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1. Introduction 



 “Men love to wonder, 
and that is the seed of science.”  

Ralph Waldo Emerson 
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1.1. Biological and biomedical importance 
of proteins  

Accounting for about half of the total dry mass of cells, proteins play a 

major role in nature (Alberts, 1998). Often described as the factories 

of the cell, proteins are large biomolecules that play essential 

functional and structural roles within cells. 

The building blocks of proteins are the amino acids, which are 

small molecules composed of an amine and a carboxylic group and 

differ in the side chain they carry on the alpha carbon (Cα) atom. 

Amino acids polymerize by forming a peptide bond between the 

carboxyl group of one amino acid and the amide group of another 

one, yielding large polypeptide chains. Through transcription and 

translation, the information carried by DNA is transformed into a 

polypeptide chain that might eventually be chemically modified by 

post-translational modifications. A total of 20 amino acids are 

encoded in the genome.  

Once formed, proteins only exist for a certain period of time 

(typically ranging from minutes to years) and are then degraded and 

recycled by the cell's machinery through a process referred to as 

protein turnover.  

1.1.1. Physiological function of proteins 

According to their functions, different protein types have been 

identified. Enzymes are known to catalyze more than 5,000 

biochemical reactions (e.g., pepsin is a digestive enzyme in the 
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stomach that degrades food proteins into peptides). Antibodies, 

produced by the immune system, identify and neutralize pathogens 

such as bacteria and viruses. DNA-associated protein, like histones 

or cohesin proteins, arrange chromosome structure during cell 

division and play a role in regulating gene expression. Contractile 

proteins, such as actin and myosin, are involved in muscle contraction 

and movement. Hormone proteins coordinate bodily functions (e.g., 

insulin controls our blood sugar concentration by regulating the 

uptake of glucose into cells). Finally transport proteins move 

molecules within our bodies (e.g., hemoglobin transports oxygen 

through the blood). 

Given their central role as executive machinery of a cell, 

proteins cover nearly every task in all the biological processes that 

occur within and between cells. Examples of such important 

processes are signal transduction (Furge, 2008), cellular energy 

metabolism (Atkinson, 1977), transcriptional regulation (Lee and 

Young, 2013) or membrane trafficking (Cheung and de Vries, 2008), 

some of which are relevant for the work of this thesis.  

Signal transduction 

Signal transduction generally refers to any basic cellular process 

involving the conversion of a signal from outside to a functional 

change within the cell. It generally starts when an extracellular 

signaling molecule (usually hormones, neurotransmitters, cytokines, 

growth factors or cell recognition molecules) activates a specific 

receptor located on the cell surface or inside the cell. In turn, this 

receptor triggers a signaling relay inside the cell, eventually ending to 

the modulation of DNA-related processes in the nucleus, which finally 

provokes a response (e.g., altering cell's metabolism, shape or ability 
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to divide). The signal is amplified at any step so that one signaling 

molecule can cause many responses (Furge, 2008). 

 

Figure 1. Example of signaling transduction process: 
MAPK/ERK signaling pathway. (From Kim and Bar-Sagi, 2004) 

MAPK/ERK signaling pathway (also known as the RAS-RAF-

MEK-ERK cascade) (Wortzel and Seger, 2011) is one of the principal 

and better-known signal transduction processes in cells. Indeed, it is 

involved in the tight regulation of many biological events, such as 

meiosis, gastrulation, embryogenesis, cell fate determination, 

angiogenesis and immune response. As shown in Figure 1, the 

starting point of the cascade consists in the binding of a ligand (e.g., a 

growth factor, cytokine, or hormone) to the extracellular portion of two 

subunits of a transmembrane protein (i.e., a receptor tyrosine kinase 
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(RTK)). This interaction, in turn, leads to RTK dimerization, 

phosphorylation of its cytoplasmic domains and the consequent 

binding of a cytoplasmic adaptor protein (CAP), such as GRB2. The 

newly formed complex attracts SOS protein, a guanine-nucleotide 

exchange factor (GEF), to the plasma membrane, which activates a 

small G proteins belonging to RAS superfamily. During the time it is 

active, RAS stimulates BRAF, a mitogen-activated protein kinase 

kinase kinase, which in turn binds and activates MEK dual-specificity 

protein kinase (Roskoski, 2012). MEK in turn prompts the stimulation 

of ERK, the third and final kinase in the cascade, which is responsible 

for the activation of a huge rooster of substrates, at least 160 

proteins, including several transcriptional factors (e.g., ELK1, ETS, 

and c-FOS). 

Cellular energy metabolism 

Cellular metabolism is the set of life-sustaining chemical 

transformations within the cells. It includes all the reactions involved 

in the breakdown of molecules to obtain energy (catabolism) as well 

as in synthesizing macromolecules or small precursors (e.g., amino 

acids) needed by the cell (anabolism). Metabolic pathways can be 

simple linear sequences of a few reactions, but they can also be 

extensively branched with reactions converging on or diverging from a 

central main pathway. Alternatively, they can be cyclic, with a 

precursor of an early reaction regenerated at the end of a pathway 

(Atkinson, 1977). 

One of the more complex and widely studied anabolic 

pathways is photosynthesis (Whitmarsh and Govindjee, 1999). This 

physicochemical process is carried out in all autotrophic organisms, 

such like green plants, algae and photosynthetic bacteria. It mainly 
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includes two steps: (i) sunlight absorption and its conversion into 

chemical energy through Photosystem I and II (Caffarri et al., 2014); 

(ii) usage of the previously stored energy to assemble carbohydrates 

from carbon dioxide molecules by means of the so-called Calvin 

cycle. 

Transcriptional regulation 

Transcriptional regulation is the mechanism by which a cell regulates 

the conversion of DNA to RNA, thereby orchestrating gene activity 

modulation. This basic process, shared within all the living organisms, 

is tightly coordinated by transcription factors and other proteins, which 

work in concert to finely tune the amount of RNA being produced. 

(Lee and Young, 2013). 

 
Figure 2. Example of transcriptional regulation: Androgen 
receptor (AR) signaling pathway. (From Azad et al., 2015) 

An example of transcription factor is the androgen receptor 

(AR) (Gao et al., 2005), a member of the steroid hormone receptor. 

As shown in Figure 2, AR signaling pathway involves (i) the direct 
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binding of the receptor to either androgenic hormone (i.e., 

testosterone or dihydrotestosterone) in the cytosol; (ii) the consequent 

conformational change in the AR that triggers dissociation of heat 

shock protein 90 (HSP90), dimerization and binding to HSP27; (iii) AR 

translocation into the cell nucleus and its final binding to specific DNA 

sequences (i.e, androgen response elements (ARE)) that eventually 

regulates cellular transcriptional activity.  

Membrane vesicle trafficking 

Membrane trafficking refers to a fundamental activity in eukaryotic 

cells which supports different basic processes (e.g., intercellular 

communication, extracellular matrix building through secretion, 

biomolecules import or export by endocytosis or exocytosis, periodic 

turnover of cellular organelles and pathogen phagocytosis). These 

tasks are typically mediated by membrane-bounded carriers serving 

as shuttles that link specialized cellular compartments with the cell 

surface in a highly organized and dynamic network (Cheung and de 

Vries, 2008). Although each specific pathway is governed by its own 

set of controlling factors, they all contain Rab GTPase proteins 

(Hutagalung and Novick, 2011) that serve as master regulators, 

modulating many steps of membrane trafficking, including vesicle 

formation, vesicle movement along actin and tubulin networks and 

membrane fusion. Therefore, it is not surprising that several human 

intracellular bacterial pathogens (e.g., Chlamydiae, Coxiella burnetii, 

Helicobacter pylori, Legionella pneumophila, Listeria monocytogenes, 

Pseudomonas aeruginosa and Salmonella enterica and several 

Mycobacteria) target Rab through post-translational modifications to 

precisely manipulate host cell functions and colonize its vacuolar 

compartments (Muller et al., 2010). 
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1.1.2. Protein dysfunction and disease 

DNA carries and transmits the genetic information by specifying the 

amino acid sequence template for protein synthesis. Therefore, 

pathological mutations in genes can affect the folding and stability 

(Ode et al., 2007; Alfalah et al., 2009), the function (Yamada et al., 

2006), the interactions (Jones et al., 2007) as well as the expression 

and subcellular localization of the proteins they encode (Krumbholz et 

al., 2006). Moreover, since proteins have a variety of functions and 

many of them are active as multimeric complexes (e.g., interacting 

with small molecules, other proteins or cellular membranes), the 

molecular mechanisms underlying even the simplest of genetic 

disorders are typically composite and heterogeneous.  

An example of such complexity is the MAPK/ERK signaling 

pathway. Given its involvement in a large variety of cellular activities 

(see section 1.1.1), deviation from the strict control of this pathway 

has been implicated in the development of many human diseases 

including Alzheimer's disease (AD), Parkinson's disease (PD), 

amyotrophic lateral sclerosis (ALS), various types of cancers (e.g., 

pancreas, colon, lung, ovary (Shields et al., 2000; Davies et al., 2002; 

Rajagopalan et al., 2002; Hingorani et al., 2003; Mercer and 

Pritchard, 2003; Singer et al., 2003; Vos et al., 2003; Sieben et al., 

2004; Sharma et al., 2005; Hoeflich et al., 2006; Sumimoto et al., 

2006; Dhillon et al., 2007) as well as the Ras/MAPK syndromes (the 

“RASopathies”). The latter are a group of rare germline 

developmental disorders, e.g., Noonan, cardio-facio-cutaneous 

(CFC), Costello and LEOPARD syndromes (Tartaglia and Gelb, 2005; 

Bentires-Alj et al., 2006; Schubbert et al., 2007; Aoki et al., 2008; 

Tartaglia et al., 2010), sharing phenotypic features that include 

postnatal reduced growth, facial dysmorphism, cardiac defects, 
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mental retardation, skin defects, musculo-skeletal defects, short 

stature and cryptorchidism (Rauen, 2013).  

Interestingly, both cancer and RASopathies-related mutations 

share the same 15 genes of this pathway (i.e., PTPN11, SOS1, 

RASA1, NF1, KRAS, HRAS, NRA S, BRAF, RAF1, MAP2K1, 

MAP2K2, SPRED1, RIT1, SHOC2 and CBL (Aoki et al., 2013; Rauen, 

2013). The phenotypic fate of a given mutation seems to be related to 

the structural and energetic effect at molecular level, although all the 

details of the mechanisms underlying each disorder are not yet fully 

understood (Kiel and Serrano, 2014). 

Therefore, the knowledge of the structural details of a protein 

is fundamental not only to characterize its biological function in 

physiological conditions, but also to understand its role in pathological 

situations. Mapping disease-related mutations on the 3D structure of 

a protein can provide invaluable insights on the disease-causing 

mechanism and can help to explain the phenotypic outcome 

associated to a specific mutation. 

1.1.3. Fundaments of protein structure 

The sequence of a polypeptide chain determines how it folds 

into one or several specific spatial conformations, which in turn define 

its function. Therefore, the study of the 3D structure of a given protein 

can provide invaluable details about its functional role at molecular 

level (Shakhnovich et al., 2003). 
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Protein folds 

Nowadays, protein structure is generally referred to in terms of four 

aspects: (i) the primary structure consisting of the amino acids 

sequence; (ii) the secondary structure, which contains regularly 

repeating arrangements (i.e., alpha-(α)-helices and beta-(β)-sheets) 

mainly stabilized by hydrogen bonds; (iii) the tertiary structure, which 

defines the final folding pattern incorporating various secondary 

structures; and finally (iv) a quaternary structure involving the 

clustering of several individual protein chains into a final specific 

configuration. An example of a protein with quaternary structure is the 

photosystem I (PSI), an integral membrane protein complex that uses 

light energy to mediate electron transfer from plastocyanin (or 

cytochrome c6) to ferredoxin metalloproteins during the 

photosynthesis. It is composed of a reaction center of up to 14 

subunits and a membrane-associated antenna complex (LHCI) that 

captures light and guides its energy to the reaction center (Golbeck, 

1987).  

According to their overall structural features, proteins 

represent a highly heterogeneous class of biological macromolecules, 

differing both in topology, shape and size. As defined by the two main 

structure classification databases, namely SCOP (Murzin et al., 1995) 

and CATH (Orengo et al., 1997) four large fold classes have been 

established in order to describe all existing protein topologies: the all-

α and all-β proteins, as well as the α+β proteins and α/β proteins 

classes in which the secondary structure is composed of α-helices 

and β-strands that occur separately or alternatively along the 

backbone, respectively. A more generic classification consists in the 

overall shape of proteins, labeling them as globular, fibrous, 

disordered and membrane proteins. Such protein classes mainly 
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differ in the secondary and tertiary structure as well as in several 

physico-chemical properties (e.g., thermal stability, solubility and 

inter-residue interactions types). Apart from in topology and shape, 

proteins significantly differ in size. Indeed, they range from 100 

residues, as found in some short ribosomal proteins, to several 

thousand residues (Brocchieri and Karlin, 2005), as observed in titin, 

a giant multifunctional protein involved in the contraction of human 

striated muscle tissues, which is composed by ~33000 residues and 

reaches 1 µm in length. 

Experimental determination of protein structure 

The tertiary and quaternary structures of a large number of proteins 

have become available in the World Wide Protein Data Bank 

(WWPDB; (Berman et al., 2007)), a single worldwide repository of 

information about the 3D structures of large biological molecules 

(including proteins and nucleic acids), which originated from a 

collaborative effort of RCSB Protein Data Bank (RCSB-PDB, (Berman 

et al., 2000)), Protein Data Bank Europe (PDBe, (Velankar and 

Kleywegt, 2011)), Protein Data Bank Japan (PDBj; (Standley et al., 

2008), and Biological Magnetic Resonance Databank (BMRB; 

BioMagResBank, (Ulrich et al., 2008)). Established in 1971, WWPDB 

recently archived its 100,000th molecule structure, doubling its size in 

just six years and reaching a releasing rate of 200 structures per 

week.  

Accounting in July 2015 for 89.8% of the biomolecules 

deposited in the WWPDB, the most known and widely used 

experimental method for the structural resolution of proteins is X-ray 

crystallography (Smyth and Martin, 2000). This technique allows the 

3D structural description at atomic resolution of crystallized 



Introduction 

 

 13 

macromolecules, based on the scattering produced by an X-ray beam 

after contacting the electrons of a protein in a crystal. The diffraction 

produced contains information about the electron density of the 

macromolecule, from which atom positions and chemical bonds can 

be calculated. In spite of its unquestionable success, X-ray 

crystallography certainly shows intrinsic limitations that affect its 

applicability in some protein systems: (i) not all the proteins can easily 

crystallize (e.g., membrane proteins); (ii) flexible parts of the proteins 

sometimes cannot be solved (e.g., loops); (iii) intrinsically disordered 

proteins and some proteins that may adopt many different 

conformations in solution represent a serious challenge for this 

technique; and finally, (iv) not all the contacts reported in the crystal 

are biologically relevant and the experimental conditions may not 

represent accurately those of the in vivo environment. 

Some of these problems are solved by Nuclear Magnetic 

Resonance (NMR) spectroscopy (Wuthrich, 1990), which represents 

the second most widely used technique after X-ray crystallography 

and accounts for roughly 9.4% of the proteins structures deposited in 

the WWPDB. By this method, the protein is placed under a strong 

magnetic field and short radio frequency pulses are aimed at the 

sample. This allows the detection of distinct chemical shift produced 

by each of the nuclei of the macromolecule, which depend on their 

chemical environment. Using different radio frequency pulses and 

analyzing the chemical shift of the different nuclei, it is possible to 

determine the distance between the different atoms in the protein and 

therefore obtain its 3D structure. The main advantage over X-ray 

crystallography is the description of the dynamics of the protein under 

study: thus, mobile loops, different conformations of a protein and 

intrinsically disordered structures can be efficiently described by 
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NMR. Moreover, the sample is studied in solution, which represents 

more realistic conditions as compared to X-ray crystallography. 

However, NMR appears scarcely suitable for large proteins of more 

than 40kDa (Krishnan and Rupp, 2001) unlike X-ray crystallography 

whose applicability is not significantly affected by protein size. 

The remaining protein structures deposited in the WWPDB 

are mainly solved by electron microscopy (EM) techniques (Bernadó, 

2011). For many years, EM has been limited to large complexes or 

low-resolution models (typically around 15 Å) and thus typically used 

in combination with complementary tools (e.g., computational 

modeling) (Petoukhov and Svergun, 2005)). Indeed, thanks to recent 

advances in electron detection and image processing, the technique 

has experienced a dramatic improvement in resolution, reaching 

roughly 5 Å by cryo-EM (Alushin et al., 2014), and thus beginning to 

rival NMR and X-ray crystallography. 

Despite impressive progress in automating experimental 

structure determination techniques, they still remain highly time-

consuming and with no guaranteed success. On the contrary, the 

advances in DNA sequencing techniques are giving rise to an 

unprecedented avalanche of new sequences (UniProt, 2013), 

dramatically widening the gap between protein solved structures and 

annotated sequences. This is reflected by the fact that the number of 

structurally characterized proteins deposited in Protein Data Bank is 

about two orders of magnitude smaller than the number of known 

protein sequences in the SwissProt and TrEMBL (recently exceeding 

50 million) (Boeckmann et al., 2003) (Figure 3). 
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Figure 3. (A) Comparison between the number of entries in the 
SwissProt (in red), TrEMBL (in blue) and PDB (in green) from 1986 
to 2014. (From Schwede, 2013) (B) Number of structures available in 
the PDB per year, as of May 14, 2014. Highlighted examples include: 
1) myoglobin, one of the first structures solved by X-ray 
crystallography; 2) small enzymes; 3) examples of tRNA; 4) viruses; 
5) antibodies; 6) protein-DNA complexes; 7) ribosomes and 8) 
chaperones. (Image courtesy of wwPDB) 

Computational modeling of protein structure 

The above cited findings make obvious that it will be impossible to 

determine experimentally the structure of every protein of interest with 

current techniques, despite the huge efforts of the ongoing PSI 

(Protein Structure Initiative) worldwide project and similar structural 

genomics efforts. However, based on the observation that 

homologous proteins sharing detectable sequence similarity have 

similar 3D structures and that their structural diversity is increasing 
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with evolutionary distance (Chothia and Lesk, 1986), during the last 

two decades several comparative modeling techniques, also known 

as template-based modeling (or TBM), have been developed. More 

recently, TBM techniques have been extended to model tertiary 

structure of remote homologs through threading methods (Bowie et 

al., 1991), which aim to recognize the template structures without 

evolutionary relation to the target by incorporating structure 

information into sequence alignments. 

Thanks to recent computational advances in large-scale data 

management, several different TBM methods have been developed 

(Ginalski, 2006; Zhang, 2008b), based on fully automated stable 

pipelines which typically include: (i) finding one or more appropriate 

templates; (ii) aligning the target sequence with the templates using 

sequence alignment, profile-based alignment, or threading; (iii) 

building an initial model for the target by copying the structural 

fragments from the aligned regions of the template(s); (iv) replacing 

the side chains to match the sequence of the target; (v) constructing 

missing loops and termini; and finally (vi) realigning the model to 

obtain a full-length atomic structure.  

Moreover, the notable advance in the homology modeling 

tools led to the development of different web servers which allow (i) 

the interactive extrapolation of the available experimental structure 

information of homologous proteins and (ii) the supply of reliable 

three-dimensional (3D) models, starting from the uncharacterized 

protein sequences. Additionally extended databases of annotated 3D 

comparative protein structure models have been recently compiled. 

Some well-known comparative modeling servers and databases are 

listed in Table 1. 
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Table 1. (A) CASP-cited comparative modeling servers and (B) 
protein most-cited databases of comparative protein structure 
models. 

A. Comparative modeling servers 

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/  
(Yang et al., 2015) 

ROBETTA http://robetta.bakerlab.org/ 
(Raman et al., 2009) 

HHpred http://toolkit.tuebingen.mpg.de/hhpred  
(Soding et al., 2005) 

METATASSER http://cssb.biology.gatech.edu/skolnick/webservice/MetaTA
SSER/index.html  
(Zhou et al., 2009)  

MULTICOM http://sysbio.rnet.missouri.edu/multicom_cluster/  
(Cao et al., 2014)  

Pcons http://pcons.net/  
(Larsson et al., 2011) 

SAM-T08 http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html 
(Karplus et al., 1998) 

3D-Jury http://BioInfo.PL/Meta/ 
(Ginalski et al., 2003) 

RaptorX http://raptorx.uchicago.edu/  
(Kallberg et al., 2012) 

THREADER http://bioinf.cs.ucl.ac.uk/?id=747  
(Jones et al., 1992; Jones et al., 1995) 

SwissModel http://swissmodel.expasy.org/ 
(Biasini et al., 2014) 

ModWeb http://modbase.compbio.ucsf.edu/modweb/  
(Pieper et al., 2011) 

B. Comparative protein structure models databases 

Swiss-Model http://swissmodel.expasy.org/repository/  
(Kiefer et al., 2009) 

ModBase http://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi  
(Pieper et al., 2011) 

Protein Model 
Portal (PMP) 

http://www.proteinmodelportal.org/  
(Arnold et al., 2009) 

PMDB Protein 
Model DataBase 

https://bioinformatics.cineca.it/PMDB/ 
(Castrignano et al., 2006) 

Swiss-Model http://swissmodel.expasy.org/repository/  
(Kiefer et al., 2009) 

The current state of homology modeling field is periodically 

assessed in a biennial large-scale experiment known as the Critical 

Assessment of Techniques for Protein Structure Prediction, or CASP 
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(Moult et al., 1995). As arisen from the last CASP editions, the major 

inaccuracies in homology modeling (which typically worsen with lower 

sequence identity) derive from errors in the initial sequence alignment 

and from improper template selection (Joo et al., 2014). 

 

The three dimensional structure of a protein defines not only 

its size and shape, but also its function. Nevertheless, the structural 

charachterization of an isolated protein is often not enough to 

understand its function. Indeed, proteins act by forming complexes 

with other molecules. Moreover, proteins in solution are not static 

objects but rather ensembles of varying heterogeneous conformations 

constantly interconverting from one to another. Thus, consideration of 

molecular recognition phenomena as well as the dynamic nature of 

proteins cannot be neglected for a complete understanding of protein 

function at molecular level. Given the importance of these protein 

features, they will be revised more in details in the following two 

sections (section 1.2 and 1.3, respectively). 
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1.2. Protein-protein interactions: a broad 
overview 

Figure 4. Time-line of protein research. In the top part conceptual 
advances and discoveries are indicated, in the lower part 
technological advances and inventions are indicated. From Braun 
and Gingras, 2012. 

Until the late 1990's, protein function analyses had been mainly 

focused on single proteins. However more recent conceptual and 

technological advances in biochemistry and molecular biology as well 

as the several ongoing projects on protein-protein interaction mapping 

for many model species and humans (Rolland et al., 2014) confirmed 

that the majority of proteins mediate their functions by physically 

interacting with different biomolecules (i.e., other proteins, lipids, 

nucleic acids or small molecules) and thus forming intricate, highly 

organized and dynamic interaction networks (Rual et al., 2005; Stelzl 

et al., 2005) (Figure 4). These findings definitely suggested the 

necessity of exhaustively studying each protein in its proper biological 
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context in order to fully comprehend their functions within the cell and 

thus paved the way for today's system-wide approaches to protein-

protein interaction (PPI) analysis (Braun and Gingras, 2012). 

1.2.1. Large-scale identification of protein-
protein interactions (PPIs) 

The observation of the involvement of protein interactions in almost 

every cellular process as well as the implication of aberrant PPIs in an 

increasingly number of diseases have clearly shown the necessity to 

identify and characterize such interactions. For this reason, protein-

protein interactions are currently the object of intense research in 

many biological fields. 

High-throughput experimental methods for PPIs 
detection 

Different experimental techniques have been developed to measure 

physical interactions between proteins; these methods vary 

considerably in terms of time, costs, resources and their applicability 

to proteome-scale mapping. Two widely used methods adapted for 

high-throughput approaches are yeast two-hybrid (Y2H) system 

(Fields and Song, 1989) and tandem affinity purification followed by 

mass spectroscopy (TAP-MS) (Rigaut et al., 1999)  (Figure 5).  
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Figure 5. Schematic diagrams describing the key steps of (A) yeast 
two-hybrid (Y2H) and (B) tandem-affinity-purification (TAP) 
techniques. After http://technologyinscience.blogspot.com.es/ and 
Huber, 2003 

The Y2H screening assays whether two proteins physically 

interact with each other: a bait and a prey protein are thus expressed 

using genetically modified yeast triggering the expression of a 

reporter gene as consequence of their interaction, if it happens. Y2H 
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techniques have been used for many large-scale screening studies 

providing an extraordinary amount of protein-protein interaction data 

for a variety of model organisms including yeast (Uetz et al., 2000; Ito 

et al., 2001), fly (Giot et al., 2003), worm (Li et al., 2004) and human 

(Rual et al., 2005; Stelzl et al., 2005). Nevertheless, this technique is 

known to report false positives, including interactions of proteins that 

will never physically meet in vivo because of being expressed in 

incompatible cellular states or being present in different cellular 

compartments. 

In contrast to Y2H approach, TAP-MS experiments allow 

high-throughput identification of protein interactions under near-

physiological conditions. The protein of interest is firstly fused to a 

large protein (i.e., the tag), which easily allow its isolation; the 

resulting tagged protein is then expressed in the host cell, allowing 

the binding with its native partners, and consequentially purified from 

the cell extract using the tag (e.g., by specific antibodies). Tagged 

protein binders are finally co-purified and subsequently identified by 

MS. Large-scale TAP-MS experiments have been performed for yeast 

(Gavin et al., 2002; Ho et al., 2002; Krogan et al., 2006), bacteria 

(Butland et al., 2005) or human (Ewing et al., 2007) proteins. 

Interestingly, data extracted from both Y2H and TAP-MS 

techniques weakly overlap and result highly complementary (Aloy and 

Russell, 2002b; von Mering et al., 2002; Titz et al., 2004). Indeed, 

Y2H experiments usually reveals more transient and binary 

interactions, whether tandem affinity purification screenings typically 

detect more stable complexes, involving two or more proteins (Aloy 

and Russell, 2002b). However, in spite of the great and valuable 

amount of data provided, high-throughput experimental methods 
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could show lack of acceptable reproducibility in the results (Collins et 

al., 2007). 

Protein interaction networks databases 

Thanks to the considerable advances in high-throughput methods 

gained over the past few years, massive PPIs data of various 

organisms have became available and currently stored in several 

databases. Indeed, more than 100 related repositories have been 

published and are now available online (Orchard et al., 2012) showing 

high diversity in their overall features. Firstly, their size can range 

from less than 100 (like in HUGE (Nakayama et al., 2002)) to millions 

of interactions (such as in Prolinks (Bowers et al., 2004) or STRING 

(Szklarczyk et al., 2015) databases). Secondly, they can gather data 

of thousands of organisms (like in BIND (Bader et al., 2003) which 

contains interactions of more than 1500 different species) or focus on 

a specific class (such as MPPI with only mammalian data (Pagel et 

al., 2005)), single organisms (like HPRD database (Keshava Prasad 

et al., 2009) containing only human data) or even converge on a 

specific type of interaction, such as human cancer associated protein 

interactions (i.e., HCPIN (Huang et al., 2008)) or interactions between 

HIV-1 and human proteins (i.e., HIV PI Database (Fu et al., 2009)). 

Moreover, although almost all the databases archive interactions 

detected by different experimental methodologies, they can also 

collect only data obtained using one specific technique (e.g., Yeast 

Interaction Protein Database with only yeast two-hybrid analysis 

data). Finally, despite the majority of the databases exclusively collect 

protein-protein interactions, a small fraction of them also includes 

many other types of interactions involving RNA, DNA or small 

molecules (Bader et al., 2003; Kerrien et al., 2012). The main overall 

features of the most popular repositories are summarized in Table 2. 
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Table 2. A general overview on the most popular PPIs 
repositories*. 

Database #Inter #Organisms Last 
Update 

URL 

BioGrida ,c ~750000 30 2015 http://thebiogrid.org/ 
(Breitkreutz et al., 
2008) 

BIND/ 
BONDa,c 

~200000 ~1500 2014 http://download.bader
lab.org/BINDTranslati
on/ 
(Isserlin et al., 2011) 

DIPb,c 79646 749 2014 http://dip.doe-
mbi.ucla.edu/dip 
(Salwinski et al., 
2004) 

HPRDb 41327 Human 2010 http://www.hprd.org/  
(Keshava Prasad et 
al., 2009) 

I2Db,c 900529 6 2013 http://ophid.utoronto.c
a/ophidv2.204/  
(Brown and Jurisica, 
2007) 

IntActa,c 351397 > 8 2015 http://www.ebi.ac.uk/i
ntact/ 
(Orchard et al., 2014) 

MINTa,c 241458 > 30 2012 http://mint.bio.unirom
a2.it/mint/  
(Licata et al., 2012) 

STRINGa > 200 MM 
(predicted) 

2031 2015 http://string-db.org/ 
(Szklarczyk et al., 
2015) 

*databases with more than 500 citations by June 2015 according to 
Google Scholar; aFree to all users; bFree only to academic users; 
ciMEX partner; MM=million; 

Since many resources are independently funded, use 

different identifiers and often contain redundant data from overlapping 

sets of publications, accessing all publicly available data (even on a 

specific biological or biomedical topic) is often a challenging and time-

consuming task that requires the user to query multiple resources, 

each with a different interface (De Las Rivas and Fontanillo, 2010). 

Therefore, efforts to address this problem and thus integrate data 

from PPIs disparate repositories have recently given rise to (i) the 
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definition of the MIMIX (Minimum Information about a Molecular 

Interaction eXperiment) guidelines (Orchard et al., 2007), (ii) the 

development of the PSI-MI XML format (i.e., a unified file format for 

representing PPIs data) and finally (iii) the establishment of the IMEx 

(International Molecular Exchange) consortium (Orchard et al., 2012). 

IMEx consists in an international collaboration between the major 

public protein interaction data providers (e.g., DIP, IntAct, MINT, I2D) 

cooperating in the creation of a single non-redundant set of 

homogeneously curated protein-interaction data available in a single 

search interface on a common website 

(http://www.imexconsortium.org/)  

However, in spite of the huge amount of data available 

nowadays, a large fraction of them lack reliability and suffer from the 

integration of a large number of spurious interactions. Indeed, the 

estimated size of the human interactome ranges from about 130,000 

(Venkatesan et al., 2009) to around 650,000 PPIs (Stumpf et al., 

2008), but only around 50,000 of them have been annotated with high 

confidence (Mosca et al., 2013). 

In silico prediction of PPIs 

The considerable amount of information provided by the genomic 

sequencing projects and high throughput screening techniques during 

the last years has fostered the development of several new methods 

for the prediction of PPIs. 

Genomic context-based methods, such as gene-neighboring 

(or co-localization), phylogenic profile, gene fusion, phylogenetic tree, 

correlated mutation or in silico two-hybrid are highly successful 

methods in which genetic information are used to derive network of 
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protein interactions (Valencia and Pazos, 2002). Moreover, PPIs can 

be also predicted by integrating evidence of known interactions with 

information regarding sequential homology, such as in ortholog- or 

domain-pairs-based approaches (Lee et al., 2008; Lo et al., 2015). A 

different approach consists in structural similarity-based methods in 

which the likeliness of the interaction is determined through homology 

modeling of the complex structure and consequent scoring of the 

modeled interface using empirical (Aloy and Russell, 2002a) or 

statistical (Lu et al., 2002) potentials.  

A novel and highly promising alternative to the above cited 

techniques are text-mining algorithms, based on the data screening of 

both scientific articles and extensive databases. One of the first 

examples of such tools was PubGene (Jenssen et al., 2001) followed 

by iHOP (Hoffmann and Valencia, 2004), iProLINK (Hu et al., 2004), 

GoPubMed (Doms and Schroeder, 2005), CbioC (Baral et al., 2007), 

Chilibot (Chen and Sharp, 2004) and lastly Whatizit (Rebholz-

Schuhmann et al., 2008).  

Finally, an additional option in the detection of PPIs consists 

in the integration of experimental or computational data in machine 

learning algorithms, such as support vector machines (SVM), Naïve 

Bayes, K-Nearest neighbors, Decision tree or Random Forest (Zahiri 

et al., 2013).  

1.2.2. Experimental characterization of protein-
protein complexes 

In the last few decades, our knowledge about PPIs has grown 

exponentially (Ceol et al., 2008). Nevertheless, the need of integrating 
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the binary information provided by the interactions with detailed 

structural data of the interacting proteins has become increasingly 

evident. Indeed, this synergic approach appears compulsory to 

extract the mechanistic basis of protein association and design new 

therapies to modulate these interactions.  

Protein-protein complex structure determination 

The significant efforts in traditional structural biology and the 

structural genomics projects (Montelione, 2012) as well as the 

important technical advances in the last few decades have produced 

a consistent increase in the amount of high-resolution experimental 

structures available in the PDB (see section 1.1.3). Nevertheless, X-

ray crystallography and NMR spectroscopy still remain labor-intensive 

and time-consuming techniques especially in the determination of 

multi-monomer assemblies. Indeed, despite a complete or even 

partial experimental structure is already available for roughly 30% of 

human proteins, only 8% of the high-confidence identified PPIs in the 

human interactome have an associated complex structure (either 

experimentally solved or built by homology modeling) (Mosca et al., 

2013; Szilagyi and Zhang, 2014). 

Available structural data of protein-protein interactions is 

compiled in several existing databases that collect large sets of 

protein-protein complex structures. Some of the most renowned are 

DOCKGROUND (Douguet et al., 2006), PDBePISA (Krissinel and 

Henrick, 2007), Interactome3D (Mosca et al., 2013) and 

3DCOMPLEX (Levy et al., 2006). In addition, 3did (Levy et al., 2006), 

PIBASE (Davis and Sali, 2005), InterPare (Gong et al., 2005), 

SCOWLP (Teyra et al., 2006), SCOPPI (Winter et al., 2006) and 

PRINT (Tuncbag et al., 2008) provide collections of high-resolution 
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3D structures of protein-protein interfaces classified at different levels 

of definition. 

Characterization of protein-protein interfaces  

Given the rather limited applicability and the high costs of atomic-

resolution structural techniques, many approaches (e.g., cross-

linking, site-directed mutagenesis or NMR chemical shift perturbation) 

result attractive options for a faster characterization of protein 

interfaces often suitable for high-throughput application. 

Especially in the case of low affinity complexes, cross-linking 

represents a highly successful technique, which allows to freeze two 

proteins together while they are interacting via covalent attachment of 

a small cross-linker (such as carboxyl, amine, sulfhydryl or hydroxyl). 

This allows the creation of a stable protein pair that can be studied by 

gel electrophoresis, Western Blotting or mass spectrometry (MS) 

(Sato et al., 2011; Holding, 2015).  

Site-directed mutagenesis (SDM), consisting on the exchange 

of a single amino acid in the protein sequence for another with 

different chemical properties, enables to assess the function of a 

single residue side chain at a specific site in the protein. Although 

being commonly used in functional studies on enzymes (Ahn et al., 

2014), SDM has been also proved to be remarkably effective in 

identifying key residues in protein-protein interactions (Liu et al., 

2000). Moreover, combinatorial libraries of alanine-substituted 

proteins can be used to rapidly identify residues important for protein 

function, stability and shape (Morrison and Weiss, 2001). Indeed, 

thanks to the non-bulky and chemically inert alanine side chain methyl 
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group, each substitution can easily examine the contribution of an 

individual amino acid side chain to the functionality of the protein.  

Finally, one of the most widely used approaches for probing 

protein-protein interfaces by NMR spectroscopy consists in the 

chemical shift perturbation (CSP) analysis (Hall et al., 2001). Its utility 

and popularity are due to the straightforward nature and its high 

sensitivity in mapping putative sites of interaction on a protein surface 

by detecting perturbations caused by the addition of the protein 

partner (O'Connell et al., 2009). 

Many of the above mentioned analyses aim to identify hot-

spot residues, which those that contribute the most to the protein-

protein binding affinity, and are important for mechanistic reasons as 

well as for being putative targets for drug discovery. Information on 

experimentally determined hot-spot residues has been collected in 

the last few decades and is now freely available for many complexes 

of interest. Some well-known databases are ASEdb (Thorn and 

Bogan, 2001), which was the first alanine mutation database, and BID 

(Fischer et al., 2003), which gathers the majority of the experimentally 

verified hot-spots located in protein interfaces and collected from 

literature.  

Structural features of protein-protein interfaces 

Protein-protein interfaces are generally planar, although sometimes 

they can be protruding or concave (as in the case of enzyme/inhibitor 

complexes (Jones and Thornton, 1997)). They may cover a wide 

range of the all monomer surface area (from 5 to 30% (Stites, 1997)), 

spanning from less than one thousand to several thousand Å2 (Lo 

Conte et al., 1999). Deeper analysis of interface surfaces reveals a 
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rather high degree of complementarity between the complex partners 

(Jones and Thornton, 1996), whose extent varies depending on the 

type of protein interaction: permanent complexes exhibit highest 

complementarity, while non-obligate complexes and protein-inhibitor 

complexes are characterized by lower complementarity that results 

even worst in antigen-antibody complexes.  

Although with some discrepancy, several studies provided 

strong evidence for a significant enrichment of aromatic (i.e., His, 

Phe, Tyr and Trp) and aliphatic (e.g., Leu, Val, Ile and Met) residues 

(Jones and Thornton, 1996) within the interfaces as well as a scarcity 

of charged residues (except for Arg) (Bahadur and Zacharias, 2008). 

Thus, it seems clear that hydrophobicity plays an important role as a 

stabilizing factor in protein-protein interactions. 

However, no secondary structure types resulted to be 

essential for protein interactions, although a higher propensity to be 

involved in protein-protein interfaces has been observed for random 

coils and α-helices with respect to β-sheets (Jones and Thornton, 

1996). On the other side, several structural domains involved in 

protein-protein interactions have been defined (e.g., Src homology, 

phosphotyrosine-binding (PTB), LIM domain and Sterile Alpha Motif 

(SAM) domain) and stored in several freely available databases such 

as 3did (Stein et al., 2005), CBM (Shoemaker et al., 2006), iPfam 

(Finn et al., 2005), PIBASE (Davis and Sali, 2005), PSIbase (Gong et 

al., 2005b) and SNAPPI (Jefferson et al., 2007). 

Finally, the important issue of the degree of conformational 

change upon protein binding has received relatively low attention in 

literature. Despite the scarcity of proteins whose structure has been 

structurally determined before and after the binding and assuming the 
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unbound structure as representative of the solvated state, various 

levels of conformational changes has been distinguished: (i) side 

chain movements alone, (ii) secondary structure segments (e.g., 

hinged loop), (iii) entire domains movements (e.g., enzyme/substrate 

complexes) or, (iv) in some extreme cases, disorder-to-order 

transitions (Janin et al., 2008).  

Energetic details of protein-protein complexes 

As expected from the significant enrichment in apolar residues found 

in the interfaces, the hydrophobic effect provides a significant 

contribution to the protein-protein interaction (Tsai et al., 1996, 1997), 

due to desolvation energy, associated to the removal of the solvent 

from the interface upon binding, as well as because of tight, 

unspecific and short-distance van der Waals contacts created 

between non-polar residues. These are generally clustered in several 

patches whose size ranges from 200 to 400 Å, reaching even 3000 Å 

in some cases (Lijnzaad and Argos, 1997). 

Besides hydrophobicity, electrostatics is the other significant 

force involved in protein-protein interactions (Xu et al., 1997; 

Sheinerman et al., 2000). Indeed, apart from their influence on 

protein-protein affinity and specificity, long-range electrostatic forces 

have been proposed to have an influence on the binding process 

(Sheinerman et al., 2000) (i.e., pre-orienting protein partners, 

promoting encounter complexes formation and therefore accelerating 

the rate of association) as well as on its lifetime.  

Together with their involvement in electrostatic interactions, 

polar groups at interfaces have been found to be regularly involved in 

hydrogen bonds (one per about 200 Å2 of buried surface area (Jones 
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and Thornton, 1996)), either interacting with protein groups of the 

complex partner or with water molecules located at the interface. 

Indeed, water molecules are often found specifically located at the 

protein-protein interfaces, and play a major role in polar interactions 

that stabilize the complexes (Rodier et al., 2005). 

1.2.3. Theoretical models for protein binding 

During the last two centuries considerable research effort has been 

focused on understanding the mechanism of association between 

proteins. This led to an increasingly comprehensive knowledge of the 

physicochemical properties of the binding (e.g., thermodynamics and 

kinetics) and the consequent postulation of various theoretical models 

aimed to accurately describe such process.  

Lock-and-key paradigm 

The first attempt to explain the protein complex binding consisted in 

the lock-and-key paradigm that was formulated in 1894 even before 

any structural knowledge of proteins. Developed by H.E. Fisher, it 

offered a schematic and static representation of protein interactions 

emphasizing the importance of steric complementarity between the 

partners to achieve affinity and specificity upon the binding (Fischer, 

1894). 

The lock-and-key paradigm was later found to provide an 

excessively simplistic description of binding, which is not adequate to 

describe the expected conformational flexibility of the interacting 

proteins in most of the cases. 
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Induced-fit mechanism 

During the last century, the lock-and-key paradigm was replaced with 

a more dynamic representation of protein binding, expressed in the 

so-called induced-fit mechanism (Koshland, 1958). According to this 

model, proteins initially interact in an unbound conformation, while the 

bound state is induced by the physical-chemical environment 

provided by the protein partner. Indeed, induced-fit paradigm is 

consistent with the conformational flexibility frequently observed 

during binding (Echols et al., 2003) as well as the promiscuity of some 

proteins in their interactions (Tidow and Nissen, 2013).  

Nevertheless, the induced-fit mechanism does not explain the 

intrinsic plasticity of several systems, existing as an ensemble of 

conformations dynamically fluctuating between them, as supported by 

some X-ray and cryo-electron microscope images, kinetics studies 

and, above all, NMR data showing a repertoire of conformational 

states of unbound protein, including conformations similar to the 

bound state (Boehr et al., 2009; Esteban-Martín et al., 2012). 

Conformational-selection and population-shift model 

Firstly suggested in 1964 by Straub (Straub and Szabolcsi, 1964) and 

experimentally supported by Zavodszky et al. in 1966 (Závodszky et 

al., 1966), the conformational-selection model initially postulated that 

the unbound proteins naturally sample a variety of conformational 

states, a subset of which are suitable to bind the other protein.  

This original formulation was partially reassessed by 

Frauenfelder, Sligar and Wolynes over 25 years later (Frauenfelder et 

al., 1991) and finally formalized in 1999 (Ma et al., 1999; Tsai et al., 
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1999; Kumar et al., 2000): in solution proteins exist in a range of 

conformations which regularly interchange between high populated 

lowest-energy conformations and low populated higher-energy ones 

that are more suitable to bind the bound state. However, given their 

optimal geometry and physical-chemical complementarity, the high-

energy bound-like conformations get preferentially selected and 

stabilized by the interacting partner, thus shifting the population of the 

protein microstates in favor of the bound state. 

Extended Conformational-selection model 

The recent growth in volume and precision of data related to protein 

dynamics suggested that the distinction between the original 

conformational-selection and induced-fit models is not absolute 

(Grunberg et al., 2004; Wlodarski and Zagrovic, 2009). 

These findings provided support for an extended version of 

the original conformational-selection model where both selection and 

adjustment-type steps would follow each other. Thus, proteins in 

solution would contain an ensemble of conformational states, not 

necessarily structurally similar to the bound state, available for the 

mutual selection and adjustment. As binding proceeds, the partners' 

conformations change, as well as their position on the energy 

landscape, whose shape results in turn altered by increasing 

adjustments of the binding environment related to emerging 

electrostatic and water-mediated hydrogen-bonding signals between 

the protein partners (Kovacs et al., 2005; Antal et al., 2009). Upon this 

mutual adaptation, although converging to a common end-state, 

protein partners can follow alternative 'binding trajectories' (Tsai et al., 

2008; Antal et al., 2009) (i.e., sequences of conformational selection 

and adjustment steps), where every step of the encounter by each 
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subunit depends on the proceeding conformational change by the 

protein partner, generating a kind of 'interdependent protein dance' 

(Antal et al., 2009).  

Figure 6. Schematic representation of the extended 
conformational-selection model. (a) the classical lock-and-key 
model (b) the classical induced-fit (c) the classical conformational-
selection model (d) the conformational-selection-plus-induce-fit 
model. From Csermely et al., 2010 

All in all, protein binding process would be triggered by the 

formation of transient encounter complexes, mainly stabilized by 

electrostatic forces (Tang et al., 2006; Bashir et al., 2010), whereas 

its completion would involve induced-fit-based events including (i) 

anchor residues rearrangement (Rajamani et al., 2004), (ii) hinge and 

hinge-like motions (Ma et al., 2002), (iii) rearrangements of crucial 
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nodes located between communities of amino acids networks 

responsible for the structural reorganization of each subunit upon the 

binding (Bode et al., 2007; Del Sol et al., 2007; Csermely, 2008; Sethi 

et al., 2009).  

Within the above described binding scenario, the 

mechanisms previously proposed (i.e., lock-and-key and induced-fit) 

are not rejected but reinterpreted as special cases of a unique binding 

paradigm (Figure 6). Thus, the lock-and-key model would represent 

the case in which both the partners are either rigid or have exactly 

matching binding surfaces. Moreover, the induced-fit mechanism 

would be interpreted as an evolution of the extended conformational-

selection type binding scenarios triggered by some specific binding 

conditions: (i) the occurrence of the strong and long-range or directed 

interaction, such as ionic forces or hydrogen bonding (Csermely et al., 

2010); (ii) high partner's concentration (Junker et al., 2009; Weikl and 

von Deuster, 2009) or (iii) large difference in size or cooperativity 

between the complex partners (Pereira-Leal et al., 2006). 

1.2.4. Computational methods for protein-
protein complex structure prediction 

The number of experimentally determined protein structures accounts 

only for a tiny fraction of the massive amount of protein known and 

sequenced proteins (Anishchenko et al., 2014) (see section 1.1.3), 

and this discrepancy between sequence and structural data results 

even more evident when considering protein-protein complexes (see 

section 1.2.2). 
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Nevertheless, computational approaches provide useful 

resources to bridge both these gaps. Indeed, they not only succeed in 

modeling isolated protein structures, using experimentally determined 

structures as templates (see section 1.1.3), but also, clearly more 

challengingly, provide the structural characterization of unknown 

multimeric protein structures either using template-based modeling 

(TBM) or ab initio docking (Figure 7).  

Figure 7. Two principal protocols for protein complex structure 
prediction. Red and blue represent sequences and structures of two 
individual chains. (a) Ab initio docking and (b) Template-based 
modeling (TBM) methods. From Szilagyi and Zhang, 2014. 

 

Template-based modeling of protein complexes 

Homology modeling of protein-protein complexes appears as an 

extension of TBM of isolated proteins and consists in building the 

structure of a protein-protein complex by using as template other 

related protein-protein complexes whose structure has been 
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experimentally solved. This approach have become increasingly 

popular over the last few years (Vakser, 2013), mainly supported by 

the awareness that accurate PPI models can be yielded using proper 

templates (Aloy and Russell, 2002a) as well as the potential 

availability of templates suitable to model nearly all PPIs (Kundrotas 

et al., 2012). 

In the majority of TBM protocols, the complex structure 

templates are generally detected by homology-based sequence 

alignments, applying the technique of threading (Bowie et al., 1991), 

as observed in MULTIPROSPECTOR (Lu et al., 2002) or COTH 

(Mukherjee and Zhang, 2011) pipeline. However, since the 

components isolated structures are typically known, a growing 

number of approaches (e.g., ISEARCH (Gunther et al., 2007), iAlign 

(Gao and Skolnick, 2010), KBDOCK (Ghoorah et al., 2011), PrISE 

(Jordan et al., 2012), SCPC (Koike and Ota, 2012), ProBiS (Konc et 

al., 2012), PRISM (Tuncbag et al., 2012), TrixP (von Behren et al., 

2013)), typically referred as template-based structure-comparison 

approaches (Zhang et al., 2012), exploit structural alignment 

techniques for the alignment of backbone, secondary structure, 

and/or coarse-grained elements of the overall structure or the 

interface alone.  

A standard procedure of conventional template-based 

complex modeling, starting from the sequence of the complex 

components, consists of four steps which are essentially identical to 

those used in TBM of isolated protein: (i) finding known structures 

related to the sequence to be modeled; (ii) aligning the target 

sequences to the template structure; (iii) constructing structural 

frameworks by coping the aligned regions of the template structures; 



Introduction 

 

 39 

(iv) constructing the unaligned loop regions and adding side chain 

atoms.  

As the quality of the TBM models essentially depends on the 

accuracy of the template identification whereas the full-length 

complex structure construction and refinement are in general more 

complicated and time-consuming, most current TBM algorithms (i.e., 

COTH (Mukherjee and Zhang, 2011), SPRING (Guerler et al., 2013), 

MULTIPROSPECTOR (Lu et al., 2002), HOMBACOP (Kundrotas et 

al., 2008), Struct2Net (Singh et al., 2010) and iWRAP (Hosur et al., 

2011)) focus on the identification of templates, while only a few 

methods, such as M-TASSER (Chen and Skolnick, 2008) perform a 

full pipeline. All these algorithms mainly differ in the strategies applied 

during the complex template identification and structure combination 

step, which typically are (i) dimeric threading, (ii) monomer threading 

and oligomer mapping or (iii) template based docking, as summarized 

in Figure 8.  
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Figure 8. Flowcharts for the three representative template-based 
complex structure prediction strategies. (a) Dimeric threading 
method. (b) Monomer threading and oligomer mapping. (c) 
Templatebased docking. From Szilagyi and Zhang, 2014. 
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Ab initio modeling of protein complexes 

Protein-protein docking methods aim to build complex models by 

assembling known structures of the interacting components, 

previously predicted or solved in the unbound state. They basically 

consist in an initial exhaustive search and consequent selection of 

various binding orientations and thus ideally provide a realistic 

description of the association process and the complex energy 

landscape. 

Since the first attempt, performed by Wodak and Janin in the 

late 1970s (Wodak and Janin, 1978), the number of protein-protein 

docking programs is continuously increasing. All the currently used 

docking frameworks address the modeling task usually through two 

(or three) independent and consecutive processes: (i) sampling of the 

rotational and translational space of the two interacting proteins; (ii) 

scoring of the generated docking orientations; and finally (iii) an 

optional refinement and minimization of the complexes. Nevertheless, 

they typically differ in (i) the sampling method implemented, (ii) the 

scoring function used to rank the docking models, and (iii) the 

strategy applied for the treatment of protein flexibility. According to 

these key features, all the docking methodologies developed so far 

can be divided onto two main categories, namely the geometry and 

energy minimization-based docking methods. 

In the heart of the geometry-based docking methods is the 

steric complementarity at the protein-protein interface. Thus, several 

simplified protein models and approximate functions have been 

devised in order to find the best fitting between interacting surfaces. A 

wide-used approach consists in the discretization of the interacting 

protein into grids and the consequent exploration of the rotational and 
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translational space at a certain resolution by searching for the best 

correlation between both grids. However, although this approach 

clearly reduces the computational costs of the sampling with respect 

to a full-atom representation of the interacting proteins, an exhaustive 

conformational exploration remains still prohibitive even for standard 

size complexes. 

Nevertheless, the sampling of both the translational or 

rotational space can be dramatically speed up (around four orders of 

magnitude) by computing the correlation function between the two 

discrete grids, thanks to the application of Fast Fourier Transform 

(FFT) algorithms (Katchalski-Katzir et al., 1992). Since its first 

implementation in MolFit, this technique has been applied in different 

docking methods, where geometry has been combined in different 

ways with electrostatics and physico-chemical terms during the 

sampling. For instance FTDock (Gabb et al., 1997) added an 

electrostatic grid; PIPER (Kozakov et al., 2006), GRAMM-X 

(Tovchigrechko and Vakser, 2006) and BIGGER (Palma et al., 2000) 

introduced pairwise interaction potentials; ZDOCK (Chen et al., 

2003a) implemented (in successive versions) geometry-based 

complementarity, electrostatics, desolvatation and statistical 

potentials terms (Pierce et al., 2011). Other successful shape-based 

methods use Fourier Transform (FT) on the rotational instead of the 

translational space as previously described. Among such approaches, 

Hex (Ritchie and Kemp, 2000) uses 2D spherical harmonics to 

represent the surface of the interacting proteins whereas FRODOCK 

(Garzon et al., 2009) is based on fast rotational matching (FRM), 

where for each translational point, the rotational search is accelerated 

by Fourier Transform (FT) using radial spherical harmonics.  
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Another well-known geometric-based method is PatchDock 

(Schneidman-Duhovny et al., 2005) based on the extraction of 

geometric features from the interacting proteins, and the use of 

geometric hashing algorithms to compute the complementarity 

between surfaces (which are described by shape representations like 

knobs, hole and flat areas).  

Finally, the relatively low computational cost associated to 

geometric-based docking algorithms makes them suitable for the 

application to multi-molecular docking for the prediction of small multi-

protein assemblies. Noteworthy examples are CombDock (Inbar et 

al., 2003), where the combinatorial problem during the sampling is 

solved by the application of graph-based algorithm, or SymmDock 

(Schneidman-Duhovny et al., 2005), which allows the prediction of 

multimeric complexes with a given rotational symmetric starting from 

its asymmetric unit. 

Despite the remarkable speed and exhaustive sampling, a 

major drawback of geometry-based docking methods arises from the 

approximations made in protein shape and energy description as well 

as the null or limited consideration of protein flexibility during the 

binding. Alternative solutions to this limitation, represented by energy 

minimization-based docking methods, will be described in section 

1.3.3. 

In parallel to the above mentioned docking protocols, in which 

scoring is implicitly considered within the sampling procedure, many 

other programs, exclusively specialized on independent scoring of 

docking poses generated in a previous rigid-body step, has been 

developed. One of the most successful scoring schemes is pyDock 

(Cheng et al., 2007), which uses an energy function composed of van 
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der Waals, electrostatics and atomic solvation parameter (ASP)-

based desolvation energy. Moreover, several sets of residue-based 

potentials have been recently reported, such as SIPPER (Pons et al., 

2011) or PIE (Ravikant and Elber, 2010), whose major benefit is the 

speed of the calculation, especially those defined at residue level. 

Ab initio docking versus TBM methods  

Compared to ab initio docking, the main advantage of TBM lies in the 

fact that only the sequence and not the structure of the monomer 

components are pre-required. Moreover, as the models are built 

based on the complex templates that are in a bound form (in contrast 

to the unbound structures used in ab initio docking), TBM methods 

are not sensitive to the type of the complex (large or small interface 

area, permanent or transient interaction) and to the extent of 

conformational changes upon binding. 

Nevertheless, the most crucial limitation of TBM consists in 

the complete neglect of mutations or post-translational modifications 

effects, which might seriously perturb monomer components folding, 

modulate the interaction or create new aberrant interactions. In 

addition, as happens with isolated proteins (see section 1.1.3), the 

quality of a model is strikingly subjected to the target-template 

sequence identity (Aloy et al., 2003; Launay and Simonson, 2008; 

Kundrotas and Vakser, 2013) and thus modeling of interactions in the 

absence of close homologous templates is still a challenging task. 

Indeed, although it was reported to be ideally possible to find 

templates for nearly all known interactions (Kundrotas et al., 2012), it 

was recently revealed that the quality of the resulting models appears 

to be quite poor and significantly worse than those obtained by ab 

initio docking in cases where the available template shares a low 
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sequence identity with the target (i.e., below 30%) (Negroni et al., 

2014). 

1.2.5. Evaluation of protein complex structural 
prediction 

In order to be properly evaluated, any docking approach should 

generally be tested on a statistically significant, non-redundant and 

representative subset of all the complexes with known structure (i.e., 

docking benchmark sets) and objectively compared to other existing 

approaches on such benchmark sets or even better in blind 

community-wide assessments, such as CAPRI (Critical Assessment 

of Predicted Interactions) (Janin et al., 2003). 

Protein-protein docking benchmarks 

The widely used benchmark sets of protein-protein complexes were 

developed in Weng's (Chen et al., 2003b) and Vakser's (Gao et al., 

2007) groups. After several updates, the current versions of the two 

benchmarks (version 5.0 (Vreven et al., 2015) with 230 entries and 

version 2.0 (Anishchenko et al., 2015) with 165 entries, respectively) 

contain more than one hundred complexes of co-crystallized proteins 

and either their isolated components (unbound structures) or arrays of 

low sequence identity homology-based models. 

Moreover, several groups compiled decoy sets of docking 

models containing false positive matches of proteins that result useful 

in the optimization of potentials and scoring functions for the 

discrimination of false positive predictions. The ones generated by 

ZDOCK, FTDock and Rosetta are publicly available at the web pages 
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of the respective groups, while another one was recently provided by 

Vakser lab (Liu et al., 2008). 

In the last few years, great efforts have been devoted to 

assembly datasets combining structural and energetic information. 

Indeed, a non-redundant set of 144 protein-protein complexes for 

which not only the unbound and bound structures but also their 

dissociation constants are available was recently published (Kastritis 

et al., 2011) and consequently updated (Vreven et al., 2015) with 35 

additional cases. Moreover, in 2012 Fernández-Recio’s group 

published SKEMPI, a database containing data on the changes in 

thermodynamic parameters and/or kinetic rate constants upon more 

than 3000 mutations for protein-protein interactions of which at least 

one co-crystallized complex structure has been solved and is 

available in the PDB (Moal and Fernandez-Recio, 2012).  

All together these datasets offer remarkable tools for the 

development, assessment, optimization and comparison of new 

docking algorithms.  

CAPRI (Critical Assessment of Predicted Interactions) 

CAPRI, established in 2001 (Vajda et al., 2002), currently consists in 

a community-wide scientific experiment, conducted on a discretionary 

basis, which allows the comparison of different docking methods on a 

set of targets (i.e., experimentally determined complex structures 

unknown to the participants) based on two different prediction 

assessments, namely predictors and scorers.  

Thus, in a given CAPRI Round, predictors are asked to 

generate, score and finally submit a total of ten own complex models 
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starting from the separately crystallized structures of the complex 

components, or their homologous supplied by the CAPRI organizers. 

In a second step, the scorers are invited to evaluate a common pool 

of docking models made up from the contributions of different 

participating groups (uploaders) and finally submit their own ten best 

ranking ones. At the end of each Round, the 10-model sets submitted 

by each group of the predictors and scorers community are evaluated 

by the organizers by comparison with the corresponding complex 

structure which is still unpublished and made known only to the 

organizers. The regular criteria for the evaluation of protein-protein 

interaction models are described in Figure 1 of Lensink et al., 2007 

and Table II of Lensink and Wodak, 2010. More recently, they have 

been slightly adapted to the assessment of protein-peptide interaction 

(http://www.ebi.ac.uk/msd-srv/capri/round28/round28.html). 

Since its inception, five CAPRI editions were completed 

corresponding to 34 prediction Rounds and a total of more than 100 

targets. Moreover, in the last CAPRI edition, taken place in the years 

2010-2012, in addition to the standard protein assemblies predictions, 

several different assessments were proposed (including binding 

affinity, sugar binding and interface water molecule prediction) 

(Lensink and Wodak, 2013; Moretti et al., 2013; Lensink et al., 2014). 

The analysis of the docking results obtained in all the previous CAPRI 

editions offer a useful resource to track the evolution of the protein 

docking field (Mendez et al., 2003; Mendez et al., 2005; Lensink et 

al., 2007; Lensink and Wodak, 2010, 2013), as well as to identify its 

main challenges and its major ventures for the years to come. 
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1.2.6. Interface and hot-spot residues 
prediction 

The docking methods described above aim to model the binding 

mode of two interacting proteins at atomic resolution. However, given 

the accuracy limitations of these methods, especially in some difficult 

cases, sometimes it may be easier and more reliable trying first to 

identify the residues that are involved in the interaction, which in turn 

could be also helpful in the target characterization step during a drug 

discovery program.  

Identification of potential protein binding sites 

Taking into account specific properties, which distinguish protein-

protein interfaces from the rest of the protein surface (Jones and 

Thornton, 1996, 1997), diverse binding site prediction methods have 

been developed in the last few decades.  

Some of the better-known are InterproSurf (Negi et al., 2007), 

based on solvent accessibility and statistical potential; PINUP (Liang 

et al., 2006), using an empirical scoring function; ProMate (Neuvirth et 

al., 2004), combining residues types, secondary structure and 

sequence conservation; WHISCY (de Vries et al., 2006), related to 

conservation and surface properties; ISIS (Ofran and Rost, 2007a), 

identifying interacting residues from protein sequence only; and finally 

ODA (Fernandez-Recio et al., 2005), based on pyDock (Cheng et al., 

2007) desolvation energy.  

A more specific interface analysis is the one supplied by 

PRISM server (Ogmen et al., 2005; Keskin et al., 2008), which detect 

the specific interaction between two given proteins. Finally, although 
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phylogenetic conservation alone is often insufficient to reliably predict 

protein binding sites, it can be successfully combined with other 

interface properties. ConSurf (Glaser et al., 2003) and SCORECONS 

(Valdar, 2002) are web servers that can provide these data.  

Detection of protein hot-spot residues 

Despite protein-protein interfaces are often large, flat and do not have 

clear binding cavities (Jones and Thornton, 1997; Chakrabarti and 

Janin, 2002), it has been reported that just a small number of 

residues, typically referred to as hot-spots, are responsible for the 

stabilization of the complex (i.e., contributing in more than 1-2 kcal to 

the overall complex binding energy) (Clackson and Wells, 1995), and 

thus are interesting targets for drug discovery or for a better 

understanding of the mechanism of association between proteins. 

These findings have inspired the development of a large number of 

computational tools focused on the prediction of such hot-spot 

residues as well as the compilation of different databases.  

The vast majority of the predictive methods reported until now 

strongly relied on the availability of the complex structure. Some 

renowned examples are energy-based tools, such as ROBETTA 

(Kortemme and Baker, 2002), FoldX (Schymkowitz et al., 2005), 

HSPred (Lise et al., 2011) or Molecular Dynamics (MD) with 

generalized Born model in a continuum medium (Moreira et al., 

2007), supported in several MD platforms (e.g., AMBER (Salomon-

Ferrer et al., 2013) and GROMACS (Pronk et al., 2013)), which are 

based on computational alanine scanning of protein-protein interfaces 

and subsequent evaluation of the change in binding affinity.  



Protein-protein interactions: a broad overview 

 

 50 

Other valuable approaches are machine learning-based tools. 

Some of the most recently reported methods are KFC2 (Zhu and 

Mitchell, 2011), based on interface solvation, atomic density and 

plasticity features; PCRPi (Assi et al., 2010), combining sequence 

conservation, energy score and contact number information; PPI-Pred 

(Bradford and Westhead, 2005), considering surface shape and 

electrostatics; MINERVA, which weights atomic packing density and 

hydrophobicity (Cho et al., 2009) or a recent neural network-based 

protocol (an adaptation of ISIS), which combines several interface 

features such as sequence profiles, solvent accessibility and 

evolutionary conservation (Ofran and Rost, 2007b). Another well-

known machine learning-based tool is PocketQuery web-server (Koes 

and Camacho, 2012), which provides an assortment of metrics 

(including changes in solvent accessible surface area, energy-based 

scores, and sequence conservation) extremely useful for hot-spots, 

anchor residues and hot regions prediction. 

Empirical formula-based methods are also used instead of 

machine learning algorithms. Some example are MAPPIS (Shulman-

Peleg et al., 2007), whose prediction relies on the evolutionary 

conservation of hot-spots in the interface along the members of a 

given family; HotSpot Wizard (Pavelka et al., 2009), based on the 

integration of structural, functional and evolutionary information 

provided by several databases; DrugScorePPI (Kruger and Gohlke, 

2010), performing fast and accurate alanine scanning calculation 

derived from experimental alanine scanning results; iPRED (Geppert 

et al., 2011), using pairwise potentials atom types and residue 

properties; APIS (Xia et al., 2010), where the hot-spots identification 

is performed by combining residue physical/biochemical features, 

such as protrusion index and solvent accessibility; and finally 
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HotPoint (Tuncbag et al., 2010) that incorporates a few simple rules 

consisting of occlusion from solvent and total knowledge-based pair 

potentials of residues. Very recently, ECMIS (Shingate et al., 2014) 

has been reported, using a new algorithm combining energetic, 

evolutionary and structural features.  

In spite of their high accuracy in the identification of hot-spot 

residues, a major limitation of all the above cited tools lies in the 

mandatory requirement of the protein-protein complex structure (or 

that of a homologous one). By the contrary, in cases with no available 

complex structure, very few hot-spot prediction methods have been 

reported until now. One of them, pyDock (Cheng et al., 2007) module 

pyDockNIP (Grosdidier and Fernandez-Recio, 2008) is based on 

protein-protein docking simulations and computes the propensity of a 

given residue to be located at the interface in the 100 lowest-energy 

rigid body docking solutions. A novel computational tool, laying in the 

same category, is SIM (Agrawal et al., 2014), which consists in 

predicting hot-spot residues involved in evolutionarily conserved 

protein-protein interactions starting from the unbound protein 

structure.  

Besides the huge number of predictive methods and web-

servers available, in the last few decades the undisputed biological 

relevance of hot-spot residues has also inspired the creation of the 

several hot-spots databases based on computational prediction, 

including HotRegion (Cukuroglu et al., 2012), HotSprint (Guney et al., 

2008) and PCRPi-DB (Segura and Fernandez-Fuentes, 2011). 
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1.3. Protein conformational plasticity 

Proteins are not static objects. Their structure in solution can be 

described as ensembles of variously heterogeneous conformations, 

whose transitions between one to another are mainly related to 

environmental changes (e.g., temperature (Caldwell, 1989), pH (Di 

Russo et al., 2012), voltage (Navarro-Polanco et al., 2011), ion 

concentration (Negi, 2014)) or post-translational modifications 

(Karunatilaka and Rueda, 2014) (e.g., phosphorylation) and occur on 

a variety of length scales (typically from tenths of Å to nm) and time 

scales (ranging from ns to s). This new dynamic perspective has been 

conceptually synthesized in an energy landscape paradigm, in which 

highly populated protein states and the transitions between them can 

be described by the depths of energy wells and the heights of energy 

barriers, respectively (Frauenfelder et al., 1991). 

However, although the dynamic nature of proteins is 

absolutely unquestionable, its description and incorporation into an 

intuitive perception of protein function remain challenging. Indeed, this 

status results further exacerbate by the fact that although 

conformational sub-states (located in energy well) and their rates of 

interconversion can be detected experimentally (i.e., from the 

relaxation of the nuclei after excitation through NMR data), a 

description of the transition pathway on an atomic-scale is out of the 

reach for any currently available experimental technique because of 

the extremely low probability and short lifetime of the high-energy 

conformers. On the contrary, computational modeling has the 

unbeatable advantage to offer an exhaustive description of protein 

plasticity.  
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1.3.1. Computational exploration of protein 
plasticity 

Despite being theoretically accessible with computational techniques, 

in-depth characterization of proteins in action is not trivial. Indeed, their 

various dynamics processes cover an extensive spectrum of 

amplitudes and energies as well as a huge time-scale range spanning 

13 orders of magnitude, from femtoseconds to hours. Thus, from the 

fastest to the slowest motions one can find covalent bond vibrations 

occurring in femtoseconds; side chain rotations and loop flips usually 

on the pico- to nanosecond timescale; large domain motions, 

macromolecular associations and protein folding that might take 

several minutes or even hours (Figure 9).  

Figure 9. The timescale of the conformational events that underlie 
protein flexibility: from the fast vibrations of covalent bonds to slow 
protein (un)folding events. After Teilum et al., 2009.  
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Exploring protein plasticity by Molecular Dynamics 
(MD) 

Since the publication of the first Molecular Dynamics simulation of a 

protein in 1977 (McCammon et al., 1977), specific aspects of 

biomolecular structure, kinetics and thermodynamics has been 

investigated via MD (such as macromolecular stability (Tiana et al., 

2004), conformational and allosteric properties (Kim et al., 1994), 

enzyme activity (Warshel, 2003), molecular recognition (Wang et al., 

2001), ion and small molecule transport (Roux, 2002), protein 

association (Abriata and Dal Peraro, 2015) and folding (Day and 

Daggett, 2003)). These finding provided significant advances in 

several research fields ranging from drug (Kerrigan, 2013) and protein 

design (Kiss et al., 2013) to material sciences and biophysics. 

MD simulations can provide a detailed description of the 

thermodynamic properties and time-dependent phenomena of 

proteins through discrete integration of Newton's equation of motions 

(Lindahl, 2008). Each simulation requires only three items: (i) the 

initial coordinates of the system, (ii) a force field and (iii) a solvent 

model.  

The initial coordinates are generally obtained from 

experimental structures (e.g., NMR or X-ray) or from homology-based 

models. The force field model consists in sets of ab initio and 

empirical parameters combined with detailed mathematical functions, 

which basically provide the parametrization of the energy surface of 

the protein. Although each force field uses own parameters sets and 

slightly different energy terms to calculate a system potential energy, 

globally all consider that the potential energy of the system is additive 

and composed of a potential from bonded (or covalent) and non-
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bonded (non covalent) interactions. Several force field models have 

been developed so far, including the popular latest CHARMM 

(MacKerell et al., 1998), AMBER (Ponder and Case, 2003) and 

GROMACS (Oostenbrink et al., 2004) force field versions. Although 

giving quite consisting results among each others (Price and Brooks, 

2002), some of the existent force fields can lack agreement with 

experimental measurements (Beauchamp et al., 2012). 

The next crucial step in MD simulations is the decision upon 

the solvent model (Xia et al., 2002). The simplest and commonly used 

is explicit solvation, in which water molecules and ions are explicitly 

represented in the force field (Bizzarri and Cannistraro, 2002), such 

as in TIP3P, TIP4P, TIP5P, SPC and SPC/E models. However, given 

the high computational costs of such models, sometimes an implicit 

consideration of the solvent is preferred (Orozco and Luque, 2000; 

Tsui and Case, 2000; Simonson, 2001; Hassan and Mehler, 2002; 

Lee et al., 2002). Here the solvent is treated as a continuous medium 

having the average properties of the real solvent. Much longer 

trajectories are thus accessible, although with lower accuracy, 

especially in protein complexes and conformational analysis (Roe et 

al., 2007; Yeh and Wallqvist, 2009). 

All this variety of force fields and solvent models is 

implemented in a considerable amount of available software 

packages, such as CHARMM (Brooks et al., 2009), AMBER (Case et 

al., 2005), GROMACS (Pronk et al., 2013) and NAMD (Phillips et al., 

2005). They typically share common basic features but also bear 

peculiar strengths and weaknesses, regarding force field, flexibility, 

licensing models, functionality and scalability (Salsbury, 2010). 
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1.3.2. Beyond standard Molecular Dynamics 

The introduction of special-purpose machines such as Anton (Shaw 

et al., 2010), the adaptation of MD codes to specialized graphics-

processing-units (GPUs) (Friedrichs et al., 2009) and the evolution of 

parallel codes (Pronk et al., 2013) have enormously increased the 

time scales accessible by fully atomistic MD. Current MD simulations 

can perform trajectories lasting up to a few ms, which enables the 

description of protein folding and unfolding processes (Shaw et al., 

2010) as well as simulations of entire molecular machines composed 

by large multiple subunits (e.g., the nicotinic acetylcholine receptor 

(Kraszewski et al., 2015), ATP synthase (Bockmann and Grubmuller, 

2002), virus capsids (Zhao et al., 2013) or the entire ribosome 

(Sothiselvam et al., 2014)). 

However, although these and future techniques are likely to 

make great progress in the applicability of MD, its routine applicability 

is still limited by the intense computational demands that are required 

for atomic-detailed simulations longer than microsecond scale in 

medium-sized systems. This makes it virtually prohibitive the 

exploration of slow molecular motions that occur at the scale of the 

whole protein using conventional MD simulations and thus has 

fostered the development of alternative sampling methods, which lead 

to a more exhaustive exploration of the conformational space at lower 

time and computational costs. 

Noteworthy solutions to leverage the present-day power of 

atomistic MD simulations consisted on the application of novel 

enhanced sampling algorithms, such as Umbrella Sambling (Patey 

and Valleau, 1975), Replica-Exchange Molecular Dynamics (REMD) 

(Sugita and Okamoto, 1999), Metadynamics (Laio and Parrinello, 
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2002), steered MD (Isralewitz et al., 2001), milestoning (Faradjian and 

Elber, 2004), accelerated MD (Hamelberg et al., 2004), transition path 

sampling (Bolhuis et al., 2002) and their many combinations and 

derivatives in which large energy barriers are artificially reduced, 

allowing proteins to shift between conformations that would not be 

accessible within the time scales of conventional MD. 

Alternative widespread strategies are based on Normal Mode 

Analysis (NMA) approach, which allow to extract large-amplitude 

macromolecular motions (expected to be involved in functionally 

important transition pathways) by approximating the complex 

dynamical behavior of a macromolecule to a simple set of harmonic 

oscillators vibrating around a given equilibrium conformation (Brooks 

and Karplus, 1985).  

Metadynamics (MetaD) 

During the past decade, Metadynamics (MetaD) (Laio and Parrinello, 

2002), especially in the well-tempered formulation (Barducci et al., 

2008), has become increasingly popular as a powerful approach to 

accelerate rare events (i.e., those which occur infrequently in a 

simulation trajectory, regardless of the trajectory timescale) in 

macromolecular systems, by biasing specific degrees of freedom 

(generally referred as collective variables, CVs) and computing 

multidimensional free energy surfaces (FESs) as a function of such 

CVs. Thus, the diffusion in the CVs space is enhanced by disfavoring 

already visited regions through the cumulative addition of a repulsive 

Gaussian potential to the physical force field potential, which flatters 

the FES and thus prevents the system from being trapped in local 

free energy minima (Figure 10). This framework successfully 

produces the exploration of new reaction pathway without a priori 
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knowledge of the landscape and the following estimation of the FES 

without any CVs bias. Nevertheless, given the pivotal relevance of the 

CVs during all the procedure, the accuracy of the results is 

dramatically dependent on their appropriate choice. Generally 

speaking, they should (i) enable to distinguish between the initial and 

final state of the transition studied, (ii) include all the slow modes of 

the system and (iii) be limited in number. However, the identification 

of the correct CVs is usually far from being trivial, and hidden degrees 

of freedom, which may not be accurately described by the chosen 

CVs, often frustrate the sampling and thus limit the extent of 

convergence and the accuracy of results (Sutto et al., 2012). 

Figure 10. Pictorial representation of the way the MetaD algorithm 
fills the free energy landscapes. From Cavalli et al., 2015 

A more efficient approach recently developed, generally 

referred as PTMetaD, consists in manipulating all degrees of freedom 

in a more general way (e.g., by increasing system temperature) by 

combining MetaD with parallel tempering (PT) protocols. Here, a 

series of replicas of a system are simulated at different temperatures, 

and periodical exchanges between adjacent replicas are performed 

using the Metropolis criterion of acceptance (Sugita and Okamoto, 

1999; Hansmann, Dic 1997).  
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Although PTMetaD protocol succeeds in overcoming hidden 

energy barriers and comprehensively explores the CV space of a 

system, its applicability is dramatically limited by high computational 

costs given by the dramatic increase in replicas required to guarantee 

an efficient exchange between the energy distributions of neighboring 

temperatures. However, the combination between PTMetaD with the 

well-tempered ensemble (WTE), a novel alternative sampling 

framework lately proposed (Bonomi and Parrinello, 2010), enable to 

amplify the potential energy fluctuations of each replica, dramatically 

reducing the number of trajectories required and thus the consequent 

computational costs of the overall simulation (Deighan et al., 2012). 

Thus PTMetaD-WTE represents a bridge toward different enhanced 

sampling protocols, definitely extending the applicability and the 

performance of MetaD method.  

Finally, the development of PLUMED (Bonomi et al., 2009), 

an open source plug-in implementation working with many widely 

used MD suites (e.g., Amber, NAMD, GROMACS, ACEDM) has 

further enlarged the notoriety of MetaD frameworks. 

Normal Mode Analysis (NMA) 

Since its first application in structural biology in the early 80s (Brooks 

and Karplus, 1983; Go et al., 1983), normal mode analysis (NMA) has 

proved to be a useful and reliable approach to study collective and 

large amplitude motions of either single small proteins or large 

molecular machines (e.g., lysozyme (Brooks and Karplus, 1983), 

HIV1-protease (Zoete et al., 2002), myosin (Adamovic et al., 2008), 

integrins (Gaillard et al., 2007)) apart from being much less 

demanding than MD in term of computer resources required.  
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During the last decades several algorithms, based on either 

coarse-grained or all-atoms models, have been developed (Skjaerven 

et al., 2009). A novel example is represented by eNMA (enhanced 

NMA), a Anisotropic Network Model (Atilgan et al., 2001) based 

framework, recently developed by Rueda et al. (upcoming 

publication). Indeed, it enables to create enriched structurally diverse 

ensembles by performing an iterative exploratory search among the 

NMA models created at each sampling step.  

The versatility and simplicity of NMA-based methods in 

calculating and storing data have also supported the development of 

several web servers performing NMA calculations or gathering large 

databases of pre-calculated protein motions. ProMode (Atilgan et al., 

2001), MoViES (Cao et al., 2004), MolMovDB (Flores et al., 2006) 

and iGNM (Yang et al., 2005) are some of the most currently used 

databases, while ElNémo web server (Suhre and Sanejouand, 2004) 

quickly performs all-atom calculations starting from a given protein 

structure, and provides a comprehensive set of post-processing tools 

to analyze and display results. 

Apart from capturing functional movements of proteins, NMA 

can be used in a wide variety of applications to (i) automatically 

predict hinge residues in protein structures (as performed in 

HingeProt server (Emekli et al., 2008)), (ii) refine low-resolution 

structures (experimental or predicted) or (iii) calculate the transition 

path between two conformations (as in MinActionPath (Franklin et al., 

2007)). 
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1.3.3. Integration of molecular flexibility into 
protein-protein docking 

As mentioned in section 1.2.4, one of the main challenges in ab initio 

prediction of protein-protein complex structure is properly dealing with 

molecular flexibility. During the last decades, several approaches 

have been proposed to address this issue. The easier and simpler 

approaches consist in an implicit treatment of flexibility by using soft 

potentials. Basically inspired by induce-fit and conformational-

selection protein binding mechanisms, more complex and innovative 

strategies have been recently developed. They basically consist in 

implementing a final refinement step (Bonvin, 2006; Zacharias, 2010) 

or performing multiple docking runs from various precomputed 

conformations, respectively. 

Soft-docking methods 

Although relatively fast, one of the main limitations of the FFT-based 

docking methods is their incompatibility with an explicit treatment of 

protein flexibility. Alternative strategies to overcome this limitation 

consist in implementing a soft surface layer that allow overlapping of 

the proteins in the models (i.e., soft-core approach (Palma et al., 

2000), or trimming long side chains (Heifetz and Eisenstein, 2003)). 

Soft potentials are successfully applied in pyDock scoring 

function (Cheng et al., 2007), where the van der Waals and the 

electrostatic energies are truncated (to a maximum of 1 kcal/mol and 

between -1 kcal/mol and +1 kcal/mol, respectively) in order to avoid 

excessive penalization for the clashes generated during the rigid-body 

docking phase. 
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Flexible refinement 

The majority of strategies to include flexibility in docking mimic the 

induced-fit association model, by involving a first exploration of the 

docking space using simplified/course grain and rigid-body protein 

representation, followed by a local refinement to a higher resolution, 

where a limited degree of flexibility is introduced by using specific 

energy optimization protocols involving only side chains or including 

also backbone atoms.  

In ICM-DISCO (Fernandez-Recio et al., 2002) a Monte-Carlo 

(MC) optimization of the ligand side chains is performed after a soft-

grid docking, while HADDOCK (Dominguez et al., 2003) explicitly 

provides backbone and side chain flexibility of both the docking 

partners during an MD simulated annealing refinement step. Finally, 

in RosettaDock (Lyskov and Gray, 2008) an initial low-resolution 

search is followed by a repacking and further MC optimization of the 

side chains, combined with small backbone deviations and rigid-body 

displacements. Finally, other methods involved a more exhaustive 

consideration of the protein plasticity by integrating small 

deformations of the global structures along soft harmonic modes 

during the initial sampling step, as implemented in ATTRACT 

(Zacharias, 2003, 2004) or SwarmDock (Moal and Bates, 2010) 

programs. 

Docking of conformational ensembles 

Based on the conformational-selection association model, a strategy 

to include flexibility in docking would consist in integrating 

precomputed conformational ensembles of the interacting proteins 

into a rigid-body framework, by repeating the docking process through 
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various combinations of the docking partners. Such structural 

ensemble can be obtained experimentally (e.g., from NMR 

experiments) or be generated computationally by any sampling 

method (e.g., MD, NMA or homology modeling) thus spanning various 

degrees of flexibility, from small local rearrangement to large-scale 

global motions.  

Although potentially promising, to date this strategy has not 

been really used for practical docking predictions, and very few 

systematic studies has been published so far on exploring the use of 

either conformational ensembles derived from theoretical simulation 

(Grunberg et al., 2004; Smith et al., 2005; Chaudhury and Gray, 

2008) or experimental data (i.e., NMR spectroscopy) (Chaudhury and 

Gray, 2008). Indeed, both the studies from Grümberg et al. and Smith 

et al. agreed that the ensemble docking failed to improve structure 

prediction of protein complexes, although leading to an increase in 

the number of native solutions generated. Intriguingly, no clear 

correlation was found between success rate and RMSD from the 

bound structure (Grunberg et al., 2004). A more successful approach 

was reported by Chaudhury et al., where flexibility was restrained to 

the smaller protein in the complex. Indeed, a real improvement of the 

docking results was observed using MD structures, while the 

performance dramatically dropped with NMR structures (Chaudhury 

and Gray, 2008). However, the ensembles used in all these studies 

do not really represent the population of unbound state, as only few 

conformers were used in the docking procedure.  

A more recent example of ensemble docking was reported, 

consisting in the successful integration of large RDC-based 

ensembles of free ubiquitin into a rigid-body docking protocol (Pons et 
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al., 2013). Experimental limitations precluded the application of RDC-

based ensembles at a large-scale, and therefore more research work 

was needed in finding practical ways for generating successful 

ensembles of unbound proteins in solution and their optimal use in 

docking protocols, which is one of the goals of this thesis. 

 





2. Objectives



“The impossible of today 
will become the possible of tomorrow.” 

Konstantin Tsiolkovsky 
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Proteins function through their interaction with other proteins and 

biomolecules, forming specific complexes that are determined by the 

3D structure and energetics of the interacting subunits. Computational 

methods can successfully contribute to predict and characterize these 

mechanistic aspects of protein function at atomic level, in which 

conformational flexibility plays a major role. However, an accurate 

consideration of protein plasticity within computational modeling of 

protein function at molecular level is still far from trivial, mostly 

because of both technical and methodological limitations. In this 

context the main purpose of this PhD thesis has been the 

assessment, development and application of computational tools for 

the structural, energetic and dynamic characterization of protein 

molecules and their interactions. This general purpose englobes 

several specific objectives: 

1. Analysis of advances and new challenges of methods for the 
energetic characterization of protein-protein interfaces; 

2. Assessment of current in silico techniques for the structural 
prediction of protein interactions; 

3. Systematic study on the role of conformational heterogeneity 
in protein-protein association process; 

4. Development and benchmarking of a novel protocol to 
integrate unbound conformational ensembles in protein-
protein docking;  

5. Application of computational methods for the prediction and 
characterization of protein interactions in cases of biological 
interest;  

6. Application of computational methods to elucidate the 
dynamic basis of protein dysfunction for biomedical 
applications.  

 





3. Articles 

 



“If you are out to describe the truth, 
leave elegance to the tailor.”  

Albert Einstein  
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3.1. Advances and new challenges in 
modeling of protein interactions 

Given the growing interest in protein-protein interactions and the 

technical advances in computational field, an increasing number of in 

silico tools have been developed with the aim of (i) identifying 

residues that significantly contribute to binding, and (ii) modeling 

protein complexes starting from the isolated component structures 

(docking problem). Testing and comparing these computational 

methodologies is fundamental in order to assess their performance, 

identify their limitations, and finally guide new developments in the 

field. In this context, CAPRI experiment provides a common ground 

for testing the predictive capability of currently available docking 

methods. 

Firstly, this section will be focused on the analysis of several 

existing computational protocols for the characterization of protein-

protein interfaces. Secondly, the performance of our pyDock protocol 

(Cheng et al., 2007) on the last CAPRI round (Lensink and Wodak, 

2013) will be evaluated and discussed.  
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Abstract 

An important aspect of protein functionality is the formation of specific 
complexes with other proteins, which are involved in the majority of 
biological processes. The functional characterization of such 
interactions at molecular level is necessary, not only to understand 
biological and pathological phenomena, but also to design improved, 
or even new interfaces, or to develop new therapeutic approaches. X-
ray crystallography and NMR spectroscopy have increased the 
number of 3D protein complex structures deposited in the Protein 
Data Bank (PDB). However, one of the more challenging objectives in 
biological research is to functionally characterize protein interactions 
and thus, identify residues that significantly contribute to the binding. 
Considering that the experimental characterization of protein 
interfaces remains expensive, time-consuming and labor-intensive, 
computational approaches represent a significant breakthrough in 
proteomics, assisting or even replacing experimental efforts. Thanks 
to the technological advances in computing and data processing, 
these techniques now cover a vast range of protocols, from the 
estimation of the evolutionary conservation of amino acid positions in 
a protein, to the energetic contribution of each residue to the binding 
affinity. In this chapter, we will review several existing computational 
protocols to model the phylogenetic, structural and energetic 
properties of residues within protein-protein interfaces. 
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Key Words 
Protein-protein interactions, hot-spots identification, interface 
prediction, evolutionary conservation, protein protein docking, 
biomolecular dynamics simulation, in silico alanine scanning, pyDock, 
AMBER package, ConSurf. 

Introduction 
One of the current goals of proteomics is to predict and characterize 
protein-protein complex interfaces. Access to such information is 
highly valuable as it helps to elucidate large protein interaction 
networks, increases the current knowledge on biochemical pathways, 
improves comprehensive description of disease pathogenesis and 
finally suggests putative new therapeutic targets [1-3]. Moreover, the 
use of computational approaches offers faster and more cost-efficient 
procedures in comparison to experimental methods such as co-
immunoprecipitation, affinity chromatography, yeast two-hybrid or 
mass spectroscopy. 

 
Fig. 1 MEK1-BRAF interface characterization. MEK1 and BRAF interface 
characterization using different computational techniques (first and second line 
respectively): ConSurf evolutionary conservation, pyDockNIP calculation, 
pyDock binding energy decomposition, binding free energy change (ΔΔG) 
estimated by in silico alanine scanning. 

In this chapter, we will review several computational methods 
that exploit phylogenetic, structural and energetic properties of 
interface residues for the computational design of protein complexes, 
or the characterization of pathological mutations involved in protein-
protein interfaces. First, we will describe two methods that do not need 
the structure of the protein-protein complex, namely ConSurf [4-7] and 
Normalized Interface Propensity (NIP) [8]. ConSurf identifies 
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functionally and structurally important residues (e.g., involved in 
enzymatic activity, in ligand binding or protein-protein interactions [9]) 
on a protein by estimating the degree of conservation of each amino 
acid site among their close sequence homologues. NIP computes the 
tendency of a given residue to be located at the interface, based on 
rigid-body docking poses evaluated by pyDock scoring function [10] 
(based on accessible surface area-based desolvation, coulombic 
electrostatics and van der Waals energy). Then, we will describe two 
other protocols which require previous knowledge of the complex 
structure: residue contribution to binding energy computed with 
pyDock, and in silico Alanine (Ala) scanning, based on Molecular 
Dynamics simulations with AMBER14 package [11] and binding 
energy calculations using the MM-GBSA method [12]. The use of 
these methods will be illustrated on one example, the MEK1-BRAF 
complex (PDB ID 4MNE) [13], in which several pathological mutations 
are annotated [14]. 

Materials  

ConSurf Server 
1. ConSurf Server is a bioinformatics tool that estimates the 

evolutionary conservation of amino acid positions in protein 
molecules based on the phylogenetic relations among close 
homologous sequences. It can be found at  
http://consurf.tau.ac.il. 

PyDock 
1. PyDock is docking package freely available to academic 

users. Go to pyDock download web page 
http://life.bsc.es/pid/pydock/get_pydock.html [15] and fill in the 
form with the requested information. pyDock team will quickly 
send you a copy of the application and instructions to install it. 

FTDock 
1. From the FTDock [16] web page 

http://www.sbg.bio.ic.ac.uk/docking/download.html, download 
file gnu_licensed_3D_Dock.tar.gz to the folder of your choice. 

2. From the FFTW web page http://www.fftw.org/download.html, 
download file fftw-2.1.5.tar.gz. 

3. Move to the folder where you have downloaded the file fftw-
2.1.5.tar.gz and unpack the package with the following 
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commands:  
> cd folder-where-fftw-2.1.5.tar.gz-has-been-downloaded 
> gunzip fftw-2.1.5.tar.gz 
> tar xvf fftw-2.1.5.tar 

4. Move into directory fftw-2.1.5 and compile the library:  
> cd fftw-2.1.5;  
> ./configure;  
> make 

5. Move to the folder where you have downloaded 
gnu_licensed_3D_Dock.tar.gz and unpack FTDock package. 

6. Move to the unpacked folder 3D_Dock/progs. Edit file 
Makefile and set the correct complete path to the fftw-2.1.5 
directory. This is done by setting the variable FFTW_DIR on 
line 15. You should also check the value of the CC_FLAGS 
variable, and make it fit to your system (e.g: for a x86_64 
Linux system, CC_FLAGS variable has been modified and set 
to '-O -m64'. 

7. Type the following command: 
> make 

8. You should now have the executable files ftdock, build and 
randomspin available. Optional: Edit your .bashrc file to 
include 3D_Dock/progs folder in your system path (PATH 
variable). 

UCSF CHIMERA molecular viewer 
UCSF Chimera [17] is a highly extensible program for interactive 
visualization, molecular structure analysis and high-quality 
images generation. Here are the instructions to install UCSF 
Chimera Molecular viewer: 

1. Go to UCSF Chimera Molecular viewer web page at 
http://www.cgl.ucsf.edu/chimera. 

2. Go to the download session, clicking on Download in the 
menu on the top-left of the web page and selecting the UCSF 
Chimera Molecular viewer installer appropriate for you 
platform. 

3. Install UCSF Chimera Molecular viewer on your computer 
following the platform specific installation instructions 
available on the same page. 
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AMBER package 
AMBER is a package of programs for Molecular Dynamics simulations 
of proteins and nucleic acids. It is distributed in two parts: 
AmberTools14 and Amber14. Here are the instructions to install 
AMBER package: 

1. Go to the AMBER web page at http://ambermd.org/#Amber14. 

2. After filling the registration form located on its own section at 
http://ambermd.org/AmberTools14-get.html, download 
AmberTools14 clicking on the Download button. 

3. Download the Amber 14 License Agreement, print this form, 
fill it in, sign and return it to the address given at the bottom of 
the license agreement. Once the order is processed, 
download the AMBER program package following the 
download information you will receive via email. 

4. Install AMBER on your machine and compile the source code 
format using Fortran 95, C or C++ compilers following the 
instructions in the Amber Reference Manual at 
http://ambermd.org/doc12/Amber14.pdf. 

Methods 

Analysis of residue conservation by ConSurf 
1. Go to ConSurf web server page at http://consurf.tau.ac.il. 

Then, ConSurf web server will ask you several questions 
regarding the computation you want to run. 

2. To the question Analyze Nucleotides or Amino Acids? select 
Amino-Acids option. 

3. To the question Is there a known protein structure? select Yes 
option. 

4. Provide the PDB ID (e.g., 4MNE) of the structure you want to 
analyze or upload your own PDB file, browsing to its location. 
Press Next button. 

5. Select the chain identifier of the molecule to be analyzed. 

6. Indicate whether there is a multiple sequence alignment 
(MSA) to upload. If there is not, ConSurf server will generate 
it. You may set the parameters ConSurf server will use to 
generate the MSA. For this work, ConSurf server has been 
run with default parameters. 
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7. At the bottom of the page, fill the Job title field to identify the 
job. 

8. Fill the User E-Mail field, check the Send a link to the results 
by e-mail check-box and click the submit button. Thus, 
ConSurf server will send you an e-mail with a link to the 
results when it has finished. 

9. Open the e-mail sent by ConSurf and go to the results page 
link. 

10. Click on the Download all Consurf outputs in a click! link, save 
the ConSurf results file and unzip it. 

11. Open consurf.grades file. From all the columns of the file, 
focus on three: 3LATOM, SCORE and COLOR. The 3LATOM 
column contains an id code of the analyzed residues. The 
SCORE column contains the computed normalized 
conservation score. Lower scores (more negative) correspond 
to more conserved residues, while higher scores (more 
positive) correspond to less conserved residues. A similar 
information is shown in column COLOR where, in order to 
ease visualization of the results, the continuous conservation 
scores have been partitioned into nine different bins, with bin 
9 representing the most conserved positions and bin 1 the 
most variable positions. It is important to remark that neither 
the SCORE values nor the COLOR values indicate absolute 
magnitudes of conservation, but rather the relative degree of 
conservation of a given residue in the specific protein under 
study (i.e., neither SCORE nor COLOR values of residues of 
different proteins are generally comparable). 

12. ConSurf provides two PDB files where the SCORE and 
COLOR values are assigned to the bfactor field. This is quite 
useful in order to get a picture of which residues are more 
conserved. With your favorite molecular visualization 
application open *.pdb_With_Conservation_Scores.pdb and 
*.pdb_ATOMS_section_With_Consurf files for displaying 
SCORE and COLOR values respectively (Fig. 1).  

Prediction of binding hot-spots by NIP 

NIP computation can be divided in four different steps: 1) initial setup, 
where the receptor and ligand PDB files of the complex are 
preprocessed in order to generate the input files that FTDock and 
pyDock require, 2) sampling phase, where FTDock generates a set of 
docking poses, 3) scoring phase, where pyDock dockser module 
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scores and ranks the poses generated by FTDock and 4) NIP 
computation, where the first 100 ranked docking poses (those with 
lower binding energy) are selected from the whole set of generated 
docking poses, and pyDock patch module is used to compute the NIP 
values. 

Next, we describe each one of these phases in more detail. 

1. Initial setup 

a) Create a project folder and move to it. 

b) From the PDB web site, download the receptor and 
ligand structures: e.g. download the PDB files of receptor 
(3EQI) and ligand (4MNE) into the project_folder (see 
Note 1).  

c) Create pyDock ini file: open your favorite text editor and 
create the file 4mne.ini as shown in Fig. 2. 

d) Run pyDock setup module:  

> pydock3 4mne setup 

e) pyDock setup module should have generated several 
new files (see Table 1). 

 
Fig. 2 Example of pyDock input file. The input file is typically divided into two 
sections, [receptor] and [ligand], designed to specify the variables related to 
the receptor and ligand, respectively. The pdb line defines the PDB file name. 
The mol line specifies the original chain name in each PDB file, whereas the 
newmol indicates the new one in the pyDock output files. Please, be aware 
that the newmol chain names must be different for the receptor and the ligand. 

Table 1. pyDock modules input and output files. 

Module 
name 

Input files Output files 

setup docking_name.ini docking_name_rec.pdb 
docking_name_lig.pdb 
docking_name_rec.pdb.H 
docking_name_lig.pdb.H 
docking_name_rec.pdb.amber 
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docking_name_lig.pdb.amber 
rotftdock docking_name_rec.pdb 

docking_name_lig.pdb 
docking_name.rot 

rotzdock docking_name_rec.pdb 
docking_name_lig.pdb 

docking_name.rot 

dockser docking_name_rec.pdb 
docking_name_lig.pdb 
docking_name_rec.pdb.H 
docking_name_lig.pdb.H 
docking_name_rec.pdb.amber 
docking_name_lig.pdb.amber 
docking_name.rot 

docking_name.ene 

patch docking_name_rec.pdb 
docking_name_lig.pdb 
docking_name.rot 
docking_name.ene 

docking_name.recNIP 
docking_name.rec.pdb.nip 
docking_name.ligNIP 
docking_name.lig.pdb.nip 

BindEy docking_name.ini docking_name_rec.pdb 
docking_name_lig.pdb 
docking_name_rec.pdb.H 
docking_name_lig.pdb.H 
docking_name_rec.pdb.amber 
docking_name_lig.pdb.amber 
docking_name.rot 
docking_name.ene 

resEnergy docking_name_rec.pdb 
docking_name_lig.pdb 
docking_name_rec.pdb.H 
docking_name_lig.pdb.H 
docking_name_rec.pdb.amber 
docking_name_lig.pdb.amber 
docking_name.rot 

docking_name.receptor.residueEne 
docking_name.ligand.residueEne 
docking_name.receptor.atomEne 
docking_name.ligand.atomEne 
 

2. FTDock sampling 

 a) Run FTDock: 

> ftdock -static 4mne_rec.pdb -mobile 4mne_lig.pdb -
calculate_grid 0.7 -angle_step 12 -internal -15 -surface 
1.3 -keep 3 -out 4mne.ftdock 

 b) When FTDock is finished, you should have a new file 
named 4mne.ftdock in the folder. 

 3. Scoring 

In this phase, the docking poses generated in the sampling 
phase are scored and ranked with pyDock dockser module. 

 a) Run pyDock rotftdock module: 

> pydock3 4mne rotftdock 

 b) There should now be a new file 4mne.rot. Each line in 
this file represents a rotation and translation matrix. 
FTDock 4mne.rot file should have 10000 different lines. 
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 c) Score and rank FTDock poses by running pyDock 
dockser module: 

> pydock3 4mne dockser 

 d) Once dockser module has finished, it should have 
created file 4mne.ene with 10002 different lines (see 
Note 2 for a detailed description of this file). 

4. NIP computation 

 a) Run pyDock patch module: 

> pydock3 4mne patch 

 b) 4mne.recNIP and 4mne.ligNIP files should have been 
created. These files show the computed NIP value for 
each residue of receptor and ligand respectively. Those 
residues with NIP values greater than 0.2 are predicted to 
be hot-spots. 

 c) For visualization proposes, patch module output includes 
two PDB files, with extension *.pdb.nip, where the NIP 
values have been assigned to the bfactor field. With your 
favorite molecular visualization application open 
*_rec.pdb.nip or *_lig.pdb.nip files for displaying the NIP 
values of receptor and ligand respectively (Fig. 1).  

Computation of binding energy per residue with pyDock 
1. Create a folder for computing residue binding energy. 

2. From the PDB web site, download the structure of a protein-
protein complex, e.g. BRAF/MEK1 (PDB ID 4MNE). 

3. Create pyDock ini file. Open your favorite text editor and 
create the 4mne.ini file specifying receptor and ligand 
subunits.  

4. Compute pyDock binding energy by running the following 
command: 

> pydock3 4mne bindEy 

5. pyDock should have generated several new files. Please, see 
Table 1 to confirm. 

6. Run pyDock residue energy module: 

> pydock3 4mne resEnergy 
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7. The module should have created for ligand and receptor 
*.atomEne and *.residueEne files with the contribution to the 
binding energy of each individual atom and residue 
respectively. 

8. You may get a graphical representation of the residue binding 
energy (Fig. 1), by assigning the binding energy values given 
in *.residueEne files to the bfactor field of the corresponding 
PDB file of the target molecules. 

In-silico alanine scanning with AMBER 
The Alanine scanning workflow can be divided into three different 
steps: 1) the preparation of the PDB files for both the wild type and the 
mutated structures, 2) the Molecular Dynamics simulation of the wild 
type complex and 3) the binding free energy calculation on both the 
wild type and the mutated structures. 

 1. Wild type and mutated structures PDB files preparation 

 a) Start a new session of UCSF Chimera Molecular viewer 
and open 4MNE PDB file clicking on File → Fetch by ID 
entering 4mne as PDB ID in the new window and then 
clicking on the Fetch button. Delete all chains but A and 
B, and all existing water molecules from the system. 

 b) Build missing segments starting the Chimera interface to 
MODELLER. Click on Tools → Structure Editing → 
Model/Refine Loops. In the new window, select all 
missing structure as model/remodel option and one as 
both number of residues adjacent to missing region 
allowed to move and number of models to generate. 
Write the MODELLER license key and start the rebuilding 
by clicking on OK. The MODELLER license key is freely 
available only for academic use and can be requested at 
the MODELLER web page 
https://salilab.org/modeller/registration.html, filling up the 
license agreement and clicking on agreed and accepted 
buttom.  

 c) Save the PDB files of the complex and each subunit in 
the wild type form. Go to File → SavePDB. In the new 
window enter MEK1-BRAF.pdb as file name of the 
refined complex structure and finally click on Save. Select 
each subunit of the complex by its chain name from 
Select → Chain. Go to File → SavePDB, specify the 
subunit new file name (i.e., MEK1.pdb for chain A and 
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BRAF.pdb for chain B), pick the save selected atom only 
option and finally click on Save. 

 d) Save the complex and the subunit PDB files for each 
mutant. Start a new session of UCSF Chimera Molecular 
viewer, open MEK1-BRAF.pdb file, select only one 
residue to be mutated then go to Tools → Structure 
Editing → Rotamers, choose ALA as rotamer type and 
click on OK. Save the resulting mutated complex 
structure going to File → Save PDB and specifying the 
mutation in the new file name (e.g., MEK1-
BRAF_F468A.pdb). Finally, select the mutated subunit 
structure only and save it in a separate file (e.g., 
BRAF_F468A.pdb). Repeat the same protocol for each 
BRAF and MEK1 residue to be mutated. 

 e) Edit all MEK1-BRAF.pdb and MEK1.pdb files (both wild 
type and mutated). Rename MG residue to MG2 and 
convert ACP molecule to ATP. 
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Fig. 3 Example of AMBER LEaP input file to build topology and coordinates 
files of wild type solvated system. The source command tells LEaP AMBER 
tool to execute the start-up script for ff99SB and GAFF force fields. First, ATP 
parameters are loaded and checked, then MEK1-BRAF.pdb file is loaded into 
a new unit called 4mne, the structure is checked (i.e., close contacts and bond 
distances, bond and angle parameters) and the total charge is computed. 
Then, the system is solvated by adding a truncated octahedral 12 Å-box of 
TIP3P water molecules around the protein, and neutralized by adding 4 Na+ 
ions. Finally, the topology and coordinate files are saved in the prmtop and 
inpcrd AMBER format respectively. 

 2. Molecular Dynamics simulation 

 a) Download the ATP molecule parameters from the 
AMBER parameter database (see Note 3). Go to the 
AMBER parameter database web page at 
http://www.pharmacy.manchester.ac.uk/bryce/amber/. 
Search the row ATP (revised phosphate parameters) in 
the Cofactors table and save the PREP and FRCMOD 
files as ATP.prep and ATP.frcmod, respectively. 

 b) Modify the ATP atom names in your PDB file to match 
the atom names in the ATP.prep file so that LEaP 
AMBER tool will be able to match them up. 

 c) Create the input files for the MD simulation (topology and 
coordinate files) using LEaP AMBER tool. Run the input 
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script tleap-solv.in (Fig. 3, see Note 4) using the 
following command: 

> $AMBERHOME/bin/tleap -f tleap-solv.in > tleap-
solv.out  

Flag -f tells tleap to execute the start-up script after-
specified. 

 
Fig. 4 Example of AMBER pmemd input file for solvent minimization. In the 
input file, imin=1 specifies that minimization instead of Molecular Dynamics 
will be performed, the parameter maxcyc specifies the total number of 
minimization cycles to be run while ncyc specify the number of steepest 
descent minimization followed by maxcyc-ncyc steps of conjugate gradient 
minimization, drms sets the convergence criterion for the energy gradient (in 
Å). The parameter ntb=1 means that a period boundary will be set around the 
system to maintain a constant volume while cut sets the cutoff value (in Å) 
applied for non-bonded interactions. The flag ntr=1 indicates that the 
positional restraint method is applied for the energy minimization, 
restraintmask specifies the atoms to be restrained (in this cases all but water 
and ions molecule) and finally restraint_wt defines the restraints strength in 
terms of force constant in kcal mol-1 Å-2 applied on each restrained atom. 

d) Run a short solvent minimization step using AMBER 
pmemd input script min_solv.in (Fig. 4) and the following 
input command: 

> $AMBERHOME/bin/pmemd -i min_solv.in -o 
min_solv.out -c MEK1-BRAF_solv.inpcrd -p MEK1-
BRAF_solv.prmtop -r MEK1-BRAF_min.rst -ref MEK1-
BRAF_solv.inpcrd 

Flag -i specifies the input file, -o the output file, -c the 
coordinate file, -p the parameter and topology file, -r the 
output restart file with coordinates and velocities, and -ref 
the reference coordinates file for positional restraints, if 
this option is specified in the input file. 
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Fig. 5 Example of AMBER pmemd input file for first step equilibration. In the 
input file, imin=0 specifies that Molecular Dynamics instead of minimization will 
be performed, the parameters irest=0 and ntx =1 indicate that only coordinates 
but no velocity information will be taken from the previous restart file, the flag 
ntc=2 indicates that all bonds involving hydrogen bonds are constrained by the 
SHAKE algorithm to eliminate high frequency oscillations in the system while 
ntf=2 means that all types of forces in the force filed are being calculated 
except bond interaction involving H-atoms. The parameters temp0 and tempi 
define the initial and the temperature at which the system is to be kept 
respectively, ntt=3 indicates that the temperature Langevin thermostat will be 
used while gamma_ln=1.0 sets the collision frequency to 1fs. The flag nstlim 
defines the number of simulation steps, dt defines the length of each frame 
(set at 2 fs, here) while ntwx, ntwr, ntpr define the frequency of data deposition 
(coordinates, energy and restart respectively). Finally ig=-1 sets the random 
seed based on the current date and time and hence will be different for every 
run. The meaning of the rest of the parameters listed in the input file was 
previously explained. 

e) Run a 5-step equilibration by which the system 
temperature is raised from 0 to 300K, and a gradual 
relaxation is performed by progressively releasing 
positional restraints, initially set. The following protocol 
should be used: 

• As a first equilibration step, run a 40-ps simulation in 
isovolume condition applying harmonic restraints to all 
the protein atoms and heating the system to 300K. 
Run equil1.in input script (Fig. 5) using the following 
command: 
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> $AMBERHOME/bin/pmemd -i equil1.in -o equil1.out 
-c MEK1-BRAF_min.rst -p MEK1-BRAF_solv.prmtop -
r MEK1-BRAF_eq1.rst -ref MEK1-BRAF_min.rst -x 
MEK1-BRAF_eq1.mdcrd 

• Perform an additional 20-ps step in isothermal-
isovolume condition reducing the harmonic restraints 
to all the protein atoms from 25 to 10 kcal/(mol·Å2). 
Run equil2.in input script (Fig. 6) using the following 
command: 

> $AMBERHOME/bin/pmemd -i equil2.in -o equil2.out 
-c MEK1-BRAF_eq1.rst -p MEK1-BRAF_solv.prmtop -
r MEK1-BRAF_eq2.rst -ref MEK1-BRAF_eq1.rst -x 
MEK1-BRAF_eq2.mdcrd 

 
Fig. 6 Example of AMBER pmemd input file for second step equilibration. In 
the input file, the flags ntx=5 and irest=1 mean that velocity and coordinate 
information will be taken from the previous restart file. The meaning of the rest 
of the parameters listed in the input file was previously explained. 

• Run another 20-ps step applying the harmonic 
restraints only to the backbone atoms. Run equil3.in 
input script (Fig. 7) using the following command: 

> $AMBERHOME/bin/pmemd -i equil3.in -o equil3.out 
-c MEK1-BRAF_eq2.rst -p MEK1-BRAF_solv.prmtop -
r MEK1-BRAF_eq3.rst -ref MEK1-BRAF_eq2.rst -x 
MEK1-BRAF_eq3.mdcrd 
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Fig. 7 Example of AMBER pmemd input file for third step equilibration. In the 
input file the flags ntb=2 and ntp=1 indicate that constant pressure instead of 
constant volume is applied. The meaning of the rest of the parameters listed in 
the input file was previously explained. 

• Run further 20-ps step decreasing protein backbone 
restraints to 5 kcal/(mol·Å2). Run equil4.in input script 
(Fig. 8) using the following command: 

> $AMBERHOME/bin/pmemd -i equil4.in -o equil4.out 
-c MEK1-BRAF_eq3.rst -p MEK1-BRAF_solv.prmtop -
r MEK1-BRAF_eq4.rst -ref MEK1-BRAF_eq3.rst -x 
MEK1-BRAF_eq4.mdcrd 
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Fig. 8 Example of AMBER pmemd input file for fourth step equilibration. The 
meaning of all the parameters listed in the input file was previously explained. 

• Run the last step of the equilibration consisting on 
100-ps unrestrained MD simulation in isothermal-
isobaric condition. Run equil5.in input script (Fig. 9, 
see Note 5) using the following command: 

> $AMBERHOME/bin/pmemd -i equil5.in -o equil5.out 
-c MEK1-BRAF_eq4.rst -p MEK1-BRAF_solv.prmtop -
r MEK1-BRAF_eq5.rst -ref MEK1-BRAF_eq4.rst -x 
MEK1-BRAF_eq5.mdcrd 
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Fig. 9 Example of AMBER pmemd input file for fifth step equilibration. In the 
input file, the flag ntr=0 indicates that the positional restraint method is turned 
off. The meaning of the rest of the parameters listed in the input file was 
previously explained. 

 f) Finally, perform 5-ns MD unrestrained simulation keeping 
the same system condition as the last equilibration step. 
Run prod.in input script (Fig. 10, see Note 6) using the 
following command: 

> $AMBERHOME/bin/pmemd -i prod.in -o prod.out -c 
MEK1-BRAF_eq5.rst -p MEK1-BRAF_solv.prmtop -r 
MEK1-BRAF_prod.rst -ref MEK1-BRAF_eq5.rst -x 
MEK1-BRAF_prod.mdcrd 



Articles 

 

 95 

 
Fig. 10 Example of AMBER pmemd input file for unrestrained MD. The 
meaning of all the parameters listed in the input file was previously explained. 

 3. Binding free energy calculation 

 a) Build the topology and coordinate files of the unsolvated 
wild type (WT) structure for both the complex and its 
single subunits using tleap-WT.in input file (Fig. 11). Run 
LEaP AMBER tool using the following command: 

> $AMBERHOME/bin/tleap -f tleap-WT.in > tleap-WT.out 
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Fig. 11 Example of AMBER LEaP input file to build topology and coordinates 
files of wild type dry systems. 

 b) For each mutation studied, build the topology and 
coordinate files of the mutated structure for both the 
complex and mutated subunit using tleap-mut.in input file 
(Fig. 12). Run LEaP AMBER tool using the following 
command: 

> $AMBERHOME/bin/tleap -f tleap-mut.in > tleap-mut.out 

 
Fig. 12 Example of AMBER LEaP input file to build topology and coordinates 
files of mutated dry systems. Here, F468 BRAF residue is taken as example. 

 c) Perform alanine scanning calculation on 200 snapshots 
extracted from the last 2 ns of each MD trajectory. Run 
mmpbsa.in input file for MMPBSA.py script in AMBER14 
(Fig. 13) using the following command: 

> $AMBERHOME/bin/MMPBSA.py -i mmpbsa.in -sp 
MEK1-BRAF_solv.prmtop -cp MEK1-BRAF.prmtop -rp 
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MEK1-BRAF.prmtop -lp MEK1-BRAF.prmtop -y MEK1-
BRAF_prod.mdcrd -mc MEK1-BRAF_F468A.prmtop -ml 
BRAF_F468A.prmtop 

Flag -i specifies the input file, -sp the solvated WT 
complex topology file, -cp the unsolvated WT complex 
topology file, -rp the unsolvated WT receptor topology 
file, -lp the unsolvated WT ligand topology file, -y the 
complex trajectory file to analyze, -mc the unsolvent 
mutated complex topology file and -ml the unsolvated 
mutated subunit topology file. Please, be aware that as 
MEK1 is the first molecule in the complex, for alanine 
scanning calculations the unsolvated mutated subunit 
topology file will be specified with the flag -mr. 

 
Fig. 13 Example of MMPBSA.py input file to perform alanine scanning 
calculation. The input file is typically divided into four sections (&general, 
&gb, &pb, &alanine_scanning). The &general section is designed to specify 
generic variables related to the overall calculation. For instance, the flag 
startframe and endframe specifies the frame from which to begin and to stop 
extracting snapshots respectively, the parameter interval indicates the offset 
from which to choose frames from the trajectory file, verbose=1 means that 
complex, ligand and receptor energy terms will be printed in the output file. 
The &gb and &pb section markers tells the script to perform MM-GBSA and 
MM-PBSA calculations with the given values defined within those sections 
(i.e., the variables saltcon and istrng that specify the salt concentration and 
the ionic strength, respectively). Finally the &alanine_scanning section 
marker initializes alanine scanning in the script. Please be aware that given 
the higher computational costs of MM-PBSA calculation, only MM-GBSA 
calculation is performed in this work.  

 d) Extract the ΔΔG of binding related to the specific 
mutations estimated as the difference between the 
binding ΔG of the WT and that of the mutated complex. 
All these data are easily available in the final output file, 
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FINAL_RESULTS_MMPBSA.dat, including all the wild 
type and mutated system average binding energies 
(reported as van der Waals, electrostatic and non polar 
energy contributions), as shown in Fig. 14. 

 
Fig. 14 Extract from the MMPBSA.py FINAL_RESULTS_MMPBSA.dat output 
file. The file includes all the average energies, standard deviations, and 
standard error of the mean for GB followed by PB calculations (if calculated). 
After each section, the ΔG of binding is given along with the error values. After 
each method, the ΔΔG of binding is reported, corresponding to the relative 
effect the mutation has on the ΔG of binding for the complex. The specific 
mutation is also printed at the end of the file. Here, F468 residue alanine 
scanning is taken as example. 

 e) You may get a graphical representation of the ΔΔG of 
binding (Fig. 1), by assigning the values given in 
FINAL_RESULTS_MMPBSA.dat file to the bfactor field of 
the corresponding PDB file of the complex structure. 
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Notes 
1) As there is no unbound structure for the ligand yet, the ligand 

structure contained on the complex PDB file (4MNE) is used here 
instead for illustration purposes. However, in a standard NIP 
computation, unbound structures should be used. 

2) The principal columns of the 4mne.ene file are: 

• Conf: Conformation number of the docking pose as in the 
last column of the rot file. 

• Ele: Electrostatic energy of the pose. 

• Desolv: Desolvation energy of the pose. 

• VDW: Van der Waals energy of the pose. 

• Total: Total docking energy of the pose, computed as ele 
+ Desolv + 0.1 * VDW (note a 0.1 weight for VDW). 

• RANK: Pose rank according to its computed total binding 
energy. 

3) Files from the PDB may contain bound ligands, cofactors or non-
standard residues whose parameters are not available in the 
AMBER parameters database. In this case you should make use 
of the Antechamber tools, which ship with AmberTools, to create 
PREP and FRCMOD files. For more information, see the 
ANTECHAMBER tutorial 
(http://ambermd.org/tutorials/basic/tutorial4b/) and the AMBER 
manual. 

4) LEaP AMBER tool renumbers PDB residues starting from 1. Thus, 
the original numeration of your PDB file may not be always kept. 

5) Since your system may not start from an equilibrium state, 
additional time steps may be required during the minimization and 
equilibration steps of the MD simulation. One can check for 
equilibrium by verifying whether properties, such as potential 
energy, temperature or pressure, no longer change in any 
systematic fashion and are just fluctuating around a mean value. 

6) To guarantee reliable results in the in silico Alanine scanning 
calculation, RMSD simulation should be highly equilibrated. 
Ideally one should probably run a much longer production run 
than 5ns (e.g., 100 ns). 
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Expanding the frontiers of protein–protein
modeling: From docking and scoring to
binding affinity predictions and other
challenges
Chiara Pallara,1 Brian Jim!enez-Garc!ıa,1 Laura P!erez-Cano,1 Miguel Romero-Durana,1

Albert Solernou,1 Solène Grosdidier,1 Carles Pons,1,2 Iain H. Moal,1 and
Juan Fernandez-Recio1*
1 Joint BSC-IRB Research Programme in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain

2 Computational Bioinformatics, National Institute of Bioinformatics (INB), Barcelona, Spain

ABSTRACT

In addition to protein–protein docking, this CAPRI edition included new challenges, like protein–water and protein–sugar
interactions, or the prediction of binding affinities and DDG changes upon mutation. Regarding the standard protein–protein
docking cases, our approach, mostly based on the pyDock scheme, submitted correct models as predictors and as scorers for
67% and 57% of the evaluated targets, respectively. In this edition, available information on known interface residues hardly
made any difference for our predictions. In one of the targets, the inclusion of available experimental small-angle X-ray
scattering (SAXS) data using our pyDockSAXS approach slightly improved the predictions. In addition to the standard
protein–protein docking assessment, new challenges were proposed. One of the new problems was predicting the position of
the interface water molecules, for which we submitted models with 20% and 43% of the water-mediated native contacts
predicted as predictors and scorers, respectively. Another new problem was the prediction of protein–carbohydrate binding,
where our submitted model was very close to being acceptable. A set of targets were related to the prediction of binding
affinities, in which our pyDock scheme was able to discriminate between natural and designed complexes with area under the
curve 5 83%. It was also proposed to estimate the effect of point mutations on binding affinity. Our approach, based on
machine learning methods, showed high rates of correctly classified mutations for all cases. The overall results were highly
rewarding, and show that the field is ready to move forward and face new interesting challenges in interactomics.

Proteins 2013; 81:2192–2200.
VC 2013 Wiley Periodicals, Inc.

Key words: complex structure; CAPRI; protein–protein docking; pyDock; protein–carbohydrate interactions.

INTRODUCTION

One of the major challenges in structural biology is to
provide structural data for all complexes formed between
proteins and other macromolecules. Current structural
coverage of protein–protein interactions (i.e., available
experimental structures plus potential models based on
homologous complex structures) is below 4% of the esti-
mated number of possible complexes formed between
human proteins.1,2 The pace of experimental determina-
tion of complex structures is still behind the determina-
tion of individual protein structures. In addition, many
of these interactions will never be determined by X-ray
crystallography because of their transient nature. For these
reasons, computational docking methods aim to become a

complementary approach to solve the structural interactome.
The field of protein docking has experienced an explosion
in recent years, partially propelled by the CAPRI experi-
ment. Past editions showed an increasing amount of par-
ticipant groups and computational approaches, and a
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large variety of targets. We have participated in all targets
of this fifth CAPRI edition. In addition to the standard
prediction of protein–protein targets, this edition has
entered into related areas including binding affinity pre-
dictions and free energy changes upon mutation, as well
as prediction of sugar binding and interface water mole-
cules. Our overall experience has been highly rewarding
and we describe here the details of our participation and
the key factors of our success.

MATERIALS AND METHODS

Generation of rigid-body docking poses for
the predicting experiment

In all targets, we used FTDock3 with electrostatics and
0.7 Å grid resolution and ZDOCK 2.14 to generate
10,000 and 2000 rigid-body docking poses, respectively,
as previously described.5 For the final four targets of this
edition (T53, T54, T57, and T58) we generated an addi-
tional pool of flexible docking poses using SwarmDock.
For these runs, the standard protocol was employed,6–8

with the Dcomplex score used as the objective function,9

but without the final clustering and rescoring phase. In
T46 we generated an additional pool of 10,000 solutions
using FTDock without electrostatics and at lower resolu-
tion (1.2 Å), as part of an old protocol used with previ-
ous targets, but these conditions were not applied for the
rest of the targets since we saw in the past that this step
was not increasing the chances of correct predictions. In
T46 and T47, we used RotBUS10 to generate 59,112 and
41,021 additional docking poses, respectively, but this
method was not used for the rest of the targets since we
previously checked that this procedure did not improve
the results. In Target T50, given the large size of 1918
H1N1 influenza virus hemagglutinin protein, we gener-
ated a total of 92,432 FTDock docking poses, increasing
the number of translations selected from each rotation
from 3 (default) to 10. Cofactors, water molecules and
solvent ions were not included in our docking
calculations.

Scoring of rigid-body docking poses for both
the predicting and the scoring experiments

We scored the docking models generated by the above
described methods with our pyDock protocol,11 based
on energy terms previously optimized for rigid-body
docking. The binding energy is basically composed of
accessible surface area-based desolvation, Coulombic
electrostatics and van der Waals energy (with a weighting
factor of 0.1 to reduce the noise of the scoring function).
Electrostatics and van der Waals were limited to 61.0
and 1.0 kcal/mol for each interatomic energy value,
respectively, to avoid excessive penalization from possible
clashes in the structures generated by the rigid-body

approach. The same protocol was used in the scoring
experiment to score all the docking models that were
proposed. We did not include van der Waals in the T46
scoring experiment, although this did not affect the
results. Cofactors, water molecules and solvent ions were
not considered for scoring.

Removal of redundant docking poses

After scoring, we eliminated redundant predictions to
increase the variability of the predictions and maximize
the success chances using a simple clustering algorithm
with a distance cutoff of 4.0 Å, as previously described.12

In target T47, since the resulting solutions looked correct
[according to the available structure of a highly homolo-
gous complex with protein data bank (PDB) code
2WPT], we reduced this cutoff to 0.5 Å.

Minimization of final models

The final 10 selected docking poses were minimized to
improve the quality of the docking models and reduce
the number of interatomic clashes. In the majority of the
targets we used TINKER13 as previously described.12,14

In targets T53 and T54 we used CHARMM (50 steps
conjugate gradient, 500 steps adopted-basis Newton–
Raphson and 50 steps steepest decent, with the
CHARMM19 force field).15 In target T58 we used
AMBER10 with AMBER parm99 force field.16,17 The
minimization protocol consisted of a 500-cycle steepest
descent minimization with harmonic restraints applied at
a force constant of 25 kcal/(mol!Å2) to all the backbone
atoms to optimize the side chains, followed by another
500-cycle conjugate gradient minimization without
restraints. This minimization step was performed after
ranking, solely to remove clashes.

Modeling of subunits with no available
structure

For several targets, the structures of the subunits
were not available and needed to be modeled. In most
of the targets, we used Modeler 9v6 with default param-
eters18 based on the template/s suggested by the organ-
izers or on other homologue proteins found by
BLAST19 search. The final selected model was that with
the lowest DOPE score.20 For targets T53 and T54 we
used POPULUS (http://bmm.cancerresearchuk.org/~pop-
ulus/) with default template selection and model building
settings.21

RESULTS AND DISCUSSION

In this CAPRI edition we submitted predictions for all
the proposed targets. Our results for the standard
protein–protein docking assessment are summarized in
Table I. In addition, there were new challenges like the

Expanding Protein–Protein Docking Frontiers

PROTEINS 2193



prediction of protein–water and protein–sugar interac-
tions, as well as the estimation of binding affinities and
energy changes upon mutation. Hereinafter, we describe
in detail our submissions for each of the targets.

Standard protein–protein docking
assessment: successful predictions

Target T47 (model/pseudounbound)

Target T47 was the structural prediction of the com-
plex between the DNase domain of colicin E2 and the
immunity protein Im2. The real challenge in this target
was the prediction of interface water molecules, however,
the protein–protein docking predictions were already
assessed, and therefore we have included them in this
section. The colicin E2 was modeled based on the struc-
ture of colicin E9 (85% sequence identity) in complex
with Im9 immunity protein (PDB 1EMV).22 The coordi-
nates of the immunity protein Im2 were extracted from
its structure in complex with colicin E9 (PDB 2WPT).
Given the existence of this homologous colicin E9/Im2
complex structure (PDB 2WPT),23 the binding mode for
target T47 was easy to determine by template-based
docking. However, we performed the template-free dock-
ing calculations to assess the automatic docking protocol.
We only applied distance restraints after pyDock protocol
by selecting those docking poses in which two key con-
tacting residues, Im2 Y54 and colicin E2 F85 (equivalent
to colicin E9 F86 in 2WPT),23 were within an arbitrary
distance of 6 Å (same distance used in standard restraints
with pyDockRST module.24 We submitted five correct
models (one high accuracy, one medium accuracy, and
three acceptable). Our first submitted model (Rank 1
according to pyDock energy, and generated by ZDOCK),
was a high-quality model (Table I), with 75% native

contacts, 2.48 Å ligand root mean square deviation
(RMSD), and 0.75 Å interface RMSD with respect to the
crystal structure (Fig. 1; PDB 3U43).25 This docking model
had the lowest ligand RMSD with respect to the homolo-
gous colicin E9/Im2 complex (PDB 2WPT) amongst all
solutions (although we did not use this homologous struc-
ture for docking), and even more interestingly, we would
have obtained exactly the same result without applying the
above-mentioned distance restraint filter.

For the scoring experiment, we evaluated the provided
1051 models with our pyDock scoring function, and
applied the same distance filter that we used as predic-
tors (see above). All our submitted predictions resulted
to be successful, consisting of six medium and four high-
quality models. We had a high-accuracy model ranked
second after pyDock scoring and distance filter
(uploaded by Weng), with 77% native contacts, 0.9 Å
ligand RMSD, and 0.4 Å interface RMSD with respect to
the crystal structure (PDB 3U4325; Table I; Fig. 1). Inter-
estingly, our Rank 5 model was the best model submitted
among all 14 participants, with 79% native contacts,
0.7 Å ligand RMSD, and 0.5 Å interface RMSD. Two bet-
ter models uploaded by Weng were not found by any of
the participants. Remarkably, as in predictors, our results
would not have changed had we not applied the distance
restraints filter.

Target T48 (unbound/unbound)

Target T48 was the structural prediction of the
complex between the diiron-hydroxylase toluene
4-monooxygenase and the Rieske-type ferredoxin T4moC
protein (PDB 1VM9).26 As suggested by the organizers,
the heterohexameric biological unit of the diiron-
hydroxylase was built by applying crystal symmetry oper-
ations to its trimeric structure in complex with the

Table I
Results of Our pyDock Protocol for All Protein–Protein Targets of the Last CAPRI Edition

Target Type

Predictors Scorers

Submission ranka Qualityb Successful groupsc Submission ranka Qualityb Successful groupsc

T46 HH — — 2 (40) — — 8 (16)
T47 HU 1 *** 25 (29) 2d *** 13 (14)
T48 UU 3 * 14 (32) No scorers No scorers No scorers
T49 UU 4 * 14 (33) 6 * 7 (13)
T50 UH 1 ** 18 (40) 4 ** 12 (17)
T51 DHD — — 3 (46) — — 5 (13)
T53 UH 3e ** 20 (42) 1 ** 11 (13)
T54 UH — — 4 (41) — — 0 (13)
T58 UU 5 ** 11 (23) No scorers No scorers No scorers

U, unbound; H, homology-based model; D, domain.
aRank of the best model within our submission to CAPRI.
bQuality of our best model according to CAPRI criteria.
cNumber of successful groups for each target; in brackets, total number of participants.
dModel Rank 1 had medium accuracy (**).
eModel Rank 1 had acceptable accuracy (*).
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T4moD effector protein (PDB 3DHH).27 We used the
hexameric construct for the generation of docking poses,
which were scored by pyDock. Then, we selected those
docking poses that had any of the diiron-hydroxylase
Fe21 and ferredoxin S2Fe2 atoms within 23 Å distance to
allow for the electron transfer between these groups27

(the distance cutoff we used was arbitrary, based on the
expected distance of 16 Å in 3DHH plus a margin to

allow the inclusion of some low-energy solutions). For
the submission, we removed chains D, E, and F from the
hexamer as we misinterpreted some of the organizers’
instructions, but this did not affect the quality of the
submitted models. The analysis of the results showed
that we submitted three models of acceptable quality.
Our prediction ranked third after pyDock scoring and
electron transfer distance filtering (generated by FTDock)

Figure 1
Representation of our best models for targets T47, T48, T49, T50, T53, T57, and T58. For each target, receptors are superimposed and shown in
white. Ligand in our best model as predictors is shown in red, and as scorers in blue. For comparison, the structure of the experimental complex
(if available) is represented in green.
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had 14% native contacts, 8.4 Å ligand RMSD, and 3.6 Å
interface RMSD with respect to the complex crystal
structure (not yet available). We found another accepta-
ble model (ranked 10th in our submission set) that had
49% native contacts, 6.3 Å ligand RMSD, and 2.2 Å
interface RMSD with respect to the complex crystal
structure.

Target 49 (unbound/unbound)

Target T49 was the same complex as T48 but with a
different hexameric conformation for diiron-hydroxylase
toluene 4-monooxygenase (unbound coordinates not
released). We applied the same protocol as for target T48
(pyDock scoring and electron transfer distance filtering).
We submitted four acceptable quality models. The model
ranked fourth of our submission set had acceptable qual-
ity, with 26% native contacts, 12.4 Å ligand RMSD, and
3.5 Å interface RMSD with respect to the complex crystal
structure (not yet available). We also submitted another
model with 11% native contacts, 6.9 Å ligand RMSD,
and 2.7 Å interface RMSD.

For the scoring experiment, the 1085 solutions were
scored by the same protocol, based on pyDock scoring
and electron transfer distance filtering. In some models,
the monooxygenase was uploaded as a trimer, therefore
we reconstructed the biological hexamer (based on sym-
metry) to calculate the electron transfer distance filter.
Since it was not clear whether in these cases the hexamer
was going to be rebuilt for the assessment, our submis-
sion set was formed by the top five solutions obtained
after rebuilding the hexamer, and by the top five solu-
tions obtained by just considering the structure submit-
ted by uploaders (i.e., without rebuilding the hexamer in
cases of uploaded trimer). Our ranked sixth submission
was an acceptable model (uploaded by Nakamura), with
11% native contacts, 7.9 Å ligand RMSD, and 2.9Å inter-
face RMSD with respect to the complex crystal structure
(not yet available).

Target 50 (unbound/model)

Target T50 was the structural prediction of the com-
plex between the 1918 H1N1 influenza virus hemaggluti-
nin and the HB36.3 de novo designed protein. The
coordinates of the hemagglutinin were taken from its
structure in complex with an antibody (PDB 3GBN)28

and the biological hexamer was rebuilt by applying sym-
metry operations. We modeled the HB36.3 based on the
crystal structure of the homologous (83% sequence iden-
tity) protein APC36109 from Bacillus stearothermophilus
(PDB 1U84), using the target-template protein alignment
offered by the organizers. Given the size of the system,
we increased the number of rigid-body docking solutions
generated by FTDock (see Materials and Methods sec-
tion). Our submission as predictors contained nine suc-
cessful models (five acceptable and four medium-quality

solutions). Our Rank 1 submission (generated by
FTDock) was a medium-quality model with 47% native
contacts, 6.1 Å ligand RMSD, and 1.8 Å interface RMSD
with respect to the complex crystal structure (Fig. 1;
PDB 3R2X).29 Interestingly, our Rank 4 submission,
with 41% native contacts, 3.4 Å ligand RMSD, and 1.6 Å
interface RMSD, was the best model submitted among
all participants as predictors.

For the scoring experiment, we evaluated the 1451
models in the same conditions as in predictors. We
found five acceptable and one medium-quality solutions.
Our Rank 4 submission was a medium-quality model,
with 44.9% native contacts, 4.71 Å ligand RMSD, and
1.93 Å interface RMSD with respect to the complex crys-
tal structure (PDB 3R2X29; Fig. 1).

Target T53 (unbound/model)

Target T53 was a complex between two artificial alpha
helicoidal repeat proteins (alpha-Rep), alpha-rep4 (PDB
3LTJ)30 and alpha-rep2, both designed on the basis of
thermostable HEAT-like repeats. The ligand alpha-rep2
was built using as template alpha-rep4 (PDB 3LTJ), with
77% sequence identity. All the docking poses, generated
using Zdock, Ftdock, and SwarmDock, were scored by
pyDock. We submitted four successful predictions (three
acceptable and one medium-quality models). Our Rank
3 submission, a medium accuracy model generated by
SwarmDock, had 44% native contacts, ligand RMSD 4.4
Å, and interface RMSD 1.8 Å with respect to the crystal
structure (not yet available).

For the scoring experiment, we evaluated 1400 alpha-
rep4/alpha-rep2 complex models applying the same pro-
tocol as in predictors in a completely automated fashion.
We found three acceptable and a medium-quality mod-
els. Our Rank 1 submission, a medium-quality model
(uploaded by Yan Shen), had 62% native contacts, 3.6 Å
ligand RMSD, and 1.3 Å interface RMSD with respect to
the complex crystal structure (not yet available).

Target T58 (unbound/unbound)

This target was a complex between the unbound
G-Type Lysozyme (PDB 3MGW)31 and the unbound
Escherichia coli Plig lysozyme inhibitor (PDB 4DY3).32

There was available small-angle X-ray scattering (SAXS)
data for this complex, which we used for scoring with
our module pyDockSAXS, previously developed to com-
bine pyDock scoring and fitting to SAXS data.33 In
addition, there was some available information indicating
a central role of the G-type lysozyme E73, D86, and D97
residues and the E. coli Plig lysozyme inhibitor R119 and
Y47 residues.34 Based on these residues, we imposed
ambiguous distance restraints with our module
pyDockRST.35 We submitted one medium-accuracy and
two acceptable models. Our Rank 5 model, generated by
SwarmDock, was a medium-quality model, and resulted
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to be the fourth best model submitted among all the 23
participants, with 43% native contacts, 4.9 Å ligand
RMSD, and 1.8 Å interface RMSD with respect to the
complex crystal structure (PDB 4G9S).36 Interestingly,
although the distance restraints proved to be essential for
this target, we would have obtained only slightly worse
results without using the SAXS data (Rank 10 medium
accuracy model). This is probably due to the shape of
the complex, classified as spherical according to the ani-
sotropy value (1.4) computed from the ratio between the
size of the largest axis and the smallest ones. Indeed, we
previously showed that SAXS data does not provide
much beneficial information in this type of cases.33

Protein–protein docking: unsuccessful cases

In three of the protein–protein cases (T46, T51, and
T54) we were not able to submit any correct model,
either as predictors or as scorers. These cases seemed to
be highly difficult for the majority of participants, since
in all of them there were no more than three successful
groups as predictors or as scorers or both (Table I). In
target T46 (model/model), the interacting subunits Mtq2
and Trm112 were modeled based on the homologue tem-
plates with low sequence identity (Mtq2 was based on
template with PDB code 1T43, 28% sequence identity;
Trm112 was based on template with PDB code 2J6A,
36% sequence identity). The inaccuracies in the model-
ing added too much error and the docking was not suc-
cessful. Target T51 (bound/model/unbound) was a
difficult case of a multidomain protein, with interactions
between GH5-CBM6/CBM13/Fn3 domains. This could
be divided in two different docking cases both involving
CBM13 domain, which needed to be modeled based on
template with PDB code 1KNL (38% sequence identity).
Again, a model based on a template with that level of
homology can deteriorate docking results. Target 54
(unbound/model) was in principle easy, involving the
modeling of Rep16 based on the template with PDB
code 3LTJ (88% sequence identity), but the submitted
solutions were incorrect for us as well as for the majority
of participants. Indeed, despite the scoring set contained
several acceptable models, no group was able to identify
them (Table I).

Prediction of protein–water interactions

Target T47 was the prediction of a protein–protein
complex structure, as described in above sections, but
the real challenge was to predict the location of water
molecules. After generating the protein–protein docking
poses as above described, we predicted the water posi-
tions in each docking model using DOWSER37 with
default parameters (with a probe radius of 0.2Å and the
default atoms dictionary). Our Rank 1 submitted model
(generated by ZDOCK) had 20% of water native

contacts, and was classified as fair (1). If we consider
only the prediction of the buried water molecules, our
success rates do not significantly change.

For the scoring experiment, we just applied our stand-
ard pyDock scoring function, plus distance restraints as
described in above sections. The water molecules pro-
posed in the different docking poses were not included
in the scoring. Our Rank 8 submitted model (uploaded
by Bates) had 43% of water native contacts and was clas-
sified as good (11). More details can be found in an
upcoming publication.

Prediction of protein–carbohydrate complex
structure

Target 57 (unbound/model) was a challenging target
consisting in the prediction of the interaction between
BT4661 protein and heparin. The structure of heparin in
the complex was not known, so we modeled it using
molecular dynamics starting with the provided confor-
mation. We ran 10 ns using the force field AMBER
parm99 of the Amber10 package16,17 and extracted
1000 representative snapshots. Since our pyDock proto-
col was not intended for protein–sugar interactions, we
had to devise a new ad hoc docking procedure. For that,
we used FTDock to dock each of the 1000 heparin con-
formations to BT4661 protein. We selected the top
10,000 docking poses as scored by FTDock (no electro-
statics). Then we applied different scoring functions to
this set of docking poses: (i) PScore without minimiza-
tion; (ii) PScore with minimization; and (iii) AMBER
after minimization. We selected the 1000 best-scoring
solutions from each method and finally we removed
redundant solutions within 6.5 Å ligand RMSD. No cor-
rect submission was submitted. However, our Rank 4
submission was almost acceptable, with 65% native con-
tacts, 11.2 Å ligand RMSD, and 4.3 Å interface RMSD
with respect to the complex crystal structure (PDB
4AK2; Fig. 1). We checked a posteriori that there were
several correct models within our docking sets, but our
scoring approach failed to place them in the lowest scor-
ing positions.

Other challenges: binding affinity and DDG
predictions

This CAPRI edition also involved the challenging
problem of predicting binding affinities and energy
changes upon mutations. Round 21 was the discrimina-
tion between 87 designed protein–protein interactions
involving three proteins of interest (Spanish influenza
HA; Mt ACP-2; Fc region of human IgG1) and 120 natu-
rally occurring complexes. The pyDock function,
although initially developed for the scoring of docking
poses, was previously shown to have some correlation
with the binding affinity data collected by Kastritis and
Bonvin.38 This was later confirmed on a subset of
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complexes with high-confidence affinity data, where
pyDock ranked among the best performing scoring func-
tions with a correlation of 0.63.39 For round 21 predic-
tions, we evaluated the correlation of each of the
different pyDock individual terms with the binding affin-
ities on the provided set of 120 naturally occurring com-
plexes. We found that desolvation correlation with
binding affinity data was not clear, showing even negative
correlation with data obtained by ITC experiments. It
seems that, although desolvation is essential for rigid-
body docking (perhaps to compensate inaccurate calcula-
tion of electrostatics and van der Waals), it is not the
most important factor for binding affinity predictions
from the complex structure (in which electrostatics can
be more accurately calculated). Based on these results,
we devised a binding affinity descriptor (pyDockAFF 5
electrostatics 21.0 3 desolvation), with confidence
thresholds for the discrimination of complexes according
to their binding affinities. Our predictions had area
under the curve 83%, with good discrimination between
designed and native interfaces. More details can be found
in a recent publication.40 It remains to be seen whether
the pyDockAFF binding affinity predictor is suitable only
for the cases in this CAPRI round, or it has more general
applicability (further details in an upcoming publication).

Targets T55-56 aimed to predict the binding affinity
changes upon mutations on two designed influenza
hemagglutinin protein binders. We applied a multipara-
metric predictive model with 85 descriptors using an
ensemble of models which were combined to produce
consensus predictions. The models were trained upon a
data set of 930 changes in affinity upon mutation which
were taken from the literature. Due to the fairly low
cases to descriptors ratio (10.9), we preferentially
employed models with inherent overfitting avoidance
bias, such as prepruning or feature selection using the
Akaike information criterion, methods which construct
multiple models using subsets of the descriptors and the
training data, and by rejecting learners that performed
poorly using leave-complex-out cross-validation.41 To
further avoid overfitting, we did not combine the
selected learners together using stacking, instead opting
for the unweighted mean for our consensus predictions.
This approach provided an excellent ability to predict
the effect of mutation, more details of which can be
found in a recent publication.42 We have since expanded
this data set to form the SKEMPI database, which now
includes 3047 DDG values, as well as kinetic and thermo-
dynamic data,43 and have used the data to derive contact
potentials that can circumvent some of the approxima-
tions associated with statistical potentials.44

CONCLUSIONS

We have continued our participation in CAPRI with
pyDock, submitting models for all the predicting, scoring,

and binding affinity prediction experiments. For the gener-
ation of docking poses, the better grid resolution used for
FTDock and the use of flexible SwarmDock for the last
targets were key for the success. This produced docking
poses of sufficient quality to be identified by the
pyDockSER scoring scheme. In selected targets, distance
restraints were introduced by pyDockRST, but in most
cases this did not make a difference. In one target, SAXS
data was used for complementary scoring with pyDock-
SAXS, which slightly improved the scoring. We obtained
consistently good models for all nondifficult cases,
although they were far from being trivial, since their subu-
nits were unbound or needed to be modeled based on
homology templates. In all cases but one our successful
models were ranked within our first five submitted solu-
tions, being ranked first in several cases. In this CAPRI
edition we learned that our automated protocol is useful
to provide correct models in easy-to-medium difficulty
protein–protein docking cases, but we need further meth-
odological development for difficult cases, especially when
subunits need to be modeled based on homologues with
low sequence identity. On the other side, interface water
placement and sugar-binding proved to be highly challeng-
ing for our protein–protein methodology, but the results
have encouraged us to develop new methods for these
problems. Finally, prediction of binding affinity based on
the pyDockSER scoring, and energy changes upon muta-
tion based on multiparametric regression models showed
excellent results. The overall experience has been highly
rewarding and has shown once again the importance of
community-wide assessment of prediction methods.
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3.2. Protein plasticity improves protein-
protein docking 

Despite recent methodological advances in currently used docking 

protocols, as shown by CAPRI (Critical Assessment of PRediction of 

Interactions) experiment, dealing with protein plasticity is still a crucial 

bottle-neck (see section 3.1.2). The development of efficient flexible 

docking algorithms is mostly hampered by our limited theoretical 

knowledge about the protein-protein association mechanism. 

Firstly, this section will report a systematic study on the role of 

conformational heterogeneity in protein-protein recognition. Then, a 

novel protocol to integrate unbound conformational ensembles in 

protein-protein docking will be presented. 
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Abstract 

To understand cellular processes at the molecular level we need to 
improve our knowledge of protein-protein interactions, from a structural, 
mechanistic and energetic point of view. Current theoretical studies and 
computational docking simulations show that protein dynamics plays a 
key role in protein association, and support the need for including 
protein flexibility in modeling protein interactions. A strategy to include 
flexibility in docking predictions would be using conformational 
ensembles originated from unbound protein structures. This strategy 
assumes the conformational selection binding mechanism, in which the 
unbound state can sample bound conformers. Here we present an 
exhaustive computational study about the use of precomputed unbound 
ensembles in the context of protein docking, performed on a set of 124 
cases of the Protein-Protein Docking Benchmark 3.0. Conformational 
ensembles were initially generated by modeling minimization with 
MODELLER. We identified those conformers providing optimal binding 
and investigated the role of protein conformational heterogeneity in 
protein-protein recognition. Our results show that a simple molecular 
mechanics minimization approach can generate conformers with better 
binding properties as well as improve docking encounters in medium-
flexible cases. For comparison, we analyzed ensembles generated by 
short Molecular Dynamics trajectories with AMBER, which did not 
provide significantly better conformers for docking. For more flexible 
cases, a more extended conformational sampling based on Normal 
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Mode Analysis was proven helpful. We found that successful 
conformers provide better energetic complementarity to the docking 
partners but not necessarily higher similarity with respect to the bound 
state, which is compatible with recent views of binding association. In 
addition to the mechanistic considerations, these findings could be 
exploited for practical docking predictions of improved efficiency. 

Author Summary 

Proteins act as building blocks of the cells, forming complex interaction 
networks that are essential for almost any biological process. The 
comprehension of such interactions at the molecular level is necessary 
to improve our understanding of basic cell processes as well as for 
advances in biomedical and biotechnological applications. In that 
regard, computational methods complement experimental efforts by 
helping to structurally model and characterize protein interactions. 
However, still a major crusade is how to deal with the intrinsically 
flexible nature of proteins. A largely unexplored strategy to overcome 
this limitation is the use of precomputed conformational ensembles. 
Here we present a systematic study about the role of protein plasticity in 
protein association, based on docking simulations of unbound structural 
models derived from ensembles generated by different conformational 
sampling approaches. The results show that the description of the 
conformational heterogeneity of the unbound states improves their 
binding capabilities towards their partners, especially in cases of 
moderate unbound-to-bound mobility. This improvement is not 
necessarily related to better structural similarity to the bound state, 
which is consistent with an extended conformational selection 
mechanism.  

Introduction 

Proteins are key components in the cell and function through intricate 
networks of interactions [1] that are involved in virtually all relevant 
biological processes, such as gene expression and regulation, enzyme 
catalysis, immune response, or signal transduction [2-3]. Understanding 
such interactions at the molecular level is essential to target them for 
therapeutic or biotechnological purposes. X-ray crystallography and 
NMR techniques have produced a wealth of structural data on protein-
protein complexes, which has largely extended our knowledge on 
molecular recognition and protein association mechanism and has 
fostered drug discovery. However, such structural data covers only a 
tiny fraction of the estimated number of protein-protein complexes 
formed in cell [4-6], and therefore, computational approaches that can 
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complement such experimental efforts are strongly needed. One 
approach is template-based modeling [7], which could be potentially 
used to provide models at interactomics scale [4, 8-10]. However, its 
applicability is currently limited by the relative low number of available 
structures of protein complexes that can be used as accurate 
templates, and the difficulties in the identification of the correct 
templates in cases of remote homology [11-13]. On the other side, ab 
initio modeling of protein-protein complexes by computational docking 
shows higher applicability. The idea is to explore thousands or millions 
of possible orientations between two interacting proteins in order to 
identify the native orientation(s), based on different criteria ranging from 
simple geometrical considerations to a complete energy description of 
the interaction. In recent years, a variety of protein-protein docking 
methods have been reported. Geometry-based methods try to find the 
best surface complementarity between interacting proteins, using 
simplified structural models and approximate scoring functions. A 
popular strategy is to discretize the proteins into grids and use Fast 
Fourier Transform (FFT) algorithms [14] to accelerate search on the 
translational space, such as in FTDock [15], PIPER [16], GRAMM-X 
[17], ZDOCK [18], or on the rotational space, as in Hex [19] or 
FRODOCK [20]. Another strategy to explore surface complementarity is 
geometric hashing, as used in PatchDock [21]. Docking methods based 
on energy optimization use a variety of sampling strategies based on 
molecular mechanics, such as Molecular Dynamics in HADDOCK [22], 
or Monte-Carlo minimization in RosettaDock [23] or ICM-DISCO [24]. 
The function used to identify the best orientations is an important aspect 
of docking, and dedicated scoring schemes have been developed, 
based on energy terms, such as in pyDock [25], or on statistical 
potentials as in SIPPER [26] or PIE [27]. The Critical Assessment of 
PRediction of Interactions (CAPRI; http://www.ebi.ac.uk/msd-srv/capri/) 
experiment has indeed shown that accurate models can be produced 
by docking in most of the cases [28]. However, there are other cases in 
which all docking methods systematically fail, typically the most flexible 
ones [28].  

Thus, one of the major challenges in docking is how to deal with 
molecular flexibility and conformational changes that happen upon 
association [29-30]. A major hurdle is the computational cost of 
integrating docking and conformational search, aggravated by our 
limited knowledge of the protein-protein association mechanism. 
Different mechanisms for flexible protein-protein binding have been 
proposed. Perhaps the most widespread view is the induced-fit 
mechanism, in which the interacting partners are involved in initial 
encounters that evolve towards the final specific complex by adjusting 
their interfaces. Most of the reported methods for flexible docking try to 
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mimic this mechanism, typically using an initial rigid-body search 
followed by a final refinement of the interfaces as in ICM-DISCO [31], 
HADDOCK [22], RosettaDock [23] or FiberDock [32], or by integrating 
small deformations of the global structures during the sampling based 
on normal modes as in ATTRACT [33-34] or SwarmDock [35]. 

An alternative mechanism is conformational selection, which 
was initially proposed for systems in which the ligand selectively bound 
one of the conformers of the dynamically fluctuating receptor protein 
[36-37]. This was generalized to the "conformational selection and 
population shift" concept, which postulated that flexible proteins in 
solution naturally sample a variety of conformational states, and the 
ligand protein preferentially binds to a pre-existing subpopulation of 
such conformers, thus adjusting the equilibrium in favor of them [38-40]. 
Recently, the conformational selection model has been extended to 
include different mutual conformational selection and adjustment steps 
[41], so that the unbound conformational states that are available for 
mutual selection and adjustment might not be initially in the bound 
conformation. The conformational selection model has been largely 
supported by several structural studies including MD, NMA, X-ray 
crystallography and NMR experiments [41-45] and later strongly 
confirmed by theoretical analysis based on the correlation between 
complex association and dissociation rates and several molecular 
descriptors detailing specific features of both protein intrinsic flexibility 
and complex formation [42, 46]. This mechanism can be implemented 
in a computational docking strategy by using precomputed ensembles 
of unbound proteins, which hopefully contain conformers that are 
suitable for binding the partner. However, to date this strategy has not 
been really used for practical docking predictions. Most of prior studies 
were limited to the use of a few selected conformers and applied to 
specific cases of interest [47-49]. Unexpectedly, the few systematic 
analyses published so far [50-52] failed to improve structure prediction 
of protein complexes with respect to the unbound structure. This could 
be related to unrealistic representation of the motions occurring in the 
time scale of molecular association [50-52]. Indeed, for small proteins 
like ubiquitin it is possible to obtain more representative ensembles, 
based on RDC data, which are definitely useful in docking predictions 
[53]. However, this approach is difficult to generalize for large scale 
predictions due to experimental limitations. Therefore, it would be 
important to find practical ways of generating ensembles that include 
conformers that improve binding. This could help not only to improve 
docking predictions but also to advance towards a better understanding 
of flexible protein-protein association mechanism. With this purpose in 
mind, here we used three different computational approaches to 
represent the conformational heterogeneity of unbound proteins, and 
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tested them on a standard protein-protein docking benchmark. Our 
analysis clearly shows that a simple molecular mechanics minimization 
approach provides sufficient conformational heterogeneity to improve 
docking predictions in medium-flexible cases, which are the most likely 
to follow the conformational selection mechanism. 

Results 

Unbound conformational ensembles by energy optimization and 
Molecular Dynamics contain conformers with better binding 
capabilities than the unbound structure 

 

Fig 1. Representative conformational ensembles generated by MODELLER 
minimization. 100 conformers independently generated by MODELLER for 
receptor and ligand are shown for two benchmark cases: (A) 1PXV and (B) 
1ACB. Conformers were superimposed onto the corresponding molecules in the 
reference complexes for visualization. Only interface side chains are shown for 
the sake of clarity. 

Here we explored in a systematic way whether a minimal description of 
the conformational heterogeneity of the interacting proteins could 
significantly improve their binding capabilities. For that purpose, we 
created conformational ensembles from the unbound structures (for 
both the receptor and the ligand) of complexes from the protein-protein 
benchmark 3.0 [54]. Ensembles of 100 conformers were initially 
generated by using two distinct conformational sampling procedures, 
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one being a fast energy optimization as implemented in MODELLER, 
and the other being the much more computationally demanding 
Molecular Dynamics method, as implemented in AMBER package (see 
Methods). Fig 1 shows examples of the typical conformational 
heterogeneity (at backbone and side chain level) generated by 
MODELLER minimization (MM). The deviation of the interface atoms 
from the initial unbound structure was 1.2 Å RMSD on average (ranging 
from 0.6 Å for 1R0R receptor to 7.7 Å RMSD for 2QFW receptor). 

 

Fig 2. Distribution of geometrical and energetic values for ensemble 
conformers. Correlation between the full atom interface RMSD (Int-RMSD) 
with respect to the bound state and the binding energy towards the bound 
partner in the native orientation (bound BE) for all conformers in MODELLER 
ensembles are shown for two benchmark cases: (A) 2F0R (1S1Q receptor) and 
(B) 1MKF (1ML0 receptor). Distribution of Int-RMSD and bound BE values are 
shown as histograms. Data for the unbound x-ray structure are shown in red. 

 

We compared the unbound models with respect to their native 
poses in the complex to structurally characterize these conformers and 
to estimate their capabilities for binding. In order to do that, we first 
superimposed each model into the native conformation and then 
computed the following parameters i) the RMSD for all Cα atoms (Cα-
RMSD) with respect to the native structure; ii) the RMSD for all interface 
atoms (Int-RMSD) after superimposing only those interface atoms; iii) 
the binding energy with the bound partner.; iv) the binding energy with 
the unbound partner; and v) the number of clashes with the bound 
partner. The values for these parameters in the different conformers 
generated by MODELLER are randomly distributed following a 
Gaussian function (S1 Fig). Except for a few cases, like the viral 
chemokine binding protein M3 (1ML0 receptor), there is no significant 
correlation between the binding energy of the different conformers in 
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the native orientation and their similarity with respect to the bound 
structure (Fig 2). Perhaps the main reason for this is that, in general, 
these conformers are not exploring the vicinity of the bound state. 
Indeed, only 20% of the benchmark proteins contain conformers within 
1.0 Å Int-RMSD from the bound state (actually, in virtually all of these 
cases the unbound state already had Int-RMSD < 1.0 Å from bound). 

Ensembles generated by MD showed larger conformational 
variability, but in general they were not closer to the bound state (S1 
and S2 Fig). Increasing the number of conformers to 1,000 (S3 Fig) did 
not significantly modify the range of conformational variability for either 
sampling method. 

We aimed to identify which conformers of the ensemble seemed 
more promising for binding. Thus, we selected the best conformers of 
the ensemble according to the criteria analyzed in the previous section. 
Fig 3 shows the best conformer according to each parameter as 
compared to that of the unbound structure for all benchmark cases. 
Regarding the RMSD with respect to the complex structure, only in a 
few cases (21% and 6%, according to Cα-RMSD and Int-RMSD, 
respectively) the best pair of conformers were significantly better (i.e., 
more than 10% change) than the unbound X-ray structure (and were 
not particularly enriched in conformers with Int-RMSD < 1.0 Å). 
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Fig 3. Best ensemble conformers according to quality criteria based on 
the complex native orientation. For each benchmark case, it is shown the 
best pairs of receptor and ligand conformers in the conformational ensemble 
according to the following criteria: (A) Cα-RMSD, (B) Int-RMSD, (C) binding 
energy with the bound partner, (D) binding energy with the unbound partner, (E) 
number of clashes with respect to the bound partner. The above described 
descriptors were calculated independently for the best receptor and ligand 
conformers and then averaged. These are compared to those of the unbound 
X-ray structures. Dashed lines represent the (arbitrary) range of variation that 
we used to consider a change as significant, and it was defined as 10% in the 
RMSD- and clash-based criteria, or 10 a.u. in the energy-based criteria. 

Interestingly, we found a much higher number of cases in which 
the best conformers showed significantly better binding energy (in 46% 
and 51% of cases, when considering the bound or unbound structure as 
partner, respectively), or fewer clashes (in 69% of cases) than the 
unbound X-ray structure. It is remarkable that the improvement in 
binding energy was independent of the structural similarity to the bound. 
Again, the reason can be that in the majority of cases there is no real 
sampling around the bound state, and therefore, in such unbound 
minima any small improvement towards the bound state is not relevant 
in binding energy terms. 

Although MD ensembles showed larger conformational variability 
(S1 and S2 Figs), the percentage of cases with conformers that 
became significantly better than the unbound state according to each of 
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the above mentioned criteria (12%, 7%, 37%, 62%, and 69%, 
respectively) was very similar to those observed for the MODELLER 
ensembles. Surprisingly, MD showed worse conformational sampling 
around the bound state, since less than 4% of the cases had 
conformers with Int-RMSD < 1.0 Å with respect to the bound state (as 
compared to 20% in MODELLER). 

Selected conformers can yield significantly better docking results 
than unbound subunits 

The fact that in the majority of cases the conformational ensembles 
contained conformers that showed better binding energy capabilities 
than the unbound X-ray structure encouraged us to evaluate their use 
for docking. Since the systematic cross-docking of all conformers for 
receptor and ligand would be impractical, we tried instead to estimate 
the expected performance of the unbound ensembles for docking in the 
best-case scenario. Therefore, based on the native orientation we 
selected conformers that seemed the best candidates to improve 
docking predictions, that is, those with: i) the lowest Cα-RMSD with 
respect to the bound state, ii) the lowest Int-RMSD, iii) the best binding 
energy with the bound partner, iv) the best binding energy with the 
unbound partner, and v) the smallest number of clashes with the bound 
partner. These conformers were used in protein-protein docking as 
described in the Methods section. 

Fig 4A shows the docking success rates for the top 10 
predictions when using these selected conformers, with all the details in 
Table 1. Interestingly, the results do not significantly change when 
using a larger number of conformers (1,000) generated by MODELLER 
(and applying the same procedure for selecting the best expected 
conformers), or when conformers were generated by Molecular 
Dynamics, either using 100 or 1,000 conformers (S4 Fig). Strikingly, 
when we used the best conformers based on Cα- or Int- RMSD with 
respect to the complex structure, the docking results were slightly worse 
than those of unbound docking, as can be seen in Fig 4A (the results 
did not significantly change when selecting only those cases in which 
the best conformer had significantly better Cα- or Int-RMSD than that of 
the unbound structure). This can be due to the fact that either 
MODELLER minimization or a short MD trajectory cannot generally 
sample too far from the unbound structure, and therefore cannot reach 
the vicinity of the bound state in most of the cases. However, when 
using the conformers that would give the best binding energy or the 
smallest number of clashes when in the native orientation, the docking 
results significantly improved with respect to those of the unbound 
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structures, as can be seen in Fig 4A. Again, this did not correspond to 
an improvement in geometrical terms (e.g., in 99% of the cases in 
which the best-energy conformer improved the docking predictions, 
such conformer did not have significantly better Int-RMSD than the 
unbound structure). For comparison, we show the success rates that 
we would obtain when using the bound structures, which establish the 
upper limit for docking with this approach. The success rates of the 
binding energy-based selected conformers are more than half of the 
maximum expected success rates when using the bound structures. 

 

Fig 4. Docking performance for selected conformers. (A) Docking success 
rates for the top 10 predicted models on the protein-protein docking benchmark 
when using selected conformers according to specific criteria: Cα-RMSD 
(green), Int-RMSD (yellow), binding energy towards the bound partner (orange), 
binding energy towards the unbound partner (blue), number of clashes with 
respect to the bound partner (magenta). For comparison, the docking success 
rates for bound (white) and unbound (dark gray) X-ray structures are also 
shown. To show the significance, docking rates for five random conformers 
pairs (green gradations) and five random initial rotations of the unbound docking 
partners (gray gradations) are also shown. (B) Docking success rates according 
to conformational variability between unbound and bound structures for 
selected conformers (same color code as above). For comparison, docking 
success rates for bound and unbound X-ray structures, as well as for one 
random conformers pair (light green) and one random initial rotation of the 
unbound docking partners (light gray) are also shown. (C) Docking success 
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rates according to unbound-bound conformational variability on the 28 cases of 
the benchmark with reported high affinity (ΔG < -12.0 kcal/mol) when using 
selected conformers, as well as bound and unbound X-ray structures, one 
random conformers pair and one random initial rotation of the unbound docking 
partners (same color code as above). 

 

Table 1. Docking performance of conformers selected from MODELLER 
ensembles. 
PDB Bound Unb. Cα-

RMSD 
Int-
RMSD 

Bound 
BE 

Unb. 
BE 

Clashes 

Rigid (I-RMSDCα < 0.5 Å) (18 cases) 
1AVX 2 102 - 33 40 1 231 
1FSK 3 3 39 34 1 1 514 
1GHQ 7455 - - 6528 - 1878 - 
1IQD 1 8 64 3 6 6 3 
1KLU 18 1246 6002 4468 2587 6498 1647 
1KTZ 48 3725 6333 - - - 309 
1NCA 14 7 1269 - 1332 7 1 
1NSN 405 500 254 5587 33 33 1085 
1PPE 28 6 12 2 5 1 4 
1R0R 1 3 258 230 9 17 37 
1SBB 161 298 73 - - - - 
1WEJ 1 274 5 456 64 2 9 
2JEL 1 42 16 25 12 2 1 
2MTA 2 78 61 187 48 3 554 
2PCC 12 6 91 12 6 4 11 
2SIC 1 8 3378 1 2 249 1 
2SNI 1 3 1 16 1 1 1 
2UUY 69 4472 4801 64 159 11 1997 
Low-flexible (I-RMSDCα 0.5-1.0 Å) (45 cases) 
1AHW 1043 4049 6796 838 431 836 2974 
1AY7 1 24 130 118 4 2 7 
1AZS 1 30 - - 6 6 - 
1BJ1 9 - - - 18 9 25 
1BUH 71 66 209 426 36 24 119 
1BVN 1 2 2 1 1 1 687 
1DQJ 216 604 261 3363 75 25 223 
1E96 113 1 59 168 73 5 130 
1EAW 8 622 297 86 42 25 1 
1EFN 6 166 197 1684 203 97 172 
1EWY 4 8 200 5 10 10 1 
1F34 1 139 174 226 52 280 2 
1F51 2 7 13 375 1505 130 8 
1FQJ 14 309 396 482 218 438 101 
1GCQ 274 1091 574 1540 5 5 364 
1GLA 61 50 - 12 6 21 131 
1GPW 1 1 1 1 1 1 1 
1HE1 1 3958 102 4506 2425 523 2629 
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1HE8 138 2917 2612 1503 277 242 3437 
1IJK 16 1309 69 61 493 487 388 
1J2J 46 19 303 18 2 3 5 
1JPS 709 481 - 2135 1 2 - 
1K4C - - 3036 3369 2275 - 2379 
1K74 150 14 172 82 1 1 24 
1KAC 4737 1286 3545 990 107 19 917 
1KXQ 1 250 8 4 4 1 1 
1MAH 1 19 2 4 4 1 1 
1MLC 2 37 50 10 1 97 144 
1N8O 3 53 - - 5 - 90 
1QA9 3253 7378 5902 6152 1546 37 7973 
1QFW 81 239 234 - 26 21 72 
1RLB 1319 4094 - 7917 - - - 
1S1Q 147 1211 2994 541 164 175 87 
1T6B 3 56 802 1464 2 11 3 
1TMQ 1 1 27 4 54 - 4 
1UDI 1 1 2 47 1 1 420 
1YVB 1 19 1 2 3 21 7 
1Z0K 2 8 523 57 42 11 44 
1ZHI 5 3 7450 - 196 5 5 
2AJF 5 1788 - 311 562 2268 2122 
2B42 1 1 2 37 1 2 21 
2BTF 1 33 120 26 60 9 250 
2OOB 588 112 131 217 106 547 432 
2VIS 64 - - - - - - 
7CEI 1 19 11 1 1 1 20 
Medium-flexible (I-RMSDCα 1.0-2.0 Å) (35 cases) 
1A2K 36 114 5641 284 - - 782 
1AK4 2420 2040 3983 3619 - 2721 1055 
1AKJ 89 656 345 261 204 162 1168 
1B6C 1 3 6 11 1 1 21 
1BGX 1 - - - - - - 
1BVK 7 18 4 146 87 85 2 
1D6R 1050 2128 227 888 669 785 102 
1DFJ 6 557 2 1 1 1 4 
1E6E 1 3 2 1 1 8 1 
1E6J - 33 34 3 1 2 5 
1EZU 1 2048 3633 - 1449 1547 102 
1FC2 127 - 233 326 1256 683 171 
1GP2 1 - - 842 85 - 87 
1GRN 2 858 184 1184 450 23 2909 
1HIA 99 40 415 42 23 166 7 
1I4D 1 - - 642 - 44 132 
1I9R 15 846 568 212 - 99 - 
1K5D 1 360 85 - 2 610 - 
1KXP 1 16 14 1 1 1 1 
1ML0 1 173 80 140 1 1 9 
1NW9 1 9 181 36 43 39 181 
1OPH 59 14 - 469 - - 2584 
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1VFB 37 59 86 59 128 31 95 
1WQ1 4 2448 5 1077 16 6 6 
1XD3 1 1 3 13 2 1 1 
1XQS 1 14 55 628 1 8564 7 
1Z5Y 1 16 320 - 4 39 17 
2CFH 1 1904 202 1394 4066 43 5 
2FD6 68 31 - - - 81 1 
2H7V 1 - 734 - 1091 - - 
2HLE 1 13 1 1 2 1 3 
2HQS 1 30 2 30 146 146 129 
2I25 1 40 443 1520 15 948 3599 
2O8V 1 60 5 186 220 1 - 
2QFW 1 - 19 - - 7 73 
Flexible (I-RMSDCα 2.0-3.0 Å) (18 cases) 
1ACB 1 361 144 668 6 4 15 
1BKD 2 522 157 1050 99 114 646 
1CGI 1 19 98 13 1 12 5 
1DE4 1 - - 366 - - - 
1E4K 104 1215 722 148 200 4249 74 
1EER 3 1821 91 21 81 37 675 
1I2M 1 - 683 632 50 149 247 
1IB1 34 - 2116 7028 255 2775 1626 
1IBR 1 - - - - - - 
1KKL 88 49 271 176 1 2 289 
1M10 1 81 5742 574 - 21 2873 
1N2C 1 - - - - 16 - 
1PXV 1 2073 100 429 673 1498 2375 
2C0L 83 3958 1024 1589 - 5105 3834 
2HMI 2 - - - - - - 
2HRK 49 16 23 47 83 83 241 
2NZ8 1 10 5509 247 2 168 5848 
2OT3 1 5 212 14 91 - 131 
Highly-flexible (I-RMSDCα > 3.0 Å) (8 cases) 
1ATN 7 2568 - - - 665 - 
1FAK 41 5327 - - 43 41 - 
1FQ1 6 3865 4315 7901 927 - 4833 
1H1V 537 - - - - - - 
1IRA 1 - - - - - - 
1JMO 1 5325 - 5398 2969 5510 5547 
1R8S 1 - - - - 4043 - 
1Y64 1420 - - - - 1329 - 
In bold: high affinity cases 

As mentioned above, the results of bound docking are not 
optimal mostly due to the FFT-based discrete searching algorithm. This 
would be particularly critical in low-affinity cases, in which the small 
number of interactions would make them less tolerant to small errors in 
the atomic positions. To minimize the impact of this limitation in our 
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evaluation, we have performed the same analysis as above but 
focusing only on the 28 cases of the benchmark that have been 
experimentally defined as high-affinity (DG < -12.0 kcal/mol), for which 
the results of bound docking are close to optimal. Under these 
conditions, we can observe even more clearly that the selected 
conformers improved the docking success rates in the low-flexible 
cases (Fig 4C). 

In order to provide a statistical significance for these results, we 
randomly selected five conformers from the conformational ensemble. 
The results for each random conformer were similar (within 
experimental error) to those of the unbound structure (Fig 4A), which 
shows that the conformers selected according to the optimal binding 
energy improved significantly the docking results with respect to the 
randomly chosen conformers. An alternative possible explanation for 
the docking improvement when using ensemble conformers might be 
related to the limited sampling of FTDock discrete searching algorithm 
derived from the fix number of ligand rotations (which makes coarser 
surface sampling for large proteins) and the grid resolution of 0.7 Å 
(which introduces inaccuracies in the atomic coordinates). This creates 
a stochastic dependence of the FTDock docking algorithm on the initial 
rotation of the interacting subunits, and is indeed the cause of the 
suboptimal results shown even for bound docking, given that the exact 
complex orientation is very unlikely to be sampled. This is a limitation of 
any FFT-based algorithm, and it was shown before that performing 
parallel docking runs using several initial rotations provided more 
consistent docking results than using just a single one [20]. To evaluate 
the possibility that the extensive sampling in the atomic positions 
provided by the use of conformational ensembles prior to docking could 
compensate the suboptimal grid-based sampling of FTDock, we 
performed five different docking runs with random initial rotations for the 
unbound receptor and ligand molecules. The results from the individual 
random rotations were similar, within experimental error, to the unbound 
docking results (Fig 4A). 

These results suggest that the selected conformers according to 
specific criteria (i.e., optimal energy, number of clashes) were more 
beneficial for docking than just a random selection of conformers or 
initial rotations. Overall, this clearly shows that conformational 
heterogeneity in the interacting subunits improves the binding 
capabilities of the unbound X-ray structures. 
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Conformational heterogeneity is particularly beneficial for low- 
and medium-flexible cases 

We have analyzed whether the docking improvement when using 
ensembles depends on the conformational rearrangement of the 
interacting proteins upon binding (see Methods). The largest docking 
improvement when using the selected conformers is observed in the 
low- and medium-flexible cases, i.e. those with I-RMSDCα between 0.5 
and 2.0 Å (Fig 4B). The ensemble success rates are particularly good 
in the low-flexible cases, for which they reach predictive docking values 
similar to the optimal ones when using the bound structures. This could 
be related to the limited sampling used here, which did not explore too 
far from the unbound (1.2 Å of Int-RMSD as average) and therefore 
they can only sample in the vicinity of the bound state in low-flexible or 
rigid cases. Indeed, in the rigid cases (I-RMSDCα < 0.5 Å), the selected 
conformers yield similar results to the unbound structures. In these 
cases, unbound structures already produced optimal results, similar to 
the optimal success rates obtained when using the bound structures. In 
flexible or highly-flexible cases (I-RMSDCα > 2.0 Å), the docking results 
for the ensembles are as poor as those for the unbound structures, very 
far from the optimal success rates when using the bound structures. 
Using MD or more conformers does not significantly change the results 
(S5 Fig). 

Discussion 

Conformers providing better binding energy in the native 
orientation are more likely to improve docking 

We have shown that set of discrete conformers representing the 
conformational heterogeneity of the unbound structure yielded better 
docking results than the unbound structures themselves. It would be 
important to analyze the reasons for the success of such conformers. 
Surprisingly, the conformers that were structurally more similar to the 
reference structure did not yield better docking results than the unbound 
structures. On the other side, selected conformers with the best binding 
energy in the native orientation yielded better docking results than the 
unbound structures. Thus, the capacity to provide favorable binding 
energy in the native orientation seems to be a major determinant for the 
success of docking, as opposed to the criterion of structural similarity to 
the native conformation. This might be due to the fact that in the 
majority of cases, ensembles are not exploring the conformational 
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space close to the bound state, because sampling is limited to a region 
in the vicinity of the unbound. 

 
Fig 5. Docking performance dependence on energetic complementarity of 
the docking partners. Best rank of any near-native docking solution vs. 
average native-oriented binding energy towards the bound partner calculated 
for (A) best pair of conformers according to binding energy towards the bound 
state, and (B) unbound X-ray structures. Highlighted in black are the cases that 
largely improve docking performance (from near-native rank > 10 to rank ≤ 10) 
using the energy-based selected conformers. 

Fig 5A shows, for each case, the best ranked near-native 
solution obtained when docking the conformers that had the best 
native-oriented energy with the bound partner (i.e., best near-native 
rank in ordinates; average native-oriented energy of best pair of 
conformers in abscissas). As we can see in Fig 5A, 90% of the 
successful cases (i.e., near-native solution ranked within top 10) have 
average conformer binding energy < -20.0 a.u. in the native orientation. 
Actually, 71% of the docking cases with conformers with binding energy 
in the native orientation < -40.0 a.u. were successful. This confirms that 
the existence of conformers with good optimal energy in the native 
orientation is determining the success of docking. Fig 5A highlights the 
cases that significantly improved, i.e. which had a near-native ranked ≤ 
10 when using the energy-based selected conformers but not when 
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using the unbound structures. In many of these cases, the unbound 
structures in the native orientation had binding energy < -20.0 a.u. (Fig 
5B) but were not successful in unbound docking. In these cases, a little 
bit of conformational sampling seems to be sufficient to generate 
conformers that significantly improve docking results. 

Ensembles in docking: does size really matter? 

For a practical use in docking, the conformational ensembles should 
provide a reasonable coverage of the conformational space, using a 
minimal number of conformers. We have shown here that the selected 
conformers (based on the reference complex structure) from the 1000-
member ensembles generated by MODELLER or MD yielded similar 
results to those selected from the 100-member ensembles (S4 Fig). 
Especially in the more rigid cases, a larger conformational ensemble 
does not seem to help to find better conformers to improve docking 
results. However, we can observe a small improvement in the flexible 
cases when using the larger ensembles (S5 Fig). Perhaps, in addition 
to larger ensembles, higher conformational variability would be needed 
in order to see further improvement in the flexible cases. In this sense, 
we have performed extended MD simulations (100 ns), at different 
temperatures (300K and 340K), on a random selection of 11 cases with 
no missing long loops (comprising all ranges of flexibility values). The 
1000-member ensembles from these extended MD simulations showed 
larger conformational variability as compared to the shorter simulations. 
However, these larger ensembles did not increase the number of cases 
with conformers significantly closer to the bound structure, neither 
provided better docking success rates (S1 Table). Given the known 
convergence issues in MD [55], it seems that much longer MD 
trajectories would be needed in order to achieve exhaustive sampling of 
the unbound conformational space. 
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Binding mechanism: What can we learn from docking? 

 

Fig 6. Binding energy towards the bound of unbound, best conformer and 
bound. Average binding energy towards the bound in the native orientation for 
the unbound proteins, best conformer according to native-oriented bound 
energy, and bound state, computed for examples of cases with different 
degrees of unbound-to-bound conformational changes. Similar unbound, 
conformer and bound binding energies suggest lock-and-key binding 
mechanism (as in 2SNI). Conformer binding energy better than unbound and 
similar to bound suggest conformational selection model (as in 1KXP, 1ACB). 
Conformer binding energy similar to unbound and worse than bound could be 
compatible with conformational selection (1I2M; see main text) or induced fit 
mechanism (1IRA). 

The different possible mechanisms that have been proposed for 
protein-protein association could be described by existing 
computational approaches. In this context, we can consider several 
possible scenarios. For protein complexes following rigid association 
(similar to "lock-and-key" mechanism), the use of rigid-body docking 
with the unbound subunits could be a suitable approach to describe the 
binding process and obtain good predictive models. Indeed, this seems 
to be the case for complexes with small conformational changes 
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between unbound and bound states (I-RMSDCα < 0.5 Å), in which 
unbound docking already gives as similar success rates as bound 
docking (Figs 4B and 4C). In these cases, the use of energy-based 
selected conformers from unbound ensembles gives also similarly good 
docking rates as unbound and bound docking. Indeed, Fig 6 shows one 
example of rigid-body docking (2SNI) in which the unbound proteins in 
the native orientation showed good average binding energy towards the 
bound partner (-32.8 a.u.), not far from that of the bound structures (-
40.8 a.u.). Consistently, the average binding energy of the best 
conformers were similar to that of the unbound or bound pairs (-37.8 
a.u.). However, when conformers were selected by criteria of structural 
similarity to bound state, docking success rates were much worse than 
unbound or bound docking, because in these cases conformational 
heterogeneity is more likely to produce conformers that are further from 
the bound state than the unbound one (given that the unbound was 
already close to the bound state). Indeed, in none of these cases there 
were a single conformer that was significantly closer (in terms of Int-
RMSD) to the bound state than the unbound structure. 

On the other side, we know that in complexes involving flexible 
association rigid-body docking with the unbound structures is not going 
to produce correct models. For such cases, different binding 
mechanisms have been proposed, such as conformational selection or 
induced fit. For cases following the conformational selection 
mechanism, the hypothesis is that the unbound proteins naturally 
sample a variety of conformational states, a subset of which are 
suitable to bind the other protein. Therefore, for these cases the use of 
precomputed unbound ensembles describing conformational variability 
of free proteins in solution should generate conformers that would 
improve rigid-body docking predictions with respect to those with the 
unbound structures. Indeed, this is the case for the complexes 
undergoing unbound to bound transitions between 0.5 and 1.0 Å I-
RMSDCα. In these cases, selected conformers from the unbound 
ensembles yielded much better docking predictions than the unbound 
structures, virtually achieving the success of bound docking (Fig 4B). 
For cases undergoing unbound-to-bound transition between 1.0 and 2.0 
Å I-RMSDCα, the use of unbound ensembles also improved the 
predictions with respect to the unbound docking results, although to a 
lesser extent (Fig 4B). Fig 6 shows one of these cases, 1KXP, in which 
binding energy of the selected pair of conformers in the native 
orientation (-51.4 a.u.) is better than the unbound structures (-31.3 a.u.) 
and similar to the bound structures (-63.6 a.u.). Some residues in the 
best pair of conformers show better energy contribution than in the 
unbound state, which explains why this specific pair of conformers 
improves docking results. In these cases, the existence of a sub-
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population of "active" conformers, i.e. with good binding capabilities 
towards the bound partner, would be consistent with a conformational 
selection mechanism. The fact that these conformers with improved 
binding capabilities are not geometrically closer to the bound state 
seems counterintuitive. However, recent views of binding mechanism 
show that active conformers that are selected by partner (initial 
encounters) do not necessarily need to be in the bound state, as they 
can adjust their conformations during the association process [41]. Our 
docking poses are likely to represent these initial encounters between 
the most populated conformational states of the interacting proteins and 
would be compatible with this extended conformational selection view 
[41]. However, in other cases the limited conformational sampling used 
here might not be sufficient to explore all conformational states 
available in solution and therefore the specific binding mechanism 
cannot be easily identified. 

As for the other extreme, in cases following an "induced-fit" 
mechanism the bound complexes would only be obtained after 
rearrangement of the interfaces when interacting proteins are 
approaching to each other, in which case the use of precomputed 
conformational ensembles in docking (even if generated by exhaustive 
sampling) would not produce favorable encounters around the native 
complex structure. This seems the case for complexes undergoing 
unbound to bound transitions above 3.0 Å I-RMSDCα. In all these cases, 
rigid-body docking, either with unbound structures or with selected 
conformers, fails to reproduce the experimental complex structure. Fig 
6 shows one of these highly-flexible cases, 1IRA, in which binding 
energy of the selected pair of conformers is similar to the unbound 
structures and much worse than the bound conformation. For these 
complexes, the use of precomputed unbound ensembles does not 
seem to see advantageous, and they would probably need to include 
flexibility during docking search, mimicking the induced fit mechanism. 
However, in the flexible category (i.e., unbound to bound transitions 
between 2.0 and 3.0 Å I-RMSDCα,), there are cases like 1ACB, which 
seem to follow the (extended) conformational selection mechanism, 
since the use of conformers helps to improve the docking results, and 
the conformers show better energy than the unbound structures (Fig 6). 
Again, there might be other complexes under this category that could 
still follow the conformational selection mechanism, but our 
conformational search was not sufficient to sample conformations that 
may exist in solution and could be productive for docking. This seems to 
be the case for 1I2M, in which ensembles based on MODELLER did not 
produce pairs of conformers with sufficiently good binding energy in the 
native orientation (Fig 6), but the docking rates improved when using 
extended sampling based on NMA (see later). 
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Of course the use of docking calculations to learn about the 
binding mechanism has some limitations, in addition to the ones already 
mentioned. The timescale of transitions between inactive and active 
conformers can play an important role in controlling the binding 
mechanism [56]. In the present work, we can only assume that our 
ensembles are formed by conformers that are the most accessible in 
solution, so the existence of active conformers that can be preferentially 
selected by the bound partner would be compatible (but not exclusively) 
with a mainly conformational selection mechanism. However, in a 
situation in which the active conformers are not easily accessible, as 
those that can only be generated with extended sampling, we could not 
identify the type of mechanism unless transition rates between 
conformers were considered. 

Future perspectives: improving sampling with normal mode 
analysis for flexible cases 

We have shown here that cases with large deformation after binding (I-
RMSDCα > 2 Å) do not generally benefit from the use of conformers 
from unbound ensembles generated by MODELLER or MD. This 
suggests that these complexes could follow the induced fit binding 
mechanism, and therefore, the use of precomputed unbound 
ensembles would not be appropriate to describe their association. 
However, we should not disregard that some of these complexes could 
still follow a conformational selection mechanism, but for some reason a 
dramatically larger conformational sampling would be needed to find 
suitable conformers.  

One way to extend conformational sampling is by using Normal 
Mode Analysis (NMA). When generating 100 conformers for this group 
of cases (strong and flexible I-RMSDCα > 2.0 Å) with an ad-hoc Monte-
Carlo sampling method based on Cα NMA and full-atom rebuilding with 
MODELLER (S6 Fig; see Methods), the results were not better than 
those obtained with the conformers directly generated by MODELLER 
(Tables 2 and S2). However, when generating 1000 conformers based 
on NMA (either 1000 NMA-based conformers rebuilt by MODELLER, or 
100 NMA-based conformers with 10 models rebuilt by MODELLER for 
each of them), the success rates largely improved with respect to those 
obtained when generating conformers with only MODELLER (either 100 
or 1000 conformers). It is interesting to comment on the flexible case 
1I2M, which showed failing docking rates with the unbound structure 
and also with the best conformers from MODELLER or MD ensembles, 
but yielded successful docking results with 1000-member NMA-based 
ensembles. This shows that new sampling approaches based on NMA 
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could produce the type of enhanced sampling needed for the most 
flexible cases following a conformational selection mechanism. 

Table 2. Docking performance of conformers selected from NMA-based 
ensembles. 

 Bound Unb. MM  
(100 

confs) 

MM  
(1000 
confs) 

NMA  
(100 
conf) 
* MM  
(1conf) 

NMA  
(100 
conf) 
* MM 

(10conf) 

NMA  
(1000 
conf) 
* MM 
(1conf) 

1ACB 1 361 4d 34d 46c 3d 1d 
1ATN 7 2568 665d - 292c 3245a 1788a 
1EER 3 1821 21b 13c 17d 3c 3b 
1I2M 1 - 50c 13c 23c 1c,d 1d 
1IBR 1 - - 1108e 87a 146e 88a 
1PXV 1 2073 100a 822c 168d 168d 232d 
aCα global RMSD . 
bFull-atom interface RMSD. 
cNative-oriented binding energy with bound partner. 
dNative-oriented binding energy with unbound partner. 
eNumber of clashes with bound partner in the native orientation. 

We present here the most complete systematic study so far 
about the use of precomputed unbound ensembles in docking. The 
results show that considering conformational heterogeneity in the 
unbound state of the interacting proteins can improve their binding 
capabilities in cases of moderate unbound-to-bound mobility. In these 
cases, the existence of conformers with better binding energy in the 
native orientation is associated to a significantly improvement in the 
docking predictions. It seems that protein plasticity increases chances 
of finding conformations with better binding energy, not necessarily 
related to bound geometries. This is compatible with the extended 
conformational selection mechanism, since successful conformers are 
not necessarily more similar to the bound conformation in structural 
terms. Other moderately flexible cases have conformers that look 
promising from a binding energy perspective but did not provide good 
docking predictions. These cases could also follow a conformational 
selection mechanism, but they would need extensive sampling to find 
suitable conformers for binding. The most flexible cases would show 
larger induced fit effects and therefore would not be well described by 
ensemble binding. This work helps to set guidelines for future strategies 
in practical docking predictions based on unbound ensembles 
generated by molecular mechanics minimization. 
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Methods 

Generation of protein conformational ensembles 

We applied three different computational techniques to generate 
conformational ensembles starting from the unbound protein structures: 
modelling minimization (MM), Molecular Dynamics simulations (MD), 
and Normal Modes Analysis (NMA). 

Conformational search based on modelling minimization (MM) 
was performed with the comparative modelling program MODELLER 
version 9v10 [57], using as template the unbound X-ray structure of the 
same protein. Cofactors and ligands, if present in the template 
structure, were taken into account during the modelling procedure. 

Conformational search based on Molecular Dynamics (MD) was 
performed by a 10-ns-long explicit solvent unrestrained MD simulation 
on the unbound structure using the force field AMBER parm99 and the 
AMBER8 package [58]. As a first preparation step, all the missing loops 
in the protein structures, if any, were modeled using MODELLER 
program, in order to avoid an over-estimation of the protein flexibility 
during the simulations. The parameterization of each system was 
performed using AMBER’s module LEAP, whereas the cofactor and 
ligand libraries, when needed, were written with the AMBER modules 
ANTECHAMBER and LEAP. Each system was then minimized, 
solvated and equilibrated at the same conditions as previously 
described for the MoDEL database [59]. Then, a 10-ns MD simulation 
was performed in isothermal-isobaric ensemble, setting pressure to 1 
atm and temperature to 300K. Finally, two conformational ensembles 
were created by extracting trajectory snapshots every 10ps or 100ps. 
Additionally, a random subset of 11 benchmark cases (1ACB, 1AY7, 
1D6R, 1E6J, 1GCQ, 1IRA, 1JMO, 1PXV, 2HRK, 2CFH, 2C0L) was 
selected for longer simulations. Each protein underwent two 100-ns-
long explicit solvent unrestrained NPT-MD simulations, at the 
temperatures of 300K and 340K, respectively, using the same force 
field as above. 

Conformational search based on Normal Mode Analysis (NMA) 
was performed by an in-house protocol on a small subset of 6 high-
affinity and flexible benchmark cases. NMA is a powerful modeling 
technique that allows for a fast and accurate description of the intrinsic 
movements of biomolecules. Modern interpretations of the procedure 
use the elastic network model (ENM), first described by Tirion as an all-
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atom version [60], and later re-formulated as coarse-grained [61-63]. In 
the ENM, the biomolecule is represented as a network of connected 
atoms, where each node is connected to all the atoms within a cutoff, 
and the springs represent the interactions between the nodes. Here we 
used the Anisotropic Network Model [62] that describes the protein as a 
Ca model, and we assigned the spring constants by a continuum 
distance function that assumes an inverse exponential relationship with 
the distance [64]. We tried to enhance the conformational space by 
introducing an iterative exploratory search. The proposed method is 
called eNMA (enhanced NMA) and creates enriched structurally diverse 
ensembles. The algorithm works as follows: 

Step 1 – Starting from the unbound Ca atoms, we created 100 
discrete cartesian conformers from random combinations of 
displacements along the first 10 Normal Modes (as described 
elsewhere [65]). The average Ca displacement with respect to the 
original structure was set to ~1 Å. 

Step 2 – The resulting conformers were then clustered 
hierarchically via average linkage method (as implemented in ptraj10 
[58]) to obtain 100 diverse conformations. 

Step 3 – Each conformer from the cluster was sent to Step 1, and 
the whole cycle was started. 

Step 4 – The process was ended up after 8 iterations. 

In total, a maximum of 70100 intermediate structures were 
created per protein, but we only kept the ones resulting from the 
clustering (i.e., 100 x 10 = 1000 discrete conformers). The final 
structures underwent a last modeling step with MODELLER 9.10. All-
atom models were rebuilt by adding missing atoms and side chains and 
were atomically refined with MODELLER (using the original Ca model 
as template) to fix incorrect bond distances [57, 66]. In addition, 100 
discrete conformers were randomly selected and for each of them 10 
MODELLER models were built. The whole procedure took around 4 
hours per protein on 1 CPU of a standard Linux workstation. Note that 
our conformational search was unguided, but it could be also guided in 
future applications (i.e., selecting the combination of models that 
provides the best score on a given fitness function). 
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Docking Simulations 

For all the dockings experiments, FTDock docking program [15] was 
used to generate 10,000 rigid-docking poses based on surface 
complementary and electrostatics at 0.7 Å grid resolution, and then, 
each docking solution was evaluated by the energy-based pyDock 
scoring scheme [25], based on desolvatation, electrostatics and Van 
der Waals energy contributions. Cofactors and ions were excluded 
during the sampling and the scoring calculations. 

Benchmark 

In order to validate the approach proposed here, we used protein-
protein docking benchmark 3.0 [54], comprising a total of 124 test cases 
in which the structure of both the free components and the complex are 
known. We have classified these cases according to the conformational 
variation of the proteins from the unbound to the bound state (based on 
the RMSD of Cα atoms of the interface residues as defined in the 
mentioned protein-protein benchmark 3.0), which resulted in the 
following categories: "rigid" (I-RMSDCα < 0.5 Å), "low-flexible" (0.5 Å < I-
RMSDCα < 1.0 Å), "medium-flexible" (1.0 Å < I-RMSDCα < 2.0 Å), 
"flexible" (2.0 Å < I-RMSDCα < 3.0 Å), and "highly-flexible" (I-RMSDCα > 
3.0 Å). The quality of the docking predictions was evaluated according 
to the ligand Cα-RMSD with respect to the complex crystal structure 
(after superimposing the receptor molecules). A docking experiment 
was considered successful if a near native solution (a docking pose with 
ligand Cα-RMSD < 10 Å) was ranked among the top 10 predictions 
according to the pyDock scoring function. Structural analyses of 
proteins, including RMSD and clashes calculations, were performed 
using ICM program [67] (www.molsoft.com). 
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Supporting information  

 
S1 Fig. Distribution of conformers according to different quality criteria in 
the 100-member ensembles. Distribution of conformers for different 
benchmark cases according to specific criteria based on the complex native 
orientation: Cα-RMSD, Int-RMSD, binding energy with the bound partner, 
binding energy with the unbound partner, number of clashes with respect to the 
bound partner (from top to bottom). Ensembles were generated by MODELLER 
(blue) and MD (magenta). Values for unbound X-ray structures are shown as 
red lines. 
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S2 Fig. Representative conformational ensembles generated by MD. 100 
conformers independently generated by MD for receptor and ligand are shown 
for two benchmark cases: (A) 1PXV and (B) 1ACB. Conformers were 
superimposed onto the corresponding molecules in the reference complexes for 
visualization. Only interface side chains are shown for the sake of clarity. 
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S3 Fig. Distribution of conformers according to different quality criteria in 
the 1000-member ensembles. Distribution of conformers for different 
benchmark cases according to specific criteria based on the complex native 
orientation: Cα-RMSD, Int-RMSD, binding energy with the bound partner, 
binding energy with the unbound partner, number of clashes with respect to the 
bound partner (from top to bottom). Ensembles were generated by MODELLER 
(blue) and MD (magenta). Values for unbound X-ray structures are shown as 
red lines. 
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S4 Fig. Docking performance for the best conformers of different 
ensembles. Docking success rates for the top 1 to 1000 predicted models on 
the protein-protein docking benchmark when using conformers selected by 
specific criteria based on the complex native orientation: Cα-RMSD (green), Int-
RMSD (yellow), binding energy with the bound partner (orange), binding energy 
with the unbound partner (blue), number of clashes with respect to the bound 
partner (violet). Ensembles were composed of (A) 100 conformers generated by 
MODELLER, (B) 1000 conformers generated by MODELLER, (C) 100 
conformers generated by MD, and (D) 1000 conformers generated by MD. For 
comparison, docking success rates for unbound X-ray structures are also 
shown (dark gray). 
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S5 Fig. Docking performance for the different ensembles according to 
unbound-to-bound variability. Docking success rates for the top 10 predicted 
models on the protein-protein docking benchmark with cases classified 
according to unbound-to-bound conformational variability, when using 
conformers selected by specific criteria based on the complex native 
orientation: Cα-RMSD (green), Int-RMSD (yellow), binding energy with the 
bound partner (orange), binding energy with the unbound partner (blue), 
number of clashes with respect to the bound partner (violet). Ensembles were 
composed of (A) 100 conformers generated by MODELLER, (B) 1000 
conformers generated by MODELLER, (C) 100 conformers generated by MD, 
and (D) 1000 conformers generated by MD. For comparison, docking success 
rates for unbound X-ray structures are also shown (dark gray). 
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S6 Fig. Representative conformational ensembles generated by NMA-
based sampling. 100 conformers independently generated by NMA-based 
sampling for receptor and ligand are shown for two benchmark cases: (A) 
1PXV and (B) 1ACB. Conformers were superimposed onto the corresponding 
molecules in the reference complexes for visualization. Only interface side 
chains are shown for the sake of clarity. 

 
S1 Table. Docking performance with conformers selected from extended 
MD ensembles (100ns trajectories, at 300K or 340K temperature). 

 100ns-MD 300K  
(1000 confs) 

100ns-MD 340K 
(1000 confs) 

Cα-RMSD Int-RMSD Cα-RMSD Int-RMSD 
1AY7  19 1 4 155 
1D6R  2181 2181 2018 2018 
2HRK  162 161 314 1285 
1GCQ  33 76 348 1025 
1E6J  - 5 9 3 
1ACB  48 2 99 434 
1PXV  4118 182 3209 2027 
2CFH  134 134 440 3647 
1JMO  - 387 153 - 
2C0L  1493 - 4121 974 
1IRA  - - - - 
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S2 Table. Docking performance of conformers selected from NMA-based 
ensembles. For each sampling method, docking results of all selected 
conformers are shown. For comparison, the docking results with the 1000-
member ensembles generated by MODELLER are also shown, as well as 
those with the unbound and bound X-ray structures. 

 (A) MM1000 

PDB Bound Unbound 

MM1000 
Cα-

RMSD 
Int-

RMSD 
Bound 

BE 
Bound 

BE 
#Clashes 

1ACB 1 361 429 651 36 34 145 
1ATN 7 2568 - - - - - 
1EER 3 1821 371 132 13 48 24 
1I2M 1 - 184 70 13 57 18 
1IBR 1 - 681 - - - 1108 
1PXV 1 2073 2400 1393 970 822 2332 
 (B) NMA (100 Conf) *MM(1 conf) 

PDB Bound Unbound 

NMA (100 conf) * MM (1 conf) 
Cα-

RMSD 
Int-

RMSD 
Bound 

BE 
Bound 

BE 
#Clashes 

1ACB 1 361 47 366 46 19 2614 
1ATN 7 2568 2615 478 292 544 5818 
1EER 3 1821 233 25 - 17 89 
1I2M 1 - 5117 4566 23 310 506 
1IBR 1 - 87 - - - 91 
1PXV 1 2073 1712 - 315 168 1098 
 (C) NMA (100 Conf) *MM(10 conf) 

PDB Bound Unbound 

NMA (100 conf) * MM (1 conf) 
Cα-

RMSD 
Int-

RMSD 
Bound 

BE 
Bound 

BE 
#Clashes 

1ACB 1 361 122 - 9 3 - 
1ATN 7 2568 3245 - - - - 
1EER 3 1821 - - 3 16 - 
1I2M 1 - 383 45 1 1 - 
1IBR 1 - 326 - - - 146 
1PXV 1 2073 687 - 168 2210 5868 

 
(D) NMA (1000 Conf) *MM(1 conf) 

PDB Bound Unbound 

NMA (1000 conf) * MM (1conf) 
Cα-

RMSD 
Int-

RMSD 
Bound 

BE 
Bound 

BE 
#Clashes 

1ACB 1 361 759 589 11 1 229 
1ATN 7 2568 1788 - - 4332 - 
1EER 3 1821 35 3 - 4 - 
1I2M 1 - 2320 154 173 1 1344 
1IBR 1 - 88 - 135 - 984 
1PXV 1 2073 1717 1342 1183 232 866 
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Abstract 

Protein-protein interactions are essential to understand cellular 
processes at molecular level. However, determining the atomic 
structure of the immense majority of protein-protein complexes is still 
highly challenging and constitutes one of the major goals of 
computational biology. Despite methodological advances in docking 
protocols, dealing with molecular flexibility is still a crucial bottleneck. 
Indeed, state-of-the-art rigid-body docking approaches, like pyDock, 
have difficulties in cases with large conformational changes upon 
binding. Although several protocols have been proposed to include 
flexibility as a refinement step, the approach of using precomputed 
conformational ensembles generated from unbound protein structures 
has been less explored. In the past we used ensembles derived from 
residue dipolar coupling (RDC) data to significantly improve docking 
predictions for ubiquitin complexes. More recently, we found that a 
simple molecular mechanics minimization method can generate 
conformers that improve energetic complementarity of the docking 
partners. Based on these studies, we have devised here a protocol to 
integrate unbound conformational ensembles within a rigid-body 
docking framework and systematically tested it on a data set of 124 
protein-protein docking cases. For that, we docked every conformer 
from the receptor with a random one from the ligand, ranked all the 
resulting docking poses, and removed redundant solutions. 
Conformational ensembles generated here at low computational cost 
significantly improved docking predictions for cases in which 
interacting proteins showed moderate conformational changes upon 
binding. Future works on increasing the size and quality of these 
ensembles will expectedly extend the applicability of this docking 
strategy to more flexible cases. 
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Introduction 

Proteins act as building blocks and functional components of a cell 
[1], and their interactions are crucially important for the virtual totality 
of biological processes. In this context, understanding the structural 
and functional details of the hundreds of thousands of protein-protein 
interactions that are formed in a living organism is essential to 
advance in biological knowledge and biomedical applications. 
However, current structural coverage of protein–protein interactions in 
human is below 4% of the estimated number of possible complexes 
[2-3]. 

Computational protein-protein docking aims to complement 
experimental efforts and provide structural models for protein 
complexes starting from the isolated component structures [4-5]. 
However, despite general methodological advances in docking, 
properly dealing with molecular flexibility is still a major bottleneck. 
Indeed, protein dynamics plays a key role in protein association and 
the need of integrating protein flexibility in docking simulations is now 
evident [4]. Several methodologies have been proposed to address 
this issue. The easier and simpler approaches consist in implicit 
treatment of flexibility by implementing soft potentials within FFT-
based docking protocols [6], thus allowing a certain degree of inter-
penetration between the interacting protein atoms. A more realistic 
and accurate description of the association process, although at 
higher computational cost, is the inclusion of conformational flexibility 
after a first rigid-body docking step, somehow mimicking the induced-
fit binding model [7]. The majority of current docking methods that 
include flexibility follow this approach: ICM-DISCO [8], HADDOCK [9] 
or RosettaDock [10] protocols. A more recent strategy to include 
plasticity during the sampling step is by small deformation of the 
global structures along soft harmonic modes, such as in ATTRACT 
[11-12] or SwarmDock [13] programs.  

An alternative approach, which has been largely unexplored, is 
to mimic the conformational-selection binding model [14-16] by 
docking separately a number of conformers selected from 
precomputed conformational ensembles of the docking partners. 
These conformational ensembles can be obtained experimentally 
(e.g., from NMR experiments) or computationally by conformational 
sampling methods (e.g., MD, NMA or homology modeling), ideally 
spanning various degrees of flexibility, from small local 
rearrangements to large-scale global motions. Although highly 
promising, to date this strategy has not been really used for practical 
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docking predictions. Actually, very few systematic studies have been 
reported on the use of either conformational ensembles derived from 
theoretical simulation [17-19] or experimental data (i.e., NMR 
spectroscopy) [19]. Besides, the ensembles used in the majority of 
these studies do not really represent the population of the unbound 
state, as only few conformers were used in the docking procedure.  

In this context, we recently showed that the use of ensembles 
generated with residual dipolar coupling (RDC) data in docking 
significantly improved the predictive rates in ubiquitin complexes [20]. 
However, the experimental limitations in the ensemble generation 
make it difficult to extend this protocol to large-scale application. More 
recently, we found that a simple molecular mechanics minimization 
approach using MODELLER (MM) can rapidly generate conformers 
with better binding properties, thus can improve docking predictions 
thanks to better energetic complementarity of the docking partners 
(Pallara et al., submitted).  

Based on these findings, we have devised here a novel 
prococol for ensemble docking, which has been systematically tested 
on a large dataset of 124 protein-protein docking cases. For that, we 
docked every conformer from the receptor with another one randomly 
selected from the ligand. All the resulting docking poses were merged 
and clustered to remove redundant ones, and finally ranked according 
to an energy-based scoring function. The global docking predictions 
significantly improved the results with respect to the unbound 
docking, especially for medium-flexibility complexes.  

Methods 

Generation of protein conformational ensembles 

MODELLER comparative protein structure modeling program [21] 
was used to obtain an ensemble of 100 conformations for the 
unbound interacting subunits of each docking case, using as template 
the unbound X-ray structure of the same protein. Ions and cofactors 
molecules, if any, were included during the modeling in order to 
preserve a reasonable accuracy in the structures obtained. 

Ensemble docking 

For each docking case, every conformer from the receptor ensemble 
was docked with another one randomly selected from the ligand 
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ensemble, as described below. First, the Fast Fourier Trasform (FFT) 
program FTDock [22] was used to generate a set of 10,000 rigid-
docking poses using surface complementary and electrostatics, at 0.7 
Å grid resolution. All the models resulting from docking each pair of 
conformers from receptor and ligand ensembles were merged 
together, and sorted according to pyDock scoring scheme [23], based 
on desolvatation, electrostatics and Van der Waals energy 
contributions. Both ions and cofactors molecules were excluded 
during the sampling and the scoring calculations. Finally, the 
redundant predictions were eliminated by using a clustering algorithm 
starting from the top-ranked docking solution and removing all the 
following models with ligand RMSD lower than 10 Å. 

Benchmark 

In order to validate the protocol proposed here, we used the Weng's 
protein-protein docking benchmark version 3.0 [24], composed of 124 
cases in which the structures of both the free components (unbound) 
and the complex (bound) are known. 

For all the docking experiments, the predictive performance 
was evaluated by comparing the coordinates of each docking pose 
with the corresponding X-ray structure of the complex. A near-native 
solution (NNs) was defined as a docking pose with ligand RMSD 
lower than 10 Å (RMSD was calculates for the ligand c-alpha atoms 
with respect to the equivalent one in the X-ray structure of the 
complex after optimal superimposition between bound and unbound 
receptor molecules). The success rate is defined as the percentage of 
cases in which a near-native solution is found within the top N 
docking poses, as sorted by pyDock. For the evaluation and 
comparison of the docking results special attention was taken for the 
top 10 success rate. For the completeness of the analysis, additional 
docking simulations were performed using 100 random initial rotations 
of the unbound X-ray structures of the docking partners, followed by 
the same merging and clustering protocols as with the ensemble 
conformers.  

As previously described in Pallara et al., submitted, all the 124 
benchmark cases were classified according to the conformational 
variation of the proteins from the unbound to the bound state (based 
on the RMSD of Cα atoms of the interface residues as defined in the 
mentioned protein-protein benchmark 3.0), which resulted in the 
following categories: "rigid" (I-RMSDCα < 0.5 Å), "low-flexible" (0.5 Å < 
I-RMSDCα < 1.0 Å), "medium-flexible" (1.0 Å < I-RMSDCα < 2.0 Å), 
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"flexible" (2.0 Å < I-RMSDCα < 3.0 Å), and "highly-flexible" (I-RMSDCα 
> 3.0 Å).  

Anchor residues were defined by the ANCHOR web server, 
(http://structure.pitt.edu/anchor/ [25-26]), as those with a predicted 
contribution to binding energy of more than 2.0 kcal/mol. The RMSD 
calculations were executed with ICM program (www.molsoft.com).  

Results 

Ensemble docking significantly improves complex structure 
predictions 

We previously observed that conformational ensembles generated by 
a simple molecular mechanics approach contain specific conformers 
that can be highly useful for docking predictions. (Pallara et al., 
submitted) However, in a realistic situation it would be virtually 
impossible to identify which conformers are the best for docking, and 
thus it would be necessary to use all ensemble members within a 
docking protocol framework. The problem with this approach is that 
docking all 100 conformers from the receptor ensemble against all 
100 conformers from the ligand ensemble would involve performing 
10,000 individual docking runs for each case. This would be clearly 
impractical for the majority of cases and would need using high-
performance computing facilities.  

Here we have used an alternative strategy to dramatically 
reduce the computational costs, by docking each conformer of the 
receptor with a randomly selected conformer of the ligand, and thus 
running 100 docking jobs per case (see Methods). In this way, all 
conformers from receptor and ligand are used in docking, although 
obviously not all combinations of conformers are considered.  

Fig 1A shows the docking success rates for the top 10 
predictions on the overall benchmark when using this protocol, with all 
the details in Table 1 and Table S1. Interestingly, ensemble docking 
(using 100 random receptor-ligand pairs of conformers) clearly 
improved the success rates (32.3%) with respect to the unbound 
subunits (19.4%). When only five conformers were used for the 
ensemble docking protocol, the prediction success rates (24.2%) 
significantly dropped with respect to those of the larger ensembles. 
For comparison, we also show the success rates that would be 
obtained when using the bound structures, which establish the upper 
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limit for the expected docking results with this approach (61.3%). In 
order to provide a statistical significance for these results, we 
performed 100 different docking runs with random initial rotations of 
the unbound receptor and ligand molecule. The docking performance 
obtained (26.6% success rate) stood halfway between the ensemble 
docking and the unbound results.  

 

 

 

 

 

 

 

 

Fig 1. Ensemble docking predictive performance. (A) Predictive success 
rate obtained on the overall benchmark for the top 10 ranked docking poses 
when using the ensemble docking protocol described here (red). For 
comparison, the docking results for the bound (white) and unbound (dark 
gray) X-ray structures are shown. To assess the significance of the 
predictions, the figure also shows the docking results for random ensembles 
consisting on: five random initial rotations of the unbound docking partners 
(light gray), five random MM-derived conformers pairs (light green), and 100 
random initial rotations of the unbound docking partners (blue). These 
random ensembles were used with the same protocol as the conformational 
ensembles. (B) Predictive success rates obtained on the 28 with 
experimental high binding affinity (ΔG < -12.0 kcal/mol) (same color code as 
above). (C) Predictive success rate obtained on the benchmark cases 
classified according to unbound-to-bound conformational motion (same color 
code as above). (D) Predictive success rate obtained on the high-affinity 
cases (ΔG < -12.0 kcal/mol) classified according to unbound-to-bound 
conformational motion (same color code as above). 
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These results suggest that conformational heterogeneity in the 
interacting subunits improves the binding capabilities of the unbound 
X-ray structures. Nevertheless, part of such improvement might be 
associated with the larger sampling in the atomic positions provided 
by the set of random initial rotations, which could somehow 
compensate the suboptimal grid-based sampling of FTDock as 
previously discussed (Pallara et al., submitted). Interestingly, lowering 
the number of random initial rotations (i.e., five rotations) did not 
substantially change the docking performance (27.4%), showing the 
importance of performing a small change in position of the starting 
molecules instead of using only the unbound X-ray structure. 

The results of bound docking are far from optimal, probably due 
to the FFT-based discrete searching algorithm that makes it difficult to 
sample the exact native orientation. This would be particularly critical 
in low-affinity cases, in which the small number of interactions would 
make them less tolerant to small errors in the atomic positions. To 
minimize the impact of this limitation in our evaluation, we performed 
the same analysis as above but focusing only on the 28 cases of the 
benchmark that have been experimentally defined as high-affinity 
cases (with ΔG lower than -12 Kcal/mol). For these cases, the results 
of bound docking are much closer to optimal (89.3%). For these 
cases, we can observe more clearly that ensemble docking improved 
the success rates (53.6%) with respect to the unbound docking 
(28.6%). This improvement was clearly above that observed for the 
set of 100 random rotations (35.7%). (Fig 1B).  

Table 1. Predictive performance of ensemble docking. Best rank of a 
near-native docking pose 

Complexa Bound Unbound Ensemble 
dockingb 

Rigid (I-RMSDCα < 0.5 Å) (18 cases) 
1AVX 2 102 (29) 
1FSK 3 3 1 
1GHQ 7455 - (107172) 
1IQD 1 8 3 
1KLU 18 1246 (59167) 
1KTZ 48 3725 (7981) 
1NCA 14 7 1 
1NSN 405 500 (303) 
1PPE 28 6 4 
1R0R 1 3 (222) 
1SBB 161 298 (2491) 
1WEJ 1 274 3 
2JEL 1 42 2 
2MTA 2 78 (105) 
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2PCC 12 6 3 
2SIC 1 8 2 
2SNI 1 3 3 
2UUY 69 4472 (6203) 
Low-flexible (I-RMSDCα 0.5-1.0 Å) (45 cases) 
1AHW 1043 4049 (430) 
1AY7 1 24 4 
1AZS 1 30 (363) 
1BJ1 9 - (388) 
1BUH 71 66 (1004) 
1BVN 1 2 1 
1DQJ 216 604 (19) 
1E96 113 1 (8) 
1EAW 8 622 8 
1EFN 6 166 (1014) 
1EWY 4 8 (39) 
1F34 1 139 (1713) 
1F51 2 7 (12) 
1FQJ 14 309 (1390) 
1GCQ 274 1091 (3479) 
1GLA 61 50 (150) 
1GPW 1 1 1 
1HE1 1 3958 (672) 
1HE8 138 2917 (9893) 
1IJK 16 1309 (1122) 
1J2J 46 19 - 
1JPS 709 481 (248) 
1K4C - - (6742) 
1K74 150 14 3 
1KAC 4737 1286 (3610) 
1KXQ 1 250 1 
1MAH 1 19 3 
1MLC 2 37 2 
1N8O 3 53 - 
1QA9 3253 7378 (18552) 
1QFW 81 239 (3338) 
1RLB 1319 4094 (2803) 
1S1Q 147 1211 (1465) 
1T6B 3 56 (713) 
1TMQ 1 1 7 
1UDI 1 1 1 
1YVB 1 19 5 
1Z0K 2 8 (105) 
1ZHI 5 3 2 
2AJF 5 1788 (44037) 
2B42 1 1 2 
2BTF 1 33 7 
2OOB 588 112 (3994) 
2VIS 64 - - 
7CEI 1 19 5 
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Medium-flexible (I-RMSDCα 1.0-2.0 Å) (35 cases) 
1A2K 36 114 (886) 
1AK4 2420 2040 (5697) 
1AKJ 89 656 (635) 
1B6C 1 3 3 
1BGX 1 - (108647) 
1BVK 7 18 (17) 
1D6R 1050 2128 (2088) 
1DFJ 6 557 1 
1E6E 1 3 1 
1E6J - 33 6 
1EZU 1 2048 (2107) 
1FC2 127 - (2869) 
1GP2 1 - (2278) 
1GRN 2 858 (364) 
1HIA 99 40 4 
1I4D 1 - (184) 
1I9R 15 846 (871) 
1K5D 1 360 (194) 
1KXP 1 16 1 
1ML0 1 173 10 
1NW9 1 9 (140) 
1OPH 59 14 (4056) 
1VFB 37 59 (168) 
1WQ1 4 2448 (76) 
1XD3 1 1 3 
1XQS 1 14 (49) 
1Z5Y 1 16 (47) 
2CFH 1 1904 (34) 
2FD6 68 31 (367) 
2H7V 1 - (1828) 
2HLE 1 13 1 
2HQS 1 30 (13) 
2I25 1 40 (774) 
2O8V 1 60 2 
2QFW 1 - 1 
Flexible (I-RMSDCα 2.0-3.0 Å) (18 cases) 
1ACB 1 361 1 
1BKD 2 522 (915) 
1CGI 1 19 1 
1DE4 1 - (189) 
1E4K 104 1215 (7940) 
1EER 3 1821 (177) 
1I2M 1 - 1 
1IB1 34 - 8447 
1IBR 1 - (5453) 
1KKL 88 49 (15) 
1M10 1 81 (14) 
1N2C 1 - (49) 
1PXV 1 2073 (5089) 
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2C0L 83 3958 (34623) 
2HMI 2 - - 
2HRK 49 16 (76) 
2NZ8 1 10 (50) 
2OT3 1 5 2 
Highly-flexible (I-RMSDCα > 3.0 Å) (8 cases) 
1ATN 7 2568 (1071) 
1FAK 41 5327 (1252) 
1FQ1 6 3865 (1349) 
1H1V 537 - (70803) 
1IRA 1 - - 
1JMO 1 5325 - 
1R8S 1 - (1572) 
1Y64 1420 - - 

a PDB of the complex;  b In brackets, rank before clustering 

(in bold: high affinity cases) 

Low- and medium-flexible cases are the ones most benefited 
by precomputed ensembles 

We expected that the docking improvement when using 
conformational sampling would depend on the flexibility of the 
interacting proteins upon binding. Therefore, we explored for which 
level of molecular flexibility our ensembles could be more beneficial. 
We classified the docking cases according to the conformational 
movement of the proteins from the unbound to the bound state 
(based on interface RMSD, I-RMSDCα). As show in Fig 1C, we found 
that the largest improvement when using the ensemble docking 
occurred in the medium-flexible cases, i.e. those with I-RMSDCα 
between 1.0 and 2.0 Å. In the rigid cases (I-RMSDCα lower than 0.5 
Å), the ensemble docking results were as good as when using the 
unbound structures (close to optimal), whereas for the most flexible 
cases (I-RMSDCα higher than 3.0 Å) the ensemble docking results 
were as poor as those for the unbound structures (very far from 
optimal). The improvement for the low-, medium- and flexible cases is 
even more evident when the analysis is focused on the high-affinity 
cases (Fig 1D). 

Ensemble size in docking: the higher the better 

We explored the question of which is the minimal number of 
conformers that would be needed in order to observe a significant 
improvement in the docking results. To avoid the complexity of the 
interpretation of the results in the weak affinity cases (see above), we 
focused our analysis on the high-affinity ones. Fig 2 shows the 
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ensemble docking results after randomly selecting a different number 
of receptor-ligand pairs of conformers (each sub-set is repeated five 
times and the results are averaged). We found that the docking 
performance increases linearly with the size of the ensemble (in 
grey). Interestingly, when only the high-affinity, low-flexible cases are 
considered (in red), the docking success improves dramatically with 
just a few conformer pairs, so that 30 conformers provide similar 
same success rates as 100 conformers. All these data suggest that 
the results might be further improved by using a higher number of 
conformer pairs, i.e. increasing the number of receptor-ligand 
conformer combinations, but the computational cost would be 

impractical and beyond this work. 

Fig 2. Ensemble docking success rates as a function of the ensemble 
size. Ensemble docking performance for the top 10 predictions when 
different number of randomly chosen conformer pairs are considered. 
Results are shown for the 28 high-affinity benchmark cases (in grey) and the 
8 high-affinity and low-flexible cases (in red). 

Discussion 

Ensemble docking provides more near-native poses and as a 
consequence better predictive rates 

As emerged from the previous analysis, a minimal structural 
heterogeneity provided by the ensembles generated by MODELLER 
minimization (MM) improves docking results with respect to the 
unbound X-ray structures. We have further studied the reasons of 
such improvement. We first explored for each receptor-ligand pair of 
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conformers whether the docking energy of the best near-native 
solution (determinant for the docking success) depended on the 
number of near-native solutions obtained for such conformer pair.  

As can be seen in Fig S1, for the majority of cases it can be 
observed that the higher the number of near-native solutions 
generated by a given conformer pair, the higher the probability of 
obtaining good docking energies by such near-native solutions. In this 
line, the conformers that generated more near-native solutions than 
the unbound structure provided in general better near-native docking 
energies than those generated by the unbound structure. We also 
observed that the bound X-ray structure typically yields more near-
native solutions and with better docking energy than the unbound. 
Interestingly, for many cases (e.g., 1NSN, 1DFJ, 1I2M), there are a 
few conformers that generated even more near-native solutions than 
the bound structure. This is consistent with the previously observed 
correlation between the number of near-native solutions generated by 
docking and the predictive success rates [27]. Therefore, increasing 
the ratio between near-native solutions and false positives is the main 
reason for the beneficial effect of some of the conformers found in the 
precomputed unbound ensembles. 

For each case, the percentage of conformers that produced 
more near-native solutions than the unbound structure is also a 
determinant of the ensemble docking success. Cases with more than 
70% of the conformers producing more near-native solutions than the 
unbound structure show much higher success rate (72.7%) than the 
unbound docking (36.4%), almost reaching the optimal bound docking 
results. On the contrary, in those benchmark cases in which there 
were less than 70% of conformers that produced more near-native 
solutions, ensemble docking had similar success rate (41.2%) to 
when using unbound X-ray structures (35.3%) and far from the bound 
docking results. 

Successful conformers are not necessarily more similar to 
bound state 

As we have just seen, consideration of conformational heterogeneity 
in docking can increase the number of near-native solutions 
generated by FTDock, as well as their docking energy, which is a key 
determinant for the docking success of each conformer pair. 
However, neither the number of near-native solutions found for each 
conformer pair or their best binding energy (and as a consequence 
the success rate) depended on the similarity of such conformer pair to 
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the bound state (Fig S2 and S3). This is in agreement with previous 
findings (Pallara et al., submitted) and is consistent with an extended 
conformational selection mechanism [28]. 

Fig 3. Ensemble docking performance as dependent on the structural 
similarity of anchor residues to the bound structure. Binding energy of 
the best ranked near-native solution for each conformer pair versus the full-
atom RMSD of predicted anchor residues in such conformers with respect to 
those in the bound state, for (A) 1AY7 and (B) 1MAH benchmark cases. For 
comparison, unbound X-ray structure is shown in red. (C, D) Selected native 
key interface contacting pairs that are lost in the unbound docking near-
native solutions and found in the ensemble docking near-native models: 
R65A with D39B from 1AY7; Y72A with V34B from 1MAH. Anchor residues 
are shown in orange. 

In a few cases (e.g., 1AY7, 1MAH) we could observe that the 
most successful pair of conformers were the most similar to the 
bound state in terms of the RMSD of the predicted anchor residues 
[25-26] (Fig 3A and 3B). In these cases, unbound ensembles can 
explore bound-like orientations of specific interface key residues that 
can improve the interacting capability of such conformers upon the 
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docking and thus yield better docking results with respect to the 
unbound. Fig 3C and 3D show two examples of such cases in which 
ensembles generated successful conformers that would reproduce 
key interface contacting pairs in the native orientation and that could 
not be obtained using the unbound docking partners. Additional key 
interface contacting pair involving anchor residues are shown in Fig 
S4. 

Conformer pairs providing better binding energy in the native 
orientation are more likely to improve docking results 

We reported that the structural similarity of the docking partners to the 
native conformation is not determinant for the docking success in 
general. However, what we found is that the better the binding energy 
of a conformer pair in the native orientation (i.e, after optimal 
superimposition on complex structure), the better the docking energy 
of the produced near-native solutions (and therefore the success 
rates) (Fig S5). This is in agreement with our previous findings 
(Pallara et al., submitted). Thus, capacity to provide favorable binding 
energy in the native orientation seems to be a major determinant for 
the success of a given conformer pair.  

In this regard, Fig 4A shows that for a given case the predictive 
success (i.e., best ranked near-native solution) of unbound docking 
strongly depends on the expected optimal binding energy of the 
unbound subunits as calculated in the native orientation. All 
successful docking cases (i.e., best near-native rank ≤ 10) had 
optimal binding energy of the unbound subunits in the native 
orientation < 0.0 a.u. A number of unsuccessful cases had also 
optimal unbound binding energy < 0.0 a.u., but the majority of them 
(70%) significantly improved in the ensemble docking (highlighted as 
black circles).  Only two cases out of 7 having a pair binding energy < 
-20.0 a.u. were unsuccessful in docking (1DFJ and 1MAH). 
Interestingly, the cases with pair binding energy between -20.0 and 0 
a.u. seem the ones more benefited by the ensemble docking, since 
62% of the successful cases had an optimal binding energy within 
such range. On the contrary, for cases with worse unbound optimal 
binding energy (> 0.0 a.u.), the docking results for the ensemble were 
as poor as those when using the unbound X-ray structures. 
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Fig 4. Dependence of docking performance on the energetic 
complementary of the docking partners. Distribution of the (A) best rank 
of any near-native solution for unbound docking versus the binding energy of 
the unbound partners in the native orientation; (B) best rank of any near-
native solution from all conformer pairs vs. the optimal binding energy of the 
best pair of conformers in the native orientation. Cases that significantly 
improve docking performance after ensemble docking are highlighted as 
black circles. 

Fig 4B shows the docking success for each case as compared 
with the best binding energy of all docked pairs of conformers in the 
native orientation. After ensemble docking, 87% of the successful 
cases had optimal conformer pair binding energy < -20.0 a.u.. The 
majority of cases with optimal conformer pair binding energy > -20 
a.u. were unsuccessful after ensemble docking. All this confirms that 
the existence of conformers capable of providing favorable binding 
energy in the native orientation is a major determinant for the success 
of the ensemble docking. 

Conclusions 

We reported here the first systematic study about the unbiased use of 
precomputed unbound ensemble in docking. A novel docking strategy 
was devised consisting on the use of conformational ensembles of 
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the interacting subunits derived from molecular mechanics 
minimization. Randomly selected pairs of receptor and ligand 
conformers were docked with an FFT-based method, and all the non-
redundant resulting docking poses were scored by an energy-based 
function. The results showed improved predictive rates as compared 
with those of the unbound structures, especially in those cases with 
medium-flexible conformational changes between unbound and 
bound states.  Docking success is not linked to an improvement in the 
structural similarity of the conformers with respect to the bound state, 
but rather to the better binding energy capabilities of the conformers 
in the native orientation. We have shown here that a minimal 
conformational heterogeneity can be used in a practical docking 
protocol to improve the results of unbound docking. This has the 
potential of further improving the predictive results by extending 
conformational sampling and/or considering larger ensembles, 
although this would involve an enormous computational cost. In this 
line, much more efficient algorithms to use larger ensembles in 
practical docking protocols will be needed. 
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Fig S1. Relation between docking performance and sampling 
efficiency. Distribution of the best near-native solution binding energy for 
each receptor-ligand conformer pair versus the number of near-native 
solutions generated by FTDock for such conformer pair. Only high-affinity 
cases are shown, and they are classified according to conformational motion 
between unbound and bound states. For comparison, the results for the 
docking of unbound and bound X-ray structures are shown in red and green, 
respectively. Cases with correlation coefficient < -0.4 are shown in blue 
background. 
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Fig S2. Relation between sampling efficiency and structural similarity 
to the bound. Distribution of the number of near-native solutions generated 
by FTDock for each conformer pair versus the average full-atom interface 
RMSD for receptor and ligand with respect to the bound structures. Only 
high-affinity cases are shown, and they are classified according to 
conformational motion between unbound and bound states. For comparison, 
the docking results for the unbound X-ray structures are shown in red. 
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Fig S3. Relation between docking performance and structural similarity 
to the bound. Distribution of the best near-native solution binding energy for 
each conformer pair versus the average full-atom interface RMSD for 
receptor and ligand with respect to the bound structures. Only high-affinity 
cases are shown, and they are classified according to conformational motion 
between unbound and bound states. For comparison, docking results for the 
unbound X-ray structures are shown in red. 
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Fig S4. Native key interface contacting pairs improved in the ensemble 
docking. (A) 1AY7 and (B) 1MAH benchmark cases. Anchor residues are in 
orange. 
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Fig S5. Relation between docking performance and energetic 
complementary of the docking partners. Distribution of the best near-
native solution binding energy for each conformer pair versus the binding 
energy of the conformers in the complex native orientation. Only high-affinity 
cases are shown, and they are classified according to conformational motion 
between unbound and bound states. For comparison, the results for the 
docking of unbound and bound X-ray structures are shown in red and green, 
respectively. Cases with correlation coefficient < -0.2 are shown in blue 
background. 
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Table S1. Docking with random ensembles: Best rank of a near-native 
docking pose 

Complexa Random  
Conf. (5) 

Random  
Unb. Rot. (5) 

Random 
Unb. Rot. (100) 

Rigid (I-RMSDCα < 0.5 Å) (18 cases)  
1AVX (64) (211) (976) 
1FSK 3 3 4 
1GHQ (8001) (3290) (23384) 
1IQD (7) 4 2 
1KLU (3807) (19418) (98251) 
1KTZ (1562) (795) (9270) 
1NCA 10 (50) (420) 
1NSN (65) (580) (6396) 
1PPE (8) 2 (21) 
1R0R (91) (360) (92) 
1SBB (512) (1205) (5424) 
1WEJ 2 (29) 9 
2JEL 1 3 (41) 
2MTA 5 2 (23) 
2PCC 1 5 9 
2SIC 6 6 10 
2SNI 5 4 4 
2UUY (3166) (892) (13165) 
Low-flexible (I-RMSDCα 0.5-1.0 Å) (45 cases) 
1AHW (13454) (9777) (360248) 
1AY7 (46) (111) (784) 
1AZS (-) 8 (254) 
1BJ1 (364) (293) (3180) 
1BUH (266) (189) (2301) 
1BVN 1 1 1 
1DQJ (1118) (328) (1037) 
1E96 7 5 (16) 
1EAW 1 (197) (250) 
1EFN (1001) (490) (6233) 
1EWY 1 5 6 
1F34 (3200) (670) (4025) 
1F51 (43) 3 9 
1FQJ (668) (1576) (6501) 
1GCQ (48) (62) (2788) 
1GLA (38) 1 9 
1GPW 1 1 1 
1HE1 (616) (4542) (118475) 
1HE8 (1046) (4301) (44116) 
1IJK (1121) (966) (777290) 
1J2J (16) 2 (5) 
1JPS (24) (1420) (12959) 
1K4C (1890) (-) (28657) 
1K74 (61) (54) 10 
1KAC (4359) (8321) (18603) 



Protein plasticity improves protein-protein docking 

 

 180 

1KXQ (29) 1 6 
1MAH 3 1 1 
1MLC 1 2 1 
1N8O (121) (119) (-) 
1QA9 (15092) (11140) (103447) 
1QFW (675) (614) (5876) 
1RLB (42005) (1801) (4773) 
1S1Q (99) (756) (9589) 
1T6B (205) (196) (580) 
1TMQ 1 8 4 
1UDI 2 1 4 
1YVB 4 2 (22) 
1Z0K (319) (103) 10 
1ZHI 7 1 4 
2AJF (3914) (2430) (69360) 
2B42 (39) 1 1 
2BTF (77) (167) (34) 
2OOB (1234) (1571) (2788) 
2VIS (-) (-) (-) 
7CEI (27) (35) 6 
Medium-flexible (I-RMSDCα 1.0-2.0 Å) (35 cases) 
1A2K (3415) (1290) (3966) 
1AK4 (2229) (21200) (14322) 
1AKJ (438) (372) (-) 
1B6C 3 1 1 
1BGX (17600) (-) (841301) 
1BVK (46) (289) (462) 
1D6R (8) (331) (2660) 
1DFJ 5 5 9 
1E6E 1 1 1 
1E6J 3 2 3 
1EZU (1337) (4350) (6654) 
1FC2 (205) (4336) 0 
1GP2 (129) (352) (172024) 
1GRN (71) (2171) (11864) 
1HIA (62) (50) (37506) 
1I4D (305) (18465) (2033) 
1I9R (-) (101) (243) 
1K5D (1475) (1776) (912) 
1KXP 1 2 (7) 
1ML0 (78) (41) (424) 
1NW9 (53) 9 9 
1OPH (376) (70) (660) 
1VFB (11) (88) (202) 
1WQ1 (96) (1618) (2081) 
1XD3 2 1 1 
1XQS 7 (17) (266) 
1Z5Y 10 (22) (23) 
2CFH (892) (1908) (27689) 
2FD6 6 (114) (762) 



Articles 

 

 181 

2H7V (2345) (-) (1413) 
2HLE (17) 4 2 
2HQS (7) (30) (15) 
2I25 (231) (553) (284) 
2O8V (80) (11820) (74) 
2QFW (132) 1 2 
Flexible (I-RMSDCα 2.0-3.0 Å) (18 cases) 
1ACB (135) (369) (555) 
1BKD (23) (966) (1937) 
1CGI (45) 5 (87) 
1DE4 (-) (-) (1725) 
1E4K (1197) (14392) (79673) 
1EER (43) (7292) (325) 
1I2M (199) (247) 5 
1IB1 (28994) (18819) (70454) 
1IBR (-) (-) (-) 
1KKL (280) (458) (222) 
1M10 9 (497) (1411) 
1N2C 1 (22) 1 
1PXV (1837) (318) (2852) 
2C0L (3449) (7473) (62804) 
2HMI (-) (-) (-) 
2HRK (73) (79) (580) 
2NZ8 (40) (28) (100) 
2OT3 (213) (-) (555) 
Highly-flexible (I-RMSDCα > 3.0 Å) (8 cases) 
1ATN (2402) (2503) (3597) 
1FAK (25) (1670) (34273) 
1FQ1 (239) (16535) (35535) 
1H1V (-) (-) (259770) 
1IRA (-) (-) (-) 
1JMO (2982) (13867) (121326) 
1R8S (1174) (8370) (5277) 
1Y64 (-) (-) (-) 
a PDB of the complex 
(in bold: high affinity cases) 
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3.3. Modeling protein interactions: 
application to cases of interest 

The expertise acquired during the first part of this PhD thesis on the 

modeling and characterization of structure and dynamics of protein 

interactions has facilitated the successful application of computational 

methods to the modeling of protein interactions within different real-

life contexts.  

This section will be mainly focused on (i) the energetic 

characterization of host-pathogen protein interactions, and (ii) the ab 

initio modeling of encounter complex ensembles of redox proteins. 
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A challenge for microbial pathogens is to assure that their trans-
located effector proteins target only the correct host cell compart-
ment during infection. The Legionella pneumophila effector
vacuolar protein sorting inhibitor protein D (VipD) localizes to
early endosomal membranes and alters their lipid and protein
composition, thereby protecting the pathogen from endosomal
fusion. This process requires the phospholipase A1 (PLA1) activity
of VipD that is triggered specifically on VipD binding to the host
cell GTPase Rab5, a key regulator of endosomes. Here, we present
the crystal structure of VipD in complex with constitutively active
Rab5 and reveal the molecular mechanism underlying PLA1 activa-
tion. An active site-obstructing loop that originates from the C-
terminal domain of VipD is repositioned on Rab5 binding, thereby
exposing the catalytic pocket within the N-terminal PLA1 domain.
Substitution of amino acid residues located within the VipD–Rab5
interface prevented Rab5 binding and PLA1 activation and caused
a failure of VipD mutant proteins to target to Rab5-enriched endo-
somal structures within cells. Experimental and computational anal-
yses confirmed an extended VipD-binding interface on Rab5,
explaining why this L. pneumophila effector can compete with cel-
lular ligands for Rab5 binding. Together, our data explain how the
catalytic activity of a microbial effector can be precisely linked to its
subcellular localization.

pathogenic bacteria | allosteric modulation | membrane composition |
X-ray crystallography

Microbial pathogens have evolved numerous ways to subvert
and exploit normal host cell processes and to cause dis-

ease. Intravacuolar pathogens use specialized translocation
devices such as type IV secretion systems (T4SS) to deliver vir-
ulence proteins, so-called effectors, across the bacterial and
host cell membrane into the cytosol of the infected cell (1–3).
Many of the translocated effectors studied to date alter cellular
events such as vesicle trafficking, apoptosis, autophagy, protein
ubiquitylation, or protein synthesis, among others, thereby cre-
ating conditions that support intracellular survival and replica-
tion of the microbe (4, 5). Bacteria with a nonfunctional T4SS are
often avirulent and degraded along the endolysosomal pathway,
thus underscoring the importance of translocated effectors for
microbial pathogenesis.
Although T4SS-mediated effector translocation may be a

convenient way for pathogens to manipulate host cells from
within the safety of their membrane-enclosed compartment, it
also creates a challenging dilemma: how can the bacteria ensure
that their translocated effectors reach the correct host cell target
for manipulation, and how can they prevent them from indis-
criminately affecting bystander organelles or proteins that may
otherwise be beneficial for intracellular survival and replication of
the microbe? It is reasonable to expect that regulatory mecha-

nisms have evolved that restrain the catalytic activity of effectors.
Although detailed insight into these processes is scarce, an
emerging theme among effectors is that their enzymatic activity is
functionally coupled to their interaction with a particular host
factor. For example, SseJ from Salmonella enterica serovar
Typhimurium displays glycerophospholipid-cholesterol acyl-
transferase activity only on binding to the active GTPases RhoA,
RhoB, or RhoC (6–8). Likewise, Pseudomonas aeruginosa ExoU
requires mono- or poly-ubiquitinated proteins for the activation
of its phospholipase A2 (PLA2) domain (9), whereas Yersinia
YpkA exhibits kinase activity only in the presence of host cell
actin (10). Exactly how binding to host ligands results in the ac-
tivation of these translocated effectors remains unclear because
no structural information for these protein complexes is available.
VipD is a T4SS-translocated substrate of Legionella pneumo-

phila, the causative agent of a potentially fatal pneumonia known
as Legionnaires’ disease, and another example of an effector
whose catalytic activity depends on the presence of a host factor
(11–14). Following uptake by human alveolar macrophages,
L. pneumophila translocates VipD together with more than 250
other effector proteins through its Dot/Icm T4SS into the host cell
cytoplasm (15). These effectors act on numerous host processes to

Significance
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mediate evasion of the endolysosomal compartment and to es-
tablish a Legionella-containing vacuole (LCV) that supports bac-
terial growth (16). Although the precise biological role of most L.
pneumophila effectors remains unclear, we recently showed that
VipD is important for endosomal avoidance by LCVs. The pro-
tein localizes to endosomes presumably by binding to the small
GTPases Rab5 or Rab22, key regulators of endosomal function
(13, 14). Rab GTPase binding to the C-terminal domain of VipD
triggers robust phospholipase A1 (PLA1) activity within the N-
terminal domain, resulting in the removal of phosphatidylinositol
3-phosphate [PI(3)P] and potentially other lipids from endosomal
membranes (14). Without PI(3)P, endosomal markers such as
early endosomal antigen 1 (EEA1) are lost from these mem-
branes, most likely rendering the endosomal compartment fusion
incompetent (17). L. pneumophila mutants lacking vipD are at-
tenuated in avoiding endosomal fusion, and their LCVs acquire
the endosomal marker Rab5 more frequently than LCVs con-
taining the parental strain producing VipD (14). Thus, by cou-
pling PLA1 activity to Rab5 binding, the catalytic activity of VipD
is directed specifically against the endosomal compartment with-
out visibly affecting neighboring cell organelles.
VipD was originally identified in a screen for L. pneumophila

effectors that interfere with the vacuolar sorting pathway in yeast
(11). The N-terminal half of VipD possesses high homology to
patatin, a lipid acyl hydrolase present in the potato tuber (12,
13). Analogous to other patatin-like proteins, VipD harbors
a conserved serine lipase motif Gly-x-Ser-x-Gly (x = any amino
acid) as part of a Ser-Asp catalytic dyad that, together with two
consecutive glycine residues (Asp-Gly-Gly motif), is expected to
stabilize the oxyanion intermediate during the acyl chain cleav-
age (13). Mutation of these conserved catalytic residues in VipD
results in loss of PLA1 activity (14), confirming their role in
substrate hydrolysis.
The recently reported crystal structure of VipD confirmed the

predicted bimodular organization (13) and, in addition, revealed
a surface loop, called “lid” in other phospholipases, that shields
the entry to the catalytic site. The inhibitory lid may explain why
purified recombinant VipD alone exhibits little or no PLA1 activity
in vitro. However, given that binding of Rab5 or Rab22 to VipD
activates the PLA1 activity within the N-terminal region (14), we
wondered if and how this binding event causes the inhibitory lid to
be removed to render the active site substrate accessible.
Using an integrative approach involving X-ray crystallography,

molecular dynamics, biochemistry, and cellular imaging, we now
deciphered at a molecular level the mechanism that stimulates
the intrinsic PLA1 activity of VipD and determined the underlying
specificity for the VipD–Rab5 interaction and endosomal targeting.

Results
Overall Structure of the VipD–Rab5 Complex. To determine the
molecular basis underlying VipD binding and activation by Rab5,
we initiated a crystallographic analysis of this complex. For that,
we used a truncated form (residues 18–182) of constitutively
active Rab5c(Q80L) lacking the N- and C-terminal hypervariable
regions, and a VipD fragment [amino acid (aa) 19–564; VipD19–564]
that was designed based on a previously solved structure of
full-length VipDFL–Rab5c18–182 at lower resolution in which
the terminal residues (1–18 and 565–621) of VipD were not struc-
tured. We obtained well-diffracting crystals of VipD19–564
in complex with Rab5c18–182(Q80L) bound to nonhydrolyzable
guanosine 5′-[β,γ-imido]triphosphate (GppNHp) and solved the
structure by molecular replacement (Fig. 1). Only the last seven
C-terminal residues of VipD19–564 and a connecting loop formed
by residues 345–354 could not be modeled because of poor
electron density in these regions. The final model for the
VipD19–564-Rab5c18–182(Q80L)-GppNHp structure was refined
at 3.1 Å, with values for Rfactor and Rfree of 0.23 and 0.28, re-
spectively (Table 1 and Fig. S1A).

The crystallographic asymmetric unit contained four
VipD19–564–Rab5c18–182(Q80L) heterodimers with almost iden-
tical interaction modes (Fig. S1B). Superposition of the atomic
coordinates showed a root mean square deviation (RMSD) of

Fig. 1. The sites for substrate catalysis and Rab5 binding are situated at
opposite ends of VipD. Two orthogonal tube drawing representations of the
crystal structure of VipD19–564 (slate) in complex with GppNHp-Rab5c18–182
(pink). (A) Side view. (B) Top view. VipD comprises two distinguishable but
interconnected domains highlighted by gray elliptical shadows. The N-ter-
minal half of VipD comprises a patatin-like phospholipase domain, whereas
the C-terminal domain interacts with Rab5c. Note that the catalytic site and
the Rab5 binding interface are located at opposite ends of VipD.

Table 1. Data collection and refinement statistics for the
VipD19–564–Rab5c18–182(Q80L):GppNHp complex

VipD19–564–Rab5c18–182(Q80L)

Data collection
Space group P1
Cell dimensions

a, b, c (Å) 94.3, 98.0, 109.9
α, β, γ (°) 76.6, 80.8, 78.9
Resolution (Å) 30–3.07 (3.26–3.07)*

Rmeas 0.07 (0.74)
I/σ 17.0 (2.1)
Completeness (%) 97.4 (92.6)
Redundancy 3.5 (3.6)

Refinement
Resolution (Å) 3.07
No. reflections 67,479
Rwork/Rfree 0.23/0.28
No. atoms

Protein 21,659
Ligand/ion 132

B-factors
Protein 54
Ligand/ion 74

RMSDs
Bond lengths (Å) 0.002
Bond angles (°) 0.631

*Highest resolution shell is shown in parentheses.
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0.65–0.69 Å among the four VipD19–564–Rab5c18–182(Q80L)
complexes. Rab5c18–182(Q80L) was in its active conformation and
bound to one molecule of GppNHp and one Mg2+ ion (Fig. 1). It
adopted the classical GTPase fold consisting of a central six-
stranded β-sheet surrounded by five α-helices (18). The structure
of VipD19–564 exhibited two discernible but interconnected domains.
Rab5c18–182(Q80L) interacted extensively with a helical hairpin
situated at the C-terminal domain of VipD19–564, and, thus, at
the distal end relative to the N-terminal catalytic site (Fig. 1). It
is worth noting that, although the structure of active Rab5c18–
182(Q80L) remained essentially unaltered, VipD19–564 exhibited
several dramatic conformational rearrangements compared with
the uncomplexed crystallographic model (13), as discussed next.

Rab5 Binding to VipD Induces Conformational Changes That Expose
the Active Site.On Rab5, binding the largest RMSD in VipD19–564
occurred in its C-terminal domain and in the structural elements
that connect it to the N-terminal phospholipase domain
(Fig. 2A). Residue Phe442 located in helix α17 of the C-terminal
domain of VipD19–564 undergoes a 90° rotation and enters a hy-
drophobic pocket in Rab5c18–182(Q80L) formed by Arg82,
Tyr83, and Leu86 (Fig. 2B). This rotation pulls the adjacent
α16-α17 loop of VipD19–564 toward Rab5c18–182(Q80L), thereby
facilitating the hydrophobic interaction of Ile433 of VipD19–564
with Ile54 in the switch I region of Rab5c18–182(Q80L) (Fig. 2B).
The displacement of loop α16–α17 in VipD19–564 induces a par-
tial reorientation of the adjacent β-sheet formed by β1, β2, and
β11, together with small shifts in helices of the C-terminal do-
main of VipD19–564. These cumulative movements cause helices
α13 and α14 of VipD19–564 to swing out 14.5° and 6.6°, re-
spectively, which is coupled with a coil-helix transition of the
β9-α13 loop to adjoin helix α13 (Fig. 2A). This hinge motion of
helices α13 and α14 (“chop-stick” mechanism) facilitates an

outward displacement of the adjacent β10–α14 loop (sub-
sequently named lid), resulting in the eventual opening of the
active site (Fig. 2 C–E). Notably, there were no mayor crystal-
lographic contacts in the areas corresponding to α13, α14, and the
lid, making the displacement of the lid due to the proximity of
neighboring protein molecules within the crystal lattice unlikely
(Fig. S1C). The exposed cleft, with its catalytic residues and the
oxyanion hole situated at one end, measures 16–18 Å in length and
thus has the potential to accommodate a C16–C18 acyl chain from
a lipid substrate within the adjacent hydrophobic ridge (Fig. 2E and
Fig. S1D). Together, these findings provide evidence for an un-
precedented heterotropic allosteric activation mechanism in which
locally induced structural changes through Rab5c18–182(Q80L)
binding are transmitted from the C-terminal domain of VipD19–564
to the N-terminal phospholipase domain, causing the displacement
of the lid and exposure of the active site.

VipD–Rab5 Interface. Our complex structure revealed a single in-
teraction path between VipD19–564 and Rab5c18–182(Q80L) that
occluded ∼722 Å2 of solvent-accessible surfaces. Although
Rab5c18–182(Q80L) interacted with residues in the α16–α17 loop
of VipD19–564 and residues in an helical hairpin formed by he-
lices α17 and α18 (Fig. 3A), the VipD binding surface in
Rab5c18–182(Q80L) included parts of the segment between α1
and β2 (the switch I region), the strands β2 and β3 (the inter-
switch region), and the β3–α2 segment (the switch II region)
(Fig. 3A). The interface was composed of a core of hydrophobic
contacts complemented by several polar interactions in the sur-
rounding rim area (Fig. 3B). Specifically, the VipD binding
epitope in Rab5c18–182(Q80L) included nonpolar residues in the
switch I (Ile54, Gly55, Ala56, and Phe58), the interswitch
(Trp75), and the switch II element (Tyr83, Leu86, Met89, and
Tyr90), as well as polar/charged residues in the interswitch

Fig. 2. Allosteric activation of VipD through Rab5 binding. (A) Structural changes in VipD on Rab5 binding. Rab5c18–182 (colored in pink) is complexed to
VipD19–564, which is colored from slate to red based on the root mean square deviation (RMSD) of C-α atom pairs when superimposed with the unbound form
of VipD19–564 (PDB ID code 4AKF) shown in transparent gray. The black line represents the membrane plane. (B) Close-up of VipD–Rab5 interaction. The α17-α18
loop of VipD undergoes a Rab5-induced conformational rearrangement resulting in residue Phe442 of VipD being inserted into a hydrophobic pocket formed by
Arg82, Tyr83, and Leu86 of Rab5. The displacement of the α16–17 loop favors the hydrophobic interaction between Leu432 and Ile433 of VipD with Ile54 of Rab5.
Color code as in A. The remaining VipD structure has been omitted for clarity. (C) Close-up view of the catalytic site highlighting displacement of the lid (β10-α14
loop, light blue). (D and E) Surface representation of the unbound (D) and Rab5-bound (E) VipD molecule, respectively. Same view as in C.
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(Thr60, Lys71, and Glu73) and switch II element (Arg82 and
Arg92) (Fig. 3 A and B). A comparison of the primary sequence
of human Rab5 and Rab22 with Rab5 from several natural
amoebean hosts found conserved residues at equivalent contact
sites in the switch I (Ile54, Gly55, and Ala56), interswitch
(Lys71), and switch II region (Arg82, Leu86, and Met89) that
were variable in other Rab proteins (Fig. 3C), suggesting these
residues are involved in the specific recognition by VipD. The
corresponding epitope in VipD included several hydrophobic
residues in helix α17 (Phe442, Ala446, Ala450, and Leu454) and
in helix α18 (Tyr473, Ile480, and Val483) that wrapped around
an elongated hydrophobic path in Rab5 formed by the conserved
triad (Phe58, Trp75, and Tyr90) and Leu86. Surrounding this
hydrophobic core were additional hydrogen bonds that enhanced
the interaction.
Like all GTPases, Rab5 exhibits structural changes within its

switch regions dependent on its nucleotide-binding state (GDP
vs. GTP), with the largest conformational variation in switch I
(19). The structure of the VipD19–564–Rab5c18–182(Q80L) com-
plex revealed that Leu432 and Ile433 of VipD19–564 interacted

with Ile54 in switch I of Rab5c18–182(Q80L), therefore sensing its
GTP-bound state (Fig. 2B). In fact, the conformation adopted by
Rab5 in its GDP-bound state (19) resulted in a prominent steric
clash between the switch I region and helix α17 of VipD19–564
(Fig. S1E), thus explaining why this activation state of Rab5 is
only a poor ligand for VipD (13, 14).

Validation of the VipD–Rab5 Interface Through Mutational Analysis.
To experimentally validate the VipD–Rab5 binding interface
seen in the crystal structure, we mutated several residues pre-
dicted to contribute to this protein–protein interaction and ex-
amined their role for complex formation in coprecipitation
studies (Fig. 4A). Substitution of individual contact residues
within VipD abrogated Rab5 binding either severely (F442A and
H453D) or moderately (Q449A, E461R, Y473A, and D479H),
whereas only a few of the tested substitutions in VipD were
tolerated (Q476A and D484H). Similar results were observed for
Rab5 interface mutants (Fig. 4B), with binding defects ranging
from severe (F58A, Y83A, and R92E) to mild (E73R and
Y90A). We also studied the mode of interaction between VipD

Fig. 3. Molecular interactions at the VipD–Rab5c interface. (A) (Left) Semitransparent surface of GppNHp-Rab5c18–182 in complex with the minimal Rab
binding domain of VipD (slate ribbon model) highlighting the interfacial residues below 4.0-Å distance. (Right) Schematic diagram of interfacial residues in
the VipD–Rab5c complex. (B) Detailed description of per-residue contribution from van der Waals (vdW) energy (blue), nonpolar solvation energy (purple),
and the sum of electrostatic and polar solvation energy (orange) calculated by computational alanine scanning for interfacial residues in the VipD–Rab5c
complex. Existing glycines and alanines are excluded in the calculation. (C) Sequence conservation between Rab5 GTPases from amoebean species and human
homologs. Dd, Dictyostelium discoideum; Df, Dictyostelium fasciculatum; Dp, Dictyostelium purpureum; Pp, Polysphondylium pallidum; Ac, Acanthamoeba
castellanii; Hs, Homo sapiens. Rab5c residues contacting VipD at a distance less than 4 Å are colored in light brown. Amino acid substitutions within the
equivalently aligned interfacial residues of other Rabs are highlighted in a red box. Interfacial residues strictly conserved between Rab5 and Rab22, but
variable in any of the other Rabs, are depicted in the bottom line of the alignment. Protein accession numbers are in brackets.
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and Rab22. As expected, substitution of individual contact resi-
dues of VipD required for Rab5c18–182(Q80L) binding (Fig. 4A)
also resulted in a failure to stably associate with Rab22(Q64L)
(Fig. 4C), suggesting that Rab22 occupies an epitope in VipD
very similar to that of Rab5. None of the amino acid sub-
stitutions significantly altered the overall structure of the mutant
proteins as evaluated by circular dichroism (CD) (Fig. S2), in-
dicating that a reduction in binding was most likely not a conse-
quence of protein misfolding.
Given that the PLA1 activity of VipD is triggered only in re-

sponse to Rab5 binding, we analyzed how amino acid substitutions
that attenuate VipD–Rab5 complex formation affect the PLA1
activity of VipD. Using a generic fluorogenic substrate (bis-BOD-
IPY FL C11-PC), we found a tight correlation between loss of PLA1
activity and the inability of VipD mutant proteins (F442A, H453D,
and D479H) to enter a stable complex with Rab5c18–182(Q80L) or
Rab2216–181(Q64L) (Fig. 4D). Similar results were observed for
Rab5c18–182(Q80L) mutant proteins (F58A, Y83A, and R92E) that
had failed to stably associate with VipD and were hence unable to
trigger its PLA1 activity (Fig. 4E). The observed crystallographic
interaction between VipD and Rab5 thus corresponded to their
molecular association in solution, and failure to form a stable
VipD–Rab5 or –Rab22 complex caused the PLA1 domain to re-
main in its catalytically inactive state.

Disruption of the Interaction with Rab5 Precludes Endosomal
Targeting of VipD. Within transiently transfected COS1 cells,
fluorescently tagged VipD was enriched on Rab5-containing
early endosomes, and this colocalization required the C-terminal
Rab5 binding domain but not the N-terminal PLA1 domain (13,
14). A recent study reported that depletion of Rab5 (isoforms
a-c) and Rab22a from HeLa cells by RNA interference (RNAi)
did not affect VipD targeting to endosomes, claiming that
endosomal localization of VipD would not simply depend on the
interaction with Rab proteins (20). Given that RNAi rarely
depletes the entire pool of a given cellular target and that VipD
recruitment to endosomes could have been mediated not only
by Rab5 and/or Rab22 but by additional yet unidentified Rab

GTPases, we set out to reevaluate VipD’s endosomal targeting
mechanism. For that, we analyzed the intracellular distribution
pattern of four VipD mutant proteins that were either severely
(F442A) or moderately (E461R and Q476A) attenuated for
Rab5c binding in vitro (Fig. 4). Although WT VipD displayed
robust colocalization with GFP-Rab5c18–182(Q80L)-positive
endosomes, VipD(F442A) was entirely cytosolic (Fig. 5), consis-
tent with this mutant’s inability to bind Rab5c. In contrast, VipD
(E461R) and VipD(Q476A) showed no apparent difference in
localization compared with WT VipD (Fig. 5). These findings
strongly suggest that endosomal targeting of VipD is in fact de-
pendent on the interaction with host cell Rab GTPases and that
interference with the formation of these protein complexes results
in the failure of VipD to properly localize to endosomes.

The N-Terminal Tail of VipD Is Crucial for PLA1 Activity. In the
uncomplexed structure of VipD, the N-terminal tail (residues
1–18; N18) contained a small amphipathic helix (H1) that was
involved in an intermolecular crystal contact (13). The structure
of full-length VipD1–621 bound to Rab5c18–182(Q80L), on the
other hand, contained no clear electron density for N18, sug-
gesting that this region of VipD possessed high flexibility. Small
angle X-ray scattering (SAXS) and gel filtration chromatography
analysis suggest a heterodimeric VipD1–621–Rab5c18–182(Q80L)
complex in solution, indicating that N18 was not involved in any
oligomer formation (Fig. 6 A and B and Fig. S3). Given that the
complexes of Rab5c18–182(Q80L) with either full-length VipD1–621
or truncated VipD19–564 exhibited nearly indistinguishable struc-
tures, we concluded that N18 was dispensable for the conforma-
tional changes induced by Rab5 binding. Consequently, we
evaluated whether this short region was also dispensable for PLA1
activity of VipD. Unexpectedly, we found that, unlike VipD1–621,
the truncated fragment VipD19–564 lacking N18 was strongly at-
tenuated for PLA1 activity (Fig. 5C). To exclude the possibility
that loss of PLA1 activity in VipD19–564 was caused by the lack of
the C-terminal region (aa 565–621), we tested two additional
constructs, VipD1–564 and VipD19–621, and detected robust PLA1
activity only in VipD1–564, indicating that N18 but not the

Fig. 4. Mutational analysis of interfacial recognition determinants. (A–C) Pulldown assays using the indicated VipD (A and C) or Rab5 (B) mutant proteins. The
graphs are a densitometry-based quantification of the amount of query protein precipitated by the respective bait-coated beads. Input, total amount of query. (D
and E) Fluorescence-based PLA activity assays using VipD (D) or Rab5c (E) variants. (D) The indicated VipD protein was incubatedwith Rab5(Q80L)18–182:GppNHp or
Rab22(Q64L)16–181:GppNHp (molar ratio 1:2) or with buffer alone, and PLA1-dependent cleavage of the substrate Bis-BODIPYFL C11-PC was detected as an increase
in fluorescence emission [relative fluorescence units (RFUs)]. (E) Same assay as in D using the indicated Rab protein variants.
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C-terminal region critically contributed to the catalytic activity of
this L. pneumophila effector (Fig. 5C). According to these ob-
servations, we propose that the flexible N18 with its amphipathic
helix H1 and its close distance to the membrane plane may pro-
mote peripheral association of VipD with the lipid bilayer, pos-
sibly by orienting the catalytic site toward the membrane and/or
assisting in substrate transfer.

Competitive Rab5 Binding Through Interface Expansion. To localize
to and stably associate with endosomal membranes, VipD needs to
outcompete cellular ligands for Rab5 binding. EEA1, Rabaptin-5,
and Rabenosyn-5 are each bound by Rab5 through a surface that

includes the switch and interswitch region and that significantly
overlaps with the epitope for VipD binding (19, 21, 22). To
determine if and how the distribution of interaction energies differs
within each of these complexes, we extended the computational
alanine scan to the EEA1, Rabaptin-5, and Rabenosyn-5 epitopes
and calculated the free binding energy for each of their residues
(Fig. 7A and Figs. S4 and S5). All four analyzed protein interfaces
share a number of nonpolar interacting residues in Rab5, namely
the conserved triad (Phe58, Trp75, and Tyr90), with relatively
similar energetic contributions to binding (Fig. 7A and Fig. S5B).
The polar interactions surrounding this hydrophobic triad,
however, determine their differential affinity, with the contact of

Fig. 5. VipD localization to endosomes requires a functional Rab5 binding interface. Transiently transfected COS-1 cells producing Rab5a(Q79L) and the
indicated mCherry-tagged VipD variants were analyzed by fluorescence microscopy to determine protein localization. The merged images (bottom row) show
Rab5a(Q79L) in green and VipD variants in red. (Insets) Magnified view of endosomes marked by an arrowhead. Control, mCherry. (Scale bar, 2 μm.)

Fig. 6. The N-terminal 18 residues of VipD are essential for its PLA activity. (A) Fit of the optimized crystallographic VipD1–564-Rab5c18–182(Q80L) model (red
line) to the experimental SAXS data of the complex (blue dots). (B) Fitting of the VipD19–564-Rab5c18–182(Q80L) crystallographic model (VipD in slate and Rab5
in pink) into the averaged ab initio envelope in two orthogonal views and superimposed with the unbound form of VipD (PDB 4AKF) in gray. Note the
proximity of the N18 (residues 1–18 of VipD, PDB 4AKF) in red to the catalytic site. (C) Fluorescence-based PLA activity assays showing that the N18 segment of
VipD is essential for its PLA1 activity.
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Arg92Rab5 with Asp479VipD and Asp484VipD providing a particu-
larly large energetic contribution to the interaction of VipD with
Rab5 compared with the other cellular ligands (Fig. 7A and Fig.
S5B). To verify the importance of this predicted hot-spot for VipD
binding, we analyzed the affinities of either Rab5c18–182(Q80L) or
Rab5c18–182(Q80L, R92A) toward VipD by surface plasmon res-
onance (SPR) spectroscopy. R92A mutation in Rab5 severely
decreases the binding for VipD 124-fold while affecting the in-
teraction with EEA1, Rabenosyn-5, and Rabaptin-5 to a much
lesser extent (3.2-, 1.7- and 1.0-fold, respectively) (Fig. 7 B and C
and Fig. S6). These findings pinpoint a binding hotspot for the
superior affinity of VipD over the endogenous Rab5 ligands and
confirm a good qualitative correlation between the computational
analysis and the experimentally observed results.

Discussion
VipD from L. pneumophila has long been predicted to function
as a phospholipase during infection (11, 12), yet its catalytic
activity had only recently been confirmed when it was shown that
binding of host cell Rab GTPases (Rab5 and Rab22) is necessary
for VipD to exhibit robust PLA1 activity (14). The crystallo-
graphic analysis described here provides an in-depth view of the
Rab5-mediated activation mechanism. Above all, it uncovered
a complex cascade of structural rearrangements within the
C-terminal domain of VipD that result in the relocation of an
active site-occluding lid and the exposure of the substrate bind-
ing pocket within the N-terminal PLA1 domain of VipD.

The structure of VipD in complex with Rab5c(Q80L) pre-
sented here is, to our knowledge, the first of a bacterial phos-
pholipase bound to a host cell protein and the first of any
translocated effector in complex with its allosteric activator
molecule. Phospholipases constitute a common cellular tool to
alter the lipid composition of membranes, and their activity must
be carefully dosed and precisely directed toward the respective
target membrane. There are more than 10,000 proteins (8,101 in
Bacteria and 2,374 in Eukaryotes) containing potential patatin-
like domains, most of them within a modular domain arrange-
ment (23). Many members of the family of cytosolic phospholi-
pases A2 (cPLA2), all of which share a patatin-like fold, contain
a C2 domain crucial for membrane localization (24, 25). The
patatin-like fold is also highly homologous to the group of cal-
cium-independent phospholipases A2 (iPLA2), in which many
members contain ankyrin repeats, a repetitive helix-turn-helix-
loop structure considered to be a common platform for protein–
protein interactions (24). Considering that Rab GTPases are key
players in defining membrane identity and that many effectors
from L. pneumophila have been acquired via horizontal gene
transfer (26, 27), it is plausible that the scheme presented here for
the concomitant localization and activation of VipD can be gen-
eralized across other microbial and eukaryotic phospholipases.
Human Rab5 interacted with VipD through a helix-turn-helix

element that was similar to that used for Rabenosyn-5 binding
(21), although the interface was slightly shifted toward the switch II
region. Despite the observed overlapping contacts, the energy for

Fig. 7. Energy distribution between different effector binding epitopes in Rab5. (A) Space-filling model of Rab5c highlighting the epitopes for the interaction
with VipD (Far Left), EEA1 C2H2 Zinc Finger (PDB ID code 3MJH) (Center Left), Rabenosyn-5 (rebuilt from PDB ID code 1Z0J) (Center Right), and Rabaptin-5 (PDB
ID code 1TU3) (Far Right). Epitopes are colored as an intensity gradient according to the binding free energy change (ΔΔG) estimated as the difference between
the binding ΔG of the WT and that of the alanine mutated complex. Existing glycines and alanines are excluded in the calculation. (B) Concentration de-
pendence of the equilibrium surface plasmon resonance response for the binding of VipD WT, EEA1 C2H2 Zinc Finger (aa 36–91), Rabenosyn-5 (aa 1–70), and
Rabaptin-5 (aa 739–862) to Rab5c18–182(Q80L) or Rab5c18–182(Q80L, R92A). Req represents the equilibrium SPR response normalized to the fitted maximum value
for each dataset. (C) Table of the mean Kd values and SDs for at least two independent experiments showing the Kd ratio variation.
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VipD binding was not distributed uniformly across the interface but
instead concentrated into a combination of hotspots that provide
superior binding affinity and specificity (Fig. 7 and Fig. S6). A
conserved hydrophobic triad in Rab5 (Phe58, Trp75, and Tyr90)
supplied the core binding energy that was complemented by more
specific polar and nonpolar contacts. Notably, most of these resi-
dues were highly conserved among Rab5 homologs from amoe-
bean species, the natural host of L. pneumophila, or from the
surrogate host Dictyostelium sp. (Fig. 3C). The ability to discrimi-
nate between GDP- and GTP-bound Rab5 and to compete with
endogenous ligands evidences a remarkable adaptation for direct-
ing and retaining VipD on endosomal membranes. Interference
with VipD–Rab5 complex formation, for example, by substituting
Phe442 or His453 of VipD, strongly reduced the capability of these
mutant proteins to interact with Rab5 (Fig. 4A), to exhibit PLA1
activity (Fig. 4D), and to efficiently localize to the endosomal
compartment (Fig. 5), thus demonstrating that the function of
VipD is intimately coupled to the presence of this host GTPase.
A hallmark feature of many phospholipases is to be minimally

active on monomeric lipid substrates but undergo a substantial
activation on binding to the surface of phospholipid membranes
or micelles, a phenomenon known as interfacial activation (28–
31). This behavior has been attributed to a flexible lid that at the
lipid–water interface facilitates substrate diffusion to the cata-
lytic site rather than being allosterically modulated through
distant ligand binding (25). VipD does not display any interfacial
activation despite having a short lid occluding the access to the
catalytic site. Rather, when VipD is bound to Rab5, the lid is
displaced through a chopstick-like activation mechanism in
which the swing movement of two α-helices (α13 and α14) al-
losterically controls accessibility of the catalytic site. We cannot
exclude the possibility that additional mechanisms contribute to
the activity and/or specificity of the substrate catalysis by VipD.
For example, the coil–helix transition of the β9–α13 loop to
adjoin helix α13 relocates several charged residues closer to the
catalytic groove, which might result in interactions with lipid
head groups or other membrane components. Consistent with
this notion, we discovered that the flexible N-terminal segment
N18 of VipD is critical for the catalysis of a generic membrane-
embedded substrate (Fig. 6). Deletion of N18 reduced the PLA1
activity of VipD19–564 but did not interfere with allosteric acti-
vation of the catalytic site. We hypothesize that N18 bearing
a short amphipathic α-helix may facilitate the correct positioning
of the PLA1 domain toward the lipid layer, promote substrate
diffusion from the lipid–water interface into the catalytic site, or
a combination of both effects as has been previously described
for secretory PLA2 enzymes (32, 33). Interestingly, the N-ter-
minal tail of VpdA (residues 11–54) and the N-terminal segment
of P. aeruginosa ExoU (residues 57–96) showed structural simi-
larity to the equivalent region of VipD despite lacking sequence
homology (Fig. S7). Moreover, region 57–96 of ExoU, although
not part of the phospholipase domain (34), was critical for cyto-
toxicity within transfected mammalian cells (35), suggesting that
this segment contributes to the phospholipase activity of ExoU.
We hypothesize that the equivalent region in VpdA may be
equally important for the catalytic activity of this L. pneumophila
effector and that appendixes, such as the N-terminal domains, may
play important yet unresolved roles in membrane association and/
or substrate transfer in other bacterial phospholipases.
In summary, our findings disclose an unexpected mode of

long-range allosteric regulation of the PLA1 activity of VipD and
explain how endosomal targeting is accomplished through com-
petitive Rab5 binding. Our study also provides the basis for the
development of novel therapeutic approaches that, rather than
directly targeting the enzyme’s active site, specifically disturb the
host factor-mediated activation process of VipD and related
microbial phospholipases.

Materials and Methods
Plasmids and Cloning. The DNA sequences encoding VipD, VipD19–564, VipD1–564,
VipD19–621, Rab5c18–182(Q80L), Rab22a16–181(Q64L), EEA136–91, and Rabeno-
syn51–70 were cloned into the vector pGST-Parallel2 (36) using BamHI and XhoI
restriction sites. Rabaptin5739–862 and Rab7a(Q67L) were cloned between the
NcoI and XhoI restriction sites of pGST-Parallel2. PCR was performed using
Phusion polymerase (Thermo). The PCR product was purified with QIAquick
Gel Extraction Kit (NewEngland) and ligated into the digested pGST-Parallel2
vector using Quickligase (BioLab). The ligation mixture was used to transform
Escherichia coli XL1 Blue competent cells, and transformants were then se-
lected on Luria-Bertani (LB) plates containing 100 μg/mL ampicillin. The
presence of the insert in the plasmid was tested by colony PCR. Quickchange
mutagenesis was used to make directed mutations. The correct transformants
were grown to isolate the plasmids that were sequenced on both strands.
Plasmids and oligonucleotides used in this study are listed in Tables S1 and
S2, respectively.

Protein Expression and Purification. VipD was purified from E. coli BL21 (DE3)
grown in LB medium and induced at an OD600 = 0.8 by the addition of
0.5 mM isopropyl β-D-1-thiogalactopyranoside. Cells were harvested after
16 h of growth at 18 °C. The cell pellet was resuspended in buffer A (50 mM
Tris·HCl, pH 8.0, 300 mM NaCl, and 1 mM DTT) supplemented with 0.1 mM
phenylmethylsulfonyl fluoride, 1 mM benzamidine, and 1 mg/mL lysozyme
and disrupted by sonication, and the lysate was cleared by centrifugation at
50,000 × g for 45 min. The supernatant was incubated for 2 h in batch with
glutathione Sepharose beads (GE Healthcare) followed by extensive washing
of the beads with buffer A in a gravity column. The N-terminal glutathione
S-transferase (GST)-tag and linker were proteolytically removed by over-
night incubation at 4 °C in the presence of tobacco etch virus (TEV) protease
in 50 mM Tris·HCl, pH 8.0, 150 mM NaCl, and 1 mM DTT. The cleaved protein
was eluted and further purified by ion exchange chromatography (HitrapQ;
GE Healthcare) using a gradient of 50–1,000 mM NaCl, followed by size
exclusion chromatography (Superdex200 16/60; GE Healthcare) in buffer B
[25 mM Tris·HCl, pH 7.5, 150 mM NaCl, 5% (vol/vol) glycerol, and 1 mM DTT].
VipD mutants and truncated constructs were purified following the same
procedure. The concentration of these proteins was calculated using the
theoretical extinction coefficient.

Rab5c18–182(Q80L) was purified as described for VipD, with the difference
that the HitrapQ column gradient was 25–1,000 mM, and the size exclusion
chromatography was performed in a Superdex75 16/60 (GE Healthcare). Nu-
cleotide exchange was achieved by incubation of the purified protein with
a 20-fold excess of GppNHp in 50 mM Tris, pH 7.5, 150 mM NaCl, and 5 mM
EDTA for 12 h at 4 °C. The exchange reaction was stopped by addition of
MgCl2 (10 mM final concentration). Excess nucleotide was removed by gel
filtration using a Superdex75 16/60 column in buffer C [25 mM Tris·HCl,
pH 7.5, 150 mM NaCl, 5% (vol/vol) glycerol, 1 mM MgCl2, and 1 mM DTT].
Rab5c18–182, Rab5c18–182(Q80L) mutants, Rab22a16–181(Q64L), and Rab7a(Q67L)
were purified as previously described. The concentration of the Rab proteins
was determined by using Bradford’s procedure with BSA as standard.

For complex formation, VipD was incubated with GppNHp-bound
Rab5c18–182(Q80L) in a 1:3 molar ratio for 2 h at 4 °C. The complex was further
purified using a Superdex200 16/60 column equilibrated in buffer C and
concentrated to 50mg/mL using Amicon centrifugal concentrators (Millipore).

GST, GST-VipD, GST-Rabenosyn51–70, GST-EEA136–91, and GST-Rabap-
tin5739–862 were purified with the same protocol as described for VipD with
the only difference that no TEV protease cleavage was performed during
the purification.

Crystallization and Structure Determination. Crystals were obtained by
hanging-drop vapor diffusion at 18 °C by mixing 1 μL purified VipD19–564–

Rab5c18–182(Q80L):GppNHp complex (50 mg/mL) and 1 μL precipitant solu-
tion (16% PEG6000, 0.1 M Tris·HCl, pH 8.0, and 0.2 M LiCl). Rod-shaped
crystals grew within 2–3 d. Individual crystals were cryo-protected by a brief
soak in well buffer supplemented with 25% (vol/vol) ethylene glycol and
flash frozen in liquid nitrogen.

Diffraction datawere collected at 100 K using radiationwith a wavelength of
0.976 Å on beamline I04 at the Diamond Light Source (Didcot, UK). The data
were integrated and scaled using XDS (37). The structure was solved by mo-
lecular replacement using the coordinates of VipD [Protein Data Bank (PDB) ID
code 4AKF) and Rab5c (PDB ID code 1Z07) as a search model in Phaser (38).
Subsequent rounds of refinement and interactive manual building were per-
formed using Phenix (39) and Coot (40). For cross-validation, 5% of the original
reflections was omitted from refinement and used to calculate the free R factor.
The final model contained four complexes of VipD–Rab5c(Q80L). Only 10 resi-
dues (345–354) located in a connecting loop could not be modeled because of
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poor electron density in this region. Crystallographic data collection and model
statistics are summarized in Table 1. The Ramachandran plot of the model
calculated with the Rampage evaluation tool (41) shows 96.0% of the residues
in the favored regions, whereas 3.9% fall in the allowed regions and 0.1% in
disallowed regions. Graphics presented in this manuscript were generated using
the program PyMOL (The PyMOL Molecular Graphics System; Schrödinger).

Pulldown Assays. In vitro pulldown assays involving VipD–Rab5 interface
mutants included GST-VipD, GST-Rab5c18–182(Q80L), VipD point mutants,
and Rab5c18–182(Q80L) point mutants. The pulldown between VipD and
Rab22 proteins included Rab22a16–181(Q64L) and VipD point mutants. No
TEV protease cleavage was performed during the purification of GST-VipD,
GST-Rab5c18–182(Q80L), or GST-Rab22a16–181(Q64L). For pulldowns involving
VipD point mutants and GST-Rab5c18–182(Q80L), 13 μM VipD (WT or mutants)
was mixed with 10 μM of GST-Rab5c18–182(Q80L) in binding buffer (50 mM
Tris·HCl, pH 7.5, 150 mM NaCl, 1 mM MgCl2, and 1 mM DTT). Then 10 μL of
equilibrated glutathione Sepharose beads were added to 70 μL of the pro-
tein mixture and incubated for 2 h at 4 °C with gentle agitation. Beads were
washed several times with 0.5 mL of binding buffer and resuspended in
sample buffer. The samples were subjected to 4–12% SDS/PAGE analysis, and
gels were stained with Coomassie brilliant blue. The pulldown experiment
between GST-Rab22a16–181(Q64L) and VipD point mutants was performed in
a like manner. The binding between GST-VipD and Rab5c18–182(Q80L)
point mutants was analyzed similarly using 20 μM GST-VipD and 30 μM
Rab5c18–182(Q80L) (WT or mutants) in each individual reaction. Each pull-
down was performed in triplicate with similar outcomes.

Phospholipase Assays. The phospholipase activity of VipD and its mutants was
assayed using bis-BODIPY FL C11-PC (Invitrogen), a glycerophosphocholine
with BODIPY FL dye-labeled sn-1 and sn-2 acyl chains, respectively. This
fluoregenic substrate is selfquenched and release of the fluorophores by acyl
chain cleavage by either PLA1 or PLA2 results in increased fluorescence.
To prepare fluorescence-labeled liposomes, we mixed 30 μL 10 mM di-
oleoylphosphatidylcholine (DOPC), 30 μL 10 mM dieloylphosphatidylglycerol
(DOPG), and 30 μL of 1 mM bis-BODIPY FL C11-PC. All these compounds were
dissolved in ethanol. The substrate was incorporated into liposomes by a
slow injection of this ethanolic lipid mix into 5 mL assay buffer (50 mM Tris,
pH 7.5, 150 mM NaCl, and 1 mM MgCl2) under continuous stirring. The
mixture was pipetted into the side of the vortex using a narrow orifice gel-
loading tip. Fifty microliters of each substrate solution was incubated with
50 μL bis-BODIPY FL C11-PC–labeled liposomes in 96-well plates for 2 h at
25 °C. The reaction mixtures contained VipD 2.5 μM and Rab 5 μM or the
corresponding mutants in assay buffer. The fluorescence intensity was
measured at 485-nm excitation and 530-nm emission in a multiwell reader
(Biotek Synergy HT-1). All of the measurements were performed in triplicate.
The assay buffer in the absence of enzyme was used as a blank.

ImmunofluorescenceMicroscopy. VipD localization was analyzed in COS-1 cells
grown on coverslips in 24-well plates in 5% CO2 at 37 °C in DMEM media
supplemented with 10% FBS. Semiconfluent monolayers were transiently
transfected using Lipofectamine 2000 (Invitrogen) to produce fluorescently
tagged (mCherry or GFP) proteins. Cells were fixed 10 h after transfection,
and images were analyzed on a Zeiss Axio Observer.Z1 inverted light mi-
croscope using a Zeiss Plan-Apochromat 63×/ oil M27 objective and pro-
cessed with Zeiss AxioVision 4.7.2 software.

SAXS. Synchrotron SAXS data were collected on beamline BM29 at ESRF
(Grenoble, France) with a 2D detector (Pilatus 1M) over an angular range
qmin = 0.01 Å−1 to qmax = 0.5 Å−1. X-ray scattering patterns were recorded
with the VipD1–564–Rab5c18–182(Q80L) complex at 2.2 and 6.4 mg/mL in 150 mM
NaCl, 0.5 mM tris-(2-carboxyethyl)phosphine, and 25 mM Hepes, pH 7.5.

Data collection, processing, and initial analysis were performed using
beamline software BsxCuBE. Further analyses were performed with the ATSAS
suite. PRIMUS (42) was used for Rg determination with the Guinier method,
and maximum distance (Dmax) was evaluated using GNOM (43), which was also
used to calculate the distance distribution functions. Fitting of the model of
the VipD–Rab5c structure to the SAXS data was calculated with CRYSOL (44)
with a χ2 against raw data of 2.12 and 3.2 for samples at 2.2 and 6.4 mg/mL,
respectively. To generate an ab initio model of the VipD–Rab5c complex, 20
runs of GASBOR (45) were performed using the merge of the two datasets
(2 and 6.4 mg/mL) as raw data. Then, the most probable model was filtered
with DAMSEL (46), and a 720 bead model was produced. Superposition of the
bead model on the crystallographic VipD–Rab5c structure was carried out
using the program SUPCOMB13 (47). The resulting bead model was converted
to a mesh envelope and visualized using PYMOL (Schrödinger).

Molecular Dynamics Simulations. A total of four molecular dynamics (MD)
simulations were performed starting from the Rab5–VipD crystallographic
structure and from three different Rab5 complexes previously described
(Rab5–EEA1 C2H2 Zinc Finger, Rab5-Rabaptin5, and Rab5-Rabenosyn5). The
initial coordinates of Rab5–EEA1 C2H2 Zinc Finger (PDB ID code 3MJH) and
Rab5–Rabaptin5 (PDB ID code 1TU3) were taken from the Protein Data
Bank, whereas the Rab5–Rabenosyn5 complex was rebuilt using the
Rab22–Rabenosyn5 crystal structure (PDB ID code 1Z0J) as a template. In
Rab5–VipD, Rab5–Rabaptin5, and Rab5–Rabenosyn5 structures, GppNHp mole-
cules were replaced by GTP. In case of incomplete chains, acetyl and amide
capping groups were added to the N-term and C-term residues flanking the
mission regions to avoid improper charges on them. The protonation state of the
ionizable residues was estimated at pH 6.5 using the server H++ (http://
biophysics.cs.vt.edu/H++) (48–50). The parameter files for the GTP molecule and
Zn2+ ion were prepared with the AMBER (51) module ANTECHAMBER, and the
topology files for the protein complexes were generated using LEAP. Before
running the molecular dynamics simulations, a short minimization and a five-
step equilibration protocol were performed on the solvated structure, as pre-
viously described (52). On Rab5–VipD, Rab5–Rabaptin5, and Rab5–Rabenosyn5
complexes, unrestrained 10-ns MD simulations were performed in an isothermal-
isobaric ensemble, setting pressure to 1 atm and temperature to 300 K. In the
Rab5–EEA1 complex, 2.5-Å distance restraints between Zn2+ ion and each EEA1
zinc finger motif residue (Cys43, Cys46, His59, and His64) were applied during all
of the equilibration andMD simulation step, to keep the same coordination as in
the initial structure. The RMSD for the Cα atoms of each complex along the MD
trajectory were calculated with the ptraj AMBER12 tool (51).

Computational Alanine Scanning.We used the MMPBSA.py script in AMBER12
(51) to perform Computational Alanine Scanning calculations on 200 snap-
shots extracted from the last 2 ns of each complex MD trajectory (see above).
All of the interface residues (defined as those located within 4-Å distance
from the protein partner in the most representative structure along the last
2 ns of the trajectory) were mutated to alanine, and then the binding free
energy change (ΔΔG) was estimated as the difference between the binding
ΔG (MM-GBSA method) of the WT and that of the mutated complex. The
contribution of conformational entropy was not included here, given the
difficulty of computing it for a large protein– protein complex but that should
not significantly affect the comparison of mutant and WT free energies.

Surface Plasmon Resonance Measurements. The binding affinity of VipD,
Rabenosyn51–70, EEA136–91, and Rabaptin5739–862 for Rab5c(Q80L) or Rab5c(Q80L,
R92A) was calculated using SPR. SPR data were collected using a Biacore
3000 instrument (GE Healthcare) and a GST sensor chip. A research grade
CM5 chip was first conditioned with three 5-μL injections of 100 mM glycine-
NaOH, pH 12. Anti-GST antibody was covalently immobilized on the CM5
sensor chip injecting 45 μL at 30 μg/mL in 10 mM sodium acetate, pH 5.0,
using the amine coupling kit [1-ethyl-3-(3-dimethylaminopropyl)carbodii-
mide hydrochloride and N-hydrosuccinimide] supplied by GE Healthcare.
Nearly 30,000 resonance units (RUs) of the antibody were immobilized under
these conditions in each flow cell, where 1 RU corresponds to immobilized
protein concentration of ∼1 pg/mm2. The unreacted moieties on the surface
were blocked with ethanolamine. The immobilization procedure was done
at 5 μL/min with the running buffer containing 10 mM Hepes, pH 7.5,
150 mM NaCl, and 0.005% Tween20. Binding experiments were performed
with the same buffer supplemented with 2 mM MgCl2. All of the proteins
were dialyzed into this buffer. GST, GST-VipD, GST-Rabenosyn51–70, GST-
EEA136–91, and GST-Rabaptin5739–862 were captured on the sensor chip with
a 5-μL injection of 100 nM ligand at 5 μL/min on a reference and sample flow
cell. Rab5c(Q80L) and Rab5c(Q80L, R92A) incubated with GppNHp were
injected at different concentrations for a contact time of 2 min. Binding
experiments were carried out at a flow rate of 20 μL/min at 25 °C. The anti-
GST sensor chip was regenerated after each analyte injection with a 2-min
injection of 10 mM glycine-HCl, pH 2.1. This regeneration procedure did not
alter to any measurable extent the ability of the immobilized antibody to
bind protein in subsequent cycles. Analysis of the data was performed using
the BIAevaluation software supplied with the instrument. The steady-state
binding response was determined by averaging the response over 5 s at the
end of the injection and was corrected for background binding. The satu-
ration binding values were fitted according to a one-site binding model.
Each experiment was repeated in triplicate. Values of KD are reported as the
means of independent experiments with corresponding SDs.
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Fig. S1. (A) Electron density map (2Fo-Fc) calculated with phases derived from the final refined model and contoured at 1.5 sigma in the vicinity of the VipD-
Rab5c interface. (B) Packing of four VipD–Rab5 complexes that form an asymmetric unit. VipD is colored in blue/slate; Rab5 is in light and dark pink. (C)
Distribution of VipD surface areas with crystal lattice contacts below 4.5 Å (same orientation as in Fig. 2 C–E). Note that there are no mayor crystallographic
contacts in areas corresponding to α13, α14, and the lid except for two residues (Thr244 and His246) from a symmetrically related VipD molecule that are
partially inserted at the edge of the catalytic groove, most probably favored by the opening of the lid. The symmetrically related VipD molecule is omitted from
the figure for reasons of clarity. (D) Close up view of the catalytic domain of VipD in ribbon diagram showing the surface clipped at the catalytic cleft. The
surface is colored from white to green according to the Eisenberg hydrophobicity scale. (E) Superposition of the Rab5-GDP crystal structure [Protein Data Bank
(PDB) ID code 1TU4] on the VipD:Rab5–GTP complex, illustrating the steric collision that prevents Rab-GDP from binding to VipD. The remainder of the VipD
structure is omitted for clarity.
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Fig. S2. Circular dichroism spectra of the the indicated wildtype and mutant proteins of (A) VipD and (B) Rab5c used in this study.
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Fig. S3. Characterization of VipD–Rab5c complex in solution. (A) Analysis of the VipD1–621–Rab5c18–182 oligomeric state by gel filtration (Superdex 200 HR
10/30 column), leading to a Stokes radius estimation of ∼3.6 nm by comparison with the elution of model proteins (thyroglobulin, 8.5 nm; ferritin, 6.2 nm;
γ-globulin, 5.3 nm; catalase, 5.2 nm; aldolase, 4.7 nm; BSA monomer, 3.5 nm; myoglobin, 2.1 nm; vitamin B12, 2.7 nm; Inset). Gel filtration of VipD (70 μM),
Rab5c (140 μM), and VipD (70 μM) + Rab5c (140 μM). Note that the complex can be isolated using an excess of the Rab protein. (B) The guinier plot of the
VipD1–564–Rab5c18–182 complex data at 2.2 and 6.4 mg/mL indicates a gyration radius of ∼3.6 nm. (C) This value is confirmed by the distance distribution
function P(r), which suggests a bilobular structure with a radius of gyration of ∼36 Å and a maximum diameter of ∼120 Å fully compatible with the crys-
tallographic structure of the VipD–Rab5c complex (Inset).
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Fig. S4. (A) Plot of root mean square deviation (RMSD) relative to the coordinates of the initial (energy-minimized) structures during molecular dynamic
simulations. (B–D) Per-residue contribution from van der Waals (vdW) energy (blue), nonpolar solvation energy (purple), and the sum of electrostatic and polar
solvation energy (orange) calculated by computational alanine scanning for interfacial residues in the Rabenosyn5–Rab5c complex (B), EEA1–Rab5c complex
(C), and Rabaptin5–Rab5c (D). Existing glycines and alanines are excluded in the calculation.

Lucas et al. www.pnas.org/cgi/content/short/1405391111 4 of 9



 

 

Fig. S5. (A) Superposition of effector binding epitopes in tube representation over Rab5c in transparent gray surface. EEA1 C2H2 Zinc Finger (PDB ID code
3MJH) in purple, Rabenosyn-5 (rebuilt from PDB ID code 1Z0J) in green, Rabaptin-5 (PDB ID code 1TU3) in orange, and VipD in slate. (B) Comparison of the ΔΔG
values in the binding interface of Rab5c. Note that some residues at the preserved binding core show similar ΔΔG values, whereas other residues such as Arg92
constitute an effector-specific contact.
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Fig. S6. Surface plasmon resonance (SPR) sensograms for binding of (A) VipD WT, (B) EEA1 C2H2 Zinc Finger [amino acids (aa) 36–91], (C) Rabenosyn-5
(aa 1–70), and (D) Rabaptin-5 (aa 739–862) to Rab5c18–182(Q80L) (Left) or Rab5c18–182(Q80L, R92A) (Right).

Fig. S7. The N-terminal tail of VipD shows structural similarity to equivalent regions in VpdA and ExoU. (A) Representative diagrams of VipD, VpdA, and ExoU
highlighting the equivalent N-terminal tail. (B) PROMALS3D (PROfile Multiple Alignment with Predicted Local Structures and 3D Constraints) web server
alignment (http://prodata.swmed.edu/promals3d/promals3d.php) of VipD, VpdA, and ExoU N-terminal regions.
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Table S1. Plasmids used in this study

Plasmid Properties Reference

pGST-Parallel2-
VipD(19-564)

Expression construct for N-terminal glutathione S-transferase
(GST)-tagged L. pneumophila VipD domain covering residues
19–564 used for crystallization and PLA assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L)

Expression construct for N-terminal GST-tagged human Rab5c(Q80L)
domain covering residues 18–182 used for crystallization, PLA
assays and SPR assays

This study

pGST-Parallel2-
VipD

Expression construct for N-terminal GST-tagged L. pneumophila
VipD used for pull-down assays, PLA assays and SPR assays

This study

pGST-Parallel2-
VipD(1-564)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD domain covering residues 1–564 used for PLA assays

This study

pGST-Parallel2-
VipD(19-621)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD domain covering residues 19–621 used for PLA assays

This study

pGST-Parallel2-
VipD(S73A)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation S73A used for pull-down assays and
PLA assays

This study

pGST-Parallel2-
VipD(F442A)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation F442A used for pull-down assays and
PLA assays

This study

pGST-Parallel2-
VipD(Q449A)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation Q449A used for pull-down assays

This study

pGST-Parallel2-
VipD(H453D)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation H453D used for pull-down assays and
PLA assays

This study

pGST-Parallel2-
VipD(E461R)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation E461R used for pull-down assays

This study

pGST-Parallel2-
VipD(Y473A)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation Y473A used for pull-down assays

This study

pGST-Parallel2-
VipD(Q476A)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation Q476A used for pull-down assays

This study

pGST-Parallel2-
VipD(D479H)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation D479H used for pull-down assays and
PLA assays

This study

pGST-Parallel2-
VipD(D484H)

Expression construct for N-terminal GST-tagged L. pneumophila
VipD containing mutation D484H used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
used for PLA assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,F58A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and F58A used for pull-down assays and
PLA assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,E73R)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and E73R used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,W75A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and W75A used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L, R82A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and R82A used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,Y83A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and Y83A used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,M89A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and M89A used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,Y90A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and Y90A used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,R92E)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and R92E used for pull-down assays

This study

pGST-Parallel2-
Rab5c18–182
(Q80L,R92A)

Expression construct for N-terminal GST-tagged human Rab5c(18-182)
containing mutations Q80L and R92A used in SPR assays

This study
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Table S1. Cont.

Plasmid Properties Reference

pGST-Parallel2-
Rab22a16–181
(Q64L)

Expression construct for N-terminal GST-tagged human Rab22a(16-181)
containing mutation Q64L used in PLA and pull-down assays

This study

pGST-Parallel2-
Rab7a(Q67L)

Expression construct for N-terminal GST-tagged human Rab7a
containing mutation Q67L used in PLA assays

This study

pGST-Parallel2-
EEA136–91

Expression construct for N-terminal GST-tagged human Rabenosyn5
domain covering residues 36–91 used in SPR assays

This study

pGST-Parallel2-
Rabenosyn51–70

Expression construct for N-terminal GST-tagged human Rabenosyn5
domain covering residues 1–70 used in SPR assays

This study

pGST-Parallel2-
Rabaptin5739–862

Expression construct for N-terminal GST-tagged human Rabaptin5
domain covering residues 739–862 used in SPR assays

This study

pGST-Parallel2 Expression construct for GST used in SPR assays (1)
pmCherry-C1 Mammalian expression vector generating an mCherry fusion to

the N terminus of the protein of interest
Clontech (cat. 632524)

pmCherry-VipD Expression construct generating an mCherry fusion to the
N terminus of L. pneumophila full-length VipD

(2)

pmCherry-VipD(F442A) pmCherry-VipD containing mutation F442A in the
VipD-Rab5 interface

This study

pmCherry-VipD(H453D) pmCherry-VipD containing mutation H453D in the
VipD-Rab5 interface

This study

pmCherry-VipD(E461R) pmCherry-VipD containing mutation E461R in the
VipD-Rab5 interface

This study

pmCherry-VipD(Q476A) pmCherry-VipD containing mutation Q476A in the
VipD-Rab5 interface

This study

pEGFP-Rab5a(Q79L) Expression construct generating a GFP fusion to the N terminus of
human full-length Rab5a containing mutation Q79L generating
constitutively active Rab5a

(3)

1. Sheffield P, Garrard S, Derewenda Z (1999) Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr Purif 15(1):34–39.
2. Gaspar AH, Machner MP (2014) VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci USA 111(12):4560–4565.
3. Mattera R, Bonifacino JS (2008) Ubiquitin binding and conjugation regulate the recruitment of Rabex-5 to early endosomes. EMBO J 27(19):2484–2494.
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Table S2. Oligonucleotides used in this study

Sequence Plasmid Cloning

TTTTTGGATCCGAAATATCAAAGACTGAGGCAGGACAATATTCTG pGST-Parallel2-VipD(19-564) BamHI/XhoI
TTTTTCTCGAGTCACGGTTCAGGTTGAACTTCAACTTTAAAGTCTTG
TTTTTGGATCCAAGATCTGTCAATTTAAGCTGGTTCTGCTGGGGG pGST-Parallel2-Rab5c18–182(Q80L) BamHI/XhoI
TTTTTCTCGAGTCAAAGCTTCTTAGCTATTGCCATGAAGATTTCGTTCACG
TTTTTGGATCCATGAAACTTGCTGAAATTATGACAAAAAGCCGTAAATTAAAAAG pGST-Parallel2-VipD BamHI/XhoI
TTTTTCTCGAGTCAATGGCCGCCAAATGTGGTTGAAAGAC
AATCTGACCCATGTTAGCGGAGCAGCAGCCGGAGCAATGACGGCGAGTAT pGST-Parallel2-VipD(S73A) SD
ATACTCGCCGTCATTGCTCCGGCTGCTGCTCCGCTAACATGGGTCAGATT
GAGAAAGAGATTGCTGAGGCATCAGCGCATG pGST-Parallel2-VipD(F442A) SD
CATGCGCTGATGCCTCAGCAATCTCTTTCTC
GAGATTTTTGAGGCATCAGCGCATGCAGCAGCTATTTTGCATCTTCAAGAACAAATCG pGST-Parallel2-VipD(Q449A) SD
CGATTTGTTCTTGAAGATGCAAAATAGCTGCTGCATGCGCTGATGCCTCAAAAATCTC
GGCATCAGCGCATGCACAAGCTATTTTGGATCTTCAAGAACAAATCGTCAAAGAAATG pGST-Parallel2-VipD(H453D) SD
CATTTCTTTGACGATTTGTTCTTGAAGATCCAAAATAGCTTGTGCATGCGCTGATGCC
GCTATTTTGCATCTTCAAGAACAAATCGTCAAACGAATGAATGATGGTGATTACAGTAG pGST-Parallel2-VipD(E461R) SD
GCTACTGTAATCACCATCATTCATTCGTTTGACGATTTGTTCTTGAAGATGCAAAATAGC
GATGGTGATTACAGTAGCGTGCAAAATGCCTTAGATCAAATTGAAGACATTCTGACAG pGST-Parallel2-VipD(Y473A) SD
CTGTCAGAATGTCTTCAATTTGATCTAAGGCATTTTGCACGCTACTGTAATCACCATC
GCGTGCAAAATTATTTAGATGCAATTGAAGACATTCTGAC pGST-Parallel2-VipD(Q476A) SD
GTCAGAATGTCTTCAATTGCATCTAAATAATTTTGCACGC
CGTGCAAAATTATTTAGATCAAATTGAACACATTCTGACAGTCGATGCCAAAATGGATG pGST-Parallel2-VipD(D479H) SD
CATCCATTTTGGCATCGACTGTCAGAATGTGTTCAATTTGATCTAAATAATTTTGCACG
AGATCAAATTGAAGACATTCTGACAGTCCATGCCAAAATGGATGACATCCAGAAAGAG pGST-Parallel2-VipD(D484H) SD
CTCTTTCTGGATGTCATCCATTTTGGCATGGACTGTCAGAATGTCTTCAATTTGATCT
CAATTGGAGCGGCCGCACTCACACAGACTGTC pGST-Parallel2-Rab5c18–182(Q80L,F58A) SD
GACAGTCTGTGTGAGTGCGGCCGCTCCAATTG
CAACAGTCAAGTTTCGGATCTGGGACACAGC pGST-Parallel2-Rab5c18–182 (Q80L,E73R) SD
GCTGTGTCCCAGATCCGAAACTTGACTGTTG
CAAGTTTGAGATCGCGGACACAGCTGGACAG pGST-Parallel2-Rab5c18–182(Q80L,W75A) SD
CTGTCCAGCTGTGTCCGCGATCTCAAACTTG
GACACAGCTGGACTGGAGGCATATCACAGCCTGGC pGST-Parallel2-Rab5c18–182(Q80L, R82A) SD
GCCAGGCTGTGATATGCCTCCAGTCCAGCTGTGTC
GACACAGCTGGACTAGAGCGGGCTCACAGCCTGGCCCCCATG pGST-Parallel2-Rab5c18–182(Q80L,Y83A) SD
CATGGGGGCCAGGCTGTGAGCCCGCTCTAGTCCAGCTGTGTC
GAGCGGTATCACAGCCTGGCCCCCGCATACTATCGGGGGGCCCAGGC pGST-Parallel2-Rab5c18–182(Q80L,M89A) SD
GCCTGGGCCCCCCGATAGTATGCGGGGGCCAGGCTGTGATACCGCTC
GTATCACAGCCTGGCCCCCATGGCATATCGGGGGGCCCAGGCTGCC pGST-Parallel2-Rab5c18–182(Q80L,Y90A) SD
GGCAGCCTGGGCCCCCCGATATGCCATGGGGGCCAGGCTGTGATAC
TATCACAGCCTGGCCCCCATGTACTATGAAGGGGCCCAGGCTGCCATCGTGGTCTAT pGST-Parallel2-Rab5c18–182 (Q80L,R92E) SD
ATAGACCACGATGGCAGCCTGGGCCCCTTCATAGTACATGGGGGCCAGGCTGTGATA
TATCACAGCCTGGCCCCCATGTACTATGCGGGGGCCCAGGCTGCCATCGTGGTCTAT pGST-Parallel2-Rab5c18–182 (Q80L,R92A) SD
ATAGACCACGATGGCAGCCTGGGCCCCCGCATAGTACATGGGGGCCAGGCTGTGATA
TTTTTGGATCCGCGCTGAGGGAACTTAAAGTGTGCCTG pGST-Parallel2-Rab22a16–181 (Q64L) BamHI/XhoI
TTTTTCTCGAGTCAGGATGGAATTCTTCGACTAATTTCTATAAAGAGTTC
AAAAAACCATGGGAATGACCTCTAGGAAGAAAGTGTTGCTGAAGG pGST-Parallel2-Rab7a(Q67L) NcoI/XhoI
AAAAAACTCGAGTTAGCAACTGCAGCTTTCTGCCGAGGCC
TTTTTGGATCCAGCTCTTCAGAGGGTTTCATATGTC pGST-Parallel2-EEA136–91 BamHI/XhoI
TTTTTCTCGAGTTACTCTTGTCTGAGCAGTGTTACATC
TTTTTGGATCCATGGCTTCTCTGGACGACCCAG pGST-Parallel2-Rabenosyn51–70 BamHI/XhoI
TTTTTCTCGAGTTATGCTCGATCATCCCCTTCTCGT
TTTTTCCATGGCTTCTATTTCTAGCCTAAAAGCTGAATTAG pGST-Parallel2-Rabaptin5739–862 NcoI/XhoI
TTTTTCTCGAGTCATGTCTCAGGAAGCTGGTTAATG
AAAAGTCGACATGAAACTTGCTGAAATTATGACAAAAAGC pmCherry-VipD SalI/BamHI
AAGGATCCTTAATGGCCGCCAAATGTGGTTGAAAGAC
GAAATCAGAGAAAGAGATTGCTGAGGCATCAGCGCATGCAC pmCherry-VipD(F442A) SD
GTGCATGCGCTGATGCCTCAGCAATCTCTTTCTCTGATTTC
CATGCACAAGCTATTTTGGATCTTCAAGAACAAATCG pmCherry-VipD(H453D) SD
CGATTTGTTCTTGAAGATCCAAAATAGCTTGTGCATG
CAAATCGTCAAAGAAATGAATCGTGGTGATTACAGTAGCGTG pmCherry-VipD(E461R) SD
CACGCTACTGTAATCACCACGATTCATTTCTTTGACGATTTG
GTGCAAAATTATTTAGATGCAATTGAAGACATTCTGAC pmCherry-VipD(Q476A) SD
GTCAGAATGTCTTCAATTGCATCTAAATAATTTTGCAC

SD, site-directed mutagenesis.
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In the Phaeodactylum tricornutum alga, as inmost diatoms, cytochrome c6 is the only electron donor to photosys-
tem I, and thus they lack plastocyanin as an alternative electron carrier.Wehave investigated, by using laser-flash
absorption spectroscopy, the electron transfer to Phaeodactylum photosystem I from plastocyanins from
cyanobacteria, green algae and plants, as compared with its own cytochrome c6. Diatom photosystem I is able
to effectively react with eukaryotic acidic plastocyanins, although with less efficiency than with Phaeodactylum
cytochrome c6. This efficiency, however, increases in some green alga plastocyanin mutants mimicking the elec-
trostatics of the interaction site on the diatom cytochrome. In addition, the structure of the transient electron
transfer complex between cytochrome c6 and photosystem I from Phaeodactylum has been analyzed by compu-
tational docking and compared to that of green lineage and mixed systems. Taking together, the results explain
why the Phaeodactylum system shows a lower efficiency than the green systems, both in the formation of the
properly arranged [cytochrome c6-photosystem I] complex and in the electron transfer itself.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diatoms are unicellular photosynthetic eukaryotes that are estimat-
ed to contribute to 30–40% of the global carbon fixation in the oceans,
and thus can be considered major primary producers [1,2]. Diatoms
have a complex evolutionary history, belonging to the red lineage of
alga that diverged along evolution from the green lineage that led to
plants [3,4]. Consequently, the photosynthetic machinery in diatoms
possesses some singularities, arising from their evolutionary history
and endosymbiotic origin [5–7]. In particular, while most cyanobacteria
and unicellular green algae contain both the copper-protein plastocya-
nin (Pc) and the iron-containing cytochrome c6 (Cyt) as alternative
soluble electron carriers between the b6f and photosystem I (PSI)mem-
brane complexes, most diatoms lack Pc, thus containing Cyt as the only

soluble carrier between these complexes [8], with the remarkable ex-
ception of the oceanic centric diatom Thalassiosira oceanica, for which
the presence of an unusual Pc has been reported [9].

In green algae and plants (the green lineage of photosynthetic
eukaryotes), the very acidic donor proteins to PSI interact, by means
of strong attractive electrostatic interactions, with a well-conserved
positively-charged docking site located in an extra loop extension of
the PsaF subunit in PSI [10–12]. However, PSI from cyanobacteria,
where both Pc and Cyt can be acidic, neutral or basic, lacks this extra
loop, and thus the role of electrostatic forces in the interaction with
PSI varies consequently [13–16]. By its turn, although the evolution of
the electron transfer (ET) to PSI in diatoms has also led to complemen-
tary electrostatic interactions between acidic and basic patches in Cyt
and the PsaF subunit, respectively, the electrostatic character of both
partners is similarly reduced, the intensity of the interaction being ac-
cordingly weakened as compared with the strongest electrostatic prop-
erties of the Cyt(Pc)/PSI complex in the green lineage [17].

Although the ET from Pc and Cyt to PSI usually follows similarmech-
anisms in the same organism, electron donation to PSI has increased in
complexity and efficiency in eukaryotic cells as comparedwith prokary-
otic cyanobacteria [13,18–20]. Recently, the ET reaction mechanism
from Cyt to PSI from the diatom Phaeodactylum tricornutum has been
first analyzed by laser-flash absorption spectroscopy [17], indicating
that ET occurs within a Cyt/PSI transient complex that undergoes a

Biochimica et Biophysica Acta 1847 (2015) 1549–1559

Abbreviations: β-DM, β-dodecyl-maltoside; Cyt, cytochrome c6; ET, electron transfer;
k2, second-order rate constant; k2HI, second-order rate constant at high ionic strength; KA,
equilibrium constant for the complex formation reaction; kET, first-order electron transfer
rate constant; kON and kOFF, association and dissociation rate constants, respectively, for
complex formation; kOBS, observed pseudo first-order rate constant; kSAT, first-order limit-
ing rate constant at infinite protein concentration; Pc, plastocyanin; PSI, photosystem I
⁎ Corresponding author at: Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de

Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo
Vespucio 49, 41092 Sevilla, Spain.

E-mail address: jnavarro@ibvf.csic.es (J.A. Navarro).

http://dx.doi.org/10.1016/j.bbabio.2015.09.006
0005-2728/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbab io



 

 

reorganization process from the initial encounter complex to the opti-
mized final configuration, as already described in “green” PSI systems.
However, the results also demonstrated that the “red” Phaeodactylum
system possesses a lower efficiency than “green” systems, both in the
formation of the properly arranged [Cyt–PSI] complex and in the elec-
tron transfer itself [17]. In addition, the relatively weak electrostatically
attractive nature of the Cyt/PSI interaction seems to represent a com-
promise between the efficiency in the ET process and the need for a
fast exchange of the protein donor [17].

In this work, the structure of the transient electron transfer complex
between Cyt and PSI from the diatom P. tricornutum has been modeled
by computational docking, and comparedwith that from green systems.
Moreover, we have studied the cross-reactions between Phaeodactylum
PSI and different prokaryotic and eukaryotic Pcs— including somemu-
tant variants — in order to obtain relevant data on the differences and
similarities of the diatom couple with respect to other well character-
ized systems, and on the evolution of the reactionmechanism in the dif-
ferent branches of photosynthetic organisms.

2. Experimental procedures

2.1. Protein purification

PSI particles from the diatom P. tricornutumwere obtained by β-do-
decyl-maltoside (β-DM) solubilization as previously described [17]. Pcs
from the cyanobacterium Nostoc sp. PCC 7119, the green alga
Monoraphidium braunii and the plants Arabidopsis thaliana and spinach
were purified as described elsewhere [21,22]. Fern Dryopteris
crassirhizoma Pc was generously provided by Prof. Marcellus Ubbink
(Leiden University, The Netherlands). Chlamydomonas reinhardtii Pc
and Phaeodactylum Cyt were obtained by cloning and expression in
Escherichia coli cells using synthetic genes from the available database
protein sequences, but with the codon usage optimized for E. coli, and
fused in the amino-terminal to the transit peptide of Cyt from Nostoc
sp. PCC 7119 [23]. Protein purifications from the periplasmic fractions
were carried out as previously described [17,21]. Chlamydomonas Pc
mutantswere generated by site-directedmutagenesis using oligonucle-
otide pairs containing the sequence change desired (Fig. S1, in Supple-
mentary section). Single mutants were generated by mutagenic PCR
using the synthetic Pc WT gene as template. However, in order to gen-
erate the double E85K/Q88R mutant, the E85K simple mutant was
used as template. Mutant proteins purification was carried out with
the same procedure than for the WT Pc with minor changes. In all
cases protein fractions were concentrated and finally frozen at−80 °C
until use. The correct expression of all the proteins was checked by
MALDI-TOF mass spectrometry, to estimate molecular weights and to
compare with the theoretical expected ones. The concentration of the
Cyt and Pcs was calculated using the published extinction coefficients
at 553 nm (reduced form, Cyt) or 597 nm (oxidized form, Pcs) [21].
The P700 content in PSI samples was calculated from the photoinduced
absorbance changes at 820 nm using the absorption coefficient of
6.5 mM−1 cm−1 determined by Mathis and Sétif [24]. Chlorophyll con-
centration was determined according to Arnon [25].

2.2. Laser flash absorption spectroscopy

Kinetics of flash-induced absorbance changes associated to PSI re-
duction were followed at 830 nm as previously described [17,26]. Un-
less otherwise stated, the standard reaction mixture contained, in a
final volume of 0.2 mL, 20 mM Tricine–KOH, pH 7.5, 10 mM MgCl2,
0.03% β-DM, an amount of PSI particles equivalent to 0.5 mg Chl mL−1,
0.1 mM methyl viologen, 2 mM sodium ascorbate and Cyt or Pc at the
indicated concentration. To study the ionic strength effect, theNaCl con-
centration was progressively increased by adding small amounts of a
concentrated salt solution to the reaction cell. All the experiments
were performed at 22 °C in a 1 mm path-length cuvette. Kinetic data

collection and analyses were as previously described [18,26]. Each
kinetic trace was the average of 8–12 independent measurements. The
estimated error in the observed rate constant (kOBS) determination
was ≤15%, based on reproducibility and signal-to-noise ratios. For the
Phaeodactylum Cyt/PSI native system biphasic kinetic profiles were
fitted according to a minimal three-step reaction mechanism involving
intracomplex partners rearrangement [18,27]. Values for kON and kOFF,
the association and dissociation rate constants, respectively, for Cyt/
PSI complex formation (and the equilibrium constant, KA = kON /
kOFF), the ET first-order rate constant (kET), the first-order limiting rate
constant at infinite protein concentration (kSAT), and the amplitude of
the fast phase for PSI reduction extrapolated to infinite Cyt concentra-
tion (RMAX), were estimated as previously described [27] (Fig. S2, in
Supplementary section). For the Pc/PSI cross-reactions, monophasic ki-
netic profiles were fitted according to a more simple two-step reaction
mechanism [18,28]. Minimal values for kON, and kOFF (andKA), aswell as
the kSAT values (equal to kET) were estimated applying the formalism
previously described [28] (Fig. S2, in Supplementary section) by a non-
linear least-squares computer-fitting iterative procedure using the
KaleidaGraph program fitting routine.

2.3. Redox titrations

The redox potential value for WT and each mutant Chlamydomonas
Pc was determined as reported previously [15] by following the differ-
ential absorbance changes at 597 minus 500 nm. Errors in the experi-
mental determinations were less than ±5 mV.

2.4. Structural modeling of proteins

The Phaeodactylum PSI complex was built as follows. PsaA and PsaB
subunits were modeled based on the X-ray crystal structures of PsaA
and PsaB from Pisum sativum (PDB 2WSC), with which they shared
79% and 76% sequence identity, respectively [29]. The Phaeodactylum
PsaF subunit was modeled based on the theoretical model of PsaF [30]
from Phaseolus aureus (PDB 1YO9), with which it shared 51% sequence
identity (slightly better than PsaF from spinach in PDB 2WSC,whichhad
48% sequence identity with Phaeodactylum PsaF). In addition, in this
theoretical model the well conserved positively-charged PsaF residues
(K16, R17, K23, K24), expected to be involved in the binding to the
donor metalloproteins, are more exposed (especially K23) and seem
to be in a better orientation than in the spinach PsaF X-ray crystal struc-
ture of PDB code 2WSC. All the sequence alignments were performed
using BLAST [31]. Then, a total of ten homology models were built
using MODELLER version 9v10 with default settings [32], and the
model with the best DOPE score [33] was finally selected.

Mutants of Pc from Chlamydomonas (E85K, Q88R, E85K/Q88R, E85V
and V93K) were modeled with UCSF Chimera program [34], using the
WT Pc crystal structure (PDB entry 2PLT) [35] as scaffold.

2.5. Protein–protein docking simulations

Docking simulations were performed by FTDock [36], with electro-
statics and 0.7 Å grid resolution, and ZDOCK 2.1 [37], which generated
10,000 and 2000 rigid-body docking poses, respectively. All docking
poses were evaluated by the energy-based pyDock 1.0 scoring scheme
[38], based on desolvation and electrostatics, with limited van der
Waals energy contribution. Cofactors and ions were both included
during the sampling and the scoring calculations, using a recently
revamped version (upcoming publication) of pyDock 3.0 [39]. After
scoring, each docking pose was inserted in a bilayer lipid membrane
using the Membrane Builder tool in the CHARMM-GUI website
(http://www.charmm-gui.org) [40] with default parameters. Finally,
all the docking solutions in which the soluble electron carrier was
clashing with the membrane (i.e., any Pc or Cyt atom within a distance
of less than 3 Å from any lipid molecule of the membrane) were
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removed. Atomic distances and clashes were computed with ICM-
Browser program [41] (www.molsoft.com).

3. Results

3.1. Kinetic analysis

In Phaeodactylum, Cyt acts as the only electron donor to PSI since this
organism, as most diatoms, lacks Pc [3,8]. Here, by using laser-flash ab-
sorption spectroscopy, we have analyzed cross-reactions between Pc
donor proteins from cyanobacteria, green alga and plant species with
Phaeodactylum PSI. The rationale of this study is to check if diatom PSI
still recognizes the lost Pc donor, and thus to shed new light on the
evolution of the ET mechanism to PSI in the different branches of the
evolutionary tree of photosynthetic oxygenic organisms.

Control experiments analyzing the interaction of clonedWT diatom
Cyt with PSI showed biphasic kinetics for the re-reduction of photo-
oxidized P700+ by Cyt (not shown), the Cyt concentration dependence
of the kOBS for both phases confirming the occurrence of themechanism
previously described for the Phaeodactylum Cyt/PSI couple and other
eukaryotic donor/PSI systems [13,17,18,27,42–44]:

PSIOX þ CytRED ↔
kON

kOFF
PSIOX…CytRED½ #↔KR PSIOX…CytRED½ #$ →kET PSIRED þ CytOX

where KA corresponds to kON/kOFF, KR is the equilibrium constant for
the rearrangement of the initial transient complex to achieve an
optimized ([PSIOX…CytRED]⁎) ET configuration, and kET is the ET
rate, which approximates to the kOBS of the initial fast phase (ca.
20,000 s−1; not shown), that in Phaeodactylum does not represent
more than ≈30% of the kinetics amplitude (not shown) [17]. The
KA value, estimated by using the formalisms previously reported
[27] is shown in Table 1 together with kSAT, the first-order limiting
rate constant of the predominant slower phase at infinite protein
concentration (Fig. 1, left) that does not discriminate the rate for re-
arrangement from the pure intracomplex ET reaction. All the ob-
served kinetics features are similar to those previously described
for the Cyt purified from diatom cells [17].

When studying the interaction of Pcs with Phaeodactylum PSI, only
monophasic kinetics were observed (Fig. 2A), even though the protein
concentration dependence of kOBS exhibits in some cases saturation pro-
files (someexamples are shown in Fig. 1, left). It is important tomention
that a possible fast kinetic component (if any) with a low amplitude
(≤10% of total absorbance change) would not be detectable in our sys-
tem, due to the signal to noise ratio of the kinetic traces (Fig. 2). Conse-
quently the results have been here analyzed considering a more simple
mechanism, consisting in transient complex formation without any

detectable rearrangement within the complex previous to the ET step
[13,19,28]:

PSIOX þ PcRED ↔
KA PSIOX…PcRED½ #→kET PSIRED þ PcOX

where the estimated kSAT limiting rate constant of the observed single
kinetic phase at infinite Pc concentration now corresponds to the
protein-independent kET rate [18,28]. Fig. 1 also includes, for compara-
tive purposes, the concentration dependence of the slower (and pre-
dominant) phase of the Phaeodactylum Cyt/PSI system. The estimated
KA values (equal to kON/kOFF) for acidic Pcs are comparable to that calcu-
lated for the Phaeodactylum native system (≈1 × 104 M−1; Table 1).
However, all these Pcs exhibited lower kSAT (i.e., kET) values (ca. 300–
400 s−1) as compared both with the kSAT of the slower phase (ca.
900 s−1) (Table 1) and the kET (20,000 s−1) of the diatom system, indi-
cating the formation of less-optimized Pc/PSI ET complexes. On the
other hand, in the case of Pcs from the cyanobacterium Nostoc and the
fern Dryopteris, much slower kinetics (not shown) with kOBS values de-
pending linearly on Pc concentration were obtained (Fig. 1, left), indi-
cating the occurrence of a simple oriented collisional mechanism, with
no formation of transient complex [13,19]. Table 1 shows values for
the second-order rate constants (k2) inferred from such linear protein
concentration dependence. Thus, whereas diatom PSI is able to effec-
tively bind eukaryotic acidic Pcs, although with a minor ET efficiency
as compared with Phaeodactylum Cyt (Fig. 1 and Table 1), both the
positively-charged Nostoc Pc and the fern Pc, in which the relocation
of the acidic region results in very distinct electrostatic properties [45,
46], showed a drastic decrease in the affinity and the ET efficiency to
PSI. Finally, the absence of a detectable fast phase when any Pc acts as
electron donor to diatom PSI points to the subtle and precise interac-
tions involved in the rearrangement process leading to the optimized
configuration for ET in the native Cyt/PSI diatom couple [17].

Considering the different electrostatic features of Phaeodactylum Cyt
and the different Pcs [8,17,20], an analysis of the effect of ionic strength
on the process was also performed (Fig. 1, right; and Fig. 2B). As previ-
ously shown, the dependence of kOBS for the predominant slower phase
of PSI reduction in the native Cyt/PSI system on NaCl concentration
showed a bell-shaped profile when increasing ionic strength, indicating
the existence of some reorientation of redox partners inside the tran-
sient complex prior to the ET step [[17]; and see below]. Regarding
the Pc/PSI interaction, cyanobacterial and eukaryotic Pcs behave in an
opposite way when increasing NaCl concentration (Fig. 1, right). Thus,
eukaryotic Pcs interact with diatom PSI by means of attractive forces,
as inferred from the continuous decrease of the kOBS at increasing salt
concentrations. However, Nostoc Pc shows repulsive electrostatic inter-
actions with the diatom PSI, as deduced from the increase of the kOBS

Table 1
Kinetic parameters for Phaeodactylum PSI reduction by cytochrome c6 and prokaryotic and eukaryotic plastocyanins.

Donor protein k2 (M−1 s−1) KA
a (M−1) kSATa,b (s−1) k2HIc (M−1 s−1) EO (mV)

Phaeodactylum Cyt − 0.8 ± 0.16 × 104 930 ± 19 2.9 ± 0.08 × 106

Nostoc Pc 2.4 ± 0.02 × 105 − − 5.0 ± 0.25 × 105

Dryopteris Pc 2.5 ± 0.30 × 104 − − 6.0 ± 0.50 × 104

Arabidopsis Pc − 1.5 ± 0.05 × 104 390 ± 13 4.5 ± 0.25 × 105

Spinach Pc − 0.8 ± 0.20 × 104 290 ± 70 5.6 ± 0.09 × 105

Monorapidium Pc − 1.0 ± 0.30 × 104 290 ± 77 6.0 ± 0.50 × 105

Chlamydomonas WT Pc − 1.0 ± 0.08 × 104 360 ± 29 4.0 ± 0.10 × 105 +370
Chlamydomonas E85K Pc − 0.5 ± 0.07 × 104 690 ± 97 1.1 ± 0.20 × 106 +373
Chlamydomonas E85V Pc − 1.8 ± 0.23 × 104 120 ± 15 3.0 ± 0.10 × 105 +364
Chlamydomonas Q88R Pc − 0.4 ± 0.09 × 104 610 ± 120 1.0 ± 0.04 × 106 +368
Chlamydomonas E85K/Q88R Pc − 0.9 ± 0.15 × 104 260 ± 43 6.2 ± 0.60 × 105 +389
Chlamydomonas V93K Pc − 1.0 ± 0.08 × 104 170 ± 14 4.0 ± 0.25 × 105 +378
a Estimated according to the formalisms previously described [27,28].
b Value corresponding to the limiting rate constant at infinite protein concentration of the slower andmajor phase in the Phaeodactylum Cyt/PSI native system [17] and to the ET first-

order rate constant, kET, in the Pc/PSI cross-reactions.
c Estimated at 200 mM NaCl. Error values are given by standard deviations. See the Experimental procedures section for more details.
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when increasing NaCl. Table 1 shows the second-order rate constants
values (k2HI) estimated at high ionic strength (200 mM NaCl concentra-
tion) for the different donor/PSI systems. It is interesting to note that,
with the exception of the divergent fern Pc, the k2HI values at high ionic
strength are similar, but also sensibly lower than that obtained with
the diatom Cyt, indicating that the intrinsic reactivity of the different
Pcs with PSI in the absence of electrostatic interactions is similar, but
lower than the native Cyt. This behavior could be explained by the dif-
ferent intrinsic efficiency of cofactors — exposed heme vs. a hindered
Cu cofactor — or different surface steric properties.

From the solved crystal structure of Phaeodactylum Cyt, turns out
that this protein has evolved towards a decrease in the acidic area
thought to be involved in the interaction with PSI (revised in [47],
and see [8,17]) (Fig. 3). Taking into account the different intensity in
the electrostatic character of green Pcs and the diatom Cyt, a set of
ChlamydomonasPcmutantswere constructed by replacingnegative res-
idues by neutral or positive groups (Fig. 3) in order to mimic the Cyt
properties, and so trying to increase in this way the Pc ET efficiency
with PSI. Although Arabidopsis Pc showed to be slightly more reactive
than Chlamydomonas Pc, the green alga protein was selected because
of its closer evolutive relation with the diatom. When analyzing the
reduction of Phaeodactylum PSI by the mutated Pcs, no fast phase was
observed in most cases, although the non-linear donor protein concen-
tration dependence of kOBS shown in Fig. 4 (left) again indicates the

formation of transient bimolecular complexes. The estimated minimal
values for KA and kET for the different Pc mutants are shown in
Table 1. The only exception to this behavior is the Q88R mutant, for
which biphasic kinetics were observed at Pc concentration ≥150 μM
(not shown). However, the very low amplitude of the initial fast phase
(b15%) does not allow to obtain reliable kOBS values (≈1000 s−1, not
shown), which are in any case of the same order of magnitude as the
saturation value of the slower phase at high protein concentration (ca.
600 s−1, Table 1). Thus the occurrence of the kinetic mechanism involv-
ing complex formation without intracomplex protein rearrangement
was here assumed for the interaction of this mutant with PSI. In addi-
tion, this mutation brings back one arginine residue into the northern
surface of Chlamydomonas Pc that has been previously described as im-
portant for the binding to PSI in prokaryotic Pcs [15].

The kinetic data shown in Table 1 indicate a moderate effect of the
different Pc mutations at low ionic strength. Thus, the E85K and Q88R
Pc showed a slightly increased efficiency in the ET to PSI, whereas mu-
tants E85V, V93K and E85K/Q88R, displayed a diminished reactivity to-
wards PSI. In the case of the E85K and Q88R mutants, the less saturated
profiles at high donor concentration, as compared both with the WT Pc
and the other mutants (Fig. 4, left), generates a higher inaccuracy in the
determination of the kinetic constants (Table 1). However, this behavior
already reflects a diminished KA towards PSI, as also indicated by the
lower estimated values. It is interesting to note that these two mutants

Fig. 1. Phaeodactylum PSI reduction by Phaeodactylum Cyt (slow predominant phase) or Pc fromNostoc, Chlamydomonas, Dryopteris and Arabidopsis, as indicated. (Left) Dependence of the
observed rate constant (kOBS) upon donor protein concentration. The standard reactionmixture contained, in a final volume of 0.2mL, 20mMTricine–KOH, pH7.5, 10mMMgCl2, 0.03%β-
DM, an amount of PSI-enriched particles equivalent to 0.5 mg of chlorophyll mL−1, 0.1 mMmethyl viologen, 2 mM sodium ascorbate and the indicated concentrations of either Cyt or Pc.
(Right) Plots of kOBS versus NaCl concentration. The salt content of the samples was increased by adding small amounts of concentrated NaCl stock solutions. Cyt or Pc concentration was
200 μM. Other experimental conditions were as described in Experimental procedures section.

Fig. 2. Kinetic traces showing Phaeodactylum PSI reduction by ChlamydomonasWTPc in (A) absence of added salt or (B) in the presence of 200mMNaCl. (C) Phaeodactylum PSI reduction
by the E85K Chlamydomonas Pc mutant in the presence of 200 mM NaCl. The vertical arrow shows direction of absorbance increase. Pc concentration was 200 μM. Other experimental
conditions were as described in Fig. 1.
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showing the lower KA values (E85K and Q88R) also have the higher kET
rates. The opposite effect is observed in the E85V Pc, in which a higher
affinity in the binding to PSI is accompanied by the lower efficiency in
the ET reaction (Table 1). The different effect of the mutations has to
be explained mostly in terms of changes in the electrostatics of protein
surfaces or steric modifications induced by the amino acid replace-
ments, as the redox potential is not significantly altered in the Pc mu-
tants (Table 1), with the only exception of the E85K/Q88R double
mutant, for which a ca. 20 mV potential increase would only partially
explain the diminished kET. In addition, the effect of the mutations can
be highlighted when analyzing the effect of increasing ionic strength
on PSI reduction by the different Pc mutants (Figs. 2C and 4, right). As
indicated before, WT Pc showed a marked decrease of the kOBS with in-
creasing salt concentration, thus reflecting relatively strong attractive
interactions with PSI. However, all the mutants present a dependence
on ionic strength much smoother than the WT protein, which is again
particularly relevant in the case of the E85K and Q88R Pcs, bothmutants

being significantly more reactive towards PSI than theWT Pc as the salt
concentration increases (Figs. 2B and C and 4, right), and consequently
showing in both cases higher k2HI values (Table 1).

3.2. Structural model of Cyt/PSI interaction by computational docking

To understand the structural and energetic determinants of the dif-
ferences in efficiency observed in diatom PSI reduction with respect to
the green systems [17], computational docking simulations were per-
formed between the modeled structure of PSI from Phaeodactylum
(see Experimental procedures section) and both its native Cyt (PDB
entry 3DMI) [8] and the corresponding Cyt from the green alga
Monoraphidium (PDB entry 1CTJ) [48], for which kinetic data for the
ET to diatom PSI have been previously reported [17]. We note that
while we were preparing this manuscript, a new structure for PSI
from the plant P. sativum (PDB 4Y28) has been reported [49], with a
slightly better sequence identity with Phaeodactylum PsaF (53%).

Fig. 3. (Top) Backbone and surface electrostatic potential distribution ofWT Cyt from Phaeodactylum andWT Pc from Chlamydomonas. The replaced groups in Pc are depicted in red (E85),
blue (Q88) and green (V93) on the structure. (Bottom) Surface electrostatic potential distribution of Chlamydomonas Pcmutants. The views display in front the protein surface proposed to
be responsible for electrostatic interactionswith PSI, as shown by the backbone draws. Calculations of surface electrostatic potential distribution were performedwith UCSF Chimera pro-
gram using default parameters and based on Coulomb's electrostatics with distance dependent dielectric constant (ε=4d). Electrostatic potential values are shown in a scale from red to
blue, corresponding to −10.0 and +10.0 kcal/(mol⋅e), respectively, at 298 K.

Fig. 4. Phaeodactylum PSI reduction by Chlamydomonas WT Pc and mutants, as indicated. (Left) Dependence of kOBS upon donor protein concentration. (Right) Plots of kOBS versus NaCl
concentration at 200 μM Pc. Other experimental conditions were as described in Fig. 1.
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Actually, the theoretical model that we used as template for PsaF has
1.6 Å Cα-RMSD from this new structure (4Y28), therefore much closer
to it than the spinach PsaF structure (2WSC) that we used as template
for PsaA and PsaB (2.8 Å Cα-RMSD). Even though the choice of one or
another structure among the similar templates that are available for
PsaF is not going to significantly affect the modeling, all the above con-
siderations suggest that the choice of the theoretical model as template
for PsaF was an appropriate decision.

The docking simulations between PSI and Cyt from Phaeodactylum
showed a funnel-like binding energy landscape (Fig. S3, in Supplemen-
tary section), with the lowest-energy docking orientations in which the
residuesW652 of PsaA andW624 of PsaB (which form the expected hy-
drophobic recognition site and the ET pathway to P700 for Cyt and Pc
[50,51]) and the propionate groups of the heme molecule of Cyt were
located at a distance of around 10–20 Å (minimum distance among
the top 20 docking poses is 8.1 Å) (Fig. S3, in Supplementary section
and Table 2). There are also docking orientations with short-distance
between W652 of PsaA, W624 of PsaB and the Cyt heme, but at higher
docking energy. This is consistent with the reorganization process
from the initial encounter complex observed for this interaction [[17],
and see above].

Remarkably, the docking between Phaeodactylum PSI and
Monoraphidium Cyt yielded a much larger population of low-energy
docking orientations in which PsaA W652, PsaB W624 and the Cyt
heme were at very short distance (minimum distance among the top
20 docking poses is 2.8 Å) as compared with the native Phaeodactylum
complex (Fig. S3, in Supplementary section). This is consistent with
the more efficient ET kinetics (and higher kET) to diatom PSI found
when analyzing Monoraphidium Cyt as compared with the native pro-
tein, and with the smaller reorganization effect seen for this interaction
[17]. In addition, the docking poses forMonoraphidium Cyt showed bet-
ter scoring values (average scoring for the top 20 docking poses is
−39.9 a.u.) than for Phaeodactylum Cyt (average scoring for the top
20 docking poses is −32.7 a.u.) (Table 2). Since the docking scoring
values can be related to the binding affinity, these findings are also con-
sistent with the better association constant (KA) found in the cross-
reaction with Monoraphidium Cyt [17].

We have analyzed in detail the most efficient docking models for ET
(e.g., PsaAW652, PsaBW624 andCyt hemegroups at less than 3.0 Å dis-
tance) in the interaction of the diatom PSI with Phaeodactylum and
Monoraphidium Cyt (Fig. 5). The best energymodel from Phaeodactylum
Cyt docking (PsaA W652, PsaB W624 and Cyt heme at 3.0 Å distance)
does not show electrostatics interactions with the conserved positive
patch in PsaF (Fig. 5B), neither favorable interactions at the binding in-
terface (Fig. 5C). This can explain why the efficient docking orientations
in the Phaeodactylum Cyt docking are energetically penalized. On the
contrary, the bestmodel fromMonoraphidiumCyt docking shows strong
electrostatic interactions between the conserved positive patch in PsaF

and the Cyt residues D69, E70, D71, and E72 (Fig. 5D and E) in the Cyt
acidic patch, previously proposed to be involved in the interaction
with PSI in green systems [12,43,51]. Although this acidic patch is con-
served in Phaeodactylum Cyt (residues S113, D114, E115 and E116)
[8], as stated above these residues in Phaeodactylum Cyt are not
interactingwith PsaF in the ET efficient docking orientations. The reason
for these differences in binding is that in Monoraphidium Cyt this
docking orientation is further stabilized by electrostatic interactions be-
tween PsaA residues R747 and R648, and Monoraphidium Cyt residues
D42 and H30 (Fig. 5E). However, in Phaeodactylum Cyt these residues
are A86 and K74, respectively, which thus can explain why an equiva-
lent docking orientation would be energetically penalized in the inter-
action with Phaeodactylum PSI, and, as a consequence, other less-
efficient orientations for ET becomemore populated (Fig. S3, in Supple-
mentary section).

3.3. Structural model of Pc/PSI interaction by computational docking

We also applied computational docking to investigate the interac-
tion between Phaeodactylum PSI and Pc from Chlamydomonas, both for
the WT protein and mutant variants previously designed to try to
mimic Phaeodactylum Cyt electrostatic properties (Pc mutants E85K,
Q88R, E85K/Q88R, E85V and V93K) (Fig. 3). In the WT Pc docking sim-
ulation, the 20 lowest-energy docking orientations had the PsaA
W652, PsaB W624 residues and the Pc His87 residue [involved in the
active-site catalytic triad [35,43,50]] at a distance above 4.2 Å (Fig. S4,
in Supplementary section). The average docking scoring for these top
20 docking poses is −37.4 a.u. (Table 2). There are other docking
poses with shorter distances between the redox groups (and therefore,
expectedly more efficient for ET) but with clearly worse docking ener-
gies. In any case, the fact that the lowest-energy docking orientations
have redox groups not very far from each other is consistent with the
absence of reorganization effects for these interactions. According to
the docking model, the minor ET efficiency of Chamydomonas Pc to
Phaeodactylum PSI— as compared with the diatom Cyt— is not justified
by a longer distance between redox groups in docking, but it should be
again explained by an intrinsic different efficiency of cofactors and/or
surface composition, given that they are essentially two different sys-
tems. A deep theoretical analysis of all these considerations would in-
volve large quantum and molecular mechanics calculations, which are
beyond the focus of the present work. On the other hand, when
performing docking with Pc E85K and Q88R mutants, the 20 lowest-
energy docking poses included models that had PsaA W652, PsaB
W624 and Pc His87 located at very short distance (1.4 Å), with an aver-
age docking scoring of around−30 a.u. (Fig. S4, in Supplementary sec-
tion; and Table 2). This is consistent with the above described
observation that these mutants slightly increased ET but decreased
binding affinity.

Table 2
Computational docking results for the interaction of Phaeodactylum PSI with cytochromes c6 and plastocyanins.

Donor protein Low-energy docking modelsa Best ET docking modelsb

Best ET modelc

Energy Rank Distance Average energy Lowest energy Rank Distance

(a.u.) (Å) (a.u.) (a.u.) (Å)

Phaeodactylum Cyt −29.8 20 8.1 −32.7 −17.6 209 3.0
Monoraphidium Cyt −39.2 14 2.8 -39.9 −39.2 14 2.8
Chlamydomonas WT Pc −40.7 2 4.2 −37.4 −29.0 79 1.9
Chlamydomonas E85K Pc −29.8 14 1.4 −31.1 −29.8 14 1.4
Chlamydomonas E85V Pc −33.5 15 4.2 −35.2 −28.5 60 1.4
Chlamydomonas Q88R Pc −28.6 9 1.4 −29.9 −28.6 9 1.4
Chlamydomonas E85K/Q88R Pc −33.0 8 3.2 −33.0 −28.4 22 1.9
Chlamydomonas V93K Pc −40.3 3 4.1 −37.3 −28.7 74 1.9
a The 20 lowest-energy docking models.
b The most efficient docking models for ET, in which PsaAW652/PsaB W624 are located at less than 3.0 Å from Cyt heme, or less than 2.0 Å from Pc His87.
c Themost efficient docking orientation for ET (i.e., shortest distance between PsaAW652/PsaBW624 and Cyt heme or Pc His87 groups), among the 20 lowest-energy dockingmodels.
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It is interesting to analyze in atomic detail the results from the Pc/PSI
docking. Fig. 6 shows two representative models from the docking be-
tween Phaeodactylum PSI and Chamydomonas WT Pc. One (Fig. 6B, C)
is the best-energymodel among themost efficient docking orientations
for ET (e.g., PsaAW652, PsaB W624 and Pc His87 at less than 2.0 Å dis-
tance). More specifically, this docking model has PsaA W652, PsaB
W624 and Pc His87 at a distance of 1.9 Å, and shows a strong electro-
static interaction between the conserved positive patch in PSI subunit
PsaF and the Pc residues D42, E43 and D44 in the “east” negative
patch [35], thus delineating an orientation equivalent to that above de-
scribed forMonoraphidium Cyt (compare Figs. 5D and 6B). Interestingly,
PsaA R747 is interacting with Pc residue N64 (located in same position
as Monoraphidium Cyt D42 in the ET efficient docking model), and
PsaA W652 is interacting with Pc H87 (Fig. 6C). This shows that green
Pc is able to form similar contacts as green Cyt with Phaeodactylum PSI

for efficient ET. This docking orientation would not be affected in the
E85K and Q88R mutants, and thus the reason of the effect of these
mutations must be found in other docking orientations that are not so
efficient for ET (see below).

In this sense, Fig. 6 also shows the expectedly most efficient orienta-
tion for ET among the 20 lowest-energy docking models in which PsaA
W652, PsaBW624 and Pc His87 are located at 4.2 Å distance (Fig. 6D, E),
which in principle would be less efficient for ET than the previously de-
scribed dockingmodel. In this newmodel, while there is still some elec-
trostatic interactions with the conserved positive patch of PsaF subunit
in PSI (Fig. 6D), there are other interactions that could additionally con-
tribute to its binding affinity, such as the one between Pc Q88 and PsaA
K638, or more especially, between Pc E85 and PsaA R463 and R648 (Fig.
6E). Replacement of these two Pc residues by positively charged ones, as
in E85K and Q88R mutations, will cause destabilization of this docking

Fig. 5. Representative docking models between Phaeodactylum PSI and Phaeodactylum orMonoraphidium Cyts. (A) Best-energy docking models for efficient ET (PsaA W652/PsaB W624
and Cyt heme groups at less than 3.0 Å distance) are shown for Phaeodactylum (light blue; rank 209, docking energy −17.6 a.u., distance between Trp residues and cofactors 3.0 Å)
andMonoraphidium (dark blue; rank 14, docking energy−39.2 a.u., distance between Trp residues and cofactors 2.8 Å) Cyts. (B–D)Details of atomic interactions for (B, C) Phaeodactylum
Cyt and (C, D)Monoraphidium Cyt dockingmodels. In (D) Phaeodactylum Cyt is shown as superimposed onto theMonoraphidium Cyt, for the sake of comparison. The PsaA, PsaB, and PsaF
subunits of PSI are depicted in light gray, dark gray, and red, respectively.
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orientation,which has redox centers atmediumdistance (and therefore
not optimal for ET), and now the docking orientations with short dis-
tance between redox groups (expectedly more efficient for ET) would
become more populated.

On the other side, in the docking simulations with the Pc mutants
E85K/Q88R, E85V and V93K, no significant differences were found in
the distribution of the low-energy docking pose orientations with re-
spect to the WT (not shown). Indeed, the average docking energies for
the top 20 docking poses were of −33.0, −35.2 and −37.3 a.u., for
which theminimumdistance between PsaAW652, PsaBW624 residues
and Pc H87 were 3.2, 4.2 and 4.1 Å respectively (Table 2).

4. Discussion

PSI reduction has been extensively analyzed in vitro and in vivo in a
wide variety of organisms, revealing that the kineticmechanisms for the

reaction of either Pc or Cyt with PSI from the same organism are similar,
although they have increased in complexity and efficiency while evolv-
ing from prokaryotic cyanobacteria to green alga and plant eukaryotic
organisms [13]. Thus, PSI reduction by the donor proteins, isolated
from different sources, can follow either an oriented collisional mecha-
nism (type I), a mechanism involving transient complex formation
(type II), or complex formation with rearrangement of the interface
(type III), the latter mechanism classically observed in green alga and
plant eukaryotic systems [13].

It has been previously described that the ET reaction from Cyt to PSI
in the diatom Phaeodactylum follows the type III three-stepsmechanism
found in eukaryotic green systems [17], in which an initial Cyt/PSI en-
counter complex reorganizes to a more productive final configuration.
This is consistent with the docking models shown here, in which the
most stable docking orientations are not expected to be efficient for
ET due to the longer distance between redox centers. In addition, the

Fig. 6. Representative docking models between Phaeodactylum PSI and Chlamydomonas Pc. (A) Rank 79 orientation (dark blue; docking energy−29.0 a.u.), with PsaAW652/PsaBW624
and Pc His87 located at 1.9 Å; rank 2 orientation (light blue; docking energy−40.7 a.u.), with PsaAW652, PsaB W624 and Pc His87 located at 4.2 Å distance. (B–D) Details of atomic in-
teractions for ET efficient (B, C) and low-energy (D, C) docking models. The PsaA, PsaB, and PsaF subunits of PSI are depicted in light gray, dark gray, and red, respectively.

1556 P. Bernal-Bayard et al. / Biochimica et Biophysica Acta 1847 (2015) 1549–1559



 

 

diatom system shows lower efficiencies than the green systems both in
the formation of the properly arranged [Cyt–PSI] complex and in the ET
reaction itself [13,17,22,27,43,50]. This apparent decreased reactivity is
the consequence of diminished basic patches on PsaF and acidic regions
on Cyt, both resulting in a weaker electrostatic interaction between
partners. This feature of diatoms has been proposed to denote a com-
promise between ET efficiency and optimal protein donor turnover
[17], as in the green systems it has been suggested that the strong
donor/PSI electrostatic interaction limits the donor exchange and so
the overall ET turnover [12,44].

It is interesting to compare the Phaeodactylum native Cyt/PSI
docking complex (Fig. 5B, C) with those described previously in green
systems [10,12,43,51]. It is widely accepted that the lumenal loops i/j
of PsaA/B in PSI, including the PsaA W651 and PsaB W627 residues
(Chlamydomonas numbering), form the hydrophobic recognition site
for binding of Pc and Cyt, by means of complementary hydrophobic
areas around the donors ET site [43,50]. Electrostatic interactions are
also established between negatively charged residues of Pc and Cyt
with the positively charged N-terminal domain of PsaF [12,51]. Particu-
larly, Chlamydomonas Cyt seems to establish specific interactions in-
volving residues K23/K27 of PsaF and the E69/E70 groups located at
the “eastern” negatively charged area of Cyt. Additionally, the positive
charge on the “northern” site of Cyt (R66) and the adjacent D65 can
form a strong salt bridge with the R623/D624 pair of PsaB [51]. Accord-
ing to thismodel, the distance between the donor/acceptor redox cofac-
tors is ≈14 Å [12,51]. The Phaeodactylum Cyt/PSI docking complex
described here (Fig. 5B, C) has a different orientation than the
Chlamydomonas Cyt/PSI complex. The reason is that the D65 group in
Chlamydomonas Cyt is not conserved in Phaeodactylum Cyt (equivalent
residue is Gly109), and thus it cannot stabilize this orientation. As a con-
sequence, it also loses the electrostatic interactions with PsaB and the
overall binding energy is less favorable.

Cyt is the only electron carrier between the b6f and PSI complexes in
Phaeodactylum, and thus a pertinent question is if diatom PSI is still able
to recognize the lost Pc donor. It is first interesting to note that Nostoc
cyanobacterial Pc reacts with low efficiency with diatom PSI by means
of a simple oriented collisional mechanism. This is in agreement with
the low reactivity previously described in cross-reactions of Cyt/PSI sys-
tems from cyanobacteria and Phaeodactylum [17]. On the other hand,
most cross-reactions involving acidic green Pcs and diatom PSI show ki-
netic parameters comparable in themain limiting steps (intermolecular
affinity and efficiency at saturating donor concentration) to the native
diatom system (Table 1), even though they follow different kinetic
mechanisms. Thus, the interaction of green alga and plant Pcs with dia-
tom PSI proceeds via transient complex formation, but apparently with
the absence of the final rearrangement step observed in the native
Phaeodactylum system, and with sensibly lower kET rates, indicating
the formation of less-optimal functional complexes. This emphasizes
the fine adjustment involved in the formation of the final productive
structure in the Cyt/PSI diatom couple, that is lost in the interactions
with the non-native Pc donors [17].

The results obtained in the cross-reactions should be explained ac-
cording to the different structural and electrostatic features of Pcs from
different sources, as well as of the donor docking site in diatom PSI.
Thus, whereas the low efficiency in the interaction of the positively-
charged Nostoc Pc agrees with the occurrence of repulsive electrostatic
interactions with the also positively-charged binding site on the diatom
PSI [17], eukaryotic acidic Pcs seem to interact with diatom PSI by
means of attractive forces, as previously described for the interaction of
Monoraphidium Cyt with Phaeodactylum PSI [17]. However, it is interest-
ing to note that, in spite of the different electrostatic character of Pcs
from the different sources, the reactivity towards PSI at high ionic
strength is very similar in most cases, indicating a comparable intrinsic
reactivity of the different Pcs in the absence of electrostatic forces. This in-
trinsic reactivity is, nevertheless, about 4–5 times lower when compared
with the diatom native system (Fig. 1, and Table 1), suggesting that other

factors beyond the pure electrostatics, i.e., hydrophobic and/or solvent ef-
fects or structural steric factors, contribute to this difference in reactivity.

Fern Pc represents an interesting exception to the main features of
the reactivity of green Pcs with diatom PSI, as Dryopteris Pc shows the
lowest efficiency of the systems here analyzed (up to ten times less ef-
ficient than the cyanobacterialNostoc Pc). It has been previously report-
ed that fern Pc conserves both the same global structure and negative
electrostatic character of eukaryotic Pcs, but its acidic region has
moved from the canonical east position and is surrounding the hydro-
phobic ET north site, this change resulting in very distinct electrostatic
and steric properties [45,46]. Thus, the unusual structure of Dryopteris
Pc impedes an efficient interaction with diatom PSI, as previously de-
scribed in its interaction with spinach PSI [46], confirming that fern Pc
has followed a relatively independent evolutionary pathway since
ferns diverged from other vascular plants [45,46].

Previous results obtained with cross-reactions of different Cyt/PSI
eukaryotic systems suggested that the different electrostatic properties
of Cyt, more than the PSI, mainly make the difference in behavior of di-
atoms with respect to other photosynthetic eukaryotes from the green
lineage [17]. This has been confirmed here by computational modeling.
TheMonoraphidium Cyt/Phaeodactylum PSI docking complex shows vir-
tually the same orientation as the native Chlamydomonas Cyt/PSI green
complex, and is able to form similar interactionswith the positive patch
in PsaF (Fig. 5D) [51]. In addition, the salt-bridges formed by D65 and
R66 of Chlamydomonas Cyt with PsaB R623 and D624 residues are
conserved in theMonoraphidium Cyt/diatom PSI interaction (equivalent
residues: D65 and R67; and R620 and D621, respectively). The key
interface D42/R747 salt-bridge found in our Monoraphidium Cyt/
Phaeodactylum PsaA model was not previously reported for the
Chlamydomonas Cyt/PSI complex [51], but since these residues are con-
served (equivalent ones areD41 and R746),we can expect that this salt-
bridge is also formed in Chlamydomonas Cyt/PSI complex. Interestingly,
the redox centers inMonoraphidium Cyt/Phaeodactylum PSI are found at
a shorter distance (11.6 Å) than in Chlamydomonas Cyt/PSI (≈14 Å)
[51]. In addition, the reduction of diatom PSI by the strongly acidic Cyt
from green alga showed an increased affinity and kET but a lower effi-
ciency in the formation of the properly arranged Cyt/PSI complex as
comparedwith thenative Cyt, because the too strong electrostatic inter-
actions [17]. Thus, Chlamydomonas Pc mutants are here designed by re-
placing negative groups of the acidic patch — widely accepted to be
responsible for electrostatic interactions with PSI [12,35,47] — by neu-
tral or positive residues (Fig. 3). The rationale for these designs has
been to mimic the Cyt electrostatic properties, trying to increase the ef-
ficiency of a green Pc in reducing diatom PSI by decreasing the negative
character of its acidic patch (Fig. 3).

The effect of the different Pcmutations, althoughmoderate, gives in-
teresting information about the bindingmechanism to PSI. Thus, higher
kET rates, as compared with the WT Pc, are observed with the two
mutants (E85K and Q88R) showing about half of the KA value of the
WT protein (Table 1). Just the opposite effect is however obtained in
the E85V Pc, in which the lower kET rate goes together with the higher
affinity towards PSI (Table 1). Actually, an inverse exponential relation-
ship between the estimated KA and kET values is observed for all the
Chlamydomonas Pc variants (Table 1). Thus, WT Chlamydomonas Pc
seems to be fixed, by means of strong electrostatic interactions, in a
less productive complex configuration, that can be improved inmutants
showing an increased flexibility in the binding to PSI. Our docking
model shows that E85K and Q88R mutants are destabilizing this less
productive complex configuration, which effectively increases the pop-
ulation of the productive orientations and therefore are more efficient
for ET. In this sense it is interesting again to compare the docking
model of Chlamydomonas Pc/diatom PSI with the previously proposed
Pc/PSI interactions in green systems, in which electrostatic interactions
involve D42/D44 and E43/E45 of Pc with residues K17/K23/K30 in PsaF
[11,12]. The Chlamydomonas Pc/Phaeodactylum PSI most productive
docking model (Fig. 6B) conserves such interactions and thus would

1557P. Bernal-Bayard et al. / Biochimica et Biophysica Acta 1847 (2015) 1549–1559



 

 

be able to yield efficient orientations for ET. However, Pc E85 and Q88
residues are stabilizing alternative, but less productive, orientations in
the Chlamydomonas Pc/diatom PSI complex (Fig. 6E). This is consistent
with the smaller ET efficiency found for Chlamydomonas Pc, and the ET
increase in E85K and Q88R mutants. Interestingly, Chlamydomonas Pc
does not possess a positively charged amino acid at a position equiva-
lent to the R66 found in Chlamydomonas and PhaeodactylumCyts (corre-
sponding to the R87 position of prokaryotic Pcs). In cyanobacteria, this
positively charged amino acid is important for efficient ET to PSI [15].
Thus, by bringing back this arginine residue in the Q88R mutant of the
green alga Pc, an improved reactivity has been observed.

On the other side, we should note that the effect of the two individ-
ual E85K and Q88R mutations is counteracted in the double mutant
E85K/Q88R, which shows a similar KA and a slightly diminished kET
compared with the WT Pc. This would be at least partially explained
in terms of the small increase of the double mutant redox potential.
However, theremust be some additional effect that cannot be described
in our rigid-body docking simulations, like a conformational change of
the two new positive residues that avoids the destabilization effect of
the lesser productive configuration by the two individual mutations.
Lastly, the results obtainedwith the V93K protein indicates that this hy-
drophobic residue is relevant in the ET process, as this mutant shows a
significantly decreased kET, in spite of maintaining the same affinity for
PSI than the WT Pc (Table 1).

To conclude, the kinetic and mutagenic analysis herein reported for
Phaeodactylum PSI reduction by green Pcs contrastswith the results pre-
viously obtained with a eukaryotic Cyt [17]. Whereas the green alga Cyt
overall reacts more efficiently with diatom PSI than the native Cyt —
both in affinity and ET rate— because its stronger electrostatic character
[17], green Pcs are together less efficient in the ET process, while main-
taining a similar affinity than the Phaeodactylum Cyt towards diatom
PSI. In addition, our analysis withmutated green alga Pcs shows that in-
troducing positive groups, and thus weakening the interaction with PSI,
can in some cases enhance the ET step. This is the result of an improved
intracomplex flexibility to optimize ET, indicating that in theWT Pc too
strong electrostatic interactions determine a non-optimal complex con-
figuration of the redox partners. These differences in the Cyt/Pc interac-
tion with the diatom PSI cannot be explained only in terms of
dissimilarities in the electrostatics of the studied systems, but also in
the existence of differential structural and steric factors in the two fam-
ilies of soluble electron carriers.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbabio.2015.09.006.
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Fig. S1. (Top) Sequence of Chlamydomonas reinhardtii Pc synthetic gen. 
(Bottom) DNA primers used for site-directed mutagenesis of 
Chlamydomonas Pc. 
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Fig. S2. Kinetic models and equations used in the fitting of the experimental 
data for the determination of kinetic rate constants for Phaeodactylum PSI 
reduction by (A) its native Cyt (27) or (B) by plastocyanins (28). kET, first-
order electron transfer rate constant; kFAST, observed first-order rate constant 
for the first fast phase of PSI reduction by Cyt; kOBS, observed pseudo first-
order rate constant; kON and kOFF, association and dissociation rate 
constants, respectively, for complex formation; kSAT, observed pseudo first-
order rate constant extrapolated to infinite donor protein concentration (equal 
to kET for PSI reduction by plastocyanins); k1 and k-1, forward and reverse 
rate constants, respectively, for complex rearrangement; RMAX, amplitude of 
the fast phase for PSI reduction by Cyt extrapolated to infinite donor 
concentration. 
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Fig. S3. Computational docking results for the interaction between 
Phaeodactylum PSI and Cyt from (A) Phaeodactylum or (B) Monoraphidium. 
The 20 lowest-energy docking orientations are highlighted. 
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Fig. S4. Computational docking results for the interaction between 
Phaeodactylum PSI and Chlamydomonas WT Pc (A), or the E85K (B) and 
Q88R (C) mutants. The 20 lowest-energy docking orientations are 
highlighted.
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3.4. Description of protein plasticity: an 
example of biomedical interest  

Understanding the effects of pathologic mutations on protein function 

at molecular level requires the consideration of several factors, such 

as protein stability, molecular recognition or conformational flexibility. 

Protein kinases constitute a paradigmatic example of the close link 

between dynamics and function. These enzymes regularly switch 

between distinctive inactive and active states undergoing large 

conformational changes, whose complete computational description 

is still highly challenging. 

This section will report the application of (i) large-scale 

conventional Molecular Dynamics and (ii) state-of-the-art enhanced 

sampling with metadynamics to elucidate the structural and dynamic 

basis of several protein kinase dysfunctional mutations involved in 

severe pathologies.  
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1. Pallara C, Glaser F, Fernández-Recio J. Structural and 
dynamic effects of MEK1 pathological mutations (I): 
unphosphorylated apo and phosphorylated ATP-bound. 
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2. Pallara C, Sutto L, Gervasio FL, Fernández-Recio J. 
Structural and dynamic effects of MEK1 pathological 
mutations (II): enhanced sampling Metadynamics 
simulations. (in preparation) 
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Abstract 

MAPK/ERK signaling pathway constitutes one of the principal and 
better known signal transduction processes in cells, which is involved 
in the tight regulation of many biological events such as cell 
proliferation, differentiation and apoptosis. Dysregulation of MEK1/2, 
a key component of this cascade, is known to be related to different 
pathologies including several cancer types (melanoma, lung and 
ovarian cancer) or many congenital RASopathies, such as the Cardio-
Facio-Cutaneous (CFC) syndrome. Apart from the conventional 
hallmarks shared within essentially all known protein kinases, MEK1 
N-lobe features a peculiar N-terminal α-helix (αA-helix), which has 
been reported to play a negative regulatory role on MEK1 catalytic 
activity. In agreement with these findings, some oncogenic mutations, 
as well as all the mutations associated to CFC-syndrome described 
so far, lie on or face to this regulatory helix and result in MEK1 
overactivation. Despite the known biomedical consequences of such 
specific mutations, the mechanistic explanation underlying their 
functional impact remains elusive. Hence, we used Molecular 
Dynamics (MD) simulations to investigate the structural and dynamic 
effects in different biologically relevant states of MEK1 protein kinase 
of selected pathological mutations related to cancer and/or CFC 
syndrome. In light of the present results, all the mutations described 
here seem to favor the transition from the inactive to active state by 
either increasing αA-helix structural flexibility or promoting the close-
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to-open transition of the activation loop. This study provides a better 
understanding of the effects of these mutations at molecular level. 

Introduction 

The MAPK/ERK signaling cascade is a central cellular pathway that 
controls several biological processes such as proliferation, 
differentiation, development, and, under some conditions, also 
apoptosis. During the last decades, different studies confirmed that up 
regulation of this pathway plays a key role in the pathogenesis and 
progression of various diseases, including many cancer types (e.g., 
pancreas, colon, lung, ovary) [1-12]. Moreover, it was recently 
observed that germline mutations on this pathway are associated with 
a class of developmental disorders, the so-called RASopathies [13-
16], which include cardio-facio-cutaneous (CFC) syndrome [17-18]. 
This is a rare genetic condition that typically affects the heart (cardio), 
facial features (facio) and skin (cutaneous) and which is generally 
associated with a varying degree of learning difficulty and 
developmental delay [19-25].  

 

 

 

 

 

 

 

 

Fig 1. Structure of MEK1 protein kinase. The main structural hallmarks 
are shown in different colors: αA-helix in blue, αC-helix in orange, P-loop in 
green and A-loop in magenta. The phosphorylation sites and the mutated 
residues described herein (i.e., Q56, Y130 and E203) are highlighted. 

Among the numerous and heterogeneous proteins involved in 
MAPK/ERK pathway, MEK1 or MAP2K1 (mitogen-activated protein 
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kinase kinase 1), as well as its highly homologous MEK2, plays a 
crucial regulatory role since it generally functions as modulating 
funnel in the transmission of various up- to downstream signals [26]. 
Like other serine/threonine protein kinases, MEK1 protein structure 
contains functionally critical regions shared within essentially all 
known protein kinases (Fig 1): the Glycine-rich P-loop, consisting in a 
highly conserved sequence motif (GxGxGG), which locks the catalytic 
cleft and is involved in the ATP phosphate positioning; αC-helix, 
which contributes to forming or breaking the ATP binding site; and 
finally the activation segment (A-loop), involved in the modulation of 
MEK1 activity and hosting two putative phosphorylation sites (i.e., 
S218 and S22). Apart from these conventional hallmarks, MEK1 N-
lobe features a peculiar N-terminal α-helix (αA-helix), which has been 
reported to play a negative regulatory role on MEK1 catalytic activity 
[27] related to the stabilization of αC-helix outward displacement [28]. 

As the majority of protein kinases, MEK1 exists in at least two 
conformational states generally referred to as inactive and active 
state, whose interconversion is driven by 
phosphorylation/dephosphorylation cycles. Indeed, although 
conserving a weak basal efficiency, MEK1 catalytic activity 
dramatically increases upon A-loop phosphorylation [29]. The recently 
solved X-ray crystal structure of MEK1 inactive conformation, as well 
as its similarity to the other STE group kinases have provided some 
hints about the structural basis for MEK1 regulatory mechanism. 
Large conformational changes, mainly involving A-loop and αC-helix, 
could be reasonably expected: (i) the highly packed and helical 
conformation of the activation loop in the inactive state should 
assume a full unpacked and extended conformation upon its 
phosphorylation; (ii) αC-helix, initially locked in a αC-out conformation 
should tilt toward the N-lobe, completing the catalytic cleft and thus 
assuming the so-called αC-in conformation. Such alternative 
orientations of αC-helix are defined by specific contacts of E114 
residue, a highly conserved glutamate located on the αC-helix N-
terminal region, which appears involved in a hydrogen bond with the 
A-loop Q214 residue or engaged in a salt bridge with K97 (the 
catalytic lysine located on the β3-strand) in the αC-out or αC-in 
conformation, respectively. 

In agreement with the above mentioned regulatory role of 
MEK1 αA-helix, some oncogenic mutations as well as all the 
mutations associated to CFC-syndrome described so far lie on or face 
to the regulatory αA-helix [28] and lead to an increase of the MEK1 
kinase activity with respect to the wild type (WT) [17]. Nevertheless 
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clear differences have arisen between cancer and CFC syndrome 
related mutations. Indeed, the former are usually related to a 
constitutive activation of MEK1 protein kinase while the latter are 
associated with a milder increase in MEK1 catalytic activity [17, 30-
32].  

Despite all the above considerations, the mechanism 
underlying the MEK1 inactive-to-active transition is not yet understood 
at atomic level and only a few studies have been reported so far 
concerning the functional and mechanistic impact of some MEK1 
mutations [33-34]. Here, we have studied the structural and dynamics 
effects in different biologically relevant states of MEK1 of selected 
pathological mutations related to cancer and/or CFC syndrome. For 
this, long Molecular Dynamics (MD) simulations were performed on 
the WT MEK1 and three pathological mutants associated to an 
increase of the MEK1 kinase activity: one lying on the regulatory helix 
(Q56P) and other two falling within the MEK1 kinase domain 
boundaries and facing αA-helix (Y130C and E203K). These mutations 
show different biochemical and clinical effects: Y130C is known to 
cause a slight increase of the MEK1 basal activity [17], occurs in one 
of the most documented mutation site found in CFC syndrome [35] 
but has never been described in any type of cancer; E203K is related 
to a constitutive activation of MEK1 [31, 33], occurs in 8% of 
melanoma [31, 36] but is not associated with CFC syndrome; finally 
Q56P causes a significant increase of the kinase activity in vitro [37], 
and has been reported to occur in patients with CFC syndrome [38] 
as well as in lung adenocarcinoma cell lines [37, 39-40]. 

Materials and Methods 

Structural models of MEK1 variants 

The crystal structure of MEK1 in an inactive conformation (PDB ID: 
3EQD; resolution 2.1 Å) was used as a scaffold to model all the 
MEK1 variants studied here (i.e., WT, Y130C, Q56P and E203K), 
either in the unphosphorylated apo or in the phosphorylated ATP-
bound state. All crystallographic water molecules and non-catalytic 
ions were removed. The unphosphorylated apo state of MEK1 was 
modeled by removing the AGS molecule and the Mg+ ion contained 
in the crystallographic structure. The phosphorylated ATP-bound 
state of MEK1 was modeled by substituting the co-crystallized 
cofactor by ATP and adding phosphate groups on S218 and S222 
residues from the A-loop. Mutants, phosphorylated residues and other 
structural manipulations were done with UCSF Chimera program [41].  
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Molecular Dynamics simulation protocol 

Classical MD simulations were performed on each MEK1 structure 
using GROMACS 4.6.7 program [42]. The CHARMM22* force field 
[43] was used to parameterize the proteins (together with cofactor, 
ions and water molecules). Phosphorylated serine residues were 
described by Gromos43a1p force field.  

Each system was solvated in TIP3P water molecules and 
enclosed in a dodecahedron box with periodic boundary conditions 
and a minimum distance of 12 Å between the protein and the 
boundaries. The molecular charges were neutralized by adding the 
proper number of positive ions (i.e., Na+). Van der Waals interaction 
cutoffs were set to 10 Å and the long-range electrostatic interactions 
were calculated by the particle-mesh Ewald algorithm [44], with mesh 
spaced 1.2 Å. Each solvated system underwent a short energy 
minimization and a three-step equilibration (as previously described 
[45]) and then was used as input for three 1-µs-long unbiased 
simulations in isothermal-isobaric ensemble (setting the pressure to 1 
atm and temperature to 300K). Finally, a total of 24 1-µs-long 
unbiased trajectories were collected. 

GROMACS g_rms and g_mindist tools were executed to 
compute RMSD and residues contacts respectively. The most 
representative structure along the multiple simulations was selected 
as follows: for each system the three trajectories were merged and 
then clusterized according to the c-alpha atoms positions using the 
single-linkage clustering algorithm of g_cluster program from the 
GROMACS package and setting an RMSD cutoff value of 2 Å with 
each cluster, finally the most populated cluster was selected and the 
structure with smallest distance to all the other members was chosen. 

Results 

Dynamic effect of mutations on αA-helix  

To compare and understand the structural, dynamics and energetics 
impact of selected pathological mutants that are reported to induce 
over-activating effects on MEK1 catalytic activity, the 
unphosphorylated apo and phosphorylated ATP-bound MEK1 protein 
kinase structural models were constructed both for the WT as well as 
for the three pathological mutants described here (i.e., Y130C, Q56P 
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and E203K). Each of the eight models was then subjected to three 1-
µs-long MD simulations, and the trajectories analyzed as follows. 

In addition to the conventional hallmarks shared among 
virtually all the kinases, MEK1 N-lobe features αA-helix, which has 
been reported to play a negative regulatory role on MEK1 basal 
activity [27]. Moreover, since all the mutants studied here lie on or are 
located close to this helix, our first goal was to investigate the impact 
of the mutations on this region. To this aim, for each MEK1 variant 
(i.e., WT, Y130C, Q56P and E203K mutants) we calculated the 
RMSD of the αA-helix in the unphosphorylated apo model derived 
from MD simulations with respect to that in the X-ray crystal structure 
of MEK1 inactive state (PDB 3EQD). As shown in Fig 2 and Table 1, 
all the mutated MEK1 structures had larger deviation compared with 
the WT.  

 

 

 

 

 

 

Fig 2. Dynamic effects of mutations on MEK1 αA-helix. (A-D) αA-helix 
most representative structures for unphosphorylated apo WT, Y130C, Q56P 
and E203K MEK1 simulations (in gray, blue, green and red respectively). For 
Y130C mutant two representative structures (corresponding to the WT-like 
and odd simulations) are depicted. (E-F) RMSD of the αA-helix with respect 
to that in 3EQD MEK1 X-ray crystal structure: WT, Y130C, Q56P and E203K 
(same color code as above). Dotted lines indicate the RMSD average value 
among the three simulations. 
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Table 1. Average RMSD and contact frequency values along the MD 
simulations.  

 RMSDavg (Å) Pair contact frequency 
(%) 

 αA-
helixa 

P-
loop

a 

αC-
helixb 

A-
loopb 

A52/ 
Q56a 

Q56/ 
Y130Ca 

R49/ 
E203a 

E114/ 
Q214

b 
WT 2.5 2.6 3.8 4.7 84 76 80 83 
Y130C 3.9 3.3 4.3 5.5 63 5.7 59 29 
Q56P 3.2 3.6 4.3 5.7 0 18 62 54 
E203K 10.3 3.0 4.4 5.9 37 1 0 45 
WT 2.5 2.6 3.8 4.7 84 76 80 83 
A pair contact is defined as residue-residue minimal interatomic distance < 4 
Å; aunphosphorylated apo MEK1 structure; bphosphorylated ATP-bound 
MEK1 structure. RMSD values are referred to backbone atoms 

Interestingly, not only these findings appeared in agreement 
with the increase of MEK1 activity caused by the mutations (as 
previously reported) but also confirmed the differences in the extent of 
the mutants impact. Indeed, the conformational flexibility led by 
E203K mutation (the one with the highest MEK1 constitutively 
activation) appeared much higher with respect to Y130C and Q56P. 
However, it is important to notice that while all the Q56P and E203K 
trajectories showed quite comparable behaviors, two out of three 
Y130C simulations results similar to the WT system while the third 
exhibited much higher fluctuations. These data suggested that the 
effects induced by this mutation might be milder than suggested by its 
average RMSD value. 

In order to obtain more in-depth understanding on the effects 
caused by the mutations, we analyzed more in detail the structural 
changes involving αA-helix as well as some crucial contacts between 
such helix and the kinase core (Table 1 and Fig S1). As shown in Fig 
2, αA-helix remained folded and tightly packed against the kinase 
core region along the WT trajectories. On the contrary, all the 
mutations induced weakening of αA-helix/core contacts typically 
associated with its partial unfolding. Regarding Y130C case, the 
tyrosine residue in the WT structure makes extensive hydrophobic 
contacts with F53 and K57, and a long-range hydrogen bond with 
Q56 side chain, all located on αA-helix. All these interactions are 
deeply affected by the mutation of the tyrosine to a cysteine, a much 
smaller and polar residue, leading to the weakening of the contacts 
between αA-helix and the core region. Moreover, the loose of the 
contact with Q56 residue is combined with the break of the salt bridge 
between K203 and R49 and perturbation of Q56/A52 backbone 
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hydrogen bond. Unlike Y130, Q56 is located on αA-helix and is 
involved in fewer interactions with the kinase domain. However the 
introduction of a proline residue on this position causes a structural 
disruption of the helix by introducing a strong kink, which completely 
displaces the N-terminal half of the αA-helix and strongly impact αA-
helix/core interaction. Finally, the dramatic consequences associated 
to the mutation of E203 residue to a lysine might be explained not 
only by the disruption of the salt bridge between E203K and R49 but 
also by the electrostatic repulsion between the positively charged 
K203 and R49 residues. 

Increase of P-loop flexibility upon mutations 

Phosphate-binding loop (P-loop) plays a crucial role in the cofactor 
binding in virtually all protein kinases, acting as a lid for the ATP 
binding pocket. Moreover its opening may be useful to facilitate ATP 
intake in the apo state. For this reason, we investigated the effects of 
the mutations on P-loop flexibility along the MD trajectories. Indeed, 
the MD simulations showed that all mutants had much broader 
deviations for the residues of the P-loop as compared to the WT (Fig 
3E-G) (Table 1). Interestingly, since the slowest step in the 
phosphorylation cycle corresponds in most kinases to product release 
[46], such increase of the P-loop intrinsic flexibility might be related to 
a higher cofactor turnover a thus explain the over-activation caused 
by the mutations. Moreover, since steric blockage of the binding site 
is a very common mechanism used by kinases to maintain their 
inactive state, in the apo state P-loop is likely to collapses onto the C-
lobe, adopting a conformation that disfavor cofactor binding and 
restricting the ATP binding site. Actually we found that in WT, as well 
as in Y130C and E203K simulations, P-loop tended to flop into the 
active site, adopting a conformation that would have a significant 
number of steric clashes with ATP. On the contrary, in Q56P mutation 
P-loop conformation would have fewer clashes with ATP (Fig 3 A, D).  
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Fig 3. Effects of mutations on P-loop flexibility. (A-D) P-loop most 
representative structures for unphosphorylated apo WT, Y130C, Q56P and 
E203K MEK1 simulations (in gray, blue, green and red, respectively). (E-F) 
Residue RMSD of the P-loop with respect to 3EQD MEK1 X-ray crystal 
structure: WT, Y130C, Q56P and E203K (same color code as above). 
Dotted lines indicate the RMSD average value among the three simulations. 

Conformational changes in the activation loop (A-
loop) upon phosphorylation 

It is well known that phosphorylation is required for the activation of 
many kinases [47] and the activation loop (A-loop) undergoes 
conformational changes upon switching between inactive and active 
state of the kinase. The number and the location of phosphorylation 
sites within A-loop vary among kinases [48]. S218 and S222 are 
known phosphorylation sites in the activation loop of MEK1 protein 
kinases [29]. 

First of all, we were interested in understanding the structural 
changes in A-loop (residues 207-233) in MEK1 protein kinases upon 
phosphorylation in physiological conditions. Thus, we compared the 
structural flexibility of A-loop along the MD trajectories between the 
wild type of unphosphorylated apo MEK1 and phosphorylated ATP-
bound MEK1. Interestingly, we found that MEK1 phosphorylation 
induced a significant increase of the conformational flexibility not only 
in the activation segment but also in the αC-helix, as indicated by 
their average RMSD values along the MD simulation, switching from 
3.8 to 4.7 Å and from 2.4 to 3.8 Å, respectively (Fig 4 A, B). 
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Fig 4. A-loop and αC-helix conformational flexibility upon 
phosphorylation. (A) A-loop and (B) αC-helix RMSD in unphosphorylated 
apo (grey) and phosphorylated ATP-bound (yellow) MEK1 states with 
respect to the X-ray crystal structure (3EQD) of MEK1 inactive state; (C) 
Most representative structures along the MD simulation for 
unphosphorylated apo (gray) and phosphorylated ATP-bound MEK1 (yellow) 
states as compared to the X-ray crystal structure (white); (D) Minimal 
distance between Q214 backbone and E114 side chain residues (same color 
code as above). Dotted lines indicate the RMSD average value among the 
three simulations. 

As shown in Fig 4C, considerable structural variations 
occurred both in A-loop and in αC-helix upon phosphorylation. 
Indeed, A-loop underwent a partial unfolding of the highly packed and 
helical conformation adopted in the X-ray crystal structure, whereas 
αC-helix suffered a significant distortion and outward shift. 
Nevertheless, we could not observe a complete inactive-to-active 
transition of A-loop even upon phosphorylation. Indeed, is still 
assumed a rather packed conformation strongly interacting with αC-
helix, which, in turn, appeared locked in a αC-out orientation by a 
highly stable hydrogen bond between E114 and Q214 residues (Fig 
4D). Finally, it is interesting to notice that also in absence of any 
phosphorylation, the A-loop maintained a rather considerable 
instability, undergoing a slight tilt towards C-terminal lobe. These 
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finding might explain the existence of a significant, although low basal 
activity of MEK1 protein kinase [29]. 

Mutations favor MEK1 inactive-to-active transition 

Fig 5. Effects of mutations on A-loop flexibility. (A-D) A-loop most 
representative structures for unphosphorylated apo WT, Y130C, Q56P and 
E203K MEK1 simulations (in gray, blue, green and red respectively). (E-F) 
RMSD of the A-loop with respect to that in 3EQD MEK1 X-ray crystal 
structure for WT, Y130C, Q56P and E203K (same color code as above). 
Dotted lines indicate the RMSD average value among the three simulations. 

The above results clearly suggest that A-loop phosphorylation 
triggers structural variation in both the activation segment and αC-
helix, which are supposed to facilitate transition to the active state. 
Thus, in order to understand the functional impact of the mutations on 
such process, we compared the structural variations in the activation 
segment and the αC-helix upon phosphorylation for the mutated 
system with the ones observed in the WT. The RMSD plots showed 
that any mutated system induced larger deviations compared with the 
WT in both the A-loop (Fig 5E-G) as well as the αC-helix (Fig S2A). 
Moreover, some differences in the extent of the effects led by the 
mutations could be disclosed, as indicated by the average RMSD 
values of A-loop along the simulations: more significant effects were 
led by E203K mutant, followed by Q56P and finally Y130C (Table 1). 
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To examine in more detail the structural consequences 
induced by the mutations, we compared the most populated A-loop 
conformations explored along the simulation by the WT and mutated 
systems. Actually, none of the mutated structures underwent a 
complete inactive-to-active transition during any of the three 
simulations and the extent of the induced A-loop unfolding resulted 
comparable with that exhibited by the WT. (Fig 5A-D). Nevertheless, 
they did induce a dramatic destabilization of the hydrogen bond 
between αC-helix E114 and A-loop Q214 residues, whose interacting 
frequency dropped from 85% in the WT to a range between 29% and 
54% for the mutants (Table 1 and Fig S2). These data suggested that 
not only the mutations cause an increase of the A-loop flexibility but 
even more interestingly they could result in an acceleration of the 
inactive-to-active transition process, which would prompt the 
formation of the salt bridge between E114 and the catalytic lysine 
K97. 

Discussion  

In order to investigate the intrinsic propensity for inactive-to-active 
transition upon either oncogenic or CFC syndrome-related mutations, 
1-µsec MD simulations were performed on two biologically relevant 
forms (i.e., the unphosphorylated apo and the phosphorylated ATP-
bound state) of MEK1 protein kinase for the WT and three 
pathological mutants: Y130C, exclusively associated with CFC-
syndrome, E203K exclusively related to cancer and Q56P observed 
in both the diseases.  

In light of the present results, all the mutations described here 
seemed to favor the transition from inactive to active state in MEK1 
protein kinase. All the mutations resulted in increasing αA-helix 
structural flexibility and promoting the close-to-open transition of the 
activation loop. However the effects produced by E203K resulted 
more dramatic as compared to Q56P and even more with respect to 
Y130C. Indeed these findings are in agreement not only with the 
constitutive activation induced by E203K, but also with the 
pathological degrees of the different mutations. Finally a distinctive 
over-activating effect was found in Q56P with respect to Y103C and 
E203K mutants involving the increase of P-loop flexibility that could 
be related to the promotion of the cofactor turnover.  
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Conclusions 

The findings described herein can help to rationalize and quantify the 
activating effects induced by Y130C, Q56P and E203K mutations 
offering a mechanistic explanation to the different extent of MEK1 
over-activation observed for each specific mutation. 
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Supporting information 

 

 

 

Fig S1. Molecular interaction between αA-helix and kinase core. 
Residue-residue minimal distance of (A) A52/Q56, (B) Q56/Y130C and (C) 
R49/E203 contacts. WT, Y130C, Q56P and E203K unphosphorylated apo 
MEK1 data are represented in gray, blue, green and red respectively. 
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Fig S2. Effects of mutations on αC-helix flexibility. (A) αC-helix RMSD 
with respect to the X-ray crystal structure (3EQD) of MEK1 inactive state; 
(B) Minimal distance between Q214 backbone and E114 side chain 
residues. WT, Y130C, Q56P and E203K phosphorylated ATP-bound MEK1 
data are in gray, blue, green and red respectively.  
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Abstract 

Protein kinases are key regulators of eukaryotic living cells, since they 
are involved in crucial biochemical functions and signaling networks. 
These enzymes share a common fold and, in response to specific 
cellular signals, switch between distinctive inactive and active states 
undergoing large conformational changes. Describing these large 
conformational changes exhaustively is highly challenging. One 
relevant example within the protein kinase family is MEK1 (Mitogen-
activated protein kinase kinase 1), involved in the MAPK/ERK 
pathway. Given its regulatory role in many important cell processes 
(such as gene expression, cell differentiation and apoptosis), over-
activating mutations on MEK1 are known to cause different serious 
pathologies, such as several cancer types (melanoma, lung and 
ovarian cancer) or different congenital anomaly disorders, like the 
Cardio-Facio-Cutaneous (CFC) syndrome. Thus, a comprehensive 
elucidation of the large-scale conformational transitions that rule 
MEK1 functional mechanism is of great value to identify druggable 
spots, which play a key role during such motions and thus guide the 
rational design of selective inhibitors. In order to investigating the 
intrinsic propensity for inactive-to-active transition of MEK1 of 
pathological mutations, we recently employed conventional Molecular 
Dynamics (MD) on MEK1 in different biologically relevant states. 
Indeed, the analysis of such simulations helped to disclose interesting 
dynamic events regarding MEK1 activation process and the specific 
destabilization effects caused by each mutation. Nevertheless, given 
the long time scales involved in the protein kinases activation process 
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and the intrinsic limitations of the MD simulations in the exhaustive 
sampling of biomolecule energy landscape, some important aspects 
of this topic remained hidden. Therefore the main purpose of the 
present study consisted on enhancing the conformational exploration 
by using a state-of-the-art enhanced sampling method, such as PT-
MetaD.  

The present findings, combined with those previously 
reported, could not only help to rationalize and quantify the activating 
effects induced by pathological mutations but also offer a mechanistic 
explanation to the different extent of MEK1 over-activation observed 
for oncogenic or CFC-related mutations and eventually open the path 
for the development of disease specific therapeutic approaches.  

Introduction 

One of the largest and most functionally diverse protein families, 
kinases represent key regulators of eukaryotic living cells, since they 
are involved in crucial biochemical functions and signaling networks. 
Among the over 500 already characterized members, the large 
majority of human protein kinases, has been found to share a 
common fold and switch between distinctive inactive and active states 
in response to specific cellular signals [1].  

One relevant example within this multifunctional protein family 
is MEK1 (Mitogen-activated protein kinase kinase 1), involved in the 
MAPK/ERK pathway. As a result of its regulatory role in many 
important cell processes, like gene expression, cell differentiation and 
apoptosis, deregulation of MEK1/2 is known to cause several 
important pathologies. At least 15 activating mutations of MEK1/2 are 
associated with the CFC syndrome [2-3], while at least other 10 have 
been identified in several cancer types (melanoma, lung and ovarian 
cancer) [4-15]. As the majority of the protein kinases, MEK1 is known 
to exist in at least two states, associated to either high or low catalytic 
activity and fine-tuned by protein phosphorylation. These two states 
can adopt different forms (usually referred as active and inactive) 
structurally featured by specific hallmarks described as follow. By 
analogy with other STE group kinases, MEK1 activation is thought to 
be mainly controlled by extensive conformational arrangements in 
three conserved structural motifs close to the active site: the 
activation loop (A-loop), the Asp-Phe-Gly (DFG) motif and αC-helix 
(Fig 1).  
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Fig 1. Comparison of (A) the active homology model and (B) inactive 
crystal structure (PDB 3EQD) of MEK1 protein kinase. Key structural 
elements are colored in blue (αA-helix), orange (αC-helix), green (P-Loop) 
and magenta (A-loop). Residues either high-conserved or used to define the 
collective variables (K97, E114, L180, D190, D208, F209, T226) are shown 
in stick. The mutated residues described herein (i.e., Q56, Y130 and E203) 
are in red. It is noteworthy that, although the inactive state is generally 
marked by the DFG-out conformation, 3EQD crystal structure shows D208 
pointing inward the ATP binding site. 

More in detail, as virtually all the protein kinases, MEK1 active 
state conformation is characterized by a highly unpacked and 
extended conformation of A-loop, exhibiting a hairpin in its N-terminal 
region. Such peculiar orientation is fixed by a conserved hydrogen 
bond between the carboxyl of the D190 and the hydroxyl group of 
T226 (i.e., the aspartic acid of the HRD motif and the threonine of the 
conserved A-loop GT motif, respectively) which in turn is responsible 
for the correct orientation of the P-site hydroxyl acceptor group of the 
substrate during the MEK1/ERK phosphoryl transfer reaction [16]. 
Moreover αC-helix tilts toward the N-lobe, completing the active site 
and assuming the so-called αC-in conformation, which is sealed by a 
salt bridge between E114, the conserved glutamate of αC-helix and 
K97, the catalytic lysine located on the β3-strand. Finally, the 
aspartate of the DFG motif assumes a conformation generally 
referred as DFG-in, facing its side chain into the ATP-binding pocket 
in order to coordinate the Mg2+ ion and properly orientate the ATP 
substrate.  

On the contrary, in the inactive conformation, this latter 
interaction is often disrupted by the turning of the DFG phenilanine 
toward the ATP site (defined as DFG-out conformation) and is usually 
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coupled with marked changes in A-loop, which adopts a highly 
packed and helical conformation, causing an extensive displacement 
of T226 hydroxyl group, that results placed about 9 Å away from 
D190 carboxyl. Finally, the αC-helix adopts the so-called αC-out 
conformation, rotating out of the catalytic cleft and tilts away from the 
N-terminal lobe. As a result, E144 side chain is unable to form the 
critical ion pair with the catalytic lysine, resulting involved in a 
hydrogen bond with the A-loop Q214 residue. 

With conventional MD and the currently available computer 
hardware, events on the microsecond time-scale can be sampled 
without the need of any a priori knowledge of the relevant reaction 
coordinates, which can be useful to observe unexpected events. We 
recently used MD simulation to investigate the intrinsic propensity for 
inactive-to-active transition upon either oncogenic or CFC syndrome-
related mutations in different biologically relevant states of MEK1 
protein kinase. The analysis of such simulations helped to disclose 
interesting dynamic events regarding MEK1 activation process and 
the specific destabilization effects caused by each mutation. 
Nevertheless, given the large conformation changes involved in 
protein kinases activation, the complete process cannot be fully 
described by conventional MD and thus some important aspects may 
remain hidden. 

Reported solutions to overcome this limitation consist in the 
application of novel algorithms for enhanced Molecular Dynamics 
(eMD), such as metadynamics [17-18], where large energy barriers 
are artificially reduced, allowing proteins to shift between 
conformations that would not be accessible within the time scales of 
MD. Indeed, the efficiency of such technique has been recently 
boosted by its combination with multiple-replica approaches, as in the 
case of the parallel-tempering metadynamics simulations approach 
(PT-MetaD), which has been successfully applied to the exploration of 
very complex conformational free-energy surfaces of kinases [19-21]. 
Thus, the application of PT-MetaD appeared a promising strategy to 
fully address the exhaustive exploration of MEK1 protein kinase 
energy landscape under both physiological and pathological 
conditions.  

Extensive PT-MetaD simulations were performed on the wild 
type (WT-) MEK1 and the previously described pathological 
mutations. As already mentioned, they mainly differ in the pathogenic 
effects as well as in the extent of their impact on MEK1 catalytic 
activity. More in detail, Q56P mutant has been reported to be involved 



Articles 

 

 253 

in CFC syndrome [3] as well as in lung adenocarcinoma cell lines [22-
23], while Y130C and E203K are associated with CFC-syndrome [2] 
and cancer [24-25], respectively. Moreover, E203K mutation generally 
results in MEK1 constitutive activation [26], whereas Q56P and 
Y130C have been found to be related to lower overactivating effects 
[27-28].  

Materials and Methods 

Protein structural models 

Inactive MEK1 structure was taken from the Protein Data Bank 
(www.rcsb.org) [29], with PDB code 3EQD [30] and it was used as 
scaffold to model the mutants studied here. Mutants and missing 
residues were modeled using UCSF Chimera program [31]. Although 
a crystal structure of a presumably activated MEK1 (3W8Q) is 
available in the PDB, we decided not to use it. The main reasons of 
this choice are explained below. Firstly the unavailability of the 
corresponding manuscript prevents us from knowing the protocol 
used for the crystallization; secondly, the DFG-motif adopts a DFG-
out orientation that should not be found in a canonical active state. 
Thus, MEK1 active conformation was built by homology modeling as 
follows: the kinase domain (65-382 residues) was built based on the 
human MST3 kinase X-ray structure (PDB 3A7I) [32], while αA-helix 
(39-54 residues), missing in the template, was derived from the MEK1 
inactive structure (PDB 3EQD). The sequence alignment between 
MEK1 and MST3 protein kinase was performed using BLAST [33], 
and then a total of 20 homology models were built using MODELLER 
[34]. Finally, the model with the best DOPE score was selected and 
subjected to 1000 steps of steepest descent energy minimization. The 
human MST3 kinase was used as template because it has the 
highest sequence similarity to MEK1 (34% according to BLAST) 
among the STE kinases for which a canonical active structure is 
available in the PDB.  

Simulation setup 

The MD simulations were performed using GROMACS 4.6.7 [35] with 
the PLUMED plug-in [36] for Metadynamics calculations. Each 
system was described by the CHARMM22* force field with the 
correction of Piana et al. [37] and enclosed in a dodecahedron box 
with periodic boundary conditions containing a 12 Å buffer of TIP3P 
water molecules. Long-range electrostatics interactions were 



Description of protein plasticity: an example of biomedical interest 

 

 254 

calculated by the particle-mesh Ewald algorithm [38], with mesh 
spaced 1.2 Å. Both electrostatics and van der Waals interactions 
cutoffs were set to 10 Å. All the simulations were performed in a 
canonical ensemble, coupled with a velocity-rescale thermostat [39] 
and a time step of 2 fs. 

Each solvated system was prepared performing a short 
energy minimization and a three-step equilibration protocol as 
described before [21]. Then, a preliminary parallel tempering 
metadynamics (PT-MetaD) was performed with 10 replicas at 
increasing temperatures (from 300 to 450K), biasing only the potential 
energy. Each Gaussian was added every 500 timesteps, with an 
initial hill height of 10 kJ/mol and a width of 1000 kJ/mol. The bias 
factor was set to 200. This protocol allowed to enlarge the energy 
fluctuations at different temperatures, improve the overlap of the 
potential energy distributions and thus sample the Well-Tempered 
Ensemble (WTE). 

At this point, PT-WTE was combined with a metadynamics 
simulation (PTMetaD-WTE [40]). Two collective variables (CV1 and 
CV2) were used to study the inactive-to-active transition of the A-loop, 
namely the distance in contact map space to the closed and open A-
loop conformation (as defined before [21]). Thus, when their values 
are close to 0, A-loop assumes a conformation similar to that found in 
the reference structure while higher values correspond to higher 
similarity to the alternative conformation. Moreover, as the DFG motif 
was found in an in-conformation in both the inactive and active 
reference structures used herein and given its relevance as hallmark 
to define kinases activity states, an additional collective variable 
(CV3) was specified describing its in-to-out transition as the 
combination of the distances between the center of mass of K97 and 
D208 as well as F209 and L180 side chain residues, setting the 
weighing factors to -0.73 and -0.68, respectively. Thus, values 
ranging around -1.0 stand for the DFG motif pointing in toward the 
ATP active site (DFG-in conformation) while values centered around  
-1.5 correspond to the DFG motif pointing outward (DFG-out 
conformation), finally values higher than -2.0 indicate intermediate 
DFG conformations (e.g., Asp- up or down conformation). During the 
PTMetaD-WTE simulations, each Gaussian was added every 1000 
time steps, with an initial hill height of 10 kJ/mol and a width of 0.5 
units for CV1 and CV2 and 0.1 for CV3. The bias factor was set to 10. 
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PTMetaD-WTE simulations analysis 
The free energy surfaces (FES) of the WT and the three mutants 
were obtained for the replica at 300K by integrating the deposited 
bias during the PTMetaD-WTE simulations, as required by the 
metadynamics algorithm. For convenience, they are shown as 
function of two CVs at a time (CV1, CV2 and CV1, CV3). 

To obtain the representative structure of each basin observed 
in all the 300K FESs, a set of structures within a small patch 
surrounding each basin was selected setting the range cutoff values 
to ±1 for CV1 and CV2 and ±0.1 for CV3 around the center. The 
structures were then clusterized according to the Cα atoms positions 
using the single-linkage clustering algorithm of g_cluster program 
from the GROMACS package [35] and setting an RMSD cutoff value 
of 2 Å within each cluster. The residues located on unstructured 
modeled loop (residues 278-306) were excluded during the RMSD 
calculations. Finally the most populated cluster for each basin was 
selected and the structure with smallest distance to all the other 
members was picked as the most representative structure of the 
basin.  

 

Results 

PTMetaD-WTE simulations on MEK1 WT and pathological 
mutations 

To elucidate the structural and energetic consequences of Y130C, 
Q56P and E203K mutations on the catalytic domain of MEK1 protein 
kinase, four extended PTMetaD-WTE simulations were performed. 
The total sampling time for each system was at least 10 µs, leading to 
well-converged free-energy surfaces. A total of three collective 
variables (CVs) were selected in order to characterize both A-loop 
transition from closed to open state (CV1 and CV2) and the flip of 
DFG-motif (CV3) (see Materials and Methods). The simulations were 
run until the free energy projected along each collective variable at a 
time did not change noticeably in the last 50 ns (Fig S1). This 
convergence criterion led to 1.3 µs long simulations for WT MEK1 
and to 1.0, 1.3 and 1.0 µs for each Y130C, Q56P and E203K replica, 
respectively. To further check the convergence, the free energy 
profiles in the mono-dimensional projection obtained by PLUMED 
module sumhills were compared with the ones obtained by the time-
independent re-weighting technique of Tiwary and Parrinello [41]. The 
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profiles extracted by the two methods did not change significantly and 
thus confirmed the convergence of the simulations (Fig S2).  

For each system, either the WT MEK1 protein kinase and the 
mutants, the FES was projected along two collective variables at a 
time, CV1, CV2 and CV1, CV3 respectively, where CV1 and CV2 
account for a broad characterization of A-loop conformation (i.e., the 
distance in contact map space to A-loop closed and open 
conformation, respectively) while CV3 describes the DFG-motif 
orientation. On the whole, the projections of the FES as function of 
CV1 and CV2 revealed that all mutations led to a considerable 
destabilization of A-loop closed conformation, a clear stabilization of 
the open state and a remarkable lowering of the free energy barrier 
for the closed-to-open transition. In addition, significant differences 
were found in the FESs projected on the CV1 and CV3 dimensions: 
all the mutants lead to a flattening of the free energy barrier for DFG 
in-to-out transition although to different extents (Fig S3). 

Effect of the mutations on the A-loop closed-to-open transition 

Wild type MEK1 

In the FES projected along the first two collective variables, the 
deepest free-energy minimum of WT-MEK1 protein kinase 
corresponds to the auto-inhibited state, in which the αA-helix is folded 
and tightly packed against the kinase core region (Fig 2). This state 
appears strongly stabilized by a crucial salt bridges network, which 
acts as a clamp between the αA-helix and the N-lobe: R49, located 
on the αA-helix interacts with E144 (lying on the β5-strand), which in 
turn is linked to E203 and K205 (of the β7/β8 loop). These 
interactions aid in keeping the αC-helix shifted away from its active 
state orientation through a cascade of intramolecular contacts, which 
spread from the αA-helix across the entire N-terminal region and 
involve the hydrogen bonds between the side chain of Q56 and K57 
(on the αA-helix) with Y130 and H119 (on the β4-strand and the αC-
helix), respectively. Moreover, similarly to the inactive MEK1 crystal 
structure, the αC-out orientation is stabilized by a network of 
hydrophobic interactions between L215 and V211 A-loop residues 
with I99, L101, I111 and L115 located on αC-helix and β1-strand. As 
a result, the highly conserved glutamate 114 of the αC-helix is 
pointing out of the active site and is thus unable to form the critical ion 
pair with the catalytic K97 (kept at a distance of roughly 17 Å). On the 
contrary, the E114 outward orientation is stabilized by the formation of 
a hydrogen bond between the side chains of E114 and Q214. 
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Fig 2. Free-energy surface of wild-type MEK1 and the three mutants as 
a function of CV1 (x-axis) and CV2 (y-axis). A cross indicates the global 
free energy minimum for which a representative structure is shown below. 
Each minimum is also named according to the corresponding main feature. 
The contour lines are drawn every 10kJ/mol. In the structures below, the αA-
helix is show in light blue, the αC-helix in orange, the A-loop in magenta. The 
mutated residues are shown in red. 

On the other hand, the activation loop appears blocked in a 
rather folded conformation, which consists in a short helix partially 
broken in the middle but stabilized by the crystallographic hydrogen 
bond between the A220 and D217 backbone atoms. This A-loop 
close orientation appears fixed by the formation of an additional 
hydrogen bond between the hydroxyl group of S212 (highly 
conserved among all the MEK1 family members) and the carboxyl of 
D190, involved in the HRD motif. D190 is thus unable to interact with 
the threonine of the GT motif (i.e., T226), which in turn is kept at 
roughly 10 Å far from the aspartate. Indeed, the D190/S212 contact, 
despite it has never been observed, might reasonably prevent the 
production of the proper A-loop rearrangement in a fully active 
conformation and appears in agreement with the previously observed 
increase of MEK1 basal activity led by the mutation of S212 to alanine 
[42]. 

Apart from the closed state minimum, two additional low-
energy basins were identified, located at 10 kJ/mol and 20 kJ/mol 
higher energy and which correspond to semi- of fully-open A-loop 
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structures, respectively. In the semi-open state, the A-loop assumes 
an intermediate conformation between canonical open and closed 
ones. Thus, it adopts a reasonably closed but rather unfolded 
rearrangement in which only one turn of the original two-turn helix is 
kept folded. On the contrary, the fully open state recalls the A-loop 
observed in several protein kinases active structures although the αC-
helix appears in the out-conformation, rotated out of the catalytic site 
(Fig S4). 

It is worth to note that none of the states found hereby 
corresponds to the fully active structure, which confirms that the 
active conformation of WT, in absent of phosphorylation, is 
energetically unfavorable and infrequently sampled [43]. This is 
further supported by the comparison between the free energy barriers 
extracted by the closed to semi-open, semi-open to closed and semi-
open to open transition, corresponding to around 30kJ/mol, 20kJ/mol 
and 40kJ/mol, respectively.  

Y130C-MEK1 mutant 

The Y130C mutant dramatically changes the conformational free-
energy landscape projected along CV1 and CV2, shifting the 
equilibrium toward the active conformation. Unlike the WT, Y130C 
FES shows only one significantly broad minimum, corresponding to a 
rather heterogeneous bunch of structures that mainly differ in the 
conformation of A-loop. The most populated cluster is marked by a 
partially unfolded A-loop that forms a short one-turn helix at its N-
terminal (still stabilized by L215/S212 backbone hydrogen bond) and 
an extended disordered region at its C-terminal. As shown in Fig 2, 
the single point mutation on the 130 residue causes the break of the 
hydrogen bond with the αA-helix Q56 and leads to a slight outward 
slipping of β4 and β5-strand, locked by the formation of a new salt 
bridge between D136 and R108 and coupled with Y134 side chain 
outward flipping. This leads to the distortion and inward shift of central 
region of the αC-helix and thus the weakening of some hydrophobic 
contacts with the A-loop (e.g., V211/I111 and V211/L115) which in 
turn lead to a partial unfolding of the A-loop, stabilized by a new 
K104/D217 salt bridge. Although the extent of the αC-helix turn 
results to be insufficient to prompt the formation of the salt bridge 
between E114 and the catalytic lysine K97, it does reduce the 
distance between the two catalytic residues which are placed at a 
distance of roughly 12 Å. On the other hand, the second cluster, 
much less populated than the previous one, shows a full distension of 
the A-loop and a partial deformation of the αC-helix in which the first 
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three turns are maintained while the other two appear totally 
disordered (Fig S4).  

Interestingly, not only both the semi- and fully- open states 
are energetically very similar, suggesting that in the Y130C mutant, in 
contrast to the WT, are equally likely to occur but also they share the 
same basin representing alternative structures that can rapidly 
convert from one to the other. 

Q56P-MEK1 mutant 

Similarly to Y130C mutant, Q56P clearly shifts the equilibrium toward 
the active conformation, indicating that the mutant, unlike the WT, 
spends most of its time in an A-loop semi-open or open state. 
However, the changes observed in the conformational free-energy 
landscape appear even more dramatic than Y130C resulting in the 
complete loss of the basin corresponding to the closed state. Indeed, 
Q56P mutant FES shows three narrow minima located at roughly 
CV1 25-35, which are energetically equivalent and divided by rather 
similar energy barriers.  

The most populated basin contains structures marked by (i) 
an almost-open A-loop that results in a full unfolded but not broadly 
extended conformation and (ii) the αC-helix rotated out of the catalytic 
site (αC-out conformation). Interestingly enough, the opening extent 
of A-loop caused by Q56P appears larger than the one observed in 
Y130C lower-energy basin. As shown in Fig 2, the mutation of 
glutamine 56 to a proline obviously prevents the formation of the 
native Q56/Y130 hydrogen bond and lead to an outward shift of the 
αA-helix, which in turn end with the switch of the H119 side chain with 
its backbone in the αA-helix/αC-helix hydrogen bond with K57 side 
chain. As a result, a slight drop on the C-terminal region of the αC-
helix (stabilized by D136/R108 salt bridge, as found in Y130C) 
promotes the extensive unfolding of A-loop helical region. This new A-
loop conformation is featured by the loss of several hydrophobic 
interactions with the αC-helix (such as V211/L115, V211/V117, 
M219/I99, L215/I111 and L215/L101) and sealed by the formation of 
new contacts, specific of the canonical open conformation (namely 
F223/L314 F223/L235 and M230/L314).  

The second basin is characterized by a fully open 
conformation of A-loop and a partial unfolding of the αC-helix coupled 
with its rearrangement in an atypical orientation, which corresponds to 
an intermediate state rather equidistant between the canonical αC-in 
and αC-out conformation.  
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On the other hand, the third minimum corresponds to an 
ensemble of conformations in which the total extension of A-loop is 
combined by the stabilization of the αC-helix rotation toward the 
catalytic site similarly to many active kinases structures (Fig S4). 
Although the salt bridge between E114 and K97 is never formed, as 
in the fully active conformation, the side chains of the two catalytic 
residues are found at a minimum distance of 8.5 Å, which result 
remarkably lower than the one observed in the WT closed structure, 
equivalent to 17 Å. As shown in Fig 3B, this αC-helix orientation is 
triggered by the strong hydrophobic interaction between the αA-helix 
mutated residue P56 and the αC-helix L118 side chain and thus 
stabilized by the formation of a hydrogen bond between the H119 
imidazole ring (released by the interaction with K57) and G213 
backbone. 

 

Fig 3. Comparison of (A) WT A-loop closed conformation with (B) Q56P 
and (C) E203K mutants structures of the free energy minima 
corresponding to the fully open state showing a partial αC-helix 
rotation toward the catalytic site (αC-in): the αA-helix is show in light blue, 
the P-loop in green, the αC-helix in orange, A-loop in magenta. The mutated 
residues are in red. 

On the whole, the structural and energetic impact of Q56P 
mutant not only appears stronger than that exerted by Y130C mutant, 
but also induces additional effects on the αC-helix displacement, that 
were not observed in Y130C simulations. All these findings, in 
agreement with the effects previously observed with the MD, could be 
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related to its deeper response on the kinase activity observed in vitro 
biochemical studies [27] and the oncogenic nature of this mutation. 

E203K-MEK1 mutant 

Similarly to Y130C and Q56P mutants, E203K also induces a shift 
toward the active conformation. However, the changes observed in 
the CV1/CV2 FES appear even more striking than the mutations 
described above. Similarly to what observed for Q56P mutant, the 
fully closed state appears rather destabilized. On the contrary, the 
lower-energy basin contains an ensemble of structures, which are 
marked by an almost-open A-loop (resulting fully unfolded and 
partially extended) combined with the αC-helix rotated out of the 
catalytic site (Fig 2). Indeed the electrostatic repulsion between the 
positively charged K203 and R49 residues leads to the weakening of 
the contacts between the αA-helix and the core region which 
produces very similar effects as the ones observed in Q56P mutant. 
Thus, the formation of a new hydrogen bond between K57 side chain 
amine group and H119 backbone leads to an extensive distortion of 
the αC-helix (stabilized by D136/R108 salt bridge, as found in the 
other mutants), which in turn weakens the packing contacts with the 
A-loop (such as V211/L115, V211/V117, L215/I111 and L215/L101) 
and thus boosts its unfolded and opened conformation. Moreover, 
similarly to Q56P, the new A-loop state appears stabilized by new 
hydrophobic interaction involving M230 and F223 residues (e.g., 
M230/L314 and F223/P306 and F223/P307 contacts) 

On the other hand, the FES reveals an additional minimum at 
CV1=38 and CV2=22 corresponding to the rather active conformation 
involving the complete unfolding of A-loop that appears in the fully 
extended conformation (as previously observed in Y130C and Q56P 
simulation), as well as a significant rearrangement of the αC-helix (as 
found only in Q56P simulation but missing in Y130C). Interestingly, 
although a complete αC-helix rotation was never observed and the 
salt bridge between E114 and K97 is never formed, the ensemble of 
states found in this basin corresponds to a quite stable intermediate 
state, which shows a partial unfolding of the αC-helix N-terminal 
region that might precedes the canonical αC-helix in-conformation. As 
shown in Fig 3C, the new αC-helix orientation is triggered by the 
formation of the hydrogen bond between the guanidine of arginine 49 
and the amide group of the glutamine 56 residues causing an 
extensive rearrangement of the αA-helix and thus the break of the 
K57/H119 native contact. As a result, the above mentioned residues 
appear involved in two new hydrogen bonds, engaging E114 and 
Q116 respectively. This causes a partial unfolding and broad inward 
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switch of the αC-helix, which in turn is further stabilized by an 
additional hydrogen bond between Q110 and S212 residue. It also 
worth noting that, although E114 always remains at an average 
distance of roughly 15 Å from K97, its salt bridge with K57 observed 
herein might boost the inward rotation of E114 and thus prelude the 
E114/K97 contact formation.  

In summary, the effect of E203K mutant appears deeper than 
that exerted by both Y130C and Q56P mutant. Moreover, as well as 
Q56P (but not Y130C) a significant αC-helix displacement was 
observed. All these findings, in agreement with the effects previously 
observed in the MD, could be related to the constitutive activation led 
by this mutation and its oncogenic nature. 

Effect of the mutations on the DFG-motif in-to-out transition 
Wild type MEK1 

 

 

 

 

 

 

 

Fig 4. Free-energy surface of wild-type MEK1 and the three mutants as 
a function of CV1 (x-axis) and CV3 (y-axis). Each minimum is named 
according to the corresponding main feature. The contour lines are drawn 
every 10 kJ/mol. In the structures below, the αA-helix is show in light blue, 
the P-loop in green, the αC-helix in orange, the A-loop in magenta. DFG-
motif D208 and F209 residues are shown in yellow, and the mutated 
residues in red.  

The wild type MEK1 free energy surface computed as 
function of CV1 and CV3 shows two deepest free-energy minima (Fig 
4). These two minima correspond to ensembles of inactive structures 
where the αA-helix is folded and tightly packed against the core 
region, the αC-helix is rotated out of the active site and the A-loop is 
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rather folded. However, the global minimum corresponds to structures 
in which the DFG motif results in an active conformation with D208 
forming a salt bridge with K95 and F209 tightly interacting with L180 
(DFG-in conformation) and perfectly fitted in the hydrophobic pocket 
delimited by L118, I126, V127, L180, I186, L206 and V211.  

In agreement with previous proposals that claimed the 
existence of certain degree of basal activity of MEK1 protein kinase, 
the DFG-in conformation was found to be energetically favorable with 
respect to the DFG-out conformation [44]. 

Y130C MEK1 mutant 

In addition to the shift between the A-loop closed to open 
conformation, the free energy surface projected as a function of CV1 
and CV3 also reveals a number of crucial differences between the 
WT and Y130C mutant (Fig 4). First of all, the basin corresponding to 
the DFG-in conformation is much broader than the corresponding 
basin for the WT, suggesting that this state can adopt many more 
conformations in the mutant than in the WT. However, the most 
remarkable change consists in a significant flattening of the free 
energy barrier for the DFG-in to DFG-out transition (reduced from 
roughly 40kJ/mol to 30kJ/mol). Indeed, this could promote the ADP 
release [45], which is known to be the rate-limiting step in kinase 
catalysis [46-47] and thus explain the catalytic activity increase 
observed in the mutant with respect to the WT. A further difference 
involves the appearing of a third local minimum, virtually absent in 
WT, that lies 10 kJ/mol above the other minima and corresponds to 
an intermediate conformation of the DFG flip transition in which the 
aspartate is pointing downward (Asp-down state). Interestingly, as 
shown in Fig 4, this state is triggered by the formation of a hydrogen 
bond between the K57 positively charged ε-amino group (released 
from the interaction with H119 side chain) and the backbone of F129 
residue located on the underlying β4-strand. This contact stabilizes a 
new orientation of the bulky phenylalanine side chain, which in turn 
fills the position usually occupied by F209 residue when DFG-motif 
adopts an in-conformation.  

Q56P MEK1 mutant 

As in Y130C mutant, the DFG-motif flip also results deeply affected 
by the Q56P mutation. The free energy landscape computed as a 
function of CV1 and CV3 shows a total of three minima: the canonical 
DFG-out and DFG-in conformations, plus an additional local 
minimum, located at CV1=30 and CV3=-2.1. Interestingly, unlike 
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Y130C mutant, virtually all the structures corresponding to the third 
basin are characterized by an intermediate conformation of the DFG 
flip transition in which the aspartate is pointing upward (Asp-up state). 
As shown in Fig 4, the release of the αA-helix from the packing 
interaction with the kinase core region leads to the formation of a new 
hydrogen bond involving the backbone of F129 residue located on the 
underlying β4-strand. However, unlike the previous mutant, the 
contact with the H119 imidazole ring (released from the interaction 
with K57 side chain) stabilizes a different, less bulky orientation of the 
F129 side chain, that does not reject the DFG-motif aromatic residue 
but instead complete the hydrophobic pocket formed by I141, I139, 
L101, L115, V127, M143 and Y134 thus stabilizing this intermediate 
state.  

Finally, it is worth noting that, although the free energy of the 
transition state between DFG-in and DFG-out conformation 
(equivalent to around 40 kJ/mol) does not significantly change with 
respect to the WT, the destabilization of the in-conformation, which 
lies 20kJ/mol above the out-conformation, considerably reduce the 
free energy barrier of the in-to-out transition (shifted from roughly 
40kJ/mol to 20kJ/mol) and thus increase the ATP turnover rate. 
These findings could properly explain the increase in kinase activity 
observed with respect to both the WT and Y130C mutant. 
Nevertheless, DFG-out appears as a lower-energy state with respect 
to DFG-in conformation, which in principle would be in disagreement 
with what one would expect. Thus, deeper analysis will be needed in 
the future in order to clarify this issue.  

E203K MEK1 mutant 

As previously observed in A-loop close-to-open transition, the 
changes promoted by E203K on the CV1/CV3 free energy landscape 
appear more profound than the mutations described above. Similar to 
Y130C, E230K FES shows two energetically equivalent low-energy 
basins that correspond to the DFG-in and DFG-out conformations. 
However, as found in Q56P but not in Y130C, a third local minimum 
corresponding to an intermediate Asp-up state was observed. 
Interestingly, the molecular mechanism underlying its stabilization is 
virtually the same as the one previously described for Q56P, although 
it is triggered by different interactions. Indeed, the ion pair between 
E144 and K203 side chain residues favors the hydrogen bond 
formation between the H119 imidazole ring (released from the 
interaction with H119 side chain) and the backbone of F129. This in 
turn stabilizes a beneficial orientation of its side chain that can thus 
extensively interact with the DFG-motif phenylalanine and stabilize 
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this intermediate state. Moreover, as seen for Q56P, the new 
orientation of D208 results further fastened by a new hydrogen bond 
with N195 side chain (Fig 4). 

Nevertheless, the most significant effect promoted by E203K 
mutation, consists in an additional flattening of the energy barrier for 
the DFG in-to-out transition (reduced to roughly to 10 kJ/mol) with 
respect to both the mutations described herein and which could be 
related to the MEK1 constitutive activation experimentally observed.  

Discussion 

Both oncogenic and CFC related mutations are bound to lead an 
increase of the MEK1 kinase activity although to different extents. We 
recently employed large-scale Molecular Dynamics (MD) in order to 
investigate the intrinsic propensity for inactive-to-active transition 
upon such mutations in different biologically relevant states. Indeed, 
MD simulations helped to disclose interesting dynamic events 
regarding MEK1 activation process and the specific destabilization 
effects caused by each mutation. Nevertheless, given the large 
conformation changes involved in protein kinases activation process 
and the limits of the conventional MD simulation in the exhaustive 
sampling of biomolecule energy landscape, some important aspects 
of this topic remained hidden. Thus, in order to enhance the 
exploration of the energy landscape of our system, a state-of-the-art 
enhanced sampling method, such as PTMetaD-WTE, was applied on 
the same case study. 

As observed through MD simulations and in agreement with 
the experimental data reported, all the mutations described herein 
result in easing the shift of the equilibrium from the inactive to active 
state to a different extent. As a rule, the effects produced by E203K 
results generally more dramatic if compered with Q56P and even 
more with respect to Y130C. Nevertheless, in light of the present 
study, additional hints about specific molecular mechanisms 
accounting for oncogenic and non-oncogenic mutations were 
disclosed. 

First of all, E203K and Q56P show remarkable effects on the 
closed-to-open transition of A-loop, stabilizing a virtually equivalent 
intermediate state in which the A-loop result completely unfolded 
while the consequences of Y130C mutation (although clearly 
appreciable) results less striking, promoting the stabilization of an 
intermediate state in which the A-loop is still partially folded. Another 
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significant difference arises from the αC-helix flexibility, consisting on 
a higher propensity for out-to-in transition observed only in oncogenic 
mutations (Q56P and E203K). Finally, it is worth noting the crucial 
effects on the DFG-motif plasticity caused by the mutations. Indeed, 
although by different mechanisms, all the mutants significantly flatten 
the energy barrier for the DFG in-to-out transition thus promoting the 
ADP release and increasing the ATP turnover rate. Nevertheless, the 
effects produced by E203K results generally more dramatic if 
compered with Q56P and even more with respect to Y130C. 

Conclusions 

In light of the present results, all the mutations described here reveal 
a double effect regarding the energetics of the A-loop as well as the 
DFG-motif: they might facilitate the protein kinase phosphorylation by 
stabilizing A-loop open conformations and increase the ATP turnover 
rate by lowering the free energy barrier of the DFG in-to-out transition. 
Overall, the present findings, combined to those previously reported, 
could help to rationalize and quantify the activating effects induced by 
Y130C, Q56P and E203K mutations, offer a mechanistic explanation 
to the different extent of MEK1 over-activation observed for oncogenic 
or CFC-related mutations and eventually open the path for the 
development of disease specific therapeutic approaches. 
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Fig S1. Free-energy mono-dimensional projection as a function of CV1, 
CV2 (the distance in contact map space to A-loop closed and open 
state, respectively) and CV3 (DFG-motif orientation): (A) wild-type MEK1 
protein kinase and the three mutants: (B) Y130C, (C) Q56P and (D) E203K. 
In each plot three curves are shown, separated by 50 ns of simulation time 
and corresponding to the last 150 ns of each simulation. The final converged 
FES is shown in red.  
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Fig S2. Comparison between the free-energy profile in the mono-
dimensional projection obtained by PLUMED module sumhills (in red) 
and the ones obtained by the time-independent re-weighting technique 
of Tiwary and Parrinello (in gray): CV1, CV2 (the distance in contact map 
space to the A-loop closed and open state, respectively) and CV3 (DFG-
motif orientation) for (A) wild-type MEK1 protein kinase and the three 
mutants: (B) Y130C, (C) Q56P and (D) E203K. 
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Fig S3. Comparison between the free-energy profile in the bi-
dimensional projection: (A) CV1, CV2 and (B) CV1, CV3 for wild-type 
MEK1 protein kinase and the three mutants. The contour lines are drawn 
every 10kJ/mol. 

 

 

 

 

 

 

 

Fig S4. Free-energy surface of wild-type MEK1 and the three mutants 
as a function of CV1 (x-axis) and CV2 (y-axis). A cross indicates the 
global free energy minimum. The contour lines are drawn every 10kJ/mol. 
The representative structures of the secondary free energy minima are 
shown with the αA-helix in light blue, the P-loop in green, the αC-helix in 
orange, the A-loop in magenta. 
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4.1. Advances and new challenges in 
modeling of protein interactions  

Given the growing interest in protein-protein interactions and the 

technical advances in computational field, an increasing number of in 

silico tools have been developed with the aim of (i) identifying 

residues that significantly contribute to binding, and (ii) modeling 

protein complexes starting from the isolated component structures 

(docking problem). Testing and comparing these computational 

methodologies is fundamental in order to assess their performance, 

identify their limitations, and finally guide new developments in the 

field. In this context, CAPRI experiment provides a common ground 

for testing the predictive capability of currently available docking 

methods. 

Firstly, this section will be focused on the analysis of several 

existing computational protocols for the characterization of protein-

protein interfaces. Secondly, the performance of our pyDock protocol 

(Cheng et al., 2007) on the last CAPRI round (Lensink and Wodak, 

2013) will be evaluated and discussed.  

4.1.1. Energetic characterization of protein-
protein interfaces 

The performance of four different computational methods for 

the characterization of protein-protein interfaces was assessed using 

the recently solved complex between MEK1 and BRAF protein 

kinases (PDB 4MNE) (Haling et al., 2014) as a test case. The 

analysis was focused on (i) ConSurf (Glaser et al., 2003), based on 
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the degree of conservation of each amino acid site among their close 

sequence homologues (see section 1.2.6 and 3.1.1); (ii) pyDock 

module pyDockNIP (Grosdidier and Fernandez-Recio, 2008), which 

computes the tendency of a given residue to be located at the 

interface based on rigid-body docking poses (see section 1.2.6); (iii) 

the residue contribution to complex binding energy computed with 

pyDock (upcoming publication); and finally, (iv) in silico Alanine (Ala) -

scanning based on free-energy calculations involving Molecular 

Mechanics/Generalized Born Surface Area method (MM-GBSA) using 

MMPBSA.py script (Miller et al., 2012) from AMBER14 tools 

(Salomon-Ferrer et al., 2013). 

Indeed, rather similar predictions were obtained using the 

different methods (Fig 1 from section 3.1.1) although some 

peculiarities should be highlighted. Firstly, MM-GBSA Ala-scanning 

resulted much more computationally expensive and time consuming 

than the other methods. In addition, NIP and ConSurf have the 

considerable advantage that a priori knowledge of the complex is not 

required. On the other side, pyDock binding energy residue 

contribution and MM-GBSA Ala-scanning have the convenience of 

providing a quantitative analysis that can be easily compared with the 

experimental data. Finally, it is noteworthy that pyDock scheme 

revealed a rather similar performance to MM-GBSA Ala-scanning in 

the prediction of binding energy residue contribution but at much 

lower computational cost.  
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4.1.2. New challenges in protein docking: 
improving energetics and description of 
flexibility 

pyDock docking program (Cheng et al., 2007) is regularly tested by 

participating in the CAPRI experiment (http://www.ebi.ac.uk/msd-

srv/capri/), a community-wide blind prediction of macromolecular 

interactions based on the three-dimensional structures of the 

interacting proteins (see section 1.2.6). 

The fifth CAPRI edition (2010-2012) (Lensink and Wodak, 

2013) consisted of a total of 15 targets that, in addition to the 

standard docking predictions, included binding affinity predictions and 

free energy changes upon mutation (Moretti et al., 2013), as well as 

prediction of sugar binding and interface water molecules (Lensink et 

al., 2014). We have participated in all the proposed targets with high 

success, since our models were globally placed among the top 5 

ranked groups out of more than 60 participants (Lensink and Wodak, 

2013) (Fig 1 from section 3.1.2 and Table S11A from Lensink and 

Wodak, 2013). 

Major determinants for the success were the generation of 

docking poses with FTDock (Gabb et al., 1997) at a grid resolution of 

0.7 Å (instead of 1.2 Å as in the past), as well as with SwarmDock 

program (Moal and Bates, 2010) for part of the targets. In selected 

targets (T47, T48 and T58), distance restraints were used, although 

this hardly made a difference. In target T58, SAXS data were used for 

complementary scoring with pyDockSAXS (Pons et al., 2010), which 

slightly improved the predictive performance. Overall, pyDock 

submitted consistently good models for all non-difficult cases, 

although they were far from being trivial, since their subunits were in 
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the unbound conformation or needed to be modeled based on 

homology templates. In all cases but one, pyDock successful models 

were ranked within the first five submitted solutions, being ranked as 

first in two out of six successful cases.  

As mentioned above, T47, T55, T56 and T57 were non-

standard targets for which new ad hoc protocols had to be developed. 

Target T47 was a rather trivial modeling of a protein-protein complex 

structure but the real challenge consisted in the prediction of the 

location of water molecules within the complex interface. Our 

approach was based on DOWSER ab initio optimization procedure 

(Zhang and Hermans, 1996). Indeed, this choice was reasonably 

successful, although a posteriori analysis showed that the most 

successful approaches were based on deriving initial water positions 

from interfaces of related complexes followed by energy minimization 

(as in Nakamura’s group protocol). More details on the protocols used 

by all the participants and the results obtained are reported in Lensink 

et al., 2014. T55 and T56 targets aimed to predict the binding affinity 

changes upon mutations on two designed influenza hemagglutinin 

protein binders. By applying a machine learning protocol based on 85 

energy descriptors, our predictions were placed within the top 3 out of 

22 groups. Overall, the CAPRI community faced a big challenge with 

these targets (Moretti et al., 2013). Finally, for T57, which involved the 

prediction of a protein-sugar interaction, we developed a new protocol 

based on a combination of different scoring functions, such as PScore 

and AMBER (Case et al., 2005). Although no correct models were 

submitted, at least one almost acceptable model was found (11.2 and 

4.3 Å ligand- and interface- RMSD, respectively). 

In the on-going (not yet evaluated) CAPRI edition (2013-to 

date), one of the new challenges consisted in the prediction of eight 
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protein/peptide complexes (T60-67), in which pyDock obtained highly 

successful results as predictor and rather satisfying as server with 7 

and 5 successfully predicted targets, respectively. However a much 

more demanding test was recently proposed for CAPRI Round 30, 

the first joint CASP-CAPRI experiment, consisting in 25 targets of 

homo-oligomers from the CASP11 2014 Round. pyDock submitted at 

least one acceptable model in 11 out of 12 easy homodimer targets, 

either as predictor or scorers, while, as scorers, it successfully 

predicted two out of six difficult homodimer targets and one out of two 

hetero-complex targets. On the contrary, pyDock failed in the 

prediction or evaluation of any tetramer target, where the inaccuracy 

of the homology-built subunit models and the smaller pair-wise 

interfaces severely limited the ability to derive the correct assembly 

mode. Globally, pyDock predictions were placed among the top 10 

ranked groups out of about 25 predictors, and among the top 5 

ranked groups out of about 12 scorers participating in Round 30 

(Table 4 from Lensink M et al., submitted). 

Overall, the recent results of the CAPRI experiment 

demonstrated a general robustness of current docking algorithms, 

since their performance remained relatively consistent when facing 

targets of different difficulty. Two of the most challenging targets were 

T46, where subunits needed to be modelled based on distantly 

related templates, and T51, where the isolated structures of the 

docking partners were largely different from those of the native 

complex. Regarding the estimation of binding affinity changes upon 

mutation, although this is still far from being solved (as shown in T55 

and T56), it is interesting to note that the incorporation of backbone 

flexibility and more extensive sampling of side-chain conformations 
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were in general positive for the predictions (Lensink and Wodak, 

2013). 

All these observations show that the intrinsic molecular 

flexibility plays a crucial role in the protein-protein association 

mechanism and thus should deserve special consideration for the 

structural and energetic modeling of protein-protein complexes.

 

4.2. Protein plasticity improves protein-
protein docking  

Given the key role of conformational flexibility in protein-protein 

association, accurate description of protein plasticity in docking 

protocols appears crucial for the successful prediction of complex 

structure (see sections 3.1.2 and 4.1.2). However, in addition to the 

higher computational cost, the development of efficient flexible 

docking algorithms is hampered by the limited theoretical knowledge 

about the protein-protein association mechanism. 

Thus, an important aim of this PhD thesis has been to study 

the role of protein conformational heterogeneity in protein-protein 

recognition and the exploration of ways to integrate unbound 

conformational ensembles within protein-protein docking. 



Results summary 

 

 281 

4.2.1. Protein plasticity enhances protein-
protein recognition 

This study has explored whether a minimal description of the 

conformational heterogeneity of the interacting proteins could 

significantly improve their binding capabilities.  

To this aim, first of all, small conformational ensembles for all 

interacting proteins in the protein-protein docking benchmark 3.0 

(Hwang et al., 2008) were automatically generated, starting from the 

unbound docking partners, by using two distinct conformational 

sampling procedures: (i) a fast energy optimization as implemented in 

MODELLER (Eswar et al., 2007), and (ii) Molecular Dynamics 

simulation, as implemented in AMBER package (Salomon-Ferrer et 

al., 2013). As shown in Fig 1 and S2 from section 3.2.1, the deviation 

of the interface atoms from the initial unbound structure were rather 

modest in both approaches, reaching a maximum of about 1.2 and 

2.7 Å RMSD values for MODELLER and MD ensembles, respectively. 

Moreover, only in about 20% of the benchmark cases, the 

conformational ensembles (either from MODELLER or MD simulation) 

contained conformers that were significantly more similar to the native 

conformation than the unbound X-ray structure. Interestingly, in the 

majority of cases the conformational ensembles contained 

conformers that showed better binding energy capabilities than the 

unbound X-ray structure.  

The following step was to evaluate whether the 

conformational ensembles contained conformers that could be 

beneficial for docking. To this aim, we selected these conformers that 

seemed more promising for binding, either because of higher 

similarity to the bound state or higher complementarity to the docking 
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partner (in terms of binding energy or number of clashes). Finally, a 

total of five conformers were collected for each benchmark case and 

consequently used as input for rigid-body docking simulations, as 

implemented in pyDock (Cheng et al., 2007). Surprisingly, the 

conformers that were structurally more similar to the reference did not 

yield better docking results than the unbound structures. On the 

contrary, when using the conformers selected according to the 

binding energy or the smallest number of clashes when in the native 

orientation, the docking performance significantly improved (Fig 4A 

from section 3.2.1). Moreover, a clear dependence of the docking 

improvement on the conformational rearrangement of the interacting 

proteins upon binding was observed: the ensemble success rates 

were particularly good in the low-flexible cases, for which they 

reached values similar to those when using the bound X-ray 

structures; on the contrary, in rigid and highly-flexible cases the 

selected conformers yielded similar results to the unbound structures 

(Fig 4B and 4C from section 3.2.1). 

Globally, the ensemble size and method of sampling did not 

have a large effect on the docking performance. The selected 

conformers from the 1000-member ensembles generated by 

MODELLER or MD yielded similar results to those selected from the 

100-member ensembles (S4 Fig from section 3.2.1), although a 

small improvement was observed in the flexible cases when using the 

larger ensembles (S5 Fig from section 3.2.1). Moreover, no better 

docking performance was observed by extending the MD simulation 

time to 100 ns (S1 Table from section 3.2.1). However, new 

sampling approaches based on NMA did appear useful to produce a 

significant improvement of the success rate in the most flexible cases 

(Table 2 from section 3.2.1).  
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In summary, this study showed that considering 

conformational heterogeneity in the unbound state of the interacting 

proteins can improve their binding capabilities in cases of moderate 

unbound-to-bound mobility. In these cases, the existence of 

conformers with better binding energy (not necessarily related to 

bound geometries) in the native orientation is associated to a 

significantly improvement in the docking predictions. These findings 

set useful guidelines for the development of novel protocols in 

practical docking prediction.  

4.2.2. Development of a new protocol for 
ensemble docking  

The previous study showed that a simple molecular mechanics 

approach, as the one implemented in MODELLER program (Eswar et 

al., 2007), can generate conformers with better binding properties and 

thus improve docking predictions (see section 3.2.1). Based on this 

study, we have devised a novel protocol to integrate unbound 

conformational ensemble within protein-protein docking (using 

pyDock) and tested it on a data set of 124 protein-protein docking 

cases (Chen et al., 2003). In order to reduce the computational costs 

associated with a cross-docking approach, a total of only 100 docking 

runs were preformed randomly pairing every conformer from the 

receptor with another one from the ligand. All the docking poses 

generated were thus merged together and finally ranked according to 

pyDock scoring function (filtering out similar conformations with ligand 

RMSD cutoff 10 Å).  

As shown in Fig 1A and 1B from section 3.2.2, ensemble 

docking clearly showed better success rates (32.3%) than the 
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unbound subunits (19.4%). Moreover, in order to provide a statistical 

significance for these results, 100 different docking runs were 

performed using random initial rotations of the unbound receptor and 

ligand molecule. The resulting docking performance obtained (26.6% 

success rate) stood halfway between the ensemble docking and the 

unbound results. These results suggest that conformational 

heterogeneity in the interacting subunits improves the binding 

capabilities of the unbound X-ray structures. Interestingly, lowering 

the number of random initial rotations (i.e., five rotations) did not 

substantially change the docking performance (27.4%), showing the 

importance of performing a small sampling of the position of the 

starting molecules instead of using only the unbound X-ray structures. 

Moreover, it was observed that the docking improvement when using 

conformational ensembles depended on the flexibility of the 

interacting proteins upon binding. Indeed, as shown in Fig 1C and 1D 

from section 3.2.2, the largest improvement occurs in medium-

flexible cases, those with I-RMSDCα between 1.0 and 2.0 Å. 

Finally, we also explored the question of which is the minimal 

number of conformers that would be needed in order to observe a 

significant improvement in the docking results. As shown in Fig. 2 

from section 3.2.2, it was found that the docking performance 

increases linearly with the size of the ensemble. For instance, when 

only five conformers were used for the ensemble docking protocol, 

the prediction success rates (24.2%) were similar to random.  

Interestingly, when only the high-affinity, low-flexible cases are 

considered, the docking success improves dramatically with just a few 

conformer pairs, so that 30 conformers provide similar success rates 

as 100 conformers. All these data suggest that the results might be 

further improved by using a higher number of conformer pairs, 
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increasing the number of receptor-ligand conformer combinations, 

although for this, new algorithms would need to be developed and 

optimized for high-performing computing in order to deal with the 

humongous computational cost.  

In conclusion, this study shows that a minimal conformational 

heterogeneity can be used in a practical docking protocol to improve 

the results of unbound docking. Moreover, this proved to have the 

potential of further improving the predictive results by extending 

conformational sampling and/or considering larger ensembles, 

although this would involve an enormous computational cost. 

 

4.3. Modeling protein interactions: 
application to cases of interest 

The expertise acquired during the first part of this PhD thesis on the 

theoretical basis of protein interactions has favored my participation 

in several multidisciplinary projects, basically through the application 

of computational methods to the modeling of protein interactions of 

biological interest. Two of the most interesting collaborative projects 

will be shown here in detail.  

The first study consisted on the energetic characterization of 

host-pathogen protein interactions, which are key steps of virtually 

every infection process (i.e, pathogen replication and survival within 

the host system). Such processes are typically achieved by precise 

mechanisms developed by the pathogen to subvert and exploit 

normal host cell processes, very often by mimicking specific host cell 
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interactions. The second project included the ab initio modeling of 

redox complexes, which usually involve transient interactions 

characterized by the existence of encounter complexes formed by 

“microcollisions” that properly align the reactive groups.  

4.3.1. Energetics of host-pathogen protein 
interactions 

Legionella pneumophila effector Vacuolar Inhibitor protein D (VipD) 

localizes to the host early endosomal membrane where succeeds in 

binding GTPase Rab5 host protein, competing with its endogenous 

ligands. This key interaction triggers the activation of the 

phospholipase A1 (PLA1) activity of VipD, which in turn leads to the 

alteration of the endosomial membranes composition and thereby 

protect the pathogen from endosomial partitioning (Gaspar and 

Machner, 2014). Thus, the energetic description of such interaction as 

well as the disclosure of the molecular basis of this host-pathogen 

competing process is of fundamental importance to open the path for 

the development of novel antimicrobial therapeutics.  

For this purpose, systematic in silico Alanine scanning 

calculations were performed on all the interface residues of GTPase 

Rab5 in complex with Legionella pneumophila VipD as well as in 

complex with the endogenous human ligand proteins EEA1, 

RAbaptin-5 and Rabenosyn-5. Indeed, the analysis of the VipD-Rab5 

interface pinpointed a core of hydrophobic contacts complemented by 

several polar interactions in the surrounding rim area (Fig 3B from 

section 3.3.1). In particular, the VipD binding epitope in Rab5 

included non-polar residues in the switch I (I54, G55, A56 and F58), 

the interswitch (W75) and the switch II element (Y83, L86, M89 and 
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Y90) as well as polar/charged residues in the interswitch (T60, K71 

and E73) and switch II element (R82 and R92). On the other hand, 

the corresponding epitope in VipD included several hydrophobic 

residues in helixα17 (F442, A446, A450 and L454) and in helixα18 

(Y473, I480, V483) that wrapped around an elongated hydrophobic 

path in Rab5 formed by the conserved triad (F58, W75 and Y90) and 

L86. 

Moreover, a much more interesting observation arose from 

the comparison with the endogenous Rab5 complexes, which 

revealed a shared hydrophobic core (F58, W75 and Y90) 

complemented by a unique polar interaction in VipD-Rab5 interface 

surrounding this hydrophobic triad (R92 from Rab5 with D484 and 

D479 from VipD) and which provide a rather stronger energetic 

contribution to the interaction in comparison with the other cellular 

ligands (Fig 7A from section 3.3.1). The role of R92 in VipD-Rab5 

complex (not existing in those between Rab5 and the endogenous 

ligands) was confirmed by experimental mutagenesis. These findings 

offer a useful help for the development of novel treatments aimed at 

selectively blocking the VipD activation process rather than the 

enzyme's active site. 

4.3.2. Modeling redox complexes by docking  

The interaction of photosystem I (PSI) with electron transfer proteins 

(such as plastocyanin or cytochrome) catalyzes the first step of the 

photosynthesis process. Unlike most cyanobacteria and unicellular 

green algae, Phaeodactylum tricornutum alga, as most diatoms, 

lacks plastocyanin and thus leaves cytochrome c6 (Cyt) as the only 

electron donor to photosystem I (Akazaki et al., 2009). Nevertheless, 
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diatom PSI is still able to recognize and functionally interact with 

different eukaryotic acidic plastocyanins, although with lower 

efficiency than the native electron carrier (Bernal-Bayard et al., 2013). 

Thus, the principal goal of this study was to understand the structural 

and energetic determinants of the differences in the efficiency 

observed in diatoms PSI reduction with respect to the green systems. 

To this aim, docking simulations were initially performed 

between the homology‐built PSI model from Phaeodactylum and both 

the native and the green alga Monoraphidium braunii Cyt structures. 

Additional docking analyses were performed to investigate the 

interaction of PSI from Phaeodactylum with the Pc of green alga 

Chlamydomonas reinhardtii and particular efforts were addressed to 

identify energetic differences between the wild type and some 

mutants designed to mimic Phaeodactylum Cyt electrostatic 

properties (i.e., E85K, Q88R, E85K/Q88R, E85V and V93K). 

The docking simulations between PSI and Cyt from 

Monoraphidium yielded a much larger population of low‐energy 

productive orientations and showed better binding energy values as 

compared with the native Phaeodactylum (Table 2 and Fig S3 from 

section 3.3.2). Further analyses revealed that the Monoraphidium 

Cyt best-energy productive docking model was stabilized by 

electrostatic interactions between PsaA residues R747 and R648 and 

Cyt residues D42 and H30, which corresponded to an alanine and a 

lysine (i.e., A86 and K74) in Phaeodactylum Cyt. Indeed, these 

differences can explain why an equivalent docking orientation would 

be energetically penalized in the interaction with Phaeodactylum PSI 

(Fig 5 from section 3.3.2).  
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On the other hand, in agreement with its lower similarity to 

Cyt electrostatic patches, the wild type Pc yielded a much larger 

population of low-energy less productive docking orientations in 

comparison with some of the mutants, such as E85K and Q88R. 

Indeed, these orientations revealed to be stabilized by electrostatic 

interactions between PSI positively charged residues (namely R747, 

R648 and K638) with Chlamydomonas Pc E85 and Q88 residues (Fig 

6 from section 3.3.2). On the contrary, the loss of these contacts by 

the substitution of E85 and Q88 with positively charged residues 

facilitated a higher population of the more productive binding modes, 

as observed in the docking landscapes of the E85K and Q88R Pc 

mutants. 

All these results not only improve the understanding of the 

mechanism and energetics of PSI reduction but also shed new light 

on the evolution of the electron transfer mechanism to PSI in the 

different branches of the evolutionary tree of photosynthetic oxygenic 

organisms.  

 

4.4. Description of protein plasticity: an 
example of biomedical interest 

In order to understand the mechanistic aspects of several biological 

processes, such as the functional effects of a single mutation, the 

consideration of protein plasticity is of paramount importance. Protein 

kinases represent a paradigmatic example of the importance of a 

close link between dynamics and function. These enzymes regularly 

switch between characteristic inactive and active states undergoing 
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large conformational changes, whose complete computational 

description is still challenging. Standard all-atom Molecular Dynamics 

(MD) simulations are useful computational tools to explore small-to-

medium conformational rearrangement, but large conformational 

transitions in proteins can only be described by enhanced sampling 

methods.  

Thus, this PhD thesis concluded with the application of 

conventional Molecular Dynamics (MD) and state-of-the-art 

enhanced sampling using metadynamics to elucidate the effects at 

molecular level of pathological mutations in MEK1 protein kinase 

(Y130C, exclusively associated with Cardiofaciocutaneous- (CFC) 

syndrome; E203K, exclusively related to cancer; and Q56P, observed 

in both diseases) (see sections 3.4.1 and 3.4.2).  

Structural and dynamic effects of pathological 
mutations by extended Molecular Dynamics 

In order to understand the effect of the above mentioned pathological 

mutations at molecular level as well as their impact on the intrinsic 

propensity for MEK1 inactive-to-active transition, 1-µs-long MD 

simulations were initially performed on the MEK1 unphosphorylated 

apo as well as on the phosphorylated ATP-bound state. Then, four 

additional 1-µs-long simulations were run using PTmetaD-WTE 

protocol (Deighan et al., 2012), an enhanced sampling approach 

which combines parallel tempering with well-tempered metadynamics. 

According to the MD simulations, all the mutations described 

herein resulted in easing the inactive-to-active transition in both the 

unphosphorylated apo and the phosphorylated ATP-bound MEK1 
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state. More in detail, in the basal state they increased αA-helix 

structural flexibility, promoting both its partial unfolding and the loose 

of αA-helix/core native contacts (e.g., Y130/Q56, R49/E203) (Fig 2, 

S1 and Table 1 from section 3.4.1). However, a distinctive effect was 

found in Q56P with respect to Y103C and E203K mutants, involving 

the increase of P-loop flexibility, which could be causing a higher 

cofactor turnover (Fig 3 and Table 1 from section 3.4.1). Over-

activating effects were also found in the phosphorylated A-loop, 

where all of the mutants studied herein induced a significant increase 

of the A-loop flexibility as compared with that in the WT (Fig 5 and 

Table 1 from section 3.4.1) and favoured a dramatic destabilization 

of the hydrogen bond between αC-helix E114 and A-loop Q214 

residues, whose interacting frequency dropped from 85% in the WT to 

a range between 29 and 54% for the mutants (Fig S2 and Table 1 

from section 3.4.1). All these data suggest that the mutants could 

result in the acceleration of active-to-inactive process with significant 

impact on both the biological state analyzed. Nevertheless, the effects 

produced by E203K resulted more dramatic if compared with Q56P 

and even more with respect to Y130C.  

In agreement with MD, the free-energy landscapes obtained 

using PTMetaD-WTE confirmed that all the mutations seemed to 

favour the inactive to active state transition, although to a different 

extent. In addition, new hints about specific molecular mechanisms 

accounting for oncogenic and non-oncogenic mutations were 

discovered. First of all, E203K and Q56P showed significant effects 

on the closed-to-open transition of the A-loop, stabilizing an 

intermediate state in which the A-loop resulted completely unfolded. 

On the other hand, Y130C mutation showed milder effects (although 

clearly appreciable) on the stabilization of an intermediate state in 
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which the A-loop is still partially folded (Fig 2 from section 3.4.2). 

Regarding αC-helix flexibility, a higher propensity for out-to-in 

transition was observed only in oncogenic mutations (Q56P and 

E203K) (Fig 3 from section 3.4.2). Finally, it is worth noting the 

crucial effects of the mutations on the DFG-motif plasticity. Indeed, all 

the mutants, although through different mechanisms, significantly 

flattened the energy barrier for the DFG in-to-out transition, which 

could promote the ADP release and increase the ATP turnover rate.  

In conclusion, the combination of MD and PTMetaD-WTE 

simulations could help to rationalize and quantify the activating effects 

induced by Y130C, Q56P and E203K pathological mutations in 

MEK1, as well as to propose a mechanistic explanation to the 

different extent of MEK1 over-activation observed for oncogenic or 

CFC-related mutations and eventually open the path for the 

development of disease specific therapeutic approaches. 
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“The important thing 
is not to stop questioning.” 
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After sequencing the complete genomes of several organisms we are 

starting to unravel their intricate protein-protein interaction networks, 

which is essential to understand biological processes at molecular 

level, with the ultimate goal of contributing to improve therapeutic 

intervention. In this context, one of the current biological challenges is 

to provide structural details at atomic level for such interactomes. 

However, given the intrinsic limitations of available experimental 

methods to determine 3D structures (e.g., X-ray crystallography or 

NMR), large-scale structural determination of complete interactomes 

seems beyond current capabilities.  

Fortunately, computational methods can complement 

experimental efforts by providing structural and energetic large-scale 

modeling of protein interactions. In spite of the most recent advances 

in computational modeling, many important challenges remain. 

Among them, efficient consideration of conformational flexibility is 

arguably the most important problem to solve in order to improve the 

structural and energetics modeling of proteins and their interactions. 

The consideration of protein dynamics appears essential in several in 

silico studies, from the prediction of their interactions to the study of 

the mechanistic aspects of their function. Indeed, this issue is not well 

addressed in most of the currently available docking programs, which 

this is actually one of the main limitations in their predictive 

performance.  

The work of this thesis has focused on analyzing the 

importance of structural, energetics and dynamic aspects of protein 

interactions, the development of new computational tools to help 

solving current problems, and the application of computational 

modeling to cases of biological and biomedical interest.  
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5.1. Energetic characterization of protein-
protein interfaces: advances and new 
challenges 

Residues in protein-protein interfaces do not equally contribute to the 

overall binding energy; in fact a few hot-spot residues typically 

contribute the most to the binding energy (Clackson and Wells, 1995; 

Bogan and Thorn, 1998). The identification of such residues and thus 

the functional characterization of protein interactions at molecular 

level is mandatory, not only to understand biological and pathological 

phenomena, but also to design improved, or even new interfaces, or 

to develop new therapeutic approaches (Wells and McClendon, 2007; 

Kar et al., 2012; Thangudu et al., 2012).  

Considering that the experimental characterization of protein 

interfaces remains expensive, time-consuming and labor-intensive, 

computational approaches represent a significant breakthrough in 

proteomics, assisting or even replacing experimental efforts. Thanks 

to the technological advances in computing and data processing, 

these techniques now cover a vast range of protocols, from the 

estimation of the evolutionary conservation of amino acid positions in 

a protein, to the energetic contribution of each residue to the binding 

affinity. In this thesis, several existing computational protocols to 

model the phylogenetic, structural and energetic properties of 

residues within protein-protein interfaces have been reviewed and 

their performance compared, using MEK1-BRAF complex (PDB ID 

4MNE) as example (see section 3.1.1). Although the different 

protocols differed in time and computational costs, type of the 

analysis provided (e.g., qualitative or quantitative) and the degree of 

structural information required, the predictions obtained were quite 

consistent between themselves (Fig 1 from section 3.1.1). 
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Interestingly, a new protocol for pyDock per-residue free energy 

decomposition had a similar performance to the widely used MM-

GBSA Ala-scanning although at much lower computational cost. 

Based on this observation, future systematic comparisons between 

these two methods would be interesting in order to produce new 

developments in the field. 

 

Figure 11. (A) SidD interface surface contacting AMPylated Rab1, 
colored according to the predicted ΔΔG; (B) In vitro de-AMPylation 
assay on selected mutants located within and outside the interface. 
From Chen et al., 2013. 

Apart from the above cited study, MM-GBSA Ala-scanning 

protocol has been successfully applied in an additional 

multidisciplinary project during this thesis for the characterization of 

Rab1/SidD complex in collaboration with Aitor Hierro research group 

(CIC bioGUNE) (Chen et al., 2013). As shown in Figure 11 in silico 

predicted hot-spots are in substantial agreement with the 

experimental data on in vitro SidD-mediated de-AMPylation of Rab1. 

Overall, all these observations confirm that in silico protocols 

provide a reliable aid to the energetic characterization of protein-
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protein interfaces.  

5.2. Structural prediction of protein interactions: 
from energetics to molecular flexibility and 
other challenges 

The last CAPRI edition, in which I have actively participated, sparked 

a large number of ideas and new strategies for structural modeling of 

protein interactions. In addition, our overall experience has been 

highly rewarding, since pyDock docking scheme confirmed its high 

performance in protein complexes prediction being placed among the 

top5 ranked groups out of more than 60 participants (see section 

3.1.2 and Table 3).  

Table 3. Overall pyDock performance among the top 10 ranked 
groups.  

Rank Group #Targets / *** + ** + * 
1 Bonvin 9 / 1 *** + 3 ** + 5 * 
2 Bates 8 / 2 ** + 6 * 
3 Vakser 7 / 1 *** + 6 * 
4 Vajda 6 / 2 *** + 3 ** +  1 * 
5 Fernandez-Recio 6 / 1 *** + 3 ** + 2 * 
5 Shen 6 / 1 *** + 3 ** + 2 * 
7 Zou 6 / 1 *** + 2 ** + 3 * 
8 Zacharias 6 / 1 *** + 5 * 
9 ClusPro 6 / 4 ** + 2 * 
10 Eisenstein 5 / 1 *** + 2 ** + 2 * 

Predictions are classified as acceptable (*), medium (**), and high 
(***). 

Besides this, many targets were proposed that go beyond the 

traditional protein-protein complex structure prediction, but that 

constitute important current challenges in modeling protein 

interactions. For instance, regarding the prediction of binding energy 

changes upon mutation, the application of multiparametric regression 

models, as implemented in our protocol, showed excellent results. 
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The overall evaluation showed that current protocols are more 

successful in predicting deleterious mutations than beneficial ones. 

Furthermore, the best procedures were those that took into account 

the effect of the mutation on the stability of the monomer, and that 

considered both sterical and energetic parameters (i.e, packing 

metrics, Lennard–Jones type potentials, electrostatic and solvation 

terms). Finally, an additional advantage was conferred by extensive 

sampling of side chain conformations and the incorporation of some 

backbone flexibility (Moretti et al., 2013). 

The general analysis of the protocols used by the CAPRI 

community for predicting the location of water molecules within the 

complex interface showed interesting results. First of all, it seems that 

high- to medium-quality models for the protein complex are required 

for successful interface water predictions. Moreover, the combination 

of established molecular mechanics force fields with some 

conformational sampling step and a final energy minimization, as well 

as the consideration of initial water positions derived from interfaces 

of related complexes, proved to be more successful than much 

simpler water placement methods (Lensink et al., 2014). 

Regarding last CAPRI round in combination with CASP (i.e., 

Round 30) for the modeling of homo-oligomeric proteins, the majority 

of participants showed a general poor success in docking of 

homology-built subunits (especially if modeled on distantly related 

templates) (Lensink et al, submitted), thus confirming what was 

indeed previously reported (Lensink and Wodak, 2010) and showing 

again that more work is needed in this direction. 

As for the most traditional targets involving the prediction of a 

protein-protein complex structure, which is still the main focus of 
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CAPRI, the analysis of the results showed that dealing with protein 

flexibility in docking simulations still remains a major challenge. 

Indeed, docking performance dramatically drops in cases that 

undergo medium-to-large conformational changes upon binding or in 

which the interacting subunits need to be modeled based on low-

homology templates (Lensink and Wodak, 2013; Pallara et al., 2013). 

This, in principle, could be explained by poor geometrical (and thus, 

energetic) complementarity of the docking partners in the unbound 

form.  

Therefore, in order to develop new strategies to include 

flexibility in docking, a much better understanding of molecular 

recognition process at structural and energetic level is required, which 

has been a major motivation in this PhD thesis.  

5.3. The role of conformational heterogeneity in 
protein-protein association process 

Conformers providing better binding energy in the native 
orientation are more likely to produce more effective docking 
encounters. 

The systematic study on the role of conformational heterogeneity in 

protein-protein association process, as described in section 3.2.1 
and summarized in Figure 12A, showed that sets of discrete 

conformers representing the conformational heterogeneity of the 

unbound structure yielded better docking results than the unbound 

structures themselves.  
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Figure 12. Schematic representation of (A) selected conformer 
docking (selection of the best ensemble conformers according to 
quality criteria based on the complex native orientation: Cα-RMSD, 
Int-RMSD, binding energy with the bound partner, binding energy 
with the unbound partner, number of clashes with respect to the 
bound partner); (B) ensemble docking (combination of every 
conformer from the receptor ensemble with another one randomly 
selected from the ligand ensemble) 

In this context, it is interesting to analyze the reasons for the 

success of such conformers. Surprisingly, the conformers that were 

structurally more similar to the reference did not yield better docking 

results than the unbound structures. On the other side, selected 

conformers with the best binding energy in the native orientation 

performed better than the unbound structures. Thus, the capacity to 

provide favorable binding energy in the native orientation seems to be 

a major determinant for the success of docking, as opposed to the 
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criterion of structural similarity to the native conformation. This might 

be due to the fact that in the majority of cases, ensembles were not 

exploring the conformational space close to the bound state, because 

sampling was limited to a region in the vicinity of the unbound. 

Indeed, it was found that 90% of the successful cases (i.e., 

near-native solution ranked within top 10) had average conformer 

binding energy < -20.0 a.u. in the native orientation. Actually, 71% of 

the docking cases with conformers with binding energy in the native 

orientation < -40.0 a.u. were successful. This confirms that the 

existence of conformers with good optimal energy in the native 

orientation is determining the success of docking. In many of the 

cases that significantly improved (i.e., those which had a near-native 

ranked ≤ 10 when using the energy-based selected conformers but 

not when using the unbound structures), the unbound structures in 

the native orientation had binding energy < -20.0 a.u. but were not 

successful in unbound docking. In these cases, a little bit of 

conformational sampling seems to be sufficient to generate 

conformers that significantly improve docking results (Fig 5 from 

section 3.1.2). 

Binding mechanism: What can we learn from docking? 

Docking simulations can provide interesting insights into the protein 

binding mechanism. Indeed, the different possible mechanisms that 

have been proposed for protein-protein association could be 

described by existing computational approaches (Fig 6 from section 

3.1.2). In this context, several possible scenarios can be considered. 

For protein complexes following rigid association (similar to lock-and-

key mechanism), the use of rigid-body docking with the unbound 

subunits could be a suitable approach to describe the binding process 
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and obtain good predictive models. Indeed, this seems to be the case 

for complexes with small conformational changes between unbound 

and bound states (I-RMSDCα < 0.5 Å), in which unbound docking 

already gives as similar success rates as bound docking. In these 

cases, the use of energy-based selected conformers from unbound 

ensembles gave also similarly good docking rates as unbound and 

bound docking. Indeed, for these cases, the unbound proteins in the 

native orientation generally showed good average binding energy 

towards the bound partner, not far from that of the bound structures. 

Consistently, the average binding energy of the best conformers was 

typically similar to that of the unbound or bound pairs. However, when 

conformers were selected by criteria based on the structural similarity 

to bound state, docking success rates were much worse than 

unbound or bound docking, because in these cases conformational 

heterogeneity was more likely to produce conformers that are further 

from the bound state than the unbound one (given that the unbound 

was already close to the bound state). Indeed, in none of these cases 

there were a single conformer that was significantly closer to the 

bound state than the unbound structure. 

On the other side, it is known that in complexes involving 

flexible association, rigid-body docking with the unbound structures is 

not going to produce correct models. For such cases, different binding 

mechanisms have been proposed, such as conformational-selection 

or induced-fit. For cases following the conformational-selection 

mechanism, the hypothesis is that the unbound proteins naturally 

sample a variety of conformational states, a subset of which are 

suitable to bind the other protein. Therefore, for these cases the use 

of precomputed unbound ensembles describing conformational 

variability of free proteins in solution should generate conformers that 
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would improve rigid-body docking predictions with respect to those 

with the unbound structures. Indeed, this is the case for the 

complexes undergoing unbound to bound transitions between 0.5 and 

1.0 Å I-RMSDCα. In these cases, selected conformers from the 

unbound ensembles yielded much better docking predictions than the 

unbound structures, virtually achieving the success of bound docking.  

For cases undergoing unbound-to-bound transition between 

1.0 and 2.0 Å I-RMSDCα, the use of unbound ensembles also 

improved the predictions with respect to the unbound docking results, 

although to a lesser extent. In these cases, the binding energy of the 

selected pair of conformers in the native orientation was typically 

better than the unbound structures and similar to the bound 

structures. Some residues in the best pair of conformers show better 

energy contribution than in the unbound state, which explains why 

this specific pair of conformers improves docking results. In these 

cases, the existence of a sub-population of "active" conformers, with 

good binding capabilities towards the bound partner, would be 

consistent with a conformational-selection mechanism. The fact that 

these conformers with improved binding capabilities are not 

geometrically closer to the bound state seems counterintuitive. 

However, recent views of binding mechanism show that active 

conformers that are selected by partner (initial encounters) do not 

necessarily need to be in the bound state, as they can adjust their 

conformations during the association process (Csermely et al., 2010). 

Indeed, these docking poses are likely to represent these initial 

encounters between the most populated conformational states of the 

interacting proteins and would be compatible with this extended 

conformational selection view (Csermely et al., 2010). However, in 

other cases the limited conformational sampling used might not be 
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sufficient to explore all conformational states available in solution and 

therefore the specific binding mechanism cannot be easily identified. 

As for the other extreme, in cases following an induced-fit 

mechanism the bound complexes would only be obtained after 

rearrangement of the interfaces when interacting proteins are 

approaching to each other, in which case the use of precomputed 

conformational ensembles in docking (even if generated by 

exhaustive sampling) would not produce favorable encounters around 

the native complex structure. This seems the case for complexes 

undergoing unbound to bound transitions above 3.0 Å I-RMSDCα. In 

all these cases, rigid-body docking, either with unbound structures or 

with selected conformers, failed to reproduce the experimental 

complex structure. In this context, an emblematic case is 1IRA, in 

which binding energy of the selected pair of conformers is similar to 

the unbound structures and much worse than the bound 

conformation. For these complexes, the use of precomputed unbound 

ensembles does not seem to see advantageous, and they would 

probably need to include flexibility during docking search, mimicking 

the induced-fit mechanism. However, in the flexible category (i.e., 

unbound to bound transitions between 2.0 and 3.0 Å I-RMSDCα,), 

there are also other cases (i.e., 1ACB), which seem to follow the 

(extended) conformational-selection mechanism, since the use of 

conformers helped to improve the docking results, and the 

conformers showed better energy than the unbound structures. 

Again, there might be other complexes under this category that could 

still follow the conformational-selection mechanism, but our 

conformational search was not sufficient to sample conformations that 

may exist in solution and could be productive for docking. This seems 

to be the case for 1I2M, in which ensembles based on MODELLER 
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did not produce pairs of conformers with sufficiently good binding 

energy in the native orientation, but the docking rates improved when 

using extended sampling based on NMA. 

Of course the use of docking calculations to learn about the 

binding mechanism has some limitations, in addition to the ones 

already mentioned. The timescale of transitions between inactive and 

active conformers can play an important role in controlling the binding 

mechanism (Zhou, 2010). In the work presented in this thesis, we can 

only assume that our ensembles are formed by conformers that are 

the most accessible in solution, so the existence of active conformers 

that can be preferentially selected by the bound partner would be 

compatible (but not exclusively) with a mainly conformational-

selection mechanism. However, in a situation in which the active 

conformers are not easily accessible, as those that can only be 

generated with extended sampling, we could not identify the type of 

mechanism unless transition rates between conformers were 

considered. 

5.4. Integration of unbound conformational 
ensembles in protein-protein docking: 
development and benchmarking of a novel 
protocol 

Ensemble docking provides more near-native poses and as a 
consequence better predictive rates 

In this thesis, we described a protocol to efficiently use in docking the 

conformational ensembles generated by MODELLER minimization 

(MM) from the unbound subunits (see section 3.2.2 and Figure 12B). 

The results showed that a minimal structural heterogeneity provided 
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by such ensembles can improve docking results with respect to the 

unbound X-ray structures.  

Thus, in order to further study the reasons of such 

improvement, it was first explored for each receptor-ligand pair of 

conformers whether the docking energy of the best near-native 

solution (determinant for the docking success) depended on the 

number of near-native solutions obtained for such conformer pair (Fig 

S1 from section 3.2.2). For the majority of cases it can be observed 

that the higher the number of near-native solutions generated by a 

given conformer pair, the higher the probability of obtaining good 

docking energies by such near-native solutions. In this line, the 

conformers that generated more near-native solutions than the 

unbound structure provided in general better near-native docking 

energies than those generated by the unbound structure. It was also 

observed that the bound X-ray structure typically yields more near-

native solutions and with better docking energy than the unbound. 

Interestingly, for many cases, there were a few conformers that 

generated even more near-native solutions than the bound structure 

(e.g., 1NSN, 1DFJ, 1I2M). Therefore, increasing the ratio between 

near-native solutions and false positives is the main reason for the 

beneficial effect of some of the conformers found in the precomputed 

unbound ensembles. Indeed, this is consistent with the previously 

observed correlation between the number of near-native solutions 

generated by docking and the predictive success rates (Pons et al., 

2010b). 

For each case, the percentage of conformers that produced 

more near-native solutions than the unbound structure was also a 

determinant of the ensemble docking success. Cases with more than 
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70% of the conformers producing more near-native solutions than the 

unbound structure showed much higher success rate (72.7%) than 

the unbound docking (36.4%), almost reaching the optimal bound 

docking results. On the contrary, in those benchmark cases in which 

there were less than 70% of conformers that produced more near-

native solutions, ensemble docking had similar success rate (41.2%) 

to when using unbound X-ray structures (35.3%) and far from the 

bound docking results. 

Successful conformers are not necessarily more similar to 
bound state 

As above mentioned, the consideration of conformational 

heterogeneity in docking can increase the number of near-native 

solutions generated by FTDock, as well as their docking energy, 

which is a key determinant for the docking success of each conformer 

pair. However, neither the number of near-native solutions found for 

each conformer pair or their best binding energy (and as a 

consequence the success rate) depended on the similarity of such 

conformer pair to the bound state (Figs S2 and S3 from section 

3.2.1). This is in agreement with previous findings (see sections 

3.2.2) and is consistent with an extended conformational-selection 

mechanism (Csermely et al., 2010). Nevertheless, in a few cases 

(e.g., 1AY7, 1MAH) we did observe that the most successful pair of 

conformers were the most similar to the bound state in terms of the 

RMSD of the predicted anchor residues (Rajamani et al., 2004; 

Meireles et al., 2010) (Fig 3 from section 3.2.2). In these cases, 

unbound ensembles can explore bound-like orientations of specific 

interface key residues that can improve the interacting capability of 

such conformers upon the docking and thus yield better docking 

results with respect to the unbound.  
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Conformer pairs providing better binding energy in the native 
orientation are more likely to improve docking results 

We reported that the structural similarity of the docking partners to the 

native conformation is not determinant for the docking success in 

general. However, what we found is that the better the binding energy 

of a conformer pair in the native orientation (i.e., after optimal 

superimposition on complex structure), the better the docking energy 

of the produced near-native solutions (and therefore the success 

rates) (Fig S5 from section 3.2.2), which is also in agreement with 

our previous findings (see section 3.2.1). Thus, capacity to provide 

favorable binding energy in the native orientation seems to be a major 

determinant for the success of a given conformer pair.  

In this regard, we found that for a given case the predictive 

success (i.e., best ranked near-native solution) of unbound docking 

strongly depended on the expected optimal binding energy of the 

unbound subunits as calculated in the native orientation (Fig 4 from 

section 3.2.2). All successful docking cases (i.e., best near-native 

rank ≤ 10) had optimal binding energy of the unbound subunits in the 

native orientation < 0.0 a.u. A number of unsuccessful cases had also 

optimal unbound binding energy < 0.0 a.u., but the majority of them 

(70%) significantly improved in the ensemble docking. Only two cases 

out of 7 having a pair binding energy < -20.0 a.u. were unsuccessful 

in docking (1DFJ and 1MAH). Interestingly, the cases with pair 

binding energy between -20.0 and 0 a.u. seem the ones more 

benefited by the ensemble docking, since 62% of the successful 

cases had an optimal binding energy within such range. On the 

contrary, in cases with worse unbound optimal binding energy (> 0.0 

a.u.), the docking results for the ensemble were as poor as those 

when using the unbound X-ray structures. After ensemble docking, 
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87% of the successful cases had optimal conformer pair binding 

energy < -20.0 a.u.. The majority of cases with optimal conformer pair 

binding energy > -20.0 a.u. were unsuccessful after ensemble 

docking. All this confirms that the existence of conformers capable of 

providing favorable binding energy in the native orientation is a major 

determinant for the success of the ensemble docking.

5.5. Characterization of protein interactions of 
biological interest: insights from 
computational models 

This PhD thesis included the application of different computational 

methods to the study of specific cases of biomedical interest. These 

provided significant insights into the molecular and functional basis of 

such interactions and could potentially open the path for new 

challenges and opportunities in biology and biomedicine. 

5.5.1. Energetics of host-pathogen protein interactions 

Host-pathogen protein interactions control virtually all the key steps of 

every infection process (e.g., pathogen replication and survival within 

the host system). Such interactions are devised by the pathogen to 

subvert and exploit normal host cell processes and typically involve 

mimicking specific host cell interactions. Analysis of the X-ray 

crystallographic structure of a protein-protein complex between host 

and pathogen proteins is essential to provide details at atomic 

resolution, but it does not always help to identify the residues that are 

actually responsible for the interaction. In this context, either in silico 
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or experimental mutational analysis are useful techniques for the 

characterization of protein complex interfaces. 

One of the studies performed during this thesis consisted on 

elucidating the energetic basis of the interaction between VipD from 

L. pneumophila and human Rab5 GTPases using in silico alanine 

scanning (see section 3.3.1). Human Rab5 interacted with VipD 

through a helix-turn-helix element that was rather similar to that used 

by other endogenous ligands (i.e., EEA1, RAbaptin-5 and 

Rabenosyn-5). Despite the observed overlapping contacts, the 

energy for VipD binding was not distributed uniformly across the 

interface but instead concentrated into a combination of hot-spots that 

provide superior binding affinity and specificity (Fig 7 from section 

3.3.1). Notably, these data were confirmed by both experimental 

mutagenesis and evolutionary conservation analysis. Moreover the 

identification of a specific polar interaction on VipD-Rab5 interface, 

responsible for a rather stronger energetic contribution to the 

interaction in comparison with the other cellular ligands, provides the 

basis for future development of novel therapeutic approaches that, 

rather than directly targeting the enzyme’s active site, could 

specifically disturb the host factor-mediated activation process of 

VipD and related microbial phospholipases. 

5.5.2. Modeling redox complexes by docking 

Despite impressive progress in automating procedures, experimental 

structure determination remains highly challenging in cases of multi-

monomer assemblies, protein membrane and transient complexes. In 

this context, ab initio modeling is a promising alternative technique for 

the structural prediction of such complexes starting from the isolated 
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component structures. In addition, the analysis of the docking energy 

landscapes can also provide useful insights into the energetic basis 

of the association mechanism. In this context, we have analyzed the 

structural and energetic determinants of Phaeodactylum photosystem 

I (PSI) reduction in different organisms by computational docking, 

revealing interesting aspects for the kinetics of the reaction of either 

cytochrome (Cyt) c6 or plastocyanin (Pc) (see sections 3.3.2). 

Phaeodactylum Cyt/Phaeodactylum PSI docking model  

The analysis of the binding energy landscape of Cyt/PSI for the 

diatom Phaeodactylum showed that the most stable docking 

orientations are not expected to be efficient for ET due to the longer 

distance between redox centers. This is consistent with the type III 

three-steps mechanism found in eukaryotic green systems and 

previously described for the diatom Phaeodactylum (Bernal-Bayard et 

al., 2013), in which an initial Cyt/PSI encounter complex reorganizes 

to a more productive final configuration. 

In addition, the diatom system shows lower efficiencies than 

the green systems both in the formation of the properly arranged 

[Cyt–PSI] complex and in the ET reaction itself (Sigfridsson et al., 

1996; Sommer et al., 2002; Hervas et al., 2003; Molina-Heredia et al., 

2003; Sommer et al., 2004; Bernal-Bayard et al., 2013). This apparent 

decreased reactivity is the consequence of diminished basic patches 

on PsaF and acidic regions on Cyt, both resulting in a weaker 

electrostatic interaction between partners. This feature of diatoms has 

been proposed to denote a compromise between ET efficiency and 

optimal protein donor turnover (Bernal-Bayard et al., 2013), as in the 

green systems it has been suggested that the strong donor/PSI 

electrostatic interaction limits the donor exchange and so the overall 

ET turnover (Drepper et al., 1996; Busch and Hippler, 2011).  
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In this context, it is interesting to compare the Phaeodactylum 

native Cyt/PSI docking complex (Fig 5 from section 3.3.2) with those 

described previously in green systems (Sommer et al., 2002; Ben-

Shem et al., 2003; Sommer et al., 2006; Busch and Hippler, 2011). It 

is widely accepted that the lumenal loops i/j of PsaA/B in PSI, 

including the PsaA W651 and PsaB W627 residues (Chlamydomonas 

numbering), form the hydrophobic recognition site for binding of Pc 

and Cyt, by means of complementary hydrophobic areas around the 

donors ET site (Sommer et al., 2002; Sommer et al., 2004). 

Electrostatic interactions are also established between negatively 

charged residues of Pc and Cyt with the positively charged N-terminal 

domain of PsaF (Sommer et al., 2006; Busch and Hippler, 2011). 

Particularly, Chlamydomonas Cyt seems to establish specific 

interactions involving residues K23/K27 of PsaF and the E69/E70 

groups located at the “eastern” negatively charged area of Cyt. 

Additionally, the positive charge on the “northern” site of Cyt (R66) 

and the adjacent D65 can form a strong salt bridge with the 

R623/D624 pair of PsaB (Sommer et al., 2006). According to this 

model, the distance between the donor/acceptor redox cofactors is 

≈14 Å (Sommer et al., 2006; Busch and Hippler, 2011).  

On the contrary, the Phaeodactylum Cyt/PSI complex built by 

docking has a different orientation than the Chlamydomonas Cyt/PSI 

complex. The reason is that the D65 group in Chlamydomonas Cyt is 

not conserved in Phaeodactylum Cyt (equivalent residue is Gly109), 

and thus it cannot stabilize this orientation. As a consequence, it also 

loses the electrostatic interactions with PsaB and the overall binding 

energy is less favorable. 
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Monoraphidium Cyt/Phaeodactylum PSI docking model 

Previous results obtained with cross-reactions of different Cyt/PSI 

eukaryotic systems suggested that the different electrostatic 

properties of Cyt, more than the PSI, mainly make the difference in 

behavior of diatoms with respect to other photosynthetic eukaryotes 

from the green lineage (Bernal-Bayard et al., 2013). Indeed, this has 

been confirmed by the docking models. The Monoraphidium 

Cyt/Phaeodactylum PSI docking complex shows virtually the same 

orientation as the native Chlamydomonas Cyt/PSI green complex, 

and is able to form similar interactions with the positive patch in PsaF 

(Figure 13) (Sommer et al., 2006). In addition, the salt-bridges 

formed by D65 and R66 of Chlamydomonas Cyt with PsaB R623 and 

D624 residues are conserved in the Monoraphidium Cyt/diatom PSI 

interaction (equivalent residues: D65 and R67; and R620 and D621, 

respectively).  

The key interface D42/R747 salt-bridge found in our 

Monoraphidium Cyt/Phaeodactylum PsaA model was not previously 

reported for the Chlamydomonas Cyt/PSI complex (Sommer et al., 

2006), but since these residues are conserved (equivalent ones are 

D41 and R746), it can be expected that this salt-bridge is also formed 

in Chlamydomonas Cyt/PSI complex. Interestingly, the redox centers 

in Monoraphidium Cyt/Phaeodactylum PSI are found at a shorter 

distance (11.6 Å) than in Chlamydomonas Cyt/PSI (≈ 14 Å) (Sommer 

et al., 2006).  
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Figure 13. Representative docking model between 
Phaeodactylum PSI and Monoraphidium cytochrome c6. Details 
of atomic interactions for best-energy docking models for efficient ET 
(PsaA W652 / PsaB W624 and Cyt heme groups at less than 3.0 Å 
distance), rank 14, docking energy -39.2 a.u., distance between Trp 
residues and cofactors 2.8 Å. Monoraphidium cytochrome c6 is 
depicted in dark blue; the PsaA, PsaB, and PsaF subunits of PSI are 
depicted in light grey, dark grey, and red, respectively. 

 

Chlamydomonas Pc/Phaeodactylum docking models 

The reduction of diatom PSI by the strongly acidic Cyt from green 

alga showed an increased affinity and kET but a lower efficiency in the 

formation of the properly arranged Cyt/PSI complex as compared with 

the native Cyt, because the too strong electrostatic interactions 

(Bernal-Bayard et al., 2013). Thus, Chlamydomonas Pc mutants were 

designed by replacing negative groups of the acidic patch –widely 

accepted to be responsible for electrostatic interactions with PSI 

(Redinbo et al., 1993; Díaz-Quintana et al., 2008; Busch and Hippler, 

2011) -by neutral or positive residues. The rationale for these designs 

has been to mimic the Cyt electrostatic properties, trying to increase 
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the efficiency of a green Pc in reducing diatom PSI by decreasing the 

negative character of its acidic patch (Fig 3 from section 3.3.2).  

The effect of the different Pc mutations, although moderate, 

gives interesting information about the binding mechanism to PSI. 

Thus, from the docking model, WT Chlamydomonas Pc seems to be 

fixed, by means of strong electrostatic interactions, in a less 

productive complex configuration, that can be improved in mutants 

showing an increased flexibility in the binding to PSI. Indeed, our 

docking model shows that E85K and Q88R mutants are 

destabilizing this less productive complex configuration, which 

effectively increases the population of the productive orientations 

and therefore are more efficient for ET.  

In this sense it is interesting again to compare the docking 

model of Chlamydomonas Pc/diatom PSI with the previously 

proposed Pc/PSI interactions in green systems, in which 

electrostatic interactions involve D42/D44 and E43/E45 of Pc with 

residues K17/K23/K30 in PsaF (Redinbo et al., 1993; Busch and 

Hippler, 2011). The Chlamydomonas Pc/Phaeodactylum PSI most 

productive docking model conserves such interactions and thus 

would be able to yield efficient orientations for ET. However, Pc E85 

and Q88 residues are stabilizing alternative, but less productive, 

orientations in the Chlamydomonas Pc/diatom PSI complex (Fig 6 

from section 3.3.2). This is consistent with the smaller ET efficiency 

found for Chlamydomonas Pc, and the ET increase in E85K and 

Q88R mutants. Interestingly, Chlamydomonas Pc does not possess 

a positively charged amino acid at a position equivalent to the R66 

found in Chlamydomonas and Phaeodactylum Cyts (corresponding 

to the R87 position of prokaryotic Pcs). In cyanobacteria, this 

positively charged amino acid is important for efficient ET to PSI 
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(Molina-Heredia et al., 2001). Thus, by bringing back this arginine 

residue (or positively charged guanidinium group) in the Q88R 

mutant of the green alga Pc, an improved reactivity has been 

observed. 

On the other side, it should be noted that the effect of the 

two individual E85K and Q88R mutations is counteracted in the 

double mutant E85K/Q88R, which shows a similar KA and a slightly 

diminished kET compared with the WT Pc. This would be at least 

partially explained in terms of the small increase of the double 

mutant redox potential. However, there must be some additional 

effect that cannot be described in our rigid-body docking 

simulations, like a conformational change of the two new positive 

residues that avoids the destabilization effect of the lesser 

productive configuration by the two individual mutations. Lastly, the 

results obtained with the V93K protein indicates that this 

hydrophobic residue is relevant in the ET process, as this mutant 

shows a significantly decreased kET, in spite of maintaining the same 

affinity for PSI than the WT Pc (Table 2 from section 3.3.2). 

5.6. Dynamic basis of protein dysfunction: 
understanding the effect of pathological 
mutations 

In order to understand the mechanistic aspects of several biological 

processes, such as the functional effects of a single mutation, the 

consideration of protein plasticity is of paramount importance. Protein 

kinases constitute a paradigmatic example of the importance of a 

close link between dynamics and function. These enzymes regularly 

switch between characteristic inactive and active states undergoing 
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large conformational changes, whose exhaustive computational 

description is still challenging. Indeed, a comprehensive elucidation of 

these large-scale transitions is of great value to identify druggable 

spots, which play a key role during such motions and thus guide the 

rational design of selective therapeutics. 

In this context, we elucidated the molecular basis of 

oncogenic and CFC-related mutations in MEK1 protein kinase by the 

application of both large-scale conventional Molecular Dynamics and 

a state-of-the-art enhanced sampling approach (i.e., PTMetaD-WTE 

protocol) (see sections 3.4.1 and 3.4.2). 

According to the conventional MD simulations, all the 

mutations analyzed seemed to favor the transition from inactive to 

active state, resulted in destabilizing αA-helix (Fig 2 from section 

3.4.1) and promoting the close-to-open transition of the activation 

loop (Fig 5 from section 3.4.1). Indeed the first event could be 

related to an inhibitory effect on the negative regulation of MEK1 

basal activity modulated by this helix (Mansour et al., 1996; 

Fischmann et al., 2009), whereas the second could favor the 

substrate (i.e., ERK) recognition and turnover (Masterson et al., 2010; 

Masterson et al., 2011). It is also interesting to notice that the effects 

produced by E203K resulted more dramatic as compared to Q56P 

and even more with respect to Y130C. Indeed these findings are in 

agreement not only with the constitutive activation induced by E203K 

(Nikolaev et al., 2012), but also with the pathological degrees of the 

different mutations, as previously reported (Rodriguez-Viciana et al., 

2006; Emery et al., 2009). Moreover, a distinctive over-activating 

effect was found in Q56P with respect to Y103C and E203K mutants 

involving the increase of P-loop flexibility (Fig 3 from section 3.4.1) 

that could be related to a favouring effect on the cofactor turnover. In 
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general, conventional MD simulations helped to disclose interesting 

dynamic events regarding MEK1 activation process and the specific 

destabilization effects caused by each mutation. Nevertheless, given 

the large conformation changes involved in protein kinases activation 

process and the intrinsic limits of this methodology in the exhaustive 

sampling of biomolecule energy landscape (Bowman, 2015), some 

important aspects of this topic remained hidden.  

Thus, in order to improve the exploration of the energy 

landscape of our system, a state-of-the-art enhanced sampling 

method, such as PTMetaD-WTE, was applied. As observed through 

conventional MD simulations and in agreement with the experimental 

data reported, all the mutations described here facilitated, in more or 

less degree, the shift of the equilibrium from the inactive to active 

state. Interesting differences in the specific molecular mechanisms 

accounting for oncogenic and non-oncogenic mutations were 

observed. First of all, E203K and Q56P showed significant effects on 

the closed-to-open transition of the A-loop, stabilizing a virtually 

equivalent intermediate state in which the A-loop result completely 

unfolded while the consequences of Y130C mutation (although clearly 

appreciable) were milder, promoting the stabilization of an 

intermediate state in which the A-loop is still partially folded (Fig 2 

from section 3.4.2). Another significant difference arises from the αC-

helix flexibility, with a higher propensity for out-to-in transition 

observed only in oncogenic mutations (Q56P and E203K) (Fig 3 from 

section 3.4.2). Finally, it is worth noting the crucial effects on the 

DFG-motif plasticity caused by the mutations. Indeed, although by 

using different mechanisms, all the mutants significantly flattened the 

energy barrier for the DFG in-to-out transition thus promoting the ADP 

release and increasing the ATP turnover rate. Nevertheless, as 
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previously observed, the effects produced by E203K are generally 

more dramatic if compared with Q56P and even more with respect to 

Y130C (Fig 4 from section 3.4.2). 

Indeed, the combination of conventional MD and PTMetaD-

WTE succeeded in rationalizing and quantifying the activating effects 

induced by the mutations but also in offering a mechanistic 

explanation to the different extent of MEK1 over-activation observed 

for oncogenic or CFC-related mutations, which eventually opens the 

path for the development of disease specific therapeutic approaches. 

 



 

 

6. Conclusions



 

 

“Science is forever a search not a discovery, 
a journey never an arrival.” 

Karl Popper 
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1. Current computational protocols aimed to model the 

phylogenetic, structural and energetic properties of residues within 

protein-protein interfaces show reasonably good predicting 

performance and consistency; 

2. pyDock showed excellent performance in the blind CAPRI 

experiment, and was classified 5th out of more than 60 participants. 

The most difficult targets for pyDock included highly flexible proteins 

or the use of homology-built subunits; 

3. The analysis of conformational heterogeneity in precomputed 

unbound ensembles revealed that docking encounters are favoured 

by improving the energetic complementarity of the docking partners 

rather than the geometrical similarity to the bound state; 

4. The unbiased use of precomputed conformational ensembles 

is a successful strategy to incorporate flexibility into a docking 

approach for low-medium flexible cases, which might follow a 

conformational selection mechanism. On the contrary, new strategies 

to integrate flexibility during docking search are needed to improve 

the performance prediction in high-flexible cases; 

5. Computational modeling can complement experimental data 

to improve our understanding of biological processes involving protein 

interactions, such as in host-pathogen interactions or electron transfer 

complexes; 

6. Computational modeling of protein plasticity is essential to 

rationalize and quantify the effects induced by pathological mutations 

in MEK1. 
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