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Abstract

The representation (or feature) learning has been an emerging concept in the last years, since
it collects a set of techniques that are present in any theoretical or practical methodology
referring to artificial intelligence. In computer vision, a very common representation has
adopted the form of the well-known Bag of Visual Words. This representation appears
implicitly in most approaches where images are described, and is also present in a huge
number of areas and domains: image content retrieval, pedestrian detection, human-computer
interaction, surveillance, e-health, and social computing, amongst others.

The early stages of this dissertation provide an approach for learning visual represen-
tations inside evolutionary algorithms, which consists of evolving weighting schemes to
improve the BoVW representations for the task of recognizing categories of videos and im-
ages. Thus, we demonstrate the applicability of the most common weighting schemes, which
are often used in text mining but are less frequently found in computer vision tasks. Beyond
learning these visual representations, we provide an approach based on fusion strategies for
learning spatiotemporal representations, from multimodal data obtained by depth sensors.
Besides, we specially aim at the evolutionary and dynamic modelling, where the temporal
factor is present in the nature of the data, such as video sequences of gestures and actions.
Indeed, we explore the effects of probabilistic modelling for those approaches based on
dynamic programming, so as to handle the temporal deformation and variance amongst video
sequences of different categories. Finally, we integrate dynamic programming and genera-
tive models into an evolutionary computation framework, with the aim of learning Bags of
SubGestures (BoSG) representations and hence to improve the generalization capability of
standard gesture recognition approaches.

The results obtained in the experimentation demonstrate, first, that evolutionary algo-
rithms are useful for improving the representation of BoVW approaches in several datasets
for recognizing categories in still images and video sequences. On the other hand, our
experimentation reveals that both, the use of dynamic programming and generative models
to align video sequences, and the representations obtained from applying fusion strategies in
multimodal data, entail an enhancement on the performance when recognizing some gesture
categories. Furthermore, the combination of evolutionary algorithms with models based on
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dynamic programming and generative approaches results, when aiming at the classification
of video categories on large video datasets, in a considerable improvement over standard
gesture and action recognition approaches.

Finally, we demonstrate the applications of these representations in several domains for
human analysis: classification of images where humans may be present, action and gesture
recognition for general applications, and in particular for conversational settings within the
field of restorative justice.



Resum

L’aprenentatge de la representació (o de característiques) ha estat un concepte emergent
en els darrers anys, ja que recopila un conjunt de tècniques que són presents en qualsevol
metodologia teòrica o pràctica referent a la intel·ligència artificial. En la visió per com-
putador, una representació molt comuna ha adoptat la forma de la ben coneguda Bossa
de Paraules Visuals (BdPV). Aquesta representació apareix implícitament en la majoria
d’aproximacions per descriure imatges, i és també present en un enorme nombre d’àrees i do-
minis: recuperació de contingut en imatges, detecció de vianants, interacció humà-ordinador,
vigilància, e-salut, i la computació social, entre d’altres.

Les fases inicials d’aquesta dissertació proporcionen una aproximació per aprendre
representacions visuals dins d’algorismes evolutius, que consisteix en evolucionar esquemes
de pesat per millorar les representacions BdPV en la tasca de reconèixer les categories de
vídeos i imatges. Per tant, demostrem l’aplicabilitat dels esquemes de pesat més comuns,
que s’usen sovint en la mineria de textos però es troben amb menys freqüència en tasques
de visió per computador. Més enllà d’aprendre representacions visuals, proporcionem una
aproximació basada en estratègies de fusió per a l’aprenentatge de representacions espai-
temporals, a partir de dades multi-modals obtingudes per sensors de profunditat. A més,
el nostre objectiu és especialment el modelatge evolutiu i dinàmic, on el factor temporal
és present en la naturalesa de les dades, com les seqüències de gestos i accions. De fet,
explorem els efectes del modelatge probabilístic per aquelles aproximacions basades en
programació dinàmica per a gestionar la deformació temporal i variància entre seqüències
de vídeo de categories diferents. Finalment, integrem la programació dinàmica i els models
generatius en un marc de computació evolutiva, amb l’objectiu d’aprendre representacions en
Bosses de SubGestos i, per tant, millorar la capacitat de generalització de les aproximacions
estàndards pel reconeixement de gestos.

Els resultats obtinguts en l’experimentació demostra, en primer lloc, que els algorismes
evolutius són útils per millorar la representació d’aproximacions BdPV en diverses bases
de dades pel reconeixement de categories en imatges fixes i seqüències de vídeo. Per altra
banda, la nostra experimentació revela que, tant l’ús de la programació dinàmica i els models
generatius per alinear seqüències de vídeos, com les representacions obtingudes d’aplicar
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estratègies de fusió en dades multi-modals, comporten una millora en el rendiment a l’hora de
reconèixer algunes categories de gestos. A més a més, la combinació d’algorismes evolutius
amb models basats en programació dinàmica i aproximacions generatives resulten, a l’hora
de classificar categories de vídeos de bases de dades grans, en una millora considerable
sobre les aproximacions estàndards de reconeixement de gestos i accions.

Finalment, demostrem les aplicacions d’aquestes representacions en varis dominis per a
l’anàlisi humà: classificació d’imatges on els humans poden ser-hi presents, el reconeixement
d’accions i gestos per aplicacions en general, i en particular per entorns conversacionals
dins del camp de la justícia restaurativa.



Resumen

El aprendizaje de la representación (o de características) ha sido un concepto emergente en
los últimos años, ya que recopila un conjunto de técnicas que están presentes en cualquier
metodología teórica o práctica referente a la inteligencia artificial. En la visión por com-
putador, una representación muy comuna ha adoptado la forma de la bien conocida Bolsa
de Palabras Visuales (BdPV). Esta representación aparece implícitamente en la mayoría de
aproximaciones para describir imágenes, y está también presente en un enorme número de
áreas y dominios: recuperación de contenido en imágenes, detección de peatones, interacción
humano-ordenador, vigilancia, e-salud, y la computación social, entre otras.

Las fases iniciales de esta disertación proporcionan una aproximación para aprender
representaciones visuales dentro de algoritmos evolutivos, que consisten en evolucionar
esquemas de pesado para mejorar las representaciones BdPV en la tarea de reconocer
las categorías de vídeos y imágenes. Por lo tanto, demostramos la aplicabilidad de los
esquemas de pesado más comunes, que se utilizan a menudo en la minería de textos pero se
encuentran con menos frecuencia en tareas de visión por computador. Más allá de aprender
representaciones visuales, proporcionamos una aproximación basada en estrategias de fusión
para el aprendizaje de representaciones espacio-temporales, a partir de datos multimodales
obtenidos por sensores de profundidad. También, nuestro objetivo es especialmente el
modelado evolutivo y dinámico, donde el factor temporal está presente en la naturaleza de
los datos, como las secuencias de gestos y acciones. De hecho, exploramos los efectos del
modelado probabilístico para aquellas aproximaciones basadas en programación dinámica
para gestionar la deformación temporal y varianza entre secuencias de vídeo de categorías
diferentes. Finalmente, integramos la programación dinámica y los modelos generativos en
un marco de computación evolutiva, con el objetivo de aprender representaciones en Bolsas
de SubGestos, y por lo tanto mejorar la capacidad de generalización de las aproximaciones
estándares para el reconocimiento de gestos.

Los resultados obtenidos en la experimentación demuestra, en primer lugar, que los
algoritmos evolutivos son útiles para mejorar la representación de aproximaciones BdPV
en diversas bases de datos para el reconocimiento de categorías en imágenes fijas y se-
cuencias de vídeo. Por otra parte, nuestra experimentación revela que, tanto el uso de
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la programación dinámica y los modelos generativos para alinear secuencias de vídeos,
como las representaciones obtenidas de aplicar estrategias de fusión en datos multimodales,
conllevan una mejora en el rendimiento a la hora de reconocer algunas categorías de gestos.
Además, la combinación de algoritmos evolutivos con modelos basados en programación
dinámica y aproximaciones generativas resultan, a la hora de clasificar categorías de vídeos
de bases de datos grandes, en una mejora considerable sobre las aproximaciones estándares
de reconocimiento de gestos y acciones.

Finalmente, demostramos las aplicaciones de estas representaciones en varios dominios
para el análisis humano: clasificación de imágenes donde los humanos pueden estar pre-
sentes, el reconocimiento de acciones y gestos para aplicaciones en general, y en particular
para entornos conversacionales dentro del campo de la justicia restaurativa.
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sẋ
i Feature vector of the i−th subgesture sequence at position ẋ.
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Chapter 1

Introduction

This chapter presents the motivation of this thesis referred to the physiological perspective
of the human brain that induces us to use Bag of Visual Words representations for learning
computer vision problems, and mainly those ones where humans are present. Thus, a brief
description of the different goals and contributions is proposed, making reference to the
subsequent chapters. In the last section one can find the outline description for the different
chapters so as to contextualize the reader in each part.



2 Introduction

1.1 Motivation

Humans are experts on recognizing objects and events in the world. The brain is able to
perform this type of complex cognitive tasks, such as efficiently correlating the information
perceived from our senses with the information stored in memory, and hence to select the
resulting output object from the perceived information or input stimulus. Humans achieve
quite good performance even when objects are subject to situations that make the recognition
much harder (e.g. rotation, translation, spatiotemporal changes, or occlusions among other
objects). Similarly, this ability of humans is maintained even when not perceiving the whole
objects themselves, but only parts of the objects that are representative enough for their
recognition. Thus, the composition of these parts is what form the whole objects. Similarly
to other subfields within Artificial Intelligence (AI), such as natural language processing, the
community of computer vision and machine learning calls Bag of -Visual- Words (BoVW)
to these representative parts of the objects, as shown in Figure 1.1.

Fig. 1.1 Example of Bag of Visual Words1.

Since a large number of approaches based on the BoVW paradigm have been applied
successfully in many problems where data consist of still images, nowadays, many scientists
claim its integration into time series data, where objects vary their characteristics in time.
The analysis of such temporal data sequences is a key problem present in a large number of
domains. The main challenge to address is the construction of computational models able
to learn, in an unsupervised or semi-supervised fashion, temporal primitives that generalize
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as better as possible. Therefore, the goal is to enhance the performance on different tasks,
such as the detection or classification of actions, events, or gestures. Following the BoVW
paradigm, in the case of gesture recognition, temporal primitives can be understood as Bag
of SubGestures (BoSG). However, in this case the problem becomes much more complex
and computationally demanding, since it requires to find a huge number of subsets in the
data, while considering both spatial and temporal domains.

Recently, the emerging models inspired on deep learning include the BoVW approach
as part of their networks’ architecture. These novel approaches involve the development of
robust systems featured by three main advantages: to model the invariance present in data,
to transfer unsupervised learning, and to learn hierarchical structures. Due to the extensive
use of deep learning and its competitiveness in a large number of domains, novel deep
architectures include the use of algorithms based on evolutionary computation in order to
improve the performance in machine learning tasks. Evolutionary learning techniques have
grown in the last years due to their flexibility and proven effectiveness in computer vision
tasks, while keeping the compatibility with the main mentioned advantages of deep learning
based approaches. Nowadays, many applications launched on the market tend to keep the
above theoretical foundations within their core development, under the new demands of the
current society.

Fig. 1.2 Examples of human communication2.

Moreover, such applications tend to handle with multimedia content or multimodal data
for building BoW representations, as those that analyze the human behavior in communication
of language. Figure 1.2 shows examples of some conversational contexts, as well as the
application of several computer vision techniques that reveal visible behavioral components
computed from BoVW-based descriptors. Such behavioral cues appear implicitly in these
processes and are of particular interest to pay attention on. Indeed, human language is

1Image from http://vision.stanford.edu/

http://vision.stanford.edu/
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misconstrued if it is not seen as a unity of two main modalities: speech and gesture. Thus,
human language is not the same as human speech. A fundamental divergence, proffered as
an insight into the human mindset for language in general, is that gestures are components
of speech, not accompaniments but actually integral parts of it. Language could not have
come into existence without gestures, and both have been developed along evolution together.
However, speech and gesture obviously differ in how they distribute information in time.
Under the fact that a gesture is not necessarily composed out of parts, but the parts are
composed out of it, the changes on the gesture continuum is determined in terms of the
temporal alignments of gestures with speech. In this sense, there exist several evolution
models for language, so that genetics plays an important role in the the way that different
humans gesticulate. Therefore, to construct robust machines able to learn, understand, and
perhaps, to imitate the human behavior in communication in a natural way, it is necessary
to study the origins of human language jointly from such interdisciplinary fields as deep
learning, evolutionary computation, neuroscience, linguistics, and psychology.

1.2 Goals of this thesis

In this thesis, we explore both the theoretical foundations of learning spatiotemporal represen-
tations that evolve and their applications in real domains3. We begin from the classical and
very static approaches based on BoVW, which take into account the information contained
in still images, and including different modalities by means of fusion strategies. Then,
we extend them to those more dynamic approaches that include a temporal dimension for
learning representations of image sequences over time. We use evolutionary computation in
both sides, as part of the global optimization methods for evolving such representations, so
that we use them in combination with other approaches. Finally, we differentiate a mid level
of abstraction to define a feature space where several applications take place, and expose our
studies in real scenarios.

1.2.1 Learning Visual Representations

As done in document analysis, we explore several representations based on the BoW approach.
In computer vision, however, the main difference w.r.t. document analysis is that the words

2Images from http://victorponce.org
3The different approaches presented in Chapters 3, 4 and 5 have been are already published in international

journals or conference proceedings. However, additional explanations and notations may change w.r.t. the
original manuscripts so as to keep both the consistency and the storyline of this thesis amongst those different
chapters.

http://victorponce.org
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are visual parts whose images are composed out of. For computers, as visual we refer
to matrices of pixel values coming from the RGB signal channels, where operations are
performed from this low level of abstraction for further subsequent analyses. Then, the
main goals are to describe features that represent this information by means of computer
vision techniques, and to learn from them through machine learning for recognition tasks.
In particular, the recognition in our cases consist of predicting the class label (or category),
either from still images that are independently labeled, or from video sequences whose
labels describe the type of gestures, events, or actions performed by the people in each video
sequence.

In addition, we consider evolutionary computation to enhance the BoVW-based repre-
sentations over time. It mainly consist of computing representations in an iteratively way
where, at each generation, richer representations are obtained by means of an optimization
procedure with the goal of improving the final recognition task on image classification.

1.2.2 Learning SpatioTemporal Representations

Beyond the visual BoW (or BoVW), we consider fusion strategies for learning novel
representations based on multimodal data that come from additional channels, such as those
from a depth sensor. The goal is to generate richer descriptions, so called Bag of Visual and
Depth Words (BoVDW), by adding useful, non-redundant, and discriminative information.
These fusion approaches consist of grouping key information at different levels, usually by
means of clustering methods, so as to generate sets of vocabulary descriptions that appear in
each class category, either before or after a learning task depending on the particular fusion
strategy. Moreover, the information that we add to the description may depend on time,
especially when having temporal sequences (e.g. videos). In such cases, we consider the
addition of information referred to motion patterns as part of the feature descriptions. Some
of these descriptions can be represented as spatiotemporal volumes or pyramids, and may
contain specific references at a certain image (i.e. key frames).

On the other hand, a large number of domains that include temporal information require a
type of modelling for describing how the features evolve over time. Moreover, such domains
may require an exhaustive analysis of time series which are naturally present in the data.
We face these problems, mainly, by means of dynamic programming, temporal clustering,
mixture models, and generative models. Many other approaches coming from the physics
and mathematics, however, would be also very appropriate here, as those based on dynamical
systems. The key idea of these methods is that information is added over time (e.g. in an
incremental form), so that they allow to model the invariance of unsupervised data for the
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learned representations, as well as to build architectures from complex structures that provide
a clearer overview of the problem at hand.

1.2.3 Evolving Dynamic Representations

Similarly to BoW, it is common to select data subsets from such dynamic representations,
as small temporal parts (e.g. segments) that will be used for training. Since the segment
search on a dynamic feature space, however, could become an NP-hard problem, we use
evolutionary computation (e.g. genetic algorithms) that acts as an alternative optimization
method to those based on the backpropagation or gradient descent algorithms, which besides
present simple and effective solutions. Furthermore, it can act as a reinforcement learning
approach and may be applied in conjunction with other deep learning approaches.

1.2.4 Applications for Human Analysis

The overview of approaches presented above are widely used in artificial intelligence
applications for the analysis of human behavior and language, both from the natural language
processing and from the computer vision and machine learning communities. However, these
approaches must be adapted to the specific problem so as to cover the requirements and
demands of the experts of the application domain. Usually, the aforementioned methodologies
use to model the problems at a different abstraction levels in order to make the problem more
suitable. In our cases and domain settings for human analysis, we use different levels of
descriptions computed from multiple data modalities for categorizing still images, image
sequences, and their applications such as human communication. Our particular example of
application belongs to the field of Restorative Justice, where we use mid level abstraction
of features from the lowest-level multimodal features (based on BoVW representations)
to a higher-level description of behavioral indicators that appear in conversations. Such
behavioral indicators appear frequently in language in the form of social signals, and can be
easily identified by computers and humans. However, for humans it consist of subconscious
processes that takes part implicitly within the brain. Our goal is to use computers for keeping
some of these processes out for reasoning, so as to make them more explicit and visible by
means of several approximations and responses that have been used along the literature for
similar purposes. The idea is to help experts on the domain to give ideas or feedback to
improve their efficiency and expertise in order to achieve their final goals.
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1.3 Contributions

1.3.1 Learning Visual Representations

• We explore the use of alternative weighting schemes for boosting the performance of
methods based on Bag of Visual Words. More importantly, we explore whether it is
possible to automatically learn and determine effective weighting schemes from scratch.
Then, we analyze the suitability of using well-known supervised and unsupervised
weighting schemes for landmark tasks in computer vision: image categorization
and gesture recognition. For this purpose, we propose an evolutionary algorithm
capable of learning weighting schemes for computer vision problems. We report
experimental results of an extensive experimental study in several computer vision
problems, showing the effectiveness of the proposed evolutionary algorithm in standard
image and video datasets.

1.3.2 Learning SpatioTemporal Representations

• We present a methodology to address the problem of human gesture segmentation
and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-
Words model is introduced as an extension of the BoVW model. State-of-the-art
RGB and depth features, including a newly proposed depth descriptor, are analysed
and combined in a late fusion form. The method is integrated in a human gesture
recognition pipeline, together with a novel probability-based Dynamic Time Warping
(DTW) algorithm, which is used to perform prior segmentation of idle gestures. The
proposed DTW variant uses samples of the same gesture category to build a Gaussian
Mixture Model driven probabilistic model of the gesture class. Results of the whole
human gesture recognition pipeline in public datasets show better performance in
comparison to both standard BoVW and DTW approaches.

1.3.3 Evolving Dynamic Representations

• We introduce a framework for gesture and action recognition based on the evolution of
temporal gesture primitives, or Bag of Sub-Gestures (BoSG). This is inspired on the
principle of producing genetic variations within a population of gesture subsequences.
The goal is to obtain a set of gesture units that enhance the generalization capability
of standard gesture recognition approaches. In our context, gesture primitives are
evolved over time using dynamic programming and generative models. This allows
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to learn richer representations along generations for recognizing complex actions. In
few generations, the proposed subgesture-based representation of actions and gestures
outperforms the state of the art results on several and action datasets.

1.3.4 Applications for Human Analysis

• We expose several achievements obtained along the literature when characterizing
some behaviors from visual data on different real applications, and discuss about the
important issues to be considered from an interdisciplinary perspective: the low level
vocabulary definition from Bags of Gesture Units (such as the aforementioned BoSG),
the high-level modelling from BoW representations and the subsequent inference of
human behavioral cues, and the traits discovery. The discussion is engaged under
the purpose of developing Software tools able to obtain a set of subjects’ features
from automatic audiovisual analysis. This higher level of feature extraction obtained
from language is of particular interest for the analysis of psychological factors that
a subject presents, and it has been widely studied along the literature in the fields of
social computation and social signal processing. This type of analysis is motivated
both to improve the quality of communication in several domains (presentations, job
interviews...) or to provide a feedback to experts of several domains in order to analyze
their self-performance. In particular, we present a non-invasive ambient intelligence
framework for the semi-automatic analysis of non-verbal communication, applied
to conversational settings within the Restorative Justice field. We propose the use
of computer vision and social signal processing technologies in real scenarios of
Victim–Offender Mediations (VOM), applying feature extraction methods so as to
obtain, from multi-modal audio-RGB-depth data, representations based either on BoW
or other techniques. We subsequently compute a set of behavioral indicators that define
communicative cues from the fields of psychology and observational methodology.
We test our methodology on a dataset captured in real VOM sessions. We define the
ground truth based on expert opinions when annotating the observed social responses.
Using different state of the art binary classification approaches, our system achieves
promising recognition performances on predicting social responses in such domains.

1.4 Thesis outline

The next five chapters describe the main content of this book. The adjacent second chapter
packs the whole theoretical background of this thesis, which is divided accordingly on
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the subsequent chapters. This will follow the type of this chapter, as well as the natural
multidisciplinary of this thesis, i.e. through static and dynamic approaches, and finally to
applications. Thus, the chapters three, four, and five, follow the next chapters of this thesis
as: learning visual and spatiotemporal representations, learning dynamic representations, and
applications in human language behavior.

For simplicity to the Reader, all figures, tables, and notations can be queried globally on
the previous separated sections.

The Chapter 3, evolving visual representations, performs a deeper analysis into the Bag of
Visual Words approaches and their extensions, and how evolutionary computation techniques
are applied together with BoW.

The Chapter 4, learning spatiotemporal representations, encompasses the theoretical
aspects regarding the fusion of multimodal features and data temporality, as well as the main
approaches used to handle with them: dynamic programming, generative and probabilistic
models.

The Chapter 5, evolving dynamic representations, aims at the integration of evolutionary
computation frameworks into classical approaches used for gesture and action recognition by
means of genetic algorithms.

The Chapter 6, applications for human analysis, presents an interdisciplinary discussion
of the main abstraction levels, which correlate the theoretical contents of previous chapters
with the several applications about practical studies performed in real-case scenarios.

The Chapter 7, conclusions, presents a discussion of the very global and philosophical
aspects of this thesis to be considered, and present the Author’s intuitions on future trends
in the fields of human language behavior and their divergences between the theory and
application.

Finally, the annexed appendix A, publications, provides a summary of related publications
in impact factor journals and proceedings in several conferences and workshops on the related
fields.





Chapter 2

Background

This chapter is divided in two main sections. The first section describes in detail a large
number of models based on the BoW paradigm and their integration into the computer vision
and machine learning communities for different applications, such as gesture recognition.
The second section describes an intermediate level of abstraction of features emerging from
those previous representations, which provide clearer representions of behavioral cues or
indicators for human language communication that are present in specific contexts, such as
conversational settings. The inner sections introduce the content to the next chapters as part
of the contributions for the referred literature.



12 Background

2.1 BoW and BoSG models

This section describes in detail the models based on the BoW paradigm. A motivation for
the concept of words is presented, providing references on those widely used approaches
along the literature. The main aspects to emphasize in this section are the effects of applying
BoW-based approaches from the very static representations to those dynamic representations
that include the temporal phenomena, which is usually present in data. In the middle of
this literature, the works referring to evolutionary computation take an important role to be
integrated as part of these approaches.

2.1.1 Towards Bag of Visual Words

In text mining and information retrieval, the BoW representation is a way to represent
documents as numerical vectors, with the aim that such vectorial space captures information
about the semantics and content of documents. The idea is to represent a document by a
vector of length equal to the number of terms (e.g., words) in the vocabulary associated to
the corpus under analysis. Each element of this vector indicates the relevance/importance
of the corresponding term for describing the content of the document. Although the BoW
makes strong assumptions (e.g., that word order is not important), it is still one of the most
used representations nowadays1. Thus, in text mining each document is represented using
the frequency of appearance of each word in a dictionary.

The success of the BoW representation in the natural language processing domain has
inspired researchers in computer vision as well. In the image domain, however, these words
become visual elements taken from a certain visual vocabulary. In the computer vision
analogy, under the BoVW, an image is represented by a vector indicating the importance of
visual words for describing the content of the image. Indeed, each image is decomposed
into a large set of patches, either using some type of spatial sampling (grids, sliding window,
etc.) or detecting points with relevant properties (corners, salient regions, etc.). Each patch is
then described by a numerical descriptor. A set of representative visual words are selected
by means of a clustering process over the descriptors. In this scenario, a visual word is
a prototypical visual pattern that summarizes the information of other visual descriptors
extracted from training images. More specifically, the vocabulary of visual words is typically
learnt by clustering visual descriptors extracted from training images. The centers of the
resultant clusters are considered as visual words. Commonly, visual descriptors are extracted
from points or regions of interest, see [62, 179] for comprehensive descriptions of the BoVW

1One should note the text mining community has proposed variants that aim at alleviating such assumptions,
e.g., using n-grams [12], still the BoW is very competitive with such formulations.
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representation. Some examples of these descriptors are: Scale Invariant Feature Transform
(SIFT) [111], Histograms of Oriented Gradients (HOG and HOG3D) [30, 78], Oriented
Histograms of Flow and appearance (HOF) [31], Partial Least Squares (PLS) [163], or 3D
voxel reconstructions [26]). Once the visual vocabulary is defined, each new image can be
represented by a global histogram containing the frequency of occurrences of visual words
in the image. Finally, this histogram can be used as input for any classification technique (i.e.
K-Nearest Neighbor or SVM) [27, 107].

Currently, the BoVW is among the most used representations for describing the content
of images and videos [19, 27, 36, 62, 83, 86, 107, 147, 154, 179], and such representations
have obtained outstanding results in a large number of scenarios, as those mentioned before.
Moreover, extensions of BoVW from still images to image sequences have been recently
proposed in the context of human action recognition, defining Spatio-Temporal-Visual-
Words (STVW) [84, 114]. Furthermore, this formulation has trespassed the image and text
boundaries and, in fact, it has been used for representing audio [101], time series [166], or
accelerometer [60] signals, among others.

2.1.2 Multimodal Gesture Recognition

Nowadays, human gesture recognition is one of the most challenging tasks in computer vision.
Current methodologies have shown preliminary results on very simple scenarios, but they are
still far from human performance. Due to the large number of potential applications involving
human gesture recognition in fields like surveillance [64], sign language recognition [150,
177], or clinical assistance [118] among others, there is a large and active research community
devoted to deal with this problem. Independently of the application field, the usual human
gesture recognition pipeline is mainly formed by two steps: gesture representation and
gesture classification.

In order to represent these visual features automatically, most approaches are based on
classic computer vision techniques applied to RGB data [56, 75, 162]. However, extracting
discriminative information from standard image sequences is sometimes unreliable. In this
sense, recent studies have included compact multi-modal devices which allow 3D partial
information to be obtained from the scene. Besides, the release of the Microsoft Kinect™
sensor in late 2010 has allowed an easy and inexpensive access to almost synchronized
range imaging with standard video data [1, 2]. Those data combine both sources into what
is commonly named RGB-D images (RGB plus Depth). This data fusion has reduced the
burden of the first steps in many pipelines devoted to image or object segmentation, and
opened new questions such as how these data can be effectively described and fused. At
this point, and also considering previous works of the literature [65, 73, 134, 139, 176], the
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extraction of human body pose information opens the door to one of the most challenging
problems nowadays, such as human gesture recognition.

In [145], the authors proposed a system for real-time human pose recognition including
depth information for each image pixel. In this case, information is obtained by means of
a Kinect™ device, which estimates a depth map based on the inverse of time response of
an infrared sensor sampling within the scene. While some works focus on just the hand
regions for performing gesture recognition [15, 38, 76, 90, 117, 165], Shotton introduced
one of the greatest advances in the extraction of the human body pose using RGB-D as
part of the Kinect™ human recognition framework. The method is based on inferring pixel
label probabilities through Random Forest from learned offsets of depth features. Then,
mean shift is applied to estimate human joints and representing the body in skeletal form.
In [67], authors extended Shotton’s work applying Graph-cuts to the pixel label probabilities
obtained through Random Forest, in order to compute consistent segmentations in the spatio-
temporal domain. Girshick, Shotton et al. [58] proposed later a different approach in which
they directly regress the positions of the body joints, without the need of an intermediate
pixel-wise body limb classification as in [145]. This source of information has been recently
exploited for creating new human pose descriptors by combining different state-of-the-art
RGB-D, as well as they are used in a large amount of Human Computer Interaction (HCI)
applications [95].

Motivated by the information provided by depth maps, several 3-D descriptors have been
recently developed [136, 137] (most of them based on codifying the distribution of normal
vectors among regions in the 3D space), as well as their fusion with RGB data [80] and
learning approaches for object recognition [16]. As an extension of BoVW for gesture recog-
nition, these approaches also benefit from the multimodal fusion of visual and depth features.
Thus, in [66, 68], a new depth descriptor is proposed and combined with state-of-the-art
RGB descriptors in a late fusion fashion. The use of this descriptor shows better performance
than the traditional BoVW approaches in gesture recognition datasets. Furthermore, this
depth information has been particularly exploited for gesture recognition and human body
segmentation and tracking.

Dynamic Programming and Generative Models

There exist a large number of works in the literature taking place once human body features
are computed [23, 29, 32, 94, 148, 158, 182]. Mainly, these works focus on studying the
trajectories generated from those features by means of pattern recognition approaches. In
the context of human gesture recognition, some of the methods are based either on dynamic
programming techniques such as Dynamic Time Warping (DTW) [68, 116, 133], since it
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offers a simple yet effective temporal alignment between sequences of different lengths.
Other common methods involve statistical approaches such as Hidden Markov Models
(HMM) and Conditional Random Fields (CRF) [150, 152, 177]. These sequential models
are especially known for their application in temporal pattern recognition, and they model
the system assuming unobservable (or hidden) state variables that are inferred from the
observations. In fact, an HMM can loosely be understood as a CRF with very specific feature
functions that use constant probabilities to model state transitions and emissions. Conversely,
a CRF can loosely be understood as a generalization of an HMM that makes the constant
transition probabilities into arbitrary functions that vary across the positions in the sequence
of hidden states, depending on the input sequence.

Specifically, in the gesture classification step there exists a wide number of methods
based on dynamic programming algorithms for both alignment and clustering of temporal
series, some of them were reviewed in [183]. However, the application of such methods to
gesture detection in complex scenarios becomes a hard task due to the high variability of the
environmental conditions among different domains. Some common problems are: wide range
of human pose configurations, influence of background, continuity of human movements,
spontaneity of human actions, speed, appearance of unexpected objects, illumination changes,
partial occlusions, or different points of view, just to mention a few. These effects can cause
dramatic changes in the description of a certain gesture, generating a great intra-class
variability. Therefore, since usual DTW is applied between a sequence and a single pattern,
it fails when taking into account such variability.

In this sense, Probability-based Dynamic Time Warping (PDTW) [11] is proposed as an
alternative to the DTW for tackling these common problems. In PDTW, different samples of
the same class-sequence pattern obtained from RGB-D data are used to build a Gaussian-
based probabilistic model of the class. In particular, we refer to Gaussan Mixture Models
(GMM), where a mixture model corresponds to the mixture distribution that represents the
probability distribution of observations in the overall population of sequences. Finally, the
cost of DTW is adapted accordingly to the new model in order to merge such approaches.
The integration of PDTW within a gesture recognition pipeline is used to perform prior
segmentation of idle gestures. This approach is tested in a challenging scenario, showing
better performance w.r.t. to state-of-the-art approaches for gesture recognition in RGB-D
data. In Chapter 4.1.1, we explain in more detail the classical DTW approach and describe
such situations where generative models provide the possibility of handling with those
common problems, integrating them as part of a gesture recognition framework. Moreover,
in the section 2.1.4 of this chapter we introduce novel approaches that claim the integration
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of evolutionary algorithms to evolve temporal representations based on either dynamic
programming or generative models.

2.1.3 Evolutionary Computation over Weighting Schemes

Under the traditional BoW described in the section 2.1.1, the ith document is represented
by a vector di = ⟨xi,1, . . . ,xi,|V |⟩, where xi, j is a scalar that indicates the importance of the
term t j for describing the content of the ith document; V is the vocabulary, i.e., the set
of different words in the corpus. The way in which xi, j is estimated is given by the so
called term-weighting scheme. There are many ways of defining xi, j in the text mining
and information retrieval literature [33]. Usually, xi, j carries information about both: term-
document relevance (T DR) and term-relevance (T R). The former, explicitly measures the
relevance of a term for a document, i.e., it captures local information. The most common
T DR is the term-frequency (T F) weight, which indicates the number of times a term occurs
in a document. On the other hand, T R aims to capture relevance of terms for the task at hand,
i.e. global information. The most common T R is the inverse-document-frequency (IDF),
which penalizes terms occurring frequently across the whole corpus. Usually, xi, j combines
one T DR and one T R weight.

Perhaps the most common combination is the T F× IDF weighting scheme [10, 147].
Although this is the standard scheme, for some tasks this may not be the best choice. For
instance, in supervised learning tasks, we have information of labels for training samples.
However, standard schemes disregard this useful information. This is due to the fact that
traditional schemes were originally proposed for information retrieval (an unsupervised
problem) [141, 144].

The effectiveness of BoVW representations depends on a number of factors, including
the interest-point detection phase, the choice of visual descriptor, the clustering step, and the
choice of learning algorithm for the modeling task (e.g., classification) [179]. A factor that
has not been deeply studied is the role the term-weighting scheme plays. As in text mining,
commonly term-frequency or Boolean term-weighting schemes are considered. Despite the
fact these schemes have reported acceptable performance in many tasks (including tasks
from natural language processing), it is worth asking ourselves whether alternative schemes
can result in better performance. To the best of our knowledge, the only work that aims at
exploring this issue is the work by Tirilly et al. [154]. The authors compare the performance
of different term-weighting schemes for image retrieval. They considered the most common
schemes from information retrieval and provide a comprehensive comparative study. In our
work we focus on classification/recognition tasks and consider weighting schemes specifically
designed for classification tasks: supervised weighting schemes.
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On the other hand, evolutionary algorithms have a long tradition in computer vision. For
instance, in [91, 92] genetic programming is used to learn descriptors for action recognition.
In [155], evolutionary algorithms are used to evolve interest-point detectors. Moreover, Term-
weighting learning with evolutionary algorithms has been studied within information retrieval
and text categorization domains [28, 40, 57]. In [28], the authors learn information retrieval
weighting schemes with genetic programming. They aim to combine a few primitives trying
to maximize average precision. In [40, 57], authors use genetic programming for learning
weighting schemes for text classification tasks. In [42], the same algorithms were used to
evolve weigthing schemes for image representation.

However, it still remains unknown whether supervised weighting schemes would work for
computer vision tasks as well. In the Chapter 3.1, we aim to answer such question throughout
an extensive experimental evaluation. In addition, we propose a genetic programming
algorithm to learn weighting schemes by combining a set of primitives. One should note that
there are efforts for improving the BoVW in several directions, most notably, great advances
have been obtained for incorporating spatio-temporal information [19, 68, 86, 96, 107]. The
term-weighting schemes developed in this work can also be applied in those scenarios.

2.1.4 Bag of Sub-Gestures

Gesture and action recognition are landmark tasks of the so called Looking at People
field [109]; that is, the visual analysis of humans. A wide variety of methods have been
proposed since the early nineties [108]. As shown before, the release of the Kinect™ device
caused an exponential growth on research in this field [3, 44, 63, 108]. Traditional gesture
recognition methods were based on templates (e.g., MHIs [17]), sequence alignment (e.g.,
DTW [18]) or statistical sequential-modeling (e.g., HMMs [151, 173]). Because of its
effectiveness, DTW and HMM based methods are still among the most used techniques
nowadays [77, 98, 112]. DTW-based methods align, via dynamic programming, sequences of
different length to reference gesture models. The goal is to find the alignment that minimizes
a cost given by a distance measure between elements of the sequences. HMMs, on the other
hand, are generative models, typically applied to sequential decision problems. Observations
sequences are assumed to be generated by a hidden stochastic process. Again, Chapter 4.1.1
provides further details on these methods.

Despite its effectiveness, traditional gesture recognition methodologies approach the
problem in a holistic way, where gestures are processed as a whole. Results in related fields
with part-based techniques (e.g., in object detection [52] and action recognition [131]) have
inspired researchers to build solutions based on subgesture models. For instance, in [99]
HMMs based on subgestures were proposed. However, subgestures were manually provided
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by the users. In [100] a HMM was used to learn subgestures, althought the model was only
applied to the problem of hand gesture recognition. In [164] it was proposed a method for
segmenting gestures into subgesture units at the frame level. In [122] the authors proposed
to use DTW for subgesture modeling, but no results were reported. In [20] subgesture
units (defined as cuboids) were learned together with their relationships (using Allen’s
relations) under a graph-learning framework. Recently, in [170] a relational model for action
recognition using dynamic-keyposes was proposed.

Regarding the gesture representation step, literature shows a variety of methods that have
obtained successful results. Traditionally applied in image retrieval or image classification
scenarios, we have seen the BoVW as one of the most commonly used approaches. Some
methods are based on key pose/frame extraction [93, 132, 181] in order to learn a subset of
key frames that are highly representative and discriminative for an action class. In [181] an
information-theory criterion is adopted for selecting keyframes, whereas in [93] it is used a
boosted-based criterion. In [132] a max-margin formulation of the problem is proposed. Very
recently, evolutionary algorithms have been also developed for keyframe extraction [21, 22].
In these works, a bag-of-key-poses representation was adopted and an evolutionary algorithm
was used to select the number of key-poses for the vocabulary (using k−means for clustering),
the training set, features and parameters of the model (using DTW for recognition). All
of these methods look for a subset of frames, whereas in subgesture modeling we aim at
learning spatio-temporal units (subgestures). On the other hand, the above works assume and
demonstrate that class-specific key poses/subgestures give a good performance. Nevertheless,
we include the fact that some classes may contain or share similar subgestures [122]. Under
this additional assumption, our method also reaches the state of the art performance and
provides considerable improvements in gesture and action recognition domains.

In the Chapter 5.1, a genetic algorithm is used to evolve gesture primitives integrated
into an action recognition framework coupled with either DTW or HMMs. Different from
most of the work reviewed in this section, our approach obtains dynamic subgestures (i.e.,
sequences of frames of different lengths) and simultaneously learns the parameters of the
recognition model (either DTW or HMM). Besides, the framework can operate directly
as part of deep learning architectures and viceversa, which allows both to evolve deep
representations within the evolutionary algorithm and to begin the evolutionary algorithm
taking deep representations as the input features.
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2.2 Behavioral Indicators in Social Computing domains

In most scenarios for human behavior analysis, it can be observed that both ambient in-
telligence and egocentric computing methods are defined. Ambient intelligence refers to
electronic environments that are sensitive and responsive to the presence of people, whereas
egocentric computing refers to the use of wearable devices. Often, existing techniques of
data acquisition make use of interface devices [153], or special items such as gloves [50]
to increase recognition accuracy. However, while these techniques give impressive results
in simulated environments, their use becomes largely infeasible in real-case scenarios due
to their intrusiveness and the uncontrollable nature of events that are present. Because of
the need to avoid wearing intrusive egocentric devices, some ambient sensors that provide
multi-modal data might be considered. In [102], a custom developed system is applied in
a real-case scenario for job interviews. The data acquisition procedure is performed using
different types of camera, by setting them up in different positions and with different ranges
for capturing visual and depth information. Similarly, scenes with non-invasive systems have
been proposed in other studies, such as [122], which provides trajectory analyses from body
movements and gestures. Furthermore, audio information has been analyzed in [14], with
the objective of modeling descriptors for speech recognition.

The analysis of the participants from a computer vision point of view use to be defined
by region of interest detection, description, and tracking, usually involving the face or
hands. These regions provide discriminative behavioral information, or adaptors, which are
movements, such as head scratching, indicative of attitude, anxiety level and self-confidence
[104]; or beat gestures, which are small baton-like movements of the hands used to emphasize
important parts of speech with respect to the larger discourse [105]. However, as explained
in [102, 106], body posture is also found to be an important indicator of a person’s emotional
state. Additionally, another potential source of information is provided by facial expressions
[69, 135, 160, 161].

Once data from the environment have been acquired and processed to define a set of
behavioral features, they serve as the basis for modelling a set of communication indicators.
For instance, in [174], the authors outline a system for real-time tracking of the human body
with the objective of interpreting human behavior. In particular, authors are mainly interested
in behavioral traits that represent social signals, which are captured from the communication
and the interactions between the participants in the context of conversations. In this sense,
levels of agitation (or energy), activity, stress, or engagement are analyzed not only from
their body movements, but also from their speech, facial expressions, or gaze directions, so
as to predict behavioral responses.
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2.2.1 Application in Restorative Justice

The Restorative Justice approach focuses on the personal needs of victims. Achieving success
in the VOM (Victim-Offender Mediation) sessions depends largely on how the participants
communicate with each other. A large number of techniques can be found in the literature
for application in VOM. Rich examples of them can be found in the literature [157]. This
resource offers an empirically grounded, state of the art analysis of the application and impact
of VOM. It provides practical guidance and resources for VOM in the case of property
crimes, minor assaults, and, more recently, crimes of severe violence, where family members
of murder victims request a meeting with the offender. Since most of these cases are of
a highly sensitive nature, participants manifest emotional states when interacting with the
others that can be physically observed through their non-verbal communication [79]. This
raises a controversy concerning the different legal frameworks discussed in [13]. However,
the handbook [157] collects a set of outcomes demonstrating the competence of restorative
justice, as well as several practices developed in the fields of psychology and observational
methodology for analyzing both the VOM phases and the participant states.

Recently, a number of studies have proposed ways in which personality traits can be
inferred from multimedia data [110] and which can be applied directly to the approach
taken by Restorative Justice. The prediction of these responses takes a particular interest
in meetings involving a limited number of participants. For instance, in [143] the goal was
both to detect the social signals produced in small group interactions and to emphasize their
importance markers. In addition, the works of [7, 102] combined several methodologies
to analyze non-verbal behavior automatically by extracting communicative cues from both
simulated and real scenarios. Additionally, information obtained from speech is commonly
used [74, 160, 161]. This can be useful information to measure, for instance, the levels of
activity from speech cues, including detection of speech/non-speech, interruptions, pauses,
or segments obtained from a speaker diarization process.

Like in the aforementioned studies, in [125, 128] authors demonstrate that indicators
of agreement during communication are highly dependent on social signals. As such, it
is possible to perform an exhaustive analysis to detect the role played by each participant
in terms of influence, dominance, or submission. For instance, In [47], both the interest
of observers and the dominant participants are predicted solely on the basis of behavioral
motion information when looking at face-to-face (also called vis-a-vis or dyadic) interactions.
Furthermore, there are many interdisciplinary, state of the art studies examining related fields
from the point of view of social computing, some of which are summarized in [118, 119].

In Chapter 6.3.4, we present an intermediate level of abstraction for obtaining behavioral
indicators based on communicative cues, which are able to better describe those features
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that are directly extracted from multi-modal data. Moreover, such behavioral features are
combined together for describing additional behavioral indicators, which are useful to analyze
their influence within VOM scenarios.





Chapter 3

Evolving Visual Representations

This chapter presents an evolutionary computation approach for Bag of Visual Words (BoVW)
representations based on several weighting schemes. The improvement effects of integrating
a genetic programming framework are demonstrated over different datasets of still images
and video sequences.
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3.1 Evolutionary Algorithms for Bag of Visual Words

As explained in Chapter 2.1.1 The BoVW is a widely adopted representation for describing
the content of images and videos in computer vision problems [147]. This representation is
the analogy of the Bag of Words (BoW) representation used in text mining and information
retrieval: BoVW accounts for the presence and absence of prototypical patterns (called
visual words, and playing the role of words in text processing) that are obtained from
training images. This representation has obtained outstanding results in a large number of
scenarios [19, 27, 36, 86, 107, 147, 154, 179].

In spite of its effectiveness and popularity, most implementations of BoVW adopt pretty
standard weighting schemes, that is, the mechanisms that determine the contribution that
visual words have for describing the content of images and videos. For instance, the most
common scheme is term frequency where the BoVW representation is an histogram that
accounts for the occurrences of visual words in the image or video. Although competitive
performance has been obtained with this formulation, we think it is worth studying alternative
weighting schemes.

This chapter explores the suitability of using alternative term-weighting schemes for
image and video representations. On the one hand, we report an evaluation of the most
common weighting schemes used in text mining, but rarely used for computer vision tasks.
Our study comprises unsupervised and supervised weighting schemes. More importantly,
we propose an evolutionary algorithm capable of automatically learning weighting schemes
for computer vision problems from scratch. The evolutionary algorithm explores the search
space of possible weighting schemes that can be generated by combining a set of primitives
with the aim of maximizing the classification/recognition performance. We perform experi-
ments in landmark problems in computer vision, namely: image categorization (different
subsets of the Caltech-101 dataset [51]), gesture recognition (the newly introduced Montal-
bano dataset [44]), action recognition (MSRDaily3D Data) [167], places-scene recognition
(the well known 15-scenes [86]), insect and bird classification [85, 87] and adult image
classification [178]. Experimental results show the effectiveness of the proposed method.

The remainder of this chapter is organized as follows. Next section introduces the BoVW
representation and reviews related work. Section 3.2 presents common and alternative
weighting schemes that have been adopted in text mining and information retrieval but
that have not been used in computer vision. Section 3.3 describes in detail the proposed
methodology for evolving weighting schemes. Next, Section 3.4 reports experimental results.
Finally, Section 3.5 outlines conclusions and future work directions.
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3.2 Common and alternative weighting schemes

As described in Chapter 2.1.3, one of the most used weighting scheme for information
retrieval and text mining tasks is the so called T F× IDF [10, 144]. Although good results
have been reported in many applications using it, alternative weighting schemes have been
proposed aiming to capture additional or problem-specific information with the goal of
improving retrieval or classification performance [10, 33, 81, 156]. For instance, for text
classification tasks, supervised term-weighting schemes have been proposed [33, 81]. These
alternatives aim at incorporating discriminative information into the representation by defin-
ing TR weights that account for the discriminative power of terms. For instance, by replacing
the IDF term (in the T F× IDF scheme) by a discriminative term IG (the information gain
of the term), resulting in a T F× IG scheme. Common and alternative weighting schemes
are described in Table 3.1.

Table 3.1 Weighting schemes used in text mining and information retrieval. For every scheme,
xi, j indicates how relevant the term t j is for describing the content of the ith document under
the corresponding weighting scheme. Here, N is the number of documents in training dataset,
#(di, t j) indicates the frequency of term t j in the ith document, d f (t j) is document frequency
of the term t j, i.e., the number of documents in which term t j occurs, IG(t j) is the information
gain of term t j, CHI(t j) is the χ2 statistic for term t j, and T P, T N are the true positive and
true negative rates for term t j (i.e., number of positive, respectively, negative, documents that
contain term t j).

Acr. Name Formula Description Ref.
B Boolean xi, j = 1{#(di ,t j )>0} Prescense/abscense of

terms
[141]

TF Term-Frequency xi, j = #(di , t j) Frequency of occur-
rence of terms

[141]

TF-IDF TF - Inverse Doc. Freq. xi, j = #(di , t j)× log( N
d f (t j )

) TF penalizing corpus-
based frequency

[141]

TF-IG TF - Information Gain xi, j = #(di , t j)× IG(t j) TF times term informa-
tion gain

[33]

TF-CHI TF - Chi-square xi, j = #(di , t j)×CHI(t j) TF times χ2 term rele-
vance

[33]

TF-RF TF - Relevance Freq. xi, j = #(di , t j)× log(2+ T P
max(1,T N)

) TF times RF relevance [81]

The first three weighting schemes in Table 3.1 are common in text mining and information
retrieval, and their usage dates back to the 80s [141], being the Boolean scheme the simplest
one (only accounting for the occurrence of terms). On the other hand, the last three schemes
were proposed in the last decade and still are not well known within text mining. To the
best of our knowledge, these alternative weighting schemes have not been evaluated in the
context of computer vision (see Chapter 2.1). Therefore, a first contribution of this chapter
is to assess the suitability of such schemes for computer vision problems. The next section
introduces our evolutionary algorithm for learning term-weighting schemes for the BoVW.
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3.3 Evolving visual-word weighting schemes

In addition to the evaluation of non traditional weighting schemes in computer vision, a
second contribution of this work is the proposal of an evolutionary algorithm capable of
automatically determining new weighting schemes from scratch. Our proposal is motivated
by the following observations. First, we observe that traditional weighting schemes were
proposed by researchers based on their own expertise, biases, and needs. Also, so far, it has
been the norm to use the same weighting scheme for every dataset under analysis. In fact, in
computer vision tasks, the weighting scheme is rarely considered a factor that can have an
impact on the performance of models based on the BoVW formulation.

In this chapter, we address the question of whether the weighting-scheme design process
can be automated by employing evolutionary algorithms. Our proposed method uses genetic
programming to learn how to combine a set of TDR/TR primitives with the aim of obtaining
a weighting scheme that optimizes classification performance. This term-weighting-scheme
learning formulation removes, to some extent, the biases of designers and does not rely
on user expertise1. Instead, weighting schemes are sought such that they maximize the
performance in the task under analysis. Hence, our automatic technique allows us to learn
tailored schemes for every dataset / task being approached.

Figure 3.1 presents a general diagram of the proposed approach. A set of primitives is
extracted from the BoVW representation of training images. These primitives are obtained
by counting visual word occurrence statistics. Next, they are feed into a genetic program that
learns how to combine such primitives to generate a term-weighting scheme. The output of
the genetic program is a way to represent images that has been learned automatically. Next,
both training and test images are represented according to the learned scheme and, finally, a
predictive model is learned and their performance evaluated. The remainder of this section
describes our proposed method.

3.3.1 Genetic Programming

Our solution to learn term-weighting schemes is based on Genetic Programming (GP) [82].
GP is an evolutionary algorithm, that is an optimization algorithm inspired by biological
evolutionary systems. In evolutionary algorithms solutions to the problem at hand are seen
as individuals that interact among them and with the environment (the search space) in such
a way that the survival of the population is sought (optimization criterion). The general
flow of a typical evolutionary algorithm is shown in Figure 3.2: an initial population of

1Please note that traditional weighting schemes have been proposed by researchers based on their own
experiences and biases, making strong assumptions and relying on intuition.
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Fig. 3.1 General diagram of the proposed approach.

solutions/individuals is created (randomly or by a pre-defined criterion), after that, individuals
are selected, recombined2, mutated and then placed back into the solutions’ pool, this process
is repeated for a given number of generations and the algorithm returns the best individual
found.

Fig. 3.2 A generic evolutionary algorithm.

The main distinctive feature of GP, when compared to other evolutionary algorithms, is
that in GP, nonlinear and complex data structures are used to represent solutions (individuals).

2Please note that in GP, for each individual, either mutation or crossover is performed each time, but not
both. This is different from other variants like genetic algorithms.
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For instance, the most common representations for individuals in GP are trees and graphs,
whereas for most of evolutionary algorithms, numerical vectors are used. This feature of GP
makes it appropriate for facing very complex problems, in most cases related to modeling
tasks. This is one of the reasons for which we adopted GP for learning weighting schemes.
Nevertheless, the main motivation for using GP for our problem is that we are interested
in learning a function that tell us how to combine the different primitives (including the
decision of telling which primitives are worth to combine). In this scenario, GP provides a
natural solution to the problem, encoding candidate functions as individuals (i.e., trees) and
searching for the best one. Clearly, this problem cannot be approached with either traditional
optimization or heuristic optimization techniques.

3.3.2 GP for Term-Weighting Scheme learning

Our approach to generate weighting schemes uses genetic programming to learn how to
combine a set of primitives that have been used for building weighting schemes in the past
(see Figure 3.1). That is, we devise a genetic program that searches for the combination
of primitives that maximizes the classification performance of the task under analysis (e.g.,
image classification). A standard tree representation is adopted in which leafs correspond
to primitives and non-terminal nodes correspond to operators by which primitives can be
combined; in such a way that the evaluation of a tree leads to a term-weighting scheme (see
Figure 3.3).

Fig. 3.3 Adopted representation for individuals. Dashed nodes represent operators (taken
from the function set) and solid-line nodes indicate terminals; below the tree we show the
term-weighting scheme derived from it.

Therefore, under this formulation, we explore the search space of weighting schemes that
can be coded by the trees, where, common/alternative weighting schemes are included in
the search space. The remainder of the section elaborates on the different components of the
proposed genetic program.
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Representation

As mentioned before, weighting schemes are mainly composed out of two type of factors:
T DR an T R weights, which determine the importance of terms into documents and the
relevance of terms themselves, respectively. Accordingly, the proposed method uses as
terminals T DR and T R primitives (together with useful constants and other weighting
schemes), which can be combined by a predefined set of operators. An individual (i.e.,
solution) in the genetic program is thus a tree formed by these terminals and operators, where
the evaluation of the tree leads to a term-weighting scheme. Figure 3.3 depicts a typical
individual and the resultant weighting scheme.

The set of terminals considered in this work is shown in Table 3.2, whereas for the
operators (non-terminals) we considered the function set shown in Table 3.3.

Table 3.2 Terminal set.

Variable Meaning
W1 N, Constant matrix, number of training documents.
W2 ∥V∥, Constant matrix, number of terms.
W3 CHI, Matrix containing in each row the vector of χ2 weights for the terms.
W4 IG, Matrix containing in each row the vector of information gain weights for the terms.
W5 T F× IDF , Matrix with the TF-IDF term-weighting scheme.
W6 T F , Matrix containing the TF term-weighting scheme.
W7 FGT , Matrix containing in each row the global term-frequency for all terms.
W8 T P, Matrix containing in each row the vector of true positives for all terms.
W9 FP, Matrix containing in each row the vector of false positives.
W10 T N, Matrix containing in each row the vector of true negatives.
W11 FN, Matrix containing in each row the vector of false negatives.
W12 Accuracy, Matrix where each row contains the accuracy obtained when using the term as

classifier.
W13 Accuracy_Balance, Matrix containing the AC_Balance each (term, class).
W14 Bi-normal separation, BNS, An array that contains the value for each BNS per (term, class).
W15 DFreq, Document frequency matrix containing the value for each (term, class).
W16 FMeasure, F-Measure matrix containing the value for each (term, class).
W17 OddsRatio, An array containing the OddsRatio term-weighting.
W18 Power, Matrix containing the Power value for each (term, class).
W19 ProbabilityRatio, Matrix containing the ProbabilityRatio each (term, class).
W20 Max_Term, Matrix containing the vector with the highest repetition for each term.
W21 RF , Matrix containing the RF vector.
W22 T F×RF , Matrix containing TF-RF.

Each terminal in Table 3.2 is a matrix of size N×|V |. TDRs are themselves matrices
of that dimensions, but TRs are row vectors of length |V | (i.e., they indicate the relevance
of each term). To make all matrices comparable (and henceforth suitable for combination
under the function set F ), TRs are converted into matrices by repeating the row vector N
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times. Therefore, all of the operators in the function set act on a scalar basis, that is, they are
applied element-by-element. It is worth mentioning that for supervised TR factors, we use
information extracted from training images only; i.e., no supervised information is used from
the test set.

Table 3.3 Considered function set for the genetic program.

Operator Name Arity
+ Addition 2
− Substraction 2
∗ Product 2
/ Division (protected) 2

log2 x Logarithm b-2 1√
x Square root 1

x2 Square power 1

The initial population is generated with the ramped half-half strategy, which means that
half of the population is created with the full method (i.e., all trees have the same deep,
maxdepth) and the other half is created with the grow method (i.e., trees have deep of at
most maxdepth), see [82] for details.

Fitness function

The goal of our genetic programming formulation is to obtain a weighting scheme that
maximizes classification performance. Therefore, the goodness / fitness of each solution
should be tied to the classification performance of a model using the representation induced
by the weighting scheme. Specifically, given a solution to the problem, we first evaluate the
tree to generate a weighting scheme using the training set, as shown in Figure 3.3. Once
training documents are represented by the corresponding weighting scheme, we perform a
k−fold cross-validation procedure, using a given classifier, to assess the effectiveness of the
solution. In k−fold cross validation, the training set is split into k disjoint subsets, and k
rounds of training and testing are performed; in each round k−1 subsets are used as training
set and 1 subset is used for testing, the process is repeated k times using a different subset for
testing each time. The average classification performance is used as the fitness function.

In particular, we evaluate the performance of classification models with the f1 measure.
Let T P, FP and FN to denote the true positives, false positives and false negative rates
for a particular class, precision (Prec) is defined as T P

T P+FP and recall (Rec) as T P
T P+FN . f1-

measure is simply the harmonic average between precision and recall: f1 =
2×Prec×Rec

Prec+Rec . The
average across classes is reported (also called, macro-average f1), this way of estimating the
f1-measure is known to be particularly useful when tackling unbalanced datasets.
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Because under the fitness function k models have to be trained and tested for the evaluation
of a single solution, we need to look for an efficient classification model. We considered
Support Vector Machines (SVM) as they can deal naturally with the sparseness and high
dimensionality of data. However, training and testing an SVM can be a time consuming
process. Therefore, we opted for efficient implementations of SVMs that have been proposed
recently [37, 180]. Those methods are trained online and under the scheme of learning with a
budget. We use the predictions of an SVM as the fitness function for learning term-weighting
schemes (TWS). Among the methods available in [37] we used the low-rank linearized SVM
(LLSMV) [180]. LLSVM is a linearized version of non-linear SVMs, which can be trained
efficiently with the so called block minimization framework [25]. We selected LLSVM
instead of alternative methods because this method has outperformed several other efficient
implementations of SVMs (see [37, 180]). Thus, we use this approximated SVM during the
fitness function. Once a weighting scheme has been learnt, however, we use a deterministic
SVM to classify the test set. This is to make results comparable and discard the randomness
inherent to the approximate solutions.

Genetic operators

The proposed genetic program follows a standard procedure as depicted in Figure 3.2. We
use the implementation from [146], which considers standard operators for crossover and
mutation. Specifically, subtree crossover is considered where, given two parent trees, an
intermediate node is randomly selected within each tree. Then, the subtrees below the
selected nodes are interchanged between the parents, giving rise to two offspring. The
mutation operator is quite standard as well, it consists of identifying a node within the parent
tree and replacing the node with another randomly selected (terminals replaced by terminals
and non-terminals replaced by operators in F ).

Final remarks

After the evolutionary process finishes, the genetic program returns a term-weighting scheme.
Next, training and test images are represented according to this scheme. A classifier is learnt
using the training representation and its performance evaluated in the test representation. For
this evaluation we consider a deterministic SVM (from the CLOP toolbox [140]), hence,
results are comparable to each other. The next section reports experimental results on several
computer vision tasks obtained with learned weighting schemes.
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3.4 Experiments and results

This section presents experimental results that aim at showing the effectiveness of the
proposed methodology for learning term-weighting schemes in a variety of computer vision
tasks. First we describe the experimental settings and then report results of our study.

3.4.1 Settings

For experimentation we considered standard datasets associated to landmark computer vision
tasks. The considered datasets are described in Table 3.4. All of these datasets are associated
to classification/recognition tasks, hence the same evaluation protocol (with slight variations
described below for each dataset) was adopted. For all but one dataset we generated training
and test partitions3; the exception was the MSRDaily3D dataset for which we report average
performance over 5-fold cross validation, see below.

In every dataset, the training partition was used both to obtain the visual vocabulary and
to learn the term-weighting schemes with the genetic program, recall the program maximizes
the f1 measure under k−fold cross validation. For evaluating the performance of the different
weighting schemes, both, training and test images are represented with the schemes (either
learned or predefined). Then, a classification model is learned using training images and the
performance of the model is evaluated in test images.

Unless otherwise stated, we used the VLFEAT toolbox for processing images [159]. We
considered PHOW4 (Pyramid Histogram Of Visual Words) features as visual descriptors [19].

Regarding our proposed genetic program for term-weighting learning, the average and
standard deviation performance of 5 runs is reported. The method was run in all cases for
50 generations with a population of 500 individuals. This is a very standard choice for
GP [82], where it is common to use large number of individuals and a small number of
generations. Default values were used for the remainder of GP parameters: generational
selection mechanism with elitism, lexictour parent selection [97], crossover probability of
0.9, and mutation probability of 0.1.

Because the optimization process may be too time consuming for some datasets, we
learned the weighting schemes by using subsets of the original training sets:

• Only samples belonging to a subset of classes were used. In some cases, the vocabulary
was also reduced, see Table 3.4 column 6.

3Matlab files with the predefined partitions are publicly available under request.
4PHOW is an extension to the raw BoVW formulation that aims at incorporating spatial information by

means of a pyramidal structure, see [19] for details.
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Table 3.4 Datasets considered for experimentation. Column 6 shows the number of images |
terms (i.e., size of the visual vocabulary) considered during the search process.

Image Categorization
Dataset Classes |V| # Train # Test images|terms

Caltech-tiny 5 12000 75 75 15|12000
Caltech-102 (15) 101 12000 1530 1530 165|3000
Caltech-102 (30) 101 12000 3060 3060 330|3000

Birds 6 400 540 60 540|400
Butterflies 7 400 552 67 552|400

Action recognition
Dataset Classes |V| # Train # Test im.|terms

MSRDaily3D 12 600 192 48 192|600
Gesture recognition

Dataset Classes |V| # Train # Test im.|terms
Montalbano 20 1000 6850 3579 2055|600

Scene recognition
Dataset Classes |V| # Train # Test im.|terms

15 Scenes 15 12000 1475 3010 1475|2000
Pornographic image filtering

Dataset Classes |V| # Train # Test im.|terms
Adult 5 12000 6808 1702 6808|2000

• The selection of classes was done randomly; while the vocabulary reduction used a
frequency criterion (the most frequent terms were retained).

Despite this reductions, at the end of the search process, all of the data and classes
are considered for training the final classifier and evaluation. We emphasize that during
the search process we use an approximate SVM for computing the fitness function. When
evaluating the performance of weighting schemes in test set we used a deterministic linear
SVM. Specific details and considerations for each dataset are reported below.

Finally, for comparing the statistical-significance of differences we used a Wilcoxon
signed-rank test (as recommended in [35]).

Caltech-101

Caltech-101 [51] is a mandatory benchmark for image classification. It contains objects that
belong to 101 different categories (102 including the background category). Sample images
from this dataset are provided in Figure 3.4.

For experiments we considered three subsets: tiny, 101-15 and 101-30. Tiny considers
5 out 102 classes with 15 images per-class for training and 15 for testing; dataset 101-
15 considers the 102 classes with 15 training and 15 testing images (per-class); finally,
dataset 101-30 considers the 102 classes with 30 images for training and 30 for testing.
Using 3 subsets of Caltech-101 allows us to evaluate the performance of our method for
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Fig. 3.4 Sample images from the Caltech-101 dataset.

similar categorization problems but with different complexities in terms of the number of
categories and samples. In fact, we use these subsets of Caltech-101 to assess the generality
capabilities of the proposed approach, see below. For tiny we used all of the samples during
the optimization process, whereas for the other two datasets we used examples from 10
category-classes and the background only, where the top 3000 terms where considered.

Birds and butterflies

We also considered two datasets related to animal recognition: birds and butterflies. Figure 3.5
shows sample images from these datasets. In both cases, the problem is to distinguish
birds/butterflies species. Contrary to Caltech-101, these datasets comprise more fine-grained
classification problems. Therefore, these datasets comprise a major challenge because
instances of different classes may be very similar. For these datasets we represented images
under the BoW using a Discrete Cosine Transform (DCT) descriptor. This choice is based
on previous work in the same datasets [96]. For both datasets, we used 90 percent of images
for training and 10 percent of images for testing.

Fig. 3.5 Sample images from different categories of the Birds and Butterflies datasets.

Adult image filtering

A dataset for adult image filtering was considered as well. The data was made available
by [36], and it has been previously used in several publications, see [36, 178]. The dataset
contains images belonging to five categories, where there is one category for inoffensive
images and four categories of increasing level of adultness: lightly dressed, partly nude, nude
and pornographic, see Figure 3.6.
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Fig. 3.6 Sample images from the dataset of adult image filtering. The categories are (from
left to right): inoffensive images, lightly dressed persons, partly nude persons, nude persons,
and pornographic images (not shown).

The goal in this task is to associate images with its correct category in such a way that
the administrator of a filtering system can decide the level of restriction in the type of images
users can have access to (e.g., photos of lightly dressed persons may be allowed in most
sites, even in schools, but nude-persons and pornography may be objectionable in most sites).
About 80% of images were used as training set and the remainder as test set, as in [36].

Scene recognition

We consider a benchmark dataset for scene recognition [86]. The dataset comprises 15
indoor/outdoor categories, where images contain complex scenes. Figure 3.7 shows sample
images from this dataset, clearly this is a very challenging task. For this dataset we used
the same partitioning proposed in [86]: 100 images per category for training and the rest for
testing.

Fig. 3.7 Sample images from the 15-Scenes dataset. Categories are from left to right and
from up to bottom: bedrom, suburb, industrial, kitchen, living-room, coast, forest, highway,
inside-city, mountain, open-country, street, tall-building, office, and store.

Montalbano

The BoVW has been used to represent videos as well, see e.g., [68, 83, 147]. For this reason
we also decided to include video datasets. Specifically, we considered the Montalbano dataset
for gesture recognition as provided in [44]. The task consists of recognizing gestures from
20 categories (Italian cultural gestures), see Figure 3.8. The available data is depth and
RGB video together with skeleton information. For our experiments we used the features
proposed in [113], which combine depth, RGB video and skeleton information by means
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of convolutional nets and other deep learning mechanisms. The deep-learning features
were clustered and the vocabulary was built. One should note that we approach the gesture
recognition problem, that is, given a segmented gesture, to tell the class of the gesture being
performed.

Fig. 3.8 Sample images from the Montalbano dataset. Images from each of the gesture
categories are shown [44].

MSRDaily3D

Finally, we considered a benchmark dataset for action recognition: MSRDaily3D. This
dataset comprises 16 actions associated to daily activities, where there are objects in the
background and most actions involve human-object interaction. A sample sequence from
this dataset is shown in Figure 3.9. For this dataset we adopted the protocol from [70–
72, 175]. Under this setting we considered 12 out of the 16 actions and performed 5-fold
cross validation. We adopted this protocol because it has been adopted in recent work that
uses the BoW representation [70–72, 175], therefore we can compare the performance of our
method with such works.Video sequences were represented with Depth Cuboid Similarity
Features (DCSF) and the same parameters for the descriptor as in previous work were
used. Descriptors were further processed to represent videos with their bag of features
representation.
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Fig. 3.9 Sample sequence from the MSRDaily3D dataset [167].

3.4.2 Results

Table 3.5 shows the results obtained by the different weighting schemes (traditional, alternative-
supervised and learned) in all of the considered datasets. We report average f1−measure
performance in the test-partitions. The ⋆ symbol indicates a statistically significant difference
between our approach and the method from the corresponding columns.

It can be seen from this table that, in average, the Boolean weighting scheme (column 3)
outperforms both, traditional and alternative, term-weighting schemes. This is an interesting
result, because, most of the times (normalized) TF or TF-IDF weighting schemes are consid-
ered in computer vision tasks. Please note that although the Boolean scheme is the best on
average, it is clear from Table 3.5 that there is no single best weighting scheme for all of the
datasets.

Regarding alternative-supervised term-weighting schemes, only TF-RF obtained compa-
rable performance to the TF scheme, however its performance was lower than the Boolean
scheme. The other two supervised schemes performed worse than the baseline. These
results are somewhat disappointing, because, intuitively, the incorporation of discriminative
information should yield better performance. In spite of these results, our study comparing
traditional and alternative weighting schemes is a contribution that brings some light on
the performance of such schemes for diverse computer vision tasks. More importantly, we
showed the adequacy of the Boolean scheme.

On the other hand, it is clear from Table 3.5 that the proposed approach for learning visual-
word weighting schemes outperforms all the other variants in all of the considered datasets
(see column 8). For most of the datasets, our GP-based solution improves considerably the
performance of all of the other weighting schemes. The average improvement of our genetic
program over the Boolean scheme was of around 5%, we think this improvement makes
worth applying our method instead of relying on standard weighting schemes. These results
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show that, if searched properly, weighting schemes that maximize classification performance
may result in improved performance; this is in contrast to using discriminative information
by using IG, CHI, etc.

Higher improvements were observed for image categorization and adult-image filtering
datasets. Whereas marginal improvements were observed for Montalbano and MSRDaily.
The latter behavior can be due to the fact that the descriptors used for these datasets are very
discriminative as reported in [44, 113, 175]. In those cases it may be enough to verify the
presence / absence of such discriminative patterns. This is not the case of image categorization
datasets for which standard descriptors were used.

In addition to the competitive average performance, it is quite interesting that the standard
deviation across runs is relatively low when compared to the other methods. Thus evidencing
the stability and robustness of the proposed method.

In order to better appreciate the improvements offered by our method, Figure 3.10
shows the range of improvement of our method over the best traditional/alternative weighting
scheme per dataset in terms of absolute and relative differences. That is, we plot the difference
in performance between our method (column 8) and the best result among columns 2-7 for
each particular dataset. This means that our method is not compared with the best scheme in
average, but with the best overall for each dataset, a somewhat unfair comparison for our
approach.

Fig. 3.10 Absolute (blue-first bar) and relative (red-right bar) improvement for the different
datasets, taking as reference the best traditional/alternative weighting scheme for each dataset.

From Figure 3.10 it can be seen that the GP-based method offers considerable improve-
ments for all but for the Montalbano dataset. The difficulty of this task may require running
the genetic programm using the whole number of classes/samples (for this dataset we used
only a third of the total of instances, see column 6 in Table 3.4). Although, as mentioned
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above, we think this low improvement is due to the very effective visual descriptors over
which the BoW representation was generated.

One should note that the proposed method relies on an iterative optimization process that
is somewhat computational expensive. In particular, the adopted representation (tree-based
structure), the fact that the terminals are associated to matrices and the estimation of the
fitness function5 (training and testing an SVM classifier under a cross validation) are the
main factors that contribute to the computational expensiveness of our model. Nevertheless,
in practice, the average running time of the proposed method takes of the order of a few hours.
Thus, although the proposed method is somewhat computational expensive, the average
running time is acceptable for most computer vision applications. Please note that the process
of learning weighting schemes is a procedure that is performed offline, and has to be done a
single time. Therefore, we think it is worthwhile spending a few hours using our method,
given the potential improvement in performance that can be obtained. On the other hand, one
may argue that alternative weighting schemes are less complex (and henceforth require of
less processing time to generate the representation). We think this time is negligible, because
it involves only a few additional arithmetic operations over more matrices (which are also
computed a single time).

3.4.3 Qualitative analysis

This section presents a qualitative study on the proposed method for learning term-weighting
schemes. Table 3.6 shows sample schemes learned for selected datasets. It can be seen that
all of the learned schemes included primitives that capture from supervised information.
Thus, showing the importance of such supervised components. Therefore, we can say that
the proposed method effectively learns to combine supervised building blocks that result in
competitive weighting schemes. This is in contrast with alternative-supervised schemes that
showed limited performance (see Table 3.5).

From Table 3.6 it can be seen that the learned weighting schemes are indeed simple
expressions (opposed to standard GP solutions that include very complex trees). This is a
desirable property that suggests overfitting is not an issue for the proposed method.

Finally, it is interesting to note that very different weighting schemes were obtained for
the different datasets, thus giving evidence that a tailored weighting scheme is required for
each task.

5Please note that estimating the fitness function is quite efficient, as it is based on a fast approximation to a
linear SVM. So this method can be used for most computer vision applications. Also, we emphasize that the
fitness function is only estimated during the learning process, which has to be done a single time and most of
the times is performed offline.
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Table 3.6 Sample weighting schemes learned with the proposed approach for selected datasets.
In column 2 each weighting is shown as a prefix expression. The names of the variables
are self-explanatory. Column 3 shows the mathematical expression of each TWS using the
terminal set from Table 3.2.

ID Dataset Learned TWS Formula
1 Caltech101-15 sqrt((sqrt(RF× TF)+log2(RF× TF)))

√√
W22 + log2(W22)

2 Birds log2((FMeas × (CHI × log2(TF × RF)))) log2(W16× (W3× log2(W22))
3 MSRDaily3D ((TF × FN) × sqrt(T)) ((W6×W11)× log2(

√
W22))

4 Adult (sqrt(IDF)×D) (
√

W5×D)
5 Montalbano log2(log2(CHI))× sqrt(IDF) (log2(log2(W3))×

√
W5)

6 15-Scenes log2((ProbR + TF × RF)) log2(W19 +W22)

Figure 3.11 shows the frequency of use of each of the terminals from Table 3.2 in the
solutions returned by the genetic program for all of the datasets (i.e., a bar in Figure 3.11
corresponds to a row in Table 3.2). It can be seen that three most used terminals are W6, W22

and W5, which correspond to TF, TF-RF and TF-IDF weighting schemes. This is interesting
because, even when these were the most chosen terminals by solutions returned with the
genetic program, such terminals were significantly outperformed by our proposal: compare
columns 2, 4 and 5 to column 8 in Table 3.5.

Fig. 3.11 Frequency of appearance of terminals into the solutions found by the genetic
program, see Table 3.2 for terminals description.

Only 6 out of the 22 terminals did not appear in solutions returned by the genetic program.
All of these terminals (W9,10,12,14,15,20) corresponding to TR weights, mainly used for feature
selection in text classification [54]. Although they have proved to be very effective in [54]
(terminal W14 was the best criterion for feature selection in that study), they were not very
helpful for building term-weighting schemes for computer vision tasks.
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3.5 Conclusion

The BoVW is one of the most used representations in computer vision tasks. Despite being
very effective, it is somewhat surprising that little research has been performed on term-
weighting schemes for computer vision. In this direction, this chapter introduced a novel
methodology for learning weighting schemes to boost the performance of classification
models relying on the BoVW. The proposed methodology resulted very effective in a wide
variety of computer vision tasks. Additionally, we report an in-depth study on the performance
of standard and alternative weighting schemes commonly used in text mining. To the best of
our knowledge, our work is the first that assesses alternative weighting schemes, and it is the
first in proposing methods to learn weighting schemes for computer vision tasks. From our
extensive experimental study, comprising 9 datasets of common computer vision task we can
conclude the following:

• Among traditional and alternative weighting schemes, the Boolean one obtained the
highest performance.

• Weighting schemes learned with our proposed approach outperformed consistently all
other weighting schemes in all of the datasets.

• For different tasks, learning a term-weighting scheme with the proposed approach is
much better than applying other schemes (either traditional / alternative or learned for
another dataset).

• Computer vision tasks that are not too generic e.g., gesture recognition or adult image
filtering) require of tailored weighting schemes, accordingly, schemes learned for this
datasets do not generalize well in other datasets.

• Among all of the considered terminals, three weighting schemes were used most often
by solutions returned by the genetic program (TF, TF-IDF and TF-RF), however, the
way in which the genetic program combined such primitives resulted in much better
performance.

Future work includes studying alternative methodologies for learning term-weighting
schemes. Specifically, we plan to pose the problem as one of learning/optimizing the
representation matrix, where other evolutionary algorithms could be used. Also, we are
interested on learning term-weighting schemes for other domains, like audio [101], time
series [166] or accelerometer data [60].



Chapter 4

Learning SpatioTemporal
Representations

This chapter presents an extension of two well-known approaches for gesture recognition:
Dynamic Time Warping (DTW) and Bag of Visual Words (BoVW). Their extension consist,
first, of integrating probabilistic modelling into the classical DTW for the segmentation of
sequences, and the inclusion of the depth modality for describing novel multimodal features
for the task of gesture recognition.
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4.1 BoVDW and Probability-based DTW for Human Ges-
ture Recognition

The problem of gesture recognition in which an idle or reference gesture is performed
between gestures is addressed in this section. In order to solve this problem, we introduce a
continuous human gesture recognition pipeline based on: First, a new feature representation
by means of a Bag-of-Visual-and-Depth-Words (BoVDW) approach that takes profit of multi-
modal RGB-D data to tackle the gesture representation step. The BoVDW is empowered by
the combination of both RGB images and a new depth descriptor which takes into account the
distribution of normal vectors with respect to the camera position, as well as the rotation with
respect to the roll axis of the camera. Next, we propose the definition of an extension of DTW
method to a probability-based framework in order to perform temporal gesture segmentation.
In order to evaluate the presented approach, we compare the performances achieved with
state-of-the-art RGB and depth feature descriptors separately, and combine them in a late
fusion form. All these experiments are performed in the proposed framework using the public
dataset provided by the ChaLearn Gesture Challenge1. Results of the proposed BoVDW
method show better performance using late fusion in comparison to early fusion and standard
BoVW model. Moreover, our BoVDW approach outperforms the baseline methodology
provided by the ChaLearn Gesture Recognition Challenge 2012. In the same way, the results
obtained with the proposed PDTW outperform the ones from the classical DTW approach.

As pointed out above, we address the problem of gesture recognition, with the constraint
that an idle or reference gesture is performed between gestures. The main reason for such
constraint is that in many real-world settings there always exists an idle gesture between
movements rather than a continuous flux of gestures. Some examples are sports like tennis,
swordplay, boxing, martial arts, or choreographic sports. However, the existence of an idle
gesture is not only related to sports, some other daily tasks like cooking or dancing contain
idle gestures in certain situations as well. Moreover, the proposed system can be extended to
be applied to other gesture recognition domains without the need of modelling idle gestures,
but any other kind of gesture categories.

In this sense, our approach consists of two steps: a temporal gesture segmentation step
(the detection of the idle gesture), and the gesture classification step. The former one aims
to provide a temporal segmentation of gestures. To perform such temporal segmentation, a
novel probabilistic-based DTW models the variability of the idle gesture by learning a GMM
on the features of the idle gesture category. Once the gestures have been segmented, the latter
step is gesture classification. Segmented gestures are represented and classified by means of

1http://gesture.chalearn.org/

http://gesture.chalearn.org/
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Fig. 4.1 General pipeline of the proposed approach.

a BoVDW method, which integrates in a late fusion form the information of both RGB and
Depth images.

The global pipeline of the approach is depicted in Figure 4.1. The proposal is divided in
two blocks, the temporal gesture segmentation step and the gesture classification step, which
are detailed in next sections. Next, the probability-based DTW for gesture segmentation is
introduced in Section 4.1.1, and the BoVDW model in Section 4.1.2. Experimental results
and their analysis are presented in Section 4.2. Finally, Section 4.3 presents some conclusions
of the section for this chapter.

4.1.1 Gesture Segmentation: Probability-based DTW

The original DTW is introduced in this section, as well as its common extension to detect
a certain sequence given an indefinite data stream. In the following subsections, DTW is
extended in order to align patterns taking into account the Probability Density Function
(PDF) of each element of the sequence by means of a Gaussian Mixture Model (GMM). A
flowchart of the whole methodology is shown in Figure 4.2.

Dynamic Time Warping

The original DTW algorithm was defined to match temporal distortions between two models,
finding an alignment/warping path between two time series: an input model Q = {q1, ..,qn}
and a certain sequence O = {o1, ..,om}. In our particular case, the time series Q and O are
video sequences, where each q j and oi will be feature vectors describing the j−th and i−th
frame respectively. In this sense, Q will be an input video sequence and O will be the gesture
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Fig. 4.2 Flowchart of the Probabilistic DTW gesture segmentation methodology.

we are aiming to detect. Generally, in order to align these two sequences, a Mm×n matrix is
designed, where position (i, j) of the matrix contains the alignment cost between oi and q j.
Then, a warping path of length τ is defined as a set of contiguous matrix elements, defining
a mapping between O and Q: Ω = {v1,v2, ...,vτ}, where vp indexes a position in the cost
matrix M. This warping path is typically subject to several constraints:

• Boundary conditions: v1 = (1,1) and vτ = (m,n).

• Continuity and monotonicity: Given vτ ′−1 = (a′,b′), vτ ′ = (a,b), then a−a′ ≤ 1 and
b−b′ ≤ 1. This condition forces the points in the cost matrix with the warping path Ω

to be monotonically spaced in time.

Interest is focused on the final warping path that, satisfying these conditions, minimizes
the warping cost,

DTW (M) = min
Ω

{
M(vτ)

τ

}
, (4.1)

where τ compensates the different lengths of the warping paths at each time t. This path can
be found very efficiently using dynamic programming. The cost at a certain position M(i, j)
can be defined as the composition of the Euclidean distance d(i, j) between the feature
vectors oi and q j of the two time series, and the minimum cost of the adjacent elements of
the cost matrix up to that position, as

M(i, j) = d(i, j)+min{M(i−1, j−1),M(i−1, j),M(i, j−1)}. (4.2)
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However, given the streaming nature of our problem, the input video sequence Q has no
definite length (it may be an infinite video sequence) and may contain several occurrences
of the gesture sequence O. In this sense, the system considers that there is correspondence
between the current block ♭ in Q and the gesture when the following condition is satisfied:
M(m, ♭) < θ , ♭ ∈ [1, ..,∞], for a given cost threshold θ . At this point, if M(m, ♭) < θ , ♭ is
considered a possible end of a gesture sequence O.

Once detected a possible end of the gesture sequence, the warping path Ω can be found
through backtracking the minimum cost path from M(m, ♭) to M(0,g), being g the instant of
time in Q where the detected gesture begins. Each path of green/orange cells in Figure 5.2
represents each unique block2 ♭. Note that d(i, j) is the cost function which measures the
difference among descriptors oi and q j, which in standard DTW is defined as the Euclidean
distance between oi and q j. An example of a begin-end gesture recognition together with the
warping path estimation is shown in Figure 4.2 (last 2 steps: GMM learning and Probabilistic
DTW).

Handling variance with Probability-based DTW

Consider a training set of N sequences, S = {S1,S2, . . . ,SN}, that is, N gesture samples
belonging to the same gesture category. Then, each gesture sequence Sg = {sg

1, . . . ,s
g
Lg
}, (a

gesture sample) is composed by a feature vector 3 for each frame t, denoted as sg
t , where

Lg is the length in frames of sequence Sg. In order to avoid temporal deformations of the
gesture samples in S, all sequences are aligned with the median length sequence using the
classical DTW with Euclidean distance. Let us assume that sequences are ordered according
to their length, so that Lg−1 ≤ Lg ≤ Lg+1,∀g∈ [2, ..,N−1], then, the median length sequence
is S̄ = S⌈N

2 ⌉
.

It is worth noting that this step of alignment by using DTW has no relation to the actual
gesture recognition, as it is consider a pre-processing step to obtain a set of gesture samples
with few temporal deformations and a matching length.

Finally, after this alignment process, all sequences have length L⌈N
2 ⌉

. The set of warped
sequences is defined as S̃ = {S̃1, S̃2, . . . , S̃N} (See Figure 4.3(b)). Once all samples are
aligned, the N feature vectors corresponding to each sequence element at a certain frame t,
denoted as F̃t , are modelled by means of a G−component Gaussian Mixture Model (GMM)
Λt = {α t

k,µ
t
k,Σ

t
k}, k = 1, . . . ,G, where α t

k is the mixing value, and µ t
k and Σt

k are the

2About the nomenclature, a feature vector x in Chapter 5.1 refers to a sequence having the same properties
as Q. In that chapter 5.1, we use a set of thresholds Θ = {θ1,θ2, ...,θT} to obtain sets of blocks, so that the
minimum cost paths ℧ shown in Figure 5.2 are computed by means of backtracking the minimum costs for the
whole sequence, whose paths are updated taking into account all the blocks found along the sequence.

3HOG/HOF descriptors in our particular case, see Sec. 4.2.2 for further details.
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Fig. 4.3 (a) Different sequences of a certain gesture category and the median length sequence.
(b) Alignment of all sequences with the median length sequence by means of Euclidean
DTW. (c) Warped sequences set S̃ from which each set of t-th elements among all sequences
are modelled. (d) Gaussian Mixture Model learning with 3 components.

parameters of each of the G Gaussian models in the mixture. As a result, each one of the
GMMs that model each F̃t is defined as follows:

p(F̃t) =
G

∑
k=1

α
t
k · e
− 1

2 (x−µt
k)

T ·(Σt
k)
−1·(x−µt

k). (4.3)

The resulting model is composed by the set of GMMs that model each set F̃t among all
warped sequences of a certain gesture class. An example of the process is shown in Figure
4.3.

Distance measures

In the classical DTW, a pattern and a sequence are aligned using a distance metric, such
as the Euclidean distance. However, since our gesture samples are modelled by means of
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probabilistic models, in order to use the principles of DTW, the distance must be redefined.
In thise sense, a soft-distance based on the probability of a point x belonging to each one of
the G components in the GMM is considered, i.e. the posterior probability of x is obtained

according to Eq. (4.3). Therefore, since
G
∑

k=1
α t

k = 1, the probability of a element q j ∈ Q

belonging to the whole GMM Λt can be computed as:

P(q j,Λt) =
G

∑
k=1

α
t
k ·P(q j)k, (4.4)

P(q j)k = e−
1
2 (q j−µt

k)
T ·(Σt

k)
−1·(q j−µt

k), (4.5)

which is the sum of the weighted probability of each component. Nevertheless, an additional
step is required since the standard DTW algorithm is conceived for distances instead of
similarity measures. In this sense, a soft-distance based measure of the probability is used,
which is defined as:

D(q j,Λt) = exp−P(q j,Λt) . (4.6)

In conclusion, possible temporal deformations of different samples of the same gesture
category are taken into account by aligning the set of N gesture samples with the median
length sequence. In addition, by modelling with a GMM each set of feature vectors which
compose the resulting warped sequences, we obtain a methodology for gesture detection that
is able to deal with multiple deformations in gestures both temporal (which are modelled
by the DTW alignment), or descriptive (which are learned by the GMM modelling). The
algorithm that summarizes the use of the probability-based DTW to detect start-end of gesture
categories is shown in Table 4.1. Figure 4.6 illustrates the application of the algorithm in a
toy problem.

4.1.2 Gesture Representation: BoVDW

In this section, the BoVDW approach for Human Gesture Representation is introduced.
Figure 4.4 contains a conceptual scheme of the approach. In this figure, it is shown that
the information from RGB and Depth images is merged, while circles representing the
spatio-temporal interest points are described by means of the proposed novel VFHCRH
(Viewpoint Feature Histogram and Camera Roll Histogram) descriptor.
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Table 4.1 Probability-based DTW algorithm.

Input: A set of GMM models Λ = {Λ1, ..,Λm} corresponding to a gesture category, a threshold value θ ,
and the streaming sequence Q = {q1, ..,q∞}. Cost matrix Mm×∞ is defined, where N (x),x = (i, t)
is the set of three upper-left neighbor locations of x in M.

Output: Warping path W of the detected gesture, if any.
// Initialization
for i = 1 : m do

for j = 1 : ∞ do
M(i, j) = ∞

endend
for j = 1 : ∞ do

M(0, j) = 0
end
for j = 0 : ∞ do

for i = 1 : m do
x = (i, j)
M(x) = D(q j,Λi)+ min

x′∈N (x)
M(x′)

end
if M(m, j)< θ then

Ω = {argmin
x′∈N (x)

M(x′)}

return
end

end

Fig. 4.4 BoVDW approach in a Human Gesture Recognition scenario. Interest points in RGB
and depth images are depicted as circles. Circles indicate the assignment to a visual word in
the shown histogram – computed over one spatio-temporal bin. Limits of the bins from the
spatio-temporal pyramids decomposition are represented by dashed lines in blue and green,
respectively. A detailed view of the normals of the depth image is shown in the upper-left
corner.

Keypoint detection

The first step of BoW-based models consists of selecting a set of points in the image/video
with relevant properties. In order to reduce the amount of points in a dense spatio-temporal
sampling, the Spatio-Temporal Interest Point (STIP) detector [83] is used, which is an exten-
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sion of the well-known Harris detector in the temporal dimension. The STIP detector firstly
computes the second-moment 3×3 matrix η of first order spatial and temporal derivatives.
Finally, the detector searches regions in the image with significant eigenvalues λ1,λ2,λ3 of η ,
combining the determinant and the trace of η ,

H = |η |−K ·Tr(η)3, (4.7)

where |.| corresponds to the determinant, Tr (·) computes the trace, and K stands for a relative
importance constant factor. As multi-modal RGB-D data is employed, the STIP detector is
applied separately on the RGB and Depth volumes, so two sets of interest points SRGB and
SD are obtained.

Keypoint description

In this step, the interest points detected in the previous step should be described. On one hand,
state-of-the-art RGB descriptors are computed for SRGB, including Histogram of Gradients
(HOG) [30], Histogram of Optical Flow (HOF), and their concatenation HOG/HOF [84]. On
the other hand, a new descriptor VFHCRH is introduced for SD, as detailed below.

VFHCRH

The recently proposed Point Feature Histogram (PFH) and Fast Point Feature Histogram
(FPFH) descriptors [137] represent each instance in the 3-D cloud of points with a histogram
encoding the distribution of the mean curvature around it. Both PFH and FPFH provide P6
DOF (Degrees of Freedom) pose invariant histograms, being P the number of points in the
cloud. Following their principles, Viewpoint Feature Histogram (VFH)[136] describes each
cloud of points with one descriptor of 308 bins, variant to object rotation around pitch and
yaw axis. However, VFH is invariant to rotation about the roll axis of the camera. In contrast,
Clustered Viewpoint Feature Histogram (CVFH) [5] describes each cloud of points using a
different number of descriptors r, where r is the number of stable regions found on the cloud.
Each stable region is described using a non-normalized VFH histogram and a Camera’s Roll
Histogram (CRH), and the final object description includes all region descriptors. CRH is
computed by projecting the normal of the point cloud ρ(i) for the i-th point onto a plane
Pxy that is orthogonal to the viewing axis z, the vector between the camera center and the
centroid of the cloud, under orthographic projection,

ρ
(i)
xy = ||ρ(i)|| · sin(φ), (4.8)
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(a) (b)

Fig. 4.5 (a) Point cloud of a face and the projection of its normal vectors onto the plane Pxy,
orthogonal to the viewing axis z. (b) VFHCRH descriptor: Concatenation of VFH and CRH
histograms resulting in 400 total bins

where φ is the angle between the normal ρ(i) and the viewing axis. Finally, the histogram
encodes the frequencies of the projected angle ψ between ρ

(i)
xy and y-axis, the vertical vector

of the camera plane (see Fig. 4.5(a)).

In order to avoid descriptors of arbitrary lengths for different point clouds, the whole
cloud is described using VFH. In addition, a 92 bins CRH is computed for encoding 6DOF
information. The concatenation of both histograms results in the proposed VFHCRH de-
scriptor of 400 bins shown in Fig. 4.5(b). Note how the first 308 bins of the concatenated
feature vector correspond to the VFH, that encode the normals of the point cloud. Finally, the
remaining bins corresponding to the CRH descriptor, encode the information of the relative
orientation of the point cloud to the camera.

BoVDW histogram

Once all the detected points have been described, the vocabulary of V visual/depth words
is designed by applying a clustering method over all the descriptors. Hence, the clustering
method –k-means in our case– defines the words from which a query video sequence will be
represented, shaped like a histogram h that counts the occurrences of each word. Additionally,
in order to introduce geometrical and temporal information, spatio-temporal pyramids are
applied. Basically, spatio-temporal pyramids consist of dividing the video volume in bu, bυ ,
and bϖ bins along the u, υ , and ϖ dimensions of the volume, respectively. Then, bu×bυ×bϖ

separate histograms are computed with the points lying in each one of these bins, and they
are concatenated jointly with the general histogram computed using all points.

These histograms define the model for a certain class of the problem –in our case, a
certain gesture. Since multi-modal data is considered, different vocabularies are defined for
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the RGB-based descriptors and the depth-based ones, and the corresponding histograms,
hRGB and hD, are obtained. Finally, the information given by the different modalities is
merged in the next and final classification step, hence using late fusion.

BoVDW-based classification

The final step of the BoVDW approach consists of predicting the class of the query video.
For that, any kind of multi-class supervised learning technique could be used. In our case,
a simple k-Nearest Neighbour classification is used, computing the complementary of the
histogram intersection as a distance,

dF = 1−∑
i

min(hF
model(i),h

F
query(i)), (4.9)

where F ∈ {RGB,D}. Finally, in order to merge the histograms hRGB and hD, the distances
dRGB and dD are computed separately, as well as the weighted sum,

dhist = (1− ς)dRGB + ςdD, (4.10)

to perform late fusion, where ς is a weighting factor.

4.2 Experiments for PDTW and BoVDW

To better understand the experiments, firstly the data, methods, and evaluation measurements
are discussed.

4.2.1 Data

Data source used is the ChaLearn [63] dataset, provided by the CVPR2011 Workshop’s
challenge on Human Gesture Recognition. The dataset consists of 50,000 gestures each
one portraying a single user in front of a fixed camera. The images are captured by the
Kinect device providing both RGB and depth images. A subset of the whole dataset has been
considered, formed by 20 development batches with a manually tagged gesture segmentation,
which is used to obtain the idle gestures. Each batch includes 100 recorded gestures grouped
in sequences of 1 to 5 gestures performed by the same user. The gestures from each batch
are drawn from a different lexicon of 8 to 15 unique gestures and just one training sample
per gesture is provided. These lexicons are categorized in nine classes, including: (1)
body language gestures (scratching your head, crossing your arms, etc.), (2) gesticulations



54 Learning SpatioTemporal Representations

performed to accompany speech, (3) illustrators (like Italian gestures), (4) emblems (like
Indian Mudras), (5) signs (from sign languages for the deaf), (6) signals (diving signals,
mashalling signals to guide machinery or vehicle, etc.), (7) actions (like drinking or writing),
(8) pantomimes (gestures made to mimic actions), and (9) dance postures.

For each sequence, the actor performs an idle gesture between each gesture to classify.
These idle gestures are used to provide the temporal segmentation (further details are shown
in the next section). For this dataset, background subtraction was performed based on depth
maps, and a 10×10 grid approach was defined to extract HOG+HOF feature descriptors per
cell, which are finally concatenated in a full image (posture) descriptor. Using this dataset,
the recognition of the idle gesture pattern will be tested, using 100 samples of the pattern in a
ten-fold validation procedure.

4.2.2 Methods and Evaluation

The experiments are presented in two different sections. The first section considers the
temporal segmentation experiment while the second section aims the gesture classification
experiments.

Temporal Segmentation Experiments

In order to provide with quantitative measures of the temporal segmentation procedure, we
first describe the subset of the data used and the feature extraction.

• Data and Feature extraction
For the temporal segmentation experiments we used the 20 development batches provided
by the challenge organizers. These batches contain a manual labelling of gesture start and
end points. Each batch includes 100 recorded gestures, grouped in sequences of 1 to 5
gestures performed by the same user. For each sequence the actor performs an idle gesture
between each gesture of the gestures drawn from lexicons. Finally, this means that we have
a set of approximately 1800 idle gestures.

Each video sequence of each batch was described using a 20×20 grid approach. For each
patch in the grid we obtain a 208 feature vector consisting of HOG (128 dimensions) and
HOF (80 dimensions) descriptors which are finally concatenated in a full image (posture
descriptor). Due to the huge dimensionality of the descriptor of a single frame (83200
dimensions), we utilized a Random Projection to reduce dimensionality to 150 dimensions.

• Experimental Settings
For both of the DTW approaches the cost-threshold value θ is estimated in advance using
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Table 4.2 Overlapping and accuracy results.

Overlap. Acc.
Probability-based DTW 0.3908± 0.0211 0.6781 ± 0.0239

Euclidean DTW 0.3003 ± 0.0302 0.6043 ± 0.0321
HMM 0.2851 ± 0.0432 0.5328 ± 0.0519

ten-fold cross-validation strategy on the set of 1800 idle gesture samples. This involves
using 180 idle gestures as the validation data, and the remaining observations as the training
data. This is repeated such that each observation in the sample is used once as the validation
data. Finally, the threshold value θ chosen is the one associated with the largest overlapping
performance. For the probabilistic DTW approach, each GMM was fit with 4 components.
The value of G was obtained using a ten-fold cross-validation procedure on the set of 1800
idle gestures as well. In this sense, the cross-validation procedure for the probability-based
DTW is a double loop (optimizing on the number of GMM components G, and then, on the
cost-threshold θ ). On the other hand, we used the Baum-Welch algorithm for training an
Hidden Markov Model (HMM), and 3 states were experimentally set for the idle gesture,
using a vocabulary of 60 symbols computed using k-means over the training data features.
Final recognition is performed with temporal sliding windows of different wide sizes,
based on the idle gesture samples length variability.

• Methods, Measurements and Results
Our probability-based DTW approach using the proposed distance D shown in Eq. (4.6)
is compared to the usual DTW algorithm and the HMM approach. The evaluation mea-
surements presented are overlapping and accuracy of the recognition for the idle gesture,
considering that a gesture is correctly detected if overlapping in the idle gesture sub-
sequence is greater than 60% (the standard overlapping value).

The results of our proposal, HMM and the classical DTW algorithm are shown in Table 4.2.
It can be seen how the proposed probability-based DTW outperforms the usual DTW and
HMM algorithms in both experiments. Moreover, confidence intervals of DTW and HMM
do not intersect with the probability-based DTW in any case. From this results it can be
concluded that performing dynamic programming increases the generalization capability
of the HMM approach, as well as a model defined by a set of GMMs outperforms the
classical DTW on RGB-Depth data without increasing the computational complexity of
the method. Figure 4.6 shows qualitative results from two sample video sequences.
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Fig. 4.6 Examples of idle gesture detection on the Chalearn dataset using the probability-
based DTW approach. The line below each pair of depth and RGB images represents the
detection of a idle gesture (step up: beginning of idle gesture, step down: end)

.
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BoVDW Classification Experiments

In all the experiments shown in this section, the vocabulary size was set to V = 200 words
for both RGB and depth cases. For the spatio-temporal pyramids, the volume was divided
in 2× 2× 2 bins (resulting in a final histogram of 1800 bins). Since the nature of our
application problem is one-shot learning (only one training sample is available for each
class), a simple Nearest Neighbor classification is employed. Finally, for the late fusion, the
weight ς = 0.8 was empirically set, by testing the performance of our method in a small
subset of development batches from the dataset.

For the evaluation of the methods, in the context of Human Gesture Recognition, the
Levenshtein distance or edit distance was considered. This edit distance between two strings
is defined as the minimum number of operations (insertions, substitutions or deletions)
needed to transform one string into the other. In our case, strings contain gesture labels
detected in a video sequence. For all the comparison, the mean Levenshtein distance (MLD)
was computed over all sequences and batches.

Table 4.3 shows a comparison between different state-of-the-art RGB and depth de-
scriptors (including our proposed VFHCRH), using our BoVDW approach. Moreover, we
compare our BoVDW framework with the baseline methodology provided by the ChaLearn
2012 Gesture Recognition challenge [41]. This baseline first computes differences of con-
tiguous frames, which encode movement information. After that, these difference images
are divided into cells forming a grid, each one containing the sum of movement information
among it. These 2D grids are then transformed then into vectors, one for each difference
image. Moreover, the model for a gesture is computed via Principal Component Analysis
(PCA), using all the vectors belonging to that gesture. The eigenvectors are just computed
and stored, so when a new sequence arrives, its movement signature first is computed, and
then projected and reconstructed using the different PCA models from each gesture. Finally,
the classification is performed by choosing the gesture class with lower reconstruction error.
This baseline obtains a MLD of 0.5096. The bar plot in Figure 4.8 shows the results in all
the 20 development batches separately.

When using our BoVDW approach, in the case of RGB descriptors, HOF alone performs
the worst. In contrast, the early concatenation of HOF to HOG descriptor outperforms
the simple HOG. Thus, HOF contributes adding discriminative information to HOG. In
a similar way, looking at the depth descriptors, it can be seen how the concatenation of
the CRH to the VFH descriptor clearly improves the performance compared to the simpler
VFH. When using late fusion in order to merge information from the best RGB and depth
descriptors (HOGHOF and VFHCRH, respectively), a value of 0.2714 for MLD is achieved.
Figure 4.7 shows the confusion matrices of the gesture recognition results with this late
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Table 4.3 Mean Levenshtein distance for RGB and depth descriptors.

RGB desc. MLD Depth desc. MLD
HOG 0.3452 VFH 0.4021
HOF 0.4144 VFHCRH 0.3064

HOGHOF 0.3314

Fig. 4.7 Confusion matrices for gesture recognition in each one of the 20 development
batches.

fusion configuration. In general, the confusion matrices follow an almost diagonal shape,
indicating that the majority of the gestures are well classified. However, the results of batches
3, 16, 18, 19 are significantly worse, possibly due to the static characteristics of the gestures
in these batches. Furthermore, late fusion was also applied in a 3-fold way, merging HOG,
HOF, and VFHCRH descriptors separately. In this case the weight ς was assigned to HOG
and VFHCRH descriptors (and 1− ς to HOF), improving the MLD to 0.2662. From this
result it can be concluded that HOGHOF late fusion performs better than HOGHOF early
fusion.
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Fig. 4.8 Performance of the best RGB and depth descriptors separately, as well as the 2-fold
and 3-fold late fusion of them. Results obtained by the baseline from the ChaLearn challenge
are also shown. x-axis represent different batches and y-axis represents the MLD of each
batch.

4

4.3 Conclusion

In this chapter, the BoVDW approach for Human Gesture Recognition has been presented
using multi-modal RGB-D images. A new depth descriptor VFHCRH has been proposed,
which outperforms VFH. Moreover, the effect of the late fusion has been analysed for the
combination of RGB and depth descriptors in the BoVDW, obtaining better performance in
comparison to early fusion. In addition, a probabilistic-based DTW has been proposed to
asses the temporal segmentation of gestures, where different samples of the same gesture
category are used to build a Gaussian-based probabilistic model of the gesture in which
possible deformations are implicitly encoded. In addition, to embed these models into the
DTW framework, a soft-distance based on the posterior probability of the GMM was defined.
In conclusion, a novel methodology for gesture detection has been presented, which is able
to deal with multiple deformations in data.





Chapter 5

Evolving Dynamic Representations

This chapter introduces a novel approach for evolving representations based on dynamic pro-
gramming and generative models. The capabilities of the presented evolutionary framework
is demonstrated in several well-known datasets for the task of action recognition.
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5.1 Gesture and Action Recognition by Evolved Dynamic
Subgestures

Gesture and human action recognition are two widely studied topics in computer vision.
Great advances have been reported in the last few years [3], mainly boosted by the release of
the Kinect sensor [145]. Most of existing recognition methods learn gesture/action models
that attempt to capture and recognize whole gestures (i.e., an holistic approach). Classical
approaches under this scheme are those based on dynamic time warping (DTW) [18] and
hidden Markov models (HMM) [151, 173].

Although the previous methods have obtained high performance in several domains,
recent research is moving towards approaches that model the problem in terms of gesture
primitives (subgestures) [88, 99, 100, 122, 170]. The underlying assumption of this type of
methods is that whole gestures are composed by primitives (that can be shared or not among
gestures from different categories), and the hypothesis is that learning with primitives leads
to better recognition performance. Whereas the subgesture-based techniques have proved
to be successful, it remains open the question on how to define/learn subgestures and, more
importantly, how to perform inference using subgesture models.

This section describes a novel approach for human action and gesture recognition based
on subgesture modeling. Unlike other primitive modeling approaches, our proposal learns
subgestures by searching for temporal patterns that improve recognition performance when
used to represent and classify complex gestures and actions. An evolutionary algorithm is
implemented for this purpose, with adhoc variation operators suitable for learning primitive
recognizers of actions/gestures. This algorithm takes as reference two standard methods
for learning from sequential data: DTW and HMMs. Besides learning the primitives
from scratch, it determines the inference procedures for DTW and HMM when using
subgestures. The proposed framework is evaluated in MSRDaily3D and MSRAction3D
datasets, outperforming state of the art results.

5.2 Training Dynamic Subgestures

This section describes the methodology to automatically learn gesture primitives (hereinafter
referred to as subgestures). Consider a training dataset XT = {xT

1 ,x
T
2 , ...,x

T
n }, where each

xT ∈ XT is a sequence example of a gesture. Similarly, consider a validation dataset XV =

{xV
1 ,x

V
2 , ...,x

V
m} of gesture sequence examples. Both XT and XV are subsets of a dataset,

whose sequence examples belong to different classes C = {c1,c2, ...,cg}. Our goal is to
find a subgesture set S = {s1,s2, ...,sk} from XT , being si a sequence representation of the
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Fig. 5.1 Representation of an individual I formed by 1+ 2N genes: k for the number of
subgestures, XT

seg the set of k f pair-wise generated segments, and 2N−2k f empty genes.

subgesture i, that maximizes the recognition performance of gestures in XV , given a particular
gesture recognition method (see Algorithm1 1).

Data: Population P; Training data XT ; Validation data XV

Result: Models of k subgestures S for each individual and its score
Current generation:
foreach new unique valid I in the population P do

k,segments← decode(I);
XT

seg← getDataPartitions(XT ,segments);
S← k-meansDTW (XT

seg,k); // Section 5.2.2
if use dynamic programming then

R← getResizedClassModels(XT ,S); D← getDissimilarities(S);1

M← getU pdatedCosts(R,S); DV ← getU pdatedCosts(XV ,S);
1

// Figure 5.2
ω ← addParamsToStruct(M,D);

else if use generative model then

DT ← getU pdatedCosts(XT ,S); DV ← getU pdatedCosts(XV ,S);
1

// Figure 5.2
M← learnGM(DT ,ω);
ω ← addParamsToStruct(M);

end
s,ω∗← g(DV ,ω); // Section 5.2.3

end
Algorithm 1: Pseudocode for learning Subgesture Models at each generation

5.2.1 Evolutionary Optimization

Let P = {I1, I2, ..., Il} be a population of l individuals, each one composed of 1+2N genes.
The first gene refers to the number k of subgestures and the remainder 2N genes refer to
pairs of start-length segments from XT . Initially, there is a probability ps of generating
each pair-wise segment. Those candidate segments are generated via a random selection
over the whole continuous sequence XT (i.e. the concatenation of all training sequences),
ensuring that the length of each possible segment is within [nmin,nmax] frames. Thus, each
individual I has k f ≤ N pair-wise generated segments. Finally, the value of the first gene is

1The lines having more than one instruction in Algorithm 1 can be computed in parallel.
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randomly chosen between the range [k0,k f ], so that k0 ≤ k ≤ k f . It means that the number
of k allowed clusters is set depending on the generated segments. The training procedure
ignores the remaining 2N−2k f empty segments in the fitness function. Figure 5.1 shows the
representation of an individual.

Fitness function

The goal of the proposed genetic algorithm is to maximize the score given by the evaluation
function, described in Section 5.2.3. It consists of obtaining a measure of performance
for the learned models, expressed in terms of subgestures, over validation sequences in the
classification task. Section 5.2.2 provides details of the aligned temporal clustering method
developed to obtain subgestures. Once subgestures are computed, we provide either dynamic
programming or generative model approaches to learn and evaluate the subgesture models.

Dynamic Programming: As presented in Algorithm 1, we obtain a model for each class
represented in subgestures. Each subgesture within the set S = {s1,s2, ...,sk} is the centroid
sequence obtained from the k−meansDTW algorithm. Therefore, we design each class model
mc ∈M, where M is the set of class models, by 1) computing rc ∈ R as the mean of all resized
training samples of each class, where R is the set of all resized training samples, and 2)
representing rc in subgestures. This procedure is done by means of a backward loop over
the DTW warping paths (see Figure 5.2). On the other hand, we compute the dissimiliarity
matrix as:

D = W+W⊺, s.t. W =
1
γ


w11 w12 ... w1k

w21 w22 ... w2k

. . ... .

wk1 wk2 ... wkk

 , (5.1)

where W is a squared matrix obtained from aligning all subgestures among them. This is, to
compute each element as the DTW cost by:

wi j = DTW (si,s j) = minΩ{
τ

∑
p=1

dp,Ω =< v1,v2, ...,vτ >}, (5.2)

where dp is the Euclidean distance between feature vectors sẋ
i and sẏ

j given the coordinates
vp = (ẋ, ẏ) of the warping path Ω. Then, each element of the matrix W is normalized w.r.t.
the maximum cost value γ of all elements wi j ∈W. To express both each class representative
sequence rc and each validation sequence xV in terms of subgestures, we assign to each frame
ι the subgesture identifiers that give the minimum costs, respectively, as:

i = argmin(k⃗m
ι

) , j = argmin(k⃗t
ι

); (5.3)

where k⃗m
ι

and k⃗t
ι

are vectors of length k subgestures corresponding to the columns of the
cost matrices KM and KT for the current training and validation sequences, respectively
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Fig. 5.2 Graphical example of the computation of KM and KT from the backward loop over the DTW
warping paths Ω (best seen in color). Input sequence x is aligned to the subgesture sequences from
S so as to obtain the k updated cost vectors ℧ that construct the matrix K. In the different modules
of our approach we use the common DTW alignment that initializes the first row and column of the
DTW matrix as infinity, which indicates that the warping path goes from the first position until the
last position of the DTW matrix. In this current step, however, to compute each ℧, we initialize first
DTW row to zeros to compute multiples warping paths and perform backward search, starting from
the last position of last row and stopping when the path reaches the first row. While computing the
backward path, we prioritize the left-steps when the neighbor positions have same cost values, in
order to maximize the length of the paths. Finally, we assign to each position of ℧ the minimum cost
values of the paths found that involves that position. We refer to matrix K as KM and KT when input
sequences are from the training and validation (or test) set, respectively. The vector m⃗ is the final
input sequence represented in subgestures, i.e. from the arguments obtained in Eq. 5.3. Figure 5.4
shows two real examples of m⃗, identifying subgestures in real skeleton-based gesture sequences.

(see description in Figure 5.2). Therefore, the set of arguments i∗ = argmin(k⃗m) and j∗ =
argmin(k⃗t) are the subgesture identifiers that construct the class models mc ∈ M and the
validation sequences dV ∈ DV in terms of subgestures. Then, final evaluation is obtained as:

DTW (mc,dV ) = minΩ{
τ

∑
p=1

D(ip, jp),Ω =< v1,v2, ...,vτ >}. (5.4)

Note that the expression of Eq. 5.4 takes the same form as Eq. 5.2, but instead of using the
Euclidean distance, each distance D(ip, jp) in the warping path considers the similarities
among subgestures.

Generative models: Still looking at algorithm 1, our generative model deals with 1D
discrete sequences. The first step is thus to obtain discrete representations of training and
validation sequences. Similarly to the DTW approach and the Figure 5.2, we represent each
training and validation sequence in terms of subgestures using Eq. 5.3 so as to construct the
discrete sequences DT and DV . This is, therefore, how we represent the observations of the
HMM from the discrete sequences in DT and DV , given the original sequences in XT and XV ,
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respectively. Then, considering DT as the set of training sequences, we train every HMM for
each class so as to learn our generative models.

Genetic operators

We consider standard selection, crossover and mutation operators from [59]. Specifically, we
apply these operators to all genes of each individual (i.e. k clusters and N segments). Before
applying the mutation operator, however, each of the N segments has again a probability
ps either to add if it is empty, or to delete if it already exists. The offspring also requires
to meet several constraints that might be violated once we apply these standard genetic
operators. To ensure they are met, we apply a repair algorithm to fix the new incorrect
segments immediately after applying the crossover and mutation operators. Basically, it
consists of a brute force criteria that fixes those incorrect segments either by moving them
so as to stay within the length of XT (even though keeping the segment length proportions
when they are correct), or by generating new segments within the range [nmin,nmax] when
they are out of bounds. Moreover, we use Eq. 5.5 either to increase k f and hence generate
new segments, or to decrease k, the number of clusters:

p(k) =
k− k0

k f − k0
⇒

{
if p(k)≤ 1 increase k f segments
Otherwise decrease k clusters.

(5.5)

This procedure ensures, not only that the offspring that pass throughout the next generations
are evaluable, but also that we respect the new trends of the genes caused by these genetic
operators. The repair function accelerates the convergence of the genetic algorithm.

5.2.2 Aligned Temporal Clustering

Let XT
seg be the set of k f sequence segments decoded from an individual I and the whole

continuous training sequence XT . Similarly to the classical k−means algorithm, our method
groups the XT

seg examples into k clusters. In our setting, however, each example xs ∈ XT
seg is a

sequence, so that it is a point in the space and time. Therefore, it is convenient to consider an
appropriate measure as DTW so as to treat temporal deformations. Thus, in the expectation
step we obtain the costs of aligning each sequence to all the centroids (initially k random
sequences of XT

seg). Then, we assign each sample to the cluster having the minimum cost of
the DTW warping path. In the maximization step, first we update the centroids by means of
resizing all sequences that belong to the same cluster w.r.t. the median length sequence of
that cluster. Then, we calculate the new centroid as the mean of all resized sequences for
each cluster. The algorithm converges either when the costs of aligning the current centroids
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to the ones from the previous iteration are 0, or when it reaches the maximum number of
iterations ı. Once the algorithm converges, we assign the set of S subgesture sequences as the
final centroids.

5.2.3 Evaluation

The evaluation function computes the mean score of classifying each sequence given the
learned model parameters. In training, moreover, we learn the thresholds that provide the
maximum score of classifying each class. Then, we use these thresholds in test time as part
of the learned model parameters. We learn and test thresholds as follows:

Dynamic Programming. Once we compute the costs of aligning all validation sequences
in XV to the class-models M, we learn a set of class-thresholds Θ = {θ c1,θ c2 , ...,θ cg} as
those DTW costs that maximize the score per class, being part of the global set of learned
model parameters ω∗. These thresholds are used to compute classification rate of test samples
represented in subgestures.

Generative models. Once we learn a HMM per class, we compute the probabilities of
generating each discrete sequence in DV , P(dv ∈ DV |mc), and learn the class-thresholds Θ,
included in ω∗. These thresholds are used to compute classification rate of test samples
represented in subgestures.

5.3 Experiments for BoSG

5.3.1 Datasets

For the evaluation of the proposed framework we considered two widely used datasets
for human action recognition: MSRDaily3D and MSRAction datasets (see Figure 5.3).
We evaluate the performance of our methods and compare its results with state of the art
techniques that have used the same datasets.

The MSRDaily3D dataset comprises 16 actions associated to daily activities, where
there are objects in the background and most actions involve human-object interaction. For
comparison with previous work we used this dataset under two settings: cross-validation and
half-subject split. The former setting allows us to compare the results of our methods with
recent work that has used the same descriptor [70–72, 175]. Under this setting we considered
12 out of the 16 actions and performed 5-fold cross validation (as in [70–72, 175]). For
the other setting we considered the 16 categories and used the sample half-training / half-
testing subject split (e.g., as in [89, 167, 168]). In either configuration, video sequences were
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Fig. 5.3 Sample images from the MSRAction3D (left,depth information is available, image
taken from [89]) and MSRDaily3D [167] (right, skeleton, RGB-D video available) datasets.

represented with Depth Cuboid Similarity Features (DCSF), the same parameters for the
descriptor as in [71, 72, 175] were used.

The MSRAction3D dataset comprises 20 actions, recorded by 10 subjects, where subjects
are isolated and no objects in the background are present. Together with the MSRDaily
dataset, this is one of the most used datasets for the assessment of human action recognition
techniques when using the depth/skeleton information. As before, video sequences were
represented with a bag of DCSF descriptors. For this dataset, the standard half-training
(subjects 1,3,5,7,9) / half-testing (rest of subjects) split was adopted (see [115] for a complete
analysis of results on this dataset).

5.3.2 Setting and metrics

All of the methods were implemented in MATLAB/C++2, integrating functionalities from
the GA optimtool [59] and PMTK3 libraries. The parameters of our method were fixed as
follows: Ps = 0.2, nmin = 5 and nmax = 25 (as in [183]). We set our population length to
l = 20, with 2 elitist members that pass throughout the next generations.

The k−meansDTW described in section 5.2.2 requires both to resize the segments samples
of each cluster in XT

seg and to align them w.r.t. the k centroids so as to obtain the new clusters.
The computational cost of this step is about O(ı× k×n2), where the number of iterations
is set by defalt as ı = 20. Hence, we defined N = 500 in our experiments to generate
the pairs of start-length segments, providing a trade-off between number of segment and
computation requirements. Moreover, we defined k0 = 3 to consider a low value for the
minimum number of clusters, so that we allow to set k between a large enough range [k0,k f ]

for the k−meansDTW algorithm. Finally, in the evaluation we use T = 20 for the range of
thresholds to learn Θ, and compute mean accuracy among all test sequences.

2Library publicly available at https://github.com/vponcelo/Subgesture

https://github.com/vponcelo/Subgesture
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Fig. 5.4 Visual scheme of frame-skeletons grouped into (temporal) subgesture-clusters for
the MSRAction3D dataset (best seen in color).

5.3.3 Results

The DTW baseline consists of using the classical DTW with Euclidean distance to classify
the test sequences. Thus, instead of learning subgesture models, our baseline models are
formed by means of direct resizing all sequence samples of each class w.r.t. the median
length sequence from that class. On the other hand, in the HMM baseline we split each
gesture sequence in 3 parts having the same length to construct the set of sequence segments
for learning the subgesture models. The number of clusters k is the half of the total number
of resulting segments. To reduce the computational complexity of the HMM baseline we get
a reduced number of samples as input to the k−meansDTW, so that for each class we choose
10 random gestures rather than considering all the training gesture sequences.

Figure 5.4 shows an example of representing two sequences of different actions into
subgestures on the MSRAction3D dataset, applying the procedure described in Figure 5.2.
The two sequence actions are ’high-arm-wave’ and ’side-kick’, and the subgestures are those
from the last generation that gave the best performance in the evolved DTW version. At the
frame level, one can observe that the skeletons that fall into the same cluster are quite similar,
though there are some skeletons that are visually similar to those belonging to a different
cluster (e.g. frame-skeleton 5 in comparison to the frame-skeletons that belong to the cluster
1). At the temporal level, we can observe that the cluster 1, formed by similar segments of
different length, is shared among the two different action sequences. The same phenomena
happens for the clusters 2, 3 and 5, though these are shared clusters along the same action
sequence. This shows the qualitative performance of the k−meansDTW algorithm, which
provide effective clusters by computing temporal deformations over the input segments of
different lengths.

In Table 5.1, we report the mean results of running our genetic algorithm 5 times both
to the half-subject split of the MSRAction3D and MSRDaily3D datasets, and to the 5-fold
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Fig. 5.5 Example of the evolution of the genetic algorithm for the first fold of the MSR-
Daily3D dataset. The plot (a) shows the number of segments that belong to each individual
and their scores on the last generation. The plot (b) shows the score (accuracy) of the best
individuals at each generation so as to see the evolution of the different settings: baseline
in validation (black) where there is no evolution, and the evaluation of the models from the
best individual of the generation in validation (blue) and test (red). The barplot (c) shows the
distribution of scores of each individual of the population on the last generation.

cross-validation of the MSRDaily3D dataset. In all cases, the evolution of the subgesture
models learned with the HMM outperforms the state of the art in these datasets, achieving
results above the 91% from the initial generations. Specially for the MSRAction3D dataset,
the improvement of evolving subgesture models with the HMM is the greatest w.r.t. the
HMM baseline, achieving the best result of the 95%. The evolved DTW version also provides
a considerable improvement w.r.t. the DTW baselines, outperforming the state of the art on
the MSRDaily3D dataset, and achieving comparable performances on the MSRAction3D.

To illustrate the evolution of the genetic algorithm. In the left plot (a) of figure 5.5 one
can see a clear trend of the individuals to go towards the number of segments that give the
best performance (111). The middle plot (b) shows that from the starting generations the
performance both in validation and test are above the baseline. Their performance improve
along the generations and keep very similar on the last generations. From the distribution of
scores on the right barplot (c), one can observe that all individuals have positive scores and
some of them achieve similar values, showing that the repair algorithm using Eq. 5.5 forces
the individuals to become valid, speeding up convergence.

5.4 Conclusion

We introduced a novel approach for learning dynamic gesture primitives for gesture and action
recognition. An evolutionary computing framework was presented incorporating two most
notable gesture recognition methodologies, namely DTW and HMMs. Experimental results
show the competitiveness of our methods, outperforming state of the art results in benchmark
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MSRAction3D-HS MSRDaily3D-CV MSRDaily3D-HS
Method Accuracy Method Accuracy Method Accuracy
[168] (LOP+J.) 88.2% [71] (SOSVM) 68.3% [167] (LOP) 42.5%
[175] (DCSF) 89.3% [72] (SMMED) 73.20% [112] (DTW) 54%
[130] (HOPC) 91.64% [175] (DCSF) 83.60% [168] (MKL) 80.0%
[49] (PBR) 92.3% [175] (DCSF+Skl.) 88.2 [91] (GP) 85.6%
[169] (MMTW) 92.7% - - [168] (LOP+J.) 85.75%

Dynamic Time Warping
Baseline 85.76% Baseline 77.36% Baseline 70.20%
Evolved 90.89% Evolved 89.51% Evolved 88.16%

Hidden Markov Model
Baseline 70.85% Baseline 74.62% Baseline 69.29%
Evolved 95% Evolved 91.39% Evolved 92.30%

Table 5.1 Recognition results in the MSRAction3D and MSRDaily3D datasets for half-split
(HS) and cross-validation (CV), for the latter setting we report the 4 results available in
published literature.

datasets after few generations. Our results suggest that the proposed subgesture learning
methodology enhances the recognition performance of traditional techniques. Future work
includes extending the framework for related tasks (e.g. gesture spotting, event detection)
and an extensive evaluation under different parameter settings. In addition, this framework
can operate directly as part of deep learning architectures and viceversa. Thus, we plan, first,
to model representations based on deep learning approaches and use them as input features,
so as to begin the evolution from such richer representations (as those computed from deep
neural networks). Finally, we plan to model subgesture primitives based on deep learning
methods at the inner steps of the evolutionary algorithm (e.g. as part of the fitness function).





Chapter 6

Applications for Human Analysis

This appendix provides an interdisciplinary approach for analyzing real conversations in
the field of restorative justice. The use of several multimodal descriptors for discovering
behavioral cues proves the effects of learning these features in real and sensitive scenarios,
and provide a feeback for the experts in those multidisciplinar areas.



74 Applications for Human Analysis

6.1 Non-verbal communication analysis in Victim–Offender
Mediations

Restorative justice is an international social movement for the reform of criminal justice. This
approach to justice focuses on the needs of the victims, who take an active role in the process,
while offenders are encouraged to take responsibility for their actions to repair the harm
they have done [172]. One of the common procedures offered to victims is the possibility of
exchanging their impressions with a mediator, in a program known as the Victim-Offender
Mediation (henceforth VOM) program. Given the sensitive nature of the cases, the process
consists initially of a set of individual encounters, where each party involved (i.e. victim or
offender) attends an interview or meeting with a mediator to analyze the problem in depth.
The decision is then taken as to whether the victim and the offender might engage in a joint
encounter. Figure 6.1 (a) shows an example of a real VOM scenario.

Fig. 6.1 Examples of the multi-modal feature extraction. Images (a) and (b) are the RGB
and depth images, respectively. Image (c) shows the upper body obtained from the Random
Forest user segmentation. In image (d), both face detection and head pose estimation are
shown. Hand segmentation is shown in image (e). Across the regions segmented by color,
the optical flow is shown in the regions in which there is greatest movement, identified as
being the hands. Finally, image (f) illustrates the speaker diarization process with the two
participants involved in the VOM session. The participants belong either to a party P or to
the mediators M. Clusters belonging to each participant are obtained from the input signal,
estimating the speech time of each segment, as well as the speech pauses/interruptions.
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In the VOM process, the goal is to reach a restitution agreement by seeking to balance
the interests of each of the parties, conditioned by the events that have occurred and the
associated legal proceedings. This agreement can be reached in one of two ways. First,
there are pre-conditioning factors to a case, given its particular facts, which make mediation
feasible or not. Second, high levels of agreement and expressed satisfaction between the
parties and the mediator are indicators of whether the VOM process is likely to end in success
or failure [157]. The emergence of these indicators depends on a large set of factors that are
not only concerned with the professionalism of the mediator, but are also related to other
factors including the applicability of mediation, the participants’ traits, human relationships,
the first impressions, among others. Furthermore, if we examine each of the participants
(victim, offender, and mediator), certain characteristics, including their cultural background,
education, and social status, are likely to have a high impact on the success or otherwise of
the process [118, 119].

Participant roles are clearly defined in these conversational processes, as they are in
similar scenarios, such as job interviews. The mediator explains the process and listens to the
other parties, maintaining his or her impartiality at all times, whereas the victim and offender
are more concerned with protecting their own interests and may appear quite wrapped up
in the problem they face. Indeed, no standard guidelines exist for establishing the best
course of actions or identifying the psychological mechanisms for achieving the desired
mediation goals. There exist, however, a set of body communicative cues that are present in
the conversation and affect the way of how participants perceive each other. This non-verbal
communication has been of high interest to intensively analyze the human interaction in
social psychology and cognitive sciences [79].

In this context, multi-modal intelligent systems can be used to analyze this information by
means of extracting features separately for the different data sources, such as those captured
from low-cost sensor devices. They can then be combined so as to define and recognize
communicative indicators. In this chapter, we present the first pattern recognition method of
the state of the art for extracting multi-modal features and recognize social signals in VOM
processes.

The rest of this chapter is organized as follows. Section 6.2 presents the material acquired
and used in this study. In section 6.3, we describe the system modules. Section 6.4 outlines
the proposal setup and the experimental results. Finally, section 6.5 concludes this chapter.

To the best of our knowledge, this chapter presents the first non-invasive ambient-
intelligence framework of the state of the art for the semi-automatic analysis of non-verbal
communication in VOM processes. We extract a set of multi-modal audio-RGB-depth fea-
tures and behavioral indicators, which are then used to measure the degree of receptivity,
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Fig. 6.2 Acquisition architecture. E1, E2, F1, F2, D1, D2 are the participants codified by
their respective positions (E: left, F: front, D: right); the angles of view for the different
cameras are the same, and hence α1 = α2 = α3.

agreement, and satisfaction using state of the art machine learning approaches and the ground
truth defined by the mediators in the VOM sessions. As a result, we find that our technology
achieves a high correlation between the most relevant features obtained by the behavioral
indicators and the information provided by the experts.

6.2 Data collection

An environmental study was undertaken in the various rooms in which recording was to take
place, and in which the non-invasive devices were to be set up. Once the environmental study
had been completed, decisions regarding the ethical constraints that had to be satisfied were
taken in order to protect the recorded data. This procedure involved the drawing up of three
fundamental ethical documents: the researchers’ signed undertaking, informed consent, and
the case-codification.

As the sessions typically involve two or three participants, the homogeneous distribution
of the cameras enabled us to capture at most two people-per-camera. Specifically, the devices
used were three Kinect™ sensors and two laptops (which varied depending on the number
of participants). Thus, a maximum of six people could be recorded1. Figure 6.2 shows the
ambient intelligence setup with all the elements involved and their distribution.

1The maximum number of people in the recorded sessions was five.
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Recordings were made in various towns and cities of Catalonia. Most of them were made
in the capital city of Barcelona with a total of 15 sessions, followed by Vilanova i la Geltrú
with a total of four. Two sessions were recorded in each of Manresa, Tarragona, and the
youth penitentiary center in Granollers. Finally, one session was recorded in Terrassa.

Thus, 26 VOM sessions were recorded, with a duration from 20 minutes to 2 hours
depending on the session, and an overall average of 35 minutes among all sessions. For
each session, a mediator engaged in a conversational process with different parties. Of the
total number of sessions, 15% were joint encounters, with both parties (victim and offender)
being present in the VOM. The remaining sessions were individual encounters involving one
or other of the parties and the mediator. Some of the sessions also involved accompanying
persons, either a professional from the specific center, or experts in some particular field
relevant to the case under discussion.

Each recorded session2 provided audio-RGB-depth information. These modalities were
registered using the camera parameters, and synchronized between the various devices
through the system clock. The set of images for each session were recorded at a resolution
of 640×480 and at an average of 12 frames per second (fps), both for RGB and depth
information. Each audio channel, belonging to one of the four microphones spread out
linearly along a multi-array microphone, processed 16-bit audio at a sampling rate of 16
kHz. The distance between participants and the Kinect™ device was between 1 and 2 meters
depending on the recording facility.

As the data protection regulations only allow one mediator to annotate each session, the
annotators were those mediators that had greatest familiarity with the case being dealt with
in each session. Only in a few isolated cases there were two mediators in the session. Thus,
in some cases the questionnaires completed by the mediators, recording their impressions
and feelings regarding the party/ies and the overall sessions, were subsequently confirmed by
a second mediator from the team so as to guarantee the consistency of the defined ground
truth values. The system responses were determined by considering both the state of the art
methods for the study of behavioral traits in people involved in similar scenarios, as those
presented in Chapter 2.2 [7, 47, 74, 102, 110, 118, 119, 142, 143, 157, 160, 161], and in the
subsequent discussion held with the mediators, taking into account the aims of their work
with the Department of Justice. Finally, we defined the system’s ground truth as:

• Receptivity: degree of engagement shown by each party during the session.

• Agreement: degree of agreement reached between the parties (quantified globally for
each session).

2See an example of the different modalities and visual extracted visual features in the supplementary video
material sample.
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• Satisfaction: degree of agreement reached between the parties in relation to the
mediator’s expectations (quantified globally for each session).

Table 6.1 Summary of data acquired.

Individual encounters 22
Joint encounters 4
Total sessions 26

Penitentiary centers 1
Office centers 4

Total justice centers 5
Mediators 7

Parties 30
Total no participants 37

Total no frames 1,436,400
Average no minutes/session 35

The quantitative nature of these social responses was validated by a randomly selected
mediator who had not been involved in that case so as to obtain a more objective evaluation.
This approach was likewise applied to two features describing the evolution in the level of
nervousness manifest by each party at the beginning and at the end of the process, respectively.
Therefore, for each session and for each party, mediators ranked the observed quantity of
these behavioral indicators from 1 to 5, where 1 is the lowest value and 5 the highest.
Table 6.1 shows a numerical summary of the data acquired.

6.3 Proposed Methods

The proposed framework consists of three main sequential modules illustrated in Figure 6.3.
The first module includes the multi-modal feature extraction from audio-RGB-depth data,
which is described in Figure 6.4. As shown in the scheme, the steps for obtaining multi-modal
features from different sources of information are the speaker diarization, user segmentation,
and region detection. Once the multi-modal features have been extracted, they are used to
define the behavioral indicators to be learnt and classified.

For all the system’s modules, consder a set of recorded sessions from a set of VOM cases.
Since a case is divided into one or more VOM sessions, one session v may belong either to
the same case as another session, or to a different case.
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Fig. 6.3 Modules of the proposed system.

The remainder of this section describes the different blocks of Figure 6.3. First, the
multi-modal feature extraction illustrated on Figure 6.4, followed by the behavioral indicators,
and finally the learning and classification of receptivity, agreement, and satisfaction labels.

Fig. 6.4 Multi-modal feature extraction module.

6.3.1 Audio Analysis: Speaker Diarization

In order to obtain the audio features, we use a diarization scheme based on the approach
presented in [34]. These features correspond to state of the art methods for audio descriptions,
which have been successfully applied in several audio analysis applications [4, 6, 129]. The
process is described below:
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Description: The input audio is analyzed using a sliding-window of 25 ms, with an
overlap of 10 ms between consecutive windows, and each window is processed using a
short-time Discrete Fourier Transform (DFT), mapping all frequencies to the Mel scale. A
more precise approximation of this scaling for frequencies used in Mel Frequency Cepstral
Coefficients (MFCC) implementations, is represented as:

f̂mel = kconst · loga

(
1+

f̂lin

Fconst

)
, (6.1)

where Fconst and kconst are constant values for frequency and scale, respectively. The Koenig
scale f̂lin is exactly linear below 1000 Hz and logarithmic above 1000 Hz. In brief, given
A-point DFT of the discrete input signal x̃(ȧ),

X̃(ḃ) =
A−1

∑
ȧ=0

x̃(ȧ) · exp
(
−2π ȧḃ

N

)
, ḃ = 0,1, ...,A−1, (6.2)

a filter bank with several equal height triangular filters is constructed. Each of these filters has
boundary points expressed in terms of position, which depends on the sampling frequency
and the number of points A in the DFT. Finally, the Discrete Cosine Transform (DCT) is
used to obtain the first 13 MFCC coefficients. These coefficients are complemented with the
first and second time-derivatives of the Cepstral coefficients.

Speaker segmentation: Once the audio data are properly described by means of the
aforementioned features, the next step involves identifying the segments of the audio source
which correspond to each speaker. A first coarse segmentation is generated according to
a Generalized Likelihood Ratio, computed over two consecutive windows of 2.5 s. Each
block is represented using a Gaussian distribution, with a full covariance matrix, over the
extracted features. This process produces an over-segmentation of the audio data into small
homogeneous blocks. Then, a hierarchical clustering is applied to the segments. We use
an agglomerative strategy, where initially each segment is considered as a cluster, and at
each iteration the two most similar clusters are merged, until the stopping criterion of the
Bayesian Information Criterion (BIC) is met. As in the previous step, each cluster is modeled
by means of a Gaussian distribution with a full covariance matrix and the centroid distance
is used as the link similarity. Finally, a Viterbi decoding is performed in order to adjust the
segment boundaries. Clusters are modeled by means of a one-state HMM using GMM as our
observation model with diagonal covariance matrices. Figure 6.1 (f) represents an example
of this procedure, showing the clusters where the speech signal falls at each instant. Since
most of the participants appear in just a single mediation session, we do not learn any speaker
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models from the cluster GMMs. Therefore, models extracted from one session are not used
in the diarization process of other sessions.

6.3.2 User Detection

Both RGB and depth data are used for the postural and behavioral analyses of the parties.
Examples of these images are illustrated in Figure 6.7 (b) and (b), respectively. In this sense,
the first step involves performing a limb-segmentation of the body based on the Random
Forest method of [145]. Figure 6.7 (c) shows a user detection example of applying this
segmentation. Once regions of interest have been located, it is of particular interest to
obtain real-world distance values for certain computed features so that they are comparable
between different subjects. To do this, we employed a similar procedure to that explained
in [Fisher], which converts the 2D pixels into 3D real-world coordinates using the Kinect™
depth values. However, since these raw sensor values returned by the depth sensor are
not directly proportional to the depth, in [Fisher], they scale with the inverse of the depth.
Therefore, each pixel (ẋ, ẏ) of the depth camera can be projected to metric 3D space as:

x = (ẋ−δx)
d(ẋ, ẏ)

κx
,y = (ẏ−δy)

d(ẋ, ẏ)
κy

,z = d(ẋ, ẏ), (6.3)

where (x,y,z) will be the real world coordinates, and δx, δy, κx, κy, the intrinsics of the depth
camera. These values will be computed over the detected interest regions in order to define
the communicative indicators described in next sections.

6.3.3 Region Detection

This section describes the different feature extraction modules applied to the visual data
source once the user has been segmented. Specifically, we perform an analysis of the face,
hands, and upper body, as well as visual movements in these regions during conversations.

Face Analysis

We are primarily concerned with obtaining the head pose angle of each of the participants in
the session. To do this, we base our approach on that of [184] which uses a set of face models.
The face model is based on a mixture of trees with a shared pool of parts, where every facial
landmark is modelled as a part and global mixtures are used to capture topological changes
due to viewpoint. Global mixtures can also be used to capture gross deformation changes
for a single viewpoint, such as changes in expression. On the other hand, the detection of
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the head pose angle is performed by averaging HOG feature as a polar histogram over 18
gradient orientation channels, as computed from the entire PASCAL 2010 dataset [48]. In
Figure 6.7 (a) we can visualize the set of computed features plotted on the detected face.

Fig. 6.5 Flowchart of the heuristic procedure applied to each frame. The total number of
people that appear in the current video v is denoted by ℘v. Constraints of the main condition
at the center of the flowchart are denoted by ∆Θ, ∆β , ∆Ξ, and their respective thresholds ΨΘ,
Ψβ , ΨΞ. The counting variables are FN℘, FP℘, h℘, representing the accumulated number
of false negatives, false positives, and hits for the current person℘. They are used to compute
the confidence ζ from the accumulated detection errors ε℘ and the hits h℘, and to decide
whether the current detected region has to be stored or discarded through the threshold Ψζ .

While face detection takes place for each tested image, we use a semi-automatic heuristic
procedure of [125] so as to improve the continuity of positive detections of regions of interest
in the person between consecutive frames, and to correct possible erroneous detections due
to the inherent difficulties of the problem at hand. Figure 6.5 shows the flowchart of the
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Fig. 6.6 Examples of how the semi-automatic heuristic procedure of [125] works on two pairs
of frames of a session. The correction of false positives is shown, improving the continuity
of the detection of positive regions of interest between consecutive frames. Image (a) shows
a false positive detection for the face region, whereas image (b) shows its correction with the
proper fitting. Image (c) shows false positive detections for the hand regions, choosing those
blobs obtained by means of skin segmentation having highest optical flow with respect to the
previous frame. Image (d) shows the correction of these regions by comparing them with the
positive hand detections, recovered from the previous frames.

procedure applied to each frame. In short, it consists of a temporal filtering methodology of
detected regions (faces) between one-by-one consecutive frames. It is based on three main
constraints that enable us to choose the detected regions in the current frame by comparison
to the previous one: offset pixels produced by the mass centers, offset angle produced by
head poses, and the size difference factor produced among the region areas. Thus, three
thresholds ΨΘ, Ψβ , and ΨΞ are respectively used to discriminate the occurred cases on each
constraint, whose values may vary depending on the session conditions. Moreover, there are
three counting variables that accumulate, for each person, the number of correct detections
(hits) h℘, false positives FP℘ and false negatives FN℘. Then, a confidence ζ is computed
from h℘ and the sum of false detections ε℘ to decide whether the current detected region has
to be stored or discarded by means of the threshold Ψζ . These counting variables are highly
dependent on constraint thresholds, as they make the system more or less restrictive when
choosing detected regions. Therefore, a trade-off between constraint thresholds and control
thresholds should be reached when assigning their values in order to assure the continuity
of positive region of interest detections for that person (even though the method could not
detect any region in the image), and to decide whether a manual annotation is required to
re-initialize the detection process in the (approximately) desired frequency rate. Figure 6.6
(a) and (b) shows an example of correcting a false positive detection.
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Hand Analysis

Given that the skeletal model computed from the person segmentation image [145] does not
offer an accurate fit of the hand joints in our particular scenario, we designed a semi-automatic
procedure for hand detection.

First, hands are manually annotated in the starting frames of each session to perform
posterior color segmentation for the rest of the frames. In this way, a GMM is learned with
the marked set of most significant pixels, defining the skin color model of the person. Then,
subsequent frames are tested within the GMM built using a threshold ϑ , discriminating those
pixels belonging to the skin color from those belonging to the background. The resulting
blobs are filtered using mathematical morphology closing operation with a 3× 3 square
structured element to discard noise and to obtain smoother regions. Once the set of blobs has
been obtained, we need to choose those two candidates that belong to the hand regions. This
is performed by computing the optical flow between consecutive frames, which allows to
discard noise in those cases in which we obtain more than two blobs by retaining those with
higher movement. The bounding boxes of Figure 6.6 (c) show an example of detections (left
is incorrect) using this procedure.

To improve the detection, we use the same heuristic procedure as that applied to the
face analysis step for choosing, in this case, the two best hand candidates. Image (d) of
Figure 6.6 shows an example of how the heuristic procedure corrects false positive detections
on the regions of the hands. The incorrect regions detected in the first instance are the blobs
presenting the highest optical flow, and then the heuristic procedure corrects these regions by
comparing them with the hand regions obtained from the previous frame. As in face detection,
manual annotation may be required in those cases where the heuristic procedure needs to be
re-initialized. For this task, an interface has been designed for the manual annotation of the
hand regions for the set of frames in which this occurs. When the user makes any annotation,
the GMM color model is newly re-constructed at this frame using the marked pixel positions,
and the whole process is repeated. In this case, using the proposed heuristic we also found
similar reduction regarding manual interaction effort as in the case of face region detection.

Once we have obtained the blobs belonging to the hand regions, the extremes with higher
optical flow magnitude are used to obtain 2D hand positions. Finally, these positions are
transformed to 3D real world coordinates using Eq. 6.3.

Upper Body Analysis

The probability of each pixel of an image belonging to a labeled body part is computed
using depth features. This information is used for the subsequent calculation of optical flow
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on RGB images where the upper body region appears. Therefore, each pixel of the image,
detected by Random Forest, with high probability of being part of the person, is used to
calculate the optical flow. Finally, an average of optical flow is computed for the upper body
region, which is later used to define behavioral indicators. An example of user detection
where upper body region is highlighted is shown in Figure 6.1 (c).

6.3.4 Behavioral Indicators

Once the multi-modal features have been extracted, we use them to build a set of behavioral
indicators that reveal communicative cues. This set of behavioral indicators defines the
final feature vector for each party within the VOM process. This information is of great
interest in detecting the response of subjects to certain feelings or emotional states during the
conversation [79]. In particular, since the behavioral cues of the mediators are not of interest
for our purposes here, we focus mainly on those of the parties.

Target Gaze Codification

The head pose and the face is obtained by applying the methodology explained in section 6.3.3.
In a given session, we compute the correlations between the head pose angles belonging
to each participant and the positions taken by the remainder participants in that session.
Hence, we identify the visual focus of attention among the different participants in the
conversation [7, 9, 103]. For this purpose, different ranges are assigned to each participant
in terms of angle limits. Given that the participants belonging to the same party are seated
in adjacent positions (see acquisition architecture in Figure 6.2), each range represents a
possible participant vision field of his/her gaze towards the target party. Thus, given a frame
of the session and a participant, if his/her head pose angle falls within a particular range, then
the party found within that range is identified as the target gaze of this participant for that
frame, which means the participant is looking at this party. Since sessions have different
setups, they may consist of one or two parties (and the mediator), each with a different
number of participants. Therefore, the ranges require manual assignment depending on each
session setup. Then, the target gazes are automatically identified for all the frames of the
session.

Figure 6.7 (a) shows an example of crossed gazes between the mediator and a party in a
real VOM session. Finally, we compute the time percentages of target gazes for each party.
Therefore, for any given party, there is a total of 6 indicators for representing the target gazes
({ f15, f16} and { f18− f21} from Table 6.2).
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Agitation Estimation

As explained in section 6.3.3, 3D positions belonging to the hand regions are computed
from the extreme positions of higher optical flow. From these positions, we are able to
quantify the movement for each region between consecutive frames. For this purpose, let
F = {ι1, ι2, ι3, ..., ιn} be a set of consecutive frames, This set of frames belongs to a video
session, being n the maximum length of the set.

Then, for each region we compute the average agitation over all the frames ι ∈ F as:

Ah =
1
n

n

∑
i=1

∆
ιi
h , (6.4)

where ∆
ιi
h = ∆

ιi
p +∆

ιi
q are the displacements among 3D positions of hands ∆h (left ∆p and right

∆q) between frames ιi and ιi−1, computed using Euclidean distance. Therefore, Ah contains
the accumulated average of displacements produced by both hands between frames F .

On the other hand, in section 6.3.3 we presented how the average optical flow can be
obtained from the upper body region. Therefore, if we denote as σ̄ιi the average optical flow
of the upper body for a given frame ι ∈ F , then:

Ab =
1
n

n

∑
i=1

σ̄ιi, (6.5)

where Ab contains the accumulated average of optical flow produced by the upper body
between frames F .

In short, for each party and session, agitation averages are computed over processed
frames, with a total of 8 agitation indicators ({ f14− f21} from Table 6.2), either alone or
in combination with other indicators. The idea of combining these indicators with other
behavioral features is inspired by [39, 47]. In this case, we consider a combination between
the features describing the agitation from the upper body and those describing the hands
while looking at the participants, as in [125].

Posture Identification

From the 3D body position, we detect the body posture as one behavioral indicator, which
may describe the engagement (or involvement) of the party within the VOM session. Our
description of body posture is classified into three main positions (tilted backward, normal,
tilted forward), where the posture selected is the one that has the most occurrences over the
processed frames.



6.3 Proposed Methods 87

Fig. 6.7 Visual instances of some situations where behavioral indicators are detected in VOM
sessions. Image (a) shows the detection of crossed gazes between the mediator and the other
participant. Images (b) and (c) show a depth image and its segmentation for the person (white
point cloud) and the table (red point cloud), respectively, which is used to detect a situation
in which the target subject appears with his or her hands under the table.

In addition, 3D hand positions are used to detect where the hands are along the processed
frames, in terms of average and time percentages. In particular, we discriminate three cases
(i.e. 3 indicators): hands together, hands touch the face, and hands under the table. This is
done in a similar way as for the agitation estimation, using Euclidean distance computed
over 3D positions.

• Hands together: We compute for each frame the distance between left and right hand
positions belonging to the target subject, and we consider the frames where the distance
values are below that of a threshold. Finally, we compute the time percentage for those
frames where the target subject appears with their hands together.

• Hands touch the face: We compute for each frame the distance between each hand
position and the position belonging to the face center of mass obtained in section 6.3.3.
Then, we consider the frames where the distance values are below that of the threshold.
Finally, we compute the average distance for those frames where the target subject
appears with their hands touching their face.

• Hands under the table: For each frame, we first perform a segmentation of the tables
using [138] to obtain planar objects within images. Then, we compare the 3D positions
of both hands with the position of the tables in order to discriminate the two possibilities
where the hands may appear under or above the table. Finally, we compute the time
percentage for those frames where the target subject appears with their hands under
the table. Figure 6.7 (b) and (c) illustrate an example of this procedure, showing
respectively the input depth image and its segmentation.



88 Applications for Human Analysis

Table 6.2 Summary of behavioral indicators defining each feature vector. The last two
features derive from the mediator surveys.

Feature Brief description
f1 Party’s role within the VOM session (victim or offender)
f2 This party looks at the other
f3 The other party looks at this party
f4 This party looks at the mediator
f5 The mediator looks at this party
f6 Body posture inclination of this party
f7 Gender of the mediator
f8 Gender of this party
f9 Gender of the other party
f10 Age of the mediator
f11 Age of this party
f12 Age of the other party
f13 Session type (individual/joint encounter)
f14 Upper body agitation of this party
f15 Upper body agitation of this party while looking at the other party
f16 Upper body agitation of this party while looking at the mediator
f17 Hands agitation of this party
f18 Hands agitation of this party while looking at the other party
f19 Hands agitation of this party while looking at the mediator
f20 Hands agitation of the mediator while looking at this party
f21 Hands agitation of the other party while looking at this party
f22 Hands together of this party
f23 Hands of this party touching the face
f24 Hands of this party are under the table
f25 Mediator speaking time
f26 Speaking time of this party
f27 Speaking time of the other party
f28 Mediator speaking turns
f29 Speaking turns of this party
f30 Speaking turns of the other party
f31 Mediator interrupts this party
f32 This party interrupts the mediator
f33 This party interrupts the other party
f34 The other party interrupts this party
f35 Nervousness of this party at the beginning
f36 Nervousness of this party at the end
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Speech Turns/Interruptions Detection

The speaker diarization process of section 6.3.1 detects time segments belonging to each
participant in the VOM process. In order to extract the degree of interaction, we not only
use the length of time during which each participant speaks, but we also count the number
of turns in each session. This enables to differentiate between a session where each party
expresses its position from a session in which a conversation is maintained between the
VOM participants. Apart from the quantification of turn taking, a relevant indication in the
social communication analysis is the detection of interruptions, which are related to the
dominance and respect between two persons [45]. Using the time between turns, we compute
the percentage of turns in which a participant interrupts another one. For instance, in the
first three turns of Figure 6.1 (f) a participant (red) interrupts the mediator (green), while the
mediator waits until the other participant ends his turn before starting to speaking again.

6.3.5 Classification

The total number of behavioral indicators is 36 (see Table 6.2, which define the feature vector
for each sample in our dataset). Here, we define a sample as each party participating in a
VOM session. Thus, if a session involves two parties and the mediator, we introduce one
sample of 36 features for each of the two parties. On the other hand, if a session involves
just one party and the mediator, we introduce only one sample corresponding to the party
involved. Each party of a video session is a sample for the classification task, and the total
number of used samples is 28.

As explained in section 6.2, the observations of the classification task are the accuracies
achieved by the system when predicting receptivity, agreement, and satisfaction. Then,
the correlation can be observed between the observations predicted by the system and the
impressions recorded by the mediators. These opinions are quantified values of receptivity,
agreement, and satisfaction presented in relation to the parties involved in the VOM session,
and represent the ground truth of our system. The ground truth values are assigned to each
sample of the dataset. Since agreement and satisfaction are globally assigned for each session,
those sessions containing two parties will share the same ground truth labels of agreement
and satisfaction for both generated samples, meanwhile the receptivity ground truth value is
assigned to each sample (party) independently.

Learning is then performed on these samples and their features as a binary classification
problem, grouping into two classes the quantifications performed by the mediators. To
do this, we employ four classical techniques from the machine learning field: AdaBoost
[55], Support Vector Machines (SVM) using a Radial Basis Function (RBF) [24], Linear
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Discriminant Analysis (LDA), and three kinds of Artificial Neural Networks (ANN), in
particular Probabilistic Neural Networks (PNN) [149], and Cascade-Forward (CF) and Feed-
Forward neural networks (FF) [61]. In addition to the binary classification analysis we also
conduct a regression study using epsilon-SVR (Support Vector Regression) [24] in order to
predict continuous quantifications of the three labels.

6.4 Experiments

6.4.1 Setting and Validation Measurements

The measurements for the features referring to the gaze, interaction of hands, and the position
of hands respect to the table, are time percentages. The features referring to agitation,
combination of agitation and gazes, and interaction of hands with the face, contain averaged
values of optical flow or distances, all of them taking into account the processed frames of a
session. The features referring to the speech are turn taking percentages, where a turn means
that the speaker changes. Finally, the remaining features, including nervousness features, are
codified either into binary values or discrete values within a certain range, having 5 as the
maximum range length.

In addition, an alternative was implemented where some features are divided into two
-one belonging to the first half, the other to the second half of the session-. This procedure
was initially performed to identify behavioral changes in subjects during the different halves
of the session. However, no significant differences were found and, hence, we finally used
the set of features without any temporal segmentation.

Table 6.3 Accuracy considering the first grouping case and all features.

Label AdaBoost LDA PNN CF FF SVM
Satisfaction 57% 32% 57% 57% 86% 57%
Agreement 50% 54% 64% 64% 75% 64%
Receptivity 64% 50% 71% 71% 68% 75%

Table 6.4 Accuracy considering the second grouping case and all features.

Label AdaBoost LDA PNN CF FF SVM
Satisfaction 82% 43% 21% 82% 75% 82%
Agreement 71% 43% 29% 71% 75% 75%
Receptivity 75% 36% 39% 68% 75% 61%



6.4 Experiments 91

Table 6.5 Accuracy considering the first grouping case and withholding the nervousness
features.

Label AdaBoost LDA PNN CF FF SVM
Satisfaction 57% 57% 57% 68% 64% 57%
Agreement 50% 43% 64% 57% 71% 64%
Receptivity 68% 46% 71% 75% 68% 75%

Table 6.6 Accuracy considering the second grouping case and withholding nervousness
features.

Label AdaBoost LDA PNN CF FF SVM
Satisfaction 82% 61% 21% 71% 86% 82%
Agreement 71% 57% 29% 71% 79% 75%
Receptivity 79% 46% 39% 64% 71% 61%

Learning is performed using leave-one-out validation, keeping one sample out of the
testing each time. Since the total number of samples is small and the ground truth values are
quantified within ranges [1−5] (as for the nervousness features), we simplified the problem
by grouping the different response degrees into binary groups, but we also performed a
posterior regression analysis. In the case of a binary setup, the value 3 can be considered as
being either high or low. For this reason, we ran the experiments twice to test each grouping
case, as we show in the result Tables 6.3, 6.4, 6.5, and 6.6:

• First grouping case: Degrees of quantification {1,2,3} versus {4,5}.

• Second grouping case: Degrees of quantification {1,2} versus {3,4,5}.

In our experiments, we awarded the standard value of 50 to the number of decision
stumps in the AdaBoost technique. For the SVM-RBF and epsilon-SVR, we experimentally
set the cost, gamma, and epsilon parameters by means of the leave-one-out validation for
each social response and minimizing regression deviation on the training set. Finally, we
applied the same tuning procedure for the three standard neural network parameters: a
Probabilistic Neural Network (PNN) with a spread value of 0.1 for the radial basis functions,
and Cascade-Forward (CF) and Feed-Forward (FF) neural networks, both with a single
hidden layer with 10 neurons values and Levenberg-Marquardt back-propagation training
function. The results obtained are shown in terms of accuracy percentages.

Due to the sensitive nature of the VOM process, never before (to the best of our knowl-
edge) have mediators recorded their sessions so that they might subsequently analyze the
cases. In this respect, therefore, the first results to emerge from this study are the session
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videos themselves, which are valuable materials via which the mediators can share their
experiences and obtain feedback to improve their mediation skills.

6.4.2 Results

The predictions addressed in our classification task focus on three indicators: the degree
of receptivity of the parties, the level of agreement reached, and the degree of mediator
satisfaction. Tables 6.3 and 6.4 show the results obtained when employing the different
techniques and using the complete set of behavioral indicators of Table 6.2. Note that as the
features of nervousness are subjective indicators that are not automatically computed, we
repeated the experiments without these two features. These results are shown in Tables 6.5
and 6.6, where the prediction is also analyzed under the grouping hypotheses. The most
accurate results among the four tables for the three responses are shown in bold, showing
both which classifier and which grouping case give the best performance for each feature
description. Once again, the results show a correlation between the features extracted and the
categories selected. The percentage degree of accuracy in the predictions is then compared
for the different techniques: AdaBoost, SVM, LDA, PNN, CF, and FF. It can be noted that,
except for PNN and LDA (which are not good techniques for use with our dataset), all the
classifiers are able to make predictions about the random decision. This indicates that there
is a correlation between the captured data and the information that we want to predict. The
most predictable social response is that of satisfaction, presenting an accuracy of 86% with
the FF, followed by 82% with AdaBoost, SVM, and CF. The best result when predicting
agreement was an accuracy of 79% with FF and, similarly, when predicting receptivity, the
best accuracy was 79% with AdaBoost. These results are quite significant since most of the
sessions presenting high values for this combination of responses resulted in satisfactory
VOM outcomes. However, since the number of samples is, in general, small, all responses
vary in their performance depending on the grouping hypothesis, despite the low level of
presence of the 3-value among the quantitative responses. This means that the uncertainty of
the mediator when assigning a value of 3 to the answers tends to add noise to the overall data
with respect to the evaluation.

The result tables show that CF and FF (and even LDA) vary significantly in their predic-
tions depending on whether the nervousness features are considered or not. This indicates
that the subjective evaluation of the mediator adds an important weight to the system for
half of our classifiers. Moreover, the variability in performance presented by the remaining
classifiers in relation to these two cases leads us to analyze the relevance of these features
in each case. Thus, we performed a comparison to identify the most relevant features for
each social response. In this way, we also analyzed the influence of the nervousness features
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Fig. 6.8 Weighted feature selection when using AdaBoost and SVM for the grouping response
cases presenting the highest accuracy when predicting receptivity, agreement, and satisfaction.
Each line represents the relative feature weights assigned by the classifiers within the range
[0,1], either employing all features or without the nervousness features f35 and f36.

when choosing the most relevant of the other features. We performed a weighted feature
selection using [46] and [171] for AdaBoost and SVM, respectively. For each response
(receptivity, agreement, and satisfaction), we selected those features only for the cases giving
the highest degree of accuracy (see the different plots in Figure 6.8). In general, we observe
that agitation features and the mediator’s speaking turns are chosen as the most relevant
features when predicting satisfaction. By contrast, the feature chosen as being most relevant
for predicting agreement is the age of the mediator. In the case of receptivity, the fact of
withholding the nervousness features results in the most significant changes in the feature
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selection with respect to the other responses. However, both hand agitation, gaze, and the
combination of the two are chosen as being the most relevant features when predicting
receptivity. On average, the most relevant features for all the responses are those involving
the combination of gaze and the agitation of the body regions. This means that these are
the most discriminating behavioral indicators in the prediction of the degree of receptivity,
agreement, and satisfaction in a conversation such as that maintained in a VOM process.
This feature selection procedure has direct implications for the observational methodology of
non-verbal communication, since it allows experts in the field of psychology and restorative
justice to focus, in any given conversation, on the most discriminating behavioral indicators
automatically selected through artificial intelligence.

Finally, we relate the overall training data to the different ground truth annotations using
the epsilon-SVR regression strategy. In this case, when using the leave-one-out strategy, we
obtain a prediction for each sample within the same range as the quantified annotations [1,5].
In this setting, we also ran the experiment twice: first, we considered all features, and then
left out the nervousness features. Both cases gave similar average distances when predicting
satisfaction, agreement, and receptivity, with values of 0.59, 0.64, and 0.68, respectively.
This mean deviation with respect to the ground truth labels was found accurate and of interest
to the team of mediators.

6.5 Conclusion

We proposed a multi-modal framework for the semi-automatic analysis of non-verbal com-
munication in VOM sessions. We showed the usability of computer vision, signal processing,
and machine learning strategies in conversational processes. Specifically, we computed a set
of multi-modal features from multimodal data. Then, we defined an automatic computation
of behavioral indicators used as final features for learning and classification tasks. We
demonstrated the applicability of the system to be used in the restorative justice field as a
tool for mediators, obtaining recognition accuracies of 86% when predicting satisfaction,
79% when predicting both agreement and receptivity, and a high correlation in the regression
analysis.

As future work, we plan to improve the dataset and responses, and to incorporate new
features. In the case of the data, we hope to capture more samples so as to be able to
perform more accurate predictions, providing continuous ground truth information by means
of intra-mediator estimations. In the case of the predictions, new data should allow the
continuous prediction of each degree of the behavioral indicators. Moreover, it will enable us
to perform frame-based predictions, analyzing the evolution of each indicator throughout the
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VOM process, and to detect the exact instant when a party accepts the possibility of reaching
an agreement. Finally, we plan to incorporate emotional state features obtained from facial
expressions [135] and audio data [8].





Chapter 7

Conclusions



98 Conclusions

In this dissertation, we presented novel theoretical approaches based on the BoW
paradigm and a system built for describing a new abstraction from low-level features into
behavioral cues for language communication.

In Chapter 2, we described a general background of common representations that are
widely used in the field of artificial intelligence. Indeed, we presented a review of the state of
the art for those methods used in the literature of the computer vision and machine learning
communities, and how the developed approaches cover the different aspects to be considered
in several domains, with particular emphasis referred to the human behavior in language
communication.

In Chapter 3, the use of evolutionary algorithms for improving the BoVW representations
based on weighting schemes is described. In this sense, we designed different combina-
tions of weighting schemes that are commonly used in text mining, and demonstrated the
effectiveness on their application for computer vision tasks. In order to demonstrate their
effectiveness, we made a wide comparison amongst several domains, where such evolved
representations enhance the generalization capabilities for recognizing class-categories, both
in still images and videos. Therefore, we showed that learning weighting schemes by means
of genetic programming leads to an improvement of performance of traditional schemes
in image classification and gesture recognition. Future work includes studying alternative
methodologies for learning term-weighting schemes based on inner optimization of the repre-
sentation matrix. Also, we are interested on learning term-weighting schemes on multimodal
data coming from different modalities.

In Chapter 4, we claimed the temporal modelling of multimodal data by means of
dynamic programming and generative models in order to be used in those domains demanded
by the nature of data. At the same time, we described how fusion strategies are used to
model multimodal data coming from different sources of information for the task of gesture
recognition. We showed how a combination of such approaches may entail an improvement
of performance in some well-known gesture recognition datasets. Future work lines are
the inclusion of samples with different points of view for the same gesture classes, and the
definition of powerful descriptors to obtain gesture-discriminative features.

In Chapter 5, we proposed the integration of evolutionary algorithms to model dynamic
representations of data by means of iterative feature selection and temporal clustering. We
showed the capabilities of these approaches as global optimization methods that can be used
either in conjunction with deep learning architectures or to evolve deep representations. We
demonstrated how these methodologies outperforms the task of recognizing categories in
several action datasets. Future work consist of modelling representations based on deep
learning approaches and use them as input features, so as to begin the evolution from such
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richer representations. On the other hand, we plan to model subgesture primitives based
on deep learning methods at the inner steps of the evolutionary algorithm. Finally, we plan
to extend the framework for related tasks (e.g. gesture spotting, event detection) and an
extensive evaluation under different parameter settings.

Since the approaches presented in the aforementioned chapters are mostly applied to
datasets of actions and gestures, some domains of those datasets refer to different ways
of human communication through language. Hence, in Chapter 6 we presented a system
developed for a real application in conversation settings within the field of Restorative
Justice. We described a mid-level representation of features computed from multimodal data,
acquired from sensor devices that were present in VOM sessions as part of the scenario and
environment. We explained how these features can be modelled as behavioral indicators in
order to predict several responses of the conversations, and we provided an extensive analysis
about them with the goal of producing a feedback for the experts in that field. Thus, we
defined an automatic computation of behavioral indicators used as final features for learning
and classification tasks, achieving promising results when predicting agreement, satisfaction,
or receptivity in such conversational settings. Future work consists, first, of increasing the
volume of the dataset by capturing more samples and computing more features so as to
improve the overall performance on predicting the responses. At the same time, a continuous
ground truth for annotating the responses would enable us both to the continuous prediction of
each degree of the behavioral indicators, and to perform frame-based predictions to analyze
the evolution of each indicator throughout the sessions. Finally, we plan to incorporate
emotional state features obtained from facial expressions.

As an overall feeling of the work made in this thesis, we showed how learning is present
in machines to model different representations for several domains, making special emphasis
to applications for language communication. In this sense, we tried to promote the sense of
learning through the system feedback, i.e. how humans can learn from the outcomes of a
system built for a particular objective for improving themselves in their areas of knowledge.
For instance, from the analysis of those particular aspects that are difficult to capture by
humans involved in a conversation, but that can be easily ‘seen’ by machines. Therefore,
this thesis also evidences that both humans and machines depend each other by means of
learning, so that they should learn to trust and live together in harmony as part of our future
nature of being.
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