Once formed, proteins only exist for a certain period of time
(typically ranging from minutes to years) and are then degraded and
recycled by the cell's machinery through a process referred to as

protein turnover.

1.1.1. Physiological function of proteins

According to their functions, different protein types have been
identified. Enzymes are known to catalyze more than 5,000

biochemical reactions (e.g., pepsin is a digestive enzyme in the
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stomach that degrades food proteins into peptides). Antibodies,
produced by the immune system, identify and neutralize pathogens
such as bacteria and viruses. DNA-associated protein, like histones
or cohesin proteins, arrange chromosome structure during cell
division and play a role in regulating gene expression. Contractile
proteins, such as actin and myosin, are involved in muscle contraction
and movement. Hormone proteins coordinate bodily functions (e.g.,
insulin controls our blood sugar concentration by regulating the
uptake of glucose into cells). Finally transport proteins move
molecules within our bodies (e.g., hemoglobin transports oxygen
through the blood).

Given their central role as executive machinery of a cell,
proteins cover nearly every task in all the biological processes that
occur within and between cells. Examples of such important
processes are signal transduction (Furge, 2008), cellular energy
metabolism (Atkinson, 1977), transcriptional regulation (Lee and
Young, 2013) or membrane trafficking (Cheung and de Vries, 2008),

some of which are relevant for the work of this thesis.

Signal transduction

Signal transduction generally refers to any basic cellular process
involving the conversion of a signal from outside to a functional
change within the cell. It generally starts when an extracellular
signaling molecule (usually hormones, neurotransmitters, cytokines,
growth factors or cell recognition molecules) activates a specific
receptor located on the cell surface or inside the cell. In turn, this
receptor triggers a signaling relay inside the cell, eventually ending to
the modulation of DNA-related processes in the nucleus, which finally

provokes a response (e.g., altering cell's metabolism, shape or ability
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to divide). The signal is amplified at any step so that one signaling

molecule can cause many responses (Furge, 2008).

Growth factor

I—> Transcription

Nature Reviews | Molecular Cell Biology

Figure 1. Example of signaling transduction process:
MAPK/ERK signaling pathway. (From Kim and Bar-Sagi, 2004)

MAPK/ERK signaling pathway (also known as the RAS-RAF-
MEK-ERK cascade) (Wortzel and Seger, 2011) is one of the principal
and better-known signal transduction processes in cells. Indeed, it is
involved in the tight regulation of many biological events, such as
meiosis, gastrulation, embryogenesis, cell fate determination,
angiogenesis and immune response. As shown in Figure 1, the
starting point of the cascade consists in the binding of a ligand (e.g., a
growth factor, cytokine, or hormone) to the extracellular portion of two

subunits of a transmembrane protein (i.e., a receptor tyrosine kinase
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(RTK)). This interaction, in turn, leads to RTK dimerization,
phosphorylation of its cytoplasmic domains and the consequent
binding of a cytoplasmic adaptor protein (CAP), such as GRB2. The
newly formed complex attracts SOS protein, a guanine-nucleotide
exchange factor (GEF), to the plasma membrane, which activates a
small G proteins belonging to RAS superfamily. During the time it is
active, RAS stimulates BRAF, a mitogen-activated protein kinase
kinase kinase, which in turn binds and activates MEK dual-specificity
protein kinase (Roskoski, 2012). MEK in turn prompts the stimulation
of ERK, the third and final kinase in the cascade, which is responsible
for the activation of a huge rooster of substrates, at least 160
proteins, including several transcriptional factors (e.g., ELK1, ETS,
and c-FOS).

Cellular energy metabolism

Cellular metabolism is the set of life-sustaining chemical
transformations within the cells. It includes all the reactions involved
in the breakdown of molecules to obtain energy (catabolism) as well
as in synthesizing macromolecules or small precursors (e.g., amino
acids) needed by the cell (anabolism). Metabolic pathways can be
simple linear sequences of a few reactions, but they can also be
extensively branched with reactions converging on or diverging from a
central main pathway. Alternatively, they can be cyclic, with a
precursor of an early reaction regenerated at the end of a pathway
(Atkinson, 1977).

One of the more complex and widely studied anabolic
pathways is photosynthesis (Whitmarsh and Govindjee, 1999). This
physicochemical process is carried out in all autotrophic organisms,

such like green plants, algae and photosynthetic bacteria. It mainly
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includes two steps: (i) sunlight absorption and its conversion into
chemical energy through Photosystem | and Il (Caffarri et al., 2014);
(ii) usage of the previously stored energy to assemble carbohydrates
from carbon dioxide molecules by means of the so-called Calvin

cycle.

Transcriptional regulation

Transcriptional regulation is the mechanism by which a cell regulates
the conversion of DNA to RNA, thereby orchestrating gene activity
modulation. This basic process, shared within all the living organisms,
is tightly coordinated by transcription factors and other proteins, which
work in concert to finely tune the amount of RNA being produced.
(Lee and Young, 2013).

L)COOOL JOOOUOOOT ‘OOO&ﬁ‘}O( JOOO(XXX)T.“O%X, 'H ‘ ‘Oﬁl)k)’.XXXXTXX)C(XXAXXX)'K)(i
(JCOOA)L. ‘ )’ ﬁOC JOOOOOO(M XUXXXJO&)OCDOOJQ&)OOOOO? XX&)O&OOOOO&DOOOOOL

Cytoplasm (DHT )

\"/

P ¥ Y -
©HDEHD  EHDEHD
AR | AR

G~ g - - [ -

@sPs0)

AR AR Coactnvators) —_— Transcription of

}r\ [ /r\ O’ AR-dependent genes |
E

Nucleus AR
Nature Reviews | Urology

Figure 2. Example of transcriptional regulation: Androgen
receptor (AR) signaling pathway. (From Azad et al., 2015)

An example of transcription factor is the androgen receptor
(AR) (Gao et al., 2005), a member of the steroid hormone receptor.

As shown in Figure 2, AR signaling pathway involves (i) the direct

7
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binding of the receptor to either androgenic hormone (i.e.,
testosterone or dihydrotestosterone) in the cytosol; (ii) the consequent
conformational change in the AR that triggers dissociation of heat
shock protein 90 (HSP90), dimerization and binding to HSP27; (iii) AR
translocation into the cell nucleus and its final binding to specific DNA
sequences (i.e, androgen response elements (ARE)) that eventually

regulates cellular transcriptional activity.

Membrane vesicle trafficking

Membrane trafficking refers to a fundamental activity in eukaryotic
cells which supports different basic processes (e.g., intercellular
communication, extracellular matrix building through secretion,
biomolecules import or export by endocytosis or exocytosis, periodic
turnover of cellular organelles and pathogen phagocytosis). These
tasks are typically mediated by membrane-bounded carriers serving
as shuttles that link specialized cellular compartments with the cell
surface in a highly organized and dynamic network (Cheung and de
Vries, 2008). Although each specific pathway is governed by its own
set of controlling factors, they all contain Rab GTPase proteins
(Hutagalung and Novick, 2011) that serve as master regulators,
modulating many steps of membrane trafficking, including vesicle
formation, vesicle movement along actin and tubulin networks and
membrane fusion. Therefore, it is not surprising that several human
intracellular bacterial pathogens (e.g., Chlamydiae, Coxiella burnetii,
Helicobacter pylori, Legionella pneumophila, Listeria monocytogenes,
Pseudomonas aeruginosa and Salmonella enterica and several
Mycobacteria) target Rab through post-translational modifications to
precisely manipulate host cell functions and colonize its vacuolar

compartments (Muller et al., 2010).
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1.1.2.  Protein dysfunction and disease

DNA carries and transmits the genetic information by specifying the
amino acid sequence template for protein synthesis. Therefore,
pathological mutations in genes can affect the folding and stability
(Ode et al., 2007; Alfalah et al., 2009), the function (Yamada et al.,
2006), the interactions (Jones et al., 2007) as well as the expression
and subcellular localization of the proteins they encode (Krumbholz et
al., 2006). Moreover, since proteins have a variety of functions and
many of them are active as multimeric complexes (e.g., interacting
with small molecules, other proteins or cellular membranes), the
molecular mechanisms underlying even the simplest of genetic

disorders are typically composite and heterogeneous.

An example of such complexity is the MAPK/ERK signaling
pathway. Given its involvement in a large variety of cellular activities
(see section 1.1.1), deviation from the strict control of this pathway
has been implicated in the development of many human diseases
including Alzheimer's disease (AD), Parkinson's disease (PD),
amyotrophic lateral sclerosis (ALS), various types of cancers (e.g.,
pancreas, colon, lung, ovary (Shields et al., 2000; Davies et al., 2002;
Rajagopalan et al., 2002; Hingorani et al., 2003; Mercer and
Pritchard, 2003; Singer et al., 2003; Vos et al., 2003; Sieben et al.,
2004; Sharma et al., 2005; Hoeflich et al., 2006; Sumimoto et al.,
2006; Dhillon et al., 2007) as well as the Ras/MAPK syndromes (the
‘RASopathies”). The latter are a group of rare germline
developmental disorders, e.g., Noonan, cardio-facio-cutaneous
(CFC), Costello and LEOPARD syndromes (Tartaglia and Gelb, 2005;
Bentires-Alj et al., 2006; Schubbert et al., 2007; Aoki et al., 2008;
Tartaglia et al.,, 2010), sharing phenotypic features that include

postnatal reduced growth, facial dysmorphism, cardiac defects,

9
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mental retardation, skin defects, musculo-skeletal defects, short

stature and cryptorchidism (Rauen, 2013).

Interestingly, both cancer and RASopathies-related mutations
share the same 15 genes of this pathway (i.e., PTPN11, SOS1,
RASA1, NF1, KRAS, HRAS, NRA S, BRAF, RAF1, MAP2K1,
MAP2K2, SPRED1, RIT1, SHOC2 and CBL (Aoki et al., 2013; Rauen,
2013). The phenotypic fate of a given mutation seems to be related to
the structural and energetic effect at molecular level, although all the
details of the mechanisms underlying each disorder are not yet fully

understood (Kiel and Serrano, 2014).

Therefore, the knowledge of the structural details of a protein
is fundamental not only to characterize its biological function in
physiological conditions, but also to understand its role in pathological
situations. Mapping disease-related mutations on the 3D structure of
a protein can provide invaluable insights on the disease-causing
mechanism and can help to explain the phenotypic outcome

associated to a specific mutation.

1.1.3.  Fundaments of protein structure

The sequence of a polypeptide chain determines how it folds
into one or several specific spatial conformations, which in turn define
its function. Therefore, the study of the 3D structure of a given protein
can provide invaluable details about its functional role at molecular
level (Shakhnovich et al., 2003).

10
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Protein folds

Nowadays, protein structure is generally referred to in terms of four
aspects: (i) the primary structure consisting of the amino acids
sequence; (ii) the secondary structure, which contains regularly
repeating arrangements (i.e., alpha-(a)-helices and beta-(8)-sheets)
mainly stabilized by hydrogen bonds; (iii) the tertiary structure, which
defines the final folding pattern incorporating various secondary
structures; and finally (iv) a quaternary structure involving the
clustering of several individual protein chains into a final specific
configuration. An example of a protein with quaternary structure is the
photosystem | (PSl), an integral membrane protein complex that uses
light energy to mediate electron transfer from plastocyanin (or
cytochrome «cg) to ferredoxin metalloproteins during the
photosynthesis. It is composed of a reaction center of up to 14
subunits and a membrane-associated antenna complex (LHCI) that
captures light and guides its energy to the reaction center (Golbeck,
1987).

According to their overall structural features, proteins
represent a highly heterogeneous class of biological macromolecules,
differing both in topology, shape and size. As defined by the two main
structure classification databases, namely SCOP (Murzin et al., 1995)
and CATH (Orengo et al., 1997) four large fold classes have been
established in order to describe all existing protein topologies: the all-
a and all-B proteins, as well as the a+f proteins and a/f proteins
classes in which the secondary structure is composed of a-helices
and [B-strands that occur separately or alternatively along the
backbone, respectively. A more generic classification consists in the
overall shape of proteins, labeling them as globular, fibrous,

disordered and membrane proteins. Such protein classes mainly

11
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differ in the secondary and tertiary structure as well as in several
physico-chemical properties (e.g., thermal stability, solubility and
inter-residue interactions types). Apart from in topology and shape,
proteins significantly differ in size. Indeed, they range from 100
residues, as found in some short ribosomal proteins, to several
thousand residues (Brocchieri and Karlin, 2005), as observed in titin,
a giant multifunctional protein involved in the contraction of human
striated muscle tissues, which is composed by ~33000 residues and

reaches 1 ym in length.

Experimental determination of protein structure

The tertiary and quaternary structures of a large number of proteins
have become available in the World Wide Protein Data Bank
(WWPDB; (Berman et al., 2007)), a single worldwide repository of
information about the 3D structures of large biological molecules
(including proteins and nucleic acids), which originated from a
collaborative effort of RCSB Protein Data Bank (RCSB-PDB, (Berman
et al.,, 2000)), Protein Data Bank Europe (PDBe, (Velankar and
Kleywegt, 2011)), Protein Data Bank Japan (PDB;j; (Standley et al.,
2008), and Biological Magnetic Resonance Databank (BMRB;
BioMagResBank, (Ulrich et al., 2008)). Established in 1971, WWPDB
recently archived its 100,000th molecule structure, doubling its size in
just six years and reaching a releasing rate of 200 structures per

week.

Accounting in July 2015 for 89.8% of the biomolecules
deposited in the WWPDB, the most known and widely used
experimental method for the structural resolution of proteins is X-ray
crystallography (Smyth and Martin, 2000). This technique allows the

3D structural description at atomic resolution of crystallized

12
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macromolecules, based on the scattering produced by an X-ray beam
after contacting the electrons of a protein in a crystal. The diffraction
produced contains information about the electron density of the
macromolecule, from which atom positions and chemical bonds can
be calculated. In spite of its unquestionable success, X-ray
crystallography certainly shows intrinsic limitations that affect its
applicability in some protein systems: (i) not all the proteins can easily
crystallize (e.g., membrane proteins); (ii) flexible parts of the proteins
sometimes cannot be solved (e.g., loops); (iii) intrinsically disordered
proteins and some proteins that may adopt many different
conformations in solution represent a serious challenge for this
technique; and finally, (iv) not all the contacts reported in the crystal
are biologically relevant and the experimental conditions may not

represent accurately those of the in vivo environment.

Some of these problems are solved by Nuclear Magnetic
Resonance (NMR) spectroscopy (Wuthrich, 1990), which represents
the second most widely used technique after X-ray crystallography
and accounts for roughly 9.4% of the proteins structures deposited in
the WWPDB. By this method, the protein is placed under a strong
magnetic field and short radio frequency pulses are aimed at the
sample. This allows the detection of distinct chemical shift produced
by each of the nuclei of the macromolecule, which depend on their
chemical environment. Using different radio frequency pulses and
analyzing the chemical shift of the different nuclei, it is possible to
determine the distance between the different atoms in the protein and
therefore obtain its 3D structure. The main advantage over X-ray
crystallography is the description of the dynamics of the protein under
study: thus, mobile loops, different conformations of a protein and

intrinsically disordered structures can be efficiently described by

13
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NMR. Moreover, the sample is studied in solution, which represents
more realistic conditions as compared to X-ray crystallography.
However, NMR appears scarcely suitable for large proteins of more
than 40kDa (Krishnan and Rupp, 2001) unlike X-ray crystallography

whose applicability is not significantly affected by protein size.

The remaining protein structures deposited in the WWPDB
are mainly solved by electron microscopy (EM) techniques (Bernado,
2011). For many years, EM has been limited to large complexes or
low-resolution models (typically around 15 A) and thus typically used
in combination with complementary tools (e.g., computational
modeling) (Petoukhov and Svergun, 2005)). Indeed, thanks to recent
advances in electron detection and image processing, the technique
has experienced a dramatic improvement in resolution, reaching
roughly 5 A by cryo-EM (Alushin et al., 2014), and thus beginning to
rival NMR and X-ray crystallography.

Despite impressive progress in automating experimental
structure determination techniques, they still remain highly time-
consuming and with no guaranteed success. On the contrary, the
advances in DNA sequencing techniques are giving rise to an
unprecedented avalanche of new sequences (UniProt, 2013),
dramatically widening the gap between protein solved structures and
annotated sequences. This is reflected by the fact that the number of
structurally characterized proteins deposited in Protein Data Bank is
about two orders of magnitude smaller than the number of known
protein sequences in the SwissProt and TrEMBL (recently exceeding
50 million) (Boeckmann et al., 2003) (Figure 3).

14
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Figure 3. (A) Comparison between the number of entries in the
SwissProt (in red), TrEMBL (in blue) and PDB (in green) from 1986
to 2014. (From Schwede, 2013) (B) Number of structures available in
the PDB per year, as of May 14, 2014. Highlighted examples include:
1) myoglobin, one of the first structures solved by X-ray
crystallography; 2) small enzymes; 3) examples of tRNA; 4) viruses;
5) antibodies; 6) protein-DNA complexes; 7) ribosomes and 8)
chaperones. (Image courtesy of wwPDB)

Computational modeling of protein structure

The above cited findings make obvious that it will be impossible to
determine experimentally the structure of every protein of interest with
current techniques, despite the huge efforts of the ongoing PSI
(Protein Structure Initiative) worldwide project and similar structural
genomics efforts. However, based on the observation that
homologous proteins sharing detectable sequence similarity have

similar 3D structures and that their structural diversity is increasing
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with evolutionary distance (Chothia and Lesk, 1986), during the last
two decades several comparative modeling techniques, also known
as template-based modeling (or TBM), have been developed. More
recently, TBM techniques have been extended to model tertiary
structure of remote homologs through threading methods (Bowie et
al., 1991), which aim to recognize the template structures without
evolutionary relation to the target by incorporating structure

information into sequence alignments.

Thanks to recent computational advances in large-scale data
management, several different TBM methods have been developed
(Ginalski, 2006; Zhang, 2008b), based on fully automated stable
pipelines which typically include: (i) finding one or more appropriate
templates; (ii) aligning the target sequence with the templates using
sequence alignment, profile-based alignment, or threading; (iii)
building an initial model for the target by copying the structural
fragments from the aligned regions of the template(s); (iv) replacing
the side chains to match the sequence of the target; (v) constructing
missing loops and termini; and finally (vi) realigning the model to

obtain a full-length atomic structure.

Moreover, the notable advance in the homology modeling
tools led to the development of different web servers which allow (i)
the interactive extrapolation of the available experimental structure
information of homologous proteins and (ii) the supply of reliable
three-dimensional (3D) models, starting from the uncharacterized
protein sequences. Additionally extended databases of annotated 3D
comparative protein structure models have been recently compiled.
Some well-known comparative modeling servers and databases are
listed in Table 1.
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Table 1. (A) CASP-cited comparative modeling servers and (B)
protein most-cited databases of comparative protein structure

models.

A. Comparative modeling servers

I-TASSER
ROBETTA
HHpred

METATASSER

MULTICOM
Pcons
SAM-T08
3D-Jury
RaptorX
THREADER
SwissModel

ModWeb

http://zhanglab.ccmb.med.umich.edu/lI-TASSER/
(Yang et al., 2015)

http://robetta.bakerlab.org/

(Raman et al., 2009)
http://toolkit.tuebingen.mpg.de/hhpred

(Soding et al., 2005)
http://cssb.biology.gatech.edu/skolnick/webservice/MetaTA
SSER/index.html

(Zhou et al., 2009)
http://sysbio.rnet.missouri.edu/multicom_cluster/
(Cao et al., 2014)

http://pcons.net/

(Larsson et al., 2011)
http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html
(Karplus et al., 1998)

http://Biolnfo.PL/Meta/

(Ginalski et al., 2003)
http://raptorx.uchicago.edu/

(Kallberg et al., 2012)
http://bioinf.cs.ucl.ac.uk/?id=747

(Jones et al., 1992; Jones et al., 1995)
http://swissmodel.expasy.org/

(Biasini et al., 2014)
http://modbase.compbio.ucsf.edu/modweb/
(Pieper et al., 2011)

B. Comparative protein structure models databases

Swiss-Model
ModBase

Protein Model
Portal (PMP)
PMDB Protein
Model DataBase
Swiss-Model

http://swissmodel.expasy.org/repository/

(Kiefer et al., 2009)
http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi
(Pieper et al., 2011)

http://www.proteinmodelportal.org/

(Arnold et al., 2009)
https://bicinformatics.cineca.it/PMDB/

(Castrignano et al., 2006)
http://swissmodel.expasy.org/repository/

(Kiefer et al., 2009)

The current state of homology modeling field is periodically

assessed in a biennial large-scale experiment known as the Critical

Assessment of Techniques for Protein Structure Prediction, or CASP
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(Moult et al., 1995). As arisen from the last CASP editions, the major
inaccuracies in homology modeling (which typically worsen with lower
sequence identity) derive from errors in the initial sequence alignment

and from improper template selection (Joo et al., 2014).

The three dimensional structure of a protein defines not only
its size and shape, but also its function. Nevertheless, the structural
charachterization of an isolated protein is often not enough to
understand its function. Indeed, proteins act by forming complexes
with other molecules. Moreover, proteins in solution are not static
objects but rather ensembles of varying heterogeneous conformations
constantly interconverting from one to another. Thus, consideration of
molecular recognition phenomena as well as the dynamic nature of
proteins cannot be neglected for a complete understanding of protein
function at molecular level. Given the importance of these protein
features, they will be revised more in details in the following two

sections (section 1.2 and 1.3, respectively).
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1.2. Protein-protein interactions: a broad
overview
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Figure 4. Time-line of protein research. In the top part conceptual
advances and discoveries are indicated, in the lower part
technological advances and inventions are indicated. From Braun
and Gingras, 2012.

Until the late 1990's, protein function analyses had been mainly
focused on single proteins. However more recent conceptual and
technological advances in biochemistry and molecular biology as well
as the several ongoing projects on protein-protein interaction mapping
for many model species and humans (Rolland et al., 2014) confirmed
that the majority of proteins mediate their functions by physically
interacting with different biomolecules (i.e., other proteins, lipids,
nucleic acids or small molecules) and thus forming intricate, highly
organized and dynamic interaction networks (Rual et al., 2005; Stelzl
et al., 2005) (Figure 4). These findings definitely suggested the

necessity of exhaustively studying each protein in its proper biological
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context in order to fully comprehend their functions within the cell and
thus paved the way for today's system-wide approaches to protein-

protein interaction (PPI) analysis (Braun and Gingras, 2012).

1.2.1. Large-scale identification of protein-
protein interactions (PPls)

The observation of the involvement of protein interactions in almost
every cellular process as well as the implication of aberrant PPIs in an
increasingly number of diseases have clearly shown the necessity to
identify and characterize such interactions. For this reason, protein-
protein interactions are currently the object of intense research in

many biological fields.

High-throughput experimental methods for PPls
detection

Different experimental techniques have been developed to measure
physical interactions between proteins; these methods vary
considerably in terms of time, costs, resources and their applicability
to proteome-scale mapping. Two widely used methods adapted for
high-throughput approaches are yeast two-hybrid (Y2H) system
(Fields and Song, 1989) and tandem affinity purification followed by
mass spectroscopy (TAP-MS) (Rigaut et al., 1999) (Figure 5).
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Figure 5. Schematic diagrams describing the key steps of (A) yeast
two-hybrid (Y2H) and (B) tandem-affinity-purification (TAP)
techniques. After http://technologyinscience.blogspot.com.es/ and
Huber, 2003

The Y2H screening assays whether two proteins physically
interact with each other: a bait and a prey protein are thus expressed
using genetically modified yeast triggering the expression of a

reporter gene as consequence of their interaction, if it happens. Y2H
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techniques have been used for many large-scale screening studies
providing an extraordinary amount of protein-protein interaction data
for a variety of model organisms including yeast (Uetz et al., 2000; Ito
et al., 2001), fly (Giot et al., 2003), worm (Li et al., 2004) and human
(Rual et al., 2005; Stelzl et al., 2005). Nevertheless, this technique is
known to report false positives, including interactions of proteins that
will never physically meet in vivo because of being expressed in
incompatible cellular states or being present in different cellular

compartments.

In contrast to Y2H approach, TAP-MS experiments allow
high-throughput identification of protein interactions under near-
physiological conditions. The protein of interest is firstly fused to a
large protein (i.e., the tag), which easily allow its isolation; the
resulting tagged protein is then expressed in the host cell, allowing
the binding with its native partners, and consequentially purified from
the cell extract using the tag (e.g., by specific antibodies). Tagged
protein binders are finally co-purified and subsequently identified by
MS. Large-scale TAP-MS experiments have been performed for yeast
(Gavin et al., 2002; Ho et al., 2002; Krogan et al., 2006), bacteria
(Butland et al., 2005) or human (Ewing et al., 2007) proteins.

Interestingly, data extracted from both Y2H and TAP-MS
techniques weakly overlap and result highly complementary (Aloy and
Russell, 2002b; von Mering et al., 2002; Titz et al., 2004). Indeed,
Y2H experiments usually reveals more transient and binary
interactions, whether tandem affinity purification screenings typically
detect more stable complexes, involving two or more proteins (Aloy
and Russell, 2002b). However, in spite of the great and valuable

amount of data provided, high-throughput experimental methods
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could show lack of acceptable reproducibility in the results (Collins et
al., 2007).

Protein interaction networks databases

Thanks to the considerable advances in high-throughput methods
gained over the past few years, massive PPIls data of various
organisms have became available and currently stored in several
databases. Indeed, more than 100 related repositories have been
published and are now available online (Orchard et al., 2012) showing
high diversity in their overall features. Firstly, their size can range
from less than 100 (like in HUGE (Nakayama et al., 2002)) to millions
of interactions (such as in Prolinks (Bowers et al., 2004) or STRING
(Szklarczyk et al., 2015) databases). Secondly, they can gather data
of thousands of organisms (like in BIND (Bader et al., 2003) which
contains interactions of more than 1500 different species) or focus on
a specific class (such as MPPI with only mammalian data (Pagel et
al., 2005)), single organisms (like HPRD database (Keshava Prasad
et al.,, 2009) containing only human data) or even converge on a
specific type of interaction, such as human cancer associated protein
interactions (i.e., HCPIN (Huang et al., 2008)) or interactions between
HIV-1 and human proteins (i.e., HIV PI Database (Fu et al., 2009)).
Moreover, although almost all the databases archive interactions
detected by different experimental methodologies, they can also
collect only data obtained using one specific technique (e.g., Yeast
Interaction Protein Database with only yeast two-hybrid analysis
data). Finally, despite the majority of the databases exclusively collect
protein-protein interactions, a small fraction of them also includes
many other types of interactions involving RNA, DNA or small
molecules (Bader et al., 2003; Kerrien et al., 2012). The main overall

features of the most popular repositories are summarized in Table 2.
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Table 2. A general overview on the most popular PPls
repositories*.

Database #Inter #0rganisms Last URL
Update
BioGrid®©  ~750000 30 2015 http://thebiogrid.org/
(Breitkreutz et al.,
2008)
BIND/ ~200000 ~1500 2014 http://download.bader
BOND?*¢ lab.org/BINDTranslati
on/
(Isserlin et al., 2011)
DIP®® 79646 749 2014 http://dip.doe-

mbi.ucla.edu/dip
(Salwinski et al,
2004)

HPRD® 41327 Human 2010 http://www.hprd.org/
(Keshava Prasad et
al., 2009)

12D"° 900529 6 2013 http://ophid.utoronto.c
a/ophidv2.204/
(Brown and Jurisica,
2007)

IntAct®® 351397 > 8 2015 http://www.ebi.ac.uk/i
ntact/
(Orchard et al., 2014)

MINT?® 241458 > 30 2012 http://mint.bio.unirom
a2.it/mint/
(Licata et al., 2012)

STRING?® > 200 MM 2031 2015 http://string-db.org/

(predicted) (Szklarczyk et al.,

2015)

databases with more than 500 citations by June 2015 according to
Google Scholar; °Free to all users; ®Free only to academic users;
“iMEX partner; MM=million;

Since many resources are independently funded, use
different identifiers and often contain redundant data from overlapping
sets of publications, accessing all publicly available data (even on a
specific biological or biomedical topic) is often a challenging and time-
consuming task that requires the user to query multiple resources,
each with a different interface (De Las Rivas and Fontanillo, 2010).
Therefore, efforts to address this problem and thus integrate data

from PPls disparate repositories have recently given rise to (i) the
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definition of the MIMIX (Minimum Information about a Molecular
Interaction eXperiment) guidelines (Orchard et al., 2007), (ii) the
development of the PSI-MI XML format (i.e., a unified file format for
representing PPIs data) and finally (iii) the establishment of the IMEx
(International Molecular Exchange) consortium (Orchard et al., 2012).
IMEx consists in an international collaboration between the major
public protein interaction data providers (e.g., DIP, IntAct, MINT, 12D)
cooperating in the creation of a single non-redundant set of
homogeneously curated protein-interaction data available in a single
search interface on a common website

(http://www.imexconsortium.org/)

However, in spite of the huge amount of data available
nowadays, a large fraction of them lack reliability and suffer from the
integration of a large number of spurious interactions. Indeed, the
estimated size of the human interactome ranges from about 130,000
(Venkatesan et al., 2009) to around 650,000 PPls (Stumpf et al.,
2008), but only around 50,000 of them have been annotated with high

confidence (Mosca et al., 2013).

In silico prediction of PPIs

The considerable amount of information provided by the genomic
sequencing projects and high throughput screening techniques during
the last years has fostered the development of several new methods

for the prediction of PPlIs.

Genomic context-based methods, such as gene-neighboring
(or co-localization), phylogenic profile, gene fusion, phylogenetic tree,
correlated mutation or in silico two-hybrid are highly successful

methods in which genetic information are used to derive network of
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protein interactions (Valencia and Pazos, 2002). Moreover, PPls can
be also predicted by integrating evidence of known interactions with
information regarding sequential homology, such as in ortholog- or
domain-pairs-based approaches (Lee et al., 2008; Lo et al., 2015). A
different approach consists in structural similarity-based methods in
which the likeliness of the interaction is determined through homology
modeling of the complex structure and consequent scoring of the
modeled interface using empirical (Aloy and Russell, 2002a) or

statistical (Lu et al., 2002) potentials.

A novel and highly promising alternative to the above cited
techniques are text-mining algorithms, based on the data screening of
both scientific articles and extensive databases. One of the first
examples of such tools was PubGene (Jenssen et al., 2001) followed
by iIHOP (Hoffmann and Valencia, 2004), iProLINK (Hu et al., 2004),
GoPubMed (Doms and Schroeder, 2005), CbioC (Baral et al., 2007),
Chilibot (Chen and Sharp, 2004) and lastly Whatizit (Rebholz-
Schuhmann et al., 2008).

Finally, an additional option in the detection of PPIs consists
in the integration of experimental or computational data in machine
learning algorithms, such as support vector machines (SVM), Naive
Bayes, K-Nearest neighbors, Decision tree or Random Forest (Zahiri
et al., 2013).

1.2.2. Experimental characterization of protein-
protein complexes

In the last few decades, our knowledge about PPls has grown

exponentially (Ceol et al., 2008). Nevertheless, the need of integrating
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the binary information provided by the interactions with detailed
structural data of the interacting proteins has become increasingly
evident. Indeed, this synergic approach appears compulsory to
extract the mechanistic basis of protein association and design new

therapies to modulate these interactions.

Protein-protein complex structure determination

The significant efforts in traditional structural biology and the
structural genomics projects (Montelione, 2012) as well as the
important technical advances in the last few decades have produced
a consistent increase in the amount of high-resolution experimental
structures available in the PDB (see section 1.1.3). Nevertheless, X-
ray crystallography and NMR spectroscopy still remain labor-intensive
and time-consuming techniques especially in the determination of
multi-monomer assemblies. Indeed, despite a complete or even
partial experimental structure is already available for roughly 30% of
human proteins, only 8% of the high-confidence identified PPIs in the
human interactome have an associated complex structure (either
experimentally solved or built by homology modeling) (Mosca et al.,
2013; Szilagyi and Zhang, 2014).

Available structural data of protein-protein interactions is
compiled in several existing databases that collect large sets of
protein-protein complex structures. Some of the most renowned are
DOCKGROUND (Douguet et al., 2006), PDBePISA (Krissinel and
Henrick, 2007), Interactome3D (Mosca et al., 2013) and
3DCOMPLEX (Levy et al., 2006). In addition, 3did (Levy et al., 2006),
PIBASE (Davis and Sali, 2005), InterPare (Gong et al., 2005),
SCOWLP (Teyra et al., 2006), SCOPPI (Winter et al., 2006) and
PRINT (Tuncbag et al., 2008) provide collections of high-resolution
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3D structures of protein-protein interfaces classified at different levels

of definition.

Characterization of protein-protein interfaces

Given the rather limited applicability and the high costs of atomic-
resolution structural techniques, many approaches (e.g., cross-
linking, site-directed mutagenesis or NMR chemical shift perturbation)
result attractive options for a faster characterization of protein

interfaces often suitable for high-throughput application.

Especially in the case of low affinity complexes, cross-linking
represents a highly successful technique, which allows to freeze two
proteins together while they are interacting via covalent attachment of
a small cross-linker (such as carboxyl, amine, sulfhydryl or hydroxyl).
This allows the creation of a stable protein pair that can be studied by
gel electrophoresis, Western Blotting or mass spectrometry (MS)
(Sato et al., 2011; Holding, 2015).

Site-directed mutagenesis (SDM), consisting on the exchange
of a single amino acid in the protein sequence for another with
different chemical properties, enables to assess the function of a
single residue side chain at a specific site in the protein. Although
being commonly used in functional studies on enzymes (Ahn et al.,
2014), SDM has been also proved to be remarkably effective in
identifying key residues in protein-protein interactions (Liu et al.,
2000). Moreover, combinatorial libraries of alanine-substituted
proteins can be used to rapidly identify residues important for protein
function, stability and shape (Morrison and Weiss, 2001). Indeed,

thanks to the non-bulky and chemically inert alanine side chain methyl
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group, each substitution can easily examine the contribution of an

individual amino acid side chain to the functionality of the protein.

Finally, one of the most widely used approaches for probing
protein-protein interfaces by NMR spectroscopy consists in the
chemical shift perturbation (CSP) analysis (Hall et al., 2001). Its utility
and popularity are due to the straightforward nature and its high
sensitivity in mapping putative sites of interaction on a protein surface
by detecting perturbations caused by the addition of the protein
partner (O'Connell et al., 2009).

Many of the above mentioned analyses aim to identify hot-
spot residues, which those that contribute the most to the protein-
protein binding affinity, and are important for mechanistic reasons as
well as for being putative targets for drug discovery. Information on
experimentally determined hot-spot residues has been collected in
the last few decades and is now freely available for many complexes
of interest. Some well-known databases are ASEdb (Thorn and
Bogan, 2001), which was the first alanine mutation database, and BID
(Fischer et al., 2003), which gathers the majority of the experimentally
verified hot-spots located in protein interfaces and collected from

literature.

Structural features of protein-protein interfaces

Protein-protein interfaces are generally planar, although sometimes
they can be protruding or concave (as in the case of enzyme/inhibitor
complexes (Jones and Thornton, 1997)). They may cover a wide
range of the all monomer surface area (from 5 to 30% (Stites, 1997)),
spanning from less than one thousand to several thousand A? (Lo

Conte et al., 1999). Deeper analysis of interface surfaces reveals a
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rather high degree of complementarity between the complex partners
(Jones and Thornton, 1996), whose extent varies depending on the
type of protein interaction: permanent complexes exhibit highest
complementarity, while non-obligate complexes and protein-inhibitor
complexes are characterized by lower complementarity that results

even worst in antigen-antibody complexes.

Although with some discrepancy, several studies provided
strong evidence for a significant enrichment of aromatic (i.e., His,
Phe, Tyr and Trp) and aliphatic (e.g., Leu, Val, lle and Met) residues
(Jones and Thornton, 1996) within the interfaces as well as a scarcity
of charged residues (except for Arg) (Bahadur and Zacharias, 2008).
Thus, it seems clear that hydrophobicity plays an important role as a

stabilizing factor in protein-protein interactions.

However, no secondary structure types resulted to be
essential for protein interactions, although a higher propensity to be
involved in protein-protein interfaces has been observed for random
coils and a-helices with respect to B-sheets (Jones and Thornton,
1996). On the other side, several structural domains involved in
protein-protein interactions have been defined (e.g., Src homology,
phosphotyrosine-binding (PTB), LIM domain and Sterile Alpha Motif
(SAM) domain) and stored in several freely available databases such
as 3did (Stein et al., 2005), CBM (Shoemaker et al., 2006), iPfam
(Finn et al., 2005), PIBASE (Davis and Sali, 2005), PSIbase (Gong et
al., 2005b) and SNAPPI (Jefferson et al., 2007).

Finally, the important issue of the degree of conformational
change upon protein binding has received relatively low attention in
literature. Despite the scarcity of proteins whose structure has been

structurally determined before and after the binding and assuming the
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unbound structure as representative of the solvated state, various
levels of conformational changes has been distinguished: (i) side
chain movements alone, (ii) secondary structure segments (e.g.,
hinged loop), (iii) entire domains movements (e.g., enzyme/substrate
complexes) or, (iv) in some extreme cases, disorder-to-order

transitions (Janin et al., 2008).

Energetic details of protein-protein complexes

As expected from the significant enrichment in apolar residues found
in the interfaces, the hydrophobic effect provides a significant
contribution to the protein-protein interaction (Tsai et al., 1996, 1997),
due to desolvation energy, associated to the removal of the solvent
from the interface upon binding, as well as because of tight,
unspecific and short-distance van der Waals contacts created
between non-polar residues. These are generally clustered in several
patches whose size ranges from 200 to 400 A, reaching even 3000 A

in some cases (Lijnzaad and Argos, 1997).

Besides hydrophobicity, electrostatics is the other significant
force involved in protein-protein interactions (Xu et al.,, 1997;
Sheinerman et al., 2000). Indeed, apart from their influence on
protein-protein affinity and specificity, long-range electrostatic forces
have been proposed to have an influence on the binding process
(Sheinerman et al.,, 2000) (i.e., pre-orienting protein partners,
promoting encounter complexes formation and therefore accelerating

the rate of association) as well as on its lifetime.

Together with their involvement in electrostatic interactions,
polar groups at interfaces have been found to be regularly involved in

hydrogen bonds (one per about 200 A? of buried surface area (Jones
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and Thornton, 1996)), either interacting with protein groups of the
complex partner or with water molecules located at the interface.
Indeed, water molecules are often found specifically located at the
protein-protein interfaces, and play a major role in polar interactions

that stabilize the complexes (Rodier et al., 2005).

1.2.3. Theoretical models for protein binding

During the last two centuries considerable research effort has been
focused on understanding the mechanism of association between
proteins. This led to an increasingly comprehensive knowledge of the
physicochemical properties of the binding (e.g., thermodynamics and
kinetics) and the consequent postulation of various theoretical models

aimed to accurately describe such process.

Lock-and-key paradigm

The first attempt to explain the protein complex binding consisted in
the lock-and-key paradigm that was formulated in 1894 even before
any structural knowledge of proteins. Developed by H.E. Fisher, it
offered a schematic and static representation of protein interactions
emphasizing the importance of steric complementarity between the
partners to achieve affinity and specificity upon the binding (Fischer,
1894).

The lock-and-key paradigm was later found to provide an
excessively simplistic description of binding, which is not adequate to
describe the expected conformational flexibility of the interacting

proteins in most of the cases.
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Induced-fit mechanism

During the last century, the lock-and-key paradigm was replaced with
a more dynamic representation of protein binding, expressed in the
so-called induced-fit mechanism (Koshland, 1958). According to this
model, proteins initially interact in an unbound conformation, while the
bound state is induced by the physical-chemical environment
provided by the protein partner. Indeed, induced-fit paradigm is
consistent with the conformational flexibility frequently observed
during binding (Echols et al., 2003) as well as the promiscuity of some

proteins in their interactions (Tidow and Nissen, 2013).

Nevertheless, the induced-fit mechanism does not explain the
intrinsic plasticity of several systems, existing as an ensemble of
conformations dynamically fluctuating between them, as supported by
some X-ray and cryo-electron microscope images, kinetics studies
and, above all, NMR data showing a repertoire of conformational
states of unbound protein, including conformations similar to the
bound state (Boehr et al., 2009; Esteban-Martin et al., 2012).

Conformational-selection and population-shift model

Firstly suggested in 1964 by Straub (Straub and Szabolcsi, 1964) and
experimentally supported by Zavodszky et al. in 1966 (Zavodszky et
al., 1966), the conformational-selection model initially postulated that
the unbound proteins naturally sample a variety of conformational

states, a subset of which are suitable to bind the other protein.

This original formulation was partially reassessed by
Frauenfelder, Sligar and Wolynes over 25 years later (Frauenfelder et
al., 1991) and finally formalized in 1999 (Ma et al., 1999; Tsai et al.,
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1999; Kumar et al., 2000): in solution proteins exist in a range of
conformations which regularly interchange between high populated
lowest-energy conformations and low populated higher-energy ones
that are more suitable to bind the bound state. However, given their
optimal geometry and physical-chemical complementarity, the high-
energy bound-like conformations get preferentially selected and
stabilized by the interacting partner, thus shifting the population of the

protein microstates in favor of the bound state.

Extended Conformational-selection model

The recent growth in volume and precision of data related to protein
dynamics suggested that the distinction between the original
conformational-selection and induced-fit models is not absolute
(Grunberg et al., 2004; Wlodarski and Zagrovic, 2009).

These findings provided support for an extended version of
the original conformational-selection model where both selection and
adjustment-type steps would follow each other. Thus, proteins in
solution would contain an ensemble of conformational states, not
necessarily structurally similar to the bound state, available for the
mutual selection and adjustment. As binding proceeds, the partners'
conformations change, as well as their position on the energy
landscape, whose shape results in turn altered by increasing
adjustments of the binding environment related to emerging
electrostatic and water-mediated hydrogen-bonding signals between
the protein partners (Kovacs et al., 2005; Antal et al., 2009). Upon this
mutual adaptation, although converging to a common end-state,
protein partners can follow alternative 'binding trajectories' (Tsai et al.,
2008; Antal et al., 2009) (i.e., sequences of conformational selection

and adjustment steps), where every step of the encounter by each
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subunit depends on the proceeding conformational change by the
protein partner, generating a kind of 'interdependent protein dance'
(Antal et al., 2009).

Partner A —folding funnel Partner B — folding funnel

Mutual
adjustment

PartnerA | e L Partner B
binding trajectories | binding trajectories

,,,,,,,, /
Y I~y

(a) Lock-and-key

ﬁ W H 4 (d) Originali
4 H § conformational

selection
(b) Induced fit + induced fit
i (c) Original i
conformational
selection

Figure 6. Schematic representation of the extended
conformational-selection model. (a) the classical lock-and-key
model (b) the classical induced-fit (c) the classical conformational-
selection model (d) the conformational-selection-plus-induce-fit
model. From Csermely et al., 2010

All in all, protein binding process would be triggered by the
formation of transient encounter complexes, mainly stabilized by
electrostatic forces (Tang et al., 2006; Bashir et al., 2010), whereas
its completion would involve induced-fit-based events including (i)
anchor residues rearrangement (Rajamani et al., 2004), (ii) hinge and

hinge-like motions (Ma et al., 2002), (iii) rearrangements of crucial
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nodes located between communities of amino acids networks
responsible for the structural reorganization of each subunit upon the
binding (Bode et al., 2007; Del Sol et al., 2007; Csermely, 2008; Sethi
et al., 2009).

Within the above described binding scenario, the
mechanisms previously proposed (i.e., lock-and-key and induced-fit)
are not rejected but reinterpreted as special cases of a unique binding
paradigm (Figure 6). Thus, the lock-and-key model would represent
the case in which both the partners are either rigid or have exactly
matching binding surfaces. Moreover, the induced-fit mechanism
would be interpreted as an evolution of the extended conformational-
selection type binding scenarios triggered by some specific binding
conditions: (i) the occurrence of the strong and long-range or directed
interaction, such as ionic forces or hydrogen bonding (Csermely et al.,
2010); (ii) high partner's concentration (Junker et al., 2009; Weikl and
von Deuster, 2009) or (iii) large difference in size or cooperativity

between the complex partners (Pereira-Leal et al., 2006).

1.2.4. Computational methods for protein-
protein complex structure prediction

The number of experimentally determined protein structures accounts
only for a tiny fraction of the massive amount of protein known and
sequenced proteins (Anishchenko et al., 2014) (see section 1.1.3),
and this discrepancy between sequence and structural data results
even more evident when considering protein-protein complexes (see

section 1.2.2).
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Nevertheless, computational approaches provide useful
resources to bridge both these gaps. Indeed, they not only succeed in
modeling isolated protein structures, using experimentally determined
structures as templates (see section 1.1.3), but also, clearly more
challengingly, provide the structural characterization of unknown
multimeric protein structures either using template-based modeling

(TBM) or ab initio docking (Figure 7).
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Figure 7. Two principal protocols for protein complex structure
prediction. Red and blue represent sequences and structures of two
individual chains. (a) Ab initio docking and (b) Template-based
modeling (TBM) methods. From Szilagyi and Zhang, 2014.

Template-based modeling of protein complexes

Homology modeling of protein-protein complexes appears as an
extension of TBM of isolated proteins and consists in building the
structure of a protein-protein complex by using as template other

related protein-protein complexes whose structure has been
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experimentally solved. This approach have become increasingly
popular over the last few years (Vakser, 2013), mainly supported by
the awareness that accurate PPl models can be yielded using proper
templates (Aloy and Russell, 2002a) as well as the potential
availability of templates suitable to model nearly all PPIs (Kundrotas
et al., 2012).

In the majority of TBM protocols, the complex structure
templates are generally detected by homology-based sequence
alignments, applying the technique of threading (Bowie et al., 1991),
as observed in MULTIPROSPECTOR (Lu et al.,, 2002) or COTH
(Mukherjee and Zhang, 2011) pipeline. However, since the
components isolated structures are typically known, a growing
number of approaches (e.g., ISEARCH (Gunther et al., 2007), iAlign
(Gao and Skolnick, 2010), KBDOCK (Ghoorah et al., 2011), PrISE
(Jordan et al., 2012), SCPC (Koike and Ota, 2012), ProBiS (Konc et
al., 2012), PRISM (Tuncbag et al., 2012), TrixP (von Behren et al.,
2013)), typically referred as template-based structure-comparison
approaches (Zhang et al, 2012), exploit structural alignment
techniques for the alignment of backbone, secondary structure,
and/or coarse-grained elements of the overall structure or the

interface alone.

A standard procedure of conventional template-based
complex modeling, starting from the sequence of the complex
components, consists of four steps which are essentially identical to
those used in TBM of isolated protein: (i) finding known structures
related to the sequence to be modeled; (ii) aligning the target
sequences to the template structure; (iii) constructing structural

frameworks by coping the aligned regions of the template structures;
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(iv) constructing the unaligned loop regions and adding side chain

atoms.

As the quality of the TBM models essentially depends on the
accuracy of the template identification whereas the full-length
complex structure construction and refinement are in general more
complicated and time-consuming, most current TBM algorithms (i.e.,
COTH (Mukherjee and Zhang, 2011), SPRING (Guerler et al., 2013),
MULTIPROSPECTOR (Lu et al., 2002), HOMBACOP (Kundrotas et
al., 2008), Struct2Net (Singh et al., 2010) and iIWRAP (Hosur et al.,
2011)) focus on the identification of templates, while only a few
methods, such as M-TASSER (Chen and Skolnick, 2008) perform a
full pipeline. All these algorithms mainly differ in the strategies applied
during the complex template identification and structure combination
step, which typically are (i) dimeric threading, (ii) monomer threading
and oligomer mapping or (iii) template based docking, as summarized

in Figure 8.
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Ab initio modeling of protein complexes

Protein-protein docking methods aim to build complex models by
assembling known structures of the interacting components,
previously predicted or solved in the unbound state. They basically
consist in an initial exhaustive search and consequent selection of
various binding orientations and thus ideally provide a realistic
description of the association process and the complex energy

landscape.

Since the first attempt, performed by Wodak and Janin in the
late 1970s (Wodak and Janin, 1978), the number of protein-protein
docking programs is continuously increasing. All the currently used
docking frameworks address the modeling task usually through two
(or three) independent and consecutive processes: (i) sampling of the
rotational and translational space of the two interacting proteins; (ii)
scoring of the generated docking orientations; and finally (iii) an
optional refinement and minimization of the complexes. Nevertheless,
they typically differ in (i) the sampling method implemented, (ii) the
scoring function used to rank the docking models, and (iii) the
strategy applied for the treatment of protein flexibility. According to
these key features, all the docking methodologies developed so far
can be divided onto two main categories, namely the geometry and

energy minimization-based docking methods.

In the heart of the geometry-based docking methods is the
steric complementarity at the protein-protein interface. Thus, several
simplified protein models and approximate functions have been
devised in order to find the best fitting between interacting surfaces. A
wide-used approach consists in the discretization of the interacting

protein into grids and the consequent exploration of the rotational and
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translational space at a certain resolution by searching for the best
correlation between both grids. However, although this approach
clearly reduces the computational costs of the sampling with respect
to a full-atom representation of the interacting proteins, an exhaustive
conformational exploration remains still prohibitive even for standard

size complexes.

Nevertheless, the sampling of both the translational or
rotational space can be dramatically speed up (around four orders of
magnitude) by computing the correlation function between the two
discrete grids, thanks to the application of Fast Fourier Transform
(FFT) algorithms (Katchalski-Katzir et al., 1992). Since its first
implementation in MolFit, this technique has been applied in different
docking methods, where geometry has been combined in different
ways with electrostatics and physico-chemical terms during the
sampling. For instance FTDock (Gabb et al., 1997) added an
electrostatic grid; PIPER (Kozakov et al.,, 2006), GRAMM-X
(Tovchigrechko and Vakser, 2006) and BIGGER (Palma et al., 2000)
introduced pairwise interaction potentials; ZDOCK (Chen et al.,
2003a) implemented (in successive versions) geometry-based
complementarity, electrostatics, desolvatation and statistical
potentials terms (Pierce et al., 2011). Other successful shape-based
methods use Fourier Transform (FT) on the rotational instead of the
translational space as previously described. Among such approaches,
Hex (Ritchie and Kemp, 2000) uses 2D spherical harmonics to
represent the surface of the interacting proteins whereas FRODOCK
(Garzon et al., 2009) is based on fast rotational matching (FRM),
where for each translational point, the rotational search is accelerated

by Fourier Transform (FT) using radial spherical harmonics.
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Another well-known geometric-based method is PatchDock
(Schneidman-Duhovny et al., 2005) based on the extraction of
geometric features from the interacting proteins, and the use of
geometric hashing algorithms to compute the complementarity
between surfaces (which are described by shape representations like

knobs, hole and flat areas).

Finally, the relatively low computational cost associated to
geometric-based docking algorithms makes them suitable for the
application to multi-molecular docking for the prediction of small multi-
protein assemblies. Noteworthy examples are CombDock (Inbar et
al., 2003), where the combinatorial problem during the sampling is
solved by the application of graph-based algorithm, or SymmDock
(Schneidman-Duhovny et al., 2005), which allows the prediction of
multimeric complexes with a given rotational symmetric starting from

its asymmetric unit.

Despite the remarkable speed and exhaustive sampling, a
major drawback of geometry-based docking methods arises from the
approximations made in protein shape and energy description as well
as the null or limited consideration of protein flexibility during the
binding. Alternative solutions to this limitation, represented by energy
minimization-based docking methods, will be described in section
1.3.3.

In parallel to the above mentioned docking protocols, in which
scoring is implicitly considered within the sampling procedure, many
other programs, exclusively specialized on independent scoring of
docking poses generated in a previous rigid-body step, has been
developed. One of the most successful scoring schemes is pyDock

(Cheng et al., 2007), which uses an energy function composed of van
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der Waals, electrostatics and atomic solvation parameter (ASP)-
based desolvation energy. Moreover, several sets of residue-based
potentials have been recently reported, such as SIPPER (Pons et al.,
2011) or PIE (Ravikant and Elber, 2010), whose major benefit is the

speed of the calculation, especially those defined at residue level.

Ab initio docking versus TBM methods

Compared to ab initio docking, the main advantage of TBM lies in the
fact that only the sequence and not the structure of the monomer
components are pre-required. Moreover, as the models are built
based on the complex templates that are in a bound form (in contrast
to the unbound structures used in ab initio docking), TBM methods
are not sensitive to the type of the complex (large or small interface
area, permanent or transient interaction) and to the extent of

conformational changes upon binding.

Nevertheless, the most crucial limitation of TBM consists in
the complete neglect of mutations or post-translational modifications
effects, which might seriously perturb monomer components folding,
modulate the interaction or create new aberrant interactions. In
addition, as happens with isolated proteins (see section 1.1.3), the
quality of a model is strikingly subjected to the target-template
sequence identity (Aloy et al., 2003; Launay and Simonson, 2008;
Kundrotas and Vakser, 2013) and thus modeling of interactions in the
absence of close homologous templates is still a challenging task.
Indeed, although it was reported to be ideally possible to find
templates for nearly all known interactions (Kundrotas et al., 2012), it
was recently revealed that the quality of the resulting models appears
to be quite poor and significantly worse than those obtained by ab

initio docking in cases where the available template shares a low
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sequence identity with the target (i.e., below 30%) (Negroni et al.,
2014).

1.2.5. Evaluation of protein complex structural
prediction

In order to be properly evaluated, any docking approach should
generally be tested on a statistically significant, non-redundant and
representative subset of all the complexes with known structure (i.e.,
docking benchmark sets) and objectively compared to other existing
approaches on such benchmark sets or even better in blind
community-wide assessments, such as CAPRI (Critical Assessment

of Predicted Interactions) (Janin et al., 2003).

Protein-protein docking benchmarks

The widely used benchmark sets of protein-protein complexes were
developed in Weng's (Chen et al., 2003b) and Vakser's (Gao et al.,
2007) groups. After several updates, the current versions of the two
benchmarks (version 5.0 (Vreven et al., 2015) with 230 entries and
version 2.0 (Anishchenko et al., 2015) with 165 entries, respectively)
contain more than one hundred complexes of co-crystallized proteins
and either their isolated components (unbound structures) or arrays of

low sequence identity homology-based models.

Moreover, several groups compiled decoy sets of docking
models containing false positive matches of proteins that result useful
in the optimization of potentials and scoring functions for the
discrimination of false positive predictions. The ones generated by

ZDOCK, FTDock and Rosetta are publicly available at the web pages
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of the respective groups, while another one was recently provided by
Vakser lab (Liu et al., 2008).

In the last few years, great efforts have been devoted to
assembly datasets combining structural and energetic information.
Indeed, a non-redundant set of 144 protein-protein complexes for
which not only the unbound and bound structures but also their
dissociation constants are available was recently published (Kastritis
et al.,, 2011) and consequently updated (Vreven et al., 2015) with 35
additional cases. Moreover, in 2012 Fernandez-Recio’s group
published SKEMPI, a database containing data on the changes in
thermodynamic parameters and/or kinetic rate constants upon more
than 3000 mutations for protein-protein interactions of which at least
one co-crystallized complex structure has been solved and is
available in the PDB (Moal and Fernandez-Recio, 2012).

All together these datasets offer remarkable tools for the
development, assessment, optimization and comparison of new

docking algorithms.

CAPRI (Critical Assessment of Predicted Interactions)

CAPRI, established in 2001 (Vajda et al., 2002), currently consists in
a community-wide scientific experiment, conducted on a discretionary
basis, which allows the comparison of different docking methods on a
set of targets (i.e., experimentally determined complex structures
unknown to the participants) based on two different prediction

assessments, namely predictors and scorers.

Thus, in a given CAPRI Round, predictors are asked to

generate, score and finally submit a total of ten own complex models
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starting from the separately crystallized structures of the complex
components, or their homologous supplied by the CAPRI organizers.
In a second step, the scorers are invited to evaluate a common pool
of docking models made up from the contributions of different
participating groups (uploaders) and finally submit their own ten best
ranking ones. At the end of each Round, the 10-model sets submitted
by each group of the predictors and scorers community are evaluated
by the organizers by comparison with the corresponding complex
structure which is still unpublished and made known only to the
organizers. The regular criteria for the evaluation of protein-protein
interaction models are described in Figure 1 of Lensink et al., 2007
and Table Il of Lensink and Wodak, 2010. More recently, they have
been slightly adapted to the assessment of protein-peptide interaction

(http://www.ebi.ac.uk/msd-srv/capri/round28/round28.html).

Since its inception, five CAPRI editions were completed
corresponding to 34 prediction Rounds and a total of more than 100
targets. Moreover, in the last CAPRI edition, taken place in the years
2010-2012, in addition to the standard protein assemblies predictions,
several different assessments were proposed (including binding
affinity, sugar binding and interface water molecule prediction)
(Lensink and Wodak, 2013; Moretti et al., 2013; Lensink et al., 2014).
The analysis of the docking results obtained in all the previous CAPRI
editions offer a useful resource to track the evolution of the protein
docking field (Mendez et al., 2003; Mendez et al., 2005; Lensink et
al., 2007; Lensink and Wodak, 2010, 2013), as well as to identify its

main challenges and its major ventures for the years to come.
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1.2.6. Interface and hot-spot residues
prediction

The docking methods described above aim to model the binding
mode of two interacting proteins at atomic resolution. However, given
the accuracy limitations of these methods, especially in some difficult
cases, sometimes it may be easier and more reliable trying first to
identify the residues that are involved in the interaction, which in turn
could be also helpful in the target characterization step during a drug

discovery program.

Identification of potential protein binding sites

Taking into account specific properties, which distinguish protein-
protein interfaces from the rest of the protein surface (Jones and
Thornton, 1996, 1997), diverse binding site prediction methods have

been developed in the last few decades.

Some of the better-known are InterproSurf (Negi et al., 2007),
based on solvent accessibility and statistical potential; PINUP (Liang
et al., 2006), using an empirical scoring function; ProMate (Neuvirth et
al., 2004), combining residues types, secondary structure and
sequence conservation; WHISCY (de Vries et al., 2006), related to
conservation and surface properties; I1SIS (Ofran and Rost, 2007a),
identifying interacting residues from protein sequence only; and finally
ODA (Fernandez-Recio et al., 2005), based on pyDock (Cheng et al.,
2007) desolvation energy.

A more specific interface analysis is the one supplied by
PRISM server (Ogmen et al., 2005; Keskin et al., 2008), which detect

the specific interaction between two given proteins. Finally, although
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phylogenetic conservation alone is often insufficient to reliably predict
protein binding sites, it can be successfully combined with other
interface properties. ConSurf (Glaser et al., 2003) and SCORECONS

(Valdar, 2002) are web servers that can provide these data.

Detection of protein hot-spot residues

Despite protein-protein interfaces are often large, flat and do not have
clear binding cavities (Jones and Thornton, 1997; Chakrabarti and
Janin, 2002), it has been reported that just a small number of
residues, typically referred to as hot-spots, are responsible for the
stabilization of the complex (i.e., contributing in more than 1-2 kcal to
the overall complex binding energy) (Clackson and Wells, 1995), and
thus are interesting targets for drug discovery or for a better
understanding of the mechanism of association between proteins.
These findings have inspired the development of a large number of
computational tools focused on the prediction of such hot-spot

residues as well as the compilation of different databases.

The vast majority of the predictive methods reported until now
strongly relied on the availability of the complex structure. Some
renowned examples are energy-based tools, such as ROBETTA
(Kortemme and Baker, 2002), FoldX (Schymkowitz et al., 2005),
HSPred (Lise et al., 2011) or Molecular Dynamics (MD) with
generalized Born model in a continuum medium (Moreira et al.,
2007), supported in several MD platforms (e.g., AMBER (Salomon-
Ferrer et al., 2013) and GROMACS (Pronk et al., 2013)), which are
based on computational alanine scanning of protein-protein interfaces

and subsequent evaluation of the change in binding affinity.

49



Protein-protein interactions: a broad overview

Other valuable approaches are machine learning-based tools.
Some of the most recently reported methods are KFC2 (Zhu and
Mitchell, 2011), based on interface solvation, atomic density and
plasticity features; PCRPi (Assi et al., 2010), combining sequence
conservation, energy score and contact number information; PPI-Pred
(Bradford and Westhead, 2005), considering surface shape and
electrostatics; MINERVA, which weights atomic packing density and
hydrophobicity (Cho et al., 2009) or a recent neural network-based
protocol (an adaptation of ISIS), which combines several interface
features such as sequence profiles, solvent accessibility and
evolutionary conservation (Ofran and Rost, 2007b). Another well-
known machine learning-based tool is PocketQuery web-server (Koes
and Camacho, 2012), which provides an assortment of metrics
(including changes in solvent accessible surface area, energy-based
scores, and sequence conservation) extremely useful for hot-spots,

anchor residues and hot regions prediction.

Empirical formula-based methods are also used instead of
machine learning algorithms. Some example are MAPPIS (Shulman-
Peleg et al., 2007), whose prediction relies on the evolutionary
conservation of hot-spots in the interface along the members of a
given family; HotSpot Wizard (Pavelka et al., 2009), based on the
integration of structural, functional and evolutionary information
provided by several databases; DrugScorePPI (Kruger and Gohlke,
2010), performing fast and accurate alanine scanning calculation
derived from experimental alanine scanning results; iPRED (Geppert
et al.,, 2011), using pairwise potentials atom types and residue
properties; APIS (Xia et al., 2010), where the hot-spots identification
is performed by combining residue physical/biochemical features,

such as protrusion index and solvent accessibility; and finally
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HotPoint (Tuncbag et al., 2010) that incorporates a few simple rules
consisting of occlusion from solvent and total knowledge-based pair
potentials of residues. Very recently, ECMIS (Shingate et al., 2014)
has been reported, using a new algorithm combining energetic,

evolutionary and structural features.

In spite of their high accuracy in the identification of hot-spot
residues, a major limitation of all the above cited tools lies in the
mandatory requirement of the protein-protein complex structure (or
that of a homologous one). By the contrary, in cases with no available
complex structure, very few hot-spot prediction methods have been
reported until now. One of them, pyDock (Cheng et al., 2007) module
pyDockNIP (Grosdidier and Fernandez-Recio, 2008) is based on
protein-protein docking simulations and computes the propensity of a
given residue to be located at the interface in the 100 lowest-energy
rigid body docking solutions. A novel computational tool, laying in the
same category, is SIM (Agrawal et al., 2014), which consists in
predicting hot-spot residues involved in evolutionarily conserved
protein-protein interactions starting from the unbound protein

structure.

Besides the huge number of predictive methods and web-
servers available, in the last few decades the undisputed biological
relevance of hot-spot residues has also inspired the creation of the
several hot-spots databases based on computational prediction,
including HotRegion (Cukuroglu et al., 2012), HotSprint (Guney et al.,
2008) and PCRPI-DB (Segura and Fernandez-Fuentes, 2011).
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1.3. Protein conformational plasticity

Proteins are not static objects. Their structure in solution can be
described as ensembles of variously heterogeneous conformations,
whose transitions between one to another are mainly related to
environmental changes (e.g., temperature (Caldwell, 1989), pH (Di
Russo et al.,, 2012), voltage (Navarro-Polanco et al., 2011), ion
concentration (Negi, 2014)) or post-translational modifications
(Karunatilaka and Rueda, 2014) (e.g., phosphorylation) and occur on
a variety of length scales (typically from tenths of A to nm) and time
scales (ranging from ns to s). This new dynamic perspective has been
conceptually synthesized in an energy landscape paradigm, in which
highly populated protein states and the transitions between them can
be described by the depths of energy wells and the heights of energy

barriers, respectively (Frauenfelder et al., 1991).

However, although the dynamic nature of proteins is
absolutely unquestionable, its description and incorporation into an
intuitive perception of protein function remain challenging. Indeed, this
status results further exacerbate by the fact that although
conformational sub-states (located in energy well) and their rates of
interconversion can be detected experimentally (i.e., from the
relaxation of the nuclei after excitation through NMR data), a
description of the transition pathway on an atomic-scale is out of the
reach for any currently available experimental technique because of
the extremely low probability and short lifetime of the high-energy
conformers. On the contrary, computational modeling has the
unbeatable advantage to offer an exhaustive description of protein

plasticity.
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1.3.1. Computational exploration of protein
plasticity

Despite being theoretically accessible with computational techniques,
in-depth characterization of proteins in action is not trivial. Indeed, their
various dynamics processes cover an extensive spectrum of
amplitudes and energies as well as a huge time-scale range spanning
13 orders of magnitude, from femtoseconds to hours. Thus, from the
fastest to the slowest motions one can find covalent bond vibrations
occurring in femtoseconds; side chain rotations and loop flips usually
on the pico- to nanosecond timescale; large domain motions,
macromolecular associations and protein folding that might take

several minutes or even hours (Figure 9).
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Figure 9. The timescale of the conformational events that underlie
protein flexibility: from the fast vibrations of covalent bonds to slow
protein (un)folding events. After Teilum et al., 2009.
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Exploring protein plasticity by Molecular Dynamics
(MD)

Since the publication of the first Molecular Dynamics simulation of a
protein in 1977 (McCammon et al., 1977), specific aspects of
biomolecular structure, kinetics and thermodynamics has been
investigated via MD (such as macromolecular stability (Tiana et al.,
2004), conformational and allosteric properties (Kim et al., 1994),
enzyme activity (Warshel, 2003), molecular recognition (Wang et al.,
2001), ion and small molecule transport (Roux, 2002), protein
association (Abriata and Dal Peraro, 2015) and folding (Day and
Daggett, 2003)). These finding provided significant advances in
several research fields ranging from drug (Kerrigan, 2013) and protein

design (Kiss et al., 2013) to material sciences and biophysics.

MD simulations can provide a detailed description of the
thermodynamic properties and time-dependent phenomena of
proteins through discrete integration of Newton's equation of motions
(Lindahl, 2008). Each simulation requires only three items: (i) the
initial coordinates of the system, (ii) a force field and (iii) a solvent

model.

The initial coordinates are generally obtained from
experimental structures (e.g., NMR or X-ray) or from homology-based
models. The force field model consists in sets of ab initio and
empirical parameters combined with detailed mathematical functions,
which basically provide the parametrization of the energy surface of
the protein. Although each force field uses own parameters sets and
slightly different energy terms to calculate a system potential energy,
globally all consider that the potential energy of the system is additive

and composed of a potential from bonded (or covalent) and non-
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bonded (non covalent) interactions. Several force field models have
been developed so far, including the popular latest CHARMM
(MacKerell et al., 1998), AMBER (Ponder and Case, 2003) and
GROMACS (Oostenbrink et al., 2004) force field versions. Although
giving quite consisting results among each others (Price and Brooks,
2002), some of the existent force fields can lack agreement with

experimental measurements (Beauchamp et al., 2012).

The next crucial step in MD simulations is the decision upon
the solvent model (Xia et al., 2002). The simplest and commonly used
is explicit solvation, in which water molecules and ions are explicitly
represented in the force field (Bizzarri and Cannistraro, 2002), such
as in TIP3P, TIP4P, TIP5P, SPC and SPC/E models. However, given
the high computational costs of such models, sometimes an implicit
consideration of the solvent is preferred (Orozco and Luque, 2000;
Tsui and Case, 2000; Simonson, 2001; Hassan and Mehler, 2002;
Lee et al., 2002). Here the solvent is treated as a continuous medium
having the average properties of the real solvent. Much longer
trajectories are thus accessible, although with lower accuracy,
especially in protein complexes and conformational analysis (Roe et
al., 2007; Yeh and Wallgvist, 2009).

All this variety of force fields and solvent models is
implemented in a considerable amount of available software
packages, such as CHARMM (Brooks et al., 2009), AMBER (Case et
al., 2005), GROMACS (Pronk et al., 2013) and NAMD (Phillips et al.,
2005). They typically share common basic features but also bear
peculiar strengths and weaknesses, regarding force field, flexibility,

licensing models, functionality and scalability (Salsbury, 2010).
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1.3.2. Beyond standard Molecular Dynamics

The introduction of special-purpose machines such as Anton (Shaw
et al.,, 2010), the adaptation of MD codes to specialized graphics-
processing-units (GPUs) (Friedrichs et al., 2009) and the evolution of
parallel codes (Pronk et al., 2013) have enormously increased the
time scales accessible by fully atomistic MD. Current MD simulations
can perform trajectories lasting up to a few ms, which enables the
description of protein folding and unfolding processes (Shaw et al.,
2010) as well as simulations of entire molecular machines composed
by large multiple subunits (e.g., the nicotinic acetylcholine receptor
(Kraszewski et al., 2015), ATP synthase (Bockmann and Grubmuller,
2002), virus capsids (Zhao et al., 2013) or the entire ribosome
(Sothiselvam et al., 2014)).

However, although these and future techniques are likely to
make great progress in the applicability of MD, its routine applicability
is still limited by the intense computational demands that are required
for atomic-detailed simulations longer than microsecond scale in
medium-sized systems. This makes it virtually prohibitive the
exploration of slow molecular motions that occur at the scale of the
whole protein using conventional MD simulations and thus has
fostered the development of alternative sampling methods, which lead
to a more exhaustive exploration of the conformational space at lower

time and computational costs.

Noteworthy solutions to leverage the present-day power of
atomistic MD simulations consisted on the application of novel
enhanced sampling algorithms, such as Umbrella Sambling (Patey
and Valleau, 1975), Replica-Exchange Molecular Dynamics (REMD)
(Sugita and Okamoto, 1999), Metadynamics (Laio and Parrinello,
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2002), steered MD (Isralewitz et al., 2001), milestoning (Faradjian and
Elber, 2004), accelerated MD (Hamelberg et al., 2004), transition path
sampling (Bolhuis et al., 2002) and their many combinations and
derivatives in which large energy barriers are artificially reduced,
allowing proteins to shift between conformations that would not be

accessible within the time scales of conventional MD.

Alternative widespread strategies are based on Normal Mode
Analysis (NMA) approach, which allow to extract large-amplitude
macromolecular motions (expected to be involved in functionally
important transition pathways) by approximating the complex
dynamical behavior of a macromolecule to a simple set of harmonic
oscillators vibrating around a given equilibrium conformation (Brooks
and Karplus, 1985).

Metadynamics (MetaD)

During the past decade, Metadynamics (MetaD) (Laio and Parrinello,
2002), especially in the well-tempered formulation (Barducci et al.,
2008), has become increasingly popular as a powerful approach to
accelerate rare events (i.e., those which occur infrequently in a
simulation trajectory, regardless of the trajectory timescale) in
macromolecular systems, by biasing specific degrees of freedom
(generally referred as collective variables, CVs) and computing
multidimensional free energy surfaces (FESs) as a function of such
CVs. Thus, the diffusion in the CVs space is enhanced by disfavoring
already visited regions through the cumulative addition of a repulsive
Gaussian potential to the physical force field potential, which flatters
the FES and thus prevents the system from being trapped in local
free energy minima (Figure 10). This framework successfully

produces the exploration of new reaction pathway without a priori
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knowledge of the landscape and the following estimation of the FES
without any CVs bias. Nevertheless, given the pivotal relevance of the
CVs during all the procedure, the accuracy of the results is
dramatically dependent on their appropriate choice. Generally
speaking, they should (i) enable to distinguish between the initial and
final state of the transition studied, (ii) include all the slow modes of
the system and (iii) be limited in number. However, the identification
of the correct CVs is usually far from being trivial, and hidden degrees
of freedom, which may not be accurately described by the chosen
CVs, often frustrate the sampling and thus limit the extent of

convergence and the accuracy of results (Sutto et al., 2012).

/N

Figure 10. Pictorial representation of the way the MetaD algorithm
fills the free energy landscapes. From Cavalli et al., 2015

A more efficient approach recently developed, generally
referred as PTMetaD, consists in manipulating all degrees of freedom
in a more general way (e.g., by increasing system temperature) by
combining MetaD with parallel tempering (PT) protocols. Here, a
series of replicas of a system are simulated at different temperatures,
and periodical exchanges between adjacent replicas are performed
using the Metropolis criterion of acceptance (Sugita and Okamoto,
1999; Hansmann, Dic 1997).
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Although PTMetaD protocol succeeds in overcoming hidden
energy barriers and comprehensively explores the CV space of a
system, its applicability is dramatically limited by high computational
costs given by the dramatic increase in replicas required to guarantee
an efficient exchange between the energy distributions of neighboring
temperatures. However, the combination between PTMetaD with the
well-tempered ensemble (WTE), a novel alternative sampling
framework lately proposed (Bonomi and Parrinello, 2010), enable to
amplify the potential energy fluctuations of each replica, dramatically
reducing the number of trajectories required and thus the consequent
computational costs of the overall simulation (Deighan et al., 2012).
Thus PTMetaD-WTE represents a bridge toward different enhanced
sampling protocols, definitely extending the applicability and the

performance of MetaD method.

Finally, the development of PLUMED (Bonomi et al., 2009),
an open source plug-in implementation working with many widely
used MD suites (e.g., Amber, NAMD, GROMACS, ACEDM) has

further enlarged the notoriety of MetaD frameworks.

Normal Mode Analysis (NMA)

Since its first application in structural biology in the early 80s (Brooks
and Karplus, 1983; Go et al., 1983), normal mode analysis (NMA) has
proved to be a useful and reliable approach to study collective and
large amplitude motions of either single small proteins or large
molecular machines (e.g., lysozyme (Brooks and Karplus, 1983),
HIV1-protease (Zoete et al., 2002), myosin (Adamovic et al., 2008),
integrins (Gaillard et al.,, 2007)) apart from being much less

demanding than MD in term of computer resources required.
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During the last decades several algorithms, based on either
coarse-grained or all-atoms models, have been developed (Skjaerven
et al.,, 2009). A novel example is represented by eNMA (enhanced
NMA), a Anisotropic Network Model (Atilgan et al., 2001) based
framework, recently developed by Rueda et al. (upcoming
publication). Indeed, it enables to create enriched structurally diverse
ensembles by performing an iterative exploratory search among the

NMA models created at each sampling step.

The versatility and simplicity of NMA-based methods in
calculating and storing data have also supported the development of
several web servers performing NMA calculations or gathering large
databases of pre-calculated protein motions. ProMode (Atilgan et al.,
2001), MoVIiES (Cao et al., 2004), MolMovDB (Flores et al., 2006)
and iGNM (Yang et al., 2005) are some of the most currently used
databases, while EINémo web server (Suhre and Sanejouand, 2004)
quickly performs all-atom calculations starting from a given protein
structure, and provides a comprehensive set of post-processing tools

to analyze and display results.

Apart from capturing functional movements of proteins, NMA
can be used in a wide variety of applications to (i) automatically
predict hinge residues in protein structures (as performed in
HingeProt server (Emekli et al., 2008)), (ii) refine low-resolution
structures (experimental or predicted) or (iii) calculate the transition
path between two conformations (as in MinActionPath (Franklin et al.,
2007)).
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1.3.3. Integration of molecular flexibility into
protein-protein docking

As mentioned in section 1.2.4, one of the main challenges in ab initio
prediction of protein-protein complex structure is properly dealing with
molecular flexibility. During the last decades, several approaches
have been proposed to address this issue. The easier and simpler
approaches consist in an implicit treatment of flexibility by using soft
potentials. Basically inspired by induce-fit and conformational-
selection protein binding mechanisms, more complex and innovative
strategies have been recently developed. They basically consist in
implementing a final refinement step (Bonvin, 2006; Zacharias, 2010)
or performing multiple docking runs from various precomputed

conformations, respectively.

Soft-docking methods

Although relatively fast, one of the main limitations of the FFT-based
docking methods is their incompatibility with an explicit treatment of
protein flexibility. Alternative strategies to overcome this limitation
consist in implementing a soft surface layer that allow overlapping of
the proteins in the models (i.e., soft-core approach (Palma et al.,

2000), or trimming long side chains (Heifetz and Eisenstein, 2003)).

Soft potentials are successfully applied in pyDock scoring
function (Cheng et al., 2007), where the van der Waals and the
electrostatic energies are truncated (to a maximum of 1 kcal/mol and
between -1 kcal/mol and +1 kcal/mol, respectively) in order to avoid
excessive penalization for the clashes generated during the rigid-body

docking phase.
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Flexible refinement

The majority of strategies to include flexibility in docking mimic the
induced-fit association model, by involving a first exploration of the
docking space using simplified/course grain and rigid-body protein
representation, followed by a local refinement to a higher resolution,
where a limited degree of flexibility is introduced by using specific
energy optimization protocols involving only side chains or including

also backbone atoms.

In ICM-DISCO (Fernandez-Recio et al., 2002) a Monte-Carlo
(MC) optimization of the ligand side chains is performed after a soft-
grid docking, while HADDOCK (Dominguez et al., 2003) explicitly
provides backbone and side chain flexibility of both the docking
partners during an MD simulated annealing refinement step. Finally,
in RosettaDock (Lyskov and Gray, 2008) an initial low-resolution
search is followed by a repacking and further MC optimization of the
side chains, combined with small backbone deviations and rigid-body
displacements. Finally, other methods involved a more exhaustive
consideration of the protein plasticity by integrating small
deformations of the global structures along soft harmonic modes
during the initial sampling step, as implemented in ATTRACT
(Zacharias, 2003, 2004) or SwarmDock (Moal and Bates, 2010)

programs.

Docking of conformational ensembles

Based on the conformational-selection association model, a strategy
to include flexibility in docking would consist in integrating
precomputed conformational ensembles of the interacting proteins

into a rigid-body framework, by repeating the docking process through
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various combinations of the docking partners. Such structural
ensemble can be obtained experimentally (e.g., from NMR
experiments) or be generated computationally by any sampling
method (e.g., MD, NMA or homology modeling) thus spanning various
degrees of flexibility, from small local rearrangement to large-scale

global motions.

Although potentially promising, to date this strategy has not
been really used for practical docking predictions, and very few
systematic studies has been published so far on exploring the use of
either conformational ensembles derived from theoretical simulation
(Grunberg et al., 2004; Smith et al., 2005; Chaudhury and Gray,
2008) or experimental data (i.e., NMR spectroscopy) (Chaudhury and
Gray, 2008). Indeed, both the studies from Grimberg et al. and Smith
et al. agreed that the ensemble docking failed to improve structure
prediction of protein complexes, although leading to an increase in
the number of native solutions generated. Intriguingly, no clear
correlation was found between success rate and RMSD from the
bound structure (Grunberg et al., 2004). A more successful approach
was reported by Chaudhury et al., where flexibility was restrained to
the smaller protein in the complex. Indeed, a real improvement of the
docking results was observed using MD structures, while the
performance dramatically dropped with NMR structures (Chaudhury
and Gray, 2008). However, the ensembles used in all these studies
do not really represent the population of unbound state, as only few

conformers were used in the docking procedure.

A more recent example of ensemble docking was reported,
consisting in the successful integration of large RDC-based

ensembles of free ubiquitin into a rigid-body docking protocol (Pons et
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al., 2013). Experimental limitations precluded the application of RDC-
based ensembles at a large-scale, and therefore more research work
was needed in finding practical ways for generating successful
ensembles of unbound proteins in solution and their optimal use in

docking protocols, which is one of the goals of this thesis.
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“The impossible of today
will become the possible of tomorrow.”

Konstantin Tsiolkovsky



Objectives

Proteins function through their interaction with other proteins and
biomolecules, forming specific complexes that are determined by the
3D structure and energetics of the interacting subunits. Computational
methods can successfully contribute to predict and characterize these
mechanistic aspects of protein function at atomic level, in which
conformational flexibility plays a major role. However, an accurate
consideration of protein plasticity within computational modeling of
protein function at molecular level is still far from trivial, mostly
because of both technical and methodological limitations. In this
context the main purpose of this PhD thesis has been the
assessment, development and application of computational tools for
the structural, energetic and dynamic characterization of protein
molecules and their interactions. This general purpose englobes
several specific objectives:

1. Analysis of advances and new challenges of methods for the

energetic characterization of protein-protein interfaces;

2. Assessment of current in silico techniques for the structural
prediction of protein interactions;

3. Systematic study on the role of conformational heterogeneity
in protein-protein association process;

4. Development and benchmarking of a novel protocol to
integrate unbound conformational ensembles in protein-
protein docking;

5. Application of computational methods for the prediction and
characterization of protein interactions in cases of biological
interest;

6. Application of computational methods to elucidate the
dynamic basis of protein dysfunction for biomedical
applications.
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“If you are out to describe the truth,
leave elegance to the tailor.”

Albert Einstein



Articles

3.1. Advances and new challenges in
modeling of protein interactions

Given the growing interest in protein-protein interactions and the
technical advances in computational field, an increasing number of in
silico tools have been developed with the aim of (i) identifying
residues that significantly contribute to binding, and (ii) modeling
protein complexes starting from the isolated component structures
(docking problem). Testing and comparing these computational
methodologies is fundamental in order to assess their performance,
identify their limitations, and finally guide new developments in the
field. In this context, CAPRI experiment provides a common ground
for testing the predictive capability of currently available docking

methods.

Firstly, this section will be focused on the analysis of several
existing computational protocols for the characterization of protein-
protein interfaces. Secondly, the performance of our pyDock protocol
(Cheng et al., 2007) on the last CAPRI round (Lensink and Wodak,

2013) will be evaluated and discussed.
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Abstract

An important aspect of protein functionality is the formation of specific
complexes with other proteins, which are involved in the majority of
biological processes. The functional characterization of such
interactions at molecular level is necessary, not only to understand
biological and pathological phenomena, but also to design improved,
or even new interfaces, or to develop new therapeutic approaches. X-
ray crystallography and NMR spectroscopy have increased the
number of 3D protein complex structures deposited in the Protein
Data Bank (PDB). However, one of the more challenging objectives in
biological research is to functionally characterize protein interactions
and thus, identify residues that significantly contribute to the binding.
Considering that the experimental characterization of protein
interfaces remains expensive, time-consuming and labor-intensive,
computational approaches represent a significant breakthrough in
proteomics, assisting or even replacing experimental efforts. Thanks
to the technological advances in computing and data processing,
these techniques now cover a vast range of protocols, from the
estimation of the evolutionary conservation of amino acid positions in
a protein, to the energetic contribution of each residue to the binding
affinity. In this chapter, we will review several existing computational
protocols to model the phylogenetic, structural and energetic
properties of residues within protein-protein interfaces.
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Key Words

Protein-protein interactions, hot-spots identification, interface
prediction, evolutionary conservation, protein protein docking,
biomolecular dynamics simulation, in silico alanine scanning, pyDock,
AMBER package, ConSurf.

Introduction

One of the current goals of proteomics is to predict and characterize
protein-protein complex interfaces. Access to such information is
highly valuable as it helps to elucidate large protein interaction
networks, increases the current knowledge on biochemical pathways,
improves comprehensive description of disease pathogenesis and
finally suggests putative new therapeutic targets [1-3]. Moreover, the
use of computational approaches offers faster and more cost-efficient
procedures in comparison to experimental methods such as co-
immunoprecipitation, affinity chromatography, yeast two-hybrid or
mass spectroscopy.

ConSurf NIP pyDock energy  ALA-scanning

Fig. 1 MEK1-BRAF interface characterization. MEK1 and BRAF interface
characterization using different computational techniques (first and second line
respectively): ConSurf evolutionary conservation, pyDockNIP calculation,
pyDock binding energy decomposition, binding free energy change (AAG)
estimated by in silico alanine scanning.

In this chapter, we will review several computational methods
that exploit phylogenetic, structural and energetic properties of
interface residues for the computational design of protein complexes,
or the characterization of pathological mutations involved in protein-
protein interfaces. First, we will describe two methods that do not need
the structure of the protein-protein complex, namely ConSurf [4-7] and
Normalized Interface Propensity (NIP) [8]. ConSurf identifies
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functionally and structurally important residues (e.g., involved in
enzymatic activity, in ligand binding or protein-protein interactions [9])
on a protein by estimating the degree of conservation of each amino
acid site among their close sequence homologues. NIP computes the
tendency of a given residue to be located at the interface, based on
rigid-body docking poses evaluated by pyDock scoring function [10]
(based on accessible surface area-based desolvation, coulombic
electrostatics and van der Waals energy). Then, we will describe two
other protocols which require previous knowledge of the complex
structure: residue contribution to binding energy computed with
pyDock, and in silico Alanine (Ala) scanning, based on Molecular
Dynamics simulations with AMBER14 package [11] and binding
energy calculations using the MM-GBSA method [12]. The use of
these methods will be illustrated on one example, the MEK1-BRAF
complex (PDB ID 4MNE) [13], in which several pathological mutations
are annotated [14].

Materials

ConSurf Server

1. ConSurf Server is a bioinformatics tool that estimates the
evolutionary conservation of amino acid positions in protein
molecules based on the phylogenetic relations among close
homologous sequences. It can be found at
http://consurf.tau.ac.il.

PyDock

1. PyDock is docking package freely available to academic
users. Go to pyDock download web page
http://life.bsc.es/pid/pydock/get_pydock.html [15] and fill in the
form with the requested information. pyDock team will quickly
send you a copy of the application and instructions to install it.

FTDock

1. From the FTDock [16] web page
http://www.sbg.bio.ic.ac.uk/docking/download.html, download
file gnu_licensed 3D _Dock.tar.gz to the folder of your choice.

2. From the FFTW web page http://www.fftw.org/download.html,
download file fftw-2.1.5.tar.gz.

3. Move to the folder where you have downloaded the file fftw-
2.1.5.tar.gz and unpack the package with the following
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commands:

> cd folder-where-fftw-2.1.5.tar.gz-has-been-downloaded
> gunzip fftw-2.1.5.tar.gz

> tar xvf fftw-2.1.5.tar

Move into directory fftw-2.1.5 and compile the library:
> cd fftw-2.1.5;

> /configure;

> make

Move to the folder where you have downloaded
gnu_licensed_3D_Dock.tar.gz and unpack FTDock package.

Move to the unpacked folder 3D Dock/progs. Edit file
Makefile and set the correct complete path to the ffiw-2.1.5
directory. This is done by setting the variable FFTW_DIR on
line 15. You should also check the value of the CC_FLAGS
variable, and make it fit to your system (e.g: for a x86_64
Linux system, CC_FLAGS variable has been modified and set
to -O -m64'.

Type the following command:
> make

You should now have the executable files ftdock, build and
randomspin available. Optional: Edit your .bashrc file to
include 3D_Dock/progs folder in your system path (PATH
variable).

UCSF CHIMERA molecular viewer

UCSF Chimera [17] is a highly extensible program for interactive
visualization, molecular structure analysis and high-quality
images generation. Here are the instructions to install UCSF
Chimera Molecular viewer:

1.

Go to UCSF Chimera Molecular viewer web page at
http://www.cgl.ucsf.edu/chimera.

Go to the download session, clicking on Download in the
menu on the top-left of the web page and selecting the UCSF
Chimera Molecular viewer installer appropriate for you
platform.

Install UCSF Chimera Molecular viewer on your computer
following the platform specific installation instructions
available on the same page.
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AMBER package

AMBER is a package of programs for Molecular Dynamics simulations
of proteins and nucleic acids. It is distributed in two parts:
AmberTools14 and Amber14. Here are the instructions to install
AMBER package:

1.

Go to the AMBER web page at http://ambermd.org/#Amber14.

2. After filling the registration form located on its own section at
http://ambermd.org/AmberTools14-get.html, download
AmberTools14 clicking on the Download button.

3. Download the Amber 14 License Agreement, print this form,
fill it in, sign and return it to the address given at the bottom of
the license agreement. Once the order is processed,
download the AMBER program package following the
download information you will receive via email.

4. Install AMBER on your machine and compile the source code
format using Fortran 95, C or C++ compilers following the
instructions in the Amber Reference Manual at
http://ambermd.org/doc12/Amber14.pdf.

Methods

Analysis of residue conservation by ConSurf

1.

Go to ConSurf web server page at http://consurf.tau.ac.il.
Then, ConSurf web server will ask you several questions
regarding the computation you want to run.

To the question Analyze Nucleotides or Amino Acids? select
Amino-Acids option.

To the question Is there a known protein structure? select Yes
option.

Provide the PDB ID (e.g., 4MNE) of the structure you want to
analyze or upload your own PDB file, browsing to its location.
Press Next button.

Select the chain identifier of the molecule to be analyzed.

Indicate whether there is a multiple sequence alignment
(MSA) to upload. If there is not, ConSurf server will generate
it. You may set the parameters ConSurf server will use to
generate the MSA. For this work, ConSurf server has been
run with default parameters.
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10.

11.

12.

At the bottom of the page, fill the Job title field to identify the
job.

Fill the User E-Mail field, check the Send a link to the results
by e-mail check-box and click the submit button. Thus,
ConSurf server will send you an e-mail with a link to the
results when it has finished.

Open the e-mail sent by ConSurf and go to the results page
link.

Click on the Download all Consurf outputs in a click! link, save
the ConSurf results file and unzip it.

Open consurf.grades file. From all the columns of the file,
focus on three: 3LATOM, SCORE and COLOR. The 3LATOM
column contains an id code of the analyzed residues. The
SCORE column contains the computed normalized
conservation score. Lower scores (more negative) correspond
to more conserved residues, while higher scores (more
positive) correspond to less conserved residues. A similar
information is shown in column COLOR where, in order to
ease visualization of the results, the continuous conservation
scores have been partitioned into nine different bins, with bin
9 representing the most conserved positions and bin 1 the
most variable positions. It is important to remark that neither
the SCORE values nor the COLOR values indicate absolute
magnitudes of conservation, but rather the relative degree of
conservation of a given residue in the specific protein under
study (i.e., neither SCORE nor COLOR values of residues of
different proteins are generally comparable).

ConSurf provides two PDB files where the SCORE and
COLOR values are assigned to the bfactor field. This is quite
useful in order to get a picture of which residues are more
conserved. With your favorite molecular visualization
application open *pdb_With Conservation Scores.pdb and
*pdb_ATOMS_section_With_Consurf files for displaying
SCORE and COLOR values respectively (Fig. 1).

Prediction of binding hot-spots by NIP

NIP computation can be divided in four different steps: 1) initial setup,
where the receptor and ligand PDB files of the complex are
preprocessed in order to generate the input files that FTDock and
pyDock require, 2) sampling phase, where FTDock generates a set of
docking poses, 3) scoring phase, where pyDock dockser module
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scores and ranks the poses generated by FTDock and 4) NIP
computation, where the first 100 ranked docking poses (those with
lower binding energy) are selected from the whole set of generated
docking poses, and pyDock patch module is used to compute the NIP
values.

Next, we describe each one of these phases in more detail.

1. Initial setup
a) Create a project folder and move to it.

b) From the PDB web site, download the receptor and
ligand structures: e.g. download the PDB files of receptor
(3EQI) and ligand (4MNE) into the project_folder (see
Note 1).

c) Create pyDock ini file: open your favorite text editor and
create the file 4mne.ini as shown in Fig. 2.

d) Run pyDock setup module:
> pydock3 4mne setup

e) pyDock setup module should have generated several
new files (see Table 1).

[receptor]
pdb
mol
newmol

3eqi.pdb
A
A

[ligand]
pdb
mol
newmol

4dmne.pdb
B
B

Fig. 2 Example of pyDock input file. The input file is typically divided into two
sections, [receptor] and [ligand], designed to specify the variables related to
the receptor and ligand, respectively. The pdb line defines the PDB file name.
The mol line specifies the original chain name in each PDB file, whereas the
newmol indicates the new one in the pyDock output files. Please, be aware
that the newmol chain names must be different for the receptor and the ligand.

Table 1. pyDock modules input and output files.

Module Input files Output files
name
setup docking_name.ini docking_name_rec.pdb

docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
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docking_name_lig.pdb.amber

rotftdock docking_name_rec.pdb docking_name.rot
docking_name_lig.pdb

rotzdock docking_name_rec.pdb docking_name.rot
docking_name_lig.pdb

dockser docking_name_rec.pdb docking_name.ene

docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot

patch docking_name_rec.pdb docking_name.recNIP
docking_name_lig.pdb docking_name.rec.pdb.nip
docking_name.rot docking_name.ligNIP
docking_name.ene docking_name.lig.pdb.nip

BindEy docking_name.ini docking_name_rec.pdb

docking_name_lig.pdb
docking_name_rec.pdb.H
docking_name_lig.pdb.H
docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking_name.rot
docking_name.ene

resEnergy docking_name_rec.pdb docking_name.receptor.residueEne
docking_name_lig.pdb docking_name.ligand.residueEne
docking_name_rec.pdb.H docking_name.receptor.atomEne
docking_name_lig.pdb.H docking_name.ligand.atomEne

docking_name_rec.pdb.amber
docking_name_lig.pdb.amber
docking _name.rot

2.  FTDock sampling
a) Run FTDock:

> ftdock -static 4mne_rec.pdb -mobile 4mne_lig.pdb -
calculate_grid 0.7 -angle_step 12 -internal -15 -surface
1.3 -keep 3 -out 4mne.ftdock

b) When FTDock is finished, you should have a new file
named 4mne.ftdock in the folder.

3. Scoring

In this phase, the docking poses generated in the sampling
phase are scored and ranked with pyDock dockser module.

a) Run pyDock rotftdock module:
> pydock3 4mne rotftdock

b) There should now be a new file 4mne.rot. Each line in
this file represents a rotation and translation matrix.
FTDock 4mne.rot file should have 10000 different lines.

84



Articles

c) Score and rank FTDock poses by running pyDock
dockser module:

> pydock3 4mne dockser

d) Once dockser module has finished, it should have
created file 4mne.ene with 10002 different lines (see
Note 2 for a detailed description of this file).

NIP computation
a) Run pyDock patch module:
> pydock3 4mne patch

b) 4mne.recNIP and 4mne.ligNIP files should have been
created. These files show the computed NIP value for
each residue of receptor and ligand respectively. Those
residues with NIP values greater than 0.2 are predicted to
be hot-spots.

c) For visualization proposes, patch module output includes
two PDB files, with extension *.pdb.nip, where the NIP
values have been assigned to the bfactor field. With your
favorite  molecular visualization application open
* rec.pdb.nip or *_lig.pdb.nip files for displaying the NIP
values of receptor and ligand respectively (Fig. 1).

Computation of binding energy per residue with pyDock

1.
2.

Create a folder for computing residue binding energy.

From the PDB web site, download the structure of a protein-
protein complex, e.g. BRAF/MEK1 (PDB ID 4MNE).

Create pyDock ini file. Open your favorite text editor and
create the 4mne.ini file specifying receptor and ligand
subunits.

Compute pyDock binding energy by running the following
command:

> pydock3 4mne bindEy

pyDock should have generated several new files. Please, see
Table 1 to confirm.

Run pyDock residue energy module:

> pydock3 4mne resEnergy
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7. The module should have created for ligand and receptor
*.atomEne and *.residueEne files with the contribution to the
binding energy of each individual atom and residue
respectively.

8. You may get a graphical representation of the residue binding
energy (Fig. 1), by assigning the binding energy values given
in *.residueEne files to the bfactor field of the corresponding
PDB file of the target molecules.

In-silico alanine scanning with AMBER

The Alanine scanning workflow can be divided into three different
steps: 1) the preparation of the PDB files for both the wild type and the
mutated structures, 2) the Molecular Dynamics simulation of the wild
type complex and 3) the binding free energy calculation on both the
wild type and the mutated structures.

1.  Wild type and mutated structures PDB files preparation

a) Start a new session of UCSF Chimera Molecular viewer
and open 4MNE PDB file clicking on File — Fetch by ID
entering 4mne as PDB ID in the new window and then
clicking on the Fetch button. Delete all chains but A and
B, and all existing water molecules from the system.

b) Build missing segments starting the Chimera interface to
MODELLER. Click on Tools — Structure Editing —
Model/Refine Loops. In the new window, select all
missing structure as model/remodel option and one as
both number of residues adjacent to missing region
allowed to move and number of models to generate.
Write the MODELLER license key and start the rebuilding
by clicking on OK. The MODELLER license key is freely
available only for academic use and can be requested at
the MODELLER web page
https://salilab.org/modeller/registration.html, filling up the
license agreement and clicking on agreed and accepted
buttom.

c) Save the PDB files of the complex and each subunit in
the wild type form. Go to File — SavePDB. In the new
window enter MEK1-BRAF.pdb as file name of the
refined complex structure and finally click on Save. Select
each subunit of the complex by its chain name from
Select — Chain. Go to File — SavePDB, specify the
subunit new file name (i.e., MEK1.pdb for chain A and
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d)

BRAF.pdb for chain B), pick the save selected atom only
option and finally click on Save.

Save the complex and the subunit PDB files for each
mutant. Start a new session of UCSF Chimera Molecular
viewer, open MEK1-BRAF.pdb file, select only one
residue to be mutated then go to Tools — Structure
Editing — Rotamers, choose ALA as rotamer type and
click on OK. Save the resulting mutated complex
structure going to File — Save PDB and specifying the
mutation in the new file name (e.g., MEKIT-
BRAF _F468A.pdb). Finally, select the mutated subunit
structure only and save it in a separate file (e.g.,
BRAF _F468A.pdb). Repeat the same protocol for each
BRAF and MEK1 residue to be mutated.

Edit all MEK1-BRAF.pdb and MEK1.pdb files (both wild
type and mutated). Rename MG residue to MG2 and
convert ACP molecule to ATP.
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source leaprc.ff99SB
source leaprc.gaff

#Load ATP parameters
loadamberprep ATP.prep
loadamberparams ATP.frcmod

#Check ATP parameters
check ATP

#Load pdb file
4dmne=loadpdb MEKI1 -BRAF.pdb

#Check pdb structure
check 4mne

#Compute total charge
charge 4mne

#Put an 12A-buffer of TIP3P water around the system
solvateoct 4mne TIP3PBOX 12.0

#Neutralize the system
addions 4mne Na+ 4

#Save topology and coordinate files
saveamberparm 4mne MEK1-BRAF solv.prmtop MEK1-BRAF_solv.inpcrd

quit

Fig. 3 Example of AMBER LEaP input file to build topology and coordinates
files of wild type solvated system. The source command tells LEaP AMBER
tool to execute the start-up script for ff99SB and GAFF force fields. First, ATP
parameters are loaded and checked, then MEK1-BRAF.pdb file is loaded into
a new unit called 4mne, the structure is checked (i.e., close contacts and bond
distances, bond and angle parameters) and the total charge is computed.
Then, the system is solvated by adding a truncated octahedral 12 A-box of
TIP3P water molecules around the protein, and neutralized by adding 4 Na+
ions. Finally, the topology and coordinate files are saved in the prmtfop and
inpcrd AMBER format respectively.

2. Molecular Dynamics simulation

a)

b)

Download the ATP molecule parameters from the
AMBER parameter database (see Note 3). Go to the
AMBER  parameter database web page at
http://www.pharmacy.manchester.ac.uk/bryce/amber/.
Search the row ATP (revised phosphate parameters) in
the Cofactors table and save the PREP and FRCMOD
files as ATP.prep and ATP.frcmod, respectively.

Modify the ATP atom names in your PDB file to match
the atom names in the ATP.prep file so that LEaP
AMBER tool will be able to match them up.

Create the input files for the MD simulation (topology and
coordinate files) using LEaP AMBER tool. Run the input
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script tleap-solv.in (Fig. 3, see Note 4) using the
following command:

> $AMBERHOME/bin/tleap -f tleap-solv.in > tleap-
solv.out

Flag -f tells tleap to execute the start-up script after-
specified.

#Solvent minimization

&entrl

imin=1,
maxcyc=1000,
ncyc=500,

ntb=1

cut=12,

ntr=1,
restraintmask='!:WAT,Na+,Cl-"',
restraint_wt=50,
drms=0.01

4

Fig. 4 Example of AMBER pmemd input file for solvent minimization. In the
input file, imin=1 specifies that minimization instead of Molecular Dynamics
will be performed, the parameter maxcyc specifies the total number of
minimization cycles to be run while ncyc specify the number of steepest
descent minimization followed by maxcyc-ncyc steps of conjugate gradient
minimization, drms sets the convergence criterion for the energy gradient (in
A). The parameter ntb=1 means that a period boundary will be set around the
system to maintain a constant volume while cut sets the cutoff value (in A)
applied for non-bonded interactions. The flag nfr=1 indicates that the
positional restraint method is applied for the energy minimization,
restraintmask specifies the atoms to be restrained (in this cases all but water
and ions molecule) and finally restraint_wt defines the restraints strength in
terms of force constant in kcal mol” A? applied on each restrained atom.

d) Run a short solvent minimization step using AMBER
pmemd input script min_solv.in (Fig. 4) and the following
input command:

> $AMBERHOME/bin/omemd -i min_solv.iin -0
min_solv.out -¢ MEK1-BRAF _solv.inpcrd -p MEKT-
BRAF _solv.prmtop -r MEK1-BRAF_min.rst -ref MEK1-
BRAF _solv.inpcrd

Flag -i specifies the input file, -0 the output file, -c the
coordinate file, -p the parameter and topology file, -r the
output restart file with coordinates and velocities, and -ref
the reference coordinates file for positional restraints, if
this option is specified in the input file.
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#Equilibration (I)

&centrl
imin=0,
irest=0,
migse=il

ntb=1,
cut=12,
mitic=2

ntf=2,
tempi=0.0,
temp0=300.0,
ntt=3,
gamma_1n=1.0,
nstlim=20000,
dt=0.002,
ntwx=5000,
ntwr=5000,
ntpr=5000,
mEE=1l,
restraintmask='!:WAT,Na+,Cl-"',
restraint_wt=25,
ig=-1,

/

Fig. 5 Example of AMBER pmemd input file for first step equilibration. In the
input file, imin=0 specifies that Molecular Dynamics instead of minimization will
be performed, the parameters irest=0 and ntx =1 indicate that only coordinates
but no velocity information will be taken from the previous restart file, the flag
ntc=2 indicates that all bonds involving hydrogen bonds are constrained by the
SHAKE algorithm to eliminate high frequency oscillations in the system while
ntf=2 means that all types of forces in the force filed are being calculated
except bond interaction involving H-atoms. The parameters temp0O and tempi
define the initial and the temperature at which the system is to be kept
respectively, ntt=3 indicates that the temperature Langevin thermostat will be
used while gamma_In=1.0 sets the collision frequency to 1fs. The flag nstlim
defines the number of simulation steps, dt defines the length of each frame
(set at 2 fs, here) while ntwx, ntwr, ntpr define the frequency of data deposition
(coordinates, energy and restart respectively). Finally ig=-1 sets the random
seed based on the current date and time and hence will be different for every
run. The meaning of the rest of the parameters listed in the input file was
previously explained.

e) Run a b5-step equilibration by which the system
temperature is raised from 0 to 300K, and a gradual
relaxation is performed by progressively releasing
positional restraints, initially set. The following protocol
should be used:

* As a first equilibration step, run a 40-ps simulation in
isovolume condition applying harmonic restraints to all
the protein atoms and heating the system to 300K.
Run equil1.in input script (Fig. 5) using the following
command:
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> $AMBERHOME/bin/omemd -i equil1.in -o equil1.out
-¢ MEK1-BRAF_min.rst -p MEK1-BRAF _solv.prmtop -
r MEK1-BRAF _eq1.rst -ref MEK1-BRAF_min.rst -x
MEK1-BRAF _eq1.mdcrd

Perform an additional 20-ps step in isothermal-
isovolume condition reducing the harmonic restraints
to all the protein atoms from 25 to 10 kcal/(moI-AZ).
Run equil2.in input script (Fig. 6) using the following
command:

> $AMBERHOME/bin/omemd -i equil2.in -0 equil2.out
-¢c MEK1-BRAF _eq1.rst -p MEK1-BRAF _solv.prmtop -
r MEK1-BRAF _eq2.rst -ref MEK1-BRAF _eq1.rst -x
MEK1-BRAF_eq2.mdcrd

#Equilibration (II)

&cntrl
imin=0,
irest=1,
ntx=5,
ntb=1,
cut=12,
nte=2,
misE=E2 ,

tempi=300.0,
temp0=300.0,

ntt=3,

gamma_1n=1.0,
nstlim=10000,

dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=1,

restraintmask="'!:WAT,Na+,Cl-"',
restraint_wt=10,

ig=-1,
/

Fig. 6 Example of AMBER pmemd input file for second step equilibration. In
the input file, the flags ntx=5 and irest=1 mean that velocity and coordinate
information will be taken from the previous restart file. The meaning of the rest
of the parameters listed in the input file was previously explained.

.

Run another 20-ps step applying the harmonic
restraints only to the backbone atoms. Run equil3.in
input script (Fig. 7) using the following command:

> $AMBERHOME/bin/omemd -i equil3.in -o equil3.out
-¢ MEK1-BRAF _eq2.rst -p MEK1-BRAF _solv.prmtop -
r MEK1-BRAF _eq3.rst -ref MEK1-BRAF _eq2.rst -x
MEK1-BRAF_eq3.mdcrd
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#Equilibration (III)

&entrl
imin=0,
irest=1,
niEx=bp

ntb=2,

ntp=1,
cut=12;,
ntc=2,

MEE=Z,
tempi=300.0,
temp0=300.0,
nEE=37
gamma_1n=1.0,
nstlim=10000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
migie=il,,
restraintmask='e@CA,N,C,0"',
restraint_wt=10,

ig=-1,

/

Fig. 7 Example of AMBER pmemd input file for third step equilibration. In the
input file the flags ntb=2 and ntp=1 indicate that constant pressure instead of
constant volume is applied. The meaning of the rest of the parameters listed in
the input file was previously explained.

Run further 20-ps step decreasing protein backbone
restraints to 5 kcal/(moI-AZ). Run equil4.in input script
(Fig. 8) using the following command:

> $AMBERHOME/bin/omemd -i equil4.in -o equil4.out
-¢ MEK1-BRAF _eq3.rst -p MEK1-BRAF _solv.prmtop -
r MEK1-BRAF _eq4.rst -ref MEK1-BRAF _eq3.rst -x
MEK1-BRAF_eq4.mdcrd
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#Equilibration (IV)

&cntrl
imin=0,
irest=1,
ntx=5,
ntb=2,
ntp=1,
cut=12,
MEEED
ntf=2,

tempi= 300.0,
tempO= 300.0,

miEE=3)

gamma_1n=1.0,
nstlim=10000,

dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
ntr=1,

restraintmask='@CA,N,C,0',
restraint_wt=5,

ig=-1,
/

Fig. 8 Example of AMBER pmemd input file for fourth step equilibration. The
meaning of all the parameters listed in the input file was previously explained.

.

Run the last step of the equilibration consisting on
100-ps unrestrained MD simulation in isothermal-
isobaric condition. Run equil5.in input script (Fig. 9,
see Note 5) using the following command:

> $AMBERHOME/bin/omemd -i equil5.in -o equil5.out
-¢ MEK1-BRAF _eq4.rst -p MEK1-BRAF _solv.prmtop -
r MEK1-BRAF _eqb.rst -ref MEK1-BRAF _eq4.rst -x
MEK1-BRAF_eq5.mdcrd
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#equilibration (V)

&entrl
imin=0,

irest=1,

ntx=5,
ntb=2,
ntp=1,
cut=12,
nte=2,
MEESA ,

tempi=300.0,
temp0=300.0,

ntt=3,

gamma_1n=1.0,
nstlim=50000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,

ntr=0,
ig=-1,

/

Fig. 9 Example of AMBER pmemd input file for fifth step equilibration. In the
input file, the flag ntr=0 indicates that the positional restraint method is turned
off. The meaning of the rest of the parameters listed in the input file was
previously explained.

f)

Finally, perform 5-ns MD unrestrained simulation keeping
the same system condition as the last equilibration step.
Run prod.in input script (Fig. 10, see Note 6) using the
following command:

> $AMBERHOME/bin/omemd -i prod.in -o prod.out -c
MEK1-BRAF _eq5.rst -p MEK1-BRAF_solv.prmtop -r
MEK1-BRAF prod.rst -ref MEK1-BRAF eqb.rst -x
MEK1-BRAF_prod.mdcrd
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#5ns-MD simulation

&cntrl
imin=0,
irest=1,
ntx=5,
ntb=2,
ntp=1,
cut=12,
mEe=2 ,
mEE=2,
tempi=300.0,
temp0=300.0,
ntt=3,
gamma_1n=1.0,
nstlim=2500000,
dt=0.002,
ntwx=5000,
ntwr=5000
ntpr=5000,
REE=0 ;
ig==1,

/

Fig. 10 Example of AMBER pmemd input file for unrestrained MD. The
meaning of all the parameters listed in the input file was previously explained.

3. Binding free energy calculation

a) Build the topology and coordinate files of the unsolvated
wild type (WT) structure for both the complex and its
single subunits using tleap-WT.in input file (Fig. 11). Run
LEaP AMBER tool using the following command:

> SAMBERHOME/bin/tleap -f tleap-WT.in > tleap-WT.out
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source leaprc.ff99SB
source leaprc.gaff

#Load ATP parameters
loadamberprep ATP.prep
loadamberparams ATP.frcmod

#Load pdb files
4mne=loadpdb MEKI -BRAF.pdb
mekl=loadpdb MEK1.pdb
braf=loadpdb BRAF.pdb

#Save topology and coordinate files

saveamberparm 4mne MEK1-BRAF.prmtop MEK1-BRAF.inpcrd
saveamberparm mekl MEK1.prmtop MEK1.inpcrd
saveamberparm braf BRAF.prmtop BRAF.inpcrd

quit

Fig. 11 Example of AMBER LEaP input file to build topology and coordinates
files of wild type dry systems.

b) For each mutation studied, build the topology and
coordinate files of the mutated structure for both the
complex and mutated subunit using tleap-mut.in input file
(Fig. 12). Run LEaP AMBER tool using the following
command:

> SAMBERHOME/bin/tleap -f tleap-mut.in > tleap-mut.out

source leaprc.ff99sS
source leaprc.gaff

#Load ATP parameters
loadamberprep ATP.prep
loadamberparams ATP.frcmod

#Load pdb files
4dmne=loadpdb MEK1-BRAF_F468A.pdb
braf=loadpdb BRAF_F468A.pdb

#Save topology and coordinate files

saveamberparm 4mne MEK1-BRAF_F468A.prmtop MEK1-BRAF_F468A.inpcrd
saveamberparm braf BRAF_F468A.prmtop BRAF_F468A.inpcrd

quit

Fig. 12 Example of AMBER LEaP input file to build topology and coordinates
files of mutated dry systems. Here, F468 BRAF residue is taken as example.

c) Perform alanine scanning calculation on 200 snapshots
extracted from the last 2 ns of each MD trajectory. Run
mmpbsa.in input file for MMPBSA.py script in AMBER14
(Fig. 13) using the following command:

> $AMBERHOME/bin/MMPBSA.py -i mmpbsa.in -sp
MEK1-BRAF _solv.prmtop -cp MEK1-BRAF.prmtop -rp
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MEK1-BRAF.prmtop -lp MEK1-BRAF.prmtop -y MEK1-
BRAF _prod.mdcrd -mc MEK1-BRAF_F468A.prmtop -ml
BRAF_F468A.prmtop

Flag -i specifies the input file, -sp the solvated WT
complex topology file, -cp the unsolvated WT complex
topology file, -rp the unsolvated WT receptor topology
file, -Ip the unsolvated WT ligand topology file, -y the
complex trajectory file to analyze, -mc the unsolvent
mutated complex topology file and -m/ the unsolvated
mutated subunit topology file. Please, be aware that as
MEK1 is the first molecule in the complex, for alanine
scanning calculations the unsolvated mutated subunit
topology file will be specified with the flag -mr.

#Alanine scanning

&general

receptor_mask=":1-346,623,624"
startframe=3000, endframe=5000, interval=10,
verbose=1,

/

&gb
saltcon=0.1

/

&pb
istrng=0.100
/

&alanine_scanning

/

Fig. 13 Example of MMPBSA.py input file to perform alanine scanning
calculation. The input file is typically divided into four sections (&general,
&gb, &pb, &alanine_scanning). The &general section is designed to specify
generic variables related to the overall calculation. For instance, the flag
startframe and endframe specifies the frame from which to begin and to stop
extracting snapshots respectively, the parameter interval indicates the offset
from which to choose frames from the trajectory file, verbose=1 means that
complex, ligand and receptor energy terms will be printed in the output file.
The &gb and &pb section markers tells the script to perform MM-GBSA and
MM-PBSA calculations with the given values defined within those sections
(i.e., the variables saltcon and istrng that specify the salt concentration and
the ionic strength, respectively). Finally the &alanine_scanning section
marker initializes alanine scanning in the script. Please be aware that given
the higher computational costs of MM-PBSA calculation, only MM-GBSA
calculation is performed in this work.

d) Extract the AAG of binding related to the specific
mutations estimated as the difference between the
binding AG of the WT and that of the mutated complex.
All these data are easily available in the final output file,
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FINAL_RESULTS_MMPBSA.dat, including all the wild
type and mutated system average binding energies
(reported as van der Waals, electrostatic and non polar
energy contributions), as shown in Fig. 14.

|Calculations performed using 201 complex frames.

|
|All units are reported in kcal/mole.

GENERALIZED BORN:

Differences (Complex - Receptor - Ligand):

Energy Component Average std. Dev. std. Err. of Mean
VDWAALS -161.0164 8.5993 0.6065
EEL -1068.5067 36.1059 2.5467
EGB 1172.6667 35.5088 2.5046
ESURF -23.1830 0.9495 0.0670
DELTA G gas -1229.5231 36.2700 2.5583
DELTA G solv 1149.4837 35.4458 2.5002
DELTA TOTAL -80.0394 11.0084 0.7765

F367A MUTANT:
GENERALIZED BORN:

Differences (Complex - Receptor - Ligand) :

Energy Component Average Std. Dev. std. Err. of Mean
VDWAALS -158.7570 8.4809 0.5982
EEL -1068.8691 36.0357 2.5418
EGB 1172.3985 35.5099 2.5047
ESURF -22.7274 0.9551 0.0674
DELTA G gas -1227.6261 36.3593 2.5646
DELTA G solv 1149.6712 35.4335 2.4993
DELTA TOTAL -77.9549 11.0214 0.7774

RESULT OF ALANINE SCANNING: (F468A) DELTA DELTA G binding = -2.0844+/-0.5545

Fig. 14 Extract from the MMPBSA.py FINAL_RESULTS_MMPBSA.dat output
file. The file includes all the average energies, standard deviations, and
standard error of the mean for GB followed by PB calculations (if calculated).
After each section, the AG of binding is given along with the error values. After
each method, the AAG of binding is reported, corresponding to the relative
effect the mutation has on the AG of binding for the complex. The specific
mutation is also printed at the end of the file. Here, F468 residue alanine
scanning is taken as example.

e) You may get a graphical representation of the AAG of
binding (Fig. 1), by assigning the values given in
FINAL _RESULTS MMPBSA.dat file to the bfactor field of
the corresponding PDB file of the complex structure.
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Notes

1)

As there is no unbound structure for the ligand yet, the ligand
structure contained on the complex PDB file (4MNE) is used here
instead for illustration purposes. However, in a standard NIP
computation, unbound structures should be used.

The principal columns of the 4mne.ene file are:

e Conf: Conformation number of the docking pose as in the
last column of the rot file.

e Ele: Electrostatic energy of the pose.
e Desolv: Desolvation energy of the pose.
* VDW: Van der Waals energy of the pose.

e Total: Total docking energy of the pose, computed as ele
+ Desolv + 0.1 * VDW (note a 0.1 weight for VDW).

* RANK: Pose rank according to its computed total binding
energy.

Files from the PDB may contain bound ligands, cofactors or non-
standard residues whose parameters are not available in the
AMBER parameters database. In this case you should make use
of the Antechamber tools, which ship with AmberTools, to create
PREP and FRCMOD files. For more information, see the
ANTECHAMBER tutorial
(http://ambermd.org/tutorials/basic/tutorial4b/) and the AMBER
manual.

LEaP AMBER tool renumbers PDB residues starting from 1. Thus,
the original numeration of your PDB file may not be always kept.

Since your system may not start from an equilibrium state,
additional time steps may be required during the minimization and
equilibration steps of the MD simulation. One can check for
equilibrium by verifying whether properties, such as potential
energy, temperature or pressure, no longer change in any
systematic fashion and are just fluctuating around a mean value.

To guarantee reliable results in the in silico Alanine scanning
calculation, RMSD simulation should be highly equilibrated.
Ideally one should probably run a much longer production run
than 5ns (e.g., 100 ns).
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ABSTRACT

In addition to protein—protein docking, this CAPRI edition included new challenges, like protein—-water and protein-sugar
interactions, or the prediction of binding affinities and AAG changes upon mutation. Regarding the standard protein—protein
docking cases, our approach, mostly based on the pyDock scheme, submitted correct models as predictors and as scorers for
67% and 57% of the evaluated targets, respectively. In this edition, available information on known interface residues hardly
made any difference for our predictions. In one of the targets, the inclusion of available experimental small-angle X-ray
scattering (SAXS) data using our pyDockSAXS approach slightly improved the predictions. In addition to the standard
protein—protein docking t, new chall were proposed. One of the new problems was predicting the position of
the interface water molecules, for which we submitted models with 20% and 43% of the water-mediated native contacts
predicted as predictors and scorers, respectively. Another new problem was the prediction of protein—carbohydrate binding,
where our submitted model was very close to being acceptable. A set of targets were related to the prediction of binding
affinities, in which our pyDock scheme was able to discriminate between natural and designed complexes with area under the
curve = 83%. It was also proposed to estimate the effect of point mutations on binding affinity. Our approach, based on
machine learning methods, showed high rates of correctly classified mutations for all cases. The overall results were highly
rewarding, and show that the field is ready to move forward and face new interesting challenges in interactomics.

Proteins 2013; 81:2192-2200.
© 2013 Wiley Periodicals, Inc.

Key words: complex structure; CAPRI; protein—protein docking; pyDock; protein—carbohydrate interactions.

INTRODUCTION complementary approach to solve the structural interactome.
The field of protein docking has experienced an explosion
in recent years, partially propelled by the CAPRI experi-
ment. Past editions showed an increasing amount of par-

ticipant groups and computational approaches, and a

One of the major challenges in structural biology is to
provide structural data for all complexes formed between
proteins and other macromolecules. Current structural
coverage of protein—protein interactions (i.e., available
experimental structures plus potential models based on

homologous complex structures) is below 4% of the esti-
mated number of possible complexes formed between
human proteins.[»2 The pace of experimental determina-
tion of complex structures is still behind the determina-
tion of individual protein structures. In addition, many
of these interactions will never be determined by X-ray
crystallography because of their transient nature. For these
reasons, computational docking methods aim to become a
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large variety of targets. We have participated in all targets
of this fifth CAPRI edition. In addition to the standard
prediction of protein—protein targets, this edition has
entered into related areas including binding affinity pre-
dictions and free energy changes upon mutation, as well
as prediction of sugar binding and interface water mole-
cules. Our overall experience has been highly rewarding
and we describe here the details of our participation and
the key factors of our success.

MATERIALS AND METHODS

Generation of rigid-body docking poses for
the predicting experiment

In all targets, we used FTDock3 with electrostatics and
0.7 A grid resolution and ZDOCK 2.14 to generate
10,000 and 2000 rigid-body docking poses, respectively,
as previously described. For the final four targets of this
edition (T53, T54, T57, and T58) we generated an addi-
tional pool of flexible docking poses using SwarmDock.
For these runs, the standard protocol was employed,6=8
with the Dcomplex score used as the objective function,”?
but without the final clustering and rescoring phase. In
T46 we generated an additional pool of 10,000 solutions
using FTDock without electrostatics and at lower resolu-
tion (1.2 A), as part of an old protocol used with previ-
ous targets, but these conditions were not applied for the
rest of the targets since we saw in the past that this step
was not increasing the chances of correct predictions. In
T46 and T47, we used RotBUS!O to generate 59,112 and
41,021 additional docking poses, respectively, but this
method was not used for the rest of the targets since we
previously checked that this procedure did not improve
the results. In Target T50, given the large size of 1918
HINT1 influenza virus hemagglutinin protein, we gener-
ated a total of 92,432 FTDock docking poses, increasing
the number of translations selected from each rotation
from 3 (default) to 10. Cofactors, water molecules and
solvent ions were not included in our docking
calculations.

Scoring of rigid-body docking poses for both
the predicting and the scoring experiments

We scored the docking models generated by the above
described methods with our pyDock protocol,!1 based
on energy terms previously optimized for rigid-body
docking. The binding energy is basically composed of
accessible surface area-based desolvation, Coulombic
electrostatics and van der Waals energy (with a weighting
factor of 0.1 to reduce the noise of the scoring function).
Electrostatics and van der Waals were limited to *1.0
and 1.0 kcal/mol for each interatomic energy value,
respectively, to avoid excessive penalization from possible
clashes in the structures generated by the rigid-body

approach. The same protocol was used in the scoring
experiment to score all the docking models that were
proposed. We did not include van der Waals in the T46
scoring experiment, although this did not affect the
results. Cofactors, water molecules and solvent ions were
not considered for scoring.

Removal of redundant docking poses

After scoring, we eliminated redundant predictions to
increase the variability of the predictions and maximize
the success chances using a simple clustering algorithm
with a distance cutoff of 4.0 A, as previously described.!2
In target T47, since the resulting solutions looked correct
[according to the available structure of a highly homolo-
gous complex with protein data bank (PDB) code
2WPT], we reduced this cutoff to 0.5 A.

Minimization of final models

The final 10 selected docking poses were minimized to
improve the quality of the docking models and reduce
the number of interatomic clashes. In the majority of the
targets we used TINKER!3 as previously described.12,14
In targets T53 and T54 we used CHARMM (50 steps
conjugate gradient, 500 steps adopted-basis Newton—
Raphson and 50 steps steepest decent, with the
CHARMMI9 force field).1> In target T58 we used
AMBER10 with AMBER parm99 force field.16:17 The
minimization protocol consisted of a 500-cycle steepest
descent minimization with harmonic restraints applied at
a force constant of 25 kcal/(mol~A2) to all the backbone
atoms to optimize the side chains, followed by another
500-cycle conjugate gradient minimization without
restraints. This minimization step was performed after
ranking, solely to remove clashes.

Modeling of subunits with no available
structure

For several targets, the structures of the subunits
were not available and needed to be modeled. In most
of the targets, we used Modeler 9v6 with default param-
eters18 based on the template/s suggested by the organ-
izers or on other homologue proteins found by
BLAST!? search. The final selected model was that with
the lowest DOPE score.20 For targets T53 and T54 we
used POPULUS (http://bmm.cancerresearchuk.org/~pop-
ulus/) with default template selection and model building
settings.21

RESULTS AND DISCUSSION

In this CAPRI edition we submitted predictions for all
the proposed targets. Our results for the standard
protein—protein docking assessment are summarized in
Table I. In addition, there were new challenges like the
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Table |
Results of Our pyDock Protocol for All Protein—Protein Targets of the Last CAPRI Edition
Predictors Scorers

Target Type Submission rank® Quality® Successful groups® Submission rank® Quality® Successful groups®
T46 HH — — 2 (40) — — 8 (16)
T47 HU 1 i 25 (29) 2 i 13 (14)
T48 uu 3 * 14 (32) No scorers No scorers No scorers
T49 uu 4 * 14 (33) * 7(13)
T50 UH 1 ** 18 (40) 4 ** 12 (17)
151 DHD — — 3 (46) — — 5(13)
T53 UH 3° ** 20 (42) 1 b 11 (13)
T54 UH — — 4 (41) — — 0(13)
T58 uu 5 ** 11 (23) No scorers No scorers No scorers

U, unbound; H, homology-based model; D, domain.
“Rank of the best model within our submission to CAPRI.
"Quality of our best model according to CAPRI criteria.

“Number of successful groups for each target; in brackets, total number of participants.

9Model Rank 1 had medium accuracy (*¥).
“Model Rank 1 had acceptable accuracy (*).

prediction of protein—water and protein-sugar interac-
tions, as well as the estimation of binding affinities and
energy changes upon mutation. Hereinafter, we describe
in detail our submissions for each of the targets.

Standard protein-protein docking

nent: st ful predi =

Target T47 (model/pseudounbound)

Target T47 was the structural prediction of the com-
plex between the DNase domain of colicin E2 and the
immunity protein Im2. The real challenge in this target
was the prediction of interface water molecules, however,
the protein—protein docking predictions were already
assessed, and therefore we have included them in this
section. The colicin E2 was modeled based on the struc-
ture of colicin E9 (85% sequence identit{) in complex
with Im9 immunity protein (PDB 1EMV).22 The coordi-
nates of the immunity protein Im2 were extracted from
its structure in complex with colicin E9 (PDB 2WPT).
Given the existence of this homologous colicin E9/Im2
complex structure (PDB 2WPT),23 the binding mode for
target T47 was easy to determine by template-based
docking. However, we performed the template-free dock-
ing calculations to assess the automatic docking protocol.
We only applied distance restraints after pyDock protocol
by selecting those docking poses in which two key con-
tacting residues, Im2 Y54 and colicin E2 F85 (equivalent
to colicin E9 F86 in 2WPT),23 were within an arbitrary
distance of 6 A (same distance used in standard restraints
with pyDockRST module.24 We submitted five correct
models (one high accuracy, one medium accuracy, and
three acceptable). Our first submitted model (Rank 1
according to pyDock energy, and generated by ZDOCK),
was a high-quality model (Table I), with 75% native
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contacts, 248 A ligand root mean square deviation
(RMSD), and 0.75 A interface RMSD with respect to the
crystal structure (Fig. 1; PDB 3U43).25 This docking model
had the lowest ligand RMSD with respect to the homolo-
gous colicin E9/Im2 complex (PDB 2WPT) amongst all
solutions (although we did not use this homologous struc-
ture for docking), and even more interestingly, we would
have obtained exactly the same result without applying the
above-mentioned distance restraint filter.

For the scoring experiment, we evaluated the provided
1051 models with our pyDock scoring function, and
applied the same distance filter that we used as predic-
tors (see above). All our submitted predictions resulted
to be successful, consisting of six medium and four high-
quality models. We had a high-accuracy model ranked
second after pyDock scoring and distance filter
(uploaded by Weng), with 77% native contacts, 0.9 A
ligand RMSD, and 0.4 A interface RMSD with respect to
the crystal structure (PDB 3U4325; Table I; Fig. 1). Inter-
estingly, our Rank 5 model was the best model submitted
among all 14 participants, with 79% native contacts,
0.7 A ligand RMSD, and 0.5 A interface RMSD. Two bet-
ter models uploaded by Weng were not found by any of
the participants. Remarkably, as in predictors, our results
would not have changed had we not applied the distance
restraints filter.

Target T48 (unbound/unbound)

Target T48 was the structural prediction of the
complex between the diiron-hydroxylase toluene
4-monooxygenase and the Rieske-type ferredoxin T4moC
protein (PDB 1VM9).26 As suggested by the organizers,
the heterohexameric Dbiological unit of the diiron-
hydroxylase was built by applying crystal symmetry oper-
ations to its trimeric structure in complex with the
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Figure 1

Representation of our best models for targets T47, T48, T49, T50, T53, T57, and T58. For each target, receptors are superimposed and shown in
white. Ligand in our best model as predictors is shown in red, and as scorers in blue. For comparison, the structure of the experimental complex

(if available) is represented in green.

T4moD effector protein (PDB 3DHH).27 We used the
hexameric construct for the generation of docking poses,
which were scored by pyDock. Then, we selected those
docking poses that had any of the diiron-hydroxylase
Fe’" and ferredoxin S,Fe, atoms within 23 A distance to
allow for the electron transfer between these groupsZ”
(the distance cutoff we used was arbitrary, based on the
expected distance of 16 A in 3DHH plus a margin to

allow the inclusion of some low-energy solutions). For
the submission, we removed chains D, E, and F from the
hexamer as we misinterpreted some of the organizers’
instructions, but this did not affect the quality of the
submitted models. The analysis of the results showed
that we submitted three models of acceptable quality.
Our prediction ranked third after pyDock scoring and
electron transfer distance filtering (generated by FTDock)
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had 14% native contacts, 8.4 A ligand RMSD, and 3.6 A
interface RMSD with respect to the complex crystal
structure (not yet available). We found another accepta-
ble model (ranked 10th in our submission set) that had
49% native contacts, 6.3 A ligand RMSD, and 2.2 A
interface RMSD with respect to the complex crystal
structure.

Target 49 (unbound/unbound)

Target T49 was the same complex as T48 but with a
different hexameric conformation for diiron-hydroxylase
toluene 4-monooxygenase (unbound coordinates not
released). We applied the same protocol as for target T48
(pyDock scoring and electron transfer distance filtering).
We submitted four acceptable quality models. The model
ranked fourth of our submission set had acceptable qual-
ity, with 26% native contacts, 12.4 A ligand RMSD, and
3.5 A interface RMSD with respect to the complex crystal
structure (not yet available). We also submitted another
model with 11% native contacts, 6.9 A ligand RMSD,
and 2.7 A interface RMSD.

For the scoring experiment, the 1085 solutions were
scored by the same protocol, based on pyDock scoring
and electron transfer distance filtering. In some models,
the monooxygenase was uploaded as a trimer, therefore
we reconstructed the biological hexamer (based on sym-
metry) to calculate the electron transfer distance filter.
Since it was not clear whether in these cases the hexamer
was going to be rebuilt for the assessment, our submis-
sion set was formed by the top five solutions obtained
after rebuilding the hexamer, and by the top five solu-
tions obtained by just considering the structure submit-
ted by uploaders (i.e., without rebuilding the hexamer in
cases of uploaded trimer). Our ranked sixth submission
was an acceptable model (uploaded by Nakamura), with
11% native contacts, 7.9 A ligand RMSD, and 2.9A inter-
face RMSD with respect to the complex crystal structure
(not yet available).

Target 50 (unbound/model)

Target T50 was the structural prediction of the com-
plex between the 1918 HINI influenza virus hemaggluti-
nin and the HB36.3 de novo designed protein. The
coordinates of the hemagglutinin were taken from its
structure in complex with an antibody (PDB 3GBN)28
and the biological hexamer was rebuilt by applying sym-
metry operations. We modeled the HB36.3 based on the
crystal structure of the homologous (83% sequence iden-
tity) protein APC36109 from Bacillus stearothermophilus
(PDB 1U84), using the target-template protein alignment
offered by the organizers. Given the size of the system,
we increased the number of rigid-body docking solutions
generated by FTDock (see Materials and Methods sec-
tion). Our submission as predictors contained nine suc-
cessful models (five acceptable and four medium-quality
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solutions). Our Rank 1 submission (generated by
FTDock) was a medium-quality model with 47% native
contacts, 6.1 A ligand RMSD, and 1.8 A interface RMSD
with respect to the complex crystal structure (Fig. 1;
PDB 3R2X).29 Interestingly, our Rank 4 submission,
with 41% native contacts, 3.4 A ligand RMSD, and 1.6 A
interface RMSD, was the best model submitted among
all participants as predictors.

For the scoring experiment, we evaluated the 1451
models in the same conditions as in predictors. We
found five acceptable and one medium-quality solutions.
Our Rank 4 submission was a medium-quality model,
with 44.9% native contacts, 4.71 A ligand RMSD, and
1.93 A interface RMSD with respect to the complex crys-
tal structure (PDB 3R2X29; Fig. 1).

Target T53 (unbound/madel)

Target T53 was a complex between two artificial alpha
helicoidal repeat proteins (alpha-Rep), alpha-rep4 (PDB
3L17)30 and alpha-rep2, both designed on the basis of
thermostable HEAT-like repeats. The ligand alpha-rep2
was built using as template alpha-rep4 (PDB 3LTJ), with
77% sequence identity. All the docking poses, generated
using Zdock, Ftdock, and SwarmDock, were scored by
pyDock. We submitted four successful predictions (three
acceptable and one medium-quality models). Our Rank
3 submission, a medium accuracy model generated by
SwarmDock, had 44% native contacts, ligand RMSD 4.4
A, and interface RMSD 1.8 A with respect to the crystal
structure (not yet available).

For the scoring experiment, we evaluated 1400 alpha-
rep4/alpha-rep2 complex models applying the same pro-
tocol as in predictors in a completely automated fashion.
We found three acceptable and a medium-quality mod-
els. Our Rank 1 submission, a medium-quality model
(uploaded by Yan Shen), had 62% native contacts, 3.6 A
ligand RMSD, and 1.3 A interface RMSD with respect to
the complex crystal structure (not yet available).

Target T58 (unbound/unbound)

This target was a complex between the unbound
G-Type Lysozyme (PDB 3MGW)3! and the unbound
Escherichia coli Plig lysozyme inhibitor (PDB 4DY3).32
There was available small-angle X-ray scattering (SAXS)
data for this complex, which we used for scoring with
our module pyDockSAXS, previously developed to com-
bine pyDock scoring and fitting to SAXS data.33 In
addition, there was some available information indicating
a central role of the G-type lysozyme E73, D86, and D97
residues and the E. coli Plig lysozyme inhibitor R119 and
Y47 residues.34 Based on these residues, we imposed
ambiguous distance restraints with our module
pyDockRST.3> We submitted one medium-accuracy and
two acceptable models. Our Rank 5 model, generated by
SwarmDock, was a medium-quality model, and resulted
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to be the fourth best model submitted among all the 23
participants, with 43% native contacts, 4.9 A ligand
RMSD, and 1.8 A interface RMSD with respect to the
complex crystal structure (PDB 4G9S).30 Interestingly,
although the distance restraints proved to be essential for
this target, we would have obtained only slightly worse
results without using the SAXS data (Rank 10 medium
accuracy model). This is probably due to the shape of
the complex, classified as spherical according to the ani-
sotropy value (1.4) computed from the ratio between the
size of the largest axis and the smallest ones. Indeed, we
previously showed that SAXS data does not provide
much beneficial information in this type of cases.33

Protein-protein docking: unsuccessful cases

In three of the protein—protein cases (T46, T51, and
T54) we were not able to submit any correct model,
either as predictors or as scorers. These cases seemed to
be highly difficult for the majority of participants, since
in all of them there were no more than three successful
groups as predictors or as scorers or both (Table I). In
target T46 (model/model), the interacting subunits Mtq2
and Trm112 were modeled based on the homologue tem-
plates with low sequence identity (Mtq2 was based on
template with PDB code 1T43, 28% sequence identity;
Trm112 was based on template with PDB code 2J6A,
36% sequence identity). The inaccuracies in the model-
ing added too much error and the docking was not suc-
cessful. Target T51 (bound/model/unbound) was a
difficult case of a multidomain protein, with interactions
between GH5-CBM6/CBM13/Fn3 domains. This could
be divided in two different docking cases both involving
CBM13 domain, which needed to be modeled based on
template with PDB code 1KNL (38% sequence identity).
Again, a model based on a template with that level of
homology can deteriorate docking results. Target 54
(unbound/model) was in principle easy, involving the
modeling of Repl6 based on the template with PDB
code 3LT] (88% sequence identity), but the submitted
solutions were incorrect for us as well as for the majority
of participants. Indeed, despite the scoring set contained
several acceptable models, no group was able to identify
them (Table I).

Prediction of protein-water interactions

Target T47 was the prediction of a protein—protein
complex structure, as described in above sections, but
the real challenge was to predict the location of water
molecules. After generating the protein—protein docking
poses as above described, we predicted the water posi-
tions in each docking model using DOWSER37 with
default parameters (with a probe radius of 0.2A and the
default atoms dictionary). Our Rank 1 submitted model
(generated by ZDOCK) had 20% of water native

contacts, and was classified as fair (+). If we consider
only the prediction of the buried water molecules, our
success rates do not significantly change.

For the scoring experiment, we just applied our stand-
ard pyDock scoring function, plus distance restraints as
described in above sections. The water molecules pro-
posed in the different docking poses were not included
in the scoring. Our Rank 8 submitted model (uploaded
by Bates) had 43% of water native contacts and was clas-
sified as good (++). More details can be found in an
upcoming publication.

Prediction of protein-carbohydrate complex
structure

Target 57 (unbound/model) was a challenging target
consisting in the prediction of the interaction between
BT4661 protein and heparin. The structure of heparin in
the complex was not known, so we modeled it using
molecular dynamics starting with the provided confor-
mation. We ran 10 ns using the force field AMBER
parm99 of the Amberl0 package16’17 and extracted
1000 representative snapshots. Since our pyDock proto-
col was not intended for protein-sugar interactions, we
had to devise a new ad hoc docking procedure. For that,
we used FTDock to dock each of the 1000 heparin con-
formations to BT4661 protein. We selected the top
10,000 docking poses as scored by FTDock (no electro-
statics). Then we applied different scoring functions to
this set of docking poses: (i) PScore without minimiza-
tion; (ii) PScore with minimization; and (iii) AMBER
after minimization. We selected the 1000 best-scoring
solutions from each method and finally we removed
redundant solutions within 6.5 A ligand RMSD. No cor-
rect submission was submitted. However, our Rank 4
submission was almost acceptable, with 65% native con-
tacts, 11.2 A ligand RMSD, and 4.3 A interface RMSD
with respect to the complex crystal structure (PDB
4AK2; Fig. 1). We checked a posteriori that there were
several correct models within our docking sets, but our
scoring approach failed to place them in the lowest scor-
ing positions.

Other challenges: binding affinity and AAG
predictions

This CAPRI edition also involved the challenging
problem of predicting binding affinities and energy
changes upon mutations. Round 21 was the discrimina-
tion between 87 designed protein—protein interactions
involving three proteins of interest (Spanish influenza
HA; Mt ACP-2; Fc region of human IgG1) and 120 natu-
rally occurring complexes. The pyDock function,
although initially developed for the scoring of docking
poses, was previously shown to have some correlation
with the binding affinity data collected by Kastritis and
Bonvin.38 This was later confirmed on a subset of

proTEINS 2197



C. Pallara et al.

complexes with high-confidence affinity data, where
pyDock ranked among the best performing scoring func-
tions with a correlation of 0.63.3% For round 21 predic-
tions, we evaluated the correlation of each of the
different pyDock individual terms with the binding affin-
ities on the provided set of 120 naturally occurring com-
plexes. We found that desolvation correlation with
binding affinity data was not clear, showing even negative
correlation with data obtained by ITC experiments. It
seems that, although desolvation is essential for rigid-
body docking (perhaps to compensate inaccurate calcula-
tion of electrostatics and van der Waals), it is not the
most important factor for binding affinity predictions
from the complex structure (in which electrostatics can
be more accurately calculated). Based on these results,
we devised a binding affinity descriptor (pyDockAFF =
electrostatics —1.0 X desolvation), with confidence
thresholds for the discrimination of complexes according
to their binding affinities. Our predictions had area
under the curve 83%, with good discrimination between
designed and native interfaces. More details can be found
in a recent publication.40 It remains to be seen whether
the pyDockAFF binding affinity predictor is suitable only
for the cases in this CAPRI round, or it has more general
applicability (further details in an upcoming publication).

Targets T55-56 aimed to predict the binding affinity
changes upon mutations on two designed influenza
hemagglutinin protein binders. We applied a multipara-
metric predictive model with 85 descriptors using an
ensemble of models which were combined to produce
consensus predictions. The models were trained upon a
data set of 930 changes in affinity upon mutation which
were taken from the literature. Due to the fairly low
cases to descriptors ratio (10.9), we preferentially
employed models with inherent overfitting avoidance
bias, such as prepruning or feature selection using the
Akaike information criterion, methods which construct
multiple models using subsets of the descriptors and the
training data, and by rejecting learners that performed
poorly using leave-complex-out cross-validation.4l To
further avoid overfitting, we did not combine the
selected learners together using stacking, instead opting
for the unweighted mean for our consensus predictions.
This approach provided an excellent ability to predict
the effect of mutation, more details of which can be
found in a recent publication.42 We have since expanded
this data set to form the SKEMPI database, which now
includes 3047 AAG values, as well as kinetic and thermo-
dynamic data,43 and have used the data to derive contact
potentials that can circumvent some of the approxima-
tions associated with statistical potentials.44

CONCLUSIONS

We have continued our participation in CAPRI with
pyDock, submitting models for all the predicting, scoring,
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and binding affinity prediction experiments. For the gener-
ation of docking poses, the better grid resolution used for
FTDock and the use of flexible SwarmDock for the last
targets were key for the success. This produced docking
poses of sufficient quality to be identified by the
pyDockSER scoring scheme. In selected targets, distance
restraints were introduced by pyDockRST, but in most
cases this did not make a difference. In one target, SAXS
data was used for complementary scoring with pyDock-
SAXS, which slightly improved the scoring. We obtained
consistently good models for all nondifficult cases,
although they were far from being trivial, since their subu-
nits were unbound or needed to be modeled based on
homology templates. In all cases but one our successful
models were ranked within our first five submitted solu-
tions, being ranked first in several cases. In this CAPRI
edition we learned that our automated protocol is useful
to provide correct models in easy-to-medium difficulty
protein—protein docking cases, but we need further meth-
odological development for difficult cases, especially when
subunits need to be modeled based on homologues with
low sequence identity. On the other side, interface water
placement and sugar-binding proved to be highly challeng-
ing for our protein-protein methodology, but the results
have encouraged us to develop new methods for these
problems. Finally, prediction of binding affinity based on
the pyDockSER scoring, and energy changes upon muta-
tion based on multiparametric regression models showed
excellent results. The overall experience has been highly
rewarding and has shown once again the importance of
community-wide assessment of prediction methods.
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3.2. Protein plasticity improves protein-
protein docking

Despite recent methodological advances in currently used docking
protocols, as shown by CAPRI (Critical Assessment of PRediction of
Interactions) experiment, dealing with protein plasticity is still a crucial
bottle-neck (see section 3.1.2). The development of efficient flexible
docking algorithms is mostly hampered by our limited theoretical

knowledge about the protein-protein association mechanism.

Firstly, this section will report a systematic study on the role of
conformational heterogeneity in protein-protein recognition. Then, a
novel protocol to integrate unbound conformational ensembles in

protein-protein docking will be presented.
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Abstract

To understand cellular processes at the molecular level we need to
improve our knowledge of protein-protein interactions, from a structural,
mechanistic and energetic point of view. Current theoretical studies and
computational docking simulations show that protein dynamics plays a
key role in protein association, and support the need for including
protein flexibility in modeling protein interactions. A strategy to include
flexibility in docking predictions would be using conformational
ensembles originated from unbound protein structures. This strategy
assumes the conformational selection binding mechanism, in which the
unbound state can sample bound conformers. Here we present an
exhaustive computational study about the use of precomputed unbound
ensembles in the context of protein docking, performed on a set of 124
cases of the Protein-Protein Docking Benchmark 3.0. Conformational
ensembles were initially generated by modeling minimization with
MODELLER. We identified those conformers providing optimal binding
and investigated the role of protein conformational heterogeneity in
protein-protein recognition. Our results show that a simple molecular
mechanics minimization approach can generate conformers with better
binding properties as well as improve docking encounters in medium-
flexible cases. For comparison, we analyzed ensembles generated by
short Molecular Dynamics trajectories with AMBER, which did not
provide significantly better conformers for docking. For more flexible
cases, a more extended conformational sampling based on Normal
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Mode Analysis was proven helpful. We found that successful
conformers provide better energetic complementarity to the docking
partners but not necessarily higher similarity with respect to the bound
state, which is compatible with recent views of binding association. In
addition to the mechanistic considerations, these findings could be
exploited for practical docking predictions of improved efficiency.

Author Summary

Proteins act as building blocks of the cells, forming complex interaction
networks that are essential for almost any biological process. The
comprehension of such interactions at the molecular level is necessary
to improve our understanding of basic cell processes as well as for
advances in biomedical and biotechnological applications. In that
regard, computational methods complement experimental efforts by
helping to structurally model and characterize protein interactions.
However, still a major crusade is how to deal with the intrinsically
flexible nature of proteins. A largely unexplored strategy to overcome
this limitation is the use of precomputed conformational ensembles.
Here we present a systematic study about the role of protein plasticity in
protein association, based on docking simulations of unbound structural
models derived from ensembles generated by different conformational
sampling approaches. The results show that the description of the
conformational heterogeneity of the unbound states improves their
binding capabilities towards their partners, especially in cases of
moderate unbound-to-bound mobility. This improvement is not
necessarily related to better structural similarity to the bound state,
which is consistent with an extended conformational selection
mechanism.

Introduction

Proteins are key components in the cell and function through intricate
networks of interactions [1] that are involved in virtually all relevant
biological processes, such as gene expression and regulation, enzyme
catalysis, immune response, or signal transduction [2-3]. Understanding
such interactions at the molecular level is essential to target them for
therapeutic or biotechnological purposes. X-ray crystallography and
NMR techniques have produced a wealth of structural data on protein-
protein complexes, which has largely extended our knowledge on
molecular recognition and protein association mechanism and has
fostered drug discovery. However, such structural data covers only a
tiny fraction of the estimated number of protein-protein complexes
formed in cell [4-6], and therefore, computational approaches that can
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complement such experimental efforts are strongly needed. One
approach is template-based modeling [7], which could be potentially
used to provide models at interactomics scale [4, 8-10]. However, its
applicability is currently limited by the relative low number of available
structures of protein complexes that can be used as accurate
templates, and the difficulties in the identification of the correct
templates in cases of remote homology [11-13]. On the other side, ab
initio modeling of protein-protein complexes by computational docking
shows higher applicability. The idea is to explore thousands or millions
of possible orientations between two interacting proteins in order to
identify the native orientation(s), based on different criteria ranging from
simple geometrical considerations to a complete energy description of
the interaction. In recent years, a variety of protein-protein docking
methods have been reported. Geometry-based methods try to find the
best surface complementarity between interacting proteins, using
simplified structural models and approximate scoring functions. A
popular strategy is to discretize the proteins into grids and use Fast
Fourier Transform (FFT) algorithms [14] to accelerate search on the
translational space, such as in FTDock [15], PIPER [16], GRAMM-X
[17], ZDOCK [18], or on the rotational space, as in Hex [19] or
FRODOCK [20]. Another strategy to explore surface complementarity is
geometric hashing, as used in PatchDock [21]. Docking methods based
on energy optimization use a variety of sampling strategies based on
molecular mechanics, such as Molecular Dynamics in HADDOCK [22],
or Monte-Carlo minimization in RosettaDock [23] or ICM-DISCO [24].
The function used to identify the best orientations is an important aspect
of docking, and dedicated scoring schemes have been developed,
based on energy terms, such as in pyDock [25], or on statistical
potentials as in SIPPER [26] or PIE [27]. The Critical Assessment of
PRediction of Interactions (CAPRI; http://www.ebi.ac.uk/msd-srv/capri/)
experiment has indeed shown that accurate models can be produced
by docking in most of the cases [28]. However, there are other cases in
which all docking methods systematically fail, typically the most flexible
ones [28].

Thus, one of the major challenges in docking is how to deal with
molecular flexibility and conformational changes that happen upon
association [29-30]. A major hurdle is the computational cost of
integrating docking and conformational search, aggravated by our
limited knowledge of the protein-protein association mechanism.
Different mechanisms for flexible protein-protein binding have been
proposed. Perhaps the most widespread view is the induced-fit
mechanism, in which the interacting partners are involved in initial
encounters that evolve towards the final specific complex by adjusting
their interfaces. Most of the reported methods for flexible docking try to
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mimic this mechanism, typically using an initial rigid-body search
followed by a final refinement of the interfaces as in ICM-DISCO [31],
HADDOCK [22], RosettaDock [23] or FiberDock [32], or by integrating
small deformations of the global structures during the sampling based
on normal modes as in ATTRACT [33-34] or SwarmDock [35].

An alternative mechanism is conformational selection, which
was initially proposed for systems in which the ligand selectively bound
one of the conformers of the dynamically fluctuating receptor protein
[36-37]. This was generalized to the "conformational selection and
population shift" concept, which postulated that flexible proteins in
solution naturally sample a variety of conformational states, and the
ligand protein preferentially binds to a pre-existing subpopulation of
such conformers, thus adjusting the equilibrium in favor of them [38-40].
Recently, the conformational selection model has been extended to
include different mutual conformational selection and adjustment steps
[41], so that the unbound conformational states that are available for
mutual selection and adjustment might not be initially in the bound
conformation. The conformational selection model has been largely
supported by several structural studies including MD, NMA, X-ray
crystallography and NMR experiments [41-45] and later strongly
confirmed by theoretical analysis based on the correlation between
complex association and dissociation rates and several molecular
descriptors detailing specific features of both protein intrinsic flexibility
and complex formation [42, 46]. This mechanism can be implemented
in a computational docking strategy by using precomputed ensembles
of unbound proteins, which hopefully contain conformers that are
suitable for binding the partner. However, to date this strategy has not
been really used for practical docking predictions. Most of prior studies
were limited to the use of a few selected conformers and applied to
specific cases of interest [47-49]. Unexpectedly, the few systematic
analyses published so far [50-52] failed to improve structure prediction
of protein complexes with respect to the unbound structure. This could
be related to unrealistic representation of the motions occurring in the
time scale of molecular association [50-52]. Indeed, for small proteins
like ubiquitin it is possible to obtain more representative ensembles,
based on RDC data, which are definitely useful in docking predictions
[53]. However, this approach is difficult to generalize for large scale
predictions due to experimental limitations. Therefore, it would be
important to find practical ways of generating ensembles that include
conformers that improve binding. This could help not only to improve
docking predictions but also to advance towards a better understanding
of flexible protein-protein association mechanism. With this purpose in
mind, here we used three different computational approaches to
represent the conformational heterogeneity of unbound proteins, and
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tested them on a standard protein-protein docking benchmark. Our
analysis clearly shows that a simple molecular mechanics minimization
approach provides sufficient conformational heterogeneity to improve
docking predictions in medium-flexible cases, which are the most likely
to follow the conformational selection mechanism.

Results
Unbound conformational ensembles by energy optimization and

Molecular Dynamics contain conformers with better binding
capabilities than the unbound structure

Fig 1. Representative conformational ensembles generated by MODELLER
minimization. 100 conformers independently generated by MODELLER for
receptor and ligand are shown for two benchmark cases: (A) 1PXV and (B)
1ACB. Conformers were superimposed onto the corresponding molecules in the
reference complexes for visualization. Only interface side chains are shown for
the sake of clarity.

Here we explored in a systematic way whether a minimal description of
the conformational heterogeneity of the interacting proteins could
significantly improve their binding capabilities. For that purpose, we
created conformational ensembles from the unbound structures (for
both the receptor and the ligand) of complexes from the protein-protein
benchmark 3.0 [54]. Ensembles of 100 conformers were initially
generated by using two distinct conformational sampling procedures,
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one being a fast energy optimization as implemented in MODELLER,
and the other being the much more computationally demanding
Molecular Dynamics method, as implemented in AMBER package (see
Methods). Fig 1 shows examples of the typical conformational
heterogeneity (at backbone and side chain level) generated by
MODELLER minimization (MM). The deviation of the interface atoms
from the initial unbound structure was 1.2 A RMSD on average (ranging
from 0.6 A for 1ROR receptor to 7.7 A RMSD for 2QFW receptor).

4 -30
L3N .
.. e o ) .. °
*w . °°
o
w -8 .'....n o0 %_40 .u..-. .
@ L .o" ° % - L/ ge © .
RIS 1Y AR Y
. = [ ) (X4 .
3 ° '.‘ ° o, % o oo [N )
D12 Cotee @, o D50F o0,
. o '.-. *e
o. ® o o @ ¢
-16 . 2 -60

12 13 14 15 . - . 1
Int—-RMSD(A) Int-RMSD(A)

Fig 2. Distribution of geometrical and energetic values for ensemble
conformers. Correlation between the full atom interface RMSD (Int-RMSD)
with respect to the bound state and the binding energy towards the bound
partner in the native orientation (bound BE) for all conformers in MODELLER
ensembles are shown for two benchmark cases: (A) 2FOR (1S1Q receptor) and
(B) 1MKF (1MLO receptor). Distribution of Int-RMSD and bound BE values are
shown as histograms. Data for the unbound x-ray structure are shown in red.

We compared the unbound models with respect to their native
poses in the complex to structurally characterize these conformers and
to estimate their capabilities for binding. In order to do that, we first
superimposed each model into the native conformation and then
computed the following parameters i) the RMSD for all Ca atoms (Ca-
RMSD) with respect to the native structure; ii) the RMSD for all interface
atoms (Int-RMSD) after superimposing only those interface atoms; iii)
the binding energy with the bound partner.; iv) the binding energy with
the unbound partner; and v) the number of clashes with the bound
partner. The values for these parameters in the different conformers
generated by MODELLER are randomly distributed following a
Gaussian function (S1 Fig). Except for a few cases, like the viral
chemokine binding protein M3 (1MLO receptor), there is no significant
correlation between the binding energy of the different conformers in
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the native orientation and their similarity with respect to the bound
structure (Fig 2). Perhaps the main reason for this is that, in general,
these conformers are not exploring the vicinity of the bound state.
Indeed, only 20% of the benchmark proteins contain conformers within
1.0 A Int-RMSD from the bound state (actually, in virtually all of these
cases the unbound state already had Int-RMSD < 1.0 A from bound).

Ensembles generated by MD showed larger conformational
variability, but in general they were not closer to the bound state (S1
and S2 Fig). Increasing the number of conformers to 1,000 (S3 Fig) did
not significantly modify the range of conformational variability for either
sampling method.

We aimed to identify which conformers of the ensemble seemed
more promising for binding. Thus, we selected the best conformers of
the ensemble according to the criteria analyzed in the previous section.
Fig 3 shows the best conformer according to each parameter as
compared to that of the unbound structure for all benchmark cases.
Regarding the RMSD with respect to the complex structure, only in a
few cases (21% and 6%, according to Ca-RMSD and Int-RMSD,
respectively) the best pair of conformers were significantly better (i.e.,
more than 10% change) than the unbound X-ray structure (and were
not particularly enriched in conformers with Int-RMSD < 1.0 A).
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Fig 3. Best ensemble conformers according to quality criteria based on
the complex native orientation. For each benchmark case, it is shown the
best pairs of receptor and ligand conformers in the conformational ensemble
according to the following criteria: (A) Ca-RMSD, (B) Int-RMSD, (C) binding
energy with the bound partner, (D) binding energy with the unbound partner, (E)
number of clashes with respect to the bound partner. The above described
descriptors were calculated independently for the best receptor and ligand
conformers and then averaged. These are compared to those of the unbound
X-ray structures. Dashed lines represent the (arbitrary) range of variation that
we used to consider a change as significant, and it was defined as 10% in the
RMSD- and clash-based criteria, or 10 a.u. in the energy-based criteria.

Interestingly, we found a much higher number of cases in which
the best conformers showed significantly better binding energy (in 46%
and 51% of cases, when considering the bound or unbound structure as
partner, respectively), or fewer clashes (in 69% of cases) than the
unbound X-ray structure. It is remarkable that the improvement in
binding energy was independent of the structural similarity to the bound.
Again, the reason can be that in the majority of cases there is no real
sampling around the bound state, and therefore, in such unbound
minima any small improvement towards the bound state is not relevant
in binding energy terms.

Although MD ensembles showed larger conformational variability
(81 and S2 Figs), the percentage of cases with conformers that
became significantly better than the unbound state according to each of
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the above mentioned criteria (12%, 7%, 37%, 62%, and 69%,
respectively) was very similar to those observed for the MODELLER
ensembles. Surprisingly, MD showed worse conformational sampling
around the bound state, since less than 4% of the cases had
conformers with Int-RMSD < 1.0 A with respect to the bound state (as
compared to 20% in MODELLER).

Selected conformers can yield significantly better docking results
than unbound subunits

The fact that in the majority of cases the conformational ensembles
contained conformers that showed better binding energy capabilities
than the unbound X-ray structure encouraged us to evaluate their use
for docking. Since the systematic cross-docking of all conformers for
receptor and ligand would be impractical, we tried instead to estimate
the expected performance of the unbound ensembles for docking in the
best-case scenario. Therefore, based on the native orientation we
selected conformers that seemed the best candidates to improve
docking predictions, that is, those with: i) the lowest Ca-RMSD with
respect to the bound state, ii) the lowest Int-RMSD, iii) the best binding
energy with the bound partner, iv) the best binding energy with the
unbound partner, and v) the smallest number of clashes with the bound
partner. These conformers were used in protein-protein docking as
described in the Methods section.

Fig 4A shows the docking success rates for the top 10
predictions when using these selected conformers, with all the details in
Table 1. Interestingly, the results do not significantly change when
using a larger number of conformers (1,000) generated by MODELLER
(and applying the same procedure for selecting the best expected
conformers), or when conformers were generated by Molecular
Dynamics, either using 100 or 1,000 conformers (S4 Fig). Strikingly,
when we used the best conformers based on Ca- or Int- RMSD with
respect to the complex structure, the docking results were slightly worse
than those of unbound docking, as can be seen in Fig 4A (the results
did not significantly change when selecting only those cases in which
the best conformer had significantly better Ca- or Int-RMSD than that of
the unbound structure). This can be due to the fact that either
MODELLER minimization or a short MD trajectory cannot generally
sample too far from the unbound structure, and therefore cannot reach
the vicinity of the bound state in most of the cases. However, when
using the conformers that would give the best binding energy or the
smallest number of clashes when in the native orientation, the docking
results significantly improved with respect to those of the unbound
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structures, as can be seen in Fig 4A. Again, this did not correspond to
an improvement in geometrical terms (e.g., in 99% of the cases in
which the best-energy conformer improved the docking predictions,
such conformer did not have significantly better Int-RMSD than the
unbound structure). For comparison, we show the success rates that
we would obtain when using the bound structures, which establish the
upper limit for docking with this approach. The success rates of the
binding energy-based selected conformers are more than half of the
maximum expected success rates when using the bound structures.
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Fig 4. Docking performance for selected conformers. (A) Docking success
rates for the top 10 predicted models on the protein-protein docking benchmark
when using selected conformers according to specific criteria: Ca-RMSD
(green), Int-RMSD (yellow), binding energy towards the bound partner (orange),
binding energy towards the unbound partner (blue), number of clashes with
respect to the bound partner (magenta). For comparison, the docking success
rates for bound (white) and unbound (dark gray) X-ray structures are also
shown. To show the significance, docking rates for five random conformers
pairs (green gradations) and five random initial rotations of the unbound docking
partners (gray gradations) are also shown. (B) Docking success rates according
to conformational variability between unbound and bound structures for
selected conformers (same color code as above). For comparison, docking
success rates for bound and unbound X-ray structures, as well as for one
random conformers pair (light green) and one random initial rotation of the
unbound docking partners (light gray) are also shown. (C) Docking success
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rates according to unbound-bound conformational variability on the 28 cases of
the benchmark with reported high affinity (AG < -12.0 kcal/mol) when using
selected conformers, as well as bound and unbound X-ray structures, one
random conformers pair and one random initial rotation of the unbound docking
partners (same color code as above).

Table 1. Docking performance of conformers selected from MODELLER
ensembles.

PDB Bound  Unb. Ca- Int- Bound Unb. Clashes
RMSD RMSD BE BE
Rigid (I-RMSDcq < 0.5 A) (18 cases)
1AVX 2 102 - 33 40 1 231
1FSK 3 3 39 34 1 1 514
1GHQ 7455 - - 6528 - 1878 -
11QD 1 8 64 3 6 6 3
1KLU 18 1246 6002 4468 2587 6498 1647
1KTZ 48 3725 6333 - - - 309
1NCA 14 7 1269 - 1332 7 1
1NSN 405 500 254 5587 33 33 1085
1PPE 28 6 12 2 5 1 4
1ROR 1 3 258 230 9 17 37
1SBB 161 298 73 - - - -
1WEJ 1 274 5 456 64 2 9
2JEL 1 42 16 25 12 2 1
2MTA 2 78 61 187 48 3 554
2PCC 12 6 91 12 6 4 11
2SIC 1 8 3378 1 2 249 1
2SNI 1 3 1 16 1 1 1
2UUY 69 4472 4801 64 159 11 1997
Low-flexible (I-RMSDcq 0.5-1.0 A) (45 cases)
1AHW 1043 4049 6796 838 431 836 2974
1AY7 1 24 130 118 4 2 7
1AZS 1 30 - - 6 6 -
1BJ1 9 - - - 18 9 25
1BUH 71 66 209 426 36 24 119
1BVN 1 2 2 1 1 1 687
1DQJ 216 604 261 3363 75 25 223
1E96 113 1 59 168 73 5 130
1EAW 8 622 297 86 42 25 1
1EFN 6 166 197 1684 203 97 172
1EWY 4 8 200 5 10 10 1
1F34 1 139 174 226 52 280 2
1F51 2 7 13 375 1505 130 8
1FQJ 14 309 396 482 218 438 101
1GCQ 274 1091 574 1540 5 5 364
1GLA 61 50 - 12 6 21 131
1GPW 1 1 1 1 1 1 1
1HE1 1 3958 102 4506 2425 523 2629
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1HES8 138 2917 2612 1503 277 242 3437
1K 16 1309 69 61 493 487 388
1J2J 46 19 303 18 2 3 5
1JPS 709 481 - 2135 1 2 -
1K4C - - 3036 3369 2275 - 2379
1K74 150 14 172 82 1 1 24
1KAC 4737 1286 3545 990 107 19 917
1KXQ 1 250 8 4 4 1 1
1MAH 1 19 2 4 4 1 1
1MLC 2 37 50 10 1 97 144
1N8O 3 53 - - 5 = 90
1QA9 3253 7378 5902 6152 1546 37 7973
1QFW 81 239 234 - 26 21 72
1RLB 1319 4094 - 7917 - - -
18$1Q 147 1211 2994 541 164 175 87
1T6B 3 56 802 1464 2 11 3
1TMQ 1 1 27 4 54 - 4
1UDI 1 1 2 47 1 1 420
1YVB 1 19 1 2 3 21 7
120K 2 8 523 57 42 11 44
1ZHI 5 3 7450 - 196 5 5
2AJF 5 1788 - 311 562 2268 2122
2B42 1 1 2 37 1 2 21
2BTF 1 33 120 26 60 9 250
200B 588 112 131 217 106 547 432
2VIS 64 - - - - - -
7CEI 1 19 11 1 1 1 20
Medium-flexible (I-RMSDcq 1.0-2.0 A) (35 cases)

1A2K 36 114 5641 284 - - 782
1AK4 2420 2040 3983 3619 - 2721 1055
1AKJ 89 656 345 261 204 162 1168
1B6C 1 3 6 11 1 1 21
1BGX 1 - - - - - -
1BVK 7 18 4 146 87 85 2
1D6R 1050 2128 227 888 669 785 102
1DFJ 6 557 2 1 1 1 4
1E6E 1 3 2 1 1 8 1
1E6J - 33 34 3 1 2 5
1EZU 1 2048 3633 - 1449 1547 102
1FC2 127 - 233 326 1256 683 171
1GP2 1 - - 842 85 - 87
1GRN 2 858 184 1184 450 23 2909
1HIA 99 40 415 42 23 166 7
114D 1 - - 642 - 44 132
119R 15 846 568 212 - 99 -
1K5D 1 360 85 - 2 610 -
1KXP 1 16 14 1 1 1 1
1MLO 1 173 80 140 1 1 9
1INW9 1 9 181 36 43 39 181
10PH 59 14 - 469 - - 2584
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1VFB 37 59 86 59 128 31 95
iwaQl 4 2448 5 1077 16 6 6
1XD3 1 1 3 13 2 1 1
1XQS 1 14 55 628 1 8564 7
125Y 1 16 320 - 4 39 17
2CFH 1 1904 202 1394 4066 43 5
2FD6 68 31 - - - 81 1
2H7V 1 - 734 - 1091 - -
2HLE 1 13 1 1 2 1 3
2HQS 1 30 2 30 146 146 129
2125 1 40 443 1520 15 948 3599
208V 1 60 5 186 220 1 -
2QFW 1 - 19 - - 7 73
Flexible (I-RMSDcq 2.0-3.0 A) (18 cases)

1ACB 1 361 144 668 6 4 15
1BKD 2 522 157 1050 99 114 646
1CGlI 1 19 98 13 1 12 5
1DE4 1 - - 366 - - -
1E4K 104 1215 722 148 200 4249 74
1EER 3 1821 91 21 81 37 675
112M 1 - 683 632 50 149 247
11B1 34 - 2116 7028 255 2775 1626
11BR 1 - - - - - -
1KKL 88 49 271 176 1 2 289
1M10 1 81 5742 574 - 21 2873
1N2C 1 - - - - 16 -
1PXV 1 2073 100 429 673 1498 2375
2CO0L 83 3958 1024 1589 - 5105 3834
2HMI 2 - - - - - -
2HRK 49 16 23 47 83 83 241
2NZ8 1 10 5509 247 2 168 5848
2073 1 5 212 14 91 - 131
Highly-flexible (I-RMSDcq > 3.0 A) (8 cases)

1ATN 7 2568 - - - 665 -
1FAK 41 5327 - - 43 41 -
1FQ1 6 3865 4315 7901 927 - 4833
1H1V 537 - - - - - -
1IRA 1 - - - - - -
1JMO 1 5325 - 5398 2969 5510 5547
1R8S 1 - - - - 4043 -
1Y64 1420 - - - - 1329 -

In bold: high affinity cases

As mentioned above, the results of bound docking are not
optimal mostly due to the FFT-based discrete searching algorithm. This
would be particularly critical in low-affinity cases, in which the small
number of interactions would make them less tolerant to small errors in
the atomic positions. To minimize the impact of this limitation in our
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evaluation, we have performed the same analysis as above but
focusing only on the 28 cases of the benchmark that have been
experimentally defined as high-affinity (DG < -12.0 kcal/mol), for which
the results of bound docking are close to optimal. Under these
conditions, we can observe even more clearly that the selected
conformers improved the docking success rates in the low-flexible
cases (Fig 4C).

In order to provide a statistical significance for these results, we
randomly selected five conformers from the conformational ensemble.
The results for each random conformer were similar (within
experimental error) to those of the unbound structure (Fig 4A), which
shows that the conformers selected according to the optimal binding
energy improved significantly the docking results with respect to the
randomly chosen conformers. An alternative possible explanation for
the docking improvement when using ensemble conformers might be
related to the limited sampling of FTDock discrete searching algorithm
derived from the fix number of ligand rotations (which makes coarser
surface sampling for large proteins) and the grid resolution of 0.7 A
(which introduces inaccuracies in the atomic coordinates). This creates
a stochastic dependence of the FTDock docking algorithm on the initial
rotation of the interacting subunits, and is indeed the cause of the
suboptimal results shown even for bound docking, given that the exact
complex orientation is very unlikely to be sampled. This is a limitation of
any FFT-based algorithm, and it was shown before that performing
parallel docking runs using several initial rotations provided more
consistent docking results than using just a single one [20]. To evaluate
the possibility that the extensive sampling in the atomic positions
provided by the use of conformational ensembles prior to docking could
compensate the suboptimal grid-based sampling of FTDock, we
performed five different docking runs with random initial rotations for the
unbound receptor and ligand molecules. The results from the individual
random rotations were similar, within experimental error, to the unbound
docking results (Fig 4A).

These results suggest that the selected conformers according to
specific criteria (i.e., optimal energy, number of clashes) were more
beneficial for docking than just a random selection of conformers or
initial rotations. Overall, this clearly shows that conformational
heterogeneity in the interacting subunits improves the binding
capabilities of the unbound X-ray structures.
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Conformational heterogeneity is particularly beneficial for low-
and medium-flexible cases

We have analyzed whether the docking improvement when using
ensembles depends on the conformational rearrangement of the
interacting proteins upon binding (see Methods). The largest docking
improvement when using the selected conformers is observed in the
low- and medium-flexible cases, i.e. those with I-RMSD¢, between 0.5
and 2.0 A (Fig 4B). The ensemble success rates are particularly good
in the low-flexible cases, for which they reach predictive docking values
similar to the optimal ones when using the bound structures. This could
be related to the limited sampling used here, which did not explore too
far from the unbound (1.2 A of Int-RMSD as average) and therefore
they can only sample in the vicinity of the bound state in low-flexible or
rigid cases. Indeed, in the rigid cases (I-RMSD¢, < 0.5 A), the selected
conformers yield similar results to the unbound structures. In these
cases, unbound structures already produced optimal results, similar to
the optimal success rates obtained when using the bound structures. In
flexible or highly-flexible cases (I-RMSD¢, > 2.0 A), the docking results
for the ensembles are as poor as those for the unbound structures, very
far from the optimal success rates when using the bound structures.
Using MD or more conformers does not significantly change the results
(S5 Fig).

Discussion

Conformers providing better binding energy in the native
orientation are more likely to improve docking

We have shown that set of discrete conformers representing the
conformational heterogeneity of the unbound structure yielded better
docking results than the unbound structures themselves. It would be
important to analyze the reasons for the success of such conformers.
Surprisingly, the conformers that were structurally more similar to the
reference structure did not yield better docking results than the unbound
structures. On the other side, selected conformers with the best binding
energy in the native orientation yielded better docking results than the
unbound structures. Thus, the capacity to provide favorable binding
energy in the native orientation seems to be a major determinant for the
success of docking, as opposed to the criterion of structural similarity to
the native conformation. This might be due to the fact that in the
majority of cases, ensembles are not exploring the conformational
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space close to the bound state, because sampling is limited to a region
in the vicinity of the unbound.
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Fig 5. Docking performance dependence on energetic complementarity of
the docking partners. Best rank of any near-native docking solution vs.
average native-oriented binding energy towards the bound partner calculated
for (A) best pair of conformers according to binding energy towards the bound
state, and (B) unbound X-ray structures. Highlighted in black are the cases that
largely improve docking performance (from near-native rank > 10 to rank < 10)
using the energy-based selected conformers.

Fig 5A shows, for each case, the best ranked near-native
solution obtained when docking the conformers that had the best
native-oriented energy with the bound partner (i.e., best near-native
rank in ordinates; average native-oriented energy of best pair of
conformers in abscissas). As we can see in Fig 5A, 90% of the
successful cases (i.e., near-native solution ranked within top 10) have
average conformer binding energy < -20.0 a.u. in the native orientation.
Actually, 71% of the docking cases with conformers with binding energy
in the native orientation < -40.0 a.u. were successful. This confirms that
the existence of conformers with good optimal energy in the native
orientation is determining the success of docking. Fig 5A highlights the
cases that significantly improved, i.e. which had a near-native ranked <
10 when using the energy-based selected conformers but not when
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using the unbound structures. In many of these cases, the unbound
structures in the native orientation had binding energy < -20.0 a.u. (Fig
5B) but were not successful in unbound docking. In these cases, a little
bit of conformational sampling seems to be sufficient to generate
conformers that significantly improve docking results.

Ensembles in docking: does size really matter?

For a practical use in docking, the conformational ensembles should
provide a reasonable coverage of the conformational space, using a
minimal number of conformers. We have shown here that the selected
conformers (based on the reference complex structure) from the 1000-
member ensembles generated by MODELLER or MD yielded similar
results to those selected from the 100-member ensembles (S4 Fig).
Especially in the more rigid cases, a larger conformational ensemble
does not seem to help to find better conformers to improve docking
results. However, we can observe a small improvement in the flexible
cases when using the larger ensembles (S5 Fig). Perhaps, in addition
to larger ensembles, higher conformational variability would be needed
in order to see further improvement in the flexible cases. In this sense,
we have performed extended MD simulations (100 ns), at different
temperatures (300K and 340K), on a random selection of 11 cases with
no missing long loops (comprising all ranges of flexibility values). The
1000-member ensembles from these extended MD simulations showed
larger conformational variability as compared to the shorter simulations.
However, these larger ensembles did not increase the number of cases
with conformers significantly closer to the bound structure, neither
provided better docking success rates (S1 Table). Given the known
convergence issues in MD [55], it seems that much longer MD
trajectories would be needed in order to achieve exhaustive sampling of
the unbound conformational space.
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Binding mechanism: What can we learn from docking?
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Fig 6. Binding energy towards the bound of unbound, best conformer and
bound. Average binding energy towards the bound in the native orientation for
the unbound proteins, best conformer according to native-oriented bound
energy, and bound state, computed for examples of cases with different
degrees of unbound-to-bound conformational changes. Similar unbound,
conformer and bound binding energies suggest lock-and-key binding
mechanism (as in 2SNI). Conformer binding energy better than unbound and
similar to bound suggest conformational selection model (as in 1KXP, 1ACB).
Conformer binding energy similar to unbound and worse than bound could be
compatible with conformational selection (112M; see main text) or induced fit
mechanism (1IRA).

The different possible mechanisms that have been proposed for
protein-protein  association could be described by existing
computational approaches. In this context, we can consider several
possible scenarios. For protein complexes following rigid association
(similar to "lock-and-key" mechanism), the use of rigid-body docking
with the unbound subunits could be a suitable approach to describe the
binding process and obtain good predictive models. Indeed, this seems
to be the case for complexes with small conformational changes
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between unbound and bound states (I-RMSD¢, < 0.5 A), in which
unbound docking already gives as similar success rates as bound
docking (Figs 4B and 4C). In these cases, the use of energy-based
selected conformers from unbound ensembles gives also similarly good
docking rates as unbound and bound docking. Indeed, Fig 6 shows one
example of rigid-body docking (2SNI) in which the unbound proteins in
the native orientation showed good average binding energy towards the
bound partner (-32.8 a.u.), not far from that of the bound structures (-
40.8 a.u.). Consistently, the average binding energy of the best
conformers were similar to that of the unbound or bound pairs (-37.8
a.u.). However, when conformers were selected by criteria of structural
similarity to bound state, docking success rates were much worse than
unbound or bound docking, because in these cases conformational
heterogeneity is more likely to produce conformers that are further from
the bound state than the unbound one (given that the unbound was
already close to the bound state). Indeed, in none of these cases there
were a single conformer that was significantly closer (in terms of Int-
RMSD) to the bound state than the unbound structure.

On the other side, we know that in complexes involving flexible
association rigid-body docking with the unbound structures is not going
to produce correct models. For such cases, different binding
mechanisms have been proposed, such as conformational selection or
induced fit. For cases following the conformational selection
mechanism, the hypothesis is that the unbound proteins naturally
sample a variety of conformational states, a subset of which are
suitable to bind the other protein. Therefore, for these cases the use of
precomputed unbound ensembles describing conformational variability
of free proteins in solution should generate conformers that would
improve rigid-body docking predictions with respect to those with the
unbound structures. Indeed, this is the case for the complexes
undergoing unbound to bound transitions between 0.5 and 1.0 A I-
RMSD¢,. In these cases, selected conformers from the unbound
ensembles yielded much better docking predictions than the unbound
structures, virtually achieving the success of bound docking (Fig 4B).
For cases undergoing unbound-to-bound transition between 1.0 and 2.0
A 1-RMSD¢,, the use of unbound ensembles also improved the
predictions with respect to the unbound docking results, although to a
lesser extent (Fig 4B). Fig 6 shows one of these cases, 1KXP, in which
binding energy of the selected pair of conformers in the native
orientation (-51.4 a.u.) is better than the unbound structures (-31.3 a.u.)
and similar to the bound structures (-63.6 a.u.). Some residues in the
best pair of conformers show better energy contribution than in the
unbound state, which explains why this specific pair of conformers
improves docking results. In these cases, the existence of a sub-

137



Protein plasticity improves protein-protein docking

population of "active" conformers, i.e. with good binding capabilities
towards the bound partner, would be consistent with a conformational
selection mechanism. The fact that these conformers with improved
binding capabilities are not geometrically closer to the bound state
seems counterintuitive. However, recent views of binding mechanism
show that active conformers that are selected by partner (initial
encounters) do not necessarily need to be in the bound state, as they
can adjust their conformations during the association process [41]. Our
docking poses are likely to represent these initial encounters between
the most populated conformational states of the interacting proteins and
would be compatible with this extended conformational selection view
[41]. However, in other cases the limited conformational sampling used
here might not be sufficient to explore all conformational states
available in solution and therefore the specific binding mechanism
cannot be easily identified.

As for the other extreme, in cases following an "induced-fit"
mechanism the bound complexes would only be obtained after
rearrangement of the interfaces when interacting proteins are
approaching to each other, in which case the use of precomputed
conformational ensembles in docking (even if generated by exhaustive
sampling) would not produce favorable encounters around the native
complex structure. This seems the case for complexes undergoing
unbound to bound transitions above 3.0 A I-RMSDc,. In all these cases,
rigid-body docking, either with unbound structures or with selected
conformers, fails to reproduce the experimental complex structure. Fig
6 shows one of these highly-flexible cases, 1IRA, in which binding
energy of the selected pair of conformers is similar to the unbound
structures and much worse than the bound conformation. For these
complexes, the use of precomputed unbound ensembles does not
seem to see advantageous, and they would probably need to include
flexibility during docking search, mimicking the induced fit mechanism.
However, in the flexible category (i.e., unbound to bound transitions
between 2.0 and 3.0 A I-RMSDc,,), there are cases like 1ACB, which
seem to follow the (extended) conformational selection mechanism,
since the use of conformers helps to improve the docking results, and
the conformers show better energy than the unbound structures (Fig 6).
Again, there might be other complexes under this category that could
still follow the conformational selection mechanism, but our
conformational search was not sufficient to sample conformations that
may exist in solution and could be productive for docking. This seems to
be the case for 112M, in which ensembles based on MODELLER did not
produce pairs of conformers with sufficiently good binding energy in the
native orientation (Fig 6), but the docking rates improved when using
extended sampling based on NMA (see later).
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Of course the use of docking calculations to learn about the
binding mechanism has some limitations, in addition to the ones already
mentioned. The timescale of transitions between inactive and active
conformers can play an important role in controlling the binding
mechanism [56]. In the present work, we can only assume that our
ensembles are formed by conformers that are the most accessible in
solution, so the existence of active conformers that can be preferentially
selected by the bound partner would be compatible (but not exclusively)
with a mainly conformational selection mechanism. However, in a
situation in which the active conformers are not easily accessible, as
those that can only be generated with extended sampling, we could not
identify the type of mechanism unless transition rates between
conformers were considered.

Future perspectives: improving sampling with normal mode
analysis for flexible cases

We have shown here that cases with large deformation after binding (I-
RMSD¢, > 2 A) do not generally benefit from the use of conformers
from unbound ensembles generated by MODELLER or MD. This
suggests that these complexes could follow the induced fit binding
mechanism, and therefore, the use of precomputed unbound
ensembles would not be appropriate to describe their association.
However, we should not disregard that some of these complexes could
still follow a conformational selection mechanism, but for some reason a
dramatically larger conformational sampling would be needed to find
suitable conformers.

One way to extend conformational sampling is by using Normal
Mode Analysis (NMA). When generating 100 conformers for this group
of cases (strong and flexible I-RMSD¢, > 2.0 A) with an ad-hoc Monte-
Carlo sampling method based on Ca NMA and full-atom rebuilding with
MODELLER (S6 Fig; see Methods), the results were not better than
those obtained with the conformers directly generated by MODELLER
(Tables 2 and S2). However, when generating 1000 conformers based
on NMA (either 1000 NMA-based conformers rebuilt by MODELLER, or
100 NMA-based conformers with 10 models rebuilt by MODELLER for
each of them), the success rates largely improved with respect to those
obtained when generating conformers with only MODELLER (either 100
or 1000 conformers). It is interesting to comment on the flexible case
112M, which showed failing docking rates with the unbound structure
and also with the best conformers from MODELLER or MD ensembles,
but yielded successful docking results with 1000-member NMA-based
ensembles. This shows that new sampling approaches based on NMA
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could produce the type of enhanced sampling needed for the most
flexible cases following a conformational selection mechanism.

Table 2. Docking performance of conformers selected from NMA-based
ensembles.

Bound  Unb. MM MM NMA NMA NMA
(100 (1000 (100 (100 (1000
confs) confs) conf) conf) conf)

* MM * MM * MM

(1conf)  (10conf)  (1conf)
1ACB 1 361 4° 34° 46° 3¢ 1°
1ATN 7 2568 665° - 292° 3245  1788°
1EER 3 1821 21° 13° 17° 3° 3°
112M 1 - 50° 13° 23° 164 1¢
1IBR 1 - : 1108°  87° 146° 88°
1PXV 1 2073 100? 822° 168° 168° 232°
éCa global RMSD..

®Full-atom interface RMSD.

°Native-oriented binding energy with bound partner.
“Native-oriented binding energy with unbound partner.
®Number of clashes with bound partner in the native orientation.

We present here the most complete systematic study so far
about the use of precomputed unbound ensembles in docking. The
results show that considering conformational heterogeneity in the
unbound state of the interacting proteins can improve their binding
capabilities in cases of moderate unbound-to-bound mobility. In these
cases, the existence of conformers with better binding energy in the
native orientation is associated to a significantly improvement in the
docking predictions. It seems that protein plasticity increases chances
of finding conformations with better binding energy, not necessarily
related to bound geometries. This is compatible with the extended
conformational selection mechanism, since successful conformers are
not necessarily more similar to the bound conformation in structural
terms. Other moderately flexible cases have conformers that look
promising from a binding energy perspective but did not provide good
docking predictions. These cases could also follow a conformational
selection mechanism, but they would need extensive sampling to find
suitable conformers for binding. The most flexible cases would show
larger induced fit effects and therefore would not be well described by
ensemble binding. This work helps to set guidelines for future strategies
in practical docking predictions based on unbound ensembles
generated by molecular mechanics minimization.
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Methods

Generation of protein conformational ensembles

We applied three different computational techniques to generate
conformational ensembles starting from the unbound protein structures:
modelling minimization (MM), Molecular Dynamics simulations (MD),
and Normal Modes Analysis (NMA).

Conformational search based on modelling minimization (MM)
was performed with the comparative modelling program MODELLER
version 9v10 [57], using as template the unbound X-ray structure of the
same protein. Cofactors and ligands, if present in the template
structure, were taken into account during the modelling procedure.

Conformational search based on Molecular Dynamics (MD) was
performed by a 10-ns-long explicit solvent unrestrained MD simulation
on the unbound structure using the force field AMBER parm99 and the
AMBERS package [58]. As a first preparation step, all the missing loops
in the protein structures, if any, were modeled using MODELLER
program, in order to avoid an over-estimation of the protein flexibility
during the simulations. The parameterization of each system was
performed using AMBER’s module LEAP, whereas the cofactor and
ligand libraries, when needed, were written with the AMBER modules
ANTECHAMBER and LEAP. Each system was then minimized,
solvated and equilibrated at the same conditions as previously
described for the MoDEL database [59]. Then, a 10-ns MD simulation
was performed in isothermal-isobaric ensemble, setting pressure to 1
atm and temperature to 300K. Finally, two conformational ensembles
were created by extracting trajectory snapshots every 10ps or 100ps.
Additionally, a random subset of 11 benchmark cases (1ACB, 1AY7,
1D6R, 1E6J, 1GCAQ, 1IRA, 1JMO, 1PXV, 2HRK, 2CFH, 2COL) was
selected for longer simulations. Each protein underwent two 100-ns-
long explicit solvent unrestrained NPT-MD simulations, at the
temperatures of 300K and 340K, respectively, using the same force
field as above.

Conformational search based on Normal Mode Analysis (NMA)
was performed by an in-house protocol on a small subset of 6 high-
affinity and flexible benchmark cases. NMA is a powerful modeling
technique that allows for a fast and accurate description of the intrinsic
movements of biomolecules. Modern interpretations of the procedure
use the elastic network model (ENM), first described by Tirion as an all-
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atom version [60], and later re-formulated as coarse-grained [61-63]. In
the ENM, the biomolecule is represented as a network of connected
atoms, where each node is connected to all the atoms within a cutoff,
and the springs represent the interactions between the nodes. Here we
used the Anisotropic Network Model [62] that describes the protein as a
Ca model, and we assigned the spring constants by a continuum
distance function that assumes an inverse exponential relationship with
the distance [64]. We tried to enhance the conformational space by
introducing an iterative exploratory search. The proposed method is
called eNMA (enhanced NMA) and creates enriched structurally diverse
ensembles. The algorithm works as follows:

Step 1 — Starting from the unbound Ca atoms, we created 100
discrete cartesian conformers from random combinations of
displacements along the first 10 Normal Modes (as described
elsewhere [65]). The average Ca displacement with respect to the
original structure was set to ~1 A.

Step 2 — The resulting conformers were then clustered
hierarchically via average linkage method (as implemented in ptraj10
[58]) to obtain 100 diverse conformations.

Step 3 — Each conformer from the cluster was sent to Step 1, and
the whole cycle was started.

Step 4 — The process was ended up after 8 iterations.

In total, a maximum of 70100 intermediate structures were
created per protein, but we only kept the ones resulting from the
clustering (i.e., 100 x 10 = 1000 discrete conformers). The final
structures underwent a last modeling step with MODELLER 9.10. All-
atom models were rebuilt by adding missing atoms and side chains and
were atomically refined with MODELLER (using the original Ca model
as template) to fix incorrect bond distances [57, 66]. In addition, 100
discrete conformers were randomly selected and for each of them 10
MODELLER models were built. The whole procedure took around 4
hours per protein on 1 CPU of a standard Linux workstation. Note that
our conformational search was unguided, but it could be also guided in
future applications (i.e., selecting the combination of models that
provides the best score on a given fitness function).
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Docking Simulations

For all the dockings experiments, FTDock docking program [15] was
used to generate 10,000 rigid-docking poses based on surface
complementary and electrostatics at 0.7 A grid resolution, and then,
each docking solution was evaluated by the energy-based pyDock
scoring scheme [25], based on desolvatation, electrostatics and Van
der Waals energy contributions. Cofactors and ions were excluded
during the sampling and the scoring calculations.

Benchmark

In order to validate the approach proposed here, we used protein-
protein docking benchmark 3.0 [54], comprising a total of 124 test cases
in which the structure of both the free components and the complex are
known. We have classified these cases according to the conformational
variation of the proteins from the unbound to the bound state (based on
the RMSD of Ca atoms of the interface residues as defined in the
mentioned protein-protein benchmark 3.0), which resulted in the
following categories: "rigid" (I-RMSD¢, < 0.5 A), "low-flexible" (0.5 A < I-
RMSDc, < 1.0 A), "medium-flexible” (1.0 A < I-RMSD¢, < 2.0 A),
"flexible” (2.0 A < I-RMSD¢, < 3.0 A), and "highly-flexible" (I-RMSD¢, >
3.0 A). The quality of the docking predictions was evaluated according
to the ligand Ca-RMSD with respect to the complex crystal structure
(after superimposing the receptor molecules). A docking experiment
was considered successful if a near native solution (a docking pose with
ligand Ca-RMSD < 10 A) was ranked among the top 10 predictions
according to the pyDock scoring function. Structural analyses of
proteins, including RMSD and clashes calculations, were performed
using ICM program [67] (www.molsoft.com).
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S1 Fig. Distribution of conformers according to different quality criteria in
the 100-member ensembles. Distribution of conformers for different
benchmark cases according to specific criteria based on the complex native
orientation: Ca-RMSD, Int-RMSD, binding energy with the bound partner,
binding energy with the unbound partner, number of clashes with respect to the
bound partner (from top to bottom). Ensembles were generated by MODELLER
(blue) and MD (magenta). Values for unbound X-ray structures are shown as
red lines.
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S2 Fig. Representative conformational ensembles generated by MD. 100
conformers independently generated by MD for receptor and ligand are shown
for two benchmark cases: (A) 1PXV and (B) 1ACB. Conformers were
superimposed onto the corresponding molecules in the reference complexes for
visualization. Only interface side chains are shown for the sake of clarity.
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S3 Fig. Distribution of conformers according to different quality criteria in
the 1000-member ensembles. Distribution of conformers for different
benchmark cases according to specific criteria based on the complex native
orientation: Ca-RMSD, Int-RMSD, binding energy with the bound partner,
binding energy with the unbound partner, number of clashes with respect to the
bound partner (from top to bottom). Ensembles were generated by MODELLER
(blue) and MD (magenta). Values for unbound X-ray structures are shown as
red lines.
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S4 Fig. Docking performance for the best conformers of different
ensembles. Docking success rates for the top 1 to 1000 predicted models on
the protein-protein docking benchmark when using conformers selected by
specific criteria based on the complex native orientation: Ca-RMSD (green), Int-
RMSD (yellow), binding energy with the bound partner (orange), binding energy
with the unbound partner (blue), number of clashes with respect to the bound
partner (violet). Ensembles were composed of (A) 100 conformers generated by
MODELLER, (B) 1000 conformers generated by MODELLER, (C) 100
conformers generated by MD, and (D) 1000 conformers generated by MD. For
comparison, docking success rates for unbound X-ray structures are also
shown (dark gray).
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S5 Fig. Docking performance for the different ensembles according to
unbound-to-bound variability. Docking success rates for the top 10 predicted
models on the protein-protein docking benchmark with cases -classified
according to unbound-to-bound conformational variability, when using
conformers selected by specific criteria based on the complex native
orientation: Ca-RMSD (green), Int-RMSD (yellow), binding energy with the
bound partner (orange), binding energy with the unbound partner (blue),
number of clashes with respect to the bound partner (violet). Ensembles were
composed of (A) 100 conformers generated by MODELLER, (B) 1000
conformers generated by MODELLER, (C) 100 conformers generated by MD,
and (D) 1000 conformers generated by MD. For comparison, docking success
rates for unbound X-ray structures are also shown (dark gray).
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S6 Fig. Representative conformational ensembles generated by NMA-
based sampling. 100 conformers independently generated by NMA-based
sampling for receptor and ligand are shown for two benchmark cases: (A)
1PXV and (B) 1ACB. Conformers were superimposed onto the corresponding
molecules in the reference complexes for visualization. Only interface side
chains are shown for the sake of clarity.

S1 Table. Docking performance with conformers selected from extended
MD ensembles (100ns trajectories, at 300K or 340K temperature).

100ns-MD 300K 100ns-MD 340K
(1000 confs) (1000 confs)
Ca-RMSD Int-RMSD Ca-RMSD Int-RMSD

1AY7 19 1 4 155
1D6R 2181 2181 2018 2018
2HRK 162 161 314 1285
1GCQ 33 76 348 1025
1E6J - 5 9 3
1ACB 48 2 99 434
1PXV 4118 182 3209 2027
2CFH 134 134 440 3647
1JMO - 387 153 -
2CoL 1493 - 4121 974

1IRA - - - -
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S2 Table. Docking performance of conformers selected from NMA-based
ensembles. For each sampling method, docking results of all selected
conformers are shown. For comparison, the docking results with the 1000-
member ensembles generated by MODELLER are also shown, as well as
those with the unbound and bound X-ray structures.

(A) MM1000
MM1000
PDB Bound Unbound Ca- Int- Bound Bound #Clashes
RMSD RMSD BE BE

1ACB 1 361 429 651 36 34 145
1ATN 7 2568 - - - - -
1EER 3 1821 371 132 13 48 24
112M 1 - 184 70 13 57 18
1IBR 1 - 681 - - - 1108
1PXV 1 2073 2400 1393 970 822 2332

(B) NMA (100 Conf) *MM(1 conf)

NMA (100 conf) * MM (1 conf)

PDB Bound Unbound Ca- Int- Bound Bound #Clashes
RMSD RMSD BE BE

1ACB 1 361 47 366 46 19 2614

1ATN 7 2568 2615 478 292 544 5818

1EER 3 1821 233 25 - 17 89

112M 1 - 5117 4566 23 310 506

1IBR 1 - 87 - - - 91

1PXV 1 2073 1712 - 315 168 1098

(C) NMA (100 Conf) *MM(10 conf)

NMA (100 conf) * MM (1 conf)

PDB Bound Unbound Ca- Int- Bound Bound #Clashes
RMSD RMSD BE BE

1ACB 1 361 122 - 9 3 -

1ATN 7 2568 3245 - - = =

1EER 3 1821 - - 3 16 -

112M 1 - 383 45 1 1 -

1IBR 1 - 326 - - - 146

1PXV 1 2073 687 - 168 2210 5868

(D) NMA (1000 Conf) *MM(1 conf)

NMA (1000 conf) * MM (1conf)

PDB Bound Unbound Ca- Int- Bound Bound #Clashes
RMSD RMSD BE BE

1ACB 1 361 759 589 11 1 229

1ATN 7 2568 1788 - - 4332 -

1EER 3 1821 35 3 - 4 -

112M 1 - 2320 154 173 1 1344
1IBR 1 - 88 - 135 - 984

1PXV 1 2073 1717 1342 1183 232 866
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Abstract

Protein-protein interactions are essential to understand cellular
processes at molecular level. However, determining the atomic
structure of the immense majority of protein-protein complexes is still
highly challenging and constitutes one of the major goals of
computational biology. Despite methodological advances in docking
protocols, dealing with molecular flexibility is still a crucial bottleneck.
Indeed, state-of-the-art rigid-body docking approaches, like pyDock,
have difficulties in cases with large conformational changes upon
binding. Although several protocols have been proposed to include
flexibility as a refinement step, the approach of using precomputed
conformational ensembles generated from unbound protein structures
has been less explored. In the past we used ensembles derived from
residue dipolar coupling (RDC) data to significantly improve docking
predictions for ubiquitin complexes. More recently, we found that a
simple molecular mechanics minimization method can generate
conformers that improve energetic complementarity of the docking
partners. Based on these studies, we have devised here a protocol to
integrate unbound conformational ensembles within a rigid-body
docking framework and systematically tested it on a data set of 124
protein-protein docking cases. For that, we docked every conformer
from the receptor with a random one from the ligand, ranked all the
resulting docking poses, and removed redundant solutions.
Conformational ensembles generated here at low computational cost
significantly improved docking predictions for cases in which
interacting proteins showed moderate conformational changes upon
binding. Future works on increasing the size and quality of these
ensembles will expectedly extend the applicability of this docking
strategy to more flexible cases.
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Introduction

Proteins act as building blocks and functional components of a cell
[1], and their interactions are crucially important for the virtual totality
of biological processes. In this context, understanding the structural
and functional details of the hundreds of thousands of protein-protein
interactions that are formed in a living organism is essential to
advance in biological knowledge and biomedical applications.
However, current structural coverage of protein—protein interactions in
human is below 4% of the estimated number of possible complexes
[2-3].

Computational protein-protein docking aims to complement
experimental efforts and provide structural models for protein
complexes starting from the isolated component structures [4-5].
However, despite general methodological advances in docking,
properly dealing with molecular flexibility is still a major bottleneck.
Indeed, protein dynamics plays a key role in protein association and
the need of integrating protein flexibility in docking simulations is now
evident [4]. Several methodologies have been proposed to address
this issue. The easier and simpler approaches consist in implicit
treatment of flexibility by implementing soft potentials within FFT-
based docking protocols [6], thus allowing a certain degree of inter-
penetration between the interacting protein atoms. A more realistic
and accurate description of the association process, although at
higher computational cost, is the inclusion of conformational flexibility
after a first rigid-body docking step, somehow mimicking the induced-
fit binding model [7]. The majority of current docking methods that
include flexibility follow this approach: ICM-DISCO [8], HADDOCK [9]
or RosettaDock [10] protocols. A more recent strategy to include
plasticity during the sampling step is by small deformation of the
global structures along soft harmonic modes, such as in ATTRACT
[11-12] or SwarmDock [13] programs.

An alternative approach, which has been largely unexplored, is
to mimic the conformational-selection binding model [14-16] by
docking separately a number of conformers selected from
precomputed conformational ensembles of the docking partners.
These conformational ensembles can be obtained experimentally
(e.g., from NMR experiments) or computationally by conformational
sampling methods (e.g., MD, NMA or homology modeling), ideally
spanning various degrees of flexibility, from small local
rearrangements to large-scale global motions. Although highly
promising, to date this strategy has not been really used for practical
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docking predictions. Actually, very few systematic studies have been
reported on the use of either conformational ensembles derived from
theoretical simulation [17-19] or experimental data (i.e., NMR
spectroscopy) [19]. Besides, the ensembles used in the majority of
these studies do not really represent the population of the unbound
state, as only few conformers were used in the docking procedure.

In this context, we recently showed that the use of ensembles
generated with residual dipolar coupling (RDC) data in docking
significantly improved the predictive rates in ubiquitin complexes [20].
However, the experimental limitations in the ensemble generation
make it difficult to extend this protocol to large-scale application. More
recently, we found that a simple molecular mechanics minimization
approach using MODELLER (MM) can rapidly generate conformers
with better binding properties, thus can improve docking predictions
thanks to better energetic complementarity of the docking partners
(Pallara et al., submitted).

Based on these findings, we have devised here a novel
prococol for ensemble docking, which has been systematically tested
on a large dataset of 124 protein-protein docking cases. For that, we
docked every conformer from the receptor with another one randomly
selected from the ligand. All the resulting docking poses were merged
and clustered to remove redundant ones, and finally ranked according
to an energy-based scoring function. The global docking predictions
significantly improved the results with respect to the unbound
docking, especially for medium-flexibility complexes.

Methods

Generation of protein conformational ensembles

MODELLER comparative protein structure modeling program [21]
was used to obtain an ensemble of 100 conformations for the
unbound interacting subunits of each docking case, using as template
the unbound X-ray structure of the same protein. lons and cofactors
molecules, if any, were included during the modeling in order to
preserve a reasonable accuracy in the structures obtained.

Ensemble docking

For each docking case, every conformer from the receptor ensemble
was docked with another one randomly selected from the ligand
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ensemble, as described below. First, the Fast Fourier Trasform (FFT)
program FTDock [22] was used to generate a set of 10,000 rigid-
docking poses using surface complementary and electrostatics, at 0.7
A grid resolution. All the models resulting from docking each pair of
conformers from receptor and ligand ensembles were merged
together, and sorted according to pyDock scoring scheme [23], based
on desolvatation, electrostatics and Van der Waals energy
contributions. Both ions and cofactors molecules were excluded
during the sampling and the scoring calculations. Finally, the
redundant predictions were eliminated by using a clustering algorithm
starting from the top-ranked docking solution and removing all the
following models with ligand RMSD lower than 10 A.

Benchmark

In order to validate the protocol proposed here, we used the Weng's
protein-protein docking benchmark version 3.0 [24], composed of 124
cases in which the structures of both the free components (unbound)
and the complex (bound) are known.

For all the docking experiments, the predictive performance
was evaluated by comparing the coordinates of each docking pose
with the corresponding X-ray structure of the complex. A near-native
solution (NNs) was defined as a docking pose with ligand RMSD
lower than 10 A (RMSD was calculates for the ligand c-alpha atoms
with respect to the equivalent one in the X-ray structure of the
complex after optimal superimposition between bound and unbound
receptor molecules). The success rate is defined as the percentage of
cases in which a near-native solution is found within the top N
docking poses, as sorted by pyDock. For the evaluation and
comparison of the docking results special attention was taken for the
top 10 success rate. For the completeness of the analysis, additional
docking simulations were performed using 100 random initial rotations
of the unbound X-ray structures of the docking partners, followed by
the same merging and clustering protocols as with the ensemble
conformers.

As previously described in Pallara et al., submitted, all the 124
benchmark cases were classified according to the conformational
variation of the proteins from the unbound to the bound state (based
on the RMSD of Ca atoms of the interface residues as defined in the
mentioned protein-protein benchmark 3.0), which resulted in the
following categories: "rigid" (I-RMSD¢, < 0.5 A), "low-flexible" (0.5 A <
I-RMSD¢y < 1.0 A), "medium-flexible” (1.0 A < I-RMSD¢, < 2.0 A),
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"flexible” (2.0 A < I-RMSD¢,q < 3.0 A), and "highly-flexible” (I-RMSDcq
> 3.0 A).

Anchor residues were defined by the ANCHOR web server,
(http://structure.pitt.edu/anchor/ [25-26]), as those with a predicted
contribution to binding energy of more than 2.0 kcal/mol. The RMSD
calculations were executed with ICM program (www.molsoft.com).

Results

Ensemble docking significantly improves complex structure
predictions

We previously observed that conformational ensembles generated by
a simple molecular mechanics approach contain specific conformers
that can be highly useful for docking predictions. (Pallara et al.,
submitted) However, in a realistic situation it would be virtually
impossible to identify which conformers are the best for docking, and
thus it would be necessary to use all ensemble members within a
docking protocol framework. The problem with this approach is that
docking all 100 conformers from the receptor ensemble against all
100 conformers from the ligand ensemble would involve performing
10,000 individual docking runs for each case. This would be clearly
impractical for the majority of cases and would need using high-
performance computing facilities.

Here we have used an alternative strategy to dramatically
reduce the computational costs, by docking each conformer of the
receptor with a randomly selected conformer of the ligand, and thus
running 100 docking jobs per case (see Methods). In this way, all
conformers from receptor and ligand are used in docking, although
obviously not all combinations of conformers are considered.

Fig 1A shows the docking success rates for the top 10
predictions on the overall benchmark when using this protocol, with all
the details in Table 1 and Table S1. Interestingly, ensemble docking
(using 100 random receptor-ligand pairs of conformers) clearly
improved the success rates (32.3%) with respect to the unbound
subunits (19.4%). When only five conformers were used for the
ensemble docking protocol, the prediction success rates (24.2%)
significantly dropped with respect to those of the larger ensembles.
For comparison, we also show the success rates that would be
obtained when using the bound structures, which establish the upper
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limit for the expected docking results with this approach (61.3%). In
order to provide a statistical significance for these results, we
performed 100 different docking runs with random initial rotations of
the unbound receptor and ligand molecule. The docking performance
obtained (26.6% success rate) stood halfway between the ensemble
docking and the unbound results.
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Fig 1. Ensemble docking predictive performance. (A) Predictive success
rate obtained on the overall benchmark for the top 10 ranked docking poses
when using the ensemble docking protocol described here (red). For
comparison, the docking results for the bound (white) and unbound (dark
gray) X-ray structures are shown. To assess the significance of the
predictions, the figure also shows the docking results for random ensembles
consisting on: five random initial rotations of the unbound docking partners
(light gray), five random MM-derived conformers pairs (light green), and 100
random initial rotations of the unbound docking partners (blue). These
random ensembles were used with the same protocol as the conformational
ensembles. (B) Predictive success rates obtained on the 28 with
experimental high binding affinity (AG < -12.0 kcal/mol) (same color code as
above). (C) Predictive success rate obtained on the benchmark cases
classified according to unbound-to-bound conformational motion (same color
code as above). (D) Predictive success rate obtained on the high-affinity
cases (AG < -12.0 kcal/mol) classified according to unbound-to-bound
conformational motion (same color code as above).
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These results suggest that conformational heterogeneity in the
interacting subunits improves the binding capabilities of the unbound
X-ray structures. Nevertheless, part of such improvement might be
associated with the larger sampling in the atomic positions provided
by the set of random initial rotations, which could somehow
compensate the suboptimal grid-based sampling of FTDock as
previously discussed (Pallara et al., submitted). Interestingly, lowering
the number of random initial rotations (i.e., five rotations) did not
substantially change the docking performance (27.4%), showing the
importance of performing a small change in position of the starting
molecules instead of using only the unbound X-ray structure.

The results of bound docking are far from optimal, probably due
to the FFT-based discrete searching algorithm that makes it difficult to
sample the exact native orientation. This would be particularly critical
in low-affinity cases, in which the small number of interactions would
make them less tolerant to small errors in the atomic positions. To
minimize the impact of this limitation in our evaluation, we performed
the same analysis as above but focusing only on the 28 cases of the
benchmark that have been experimentally defined as high-affinity
cases (with AG lower than -12 Kcal/mol). For these cases, the results
of bound docking are much closer to optimal (89.3%). For these
cases, we can observe more clearly that ensemble docking improved
the success rates (53.6%) with respect to the unbound docking
(28.6%). This improvement was clearly above that observed for the
set of 100 random rotations (35.7%). (Fig 1B).

Table 1. Predictive performance of ensemble docking. Best rank of a
near-native docking pose

Complex® Bound Unbound Ensemble
dockingb

Rigid (I-RMSDcq < 0.5 A) (18 cases)

1AVX 2 102 (29)

1FSK 3 3 1

1GHQ 7455 - (107172)

11QD 1 8 3

1KLU 18 1246 (59167)

1KTZ 48 3725 (7981)

1NCA 14 7 1

1NSN 405 500 (303)

1PPE 28 6 4

1ROR 1 3 (222)

1SBB 161 298 (2491)

1WEJ 1 274 3

2JEL 1 42 2

2MTA 2 78 (105)
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2PCC 12 6 3

2SNI 1 3 3

Low-flexible (I-RMSDcq 0.5-1.0 A) (45 cases)

1AY7 1 24 4
1AZS 1 3 (363
1BJ1 9 - 388
1BVN 1 2 1

1E96 113 1 8)

1EAW 8 62 8
1EFN 6 166 1014
1F34 1

1FQJ

1GLA 61 50 (150)

1HE1

1JK

1JPS

1K74 3

1KXQ 1 250 1

1MLC 2 37 2

1QA9 3253 18552

1RLB 1319 4094 (2803)

1T6B 3 713

1UDI 1 1 1
m

2AJF 5 1788 44037

2BTF 1 33 7

2VIS 64 - -
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Medium-flexible (I-RMSD¢, 1.0-2.0 A) (35 cases

B R —

1AK4 2420 2040

1B6C 1 3 3

1BVK 7 18 17

1DFJ 6 557 1

1E6J - 33 6

1FC2 (2869)

1GRN 364

114D 184

1K5D 194

1MLO 10

10PH
1waQ1
1XQs

2CFH

2H7V
2HQS 1

208V 1 60

Flexible (I-RMSDcq 2.0-3.0 A) (18 cases)

1BKD 2 522

1DE4 1 - 189

1EER 3

11B1

1KKL

1N2C
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2CO0L 83 3958 (34623)
2HMI 2 - -

2HRK 49 16 (76)
2NZ8 1 10 (50)
2073 1 5 2
Highly-flexible (I-RMSDcq > 3.0 A) (8 cases)

1ATN 7 2568 (1071)
1FAK 41 5327 (1252)
1FQ1 6 3865 (1349)
1H1V 537 - (70803)
1IRA 1 - -

1JMO 1 5325 =

1R8S 1 - (1572)
1Y64 1420 - -

@ PDB of the complex; ®In brackets, rank before clustering
(in bold: high affinity cases)

Low- and medium-flexible cases are the ones most benefited
by precomputed ensembles

We expected that the docking improvement when using
conformational sampling would depend on the flexibility of the
interacting proteins upon binding. Therefore, we explored for which
level of molecular flexibility our ensembles could be more beneficial.
We classified the docking cases according to the conformational
movement of the proteins from the unbound to the bound state
(based on interface RMSD, I-RMSD¢,). As show in Fig 1C, we found
that the largest improvement when using the ensemble docking
occurred in the medium-flexible cases, i.e. those with [-RMSDcq
between 1.0 and 2.0 A. In the rigid cases (I-RMSD¢, lower than 0.5
A), the ensemble docking results were as good as when using the
unbound structures (close to optimal), whereas for the most flexible
cases (I-RMSDc¢, higher than 3.0 A) the ensemble docking results
were as poor as those for the unbound structures (very far from
optimal). The improvement for the low-, medium- and flexible cases is
even more evident when the analysis is focused on the high-affinity
cases (Fig 1D).

Ensemble size in docking: the higher the better

We explored the question of which is the minimal number of
conformers that would be needed in order to observe a significant
improvement in the docking results. To avoid the complexity of the
interpretation of the results in the weak affinity cases (see above), we
focused our analysis on the high-affinity ones. Fig 2 shows the
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ensemble docking results after randomly selecting a different number
of receptor-ligand pairs of conformers (each sub-set is repeated five
times and the results are averaged). We found that the docking
performance increases linearly with the size of the ensemble (in
grey). Interestingly, when only the high-affinity, low-flexible cases are
considered (in red), the docking success improves dramatically with
just a few conformer pairs, so that 30 conformers provide similar
same success rates as 100 conformers. All these data suggest that
the results might be further improved by using a higher number of
conformer pairs, i.e. increasing the number of receptor-ligand
conformer combinations, but the computational cost would be

Top10 Success Rate (%)

1 20 40 60 80 100
#Random conformers

impractical and beyond this work.

Fig 2. Ensemble docking success rates as a function of the ensemble
size. Ensemble docking performance for the top 10 predictions when
different number of randomly chosen conformer pairs are considered.
Results are shown for the 28 high-affinity benchmark cases (in grey) and the
8 high-affinity and low-flexible cases (in red).

Discussion

Ensemble docking provides more near-native poses and as a
consequence better predictive rates

As emerged from the previous analysis, a minimal structural
heterogeneity provided by the ensembles generated by MODELLER
minimization (MM) improves docking results with respect to the
unbound X-ray structures. We have further studied the reasons of
such improvement. We first explored for each receptor-ligand pair of
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conformers whether the docking energy of the best near-native
solution (determinant for the docking success) depended on the
number of near-native solutions obtained for such conformer pair.

As can be seen in Fig S1, for the majority of cases it can be
observed that the higher the number of near-native solutions
generated by a given conformer pair, the higher the probability of
obtaining good docking energies by such near-native solutions. In this
line, the conformers that generated more near-native solutions than
the unbound structure provided in general better near-native docking
energies than those generated by the unbound structure. We also
observed that the bound X-ray structure typically yields more near-
native solutions and with better docking energy than the unbound.
Interestingly, for many cases (e.g., 1INSN, 1DFJ, 112M), there are a
few conformers that generated even more near-native solutions than
the bound structure. This is consistent with the previously observed
correlation between the number of near-native solutions generated by
docking and the predictive success rates [27]. Therefore, increasing
the ratio between near-native solutions and false positives is the main
reason for the beneficial effect of some of the conformers found in the
precomputed unbound ensembles.

For each case, the percentage of conformers that produced
more near-native solutions than the unbound structure is also a
determinant of the ensemble docking success. Cases with more than
70% of the conformers producing more near-native solutions than the
unbound structure show much higher success rate (72.7%) than the
unbound docking (36.4%), almost reaching the optimal bound docking
results. On the contrary, in those benchmark cases in which there
were less than 70% of conformers that produced more near-native
solutions, ensemble docking had similar success rate (41.2%) to
when using unbound X-ray structures (35.3%) and far from the bound
docking results.

Successful conformers are not necessarily more similar to
bound state

As we have just seen, consideration of conformational heterogeneity
in docking can increase the number of near-native solutions
generated by FTDock, as well as their docking energy, which is a key
determinant for the docking success of each conformer pair.
However, neither the number of near-native solutions found for each
conformer pair or their best binding energy (and as a consequence
the success rate) depended on the similarity of such conformer pair to
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the bound state (Fig S2 and S3). This is in agreement with previous
findings (Pallara et al., submitted) and is consistent with an extended
conformational selection mechanism [28].
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Fig 3. Ensemble docking performance as dependent on the structural
similarity of anchor residues to the bound structure. Binding energy of
the best ranked near-native solution for each conformer pair versus the full-
atom RMSD of predicted anchor residues in such conformers with respect to
those in the bound state, for (A) 1AY7 and (B) 1MAH benchmark cases. For
comparison, unbound X-ray structure is shown in red. (C, D) Selected native
key interface contacting pairs that are lost in the unbound docking near-
native solutions and found in the ensemble docking near-native models:
R65a with D39g from 1AY7; Y72a with V345 from 1MAH. Anchor residues
are shown in orange.

In a few cases (e.g., 1AY7, 1MAH) we could observe that the
most successful pair of conformers were the most similar to the
bound state in terms of the RMSD of the predicted anchor residues
[25-26] (Fig 3A and 3B). In these cases, unbound ensembles can
explore bound-like orientations of specific interface key residues that
can improve the interacting capability of such conformers upon the

169



Protein plasticity improves protein-protein docking

docking and thus yield better docking results with respect to the
unbound. Fig 3C and 3D show two examples of such cases in which
ensembles generated successful conformers that would reproduce
key interface contacting pairs in the native orientation and that could
not be obtained using the unbound docking partners. Additional key
interface contacting pair involving anchor residues are shown in Fig
S4.

Conformer pairs providing better binding energy in the native
orientation are more likely to improve docking results

We reported that the structural similarity of the docking partners to the
native conformation is not determinant for the docking success in
general. However, what we found is that the better the binding energy
of a conformer pair in the native orientation (i.e, after optimal
superimposition on complex structure), the better the docking energy
of the produced near-native solutions (and therefore the success
rates) (Fig S5). This is in agreement with our previous findings
(Pallara et al., submitted). Thus, capacity to provide favorable binding
energy in the native orientation seems to be a major determinant for
the success of a given conformer pair.

In this regard, Fig 4A shows that for a given case the predictive
success (i.e., best ranked near-native solution) of unbound docking
strongly depends on the expected optimal binding energy of the
unbound subunits as calculated in the native orientation. All
successful docking cases (i.e., best near-native rank < 10) had
optimal binding energy of the unbound subunits in the native
orientation < 0.0 a.u. A number of unsuccessful cases had also
optimal unbound binding energy < 0.0 a.u., but the majority of them
(70%) significantly improved in the ensemble docking (highlighted as
black circles). Only two cases out of 7 having a pair binding energy <
-20.0 a.u. were unsuccessful in docking (1DFJ and 1MAH).
Interestingly, the cases with pair binding energy between -20.0 and 0
a.u. seem the ones more benefited by the ensemble docking, since
62% of the successful cases had an optimal binding energy within
such range. On the contrary, for cases with worse unbound optimal
binding energy (> 0.0 a.u.), the docking results for the ensemble were
as poor as those when using the unbound X-ray structures.
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Fig 4. Dependence of docking performance on the energetic
complementary of the docking partners. Distribution of the (A) best rank
of any near-native solution for unbound docking versus the binding energy of
the unbound partners in the native orientation; (B) best rank of any near-
native solution from all conformer pairs vs. the optimal binding energy of the
best pair of conformers in the native orientation. Cases that significantly

improve docking performance after ensemble docking are highlighted as
black circles.

Fig 4B shows the docking success for each case as compared
with the best binding energy of all docked pairs of conformers in the
native orientation. After ensemble docking, 87% of the successful
cases had optimal conformer pair binding energy < -20.0 a.u.. The
majority of cases with optimal conformer pair binding energy > -20
a.u. were unsuccessful after ensemble docking. All this confirms that
the existence of conformers capable of providing favorable binding
energy in the native orientation is a major determinant for the success
of the ensemble docking.

Conclusions

We reported here the first systematic study about the unbiased use of
precomputed unbound ensemble in docking. A novel docking strategy
was devised consisting on the use of conformational ensembles of
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the interacting subunits derived from molecular mechanics
minimization. Randomly selected pairs of receptor and ligand
conformers were docked with an FFT-based method, and all the non-
redundant resulting docking poses were scored by an energy-based
function. The results showed improved predictive rates as compared
with those of the unbound structures, especially in those cases with
medium-flexible conformational changes between unbound and
bound states. Docking success is not linked to an improvement in the
structural similarity of the conformers with respect to the bound state,
but rather to the better binding energy capabilities of the conformers
in the native orientation. We have shown here that a minimal
conformational heterogeneity can be used in a practical docking
protocol to improve the results of unbound docking. This has the
potential of further improving the predictive results by extending
conformational sampling and/or considering larger ensembles,
although this would involve an enormous computational cost. In this
line, much more efficient algorithms to use larger ensembles in
practical docking protocols will be needed.
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Table S1. Docking with random ensembles: Best rank of a near-native

docking pose

Complex® Random Random Random
Conf. (5) Unb. Rot. (5) Unb. Rot. (100)

Rigid (I-RMSDcq < 0.5 A) (18 cases)

1AVX (64) (211) (976)

1FSK 3 3 4

1GHQ (8001) (3290) (23384)

11QD (7) 4 2

1KLU (3807) (19418) (98251)

1KTZ (1562) (795) (9270)

1NCA 10 (50) (420)

1NSN (65) (580) (6396)

1PPE (8) 2 (21)

1ROR (91) (360) (92)

1SBB (512) (1205) (5424)

1WEJ 2 (29) 9

2JEL 1 3 (41)

2MTA 5 2 (23)

2PCC 1 5 9

2SIC 6 6 10

2SNI 5 4 4

2UUY (3166) (892) (13165)

Low-flexible (I-RMSDcq 0.5-1.0 A) (45 cases)

1AHW (13454) (9777) (360248)

1AY7 (46) (111) (784)

1AZS -) 8 (254)

1BJ1 (364) (293) (3180)

1BUH (266) (189) (2301)

1BVN 1 1 1

1DQJ (1118) (328) (1037)

1E96 7 5 (16)

1EAW 1 (197) (250)

1EFN (1001) (490) (6233)

1EWY 1 5 6

1F34 (3200) (670) (4025)

1F51 (43) 3 9

1FQJ (668) (1576) (6501)

1GCQ (48) (62) (2788)

1GLA (38) 1 9

1GPW 1 1 1

1HE1 (616) (4542) (118475)

1HES8 (1046) (4301) (44116)

1K (1121) (966) (777290)

1J2J (16) 2 5)

1JPS (24) (1420) (12959)

1K4C (1890) (-) (28657)

1K74 (61) (54) 10

1KAC (4359) (8321) (18603)
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1KXQ (29) 1 6
1MAH 3 1 1

1MLC 1 2 1

1N8O (121) (119) -
1QA9 (15092) (11140) (103447)
1QFW (675) (614) (5876)
1RLB (42005) (1801) (4773)
1$1Q (99) (756) (9589)
1T6B (205) (196) (580)
1TMQ 1 8 4

1UDI 2 1 4

1YVB 4 2 (22)
120K (319) (103) 10
1ZHI 7 1 4

2AJF (3914) (2430) (69360)
2B42 (39) 1 1

2BTF (77) (167) (34)
200B (1234) (1571) (2788)
2VIS (-) (-) ()

7CEI (27) (35) 6
Medium-flexible (I-RMSDcq 1.0-2.0 A) (35 cases)

1A2K (3415) (1290) (3966)
1AK4 (2229) (21200) (14322)
1AKJ (438) (372) -)
1B6C 3 1 1

1BGX (17600) (-) (841301)
1BVK (46) (289) (462)
1D6R (8) (331) (2660)
1DFJ 5 5 9

1E6E 1 1 1

1E6J 3 2 3

1EZU (1337) (4350) (6654)
1FC2 (205) (4336) 0

1GP2 (129) (352) (172024)
1GRN (71) (2171) (11864)
1HIA (62) (50) (37506)
114D (305) (18465) (2033)
119R -) (101) (243)
1K5D (1475) (1776) (912)
1KXP 1 2 (7)
1MLO (78) (41) (424)
1NW9 (53) 9 9
10PH (376) (70) (660)
1VFB (11) (88) (202)
1WQ1 (96) (1618) (2081)
1XD3 2 1 1

1XQS 7 17) (266)
125Y 10 (22) (23)
2CFH (892) (1908) (27689)
2FD6 6 (114) (762)
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2H7V (2345) -) (1413)
2HLE 17) 4 2
2HQS (7) (30) (15)
2125 (231) (553) (284)
208V (80) (11820) (74)
2QFW (132) 1 2
Flexible (I-RMSDcq 2.0-3.0 A) (18 cases)

1ACB (135) (369) (555)
1BKD (23) (966) (1937)
1CGlI (45) 5 (87)
1DE4 (-) -) (1725)
1E4K (1197) (14392) (79673)
1EER (43) (7292) (325)
112M (199) (247) 5

11B1 (28994) (18819) (70454)
11BR () () ()
1KKL (280) (458) (222)
1M10 9 (497) (1411)
1N2C 1 (22) 1

1PXV (1837) (318) (2852)
2CO0L (3449) (7473) (62804)
2HMI () () ()
2HRK (73) (79) (580)
2NZ8 (40) (28) (100)
2073 (213) ) (555)
Highly-flexible (I-RMSDcq > 3.0 A) (8 cases)

1ATN (2402) (2503) (3597)
1FAK (25) (1670) (34273)
1FQ1 (239) (16535) (35535)
1H1V ) ) (259770)
1IRA (-) (-) (-)
1JMO (2982) (13867) (121326)
1R8S (1174) (8370) (5277)
1Y64 ) ) )

@ PDB of the complex

(in bold: high affinity cases)
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3.3. Modeling protein interactions:
application to cases of interest

The expertise acquired during the first part of this PhD thesis on the
modeling and characterization of structure and dynamics of protein
interactions has facilitated the successful application of computational
methods to the modeling of protein interactions within different real-

life contexts.

This section will be mainly focused on (i) the energetic
characterization of host-pathogen protein interactions, and (ii) the ab

initio modeling of encounter complex ensembles of redox proteins.
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A challenge for microbial pathogens is to assure that their trans-
located effector proteins target only the correct host cell compart-
ment during infection. The Legionella pneumophila effector
vacuolar protein sorting inhibitor protein D (VipD) localizes to
early endosomal membranes and alters their lipid and protein
composition, thereby protecting the pathogen from endosomal
fusion. This process requires the phospholipase A1 (PLA,) activity
of VipD that is triggered specifically on VipD binding to the host
cell GTPase Rab5, a key regulator of endosomes. Here, we present
the crystal structure of VipD in complex with constitutively active
Rab5 and reveal the molecular mechanism underlying PLA; activa-
tion. An active site-obstructing loop that originates from the C-
terminal domain of VipD is repositioned on Rab5 binding, thereby
exposing the catalytic pocket within the N-terminal PLA; domain.
Substitution of amino acid residues located within the VipD-Rab5
interface prevented Rab5 binding and PLA, activation and caused
a failure of VipD mutant proteins to target to Rab5-enriched endo-
somal structures within cells. Experimental and computational anal-
yses confirmed an extended VipD-binding interface on Rab5,
explaining why this L. pneumophila effector can compete with cel-
lular ligands for Rab5 binding. Together, our data explain how the
catalytic activity of a microbial effector can be precisely linked to its
subcellular localization.

pathogenic bacteria | allosteric modulation | membrane composition |
X-ray crystallography

M icrobial pathogens have evolved numerous ways to subvert
and exploit normal host cell processes and to cause dis-
ease. Intravacuolar pathogens use specialized translocation
devices such as type IV secretion systems (T4SS) to deliver vir-
ulence proteins, so-called effectors, across the bacterial and
host cell membrane into the cytosol of the infected cell (1-3).
Many of the translocated effectors studied to date alter cellular
events such as vesicle trafficking, apoptosis, autophagy, protein
ubiquitylation, or protein synthesis, among others, thereby cre-
ating conditions that support intracellular survival and replica-
tion of the microbe (4, 5). Bacteria with a nonfunctional T4SS are
often avirulent and degraded along the endolysosomal pathway,
thus underscoring the importance of translocated effectors for
microbial pathogenesis.

Although T4SS-mediated effector translocation may be a
convenient way for pathogens to manipulate host cells from
within the safety of their membrane-enclosed compartment, it
also creates a challenging dilemma: how can the bacteria ensure
that their translocated effectors reach the correct host cell target
for manipulation, and how can they prevent them from indis-
criminately affecting bystander organelles or proteins that may
otherwise be beneficial for intracellular survival and replication of
the microbe? It is reasonable to expect that regulatory mecha-

E3514-E3523 | PNAS | Published online August 11, 2014

nisms have evolved that restrain the catalytic activity of effectors.
Although detailed insight into these processes is scarce, an
emerging theme among effectors is that their enzymatic activity is
functionally coupled to their interaction with a particular host
factor. For example, SseJ from Salmonella enterica serovar
Typhimurium displays glycerophospholipid-cholesterol acyl-
transferase activity only on binding to the active GTPases RhoA,
RhoB, or RhoC (6-8). Likewise, Pseudomonas aeruginosa ExoU
requires mono- or poly-ubiquitinated proteins for the activation
of its phospholipase A2 (PLA) domain (9), whereas Yersinia
YpkA exhibits kinase activity only in the presence of host cell
actin (10). Exactly how binding to host ligands results in the ac-
tivation of these translocated effectors remains unclear because
no structural information for these protein complexes is available.

VipD is a T4SS-translocated substrate of Legionella pneumo-
phila, the causative agent of a potentially fatal pneumonia known
as Legionnaires’ disease, and another example of an effector
whose catalytic activity depends on the presence of a host factor
(11-14). Following uptake by human alveolar macrophages,
L. pneumophila translocates VipD together with more than 250
other effector proteins through its Dot/Icm T4SS into the host cell
cytoplasm (15). These effectors act on numerous host processes to
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mediate evasion of the endolysosomal compartment and to es-
tablish a Legionella-containing vacuole (LCV) that supports bac-
terial growth (16). Although the precise biological role of most L.
pneumophila effectors remains unclear, we recently showed that
VipD is important for endosomal avoidance by LCVs. The pro-
tein localizes to endosomes presumably by binding to the small
GTPases Rab5 or Rab22, key regulators of endosomal function
(13, 14). Rab GTPase binding to the C-terminal domain of VipD
triggers robust phospholipase A1 (PLA;) activity within the N-
terminal domain, resulting in the removal of phosphatidylinositol
3-phosphate [PI(3)P] and potentially other lipids from endosomal
membranes (14). Without PI(3)P, endosomal markers such as
early endosomal antigen 1 (EEA1) are lost from these mem-
branes, most likely rendering the endosomal compartment fusion
incompetent (17). L. pneumophila mutants lacking vipD are at-
tenuated in avoiding endosomal fusion, and their LCVs acquire
the endosomal marker Rab5 more frequently than LCVs con-
taining the parental strain producing VipD (14). Thus, by cou-
pling PLA, activity to Rab5 binding, the catalytic activity of VipD
is directed specifically against the endosomal compartment with-
out visibly affecting neighboring cell organelles.

VipD was originally identified in a screen for L. pneumophila
effectors that interfere with the vacuolar sorting pathway in yeast
(11). The N-terminal half of VipD possesses high homology to
patatin, a lipid acyl hydrolase present in the potato tuber (12,
13). Analogous to other patatin-like proteins, VipD harbors
a conserved serine lipase motif Gly-x-Ser-x-Gly (x = any amino
acid) as part of a Ser-Asp catalytic dyad that, together with two
consecutive glycine residues (Asp-Gly-Gly motif), is expected to
stabilize the oxyanion intermediate during the acyl chain cleav-
age (13). Mutation of these conserved catalytic residues in VipD
results in loss of PLA; activity (14), confirming their role in
substrate hydrolysis.

The recently reported crystal structure of VipD confirmed the
predicted bimodular organization (13) and, in addition, revealed
a surface loop, called “lid” in other phospholipases, that shields
the entry to the catalytic site. The inhibitory lid may explain why
purified recombinant VipD alone exhibits little or no PLA; activity
in vitro. However, given that binding of Rab5 or Rab22 to VipD
activates the PLA; activity within the N-terminal region (14), we
wondered if and how this binding event causes the inhibitory lid to
be removed to render the active site substrate accessible.

Using an integrative approach involving X-ray crystallography,
molecular dynamics, biochemistry, and cellular imaging, we now
deciphered at a molecular level the mechanism that stimulates
the intrinsic PLA, activity of VipD and determined the underlying
specificity for the VipD-Rab5 interaction and endosomal targeting.

Results

Overall Structure of the VipD-Rab5 Complex. To determine the
molecular basis underlying VipD binding and activation by Rab5,
we initiated a crystallographic analysis of this complex. For that,
we used a truncated form (residues 18-182) of constitutively
active Rab5¢c(Q80L) lacking the N- and C-terminal hypervariable
regions, and a VipD fragment [amino acid (aa) 19-564; VipDg_se4]
that was designed based on a previously solved structure of
full-length VipDgr—Rab5c¢5_15, at lower resolution in which
the terminal residues (1-18 and 565-621) of VipD were not struc-
tured. We obtained well-diffracting crystals of VipDig_se4
in complex with Rab5c;s 152(Q80L) bound to nonhydrolyzable
guanosine 5'-[B,y-imido]triphosphate (GppNHp) and solved the
structure by molecular replacement (Fig. 1). Only the last seven
C-terminal residues of VipD;9_se4 and a connecting loop formed
by residues 345-354 could not be modeled because of poor
electron density in these regions. The final model for the
VipDig_sea-Rab5cis 152(Q80L)-GppNHp structure was refined
at 3.1 A, with values for Ry,or and Ry of 0.23 and 0.28, re-
spectively (Table 1 and Fig. S14).

Lucas et al.

Catalytic site

N-terminal

Fig. 1. The sites for substrate catalysis and Rab5 binding are situated at
opposite ends of VipD. Two orthogonal tube drawing representations of the
crystal structure of VipDig_ses (slate) in complex with GppNHp-Rab5¢1g 152
(pink). (A) Side view. (B) Top view. VipD comprises two distinguishable but
interconnected domains highlighted by gray elliptical shadows. The N-ter-
minal half of VipD comprises a patatin-like phospholipase domain, whereas
the C-terminal domain interacts with Rab5c. Note that the catalytic site and
the Rab5 binding interface are located at opposite ends of VipD.

The crystallographic asymmetric unit contained four
VipDjg_ses—Rab5c;s-152(Q80L) heterodimers with almost iden-
tical interaction modes (Fig. S1B). Superposition of the atomic
coordinates showed a root mean square deviation (RMSD) of

Table 1. Data collection and refinement statistics for the
VipD19_ses—Rab5¢15_152(Q80L):GppNHp complex

VipD1g_se4—Rab5c15-182(Q80L)

Data collection

Space group P1
Cell dimensions
a b, c(A) 94.3, 98.0, 109.9
o B,y () 76.6, 80.8, 78.9
Resolution (A) 30-3.07 (3.26-3.07)*
Remeas 0.07 (0.74)
I 17.0 (2.1)
Completeness (%) 97.4 (92.6)
Redundancy 3.5 (3.6)
Refinement
Resolution (A) 3.07
No. reflections 67,479
Ruwork/Riree 0.23/0.28
No. atoms
Protein 21,659
Ligand/ion 132
B-factors
Protein 54
Ligand/ion 74
RMSDs
Bond lengths A) 0.002
Bond angles (°) 0.631

*Highest resolution shell is shown in parentheses.
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0.65-0.69 A among the four VipDjo_se—Rab5cys 52(Q80L)
complexes. Rab5c¢g_15,(Q80L) was in its active conformation and
bound to one molecule of GppNHp and one Mg>* ion (Fig. 1). It
adopted the classical GTPase fold consisting of a central six-
stranded f-sheet surrounded by five a-helices (18). The structure
of VipDj9_se4 exhibited two discernible but interconnected domains.
Rab5c;s 152(Q80L) interacted extensively with a helical hairpin
situated at the C-terminal domain of VipDjg_se4, and, thus, at
the distal end relative to the N-terminal catalytic site (Fig. 1). It
is worth noting that, although the structure of active Rab5c;s_
152(Q80L) remained essentially unaltered, VipD9_s¢4 exhibited
several dramatic conformational rearrangements compared with
the uncomplexed crystallographic model (13), as discussed next.

Rab5 Binding to VipD Induces Conformational Changes That Expose
the Active Site. On Rab5, binding the largest RMSD in VipD19_se4
occurred in its C-terminal domain and in the structural elements
that connect it to the N-terminal phospholipase domain
(Fig. 24). Residue Phe442 located in helix al17 of the C-terminal
domain of VipD;g9_s¢4 undergoes a 90° rotation and enters a hy-
drophobic pocket in Rab5c;g 15,(Q80L) formed by Arg82,
Tyr83, and Leu86 (Fig. 2B). This rotation pulls the adjacent
al6-al7 loop of VipDyg_ses toward Rab5c;g_15,(Q80L), thereby
facilitating the hydrophobic interaction of Ile433 of VipDig_ses
with Ile54 in the switch I region of Rab5c;5_15,(Q80L) (Fig. 2B).
The displacement of loop al6-x17 in VipDyg_se4 induces a par-
tial reorientation of the adjacent p-sheet formed by p1, f2, and
p11, together with small shifts in helices of the C-terminal do-
main of VipDig_se4. These cumulative movements cause helices
al3 and al4 of VipDig_ses to swing out 14.5° and 6.6°, re-
spectively, which is coupled with a coil-helix transition of the
$9-a13 loop to adjoin helix al3 (Fig. 24). This hinge motion of
helices a13 and al4 (“chop-stick” mechanism) facilitates an

A

Omm—
RMSD (A)

outward displacement of the adjacent $10-al4 loop (sub-
sequently named lid), resulting in the eventual opening of the
active site (Fig. 2 C-E). Notably, there were no mayor crystal-
lographic contacts in the areas corresponding to al3, «14, and the
lid, making the displacement of the lid due to the proximity of
neighboring protein molecules within the crystal lattice unlikely
(Fig. S1C). The exposed cleft, with its catalytic residues and the
oxyanion hole situated at one end, measures 16-18 A in length and
thus has the potential to accommodate a C;6~C;g acyl chain from
a lipid substrate within the adjacent hydrophobic ridge (Fig. 2E and
Fig. S1D). Together, these findings provide evidence for an un-
precedented heterotropic allosteric activation mechanism in which
locally induced structural changes through Rab5c;s 15(Q80L)
binding are transmitted from the C-terminal domain of VipDjg_s64
to the N-terminal phospholipase domain, causing the displacement
of the lid and exposure of the active site.

VipD-Rab5 Interface. Our complex structure revealed a single in-
teraction path between VipDj9_ses and Rab5c;g_15,(Q80L) that
occluded ~722 A% of solvent-accessible surfaces. Although
Rab5c¢;s_152(Q80L) interacted with residues in the a16-a17 loop
of VipDj9_s64 and residues in an helical hairpin formed by he-
lices «l7 and «l8 (Fig. 34), the VipD binding surface in
Rab5c¢g-152(Q80L) included parts of the segment between al
and B2 (the switch I region), the strands 2 and B3 (the inter-
switch region), and the f3-a2 segment (the switch II region)
(Fig. 34). The interface was composed of a core of hydrophobic
contacts complemented by several polar interactions in the sur-
rounding rim area (Fig. 3B). Specifically, the VipD binding
epitope in Rab5c;s 15>(Q80L) included nonpolar residues in the
switch I (Ile54, Gly55, Ala56, and Phe58), the interswitch
(Trp75), and the switch I element (Tyr83, Leu86, Met89, and
Tyr90), as well as polar/charged residues in the interswitch

Rab5

&
23. G
235 8

\ al3
ﬁoxyanion hole
B

Catalytic site

CLOSED

Oxyanion hole
W Catalytic site

Fig. 2. Allosteric activation of VipD through Rab5 binding. (A) Structural changes in VipD on Rab5 binding. Rab5c;s_1g, (colored in pink) is complexed to
VipD19_s64, Which is colored from slate to red based on the root mean square deviation (RMSD) of C-a atom pairs when superimposed with the unbound form
of VipD1g_s¢4 (PDB ID code 4AKF) shown in transparent gray. The black line represents the membrane plane. (B) Close-up of VipD-Rab5 interaction. The a17-a18
loop of VipD undergoes a Rab5-induced conformational rearrangement resulting in residue Phe442 of VipD being inserted into a hydrophobic pocket formed by
Arg82, Tyr83, and Leu86 of Rab5. The displacement of the «16-17 loop favors the hydrophobic interaction between Leu432 and Ile433 of VipD with Ile54 of Rab5.
Color code as in A. The remaining VipD structure has been omitted for clarity. (C) Close-up view of the catalytic site highlighting displacement of the lid (310-a14
loop, light blue). (D and E) Surface representation of the unbound (D) and Rab5-bound (E) VipD molecule, respectively. Same view as in C.
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Fig. 3. Molecular interactions at the VipD-Rab5c interface. (A) (Left) Semitransparent surface of GppNHp-Rab5cig_ 15, in complex with the minimal Rab
binding domain of VipD (slate ribbon model) highlighting the interfacial residues below 4.0-A distance. (Right) Schematic diagram of interfacial residues in
the VipD-Rab5c complex. (B) Detailed description of per-residue contribution from van der Waals (vdW) energy (blue), nonpolar solvation energy (purple),
and the sum of electrostatic and polar solvation energy (orange) calculated by computational alanine scanning for interfacial residues in the VipD-Rab5c
complex. Existing glycines and alanines are excluded in the calculation. (C) Sequence conservation between Rab5 GTPases from amoebean species and human
homologs. Dd, Dictyostelium discoideum; Df, Dictyostelium fasciculatum; Dp, Dictyostelium purpureum; Pp, Polysphondylium pallidum; Ac, Acanthamoeba
castellanii; Hs, Homo sapiens. Rab5c residues contacting VipD at a distance less than 4 A are colored in light brown. Amino acid substitutions within the
equivalently aligned interfacial residues of other Rabs are highlighted in a red box. Interfacial residues strictly conserved between Rab5 and Rab22, but
variable in any of the other Rabs, are depicted in the bottom line of the alignment. Protein accession numbers are in brackets.

(Thr60, Lys71, and Glu73) and switch II element (Arg82 and
Arg92) (Fig. 3 4 and B). A comparison of the primary sequence
of human Rab5 and Rab22 with Rab5 from several natural
amoebean hosts found conserved residues at equivalent contact
sites in the switch I (Ile54, Gly55, and Ala56), interswitch
(Lys71), and switch II region (Arg82, Leu86, and Met89) that
were variable in other Rab proteins (Fig. 3C), suggesting these
residues are involved in the specific recognition by VipD. The
corresponding epitope in VipD included several hydrophobic
residues in helix al7 (Phe442, Ala446, Ala450, and Leu454) and
in helix al8 (Tyr473, Ile480, and Val483) that wrapped around
an elongated hydrophobic path in Rab5 formed by the conserved
triad (PheS8, Trp75, and Tyr90) and Leu86. Surrounding this
hydrophobic core were additional hydrogen bonds that enhanced
the interaction.

Like all GTPases, Rab5 exhibits structural changes within its
switch regions dependent on its nucleotide-binding state (GDP
vs. GTP), with the largest conformational variation in switch I
(19). The structure of the VipDyg_sss—Rab5c;g_15,(Q80L) com-
plex revealed that Leu432 and Ile433 of VipDig_se4 interacted

Lucas et al.

with Ile54 in switch T of Rab5c;s_152(Q80L), therefore sensing its
GTP-bound state (Fig. 2B). In fact, the conformation adopted by
Rab5 in its GDP-bound state (19) resulted in a prominent steric
clash between the switch I region and helix al7 of VipDjg_ses
(Fig. S1E), thus explaining why this activation state of Rab5 is
only a poor ligand for VipD (13, 14).

Validation of the VipD-Rab5 Interface Through Mutational Analysis.
To experimentally validate the VipD-Rab5 binding interface
seen in the crystal structure, we mutated several residues pre-
dicted to contribute to this protein—protein interaction and ex-
amined their role for complex formation in coprecipitation
studies (Fig. 4A4). Substitution of individual contact residues
within VipD abrogated Rab5 binding either severely (F442A and
H453D) or moderately (Q449A, E461R, Y473A, and D479H),
whereas only a few of the tested substitutions in VipD were
tolerated (Q476A and D484H). Similar results were observed for
Rab5 interface mutants (Fig. 4B), with binding defects ranging
from severe (F58A, Y83A, and R92E) to mild (E73R and
Y90A). We also studied the mode of interaction between VipD
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Fig. 4. Mutational analysis of interfacial recognition determinants. (A-C) Pulldown assays using the indicated VipD (A and C) or Rab5 (B) mutant proteins. The
graphs are a densitometry-based quantification of the amount of query protein precipitated by the respective bait-coated beads. Input, total amount of query. (D
and E) Fluorescence-based PLA activity assays using VipD (D) or Rab5c () variants. (D) The indicated VipD protein was incubated with Rab5(Q80L)1g_15,:GppNHp or
Rab22(Q64L)16-181:GppNHp (molar ratio 1:2) or with buffer alone, and PLA;-dependent cleavage of the substrate Bis-BODIPYFL C;4-PC was detected as an increase
in fluorescence emission [relative fluorescence units (RFUs)]. (E) Same assay as in D using the indicated Rab protein variants.

and Rab22. As expected, substitution of individual contact resi-
dues of VipD required for Rab5c;s_13>(Q80L) binding (Fig. 44)
also resulted in a failure to stably associate with Rab22(Q64L)
(Fig. 4C), suggesting that Rab22 occupies an epitope in VipD
very similar to that of Rab5. None of the amino acid sub-
stitutions significantly altered the overall structure of the mutant
proteins as evaluated by circular dichroism (CD) (Fig. S2), in-
dicating that a reduction in binding was most likely not a conse-
quence of protein misfolding.

Given that the PLA; activity of VipD is triggered only in re-
sponse to Rab5 binding, we analyzed how amino acid substitutions
that attenuate VipD-Rab5 complex formation affect the PLA;
activity of VipD. Using a generic fluorogenic substrate (bis-BOD-
IPY FL C,;-PC), we found a tight correlation between loss of PLA;
activity and the inability of VipD mutant proteins (F442A, H453D,
and D479H) to enter a stable complex with RabSc;s 15(Q80L) or
Rab22,6 151(Q64L) (Fig. 4D). Similar results were observed for
Rab5c;s 152(Q80L) mutant proteins (F5S8A, Y83A, and R92E) that
had failed to stably associate with VipD and were hence unable to
trigger its PLA; activity (Fig. 4E). The observed crystallographic
interaction between VipD and Rab5 thus corresponded to their
molecular association in solution, and failure to form a stable
VipD-Rab5 or -Rab22 complex caused the PLA; domain to re-
main in its catalytically inactive state.

Disruption of the Interaction with Rab5 Precludes Endosomal
Targeting of VipD. Within transiently transfected COS1 cells,
fluorescently tagged VipD was enriched on Rab5-containing
early endosomes, and this colocalization required the C-terminal
Rab5 binding domain but not the N-terminal PLA; domain (13,
14). A recent study reported that depletion of Rab5 (isoforms
a-c) and Rab22a from HeLa cells by RNA interference (RNAi)
did not affect VipD targeting to endosomes, claiming that
endosomal localization of VipD would not simply depend on the
interaction with Rab proteins (20). Given that RNAi rarely
depletes the entire pool of a given cellular target and that VipD
recruitment to endosomes could have been mediated not only
by Rab5 and/or Rab22 but by additional yet unidentified Rab

E3518 | www.pnas.org/cgi/doi/10.1073/pnas.1405391111

GTPases, we set out to reevaluate VipD’s endosomal targeting
mechanism. For that, we analyzed the intracellular distribution
pattern of four VipD mutant proteins that were either severely
(F442A) or moderately (E461R and Q476A) attenuated for
Rab5c binding in vitro (Fig. 4). Although WT VipD displayed
robust colocalization with GFP-Rab5cs_15,(Q80L)-positive
endosomes, VipD(F442A) was entirely cytosolic (Fig. 5), consis-
tent with this mutant’s inability to bind Rab5c. In contrast, VipD
(E461R) and VipD(Q476A) showed no apparent difference in
localization compared with WT VipD (Fig. 5). These findings
strongly suggest that endosomal targeting of VipD is in fact de-
pendent on the interaction with host cell Rab GTPases and that
interference with the formation of these protein complexes results
in the failure of VipD to properly localize to endosomes.

The N-Terminal Tail of VipD Is Crucial for PLA; Activity. In the
uncomplexed structure of VipD, the N-terminal tail (residues
1-18; N18) contained a small amphipathic helix (H1) that was
involved in an intermolecular crystal contact (13). The structure
of full-length VipD;_g; bound to Rab5c;g 15,(Q80L), on the
other hand, contained no clear electron density for N18, sug-
gesting that this region of VipD possessed high flexibility. Small
angle X-ray scattering (SAXS) and gel filtration chromatography
analysis suggest a heterodimeric VipD;_g>1—Rab5c;s 15>(Q80L)
complex in solution, indicating that N18 was not involved in any
oligomer formation (Fig. 6 A and B and Fig. S3). Given that the
complexes of Rab5c;5 152(Q80L) with either full-length VipD;_g24
or truncated VipDyg_s64 exhibited nearly indistinguishable struc-
tures, we concluded that N18 was dispensable for the conforma-
tional changes induced by Rab5 binding. Consequently, we
evaluated whether this short region was also dispensable for PLA;
activity of VipD. Unexpectedly, we found that, unlike VipD;_g>1,
the truncated fragment VipDjg_ses lacking N18 was strongly at-
tenuated for PLA; activity (Fig. 5C). To exclude the possibility
that loss of PLA; activity in VipD;9_s64 Was caused by the lack of
the C-terminal region (aa 565-621), we tested two additional
constructs, VipD;_ses and VipDig_s21, and detected robust PLA
activity only in VipDj_se4, indicating that N18 but not the
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Fig. 5. VipD localization to endosomes requires a functional Rab5 binding interface. Transiently transfected COS-1 cells producing Rab5a(Q79L) and the
indicated mCherry-tagged VipD variants were analyzed by fluorescence microscopy to determine protein localization. The merged images (bottom row) show
Rab5a(Q79L) in green and VipD variants in red. (Insets) Magnified view of endosomes marked by an arrowhead. Control, mCherry. (Scale bar, 2 pm.)

C-terminal region critically contributed to the catalytic activity of
this L. pneumophila effector (Fig. 5C). According to these ob-
servations, we propose that the flexible N18 with its amphipathic
helix H1 and its close distance to the membrane plane may pro-
mote peripheral association of VipD with the lipid bilayer, pos-
sibly by orienting the catalytic site toward the membrane and/or
assisting in substrate transfer.

Competitive Rab5 Binding Through Interface Expansion. To localize
to and stably associate with endosomal membranes, VipD needs to
outcompete cellular ligands for Rab5 binding. EEA1, Rabaptin-5,
and Rabenosyn-5 are each bound by Rab5 through a surface that
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includes the switch and interswitch region and that significantly
overlaps with the epitope for VipD binding (19, 21, 22). To
determine if and how the distribution of interaction energies differs
within each of these complexes, we extended the computational
alanine scan to the EEA1, Rabaptin-5, and Rabenosyn-5 epitopes
and calculated the free binding energy for each of their residues
(Fig. 74 and Figs. S4 and S5). All four analyzed protein interfaces
share a number of nonpolar interacting residues in Rab5, namely
the conserved triad (PheS8, Trp75, and Tyr90), with relatively
similar energetic contributions to binding (Fig. 74 and Fig. S5B).
The polar interactions surrounding this hydrophobic triad,
however, determine their differential affinity, with the contact of

Catalytic site

Fig. 6. The N-terminal 18 residues of VipD are essential for its PLA activity. (A) Fit of the optimized crystallographic VipD_sgs-Rab5c;g_15,(Q80L) model (red
line) to the experimental SAXS data of the complex (blue dots). (B) Fitting of the VipD9_ss4-Rab5¢;5-152(Q80L) crystallographic model (VipD in slate and Rab5
in pink) into the averaged ab initio envelope in two orthogonal views and superimposed with the unbound form of VipD (PDB 4AKF) in gray. Note the
proximity of the N18 (residues 1-18 of VipD, PDB 4AKF) in red to the catalytic site. (C) Fluorescence-based PLA activity assays showing that the N18 segment of

VipD is essential for its PLA; activity.
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Arg92gaps With Asp479vipp and Asp484vy;ipp providing a particu-
larly large energetic contribution to the interaction of VipD with
Rab5 compared with the other cellular ligands (Fig. 74 and Fig.
S5B). To verify the importance of this predicted hot-spot for VipD
binding, we analyzed the affinities of either Rab5c;g_15,(Q80L) or
Rab5cg152(Q80L, R92A) toward VipD by surface plasmon res-
onance (SPR) spectroscopy. R92A mutation in Rab5 severely
decreases the binding for VipD 124-fold while affecting the in-
teraction with EEA1, Rabenosyn-5, and Rabaptin-5 to a much
lesser extent (3.2-, 1.7- and 1.0-fold, respectively) (Fig. 7 B and C
and Fig. S6). These findings pinpoint a binding hotspot for the
superior affinity of VipD over the endogenous Rab5 ligands and
confirm a good qualitative correlation between the computational
analysis and the experimentally observed results.

Discussion

VipD from L. pneumophila has long been predicted to function
as a phospholipase during infection (11, 12), yet its catalytic
activity had only recently been confirmed when it was shown that
binding of host cell Rab GTPases (Rab5 and Rab22) is necessary
for VipD to exhibit robust PLA; activity (14). The crystallo-
graphic analysis described here provides an in-depth view of the
Rab5-mediated activation mechanism. Above all, it uncovered
a complex cascade of structural rearrangements within the
C-terminal domain of VipD that result in the relocation of an
active site-occluding lid and the exposure of the substrate bind-
ing pocket within the N-terminal PLA; domain of VipD.

A 7 R92

A X
VipD:Rab5 | EEA1:Rab5 |

Rabenosyn-5:Rab5

The structure of VipD in complex with Rab5c(Q80L) pre-
sented here is, to our knowledge, the first of a bacterial phos-
pholipase bound to a host cell protein and the first of any
translocated effector in complex with its allosteric activator
molecule. Phospholipases constitute a common cellular tool to
alter the lipid composition of membranes, and their activity must
be carefully dosed and precisely directed toward the respective
target membrane. There are more than 10,000 proteins (8,101 in
Bacteria and 2,374 in Eukaryotes) containing potential patatin-
like domains, most of them within a modular domain arrange-
ment (23). Many members of the family of cytosolic phospholi-
pases A, (cPLA,), all of which share a patatin-like fold, contain
a C2 domain crucial for membrane localization (24, 25). The
patatin-like fold is also highly homologous to the group of cal-
cium-independent phospholipases A, (iPLA;), in which many
members contain ankyrin repeats, a repetitive helix-turn-helix-
loop structure considered to be a common platform for protein—
protein interactions (24). Considering that Rab GTPases are key
players in defining membrane identity and that many effectors
from L. pneumophila have been acquired via horizontal gene
transfer (26, 27), it is plausible that the scheme presented here for
the concomitant localization and activation of VipD can be gen-
eralized across other microbial and eukaryotic phospholipases.

Human Rab5 interacted with VipD through a helix-turn-helix
element that was similar to that used for Rabenosyn-5 binding
(21), although the interface was slightly shifted toward the switch II
region. Despite the observed overlapping contacts, the energy for
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Fig. 7. Energy distribution between different effector binding epitopes in Rab5. (4) Space-filling model of Rab5c highlighting the epitopes for the interaction
with VipD (Far Left), EEA1 C2H2 Zinc Finger (PDB ID code 3MJH) (Center Left), Rabenosyn-5 (rebuilt from PDB ID code 1Z0J) (Center Right), and Rabaptin-5 (PDB
ID code 1TU3) (Far Right). Epitopes are colored as an intensity gradient according to the binding free energy change (AAG) estimated as the difference between
the binding AG of the WT and that of the alanine mutated complex. Existing glycines and alanines are excluded in the calculation. (B) Concentration de-
pendence of the equilibrium surface plasmon resonance response for the binding of VipD WT, EEA1 C2H2 Zinc Finger (aa 36-91), Rabenosyn-5 (aa 1-70), and
Rabaptin-5 (aa 739-862) to Rab5c5 152(Q80L) or Rab5¢;5152(Q80L, R92A). Req represents the equilibrium SPR response normalized to the fitted maximum value
for each dataset. (C) Table of the mean Ky values and SDs for at least two independent experiments showing the Ky ratio variation.
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VipD binding was not distributed uniformly across the interface but
instead concentrated into a combination of hotspots that provide
superior binding affinity and specificity (Fig. 7 and Fig. S6). A
conserved hydrophobic triad in Rab5 (Phe58, Trp75, and Tyr90)
supplied the core binding energy that was complemented by more
specific polar and nonpolar contacts. Notably, most of these resi-
dues were highly conserved among Rab5 homologs from amoe-
bean species, the natural host of L. pneumophila, or from the
surrogate host Dictyostelium sp. (Fig. 3C). The ability to discrimi-
nate between GDP- and GTP-bound Rab5 and to compete with
endogenous ligands evidences a remarkable adaptation for direct-
ing and retaining VipD on endosomal membranes. Interference
with VipD-Rab5 complex formation, for example, by substituting
Phe442 or His453 of VipD, strongly reduced the capability of these
mutant proteins to interact with Rab5 (Fig. 44), to exhibit PLA,
activity (Fig. 4D), and to efficiently localize to the endosomal
compartment (Fig. 5), thus demonstrating that the function of
VipD is intimately coupled to the presence of this host GTPase.

A hallmark feature of many phospholipases is to be minimally
active on monomeric lipid substrates but undergo a substantial
activation on binding to the surface of phospholipid membranes
or micelles, a phenomenon known as interfacial activation (28—
31). This behavior has been attributed to a flexible lid that at the
lipid—water interface facilitates substrate diffusion to the cata-
Iytic site rather than being allosterically modulated through
distant ligand binding (25). VipD does not display any interfacial
activation despite having a short lid occluding the access to the
catalytic site. Rather, when VipD is bound to Rab5, the lid is
displaced through a chopstick-like activation mechanism in
which the swing movement of two a-helices («13 and «14) al-
losterically controls accessibility of the catalytic site. We cannot
exclude the possibility that additional mechanisms contribute to
the activity and/or specificity of the substrate catalysis by VipD.
For example, the coil-helix transition of the p9-al3 loop to
adjoin helix a13 relocates several charged residues closer to the
catalytic groove, which might result in interactions with lipid
head groups or other membrane components. Consistent with
this notion, we discovered that the flexible N-terminal segment
N18 of VipD is critical for the catalysis of a generic membrane-
embedded substrate (Fig. 6). Deletion of N18 reduced the PLA,
activity of VipDjg_s¢4 but did not interfere with allosteric acti-
vation of the catalytic site. We hypothesize that N18 bearing
a short amphipathic a-helix may facilitate the correct positioning
of the PLA; domain toward the lipid layer, promote substrate
diffusion from the lipid-water interface into the catalytic site, or
a combination of both effects as has been previously described
for secretory PLA, enzymes (32, 33). Interestingly, the N-ter-
minal tail of VpdA (residues 11-54) and the N-terminal segment
of P. aeruginosa ExoU (residues 57-96) showed structural simi-
larity to the equivalent region of VipD despite lacking sequence
homology (Fig. S7). Moreover, region 57-96 of ExoU, although
not part of the phospholipase domain (34), was critical for cyto-
toxicity within transfected mammalian cells (35), suggesting that
this segment contributes to the phospholipase activity of ExoU.
We hypothesize that the equivalent region in VpdA may be
equally important for the catalytic activity of this L. pneumophila
effector and that appendixes, such as the N-terminal domains, may
play important yet unresolved roles in membrane association and/
or substrate transfer in other bacterial phospholipases.

In summary, our findings disclose an unexpected mode of
long-range allosteric regulation of the PLA, activity of VipD and
explain how endosomal targeting is accomplished through com-
petitive Rab5 binding. Our study also provides the basis for the
development of novel therapeutic approaches that, rather than
directly targeting the enzyme’s active site, specifically disturb the
host factor-mediated activation process of VipD and related
microbial phospholipases.
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Materials and Methods

Plasmids and Cloning. The DNA sequences encoding VipD, VipD1g-sga, VipD1-s6a,
VipD1g 621, Rab5¢15152(Q80L), Rab22a6151(Q64L), EEA1369;, and Rabeno-
syn54_7o were cloned into the vector pGST-Parallel2 (36) using BamHI and Xhol
restriction sites. Rabaptin5;39_gs> and Rab7a(Q67L) were cloned between the
Ncol and Xhol restriction sites of pGST-Parallel2. PCR was performed using
Phusion polymerase (Thermo). The PCR product was purified with QIAquick
Gel Extraction Kit (NewEngland) and ligated into the digested pGST-Parallel2
vector using Quickligase (BioLab). The ligation mixture was used to transform
Escherichia coli XL1 Blue competent cells, and transformants were then se-
lected on Luria-Bertani (LB) plates containing 100 pg/mL ampicillin. The
presence of the insert in the plasmid was tested by colony PCR. Quickchange
mutagenesis was used to make directed mutations. The correct transformants
were grown to isolate the plasmids that were sequenced on both strands.
Plasmids and oligonucleotides used in this study are listed in Tables S1 and
S2, respectively.

Protein Expression and Purification. VipD was purified from E. coli BL21 (DE3)
grown in LB medium and induced at an ODggo = 0.8 by the addition of
0.5 mM isopropyl p-o-1-thiogalactopyranoside. Cells were harvested after
16 h of growth at 18 °C. The cell pellet was resuspended in buffer A (50 mM
Tris-HCl, pH 8.0, 300 mM NaCl, and 1 mM DTT) supplemented with 0.1 mM
phenylmethylsulfonyl fluoride, 1 mM benzamidine, and 1 mg/mL lysozyme
and disrupted by sonication, and the lysate was cleared by centrifugation at
50,000 x g for 45 min. The supernatant was incubated for 2 h in batch with
glutathione Sepharose beads (GE Healthcare) followed by extensive washing
of the beads with buffer A in a gravity column. The N-terminal glutathione
S-transferase (GST)-tag and linker were proteolytically removed by over-
night incubation at 4 °C in the presence of tobacco etch virus (TEV) protease
in 50 mM Tris-HCl, pH 8.0, 150 mM Nacl, and 1 mM DTT. The cleaved protein
was eluted and further purified by ion exchange chromatography (HitrapQ;
GE Healthcare) using a gradient of 50-1,000 mM NaCl, followed by size
exclusion chromatography (Superdex200 16/60; GE Healthcare) in buffer B
[25 mM Tris-HCl, pH 7.5, 150 mM Nacl, 5% (vol/vol) glycerol, and 1 mM DTT].
VipD mutants and truncated constructs were purified following the same
procedure. The concentration of these proteins was calculated using the
theoretical extinction coefficient.

Rab5c15132(Q80L) was 