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Abstract

The worldwide utilization of mobile devices makes the segment of
low power mobile processors leading in the entire computer industry.
Customers demand low-cost, high-performance and energy-efficient
mobile devices, which execute sophisticated mobile applications such
as multimedia and 3D games. State-of-the-art mobile devices al-
ready utilize chip multiprocessors (CMP) with dedicated accelerators
that exploit data-level parallelism (DLP) in these applications. Such
heterogeneous system design enable the mobile processors to deliver
the desired performance and efficiency. The heterogeneity however
increases the processors complexity and manufacturing cost when
adding extra special-purpose hardware for the accelerators. In this
thesis, we propose new hardware techniques that leverage the avail-
able resources of a mobile CMP to achieve cost-effective acceleration
of DLP workloads.

Our techniques are inspired by classic vector architectures and the
latest reconfigurable architectures, which both achieve high power
efficiency when running DLP workloads. The high requirement of
additional resources for these two architectures limits their applica-
bility beyond high-performance computers. To achieve their advan-
tages in mobile devices, we propose techniques that: 1) specialize the
lightweight mobile cores for classic vector execution of DLP work-
loads; 2) dynamically tune the number of cores for the specialized
execution; and 3) reconfigure a bulk of the existing general purpose
execution resources into a compute hardware accelerator. Specializa-

tion enables one or more cores to process configurable large vector



operands with new special purpose vector instructions. Reconfigura-
tion goes one step further and allow the compute hardware in mobile
cores to dynamically implement the entire functionality of diverse

compute algorithms.

The proposed specialization and reconfiguration techniques are ap-
plicable to a diverse range of general purpose processors available in
mobile devices nowadays. However, we chose to implement and evalu-
ate them on a lightweight processor based on the Explicit Data Graph
Execution architecture, which we find promising for the research of
low-power processors. The implemented techniques improve the mo-
bile processor performance and the efficiency on its existing general
purpose resources. The processor with enabled specialization/recon-
figuration techniques efficiently exploits DLP without the extra cost

of special-purpose accelerators.
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Chapter 1

Introduction

The technology scaling of CMOS transistors[52] has allowed for an exponential
growth of transistor density over the last four decades. By using the extra tran-
sistors to implement more complex computer architectures (e.g. pipelining, su-
perscalar, out-of-order, caching), each new generation of a processor family has
provided more computational work per clock. At the same time, the technol-
ogy improvement has enabled achieving higher frequencies. While increasing the
processor complexity and frequency to improve the performance, power density
has been increasing as well, further making processor cooling highly expensive
and difficult. Power density problems have forced processor manufacturers to
introduce multiple cores to scale performance in a power-efficient way by limiting
clock frequency and core design complexity. Consequently, chip multiprocessors
(CMP) in the last decade have penetrated various market segments from servers
to low power smart mobile devices. At the same time, mobile devices are be-
coming ubiquitous and the mobile market segment is starting to dominate the
entire computer industry. Customers demand that each new generation of mobile
devices significantly improves upon the previous generation. They seek low-cost,
high-performance and energy-efficient mobile devices, which execute sophisticated
mobile applications. The costs, performance and efficiency requirements tailor the
design of future mobile processors.

The mobile devices of today enable new compelling user experiences. Users
access their mobiles through more natural interfaces such as speech and video

gesture. Mobile applications manage an ever-increasing amount and quality of
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mobile data like: photos, videos, and a world of content available in the cloud.
Although computationally demanding, the abundant level of parallelism in mod-
ern mobile software offer potential for power-efficient acceleration. By exploiting
the available parallelism it is possible to address the major considerations in the
design of future mobile processors.

Parallelism exists on different levels: instruction, data and task (ILP, DLP,
TLP). ILP allows for simultaneous execution of multiple instructions (operations)
of a single instruction stream. TLP allows for simultaneous execution of multiple
independent tasks, where each task is part of parallel program that executes its
own instruction stream (thread). DLP allows for simultaneous execution of the
same operation on multiple data elements as indicated by a single instruction.
Today’s mobile CMPs efficiently exploits ILP in a single out-of-order mobile core
and TLP with multiple low power cores. On the other hand, taking all the
advantages of ample DLP in mobile applications is still challenging on CMPs
without dedicated hardware. To harness this extreme potential and improve
efficiency of CMPs, various solutions have been deployed particularly in the form
of accelerators and offload engines inside heterogeneous system architectures for
low power devices.

Heterogeneous system architectures [6, 25, 42, 43] introduce an advanced pro-
cessor design that incorporates various processing units in a single chip. Figure 1.1
shows a layout of heterogeneous architecture built in the Qualcomm Snapdragon
810 processor for low-power mobile mobile devices. The Snapdragon processor in-
cludes general purpose cores with different power and performance characteristics
(CPUs), a graphics processing unit (GPU), a digital signal processor (DSP), an
image signal processors (ISPs), and a dedicated multimedia subsystem and other
specialized hardware. Such complex design with many incorporated units allows
to chose the proper substrate for each workload depending on its characteristics
and available parallelism. The extra dedicated units (e.g. multimedia acceler-
ators) improve power efficiency either by exploiting the parallelism or by using
synthesized hardware to perform frequently repeated computation of a particular
workload. On the other hand, the incorporation of dedicated resources incurs
additional area overheads and increases the design complexity and verification

cost of the processors. Although silicon area seems to be inexpensive nowadays,
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Figure 1.1: An example of the heterogeneous system architecture in the Snap-
dragon 810 commercial processor. It has general purpose cores and various ded-

icated units incorporated on a single chip.

mobile processor manufacturing costs are comparatively more sensitive to area.
In particular, the low end market segment of mobile processors with large produc-
tion numbers and slim margins is greatly affected by additional area costs. For
example in commercial Snapdragon processor showed in Figure 1.1, the low power
ARM cores approximately cover less than 20% of the total area footprint. In the
Snapdragon chip, the dedicated units incur extreme area overheads compared to
general purpose cores. Minimizing the additional area for various accelerators
directly affects the final cost of future mobile processors. At the same time, it
is also interesting to think about the extra power required to run the dedicated
processing units. Even when not using them, they dissipate leakage power, and
if they are power gated, there is a significant performance overhead for powering

these units on and off.
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To improve power efficiency without significant area and power additions, we
propose a novel design methodology for future mobile processors. This design
methodology avoids the processor heterogeneity and yet allows us to build a
high-performance, power-efficient mobile processor. Our processors dynamically
specialize and reconfigure the existing hardware resources available in general
purpose cores to exploit the DLP in mobile workloads. Such methodology should:
(1) incur minimal area and power overheads to the existing execution substrate
and (2) deliver desirable power and performance improvements on the lightweight
mobile processor without dedicated accelerators.

There are several existing techniques, which also improve efficiency of general
purpose cores, e.g. clock gating, power gating, dynamic voltage and frequency
scaling. These techniques are applied to the existing hardware resources and incur
negligible additions including for mobile processors. However, they do not suffi-
ciently increase the mobile processors efficiency neither exploit the available par-
allelism in mobile software like our specialization and reconfiguration techniques.
Recent research to improve performance efficiency by exploiting the parallelism
explores yet another research alternative through dynamic CMPs [22, 32, 36, 41].
They compose simple lightweight cores into a bigger and more powerful core to
tailor the execution substrate for a particular workload. By composing or de-
composing the available cores to run a single- or multi- threaded applications,
dynamic CMPs provide a flexible and power-efficient execution substrate that
exploit ILP and TLP, but not DLP. As far as we know, there is no work to date
that has investigated accelerating DLP workloads on dynamic CMPs.

While these existing cost-effective techniques and innovative architectures im-
prove the efficiency of mobile CMPs, they still do not exploit the high potential of
available DLP in mobile applications. Classic vector processors [1, 19, 30, 44, 63,
75], multimedia SIMD extensions [8, 20, 55, 59, 68, 73], GPUs [46, 53, 54, 56, 77|
and various compute hardware accelerators are different architectural models that
are typically employed to exploit DLP. Each of these models performs DLP op-
erations at different granularities. Vector processors and multimedia extensions
leverage a single-instruction multiple-data (SIMD) model to increase the power-
efficiency of DLP applications. Vector processors increase power efficiency by us-

ing a single vector instruction to operate over configurable large vector operands.
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The configurable vector length reduces fetch, decode and issue power dissipation.
By issuing more in-flight requests to load/store large operands, vector processors
efficiently tolerate memory latency and increase their performance. Although ef-
ficient on DLP applications, the area costs of modern vector processor [44] limit
their utilization especially in lightweight mobile devices. On the other hand,
multimedia extensions use specialized SIMD hardware on general purpose cores
and thus feature less area overhead. Compared to vector processors, multime-
dia extensions provide limited improvements of applications with DLP phases.
GPUs extend the SIMD model, by combining it with many threads to further
increase the efficiency of SIMD execution. Such execution model is typically
referred to as SIMT (single-instruction multiple-threads). GPUs provide remark-
able improvements of highly parallel applications, but their architectural model
seems to perform less efficiently than the model of classic vector processors [44].
Hardware accelerators improve the power-efficiency of compute intensive DLP
workloads in the most efficient way, by using a fixed-function or dynamically
configurable hardware that performs a specific computation over many elements.
Their applicability is limited, which makes the overhead of incorporating them
more noticeable in mobile processors.

In this thesis, we intent to exploit the available resources of a mobile CMP to
achieve a cost-effective acceleration of DLP workloads and increase the proces-
sor efficiency. Our research avoids the high requirement of additional resources
for classic vector processors, or hardware accelerators. Instead of incorporating
such power-efficient though complex offload engines to a mobile processor, we
dynamically specialize the processor for classic vector execution or reconfigure it
into a compute hardware accelerator. Such tailoring of the processor execution
substrate improves its efficiency with minimal hardware additions.

Rather than building the mobile processor from the scratch, we consider the
existing architectures for low power devices. Most of the low power devices nowa-
days use ARM [62] and X86 Atom processors [33]. They have been greatly im-
proved over a last couple of years, including upgraded to 64-bit architectures.
On the other hand, this research proposes low power CMPs based on an Explicit
Data Graph Execution (EDGE) architecture [7, 21, 69]. As opposed to high-

performance mobile ARM and X86 cores that use a power-hungry out-of-order
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microarchitecture to discover data dependencies dynamically, EDGE processors
leverage an EDGE compiler to encodes data dependencies statically. The com-
piler encodes dataflow within the EDGE instructions and thus avoids complex
hardware structures typically found in out-of-order cores. It makes EDGE cores
power-efficient and cost-effective.

EDGE CMPs incorporate dynamic capabilities that compose their lightweight
cores to increase flexibility and performance efficiency. Previous research [22, 36]
of CMPs with composable EDGE cores has shown promising results. Motivated
by these results, we have chosen the composable EDGE cores as a research vehicle
where we investigate our ideas. And even though we chose such an unconven-
tional baseline, we need to emphasize that the ideas proposed in this thesis can
be applied to a diverse range of general purpose processors available nowadays.
Therefore, we see these ideas as competitive approaches to improve and build
a real product, a mobile CMP that dynamically reconfigures into a vector or a
compute hardware accelerator.

We summarize the proposed ideas into the following list of high-level contri-

butions presented in this thesis:

e EDGE core Specialization for Power-Efficient Vector Execution
- EVX, a hardware specialization technique that efficiently exploits DLP
on a modest EDGE core. EVX avoids area and complexity of classic vec-
tor processors by specializing the existing resources of the EDGE core. It
yet provides the advantages of vector architectures such as: register- and
streaming-based vector execution over configurable large vector operands,
sophisticated addressing modes and memory latency tolerance. It allows
an efficient execution of parallel and non-parallel applications on an EDGE

core without offloading them to an accelerator.

e CMP Specialization for Dynamically-Tuned Vector Execution -
DVX, a novel technique that specializes a general purpose CMP into an
efficient DLP accelerator. As opposed to adding a dedicated accelerator
to a general purpose CMP, DVX leverages the existing CMP resources to
avoid the area overheads of the specialized hardware. DVX leverages and
extends the EVX design to utilize the additional cores in CMPs. It allows a
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processor to dynamically configure the allocation of compute and memory
resources, which are specialized to process vector elements in parallel. The
thesis explains an architectural model of DVX that is applicable to most
commercial CMP nowadays, various design options and one particular DVX

implementation on a dynamic EDGE CMP.

e High-Performance EDGE Vector Co-processor - VCOP, a novel
vector design that combines classic high-performance vector architectures,
EDGE and GPUs to efficiently accelerate DLP workloads. We build ded-
icated VCOP to compare it to a DVX enabled EDGE CMP, and we find
VCOP as power-efficient high-performance accelerator. We believe that the
results motivate further research of VCOP, as a modern and competitive

vector processor beyond low power and mobile devices.

e Configurable Compute Fabric of General Purpose Resources, an
accelerator of compute intensive DLP workloads that reduces most of the
overheads imposed by conventional accelerators. Instead of using extra exe-
cution resources, the compute fabric is composed of the execution resources
available in a CMP. Such accelerator does not incur a fixed-function hard-
ware or configurable functional units to the chip and yet efficiently acceler-

ates compute-intensive DLP workloads.

¢ Reconfiguration of Cores for Mobile Devices, a novel design of general
purpose cores, which adapt their resources to workload demands. One or
more cores on-the-fly are composed into a big processor or reconfigured into
an accelerator. Reconfigurable cores build a novel high-performance and
low-cost mobile processor which: 1) maximizes computational capabilities
of the existing general purpose cores; 2) minimizes the amount of extra

hardware for accelerators.



Chapter 2

Background on DLP Accelerators
and Composable EDGE Cores

In this chapter we explain more details related with the existing architectural
models that exploit DLP, their advantages and limitations. We discuss about
composable EDGE cores that we use as a research vehicle for our investigation,

including the cores architecture and their dynamic features.

2.1 DLP Accelerators

2.1.1 Classic Vector Processors

Classic vector processors are known to be an efficient substrate to execute DLP
applications and achieve high performance [44]. They have been used for decades
in supercomputers to accelerate various scientific applications with a large amount
of DLP [1, 13, 30, 63, 75]. Recently, the fast evolution of GPU hardware [46,
77] have motivated the manufacturers to use GPUs instead of vector processors
as accelerators for high performance DLP workloads. Nowadays the computer
industry produces only one supercomputer based on vector architectures [79]. At
the same time the ample DLP in commodity software motivates further research
of advanced vector architectures beyond supercomputers [2, 17, 38, 39, 40, 44, 61].
Multimedia speech, image or video processing repeat identical operations over the

streams of sound samples, pixels and video frames. The DLP available through
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Figure 2.1: The execution model of a scalar add and a vector add instruction.
The vector add instruction performs VL operations over vector operands, whereas

the scalar add perform only one operation.

these operations especially fit to vector execution, which revives the popularity
of classic vector processors.

The classic vector architectures such as the Cray-1 [63] use large register files
to hold sets of data elements (vectors). FEach vector instruction operates on
large, configurable-size vector operands in those registers, as opposed to scalar
instructions in a general purpose processor that operate over a single element.
Thus each vector instruction exposes more parallelism and reduces the power
hungry structures that extract the parallelism dynamically (e.g. hardware for
out-of-order execution).

Figure 2.1 shows the execution model of an add instruction in a general pur-
pose scalar and a special purpose vector processor. The scalar add instruction
leverages scalar registers (RO, R1, R2), which hold single elements. The scalar
instruction controls one add operation over elements A and B to produce a single
result C. One other hand, the vector add instruction manages large vector regis-
ters (VRO, VR1, VR2), which hold vector operands. The number of elements per
register is dynamically defined up to their size, depending on the vector length
(VL). One vector add instruction performs VL operations to provide an efficient
addition of two vectors.

The vectors are placed somewhere across the memory (assuming no caches)
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and the large vector registers are used both to hide long memory latency and
exploit temporal data locality. Vector memory instructions are deeply pipelined
by consecutively issuing memory requests for data of a large vector register. The
memory latency is paid only once for the first element and amortized over many
data in the vector register. After an initial overhead, vector memory instructions
are able to move one memory word between registers and memory at each cycle.
Such memory processing is one of the most important advantages of vector archi-
tectures. It maximizes the usage of available memory bandwidth and increases
the utilization of compute resources in vector processors.

Vector architectures include several hardware structures, which are not found
in general purpose processors. We find the following structures as the most rele-

vant to achieve an efficient DLP acceleration.

o Vector registers are sized to hold a large number of vector elements, instead
of single values like scalar registers of general purpose processors. Hence,
each vector instruction encodes a large amount of parallelism through many
independent operations over the elements in vector registers. To enable si-
multaneous execution of different vector instructions on different functional
units, vector registers need to provide multiple read and write ports. Large
size vector register files with many ports are one of the most complex and

power-hungry structures in vector processors.

o Vector functional units are deeply pipelined, so that they can start a new
operation on every cycle. To perform more than a single operation per
cycle and improve the performance, vector processors generally incorporate
parallel pipelined functional units, called vector lanes. In this case, vector
registers are partitioned across the lanes. It increases performance of vector
processors by enabling many operations of a single vector instruction to be

pipelined among the parallel units at a low design complexity.

o Vector memory units load or store vector operands in a pipeline to effi-
ciently tolerate memory latency. Besides sequential memory access, they
support complex addressing modes: strided access that loads/stores vector

elements with unit or non-unit stride between the elements; indexed access
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that gathers/scatter vector elements by using their indices. Such sophisti-
cated memory units can operate over consecutive and non-consecutive vec-
tor elements, as well as sparse arrays. It increases the applicability of vector

processors by allowing for vectorization of a wide range of DLP workloads.

o Vector mask registers are used to support conditional execution of each
operation in a vector instruction. Masking of vector operations enables
vectorization of loops with conditional computation and further increases

the applicability of vector processors.

e Vector length registers are used to control the vector length of a DLP compu-
tation, since the length may not be known at compile time. By dynamically
sizing the number of vector elements, vector processors reduce the number

of control instructions and increase their efficiency.

On the top of basic vector hardware many improvements have been proposed.
The complexity of the vector register file has been reduced by having separate
clusters of registers for different functional units and thus reducing the number of
ports [38]. Besides register-based vector execution, streaming-based vector pro-
cessors have been proposed [10]. They leverage vector registers to buffer streaming
data between the memory and execution units. Streaming based vector processor
do not capture the temporal locality in vector registers. Thus they allow for an
efficient processing of unlimited streaming data within a single vector instruc-
tion. For non-streaming workloads, vector processors have been extended with
caches to capture data locality and minimize initial memory overheads. Decou-
pled execution of memory and compute instructions avoids memory overheads,
by loading vectors ahead of computation [16]. Work on out-of-order execution of
vector instructions shows even better results [18]. Combining vector and threaded
execution increases the flexibility of vector processor and exploit TLP and DLP
on a unique parallel substrate [40].

Specialized vector processors deliver an auspicious substrate for DLP work-
loads with many advantages over general purpose processors. They expose an
extremely high amount of parallelism with a single vector instruction, by op-

erating over many independent elements. It reduces fetch, decode and issue

11
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overheads, and simplifies the control logic of processor front-end. Sophisticated
vector memory units further increase the utilization of vector processor resources
and thus its efficiency. Parallel functional units exploit ample DLP and yield a
high performance of vector processors.

On the other hand, vector processors have certain limitations. They incur
remarkable area overheads due to large vector registers and multiple vector func-
tional units. As such, vector processors have been historically used in super-
computers rather than as general purpose processing elements in commodity
processors. Recent interests in running mobile parallel applications with vec-
tor processors have leaded to various low power vector designs for embedded
systems [10, 34]. Embedded vector designs have been made in the form of ded-
icated accelerators, with hardware additions limited to DLP applications. Non-
parallel workloads make these accelerators idling most of the time and thus their
heavy hardware yet unavailable in mobile processors. What is needed is a mi-
croarchitectural support that offers the advantages of vector processors on the
existing resources of mobile CMP. Specializing the mobile CMP into an efficient
vector-based accelerator would avoid extra area costs, while running parallel and

non-parallel applications on the unique substrate.

2.1.2 Multimedia SIMD Extensions

Multimedia SIMD extensions have been used over a decade to exploit DLP in
commodity processors, while exploiting very much of the existing hardware |8,
20, 55, 59, 73]. Pioneer multimedia extensions exploited sub-word parallelism for
narrower elements than 32-bit processors were optimized for. By partitioning the
existing functional units and data in scalar registers, the pioneer extensions were
able to perform simultaneous operations on 8- or 16- bit vectors. Operating over
multiple operands in parallel within a single SIMD instruction has increased the
performance of DLP workloads at a low hardware complexity. With the time
SIMD width has grown, while incorporating wider functional units and wider
SIMD registers. Nowadays, the SIMD width goes up to 512 bits [67].
Multimedia extensions increase the performance of DLP workloads on general

purpose cores. They incur moderate area overheads for SIMD registers and func-
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tional units, while leveraging most of the existing processor resources. Compared
to more complex and larger hardware additions like vector processors, multimedia
extensions cost less and they are easier to implement. Therefore, they have been
widely applied in commercial processors, including those for mobile devices.
Multimedia extensions successfully accelerate DLP workloads with narrow
data operands or short vectors. On the other hand, they do not fully exploit
the maximum potential of highly parallel mobile workloads. The moderate size
of SIMD resources deliver significantly less performance and efficiency than the
heavier hardware of vector processors. Beyond the performance and efficiency,
multimedia extensions lack a few other features found in vector processors. The

most important are the following:

e Multimedia extensions operate over small operands and the operand size is
encoded within a SIMD instruction (e.g. 4 element of 32-bit), as opposed to
large dynamically sized vector operands. It leads to the addition of hundreds
of instructions across different multimedia extensions for the same processor
product family. Additional fetch, issue, decode and control overhead is
necessary to iterate the SIMD instructions sized for small operands in order

to process large vectors.

e SIMD memory instructions offer limited support for non-sequential memory
accesses. Intel has recently introduced only support for indexed access [67].
Processors with multimedia extensions issue a modest number of memory
requests, as opposed to sophisticated vector memory units that pipeline a
large number of memory requests. It may incur overheads due to packing
and unpacking SIMD operands, which can exceed the benefits of wider

registers and functional units.

e Multimedia extensions lack masked operation of a SIMD instruction. It
reduces the applicability of SIMD extensions to DLP workloads without

conditional computation in loops.

Employing the missing vector features and increasing the width of SIMD re-

sources tailor the design of future SIMD extensions. Such extensions will perform
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like classic vector architectures within general purpose processors, which may pro-

vide more efficient and powerful DLP acceleration.

2.1.3 Graphics Processing Units

Graphics processing units (GPUs) have been invented as a dedicated hardware
accelerators for 2D and 3D graphics, images and videos [47, 51]. GPUs promoted
the use of windows-based operating systems, graphical user interface, video games
and other graphics features. They have evolved into more programmable highly
parallel multiprocessors [46, 54, 77]|. The fixed-function GPU hardware has been
replaced with the programmable pipeline, which is exposed through parallel pro-
gramming languages. Hence, GPUs nowadays extend their applicability beyond
the graphics processing. They allow for acceleration of highly parallel and com-
pute intensive DLP applications.

Modern GPUs provide an extremely parallel execution substrate with hun-
dreds of floating point functional units. In the most basic form, GPUs have mul-
tiple cores and multiple banks of DRAM memory to support sufficient memory
bandwidth for each core. The GPU cores combine the SIMD and multithreaded
execution models (Nvidia calls such cores streaming multiprocessors). Each core
has a lot of parallel functional units organized in lanes, as opposed to vector
processors that have a few lanes with deeply pipelined units. The number of reg-
isters in GPU cores is also impressive and they are partitioned across the lanes.
It enables the GPU cores to execute many GPU threads, without an expensive
thread context switch. Each thread uses a subset of GPU registers that holds a
state of the thread. The threads are organized in groups, which execute in lock-
step by using SIMD based hardware (Nvidia calls such groups warps). For each
thread in the group, the same instructions issue and execute at the same time in
different lanes. An address coalescing hardware intents to fuse parallel memory
requests from multiple lanes into a single request to reduce memory overheads
and efficiently exploit available bandwidth.

Large amount of DLP in parallel programs is exploited through many GPU
threads. The threads are divided into thread blocks, and the blocks into the
groups that executes in lockstep. GPUs employ a hardware thread block scheduler

14
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that assigns thread blocks to the multithreaded GPU cores. Each core then
utilizes a hardware thread scheduler to pick which group of threads from the
assigned block to run each cycle. By picking whatever group that is ready to
go, the GPU core hides the long latency to DRAM increases the utilization of
the compute GPU resources. Therefore, the GPU area is spent on the large
number of registers to hold the state of many threads instead of on large caches
as happens in general purpose multicore processors. Massive multithreading to
hide the latency is also in contrast with vector processors, which pay the latency
for the first memory operation and then intent to pipeline the rest of accesses.

GPUs provide a dynamic runtime hardware that allows for execution of DLP
workloads with complex control flow. It enables the group of GPU threads to
execute instructions such as branch, jump, call or return in each thread. The
threads of the group may diverge when some lanes branch to some address, while
the others not. This flexibility has the consequence of providing independent
control flow for each thread in the group. Nevertheless, only one instruction can
execute across the lanes. Runtime conditional execution on GPU hardware is
similar to what vector processors do at compile time by using scalar instructions
and masked operations. While the divergence of GPU threads makes program-
ming easier, the efficiency and performance results of GPU acceleration might be
insufficient, when control flow is too complex.

Various innovations have been deployed to improve the basic form of GPUs.
Dual thread scheduler with two dispatch units per GPU core increase the uti-
lization of the core compute resources [77]. Even further improvements in uti-
lization of GPU resources are achieved through multitask execution on a single
GPU [54, 72]. Fast double precision floating point arithmetic and error correction
code (ECC) are some of the features that provide more general purpose comput-
ing on GPU [76]. Cache memories are added on GPUs to capture data locality.
They save many local variables that are shared between threads, but also other
temporal data for function calls, stack frames or register spilling. Integrated GPU
and CPU on the same chip [6, 27] allows for a fast offloading of parallel workload
onto the GPU accelerator.

Modern GPUs are used in many supercomputers to increase the performance

of high performance computing applications with substantial DLP. Recent low
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power heterogeneous architectures use GPUs as a way to accelerate mobile DLP
applications. While GPUs can provide an order of magnitude increase in perfor-
mance for highly parallel applications, their area overheads can be high for mobile
processor systems. Moreover, further generalization of GPU hardware leads to
less efficient graphics processing, which significantly affects the power efficiency
of mobile processors. And although substantially reduced the penalty of moving
data between the CPU and GPU on the same chip, not highly parallel applica-
tions yet incur the overheads for repetitive data movement operations. For such

applications, the acceleration on general purpose cores may be more efficient.

2.1.4 Hardware Accelerators

Besides SIMD extensions and GPUs, various hardware accelerators are employed
to accelerate compute intensive and data parallel applications. Accelerators yield
high performance and efficiency within a fixed-function hardware logic that per-
forms a specific computation over large amount of data. Instead of executing a
single operation over many elements like vector processors, hardware accelerators
synthesize the entire compute region with many operations. By streaming the
data through the fixed-function hardware, accelerators avoid control complexity.
They do not have per instruction overheads such as fetch, decode and complex
out-of-order issue nor the register file to hold the temporal results. Such hardware
make the accelerators extremely efficient, but limited to particular workloads.

By getting a set of accelerators and general purpose cores to work together in
the same chip, heterogeneous computing utilizes additional transistors in a more
efficient manner. On the other hand, accelerators have certain disadvantages.
They increase processor complexity, hardware design and verification costs, and
finally chip area. In a world of mobile processor, the design and verification costs
are amortized through a large production of chips, but area overheads preserve
a significant portion of the cost. Although the fixed hardware requires modest
resources, different applications employ different accelerators, which may incur
too much area overhead.

To provide non-specialized accelerators that can be configured to any func-

tionality, various designs propose reconfigurable hardware accelerators [11, 12, 23,
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24, 50, 57, 58]. They still outperform CMPs with general purpose cores, SIMD
extensions and GPUs across a wide range of applications. The reconfigurable
accelerators moderate the disadvantages of accelerators, by matching the com-
pute and performance requirements of diverse workloads. To provide a suitable
substrate for various applications, the reconfigurable accelerator requires more
compute resources. Such substrate is still area dominant in a domain of low
power mobile processors. On the other hand, existing homogeneous mobile com-
puting without accelerators do not provide performance and efficiency amenable
by modern mobile applications and their customers. Therefore, the trade-off be-
tween performance and cost in mobile devices seems like an interesting design

problem for computer architects.

2.2 Composable EDGE Cores

2.2.1 EDGE Architecture

Explicit Data Graph Execution (EDGE) architectures use compilers to divide a
program into blocks of instructions that execute atomically [7, 69]. The atomic
instruction blocks (AIB) consist of a sequence of dataflow instructions, where the
instructions explicitly encode producer-consumer relationships. An EDGE ISA
directly expresses the dataflow graph with the encoded relationships between
EDGE instructions. The compiler generates dataflow statically and thus avoids
power hungry hardware structures that discover data dependencies dynamically.
The EDGE ISA exposes more concurrency and increases power efficiency by al-
lowing for an efficient out-of-order execution of EDGE instructions.

EDGE instructions inside the AIB communicate directly. Each instructions
leverages two reservation stations, which hold its left and right operands respec-
tively. Producer instructions encode targets that route their outputs to appropri-
ate reservation stations of consumer instructions. The hardware uses the producer
instruction’s targets to deliver its output directly to the reservation stations of
consumer instructions, instead of writing it back to a register file shared among
instructions such as in conventional ISAs. Register operations in EDGE archi-

tecture are used only for handling less-frequent inter-block communications, and
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Figure 2.2: An example of the EDGE assembly and dataflow graph of a short C
code snippet. EDGE instructions encode the dataflow, by adding the targets of

consumer instructions in the code of producer instructions.

registers to keep the temporary results between the AIBs instead of caches and
memory. Each AIB reads temporary results of previous AIBs from the registers
to the reservation stations of its consumer instructions that operate over the re-
sults of the previous AIBs. Similarly, the AIB writes new temporary results back
to the registers to be consumed by the following blocks. Instructions in the AIB
execute in dataflow order, where an instruction becomes ready to issue when its
inputs arrive to the reservations stations.

Figure 2.2 shows a C code example, the EDGE assembly of the compiled
C code and corresponding dataflow graph. The C code example contains a few
operations over local variables (x,y,z), which are assumed to be saved as temporal
results of previous EDGE AlIBs in registers RO, R1, R2. The dataflow graph
shows data dependencies defined by the compiler and encoded through EDGE
instructions. The EDGE assembly has instructions that read and write these
temporal results between reservation stations and registers (e.g. instruction 0 read
RO T[4,L] - read the data from register 0 and send it to the left reservation station
of the instruction 4). Except for reads or writes, other instructions communicate
through the reservation stations (e.g. instruction & mul T[4,R] - performs a mul
operation once its inputs arrive to the reservation stations and then sends its

output to the right reservation station of the instruction 4).
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The EDGE architecture avoids many inefficient and power-hungry structures
typically used in today’s out-of-order processors. EDGE cores do not incorpo-
rate hardware structures such as: per instruction register renaming, multiported
register file, complex bypass network, and complex wakeup logic. The EDGE
ISA restricts the AIBs in several ways to further simplify the hardware of EDGE
cores that maps the blocks to the execution substrate. AIBs are variable-size:
they contain between 4 and 128 instructions and may execute at most 32 loads
and stores. The hardware relies on the compiler to break programs into blocks of
dataflow instructions and assign load and store identifiers to enforce sequential
memory semantics [69]. To improve performance, the compiler uses predication
to form larger blocks filled with predicated instructions [70]. Some instructions
(e.g. conditional) produce a predicate instead of a value. The predicate is broad-
cast to all instruction and predicated instructions execute only if they receive a
matching predicated value. Finally, EDGE ISA simplifies hardware that detects
when an AIB has finished and commits its atomic execution. The architecture
relies on the compiler to ensure that a single branch is produced from every AIB,
and to encode all the register and memory outputs of each AIB. The compiler
appends a header to each AIB, where it encodes the set of register writes for

temporary and store identifiers for permanent results of the AIB execution.

2.2.2 Dynamic EDGE CMP

Our baseline dynamic EDGE multicore 2.3 consists of low power, high perfor-
mance, decentralized processing cores connected by an on-chip network as in [36].
The baseline design provides the benefits of other tiled architectures - namely sim-
plicity, scalability, and fault tolerance. Each core contains an instruction window
and two reservation station buffers sized for 128 instructions, along with a 64-
entry register file and a 40-entry load/store queue (LSQ). Such microarchitecture
design is chosen to support the execution of EDGE AIBs with up to 128 instruc-
tions. To enable the processing of 64-bit operands the cores incorporate 64-bit
ALUs, as well as size their reservation stations buffers and registers to 64 bits.

Each ALU supports integer and floating point operations. Along with single
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Figure 2.3: The microarchitecture details of a 4-core EDGE CMP. Each core has
an instruction window with 2 reservation station buffers sized for 128 instructions,

register file, 2 ALUs and separated instruction and data caches.

64-bit operations, ALUs support sub-word SIMD operations. They support si-
multaneous eight 8-bit, four 16-bit or two 32-bit operations per single ALU. Each
core has separated L1 instruction and data caches. The L2 cache is shared by
all cores and contains multiple banks to provide high memory bandwidth (e.g. a
4-core CMP contains 4 banks of L2 cache).

To improve performance of the accesses to the memory system, the LSQ
enables unordered, speculative issue of load instructions that are predicted to
be independent of previous stores. The LSQ buffers store instructions until their
AIB commits to support recovery of speculative loads. When a store instruction
arrives to the LSQ), it checks if there is any violating younger load that should
have waited for the store. The LSQ leverages load/store identifiers encoded by

the compiler to detect if sequential memory semantics have been violated. When
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a violating load is detected, its corresponding AIB is flushed and reexecuted. The
AIB results are discarded, but the state of instruction window is retained to avoid
the duplicated fetch and decode of the flushed AIB. When the AIB reexecutes, the
LSQ enforces load /store ordering defined by the compiler to ensure progress until
the AIB commits. When the AIB commits, the LSQ issues the store instructions
to the caches, thus committing the results to memory.

The core executes a single AIB of EDGE instructions within a simple pipeline
that resembles pipelines of in-order processors. The instructions execute in the
dataflow order defined by the compiler. The cores use a modest wakeup mech-
anism, where an instruction becomes ready at the moment when all its inputs
arrive. The instruction scheduler picks at most two register and two compute
or memory instructions to execute at each cycle. The scheduler uses only the
position of instructions in the AIB (age) to prioritize their execution, while also
checking if there are structural hazards (ports or ALUs availability). The com-
mit stage checks when the AIB has produced all its outputs that are encoded by
the compiler and commits them to the registers and memory. While the AIB is
committing its outputs, the next AIB is being fetched and decoded. When the
commit phase is completed, the next AIB starts its execution.

Such execution of a single AIB per core limits the maximum performance of
EDGE cores. Since each core contains the instruction window and reservation
station buffers sized for 128 instructions, any AIB without that many instructions
underutilizes the core’s resources. Moreover, the atomic execution of the blocks
limits the instructions to partially commit and release the available resources for
new upcoming instructions. It incurs an overhead between the execution of two
AlBs, either to read temporary results from the registers or to load new data
from the memory. The speculative execution of multiple smaller AIBs per each
core may avoid these overheads, but it requires a complex hardware support to
control such speculative execution. This support is a trade-off between extra

performance and core’s complexity, which is not investigated in this work.

2.2.2.1 Composing Cores

A key characteristic that distinguishes dynamic multicores from other architec-

tures is the ability to dynamically adapt the architecture for a given workload
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Figure 2.4: An example of dynamic configurations in a 4-core EDGE CMP. The

CMP composes one or more cores into a wide-issue superscalar processor.

by composing cores. Rather than fixing the size and number of cores at design
time, one or more physical cores can be grouped together at runtime to form
bigger, more powerful logical cores. For example, serial portions of a workload
can be handled by composing every physical core into one big logical processor
that performs like a wide- fetch, decode and issue superscalar core. Alternatively,
when ample thread-level parallelism is available, the same large logical processor
can be decomposed so each physical processor can work independently to execute
instruction AIBs from independent threads. Figure 2.4 shows the examples of
various dynamic configurations of a 4-core EDGE CMP.

Each AIB is mapped to a single physical core and when composed into a
logical core, the architecture uses additional physical cores to execute specula-
tive (predicted) AIBs. Whenever the non-speculative AIB commits, it sends the
commit signal along with the exit branch address to all other cores in the logical
processor. Speculative AIBS on the correct path continue to execute, while AIBs
on misspeculated paths are flushed. Composing is always done at block bound-
aries and is initiated by the runtime system. Decomposing cores makes the cores
inactive and requires flushing the dirty lines of each cache being dropped from
the logical processor, as well as updating the cache mapping. Dirty cache lines
in the remaining cores are written back only when are evicted.

Logical cores interleave accesses to registers and memory among their physical
cores, which provides a logical core with the fused memory resources of all the

composed physical cores. For example, a logical core composed of two physical
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cores uses an additional bit of the address to choose between the two L1 caches
and two LSQs, doubling the L1 cache and LSQ capacity. The register files are
similarly interleaved, but since only 64 registers are exposed by the ISA, the
additional register file capacity is power gated to reduce power consumption.

To enable the speculative execution of predicted AIBs, each core incorporates
a next-block predictor [36]. The most of the predictor state is designed to be
distributed among the cores, which increases the capacity of the predictor when
more cores are composed. The microarchitecure of each core needs to buffer the
results of speculative AIBs until they commit or flush. It requires buffering of
memory store and register write instruction results. The LSQ buffers the stores
and enables the execution of speculative memory instruction in the predicted
AlIBs. To support the speculative execution of register instructions, the register
file in each core incorporates a write buffer, which holds register writes of spec-
ulative AIBs. When an AIB commits its buffered writes update the register file,
which keeps the architectural state. Otherwise, if an AIB is flushed the writes
are discarded. The write buffers have the complete knowledge of expected writes
for each AIB, since the compiler encodes all register writes in the header of the
AIB. By using the compiler information, the write buffers are capable of forward-
ing speculative registers values to speculative AIBs that attempt to read them.
When the register file receives a read request it forwards the register value to
the requesting core, if the requested value is available in register or the buffer. If
the value is not available, the read request is stalled until the value arrives. As
a result of this implementation, the speculative AIBs waiting for the temporary
results of the previous AIBs can make progress without waiting for all the AIBs
to become non-speculative and commit. It reduces the overheads between the

execution of speculative AIBs and provides higher performance.
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EDGE Core Specialization for

Power-Efficient Vector Execution

3.1 Overview

This chapter proposes a hardware specialization technique that enables vector
execution of DLP workloads on a general purpose core. The specialization pro-
vides the advantages of classic vector processors (see Section 2.1.1) on the existing
core’s resources. While accelerating DLP workloads, the enabled vector execu-
tion increases the core performance and efficiency. We use a modest low power
core based on an EDGE architecture (see Section 2.2.1) to implement our tech-
nique, called EVX. Unlike most existing DLP accelerators that utilize additional
hardware and increase the complexity of mobile processors, EVX leverages the
available resources of the EDGE core. It incurs minimal additions to dynamically
specialize the EDGE core into an efficient DLP accelerator.

EVX leverages the existing core’s compute logic to perform computation over
large vector operands. The computation is based on the vector compute in-
structions, which statically encode compute dataflow. The dataflow computation
allocates the compute resources and repeats over all the elements of the vector
operands. EVX adds a dedicated vector control unit to execute vector memory
instructions decoupled from the computation and increase the performance of
EVX. The memory instructions utilize sophisticated access patterns, which en-

able vectorization of a wide range of DLP workloads. The vector control unit
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loads/stores the vector operands and transfers their elements to/from the com-
pute logic that performs vector computation. As in classic vector architectures,
EVX operates over configurable large vector operands. Instead of including a
complex vector register file, EVX reconfigures a configurable part of the L1 data
cache to hold such operands.

This chapter describes the core’s microarchitecture modifications for EVX; the
extension of the EDGE architecture with new vector instructions and registers;
and the details of EVX implementation on an EDGE core. This is followed by
an evaluation of performance, power and area of EVX, and a comparison with
the baseline EDGE core as well as with EDGE and ARM Neon SIMD extensions.

The chapter ends with related vector work and concluding remarks.

3.2 EVX Microarchitecture Modifications

Figure 3.1 shows the microarchitecture of a dual issue EDGE core and the same
core with enabled EVX. The EVX modifications and additions that enable exe-

cution of vector instructions are:

e The existing cores compute hardware is banked to allow for higher vector
computation throughput on the EDGE core. The banking is applied to
instruction window and reservation stations, while distributing the func-
tional units among the banks. Fach of these banks behaves as a vector
lane [3]. Vector compute instructions execute in each lane to increase the
computation throughput with little complexity. An atomic block with the
vector compute instructions (vector AIB) allocates the lanes and repeats
such parallel and atomic execution of its vector instructions multiple times
to compute large vector operands. The repeated executions of the vector
instructions compute the vector operands slice-by-slice and the size of the
slice matches the size of the vector lanes. This resembles the execution of
vector instructions in classic vector processors with a few lanes, where each

lane performs many pipelined operations to process large vector operands.

e A dedicated vector control unit (VCU) is incorporated to execute vector

memory instructions and decouple them from the computation. The VCU
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Figure 3.1: The microarchitecture details of dual issue EDGE core and the core
with enabled EVX. EVX partitions compute resources to resemble parallel vector
lanes; the dataflow computation executes multiple times in all vector lanes to
process large vector operands; the dedicated vector control unit performs the
execution of memory instructions and transfers the vector operands slice-by-slice

between the compute lanes and vector registers in the data cache.

execution of the memory instructions has many advantages. The memory
instructions operate over large vector operands, while the VCU pipelines
many memory requests to load/store such operands. The pipelined execu-
tion of load/store instructions reduces memory latency. The VCU avoids
load/store queue and issues memory requests directly to the memory hi-
erarchy (L1, L2 or DRAM memory) to increase memory bandwidth. The
vector memory instructions executed by the VCU bring up sophisticated ad-
dressing modes, which enables the vectorization of various DLP workloads.
Decoupling compute and memory execution allows the vector load instruc-
tions to go ahead of the computation and eventually overlap the memory
access time. The vector memory operands can be configurable large, which

makes them inappropriately sized to be computed on the available core’s
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hardware. To overcome that limitation, the large operands are divided into
slices and then computed on the lanes of general purpose hardware, slice-
by-slice. The VCU transfers the available slices of the vector operands to
the vector lanes and thus manages the multiple executions of the vector
compute instructions. The compute instructions perform their operations
over different vector slices, when they are available instead of waiting for the
entire vector operands. This way, EVX chain vector memory and compute

instructions at low hardware complexity [29].

e A part of the L1 data cache memory is dynamically reconfigured into vector
registers (VRs) to hold large vector operands. It allows EVX to operate
over dynamically sized operands placed in the VRs, but also to keep the

temporary results of vector computation.

VCU is the only new hardware structure that needs to be added to the gen-
eral purpose core to enable EVX. By loading/storing dynamically sized vector
operands and transferring slices of such operands to/from the existing core’s
compute logic, the VCU allows for “EVX with two different modes”. These
modes resemble register and streaming vector execution. In register like mode,
the VCU loads/stores data arrays and transfers them through the compute re-
sources; EVX exploits temporal locality in the VRs, which in register mode hold
memory operands as well as temporary compute results of long vector computa-
tions. In streaming like mode, the VCU loads/stores data streams through the
VRs, which in this mode only buffer the input/output data between the memory
hierarchy and compute logic. The microarchitecture is not particularly set for any
of these so-called modes. The different ways of modifying a workload to use EVX
tailor the mode to match workload demands (e.g. whether a workload performs
a few vector compute operations directly and only over memory operands in the
VRs or it performs the more complex computation over memory operands in the

VRs and temporary compute results stored in the VRs).
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3.3 EVX Architecture Extensions

To enable operations over vector operands, EVX extends the EDGE architecture.
It adds three new classes of vector instructions to the EDGE ISA:

o Vector compute instructions partially compose vector AIBs, which perform
vector computation. EVX provides a vector equivalent of each scalar EDGE
logic/arithmetic instruction. A single bit of each instruction defines whether
it performs scalar or vector operations. The vector compute instructions
encode the dataflow in the same way as scalar EDGE instructions. Each
vector compute instruction encodes one or two consumer instructions to
which it sends the computation result. As opposed to a scalar EDGE in-
struction that performs a single operation, a vector compute instruction
executes multiple times and performs multiple operations over many vector
elements. The number of vector elements is dynamically configured and
does not affect the instruction’s encoding. The size of the elements varies
between 8, 16, 32 and 64 bits, and it is configured as same as the num-
ber of elements. Such design does not require recompilation of vectorized
applications when changing the implementation of EVX, as long as each im-
plementation can operate over a configurable number of dynamically sized

vector elements.

o Vector register instructions transfer slices of vector operands, by perform-
ing read (vread) or write (vwrite) vector register accesses. The register
instructions complement the vector compute instructions when composing
the vector AIBs. They connect the compute instructions with their input
and output vector operands in the VRs, by encoding dataflow connections
between them. The vector operands in the VRs can be either the source or
destination operands of the vector memory instructions or the temporary
vector results between the vector AIBs. The vread instructions read slices
of the input vector operands from the encoded VRs and transfer the slices to
the encoded consumer instructions; the consumers are the vector compute
instructions that performs operations over the slices. The vwrite instruc-

tions write slices of the output vector operands to the encoded VRs; the
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Figure 3.2: Examples of loops, which utilize diverse access patterns. The incor-
porated vector memory instructions support addressing modes for such patterns

to increase the applicability of EVX.

slices are the results of the compute instructions, which encode the vwrite

instruction as their consumers.

o Vector memory instructions load (vload) or store (vstore) configurable vec-
tor operands. The vector memory instructions do not encode the dataflow
like the other scalar and vector EDGE instructions. Instead of dataflow, the
memory instructions only encode the VRs that are the destination of load

memory operations (vload) or source of store memory operations (vstore).

To increase the performance of the vector execution, the vector memory
instructions obey relaxed (incomplete) memory ordering. Such ordering as-
sumes no memory dependency between the vector load/store instruction.
The load instructions do not necessarily see the results of previous store
instructions. The store instructions do not need to commit their results
in order. The non-speculative store instructions can partially write their
operands to memory, as soon as parts of their operand are available. The
user (compiler/programmer) has to manage the execution of memory de-
pendent instructions by separating them through memory barriers as in [28].
The barrier suspends the execution of the memory instructions after the bar-
rier, until the memory instructions before the barrier commit their results.
In this work we do not use nor further investigate such barriers, because we

only accelerate various DLP workloads that process independent vectors.
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The memory instructions support sophisticated addressing modes: sequen-
tial, strided, 2D-strided, indered and masked addressing modes. The in-
structions with sequential addressing mode (also called unit strided access)
utilize only the base address of vectors to load/store consecutive vector el-
ements. The strided addressing mode utilize a stride parameter to describe
the distance between iterations of the inner loop and access the vector ele-
ments by using the distance value. The 2D-strided addressing mode along
with the stride includes a skip parameter, which describes the distance be-
tween iterations of the outer loop [10]. The indexed and masked addressing
modes utilizes the values of one VR like indices/mask for the vector ele-
ments (e.g. A[B[i]], where the values of B have to be in the VR).

EVX extends the architecture with support for partial vector reductions,
which reduce large vectors to a subset of vector elements instead of a single scalar
value. The reductions do not incorporate new instructions. They partially re-
duce vectors by using the already introduced vector compute instructions, while
the existing scalar instructions finalize the reduction process and produce the
single-value reduction result.

Along with the new instructions, EVX extends the EDGE architecture with

new special-purpose registers:

e Vector length register specifies the number of elements in each vector operand,

which is used by vector compute or memory instructions.

o FElement size register defines the size of elements in vector operands. It
complements the length register, when controlling the execution of vector
compute and memory instructions, which dynamically configure the number

and size of elements in their operands.

e 8 memory description registers describe the type of each vector memory
instruction and its access pattern for the decoupled execution. The type
of instruction specifies whether it loads (vload) or stores (vstore) a vector
operand. The access pattern includes: a vector base address and a combi-
nation of parameters such as stride, skip or index VR. Per each vector AIB,

EVX supports the execution of maximum 8 vector memory instructions
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and 8 memory description registers are provided to describe each instruc-
tions. We chose such memory capabilities, because our analyses of various

workloads find it suitable to vectorize most of their DLP code regions.

e 8 vector registers hold configurable large vector operands. The number of
VRs is chosen to provide at least one operand storage for each of the 8
memory instruction. The size of VRs is configurable, since they are made
by dynamically reconfiguring a part of L1 data cache memory. It allows
for keeping of extremely large vector operands in the VRs. To avoid the
microarchitecture reconfiguration overhead, the architecture permits a fixed
partitioning of the memory between the data cache and VRs. In that case,
the VRs are allocated by a special system function and the VRs memory
cannot be used for the caching before the VRs are deallocated. This thesis

does not investigate this advanced architecture capability.

e Reduction vector register holds the initial reduction value (e.g. 0 when
summing the values) and the reduction result. It is VRS, since the numbers
0:7 are reserved for conventional VRs. The reduction register is sized to
hold one slice of vector operand; and the size of vector slice depends on the

particular EVX implementation.

o 4 dedicated scalar registers hold scalar values, which are used to facilitate
mixed vector-scalar operations. They are encoded as same as the VRs, by

using the numbers 9:12.

The EVX architecture extension provides a very comprehensive set of vector
instructions and addressing modes to enable vectorizaion of a wide range of DLP
workloads. We believe that a modern compiler could exploit the advantages of
the EVX extension to auto-vectorize most of the workloads [37]. However, in
this work we utilize an in-house EDGE C/C++ compiler [69] that does not en-
able the auto-vectorization option. To write the vectorized workloads, we have
extended the compiler with new vector instructions. We have developed an API
that describes the decoupled execution of vector memory instructions, initializes
values of the scalar registers as well as vector length and element size registers.

The API is translated into the register instructions, which write the values into
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Figure 3.3: An example of the loop vectorization for EVX. Decoupled vector
memory execution is described though the provided API. The vector AIB is writ-
ten by using intrinsics of vector compute and register instructions, which later

encode dataflow of the vector execution.

associated control registers. We have also provided support for various intrin-
sics that describe vector AIBs. The AIB consist of vector compute and register
instructions. The AIB reads input slices of the vector operands from the VRs,
performs the atomic computation over them and writes the output slices to the
VRs. The atomic vector computation is repeated over different slices of vector
operands until computing the entire operands. The programmer writes the vec-
torized code by describing the vector memory instructions followed by the vector
AIB that performs the computation.

The Figure 3.3 shows a simple vectorizable loop and its step-by-step vectoriza-
tion. The first step of the vectorization describes vector memory instruction that
load/store the loop’s memory operands. The memory description initializes the
memory control registers, which orchestrates the execution of the vector memory
instructions. The API functions are used to describe the memory execution, as

well as to initialize the vector length and size of vector elements. Each vector
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memory instructions is described with: type (load or store), start address ('a’, 'b’
or ’c’), stride between the elements (STRIDE) and the associated vector register
(VRx). All instructions share the vector length (LENGTH/STRIDE, because
iterations do not process consecutive vector elements) and size of vector elements
(SIZE_64). The second step of the vectorization describes the vector AIBs that
performs the loop’s computation by repeating atomic executions of its vector in-
structions. The AIB is written with the provided intrinsics of vector instructions.
The AIB consists of the vector compute (vadd) and register(vread, vwrite) in-
structions. Figure 3.3 shows the assembly translation of the vector AIB and its
dataflow encoded in the vector EDGE instructions. The vread instructions read
slices of the vector operands from the encoded VRs (VRO, VR1) and forward
them to the left and right operand of the vadd instruction respectively. The vadd
performs add operation over the input slices and forwards its result to the vwrite
instruction that writes it to the encoded VR2. The AIBs repeats the atomic exe-
cution of its vector instructions until computing the configured number of vector
elements (LENGTH).

As it is shown in the example from Figure 3.3, the vector memory instructions
are described apart from the vector AIBs, by writing their description to the
memory control registers. The vector AIBs are composed of the vector compute
and register instructions; and they also include a small set of scalar instructions,
which control the further flow of execution (e.g jump to the next block). To
differentiate the vector AIBs from the scalar EDGE AlBs, a single bit in the

block header encodes if a block contains the vector instructions or not.

3.4 EVX Implementation

EVX computation is enabled on a block-by-block basis. The memory instructions
execute in the VCU, decoupled from the vector computation; and they can start
the execution as soon as they have their description available in the memory
control registers. The vector AIBs perform computation of vector operands in
the lanes of the existing core’s compute logic; and utilize the VCU only to read and

write slices of the vector operands from/to the VRs. Such EVX design decouples
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the execution of the vector compute, register and memory instructions and we
discuss the implementation of the execution for each class of the instructions.

In the rest of this section, we first explain the execution of the vector AIBs in
the core pipeline. Next, we provide a detailed description of the additional vector
control unit and its logical structures, which decouples the execution of the vector
memory and register instructions. We further discuss the reconfiguration of L1
data cache resources into the VRs, show an example of execution in the EVX
enabled core and finally describe the support for sophisticated EVX addressing

modes and partial reductions.

3.4.1 Vector AIBs in Core Pipeline

The vector AIBs are fetched and decoded like the scalar AIBs of EDGE instruc-
tions, see Chapter 2. The EVX design allows for executing a mix of scalar and
vector instructions. The scalar instructions execute in one vector lane, once per
fetched AIB. On the contrary, the vector instructions execute in each lane of
the compute logic and repeat such execution by operating over different slices
of vector operands. Such multi-lane issue of the vector instructions limits the
size of the vector AIBs to the size of instruction window in one lane (bank). For
example, an implementation of EVX with four lanes limits the size of the vector
AIBs to 32 instead of from 128 instructions (the 128-entry instruction window is
partitioned to 4 banks with 32 instruction in each bank).

In this work we do actually chose to have four vector lanes to simplify the
transfer of the vector slices between the VRs and the compute lanes. The four
lanes enable operations over 256-bit vector slices (four 64-bit lanes), which is the
size of one cache line; please note that a number of cache lines is used for the VRs.
It allows for simple read/write access to the VRs, while transferring the entire
cache lines between the registers and the four lanes. Each line of the VR holds one
slice of the vector operand and each slice has a specific number of vector elements
that depends on their size. For example, a 256-bit wide vector slice contains eight
32-bit elements or thirty-two 8-bit elements. To perform the computation over
such slices, the vector compute instructions leverage the existing 64-bit ALUs
that support the 8-, 16-, 32- or 64-bit sub-word SIMD operations. In this way,
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Figure 3.4: The EVX 4-lane issue of vector compute instructions. The instruc-

tions are replicated in each lane to increase the computation throughput.

the execution of one vector compute instruction in four vector lanes can processes
up to sixty-four 8-bit elements of its vector operands.

Fetch and Decode: When an AIB is fetched from the L1 instruction cache,
the block header is examined to determine if the block contains the vector instruc-
tions. If so, then all instructions are mapped to the first lane of the instruction
window and all the vector instruction are replicated across the lanes. The repli-
cation of vector instructions involves adjusting the instruction targets by a fixed
offset to specify the consumer reservation station in the same lane (+32, 464
and +96 for the lanes 1, 2 and 3 respectively). While decoding the instructions,
the vector register instructions (vread/vwrite) are forwarded to the VCU, be-
cause it performs the register operations. Vector read instructions only encode
the dataflow connection between input VRs and consumer compute vector in-
structions; and after forwarding to the VCU, the vector reads are subsequently
ignored by the issue logic (nullified). On the contrary, the vector write instruc-
tions encode the output VRs and they need to forward the computed vector slices
from the producer compute instructions to the VCU; the vector writes leverage

the issue logic and remain active in the instruction window.

35



3. EDGE CORE SPECIALIZATION

In the example shown in Figure 3.4 instructions 0 to 3 are vector instructions
and their instruction number, mnemonics, and targets are presented. As these
four vector instructions are decoded, they are replicated across the lanes and
the replicated targets are updated to encode consumer instructions in the same
lane. For example, instruction 2 is a vector add that targets the left operand of
instruction 3 (T[3,L]). The vector add is replicated in lane 2 as instruction 34 (2
plus a fixed offset of 32) and the replicated target is updated to encode the target
35 (T[35,L]). Similarly, the instruction 35 is the replicated instruction 3 in lane 2.
The instructions 0 and 1 are vector read instructions and instruction 3 is vector
write. As these instructions are decoded, they are forwarded to the VCU.

Execute and Memory: Instructions execute out-of-order in dataflow fash-
ion according to their dependencies. Vector compute instructions execute in four
vector lanes, but the execution is interleaved if the number of ALUs is smaller
than the number of lanes. In the dual-issue EDGE core that we use as our base-
line, it takes two cycles to issue one compute instruction in all lanes. Since four
vector lanes share two ALUs, instructions from lanes 0 and 1 issue first, followed
by lanes 2 and 3. The vector write instruction’s format encodes the destination
VR and has a single input operand for the data. Vector write instructions exe-
cute only in lane 3 (lanes 0 to 2 are ignored by the issue logic), because the issue
schedule makes it the last lane in which the write instruction receives its input
data. When the write in lane 3 receives its data, the data from all the lanes is
forwarded to the VCU that writes it to the VR. Simultaneously with the execu-
tion of vector compute instruction in the pipeline, the VCU executes decoupled
vector memory instructions and transfers slices of the vector operands between
the VRs and reservations stations of the compute instructions. Select logic re-
peats the execution of the resident compute instructions, when new vector slices
are available and the instructions have their operands ready in the reservation
stations. This way, each vector compute instruction executes as many times as
necessary to process all the elements of its vector operands.

In the example in Figure 3.4 the VCU executes vector read instructions 0 and
1, by reading 256-bit vector slices from VRO and VR1 and transferring them to
the left and right reservation stations of the vector add in four lanes (64 bits per

lane respectively). Once the vector adds receive their input operands, the adds
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Figure 3.5: The vector control unit executes the new vector memory and register

instructions. It has a dedicated sub-unit for each class of the instructions.

from lane 0 and 1 issue to the ALUs followed by the adds from lanes 2 and 3. The
adds in lanes 0 and 1 will complete first, while sending their results to the vector
writes in the same lanes. But only the vector write in lane 3 will execute after
it receives its input operand; and at that time it will forward the input operands
from each lane, by sending a 256-bit slice to the VCU.

Commit: Compared to scalar EDGE AIBs that commit when they produce
all their scalar results and resolve the next block PC, the vector AIBs have one
additional restriction on commit. The vector compute instructions in the vector
AlIBs execute multiple times to process large vector operands. The executions
are controlled by the VCU that transfers slices of the vector operands from the
VRs to the compute lanes and back. This way, the VCU commits the results for
each atomic execution of the vector compute instructions to the VRs; and once
all the executions are complete, the VCU signals the control logic that the vector

AIBs are ready to commit.

3.4.2 Vector Control Unit

The VCU( shown in Figure 3.5) is a dedicated hardware logic added to the EDGE

core to enable EVX on its general purpose resources. The VCU is composed of
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two logical sub-units. The first sub-unit is the Vector Memory Unit (VMU). It
loads/stores large vector operands in a similar fashion to the memory units in
classic vector processors [10, 16, 61, 66]. The major difference is the execution of
vector memory instructions in slices to allow for slice-by-slice computation of the
vector operands on the existing general purpose hardware. The second sub-unit
is the Vector Register Unit (VRU). It enables the computation over the large
vector operands by transferring their slices between the VRs and the compute

vector lanes in the core pipeline.

3.4.2.1 Vector Memory Unit

The VMU executes vector load and store instructions in a decoupled fashion.
It exploits programmable memory access patterns of DLP workloads and with
minimal hardware additions performs vector memory execution. Each vector
memory instruction uses one VR to hold its input/output memory operand and
one memory control register that describes its access pattern by using one of
the supported addressing modes. The size of memory operands is dynamically
configured. Instead of computing such large operands at once, the 256-bit cache
line size is used to slice the operands and compute them slice-by-slice in the four
vector lanes of the general purpose hardware. To improve the performance of
such computation, the VMU issues the memory requests for a slice of one memory
instruction and then it executes the next instruction in round-robin fashion.
The decoupled execution of vector memory instructions at the slice granularity
enables overlapped execution of vector memory and compute instructions. The
memory instructions load or store slices of 256 bits and the transfer logic forwards
the slices in-order, once they are ready to the reservation stations of the com-
pute instructions. Instead of waiting for the memory instructions to complete,
the compute instructions can execute whenever they have ready slices of their
operands in the reservation stations. Such overlapped execution resembles the
chaining of conventional vector instructions, where the output of one instruction
is bypassed (chained) to the input of a following instruction (e.g. one load/store
unit bypasses its output to one compute unit). The slice-by-slice execution of vec-

tor memory instruction in a round robin fashion by the single VMU is yet more
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_vinfo(LENGTH/STRIDE, SIZE_64);
_vload(&a[0], STRIDE, VRO);
_vload(&b[0], STRIDE, VR1);
_vstore(&c[0], STRIDE, VR2);

API DESCRIPTION OF VECTOR
MEMORY INSTRUCTIONS

Figure 3.6: The vector memory unit executes the vector load and store instruc-

tions in a decoupled fashion by using the information of their access patterns.

flexible for chaining memory and compute instructions. It enables bypassing the
values of each memory instruction to different compute instructions through the
vector register unit, as explained later.

The VMU (shown in Figure 3.6) executes vector memory instruction, which
obey the relaxed memory ordering. Therefore, the VMU does not require a com-
plex load/store queue to dynamically discover memory dependencies and forward
data between dependent load-store instructions. Instead of comparing the ad-
dresses of each load request to the addresses of each outstanding store request,
the VMU issues memory requests directly to the memory hierarchy. This simpli-
fies the VMU implementation and improves the memory efficiency by allowing for
a large number of outstanding memory requests. To save the requests, the VMU
incorporates a lightweight vector outstanding requests handler, which saves per
request necessary information to handle their responses. To execute vector mem-
ory instructions in a round robin fashion, the VMU incorporates control counters,
which keep track of vector elements processed by each memory instruction. A few
more structures are added to build the VMU. We further describe each structure
with more details:

Queue of vector memory instructions holds active memory instructions. The

queue is visible in the EVX architecture as the memory description registers. Each
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of 8 memory description registers (an entry of the queue) can hold the type and
memory access pattern associated with one active memory instruction as shown in
the example in Figure 3.6. The description registers are initialized by executing a
set of scalar (register) instructions that write the description of the active memory
instructions into the associated description registers; and their execution must
precede the execution of the vector AIB that utilizes their operands.

Length register configures the number of vector elements in the vector operands.
The register is visible in the EVX architecture and its initialization must precede
the vector AIB that utilizes the length value. The length value is utilized to
control the execution of the vector memory instructions by counting the number
of loaded /stored elements.

Size register configures the size of vector elements in the vector operands.
As the length register, the size register is visible in the EVX architecture and
its initialization must precede the vector AIB that utilizes the size value. It is
utilized by the VMU, when generating the load/store requests for the elements
of vector operands.

Control Counters are used to track the vector elements processed by vector
memory instructions. Each memory instruction has a counter that points to the
next vector element in the operand to be processed, as well as to its position in the
VRs. When the element is processed (issued load/store memory requests), the
counter is incremented. When all the counters reach the total number of vector
elements to be processed (value of the length register), the vector processing is
complete and the notification signal is sent to the core’s control unit.

Memory request generator calculates the addresses of the vector elements and
issues memory requests. It incorporates an extra adder unit for the address
calculation and one address register per vector memory instruction. The adder
is shared between the memory instructions in a round-robin fashion. It either
increments a current vector address from the address register with a stride value
(unit stride, non-unit stride or skip) for an instruction with strided based access
pattern; or adds an index value to a vector base address for an instruction with
indexed access pattern. At each cycle, the generator is able to produce a new
address and issue a new load/store request to memory. After a 256-bit slice of the

load/store operands is processed, the generator picks the next ready instruction
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from the queue of vector memory instructions to execute in the next cycles. To
improve the EVX performance and power efficiency, the generator produces a
single request per cache line of a vector operand with sequential memory access.
In this case, the generator increments the address register with the size of a cache
line (32 in our implementation with 256-bit cache lines), while the counter of the
instruction elements increments its value by the number of elements in the cache
line (e.g. 8 for 32 bit elements).

The generator can send memory requests either to the L1/L2 cache memory
or the DRAM memory controller. In this work we chose to send the requests
to the L2 cache banks to avoid having two copies of the vector data in the L1
cache (reconfigured VRs memory and regular L1 data cache memory). Such
decision enables higher memory bandwidth for vector memory instructions by
issuing memory requests directly to multiple banks of the L2 cache memory.

Outstanding requests handler saves the necessary information for each load-
/store request and handles the responses arriving from the L2 cache. The out-
standing requests handler does not consider the general coalescing between differ-
ent vector memory instructions to simplify its implementation; and the relaxed
memory ordering allows for such implementation. The handler considers the co-
alescing that occurs only when the addresses from consecutive memory requests
correspond to the same cache line. It avoids multiple accesses to the same cache
line in a case of strided accesses with small stride values (e.g. one memory access
instead of four when loading/storing four 32-bit elements with stride of 2). Such
simplified handler does not require a CAM memory to hold per request addresses
neither it enables accesses to its entries by searching for the response addresses.
To avoid use of a CAM memory, the vector memory instructions requests and
responses are appended with the handler entry number. In the case of coalesced
requests of the same cache line, there is a linked chain of the entries and they are
processed sequentially, when the response arrives. When issuing a load request,
the requests handler keeps only the position of the vector data in the requested
cache line, the VR and its position (pointed by the instruction counter). When
a load response arrives, the corresponding entry of the handler is accessed by
using the entry number included in the request and its response. The requested

data from the cache line attached to the response is read and placed into the
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corresponding position of the destination VR. Vector store requests leverage the
handler in a similar fashion. Instead of waiting for the requested data like load re-
quests, store requests wait for the store acknowledgments, which notify the store
instructions that their result have been committed to memory.

In this section we have briefly described the implementation of VMU and its
decoupled execution of vector memory instructions. To show the advantages of
implemented decoupling, we can qualitatively compare the decoupled memory
execution against the classic memory execution in today’s commercial general
purpose processors. Today’s processors execute speculative (predicted) memory
instructions out-of-order, ahead of the computation to saturate memory band-
width and tolerate memory latency. The number of outstanding memory requests
in these processors depends on the number of outstanding memory instructions;
and it is limited by the size of the instruction window, the number of free physi-
cal registers and the number of entries in a complex load/store queue that checks
for memory dependencies. On the other hand, the decoupled memory execution
in the VMU does not have such limitations. The VMU executes vector mem-
ory instructions, where each instruction loads/stores large vector operands and
issues a large number of memory requests. Instead of issuing memory requests
through the load/store queue as it performs the classic memory execution, the
VMU avoids such queue and issues memory requests directly to the memory hier-
archy (L2 cache banks). It enables the VMU to sustain more outstanding memory
requests, which in return saturates the memory bandwidth more efficiently and

increases the performance of the entire system.

3.4.2.2 Vector Register Unit

The VRU (shown in Figure 3.7) manages the transfer of 256-bit slices of the vector
operands in the VRs to/from the allocated compute vector lanes. By transfer-
ring the slices to the compute logic and back, the VRU controls the repeated
executions of the resident vector compute instructions. To enable such transfer
operations, the VRU utilizes the following structures:

Counter of compute iterations keeps track of the number of executions of

vector compute instructions. The counter is incremented per each computed
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v0 = _vread(VRO);
vl =_vread(VR8);
v2 = _vadd(vl, v2)
_vwrite(v2, VR2);
VECTOR AIB (COMPUTATION)

Figure 3.7: The vector register unit executes the incorporated vector read and
write instructions. They transfer slices of the vector operands between the VRs

and the vector lanes.

slice of the vector operands (when all read/write register instructions execute).
It is used to point to the current slice of each vector operand that is accessed by
a vread or vwrite instruction, as well as to count the number of executions.

Ezecution length register configures the total number of atomic executions of
the vector instructions in the vector AIB. This register is not visible in the EVX
architecture extension. Its value is initialized with the vector length (number of
vector elements), when writing the length value into the length register of the
VMU. The length value is later modified into the number of atomic executions,
by discarding the least significant bits of the register. The actual number of the
discarded bits depends on the size of vector elements. The VRU utilizes the
execution length register to detect when the entire vector operands are processed
in order to stop further transferring of vector slices.

Queue of vector register instructions holds active vector register instructions
(vread/vwrite). Unlike the queue of vector memory instructions, the queue of
vector register instructions is not visible in the architecture ISA. It is initialized
by forwarding the register instructions when a vector AIB is fetched and decoded
(see Section 3.4.1). Each register instruction is defined by the instruction type

(read/write), target (in the case of a vread) and the associated VR as shown
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in the example in Figure 3.7. The instruction connects the vector operand in
the VRs to the input or output of a vector compute instruction. When the
VR holds the source or destination operand of a vector memory instruction, the
register instruction chains either one vector load to one vector compute instruction
(vread) or one vector compute to one vector store instruction (vwrite). To enable
chaining of each memory instruction, the queue of vector register instructions is
sized equally as the the queue of vector memory instructions; and it holds up to
8 vector register instructions.

Register request generator produces read/write requests, while managing the
repeated executions of vector compute instructions. It is able to produce one
request at each cycle. On a read, the generator checks if the current slice of the
input vector operand is available, reads it from the associated VR and distributes
it to the vector lanes. On a write, the generator forwards the current slice of the
output vector operand that is forwarded from the compute lanes to the associated
VR. Once all vector register instructions in the queue have fired, one atomic
execution of the vector instructions in the current AIB has completed. The
generator repeats the producing of read and write requests until the instructions
performs all its executions and compute all the elements of its vector operands;
at this moment, the counter of compute iterations reaches the value of the length

register and the generator stops.

3.4.3 Vector Registers

Rather than introducing additional hardware structures, our implementation of
VRs (shown in Figure 3.8) repurposes a configurable part of the L1 data cache
memory. Such implementation avoids the inclusion of a vector register file, unlike
conventional vector architectures which require including one in the design; and
its structure is typically large and complex. Our VRs in the L1 data cache have
simplified accesses to the cache data arrays, which do not require any associative
address lookup. Since tags are not compared, the accesses to the VRs are direct as
in software managed memories[14, 54]. Each VR allocates a previously configured
number of cache lines. The lines are invalidated and flushed if needed before

starting the vector execution. The cache reconfiguration is done sequentially,
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Figure 3.8: The VRs allocate a part of the L1 data cache. Each register uses
only the data and status cache arrays, and they are accessed directly without tag

comparisons.

one cache line per cycle and the reconfiguration impact is studied in Section 3.6.
When the applications are highly parallel, the VRs can be allocated just once
at the beginning of the application to minimize the reconfiguration impact. Any
cache line not controlled by the VRs is still utilized as a regular data cache line.
When the processor does not perform vector processing, all the lines of the L1
data cache can be used for data caching.

The number of the VRs is 8, which is defined by the EVX architecture. The
size of the VRs can be dynamically configured to match workload requirements.
When EVX performs in register mode, the VRs along with memory operands
store the temporary vector results of EVX processing that spans multiple vector
AlIBs; and the maximum vector length of the EVX computation is limited by the
maximum size of the L1 data cache memory reserved per each VR. When EVX
performs in streaming mode, the VRs behave as circular streaming buffers and
they are utilized only to buffer memory operands. Unlike register mode, streaming
mode allows for computing of an unlimited number of the vector elements by

streaming them through the compute lanes.
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double a[8], b[8], c[8];
// initialization of a[] and b[]

// vectorizable loop
for(int i=0; i<8; i++)
c[i] = a[i]+b[i];
C CODE SNIPPET

CODE VECTORIZATION

_vinfo(8, SIZE_64);
_vload(&a[0], 1, VRO);
_vload(&b[0], 1, VR1);
_vstore(&c[0], 1, VR2);
API DESCRIPTION OF VECTOR
MEMORY INSTRUCTIONS

v0 = _vread(VRO);
vl =_vread(VR1);
v2 = _vadd(vl, v2)
_vwrite(v2, VR2);
VECTOR AIB (COMPUTATION)

EXECUTION

4 R 4 N 4
/—EXE:O vload(&al[0], VRO

LEXE:0 vread(VRO) 4| | +EXE:0  vload(&b[0], VR1
LEXE:0 vread(VR1) <« | EXE:1 vload(&a[4], VRO
EXE:1 vload(&b[4], VRO

EXE:0,LANES[0-1] vadd
EXE:0,LANES[2-3] vadd

/ A\

MEXE:0 vwrite(VR2)
EXE:1 vread(VRO) T EXE:0 vstore(&c[0], VR2)
L EXE:1 vread(VR1)

\

EXE:1,LANES[0-1] vadd
EXE:1,LANES[2-3] vadd

/

EXE:1 vwrite(VR2) — |
T EXE:1  vstore(&c[4], VR2)

VECTOR COMPUTE VECTOR REGISTER VECTOR MEMORY

- INSTRUCTIONS IN VR INSTRUCTIONS IN VM
H\ISTRUCTIONSINLANES[O% L STRUCTIONS U ) L STRUCTIONS u )

Figure 3.9: An example of EVX. The vector compute, register and memory in-
structions execute in a decoupled fashion. All the vector instructions repeat their
executions 2 times (red arrows show the flow of EX:0 and green arrows of EX:1)

over 256-bit slices until the vectors of eight 64-bit elements are processed.

3.4.4 EVX Example

Figure 3.9 shows an execution example of EVX. The example includes the code
of a simple vectorizable loop, its vectorization and the execution of vector in-

structions. The loop performs the addition of 8 consecutive vector elements from
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vectors a and b and stores their result sequentially in vector c. The vectorization
is similar to the vectorization shown in Figure 3.3. It describes the patterns for
the vector memory instructions and the computation of the vector AIB. The ex-
ecution of all the vector instructions is divided into three independent streams:
compute, register and memory; and each stream utilizes the different execution
substrate specialized for one class of the vector instructions.

The vector memory instructions perform the loop’s memory execution in the
VMU by using the initialized memory patterns. In this example we assume that
the VMU initialization has been performed and do not show it in the execution
diagram. The memory instructions execute slice-by-slice in round robin fashion;
the slice size matches the size of one 256-bit cache line. The vload instructions
execute as soon as their patterns are initialized. The vstore instructions execute
when the slices of their data operands becomes available. The VMU first picks
the vload instructions to execute. They sequentially load vectors a and b into
VRO and VRI1. As in classic vector processors with caches [17], the VMU loads
the entire 256-bit cache lines and alternates between instructions at each line.
Similarly, the VMU stores cache lines from VR2 to vector ¢, when the 256-bit
slices arrive to the register. Each load and store instruction issues two mem-
ory requests to load or store eight 64-bit elements of its vector operand (while
assuming the input/output vectors align to the cache line size).

The vector AIB performs the loop’s computation over slices of the loop’s
memory operands. The AIB is composed of vread/vwrite (register) and vadd
(compute) instructions. The vread instructions chain the outputs of the vload
instructions (VR0 and VR1) to the inputs of the vadd instruction. Similarly, the
vwrite instruction chains the output of the vadd instruction to the input of the
vstore instructions (VR2). The register vread/vwrite instructions execute in the
VRU and the vadd instruction in the lanes of existing core’s compute logic. The
vread instructions read 256-bit slices of the vector operands from VRO and VRI.
As soon as they are available, the slices are read and transferred to the left and
right reservation stations of the vadd instruction. The vadd instruction executes
whenever it has new slices of its operands ready. Its single execution performs
the addition of 256-bit slices and produces a 256-bit result. By leveraging two

64-bit ALUs, the execution of the vadd instruction takes two consecutive cycles
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(this is assuming a very specific implementation with 1-cycle adders). The vadd
forwards its result to the vwrite instruction, which writes it into VR2 to be stored
to the memory by the vstore instruction. The vector AIB repeats the execution
of its vector until the configured number of vector elements is processed. In
this example, the vector instructions executes two times to process the vector
operands of eight 64-bit elements on the four 64-bit vector lanes. The dataflow
between the compute, register and memory instructions is shown with red arrows
for the first execution of the vector instructions (FX:1) and green arrows for its
second execution (EX:1). When all the instructions finish their executions, the

vector AIB commits and deallocates the lanes of the compute core’s resources.

3.4.5 Implementation of Indexed Memory Accesses

The VMU enables indexed memory accesses. The memory instructions with
indexed accesses use one VR to hold vector data operand and one VR to hold
index values for address calculation. The VR with index values can be shared
across multiple memory instructions. The indices can be either computed by
using vector operations or loaded from memory. The VMU generates independent
load/store memory requests per each vector element, by summing index values
and the vector base address in order to calculate the addresses of the indexed
elements. Figure 3.10 shows an example of the VMU indexed access. VRO holds
the indices and VR1 holds a memory operand. The VMU uses the indices in VRO
to gather vector elements from the memory into VR1 (indexed load) or to scatter
them from VR1 into the memory (indexed store).

This implementation of indexed accesses can be easily extended to support
the double indexed accesses. For example, the output of one indexed access can
be the input of another access (A[B[C[i]]]). The instructions with the double
indexed access utilize two extra VRs to hold their indices. In this thesis, we do

not vectorize applications with such access patterns nor further investigate them.

3.4.6 Implementation of Masked Memory Accesses

Similarly to the implemented indexed access, we implement the execution of vec-

tor memory instruction with masked accesses. One VR holds mask values and
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Figure 3.10: An example of the indexed vector accesses. VRO holds indices
and VR1 the vector indexed elements, which can be gathered from/scattered to

memory.

the memory instructions perform independent memory accesses for each element,
which corresponding mask has a positive value. The masked execution is nec-
essary to vectorize loops with conditional code. Before executing such loops,
the condition has to be evaluated per each vector iteration in order to produce
a vector mask (vector of boolean values that specifies whether the condition is
satisfied or not). The vector mask has to be written into the VR, which is used
by the vector memory instructions with masked accesses. The VMU issues mem-
ory requests based on the mask values in the VR. It processes conditional vector
accesses in a fully decoupled fashion, while loading vector data for which the
condition is satisfied (mask value is “true”) and storing their results to memory
in the same way. The vector lanes are not aware of the conditional execution.
They process only the elements of vectors on a correct conditional path, which
increases the efficiency of vector computation.

The masked memory accesses allow for masked vector execution. Such im-
plementation remarkably differs from the traditional implementations of masked
vector execution in classic vector processors. Instead of utilizing the mask reg-
ister to enable/disable compute operations over different vector elements of the
vector operands like in traditional designs, our implementation loads/stores the
vector elements depending on the corresponding values in the mask register. It
avoids the hardware additions, which are required to mask the compute opera-

tions (e.g. a dedicated mask register that controls the sophisticated issue of the
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compute vector operations). While simplifying the implementation, the mask-
ing of memory operations per each vector element can have positive as well as
negative impact on the efficiency of the masked vector execution. On one hand,
when only a few elements of the vector operands have “true” corresponding mask
values, this simplified design avoids the unnecessary memory accesses by masking
vector memory requests. On the other hand, when only a few elements of the
vector operands have “false” corresponding mask values, this design incurs the
additional memory accesses by issuing independent load/store requests for differ-
ent elements of the vector operands. Considering its implementation costs along
with diverse efficiency impacts, in this thesis we chose the design that masks the
vector memory requests and we do not additionally investigate the traditional

approaches that mask the compute operations.

3.4.7 Implementation of Reductions

The reductions are implemented at low cost, by using the EVX microarchitecture
without special hardware additions nor modifications. The implementation of
reductions basically utilizes one vector AIB to perform operations that partially
reduce one or more input vectors. The repeated executions of the vector compute
instructions in the AIB over different 256-bit vector slices reduce the large input
vectors by passing (chaining) the output slice of one execution as the input slice
of the next execution. The last execution of the vector compute instructions
produces a 256-bit result; and that is the size of the vector slices. The input
vectors may be either the temporary results of vector computation in the VRs or
the operands of vector load instructions.

The reduction vector register (VR8) is used to bypass the temporal reduction
value between the repeated executions of the vector instructions in the vector AIB.
The register is sized to hold a 256-bit slice of vector data and allocates only one
256-bit line of the data cache memory. The vector load and store instructions that
operate over VRS do not utilize the vector length register, because the number
of elements in their operands matches the size of VR8. Similarly the vread/write

instruction always reads/writes the same cache line allocated by VRS.
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VRS must be initialized with the reduction start value before the reduction
starts. The vector load instruction is used to load the start value. The VMU exe-
cutes such load instruction by reading a single value from memory and replicating
it over VR8. For example, when accumulating a vector of 64-bit elements, the
256-bit storage of VRS is typically initialized with four 64-bit zero values. By ex-
ecuting vread and vwrite instructions over VR8, the VRU reads the 256-bit value
from VRS into the vector lanes and then writes the result of the reduction vector
AIB back to the register. For the first execution of vector compute instructions,
the VRU reads the reduction start value. The result of the first execution is writ-
ten back to the VR, and transferred to the vector lanes in the following execution.
The input vectors that are being reduced are transferred slice-by-slice for each
execution, since they are hold in the regular VRs. The vector instructions repeat
their executions until the entire input vectors are reduced. The reduction result
is a 256-bit vector slice; and it is stored to memory by a vector store instruction.
The VMU issues this store instruction when the vector instructions finish all their
executions and the reduction result is written into VR8. The scalar instructions
are used to finalize the reduction process, by reducing the 256-bit result in the
memory to a single value.

The cost-effective implementation of reductions proposed in this thesis has
various advantages as well as disadvantages, when comparing it against tra-
ditional implementations of reductions in classic vector processors. Instead of
reducing large vector operands to a single value like in classic designs, our imple-
mentation partially reduces large vectors to a 256-bit vector slice. It avoids the
complex cross-connections between the compute vector lanes, which are required
to finalize the reduction and produce a single reduced value. In our implementa-
tion, the scalar instructions are used instead of the complex hardware additions
to finalize the reduction process. It minimizes the implementation overheads, but
incurs the extra performance penalty that is required to execute the additional
instructions. Also, it is important to note that this design decision exposes to the
programmer /compiler the size of the vector slice. Such design requires recompi-
lation of the code for different generations of the same processor family, where
other sizes of the vector slices could be preferable. Although it yields the minor

performance improvements, in this thesis we chose the cost-effective design for
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EXE:0

EXE:1

EXE:2

Figure 3.11: An example of the vector add reduction. A vector add instruction
performs slice-by-slice reduction of the vector operand in VRO. VRS8 bypasses

the output of the vadd execution to the input of its next execution. The example

(" double a[12];
// initialization of a[]

// vectorizable reduction
double sum =0;
for(int i=0; i<12; i++)
sum += ali];

L C CODE SNIPPET )

CODE VECTORIZATION

(" // reduction start value and

// partially reduced sub-vector
double zero =0;

double sum[4];

_vinfo(12, SIZE_64);
_vload(&a[0], 1, VRO);
_vload(&zero, 0, VR8);
_vstore(&sum[0], 1, VR8);

API DESCRIPTION OF VECTOR
\_ MEMORY INSTRUCTIONS

J

(vo= _vread(VRO); )
v8 = _vread(VR8);
v8 = _vadd(v0, v8)
_vwrite(v8, VR8);
\_ VECTOR AIB (COMPUTATION) )

(" // single value reduction result N
double singleSum = 0;
for(int i=0; i<4; i++)
singleSum += sum[i];
SCALAR FINALIZATION OF
L REDUCTION )

EXECUTION SAMPLE

VR8
BYPASSING REDUCTION VALUE (v8)

VRO
INPUT VECTOR TO BE REDUCED (v0)

7

A8 A9 Al10 All

A4 A5 A6 A7

7

A8 A9 A10 All

AQ Al A2 A3
7

A4 A5 A6 A7

A0 Al A2 A3

shows the states of the VRs before the vadd executions: 0, 1 and 2.
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reductions; and we do not further investigate the trade-offs between such design
and the traditional implementations of reductions.

Figure 3.11 shows an example of the vector reduction by using EVX. The
example shows the code of a simple vectorizable reduction, the code vectorization
and the execution sample of the EVX reduction. The reduction accumulates
(adds) elements of the input vector (a[12]). Its vectorization describes the vector
memory instruction, the vector AIB that performs reduction compute operations
and the scalar code that finalizes reduction. The memory instructions load the
input vector into VRO and the reduction start value into VR8 ( (replicated zero
values), as well as store the final reduction result from VRS to memory. The vector
AIB is composed of vector instructions, which read slice-by-slice of VRO and the
current value of VRS, perform their addition and write the result back to VRS.
The scalar code accumulates the four 64-bit elements of a 256-bit reduced vector
slice into a single value. The figure shows three states of the VRs, each one before
different consecutive executions of the vector instructions (EX:0, EX:1, EX:2 ).
After two such executions, VR8 has the value of two accumulated slices from
VRO. The vector instructions repeat their execution three times to accumulate

12 elements of its input vector.

3.4.8 Implementation of Vector-Scalar Operations

The EVX model leverages four dedicated 64-bit registers to hold scalar operands
for mixed vector-scalar operations. Scalar values that are not known at compile
time or that do not fit in the immediate field of a vector compute instruction are
stored to these registers. If the scalar value is less than 64 bits, it is replicated
across the scalar register, so that the register holds the entire 64-bit operand for
one vector lane. For example, two 32-bit scalar values make one operand for the
64-bit vector lane, and the lane performs subword compute operations over mixed
32-bit vector-scalar elements. The initialization of scalar values must precede a
vector AIB, which has vector instruction that operates over the scalar values.
The vector instructions accesses the scalar values from the dedicated registers by
using vread instructions that read the dedicated scalar instead of the VRs. The

VRU reads the 64-bit scalar value and writes it across all lanes (replicate) for
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’ Component ‘ Description
ALUs 2 Integer /FP
Reservation Stations 128 x 2(left/right) x 64-bit
Register File 64 entries
Load-Store Queue 32 entries, unordered LSQ
L1 I-cache 32 kB, 1 cycles (hit)
L1 D-cache 32 kB, 1 cycles (hit)
L2 1 bank x 512 KB, 15 cycles (hit)
L1/L2 MSHRs 8 entries
DRAM 250 cycles
Branch Predictor OGEHL
Vector Registers 8 x 8192-bit (128 elements of 64-bit)
Vector-MSHRs 32 entries

Table 3.1: Simulator configuration.

each execution of the vector instructions. To avoid read and write operations of
the same 64-bit value at each new execution, the VRU can be optimized to signal
the core’s issue logic that replicated values are ready for the next execution of

the vector compute instructions.

3.5 Experimental Setup

3.5.1 Simulator

We evaluate an EDGE core and the proposed EVX technique by using a detailed,
timing, in-house simulator from Microsoft Research. The simulator is written in
SystemC to accurately model the baseline and extended EDGE cores with the
parameters shown in Table 3.1. They include an in-house model of the memory
hierarchy (L1, L2 and DRAM memories). We developed McPAT [45] models to
estimate the area, and runtime dynamic and leakage power of one EDGE core
in a EDGE CMP with and without EVX. The models assume 32nm low power
technology. They are based on the existing in-order McPAT models, that have
been extensively modified and extended to match the design of the EDGE cores.
We chose to extend the McPAT in-order models, because the EDGE cores avoids

most of the structures typically used in out-of-order processors.
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. Vector
Name Pattern Dependencies Stream
AlBs
ADI sequential /strided none 8 No
BLSS sequential /strided reduction 1 Yes
2 ESF sequential none 3 No
S| FDiff sequential none 1 Yes
A
o HFrag sequential none 1 Yes
g ICCG strided none 1 Yes
§ IProd sequential reduction 1 Yes
=1 IPred strided none 3 No
Matrix strided none 1 Yes
PiCell sequential /indexed none ) Yes
. . sequential /
v | Disparity . none 10 Yes
g strided /masked
a ) sequential/
» | Tracking . none 16 Yes
strided

Table 3.2: Workloads.

The EDGE simulator models a multimedia SIMD extension for EDGE archi-
tecture. We use it as a reference point to compare with EVX along with the scalar
execution on the EDGE core. We also compare EVX to ARM NEON extension
by using simulations from Gemb5[5] simulator, which is configured to match the
parameters equivalent to the EDGE core. We chose NEON to represent the state-
of-the-art of SIMD extensions for commercial low power architectures. Although
we are aware that fair comparison of two different architectures is difficult, we
do this to show the applicability of EVX/NEON over different DLP kernels. On
the other hand, we do not compare EVX with dedicated DLP accelerators, be-
cause it seems to be the unfair comparison; these accelerators require including
the large specialized hardware additions, while EVX requires including only the
simple additions to the general purpose EDGE core.

3.5.2 Benchmarks

For our evaluation we select ten kernels from the Livermore Loops Benchmark [48]
and two entire applications from the San Diego Vision Benchmark Suite (SD-

VBS) [74]. The Livermore Loops have been used for decades and they are still
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used for evaluating the processor efficiency on DLP workloads [15]. The SDVBS
workloads have been chosen as they represent emerging mobile applications with
significant power /performance constraints. The characteristics of the selected
workloads and their vectorized versions are shown in Table 3.2.

Each Livermore Loops kernel utilizes a different memory access pattern and
data parallel algorithm, which we found suitable to explore the advantages and
limitations of our vector model. Their computations are not complex, which
allows for in time reasonable vectorization without extra compiler support. The
kernels use sequential, strided or indexed memory access patterns. Some of them
also include vector reductions (Iprod, BLSS).

The SDVBS workloads have loops with sequential, strided and masked mem-
ory accesses. Disparity map is a memory-intensive application that processes a
pair of stereo images taken from slightly different positions. The algorithm op-
erates on each pixel and offers a large amount of DLP even with small inputs.
Feature tracking is a memory and computationally intensive application that ex-
tracts motion information from a sequence of images. The major algorithm phases
are coarse grained, and the amount of DLP is smaller but scales with the input

image size.

3.5.3 Methodology

We hand-vectorized all the workloads by using the API to describe the EVX
memory instructions and the compiler intrinsics to write the vector AIBs. Ad-
ditionally, we have profiled both applications by using GProf tool to find their
most time-consuming functions/loops before vectorizing them.

In order to vectorize some kernels from the selected Livermore Loops it is nec-
essary to use multiple vector AIBs. Some of the kernels, which are vectorized with
a single AIB (BLSS, Fdiff, Hfrag, Iprod, Matriz) or multiple data-independent
AIBs (PiCell) benefit from EVX streaming execution mode. They do not ex-
ploit temporal locality, while performing simple computation over large amount
of data. The kernels, which are vectorized with multiple data-dependent com-
pute AIBs (ADI, ESF, Ipred) benefit from EVX register execution mode. They

perform more complex computation that spans multiple vector AIBs and exploit
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temporal locality between these blocks. The VRs hold the temporary results be-
tween the AIBs, which limits the number of executions for the vector instructions
in one AIB to the size of the VRs. The vectorized SDVBS loops perform simple
independent computations, which fit in one vector AIB. These loops benefit from
EVX streaming execution mode. The temporal locality of SDVBS workloads is
only exploited through the L2 cache, which saves the output data of vector AIBs
and thus captures the temporal locality between different computations.

All the selected workloads perform the computation over 32-bit data elements,
either mixed integer and floating point elements (SDVBS) or floating point ele-
ments only (Livermore Loops). This enables the VRs to hold as twice as more
vector elements than what they are sized for, by packing them (e.g. VRs size to
hold 128 elements of 64 bit hold up to 256 elements of the loops). In the same
way, the 32-bit element size allows for processing of 2 vector elements per each
64-bit ALU operation.

The selected Livermore Loops kernels are evaluated after warming up the
caches, which makes fair the comparison of EVX and scalar execution without
memory prefetching. On the contrary to the selected Livermore Loops, we show
the SDVBS results while running the entire applications without warming up
the caches beforehand. To show an upper bound of EVX benefits against more
advanced scalar execution when data prefetching is present, we include the results
of the scalar execution with perfect L1 caches.

The number of iterations in each Livermore Loop kernel is configured to 1024,
unless the impact of this number is evaluated in the experiment. For the SD-
VBS applications, the number of loop iterations depends the granularity of their
algorithms and size of on their inputs. We use two input image sizes in our
experiments: SQCIF (128x96) and QCIF (176x144). While such sizes are not
particularly large by modern standards, they allow us to show the EVX im-
provements on the selected DLP workloads with an acceptable simulation time.
Larger image sizes would offer even more data parallelism and as a consequence
the higher EVX performance.

We evaluate the performance of the EVX enabled and baseline EDGE core
when executing the selected Livermore loop kernels and SDVBS applications. We

also compare the speedup achieved by using EVX, the EDGE SIMD extension
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Figure 3.12: Average EVX speedup for different loop lengths.

and ARM Neon SIMD extension for the Livermore Loops kernels. The speedup
for EVX and EDGE SIMD is reported over scalar version of kernels running
on the EDGE core. Similarly, the speedup for ARM NEON is reported against
the scalar version of kernels running on the same ARM core. The kernels for
the Neon extension are vectorized by using gcc autovectorization combined with
ARM NEON intrinisics, which maximize Neon performance and make the fair

comparison with hand-vectorized EVX results.

3.6 Results

3.6.1 Performance

Figure 3.12 shows the average EVX speedup for the Livermore Loops for a variable
number of iterations ranging from 8 to 2048 elements. The number of iterations
in each kernel is configurable and referred to as loop length in the remainder of
this evaluation. To show the tolerance to memory latency, the speedup of EVX
is presented over the scalar baseline with both realistic and perfect data caches.
Please note that EVX in both cases accesses the realistic data cache. In following,
we first discuss the results with realistic memory system. For short loop lengths
(8 to 16 elements), there are no performance gains over the scalar version. It

happens due to the initialization startup overhead required to setup the VCU (to
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describe the memory access patterns, the length of vector computation and the
size of its elements) as well as overhead required to reconfigure the data cache.
The overheads are amortized around 16 elements, when EVX provides a speedup
that further increases with loop length. The speedup increases with the size
of vector operands for various reasons. First, the reduction of per instruction
fetch decode and issue overheads in the vectorized loop increases, which improves
the relative performance. Second, the decoupled execution of vector memory
instructions in EVX yields more benefits for larger vectors due to amortizing
startup memory overheads over many vector elements. For a loop length greater
than 1024, the speedup increases even more (3.16-6x for loop lengths of 1024-
4096). At this length, the input data sets of the selected kernels often become
larger than the L1 data cache size and the performance of scalar loops decreases
because of data cache misses. On the other hand, the decoupled EVX memory
execution loads/stores vector data from/to the L2 cache, while avoiding cache
penalties. The scalar execution with perfect data cache reduces the EVX speedup
by eliminating data cache misses. EVX over such improved scalar execution
requires more iterations to compensate its initialization overhead. In that case,
it starts achieving speedup with loop lengths over 64 elements. The speedup is
moderated, but still high for long loop lengths (about 2-2.9x for lengths of 1024-
4096). Besides reduced per instruction overheads, EVX achieves this speedup by
efficiently packing and aligning 32-bit vector elements in the VRs. This increases
the computation throughput by computing two 32-bit elements per each EVX
compute operation in 64-bit ALU. On the contrary to EVX, scalar execution
processes extended 32-bit compute operands in each ALU, thus underutilizing
the capability of ALUs. Later in this section we compare EVX with the EDGE
SIMD extensions that pack two 32-bit elements per each ALU operation, and we
also present a breakdown of the speedup achieved with EVX to determine the
specific impact of this feature.

Figure 3.13 shows the impact of the size of the VRs on speedup achieved
with EVX. We have experimented with the VRs configured to hold 16, 128 and
256 vector elements of 64-bits and report the speedup obtained with the selected
Livermore Loops (loop length of 1024). Note that the configured VRs hold twice
more 32-bit elements packed in them (e.g. VR sized for 128 elements of 64 bits

29



3. EDGE CORE SPECIALIZATION

BEVX(VR16) MEVX(VR128) @EVX(VR256)

Speedup over scalar baseline

ADI  BLSS ESF Fdiff Hfrag ICCG Iprod Ipred Matrix PiCell GM

Figure 3.13: EVX speedup for different VR sizes (loop length=1024).

holds 256 elements of 32 bits). The average speedup with the VRs sized for 16
elements is 2.82x. The speedup increases to 3,16x when configuring the VRs
to hold 128 elements, but further decreases to 3x when configuring the VRs for
256 elements. The kernels that exploit temporal locality between different vector
AlIBs in the VRs (ADI, ESF, Ipred) improve their performance, while increasing
the size of the VRs. The size limits the maximum length of the computation for
each vector AIB (the size of vector operands), because the VRs hold the tem-
porary results between different AIBs. For example, the VRs sized for sixteen
64-bit elements limit the size of the vector operands to thirty-two 32-bit ele-
ments. For these kernels, strip mining is used to iterate their loops 1024 times.
This limitation makes the startup overheads still significant and limits the EVX
performance. Increasing the size of the VRs to hold 128 instead of 16 elements
yields up to 75% of extra performance (ADI) by amortizing the startup over-
heads. Further increasing the size provides modest performance improvements,
since the startup overheads are already negligible at that moment and exploiting
more temporal locality in the registers does not change the execution time. The
workloads with streaming characteristics do not benefit from larger VRs (Fdiff,
Matriz), since the VRs are only used as streaming buffers. The increasing of the
VRs sometimes leads to performance degradation, due to unnecessary reconfigu-
ration of the large data cache memory (Fdiff) for such registers. In some kernels

where the vectorized code is inside an outer loop, data cache reconfiguration is
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Figure 3.14: EVX speedup for different number of ALUs (loop length=1024).

performed multiple times, which leads to even bigger performance degradation
(BLSS, HFrag). The VRs sized for 128 elements shows the best overall results
and we use it as default configuration for the rest of our experiments. It is yet
interesting to note that the configurable size of the VRs allows EVX to adapt its
hardware resources to the specific workload requirements (e.g. highly streaming
workloads prefer small VRs to buffer the streaming data); and this feature would
make possible to choose a different VR size for each benchmark.

Figure 3.14 shows the individual EVX speedup on the selected Livermore
Loops kernels with different number of ALUs for the EVX enabled design: 1,
2 and 4. The loop length is 1024. The default hardware configuration of EVX
uses the two existing ALUs of the EDGE core. Increasing the number of ALUs
does not provide significant performance benefits. The average EVX speedup
with four ALUs increases only by 5% compared to its default configuration. This
happens because the selected kernels utilize memory intensive DLP algorithms
with moderate computation. For such workloads, the extra ALUs without in
line improvements of the EVX memory execution generally do not yield signifi-
cant performance. It yet varies across different workloads. For the kernels with
non-sequential memory access, the EVX memory execution matters more than its
computation. In this case, EVX cannot provide enough data to saturate the extra

units and its speedup does not change ( BLSS, Ipred, Matriz). For the kernels that
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Figure 3.15: EVX performance breakdown (loop length=1024).

utilize sequential memory access, EVX can exploit extra units and its speedup
marginally increases (ESF, Fdiff, Hfrag). Such results show that our design of
the EVX hardware for memory execution (VMU) is balanced to efficiently feed
the two available ALUs. When using only one ALU for EVX instead of the avail-
able two, EVX reduces its average speedup by 11%. The performance loss with
one active ALU goes up to 26% for the workloads with sequential memory ac-
cess (ESF, Fdiff, Hfrag) and workloads with sufficient compute operations (ADI,
BLSS, Ipred). These results are quite interesting and motivates future research of
the ultra low power EVX design. This design could shut one ALU off the circuit
(e.g. power-gating) to save the energy and yet allow for the EVX performance
improvements on the memory intensive DLP applications with modest computa-
tion. In this work, we do not investigate the power additional optimization and
we use the existing 2 ALUs for each EVX enabled computation.

Figure 3.15 shows the performance breakdown of EVX by incorporating one
by one different hardware features of EVX to measure the impact of each one of
them. We have evaluated several EVX features: wide-sequential-memory-access,
wide-VMSHR, ALU-partitioning and compute-resources-allocation. We explain
the benefit of each feature and discuss its impact on the performance. The most
simple EVX with all the features disabled and the small VMSHR of 8 entries

(limited-E'VX) decouples the execution of the vector compute, register and mem-
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ory instructions; they execute simultaneously on the specialized hardware sub-
strate specialized to reduce memory latency. It yet provides limited speedup over
the scalar baseline for most of the kernels or even performance degradation due
to the startup overheads. The exception exists in some kernels where such con-
figured EVX achieves notable speedups (ICCG, Ipred, Matriz, PiCell. EVX with
wide sequential memory access generates a single request for a whole cache line
for sequential memory patterns. This reduces the number of outstanding mem-
ory requests and address calculations. Kernels that use the sequential pattern
benefit from this feature, yielding up to 2x speedup (Fdiff, Hfrag, Iprod, ESF)
even with an 8-entry VMSHR. A larger VMSHR of 32 entries (wide- VMSHR) is
benefitial for kernels that have strided patterns, since they produce more in-flight
memory requests (e.g. ICCG, Ipred, Matriz), while the other kernels do not make
use of more than 8 entries. EVX with partitioning of ALUs compute 64 bits of
the vector data per each lane regardless of the size of vector elements (e.g. two
partitions of 32-bit operands or four partitions of 16-bit operands) and leverage
the VCU to read packed compute vector operands. ALU partitioning increases
the average speedup by about 10%. The allocation of core’s compute resources
allows to reexecute the resident compute instructions by refreshing the operands
in the reservation stations. It yields 15% additional speedup by eliminating the
bookkeeping instructions as well as the instruction fetch and decode overheads.

Figure 3.16 shows the reduction of instruction fetch, decode and commit over-
heads in the general purpose pipeline with EVX over to the same overheads with
scalar execution. EVX utilizes the incorporated vector instructions, where each
one operate over configurable large vector operands; this reduces the average fetch
and decode overheads by 50 times. For the kernels that repeat their computation
in outer loops (Matrixz) these overheads are reduced by over 170 times and for
the partially vectorizable kernels(PiCell) the reduction is diminished to about 3x.
The average reduction of per instruction commit overheads is even higher (over
66x), because EVX atomically executes the fetched and decoded vector compute
instructions in the pipeline and its dedicated control hardware (VCU) commits
their results to the memory off the pipeline.

Figure 3.17 shows the reduction of instruction execute overheads in the gen-

eral purpose pipeline with EVX compared to the overheads with scalar execu-
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Figure 3.16: EVX reduction of instruction fetch, decode and commit overheads

in the general purpose pipeline (loop length=1024).
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Figure 3.17: EVX reduction of instructions execute overheads in the general

purpose pipeline (loop length=1024).

tion. This reduction exists because of various reasons. First, scalar execution of
compute instructions performs operations over the 32-bit operands extended to
match the size of the 64-bit ALUs, while EVXin the pipeline simultaneously per-
forms two compute operations over packed 32-bit operands per each ALU access.
Second, scalar execution utilizes the pipeline to execute the both compute and
memory instructions, while EVX utilizes the dedicated hardware (VMU) to per-

form the specialized execution of the vector memory instructions off the general

64



3. EDGE CORE SPECIALIZATION

W Scalar  EEVX(Not-Partitioned-ALUs) M EVX(Partitioned-ALUs)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Average utilization of ALUs

ADI BLSS ESF Fdiff Hfrag ICCG Iprod Ipred Matrix PiCell GM

Figure 3.18: Average utilization of ALUs with scalar execution and EVX that
uses two different implementations of ALUs (loop length=1024).

purpose pipeline. Third, EVX performs the computation over the configurable
large vector operands and thus avoids the execution of bookkeeping instructions
(e.g. instructions that increment the counters of a loop and check various loop’s
conditions). Our results show that EVX in average reduces the number of exe-
cuted operations in general purpose pipeline by over 3.5 times. For the kernels
with large number of memory operations (ADI, Fdiff, Hfrag, ICCG), EVX re-
duces the execute overheads up to 4.5x. Such reduction of execute operations in
the pipeline improves the EVX performance as well as its efficiency.

Figure 3.18 shows the average utilization of the ALUs with scalar execution
and EVX that uses the ALUs implemented without and with partitioning. The
different implementations of the ALUs do not have the impact on their utilization
with scalar execution, because scalar compute instructions always operate over
64-bit operands by extending the smaller ones. The utilization of the ALUs with
scalar execution varies between the kernels, while depending only on the number
of misses in the L1/L2 cache memories; compute and memory intensive work-
loads have similar utilization of the ALUs, because memory instructions use the
ALUs to compute the memory addresses. The kernels with more misses in the
L2 cache significantly underutilize the ALUs due to waiting for their operands
(ICCG, Matriz, PiCell). The other kernels performs more efficiently. In total,
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Figure 3.19: Relative speedup of EVX and SIMD extensions (loop length=1024).

scalar execution exploits the ALU resources about 32% of the cycles. EVX in-
creases this utilization by over 2 times, when the ALU partitioning is disabled.
The specialized memory execution in the VMU tolerates the memory latency and
delivers more data to the ALUs than scalar execution. On the contrary to scalar
execution where the utilization of the ALUs depends on the number of the cache
misses, the utilization with EVX depends on the efficiency of such memory exe-
cution. For example, EVX on the kernels with strided access patterns and large
number of cache misses loads/stores vector operands less efficiently and utilizes
the ALUs less(ICCG, Matriz) than on the kernels with sequential access patterns
(ESF, Fdiff, Hfrag). The partitioning of ALUs reduces their utilization by 50%,
which is the utilization approximately the same like with scalar execution (31%
of the cycles). It is interesting to note that EVX with such (in this thesis default)
implementation of the ALUs does not increase their utilization, but increases the
efficiency of the ALU accesses by simultaneously operating over different elements
in each partition of the ALUs.

Figure 3.19 compares the speedup achieved with EVX and several multime-
dia SIMD extensions. The EDGE SIMD extension operates on 64-bit words (two
32-bit elements) and uses two 64-bit SIMD units, as same as EVX. It supports
unaligned memory accesses, but lacks more sophisticated addressing modes that

are needed to vectorize some workloads; neither it enables the operand shuffle
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operations that can workaround to deal with the lack of the addressing modes.
The extension does not incorporate extra wide SIMD reservation stations nor ex-
tra compute SIMD resources. Such design allows for the fair comparison of EVX
and EDGE SIMD extension, since both of them utilize no complex hardware ad-
ditions. The results show that EDGE SIMD extension increases the performance
for workloads with sequential memory access, which do not require shuffling be-
tween compute operands (ESF, Hfrag, Iprod). In order to increase the applica-
bility of SIMD, we have packed strided data into consecutive memory locations
with scalar code. This code is amortized because some kernels iterates multiple
times with the same data (BLSS), but the speedup is still limited. Although
the cache is warmed up for both approaches, the SIMD extension should benefit
more of such cache than EVX by loading/storing the SIMD operands directly
from/to the L1 data cache. Yet, the efficient EVX memory execution applicable
to more benchmarks yields higher overall performance for EVX. Compared to
the EDGE SIMD, ARM’s NEON SIMD extension provides a more complete ISA
(e.g. shuffle operations), 128-bit wide SIMD words, as well as fused multiply-add
operations. On the ARM based core NEON performs better than EDGE SIMD
extension on the EDGE core and worse than EVX enabled EDGE core. Only for
a few kernels, NEON has higher speedup than EVX. It happens because the data
for these kernels are already in the cache and the kernel’s execution time is too
small to mitigate the EVX startup overheads (ESF, Iprod). While the EDGE
SIMD extension improves the execution of the selected Livermore loops kernels
on the EDGE core by 20%, ARM NEON extension improves their execution on
the ARM core by 60%, due to more complete ISA and wider SIMD registers.
The EDGE SIMD accelerates 3 of 10 selected kernels, while NEON accelerates 5.
EVX provides the most complete ISA and allows for vectorization of each kernel.

Figure 3.20 shows the EVX speedup over the scalar baseline for the selected
SDVBS applications and their input images. Disparity has the larger amount of
DLP, because it processes individual pixels of the input images. Therefore EVX
on this application shows the speedup of 12.8x and 16.5x, when it uses sqcif and
qcif input images respectively. On the contrary to disparity, the tracking with
the selected input images of the same quality has less DLP due to its coarse-grain

processing algorithms. For this reason, EVX on the tracking application yields the
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Figure 3.20: Disparity and feature tracking results.

comparatively less speedup of 2.95x; and it has the same order of magnitude like
the speedups on the selected Livermore Loops. EVX speedups on the disparity
application are over 3 times higher than the speedup on each other evaluated

workload and we next discuss various features of EVX that enable such results:

e Disparity loops for qcif inputs have about 176x144 iterations, which makes
extremely large vector operands with more than 25,000 elements. The EVX
streaming mode repeats the execution of the vector instructions until all
the elements of such large operands have been processed. This reduces the
repeated fetch, decode and commit instruction overheads. Our results show
that EVX on the disparity application reduces these overheads by over 100

times over the scalar baseline.

e The vectorization of both inner and outer loops by using 2-D strided mem-
ory accesses eliminates large amount of bookkeeping instructions. What re-
main of the inner and outer loop after vectorization is only vector memory
and compute instructions; this eliminates over 90% of the total instructions
from the original scalar version of the code. EVX also reduces the num-
ber of executed compute and memory operations by using various features
of its specialized execution. Namely, vector memory instructions exploit

wide memory accesses to load/store 256-bit cache lines of sequential vector
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operands. This reduces the number of memory requests performed. Vector
compute instructions benefits from partitioning of the ALUs, while oper-
ating over 32-bit vector elements. Each execution of one vector compute
instruction operates over a pair of 32-bit operands. This feature reduces
the number of compute operations by 50%. This is advantageous for EVX,
since it performs an extremely reduced number of the compute and memory
operations. Our results indicate over 30 times less executed on the EVX

enabled core compared to its scalar baseline.

e The decoupled EVX memory execution over the operands with more than
25,000 elements makes the EVX startup overheads negligible, as well as
overlaps the latency of memory accesses with the computation of such large

vector operands.

To compare the EVX memory tolerance against scalar execution with sophisti-
cated prefetching, Figure 3.20 also includes the speedup over the scalar execution
on the EDGE core with perfect cache. The speedup is reduced significantly for
the disparity application with qcif inputs. When increasing the image size, the
amount of temporal data increases and then it does not entirely fit into the L2
cache. It causes additional L2 cache misses and data replacement. The scalar
execution with perfect cache does not suffer from such misses, whereas EVX re-
duces its performance. Nevertheless, the speedup of EVX in this case is still over
10x, due to extremely large reduction of the executed operations and fetch-decode
overheads. On the other hand, tracking application further has high temporal
locality, because its temporal data fit into the L2 cache. The amount of L2 cache
misses is small, as well as the EVX degradation of speedup when comparing it to

the scalar baseline with the perfect cache.

3.6.2 Area and Power

Table 3.3 presents the area breakdown estimation of different microarchitectural
components in an EDGE processor with one modest dual issue core. The table
includes the results for the baseline core and the enabled EVX core with VRs
configured for 32 and 128 64-bit elements. Note that the VRs do not change the
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’ Structures ‘ Baseline EDGE EVX
VR Size - 32 128
Fetch, Decode, L11 0.258 0.258 0.258
Issue 0.005 0.005 0.005
LS Unit, L1D 0.237 0.237 0.237
RegFile, ResStations 0.061 0.061 0.061
ALUs 1.463 1.463 1.463
Vector Control Unit — 0.045 0.045
Core Total 2.023 2.068 2.068
L2 Cache 2.079 2.079 2.079

’ Processor Total ‘ 4.102 ‘ 4.147 ‘ 4.147 ‘

Table 3.3: Area breakdown (mm?) estimates of a 1-core EDGE and EVX enabled

processor at 32nm.

area of the EVX core, because they repurpose the L1 data cache resources. EVX
also leverages the existing core’s compute resources and it increases the total
core area only by 2.2%. The extra area is required for the VCU, while assuming
ALUs with partitioning in the baseline core. The VCU utilizes modest hardware
resources such as: a small set of counters and control registers, non-associative
vector outstanding registers and one adder unit for address calculation. These
resources have minimal area impact even in the lightweight EDGE core.

Table 3.4 shows the estimation of average power consumption in a 1-core
EDGE baseline and EVX enabled processor with VRs configured for 32 and 128
64-bit elements, while running scalar and vectorized versions of the selected Liv-
ermore Loops krenels. The loop length is 1024. EVX reduces power consumption
in the fetch and decode pipeline stages. It happens because EVX fetches and de-
codes vector AIBs once, but repeats execution of their vector instructions many
times to process large vector operands. On the other hand, EVX increases power
consumption in the issue pipeline stage (instruction window and instructions se-
lect logic), because the unmodified issue stage on EVX enabled core checks the
readiness of each valid instruction in the instruction window; and EVX replicates
the vector instruction in each lane of the instruction window, while increasing
the number of valid instructions. Note that EVX can optimize the issue logic to

check only the instruction mapped to the first lane of the instruction window,

70



3. EDGE CORE SPECIALIZATION

’ Structures ‘ Baseline EDGE EVX
VR Size - 32 128
Fetch, Decode, L11 0.020 0.006 0.006
Issue 0.097 0.134 0.139
LS Unit, L1D 0.016 0.004 0.004
RegFile, ResStations 0.006 0.005 0.006
ALUs 0.045 0.044 0.045
Vector Control Unit — 0.036 0.038
Core Total 0.184 0.231 0.237
L2 cache 0.055 0.127 0.134

| Processor Total \ 0.239 | 0.958 | 0.571 |

Table 3.4: Average power (W) estimates of a 1-core EDGE and EVX enabled

processor at 32nm.

since they always execute in the same order (first the instructions in the lanes 0
and 1 and then the instructions in the lanes 2 and 3). In this thesis we do not
further investigate such optimization. The dynamic activity of the ALUs along
with total accesses to the reservation stations buffers are approximately the same
on the baseline and EVX enabled cores (see Figure 3.18). As consequence, the
power consumption in these structures is the same for both scalar and vectorized
execution. The accesses to the VRs of the repurposed L1 data cache resources
increase the data cache power consumption. The decoupled EVX memory ex-
ecution more efficiently saturates the memory bandwidth and increases power
dissipation in the L2 cache. In total, EVX increases the average power consump-
tion of the EDGE processor by about 50% and 55%, when configuring the VRs
for 32 and 128 elements respectively; and while providing over 3x of the average

speedup, EVX significantly increases the power efficiency of the processor.

3.7 Related work

Classic vector architectures enable high-performance and power-efficient data par-
allel computing by operating over large vector operands. They require large vec-
tor registers to hold such operands, a large number of memory banks to increase

memory throughput, as well as a large number of parallel functional units (lanes)
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to increase computation throughput [3, 19, 63]. Due to such complex design, they
have been utilized like commercial processor in supercomputers, rather than in
embedded devices. Adding a vector unit to superscalar processor [61] have been
proposed to improve the performance of DLP workloads, by introducing func-
tional units and a large vector register file into a general purpose core. However,
the complexity of the proposed addition limited its applicability in commercial
microprocessors. On the contrary, EVX minimizes the additional complexity of
vector processors by leveraging the existing core functional units to perform the
vector computation and data cache resources to hold vector operands. Although
avoiding the complex vector-specific hardware additions, EVX yet resembles the
classic vector execution on the lightweight EDGE core, which maximizes the
core’s power efficiency.

(Classic vector architectures have been extended and improved in several ways.
Decoupled vector architectures [16] use queues to decouple the scalar, vector arith-
metic and vector memory execution in a traditional vector design. The results
show that decoupling provides superior memory latency tolerance compared to a
pure in-order vector implementation. EVX also incorporates the decoupled vec-
tor memory execution in the extra vector control unit, which loads/stores vector
operands. Work on out-of-order vector architectures [18] shows even better per-
formance than decoupled vector execution. For such execution, it requires a larger
vector register file and register renaming logic. EVX leverages existing dataflow
mechanisms of the EDGE architecture for out-of-order execution of its compute
instruction. CODE [39] is a more recent vector architecture that incorporates
decoupled vector execution. It is based on a clustered decentralized design. Such
design allows for non-complex scaling of its resources including the vector register
file and the number of functional units. EVX does not decentralize nor scales the
existing core units. Its decoupled memory execution feeds only the units available
on the core, while the vector registers dynamically configure their resources.

Various designs propose accelerators for embedded processors, which are based
on the conventional vector execution. The Reconfigurable Streaming Vector Pro-
cessor (RSVP) [10] proposes a streaming vector coprocessor for accelerating data
streaming applications. RSVP uses input/output stream units which are pro-

grammed by using flexible memory patterns. Instructions are executed in a
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dataflow fashion as a set of ordered, dependent computations for each vector
element. RSVP is an efficient solution for data streaming applications, however
the lack of vector registers prevents exploiting data locality and executing non-
streaming DLP workloads efficiently. The Imagine Streaming Processor (ISP) [34]
uses streaming registers to keep the results between the clusters and its clustered
design offers a high scalability and arithmetic rates. RSVP and ISP are specialized
hardware accelerators. On the other hand, EVX offers the specialized execution
on general purpose hardware and execute parallel and not parallel code without
offloading onto the accelerators.

There is an another recent research alternative that combines general purpose
and vector execution on the general purpose hardware to efficiently support of
all levels of parallelism (ALP) [66]. It uses a conventional superscalar multicore
to exploit ILP/TLP/DLP, while focusing on memory system to increase the per-
formance of DLP multimedia applications. The ALP uses streams/registers in
data cache, which load/store large vector operands similarly to EVX. The ex-
isting issue/rename logic is extended to use slices of these registers as a source
or destination of each vector compute instructions. On the other hand, EVX
uses the extra hardware unit that transfers the the slices of vector operands be-
tween the compute instructions and the vector registers to avoid more complex
issue/dispatch overheads. EVX executes vector compute instruction out-of-order
by using statically generated dataflow, whereas ALP dynamically discovers data
dependenices and checks the operand slices availability.

Previous work in exploiting DLP in the TRIPS EDGE architecture [64, 65]
extends a massive unicore processor for high performance devices to execute vec-
tor EDGE instructions. On the contrary, EVX works on a modest dual issue
core for low power devices. Although targeting different segments of computer
industry, the both approaches have some similarities as well as differences. Like
the re-execution of vector instruction in our work, the instruction revitalization
is utilized to support vector operations in a TRIPS extended processor. EDGE
AlIBs allocates large amount of compute resources in the TRIPS processor and
repeat their execution over different data. The TRIPS vector execution does not
decouple memory accesses through the extra memory unit like EVX. It utilizes

a separate thread to orchestrate the memory execution. Instead of using the L1
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cache for the large vector registers, the L2 cache is accessed as a software man-
aged cache and DMA is used to access memory. While bypassing the L1 cache,
the TRIPS vector execution does not exploit temporal locality in fast memory
levels. On the other hand, EVX reconfigures the part of L1 cache into the VRs
to hold temporal data between the blocks of vector instructions.

Nowadays, most commercial processors incorporate still limited multimedia
SIMD extensions [8, 20, 55, 59, 73| to accelerate DLP workloads. Compared to
conventional vector processors, SIMD extensions operate over modest size vector
operands and offers the reduced support of sophisticated addressing modes. EVX
overcome these limitation through its decoupled and sophisticated memory exe-
cution, including the vector registers in data cache that hold configurable large
vector operands. Moreover, EVX can be complemented with the SIMD resources

such as wide registers and ALUs to increase its computation throughput.

3.8 Summary

In this chapter, we have introduced one potential technology to enhance the qual-
ity of mobile processors by efficiently exploiting DLP on its lightweight general
purpose cores. Our technology specializes the substrate of a low-power EDGE
core for vector execution (EVX) like in classic vector processors. EVX executes
the new incorporated vector instructions, which operate over configurable large
vector operands instead of scalar elements. The vector compute instructions al-
locates the existing compute resources and repeat their execution over different
vector elements. The vector memory instructions loads/stores vector operands
through an extra vector dedicated hardware, which saturates memory bandwidth
and increases the performance of the existing compute resources. The dedicated
memory execution enables more sophisticated addressing modes and increases the
applicability of the EVX technology.

Our results show that enabling EVX on the EDGE core requires only 2.2%
of the extra core area. Like classic vector processors, EVX greatly reduces in-
struction fetch, decode and commit overheads. It overlaps the latency of memory
accesses with the computation of large vector operands. At the same time with

the ALU partitioning, EVX twice more efficiently utilizes the available execution
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resources in the EDGE core. On the set of the selected Livermore loops, EVX
yields over 3x of the speedup with 55% higher power consumption. The running
of entire SDVBS compute vision applications shows even better results.

We believe that high-performance and power-efficient design along with a min-
imal area overheads evaluated in this chapter makes our specialization technique
very advantageous for processors in mobile devices. Motivated by these results,
we further looked at scaling the performance and efficiency of the specialization
beyond a single core. In the next chapter we introduce a vector execution that

dynamically specializes one or more cores of a CMP for DLP acceleration.
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Chapter 4

CMP Specialization for
Dynamically-Tuned Vector

Execution

4.1 Overview

This chapter proposes a cost-effective technique that dynamically specializes the
available resources of a low power chip multiprocessor (CMP) into an accelerator
of DLP workloads. In the same way as EVX specializes a single general purpose
core (see Chapter 3), this new technique specializes a configurable number of the
CMP’s cores to mimic the functionality of a vector processor. Such specialization
enables dynamically-tuned vector execution (DVX) of data parallel workloads on
the general purpose substrate without a dedicated accelerator.

Previous chapter proposes the EVX technique that specializes a modest low
power core for classic vector execution (see Chapter 3). In this chapter, we
enhance the proposed execution to dynamically allocate compute and memory
resources beyond single core. Unlike classic vector processors that use a fixed
number of vector lanes, DVX tunes the size of its execution substrate to a par-
ticular workload phase. For this dynamic feature, DVX introduces lightweight
threads of vector instructions controlled by hardware. The threads scale the

execution of vector instructions over multiple cores with minimal performance
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overheads. The control hardware divides the vector operands into equal parti-
tions of vector elements for vector instructions in each thread and orchestrates
threaded execution.

This chapter starts with the DVX specialization technique presented on the
level that is applicable to most commercial architectures nowadays. It is followed
with one particular implementation that narrows this technique down to the
EDGE architecture and describes the DVX implementation on a 4-core dynamic
EDGE CMP. Since DVX has evolved from EVX and has been implemented on
the EDGE processor, these two DVX sections have some things in common with
EVX design although they include the advanced DVX features. We further in-
troduce a more conventional approach of DLP acceleration within heterogeneous
processor system that we use to compare against the DVX implementation. In
this approach we add a dedicated DLP accelerator based on the DVX ISA and
special-purpose hardware resources incorporated onto to the EDGE CMP. We
next evaluate performance, power and area results of DVX and the dedicated ac-
celerator with a comparable amount of resources. The chapter ends with related

approaches and concluding remarks.

4.2 Specialization of CMPs for DVX

DVX specialization technique allocates the general purpose resources to perform
computation over vector operands. The specialization utilizes minimal hard-
ware additions that control such computation and efficiently load/store vector
operands. The additions dynamically tune the allocated resources to match di-
verse workload requirements. We explain each of these specialization steps: the
allocation, the addition of resources, the operating modes, as well as tuning of
the resources. We next discuss the specialized execution of DLP workloads with

vector reductions and the execution while occurring interrupts.

4.2.1 DVX Allocation of the Existing CMP Resources

DVX specializes the general purpose cores to execute vector instructions that

perform compute, register and memory operations over configurable large vector
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Figure 4.1: An examples of DVX computation on single-issue and dual-issue
cores. One AIB allocates the core’s compute resources and repeatedly executes

over slices of the large vector operands.

operands. Atomic Instruction Blocks (AIB) with the vector compute instructions
allocate the compute resources of one or more cores to perform computation over
the vector operands. One instance of such vector AIB is fetched and decoded
once, but repeatedly executed multiple times to compute the large operands. The
vector operands are accessible only outside the AIB, as the block input or output
operands. The vector compute instruction inside the AIB process the operands
slice-by-slice in a pipeline, as it is shown in Figure 4.1. By processing large
operands in slices (sub-vectors), each new execution of the vector AIB requires
only the available general purpose hardware. The hardware processes vector slices
in the same way as scalar operands and does not require any modification. The
number of executions is dynamically configured for each vector AIB, to resemble
the execution of classic vector instructions that perform one operation over a
configurable number of vector elements.

In the same way as in an EVX enabled EDGE core, vector instructions in
DVX cores operate over slices of vector operands. The slices are sized to match
the width of available compute resources in general purpose core. One way to

increase the parallelism inside a vector AIB as well as computation throughput
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of the block executions is to divide the compute resources into multiple banks
and execute the AIB in each bank on different data. Figure 4.1 shows 1-wide
and 2-wide executions of the AIB. 1-wide execution uses one bank of compute
resources. 2-wide execution leverages two banks, and each vector instruction in
the AIB issues in lock step across the banks to process 2-wide vector slices. This
hardware modification limits the size of vector AIBs to fit in a single bank, but
enables execution of vector AIBs over wider vector slices at no additional costs.
The banking of compute resources resembles vector lanes that share available
ALUs. An alternative way to increase the computation throughput inside the
AIB is through wide SIMD extensions. The SIMD extensions can process wider
vector slices within a single execution of the AIB. However, they incorporate extra
SIMD registers and ALUs to the general purpose core. In this work we chose to
bank resources to avoid adding the extra SIMD resources.

Vector AIBs can be created at the ISA level (programmer by writing begin/end
directives or compiler as in the EDGE architecture), while statically defining the
size and structure of the AIB. The maximum size of the AIB is limited to fit onto
available execution resources. If the resources are banked, the size of the AIB is
limited by the size of one bank. An alternative way to dynamically create the AIB
would require extra hardware support to enable for block sizing at runtime. This
would allow an unchanged application binary to run across various designs of the
same processor family. However, in this work, we chose to create the vector AIBs

at the ISA level to minimize the complexity and additions of our vector design.

4.2.2 DVX Addition of Dedicated Resources

To minimize hardware additions like in EVX, vector AIBs in DVX execute on the
existing issue logic, reservation stations (physical registers) and ALUs of the CMP
substrate, as shown in Figure 4.2. The reservation stations keep the temporal
results between the instructions in a vector AIB. The vector registers (VRs) are
an addition to the general purpose core, and they only hold the input/output
operands of the AIB. This approach significantly reduces the size of a vector
register file, the power-hungry structure that limits the applicability of vector

design beyond supercomputer processors. Vector control unit (VCU) is a DVX

79



4. CMP SPECIALIZATION

CONTROL NETWORK

HARDWARE-THREAD 0 HARDWARE-THREAD N
I INSTRUCTION QUEUVE ] JINSTRUCTION QUEVE |

REORDER BUFFER

/

REORDER BUFFER )

RESERVATION
STATIONS

RESERVATION
STATIONS

AYOWIN
AYOWIN

Figure 4.2: The specialized DVX on general purpose CMP utilizes a vector AIB
to allocate the compute hardware and perform operations over vector operands.
The VCU loads/stores the operands and transfers their slices trough the allocated

resources. The TCU tunes the amount of allocated resources.

dedicated unit added to the general purpose core to manage DVX. The VCU
decouples the execution of vector memory instructions from the executions of
vector compute instructions on the allocated resources. The decoupled memory
execution is specialized to tolerate memory latency and provide sophisticated
addressing modes required in diverse DLP workloads. While using the VRs to
hold large memory operands, the VCU performs the specialized memory execution
in a fashion similar to classic vector designs [16, 61]. Beside sophisticated memory
processing, the VCU reads/writes slices of large vector operands in the VRs and
transfers them per execution of compute AIBs. Vector AIBs allocate the available
resources and perform only vector computation; while the specialized memory
processing in the VCU increases the utilization of the allocated resources, as well

as power efficiency of DVX.
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4.2.3 DVX Operating Modes

As same as EVX on the EDGE core, DVX on the the general purpose CMP
delivers two operating modes and they can be dynamically configured. When the
vector computation spans multiple vector AIBs, DVX performs similar to a con-
ventional, register-based vector architecture; the AIBs process large vectors, while
VRs hold vector memory operands and capture the data locality between the
AIBs. For simple vector processing that fits into a single vector AIB, DVX per-
forms as a streaming-based vector architecture; the AIB processes vector streams
and VRs only buffer streaming memory operands. Register and streaming modes
are controlled by the programmer/compiler, which specializes the DVX allocated

resources for specific application characteristics.

4.2.4 DVX Tuning of Resources

Besides configuring the operating modes like in EVX, DVX brings up new dy-
namic feature that allows for scaling the vector execution over multiple cores
in the CMP. This way, DVX dynamically tunes the amount of its resources to
different workload requirements. A direct approach to scale DVX would be to
leverage software runtime support with conventional threads, which execute the
vector instructions across multiple cores. This approach incurs startup overheads
to create the threads and replicates the execution of bookkeeping instructions in
each core. By using the thread synchronization through shared memory flags, it
is possible to reduce startup overheads, but not to avoid the execution of book-
keeping instruction on each core. To maximize performance and avoid issues of
the existing software approaches, DVX introduces lightweight threads controlled
by hardware that scale the execution of vector instructions over multiple cores.
The hardware threads avoid startup as well as bookkeeping overheads. The DVX
specialization technique adds a simple dedicated thread control unit (TCU) to
each core of the CMP and an additional on-chip-network between the cores to
start, stop and control the threads with vector instructions.

A single core in a DVX enabled CMP executes parallel and non-parallel phases
of the application. It executes scalar (e.g. bookkeeping instructions) and vector

instructions. Since it controls the entire execution, the thread running on this
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core is termed as master. The other threads are started on other cores through the
TCUs, when requested by the master to improve the vector processing, as slaves.
The slave threads are lightweight. The TCU disables the execution of common
bookkeeping code redundantly executed in each slave thread, which executes only
vector instructions. Vector operands are divided into equal partitions of vector
elements to distribute the work among the vector instructions in each thread.
Each VCU in connection with TCU on the same core determines the partition
for their core and loads/stores vector elements of that partition. Each slave
thread speeds up the vector processing by executing the same vector compute
and memory instructions on its partition of vector operands. By starting slave
threads, DVX uses additional cores to increase the number of vector lanes at
runtime. It increases the number of vector elements processed in parallel and
improves performance of highly parallel applications.

Before starting slave threads, cores have to be idle (not running any appli-
cation). The TCU of the master keeps track of idle cores, which can start slave
threads. The number of potential slave threads can be configured by the program-
mer, but starting slaves depends on a core’s availability. The advanced alternative
is hardware support that defines the number of slave threads at runtime, by us-
ing various metrics such as: number of long latency instructions in a vector AIB,
vector length or number of available cores. In this work, we only explore a basic
approach where the programmer defines the number of slave threads and assumes

that all cores are available for vector execution.

4.2.5 DVX and Reductions

DVX on general purpose cores partially support reduction of large vector operands,
without extra hardware additions nor modifications. The repetitive executions of
one vector AIB over different vector slices reduce the large input vectors, by pass-
ing the output slice (result) of one execution as the input slice for next execution.
The last execution of the block produces a final result. The size of the result
depends on the computation throughput on allocated compute resources (e.g. 1-
wide or 2-wide reduced vector slice). The VCU stores the result to memory and

general purpose code is used to reduce it to a single value.
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When scaling DVX over multiple cores, each core executes a thread of vector
instructions that reduces its partitions of vector operands. The VCU in each core
stores its reduction result to memory. Instead of enabling complex communication
between the cores to reduce multiple reduced slices, the general purpose execu-
tion performs the final step of the reduction and produce a single scalar value.
Such design incurs performance overheads to load/store slices of different cores
and finalize the reduction computation with scalar instructions. It is trade-off be-
tween performance and hardware complexity and while focusing on the segment

of lightweight processors in this work we choose to avoid extra complexity.

4.2.6 DVX and Interrupts

The execution of classic vector instructions over large operands can incur signif-
icant commit/squash overheads when servicing interrupts. An interrupt routine
either needs to wait for a “long” time until a current vector instruction commits
all its results or need to discard “large” temporal results of the vector instruc-
tions. Vector AIBs operate over slices of vector operands. We leverage that to
support a mechanism that services interrupts leaving a well-known state without
having to discard any temporary result nor wait until whole execution finishes.

Without interrupts, a vector AIB allocates the core resources for many repet-
itive executions. When the AIB finishes all its executions, the resources are deal-
located and the next AIB or following scalar instruction can continue execution.
In the case of interrupt or exception, the AIB can commit its current execution
(the AIB operations over the current slice of vector operands) and deallocate the
resources for the service routine that handles the interrupt or exception. The PC
of the AIB is saved to memory and the block is restored when the routine finishes
its execution.

Although we do not implement the servicing of interrupts, we believe that
it would be possible to improve the performance of DVX, by allowing the VCU
to continue vector execution in the “background” while the service routine exe-
cutes in scalar fashion. This would require the service routines with only scalar
instructions and keeping the context of the VRs and VCU while the routines

execute. If the code of routine has vector instructions, the state of the VCU as
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well as the state of the VRs have to be saved to memory before the routine starts
its execution. The saving of large context from the VRs and VCU may incur
unacceptable overheads before starting the routine. To avoid that problem, the
vectorization might be applied only to service routines, which can tolerate timing
overheads for the later benefits of vector execution. In this work, we only discuss
possible solutions for servicing of interrupts and we do not further investigate

their detailed design nor implementation.

4.3 Implementation of DVX

We implement DVX on a 4-core composable CMP based on an EDGE architec-
ture. Two features of the EDGE-based CMP simplify our DVX implementation.
First, the architecture already executes AIBs with EDGE instructions. The block
model itself makes it easy to extend the core with DVX support for comparatively
less overhead than a conventional general purpose core. Second, the EDGE CMP
offers an on-chip-network that DVX leverages to control DVX threads. Addi-
tionally, the EDGE CMP has one feature that increases the efficiency of DVX.
Namely, the statically encoded dataflow within the vector compute instructions
in the EDGE AIBs enables power-efficient out-of-order execution of the vector
compute instructions.

In the rest of this section we first explain the details of the DVX implemen-
tation. This implementation utilizes one core for non-parallel scalar execution
and a configured number of EDGE cores for parallel vector execution. We next
show an example of such implemented DVX. In the end, we discuss the advanced
implementation that utilizes a configurable number of cores for both scalar and

vector executions.

4.3.1 DVX on dynamic EDGE CMP

DVX extends the previous EVX implementation that specialize one EDGE core(see
Chapter 3) for vector execution to dynamically scale the execution over the other
cores available in the EDGE CMP. Figure 4.3 shows an EDGE processor and a
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block diagram of one core with support for DVX. The major changes over the
baseline core are highlighted in the figure.

In the same way as in the EVX implementation, vector AIBs in the DVX
implementation allocate the EDGE core’s compute resources for the slice-by-slice
computation over configurable large vector operands. The instruction window
and reservation stations buffers are additionally divided into four banks to re-
semble parallel vector lanes and allow for processing of 4-wide slices per each
execution of a vector AIBs. In our implementation on the EDGE cores with the
128-entry instruction window, this design limits the size of vector AIBs to have
maximum 32 instructions (as same as one bank of the instruction window). Two
general purpose ALUs are shared among the four lanes to perform the compute
operations in consecutive cycles. The VCU is added to load/store the large vec-
tor operands to/from the VRs decoupled from the computation on the allocated
resources. It issues memory requests directly to the L2 cache banks to increase
the memory bandwidth; and transfers slice-by-slice of the vector operands from
the VRs to the compute resources and back. The VRs hold the vector memory
operands, as well as temporary vector results that may exist between dependent
vector AIBs. In this implementation, 8 VRs repurpose a configurable amount
of the L1 data cache resources to keep the DVX area overheads minimal, like
in software managed caches of commercial GPUs [54]. Additionally, 4 dedicated
scalar registers are incorporated for mixed vector-scalar operations. Along with
slices of the vector operands in the VRs, the VCU transfers the scalar operands
to the compute resources for each new execution of a vector AIB.

Apart from the evolved design from the EVX implementation, the DVX im-
plementation adds the TCU that starts/stops slave threads by sending thread
control messages via the existing interconnect on the dynamic EDGE CMP. Be-
fore executing a vector AIB, both VCU and TCU must be initialize with the DVX
parameters. The parameters consist of: vector length, memory access patterns
(e.g. vector base address, size of elements and stride between the elements) and
number of cores to be used for DVX. One or more scalar AIBs with EDGE in-
structions need to be executed to initialize the dedicated DVX units (VCU/TCU)

with these parameters (to initialize their control registers).
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Figure 4.3: The DVX implementation on dynamic EDGE CMP. It banks the core
compute resources to increase DVX compute throughput and repurposes the L1

data cache resources into the VRs to avoid extra area overheads.

When multiple cores are used only for parallel vector execution, the master
threads executes the scalar AIBs on a single EDGE core and initializes the dedi-
cated DVX units. When the master thread fetches a vector AIB, it allocates the
compute resources on the configured number of adjacent cores by starting slave
threads. The master thread broadcasts a DVX-START request with the address
of the AIB to be executed by the slave threads. Each slave thread fetches the
AIB and executes it on its partition of vector elements. The threads execute the
same AIB, but not necessarily in lock step. The divergence between the cores
occurs at the instruction level granularity inside the AIB or at the level of AIB
executions. When the slave thread finishes its executions, it sends a DVX-STOP
message to the master thread. The master threads commits the AIB when it

receives all the completion messages. The slave threads are then terminated,
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cores are deallocated and the master thread initiates the execution of the next
AIB on a single core. The next block can be a scalar EDGE AIB that continues
non-parallel execution of the workload or an AIB that initializes the dedicated
DVX units for the following vector computation.

While executing the AIBs with the DVX parameters, the master thread broad-
casts the parameters to the VCUs/TCUs of all the cores that are going to be used
for the following vector processing. The parameters are broadcast before the DVX
compute block is fetched and any of the slaves threads started. When the VCU
of one core receives the parameters, it calculates the start addresses for its par-
tition of vector elements by leveraging the available core’s ALUs. As soon as the
addresses are calculated, the VCU starts executing the vector load instructions
to prefetch as much as possible of the input vector data. On other hand, vector
store instructions are initiated when the slave threads start and slices of the store
operands in the VRs become available.

The distribution of vector operands among the cores is simple and straight-
forward. It divides the operand into equally sized partitions of vector elements,
based on the number of cores (e.g. vector of 1024 elements is divided to 256-
element partitions for 4 DVX cores). In the case when the total number of vector
elements is not a multiple of the number of cores, the core with the largest iden-
tifier takes care of the remainder. Such distribution of vector operands enables
DVX to efficiently increase the amount of the allocated resources without further
communication between the cores. Additionally, the issuing of DVX memory re-
quests directly to the L2 cache banks avoids possible overheads of data movement
operations between the L1 data caches in multiple cores allocated for DVX.

The VCU calculates the base addresses for its partitions of vector operands
without additional software nor hardware support. It utilizes a simple algorithm
that increments the operand base address by the offset value for the previous
partitions; and the offset is calculated by multiplying the core identifier, the
number of elements in the partition, the stride between the elements and the
size of each element. The VCU leverages the existing ALUs to perform this
calculation. The rest of the DVX parameters in the VCU remain unchanged (e.g.

the stride between vector elements, the size of elements).
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Figure 4.4: An example of 2-core DVX that performs the addition of 8-element

vector operands. Each core executes the same vector compute, register and mem-

ory instructions over 4-element partitions of the vector operands.
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4.3.2 DVX Example

Figure 4.4 shows an example of the loop in general purpose C-code and its DVX
execution. The loop contains a simple DLP kernel, which performs the addition
of 8-element vectors a and b and stores the result to vector c. The code of
the loop is modified (vectorized) to use DVX by describing the decoupled DVX
memory execution, a preferred number of specialized cores and the vector AIB
that performs the loop’s computation. One core is running the master thread
and executes both the scalar and vectorized parts of the code. It executes the
code that initializes patterns of vector memory instructions and the number of
DVX threads. Two memory instructions are described to load vectors a and b
to VRO and VRI1, and one instruction to store its operand from VR2 to vector
c. Each instruction utilizes sequential memory access pattern and operates over
eight 64-bit element vectors. When the master thread commits the AIBs with
the DVX parameters, it broadcasts all the parameters to other free cores that
are going to run slave threads. This example defines DVX with two threads and
assumes that one extra core is free to take over the execution of slave thread.
When the master thread fetches the vector AIB, it sends a DVX-START mes-
sage that creates slave thread on another core. By using the vector AIB, each
thread allocates its core’s compute resources and executes the same vector com-
pute instructions over the 4-element partitions of 8-element vector operands. The
AIB contains the vector compute instructions (vadd), as well as the vector register
instructions that connect the DVX computation on general purpose resources and
the DVX decoupled memory execution (vread(VR0), vread(VR1), vwrite(VR2)).
The dedicated VCUs execute the initialized memory instructions and utilize the
register instructions to transfer the slices of vector operands between the VRs
and allocated resources. In our particular implementation with 4 vector lanes (4
banks), the AIB executes only 1 time (1x4) on each core to process its 4-element
partition of vector operands. When both threads finish the execution of the vec-
tor AIB and the master thread receive the DVX-STOP message, only the master
thread continues the execution of the scalar AIBs. The core that executed the

slave thread remains idle until the master thread fetches the next vector AIB.
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4.3.3 DVX and Composing Cores for Scalar Execution

The dynamic EDGE CMP can tune its resources by composing one or more
cores into a logical processor, which executes single-threaded applications (see
Section 2.2.2.1). Instead of using one core to run the master thread, the com-
posed logical processor executes the master thread over multiple cores to improve
performance of scalar phases in DLP applications. In this case, one core exe-
cutes the oldest AIB with scalar instructions, while the others execute predicted
scalar AIBs speculatively. The AIBs that initialize the DVX parameters for the
VCUs/TCUs can execute speculatively as well. These AIBs broadcast their re-
sults to other cores in the processor at their commit time to avoid speculative
initialization of these units. The VCU of each core in the processor starts ex-
ecuting the vector load instructions as soon as their parameters are initialized.
The vector store instructions on the contrary wait until their store operands in
the VRs become available and non-speculative; at this moment they start storing
them to the L2 cache memory.

The core that first fetches a vector AIB continues the execution of the master
thread alone. That core immediately flushes the younger speculative blocks on
the other cores and makes them free to start slave threads with the same AIB. The
master thread may start its execution speculatively, because the vector compute
block may be predicted; in this case, DVX execution in each thread is speculative
and vector results are buffered in VRs. If the vector AIB is flushed, the results
are discarded from the VRs and the VCUs restart the execution of their vector
load instructions. If the master thread becomes non-speculative, all the slave
threads become non-speculative; at that moment, the vector store instructions
in each core can start sending their results to the L2 cache memory; each AIB
running in slave thread commits when it completes its execution, whereas the
AIB in the master thread additionally waits for all slave threads to finish the
execution. When all slave threads finish, the master continues scalar execution

of the scalar AIBs on the composed cores, until the next vector AIB is fetched.
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4.4 Conventional alternative to DVX

To compare to DVX, we designed a dedicated DLP accelerator with the DVX ISA
and special-purpose hardware resources. This accelerator is incorporated into an
EDGE CMP in a form of offloading engine. It combines the EDGE architecture
with designs of classic vector (co)processors (VCOP). As opposed to specializing
general purpose cores for DVX, our VCOP incorporates a significant amount of
extra resources that are exclusively used for DLP acceleration. The comparison of
DVX to such VCOP shows different trade-offs between dynamic specialization of
general purpose cores and static specialization of the hardware in a more complex
heterogeneous processor.

In the rest of this section, we first describe the VCOP design, its implemen-
tation and integration with the host EDGE processor. In the end, we summarize
the differences between the DVX and VCOP designs and resources.

4.4.1 Classic VCOP in EDGE Fashion

VCOP is designed to incorporate the advantages of classic vector and EDGE
architectures on the same substrate. To improve performance like advanced vector
designs [16, 61], VCOP decouples the execution of vector compute and memory
instructions. Since VCOP is incorporated into an EDGE CMP, it is design to
be similarly efficient. For this reason, VCOP leverages the EDGE mechanism for
out-of-order execution of vector compute instructions.

VCOP executes EDGE-based vector AIBs like DVX enabled EDGE cores.
A producer vector instruction encodes its targets, which may be a left or right
operand of consumer vector instructions. Instead of using a classic vector register
file, each compute instruction uses two vector reservation stations buffers, which
are sized to hold large vector operands. The producer instruction writes its re-
sults to the reservation stations of their consumer instructions. The instructions
execute when they have their operands ready, in dataflow order, and the order is
defined statically within the instruction encodings. Besides two reservation sta-
tions buffers for each compute instruction, VCOP utilizes a set of vector registers
(VRs) and a modest set of dedicated scalar registers. The VRs hold temporary

vector results between the vector AIBs and the input/output operands of the
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("double a[128], b[128], c[128], d[128]))
// initialization of a[], b[] and c[]
// vectorizable loop
for(int i=0; i<128; i++)
d[i] = (a[i]+b[i]) * c[i];
\_ C CODE SNIPPET J

LOOP EXECUTION

(" EXE:0,INST:0 t[0-7] =vadd(a[0-7], b[0-7]); )
EXE:1,INST:0 t[7-15] =vadd(a[7-15], b[7-15]);
EXE:0,INST:1 d[0-7] =vmul(t[0-7], c[0-7]);
EXE:1,INST:1 d[7-15] =vmul(t[7-15], c[7-15]);
EXE:2,INST:0 t[15-23] = vadd(a[15-23], b[15-23]);

\_ VCOP EXECUTION SAMPLE Y,

Figure 4.5: An example of the enabled execution model in VCOP. The instruc-

tions operate over consecutive 8-wide slices of their vector operands in VCOP.

vector memory instructions. The scalar registers hold the operands for mixed
vector-scalar operations.

On the contrary to DVX, the VRs and reservation station buffers in VCOP are
equally sized. It allows VCOP to perform computation of large vector operands
without transferring the operands from the VRs to the reservation stations first
as in DVX. In VCOP, each vector compute instruction dependent on an operand
in a VR utilizes the operand directly from the VR. The compute instruction
multiplexes the input to the ALU from the VRs, instead of its reservation station.
This design resembles the chaining of vector memory and compute operations
typically found in classic vector processors. We show the benefits of the enabled
chaining in Section 4.6. In a similar way, the vector compute instruction can use
its operand directly from the scalar registers when it operates over mixed vector
and scalar operands.

The size of the vector operands is dynamically configured and it is only lim-
ited by the size of the VRs/reservation station buffers. Each compute instruction
performs the configured number of operations over the elements of its vector

operands. The operations execute in lockstep on each ALU available in VCOP,
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like in classic vector designs. To maximize the performance of out-of-order vec-
tor EDGE computation in VCOP and allow for more competitive comparison
to DVX, VCOP enables a more sophisticated execution model than classic vec-
tor processors. Namely, the instructions in VCOP do not wait until the entire
operands arrive to their reservation stations nor execute over the entire vector
operands like in classic vector processors. Instead, vector instructions in VCOP
issue multiple times and each time they operate over ready slices of their vector
operands. The size of the slices matches the size of the compute resources used
for one lockstep execution (e.g. the size of 256-bit slices matches the size of eight
64-bit ALUs). Note that this execution model resembles the execution model
of modern GPUs, where a group of threads (e.g. 32 threads in NVIDIA GPUs)
execute in lockstep on multiple ALUs as vector instructions in VCOP. While
different groups in GPUs execute out-of-order without dependency, in VCOP
there is one restriction that simplifies its implementation; each vector instruction
performs the encoded compute operations sequentially over consecutive slices
(slice[0], slice[1], slice[2]...) of its operands and sends slices of the computed re-
sult to the reservation stations of the encoded consumer instructions. The select
logic checks if an instruction has the ready slice of all its operands instead of the
entire operands to mark the instruction ready for the execution. It allows for for-
warding of incomplete vector results between dependent instructions in a vector
AIB, and resembles chaining of vector instructions at low implementation cost.
The compute process repeats until all the instructions in the AIB perform the
configured number of operations and the block produces its vector results. The
example of the proposed execution model is shown in Figure 4.5. In this exam-
ple, two vector instructions (vadd, vmul) repeat their operations over consecutive
slices of their vector operands. The operations of the vadd and vmul instructions
are chained, by forwarding the incomplete results of the vadd instruction to the
reservation station of the dependent vmul instruction. We evaluate the benefits

of our enabled execution model in Section 4.6.
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Figure 4.6: Microarchitectural components of the EDGE VCOP. It has the in-
struction window with two vector reservation stations buffers sized for 32 instruc-
tions and eight vector registers. Out-of-order vector computation leverages the
eight ALUs in lockstep. The vector memory unit decouples the vector memory

execution from the computation and issues up to 4 memory requests per cycle.

4.4.2 VCOP Implementation

To make VCOP implementation 4.6 fairly comparable to DVX on an EDGE CMP,
we limit the size of vector AIBs that execute on VCOP to have a maximum of
32 instructions. It makes the instruction window in VCOP sized to hold 32
instructions and two reservation stations buffers sized to hold 32 vector operands
(32 active instructions in the instruction window of VCOP, each one may have
up to two vector operands). To enable the execution of vector instruction over
slices of their vector operands, each instruction in the instruction window has a

pointer that sequentially iterates its slices. The select logic utilizes this pointer
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for each active instruction in the instruction window to check if the instruction
has its pointed slice of all its operands ready; if this is the case, the logic selects
and schedules the instruction to issue its operation over the slice of its operands.

To be competitive to the DVX enabled CMP, VCOP incorporates 8 conven-
tional VRs and 4 scalar register. It also adds the same amount of execution
resources as DVX leverages from the CMP. VCOP uses eight 64-bit ALUs, which
support sub-word SIMD operations over 8-,16- ,32- or 64-bit elements. This cor-
responds to the 2 ALUs per core of the 4-core EDGE CMP that we use for
evaluating DVX (see Section 4.6). VCOP issues vector compute instructions in
a lockstep to each ALU, while simultaneously performing eight 64-bit operations
over 256-bit slices of vector operands. The reservation stations and the VRs are
banked across the ALUs to reduce the number of ports and their complexity.

The execution of vector memory and compute instructions is decoupled to
increase efficiency like in DVX enabled cores and this design decision differs sig-
nificantly from the non-decoupled memory execution in modern GPUs. Vector
memory unit (VMU) in VCOP executes the memory instructions and uses the
conventional VRs to hold their operands. It simultaneously executes up to 4 mem-
ory instructions and allows for issuing of 4 load/store memory requests per cycle.
The memory instructions in VCOP support sophisticated addressing modes like
memory instructions in DVX enabled cores. Similarly, the host processor ini-
tializes the VMU with the access patterns for each memory instruction, before
executing the vector AIBs in VCOP.

VCOP supports partial reductions of large vector operands. It uses a single
256-bit register that holds the temporary results of 8 lockstepped 64-bit ALU
operations over slices of vector operands. While pipelining the operations over
large vector operands to the lockstepped ALUs, VCOP uses the value from the
register as an input of each subsequent operation and stores the result back to the
register. It repeats the same process until the entire vector operands are computed
and produces a final 256-bit reduction value. To eliminate complex inter-ALU
connections, VCOP the same as DVX cores stores the final reduction value from
the register to the memory; and the host processor finalizes the reduction process

by using scalar instructions.
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4.4.3 Integration of VCOP with EDGE CMP

The heterogeneous EDGE processor incorporates VCOP to a host EDGE pro-
cessor to offload and accelerate DLP workloads. The host is a general purpose
processor, which executes non-parallel phases of applications and offloads the par-
allel vectorized phases onto the VCOP. The host processor executes instructions
that initializes and controls the vector execution on VCOP. When requested by
the host, VCOP executes vector compute and memory instructions.

To provide maximal performance achievements of the acceleration, the host
processor and VCOP are tightly integrated and they share the L2 cache mem-
ory. VCOP executes vector load/store instructions by issuing memory requests
directly to the L2 banks shared with the host processor. It avoids the overheads,
which would exist for data movement operations between the host and VCOP in
the case when they have the separated memory resources.

The host executes EDGE-based scalar AIBs. When it fetches a vector AIB,
the host sends the address of the block to VCOP. It overtakes the execution
of the vector AIB and notifies the host when it completes the execution. The
vector execution is constrained to the boundaries of the AIB, as opposed to
execution in classic vector processors that can start executing the following vector
instructions as soon as there is space in the instruction buffer. In order to tolerate
this limitation, host processor continues executing beyond the current vector
AIB instead of waiting VCOP’s response to commit the block. By overlapping
the execution of the vector and the following scalar AIBs, the host processors
can execute instructions that initializes VCOP with the access patterns for the
memory instructions in the next vector AIB. The host continues execution until
it fetches the vector AIB that has to be offloaded to VCOP. When VCOP finishes
the execution of the vector AIB, it starts executing the next vector AIB without
initialization nor startup overheads. We evaluate the benefits of the overlapped
execution in Section 4.6.

Although in this work we model only a simplified heterogeneous processor
system without virtual memory nor interrupts, there is missing an important
point of the proposed overlapped execution design. Since an exception can happen

in the vector AIB (e.g. page miss), the overlapped execution of the host processor
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Description

DVX

VCOP

Design principle

morphing general purpose

cores to vector cores

classic based vector
core adopted to the EDGE

Vector buffers

(registers/stations)

hold operands between

instruction blocks

hold operands for

each instruction

Buffers resources

repurposing data cache

banked vector register file

Compute

resources

independent ALUs
in multiple EDGE cores

lockstepped ALUs
in single VCOP core

Execution of

compute instructions

repeated executions over

consecutive vector slices

repeated executions over

random vector slices

Execution of

memory instructions

decoupled, one instruction

per cycle in multiple cores

decoupled, multiple instructions

per cycle in a single core

Addressing modes strided, indexed, masked

Reduction partially supported

Table 4.1: DVX/VCOP design overview.

and VCOP is unsafe. We call this “unsafe execution”. To preserve the consistent
architectural state in the case of exception during the unsafe execution, the host
processor buffers the results of the following AIBs without committing them,
until VCOP finishes the execution of the vector AIB. At this moment, the host
processor commits the results of the unsafely executed AIBs and returns back to

the normal “safe execution”.

4.4.4 DVX/VCOP Resources and Design Comparison

DVX leverages the existing general purpose resources of EDGE cores to perform
vector execution of DLP workloads without offloading onto the accelerator. On
the contrary to DVX, VCOP is a dedicated DLP accelerator added to an EDGE
CMP to offload the DLP workloads. VCOP is sized to be comparable to a 4-core
EDGE CMP specialized for DVX. VCOP has the same amount of compute and
memory resources as 4 DVX cores and combines the same memory bandwidth,
by sharing the L2 cache banks with the CMP.

Table 4.1 summarizes the differences and similarities of DVX and VCOP de-
signs. On the contrary to the implemented DVX that repurposes the L1 data
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resources into the VRs, VCOP design includes more sophisticated resources such
as a large vector register file and reservation stations that hold vector operands for
each vector instruction; such classic design does not require transferring of vector
slices from/to the VRs for each vector instruction on the allocated general pur-
pose resources of DVX cores. VCOP also incorporates multiple lockstepped ALUs
organized in vector lanes, while DVX leverages the ALUs available in the EDGE
cores. Although utilizing radically different design approaches, both VCOP and
DVX execute compute vector instructions over slices of vector operands. DVX
repeats the execution of the compute instructions over consecutive slices of vec-
tor operands and VCOP over independent slices like groups of threads on GPUs.
DVX scales the execution of vector compute instructions over the ALUs in one or
more DVX cores, whereas VCOP executes the compute instructions in lockstep
on the ALUs in a single core. Both DVX and VCOP decouple the execution
of vector memory and compute instructions. DVX scales the execution of each
memory instruction over multiple cores, and each core issues independent mem-
ory requests. To equally saturate the memory bandwidth, VCOP simultaneously
executes different memory instructions and issue their memory requests in par-
allel. DVX and VCOP support the same addressing modes as well as partial

reductions of the large vector operands.

4.5 Experimental Setup

4.5.1 Simulator

We evaluate an EDGE CMP, the proposed DVX technique and the alternative
VCOP design by using a detailed, timing, in-house simulator from Microsoft Re-
search. The simulator is written in SystemC to accurately model the baseline
EDGE cores, DVX enabled cores and VCOP with the parameters shown in Ta-
ble 4.2. We experiment with DVX dynamic configurations with 1, 2 and 4 cores
and with VRs sized to hold 32 or 128 elements of 64 bits per each register. We
experiment with VCOP static configurations that have 4 and 8 vector lanes and
the VRs sized to hold 32 and 128 elements of 64 bits per register. We investi-

gate the area, the runtime dynamic and leakage power consumption of DVX and
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Component Description
DVX core ‘ VCOP core

ALUs 2 Integer /FP 8 Integer/FP

Reservation Stations | 128 x 2(left/right) x 64-bit | 32 x 2(left/right) x [128-512] x 64-bit

Register File 64 entry -

Load-Store Queue 32 entry unordered -

L1 T-cache 32 kB, 1 cycles (hit) 32 kB, 1 cycles (hit)

L1 D-cache 32 kB, 1 cycles (hit) -

L1/L2 MSHRs 8 entry 8 entry

DRAM 250 cycles 250 cycles

Branch Predictor OGEHL -

On-Chip-Network 1 cycle/hop 1 cycle/hop

Vector Registers 8 x [32—128] x 64-bit 8 x [128—512] x 64-bit

Vector-MSHRs 32 entry 4 x 32 entry
’ Total Cores ‘ 4 ‘ 1 ‘
| L2 \ 4 banks x 512 KB, 15 cycles (hit) |

Table 4.2: Simulator configuration.

VCOP by using McPAT [45] area and power models that we developed for a gen-
eral purpose EDGE CMP, the CMP with DVX and the heterogeneous CMP with
VCOP. We extended the existing in-order McPAT models to build the models
of EDGE processors with DVX and VCOP, since the EDGE architecture avoids
most of the structures typically required for out-of-order execution. The models

assume 32nm low power technology.

4.5.2 Benchmarks

For our evaluation we use the same Livermore Loops kernels like for for the
evaluation of EVX (Table 3.2), while excluding the selected applications from
the San Diego Vision Benchmark Suite. The reason for this is an unacceptable

simulation time when running the Vision Benchmark applications.

4.5.3 Methodology

Running various kernels shows the benefits and limitations of our vector model, as

well as our more conventional approach. The number of iterations in each kernel
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is configured to 1024, which provides enough large vector operands to saturate
vector execution on various DVX and VCOP configurations. The kernels operate
over 32-bit elements and they are evaluated after warming up the caches to avoid
DRAM memory access overheads of scalar, DVX and VCOP executions. To
saturate the resources of VCOP’s memory unit that execute up to 4 different
memory instructions at each cycle, we apply loop-unrolling optimization to all
the kernels running on VCOP with less than 4 memory instructions. Note that the
kernels running on DVX enabled cores do not require such optimization, because
DVX memory units at each core can execute the same memory instruction over
different partitions of vector operands.

To simplify evaluation of DVX and VCOP, in this work we do not investigate
the execution that dynamically changes the number of cores (e.g. one core for
scalar and one or more for vector execution phases). We configure the number
of cores for each kernel at the beginning of its execution, and do not change the
number of cores at runtime. The entire kernels, including their non-vectorizable
parts such as the initialization of the VMUs/TCUs are executed with multiple
cores (see Section 4.3.3). The warming up of the caches is performed with 1, 2 or 4
cores for 1-,2- or 4- core DVX configurations respectively; and 4 cores are used to
warm up the caches in the heterogeneous processor with VCOP. It enable higher
and competitive performance of DVX and VCOP, by avoiding possible overheads
for data movement operations from a single bank of the L1 data cache (warming
up writes the data to the L1 cache) into the L2 cache banks (DVX/VCOP loads
the data from the L2 cache).

4.6 Results

4.6.1 Performance

Figure 4.7 shows the speedup of DVX over the previously proposed vector ex-
ecution for an EDGE core (EVX), when it uses a custom low level fork/join
implementation of threads to scale it over multiple cores. The fork/join functions
avoid runtime overheads, including the synchronization with locks to provide the

fastest thread control. Each slave thread just spins, by reading a shared variable
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Figure 4.7: Speedup of DVX over EVX that uses conventional threads to scale

over multiple cores in a CMP.

to start the vector execution, when the master thread has work to spawn across
the cores. In the same way, slave threads notify back the master thread when
they finish execution. The master thread controls the execution of the EVX slave
threads, as well as performs the vector computation. Although inefficient due
to actively reading the shared variable, the custom fork/join implementation is
the fastest approach to be compared to DVX with hardware controlled threads.
Note that such fast scaling with conventional threads requires all the threads to
be created in advance as well as to be ready for the the vector execution. The
overhead of using shared variables (and associated coherence protocol messages
and movements of the shared variable between the L1 caches) to synchronize the
master and the slave threads is quite significant for short kernels (Fdiff, Hfrag,
Iprod); and increasing the number of used cores shows even more benefits of DVX.
More complex kernels execute for longer time and thus they have no significant
performance impact when using threads. Moreover, some kernels (ADI, ICCG,
Ipred) with large amount of data in the L1 caches show a very slight slowdown of
DVX compared to the scaled EVX with threads. This happens because in EVX,
slave threads are spinning on the cores without data in the L1 data cache; and
while leveraging the cache for the VRs, the slave threads avoid flushing the dirty
lines back to the L2 level like DVX cores. The design decision for the hardware
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Figure 4.8: Speedup of DVX with different dynamic configurations.

orchestrated DVX threads allows by 27% higher average performance. The DVX
threads do not require inefficient spinning nor significant timing overheads to
start their execution. DVX dynamically creates slave threads and outperforms
the limited EVX approach with statically created threads of vector instructions.

Figure 4.8 shows the speedup of diverse DVX configurations over the general
purpose execution on a single EDGE core. DVX is dynamically configured to
use 1, 2 or 4 cores and the VRs to hold 32 and 128 elements of 64 bits (or 64
and 256 elements of 32 bits). While increasing the size of the VRs, DVX with
1, 2 and 4 cores improves the performance for the kernels that exploit temporal
locality between different vector AIBs in the VRs (ADI, ESF, Ipred). The more
detailed impact of the VRs size on the performance of the specialized vector
execution on an EDGE core is discussed in Section 3.6). In this section we further
focus on configuring the different number of the cores for the specialized vector
processing. For both sizes of the VRs, DVX significantly scales its performance
when increasing the number of cores. For example, with the VRs sized to hold
128 elements, 4-core configured DVX outperforms 1-core DVX by over 2x in
average and it outperforms 2-core DVX by about 1.33x; 4-core DVX achieves up
to 16x of the maximum speedup (Ipred) and 6.2x of the average speedup. The
kernels with sufficient amount of parallel compute or memory operations (ADI,
ESF, Fdiff, Hfrag, ICCG, Ipred, Matriz) scale their performance when increasing
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Figure 4.9: Speedup of VCOP with different static configurations.

the number of cores for DVX. On the other hand, reductions and not entirely
vectorized kernels do not yield such performance when increasing the amount of
allocated DVX resources. Reduction kernels (Blss, Iprod) achieve up to 4x of
the speedup by exploiting the DVX reduction mechanism on each core. Their
performance does not greatly scale with the number of cores, because each core
reduces only its partition of the vector operands and general purpose execution
produces the final result. PiCell is an example of a not completely vectorizable
kernel, which cannot exploit the additional DVX resources.

Figure 4.9 shows the speedup of various configurations of VCOP over a general
purpose execution on a single EDGE core. As opposed to DVX configurations,
in this experiment we statically change the VCOP parameters. We experiment
with different number of vector lanes and sizes of the VRs, as well as the sizes
of the reservation stations in VCOP. The speedup is included for 4- and 8- lane
VCOP with VRs/stations sized for 128 (VCOP-128) and 512 elements (VCOP-
512). The 4-lane VCOP matches the amount of compute and memory resources
of 2 DVX cores, whereas 8-lane VCOP utilizes the same amount of resources as
4 DVX cores. Increasing the size of the VRs yields over 32% and 36% of extra
performance in 4-lane and 8-lane VCOP respectively. The reason for such great
improvements is the reduction of startup (memory latency) overheads between

the vector AIBs that execute on VCOP. The overheads exist because strip-mining
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Figure 4.10: Performance breakdown of VCOP.

is required to process 1024 iterations on VCOP with the small VRs. Although the
host processor overlaps the initialization of the memory unit in VCOP, the startup
latencies are quite remarkable in kernels without complex vector computation to
compensate them (Fdiff, Hfrag). Increasing the number of vector lanes improves
the performance of VCOP for kernels with sufficient amount of DLP (ADI, ESF,
ICCG, Ipred, Matriz). The average performance improves by 18% and 22%
for VCOP-128 and VCOP-512 respectively. In the same order, they achieve an
average speedup of 6.2x and 7.2x. In the rest of our experiments, we only utilize
8-lane VCOPs to have the equal amount of the compute and memory resources
like the 4-core EDGE processor with DVX.

Figure 4.10 shows the performance breakdown of VCOP-512 by incorporating
one by one different hardware features of VCOP to measure the impact of each
one of them. We have evaluated several VCOP features: host-VCOP-overlapped-
execution, memory-compute-chaining and slice-by-slice-dataflow-computation. We
explain the benefit of each feature and discuss its impact on the performance. The
most restricted VCOP (limited-VCOP) with all these features disabled achieves
4.55x of the average speedup. VCOP with overlapped execution of instructions
on VCOP and its host processor minimizes startup overheads of vector AIBs on
VCOP; it improves the VCOP performance by an extra 5%. The chaining of

the vector memory and compute operations enables the vector computation over
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Figure 4.11: Relative performance comparison of DVX and VCOP.

dependent partially available memory results; and enables the vector memory
execution over dependent partially available compute results. It yields 3% of the
additional VCOP performance improvements. Instead of operating over the entire
vector operands per each issue of a vector compute instruction, the instructions
in VCOP can repeat their issue by performing the compute operations over ready
slices of the vector operands. This computation of the large vector operands in
VCOP enables performing partial reductions at low implementation costs(BLSS,
Iprod), and increases the average VCOP performance by over 45%.

Figure 4.11 shows the performance comparison of DVX configured to use 4-
cores and VCOP with the same amount of compute and memory resources. The
specialized VCOP with the VRs sized to be the same as the VRs on 4 configured
DVX cores achieves only 1.16x of the speedup over DVX enabled general purpose
cores. The selected kernels with their diverse DLP characteristics emphasize the
advantages and limitations of DVX and VCOP:

e The kernels with a single vector AIB show the benefits of the streaming
mode. 4-core DVX with 32-element VRs outperforms VCOP-128 (BLSS,
Fdiff, Hfrag) by avoiding the VCOP startup memory overheads. Its impact
is especially remarkable in kernels without complex vector computation
(Fdiff, Hfrag). ICCG is an exceptional streaming kernel that repeats the

processing in an outer loop. While decreasing the vector length in each
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iteration of the outer loop, the streaming benefits becomes unimportant, as

well as the advantages of DVX streaming mode.

e Configurable large VRs improves the performance of DVX for kernels that
use multiple vector AIBs (ADI, ESF, Ipred), because the VRs exploit the
temporal locality between the vector AIBs in the register mode. Increasing
the size of VRs in VCOP is beneficial for all the kernels, because VCOP lacks
the streaming mode. VCOP outperforms 4-core DVX configuration with the
equivalent VRs for the non-streaming kernels, but requires extremely large
VRs of 512 elements to be competitive to DVX for the streaming kernels.
With such VRs in VCOP, 4-core DVX outperforms VCOP for only two
kernels BLSS, Matrizx.

o Vector-scalar operations show the advantage of VCOP in kernels where
they are dominant (ESF, Ipred). VCOP leverages conventional approach
where vector instructions for these operations use combined vector and
scalar registers. On the other hand, DVX transfers slices of vector operands
or single scalar values through the allocated general purpose resources and

loses performance while waiting for the scalar value in each execution.

e DVX on each core processes its partition of vector elements, while allowing
vector memory instructions to equally distribute memory requests to the
L2 cache banks. On the other hand, VCOP uses loop unrolling inside the
vector AIB to saturate the resources of the vector memory unit and in the
some cases BLSS, Matrixz the saturated unit cannot equally exploit the L2

cache banks.

e Dynamic configuration of hardware resources shows the advantage of DVX
for the kernels without sufficient amount of DLP (PiCell). Such kernels
usually fit in the 1-core DVX configuration. DVX dynamically tunes its
resources to match an amount of DLP offered by each workload. On the
other hand, VCOP potentially underutilizes its statically allocated resources

on the workload without enough DLP to saturate them.
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’ Structures ‘ DVX (4C) ‘ VCOP (1C) ‘
VR Size 32 & 128 128 512
Fetch, Decode, L11 0.258 x 4 0.158 0.158
Issue 0.005 x 4 0.001 0.001
LS Unit, L1D 0.237 x 4 — —
RegFile, ResStations | 0.061 x 4 1.230 5.625
ALUs 1.463 x 4 5.852 5.852
Vector Control Unit 0.045 x 4 0.224 0.224
DVX/Host Cores 8.272 8.092 8.092
VCOP Core — 7.465 11.860
L2 Cache 7.467 7.467 7.467

| Processor Total | 15138 | 23.024 | 27419 |

Table 4.3: Area (mm?) estimates of a 4-core processor with DVX and VCOP at

32nm.

4.6.2 Area and Power

Table 4.3 presents the area breakdown of different microarchitectural components
of a 4-core EDGE CMP with support for DVX and heterogeneous design of a 4-
core CMP as a host for various configurations of VCOP. The fetch and decode
stages in VCOP have a smaller area compared to DVX-enabled general purpose
cores. One of the reasons is having the replicated fetch and decode stages for
DVX in each core, as opposed to VCOP that uses a single front-end logic for
multiple vector lanes. Note that the cores specialized for DVX already exist in
the typical mobile processors (including their fetch and decode stages), while
the VCOP accelerator utilizes smaller and yet additional front-end resources.
Another reason is the size of the instruction window in DVX cores and VCOP.
Compared to the general purpose cores, VCOP also avoids the L1 data caches;
it issues memory requests directly to the L2 cache and has a single instruction
cache to fetch vector AIBs. The execution resources of VCOP are equivalent to
the resources available in 4 EDGE cores; but a wide vector register file banked per
vector lanes is an additional structure of VCOP that is avoided by DVX. Table 4.3
summarizes the total area of a 4-core processor with DVX and VCOP designs.
Host cores are identical to DVX cores without a vector unit. Both processors

include a multi-banked L2 cache memory of the same size (2MB). The area size
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| Structures | DVX(4C) | VCOP(1C) |
VR Size 32 128 128 512
Fetch, Decode, L11 0.020 0.019 0.004 0.003
Issue 0.412 0.419 0.026 0.027
LS Unit, L1D 0.015 0.015 — —
RegFile, ResStations | 0.012 0.014 0.086 0.371
ALUs 0.164 0.166 0.166 0.172
Vector Control Unit 0.093 0.100 0.032 0.037
DVX/Host Cores 0.716 0.732 0.146 0.128
VCOP Core - — 0.314 0.611
L2 Cache 0.387 0.419 0.355 0.397

| Processor Total | 1104 | 1151 | 0.815 | 1.156 |

Table 4.4: Average power (W) estimates of a 4-core processor with DVX and
VCOP at 32nm.

of the processor that adds VCOP exceeds the size of the processor specialized for
DVX from 46% to 74% depending on the size of VRs in VCOP.

Table 4.4 shows the average power consumption of DVX on 4 EDGE cores
and VCOP, while executing the set of selected DLP kernels. VCOP uses only
one host core to control the vector execution and the three remaining cores are
assumed to be perfectly power-gated. VCOP-128 consumes less power than the
CMP with both DVX configurations. It happens mainly due to savings in in-
struction fetch, decode and issue stages. Besides single fetch and decode across
vector lanes, VCOP issues each instruction over the slice of vector operands to
its centralized vector lanes on single core. On the contrary to VCOP, DVX is-
sues instructions over slices of the vector operands in 4 different cores and incurs
additional power overheads compared to the more conventional VCOP design.
VCOP-512 yields an additional performance improvement over VCOP-128 and
two DVX configurations, but at the cost of higher power consumption mainly in
the large VRs.

Figure 4.12 shows the energy-delay product (EDP) of a 4-core processor with
enabled DVX. The results are normalized to EDP achieved by the general pur-
pose execution on a single EDGE core. Average EDP of DVX scales down with

the number of cores used in configuration for the kernels with sufficient amount
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Figure 4.12: Energy-delay product (EDP) for DVX.

of DLP; and each configuration shows the substantial EDP reduction with re-
spect to general purpose execution. A key advantage of DVX is the flexibility to
dynamically tune the amount of resources for each kernel. To show the potential
benefits of this feature, we include the configuration with lowest EDP for each
kernel in Figure 4.12 (DVX(BEST)). 4-core DVX often achieves the best EDP
results, since the number of iterations in each kernels is 1024 and thus the DLP
offered is high enough to be exploited with 4 cores. Reduction kernels (BLSS,
Iprod), kernels with modest compute or memory parallelism (Fdiff, I[CCG) and
not entirely vectorizible kernels (PiCell) yet have the insufficient amount of DLP
to saturate the 4-core DVX configuration. DVX(BEST) provides better results
for these kernels by utilizing 1- or 2-core DVX configurations. Compared to
DVX with fixed 4-core configuration, DVX with the dynamically tuned resources
improves the average EDP by 14%.

Figure 4.13 shows the EDP comparison of the DVX enabled processor and the
processor with incorporated VCOP. The results for both processors are normal-
ized to EDP achieved by the general purpose execution on a single EDGE core.
Figure 4.13 includes the EDP results of 4-core DVX, which provides compatible
performance and resources with VCOP. VCOP in average provides the best EDP
results, because it achieves higher speedups at lower power overheads. While
VCOP-128 increases the area of the 4-core processor by 46%, it achieves an aver-

age EDP higher by 3% over 4-core DVX configuration with the same size of the
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Figure 4.13: Energy-delay product (EDP) comparisons of DVX and VCOP.

B DVX(4C, VR32) EDVX(4C, VR128) mVCOP(IC, VR128) [VCOP(1C, VR512)
16 -
14 -
12 -
10 -

AE normalized to single EDGE core

8
6
4 -
2
0
ADI BLSS ESF Fdiff Hfrag ICCG Ilprod Ipred Matrix PiCell GM

Figure 4.14: Area efficiency (AE) comparison of DVX and VCOP.

VRs. VCOP-512 has 25% lower average EDP than 4-core DVX, but with an area
increase over 74%. For some of the kernels with an insufficient amount of DLP
(BLSS, PiCell), 4-core DVX provides comparable or even better EDP results.
The best DVX configuration over these kernels further achieves even better EDP
results, by utilizing the number of cores suitable to exploit the amount available
parallelism. On the contrary to such flexible substrate, VCOP does not allow
for the tuning of resources and potentially underutilize them for the applications
without abundant DLP.

Figure 4.14 shows the area efficiency (performance per mm?, the higher is
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better) of a 4-core processor with enabled DVX and the processors with incor-
porated VCOP. The results are normalized to the general purpose execution on
a single EDGE core, but counting the total area of the 4-core processor. DVX
increases the area efficiency by about 6.1x due to large speedup on the existing
CMP resources. On the contrary to such area efficient design, VCOP yields only
16% higher speedup than DVX and increase the area efficiency by 4x; it provides
cost-inefficient performance improvements due to its excessive area footprint for

the dedicated resources that are added to the lightweight EDGE CMP.

4.7 Related work

The same as EVX (see Chapter 3), its extended DVX version proposed in this
chapter has similarities to various designs of classic based vector architectures
such as [3, 17, 63]. The classic vector processors execute vector instructions,
which operate over large configurable-size operands placed in complex vector reg-
ister files. The vector instructions expose more parallelism than instructions that
operate over scalar operands, which increases the efficiency of vector execution.
To improve their performance, vector processors incorporate multiple functional
units (vector lanes) for high compute bandwidth and multiple memory banks for
high memory bandwidth. Although vector processors yield high performance and
power efficiency, the large and complex parallel hardware resources have limited
their applicability mainly to the domain of supercomputers. It has been sug-
gested to add a vector unit to a superscalar processor [61] to investigate their
applicability in the domain of general purpose cores. This increases the perfor-
mance of the cores on DLP workloads, but incurs significant overheads due to
the additional large vector register file and multiple functional units. DVX aims
to achieve such improvements and yet avoid adding the complex vector-specific
hardware resources. Instead of adding extra resources, DVX specializes the ex-
isting resources of a general purpose CMP into a vector-based DLP accelerator.

During decades of their utilization, classic vector architectures have been sig-
nificantly improved [4, 16, 18, 39, 40] and DVX enables most of these improve-
ments. We next discuss the most relevant improvements of classic vector pro-

cessor. Then we summarize the previous work that investigates vector execution
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on the EDGE architecture and finally we differentiate DVX from the modern
architectural models that exploit DLP in commercial processors.

Decoupled vector architecture [16] utilizes different queues to decouple scalar,
vector compute and memory execution. The results show that decoupling tol-
erates memory latency and improves performance of in-order vector implemen-
tation. Work on out-of-order vector architectures [18] shows even higher perfor-
mance at the cost of a larger vector register file. CODE [39] proposes a clustered
vector architecture that leverages decoupling as well. Its clustered design further
allows for easy scaling of the vector register file size and the number of func-
tional units. For maximal performance on a general purpose CMP, DVX enables
out-of-order execution of vector compute instructions and decoupled execution of
vector memory instructions. To keep the footprint of vector hardware small in
DVX, the L1 data cache is used to implement the register file and the EDGE to
implement out-of-order execution of vector instructions.

The latest vector processors have been proposed based on the vector-thread
architecture [4, 40]. This architecture scales vector execution across multiple
vector cores by leveraging a control processor and associated hardware to start
vector threads across the vector cores. The vector instructions are grouped in
Atomic Instruction Blocks (AIB) and by sending a vector-fetch command, each
vector core fetches and executes AIBs over different vector elements. Thus, fast
hardware controlled threads on vector cores resemble dynamic vector lanes. The
vector-thread architecture further improves the conventional vector design by
enabling independent control flow in each vector-thread to exploit irregular DLP
code. The control processor handles the lock-step execution of vector-threads
when control flow does not diverge and synchronization between threads when
control diverges. DVX resembles the vector-thread execution model by using
hardware threads to scale its execution over the cores in CMP. DVX avoids the
resources of control processor and keeps exploiting the simple homogeneous CMP
substrate. Instead of adding general purpose capabilities to a specialized vector
processor like the vector-thread architecture, DVX specializes the resources of an
existing general purpose CMP.

The most similar research alternative to DVX combines general purpose and

vector execution on a conventional superscalar multicore processor to enable ef-
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ficient support of all levels of parallelism (ALP) [66]. Like DVX, ALP focuses on
the memory system to increase the performance of DLP multimedia applications.
It loads/stores large vector operands to/from streams/registers in data cache; and
extends the existing issue/rename logic to use slices of these registers as a source
or destination of each vector compute instructions. DVX, the same as its prede-
cessor EVX avoids such issue/dispatch overheads by using extra hardware that
transfers slices of the vector operands from memory to the vector compute instruc-
tions and back. While ALP relies on the conventional threads to scale the vector
execution over multiple cores, DVX introduces faster hardware-managed threads
to dynamically tune the hardware resources to a specific application phase.
Previous work in exploiting DLP on EDGE architectures extends an ultra-
large unicore TRIPS processor [65] with vector-like execution. The processor
targets high performance single-threaded execution with an extensive amount of
compute resources. The vector support leverages EDGE AIBs to allocate the
resources and repeat their execution over different elements. The L2 is accessed
as a software managed cache to provide additional memory bandwidth, while an
extra thread is expected to orchestrate the memory execution. The proposed
vector execution on the large TRIPS processor lacks the flexibility to tune the
amount of resources to different applications or workload phases like DVX.
Modern commercial general purpose processors incorporate multimedia SIMD
extensions [8, 20, 55, 59, 73] and GPUs[46, 47, 51, 54, 56, 77| to accelerate DLP
phases of various applications. Compared to vector processors and DVX, SIMD
extensions achieve limited performance improvements. On the other hand, to-
day’s GPUs provide more powerful execution model for DLP workloads than
SIMD extensions. Highly parallel applications increase their performance by us-
ing GPUs as their offload accelerators. The offloading incurs overheads for data
movement operations between CPUs and GPUs; and the overheads have been
greatly reduced by integrating the GPU and CPU into a single heterogeneous
chip processor [6, 27]. Yet, the overheads in applications that frequently alter-
nate parallel GPU and non-parallel CPU execution still have significant impact
on the performance. DVX-enabled CMP avoids such overheads by executing par-
allel and non-parallel code regions on the general purpose CMP. Additionally the
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DVX enabled CMP dynamically tunes its resources to different workloads phases

and types of parallelism.

4.8 Summary

In this chapter, we have proposed dynamically-tuned vector execution (DVX)
by specializing one or more available cores in a CMP into a DLP accelerator.
DVX extends the previously proposed EVX technique to utilize the available re-
sources in CMPs and scale the specialized vector execution over multiple cores.
It increase the flexibility of DLP acceleration by dynamically tuning the amount
of the specialized resources to different workload requirements. For such tun-
ing, DVX incorporates lightweight threads controlled by hardware to scale the
execution of vector instructions over multiple cores.

We have evaluated DVX on a 4-core EDGE CMP and show that it extends
the processor area by only 1.1%. While executing the set of selected Livermore
loops, 4-core configured DVX yields over 6.2x of the average speedup over the
general purpose execution on a single EDGE core. Additionally, 4-core DVX
outperforms EVX when it uses a low level fork/join implementation of threads to
scale over 4 cores by 27%. DVX improves the energy-delay product of the CMP
over 14 times. On the contrary to the cost-effective DVX implementation, the
conventional heterogeneous system approach with the same CMP and a dedicated
accelerator seems to be much more area extensive. The accelerator adds an
amount of execution resources equal to what DVX already leverages from the
CMP itself. It increases the area footprint over 74% and greatly affect the cost
of the lightweight EDGE processor. DVX avoids such costs and yet gains over
86% of the speedup obtained with the accelerator.

The favorable DVX results evaluated in this work makes it a promising alter-
native to high-performance DLP accelerators in commercial mobile processors.
Following work will look further at dynamic specialization techniques of general
purpose cores for mobile devices. In the next chapter we investigate one such

technique that reconfigures the mobile cores into diverse hardware accelerators.
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Chapter 5

CMP Reconfiguration into

Accelerators

5.1 Overview

This chapter proposes general purpose mobile cores that adapt the underlying
hardware to a given workload. Existing mobile processors need to utilize more
complex heterogeneous substrates [6, 25, 42, 43| to deliver the demanded per-
formance on diverse mobile applications. They incorporate different cores and
specialized accelerators. On the contrary, our processor utilizes only lightweight
composable cores and dynamically provides an execution substrate suitable to
accelerate a particular workload. Composability avoids static placement of the
hardware resources into different cores and allows a workload to dynamically
optimize its execution substrate by composing one or more cores into a large
processor. Our approach goes one step further than composability and on-the-fly
reconfigures one or more mobile cores into accelerators. Such accelerators improve
performance and efficiency with minimal hardware additions.

The accelerators are made of general purpose ALUs reconfigured into a com-
pute fabric and a general purpose pipeline that streams data through the fabric.
To enable reconfiguration of the ALUs into the fabric, the floorplan of a 4-core
processor is changed to place all the ALUs in close proximity on the chip. A
configurable circuit-switched network is added to connect the ALUs of each core

into the compute fabric. The network permits the ALUs to be reconfigured to
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perform various commonly repeated computations, instead of executing general
purpose instructions. The pipeline used by the accelerators can be configured as
well, by composing one or more cores into a large pipeline. It allows for tun-
ing the accelerator memory system by incorporating extra resources that exploit
higher memory bandwidth. Moreover, such configurable and yet general purpose
pipeline of the accelerators increases their applicability by arranging the data
that has either regular or irregular access patterns.

This chapter introduces reconfiguration of cores into the accelerators. It
briefly describes connection of the processor’s ALUs into the compute fabric, as
well as the necessary hardware additions and modifications. It further explains
the integration of the fabric into the general purpose pipeline, the way it config-
ures and utilizes the fabric. It is followed with a description of the speculative
computation in the fabric used by configured accelerators. Next is evaluation,
which shows the performance benefits of reconfiguration and the impact of com-

posability. The chapter ends with related work and concluding remarks.

5.2 Reconfiguration of Cores

The reconfiguration of the composable cores extends their capabilities beyond
general purpose processing. The bulk of the resources can be allocated and used
either as general purpose processors or accelerators. Each application running
on this processor dynamically tunes the amount of allocated resources and their
configuration to achieve the desired performance and efficiency. For example,
one application may be executed by using a set of cores for general purpose
processing and another one accelerated by using the remaining cores in the CMP
reconfigured into an accelerator. The operating system (OS) would be in charge
of controlling the sharing of resources among different applications. To simplify
our studies and avoid side effects, in this work we only explore reconfiguration
without interacting with the OS. We assume that all cores are available for a
single workload and avoid the OS to control the sharing of resources.

The reconfiguration feature makes an accelerator of one or more general pur-
pose cores. The accelerator is composed of the general purpose ALUs reconfigured

to perform like a compute fabric and the general purpose pipeline that streams
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compute data through the fabric. The reconfiguration feature is implemented on
a 4-core CMP. The floorplan design of the CMP is slightly modified to provide a
suitable execution substrate for the compute fabric. The original design assumes
4 identical tiles, one per core. The new floorplan places the existing ALUs of each
core close to each other by shifting them from the original location to the appro-
priate corner, as shown in Figure 5.1. A configurable circuit-switched network
is added to connect all the ALUs into the fabric. When configured, the network
dynamically provides a specialized datapath that couples the ALUs of the fabric
to be used by the accelerators. This is further explained in Section 5.3.
Although in this work we focus on a 4-core CMP, the proposed design can
further scale beyond four cores. One way to scale it is to create a larger compute
fabric, by extending the switched network to connect ALUs in a CMP that in-
corporates more than four cores. This network extension includes longer metal
interconnects and repeaters that are positioned along the network at various
points to enable connections between ALUs on not-neighboring cores. With such
network, the resources of the compute fabric scale by increasing the number of
cores incorporated on a chip. Instead of connected the resources of many cores
into a large fabric, each group of four neighboring cores could be also reconfigured
into a different accelerator, where each one has its private fabric. Such design
enables simultaneous acceleration of different compute regions in a dynamically
configured hardware pipeline, which resembles the proposed design of Multicore
Accelerator [58]. To simplify our research, in this work we investigate one com-
pute fabric that executes one at most the commonly repeated region of compute
instructions. The compute instructions are mapped to the fabric to configure the
appropriate datapath among the ALUs. By using the configured datapaths, the
fabric avoids passing the data via a complex power-hungry register file that is
shared between different instructions. Once configured, the fabric may receive
and process new data like a stream, over and over without reconfiguration. If the
amount of data that is processed by the fabric is large, reconfiguration signifi-
cantly increases the processor efficiency by eliminating per instruction overheads
such as fetch, decode and register file accesses, as in [26]. To avoid any propaga-

tion delays in the configured fabric, the accelerators execute multiple iterations
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Figure 5.1: The dynamic reconfiguration of a composable 4-core CMP into various
accelerators. The accelerators are composed of the existing ALUs connected into

compute fabric and one or more cores that stream data through the fabric.

of the configured computation through the fabric in a pipelined fashion. Differ-
ent stages of the fabric simultaneously compute different values. The network
controls the progress of data through the connected ALUs and maximizes perfor-
mance gains.

The fabric is easily integrated into the existing general purpose pipeline of the
composable cores. The accelerators use the pipeline to execute memory instruc-
tions as well as to send and receive data processed by the fabric. Since the fabric
performs most of the computation, the pipeline mainly executes non-compute in-
structions. This increases the efficiency of memory processing, by using most of
the pipeline resources to saturate the available memory bandwidth. Composing
cores further increases the amount of resources available for memory processing
and allows for issuing more in-flight memory requests. Figure 5.1 shows various
examples of the general purpose cores reconfigured into an accelerator. The ac-
celerators leverage the general purpose pipeline that composes 1, 2 or 4 cores to
stream data through the fabric.

Ideally, the reconfiguration feature would benefit from compiler modifications
to statically provide the configuration for the fabric and optimize the workload
to use such configured fabric. The compiler has to be extended to recognize a
compute code region that may be optimized by using reconfiguration of the CMP
resources into an accelerator (e.g. using trace based static profiling). The com-

piler will then automatically embed the instructions that maps the computation
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onto the compute fabric and produce the other instructions used by accelerators:
load, store and passing of the data though the fabric. Alternatively, the compiler
may be arranged to use programmer hints or annotations to indicate to a code
that is likely to be optimized and suggest the preferred configuration (e.g. number
of composed cores used by an accelerator). In this work, we do not explore such
sophisticated compiler modifications. To simplify our research, we only leverage
an in house compiler [24] that translate by a programmer defined compute region
into the configuration for the fabric and we change the code by hand to utilize

the configured fabric.

5.3 Compute Fabric

The compute fabric (Figure 5.2) is made by reconfiguring the ALUs of a CMP.
These ALUs perform general purpose compute operations. Each ALU supports
various operations, by using a set of functional units (FU)! and control logic to
select which one is dispatched to perform the specific operation. Only a single
FU per ALU is active simultaneously at most. The ALUs in one core are con-
nected with a shared bypass network. The network enables the ALUs to operate
conventionally, while bypassing the data between the ALUs and a shared register
file. To support reconfiguration, we add a configurable circuit-switched network
that connects all the FUs of a 4-core CMP. The network enables reconfiguration
of the ALUs into the compute fabric, in which a subset of FUs is configured to
perform a computation of frequently repeated compute instructions. One FU
performs one compute instruction and the network passes the data between the
FUs that perform dependent instructions. It permits using multiple FUs per
ALU simultaneously, as opposed to conventional operation dispatch. By over-
laying the switched network over the conventional bypass network, the FUs may
be dynamically toggled to operate either conventionally by performing general
purpose instructions; or as part of the compute fabric that performs a commonly

repeated computation.

In this work functional units refer to ALU sub-units such as shifter, adder or multiplier.
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Figure 5.2: The implementation of the compute fabric on a 4-core CMP. It adds a
circuit switched network to couple the existing functional units of four neighboring

cores. The network permits the units to be reconfigured into the fabric.
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Figure 5.3: The microarchitecture details of each node in the fabric.

The network is based on a lightweight 2D mesh of nodes, as shown in Fig-
ure 5.2. Each node of the mesh may be: a) an extended FU b) a configurable
switch or ¢) a fifo queue that holds input or output values, and their implemen-
tations are shown in shown in Figure 5.3. Each FU extends the compute logic by
incorporating two data registers and two status registers. The data registers hold
the values that are input operands of the operation to be computed by the FU.
Each status register indicates whether the content of the associated data register
is valid or not. Each FU is connected to four neighboring switches from where it
receives its inputs and sends outputs. The switches are connected to fifo queues,
FUs or other switches. Each switch includes: a multiplexer, an associated config-

uration memory, data and status registers. The multiplexer provides an output
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by selecting from two or more inputs according to its configuration bits, which are
stored in the configuration memory. The data register holds the data that passes
through a switch, before the switch is able to forward it to the next node. The
switch is configured by writing configuration bits into the configuration memory.
The configuration bits are transmitted by reusing the network datapaths, like
in [24]. When configured, the switches provide the specialized datapath between
the fifo queues and various FUs. The fifo queues hold input or output data val-
ues and each fifo is directly connected to one switch. The input values from each
fifo are inserted into the the connected switch. Such inserted data goes through
various FUs and switches on the configured datapath towards the fifos that hold
output values of the configured computation.

Computation on the datapath may be driven either statically or dynamaically.
Statically driven computation uses a schedule provided by a specialized compiler
to issue the operations. The compiler calculates the delays of each operation and
generates the static execution schedule for the fabric. Input values are usually
injected into the fabric at once and results are available after a known delay pro-
vided by the compiler. Such scenario simplifies the design of the network, which
requires nothing beyond connections and routing control. On the other hand,
dynamically driven computation requires including data and status registers in
the network nodes to dynamically arrange the execution schedule. The schedule
is arranged basing on the dataflow control of values arriving to the FUs. The
FUs perform an operation when all its inputs are indicated as ready and the
next node on the path is free to receive a new value. Dataflow control enables
performing computation in a pipelined fashion on the fabric simply by streaming
ready values into it. On the other hand, statically driven computation requires
a complex static scheduling to pipeline the computation. The static scheduling
may be jeopardized by events such as cache misses, which result into variable
latencies hard to predict at compile time. This resembles the choice between
in-order and out-of-order instruction issue. In-order issue logic is much simpler
than out-of-order, but it relies heavily on the compiler to produce highly opti-
mized schedules; this is specially complex due to variable latency instructions
(e.g. loads that miss in the cache). Unlike the complexity of the hardware for

out-of-order execution, the complexity of the hardware required to implement
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dynamically driven computation in our case is small. Therefore, in our work we
chose dynamically driven computation. It provides a more flexible substrate with
the cost of only small hardware additions and does not require complex compiler
support to generate the execution schedule.

By configuring the datapath, the fabric allocates a set of the FUs available on
the CMP, possibly leaving a number of them off the datapath. The dynamically
driven computation uses the allocated FUs only when a FU has ready input
values. Hence, the fabric may not utilize all the allocated FUs every cycle. There
is a bubble in each cycle that a FU, allocated or not, is not occupied. On the
other hand, an accelerated workload may still use some general purpose compute
instructions, which are not mapped to the compute fabric (e.g. instructions
that reduce results generated by the fabric). These instructions may “fill the
bubbles” and utilize the FUs during such cycles, while increasing the utilization
of the FUs. To achieve this, the wakeup and select logic is extended to check if
there is a pipeline bubble and issue a compute instruction if the bubble exists.
The extended logic interacts with a dynamically controlled dataflow in the fabric
to check if a particular FU is unoccupied. When a general purpose compute
instruction is issued into an unoccupied FU, the fabric is not affected nor are any
structural hazards created. This extension to the processor logic enables the FUs
to operate in a hybrid mode, by alternating between the operations of general
purpose instructions and configured computations in the fabric. The hybrid mode
enables acceleration of workloads, whose computation do not entirely fit onto the
fabric and the remaining compute instructions need to dispatch general purpose
operations to the FUs. This increases the utilization of the FUs and provides

more flexible compute substrate used by the accelerators.

5.4 Integration of Reconfigurable Fabric

The fabric is integrated into the existing general purpose pipeline of the com-
posable cores, like it is shown in Figure 5.4. The fabric performs like a deeply
pipelined execution unit with long latencies. The fifo queues in the fabric facil-
itate the integration. The pipeline sends the input values to the fifos that hold
the inputs (input fifos) and receive the output values from the fifos that hold
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Figure 5.4: An example of the simplified compute fabric integrated into the

pipeline of composable cores. The fabric affects only the pipeline execute stage.

outputs (output fifos). The pipeline is connected with the input fifos by using
the input bus between the reservation station buffers and the write ports of the
input fifos. Each entry of the input fifos is updated by writing value to the entry
of the fifo encoded by the fifo and entry identifiers appended to the value. A sim-
ilar connection is incorporated between the pipeline and output fifos, except the
output bus connects the reservation stations to the read ports of the output fifos.
Inside the fabric, each fifo queue is directly connected to the east, west, north
or south switch node. The point-to-point connections between the fifos and the
switches manage the progress of input and output values when they arrive to the
particular node, as it is already explained in Section 5.3.

Since the general purpose pipeline can compose one or more cores, the fabric
has to be connected to each of the cores in such pipeline. Each core has its
input and output buses, which connect the core’s reservation station buffers to
the input and output fifos of the fabric. There are different options for designing
the connection buses between the buffers and the fifo queues: each input/output
bus can share the read/write ports of the fifo queues implemented as one bank
of the fifo entries; the buses can use the independent ports added to the bank to

increase the input/output data throughput; or the buses can share the ports of
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the banked fifo entries (e.g. by having independent bank of the entries per each
fifo). To increase the data throughput and performance without requiring extra
read or write ports, in this work we chose to have one dedicated bank per each
fifo of the fabric as shown in Figure 5.3. We show the benefits of such design
decision in Section 5.7.

The general purpose pipeline of the composed cores executes AIBs of EDGE
instructions. The AIBs include instructions that send the data to the input
fifos or receive it from the output fifos (send/receive instructions). Send/receive
instructions pass the data between the pipeline and fabric, by accessing the fifo
queues. Before the fabric is utilized by the pipeline, it has to be configured to

perform the desired computation.

5.4.1 Fabric Configuration

The fabric is configured by executing a number of configuration instructions,
which may occupy one or more AIBs. Each configuration instruction has an
immediate field that holds the identifier of a given node in the switched network
and the data used to configure that node. Rather than broadcasting this data
through the network until it reaches its destination node, the data is sent to a fifo
queue connected to a row or a column where the destination node resides. From
the fifo queue, the data is inserted into the associated node and each node forwards
the data to the next node, until the data reaches its destination. North nodes
forward the data to south nodes and west nodes forward the data to east nodes.
By configuring various switched nodes, the fabric forms a specialized datapath
that connects a heterogeneous set of FUs that is used for the computation. The
number of blocks used for the configuration defines the configuration overhead,
which is analyzed in section 5.7.

Configuration overhead is mitigated through repeated execution of the config-
ured computation. If the entire application exploits a single configuration of the
fabric, configuration overhead is amortized and does not remarkably affect per-
formance. On the other hand if the application exploits different configurations
of the fabric, the configuration phase is executed a few times, which may reduce

the performance improvements. For such cases, an additional memory (RAM)
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could be used to keep the various configurations of the fabric. By storing the
configuration into the specialized memory, the configuration overhead would be
reduced. Instead of executing one or more blocks with configuration instructions,
the memory would instantly send the configuration data to the fabric. In our
experiments we do not use such memory, but we see its potential benefits for
different applications, which could share the fabric configurations to accelerate
common critical functions (e.g. FFT could be used either for graphics or speech

recognition applications).

5.4.2 Fabric Utilization

The fabric is utilized by the pipeline, which executes AIBs appended with send /re-
ceive instructions. AIBs are composed of EDGE instructions, which explicitly en-
code the dataflow within targets in producer instructions. Send instructions act
like producers, by forwarding input values into the fabric. The targets of a send
instruction route the value to the appropriate input fifo queues of the fabric to be
inserted into the right place of the configured datapath. The value is provided by
a memory or register-read instruction executed in the general purpose pipeline.
Receive instruction act like producers as well, by forwarding output values from
the fifo queues encoded in the instructions to their specified consumers.

We rely on the general purpose pipeline to access memory and arrange input
and output values. Such design may accelerate the compute regions with any
kind of memory access patterns, regular, irregular or a combination. To effi-
ciently arrange the operand values and maintain the correctness of the targeted
application, the pipeline leverages the commonly available units of the memory
subsystem such as LSQs, low-latency caches and hardware prefetchers. Instead of
modifying the pipeline configuration, composing cores tunes the pipeline resources
(e.g. data cache size) on-the-fly to further increase the efficiency of memory ac-
cesses, which is evaluated in section 5.7. After the value has been loaded by the
general purpose pipeline, a send instruction is used to insert the value into the
fabric. Similarly, a receive instruction is used to collect the output value produced
by the fabric, which is later stored to memory. Alternatively, the value can be

read from/written to a general purpose register.
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Each send /receive instruction is associated with a fifo queue, which is encoded
in the instruction. When fetching an AIB with send /receive instructions, the core
allocates one entry in each input fifo and each output fifo queue. If there is no free
entry per queue to be assigned to the AIB, the core stalls the block execution
due to structural hazard. When an AIB commits, the entries assigned to the
block are released and they can be used by the next AIBs. When the entry is
assigned to an AIB, the send instructions in the block execute by writing input
data to the entry of their encoded input fifo queues. The receive instructions in
the block execute by reading the output data from the entry in their encoded
output queues. If a value requested by a receive instruction is not available in the
entry (not computed by the fabric), the output queue stalls the receive request
until its entry receives the requested value.

The send/receive instructions included in the AIB control the entire itera-
tion(s) of the configured computation. The AIB sends all the values to be com-
puted and receives all the results. To increase performance, the AIBs with limited
communication with the fabric (e.g. compute intensive regions) can apply loop
unrolling to control multiple iterations of the computation. The send /receive in-
structions in the AIB are replicated per each iteration of the loop. An identifier
specifies the iteration and the ordering of the send/receive requests in the fifo
queues. The iteration identifier implies the same semantics with respect the or-
dering of send /receive requests as load-store identifiers for the ordering of memory
instructions. The block header is extended to encode the number of iterations
in the AIB, which allows a core to allocate multiple entries of each fifo for such
AIB. While executing a given send or receive instruction, its iteration number is
used to access the appropriate entry in the fifo queue and maintain correctness
of the computation.

If the configured computation produces results after a long delay, software
pipelining may be applied to relieve the problem. In this optimization, multiple
AlIBs are used. The first AIB only sends the data to be received by next block.
Each of the following AIBs then sends data to be received by the next AIBs and
receives the computed results of the data sent by previous AIBs to avoid long

delays. The last AIB only receives the results of the data sent by previous AIBs
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and does not send any data. We evaluate the impact of these two optimizations
in Section 5.7.

It is possible to further improve data throughput and performance of the accel-
erator by integrating a programmable memory controller to load input and store
output values. Such controller performs memory accesses according to the access
patterns, when they are known at compile time. Due to the additional complexity
of integrating the programmable memory controller, we do not investigate such

approach in this work.

5.4.3 Example of Acceleration

Figure 5.5 shows step-by-step acceleration of a simple compute code region. The
first step of the acceleration configures a simplified fabric to perform the compu-
tation of the compute code region. The second step modifies the original code
region to utilize the configured fabric. We also present two optimized versions
of the code that utilizes the fabric, one using loop unrolling and the other using
software pipelining.

The compute code region iterates a loop that adds two input values. The
fabric is first configured to perform as much as possible computation of this loop.
When configured, the fabric performs addition of four input values and produces
one output result. The code is next modified to be accelerated. The original
code of the loop contains compute and memory instructions. The modified code
removes compute instructions that are executed by the fabric and has only one
remaining compute instruction in the loop to accumulate the results computed by
the fabric. The modified code has all the memory instructions from the original
loop to load input and store output values and additionally appends send/receive
instructions that pass the values through the fabric.

The modified code is written by using send/receive intrinsics, which specify
the associated input/output fifo queue, the value per send /receive instruction and
the loop iteration identifier if using loop unrolling. The modified code without
optimizations describes an AIB, which controls one iteration of the computation
within the fabric (an addition of 4 input values that produces as a result one

output value). Loop unrolling optimization increases the size of the AIB to control
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(for(int i=0; i<num; i+=4) A

{
_sendf(0, vector[i+0]);
_sendf(1, vectorl[i+1]);
_sendf(2, vectorl[i+2]);
_sendf(3, vector[i+3]);
sum +=_receivef(0);

}

(“double vector[num];
double sum=0;
// initialization of vector

// compute region
for(int i=0; i<num; i++)
sum += vectorf[i];

C CODE SNIPPET

-
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Figure 5.5: An example of the acceleration of a compute code region by using the
fabric. The fabric is configured to perform the computation of the code region

and the code region is modified to utilize such configured fabric. The modified

CONFIGURED FABRIC )

COMPUTE REGION MODIFICATION

(for(int i=0; i<num; i+=8) )

{
_sendf(0, 0, vector[i+0]);
_sendf(0, 1, vector[i+1]);
_sendf(0, 2, vector[i+2]);
_sendf(0, 3, vector[i+3]);
sum +=_receivef(0, 0);
_sendf(1, 0, vector[i+4]);
_sendf(1, 1, vector[i+5]);
_sendf(1, 2, vector[i+6]);
_sendf(1, 3, vector[i+7]);
sum +=_receivef(1, 0);

}

MODIFIED COMPUTE REGION

\_ WITH LOOP UNROLLING )

(_sendf(O, vector[0]);
_sendf(1, vector[1]);
_sendf(2, vector[2]);
_sendf(3, vector[3]);
for(int i=4; i<num; i+=4)
{
sum +=_receivef(0);
_sendf(0, vectorl[i+0]);
_sendf(1, vector[i+1]);
_sendf(2, vectorl[i+2]);
_sendf(3, vectorl[i+3]);
}

sum +=_receivef(0);
MODIFIED COMPUTE REGION

\WITH SOFTWARE PIPELINING)

code can be further optimized to increase the performance.
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two iterations of the configured computation (an addition of 8 input values that
produces two output values). Software pipelining optimization describes an AIB,
which receives the outputs of the previous compute iteration and sends the inputs
for the following compute iteration. Such optimized AIB must be preceded by
the code that sends the inputs of the first iteration and followed by the code that

receives the outputs of the last iteration.

5.5 Squashing and Speculative Execution

Managing values that pass through the reconfigurable compute fabric is quite
challenging in conventional out-of-order processors. It is important to keep the
original order in which values should enter the fabric, maintain memory correct-
ness and support speculative computation necessary to increase performance of
out-of-order processors. EDGE architectures provide a more advantageous sub-
strate to integrate the fabric, because they execute atomic blocks of instructions.
Block atomicity facilitates arranging speculative values for the fabric and enables
to integrate the fabric with modest hardware additions, such as the fifo queues.
Each AIB that arranges the values sends all the inputs and receives all the
outputs for one or more iterations of the configured computation. Due to atom-
icity, the AIB either 1) commits all its results to registers and/or memory or 2)
squashes (discards) all the results. The fabric consumes a value from a fifo queue
as soon as it is ready. Speculative values are computed by the fabric and results
stored to the fifo queues, which hold outputs of the computation. The AIB may
receive the results, but if the AIB squashes, all the results are discarded. If the
block squashes before sending all the values required to perform the computation,
the dynamically driven computation in the fabric could stall waiting for an input
value that would never be sent. To avoid this, an AIB that squashes marks the
allocated entries in the fifo queues to be invalid-but-ready. This way, the fabric
can always finish its computation and eventually discard the results if the AIB
is being squashed. Once the computation is finished and the AIB committed or
squashed, the allocated entries in the fifo queues are released to be used for the

next computation. This mechanism enables the accelerators of composable cores
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to perform speculative computation in the fabric, by simultaneously executing
one or more speculative AIBs that control such computation.

A more complex hardware would be required to support the software pipelin-
ing optimization introduced in section 5.4 and speculative computation simul-
taneously. In software pipelining, the AIBs send values to be received by the
following AIBs and receive values sent by previous AIBs. Speculative computa-
tion may provide values which need to be discarded, including the case in which
the next AIB, that will use such values, has not started yet. Since in this case
there is no AIB to mark the corresponding fifo queues entries as invalid, the fabric
would require additional hardware to discard these results. Such design seems to
be excessively complex and we do not incorporate it in this work. Instead, the
workloads optimized with software pipelining do not leverage speculative compu-
tation. The fabric consumes the values when the AIBs commit. This makes all
the computation in the fabric non-speculative and the results are never discarded.
The results may be received by an AIB that squashes, but the fifo queue entries
that hold the results are released only when the AIB commits. This guarantees
the correctness and finishing of the software pipelined accelerations. In this case,
the accelerators do not leverage speculative computations, but they avoid idling
of AIBs that wait for the results with long delays. It is a trade-off between two
optimizations and each one requires no complex hardware additions when they

are applied separately.

5.6 Experimental Setup

5.6.1 Simulator

We evaluate the reconfiguration feature on a dynamic EDGE processor, by using
a detailed, timing, in-house from Microsoft Research. The simulator is written in
C++ and configured to model a composable 4-core EDGE CMP with the param-
eters shown in Table 5.1. To model the memory hierarchy properly, the simula-
tor is coupled with the Ruby memory model (see http://www.mbsim.org/Ruby).

The EDGE simulator dynamically composes cores through calls to the runtime
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Table 5.1: Simulators configuration.

’ ‘ Component ‘ Description ‘
ALUs [FUs| 2 [FMul, FAdd, TAdd, IMul, Logical]
SSJ LSUs 1 (Load/Store request per cycle)
~ | Register File 64 entry
(&)
A | Branch Predictor tournament
L/S Queue 32 entry unordered LSQ
L1 I/D-cache 32 kB each, 1 cycle (hit), &xMSHR
A | L2 cache 4 banks x 512 KB, 15 cycles (hit), 8xMSHR
Qz) DRAM latency: 256 cycles
Z | On-Chip-Network 1 cycle/hop, Manhattan routing distance
o | FUs 4x10, (4 Cores x 2 ALUs [5FUs|)
;c% Switches 5x11, 1 cycle/hop
= | Fifos 30, 8 entries/fifo, 1 bank/fifo

system, via memory mapped system registers. To model the processor reconfig-
uration feature, we integrate an independent compute fabric simulator [24] that
simulates a fabric with the parameters shown in Table 5.1. The fabric utilizes the
existing processor FUs (4x10), by adding extra switches (5x11) and fifo queues
(30), in a similar fashion to the design shown in Figure 5.2. The fabric simula-
tor is based on a configurable switching network that models dynamically driven
computation. The network connects and dynamically customizes the subset of
available FUs for a particular computation. For some workloads that require more
FUs than what the processor already provides, the fabric simulator is configured
to model the amount of available and extra FUs added to enable acceleration.
The processor and fabric simulators are connected by using input/output data
buses between each core of the processor and the fifo queues of the fabric. The
default configuration of the fabric utilizes one independent bank per each input
or output fifo queue to allow for substantial bandwidth at the input and output
of the fabric for each core of the CMP.

5.6.2 Benchmarks

To perform the evaluation of the reconfiguration feature, we select seven comput-

ing workloads shown in Table 5.2 from various benchmark suites [9, 60, 71, 78].
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Table 5.2: Selected compute intensive workloads.

’ Name ‘ Description Domain ‘
fft Fast Fourier Transform Signal Processing
kmeans | K-Means Clustering Data Mining

mm Dense Matrix-Matrix Multiply Scientific Computing

mriq Magnetic Resonance Imaging - Q | Image Reconstruction

nbody | N-Body Simulation Physics Simulation

spmv | Sparse-Matrix Vector Multiply Scientific Computing

stencil | 3-D Stencil Operation Fluid Dynamics

Table 5.3: Accelerated portions of code and configuration overhead.

% of code Configuration overhead
Workload -
accelerated || Instructions ‘ AIBs ‘ cycles ‘ cycles-cached
ftt 76 277 3 3094 163
kmeans 19 357 4 3775 209
mm 82 269 3 3085 159
mriq 64 269 3 3098 159
nbody 81 281 3 3092 164
spmv 20 277 3 3082 163
stencil 85 317 3 3320 183

Each workload utilizes a different compute algorithm and each algorithm is typ-
ically found in emerging applications used in various segments of the computer

industry, including in mobile devices.

5.6.3 Methodology

The code of each workload is inspected to select the most frequently executed
compute regions to be executed in the accelerator. Table 5.3 shows the percentage
of accelerated code in each workload and configuration overheads. The rest of
the workload is executed on the general purpose cores . The selected regions are
compiled with an in-house compiler [24] to provide the configuration bits for the
fabric. By executing the AIBs that write the configuration bits, each workload
configures the fabric to match the computation of its compute algorithm. The

configuration overhead is shown in Table 5.3, and it includes its total number of
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Table 5.4: Acceleration requirement and characteristics.

FUs required FIFOs required | Loop-unrolling
Workload . .
FMul ‘ FAdd ‘ FSub ‘ Or || Input ‘ Output n iterations

fft 4 3 3 0 6 4 2
kmeans 8 7 8 0 16 1 2
mm 8 7 0 0 16 1 2
mriq 6 4 0 1 7 2 4
nbody 7 5 3 0 7 3 4
spmv 8 6 0 0 16 2 1
stencil 2 10 2 0 14 2 1

instructions, AIBs and cycles required to execute these AIBs. The cycles differ
whether the AIBs are cached or not (the configuration has been used already or
not) and we include both cases.

Once the fabric is configured, it allocates various nodes of the network to per-
form an entire computation. The configuration requirements of each workload are
presented in Table 5.4. Since the workloads perform floating-point computation,
the fabric mostly allocates floating point FUs. The only exception is the Bitwise
Or, used by workload mrig. The most commonly used FUs are multipliers and
adders. A floating-point adder performs two operations: add and subtract. While
performing one operation at most, the number of allocated adders is presented
separately for each operation. The number of allocated multipliers goes up to 8,
which is the amount provided by leveraging existing FUs on 4 dual-issue cores.
On the other hand, the number of allocated adders goes over 8 in two cases: 15
in kmeans, 12 in stencil. To accelerate these two “adder-hungry” workloads it is
necessary to incorporate more FUs than what is provided by reconfiguration of
general purpose cores. Those workloads are examples where the fabric needs extra
FUs to match a computation of a workload that intensively uses some operation.
2 of 7 selected workloads find it necessary to incorporate the modest set of extra
FUs, while the others can accelerate their computations on the existing compute
resources. To find out what may be the most preferable set of extra FUs, it is re-
quired to comprehensively analyze a broad range of mobile applications and their
compute regions. To simplify our work, we avoid this step and when necessary

we incorporate only the FUs that are required to accelerate the workload. The
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extended fabric requires extra switches to enable the configuration of the extra
FUs. The number of configured switches varies per workload and it depends on
the number of allocated FUs and their locations. The input and output switches
of the configured fabric are connected to input and output fifo queues. The set
of selected workloads use up to 16 (kmeans, mm, spmv) input and 4 output fifo
queues (fft), which define the number of input and output values per iteration.

The compute regions of each workload are modified by hand to perform their
computation in the configured fabric. We modify the code of the compute region
by writing send and receive intrinsics similarly to the code transformations of the
example shown in Figure 5.5. The workloads that use the fabric to perform a lim-
ited amount of computation per iteration are optimized by using loop unrolling as
shown in Table 5.4. The AIBs of optimized workloads replicate send/receive in-
trinsics to send/receive the data of up to 4 compute iterations (mrig, nbody). The
fabric does not need to be modified or reconfigured when changing the number
of iterations unrolled per AIB.

We evaluate the speedup of the reconfiguration feature over general purpose
computation on the composable cores while executing the entire workloads (in-
cluding the non-accelerated parts). We evaluate the effect of composing cores to
scale the resources of general purpose processors and accelerators. Each of the
workloads uses static inputs, but repeats its computation many times to warm
up the caches. Repeated computation minimizes the reconfiguration overhead,
since the fabric is configured once per workload. We show the benefits of two
optimization techniques: loop unrolling and software pipelining. Loop unrolling
is included by default in the rest of the experiments, while software pipeline
is used only in the experiment that shows the benefits of the software pipeline
optimization. The general purpose computation always uses the best compiler

optimization to make the comparisons fair.

5.7 Results

Figure 5.6 reports the performance improvements obtained by dynamically com-

posing and reconfiguring cores. Label Composing(kC) indicates that k cores are
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W Composing(1C) B Composing+Reconfiguration(1C)
B Composing(2C) B Composing+Reconfiguration(2C)
@ Composing(4C) O Composing+Reconfiguration(4C)
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Figure 5.6: Reconfiguration speedup.

composed into one larger logical processor. Label +Reconfiguration indicates that
the cores are reconfigured into an accelerator.

We first analyze the results of composing cores, without resorting to recon-
figuration. The 2-core composed processor outperforms the 1-core processor by
1.51 times on average. The 4-core composed processor scales the performance
even further by achieving over 2.2x of average speedup compared to the 1-core
logical processor. Composing cores provides significant benefits for the selected
workloads. This is due to their compute intensive algorithms, where abundant
computation enables the enlarged substrate with more execution resources to
simultaneously perform more computation and increase performance.

Reconfiguring the cores into accelerators increases performance even more by
specializing the computing substrate. Each accelerator utilizes the fabric config-
ured per workload and the pipeline of one or more composed cores to stream data
through the fabric. Compared to the 1-core processor without reconfiguration,
the accelerators increase the average performance by 1.56x, 2.39x and 3.51x, when
1, 2 or 4 cores are used in the accelerator’s pipeline respectively. The results scale
when the accelerators utilize more cores. More cores in the accelerator execute
more speculative AIBs, which perform speculative computation and increase the
utilization of the fabric, as explained in Section 5.5. The results of specialized

computing on the accelerators scale in a similar way as the results of general
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purpose computing. With such similar scaling trends, the specialized comput-
ing always outperforms the general purpose computing with the same number of
cores. The 1-, 2- and 4-core accelerator outperforms the 1- ,2 - and 4-core general
purpose processor by 1.56x, 1.58x and 1.6x respectively.

The speedup of the accelerators over the general purpose processor varies per
workload and goes from 1x (stencil) to 2.57x (mm), when using the 1-core con-
figuration in each case. Stencil is a corner case that has a modest amount of
computation over the stencil values, which are accessed following complex mem-
ory access patterns. Without extra memory optimizations [31], which are not
analyzed in this work, the stencil workload does not have any benefits of spe-
cializing its relatively small computation. On the other hand, mm has intensive
computation with sequentially accessed data of a dense matrix as input. The
modified mm code for the accelerator removes most of the compute instructions.
It enables more aggressive loop unrolling optimization by refilling the AIBs with
extra memory instructions of the unrolled loop. The modified mm performs much
faster on the accelerator. The accelerator uses the pipeline mostly for memory
processing and leverages the configured fabric to simultaneously perform multi-
ple operations in different FUs. Some workloads (kmeans) implement a compute
intensive algorithm, but include non-compute instructions (e.g. library functions
such as malloc) in the frequently executed code region. In such a case, the ac-
celerator improves performance, but the non-compute instructions (81%) limit
speedup. One of the workloads (spmv) implements an algorithm that has a few
different computations in a single loop. Although one iteration of its loop com-
bines various computations, the accelerator may be configured for only one of
them, because of the configuration overhead. The rest of the computation (80%)
is performed using the general purpose pipeline, which limits the performance.

Figure 5.7 shows the performance impact of two accelerator design decisions.
It shows the impact of implemented wide memory execution in the general pur-
pose pipeline (which is not default design) and the impact of banking the in-
put/output fifo queues (default design). We separately apply these modifications
to the 1-core and 4-core accelerators respectively with their default configura-
tions (Table 5.1). The speedup is presented over the baseline 1-core processor.

To avoid conflicts between memory accesses in multicore accelerator and isolate
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W Composing+Reconfiguration(1C, 1-Wide-Memory-Execution-per-Core)
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Figure 5.7: Performance impacts of two different designs of the accelerators.

the impact of wide memory execution in the core pipeline, we apply this modi-
fication onto the 1-core accelerator. We increase the number of load/store units
(LSUs), as well as the number of ports in the LSQ and L1 data cache to enable
wide memory execution through the entire pipeline. Instead of one LSU per core,
which is the default design, we incorporate two LSUs. This modification enables
the accelerator to issue up to 2 instead of 1 memory requests per cycle, but it
increases the performance of the accelerator by only 1%. This happens because
the AIB based execution of the selected compute intensive workloads provide
the insufficient number of parallel memory instructions per AIB to saturate two
LSUs. A possible way to increase the performance of the accelerator without hav-
ing the parallel memory instructions is to execute SIMD load/store instructions.
The SIMD instructions manage wide data accesses, when a workload exploits
sequential data access patterns. Due to its associated additional complexity, this
thesis does not investigate such SIMD optimization. While increasing the num-
ber of LSUs in the core pipeline has negligible impact on the performance, the
data throughput between the fabric and composable pipeline significantly affects
the performance of the accelerator. We study this impact on the 4-core accelera-
tor, because it utilizes the 4-core pipeline to stream data through the fabric and
requires the higher throughput of data between the pipeline and the fabric. If

this accelerator accesses a fabric that has one bank of the input and one bank of
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W Composing+Reconfiguration(1C, No-Optimization)
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Figure 5.8: Performance benefits of various optimizations.

the output fifo queues, its performance degrades by 27% compared to by default
designed accelerator that utilizes one dedicated bank per each input or output
fifo queue. Although the banking of fifo queues increases the complexity of their
implementation, our result show that such design decision greatly increases the
performance of the 4-core accelerator.

Figure 5.8 shows the benefits of loop unrolling and software pipelining op-
timizations. We present the speedup of the 1-core accelerator over the 1-core
general purpose processor. The general purpose execution in the processor uses
loop unrolling, but not software pipelining. The results of the accelerator are pre-
sented by incrementally applying loop unrolling and software pipelining. Loop
unrolling is applied to workloads that perform computation over a small amount
of input values per iteration (see Table 5.4). Loop unrolling increases the size
of the AIBs that arrange the compute values and reduces inter-block communi-
cation overhead. Loop unrolling increases performance by about 40% (fft, mm,
mriq, nbody benefit from it). Since the general purpose execution uses loop un-
rolling by default, the reconfiguration feature sometimes does not yield any extra
speedup without applying the loop unrolling optimization (mrig, nbody experi-
ence slowdown with “No-Optimization”). Software pipelining provides substan-
tial additional performance when the workloads perform complex computations

with long latencies (mm, mrig, nbody). The AIBs avoid this latency by receiv-
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Figure 5.9: Reduction of instruction overheads in the general purpose pipeline

when using reconfiguration.

ing the results of previous AIBs. Software pipeline is not applied to the general
purpose execution, because the processor executes operations individually and
all latencies are small, unlike the compute fabric which fuses multiple operations
and produces results with long delays. Software pipelining may have a negative
impact to the performance when computation is not extensively long or when
an outer loop that repeats the computation is complex (fft). Since the software
pipelining evaluated in this work does not require extra hardware support(only
disables the speculative computation), it may be selectively applied only to work-
loads which find it beneficial. By choosing the best optimization, performance
further increases over 10%.

Figure 5.9 shows the reduction of instruction fetch, decode, execute and com-
mit overheads in the general purpose pipeline, while comparing the results in the
pipeline of a 1-core accelerator over the pipeline of a 1-core processor. Addition-
ally, the execution overhead is presented individually for: memory instructions;
ALU instructions, including the instructions executed by the general purpose
pipeline and the fabric; and other instructions, including branch, register read-
/write and the later send/receive instructions. The results show that the acceler-
ator moderately reduces the number of executed memory and ALU instructions,

but increases the number of executed control-transfer instructions by 2x. This
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happens mainly because of the code modifications. The workloads are modified
by mapping the floating-point compute instructions to the fabric and refilling the
AIBs with extra memory and send/receive instructions to control the computa-
tion mapped onto the fabric. These modifications often diminish the number of
temporary results stored in memory and bookkeeping complexity. In some work-
loads, the number of executed memory and ALU instructions is reduced when
running on the accelerator (kmeans, mm, spmv), because these workloads perform
memory accesses and address calculations for temporary results when running on
the general purpose processor. Similarly in other workloads, the number of book-
keeping ALU instruction is reduced (fft, nbody) when running on the accelerator.
As opposed to the number of ALU instructions, appended send /receive instruc-
tions in the modified AIBs increase the number of executed branch, register and
transfer instructions. For some workloads, the accelerator executes over 3 times
more of these instructions (mrig). In total, the accelerator does not notably re-
duce the average number of total executed instructions, which is the expected
result. On the other hand, the accelerator reduces the instruction fetch, decode
and commit overheads by over 40%. This happens because the accelerator maps
the compute instructions to the fabric once, but executes them many times while
avoiding fetch, decode and commit stages. The general purpose pipeline incor-
porated into the accelerator still performs the fetch and decode stages with the
same amount of resources. But instead of processing the compute instructions,
the pipeline fetches and decodes more memory and transfer instructions in the
refilled AIBs. By including more memory instructions per AIB, the pipeline sat-
urates the available memory bandwidth with more memory requests, tolerates
memory latency and increases the utilization of the ALUs connected into the
fabric. This way, the accelerator effectively leverages the existing resources of the

CMP and improves their efficiency as well as performance.

5.8 Related Work

To increase flexibility, performance and efficiency, there is research that proposes

dynamic CMPs [22, 32, 36, 41]. These processors compose one or more simple
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cores into a big wide-issue core for single-threaded execution. Through compos-
ability, they dynamically tune the allocation of execution resources to a particular
workload phase. To further increase the performance and efficiency of dynamic
CMPs, we extend the dynamic CMPs with reconfiguration feature. We build our
design on composable cores based on the EDGE architecture [7, 69]. Reconfigura-
tion of the composable cores is an advanced dynamic capability, which specializes
one or more cores as an accelerator.

There is previous work that proposes to reconfigure existing resources of a
processor into some kind of accelerator. In the context of EDGE architectures,
vector execution on EDGE cores proposed in Chapters 3 and 4 dynamically re-
purposes the general purpose cores into a vector processor. The vector processor
executes vector AIBs, which allocate the existing compute resources and repeat
the computation by streaming the values of large vectors. A vector memory unit
is incorporated to decouple vector memory accesses from computation and ar-
range the vector values in an efficient manner. The vector processor customizes
the memory controller for vector access patterns, while the reconfigurable cores
proposed in this chapter customize the compute resources for frequently executed
computations. These two dynamic approaches have different trade-offs and it may
be interesting to have both features on a single chip, applying them selectively
depending on the workload or even combining them. For example, when the re-
configured cores compute values with regular access patterns, the vector memory
unit may be used to efficiently arrange data and increase performance.

Various reconfigurable compute accelerators [11, 12, 23, 24, 26, 35, 49, 50, 57,
58] have been proposed to accelerate compute intensive code regions. They are
added to the baseline processor to enable compute acceleration. The accelerators
are based on coarse grained reconfigurable architectures, which incorporate the
array of configurable data processing units. Each unit performs one compute
task of the parallel workload (e.g. matrix arithmetic, signal or image processing),
while data passes through the array. The processing units are either simple like
general purpose FUs or more complex processing elements. The units are coupled
by using a configurable interconnect in a grid-like compute fabric. Such fabric

is integrated into a processor pipeline like a back-end processor. The pipeline
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arranges data, while the fabric computes the data. The fabric improves perfor-
mance by overlapping the executions of multiple compute instructions in different
stages of the fabric. It also improves efficiency by repeating many times a com-
putation that is configured only once, which reduces per compute instruction
fetch and decode overheads. Instead of integrating such fabric into a lightweight
mobile processor, we propose to reconfigure the processor compute resources into
a fabric. Our fabric is designed to resemble the previously proposed computing
substrates, their performance and efficiency, but avoids as much as possible of
their area overheads.

The fabric is configured by mapping frequently repeated computations to it. It
may be configured statically (compile time) or dynamically (run time). The static
configuration requires modification of the ISA; moreover an application compiled
to utilize an accelerator cannot run on a processor without that accelerator. The
dynamic configuration has a significant performance overhead. To avoid these
drawbacks, a virtualized execution accelerator [11] has been proposed. That
accelerator utilizes a hybrid static-dynamic configuration approach to map the
compute regions to its substrate. To avoid hardware and performance penalties
for the virtualized acceleration, in this work we statically configure the compute
fabric for different computations.

To enhance the performance of workloads with pipeline compute parallelism
in which streaming data is pipelined through various compute algorithms, a pro-
grammable multicore accelerator [58] has been proposed. Such accelerator ex-
ploits coarse-grained parallelism across different cores and fine-grained parallelism
within a single core. One core performs one particular computation and multiple
cores enable pipelining of different computations. In this work we do not inves-
tigate multicore accelerators, but we believe it is a very promising direction for

future work.

5.9 Summary

In this chapter, we have presented a novel way to dynamically reconfigure the
general purpose resources of a 4-core processor into accelerators. Reconfiguration

maximizes the performance and efficiency of the processor yet incurring modest

143



5. CMP RECONFIGURATION

hardware additions. To facilitate reconfiguration, the layout of the processor with
four identical cores is slightly modified by placing the execution resources of each
core close to each other. Only a configurable circuit-switched network is added
to connect the resources and enable their reconfiguration into a large compute
fabric that performs computation in the accelerator. Additionally, the general
purpose pipeline of one or more cores in the processor stream data through the
configured fabric and along with the fabric composes the entire accelerator.

We have evaluated the proposed reconfiguration feature on a 4-core EDGE
processor. The results show that reconfiguration yields 56% of an average speedup,
while accelerating seven compute intensive workloads. Two of them require ex-
tra adders to enable the fabric to specialize its substrate for their computations.
Software optimization techniques such as loop unrolling and software pipelining
are necessary in some workloads to efficiently feed the accelerator and keep its
resources busy. Beyond performance, reconfiguration improves the efficiency of
the reconfigured processor by reducing the instruction fetch, decode and commit
overheads over 40% on the accelerated workloads.

The promising results evaluated in this work open up new research directions,
which involve reconfiguring the cores of mobile processors instead of adding a set
of dedicated hardware accelerators. We think that future work in this direction
should adapt the proposed design to more powerful 8- or 16- core reconfigurable
processors, which would have 2 or 4 banks of compute fabrics. Beyond reconfig-
uration of the additional execution resources in many-core processors, we think
it would be promising to research the additional memory optimizations that may
further increase the utilization of the fabric and performance of the accelerators.
For example, instead of composing cores to increase memory capabilities of the
accelerators, a programmable memory unit could be used to achieve the same or

even better results.
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Conclusion

This thesis shows us how innovative hardware techniques with minimal modifi-
cations of a general purpose EDGE processor greatly improve its performance
and efficiency. We believe that these techniques would allow us to implement a
low-cost, high-performance and power-efficient processor, which would be a com-
petitive product to more complex heterogeneous processors typically found in
nowadays devices.

We have proposed a novel specialization technique, FVX, that enables a low
power EDGE core to execute sophisticated vector instructions. EVX utilizes the
existing general purpose resources of the EDGE core to avoid area and complexity
required when incorporating vector processors as accelerators. This way, the EVX
enabled core provides the benefits of vector architectures with only modest hard-
ware additions. Namely, EVX loads/stores configurable large vector operands by
utilizing a dedicated hardware with sophisticated addressing modes that overlaps
the latency of memory accesses with the computation of such configurable large
operands. By utilizing the available execution resources more efficiently, EVX
yields the high speedup compared to the baseline execution of DLP workloads.

The cost-efficient EVX design presented in this thesis led us to further in-
vestigate such approach. We have improved EVX to utilize the additional cores
in CMPs. We name this advanced technique DVX, since it allows a CMP to
dynamically tune the vector execution over the available cores. DVX on-the-fly
configures the allocation of compute and memory resources, which are specialized

to process vector elements in parallel. It minimizes the configuration overheads
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by utilizing hardware controlled threads to scale the execution of vector instruc-
tions. While dynamically configuring the appropriate number of cores for the
vector execution, DVX efficiently accelerates workloads with abundant or insuffi-
cient DLP. The specialized execution on general purpose cores delivers energy and
performance results competitive to a dedicated vector accelerator and yet avoids
the high requirements of extra special-purpose resources for such accelerator.
The encouraging DVX results motivated us to explore another innovative
technique that reconfigures cores of a CMP into accelerators. This technique im-
poses coarse-grained reconfiguration of the existing resources in a general purpose
CMP. Reconfiguration of cores in the CMP composes accelerators of compute in-
tensive DLP workloads without adding a special-function compute hardware to
the chip. Only a circuit-switched network is added to connect the CMP execu-
tion resources and reconfigure them to perform frequently repeated computation
in a DLP workload. The proposed reconfiguration technique avoids costs and
complexity of dedicated hardware accelerators by delivering desired compute ca-

pabilities to diverse DLP workloads.

6.1 Moving Forward

We showed that the specialization and reconfiguration techniques improve the
performance and efficiency of general purpose cores when running diverse DLP
workloads. We see both of these techniques as competitive approaches to improve
commercial processors in the domain of low-power mobile computers. We think
that both techniques should be incorporated in such design of future mobile
processors. They could be applied selectively as well as in synergistic interaction.
The following paragraph discusses a few details of how we envision a system that
implements both techniques should work.

When an application performs diverse compute algorithms over large vectors
of data elements with regular access patterns, the specialization technique should
be selected to accelerate the application. One or more cores specialized for vector
execution would execute vector compute instructions of these algorithms over
the partitioned vectors of data elements; and per core dedicated memory units

would load/store the elements by utilizing their memory access patterns. When
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an application performs the same compute algorithm over large vectors of data
elements with irregular access patterns, the reconfiguration technique should be
selected to accelerate the application. In this case, one or more cores reconfigured
into accelerator would perform statically configured computation of the algorithm
over a large amount of data; and the execution substrate in the accelerator would
be configured for such computation by utilizing a compute instruction pattern
that repeat over different elements of the vectors. When an application performs
the same compute algorithm over large vectors of data elements with regular
access patterns, both techniques should be applied to accelerate the application
in a synergistic manner. In this special case, the dedicated memory units would
be configured to load/store the data elements and the execution substrate to
perform computation over the elements.

We believe that the specialization and reconfiguration techniques along with
their results discussed in this thesis encourage further research of the enhanced
processor design based on these techniques. This research should incorporate the
evaluation of one such processor for mobile devices when running a broad range
of mobile workloads. The next step of future work should include the full system
simulation with the interaction of multiple applications and operating systems.
In this step, the optimal scheduling of multiple workloads onto the reconfigurable
resources of the enhanced processor should be investigated. This would probably
lead to proposing new hardware/software additions or modifications. The virtu-
alization of reconfigurable resources would be challenging as well and seems like
an interesting follow up research.

Apart from these simulated experiments, developing an RTL design of the
proposed processor would allow for validating its results in performance, power
and area domains. These results then could be compared against the results
achieved with more complex state-of-the-art mobile processors based on hetero-
geneous system architecture. The experiments with the RTL processor design
would show more advantages and/or limitations of our ideas. Although there are
obvious challenges with these ideas, we still believe that the RTL design would

prove their quality and hence we would like to have one such design in the future.
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Publications

The contents of this thesis led to the following publications:

ReConFig 2013: ReCompAc: Reconfigurable compute accelerator, Milovan

Duric, Oscar Palomar, Aaron Smith.

DATE 2014: EVX: Vector execution on low power EDGE cores, Milovan
Duric, Oscar Palomar, Aaron Smith, Osman S. Unsal, Adrin Cristal, Mateo

Valero, Doug Burger.

ICSAMOS 2014: Dynamic-vector execution on a general purpose EDGE
chip multiprocessor, Milovan Duric, Oscar Palomar, Aaron Smith, Milan
Stanic, Osman S. Unsal, Adrin Cristal, Mateo Valero, Doug Burger, Alexan-
der V. Veidenbaum.

ICSAMOS 2015: Imposing Coarse-Grained Reconfiguration to General Pur-
pose Processors, Milovan Duric, Oscar Palomar, Milan Stanic, Osman S.
Unsal, Adrin Cristal, Mateo Valero, Aaron Smith.

In submission at [JPP: Dynamic Specialization of Low-Power Processors for
Data-Parallel Applications, Milovan Duric, Oscar Palomar, Milan Stanic,
Osman S. Unsal, Adrin Cristal, Mateo Valero, Aaron Smith.

The following papers were also published while on graduate studies but are

not included in or directly related to this thesis:
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e Conf. Computing Frontiers 2014: VALib and SimpleVector: tools for rapid
initial research on vector architectures, Milan Stanic, Oscar Palomar, Ivan
Ratkovic, Milovan Duric, Osman S. Unsal, Adrin Cristal.

e HPCS 2014: Evaluation of vectorization potential of Graph500 on Intel’s
Xeon Phi, Milan Stanic, Oscar Palomar, Ivan Ratkovic, Milovan Duric,
Osman S. Unsal, Adrin Cristal, Mateo Valero.

e ISVLSI 2015: Joint Circuit-System Design Space Exploration of Multiplier
Unit Structure for Energy-Efficient Vector Processors, Ivan Ratkovic, Oscar
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