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As a young scientist interested in wine microbiology, I felt fascinated by the alcoholic 

fermentation, due to the differences in cell morphologies under microscope, different 

cell statues (culturable, viable but not-culturable and dead) and their different 

appearance time during alcoholic fermentation. A series of papers that I read is first 

authored by Imma Andorrà, who was working in Oenology and Biotechnology group 

of Universitat Rovira i Virgili. Therefore, with great enthusiasm, I joined the same 

group in October, 2012 and found that the platform of culture-independent 

techniques applied to wine microbiology such as quantitative PCR was well built 

here. My topic thus went to estimate and understand the yeast diversity during wine 

alcoholic fermentation, which contained the application of new and improved culture-

independent techniques and the exploration on cell status and interaction 

mechanism between Saccharomyces and non-Saccharomyces. 

  

My working hypothesis was that yeast population dynamic largely depends on the 

interaction between S. cerevisiae and non-Saccharomyces and that the combination 

of different culture-independent techniques could be the appropriate tools to 

understand that interaction. To verify the hypotheses, three main objectives were set 

up with the aim to better estimate yeast diversity and viable population dynamic 

during alcoholic fermentation, and to understand how the population dynamics 

formed by interaction among each other. The three objectives were listed as follows: 

 

(1) To analyze the yeast diversity in wine fermentation through culture-

dependent and culture-independent techniques. 

To obtain a comprehensive investigation on yeast diversity in grape must from 

Priorat region, massive sequencing targeting D1/D2 region of rDNA was intended 

and introduced for the analysis. Other well-developed techniques such as 

quantitative PCR and DGGE were combined to analyze the same DNA sample from 

grape must. As a comparison, traditional isolation and identification (5.8S-ITS-RFLP 

and 26S-D1/D2 sequencing) was performed for the same grape must samples. 

 

The results are shown in Chapter 1: Fungal diversity in grape must and 

wine fermentation assessed by massive sequencing, quantitative PCR and 

DGGE. Frontiers in Microbiology (2015) 6, 1156. 
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(2) To analyze the status of S. cerevisiae and two main non-Saccharomyces 

yeast in fermentation by different techniques. 

To examine the status of the population of S. cerevisiae and two main non-

Saccharomyces yeast (Haseniaspora uvarum and Starmerella bacillaris) in complex 

grape must, culture-independent techniques were developed at detection levels of 

both RNA and cell membrane. Fluorescence in situ hybridization (FISH) was used to 

target intracellular rRNA directly, with two primers newly designed for the non-

Saccharomyces yeast studied. RNA was also extracted and analyzed by quantitative 

PCR and DGGE. Besides, quantitative PCR and DGGE were combined with 

ethidium monoazide bromide (EMA) treatment to exclude cells with compromised 

membrane. 

 

The results are stated in Chapter 2 and 3. 

Chapter 2: Monitoring of Saccharomyces cerevisiae, Hanseniaspora 

uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations 

during alcoholic fermentation by fluorescence in situ hybridization. 

International Journal of Food Microbiology (2014) 191, 1-9. 

Chapter 3: Viable and culturable populations of Saccharomyces 

cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris (synonym 

Candida zemplinina) during Barbera must fermentation. Food Research 

International (2015) 78, 195-200. 

 

 (3) To further analyze how S. cerevisiae interact with non-Saccharomyces 

yeast. 

To understand the interaction between S. cerevisiae and non-Saccharomyces 

yeast, mixed alcoholic fermentation was conducted to analyze strains’ culturability 

during the whole process. Then a series of trials were performed to discover the 

probable interaction mechanism affecting culturability of non-Saccharomyces yeast: 

Firstly, to check if contact-mechanism exists in our S. cerevisiae strain against 

non-Saccharomyces, compartmented vessels using dialysis bags were designed, 

which allowed the molecule diffusion but prevented cell transfer between the 

compartments. 

Secondly, to indicate the influence of environmental changes (depletion of 

sugar and nitrogen and ethanol production) on culturability of non-Saccharomyces 
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during wine fermentation, synthetic musts mimicking different stages of mixed 

fermentations were prepared. The culturability and viability of non-Saccharomyces 

strains was followed after their inoculation. 

Thirdly, to find out the effect of some special metabolites from S. cerevisiae 

during wine fermentation, cell-free supernatants were derived from different stages 

of S. cerevisiae fermentations. In contrast, synthetic must mimicking the cell-free 

supernatants were designed. Finally, we compared the culturability and viability of 

non-Saccharomyces strains in both media. 

 

The results are indicated in Chapter 4 and Chapter 5. 

Chapter 4: Interaction between Hanseniaspora uvarum and 

Saccharomyces cerevisiae during alcoholic fermentation. International Journal 

of Food Microbiology (2015) 206, 67-74. 

Chapter 5:  The interaction between Saccharomyces cerevisiae and non-

Saccharomyces yeast during alcoholic fermentation is species and strain 

specific. Frontiers in Microbiology (2016) 7, 502. 
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Question 1: Which yeasts are relevant during alcoholic fermentation? 

 

1. Yeast diversity associated with alcoholic fermentation 

In late nineteenth century, Louis Pasteur indicated that wine microorganisms 

responsible for alcoholic fermentations were yeasts that exist on grape surface. After 

decades of investigations, today people know the surface of grape berry is colonized 

by filamentous fungi, yeast and bacteria. When grapes are broken or damaged, 

microbes on grape surface especially yeasts proliferates due to the available nutrient. 

Some yeast species can ferment sugar to alcohol and ultimately the first wine comes 

in history. Due to the relevance of yeast in winemaking, yeast diversity during grape 

must fermentations have been studied to find their traces and activities. Many 

techniques have been used to study it including the widely used culture-dependent 

and culture-independent techniques. However, the emergence of new techniques 

such as Next-Generation Sequencing (NGS) undoubtedly promotes corresponding 

research (Almeida et al. 2015). 

 

1.1. Yeast on grape surface 

Yeast quantity 

Total yeast population on intact grape berries varies ranging 102 cfu/berry to 

105 cfu/berry (Renouf et al. 2005). The wide range of values is regarded to be related 

with different factors especially grape soundness and ripeness. Damaged grape 

berries generally can increase one log cycle of population (i. e. 106 cfu/berry) 

because of the nutrient availability (Barata et al. 2012). Interestingly, population 

quantity also changes as the ripening of grape berries (Renouf et al. 2005; Clavijo et 

al. 2010). Yeast on berry set keep the level of 102 cfu/berry, increase obviously at the 

stage of veraison and reach to 105 cfu/berry at the harvest time (Figure 1). The 

increased population at the harvest time is due to nutrient availability, because the 

cuticle of intact berries become soften and probably bear some microfissures despite 

of the visual intactness (Barata et al. 2012).  
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Figure 1 Total yeast (counted on TY plates) populations (CFU/berry) as a function of the stage 

of berry development (A=berry set, B=veraison, C=the end of the agrochemical applications 

and D=harvest). Data from Renouf et al. (2005). 

 

Yeast diversity 

Yeasts colonizing the grape surface are mainly composed of three types: 

Ascomycetous moulds (yeast-like), Basidiomycetous yeast and Ascomycetous yeast 

(Table 1). As representative specie of Ascomycetous moulds, Aureobasidium 

pullulans is a common yeast-like mould occupying grape surface. Basidiomycetous 

yeast is also predominant on grape surface and the common species are mainly 

from genera of Cryptococcus, Rhodotorula and Sporodiobolus. Although 

Ascomycetous yeasts generally colonize intact grape berries at a non-dominance 

state, a great diversity is found in the worldwide surveys (Table 1). Common 

Ascomycetous yeast on grape surface includes the genera of Candida, 

Debaryomyces, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia. Species 

diversity of Ascomycetous yeast is even higher depending on a series of variations 

(climatic conditions, vineyard treatments, biotic factors, geographic location and 

vineyard factors including age, size, grape variety and vintage year) (Barata et al. 

2012). However, some species from Ascomycetous show widespread distribution 

such as Hanseniaspora uvarum, Issatchenkia orientalis, Issatchenkia terricola and 

Metschnikowia pulcherrima (Table 1). 
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 Table 1 Yeast or yeast-like species present on grape surface. 

*Data collected from eight surveys: [1] Torija et al. (2001), [2] Combina et al. (2005b), [3] 
Renouf et al. (2005), [4] Raspor et al. (2006), [5] Chavan et al. (2009), [6] Li et al. (2010), [7] 
Baffi et al. (2011), [8] Alessandria et al. (2015).  

 Genera Species Countries
* 

Ascomycetous moulds Aureobasidium A. pullulans France
[3] 

Slovenia
[4] 

Brazil
[7] 

Italy
[8] 

Basidiomycetous yeast 

Bulleromyces  B. albus France
[3]  

Cryptococcus C. albidus France
[3] 

Slovenia
[4] 

C. carnescens China
[6] 

Italy
[8] 

C. flavescens France
[3] 

China
[6] 

C. Hungaricus Slovenia
[4] 

C. laurentii France
[3] 

Slovenia
[4] 

C. magnus China
[6] 

Rhodosporidium R. babjevae France
[3]  

Rhodotorula R. aurantiaca Slovenia
[4] 

R. glutinis France
[3] 

Italy
[8] 

R. graminis France
[3] 

R. mucilaginosa France
[3]  

Sporodiobolus S. pararoseus France
[3] 

China
[6] 

Brazil
[7] 

S. salmonicolor France
[3] 

Sporobolomyces S. roseus France
[3] 

Slovenia
[4] 

Ascomycetous yeast 

Candida C. azyma India
[5] 

C. boidinii France
[3] 

C. colliculosa Spain
[1]

 

C. fructus France
[3] 

C. inconpicua China
[6] 

C. intermedia France
[3] 

C. membranifaciens France
[3] 

C. quercitrusa India
[5] 

C. raghi Argentina
[2] 

C. stellata Spain
[1]

 Argentina
[2] 

France
[3]  

Starmerella bacillaris 
(C. zemplinina) 

China
[6] 

Debaryomyces D. hansenii France
[3] 

Slovenia
[4] 

India
[5] 

Hanseniaspora H. guilliermondii France
[3] 

India
[5] 

H. opuntiae France
[3] 

H. uvarum Spain
[1]

 Argentina
[2] 

France
[3] 

Slovenia
[4] 

India
[5] 

China
[6] 

Italy
[8] 

H. viniae India
[5] 

Issatchenkia I. occidentalis Brazil
[7] 

I. orientalis Argentina
[2]

 France
[3]

 India
[5]

 China
[6]

 Brazil
[7] 

I. terricola France
[3] 

India
[5] 

Brazil
[7] 

Italy
[8] 

Kluyveromyces K. lactis France
[3] 

K. thermotolerans Spain
[1]

 

Lipomyces L. spencermartinsiae France
[3] 

Metschnikowia M. pulcherrima Spain
[1]

 Argentina
[2] 

France
[3] 

Slovenia
[4] 

China
[6] 

M. reukaufii Slovenia
[4] 

Pichia P. anomala France
[3]  

P. fermentans France
[3] 

China
[6] 

P. guilliermondii China
[6] 

P. kluyveri Slovenia
[4] 

P. membranifaciens Argentina
[2] 

India
[5] 

Saccharomyces S. boulardii France
[3] 

S. cerevisiae France
[3] 

India
[5] 

Saccharomycodes  S. ludwigii Argentina
[2] 

Torulaspora T. delbrueckii Italy
[8] 

Yarrowia Y. lipolytica France
[3] 

Zygoascus Z. steatolyticus India
[5] 

Zygosaccharomyces Z. bailii Spain
[1]

 China
[6] 
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Saccharomyces cerevisiae is found to be absent or present in low numbers 

from sound grape berries, similar to some spoilage species such as 

Zygosaccharomyces bailii. However, damaged or rotted berries can provide high 

nutrient to favor the growth of Ascomycetous yeast. When whole brunch is harvested, 

some damaged berries in the brunch may result in a high isolation of the 

ascomycetous yeast. Therefore, the isolation of S. cerevisiae and other spoilage 

species from grape berry is suspected to be related with grape health and sampling 

approach (Barata et al. 2012). 

 

The origin 

Ascomycetous moulds and Basidiomycetous yeast are considered as 

oligotrophic residents on grape berries and phylloplanes, because population 

quantity and dynamic of Ascomycetous moulds and Basidiomycetous yeast keeps a 

similar pace on both grape berries and phylloplanes. The oligotrophic residents are 

thought to be adapted to the environment with poor nutrient availability (Loureiro et al. 

2012). However, Ascomycetous yeast is classified as copiotrophic opportunists, 

because they are rarely detected on immature grape berries but detected on grape 

berries with relative rich nutrient availabity (verasion, harvest or damaged grape 

berries). This theory is supported by the finding of uneven distribution of 

Ascomycetous yeast: yeast microcolonies gather around the sites with more 

probable nutrient leaking from berry, such as pedicel insertion and stylar remnants 

(Loureiro et al. 2012). 

Although all Ascomycetous yeast is copiotrophic opportunist, it is difficult to 

isolate some species on sound berries even at harvest time and the classical 

representative is S. cerevisiae. Considering its robust behavior in alcoholic 

fermentation, the rare detection of S. cerevisiae is, no doubt, irrelevant with its 

competitiveness. A more reliable explanation of this phenomenon comes from 

Loureiro et al. 2012: S. cerevisiae and its close relatives (other Saccharomyces 

yeast species) reside primarily in tree bark and soil as spores, where they are 

detected all year long. Only in the two months with grape growing from veraison to 

harvest or decay, the spores are dispersed onto grape berries by some vectors such 

as insects. 
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1.2. Yeast in grape must fermentation 

Ascomycetous yeast existing on grape berries (Table 1) could survive and 

grow in grape must according to worldwide investigations of their isolations during 

spontaneous fermentation of grape must. The Ascomycetous yeast metabolizes 

main nutrients to ethanol and other volatile flavor and thus endues wine particular 

character. According to their fermentation capacity, competitiveness and contribution 

to wine, two main types of yeast are classified in spontaneous grape must 

fermentation: non-Saccharomyces yeast and Saccharomyces yeast. Non-

Saccharomyces yeast is generally less fermentative and competitive than 

Saccharomyces but nowadays is regarded to be more related with wine complexity 

(Figure 2). 

 

Figure 2 Main differences in enological properties of Saccharomyces and non-Saccharomyces 

yeast (Albergaria and Arneborg 2016). 

 

1.2.1. non-Saccharomyces yeast 

The term of non-Saccharomyces has little taxonomical significance, which 

contain not all genera from Ascomycetous yeast except Saccharomyces. According 

to Jolly et al. (2014), only yeast with a positive role in wine production is included in 

this description and yet spoilage yeasts such as Dekkera/Brettanomyces not. 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Introduction 

 

24 

Researchers have investigated the existence and their specific metabolisms 

of various non-Saccharomyces yeast species during alcoholic fermentation. The 

potential applications of non-Saccharomyces in wine industry are listed in Table 2. 

Some yeast species such as Torulaspora delbrueckii, Metschnikowia pulcherrima, 

Pichia kluyveri and Lachancea thermotolerans are currently used as commercial 

starters in alcoholic fermentation. The assessment on Hanseniapsora uvarum, 

Starmerella bacillaris (previously Candida zemplinina) and other species are still on 

the way to balance their positive contribution and negative impact on wine (Masneuf-

Pomarede et al. 2016).  

 

Table 2 non-Saccharomyces yeast with positive impact demonstrated. (Adapted according to 

Masneuf-Pomarede et al. 2016 and Jolly et al. 2014) 

 

The negative impact from non-Saccharomyces is mainly the low fermentative 

activity and high level of undesirable flavors. The low fermentative activity can be 

overcome by mixed fermentation with Saccharomyces yeasts. The undesirable 

Features of interest in winemaking Species/synonym 

Acetate ester production Hanseniaspora guillermondii 

Hanseniaspora vinae 

Lachancea thermotolerans/ Kluyveromyces thermotolerans 

Aroma and complexity Hanseniaspora uvarum 

Metschnikowia pulcherrima/Torulopsis pulcherrima 

Pichia anomala/ Hanseluna anomala 

Pichia fermentans 

Pichia Kluyveri/ Hanseluna kluyveri 

Starmerella bacillaris 

Torulaspora delbrueckii 

Enzymatic activities Debaryomyces hansenii/ Pichia hansenii 

Ester production Metschnikowia pulcherrima/ Torulopsis pulcherrima 

Pichia membranifaciens 

Fructophily Candida stellata/ Torulopsis stellata 

Starmerella bacillaris 

Zygosaccharomyces bailii 

Glycerol production Candida stellata 

Lachancea thermotolerans 

Starmerella bacillaris 

Killer against Dekkera/Brettanomyces Pichia anomala 

Reduced ethanol production Starmerella bacillaris 

Reduced malic acid and total acid Schizosaccharomyces pombe 

Volatile acidity reduction Torulaspora delbrueckii 
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flavors are solved by a mass of olfactive perception experiments to screen 

acceptable or neutral strain (Bely et al. 2013). The genetic and phenotypic 

performance of 115 H. uvarum strains were fully assessed by Albertin et al. (2016), 

as well as 63 Starm. bacillaris strains by Englezos et al. (2015), both being designed 

for exploitation of the two common non-Saccharomyces yeast species isolated from 

grape must fermentation. 

 

1.2.2. Saccharomyces yeasts 

Saccharomyces yeasts are remarkably characteristics of their ability to 

produce and accumulate ethanol (Crabtree effect) even under aerobic conditions 

(Marsit and Dequin 2015). According to Barnett et al. (2000), Naumov et al. (2000) 

and Borneman and Pretorius (2015), Saccharomyces yeasts were taxonomically 

separated into three groups: Saccharomyces sensu stricto group, containing S. 

cerevisiae, S. bayanus (S. bayanus var. bayanus) / S. uvarum (S. bayanus var. 

uvarum), S. paradoxus, S. eubayanus (the parent of S. pastorianus), S. cariocanus, 

S. mikatae, S. kudriavzevii and S. arboricolus, Saccharomyces sensu lato group, 

including S. dairensis, S. exiguus, S. unisporus, S. servazzi and S. castelli and the 

third group with only S. kluyveri. So far, only species in Saccharomyces sensu stricto 

group have enological interest: S. cerevisiae is the primary yeast species in grape 

must fermentation, not only responsible for the metabolism of grape sugar to alcohol 

and carbon dioxide, but also relevant with formation of secondary metabolites and 

conversion of grape aroma precursors to varietal wine aromas (Jolly et al. 2014); S. 

bayanus also mediate grape must fermentation at low temperature since they are 

cryotolerant (Tamai et al. 1998); S. uvarum is proved to be a good starter culture due 

to its reduced ethanol production, psychrophilism and acetate ester production 

(Masneuf-Pomarede et al. 2010; Bely et al. 2013; Csernus et al. 2014). Rementeria 

et al. (2003) isolated strains of S. kluyveri from spontaneous fermentation, but their 

potential contribution to grape must fermentation is still unknown. 

In addition, haploid cells or spores from the species in Saccharomyces sensu 

stricto group are able to mate with each other and form viable hybrids (Querol et al. 

2003). Hybrid strains of S. cerevisiae and S. bayanus as well as S. cerevisiae and S. 

kudriavzevii have been found in fermentations (Gonzalez 2006). This phenomenon 

creates possibility for new species or strains, however, at the same time causes 

confusion about their taxonomy from the molecular and phenotypic classification 
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aspects. For example, S. cerevisiae and S. bayanus are thought to be either two 

separate species, or the same species, that differ slightly from the physiological 

aspect (Fugelsang and Edwards 2007). Researchers also noticed the physiological 

instability of strains belonging to Saccharomyces sensu stricto group (Ribéreau-

Gayon et al. 2006).  

 

1.3. Population dynamics of wine yeast during spontaneous fermentation 

The contribution of yeasts to wine is affected by how they participate in the 

alcoholic fermentation (Comitini et al. 2011). Yeast species commonly found in 

spontaneous fermentation can be divided into three groups: aerobic yeast (Pichia, 

Debaryomyces, Rhodotorula, Candida, Cryptococcus), apiculate yeast 

(Hanseniaspora) and fermentative yeast (Kluyveromyces, Torulaspora, 

Metschnikowia, Zygosaccharomyces and Saccharomyces). Generally, the 

succession of yeast involves the initial domination of aerobic yeast and apiculate 

yeast which present on grape surface, the decrease of these yeasts and increase of 

fermentative yeast as fermentation progresses and final domination of 

Saccharomyces yeasts (Combina et al. 2005a, Ocón et al. 2010, Li et al. 2011, 

Milanović et al. 2013, Tristezza et al. 2013, de Ponzzes-Gomes et al. 2014, Sun and 

Liu 2014, Sun et al. 2014). Main yeast species isolated at the beginning of 

fermentation belong to Hanseniaspora, Metschnikowia and Candida genera. 

The dominance of S. cerevisiae in fermentation is expected for completing 

grape must fermentation (Jolly et al. 2014). However, some distinct dynamics were 

still found depending on the fermentation conditions and relative levels of the major 

species present. In this sense, different studies found that: Hanseniaspora persisted 

longer in fermentation at low temperature (Andorrà et al. 2010b); Z. bailii governed 

botrytis-affected spontaneous fermentation (Nisiotou et al. 2007); P. kudriavzevii 

emerged along with Saccharomyces when relative low ethanol (9%) was obtained at 

the end of fermentation (Wang and Liu 2013); Candida has been reported to 

dominate late stage of fermentation (David et al. 2014) or to finish alcoholic 

fermentation (Clemente-Jimenez et al. 2004). Furthermore, recent studies applying 

culture-independent techniques have found that non-Saccharomyces populations 

persisted during fermentation process (Figure 3, Andorrà et al. 2011). 
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Figure 3 H. guilliermondii in mixed fermentation analyzed by FISH (Δ), QPCR (▲) and plating (□) 

(Andorrà et al. 2011). a: after 24h all plating values are statistically different from those of QPCR 

and FISH. b: after 96 h all QPCR values are statistically different from those of FISH. 

 

In addition to the succession growth of different yeast species during grape 

must fermentation, dynamic change of strains within each species is also evident 

based on molecular techniques for strain differentiation (Fleet, 2003). For S. 

cerevisiae, some dominant or co-dominant strains have been found (Sabate et al. 

1998; Torija et al. 2001), and in case where a single strain dominate shows killer 

phenotype (Schuller et al. 2005). Strain diversity of non-Saccharomyces species has 

also been reported but more focusing on their enological interest than their dynamic 

change (Capece et al. 2005, Masneuf-Pomarede et al. 2015, Albertin et al. 2016). 

These reports introduced the genetic and phenolic variation among strains of the 

same species and indicated that not all the strains of the same species showed the 

same physiological characteristics such as the different extracellular β-glucosidase 

activities shown by H. uvarum species. 

 

1.4. Controlled mixed culture fermentation 

A new tendency for winemaking, controlled mixed culture fermentation, has 

been highlighted in recent years (Ciani et al. 2010, Mas et al. 2016, Padilla et al. 

2016). The main consideration of controlled mixed culture fermentation is to use 

mixed Saccharomyces strains (multi-strains) or mixed S. cerevisiae and non-

Saccharomyces species (multi-species) as an alternative to single culture 

fermentation. Compared to single culture fermentation, mixed culture fermentation 

allows obtaining wines with greater flavor complexity. Proper inoculation of known 
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species can also reduce the risk of stuck fermentation or formation of defective flavor 

that is usually found from “uncontrolled” spontaneous fermentation. 

Over the last few years, several non-Saccharomyces species have been 

commercialized as we mentioned before and designed for mixed fermentation with S. 

cerevisiae. Until now, two main inoculation approaches have been deploited 

including co-inoculation at high cell concentration with the same or different ratios 

between S. cerevisiae and non-Saccharomyces, and sequential inoculation with non-

Saccharomyces firstly inoculated and delayed use of S. cerevisiae (Ciani et al. 2010, 

Padilla et al. 2016). The application of different inoculation strategies also 

encourages researchers to take advantage of “selected” indigenous yeast species 

from each wine region which could reproduce the natural yeast community and 

reduce the invasion of “foreign” yeast species by inoculation (Mas et al. 2016). All 

the inoculation strategies are feasible for winemaking practice and a real sense of 

“controlling” of mixed culture fermentation relies on interaction among inoculated 

yeast cultures.   
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Question 2: How can we analyze the states of yeast cells during alcoholic 

fermentation? 

 

2. Yeast viability during alcoholic fermentation 

The evolution of grape must fermentation is characterized by the complexity 

of yeast population, not only involving diverse yeast species and strains but also 

harboring different cell states. Millet and Lonvaud-Funel (2000) for the first time 

reported that some wine microorganisms existed in viable but not-culturable (VBNC) 

state. Since then, yeast viability in winemaking process has received more attention, 

because viable yeast and its potential metabolism in the process probably affect final 

wine quality. Thus, the analysis of yeast cell states during grape must fermentation is 

helpful for understanding their final contribution. Yeast viability analysis relies on the 

techniques that we use. In addition to traditional culture-dependent techniques, new 

techniques without the need of microbial cultivation have been developed in the last 

ten years. The application of these techniques in wine allows a more comprehensive 

observation and interpretation of yeast viability. 

 

2.1. Culturable yeast and culture-dependent techniques 

In a relative long time, yeast species in grape must fermentation were 

investigated by isolation on culture media and then classified. Until now, exploitation 

of yeast resources still depends on isolation of single colonies on solid media, 

because pure culture of yeast species or strains are necessary for storage, further 

laboratory analysis, screen and even commercialization in winemaking industry. The 

yeast which is able to form colony on solid growth media is designated as culturable 

yeast. Correspondingly, these techniques relying on identification yeast colonies on 

media is named culture-dependent techniques. 

Modern culture-dependent techniques usually apply DNA-based techniques 

for an accurate identification due to the stability of DNA. Some culture-based 

techniques such as WL agar and lysine media are used as a combination with DNA-

based techniques, largely due to special isolation requirement of some yeast species. 

WL agar permits differenciation of yeast species by their colony morphology and 

color (Cavazza et al. 1992) and lysine media is generally used for isolation of non-

Saccharomyces where lysine serves as the sole nitrogen source (Angelo and Siebert, 

1987). 
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These DNA-based techniques for species identification mostly targets 

ribosomal DNA, which includes 100 to 200 repeats of transcription units. Each 

transcription unit contains encoding units (18S rDNA, 5S rDNA, 5.8S rDNA and 26 

rDNA), internal transcriber spacers (ITS) and external trascriber spacers (ETS) as 

shown in Figure 4. Information contained in these regions have been widely used in 

different techniques to identify yeast species, because the conserved sequences in 

these regions reveal greater sequence similarity within species than among different 

species (Kurtzman and Robnett 1998).  

 

Figure 4. Structure of nuclear ribosomal DNA (Fernández-Espinar et al. 2006) 

 

Culture-dependent techniques for species identification in grape must 

fermentation are rDNA sequencing analysis (5.8S ITS1/ITS4 or 26S D1/D2, 

Kurtzman and Robnett 1998, Beltran et al. 2002, Hierro et al. 2006a, Nisiotou et al. 

2007, Clavijo et al. 2010, de Ponzzes-Gomes et al. 2014) and rDNA restriction 

analysis (5.8S-PCR-RFLP, Dlauchy et al. 1999, Esteve-Zarzoso et al. 1999, Granchi 

et al. 1999, Clavijo et al. 2010, Zott et al. 2008, Cordero-Bueso et al. 2011, David et 

al. 2014). There is also application of other techniques in wine yeast species 

identification such as Terminal-Restriction Fragment Length Polymorphism (T-RFLP, 

Sun and Liu 2014). 

 

2.2. Culture-independent techniques 

Wine samples or genetic material extracted from wine samples can be directly 

analyzed by culture-independent techniques. The emergence of culture-independent 

techniques could be due to two reasons. On the one hand, the outcome of 

identification based on culture-dependent techniques are obtained at least two days 

after sampling due to the necessity of growth on media. The lag-behind information 

commonly cannot provide instant guidance for grape must fermentation. On the 

other hand, the ability to grow on media might differ in different species and result in 

investigation bias (Chambers et al. 2015). In addition, intensive work is necessary for 

a relative accurate population composition study obtained from plating and isolation. 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Introduction 

 

31 

Conversely, the application of culture-independent methods allows a relative non-

targeted, rapid, sensitive and comprehensive investigation of complex microbial 

communities in grape must fermentation. 

 

Denaturing gradient gel electrophoresis (DGGE) 

Polymerase chain reaction coupled with denaturing gradient gel 

electrophoresis (PCR-DGGE) was applied to differentiate wine yeast isolates 

(Manzano et al. 2004, Manzano et al. 2005, Di Maro et al. 2007, Nisiotou et al. 2007, 

Renouf et al. 2007), whereas now has been used as a common culture-independent 

method to investigate yeast diversity in grape must fermentation (Cocolin et al. 2000, 

Andorrà et al. 2010b, Cocolin et al. 2011, Milanović et al. 2013, David et al. 2014). 

The main advantage of this technique is the use of universal primers and the lack of 

specific primers for each species. Two sets of universal primers (NL1-LS2 and U1-

U2) have been reported so far all targeting 26S rRNA (Cocolin et al. 2000, Andorrà 

et al. 2008). Yeast species identified covers nearly all common yeast species in 

grape must fermentation such as S. cerevisiae, M. pulcherrima, H. guilliermondii, H. 

uvarum, Starm. bacillaris and T. delbrueckii. Moreover, several DGGE profiles for S. 

cerevisiae strains were also observed, suggesting its potentiality for strain typing 

(Manzano et al. 2005). 

 

Figure 5 The principle of denaturing gradient gel electrophoresis (DGGE, adapted from 

Madigan et al. 2009) 
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A scheme for DGGE analysis is shown in Figure 5. In brief, DNA amplicons 

are obtained with the same length and a GC clamp at the 5’ end. A polyacrylamide 

gel containing a linear gradient of DNA denaturants (a mixture of urea and 

formamide) is used to separate DNA amplicons with different sequences. The 

partially melted double-stranded DNA decreases its electrophoretic mobility in the 

polyacrylamide gel. And the final position in the gel varied due to different denaturing 

degree according to DNA sequences. Each band can be excised from gel for 

sequencing and further determine its identity. 

The detection limits of DGGE is in the order of 103 cfu/mL (Cocolin et al. 

2000), whereas Cocolin et al. (2011) emphasized that detection limit in DGGE 

analysis can change due to different affinity of primers to target species. Minor 

species are hardly detected when coexist with other overwhelming majority species 

(Mills et al. 2002, Prakitchaiwattana et al. 2004, Andorrà et al. 2008, Cocolin et al. 

2011). Furthermore, multicopies of rRNA coding genes with small differences result 

in sequence heterogeneity within the same species. This is the reason why multi-

bands can be found in the DGGE profiles of the same species. It makes the analysis 

of wine sample with many species more complicated (Cocolin et al. 2011).  

Besides PCR-DGGE, RT-PCR-DGGE has also been applied to grape must 

fermentation. RNA is extracted directly from wine samples and subjected to reverse 

transcription. The cDNA obtained is further analyzed using the same operation for 

DNA. The combination use of PCR-DGGE and RT-PCR-DGGE helps to get a more 

complete and accurate yeast diversity, because the profile of RT-PCR-DGGE in 

some cases is richer than PCR-DGGE (Mills et al. 2002, Urso et al. 2008). 

 

Massive sequencing 

Massive sequencing, also named metagenomic sequencing, high-throughput 

sequencing or pyrosequencing, has been used  very recently to determine the 

relative abundance of microorganism in vine, grape and grape must fermentations 

(Setati et al. 2012, Bokulich et al. 2014, David et al. 2014, Pinto et al. 2014, Taylor et 

al. 2014, Pinto et al. 2015, Setati et al. 2015). Massive sequencing owes high 

sensitivity due to the vast amount of sequence data collected by the techniques. 

Corresponding data generated highlights significant regional differences in vineyard 

biodiversity, and thus a hypothesis of “microbial terroir” is proposed mentioning the 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Introduction 

 

33 

possibility that distinct microbial diversity may be responsible for regional wine style 

(Bokulich et al. 2014, Capozzi et al. 2015, Setati et al. 2015). 

Different platforms such as 454 Roche and illumina have been established for 

massive sequencing (reviewed by Mayo et al. 2014). Common workflow is shared by 

these platforms containing DNA library preparation, multiplex sequencing and raw 

data analysis. Massive sequencing has a high requirement of DNA quality out of the 

need of precision. However, compared to the operation, what is more important is 

the way of forming DNA library (reviewed in Huggett et al. 2013). Now the approach 

used in winemaking field is to use PCR to form library for each sample, referred to as 

targeted metasequencing. Then multiplex sequencing is used to analyze multiple 

samples simultaneously each containing thousands of molecules from the DNA 

library. Multiplexing sequencing is realized by using unique molecular identifiers 

(MIDs) which are tagged to samples during library construction (Figure 6). The 

successful application of massive sequencing also relies on the proper reading and 

interpretation of a host of high quality sequences collected, which largely rest on the 

database selected for the identification of genera or species if taxonomy-dependent 

methods are used. Prokaryotic microorganisms can be searched on ribosomal 

database project (RDP) database, whereas eukaryotic microorganisms can be 

identified on SILVA and GenBank databases (Pinto et al. 2014). 

 

Figure 6 The addition of MIDs to target DNA by PCR in 454 Roche platform. A. improved 

forward primer. B. improved reverse primer. 

 

For targeted metasequencing, the selection of primers determines analysis of 

target microorganisms, but all of them usually are designed on the ribosomal region. 

Recent studies mainly applied primers targeting D1/D2 region of 26S rDNA (Taylor 

et al. 2014, Pinto et al. 2014, Pinto et al. 2015), ITS region of 5.8S rDNA (Bokulich 
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and Mills 2013, Bokulich et al. 2013, Pinto et al. 2014, Pinto et al. 2015, Setati et al. 

2015) and 18S rDNA (David et al. 2014). Bokulich and Mills (2013) suggested that 

no primer pair could exactly reconstruct microbial distribution from a complicated 

community. Taylor et al. (2014) chose D1/D2 region instead of ITS region because 

length polymorphism of ITS region may cause PCR and sequencing bias and D1/D2 

region present a comprehensive reference database allowing species identification. 

However, other researchers (Pinto et al. 2014, Pinto et al. 2015) regarded that 

combination use of D1/D2 region and ITS region would allow for the highest 

coverage of eukaryotic organisms. According to their reports, the use of different 

primers generates different population structure in ecology investigation and yet the 

operational taxonomic units (OTUs) of microorganisms are similar (Figure 7). 

 

Figure 7 Biodiversity dynamics associated with D2 (fungi), ITS2 (fungi) and V6 (bacteria) region 

during the vegetative cycle of grapevine by massive sequencing (Pinto et al. 2014). 

 

Quantitative PCR (qPCR) 

Quantitative PCR (qPCR), also called real time PCR, applies fluorescent dye 

such as SYBR Green or fluorescently-labeled nucleotide probe to show the progress 

of a PCR reaction, because fluorescent signal increases in direct proportion to PCR 

product formed during reaction. The thermocycler used for qPCR has a detection 

system able to quantify signal at the end of each cycle and representing 

corresponding information into an amplification curve. The amplification curve 

provides a cycle number, called threshold cycle (Ct), at which fluorescent intensity 
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started exponential increase compared with the background signal. This technique 

permits quantification of cell concentrations, because good linearity can be built 

between the quantity of cells and threshold cycle (Ct). Therefore, qPCR can realize 

simultaneous identification and cell quantification on the basis of a well-built standard 

linearity curve (Figure 8). 

 

Figure 8 Fluoresence signal increase in the progress of qPCR reactions and a well-built 

standard linearity curve. 

 

qPCR is a fast technique with high sensitivity and wide examination range of 

cell concentrations (from 1 or 10 cells/mL to 108 cells/mL depending on yeast 

species, Phister and Mills 2003, Rawsthorne and Phister 2006). These advantages 

make qPCR to be a useful technique for routine analysis (Andorrà et al. 2012, 

Albertin et al. 2014). To realize these advantages, the proper design of the primers 

or probes is very demanding. For wine yeast, different primer sets have been 

designed mainly targeting transcription units of rDNA such as ITS2, 5.8S rDNA and 

26S rDNA (Figure 4). Therefore, several wine-related yeast genera or species can 

be identified and quantified during grape must fermentation, including C. zeylanoides 

(Díaz et al. 2013), Hanseniaspora spp. (Hierro et al. 2007, Phister et al. 2007, Zott et 

al. 2010), H. uvarum (Díaz et al. 2013), M. pulcherrima (Zott et al. 2010, Díaz et al. 

2013), P. angusta (Díaz et al. 2013), P. anomala (Díaz et al. 2013), P. kluyveri (Díaz 

et al. 2013), P. kudriavzevii (Zott et al. 2010), Rhodotorula mucilaginosa (Díaz et al. 

2013), Saccharomyces spp. (Hierro et al. 2007, Zott et al. 2010), S. cerevisiae (Díaz 

et al. 2013), Starm. bacillaris (Andorrà et al. 2010b, Zott et al. 2010), T. delbrueckii 

(Zott et al. 2010, Díaz et al. 2013), Williopsis saturnus (Díaz et al. 2013). 
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Although species-specific qPCR has been well developed, there are still no 

reports of strain-specific qPCR for wine yeast in alcoholic fermentation. The deep 

“reading” of massive genome sequences obtained by next generation sequencing is 

likely to promote the development of strain-specific qPCR (Bokulich and Mills 2012). 

In addition, qPCR targeting cDNA after reverse transcription of rRNA (RT-

qPCR) has also been proposed for yeast investigation in winemaking field. Based on 

RT-qPCR using universal primer tageting total yeast, standard curves could be 

established using yeast cells from wine sample and the detection limit could reach 

103 cfu/mL (Hierro et al. 2006a). The application of RT-qPCR for specific yeast 

species has not been reported but will be meaningful for understanding the viability 

of cells (Postollec et al. 2011). 

 

Techniques combined with fluorescence microscopy 

An application of the fluorescence microscopy is the estimation of yeast 

identity and viability through some molecules, which absorb light of a specific 

wavelength and emit fluorescence of a lower energy and longer wavelength 

(Fugelsang and Edwards 2007). Some specific dyes from commercial kits can be 

used directly for discriminating viable and dead cells (Zhang and Fang 2004), 

whereas other methods including direct epifluorescence filter techniques (DEFT), 

fluorescence ratio imaging microscopy (FRIM) and fluorescence in situ hybridization 

(FISH) are combined with fluorescence microscopy (Divol and Lonvaud-Funel 2005, 

Andorrà et al. 2011, Branco et al. 2015). Techniques combined with fluorescence 

microscopy are suitable for routine analysis due to its simplicity. However, 

fluorescence microscopy has a relative low detection limit (104 cells/mL) as well as a 

low sensitivity which depends on the number of cells observed. 

 

── Commercial kit for viability test 

LIVE/DEAD BactLightTM Bacterial Viablility Kit is a commercial kit comprised 

of two stains: SYTO 9 and propidium iodide (PI). SYTO 9 is a green-fluorescent 

nucleic acid stain which can permeate into all cells, whereas PI is a red-fluorescent 

nucleic acid stain only penetrating cells with damaged membranes. Therefore, when 

both stains are combined used, cells with intact membranes emit green fluorescent 

and cells with damaged membranes emit red fluorescent. The kit has been used to 

distinguish membrane integrity of yeast cells (Zhang and Fang 2004, Hierro et al. 
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2006a, Andorrà et al. 2010a), but direct analysis of yeast in wine samples has not 

been applied since it is not species selective. 

── Fluorescence in situ hybridization (FISH) 

FISH uses short sequences of exogenous oligonucleotide (hybridization 

probe), which is fluorescently labeled, to hybridize with the complementary sequence 

of interest in DNA or RNA. DNA or RNA unwinds at elevated incubation temperature 

and thus helps the hybridization probe to combine with target complementary 

sequence in DNA or RNA. FISH for identification and enumeration of wine yeasts is 

designed targeting the rRNA of a species (Amann et al. 1995). The rRNA-targeted 

hybridization probe can diffuse to interior of yeast cells after the fixation in the first 

step, by which cell morphology is stabilized and cell membrane is permeabilized 

(Amann and Fuchs 2008). The probe further forms specific hybrids with its 

intracellular targets by hybridization (Figure 9). After washing away the excess probe, 

single-cell identification can be performed by fluorescence microscope (Bottari et al. 

2006). Therefore, FISH can favor simultaneous identification and cell counting in one 

sample. 

 

Figure 9. Hybridization process in FISH: probes enter permabilized cells, access to ribosome 

and hybridize with target rRNA sequences. 

 

Early studies has reported FISH probes for several wine-related yeast species, 

containing D. bruxellensis (Stender et al. 2001), S. cerevisiae (Inácio et al. 2003, 
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Xufre et al. 2006), C. stellata, H. uvarum, H. guilliermondii, K. thermotolerans (now 

named L. thermotolerans), K. marxianus, T. delbrueckii, P. membranaefaciens and P. 

anomala (Xufre et al. 2006). However, all the early investigations on target species 

using FISH applied a preculture procedure to collect yeast cells. So far only probes 

for D. bruxellensis and S. cerevisiae have been successfully used for direct yeast 

identification in wine samples (Röder et al. 2007, Andorrà et al. 2011). 

The difficulty for FISH application in wine samples lies in the poor signal-

background ratio (Fröhlich et al. 2009). To overcome this difficulty, several factors 

should be considered if oligonucleotide probe is designed, containing specific target 

site, proper fluorescence dye used for labeling with the specific sequence and 

accessibility of probe binding site based on higher-order structure of ribosome 

(Inácio et al. 2003, Amann and Fuchs 2008, Yilmaz et al. 2011). The commonly used 

target site for yeast is D1/D2 region of 26S rRNA, whereas the identification of other 

sequence region with high interspecies variation beyond this region would provide 

new possibility for probe design (Röder et al., 2007). The most used labels in FISH 

for wine yeast are carbocyanine 3 (CY3) and fluorescein isothiocyanate (FITC) 

giving yellow and green emission when properly excited. The accessible binding 

sites were firstly investigated by Inácio et al. (2003), who found that most accessible 

sites do not own enough variation for species identification. Attempts have been 

performed focusing on developing helpers (Fuchs et al. 2000), catalyzed reporter 

deposition-FISH (Sekar et al. 2003, Amann and Fuchs 2008), side probes (Röder et 

al. 2007), peptide nucleic acid probes (Stender et al. 2001, Amann and Fuchs 2008, 

Almeida et al. 2010), locked nucleic acid probes (Kubota et al. 2006, Amann and 

Fuchs 2008) and double-labeled oligonucleotide probes (Behnam et al. 2012). 

However, no reports on these new trials have targeted Saccharomyces and non-

Saccharomyces yeast in grape must fermentation. 

 

Techniques combined with flow cytometry 

Flow cytometry is a technology of analyzing cells or particles (0.2 to 50 μm) 

that are in liquid suspension. Multiple characteristics of single cells or particles 

including relative size, internal complexity and fluorescence intensity can be 

simultaneously measured as cells or particles pass through a beam of light in flow 

cytometer. A flow cytometer is composed of three main subsystems: fluidics system 

which brings particles to the interrogation point where they intersect with the 
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excitation light, optics systems providing light source and collecting light signals, and 

electronics system converting light signals to electronic signals which will be further 

processed to form data in the computer (Figure 10). Flow cytometry is a powerful 

technique for rapid analysis of single cells in a mixture which passes thousands of 

cells per second (Díaz et al. 2010). Flow cytometry also own a high sensitivity 

because it can detect one target cell in one to ten millions of cells depending on the 

cytometer. 

 

Figure 10 Scheme of a typical flow cytometer: (1) The formation of a single stream of particles 

in the flow cell by hydrodynamic focusing, (2) cells impact with laser beam and emit signals 

related with cell parameters, (3) Scattered and fluorescence signals emited by each cells are 

separated by filters and mirrors according to wavelengths, (4) These signals are seperactely 

collected by different detectors and sent to a computer for further data processing (Díaz et al. 

2010). 

 

Most reports on application of flow cytometry in wine alcoholic fermentation 

focus on the cell state of S. cerevisiae due to its important significance for 

completing fermentation (Bruetschy et al. 1994, Attfield et al. 2000, Malacrino et al. 

2001, Bouchez et al. 2004, Chaney et al. 2006, Farthing et al. 2007, Rodriquez and 

Thornton 2008). Membrane integrity, DNA, esterase activity, enzymatic activity and 

microbial interactions were analyzed in these reports (Reviewed in Díaz et al. 2010). 

Recently, populations of S. cerevisiae and H. guilliermondii during grape must 
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fermentation were followed by combination of FISH and flow cytometry (Andorrà et al. 

2011, Branco et al. 2012). The design of species-specific probes will enable 

simultaneous analysis of different wine yeast by flow cytometry in the future. 

 

Development of culture-independent techniques 

In spite of their advances, none of the culture-independent techniques is 

perfect. Techniques based on DNA analysis cannot distinguish between viable and 

nonviable cells; Techniques using specific primers or probes are limited to finding 

yeast species which have previously been identified. If a new species is unexpected 

in grape must or fermentation, although the chance is low nowadays, it may not be 

detected using techniques with high specificity (Bisson and Joseph 2009). 

Researchers also complained that no available culture-independent techniques for 

monitoring yeast populations at strain level (Fröhlich et al. 2009). Due to these 

disadvantages, improvements of corresponding techniques have been explored such 

as the combination of qPCR with treatment of ethidium monoazide bromide or 

propidium monoazide bromide (EMA-qPCR or PMA-qPCR, Andorrà et al. 2010a) 

and live/dead staining with FISH (Branco et al. 2012). Furthermore, combined use of 

more techniques is usually taken in a yeast resources investigation in grape must 

fermentation (Andorrà et al. 2010b, Andorrà et al. 2011, Cocolin et al. 2011, 

Milanović et al. 2013, David et al. 2014, Branco et al. 2015). 

 

2.3. Different states of viable cells 

During the process of grape must fermentation, yeast cell survival is 

paramount to ensure efficient bioconversion of biomass and metabolite from 

nutritional substrate. However, alcoholic fermentation indeed provides a stressful 

and competitive environment, where some yeast might be stressed, damaged and 

die off when confronting with harsh condition out of their tolerance. Culture-

independent techniques offer the possibility to observe different cell states beyond its 

culturability and characterize cell population by structural and functional cell 

properties such as metabolic activity (Díaz et al. 2010). Therefore, in addition to 

reproductively viable cells and dead cells, there are several intermediate cell states 

including metabolically active cells, membrane integral cells, rRNA stable cells and 

DNA stable cells (Figure 11). Viability of these intermediate cell states cannot be 

simply justified based on some cell property, and generally membrane integrity and 
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rRNA stability are recognized to be more related with final justification. Furthermore, 

most information on detailed states of yeast is obtained from S. cerevisiae. Although 

there is increasing concern on viability of non-Saccharomyces yeast, more studies 

on different species are still required for full investigation.  

 

Figure 11 Structural and functional criteria to determine different levels of cell viability (adapted 

from Díaz et al. 2010).  

 

Culturable state  

Culturable states of yeast cells refer to viable and healthy cells which have the 

capacity of growing and reproducing on microbiological media. For sure, cells in 

culturable state keep metabolic activity, membrane integrity and DNA/RNA stability. 

In early stages of grape must fermentation, most yeast cells stay in culturable states, 

whereas at late stages non-Saccharomyces species cannot maintain the culturable 

states showing “disappearance” based on culture-dependent techniques (Andorrà et 

al. 2011). 

 

Intermediate cell states 

Cells in intermediate states probably lose their culturability temporally due to 

cell damage or a higher requirement for culture conditions (Díaz et al. 2010). 

However, their viability can still be measured by metabolic activity, membrane 

integrity, rRNA stability and DNA stability. 

Metabolic activity of cells can be presented by enzymatic activity, substrate 

transportation of cell pumps or biosynthesis of macromolecules. Divol and Lonvaud-

Funel (2005) applied DEFT followed esterase activity of yeast cells under SO2 stress 
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during grape must fermentation. They found that the fluorescence intensity marking 

esterase activity decreased rapidly to nearly a half of original intensity and 

maintained this level until the stress was removed. After removal of SO2 stress, 

fluorescence intensity could recover to original level. In spite of the low fluorescence 

intensity observed from cells in transition state, the intensity is still higher than dead 

cells. Díaz et al. (2010) regarded that activity of cell pumps and biosynthesis of 

macromolecules could reflect metabolic activity of a cell more instantly and 

accurately than enzymatic activity. However, few reports on the two aspects have 

been given on wine yeast during alcoholic fermentation. 

Cells with intact membrane, which is referred to as membrane integrity, can 

generate different ion level inside and outside of the cells which is linked to ATP 

formation (Shapiro et al. 2000). The difference decreases to zero when membrane is 

structurally damaged allowing ions pass the membrane freely. Membrane integrity 

can be detected by pH gradient inside and outside of cells and dye exclusion 

methods. Branco et al. (2015) measured pH gradient of H. guilliermondii cells 

through FRIM and found that non-culturable cells showed a decreased or even no 

difference of extracellular and intracellular pH. PI is the most commonly used dye 

which can passes compromised membrane (Haugland 2002). In commercial kit, PI is 

usually combined used with SYTO 9 to double confirm permeability of cell 

membrane (Zhang and Fang 2004, Hierro et al. 2006a, Andorrà et al. 2010a). In 

addition, DNA binding dyes such as EMA and PMA are also demonstrated to be able 

to penetrate injured membranes which will further hamper DNA amplification by 

covalent combination with DNA (Rudi et al. 2005). The treatment of EMA or PMA 

has been combined used with qPCR to quantify cells with membrane impermeable 

to EMA or PMA (Rawsthorne and Phister 2009, Andorrà et al. 2010a, Shi et al. 2012, 

Vendrame et al. 2014). 

RNA has a relative stability compared to plasma membrane and yet is thought 

to be degraded rapidly after cell death (Hierro et al. 2006a). As a consequence, 

culture-independent techniques based on RNA analysis are considered to be able to 

distinguish live and dead cells. Furthermore, these techniques can perform 

simultaneous identification at the species level, and thus have been paid more 

attention in yeast investigations during alcoholic fermentation. No matter if RNA 

extraction is needed or not, relying on techniques based on RNA analysis such as 

RT-PCR-DGGE, FISH and flow cytometry, reported similar results: non-
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Saccharomyces yeast could maintain high levels of RNA after losing culturability 

(Cocolin and Mills 2003, Andorrà et al. 2011). Furthermore, Andorrà et al. (2011) 

doubted that RNA degradation speed can be varied due to different death treatments 

and yeast species involved. Thus more studies are needed to fully explain the 

relationship between cell death and RNA degradation during late stage of alcoholic 

fermentation.  

DNA is much more stable than RNA, and is regarded able to persist long time 

after the cell death (Cangelosi and Meschke 2014). Thus, in spite of their powerful 

identification function, direct DNA analysis such as qPCR and massive sequencing is 

doubted of overestimating non-Saccharomyces populations at late stage of 

fermentation. Recently, EMA-qPCR and PMA-qPCR has been used to follow viable 

yeast population in grape must fermentation to avoid quantifying DNA from dead 

yeast cells. One log unit less population was observed in EMA/PMA-qPCR than in 

direct qPCR, verifying viability of these non-Saccharomyces yeast (Andorrà et al. 

2010a).    

 

2.4. Viable but not-culturable yeast 

Viable but not-culturable (VBNC) is a term describing cells that are not able to 

grow on culture media yet still presents measurable viability (Oliver, 2005). 

Theoretically, all cells in intermediate states could be named VBNC cells as long as 

they are not culturable. The existence of VBNC state for wine yeast in alcoholic 

fermentation has been demonstrated by different techniques as noted in 2.3. 

However, it is still difficult to precise evaluate all VBNC cells due to several 

intermediate states probably involved. Díaz et al. (2010) recommended combining 

structural and functional strategies in the applications such as using fluorescein 

diactetate for detecting esterase activity and PI for checking membrane integrity 

(Divol and Lonvaud-Funel 2005, Schenk et al. 2011). In addition, recovery ability of 

VBNC cells are also investigated considering that cells in VBNC state may be 

resuscitated if favorable condition is provided, because VBNC state is generally 

induced by stressful environmental condition (Divol and Lonvaud-Funel 2005, Salma 

et al. 2013, Branco et al. 2015). The free entry into the VBNC state when stress is 

set and exit from the VBNC state when stress is removed could illustrate the 

existence of VBNC yeast cells. Salma et al. (2013) reported that once removed the 
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limitation factor S. cerevisiae cells could recover from VBNC state even if these cells 

have kept the VBNC state over a long period of time (21 days, Figure 12).  

 

Figure 12 The induction of VBNC state and resuscitation from VBNC state for S. cerevisiae 

S288C in synthetic wine (Salma et al. 2013). The addition of 4.5 mg/L molecular SO2 is 

performed at time 0 and the removal of SO2 effect by increasing pH is carried out at 500h. Total 

cell counts (♦), culturable counts (■), and viable counts by fluorescein diacetate and FUN-1(▲). 

 

The contribution of VBNC cells during grape must fermentation is still not 

clear. However, the existence of these cells in aging stage is probably a potential 

threat to wine stability (Divol and Lonvaud-Funel 2005, Salma et al. 2013).  
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Question 3: What limits the growth of non-Saccharomyces during alcoholic 

fermentation? 

 

3. Factors related with yeast growth during alcoholic fermentation 

Marsit and Dequin (2015) adopt “fluctuating environment” to describe grape 

must fermentation, which exposes yeast to various stress (Figure 13): osmotic 

pressure, anaerobic condition, ethanol, nutrient depletion, temperature and SO2. The 

specific environmental conditions in the must are thought to play a role in 

determining which species can survive and grow, referred to as physiological fitness. 

In addition to the influence of environment, the growth of specific yeast species in 

grape must fermentation is also affected by the presence of other yeast species. 

Recent studies have pointed out the culturability loss of non-Saccharomyces at late 

stage of fermentation is associated with their interaction with Saccharomyces and 

two main mechanisms are involved in the interaction: contact-dependent mechanism 

and chemical interaction such as production of antimicrobial peptides (Albergaria 

and Arneborg 2016). More knowledge on yeast interactions and related mechanisms 

are important for a successful alcoholic fermentation especially when we consider 

the use of mixed starter cultures (Ivey et al. 2013). 

 

Figure 13. Evolution of the main fermentation parameters during wine fermentation (Marsit and 

Dequin 2015). A synthetic medium was fermented by strain EC1118 at 24°C. Dark blue: 

fermentation rate; light blue: ethanol; red: cell number; green: nitrogen; purple: sugars.  
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3.1. Environmental changes 

Osmotic pressure 

Osmotic pressure is the first stress that yeast encounters after inoculation. It 

is formed by high sugar concentration in grape must (> 200g/L). Yeast cells need a 

lag-phase to adapt and then start to reproduce rapidly. In the adaptation process, 

yeast cells accumulate intracellular glycerol to counteract osmotic pressure (Heinisch 

and Rodicio 2009). Generally, both Saccharomyces and non-Saccharomyces yeast 

can propagate to 107 to 108 cells/mL after adaptation. In addition, Divol and 

Lonvaud-Funel (2005) indicated high osmotic pressure affected the resuscitation of 

yeast cells from VBNC state to culturable state. Thus half-diluted must with sugar 

concentration of 75 g/L was used to avoid the influence of osmotic pressure on 

fragile VBNC cells. 

 

Low oxygen availability 

Sugars are converted to carbon dioxide and ethanol as fermentation goes on. 

Continual production of carbon dioxide limits the growth of aerobic species due to 

the removal of oxygen (Visser et al. 1990, Fleet, 2003, Brandam et al. 2013). Yeast 

metabolism during winemaking requires oxygen for the synthesis of sterols and fatty 

acids and thus the amount of available oxygen is crucial for yeast growth and 

fermentation performance in the process (Hanl et al. 2005). Hansen et al. (2001) 

mentioned that S. cerevisiae is more tolerant to low oxygen levels compared to other 

yeast. Nissen et al. (2004) further explained how oxygen increased coexistence of L. 

thermotolerans and T. delbrueckii with S. cerevisiae by the theory of relative glucose 

uptake abilities. Morales et al. (2015) also indicated that M. pulcherrima grew and 

consumed sugar better under aerobic conditions than anaerobiosis. In mixed 

fermentation with S. cerevisiae, culturable M. pulcherrima population started to 

decrease on day five with only nitrogen as provided, on day six when 10% air is 

supplied and on day seven with 25% air. Although the population decrease of non-

Saccharomyces was postponed with more air addition, there are no conclusive 

proofs that the low oxygen availability forces non-Saccharomyces yeast to enter 

VBNC state. 
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Ethanol 

Upon ethanol production, yeast cells stop breeding and enter stationary phase. 

Marks et al. (2008) postulated that this transition is caused by ethanol concentrations 

above 2%. Conversion of must sugars to ethanol (> 10%) is reported to increase 

membrane permeability and change membrane fluidity. Protons and protein 

unfolding in plasma membrane are especially affected (Heinisch and Rodicio 2009). 

Therefore, high ethanol concentration at late stage of fermentation is considered a 

major hurdle for yeast growth, especially for non-Saccharomyces (Fleet, 2003).  

 

Figure 14 The influence of ethanol concentration on maximum specific growth rates of the non-

Saccharomyces species H. uvarum (Hu), C. zemplinina (Cs), T. delbrueckii (Td), P. fermentans 

(Pf), K. marxianus and S. cerevisiae (ScT73). Data from Salvadó et al. (2011). 

 

Noteworthy, some ethanol tolerant strains of non-Saccharomyces were 

isolated at late or end of spontaneous fermentation (Nurgel et al. 2005; Wang and 

Liu 2013). Recent studies also found that some non-Saccharomyces strains of H. 

uvarum, H. guilliermondii, T. delbrueckii and Starm. bacillaris could tolerate ethanol 

of 10% (Pina et al. 2004, Pérez-Nevado et al. 2006), which is higher of those 
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concentrations considered in the past around 5-7% (Heard and Fleet 1988, Gao and 

Fleet 1988). Salvadó et al. 2011 reported that maximum specific growth rate of yeast 

decreased linearly as the increase of ethanol from 0% to 25% and no growth was 

found for all yeast when ethanol was higher than 16%. The most resistant yeast was 

Starm. bacillaris (synonym C. zemplinina) the minimum inhibitory concentration for 

which is 15.6%. The second was S. cerevisiae, which was followed by K. marxianus, 

P. fermentans and H. uvarum. T. delbrueckii was the least resistant yeast which was 

not able to tolerant 8.9% of ethanol. Although S. cerevisiae presented the highest 

specific growth rate, the reduction of the growth rate as ethanol increase was also 

the fastest showing that S. cerevisiae was the most influenced species by the 

increase of ethanol (Figure 14, Salvadó et al. 2011). 

Why some yeast species such as Saccharomyces can cope with the stress 

from ethanol? Ethanol stress may trigger multiple cells responses, containing (1) 

inhibition of cell cycle and propagation, (2) accumulation of trehalose and glycogen, 

(3) increase in heat shock proteins, (4) increased activity of plasma membrane 

ATPase and levels of oleic acid and ergosterol in membrane, (5) induction of genes 

encoding vacuolar proteases and their inhibitors and (6) increased activation of 

genes related with unfolded protein response and its transcription factor (Heinisch 

and Rodicio 2009, Navarro-Tapia et al. 2016). These responses make wine yeast to 

endure ethanol, whereas most mechanisms are checked in the model species S. 

cerevisiae. Little is known about the mechanism related with ethanol tolerance in 

non-Saccharomyces yeast. 

Interestingly, Marsit and Dequin (2015) reviewed a “make-accumulate-

consume” strategy used by Saccharomyces yeast: they rapidly consume a high 

quantity of sugars, transform these carbohydrates into ethanol, which help them to 

establish competitive dominance in the ecological niche, and then catabolize ethanol 

for energy. However, whether ethanol directly induces culturability loss of non-

Saccharomyces yeast or not still need more evidences (Salvadó et al. 2011).  

 

Nitrogen limitation 

Yeast assimilable nitrogen (YAN) is mainly made up of ammonium ions and 

amino acids, which is present in limited amounts in grape must and yet is directly 

associated with yeast biomass and thus fermentation rate. Amino acids are directly 

utilizable by yeast, whereas ammonium is firstly changed into glutamate by yeast 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Introduction 

 

49 

cells and glutamate can be further used to yield other amino acids such as glutamine, 

asparagine, histamine, arginine and tryptophan (Fugelsang and Edwards 2007). It is 

generally accepted that 140 mg N/L of YAN is necessary for fermenting 200 g/L of 

sugar (Martínez-Moreno et al. 2012), whereas 300 mg N/L of YAN is needed for an 

optimized fermentation (Marsit and Dequin 2015). 

As fermentations progress, nutrient supplies become limited or exhausted and 

become source of stress. Preliminary findings indicated that less nitrogen was 

consumed in mixed fermentation of S. cerevisiae and H. uvarum than in pure culture 

and thus people hypothesized that YAN competition did not exist between S. 

cerevisiae and apiculate yeast (Ciani and Comitini 2015). However, Fleet (2003) 

insisted that non-Saccharomyces present in early stage of fermentation probably 

deplete amino acids and lead to the deficient growth of S. cerevisiae. Evidence has 

been provided by Bisson (1999) and Taillandier et al. (2014) that the early growth of 

K. apiculata (now named H. uvarum) and T. delbrueckii lead to nitrogen exhaustion 

and further sluggish fermentation. Evident competition for nitrogen has also been 

shown in sequential fermentation inoculated with S. cerevisiae and M. pulcherrima or 

H. vinae (Medina et al. 2012). Therefore, in wine industry nitrogen is generally added 

to secure fermentation with low initial nitrogen level. Combined addition of oxygen 

and nitrogen is regarded to be able to efficiently prevent sluggish alcoholic 

fermentation (Sablayrolles et al. 1996). 

Nitrogen limitation probably impacts on yeast growth pattern during grape 

must fermentation which depends on the different nitrogen requirements from 

different wine yeast species (Ciani and Comitini 2015, Albergaria and Arneborg 

2016). The nitrogen requirement, metabolic mechanism and genetic basis have been 

well studied for S. cerevisiae in recent reports (Gutiérrez et al. 2012, Martínez-

Moreno et al. 2012, Gutiérrez et al. 2013, Brice et al. 2014, Brice et al. 2015). 

However, specific nitrogen requirement of non-Saccharomyces yeast have not yet 

been fully characterized especially in grape must fermentation. Albergaria (2007) 

reported that the addition of complex nutrient such as yeast extract and peptone 

partially improved the fermentation capacity of H. uvarum, H. guilliermondii and 

Starm. bacillaris. Andorrà et al. (2012) studied nitrogen consumption of S. cerevisiae, 

H. uvarum and Starm. bacillaris in pure and mixed fermentation and indicated that 

the two non-Saccharomyces yeast were less effective at converting amino acid to 

biomass than S. cerevisiae but contributed more to aromatic compounds formation. 
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Kemsawasd et al. (2015b) described the nitrogen sources (nineteen amino acids, 

ammonium sulphate and two multiple nitrogen sources) beneficially impacting on 

growth, glucose consumption and ethanol production of S. cerevisiae, L. 

thermotolerans, M. pulcherrima, H. uvarum and T. delbrueckii. In addition to the 

single amino acids preference, multiple nitrogen sources had a positive effect on S. 

cerevisiae and T. delbrueckii, whereas showed a similar effect as single amino acids 

on the other three non-Saccharomyces. 

 

Temperature 

High temperature stress disrupts hydrogen bonding and denatures proteins 

and nucleic acids, which causes damage of yeast cells (Walker and Dijck 2006). 

Vigorous alcoholic fermentation can first cause a temperature rise and then a 

significant drop, which can provoke excessive rigidity in yeast membranes (Zamora 

2009). Nevertheless, the temperature change caused by fermentation itself is 

tailored by temperature control not only in wine industry but also in laboratory. Fleet 

(2003) indicated that low temperature decreased the sensitivity of non-

Saccharomyces to ethanol and thus more non-Saccharomyces species could be 

found in fermentation at 15 °C than at higher temperature. In the work of Andorrà et 

al. (2010b), although a limited influence of temperature on yeast diversity was found, 

Hanseniaspora showed a rapid disappearance at 25 °C when compared to 13 °C. 

Salvadó et al. (2011) analyzed growth rates of six yeast species under temperature 

from 4 °C to 46 °C and found that optimal growth temperature for H. uvarum, C. 

zemplinina, T. delbrueckii and P. fermentans was around 25 °C, for K. marxianus 

was around 39 °C and for S. cerevisiae was around 32 °C. When temperature went 

down to around 15 °C, S. cerevisiae started to lose its growth superiority to other 

non-Saccharomyces species (Figure 15). Consistent with Salvadó et al. (2011), 

other studies on S. cerevisiae dominance also highlight the decisive role of 

temperature (Goddard et al. 2008, Williams et al. 2015). 
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Figure 15 The influence of temperature on maximum specific growth rates of the non-

Saccharomyces species H. uvarum (Hu), C. zemplinina (Cs), T. delbrueckii (Td), P. fermentans 

(Pf), K. marxianus and S. cerevisiae (ScT73). Data from Salvadó et al. (2011).  

 

The maximal population of non-Saccharomyces can also be affected by 

prefermentation temperature (Zott et al. 2008). The growth of T. delbrueckii and 

Hanseniaspora is favored by 15 °C, whereas for Starm. bacillaris 10 °C is better 

(Albertin et al. 2014). Cold maceration before fermentation (4 °C for seven days) 

increases the diversity of non-Saccharomyces species (Hierro et al. 2006b). 

Maturano et al. (2015) indicated that prefermentative cold soak at 14 °C favored the 

growth of non-Saccharomyces more than 8 °C and 2 °C. 

 

SO2 

Yeast need to assimilate sulfur dioxide or sulfate to synthesize sulfur-

containing amino acids (methionine or cysteine) by sulfate reduction sequence. 

However, in wine industry, SO2 is generally used to control the growth of undesirable 

microorganisms and prevent oxidation. Sulfur dioxide exists in equilibrium among 
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molecular SO2, bisulfate and sulfite after dissolving in water and the dominant form 

depends on pH as shown in Figure 16. Molecular SO2 is believed to be the 

antimicrobial form by various mechanisms including rupture disulfide bridges in 

proteins, reaction with NAD+ and ATP, deamination of cytosine to uracil and 

reduction of crucial nutrients such as thiamin (Fugelsang and Edwards 2007). Salma 

et al. (2013) reported that increase pH in the medium from 3.5 to 4.0 can reduce the 

toxicity of SO2, allowing resuscitation of VBNC cells. 

 

Figure 16. Relative abundance of molecular SO2, bisulfate, and sulfite at different pH values 

(Fugelsang and Edwards 2007). 

 

Non-Saccharomyces yeast is known to be more sensitive to the combined 

toxicity of the SO2 and ethanol than Saccharomyces (Jolly et al. 2014). The inhibitory 

effect of SO2 on growth of non-Saccharomyces has been investigated by culture-

dependent and culture independent techniques including PCR, DGGE and DEFT 

(Cocolin et al. 2003, Divol and Lonvaud-Funel 2005, Andorrà et al. 2008, Takahashi 

et al. 2014). For example, Divol and Lonvaud-Funel (2005) used DEFT to observe 

metabolic activity of yeast cells under SO2 stress and found that C. stellata is more 

sensitive to SO2 than Z. bailii and S. cerevisiae. 

However, SO2 addition after crush has small effect to some yeast species 

from genera of Pichia, Saccharomycodes, Schizosaccharomyces and 

Zygosaccharomyces (Fugelsang and Edwards 2007). Bokulich et al. (2015) used 
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massive sequencing to investigate the impacts of SO2 treatment at a broad range 

from 0 to 150 mg/L on microbial communities in grape must fermentations. They 

found that sulfite addition did not affect fungal populations significantly but indeed 

affected bacterial diversity throughout the course of fermentations. 

 

3.2. Contact-dependent mechanism 

Contact-dependent mechanism means that microorganisms interact with each 

other by direct cell contact and ultimately limit the growth or survival of some 

microbes in the community. Some researchers believe that the culturability loss of 

non-Saccharomyces induced by contact-dependent mechanism happens between 

Saccharomyces and non-Saccharomyces cells (Nissen and Arneborg 2003, Nissen 

et al. 2003, Renault et al. 2013). In their work, physically separated fermentors were 

prepared with dialysis tube or filtration membrane, which allowed the free flow of 

medium but avoided cell contact between the separated compartments. When 

Saccharomyces and non-Saccharomyces (L. thermotolerans or T. delbruekii) were 

inoculated separately to different compartments, non-Saccharomyces yeast grew 

well in the fermentors. However, when they coexisted in a mixed culture or 

fermentation where direct cell contact is allowed, non-Saccharomyces yeast lost 

their culturability gradually. As a consequence, a contact-dependent mechanism was 

concluded in these studies. In addition to use physically separated fermentors, 

Arneborg et al. (2005) applied an interactive optical trapping system to bring S. 

cerevisiae cells to surround an individual H. uvarum cell, forming “confinement” 

(Figure 17). Surrounded H. uvarum cells need longer time to produce new 

generation than non-surrounded cells by budding reproduction. Therefore, Arneborg 

and other coworkers believe that confinement stress affects microbial growth and the 

mechanism involved is probably contact-dependent. 
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Figure 17 Preparation of H. uvarum and S. cerevisiae cells for micro-scale, mixed-culture 

fermentation by user-interactive optical trapping system (Arneborg et al. 2005). The optical 

traps bring S. cerevisiae cells to surround an individual H. uvarum cell with arrows showing the 

direction. Images were recorded at (a) 0 s, (b) 30 s, (c) 60 s and (d) 90 s. Scale bar represents 

10 μm.  

 

Although all the studies former stated point to contact-dependent mechanism, 

the underlying theory on how the mechanism mediates the interaction between 

Saccharomyces and non-Saccharomyces remain unclear. Most cell contact 

examples found in mammalian cells and bacteria applied cell contact to mediate 

signals, which arrested growth at high cell densities instead of regulating cell death 

(Caveda et al. 1996, Fiore and Degrassi 1999, Shimkets and Kaiser 1999, Hirano et 

al. 2001). Cell death regulated by contact only exists in the mammalian immune 

system using antigen response (Krammer 2000). Therefore, Renault et al. (2013) 

hypothesized that a receptor/ligand-like interaction maybe involved in the contact-

dependent mechanism because it is unidirectional to non-Saccharomyces cells. 

More proofs are required to illustrate the contact-dependent mechanism in wine 

yeast interaction. 

In addition, contact-dependent mechanism seems to be dependent on the 

strains of S. cerevisiae used (Kemsawasd et al. 2015a). When S. cerevisiae S101 

was used, the contact-dependent mechanism could be observed (Nissen and 

Arneborg 2003, Nissen et al. 2003, Renault et al. 2013). However, when other S. 
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cerevisiae strains were used such as CCMI 885 and QA23, non-Saccharomyces 

cells always lost their culturability at late stage of fermentation even if a separated 

fermenter was used (Pérez-Nevado et al. 2006, Taillandier et al. 2014). Furthermore, 

the culturability loss of non-Saccharomyces is universal phenomenon, which is not 

limited to some S. cerevisiae strains. Therefore, Kemsawasd et al. (2015a) 

rechecked the interaction induced by S. cerevisiae S101 and found that chemical 

interaction was also involved in the process and played a combined role with 

contact-dependent mechanism in the culturability loss of non-Saccharomyces.  

Recently, Rossouw et al. 2015 found that S. cerevisiae was able to form 

mixed species aggregates with some non-Saccharomyces yeast, referred to as co-

flocculation. The co-flocculation was thought to be a possible mechanism governing 

population dynamics, because the flocculation efficiency in mixed inocula was higher 

than single culture. However, as an important adhesion-dependent phenotype, 

flocculation is mainly proposed as a protective mechanism to resist environmental 

stresses (Honigberg 2011). The relevance of co-flocculation with yeast dynamics 

during grape must fermentation still need more research to demonstrate it. 

 

3.3. Chemical interaction: production of killer toxins 

Yeasts are well-known to produce and secrete so-called killer toxins 

containing proteins, glycoproteins and polypeptide, which are lethal to sensitive cells 

of their own species, or those of other yeast species (Jacobs and van Vuuren 1991, 

van Vuuren and Jacobs 1992, Shimizu 1993). The ability to produce killer toxins is 

widespread among yeasts including Saccharomyces, Hansenula, Pichia, 

Kluyveromyces, Candida, Hanseniaspora, Rhodotorula, Trichosporon, 

Debaryomyces and Cryptococcus (Shimizu, 1993, Zagorc et al. 2001, de Ullivarri et 

al. 2011). The production of killer toxins affects yeast evolution and even 

fermentation progress. Therefore, the selection of indigenous yeast with killer 

phenotype was studied in Slovenia and Argentina for well-controlled grape must 

fermentations, especially killer S. cerevisiae (Zagorc et al. 2001, de Ullivarri et al. 

2011). 

Yeasts which excrete metabolites able to prevent yeast growth are called 

killer yeasts. The killer toxins which have been identified from grape must 

fermentation are shown in Table 3. The yeasts, which react to the killer toxin 

secreted by killer yeast are named sensitive strains. Sensitive strains involve 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Introduction 

 

56 

Saccharomyces, non-Saccharomyces or spoilage yeasts depending on the type of 

killer toxin. Firstly, sensitive Saccharomyces strains were mainly affected by K2 type 

killer toxin in grape must fermentation (Shimizu, 1993). K2 type killer toxin show a 

narrow spectrum of action, only acting against strains belonging to the same species. 

Wine isolates of Candida, Pichia and Hanseniaspora could exert their killer activity 

against S. cerevisiae (Radler et al. 1985, Fleet and Heard 1993). However, little is 

known about corresponding killer toxin. Secondly, two types of killer toxins have 

been reported to act on non-Saccharomyces as shown in Table 3. Kpkt has 

extensive anti-Hanseniaspora/Kloeckera activity under winemaking conditions (Oro 

et al. 2014). Antimicrobial peptides have wide action spectrum of several yeast 

species, although it just shows fungistatic effect on some species (Branco et al. 

2014). Due to its correlation with culturability loss of non-Saccharomyces, 

antimicrobial peptides will be stated in detail in next section. Thirdly, several killer 

toxins have been reported to act against Brettamomyces/Dekkera, which is regarded 

as one of the most damaging species for wine quality (Comitini et al. 2004, Santos et 

al. 2011). The development of these killer toxins becomes a potential strategy for 

biocontrol due to limited tools for controlling growth of Brettamomyces/Dekkera 

(Wedral et al. 2010, Mahlomakulu et al. 2015).  

 

Table 3 Killer toxins involved in wine yeast interaction (adapted from Ciani and Comitini 2015). 

 

Furthermore, Mostert and Divol (2014) investigated the extracellular proteins 

released by yeasts in synthetic wine fermentations, finding that the proteome of S. 

cerevisiae changes depending on the presence of M. pulcherrima or L. 

Killer yeast Killer toxin Sensitive strain Reference 

S. cerevisiae K2 type S. cerevisiae Shimizu 1993 

S. cerevisiae antimicrobial peptides D. bruxellensis Branco et al. 2014 

K. marxianus 

H. guilliermondii 

L. thermotolerans 

T. delbrueckii 

Tetrapisispora phaffii Kpkt H. uvarum Oro et al. 2014 

C. pyralidae CpKT1, CpKT2 B. bruxellensis Mehlomakulu et al. 2014 

K. wickerhamii Kwkt Brettanomyces/Dekkera Comitini et al. 2004 

P. membranifaciens PMKT2 B. bruxellensis Santos et al. 2009 

Ustilago maydis KP6 B. bruxellensis Santos et al. 2011 

Wickerhamomyces anomalus Pikt Brettanomyces/Dekkera Comitini et al. 2004 
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thermotolerans in mixed fermentations. Identies of these diverse proteins revealed 

proprable influence of yeast interactions but still need further studies to illustrate. 

 

Killer toxins ── antimicrobial peptides 

The well-known species evolution in grape must fermentation, which is 

culturability loss of non-Saccharomyces, is recently regarded to be correlated with 

antimicrobial peptides secreted by S. cerevisiae. The discovery and analysis of 

antimicrobial peptides in S. cerevisiae CCMI 885 has experienced almost ten years. 

In 2006, Pérez-Nevado et al. revealed that some toxic compounds produced by S. 

cerevisiae caused culturability loss of H. guilliermondii cells, because cell-free 

supernatants from late stage of mixed fermentation could trigger the culturability loss 

of H. guilliermondii population. Subsequently, Albergaria et al. (2010) further 

analyzed the nature of toxic compounds in supernatants of mixed fermentation by 

protease treatment and protein electrophoresis. The toxic compounds were proved 

to be peptides of 2-10 kDa, which exhibited antimicrobial effect against H. 

guilliermondii, K. marxianus, L. thermotolerans and T. delbrueckii. Then a new 

question arose: what are these peptides? Branco et al. (2014) reported that these 

peptides corresponded to fragments of the glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) protein by mass spectrometry analysis. The purified 

fragments showed wide fungicide or fungistatic effect on five wine yeast species and 

also Oenococcus oeni and thus were referred to as antimicrobial peptides. Further 

analysis using S. cerevisiae mutant strains demonstrated that the secretion of 

antimicrobial peptides was related with GAPDH encoding genes of TDH1, TDH2 and 

TDH3, which codified three GAPDH isoenzymes. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein is a key 

enzyme involved in glycolysis, which is responsible for the transformation of 

glyceraldehyde-3-P to 1,3-Diphosphoglycerate (Figure 18). It is surprising finding 

that GAPDH protein correlates with these antimicrobial peptides (Branco et al. 2014). 

This finding can initially explain why the amount of sugar metabolized by S. 

cerevisiae had a pronounced effect on the culturability of H. guilliermondii. Pérez-

Nevado et al. (2006) indicated that the culturability loss of H. guilliermondii happened 

several days later in medium with 100 g/L of initial sugar than in medium with 200 

g/L of initial sugar. When YPD medium with 20 g/L of sugar was used, no evidence 
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of S. cerevisiae dominance over non-Saccharomyces yeast by killer toxins was 

found (Williams et al. 2015). 

 

Figure 18. Pathway of glycolysis and alcoholic fermentation in S. cerevisiae (adapted from 

Bartowsky and Pretorius 2009). Enzymes for the different stages in the pathway: 1, hexokinase; 

2, phosphoglucose isomerase; 3, phosphofructokinase; 4, aldolase; 5, glyceraldehyde-3-

phosphate dehydrogenase; 6, phosphoglycerate kinase; 7, phosphoglycero mutase; 8, enolase; 

9, pyruvate kinase; 10, pyruvate decarboxylase; 11, alcohol dehydrogenase. 

 

In order to further explain how these antimicrobial peptides affect the viability 

of non-Saccharomyces, Branco et al. (2015) evaluated physiological changes 

induced by them. After 24 h of exposure to antimicrobial peptides, all H. 

guilliermondii cells lost their culturability and 77% of cells lost the membrane integrity 

and pH gradient. Therefore, antimicrobial peptides could disturb intracellular pH 

homeostasis, compromise plasma membrane, induce culturability loss and finally kill 

the cells. 

Until now, most studies on antimicrobial peptides have been tested by S. 

cerevisiae CCMI 885, but it seems like not only limited to this strain. The secretion of 

antimicrobial peptides was also tested on S. cerevisiae BY4741 and BY4742 

(Branco et al. 2014). In addition, S. cerevisiae S101 which was considered to act on 
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non-Saccharomyces by contact-dependent mechanism, was demonstrated to be 

able to secret antimicrobial peptides. Nevertheless, 2-3 times lower concentration of 

antimicrobial peptides was secreted by S101 than CCMI885, which probably explain 

a slow influence of antimicrobial peptides from S101 (Kemsawasd et al. 2015a). The 

secretion ability from other S. cerevisiae strains is still needed for a complete 

understanding. Furthermore, the effect of antimicrobial peptides on different yeast 

species is also required to fully explain the culturability loss of non-Saccharomyces. 
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Abstract 

The diversity of fungi in grape must and during wine fermentation was 

investigated in this study by culture-dependent and culture-independent techniques. 

Carignan and Grenache grapes were harvested from three vineyards in the Priorat 

region (Spain) in 2012, and nine samples were selected from the grape must after 

crushing and during wine fermentation. From culture-dependent techniques, 362 

isolates were randomly selected and identified by 5.8S-ITS-RFLP and 26S-D1/D2 

sequencing. Meanwhile, genomic DNA was extracted directly from the nine samples 

and analyzed by qPCR, DGGE and massive sequencing. The results indicated that 

grape must after crushing harbored a high species richness of fungi with Aspergillus 

tubingensis, Aureobasidium pullulans, or Starmerella bacillaris as the dominant 

species. As fermentation proceeded, the species richness decreased, and yeasts 

such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces 

cerevisiae successively occupied the must samples. The “terroir” characteristics of 

the fungus population are more related to the location of the vineyard than to grape 

variety. Sulfur dioxide treatment caused a low effect on yeast diversity by similarity 

analysis. Because of the existence of large population of fungi on grape berries, 

massive sequencing was more appropriate to understand the fungal community in 

grape must after crushing than the other techniques used in this study. Suitable 

target sequences and databases were necessary for accurate evaluation of the 

community and the identification of species by the 454 pyrosequencing of amplicons. 

 

Keywords: culture-independent techniques, pyrosequencing, SO2 treatment, 

community diversity and composition, wine yeast 
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1. Introduction 

Investigating the fungal community in grape must and wine fermentation is 

relevant for understanding its relationship with the grape sanitary status and the final 

wine characteristics (Bokulich et al., 2014). Recently, the development of next-

generation sequencing provided a useful tool for the description of prokaryotic and 

eukaryotic microbial communities that exist in grape leaves, berries, must and 

wineries (Bokulich et al., 2013; Bokulich et al., 2014; David et al., 2014; Pinto et al., 

2014; Taylor et al., 2014; Valera et al., 2015). The common approach used in these 

studies was targeted metasequencing: generic target sequences were amplified by 

PCR to establish a library; then amplicons were sequenced; and identification was 

performed by comparison with known sequences in databases (Huggett et al., 2013; 

Mayo et al., 2014). These studies indicated advances relative to the traditional 

culture-dependent techniques: a greater abundance of bacteria and fungi found in 

grape leaves and berries and higher sensitivity to minor species due to the possibility 

of massive sequencing in a short time. Moreover, other culture-independent 

techniques have played important roles in monitoring the main yeast dynamics 

during wine fermentation for the last 10 years (Mills et al., 2002; Hierro et al., 2006; 

Andorrà et al., 2010). Thus, the main aim of this study was to apply these techniques 

to interpret the fungal communities in grape must and wine fermentation from the 

Priorat region in Spain. 

The Priorat region, the second qualified DOC (Denominación de Origen 

Calificada) wine region in Spain, is located in southwest Catalonia. This region is 

characterized by its own “terroir” (French word widely use in the wine industry and 

wine marketing that means specific place character): a topsoil of reddish and black 

slate with small particles of mica, a hot and dry summer climate with different micro-

climates due to the hilly landform (average annual rainfall is 400-600 mm), and 

vineyards on terraced slopes at altitudes between 100 m and 700 m above sea level 

(Robinson, 2006; Hudin and Serra, 2013). However, few studies have reported on 

the native microbial ecology of grapes in this region. Torija et al. (2001) investigated 

the yeast population in spontaneous fermentation from this region over three years 

and reported a unique ecology of yeast species and Saccharomyces strains. To 

investigate the probable fungal “terroir” of this region, grapes from slopes at altitudes 

400 m above sea level in the villages of Poboleda, Escaladei and Porrera were 

crushed into must and fermented in this study. The fungal diversity from grape must 
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and fermentation samples was analyzed by culture-dependent techniques and 

culture-independent techniques and compared among different samples. The effect 

of SO2 treatment on fungal diversity was also evaluated by low-dosage addition to 

two grape must varieties from Porrera. 

 

2. Materials and methods 

2.1. Spontaneous fermentations 

Mature grapes (Carignan and Grenache) were randomly taken from vineyards 

in three villages (Poboleda, Escaladei and Porrera) of the Priorat region (Spain) in 

2012. The grapes were hand-harvested from the plants with gloves and kept in 

sterile bags in an ice box for transportation. Approximately 1.8 L of grape must was 

obtained from each two kilograms of grapes at different locations, which were 

crushed sterilely in the same plastic bag by hand and put into 2 L bottles for 

spontaneous fermentation. The fermentations were performed at 24 °C with 120 rpm 

agitation speed, and 30 ppm of SO2 was added at 24 h in the form of potassium 

metabisulfite. The fermentation proceeded in semianaerobic conditions as the bottles 

are not tightly closed and some gas exchange is allowed. All the fermentations were 

monitored daily using a Densito 30PX Portable Density Meter (Mettler Toledo, Spain), 

and samples were taken at five different fermentation stages: 0 h (grape must after 

crush), 24 h (before SO2 treatment), 48 h (24 h after SO2 treatment), middle stage 

(density approx. 1040-1060 g/L) and end stage (stable density less than 1000 g/L). 

Fresh samples were directly analyzed by culture-dependent techniques; cell pellets 

from 1 mL of samples at each fermentation stage were collected by centrifugation 

after washing with sterile water and kept at -20 °C for further culture-independent 

analysis by qPCR, DGGE and massive sequencing techniques. 

  

2.2. Culture-dependent techniques 

One milliliter of sample at each fermentation stage was diluted in series and 

spread onto YPD medium (2 % glucose, 2 % peptone, 1 % yeast extract and 1.7 % 

agar) and Lysine medium (Oxoid, USA) for incubation at 25 °C for 2-3 days. For 

plating, a Whitley Automatic Spiral Plater (AES Laboratoire, France) was used, and 

the viable yeast quantification was performed using a ProtoColHr automatic colony 

counter (Microbiology International, USA). For further colony identification, 25 

colonies were selected randomly from YPD and Lysine plates of each sample (50 
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colonies in total for each sample) and identified by 5.8S-ITS-RFLP analysis and 26S 

rDNA D1/D2 domain sequencing. In 5.8S-ITS-RFLP analysis, colony amplifications 

were first performed by primer pairs of ITS1/ITS4 as described by Esteve-Zarzoso et 

al. (1999). The amplification products were digested by five restriction enzymes 

(HinfI, HaeIII, CfoI, DdeI and MboI), and corresponding restriction profiles were 

identified according to Esteve-Zarzoso et al. (1999) and Csoma and Sipiczki (2008). 

Then, 26S rDNA D1/D2 domain sequencing was used to confirm the colony 

identification. Each PCR reaction was performed with primer pairs of NL1/NL4 and 

the program described by Kurtzman and Robnett (1998). An ABI3730 XL DNA 

sequencer (Macrogen, Korea) was used for the sequencing process, and 

corresponding sequence alignment was performed by BLAST from the NCBI 

database (http://blast.ncbi.nlm.nih.gov/). 

 

2.3. DNA extraction 

DNA was extracted from the cell pellets stored at -20 °C using the DNeasy 

Plant minikit (Qiagen, USA) as described in Hierro et al. (2006). The same extraction 

protocol was used for DGGE, qPCR and massive sequencing analyses. 

 

2.4. DGGE analysis 

The PCR reactions were performed using a Gene Amp PCR System 2720 

(Applied Biosystems, USA) with Primers U1GC and U2 (Meroth et al., 2003). The 

DGGE procedures followed the description in Andorrà et al. (2008) with a modified 

DGGE gel using a denaturing gradient from 35 % to 55 % urea and formamide. 

 

2.5. qPCR analysis 

The qPCR reactions were performed using an Applied Biosystems 7300 Fast 

Real-Time PCR System (Applied Biosystems, USA) with primers for total yeast, 

Saccharomyces, Hanseniaspora and Starmerella bacillaris as described in Andorrà 

et al. (2010). Standard curves were built for each yeast species in triplicate using 10-

fold serial dilutions of fresh cultures. 

 

2.6. Massive sequencing analysis 

A fragment of approximately 600 nt from D1/D2 of 26S rDNA was amplified 

using modified NL1/NL4 primers, which were designed with adaptor and molecular 
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identifier (MID) sequences specially for massive sequencing (Invitrogen, USA). The 

whole sequencing process was performed using a 454 Roche platform with the 

Genome Sequencing FLX System (LifeSequencing S.L., Spain): DNA libraries with 

specific MID sequences were built for each sample by target PCR with the improved 

primers, and then a primer-dimer removal protocol was applied to each PCR product 

to increase the sequencing throughput. An equimolecular pool was generated by 

quantification of the clean PCR products using the Quan-ITTM PicoGreen® kit 

(Invitrogen), and sequencing of the pooled samples was performed using a 454 FLX 

Roche sequencer (LifeScience, USA).   

The bioinformatics analysis of each sample was conducted by Life 

Sequencing S.L. (Spain). Quality control of all sequences was first performed by 

removing sequences with low quality or length lower than 300 nt and the PCR 

primers. An updated database of 26S rDNA sequences obtained from GenBank of 

NCBI was constructed for local alignment comparison. By local alignment 

comparison, each read was assigned to the most probable operational taxonomic 

unit (OTU) at different taxonomical levels (family, genera and species) with a 

confidence cutoff value of 80 % and an e-value of 10-5. Sequences with identity value 

lower than 80 % and e-value lower than 10-5 were assigned as “no hit”. 

The fungal community in each sample was analyzed by different biodiversity 

and similarity metrics at the species level using Estimate S v9.1.0 (Colwell, 2013). 

Both Shannon diversity and Simpson diversity were used to evaluate species 

diversity because Simpson diversity is less sensitive to richness and more sensitive 

to evenness than Shannon diversity (Colwell, 2009). The estimated species richness 

was also calculated by a nonparametric estimator, Chao1, which depends on the 

observed number of singletons and doubletons in a sample. Similarities were 

evaluated using Jaccard Classic and Bray-Curtis because we focused on comparing 

community compositions. 

 

3. Results 

Nine samples were obtained from different stages of fermentations; the details 

are described in Table 1. They were analyzed by culture-dependent techniques 

(YPD and Lysine plating) and three different culture-independent techniques (qPCR, 

DGGE and massive sequencing). 
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Table 1 Details of nine samples from grape must fermentations. The middle and end stages of 

fermentation were determined by density analysis. 

 

3.1. Yeast diversity analysis by culture-dependent techniques 

The 183 isolates from YPD plates were identified as five different species by 

5.8S-ITS-RFLP analysis and 26S-D1/D2 sequencing (Table 2). Hanseniaspora 

uvarum was the most frequently isolated species in all samples except sample IX 

(the end of fermentation, when Saccharomyces cerevisiae dominated). Starmerella 

bacillaris was the second most common species, isolated in samples III, IV, V, VIII 

and IX. Issatchenkia terricola was mainly isolated from fresh grape must after 

crushing (sample I, III, V and VI). Hanseniaspora valbyensis and S. cerevisiae only 

appeared in a single sample.  

The 179 non-Saccharomyces isolates from Lysine medium were identified. 

Only three species were recovered, with H. uvarum as the main species (Table 2). I. 

terricola was only isolated from grape must after crushing (sample I and V), and 

Starm. bacillaris was present in grape must after crushing and also at the end of 

fermentation. 

 

Table 2 The fungal diversity of nine different grape must and fermentation samples evaluated 

by culture-dependent and culture-independent techniques.  

 

 

 

 

 

 

Samples Fermentation stages Grape varieties Locations Coordinates 

I 0 h grape must Grenache Poboleda 41.227148, 0.844750 

II 0 h grape must Carignan Escaladei 41.258156, 0.808214 

III 24 h grape must (before SO2 treatment) Carignan Porrera 41.179651, 0.860334 

IV 48 h grape must (24 h after SO2 treatment) 

V 0 h grape must Grenache Porrera 41.176748, 0.860619 

VI 24 h grape must (before SO2 adding) 

VII 48 h grape must (24 h after SO2 treatment) 

VIII Middle stage of fermentation (day 3) 

IX Final stage of fermentation (day 11) 
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Techniques Yeast I II III IV V VI VII VIII IX 

Culture-

dependent 

techniques by 

YPD plating 

Total yeast * 4.80×10
3
 * 1.51×10

8
 3.58×10

6
 1.06×10

7
 2.10×10

7
 3.00×10

7
 9.10×10

5
 

H.  uvarum  7/9 * 9/25 19/24 14/25 24/25 25/25 22/25 nd 

H. valbyensis nd * 6/25 nd nd nd nd nd nd 

I. terricola 2/9 * 8/25 nd 3/25 1/25 nd nd nd 

S. cerevisiae nd * nd nd nd nd nd nd 18/25 

Starm. bacillaris nd * 2/25 5/24 8/25 nd nd 3/25 7/25 

Culture-

dependent 

techniques by 

Lysine plating 

Total yeast * 2.70×10
3
 4.88×10

6
 1.41×10

7
 1.75×10

6
 * 1.33×10

7
 3.10×10

8
 1.10×10

5
 

H. uvarum 13/25 8/9 25/25 25/25 13/20 * 25/25 25/25 nd 

I. terricola 9/25 nd nd nd 7/20 * nd nd nd 

Starm. bacillaris 3/25 1/9 nd nd nd * nd nd 25/25 

qPCR 

Total yeast 7.62×10
2
 2.85×10

5
 6.07×10

7
 1.13×10

8
 1.82×10

4
 6.06×10

6
 2.93×10

6
 4.35×10

5
 2.31×10

5
 

Hanseniaspora nd 9.95×10
3
 2.46×10

7
 1.44×10

7
 6.70×10

2
 2.64×10

6
 3.42×10

5
 2.45×10

5
 1.94×10

4
 

Saccharomyces nd nd nd nd nd nd nd nd 5.98×10
4
 

Starm. bacillaris nd nd 1.85×10
6
 2.90×10

5
 8.93×10

2
 1.49×10

6
 3.54×10

4
 4.67×10

2
 nd 

DGGE 

Aureobasidium 

pullulans 
‒ + nd nd + nd nd nd nd 

Botryosphaeria 

dothidea 
nd + nd nd nd nd nd nd nd 

H. opuntiae nd + nd nd + + + + + 

H. uvarum nd + + + + + + + + 

S. cerevisiae nd nd nd nd nd nd nd nd + 

Starm. bacillaris nd nd + + nd + + + + 

Massive 

sequencing 

Aspergillus 

tubingensis 
55.80 % 18.18 % < < < < nd nd nd 

Aureo. pullulans < 18.63 % < < < < nd nd nd 

B. dothidea nd < nd nd nd nd nd nd nd 

H.  thailandica nd < 5.25 % 5.00 % < < < < < 

H. opuntiae nd 6.05 % < < < < < < nd 

H. uvarum nd < 60.78 % 56.68 % < 13.57 % 11.80 % < < 

uncultured 

Hanseniaspora 
nd < 12.37 % 13.44 % < < < < < 

I. terricola nd nd < < < < < < nd 

Penicillium 

brevicompactum 
< 5.47 % nd nd < nd nd nd nd 

P. crustosum < 5.56 % nd nd < nd nd nd nd 

P.  glabrum 8.64 % nd nd nd < nd nd nd nd 

S. cerevisiae nd < nd nd nd < nd nd 25.98 % 

uncultured 

Saccharomyces 
nd < nd < nd < nd nd < 

Starm. bacillaris nd < 17.19 % 20.22 % 87.86 % 79.61 % 80.22 % 98.10 % 71.19 % 

uncultured soil 

fungus 
14.45 % < nd < < < < nd nd 

The results from culture-dependent techniques are shown as specie colony numbers compared 
with total colony numbers, with total yeast concentration also shown (cfu/ml). Grape must 
samples with moulds mainly found on plates, resulting in hard quantification or isolation, are 
labeled with “*”. The qPCR results are shown as cells concentration (cells/ml), the species 
detectable by DGGE are represented by “+”, and the results from massive sequencing are 
shown as percentages (%). Because of the rich diversity of the massive sequencing results, 
only the major species with percentages higher than 5% are shown in the table, and the 
species with lower percentages in some samples, if listed, are marked with “<”. The symbol of 
“nd” represents the species with lower concentrations below the detection limit (100 cells/ml) by 
qPCR and species undetectable by the other three techniques.  
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3.2. Yeast population diversity by qPCR analysis 

The population levels of total yeast, Hanseniaspora spp., Starm. bacillaris and 

Saccharomyces spp., were separately quantified (Table 2). The total yeast 

population in grape must after crushing (sample I, II and V) was lower than 106 

cells/mL, but the yeast population then increased to 105 to 108 cells/mL. 

Hanseniaspora was the main genus detected in almost all samples, ranging from 102 

to 107 cells/mL. Starm. bacillaris mainly appeared in grape must from Porrera (102 to 

106 cells/mL), although it was not detected at the end of fermentation. Surprisingly, 

the Saccharomyces population was only detected by this technique at the end of 

fermentation. The total yeast population size was not affected by the SO2 treatment; 

however, the Starm. bacillaris population was reduced by approximately tenfold after 

SO2 addition. This observation was made in the two samples analyzed before and 

after SO2 addition. 

 

3.3. DGGE analysis of grape must samples 

The bands obtained in DGGE profiles were assigned to six species by 

sequencing, as indicated in Table 2. No species were observed from sample I, and 

in the remaining eight samples, H. uvarum appeared in each sample, Hanseniaspora 

opuntiae and Starm. bacillaris in six samples, Aureobasidum (Aureo.) pullulans in 

sample II and V, and Botryosphaeria dothidea and S. cerevisiae in only one sample. 

 

3.4. Fungal diversity analysis by massive sequencing 

3.4.1 Species diversity and similarity of grape must samples 

A total of 120081 original sequences were obtained from nine samples, of 

which 106095 sequences passed the quality control filter. As shown in Table 3, 

approximately 10000 high quality reads were obtained from each sample, and the 

average sequence length was approximately 500 nt. The similar level of read 

numbers from each sample established comparability among samples. The analysis 

of massive sequencing was performed based on taxonomy-dependent methods, by 

which query sequences were compared with known sequences deposited in 

annotated databases. After alignment, 247 OTUs were identified at the species level 

from the 105541 hit reads, and 554 reads were not assigned an identity in the 

current eukaryotic database of NCBI (0.5 % of no hit reads). 
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Table 3 Total sequences obtained from massive sequencing and fungal community metrics of 

all samples. 

Metrics I II III IV V VI VII VIII IX 

High quality reads 10033 9301 10255 12798 10503 18162 11529 12559 10955 

Average length (nt) 499 471 545 539 505 512 510 511 486 

Number of OTUs at species level 86 186 22 21 64 25 15 11 15 

Number of no hit reads 30 165 55 85 69 61 29 10 50 

Estimated species richness 152 329 32 22 96 32 16 11 20 

  confidence intervals 113-248 263-451 24-76 21-33 75-153 26-59 15-30 11-17 16-44 

Shannon exponential species diversity 5.57 20.61 3.32 3.49 1.99 2.04 1.90 1.12 2.03 

Simpson inverse species diversity 2.88 10.94 2.37 2.57 1.28 1.52 1.43 1.04 1.72 

Estimated species richness was calculated using the Chao1 richness estimator, with log-linear 
95 % confidence intervals. OTU, operational taxonomic unit. 

 

Rich OTUs were found in the three grape must samples after crushing (I, II 

and V). However, the fermentation samples showed a lower OTU richness. The 

species richness of each sample was estimated by Chao 1, and more OTUs were 

expected from the three grape must samples after crushing; however, in the other six 

fermentation samples, the observed OTUs were similar to the estimated species 

richness. Thus, both observed and estimated species richness decreased as 

fermentation proceeded, as we expected. The Shannon (exponential form) and 

Simpson (inverse form) diversity indices were used to evaluate the community 

diversity, in which both richness and evenness were integrated. The diversity values 

were no less than 1 due to the corresponding forms used, and higher values meant 

higher diversity. Thus, sample II presented the highest diversity and the best 

evenness of the nine samples. Although sample V had a higher value of richness 

than some fermentation samples (III, IV, VI, IX), its diversity by both indexes was 

lower, mainly due to its poor evenness. 

The community similarity in nine samples was pairwise analyzed using the 

Jaccard Classic and Bray-Curtis indices (Table 4). Values from both indices range 

from 0 to 1, with 0 representing no similarity between two samples and 1 meaning no 

differentiation. Samples I and V showed similarities of 0.271 by Jaccard Classic and 

0.066 by Bray-Curtis, which were lower values than the similarities between III and 

VI (0.516 Jaccard Classic and 0.376 Bray-Curtis) or IV and VII (0.565 Jaccard 

Classic and 0.377 Bray-Curtis). As noted in Table 1, samples I and V were from the 

same grape variety (Grenache) but different locations (Poboleda, Porrera), while 

III/IV and VI/VII were from the same location (Porrera) but from two different grape 
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varieties (Carignan and Grenache). Therefore, the location seemed to contribute 

more to the dissimilarities between two samples than the grape variety. 

 

Table 4 Community similarity metrics (Jaccard Classic and Bray-Curtis) by pairwise multivariate 

analysis of all samples (I-IX). 

  Bray-Curtis 

  I II III IV V VI VII VIII IX 

Jaccard 

Classic 

I   0.357 0.004 0.002 0.066 0.001 0.000 0.000 0.000 

II 0.242   0.087 0.078 0.118 0.062 0.079 0.040 0.045 

III 0.049 0.072   0.887 0.217 0.376 0.343 0.173 0.174 

IV 0.059 0.078 0.593   0.263 0.400 0.377 0.221 0.226 

V 0.271 0.185 0.284 0.288   0.677 0.880 0.822 0.738 

VI 0.078 0.093 0.516 0.704 0.290   0.777 0.819 0.543 

VII 0.020 0.052 0.423 0.565 0.197 0.538   0.809 0.703 

VIII 0.000 0.037 0.375 0.391 0.154 0.333 0.625   0.672 

IX 0.020 0.052 0.276 0.385 0.145 0.379 0.364 0.444   

 

3.4.2 Fungal community composition at different phylogenetic levels 

The fungal communities of the grape must were mainly characterized by high 

amounts of OTUs from the Ascomycota phylum (more than 95 % in each sample). 

Forty-six of the 247 OTUs were present at 0.1 % to 5 % in each sample, and 189 

OTUs presented a minor proportion (lower than 0.1 %). Only 12 species were higher 

than 5 % in each sample, as shown in Table 2. The dominant species were 

Aspergillus (Asper.) tubingensis in sample I, Aureo. pullulans in sample II, H. uvarum 

in samples III and IV, and Starm. bacillaris in samples V - IX. Species from the 

Eurotiomycetes and/or Dothideomycetes class mainly occupied the grape must after 

crushing (sample I and II), and most of the species found in grape fermentation must 

(sample III - IX) were from the Saccharomycetes class. At the genus level, the eight 

most abundant genera in nine samples are listed in Figure 1. Their sum accounts for 

more than 80 % in each sample. The fungal community composition at different 

phylogenetic levels was more obviously affected by region and grape variety than 

the SO2 treatment, as the latter only caused small percentage changes in some non-

Saccharomyces species, mainly in the Hanseniaspora yeast genus. 
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Figure 1 Community distribution of the eight most abundant genera of nine samples (I - IX) 

using massive sequencing analysis. 

 

3.5. Comparison among culture-dependent techniques and different culture-

independent techniques 

Comparing the results from different techniques, all the species detected by 

culture-dependent techniques, qPCR and DGGE were also found by massive 

sequencing except for sample I; however, the quantity or percentage of some 

species from the Hanseniaspora and Starmerella genera varied depending on the 

techniques used. Saccharomyces was found only in sample IX by culture-dependent 

techniques, qPCR and DGGE, while a minor population was also found in samples II, 

IV and VI by massive sequencing. Most of the fungi from the non-Saccharomycetes 

class were detectable by massive sequencing, whereas only dominant species could 

be found by DGGE. Although they were also observed on YPD or Lysine plates, it 

was difficult to perform identification and quantification by culture-dependent 

techniques. Furthermore, non-culturable cells at the end of fermentation, such as H. 

uvarum, were quantifiable or detectable by the three culture-independent techniques. 

 

4. Discussion 

The nine samples from different locations, grape varieties and corresponding 

fermentation stages allowed the analysis of yeast diversity and ecology in the Priorat 
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wine region of Spain. However, our study went beyond descriptive analysis and 

focused on the comparison between culture-dependent techniques and culture-

independent techniques to evaluate the fungal diversity based on rDNA-PCR 

polymorphism. Recent studies have mentioned drawbacks of rDNA-PCR-based 

methods, especially for culture-independent techniques, such as preferential 

annealing of the primers, the representativity and quality of DNA, and variable gene 

copy numbers in different species, and these drawbacks might lead to 

overestimation/underestimation of the proportion of some species in the overall 

fungal community (Andorrà et al., 2008; Angly et al., 2014; Valera et al., 2015). 

Although, it was also observed in this study that massive sequencing, culture-

dependent techniques and qPCR detected different percentages of Starm. bacillaris, 

these methods were all necessary for yeast identification and quantification analysis. 

Culture-dependent techniques and culture-independent techniques such as qPCR, 

DGGE and massive sequencing were used in this study to weigh the biases 

introduced by the techniques in an effort to estimate the true fungal community 

diversity, similarity and composition. 

 

4.1. Fungal community in grape must after crushing 

The main fungi in grape must from the three vineyards of the Priorat region 

were Eurotiomycetes, Dothideomycetes and Saccharomycetes, all in the 

Ascomycota phylum. These fungi are commonly found in grape berries or grape 

must after crushing in various world wine regions (Bokulich et al., 2014; David et al., 

2014; Taylor et al., 2014). The dominant species in a single vineyard were Asper. 

tubingensis (Grenache from Poboleda), Aureo. pullulans (Carignan from Escaladei) 

and Starm. bacillaris (Grenache from Porrera). None of these three species are plant 

pathogens. The high population of Starm. bacillaris in grape must after crushing is 

unexpected but understandable: approximately 31 % of Candida (previous 

denomination of Starm. bacillaris) was found in Chardonnay grapes of Burgundy 

(France) (David et al., 2014), indicating the possibility of dominance of this yeast 

over other fungi in grape must. Moreover, some species that are considered 

common plant pathogens, such as Alternaria alternate, Aspergillus niger, B. dothidea, 

Cladosporium cladosporioides and Cytospora sacculus, were found in low 

percentages (0.1 % to 5 % according to massive sequencing results). Only one 

sequence of Botrytis cinerea was found in Carignan from the Escaladei vineyard and 
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Grenache from Porrera. No other common grape pathogen was detected. As noted 

by Taylor et al. (2014), the presence of DNA from these species does not 

necessarily mean that the grapes or plants have an infection. Fungal diseases are 

rare in the Priorat region because of the high temperature and low level of rainfall in 

the summer (Robinson, 2006). Some reads of S. cerevisiae (1.03 %) were found in 

Carignan from the Escaladei vineyard but did not appear in the other two grape must 

samples. The low or absent evidence of DNA from Saccharomyces was consistent 

with other reports based on high-throughput sequence analysis, and with the 

presence of other non-dominant non-Saccharomyces yeasts such as Hanseniaspora, 

Issatchenkia or Pichia in this study (Bokulich et al., 2014; David et al., 2014; Taylor 

et al., 2014). 

Regional microbial “terroir” was proposed by Bokulich et al. (2014) as a 

probable explanation for the regional characteristics of final wine quality, as the 

fungal community was more resistant to vintage variation than regional or even 

vineyard variation. Our results also showed that the fungal community was more 

affected by geographical location than by grape variety, even though the three 

vineyards were all located in the Priorat region with similar altitudes and were 

geographically close (approx. from 5 to 12 km to each other). Interestingly, Torija et 

al. (2001) found that Candida stellata (currently renamed Starm. bacillaris) was the 

only species isolated from grape must at the same location (Porrera) in 1996. 

Nevertheless, the formation of grape-surface communities by vineyard or region 

needed more proof to be established. Furthermore, the fungal community analysis in 

grape must after crushing was more reliable when estimated by massive sequencing 

than other techniques used in this study because of the “deep community 

sequencing” due to the larger number of sequences analyzed (Taylor et al., 2014). 

 

4.2. Fungal community in grape must during wine fermentation 

Fungal community dynamics during wine fermentation involve the decline of 

non-yeast fungi during the first 24 h, the simultaneous increase of Hanseniaspora 

species and the increase of S. cerevisiae at the end of fermentation. The non-yeast 

fungi seemed to be less tolerant of environmental change from grape skin to grape 

must, as few sequences were detected in grape must at 24 h, and only one 

sequence of Aspergillus niger was found in grape must at 48 h. The massive decline 

in non-yeast fungi contributed directly to the decreased biodiversity in grape must 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Chapter 1 

 

 

90 

during fermentation. Although the lack of detection of non-yeast fungi in grape must 

after 48 h resulted partly from their reduction in grape must after crushing, the 

decrease in non-yeast fungi could also be correlated with the dominance of 

Hanseniaspora species. A clear increase in S. cerevisiae appeared at the end of 

fermentation, which was expected (Ribéreau-Gayon et al., 2006) and was consistent 

in all the results with all the techniques used in this study. Only one sequence of S. 

cerevisiae was occasionally detected in grape must at 24 h, which is also consistent 

with the consolidated knowledge. This low percentage of Saccharomyces species 

was also observed by David et al. (2014), and in their studies, when fermentations 

had reached two-thirds of the process (late stages), Saccharomyces species were 

detected at lower levels. The high representation of non-Saccharomyces yeast in 

grape must (Starmerella in this study, and Candida in David et al. 2014, which could 

be equivalent) can account for this late detection of S. cerevisiae as a main species 

during fermentation. This competition between Starmerella/Candida and 

Saccharomyces needs further investigation. 

Regardless of regional and varietal factors, fungal diversity decreased as 

fermentation proceeded, with the disappearance of non-yeast fungi and the 

predominance of non-Saccharomyces yeast (Hanseniaspora). Thus, the grape must 

changes during wine fermentation also seemed to affect the fungal community. 

However, the analysis of similarity during wine fermentation showed a high value, 

likely resulting from the dominance of Starm. bacillaris throughout the process. 

Moreover, the influence of SO2 did not change the community similarity and 

composition. This result was consistent with the conclusions from former studies 

based on culture-dependent and culture-independent techniques (Andorrà et al., 

2008; Wang and Liu 2013). However, more studies are necessary to explain how the 

fungal community is formed in the vineyard, the changes during wine fermentation, 

and the relationship between the fungal communities and regional wine 

characteristics. 

The results from different techniques were more comparable during 

fermentation than in grape must. Massive sequencing was still the most 

comprehensive technique used in this study, as the detection of fungi is based on 

few sequences. For these results from massive sequencing analysis, it was 

important to accurately compare and search for information in the appropriate 

databases. To analyze the fungal community in this study, primers targeting the 
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D1/D2 region of 26S rDNA were used due to lower differences in the sequence 

length and more comprehensive reference databases than for the ITS region (Taylor 

et al., 2014). Some other authors used different approaches based on massive 

sequencing: Pinto et al. (2014) analyzed sequences from both regions (D1/D2 region 

of 26S rDNA and ITS) to analyze the whole community, and the results indicated 

some variations but no significant differences were found. David et al. (2014) used 

amplicons of 18S rDNA for yeast diversity analysis, and the yeast dynamics trend 

was basically consistent with our study here. Bokulin and Mills (2013) analyzed very 

short amplicons from the ITS region to improve the accuracy of high-throughput 

sequencing, and this approach decreased the bias caused by the differences in 

length of conventional ITS amplicons. The amplification of different regions might 

provide results with fewer biases, but databases for corresponding identification are 

also essential if taxonomy-dependent methods are used. RDP, SILVA and GenBank 

were used to assign an identity to all the sequences here (data not shown), and 

GenBank provided the most complete databases, with which identification at a lower 

taxonomical level (species) with a high confidence value of identity was achieved 

(Taylor et al., 2014). 

In conclusion, this work indicated different fungal community diversities in 

grape must after crushing Grenache or Carignan grapes from three vineyards in the 

Priorat region of Spain. The massive sequencing analysis of grape must could 

provide information on the presence of plant pathogens and the species able to 

successfully ferment grape must. The community dynamics during wine fermentation 

as analyzed by qPCR, DGGE and massive sequencing showed consistent results, 

especially for detecting non-culturable yeast at the end of fermentation. The 

population changes from grape skin to grape must are related with the presence of 

non-Saccharomyces yeast on the grapes. The changes during fermentation 

including ethanol, nutrition or even some yeast metabolites, introduce the 

appropriate conditions for the imposition of S. cerevisiae, which conducts the final 

part of the alcoholic fermentation. 
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Abstract 

Various molecular approaches have been applied as culture-independent 

techniques to monitor wine fermentations over the last decade. Among them, those 

based on RNA detection have been widely used for yeast cell detection, assuming 

that RNA only exists in live cells. Fluorescence in situ hybridization (FISH) targeting 

intracellular rRNA is considered a promising technique for the investigation of wine 

ecology. For the present study, we applied the FISH techniques in combination with 

epifluorescence microscopy and flow cytometry to directly quantify population of 

Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris 

during alcoholic fermentations. A new specific probe that hybridizes with eight 

species of Hanseniaspora genus and a second probe specific for Starm. bacillaris 

were designed, and the conditions for their application to pure cultures, mixed 

cultures, and wine samples were optimized. Single and mixed fermentations were 

performed with natural, concentrated must at two different temperatures, 15 °C and 

25 °C. The population dynamics revealed that the S. cerevisiae population increased 

to 107-108 cells/mL during all fermentations, whereas H. uvarum and Starm. bacillaris 

tended to increase in single fermentations but remained at levels similar to their 

inoculations at 106 cells/mL in mixed fermentations. Temperature mainly affected the 

fermentation duration (slower at the lower temperature) but did not affect the 

population sizes of the different species. The use of these probes in natural wine 

fermentations has been validated. 

 

Keywords: Culture-independent techniques, Wine ecology, FISH, Epifluorescence 

microscopy, Flow cytometry. 
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1. Introduction 

Wine fermentation is an ecologically complex process, and it is widely 

accepted that the yeast population changes as the fermentation proceeds (Fleet, 

2008; Wang and Liu, 2013). Yeast species play important roles in the wine-making 

processes: transforming sugar to ethanol, producing specific secondary metabolites, 

and finally, contributing to wine flavor characteristics. The main yeast involved in this 

transformation process belongs to the Saccharomyces genus, but other wine yeasts 

can also be isolated during the process, producing varying impacts on the wine 

composition (Andorrà et al., 2012; Fleet, 2003). Most of the knowledge generated 

concerning wine yeast ecology has been derived from plating, which has 

incorporated molecular analysis in the past 25 years (Ribéreau-Gayon et al., 2006). 

However, in the past 15 years, culture-independent techniques have provided a new 

view of microbial ecology during the wine production process. 

The culture-independent molecular techniques employed to study the ecology 

of wine yeasts have mainly been based on the detection of DNA in wine samples 

(Andorrà et al., 2010a; Cocolin et al., 2000; Hierro et al., 2006). However, it is 

possible to detect DNA from dead cells when using these techniques (Andorrà et al., 

2010b; Hierro et al., 2006). Furthermore, the presence of viable but non-culturable 

(VBNC) or injured cells in wine (Divol and Lonvaud-Funel, 2005; Millet and Lonvaud-

Funel, 2000) introduces a new bias into the analysis of the wine yeast ecosystem. 

More recently, a small modification of the same culture-independent methods, QPCR 

coupled with ethidium monoazide (EMA)/PMA (Andorrà et al., 2010b; Rawsthorne 

and Phister, 2009), has been proposed to reveal the actual viable yeast population 

structure and resolve the differences observed between plate counting and 

molecular results. Other methodologies based on RNA detection, such as RT-PCR-

DGGE (Mills et al., 2002) and RT-QPCR (Hierro et al., 2006), have also been 

proposed. A main hurdle of these techniques is that all of these methods rely on a 

high-quality DNA/RNA extraction and PCR/QPCR operation to provide accurate 

results. Fluorescence in situ hybridization (FISH) probes directly hybridize with 

intracellular ribosomal RNA at specific sites, and the target cells with fluorescent 

signals can be easily observed and recorded by epifluorescence microscopy and 

flow cytometry (Amann and Fuchs, 2008). In addition to its simplicity and rapidity, the 

ability to observe the cell morphology by a microscope and the high sensitivity 

obtained using a flow cytometer (ten fluorescent cells can be detected among ten 
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million non-fluorescent cells, as the flow cytometer can detect up to ten million 

events) make FISH a very promising technique for wine ecology studies (Andorrà et 

al., 2011; Branco et al., 2012; Díaz et al., 2010; Röder et al., 2007). 

To our knowledge, only a few wine ecology studies have reported on the 

detection of yeast populations by FISH, mainly because of the difficulty of designing 

probes. Although early studies (Inácio et al., 2003; Stender et al., 2001; Xufre et al., 

2006) were based on culture-dependent techniques, probes for several wine-related 

yeast species have been proposed, and the data can be used to design new probes 

for other species as well. Xufre et al. (2006) developed nine different probes for the 

detection of Saccharomyces and non-Saccharomyces wine yeasts. The first 

approximation of population monitoring during wine fermentation accomplished using 

FISH combined with flow cytometry was proposed by Andorrà et al. (2011). These 

authors found that the Hanseniaspora (H.) guilliermondii probe demonstrated a low 

fluorescent intensity compared to the Saccharomyces cerevisiae probe, whereas H. 

guilliermondii cells could be differentiated easily from S. cerevisiae cells by flow 

cytometry based on the cell size and granularity. Upon analyzing the changes in the 

fluorescence intensity of the stained cells during the fermentation, the intensity of the 

S. cerevisiae probes decreased while H. guilliermondii maintained a similar intensity 

as that of the initial conditions (Andorrà et al., 2011). Because of the high 

background fluorescence in wine, only high-intensity signal probes, which have only 

been applied for detecting Dekkera bruxellensis and S. cerevisiae in direct wine 

sample analysis, can be used (Andorrà et al., 2011; Röder et al., 2007). Therefore, 

the development of specific probes with sufficient fluorescence is still required for 

further assays of yeast populations directly from wine samples by FISH. 

Yeast diversity studies of red and white musts from our faculty cellar 

(Tarragona, Spain) have been performed for several years, with Saccharomyces, 

Hanseniaspora, and Candida (C.) comprising the main yeast genera detected. Thus, 

the present study aims to analyze the applicability of culture-independent FISH 

techniques coupled with epifluorescence microscopy and flow cytometry in 

determining changes in these yeast populations during alcoholic fermentations. 

Sterile musts were inoculated with S. cerevisiae, Hanseniaspora uvarum, and 

Starmerella (Starm.) bacillaris (synonym Candida zemplinina) to perform single and 

mixed fermentations. In this study, we have detailed the design of new probes with 

improved fluorescence intensity for monitoring Hanseniaspora and Starm. bacillaris 
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in wine fermentations. The fermentations were performed at two temperatures that 

are relevant from the wine-making point of view. 

 

2. Materials and methods 

2.1. Yeasts strains 

The yeast strains and species used in this study are listed in Table 1. Yeasts 

were grown overnight in YPD (1% yeast extract, 2% peptone, and 2% glucose, w/v) 

medium at 28°C before use. All yeasts were identified by 5.8S-ITS-RFLP analysis 

according to Csoma and Sipiczki (2008) and Esteve-Zarzoso et al. (1999) and by 

sequences analysis of the D1/D2 domain of the 26S rDNA (Kurtzman and Robnett, 

1998). 

 

2.2. Design of oligonucleotide probe 

Prior to designing the new probe, the published probes of S. cerevisiae, H. 

guilliermondii, and Candida stellata (Xufre et al., 2006) were synthesized and 

checked by hybridization with target species. Because of the undesirable results of 

the probes for H. guilliermondii and C. stellata in our initial assays, new 

oligonucleotide probes for Hanseniaspora and Starm. bacillaris that target within the 

D1/D2 domain of the 26S rRNA were designed (sequences were obtained from the 

GenBank database, accession numbers are shown in Table 2). Species-specific 

sequences were selected according to the alignment by Clustal Omega (EMBL-EBI) 

and the accessibility map of S. cerevisiae (Inácio et al., 2003). Subsequently, 

general and mismatch analyses with mathFISH (Yilmaz et al., 2011) were used to 

evaluate the sequences of these probes. To overcome a potential unspecific 

hybridization site, a competitor was designed to combine with the mismatched 

species to block the probe hybridization site on the non-target species. Competitor 

analysis from mathFISH (Yilmaz et al., 2011) was used to evaluate the effect of the 

competitor. Finally, the probes and the competitor were synthesized (Table 2) and 

tested first by hybridization with target species, and then, the fluorescence intensity 

and specificity of each probe were evaluated by FISH tests in pure cultures, mixed 

cultures, and wine samples using both methodologies, epifluorescence microscopy 

and flow cytometry. During the entire evaluation process, a multifactor trial of FISH 

techniques was performed until suitable probe and experimental conditions were 

found. All probes were labeled with fluorescein isothiocyanate (FITC). 
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Table 2. Sequences of oligonucleotide probes labeled with FITC at the 5' end and the non-

labeled competitor used in this study. 

a
 Sequence positions refer to the D1/D2 domain of the 26S rRNA gene of S. cerevisiae 

(U44806). 
b
 The data rely on the general analysis of mathFISH (Yilmaz et al., 2011) under the same 

conditions of temperature (46°C), [Na
+
] (0.9 M), and probe concentration (1000 nM). 

c
 Probes designed by Xufre et al. (2006) 

d
 H. clermontiae (sequences accession numbers: AJ512456, AJ512452), H guilliermondii 

(AB618029, EF449520, U84230), H. lachancei (AJ512457, AJ512459), H. meyeri (AJ512454, 
AJ512458, AJ512461), H. opuntiae (AJ512453, AJ512451, FM180532), H. 
pseudoguilliermondii (AJ512455, AB525689), H. uvarum (EU807899, JX103173, U84229), and 
H. valbyensis (U73596, JQ689026, JN938929). 
e
 Oligonucleotide competitor used together with probe H8b-FITC to increase the specificity. 

f
 Sequences accession numbers from GenBank database were AY160761, JX103187, 
EF452193, EF452215.  

 

2.3. Specificity test of probes 

The specificity of each probe was tested in pure cultures, mixed cultures, and 

wine samples. All of the samples were collected by centrifugation (1 ml sample, 

10,000 rpm for 5 min) and then hybridized separately with each probe. For pure 

cultures, the cells of each strain in Table 1 were collected directly from their YPD 

media. Mixed cultures were inoculated by mixing the same order of cells (2-5 x 107 

cells/ml) from overnight cultures of S. cerevisiae, H. uvarum, Starm. bacillaris, 

Torulaspora delbrueckii, and Metschnikowia pulcherrima. Six different wine samples 

from Macabeo (white) and Garnatxa Negra (red) varieties were prepared in this 

study. Grapes were picked and fermented in two different vats of the experimental 

cellar of the Oenology Faculty in Tarragona (Spain) separately, with S. cerevisiae 

inoculated at the beginning. Two wine samples, W and R, were sampled at the end 

of the two fermentations. Samples MW1 and MR1 were created by adding an H. 

uvarum pure culture at the end of the two fermentations, and MW2 and MR2 were 

Target species Probe Position
a
 Sequence (5’-3’) ∆G°overall

b 
(kcal/mol) 

C. stellata Cst-FITC
c
 D133 CTCTATGGCGTTTCTTTC -11.9   

Eight species of 

Hanseniaspora
d
 

H8a-FITC D402 TGAGAGGCCCAAGCCCAC -15.8   

H8b-FITC D2 AGGTAATCCCAGTTGGTT -14.3 

S. cerevisiae H8b-Com
e
 D2 AGGCAATCCCGGTTGGTT  

H. guilliermondii Hgu-FITC
c
 D506 CAATCCCAGCTAGCAGTAT -10.0   

H. uvarum Huv-FITC
c
 D507 TCAATCCCGGCTAACAGTA -9.3   

S. cerevisiae Sce-FITC
c
 D526 TGACTTACGTCGCAGTCC -13.9   

Starm. bacillarisf
 Sba-FITC D133 CTCCATGGCGCTCCTTTC -15.0   
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created by adding Starm. bacillaris pure cultures. These additions were necessary 

because no H. uvarum or Starm. bacillaris was observed at the end of fermentation.  

 

Table 1. Yeast strains and species used in this study and the specificity results for the three 

probes in pure cultures (sources: CECT, Spanish Type Culture Collection, Universitat de 

València; CBS, Centralalbureau voor Schimmelcultures, Delft, Netherlands; MCYC, 

Microbiology Collection of Yeast Cultures, Universidad Politécnica de Madrid; NS, natural 

isolates from our group collection; NCYC, National Collection of Yeast Cultures, Norwich, 

United Kingdom). Positive (+) or negative (­) hybridization is indicated. 

T
 means Type strain. 

a
A new name change according to Duarte et al. (2012); the two strains CECT 11046 and CECT 

11109 were preserved as C. stellata until November 2012 by CECT. 
b
CECT11027, which is recorded as H. guilliermondii by CECT, was identified as H. opuntiae in 

this study. 

 

Natural must from the Macabeo variety from our experimental facility was 

used to validate the probes. After settling, the must was left for 48 h prior to its 

Strains 
CECT 
designation 

Other 
designation 

Isolation source 

Specificity results for each probe 

Sce-
FITC 

H8b-FITC + 
H8b-Com 

Sba-FITC 

Candida bodinii 
11168 CBS 6990 Tepache ­ ­ ­ 

1014
T
 CBS 2428 Tanning fluid ­ ­ ­ 

Candida mesenterica 1025 CBS 602 Brewery ­ ­ ­ 

Candida sake 
10034 MCYC 123 Feces of sheep ­ ­ ­ 

1044 CBS 617 Lambic beer ­ ­ ­ 

Candida stellata 11918
T
 CBS 157 Wine grapes ­ ­ ­ 

Starmerella bacillaris 
(Synonym Candida 
zemplinina)

a
 

11046 CBS 2649 Grape juice ­ ­ + 

11109 CBS 1713 Wine ­ ­ + 

­ NS c Grape must ­ ­ + 

­ NS d Grape must ­ ­ + 

Hanseniaspora opuntiae 11027
b
 NCYC 2380 Grape must ­ + ­ 

Hanseniaspora 
guilliermondii 

11029 CBS 465 Infected nail ­ + ­ 

11102 CBS 1972 Grape juice ­ + ­ 

Hanseniaspora osmophila 11206 CBS 313 Ripe Riesling grape ­ ­ ­ 

Hanseniaspora uvarum 

1444
T
 CBS 314 Muscadet grape ­ + ­ 

10389 MCYC 1857 Grape juice ­ + ­ 

11105 CBS 2589 Grape must ­ + ­ 

11106 CBS 5073 Wine grape ­ + ­ 

11107 CBS 8130 Grapes ­ + ­ 

­ NS b Grape must ­ + ­ 

Hanseniaspora vineae 1471 CBS 6555 Grape juice ­ ­ ­ 

Metschnikowia pulcherrima ­ NS f Grape must ­ ­ ­ 

Saccharomyces cerevisiae 
1942

T
 CBS 1171 Beer + ­ ­ 

­ NS a Grape must + ­ ­ 

Torulaspora delbrueckii ­ NS e Grape must ­ ­ ­ 
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simultaneous inoculation with 3 different strains of S. cerevisiae (1 x 106 cells/ml 

from each strain). Samples were collected from the initial must after settling (time 0), 

at 12, 48, 60, and 84 h and at the end of fermentation. The samples were plated on 

YPD (1% yeast extract, 2% peptone, 2% glucose and 2% Agar, w/v) and 25 colonies 

were sampled for species identification by sequencing their D1/D2 26S rRNA coding 

region. The fermentations were performed in triplicates. 

 

2.4. FISH procedure 

The multifactor trial for each probe focused on four different parameters: 

fixation time (1 h, 2 h, 3 h, and overnight), percentage of formamide in the 

hybridization buffer (0%, 1%, 2%, 5%, 10%, and 20%), hybridization temperature 

(37°C, 42°C, and 46°C), and time (3 h and overnight), which were evaluated to 

optimize the hybridization potential of each probe. The effect of each parameter was 

assessed by performing single-factor tests based on the procedure of Andorrà et al. 

(2011). 

The published FISH procedure used in Andorrà et al. (2011) was adjusted as 

follows. Collected cells were suspended with 1× phosphate-buffered saline (PBS) 

and incubated with 4% (v/v) of paraformaldehyde for 1 h at 4ºC and 1000 rpm 

agitation in a shaker. Fixed cells were centrifuged at 10,000 rpm for 2 min, 

resuspended with a 1:1 solution of 1× PBS and absolute ethanol, and then stored at 

−20°C until required. Approximately 106 cells were hybridized at 46°C for 3 h in 50 μl 

of hybridization buffer (0.9 M NaCl, 0.01% w/v SDS, 20 mM Tris-HCl, and 1% v/v 

formamide) with 10 ng/μl of probe and 10 ng/μl of competitor (when it was required). 

After hybridization, cells were centrifuged at 10,000 rpm for 5 min, resuspended in 

100 μl of washing buffer (25 mM Tris/HCl and 0.5 M NaCl), and incubated at 48°C 

for 30 min. Then, the cells were centrifuged again, resuspended in 1× PBS, and 

analyzed immediately if possible but always within 4 h. A Neubauer chamber and 

epifluorescence microscope (Leica DM4000B, Wetzlar, Germany) equipped with 

filter I3 were used for cell observation and enumeration. 

 

2.5. Flow cytometry 

The fluorescence of the cell suspension in PBS (the same cells indicated in 

Section 2.4) was quantified using a BD FACSAria III flow cytometer (BD Biosciences, 

California, USA) equipped with a 15 mW, 488 nm argon-ion laser. Fluorescence was 
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detected using a 530 (±30) nm band pass filter. Daily instrument quality control, 

including fluorescence standardization, linearity assessment, and spectral 

compensation were performed to ensure operational consistency from day to day. At 

least 10,000 events were acquired and recorded in the linear mode for side scatter 

and in the log mode for fluorescent signals. The data were collected and analyzed 

using the FACSDiva software (BD Biosciences, California, USA). 

 

2.6. Alcoholic fermentations 

Fermentations were performed in triplicate in 50 ml conical tubes filled with 40 

ml of natural concentrated must diluted to a sugar concentration of 240 g/l, the 

common concentration of local grape must (DOQ Priorat). After plating, no colonies 

were recovered; hence, we considered this must to be sterile. Single fermentations 

of Sc (S. cerevisiae), Hu (H. uvarum), and Sb (Starm. bacillaris) and mixed 

fermentations of ScHu (1:1 of S. cerevisiae and H. uvarum), ScSb (1:1 of S. 

cerevisiae and Starm. bacillaris), and ScHuSb (1:1:1 of S. cerevisiae, H. uvarum, 

and Starm. bacillaris) were performed separately with 2 × 106 cells/ml of total yeast 

inocula obtained from overnight YPD cultures. Fermentations were conducted with 

constant agitation (120 rpm) at two different temperatures, 15°C and 25°C, and the 

entire process was monitored by weight every 12 h until there was no weight loss. 

Samples (1 ml) were collected at five points (1, 2, 3, 4, and 5) according to the CO2 

releases of 0% (starting point), 25%, 50%, 75%, and 100%, respectively. Cells from 

each sample were collected after centrifugation at 10,000 rpm for 5 min. Each 

sample was fixed and then hybridized separately with each species-specific probe. 

Species were monitored by epifluorescence microscopy and flow cytometry using 

the same sampling process for both methodologies. 

 

3. Results 

3.1. Development of oligonucleotide probes 

Four published probes and three new probes were tested in this study (Table 

2) to find suitable probes for wine-related yeast species of Saccharomyces, 

Hanseniaspora, and Starmerella. The published probe Sce-FITC (Xufre et al., 2006) 

worked well in our initial assays, whereas Hgu-FITC and Cst-FITC (Xufre et al., 2006) 

exhibited low fluorescence intensities when hybridized with target species and were 

considered unsuitable. 
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The three new probes targeting the D1/D2 domain of the 26S rRNA were 

designed, with two probes (H8a-FITC and H8b-FITC) for eight species of the 

Hanseniaspora genus (Hanseniaspora clermondiae, H. guilliermondii, 

Hanseniaspora lachancei, Hansenisapora meyeri, Hanseniaspora opuntiae, 

Hanseniaspora pseudoguilliermondii, H. uvarum, and Hanseniaspora valbyensis) 

and one (Sba-FITC) for Starm. bacillaris. H8a-FITC and H8b-FITC were the only two 

possible probes for Hanseniaspora according to an in silico analysis. Both probes 

could hybridize with the eight species of this genus because the D1/D2 sequences of 

these eight species are closely related phylogenetically (Jindamorakot et al., 2009). 

However, both probes exhibited some limitations according to the in silico analysis: 

the target site of H8a-FITC incorporated a complex second structure according to the 

accessibility map; for H8b-FITC, there were only two mismatch bases between the 

target sequences of this probe and the corresponding sequence of S. cerevisiae. 

The in silico analysis was not sufficient for selecting between H8a-FITC and H8b-

FITC; thus, both probes were synthesized and tested. H8a-FITC exhibited a low 

fluorescence intensity when hybridized with Hanseniaspora species, while H8b-FITC 

presented a positive signal when hybridized with S. cerevisiae. Because of the high 

intensity exhibited by H8b-FITC, this probe was selected and a competitor (H8b-Com) 

was designed to block the hybridization of this probe with S. cerevisiae, resulting in 

the removal of the unspecific signal from S. cerevisiae. 

Furthermore, after the optimization of the protocol, the results revealed that 1 

h of fixation was sufficient for sample preparation. One percent of formamide in the 

hybridization buffer was necessary for the optimal hybridization efficiency of H8b-

FITC, whereas Sce-FITC and Sba-FITC also performed well with 5% and 10% 

formamide. The results obtained from varying the hybridization temperature and time 

did not reveal any improvements. However, the percentage of formamide in the 

hybridization buffer was more critical determining the hybridization efficiency of H8b-

FITC when using the competitor. 

 

3.2 Specificity tests of probes in pure cultures, mixed cultures, and wine 

samples 

For pure cultures, as indicated in Table 1, the probes provided positive signals 

only when hybridized with strains of the target species. To consider any potential 

background signal interference from non-target species, a mixed culture was created 
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to provide the same background for all of the species. Cells of S. cerevisiae, H. 

uvarum, and Starm. bacillaris were distinguished clearly within the mixed yeast 

cultures by an epifluorescence microscope and flow cytometer (Figure 1). In the flow 

cytometry results, the difference between the non-stained cells (FITC less than 103) 

and the stained cells (FITC higher than 103) is clear. 

   

  

 

Figure 1. Fluorescent signal of target species in mixed yeast cultures visualized by microscopy 

and flow cytometry. Cells hybridized with probes Sce-FITC (A, A’, A’’), H8b-FITC coupled with 

H8b-Com (B, B’, B’’), and Sba-FITC (C, C’, C’’) and recorded with white light (A, B, C) and filter 

I3 (A’, B’, C’) of the microscope and by flow cytometry (A’’, B’’, C’’). 

 

The non-hybridized wine samples W and R contained high background 

fluorescent signals because of the absorption of polyphenol pigments from the wine. 

However, for all three probes, the fluorescence intensities of the hybridized cells 

were much higher than the background signal (Figure 2). The hybridization results of 

the six wine samples demonstrated that the three target species, S. cerevisiae, H. 

uvarum, and Starm. bacillaris, can be differentiated in wine samples using both the 

A’ B’ C’ 

A’’ B’’ C’’ 

A B C 
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epifluorescence microscope and the flow cytometer (Figure 2). This capability was 

primarily achievable because the fluorescent color from the hybridized target cells 

differed from the background color and non-target cells in wine and because the 

target signal was more intense when using the filter for FITC. The H8b-FITC, when 

coupled with H8b-Com, Sce-FITC and Sba-FITC probes presented high specificity to 

the target species in the FISH tests performed on pure cultures, mixed cultures, and 

wine samples. 

  

  

   

  

E’ 

A 

A’ 

B 

B’ 

C E D 

D’ C’ 
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Figure 2. Fluorescent signals of background and target species in samples W, R, MW1, MW2, 

MR1, and MR2 visualized by microscopy (A, B, C, D, E, F, G, H) and flow cytometry (A’, B’, C’, 

D’, E’, F’, G’, H’). Samples W (A, A’) and R (B, B’) without staining. Cells from sample W (C, C’), 

MW1 (D, D’), MW2 (E, E’), R (F, F’), MR1 (G, G’), and MR2 (H, H’) hybridized with probes Sce-

FITC (C, C’, F, F’), H8b-FITC coupled with H8b-Com (D, D’, G, G’), and Sba-FITC (E, E’, H, H’). 

 

3.3. Yeast population analysis during alcoholic fermentations 

At 25°C, all of the fermentations with S. cerevisiae (pure and mixed 

fermentations) were completed by 192 h, whereas the pure-culture fermentations 

with Starm. bacillaris (Sb) and H. uvarum (Hu) were slower and required 264 h and 

336 h, respectively. All of the fermentations were relatively longer at 15°C: ScHu and 

ScHuSb terminated after 264 h; ScSb and Sc required 336 h; and Sb and Hu did not 

complete their fermentations until 336 h. For the pure-culture fermentations, Sb 

reached point 3 of the fermentation, whereas Hu only reached point 2 (25% CO2 

release). The FISH methodology was used to monitor the yeast population dynamics 

during the entire fermentation process and the population dynamics are shown in 

Figure 3. The population dynamics of S. cerevisiae were similar in all of the mixed 

fermentations, regardless of whether the results were obtained by epifluorescence 

microscopy or flow cytometry. In contrast, the populations of H. uvarum and Starm. 

bacillaris were slightly larger according to the microscopy results compared to those 

recorded by flow cytometry. 

  

H’ G’ F’ 

G F H 
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Figure 3. Yeast population dynamics during alcoholic fermentations at 15°C (A, C, E, G) and 

25°C (B, D, F, H). Solid lines indicate populations measured by epifluorescence microscopy, 

and dotted lines indicate populations assessed by flow cytometry (the population quantity 

shown is the mean of triplicate values). Single fermentations of Sc, Hu, and Sb (A, B). Mixed 

fermentations of ScHu (C, D), ScSb (E, F), and ScHuSb (G, H). Symbols: ( , ) S. cerevisiae; 

( , ) H. uvarum; ( , ) Starm. bacillaris. 

 

B A 

D C 

 

E F 

H G 
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The populations of S. cerevisiae and Starm. bacillaris in the single 

fermentations increased from their initial concentration of 106 cells/ml to 107–108 

cells/ml, whereas H. uvarum grew more slowly with a population level of 106–107 

cells/ml. In all of the mixed fermentations, the S. cerevisiae populations increased to 

107–108 cells/ml after inoculation, whereas the populations of H. uvarum and Starm. 

bacillaris did not increase and remained at approximately 106 cells/ml. The 

temperature affected the fermentation process: the fermentations at 15°C were 

slower than those at 25°C, while mixed fermentations inoculated with H. uvarum 

were faster than the others at the low temperature. The population dynamics of S. 

cerevisiae, H. uvarum, and Starm. bacillaris at both 15°C and 25°C were similar for 

both the single and mixed fermentations and did not seem to be affected by the 

temperature. 

While, the fluorescence intensity of the hybridized S. cerevisiae cells varied 

during the fermentation process, those of the H. uvarum and Starm. bacillaris cells 

did not. At point 1 of the fermentation, most of the S. cerevisiae cells had achieved 

the highest fluorescence intensity. This intensity declined in the later stages of the 

fermentations (decreasing by up to 10-fold from the initial fluorescence); however, 

the S. cerevisiae cells always exhibited a higher intensity than the background. 

These changes in intensity were always observed with the S. cerevisiae probes, but 

the cells within a sample yield did not always produce the same intensity. This result 

can be observed by the formation of two peaks in the flow cytometry data 

(supplementary data). 

Finally, the validation of the probes was also tested in a natural fermentation 

of Macabeo must. As seen in Figure 4, we detected the presence of H. uvarum and 

Starm. bacillaris as the main non-Saccharomyces species in the must 

(approximately 106 cfu/ml) as well as traces of T. delbrueckii and M. pulcherrima (1 

colony each at 0 and 12 h), which disappeared after the inoculation of S. cerevisiae. 

During the start of the alcoholic fermentation, the values obtained on plates and by 

FISH were very similar. However, at the end of the fermentation, these values 

differed greatly; H. uvarum was not detected by plating, while Starm. bacillaris 

differed by two log units and S. cerevisiae by 5-fold. For the total cell count, the 

values were greater on plates than under the microscope during the initial stages of 

fermentation and one order of magnitude lower at the end of the fermentation. 
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Figure 4. Yeast population dynamics during the natural fermentation of Macabeo must. Solid 

lines refer to populations assessed by flow cytometry and dashed lines to plates. Sampling 

points were: 0, must after settling (density 1100, 0h); 1, 12 h; 2, 48 h (time of S. cerevisiae 

inoculation); 3, 60 h; 4, mid-fermentation (density 1060, 84 h); and 5, final fermentation (density 

<1000, 312 h). 

 

4. Discussion 

Culture-independent techniques have been developed for the rapid 

enumeration of yeast populations during the wine-making process, with special 

emphasis on the determination of both the live and VBNC cells (Andorrà et al., 

2010b; Andorrà et al., 2011; Branco et al., 2012; Cocolin and Mills, 2003; Hierro et 

al., 2006; Röder et al., 2007). Among them, FISH is a promising technique for 
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detecting target cells directly from wine samples because FISH probes are designed 

to hybridize with the rRNA inside of cells. In the present study, suitable probes and 

experimental conditions for detecting S. cerevisiae, Hanseniaspora, and Starm. 

bacillaris were selected and used for the quantification of each yeast species during 

the entire fermentation process. Thus, the evaluation of the potential for employing 

FISH in wine fermentation analyses was the goal of this study. Notably, the yeast 

cells detected by FISH should be strictly defined as cells with non-degraded rRNA. 

The stability of rRNA is species dependent (Andorrà et al., 2011); for example, 99% 

of the 26S rRNA of S. cerevisiae was found to be degraded within 24 h after cell 

death by heat-shock (Hierro et al., 2006). 

Early reports have described FISH probes for several wine-related yeast 

species (Röder et al., 2007; Stender et al., 2001; Xufre et al., 2006); however, only 

probes for D. bruxellensis and S. cerevisiae have been successfully used for direct 

wine sample analyses (Andorrà et al., 2011; Röder et al., 2007). This is the first 

report of the use of oligonucleotide probes for Hanseniaspora and Starm. bacillaris in 

direct wine sample analysis. In addition, the design and evaluation of the 

oligonucleotide probes followed the important guidelines (regarding specific 

sequences, accessible sites, and high affinity) suggested by Inácio et al. (2003) and 

Yilmaz et al. (2011). For example, probes should be designed with −13 to −17 

kcal/mol of ΔGo
overall under typical FISH conditions according to principles of the 

mathFISH program (Yilmaz et al., 2011). However, the ∆G°overall values of the three 

probes (Hgu-FITC, Cst-FITC, and Huv-FITC) designed by Xufre et al. (2006) were 

outside of this recommended range, indicating a low affinity of those probes for 

target sites, which can most likely explain their low hybridization efficiencies. 

Unfortunately it could be difficult to achieve a good balance among these guidelines 

for some yeast species because the possible specific site for specific hybridization 

(for Hanseniaspora species, it was D441–D518) was located in an inaccessible 

region according to the accessibility map (Inácio et al., 2003). Subsequently, the 

experimental evaluation provided the final evidence. Furthermore, the probes should 

be subject to a multifactor trial to evaluate the conditions for the optimal hybridization 

efficiency. The percentage of formamide in the hybridization buffer is a relevant 

factor that should be tested for each probe, and mathFISH was demonstrated to be a 

useful tool with theoretical references for determining the appropriate formamide 

concentration (Yilmaz et al., 2011). 
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The high background of the fluorescent signal found in the white and red wine 

samples was the most likely reason for the limited use of FISH probes for the direct 

analysis of wine samples in past years. The polyphenols absorbed by yeast walls 

cause an intensive yellow fluorescence, while the anthocyanins that often form 

aggregates that include yeast cells cause intense red fluorescence. Thus, probes 

labeled with fluorochromes of these wavelengths or similar wavelengths (such as the 

FITC probe used in this study) should be tested for their clear discrimination between 

the background and the fluorescence of the target. 

As proposed in Andorrà et al. (2011), FISH combined with epifluorescence 

microscopy and flow cytometry was used to monitor the yeast populations during the 

entire fermentation process. FISH combined with microscopy was useful for 

analyzing each cell in detail; however, for ecological studies, there is a need for the 

observation of a large number of cells and a highly experienced operator if the goal 

is an accurate quantification of the yeast populations present in small numbers. The 

analysis of a large number of cells under a microscope is tedious and time 

consuming, and the percentage of cells found in small populations can be biased by 

the subjectivity of the operator if they specifically look for those minor species. In 

contrast, the use of FISH combined with flow cytometry is fast, sensitive, and 

accurate because thousands of cells can be recorded in several seconds. Thus, it is 

suitable for the high throughput analysis of large numbers of wine samples. For our 

results, special attention should be paid to the aggregation of cells caused by the 

fixation step of FISH and this portion of cells should be excluded by gating when 

using flow cytometry. The aggregation of cells was a common phenomenon 

observed when using the FISH technique. Fortunately, the aggregation of yeast cells 

was not as serious as that of bacteria, making FISH combined with flow cytometry 

easier for yeast. Considering the complementary advantages of both methodologies, 

their combined use would be a better choice for the precise enumeration of yeast 

populations in wine samples. 

Two interesting phenomena concerning yeast population dynamics during 

wine fermentations were observed in this study. On the one hand, the two non-

Saccharomyces species maintained their inoculated population sizes in the mixed 

fermentations, while their populations increase in the single culture fermentations. 

This result could suggest that the capacity of the non-Saccharomyces population to 

grow was limited and that environmental pressure caused by S. cerevisiae might be 
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the primary factor. This finding was also observed in the natural fermentation. 

Meanwhile, the non-Saccharomyces populations did not decrease sharply in the late 

stages of mixed fermentations as normally observed by culture-dependent methods 

and as indicated in former ecological studies based on other culture-independent 

techniques (Andorrà et al., 2010b; Andorrà et al., 2011; Cocolin and Mills, 2003). 

Non-Saccharomyces yeasts can enter a viable but non-culturable state; under these 

conditions, they lose their cultivability but maintain their ribosomal RNA (without 

degradation), and a portion of these cells likely maintain their metabolic activities. 

However, we cannot completely rule out the possibility that the cells died and their 

rRNA persisted. In fact, at the end of the natural fermentation, we observed a 

meaningful difference between the number of cells observed under the microscope 

and the number of those able to grow on plates, which could have been attributed to 

either dead cells that maintained their cell structure (and thus their rRNA) or to cells 

that remained alive but were not able to be grown on plates (viable but unculturable). 

Furthermore, the variation in the fluorescence intensity of the stained S. cerevisiae 

cells during the fermentation, similar to the phenomenon observed by Andorrà et al. 

(2011), could be related to an increase in ribosome synthesis during the initial stages 

of alcoholic fermentation in S. cerevisiae cells (Novo et al., 2007). 

The actual state of the cells detected by FISH was difficult to determine and 

most likely included VBNC cells, injured cells, and even dead cells with high rRNA 

stability. Herrero et al. (2006) and Regan et al. (2003) have suggested that the 

viability of the cells could be assessed using fluorescent dyes such as EMA and 

propidium iodide (PI) to stain cells with compromised membranes. Branco et al. 

(2012) reported that direct live/dead staining combined with FISH (LDS-FISH) can be 

used to effectively assess the viability of S. cerevisiae and H. guilliermondii during 

alcoholic fermentation. Thus, the combined use of such dyes and FISH could be 

evaluated for the detection of the true, viable target yeast population in future work.  

In summary, the present study developed specific oligonucleotide probes for 

Hanseniaspora and Starm. bacillaris, which were applied in FISH combined with flow 

cytometry. We were able to directly identify S. cerevisiae, H. uvarum, and Starm. 

bacillaris in complex wine samples and thus demonstrated the potential for using 

FISH techniques in wine ecological studies. The design of new probes for other 

species will help to monitor the population dynamics of various yeast species 

(including minor populations) during industrial wine fermentations and to detect 
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spoilage yeasts during wine aging and storage. We also demonstrated the 

successful application of FISH in natural fermentations. 
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Figure 1. Fluorescent signal of stained S. cerevisiae cells at five fermentation points of ScSb. 

The five different fermentation points were marked with A (A’), B (B’), C (C’), D (D’), and E (E’), 

respectively.
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Abstract 

The present study analyzed the viable and/or culturable populations of 

Saccharomyces cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris 

(synonym Candida zemplinina) during laboratory grape must fermentation, in order 

to investigate the interaction between the three species considered. Firstly, 

population dynamics during wine fermentation were followed by culture-dependent 

techniques, and non-Saccharomyces yeast became non-culturable at late stages of 

fermentation when S. cerevisiae dominated. Four different culture-independent 

techniques were further applied to detect viable yeast cells at the late stage of 

fermentation. Both quantitative PCR techniques applied, namely ethidium monoazide 

bromide (EMA)-qPCR and Reverse Transcription (RT)-qPCR, detected H. uvarum 

and Starm. bacillaris at a concentration of 105 to 106 cells/mL. These non-culturable 

cells had membranes impermeable to EMA and stable rRNA. The background 

signals from dead cells did not interfere with the quantification of viable cells in wine 

samples by EMA-qPCR techniques. As a qualitative culture-independent technique, 

DGGE technique was coupled with EMA treatment (EMA-PCR-DGGE) or with RT 

(RT-PCR-DGGE). With EMA-PCR-DGGE non-Saccharomyces species during 

fermentation were detected although it was limited by the predominance of S. 

cerevisiae. 

 

Keywords: Culture-independent technique, DGGE, Ethidium monoazide bromide 

(EMA), Quantitative PCR (qPCR), Wine, Non-Saccharomyces. 
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1. Introduction 

Wine fermentations are complex ecological processes with a succession of 

variable yeast species that could provide different characteristics to the fermentation 

and final wine (Fleet, 2003). Considerable efforts have been devoted to investigate 

and monitor population dynamics during mixed fermentations with Saccharomyces 

and non-Saccharomyces species. According to culture-dependent analysis, the non-

Saccharomyces species are only isolated from early stages and the fermentations 

are dominated by Saccharomyces at late stages (Fleet, 2008). Recently, using 

culture-independent techniques, it was highlighted that viable non-Saccharomcyes 

populations could be quantified at late stages of fermentation (Andorrà et al., 2008; 

Wang et al., 2014) supporting their possible role also at the end of the transformation 

process. For these reasons, a thorough study is required to understand the states 

(culturable, live, injured or dead) of non-Saccharomyces during fermentation. 

The application of culture-independent techniques in wine ecology studies is 

considered a valid approach to investigate the presence of viable but non-culturable 

(VBNC) cells (Cocolin et al., 2013). For the quantitative techniques, qPCR was firstly 

used to directly quantify yeast DNA from wine samples (Hierro et al., 2007; Tofalo et 

al., 2012), but because of the stability of DNA, dead cells were also quantified 

resulting in an overestimation of yeast populations. To solve this problem, RT-qPCR, 

fluorescence in situ hybridization (FISH) and qPCR using ethidium monoazide 

bromide treatment or propidium monoazide bromide (EMA-qPCR or PMA-qPCR) 

were explored (Hierro et al., 2006; Rawsthorne and Phister, 2009; Andorrà et al., 

2010a; Shi et al., 2012; Vendrame et al., 2014; Wang et al., 2014). In RT-qPCR and 

FISH the cells with rRNA are considered viable, because the rRNA is less stable 

than DNA and, thus, is not quantified in dead cells (Hierro et al., 2006, Andorrà et al., 

2011, Wang et al., 2014). EMA-qPCR excludes cells with compromised membranes; 

EMA enters these cells and covalently combines with DNA which is not amplified by 

subsequent PCR reactions (Rudi et al., 2005). All of these quantitative techniques 

require specific primers, which increase the sensitivity for detection, avoiding the 

detection of non-targeted yeast species. As qualitative techniques, PCR-DGGE and 

RT-PCR-DGGE have been developed with universal primers to detect all probable 

yeast species without the need to know their sequences (Cocolin et al., 2000; Mills et 

al., 2002). However, detection sensitivity of DGGE depended on the disparity of 

orders of magnitude among different populations (Mills et al., 2002; Andorrà et al., 
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2008; Cocolin et al., 2011). Therefore, to analyze the yeast species in complicated 

must samples during fermentations, it is better to use both qualitative and 

quantitative techniques.  

This study focused on three main species in must fermentations: 

Saccharomyces cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris 

(synonym Candida zemplinina), with the aim to analyze the vitality state of the cells 

during fermentation, especially at late stages. These two non-Saccharomyces 

species were studied here because of their common appearance on Barbera grape 

in Piedmont region of Italy (Alessandria et al., 2015). The population dynamics 

during the whole fermentation was monitored by culture-dependent techniques. 

When the cell culturability was lost for the non-Saccharomyces species, EMA-qPCR 

and EMA-PCR-DGGE, as well as RT-qPCR and RT-PCR-DGGE were used to 

determine the cells’ status in wine samples. Dead cells, after 75% ethanol treatment, 

and culturable cells were used as negative and positive controls, respectively, to 

raise the standard curves for qPCR techniques and markers for DGGE. 

 

2. Materials and methods 

2.1 Yeast strains 

H. uvarum Y1 (Mills et al., 2002) and Starm. bacillaris CBE4 (Englezos et al., 

2015) were obtained from yeast culture collection of the DISAFA (Dipartimento di 

Scienze Agrarie, Forestali e Alimentari, University of Torino, Italy). Uvaferm BC (S. 

cerevisiae) was obtained from Lallemand (Montreal, Canada). The yeast cultures 

from DISAFA were grown on YPD agar (1% yeast extract, 2% peptone, 2% dextrose, 

all from Biogenetics, Italy), and then were inoculated into 10 mL of sterile Barbera 

must for a preadaptation. The Uvaferm BC was activated following the suppliers’ 

instructions and subsequently preadapted in the same must. 

 

2.2 Wine fermentation and sampling 

Red Barbera grape berries were harvested in 2013 and after crushing grape 

must was stored at -20 °C. Before use, the grape must was defrosted at 4 °C, and 

then pasteurized at 65 °C for 1 h. Flasks of 250 ml containing 100 mL of Barbera 

must (Glucose+Fructose 234.00 g/L, malic acid 3.8 g/L, citric acid 0.3 g/L, tartaric 

acid 5.8 g/L, pH 2.95, and YAN 179.60 mg N/L) were inoculated with 1 x 105 

cells/mL of preadapted Uvaferm BC, Starm. bacillaris CBE4 and H. uvarum Y1. 
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Fermentations were performed in duplicate at 25 °C, statically in presence of air 

(with screw cap not totally tight), and the whole process was monitored by weight 

every 24 h until no further weight loss. Samples (3 mL) were taken at day 0, 1, 4, 6, 

8, 11 and 14. One mL sample was used for microbiological analysis and another two 

tubes with 1 mL sample were centrifuged at 14,000 rpm for 10 min. The 

supernatants were collected for analysis of main parameters using an HPLC (Agilent 

Technologies 1260 Infinity, USA) according to Giordano et al. (2009), and the 

content of YAN was measured by L-arginine / urea / ammonia assay kit (Megazyme, 

Ireland) and primary amino nitrogen assay kit (Megazyme, Ireland). The pellet in one 

tube was passed to EMA treatment and further DNA extraction, and the pellet in the 

other tube was suspended in 100 μL of RNAlater® solution (Ambion, USA), and then 

kept at -20 °C for further RNA extraction. 

 

2.3 Microbiological analysis 

Appropriate dilutions in ten-fold series by Ringers solution (Oxoid, Italy) from 1 

mL of must were spread onto WL nutrient agar (Biogenetics) and Lysine medium 

(Oxoid). Counting was done after five days’ growth at 28°C. Colonies of the three 

yeast strains were discriminated by different morphologies and colors on WL nutrient 

agar (Cavazza et al., 1992). Lysine medium was used for quantification of non-

Saccharomyces population when S. cerevisiae dominated the fermentation. 

 

2.4 EMA treatment and DNA extraction 

The cells’ pellet from 1 mL of sample was resuspended in 1 mL of YPD broth 

and kept at 13 °C for 2 h to recover cells’ membrane from the ethanol interference 

(Andorrà et al., 2010a). Then cells were collected, suspended in 1 mL of sterile water 

and treated with EMA (Sigma-Aldrich, Italy) solution (5 g/L) using the same device 

and procedure as described by Andorrà et al. (2010a). Briefly, EMA was dissolved in 

sterile Milli-Q water to prepare the solution of 5 g/L. The box with a 650-W halogen 

lamp was constructed, and the distance between the lamp and the tube was approx. 

20 cm. Two microliters of EMA solution were added to the cell suspension (final 

concentration of EMA was 24 μM), and incubated in dark for 10 min. The samples 

were exposed to light for 30 s, kept on ice for 1 min with light off, and exposed again 

to light for 30 s. Cells were collected by centrifugation and washed with 1 mL of 

sterile water to remove the unstained EMA. MasterpureTM Complete DNA & RNA 
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Purification kit (Epicentre, USA) was used to extract DNA according to the 

manufacturer’s instruction. The DNA extracted was conserved at -20 ºC and used for 

both EMA-qPCR and EMA-PCR-DGGE analysis. 

 

2.5 RNA extraction and reverse transcription 

The cell suspension preserved in RNAlater® solution was centrifuged, and 

RNA from cell pellet was extracted by MasterpureTM Complete DNA & RNA 

Purification kit (Epicentre, USA) following manufacturer’s instructions. RNA was 

treated with TURBOTM DNase (Ambion, USA) at 37 °C for 3 h or overnight (if needed) 

to completely remove DNA.  Complete DNA removal was confirmed by qPCR. 

Reverse transcription of the extracted RNA was performed with the following 

procedure: 0.5 μL of RNA was mixed in 4.5 μL of DNase and RNase-free water 

containing 0.5 μL of Random Primers (500 μg/mL, Promega, Italy), and incubated at 

72 °C for 5 min. The reaction sample was kept on ice for 5 min, and then added with 

7.5 μL of mixture containing 2.5 μL of M-MLV RT 5× Buffer, 2.5 μL of 10mM dNTPs, 

20 U of RNase inhibitor (all from Promega, Italy), 100 U of M-MLV Reverse 

transcriptase (Promega), and 1.5 μL of DNase and RNase-free water. The reaction 

continued with incubation at 42 °C for 1 h and stopped with a step of 72 °C for 10 

min. The cDNA synthesized was conserved at -20 ºC and used for further RT-qPCR 

and RT-PCR-DGGE analysis. 

 

2.6 Standard curves and qPCR analysis  

The qPCR was performed with the primers (all from Sigma-Aldrich, Italy) 

YEASTF/YEASTR for total yeast (Hierro et al. 2006), CESPF/SCERR for S. 

cerevisiae (Hierro et al. 2007), CESPF/HUVR for H. uvarum (Hierro et al. 2007), and 

AF/200R for Starm. bacillaris (Andorrà et al. 2010b). Each reaction was carried out 

by the MiniOpticonTM Real-Time PCR System (Bio-Rad, Italy) in a total volume of 13 

μL of reaction mixture, which contained 6 μL of SsoAdvanced Universal SYBR 

Green Supermix (Bio-Rad), 0.4 μM of the primers, and 1 μL of DNA or cDNA 

template. PCR conditions were as in Andorrà et al. (2010b). Standard curves of 

EMA-qPCR and RT-qPCR were constructed for each yeast species in triplicate using 

10-fold serial dilutions of preadapted cells. These cells were obtained from one day’s 

yeast cultures in 10 mL of sterile Barbera juice as mentioned in 2.1.  The serial 

dilutions were performed using 9 mL of sterile must to which 1 mL of cell suspension 
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was added. The final cell suspensions were counted by hemocytometer under 

microscope to determine the real concentrations of serial cell dilutions. 

Dead cells were prepared from the same cultures, and then treated with 75% 

ethanol for 24 h. The lysis process of cells was confirmed by the absence of growth 

in YPD broth after 24 h and on WL nutrient agar after 5 days. 

 

2.7 PCR and DGGE analysis 

Primers NL1GC and LS2 were used to amplify the ribosomal region of 

extracted DNA or synthesized cDNA for further DGGE analysis (Mills et al., 2002). 

Five μL of the PCR products were firstly checked for the sizes by agarose gel 

electrophoresis, then, the same volume was further separated by DGGE gel 

electrophoresis in a DCode universal mutation detection system (Bio-Rad). Both 

kinds of electrophoresis were operated and the gels were stained and photographed 

according to the descriptions of Mills et al. (2002) with minor modifications: DGGE 

gel used a denaturing gradient from 30% to 60% of urea and formamide, and was 

run at 120 V for 4 h. PCR products from DNA or cDNA of pure yeast cultures were 

used as markers in DGGE gel. Different cell mixtures were prepared from pure yeast 

cultures, and subjected to EMA-PCR-DGGE analysis to determine the detection 

limits of the three species. 

 

2.8 Data analysis 

Statistical analyses of variations were performed by One-Way ANOVA to 

calculate the value of F and significance, with post-hoc Tukey test when needed, 

using IBM SPSS Statistics 23. The Ct values from live and dead cells were used 

directly for variation analysis, and the yeast population numbers analyzed by 

different techniques were converted to logarithm value for further variation analysis. 

 

3. Results 

3.1 Culturable yeast populations during must fermentation 

The fermentations terminated after 11 days, although culturability analysis 

was extended up to 14 days. During the whole fermentation process, culturable 

populations of the three species showed different trends, especially at late stages of 

fermentations (Fig. 1). The three species grew to population of 107 colony forming 

units (cfu)/mL during the first days of fermentation. S. cerevisiae (Uvaferm BC) 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Chapter 3 

 

 

127 

maintained the maximum population level during fourteen days. Starm. bacillaris 

CBE4 kept similar population level as S. cerevisiae during 8 days, decreasing 

sharply to undetectable levels by plating on day 11. The other non-Saccharomyces 

species, H. uvarum Y1, grew faster to reach a population of 107 cfu/mL, but 

decreased to undetectable level earlier (day 6) than the Starm. bacillaris CBE4 strain. 

 

Figure 1. Culturable S. cerevisiae (Uvaferm BC), H. uvarum, and Starm. bacillaris populations 

during grape must fermentation as determined by plating on WL nutrient agar and Lysine 

medium. The values are the mean of duplicates. 

 

3.2 qPCR analysis of wine samples 

First, standard curves for each species and both techniques (EMA and RT- 

qPCR) were separately constructed. Background signal from dead cells at different 

concentrations were also quantified. Finally, the populations of each species in the 

selected samples were quantified and compared among the two culture-independent 

techniques and the culture-dependent techniques. 

3.2.1 Standard curves for EMA-qPCR 

Cells adapted in sterile Barbera must were serially diluted in the same must 

and quantified by microscope to associate the logarithm values of cells’ 

concentration and Ct values. Good correlations were obtained for populations 

between 103 and 107 cells/mL by EMA-qPCR analysis (Table 1). 
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Table 1. The slope, intersection, correlation coefficient (R
2
) and efficiency of standard curves of 

total yeast, S. cerevisiae, H. uvarum, and Starm. bacillaris by EMA-qPCR analysis and RT-

qPCR analysis. The efficiency was calculated by the formula 10
-1/slope

 -1. Mean and standard 

deviation of triplicate qPCR amplifications are shown. 

Technique Yeast Slope Intersection R
2
 Efficiency (%) 

EMA-qPCR Total yeast -2.8250±0.2490 36.924±0.813 0.9943±0.0061 125.93±23.17 

S. cerevisiae -3.4097±0.0807 42.319±0.484 0.9909±0.0005 96.46±3.21 

H. uvarum -3.2230±0.0198 38.599±0.103 0.9976±0.0037 104.30±0.89 

Starm. bacillaris -3.8530±0.3224 47.819±2.024 0.9912±0.0152 81.78±9.06 

RT-qPCR Total yeast -2.4045±0.0770 30.095±0.3734 0.9796±0.0021 160.55±8.00 

S. cerevisiae -2.9293±0.0741 40.454±0.479 0.9870±0.0009 119.47±4.39 

H. uvarum -3.1147±0.1020 41.340±0.4815 0.9964±0.0030 109.44±5.21 

Starm. bacillaris -3.3408±0.0364 37.036±0.3539 0.9923±0.0006 99.22±1.48 

 

The preadapted cells were also used to prepare dead cells, and the dead 

cells of three species were analyzed by EMA-qPCR technique to quantify the 

background. The Ct values from dead cells were much higher when compared to 

those generated by live cells at the same cell concentration (Table 2). The ANOVA 

analysis demonstrated the significant difference of Ct values between live and dead 

cells due to the lower significance value than 0.05, despite that no difference was 

observed for Starm. bacillaris at the concentration of 103 cells/mL (the significance 

value > 0.05), most likely due to the high difference of Ct values within live and dead 

cells. Interference from background signal appeared only in the presence of large 

populations of dead cells (107 cells/mL), which were detected by the method as 

approx. 104 live cells/mL according to the standard curves. 

 

3.2.2 Standard curves of RT-qPCR 

Good correlations were also obtained for culturable populations between 102 

and 107 cells/mL by RT-qPCR analysis (Table 1). Ct values of S. cerevisiae, H. 

uvarum, and Starm. bacillaris were also checked before and after the killing 

treatment (75% ethanol for 24h) and approx. 104 to 105 cells/mL background was 

produced from 106 to 107 dead cells/mL of each species according to the standard 

curve in Table 1 (data not shown). 
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Table 2. Ct values for a dilution series of live or dead cells by EMA-QPCR. Cell concentration is 

expressed as log units, and Ct values were shown as mean ± standard deviation of triplicate 

qPCR amplifications. The significance level for One-Way ANOVA calculation was 0.05. 

 

3.2.3 Analysis of fermentation samples 

The DNA and cDNA extracted from fermentation samples were subjected to 

amplification and specific yeast populations were quantified using the previously 

generated standard curves. More specifically, samples at day 6 and 11, in which the 

H. uvarum and Starm. bacillaris respectively became non-culturable, were analyzed. 

The chemical composition of the fermented must samples is shown in Table 3. 

 

Table 3. Chemical composition of grape must main components at different fermentation 

stages. The values are means of duplicate analysis. 

Day Glucose g/L Fructose g/L Ethanol % vol Glycerol g/L Acetic acid g/L 

0 116.60 117.40 0.00 0.10 0.00 

6 24.44 34.22 10.00 6.94 0.12 

11 0.27 1.09 13.99 8.07 0.26 

 

The EMA-qPCR and RT-qPCR quantification results were compared to those 

obtained by culture-dependent techniques (Table 4). The ANOVA analysis did not 

Species Cell 

concentration 

Live Dead Variation 

between live & 

dead cells 

Variation 

within live & 

dead cells 

F Significance 

S. cerevisiae 7 17.89±0.04 28.76±0.38 117.61 0.07 1599.65 0.001 

6 22.70±0.00 29.23±0.21 42.60 0.02 1893.26 0.001 

5 25.12±0.16 31.65±0.04 44.09 0.01 3391.51 <0.001 

4 28.70±0.17 31.81±0.01 14.87 0.01 1020.81 0.001 

3 31.94±0.35 34.19±0.01 4.00 0.06 63.92 0.015 

H. uvarum 7 16.25±0.10 24.39±0.09 66.34 0.01 7270.25 <0.001 

6 18.98±0.08 30.87±0.19 141.25 0.02 6472.08 <0.001 

5 22.33±0.16 31.53±0.59 84.82 0.19 457.40 0.002 

4 26.01±0.34 32.98±0.18 48.58 0.07 652.09 0.002 

3 28.85±0.21 32.95±0.82 16.77 0.36 45.98 0.021 

Starm. bacillaris 7 20.83±0.09 30.63±0.16 97.42 0.02 5582.63 <0.001 

6 24.14±0.01 33.95±0.74 96.33 0.27 356.23 0.003 

5 29.15±0.25 35.21±0.46 31.08 0.14 225.18 0.004 

4 32.97±0.01 37.49±0.50 20.43 0.13 162.08 0.006 

3 35.68±0.71 38.00±0.01 5.41 1.46 3.69 0.195 
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differentiate among three techniques for the total yeast and S. cerevisiae 

quantification on day 6, but some differences existed for the other samples. The 

post-hoc Tukey test was further performed to find out the culture-independent 

technique, by which the quantification result was significantly different from the result 

by culture-dependent techniques, as shown in Table 4. Therefore, three main 

conclusions could be obtained. First of all, the total yeast populations from all 

samples were kept at similar level (107 cells/mL) by culture-dependent and culture-

independent techniques because of the existence of large culturable S. cerevisiae 

population. Secondly, when the culturable species were quantified on plates, the 

population size was similar to the one detected by EMA-qPCR, both for S. cerevisiae 

and Starm. bacillaris. However, quantification by RT-qPCR yielded counts that were 

one log unit lower for S. cerevisiae and even two log units lower for Starm. bacillaris 

comparing to culture-dependent methods. Then, when no colonies of non-

Saccharomyces were recovered on plates, still populations of about 105 cells/mL (H. 

uvarum) or 106 cells/mL (Starm. bacillaris) were quantified by EMA-qPCR. The 

counts of the non-culturable non-Saccharomyces by RT-qPCR were similar to those 

obtained by EMA-qPCR. 

 

Table 4. Yeast quantification on day 6 and 11 by culture-dependent (microbiological analysis) 

and culture-independent techniques (EMA-qPCR and RT-qPCR). The values of populations in 

the table are the average from duplicate fermentation and expressed as cfu/mL (plate counting) 

or cells/mL (qPCR methods), nd means not detectable. The significance level for One-Way 

ANOVA calculation was 0.05. 

* The mean difference was significant from culture-dependent technique by post-hoc Tukey test. 

 

Day Yeast WL and 

LM plates 

EMA-qPCR RT-qPCR Variation 

between 

techniques 

Variation 

within 

techniques 

F Significance 

6 Total yeast  5.71×10
7
 2.08×10

7
 1.08×10

8
 0.28 0.04 6.45 0.082 

S. cerevisiae 3.03×10
7
 2.79×10

7
 6.03×10

6
 0.30 0.03 9.20 0.053 

H. uvarum nd 3.16×10
5
 * 9.10×10

5
 * 21.67 0.06 392.29 <0.001 

Starm.bacillaris 2.68×10
7
 1.52×10

7
 5.40×10

5
 * 1.72 0.03 60.81 0.004 

11 Total yeast  3.50×10
7
 1.41×10

7
 1.08×10

8
 0.40 0.01 66.69 0.004 

S. cerevisiae 3.50×10
7
 2.60×10

7
 4.33×10

6
 * 0.48 0.02 36.61 0.008 

H. uvarum nd 6.50×10
5
 * 4.28×10

5
 * 21.84 <0.01 28285.08 <0.001 

Starm.bacillaris nd 1.88×10
6
 * 4.42×10

5
 * 23.39 0.07 338.84 <0.001 
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3.3 DGGE electrophoretic profiles of wine samples 

In order to study the effect of the EMA treatment on the detection of the three 

species by DGGE, eight different cell mixtures were prepared from pure yeast 

cultures in sterile Barbera juice (Fig. 2). The differences in population sizes affected 

the detection and when S. cerevisiae was predominant in the mixture with 107 

cells/mL, Starm. bacillaris could be detected at 105 cells/mL but not at 103 cells/mL, 

whereas H. uvarum was not detected in any of those tested concentrations. When 

low populations of S. cerevisiae were present in the mixture (103 cells/mL), Starm. 

bacillaris at 105 and 107 cells/mL could be detected, while H. uvarum could only be 

seen at concentrations of 107cells/mL or when Starm. bacillaris was at the same 

concentration (105 cells/mL). 

 

Figure 2. Detection of viable cells from eight different mixtures of S. cerevisiae (sacc), H. 

uvarum (huv) and Starm. bacillaris (star) by EMA-PCR-DGGE. M, DNA marker made with the 

three pure species; Lanes 1-11 represent samples of different cell and population mixtures: 1, 

10
7
sacc+10

3
huv+10

5
star; 2, 10

7
sacc+10

5
huv+10

5
star; 3, 10

7
sacc+10

3
huv+10

3
star; 4, 

10
7
sacc+10

5
huv+10

3
star; 5, 10

3
sacc+10

7
huv+10

7
star; 6, 10

3
sacc+10

7
huv+10

5
star; 7, 

10
3
sacc+10

5
huv+10

7
star; 8, 10

3
sacc+10

5
huv+10

5 
star; 9, 10

7
sacc; 10, 10

7
huv; 11, 10

7
star. 

 

The fermentation samples (day 6 and 11) were also analyzed by the EMA-

PCR-DGGE and RT-PCR-DGGE techniques. The results are shown in Fig. 3. With 

EMA-PCR-DGGE, S. cerevisiae was detected in both tested days (6 and 11), Starm. 

bacillaris was only found on day 6 while H. uvarum was not detected. Although these 

results were similar to plating, the differences in population sizes between all the 

species affected clearly the detection of the minority species (H. uvarum and Starm. 

bacillaris).  
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Analysis by RT-PCR-DGGE yielded very different results. S. cerevisiae, H. 

uvarum and Starm. bacillaris could be detected in all samples although H. uvarum 

presented very strong bands. 

 

Figure 3. Detection of viable cells of samples from grape must fermentation by EMA-PCR-

DGGE and RT-PCR-DGGE analysis. Ma, marker containing mixed DNA of three pure species; 

Mb, marker containing mixed cDNA of three pure species; Lanes 1-14 were obtained with DNA 

(1-7) or cDNA (8-14) templates from different samples: 1 and 14, 10
7
 S. cerevisiae; 2 and 13, 

10
7
 H. uvarum; 3 and 12, 10

7
 Starm. bacillaris; 4, 5, 8 and 9, samples of day 6 from duplicate 

fermentations; and 6, 7, 10 and 11, samples of day 11 from duplicate fermentations. 

 

4. Discussion 

The definition of live cells in wine ecology has changed with the development 

of detection techniques. Starting from traditional methods (i.e. use of culture media), 

analysis has moved to the application of culture-independent molecular techniques 

represented by the use of DNA (qPCR or PCR-DGGE), determination of cell 

membrane integrity (EMA-qPCR or PMA-qPCR) or use of RNA (RT-qPCR, RT-PCR-

DGGE and FISH) (Cocolin and Mills, 2003; Hierro et al., 2006; Andorrà et al., 2008; 

Andorrà et al., 2010a; Andorrà et al., 2010b; Shi et al., 2012; Vendrame et al., 2014; 

Wang et al., 2014). The combined use of culture-dependent and culture-independent 

techniques was considered in this paper, and the aim was to study how the 

interactions between S. cerevisiae, H. uvarum and Starm. bacillaris during alcoholic 

fermentation of a natural must could be reflected at population level. A need for truly 

dead cells was necessary for comparison and background estimation. Heat shock 

(65ºC) and ethanol toxicity (75%) were tested by reactivation in both rich medium 

(YPD broth) and differential media (WL nutrient agar). Heat shock and ethanol 

toxicity yielded the same results (data not shown). Ethanol toxicity was chosen for 
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the similarity to the increased concentrations of ethanol during alcoholic 

fermentations, which could finally produce cell death. 

The agreement between culture-dependent techniques and EMA-qPCR for 

culturable S. cerevisiae and Starm. bacillaris cells was considered as a proof that 

culturable cells had fully functional cell membrane and EMA-qPCR could quantify 

them accurately, as previously described by Andorrà et al (2010a). EMA-qPCR 

presented good linearity with culturable populations between 103 to 107 cells/mL, but 

a low background signal was produced from the dead cells at high concentrations. 

This background signal was also observed by Andorrà et al. (2010a) and Nkuipou-

Kenfack et al. (2013), and it could not be removed by regulation of EMA treatment 

conditions (Nkuipou-Kenfack et al., 2013). Nevertheless, from the view of application, 

this background signal did not actually interfere with the quantification of live cells 

from wine fermentations, because the signal (105 to 106 cells/mL) was always higher 

than background signals (104 cells/mL). This point was also verified by Andorrà et al. 

(2010a), by addition of a constant population of dead cells to serial dilutions of viable 

cells obtaining a standard curve that was not influenced by the dead cells.  

The analysis of rRNA integrity through the RT-qPCR analysis resulted in an 

underestimation of the culturable population by one or two log units. Considering the 

good linearity of the standard curves, this result is probably related with a decreased 

ribosome level inside the culturable cells facing environmental stress (ethanol 

production, nutrient depletion) and initiating survival strategies. Although there is no 

evidence in the present work, other studies based on FISH (Andorrà et al., 2011; 

Wang et al., 2014) also observed the variation in the fluorescence intensity of the 

stained S. cerevisiae cells during fermentation. The variation of rRNA concentration 

to some extent questioned the quantification accuracy of RT-qPCR, especially as 

reference for live cells. Furthermore, the rRNA of dead cells might be degraded at 

different rates depending on the lytic process. By ethanol treatment (75% ethanol for 

24h), the reduction of rRNA was obvious, although some stable rRNA still existed 

after 48h (data not shown) and probably interfered with the quantification of live cells. 

Previous data from dead cells originated by heat shock (60 °C 20 min, Hierro et al., 

2006) also showed the relative stability of rRNA, which takes at least 24h for 

significant degradation in S. cerevisiae cells. The death of non-Saccharomyces 

species during wine fermentation is probably dependent on a variety of factors 

(Wang et al., 2015) and their effect on the relative stability of rRNA in these dying 
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cells is still far from being understood. More information is needed to understand the 

process, and the use of rRNA-dependent techniques to evaluate it. 

Previous studies based on culture-independent techniques have reported the 

existence of non-Saccharomyces populations during late stages of fermentation, 

when Saccharomyces dominated the process (Andorrà et al., 2010a; Wang et al., 

2014). Our results were consistent with these reports because of the detection of 105 

to 106 cell/mL of H. uvarum and Starm. bacillaris after no culturable cells were 

obtained from these species. Based on our results, we can conclude that a 

subpopulation of non-culturable cells had an injured membrane (therefore were not 

detected by EMA-qPCR) and are considered dead while a quantifiable number of 

non-culturable cells were still alive with functional membranes (detected by EMA-

qPCR) and non-degraded RNA (detected by RT-qPCR). 

DGGE was firstly used in this study with combination of EMA treatment, and 

the approximate detection limits for Starm. bacillaris and H. uvarum were also tested. 

It could be used as a basic qualitative culture-independent technique for monitoring 

wine fermentation. The limitation of EMA-PCR-DGGE was the uncertain detection of 

minor populations when some predominant populations existed at one or two log 

units higher concentrations. RT-PCR- DGGE in this study detected all of the three 

species at late stages of fermentation, especially from H. uvarum, which was the 

species undetected on plates. The high intensity of rRNA signal from H. uvarum 

could be interpreted as a high concentration of rRNA, as seen before (Andorrà et al., 

2011) on a strain of Hanseniaspora guilliermondii. However, the application of this 

technique to follow live cells during wine fermentation needs the support of further 

data due to the unclear rRNA relative stability in dead cells which is also probably 

species-dependent. 

In conclusion, the present work detected viable but non-culturable H. uvarum 

and Starm. bacillaris cells by culture-independent techniques. These cells presented 

functional membranes and non-degraded rRNA. Also both S. cerevisiae and Starm. 

bacillaris  presented cell membrane integrity, relatively stable rRNA and culturability 

during late stages of grape must fermentation. The comparative analysis among 

different techniques demonstrated the potential of EMA-qPCR and EMA-PCR-DGGE 

for wine ecological studies. This work also indicates some underlying obstacles for 

the application of RT-qPCR and RT-PCR-DGGE on the estimation of viable 

populations of different species during alcoholic fermentation. The relative stability of 
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rRNA during the process of cell lysis needs to be determined with precision before 

being applied systematically for routine analysis of viable populations in alcoholic 

fermentations. 
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Abstract 

During wine fermentation, Saccharomyces clearly dominate over non-

Saccharomyces wine yeasts, and several factors could be related to this dominance. 

However, the main factor causing the reduction of cultivable non-Saccharomyces 

populations has not yet been fully established. In the present study, various single 

and mixed fermentations were performed to evaluate some of the factors likely 

responsible for the interaction between Saccharomyces cerevisiae and 

Hanseniaspora uvarum. Alcoholic fermentation was performed in compartmented 

experimental set ups with ratios of 1:1 and 1:9 and the cultivable population of both 

species was followed. The cultivable H. uvarum population decreased sharply at late 

stages when S. cerevisiae was present in the other compartment, similarly to 

alcoholic fermentations in non-compartmented vessels. Thus, cell-to-cell contact did 

not seem to be the main cause for the lack of cultivability of H. uvarum. Other 

compounds related to fermentation performance (such as sugar and ethanol) and/or 

certain metabolites secreted by S. cerevisiae could be related to the sharp decrease 

in H. uvarum cultivability. When these factors were analyzed, it was confirmed that 

metabolites from S. cerevisiae induced lack of cultivability in H. uvarum, however 

ethanol and other possible compounds did not seem to induce this effect but played 

some role during the process. This study contributes to a new understanding of the 

lack of cultivability of H. uvarum populations during the late stages of wine 

fermentation. 

 

Keywords: Wine, Ethanol, Nitrogen, Killer, Cell-to-cell contact. 
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1. Introduction 

Wine fermentation is an ecologically complex process that involves diverse 

yeast species at different stages. These yeast species interact with each other and 

show a population succession, which is mostly characterized by large populations of 

non-Saccharomyces species at early stages and the dominance of Saccharomyces 

at late stages (Fleet, 2008). Research efforts to monitor this population succession 

have provided many hypotheses for this phenomenon. This process will be 

understood by testing these hypotheses and identifying the factors responsible for 

the dominance relations between yeast species. 

Until now, investigations of yeast interactions have primarily emphasized four 

aspects during wine fermentations. First is the nutrient level, with carbon and 

nitrogen as the main limiting factors (Andorrà et al., 2012). The lack of equilibrium in 

natural grape musts between carbon and nitrogen is well known, and it is a limiting 

factor. Saccharomyces consumes both of them faster than non-Saccharomyces, 

causing nutrient depletion at the beginning of fermentation (Monteiro and Bisson, 

1991; Albergaria et al., 2003). Furthermore, Saccharomyces is more efficient at 

producing biomass than non-Saccharomyces under fermentation conditions, i.e., 

non-Saccharomyces need higher nutrient concentrations to produce the same 

biomass (Andorrà et al., 2012). Thus, nutrient concentrations are regarded as an 

important factor for the dominance of Saccharomyces. Certain fermentation factors 

such as oxygen and temperature are a second factor correlated to yeast interactions 

related to the Crabtree effect and heat production, which is described as a fitness 

advantage of Saccharomyces in the niche construction theory (Goddard, 2008; 

Salvadó et al., 2011). SO2 was also regarded as a selective fermentation factor 

because of different sensitivities from different yeast species (Ribéreau-Gayon et al. 

2006). Thirdly, yeast metabolites such as ethanol, medium-chain fatty acids and 

killer toxins have been considered as well (Thomson et al., 2005; Piškur et al., 2006; 

Albergaria et al., 2010). Ethanol and medium-chain fatty acids are known to 

decrease the growth rate and even cause growth arrest of non-Saccharomyces 

yeasts due to their toxicity and the relatively inefficient regulation caused by these 

metabolites (Fleet, 2003; Thomson et al., 2005; Piškur et al., 2006). Killer toxins 

secreted by Saccharomyces cerevisiae are found to be death inducing factors for 

non-Saccharomyces, such as enzymes with glucanase activity (Magliani et al., 

1997), proteinaceous compounds (Pérez-Nevado et al., 2006), and antimicrobial 
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peptides (AMPs) derived from fragments of S. cerevisiae glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) protein (Albergaria et al., 2010; Branco et al., 

2014). Finally, some direct factors such as quorum sensing phenomena (Granchi et 

al., 1998; Smid and Lacroix, 2013) and cell-to-cell contact (Nissen et al., 2003; 

Arneborg et al., 2005) might also explain the interaction between Saccharomyces 

and non-Saccharomyces yeasts. 

Although evidence as noted above is increasingly provided to elucidate the 

displacement of non-Saccharomyces by Saccharomyces in wine fermentations, the 

mechanisms have still not been completely unraveled. For example, the role of 

ethanol is considered to be overestimated, because the lack of cultivability of non-

Saccharomyces was found to be related to the presence of Saccharomyces cells 

instead of ethanol (Granchi et al., 1998; Pérez-Nevado et al., 2006), and several 

reports have indicated that some non-Saccharomyces yeasts have higher tolerances 

to ethanol than previously thought (Pina et al., 2004; Pérez-Nevado et al., 2006). 

Additionally, the role of cell-to-cell contact reported by Nissen et al. (2003) seems to 

be contradictory with the findings from Pérez-Nevado et al. (2006), which indicated 

that one or more toxic compounds from S. cerevisiae induce the death of 

Hanseniaspora cells. A recent study of Branco et al. (2014) strongly supports the 

lethal role of AMPs secreted by S. cerevisiae against several non-Saccharomyces 

species by using mutant S. cerevisiae with the AMP encoding genes deleted. 

In this study, we determine the interactions by performing a series of alcoholic 

fermentations with S. cerevisiae and Hanseniaspora uvarum. The evolution of the 

yeast population was followed by plating on solid media and counting under a 

microscope. To analyze the influence of cell-to-cell contact, cells of different species 

were mixed or kept separated by dialysis tubes. To analyze the effects of different 

metabolites, adapted cells of H. uvarum were cultured in different media to follow the 

influence of S. cerevisiae metabolites. The ethanol effect and nutrient factors such 

as sugar availability were tested by simulating the fermentation conditions. 

 

2. Materials and methods 

2.1. Yeasts strains, culture conditions and fermentation trials 

The yeast strains of S. cerevisiae NSa and H. uvarum NSb were natural 

isolates from wines and maintained in our group collection (Wang et al. 2014). They 

were identified by 5.8S-ITS-RFLP analysis (Esteve-Zarzoso et al., 1999) and 
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sequence analysis of D1/D2 domain of 26S rDNA (Kurtzman and Robnett, 1998). 

Yeasts were grown overnight in YPD (1% yeast extract, 2% peptone and 2% 

glucose, w/v, pH 6.2) medium at 28 ºC before use. All the fermentations were done 

in the presence of air (with screw cap not totally tight) at 25 °C with 120 rpm of 

shaking speed and inoculated with 1×106 cells/mL of each yeast species. 

 

2.2. Analytical methods and population quantification methods 

Concentrations of acetic acid, glycerol and total sugar in the samples were 

tested by Miura One Multianalyzer (TDI, Barcelona, Spain) using the enzymatic kit 

from Biosystems S. A. (Barcelona, Spain); and those of ethanol, fructose and 

glucose by enzymatic kit from Roche Diagnostics (Darmstadt, Germany). Samples 

were diluted and analyzed according to the manufacturer’s instructions. 

Culture methods and microscopy counting were used to quantify the yeast 

populations of all samples in this study. The samples were taken aseptically and 

spread onto solid YPD plates after appropriate dilution in sterile water. Solid lysine 

medium (Oxoid LTD., England) was used for H. uvarum quantification in samples 

from mixed cultures or mixed fermentation, because S. cerevisiae does not grow well 

on it. Sample spreading and colony counting were performed using an automated 

spiral spreader and a colony counter (Biomérieux, France).The cells were stained 

using the LIVE/DEAD®BactLight™ Bacterial Viability kit (Molecular Probes Inc., 

USA) and counted using a fluorescence microscope (LeicaDM 4000B) as stated in 

Andorrà et al., 2010a. 

 

2.3. Analysis of interaction through fermentations with separation between 

species 

2.3.1. Experimental set up with or without dialysis tube  

Dialysis tubes (Sigma-Aldrich, MWCO 12.4 kDa, diameter 49 mm, St. Louis, 

United States) were soaked in sterile water for 1 h before use. The dialysis tubes 

were cut into suitable lengths: one end was knotted; another tube with a smaller 

diameter was inserted inside the dialysis tube, and this end of the dialysis tube was 

tightly tied with cotton thread to seal the gap between the smaller tube and the 

dialysis tube. The inner tube then provided a means to introduce samples into the 

dialysis tube and remove samples from the dialysis tube. This dialysis tube unit was 

then placed into a vessel to give two culture compartments: the compartment within 
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the dialysis tube (inner compartment) and the compartment within the vessel but 

outside of the dialysis tube (outer compartment). Using the dialysis tube unit, three 

series of fermentations were conducted. In one experiment (A) the outer vessel was 

a 250 ml screw cap bottle in which the volume of culture inside the dialysis tube was 

20 ml and the volume of culture inside the vessel but outside the dialysis tube was 

180 ml. In a second experiment (B), the outer vessel was a 50 ml conical tube 

(Falcon®, Corning, USA) in which the volume of culture in both of the inner and outer 

compartments was 10 ml. The last experimental set up (C), the vessel was a 250 ml 

screw cap bottle into which no dialysis tube unit was introduced. These experimental 

set ups are summarized in Figure 1. For experimental set ups A and B, similar levels 

of culture media were formed between two compartments, and thus no obvious 

volume changes caused by different metabolite diffusion were observed. All of the 

operations above were performed in sterile conditions, and each vessel prepared 

with medium was autoclaved before use. 

 

        

 

Figure 1. Diagrams of the different experimental set ups (A, B, C) with or without dialysis tube 

inside. The size of each part is not strictly in the real proportion. 

 

In order to check the conditions of metabolite circulation between two 

separate compartments, YPD medium was introduced into both experimental set ups 

(A and B), and S. cerevisiae were inoculated into either inner or outer compartments. 

Contents of acetic acid, ethanol, glycerol and sugar in both compartments were 

measured after 3 d of growth. Cell quantification of S. cerevisiae by culture methods 

    Inner compartment 

Outer compartment 

A 

       Inner compartment 

Outer compartment 

B C 
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and microscopy were done at the same time to check the possibility of cell exchange 

through the dialysis tube unit. Furthermore, considering the exchange speed of water 

might be higher than that of other molecular such as glucose, contrast trials were 

done to examine the possible volume changes between two compartments: natural 

concentrated must diluted to 20 g/L and  200 g/L sugar that were separately added 

into different compartments of the experimental set up B, then it was autoclaved, put 

onto a shaker with a constant speed of 120 rpm, and 3 d later, the volume and sugar 

content of both compartments were checked. 

2.3.2. Fermentations 

To examine the interactions between the two yeast species, fermentations 

with either YPD or natural musts were done in different experimental set ups (Figure 

1). YPD was used as a negative control, since the sugar concentration, the ethanol 

produced and the availability of nutrients do not allow yeast interactions. In contrast, 

in natural musts the sugar and other nutrient conditions allow inhibitions of growth 

between different species. 

- Fermentations in experimental set up A using natural must (Concentrats 

Pallejà Tarragona Spain, pH 3.7, without sulfite treatment, sugar 200 g/L by dilution 

from concentrated must) as the culture medium. Four different fermentations were 

conducted: (i) S. cerevisiae inoculated into and cultured in the outer compartment 

and H. uvarum inoculated into and cultured in the inner compartment (within the 

dialysis tube), abbreviation A-S(H); (ii) S. cerevisiae inoculated into and cultured in 

the inner compartment and H. uvarum inoculated into and cultured in the outer 

compartment, abbreviation A-H(S); (iii) S. cerevisiae inoculated into and cultured in 

both compartments, abbreviation A-S(S); (iv) H. uvarum inoculated into and cultured 

in both compartments, abbreviation A-H(H). In this experimental set up the volume 

ratio between inner and outer compartments was 1:9. 

- Fermentations in experimental set up B used the same natural must as in 

experimental set up A, but a different volume ratio between compartments (1:1). Two 

kinds of fermentations were performed: (i) S. cerevisiae inoculated into and cultured 

in the outer compartment and H. uvarum inoculated into and cultured in the inner 

compartment, abbreviation B-S(H); (ii) S. cerevisiae inoculated into and cultured in 

the inner compartment and H. uvarum inoculated into and cultured in the outer 

compartment, abbreviation B-H(S).  
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- In fermentation C, either natural must (as used in fermentations A and B) or 

YPD was used as culture media. Both of S. cerevisiae and H. uvarum were 

inoculated together, abbreviation C-S+H. 

Fermentations were done in duplicate, and thus 16 fermentations in total were 

performed. All of the fermentations were monitored by weight every 24 h until no 

weight loss, and samples were daily taken to quantify the yeast cells. For further 

validating the metabolite circulation between two compartments, the concentrations 

of acetic acid, glycerol and sugar from both compartments of experimental set up A 

were measured at middle and end stages. As a control, the same indexes were also 

checked in experimental set up C. 

 

2.4. Production of supernatants and yeast cells to test yeast interactions 

To test the possible effect of culture metabolites from S. cerevisiae upon H. 

uvarum culturability, cell-free supernatants from S. cerevisiae fermentation (ScSN) 

were used. First, a mixed fermentation was performed in synthetic must with 200 g/L 

of sugar (pH 3.3, as in Andorrà et al. 2012) to set up the fermentation stages when 

the interaction was analyzed. Three stages were set: 1. When the cultured 

population of H. uvarum was the highest; 2. When the plate recovery of H. uvarum 

was below the initial population and thus, a decline phase was evident; and 3. When 

no H. uvarum colonies could be seen on plates. Once these fermentation stages 

were set, single species fermentations were performed to provide the ScSN (from 

the same fermentation stages set up previously) and H. uvarum cells. The need of 

having H. uvarum cells originated in fermentation is due to the changing conditions 

during alcoholic fermentation and the adaptation of the cells to these changes. In the 

wine industry it is well known that to restart a stuck fermentation is easier from 

another ongoing fermentation than with fresh inoculum. Finally, adapted H. uvarum 

cells were inoculated in ScSN to observe the changes in cultivability during 48 h.   

As controls, adapted H. uvarum cells were incubated not only in YPD but also 

in synthetic media mimicking the different fermentation stages. The use of YPD was 

aimed at checking that the H. uvarum cells were fully viable and cultivable. The 

synthetic musts mimicking stages 1, 2 and 3 were used to analyze the effect of the 

changes on the main substrates (alcohol and sugars) on the viability and cultivability 

of the H. uvarum cells, but not the presence of putative S. cerevisiae-produced 

compounds. Thus, synthetic media 1, 2 and 3 had the same ethanol and sugar 
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concentrations as the fermentation media (see Table 1 “Mixed fermentation”), and 30 

mg N/L of nitrogen as most of the nitrogen is taken up during the first 24 h (Beltran et 

al. 2005). All the experiments were performed in triplicate; 30 experiments were 

included in this analysis. 

 

Table 1. Concentrations of ethanol, fructose and glucose at each fermentation stage from three 

fermentations: mixed fermentation (providing sampling references as indicated in Figure 5), S. 

cerevisiae fermentation (providing supernatants) and H. uvarum fermentation (providing 

adapted cells). 

 

2.5. Analysis of ethanol toxicity 

Experiments were also conducted to analyze the possible effect of ethanol on 

H. uvarum’s cultivability. For these experiments “adapted” H. uvarum cells from 

fermentation stage 2 were inoculated into and cultured in synthetic media with 

different concentrations of ethanol. Fermentations were started in 30 mL of synthetic 

media with 12.5 g/L of glucose, 12.5 g/L of fructose and 30 mg N/L of nitrogen (pH 

3.3), while ethanol concentrations were set form 6 to 12% (v/v). All fermentations 

were done in duplicates. After the inoculation, H. uvarum cells were sampled, 

counted and plated to monitor their culturable populations at 24h and 48h, and the 

contents of sugar and ethanol of each medium were examined after 72 h.  

 

 

 

 

 

 

Fermentation Fermentation stages Ethanol (%) Fructose (g/L) Glucose (g/L) 

Mixed 

fermentation 

1 3.4 84.5 62.2 

2 10.3 28.5 5.5 

3 11.5 8.6 0.4 

S. cerevisiae 

fermentation 

1 4.0 90.8 66.8 

2 10.8 13.6 0.8 

3 12.4 0.5 0.0 

H. uvarum 

fermentation 

1 5.1 59.5 60.6 

2 6.0 48.5 49.7 

3 6.8 48.2 48.7 
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3. Results 

3.1. Population changes during alcoholic fermentation in separated 

compartments 

3.1.1. Experimental set up characterization 

A first experiment was set to analyze the barrier of the dialysis tube to the free 

diffusion of cells and metabolites. The use of either natural must with different sugar 

concentrations or YPD did not result in any changes in the final composition of the 

media in the inner or outer compartment. Similarly, S. cerevisiae added in one 

compartment was not recovered in the other compartment, although acetic acid, 

glycerol, ethanol and sugar were the same in both compartments. Thus, the 

experimental set up allowed the diffusion of these molecules but prevented cell 

transfer.  

A small volume change was observed between the two compartments of 

experimental set up B, when a 10-fold difference of initial sugar concentration was 

set for both compartments. This volume change indicated a possibility of different 

circulation speeds of different molecules when there were different concentrations. 

Due to the different fermentation rates between S. cerevisiae and H. uvarum, 

different sugar concentrations appeared in the experimental set ups with separated 

cells (S(H) and H(S)). The lower sugar concentrations in the S. cerevisiae 

compartment resulted in less volume, whereas H. uvarum compartments presented 

more volume. To test the possible effect of the volume differences, experimental set 

ups with different volume ratios (A, 1:9; B, 1:1) were used. 

3.1.2. Yeast population changes 

Mixed alcoholic fermentations performed in YPD versus natural must showed 

very different results (Figure 2): In YPD no relevant interaction between the two 

species was observed, the sugar consumption was very fast, and a high population 

size was attained. The same population level was observed for both species. By 

contrast, in natural must, a strong interaction in cultivability was observed: the cells 

of H. uvarum were visible under the microscope and maintained the same population 

size during the fermentation; however, the cultivable population of H. uvarum cells 

decreased to less than 106 cfu/mL (the inoculation level) after 3 days of fermentation, 

and this trend continued until no H. uvarum cells were recovered (<200 cfu/mL, the 

detection limit) on plates after 5 days of fermentation. The use of the LIVE/DEAD 

viability kit confirmed the counting under the microscope without staining: yeast 
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populations remained stable and H. uvarum remained viable at populations of 106 

cells/mL during all the fermentation. 

Figure 2. Changes of yeast population in mixed fermentations performed in experimental set up 

C (C-S+H) with YPD (a) and natural must (b). Solid lines show population assessed by 

microscopy and dotted lines show population assessed by culturing (values are the mean of 

duplicates). Symbols: ( , ) S. cerevisiae; ( , ) H. uvarum; ( ) sugar consumed. 

 

Figure 3. Development of the fermentation and yeast population in experimental set up A with 

the same species inoculated in both compartments of the fermenter: A-S(S) (a) and A-H(H) (b). 

Solid lines show population assessed by microscopy, dotted lines show population assessed by 

culturing, black lines show yeast in outer compartment and gray lines show yeast in inner 

compartment (values are the mean of duplicates). Symbols: ( , ) S. cerevisiae; ( , ) H. 

uvarum; ( ) sugar consumed. 

 

Alcoholic fermentations in separated compartments showed different 

fermentation kinetics and H. uvarum’s cultivability compared with the mixed 

(a) (b) 

  

(a) (b) 
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fermentation using natural must. To test if the presence of the cells in both 

compartments affected the cultivability and fermentation process, the same species 

were tested in both compartments in experimental set up A (Figure 3). It can be seen 

that the recoveries were similar in both compartments, no matter if it was assessed 

by microscopy or by plating. The only observable difference was the different sugar 

consumption between S. cerevisiae (Figure 3a) and H. uvarum (Figure 3 b). 

Once the effect of the experimental set up was discarded, we performed the 

fermentations with different species inoculated in the two separate compartments, 

and in the two different experimental set ups with the same or different volume ratios 

(Figure 4). The fermentation performed in experimental set up B yielded the same 

results: the fermentation proceeded in 10 days with a sharp decrease on the 

cultivability of H. uvarum after six days of fermentation and no recovery on day 8. 

Only a small difference was observed by microscopy when H. uvarum was in the 

outer compartment (Figure 4b), because the counts were decreasing with time, while 

when it was in the inner compartment the counts were similar to S. cerevisiae 

population along the fermentation (figure 4a). However, when the volume differential 

were greater the effects could not be easily determined (in experimental set up A): 

When S. cerevisiae was in the outer compartment (Figure 4c), the fermentation 

proceeded similarly, yet the effect upon the cultivability of H. uvarum appeared 

earlier (decrease on day 3 and without recovery on day 5), probably due to the 

changes induced by a larger population of S. cerevisiae. The opposite experimental 

set up did not proceed properly because the inner compartment dried out due to 

faster fermentation and the flow of water to the outer compartment (Figure 4d). 

Thus, three primary conclusions could be drawn. First, the volume ratio 

between the S. cerevisiae and H. uvarum compartments affected the sharp decrease 

of the cultivable H. uvarum population. When the volume of S. cerevisiae 

compartment was equal to or larger than H. uvarum compartment, the cultivability of 

H. uvarum was easily affected by S. cerevisiae at late stages of the fermentation. 

Second, the sharp decrease of H. uvarum’s cultivability always started at late stages 

of fermentation. Third, no obvious effects of cell-to-cell contact were observed on the 

interaction between H. uvarum and S. cerevisiae if we compare the results of mixed 

fermentation and compartmented fermentation with S. cerevisiae in the large 

compartment. The sharp decrease happened regardless of separation between the 

populations, indicating that certain compounds in the medium caused this decrease. 
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Figure 4. Development of the fermentation and yeast population in experimental set ups A and 

B with different species inoculated in inner and outer compartments: B-S(H) (a), B-H(S) (b), A-

S(H) (c), and A-H(S) (d). Solid lines show population assessed by microscopy, dotted lines 

show population assessed by culturing, black lines show yeast in outer compartment and gray 

lines show yeast in inner compartment (values are the mean of duplicates). Symbols: ( , ) S. 

cerevisiae; ( , ) H. uvarum; ( ) sugar consumed. 

 

3.2 The influence of fermentation-produced compounds on the cultivable 

population of H. uvarum. 

To further elucidate the probable factors influencing the interaction between 

S. cerevisiae and H. uvarum, we performed a new set of experiments. We wanted to 

differentiate the effect of the changes in the media composition due to the alcoholic 

fermentation and the effect of compounds produced by S. cerevisiae that could 

induce the observed effects. With this objective, a precisely defined medium 

(synthetic must) was used to perform an initial mixed fermentation (figure 5). From 

this fermentation, we could define three different stages regarding the cultivability of 

H. uvarum: stage 1, when the cultivable H. uvarum population reached the 

(a) (b) 

  

(c) (d) 
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maximum; stage 2 when that population declined below the initial population; and 

stage 3 when no H. uvarum colonies could be seen on plates. These points were 

analyzed to set the changes in the medium composition (table 1) and to provide the 

values of ethanol and sugar that will be used to define the synthetic media mimicking 

these stages. Furthermore, single species fermentations were performed to provide 

cell-free supernatants from S. cerevisiae fermentations (ScSN) and adapted H. 

uvarum cells at the same stages of fermentation. The fermentation performed with 

single culture of S. cerevisiae to provide ScSN yielded similar results as the mixed 

fermentation, while in the fermentation to obtain H. uvarum cells 6.8% ethanol was 

reached (Table 1).  

 

Figure 5. Mixed fermentation of S. cerevisiae and H. uvarum in synthetic must to determine the 

three fermentation stages (1, 2, 3) according the cultivable H. uvarum population. The 

populations were analyzed by microscopy (solid lines) and plate culture (dotted lines). Vertical 

lines indicate the three fermentation stages. Symbols: ( , ) S. cerevisiae; ( , ) H. uvarum; 

( ) ethanol. 

 

The H. uvarum population quantified by microscopy maintained always a 

similar level, however those cells were not always cultivable (Figure 6).  When H. 

uvarum was cultured in either ScSN of stage 1 or YPD, practically no effects upon 

cultivability were seen (Figure 6a1). Only a small decrease in cultivability was seen 

at 24 h in the synthetic medium mimicking fermentation stage 1 (Figure 6b1). 

Incubation of H. uvarum cells with ScSN from fermentation stages 2 and 3 produced 

a sharp decrease in H. uvarum cultivability to negligible amounts (Figures 6a2 and 

6a3). The synthetic medium mimicking fermentation stages 2 and 3 produced similar 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Chapter 4 

 

 

154 

effects, although the cells exposed to synthetic medium of stage 2 were less affected 

and the decrease in cultivability proceeded slowly (Figure 6b2), whereas after 48 h 

no cells were recovered in plates (Figure 6b3). 

Figure 6. Quantification of adapted cells of H. uvarum after being inoculated in YPD, S. 

cerevisiae supernatant (ScSN) and synthetic media mimicking fermentation stages 1, 2 and 3. 

Cells were quantified by microscopy (solid lines) and plate culture (dotted lines). Adapted H. 

uvarum cells were inoculated into YPD ( , ) and ScSN at fermentation stages 1 

(a1), 2 (a2) and 3 (a3) ( , ). Adapted H. uvarum cells were also inoculated in 

synthetic juice mimicking the three fermentation stages (b1, b2 and b3, , ). The 

population values are the mean of triplicates. 

(a1 ) (b1) 

  

(a2)  (b2) 

  

(a3)  (b3) 
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By comparing the population of cultivable cells in ScSN and synthetic media 

from the same fermentation stages, metabolites secreted by S. cerevisiae seemed to 

play a main role in the cultivability of H. uvarum, while changes of other compounds 

related to the fermentation process (ethanol and sugar) also seemed to play some 

role. Furthermore, H. uvarum cells in YPD medium had their typical apiculate 

morphology and size. However, a portion of the cells in synthetic media of stage 1 

changed their morphology to an elongated type as observed by microscopy, and in 

the other media some or all of the cells were reduced in size (data not shown). 

 

3.3. The influence of ethanol and sugar on the cultivability of H. uvarum 

Experiments with different ethanol concentrations were performed to 

determine the influence of ethanol on the cultivability of H. uvarum. Adapted H. 

uvarum cells from fermentation stage 2 were inoculated in synthetic media with 

concentrations of ethanol from 6% to 12% and 25 g/L of sugar. In these conditions 

ethanol affected cultivability to some extent (Table 2). The cultivability decreased 

and correlated well with the increase of ethanol concentration, although this 

decrease was only of one log unit during the first 48 h and, thus, not comparable to 

the decrease in the previous sections or in the mixed fermentations. 

  

Table 2. Cultivability and fermentation ability of H. uvarum cells in synthetic media with different 

ethanol concentrations. The initial cell concentration of cultivable H. uvarum in all media was 

3.80×10
7
 cfu/ml, the cultivable population size at 24h and 48h is the mean of duplicate cultures 

± SD (standard deviation). The initial sugar concentration of all media was 25.0 g/L with a 1:1 

ratio of glucose and fructose. 

 

Initial ethanol 

concentration 

(%) 

Cultivable population size 

(cfu/mL) 

Concentration of sugar (g/L) or ethanol 

(%) after 72h 

24h 48h Ethanol Fructose Glucose Sugar 

6.0 2.74±1.39×10
7
 1.67±0.28×10

7
 7.0 7.4 5.8 13.2 

7.0 1.85±0.04×10
7
 8.07±0.85×10

6
 7.9 8.1 6.5 14.5 

8.0 1.21±0.33×10
7
 7.88±1.47×10

6
 9.1 8.9 7.4 16.4 

9.0 9.62±0.96×10
6
 5.20±1.26×10

6
 10.0 8.8 8.4 17.2 

10.0 8.80±0.31×10
6
 3.84±0.03×10

6
 10.1 9.6 9.2 18.8 

11.0 5.78±0.32×10
6
 1.13±0.07×10

6
 10.6 9.7 10.2 19.9 

12.0 1.27±0.12×10
6
 8.27±1.80×10

4
 11.9 10.2 11.0 21.2 
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The concentrations of sugar and ethanol were examined at 72 h (Table 2). In 

all the cases, H. uvarum consumed sugar from the medium. The cells were able to 

further ferment 35-50% of the sugar when the initial ethanol concentration was 

between 6% and 9%, whereas at higher ethanol concentrations some sugar was 

consumed but no further production of ethanol was observed. Low sugar 

concentrations maintained H. uvarum cultivability above 105 cfu/mL after 48 h. Thus, 

the concentration of sugar and ethanol at late stages of fermentation could not be 

the main reason for the sharp decrease of H. uvarum’s cultivability observed in the 

mixed fermentations or the reconstitution experiments with cells and ScSN. 

 

4. Discussion 

The interaction between Saccharomyces and non-Saccharomyces wine 

yeasts during wine making is well established. In this study, we analyzed this 

interaction further in experimental set ups that separate the populations of the 

different species and prevent cell-to-cell contact, and we also tried to evaluate the 

roles of primary compounds in the must such as sugar, ethanol and the metabolites 

secreted by S. cerevisiae by reconstitution fermentations. 

Although cell-to-cell contact was first proposed by Nissen et al. (2003) and 

confirmed by Renault et al. (2013), this process was challenged by Pérez-Nevado et 

al. (2006) who found a lack of cultivability of H. guilliermondii cells after exposing 

them to cell-free supernatants from mixed cultures of H. guilliermondii and S. 

cerevisiae. In our study, compartmented set ups with the same or different volumes 

in the two compartments were used to keep the cells of the different species 

separated. Furthermore, cell-free supernatants from different fermentation stages of 

the S. cerevisiae fermentation were used to evaluate the cultivability of H. uvarum 

cells. Our results in both aspects (the compartmented fermentation and culture trials 

in cell-free supernatants) demonstrated that without cell-to-cell contact, the 

interaction between H. uvarum and S. cerevisiae still exists, and even in a similar 

fashion as in mixed fermentation when the same fermentation conditions and a given 

volume proportion were present. Thus, we believe that certain metabolites have a 

role in the lack of cultivability of H. uvarum rather than cell-to-cell contact. However, 

the different results between the observations of Nissen et al (2003) and Renault et 

al (2013) and those from Pérez-Nevado et al (2006) could be due to the differences 

of strains used in the different experiments. 
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When seeking for the probable explanation for the interaction between H. 

uvarum and S. cerevisiae, we found some possible hints correlated with the 

fermentation process: firstly, strong interaction was observed in mixed fermentation 

using natural must with 200g/L sugar while no obvious interaction appeared in mixed 

culture using YPD medium with 20g/L sugar. Secondly, late stages of fermentation 

seemed to be a key stage for H. uvarum cells, because sharp decrease of the 

cultivability always begun at late stages in this study, and a similar phenomenon has 

been observed in other reports (Granchi et al. 1998; Pérez-Nevado et al. 2006). 

Thus, factors correlated with the fermentation process are probable promoting this 

lack of cultivability such as nutrition depletion, ethanol and other metabolites. 

Our results indicated that the low sugar concentration affected H. uvarum’s 

cultivability to some extent. Similarly, Albergaria et al. (2003) and Andorrà et al. 

(2012) noted that sugar and nitrogen depletion, which are caused by fast and 

efficient consumption by S. cerevisiae, most likely limit the growth rate of H. uvarum 

and eventually induce the population decline. However, nutrient depletion does not 

seem to be the only possible answer according to other recent studies: Pérez-

Nevado et al. (2006) reported that the loss of cultivability of H. guilliermondii was 

slower in fermentations with 100 g/L initial sugar compared to those with 200 g/L 

initial sugar, indicating that the inducing agent could be more related to the total 

amount of sugar metabolized than the residual sugar level. This fact could be related 

to the influence that small variations in the concentrations of nitrogen and carbon 

sources have on the amount, nature and diversity of secreted proteins (Buerth et al., 

2011, Mattanovich et al., 2009). Therefore, the role of nutrient levels in the yeast 

interaction might be more complicated than previously thought, and it is likely 

correlated with the metabolic pathways of sugar and nitrogen during alcoholic 

fermentation (Salvadó et al., 2011; Branco et al., 2014). H. uvarum showed 

preferences for different sugars at different stages of fermentation in this study, and 

different preferences for nitrogen sources have previously been reported for S. 

cerevisiae, H. uvarum and Candida zemplinina (Andorrà et al., 2012), which could be 

helpful in further research on the correlation of sugar and nitrogen metabolic 

pathways with yeast interactions. 

As the main wine fermentation metabolite, ethanol was confirmed in this study 

not to be the critical factor behind the sharp decrease of cultivable H. uvarum, 

although high concentrations of ethanol (6% to 12%) reduced the growth rate of H. 
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uvarum to some extent. Our results also demonstrated the tolerance of H. uvarum 

cells to high ethanol concentrations as indicated by Pina et al. (2004). 

We tested the possibility of a killer effect of S. cerevisiae on the H. uvarum 

strains used in this study by MB plate analysis (Pérez-Nevado et al. 2006) without 

any success (data not shown). However, our results indicated that metabolites 

secreted by S. cerevisiae are likely one of the main causes of the lack of cultivability 

of H. uvarum. This can be deduced from the obvious effect that supernatants from S. 

cerevisiae fermentations at early and late stages had on the growth of H. uvarum 

cells together with the limited effect when cultured in synthetic media with similar 

sugar and ethanol concentration. Albergaria et al. (2010) and Branco et al. (2014) 

proposed that antimicrobial peptides (AMPs) derived from fragments of S. cerevisiae 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein show fungistatic 

and/or fungicidal effects on a wide variety of wine related microorganisms. These 

AMPs with molecular weight of 4, 4.5 and 6 kDa probably crossed the dialysis tubes 

with MWCO of 12.4 kDa used in the compartmented experimental set ups of this 

study. Moreover, Mostert and Divol (2014) reported that some proteins observed in 

pure cultures are absent in mixed fermentations, indicating that the presence of two 

or more different yeast species may modify the exoproteome. Nevertheless, further 

analysis on these metabolites is still needed, and the mechanisms underlying the 

production and accumulation of metabolites during wine fermentations also need 

further elucidation. 

Two more aspects that should be tested in the future are the interactions with 

other non-Saccharomyces species and also the interaction between Saccharomyces 

strains. Regarding the first aspect, Mostert and Divol (2014) showed that a precursor 

of a killer toxin can be detected when Saccharomyces-led fermentations are 

performed in the presence of Metschnikowia pulcherrima, but when the fermentation 

is together with Lachancea thermotolerans, this precursor is not found. Interactions 

between populations can also be seen among strains of the same species (S. 

cerevisiae), and such phenomena might be even more complex. The interaction 

between two types of S. cerevisiae strains previously characterized as dominant and 

non-dominant in alcoholic fermentations was found to be different when they were 

placed in a set up with separate compartments but sharing the same must. In this 

case the dominance was not present, revealing that this phenomenon is related to 

competition for the same space (Perrone et al., 2013).  

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Chapter 4 

 

 

159 

Finally, an underlying factor relevant to these experiments is the relation 

between lack of cultivability and cell death. In fact, when we compared the total yeast 

cells as quantified by microscopy with cultivable yeast by plating, we were 

considering this fact together with the fact that a viable but not cultivable (VBNC) 

status has been reported in wine microorganisms during alcoholic fermentation 

(Millet and Lonvaud-Funel, 2000). We observed population changes similar to those 

of previous reports that used both microscopy and molecular techniques involving 

DNA or RNA detection (Andorrà et al., 2010b, 2011) that demonstrate the probable 

existence of viable but non-culturable cells. Although VBNC status could be 

understood as a first step leading to cell death, it is evident that our study was not 

aimed at elucidating this aspect. Although we observed changes in size and 

morphology in the H. uvarum cells, these cannot be directly related to cell death. 

Finally, it is relevant to emphasize that cell morphology cannot be used as a criterion 

to follow and identify different species during alcoholic fermentations. 

In summary, we analyzed the interaction between S. cerevisiae and H. 

uvarum by integrating the effects of ethanol and sugar concentrations during the 

alcoholic fermentation and the metabolites excreted by S. cerevisiae that decrease 

the cultivability of H. uvarum. In our hands, metabolites rather than cell-to-cell 

contact were most likely the main factor causing this limitation. Further research on 

these metabolites and their correlation with nutrient metabolic pathways is needed to 

fully understand this yeast interaction. 
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Supplementary data 

Table 1 Concentrations of acetic acid, glycerol and sugar in different stages of fermentations 

using natural must in fermenter A and C (values are the mean of duplicates). 

 

Fermentation Compartment Inoculated 

species 

Fermentation 

stages 

Acetic acid 

(g/L) 

Glycerol 

(g/L) 

Sugar 

(g/L) 

A-S(H) 

outer S. cerevisiae middle 0.73 4.39 95.91 

inner H. uvarum middle 0.70 4.48 101.91 

outer S. cerevisiae end 0.63 6.56 0.19 

inner H. uvarum end 0.60 6.56 0.20 

A-H(S) 
outer H. uvarum middle 1.00 4.24 100.25 

inner S. cerevisiae middle 0.97 4.05 87.55 

A-S(S) 

outer S. cerevisiae middle 0.75 4.64 95.58 

inner S. cerevisiae middle 0.73 5.05 98.62 

outer S. cerevisiae end 0.86 6.93 0.06 

inner S. cerevisiae end 0.87 6.72 0.05 

A-H(H) 
outer H. uvarum end 1.11 1.46 126.43 

inner H. uvarum end 1.14 1.66 122.33 

C-S+H 

－ 
S. cerevisiae + 

H. uvarum 
middle 0.80 3.90 101.23 

－ 
S. cerevisiae + 

H. uvarum 
end 0.66 5.30 0.06 
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Abstract 

The present study analyzes the lack of culturability of different non-

Saccharomyces strains due to interaction with Saccharomyces cerevisiae during 

alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 

inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella 

bacillaris and Torulaspora delbrueckii indicated longer coexistence in mixed 

fermentations compared with Hanseniaspora uvarum and Metschnikowia 

pulcherrima. Strain difference in culturability and nutrient consumption (glucose, 

alanine, ammonium, arginine or glutamine) were found within each species in mixed 

fermentation with S. cerevisiae. The interaction was further analyzed using cell-free 

supernatant from S. cerevisiae and synthetic media mimicking both single 

fermentations with S. cerevisiae and using mixed fermentations with the 

corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants 

induced faster culturability loss than synthetic media corresponding to the same 

fermentation stage. This demonstrated that some metabolites produced by S. 

cerevisiae played the main role in the decreased culturability of the other non-

Saccharomyces yeasts. However, changes in the concentrations of main metabolites 

had also an effect. Culturability differences were observed among species and 

strains in culture assays and thus showed distinct tolerance to S. cerevisiae 

metabolites and fermentation environment. Viability kit and recovery analyses on 

non-culturable cells verified the existence of viable but not-culturable status. These 

findings are discussed in the context of interaction between non-Saccharomyces and 

S. cerevisiae. 

 

Keywords: Contact-dependent interaction, Culturability loss, Excreted compounds, 

Viable but not-culturable (VBNC), Wine. 
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1. Introduction 

Spontaneous wine fermentation is driven by a succession of different yeast 

species. A great variety of non-Saccharomyces yeast species originate from grape 

berries and survive during the early stages of fermentation, such as species from the 

genera Candida, Hanseniaspora, Lachancea, Metschnikowia, Pichia and 

Torulaspora (Fleet, 2003). Some species such as Starmerella bacillaris and 

Hanseniaspora uvarum grow to a high density (105-107 cells/mL) and dominate other 

non-Saccharomyces species (Wang et al., 2015b). There is a growing interest 

regarding the impact of non-Saccharomyces yeasts on the final wines, and some 

species are now used as fermentation starters (Jolly et al., 2014). However, 

fermentative Saccharomyces cerevisiae soon replaces non-Saccharomyces species 

to become the main or the only species present in the late stages of fermentation. 

Non-Saccharomyces strains are assumed to “die off” because these cells gradually 

lose their ability to form colonies on growth media, i.e. they lose the capacity to grow. 

The culturability loss of non-Saccharomyces strains has drawn widespread attention 

in recent years due to new findings that mention the role of excreted compounds in 

the interaction between Saccharomyces and non-Saccharomyces yeasts (Ciani and 

Comitini, 2015; Liu et al., 2015; Albergaria and Arneborg, 2016). Moreover, in a work 

by Branco et al. (2015), it was shown that viable but not-culturable (VBNC) status 

was related to interaction through excreted compounds. Therefore, as more non-

conventional wine yeasts have been explored as wine starters in mixed fermentation 

with S. cerevisiae (Masneuf-Pomarede et al., 2016), studies on culturability loss of 

different non-Saccharomyces strains will help in understanding their final impact on 

wine quality. 

The culturability loss of non-Saccharomyces strains at the late stages of 

alcoholic fermentation is a complicated phenomenon due to the multitude of factors 

involved. It is conventionally regarded to be related to their insufficient adaptability to 

environmental changes in fermentations, such as nitrogen limitation (Monteiro and 

Bisson, 1991), low oxygen availability (Holm Hansen et al., 2001) and inhibition of 

increased ethanol (Fleet, 2003), as well as extrinsic factors such as SO2 (Ribéreau-

Gayon et al., 2006). However, Nissen et al. (2003) proposed that S. cerevisiae S101 

adopted a contact-dependent mechanism to induce the culturability loss of some 

non-Saccharomyces strains (Lachancea thermotolerans and Torulaspora 

delbrueckii). Subsequently, the contact-dependent mechanism was confirmed by 
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studies using the same S. cerevisiae strain (Nissen et al., 2004; Renault et al., 2013; 

Kemsawasd et al., 2015a). However, it was found that S. cerevisiae CCMI 885 

excreted toxic compounds, which inhibited the growth of Hanseniaspora 

guilliermondii and H. uvarum, demonstrating the interaction of these species through 

excreted antimicrobial compounds (Pérez-Nevado et al., 2006). Recent studies 

further elucidated that S. cerevisiae CCMI 885 produced antimicrobial peptides, 

which altered intracellular pH, membrane permeability and culturability of non-

Saccharomyces strains (Albergaria et al., 2010; Branco et al., 2014; Branco et al., 

2015). Interestingly, in the work of Wang et al. (2015c), not only the excreted 

products from S. cerevisiae NSa but also the synthetic media, induce a lack of 

culturability of H. uvarum. However, the synthetic must was weaker at inducing a 

lack of culturability of H. uvarum than S. cerevisiae supernatant, which included the 

same media plus the yeast metabolites. Thus, the role of environmental changes 

should be taken into consideration when studying the interaction between different 

yeasts. 

Until now, studies on culturability loss of non-Saccharomyces yeasts have 

mainly focused on several potential wine starters: H. guilliermondii, H. uvarum, 

Kluyveromyces marxianus, L. thermotolerans and T. delbrueckii (reviewed in 

Albergaria and Arneborg, 2016). However, few studies have focused on the 

culturability differences among strains. According to Branco et al. (2014), different D. 

bruxellensis strains showed strain-specific sensitivity towards antimicrobial peptides 

excreted by S. cerevisiae. The differences between contact-dependent mechanisms 

and interactions through extracellular compounds were ascribed to the S. cerevisiae 

strains used (Kemsawasd et al., 2015a). Therefore, more yeast species and strains 

should be considered to gain a better understanding of the interaction between S. 

cerevisiae and non-Saccharomyces yeasts. 

This study was aimed at (i) investigating the strain and species differences in 

culturability loss, (ii) analyzing the interaction mechanisms that exist in different 

strains, and (iii) determining the viable status of non-culturable cells. We investigated 

the interaction between S. cerevisiae NSa (the same strain used in our former work, 

Wang et al., 2015c) and ten non-Saccharomyces strains from different sources 

belonging to H. uvarum, S. bacillaris, M. pulcherrima and T. delbrueckii to analyze 

the interactions in mixed fermentation between S. cerevisiae and each individual 

strain. Through the use of three types of media (supernatants from S. cerevisiae 
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fermentation, synthetic media mimicking S. cerevisiae fermentation and mixed 

fermentation), the performance of each non-Saccharomyces strain was compared 

and studied. Synthetic must was used to rule out other effects and to define the 

media to mimic the must at different stages of fermentation. Recovery analysis and 

viability assays were also conducted to evaluate the status of non-culturable cells. 

 

2. Material and methods 

2.1. Yeasts strains and culture conditions 

Eleven yeast strains were used in this study, containing H. uvarum 

CECT13130, NSb and CECT1444T, S. bacillaris NSc, NSd and CECT11046, M. 

pulcherrima Mp com and Mp 51, T. delbrueckii Td com and CECT13135, and S. 

cerevisiae NSa. These strains were obtained from different collections: CECT13130, 

NSa, NSb, NSc, NSd, Mp 51, CECT13135 and NSa were natural isolates from our 

collection (Wang et al., 2014). CECT1444 and CECT11046 were from Spanish Type 

Culture Collection. Mp com (Flavia) and Td com (Biodiva) were commercial strains 

from Lallemand Inc. (Canada). 

The species identity of all strains was determined by 5.8S-ITS-RFLP analysis 

(Esteve-Zarzoso et al., 1999) and sequence analysis of the D1/D2 domain of 26S 

rDNA (Kurtzman and Robnett, 1998). Yeasts were grown overnight in YPD medium 

(1 % yeast extract, 2 % peptone and 2 % glucose, w/v, pH 6.2) at 28 ºC before use. 

 

2.2. Alcoholic fermentations, sampling and setting culturability  

Synthetic must (100 g/L fructose, 100 g/L glucose, 290 mg N/L amino nitrogen, 

and 120 mg N/L ammonium nitrogen, pH 3.3) was prepared according to Andorrà et 

al. (2012). 350 mL of synthetic must was added to a 500 mL screw cap bottle, 

inoculated with 106 cells/mL of each yeast strain and kept at 25 °C in a shaker at a 

speed of 120 rpm. Fermentations were performed in the presence of air because the 

caps were not screwed tightly on the bottles. Each of the mixed fermentations was 

inoculated with one non-Saccharomyces strain and S. cerevisiae NSa. As a 

comparison, a single S. cerevisiae fermentation was carried out with the NSa strain. 

Fermentations were conducted in duplicate; when an interaction was observed, the 

fermentations were repeated in another duplicate and thus four replicas were used to 

set the interaction analysis. 
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Samples were taken every day to follow sugar and nitrogen consumption, 

ethanol production and yeast population dynamics until the end of fermentation. 

Concentrations of ethanol, fructose and glucose were tested using an enzymatic kit 

from Roche Diagnostics (Germany). The level of individual amino acids and 

ammonium was analyzed by HPLC according to Andorrà et al. 2012. Yeast 

populations in all samples were quantified using a microscope and plating after 

appropriate dilution in sterile water. YPD agar medium was used to calculate the 

total number of yeast cells present, and lysine agar medium (Oxoid LTD., England) 

was used for quantification of non-Saccharomyces strains. 

 

 

Figure 1 Experimental design for setting up three fermentation stages (A) and preparing three 

types of synthetic media (B, C, D). 

 

Three stages were set up for each species depending on the culturability of 

the non-Saccharomyces species in mixed fermentations (Figure 1A): 1. When 

culturable populations reached the highest level; 2. When culturable populations 

started to decrease; 3. When no colonies grew on plates, or at the end of 

fermentation for some strains if colonies were still seen on plates. The concentration 

of main chemical components (ethanol, fructose, glucose, individual amino acids and 

ammonium), fermentation time and non-Saccharomyces strain culturability at these 

stages were listed to mimic the conditions of each fermentation stage where the 

interaction between non-Saccharomyces strains and S. cerevisiae was set (Figure 1 
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and Table 1). Data from these stages at mixed and single fermentations were used 

for the interaction assays in next step. 

 

Table 1. Fermentation stages, population size and chemical characteristics of the media at 

different single and mixed fermentation stages.  

This chemical composition was used to define the media mimicking the three selected 
fermentation stages. All values are the average of different strains within the same species. 
“MM” means synthetic media with main metabolites (ethanol, fructose, glucose and nitrogen) 
mimicking mixed fermentations, whereas “MS” is named after synthetic media with main 
metabolites mimicking S. cerevisiae fermentation. The Arabic numbers 1, 2 and 3 refer to the 
three stages selected in fermentations. “―” refers to the absence of a non-Saccharomyces 
population as derived from single S. cerevisiae fermentations, whereas “nd” means not 
detected. The total assimilable nitrogen is the sum of nitrogen from assimilable amino acids 
and ammonium. Only amino acid concentrations higher than 0.9 mg N/L are considered, and 
the concentrations are shown in Supplementary Table 1. 

 

 

Species Fermentation 

time 

(h) 

Culturable non-

Saccharomyces 

(cfu/mL) 

Ethanol 

(v/v) 

Fructose 

(g/L) 

Glucose 

(g/L) 

Total 

assimilable 

nitrogen 

(mg N/L) 

Names of 

synthetic 

media 

H. uvarum 

24 2.6±1.3×10
7
 1.6±0.2 74.6±4.3 59.0±4.1 66.8±26.7 MM-1 

24 ― 1.8±0.0 76.7±0.0 52.3±0.0 5.0±0.0 MS-1 

48 2.0±1.1×10
7
 3.1±0.6 49.8±2.1 25.1±6.1 6.6±3.3 MM-2 

48 ― 4.2±0.1 45.2±1.6 13.7±1.7 1.2±0.0 MS-2 

96 nd 9.4±0.5 12.7±5.0 0.9±0.7 nd MM-3 

96 ― 10.2±0.4 4.1±2.9 nd nd MS-3 

M. pulcherrima 

24 8.1±3.3×10
6
 2.2±0.6 89.6±4.1 53.1±7.2 87.4±54.1 MM-1 

24 ― 1.8±0.0 76.7±0.0 52.3±0.0 5.0±0.0 MS-1 

48 3.2±6.8×10
6
 6.7±0.9 56.1±4.9 23.6±5.7 2.5±1.2 MM-2 

48 ― 4.2±0.1 45.2±1.6 13.7±1.7 1.2±0.0 MS-2 

96 nd 10.2±0.5 15.9±6.0 0.7±0.8 nd MM-3 

96 ― 10.2±0.4 4.1±2.9 nd nd MS-3 

S. bacillaris 

24 4.2±3.7×10
7
 1.5±0.2 68.6±3.0 50.7±2.2 18.3±4.7 MM-1 

24 ― 1.8±0.0 76.7±0.0 52.3±0.0 5.0±0.0 MS-1 

96 8.8±8.3×10
6
 9.9±0.5 5.1±1.9 nd nd MM-2 

96 ― 10.2±0.4 4.1±2.9 nd nd MS-2 

120 4.7±8.2×10
1
 11.6±0.1 0.1±0.1 nd nd MM-3 

120 ― 11.5±0.4 0.1±0.1 nd nd MS-3 

T. delbrueckii 

24 1.9±0.7×10
7
 3.1±0.1 90.8±3.4 48.4±0.9 20.1±13.9 MM-1 

24 ― 1.8±0.0 76.7±0.0 52.3±0.0 5.0±0.0 MS-1 

96 1.1±1.9×10
6
 10.4±0.4 19.8±5.1 1.1±1.9 nd MM-2 

96 ― 10.2±0.4 4.1±2.9 nd nd MS-2 

144 1.8±2.4×10
6
 11.7±0.6 1.5±1.9 nd nd MM-3 

120 ― 11.5±0.4 0.1±0.1 nd nd MS-3 
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2.3. Culture assays using different synthetic media 

To further understand the culturability of non-Saccharomyces strains in mixed 

fermentation, three types of synthetic media were prepared (Figure 1): supernatant 

from S. cerevisiae fermentation (S), synthetic medium mimicking S. cerevisiae 

fermentation (MS) and synthetic medium mimicking mixed fermentation (MM). S was 

collected from S. cerevisiae fermentation (Figure 1B), centrifuged and filtered using a 

0.22 µm Whatman syringe filter (GE Healthcare Life Science, Germany). S was 

spread onto YPD agar plates to confirm the absence of S. cerevisiae cells. As a 

comparison, MS was prepared with metabolites (ethanol, fructose, glucose, 

individual amino acid and ammonium) mimicking S, with the absence of S. 

cerevisiae excreted compounds (Figure 1D). By performing culture assays using S 

and MS, the effect of main fermentation metabolites (the same for S and MS) and 

other putative S. cerevisiae metabolites (only in S) could be observed. Considering 

the possible differences of the main metabolites produced by S. cerevisiae 

fermentation and mixed fermentation, MM was prepared with corresponding 

components mimicking the mixed fermentation (Figure 1C). Moreover, no 

micronutrients or vitamins were added to MS and MM due to fast consumption at the 

beginning of alcoholic fermentation. All of the synthetic media were prepared for the 

three fermentation stages selected in 2.2 and were named with Arabic numbers to 

differentiate these stages (Figure 1 and Table 1). 

Single fermentations of each non-Saccharomyces strain were then performed 

to provide adapted cells as described in Wang et al. (2015c). These adapted cells 

were incubated in YPD to ensure viability and incubated in synthetic media to check 

their culturability on plates. Culture assays were conducted at 25 °C in duplicate with 

a shaking speed of 120 rpm; when a culturability decrease was observed, the culture 

assays were repeated in another duplicate and thus four replicas were used to follow 

the cultuability change of non-Saccharomyces yeasts. Samples were taken at 24 h, 

48 h and 120 h to quantify yeast cells using a microscope and YPD plating after 

appropriate dilution in sterile water. Cells losing culturability in synthetic media were 

collected for the following recovery analysis and viability assay. 
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2.4. Recovery analysis and viability assay of non-culturable cells from 

synthetic media 

To test the viability of non-culturable cells from synthetic media, two 

approaches were used. Membrane integrity was analyzed by using the LIVE/DEAD® 

BactLight™ Bacterial Viability kit (Molecular Probes Inc., USA). In this assay, yeast 

cells were stained and observed using a fluorescence microscope equipped with 

filter system I3 and N2.1 (Leica DM 4000B) as in Hierro et al. (2006). The capacity to 

grow in rich liquid media was analyzed by incubating the cells in fresh YPD medium. 

Cells that could be recovered were considered to be viable but not culturable in 

synthetic media. Cells that could not be recovered after two consecutive 48 h 

incubations in fresh YPD medium were analyzed again by the LIVE/DEAD® 

BactLight™ Bacterial Viability kit. 

 

2.5. Statistical analysis 

One-way ANOVA by IBM SPSS Statistics 23 was used to calculate the value 

of significance for the variation analysis, and included a post-hoc Tukey test when 

needed. The consumption ratio (% of the total) of nutrients was used directly for the 

analysis of variation. 

 

3. Results 

3.1. Culturable population and metabolic characteristics of non-

Saccharomyces strains during alcoholic fermentation 

Overall, both S. cerevisiae and non-Saccharomyces strains reached the 

maximum population number of 107- 108 cells/mL 24 h after inoculation, and this size 

was maintained during mixed and single fermentations. Culturability of non-

Saccharomyces strains decreased in all mixed fermentations. This decrease varied 

not only among different yeast species but also among some strains within the same 

species (Figure 2). Culturable H. uvarum increased to 107 - 108 cfu/mL at 24 h and 

began to decrease at 48 h. No colonies were formed on lysine plates for CECT1444 

after 72 h and for CECT13130 and NSb after 96 h. Similar to H. uvarum, M. 

pulcherrima grew to 107 cfu/mL and quickly started to decrease. At 96 h, no colonies 

of Mp com were recovered on lysine plates, and for Mp 51, no colonies were 

recovered after 48 h. Culturable S. bacillaris maintained a population size of 107 - 

108 cfu/mL until 96 h at which time the population started to decline. After 120 h, 10 
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to 100 cfu/mL of NSd and CECT11046 were recovered, however no colonies of NSc 

grew from lysine plates. Finally, T. delbrueckii strains reached approximately 107 

cfu/mL and were maintained up to 48 h. After 48 h, CECT13135 started to decline, 

and no colonies were recovered after 144 h. The other T. delbrueckii strain, Td com, 

showed a slow decrease in culturable population, and at 144 h, 106 cfu/mL of Td 

com were still culturable. Based on the culturability of non-Saccharomyces strains in 

mixed fermentations, three stages were set up for each species. The fermentation 

times and main metabolites of these three fermentation stages are shown in Table 1. 

As a comparison, the same stage in fermentation of S. cerevisiae is also listed. 

 

Figure 2 Culturable population of non-Saccharomyces in mixed fermentations with S. 

cerevisiae. Culturable S. cerevisiae populations were shown in orange line using the same line 

type as the non-Saccharomyces co-inoculated. (A) H. uvarum (B) M. pulcherrima (C) S. 

bacillaris (D) T. delbrueckii.  

 

Despite the different culturability of non-Saccharomyces strains in mixed 

fermentations, no obvious variations in fermentation length were observed, and all 

fermentations finished after 120 or 144 h. Similar to S. cerevisiae fermentation, all 

mixed fermentations consumed glucose faster than fructose, and the final ethanol 

concentration reached 11 % vol to 12 % vol (Table 1). However, analysis of the 

consumption of these main metabolites after 24 h revealed strain-dependent 

differences. As shown in Table 2, the strains that lost culturability faster were those 
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that consumed some metabolites faster in the mixed fermentations: (i) Within H. 

uvarum, mixed fermentations inoculated with CECT1444 consumed glucose, 

ammonium and arginine faster than the other two strains; (ii) For M. pulcherrima, 

mixed fermentations with Mp 51 metabolized fructose, glucose, alanine, ammonium, 

arginine and glutamine faster than mixed fermentations with Mp com; (iii) Arginine 

was consumed faster during mixed fermentations with S. bacillaris NSc than the 

other two strains; (iv) More arginine was consumed during mixed fermentations with 

T. delbrueckii CECT13135 than Td com. 

 

Table 2. Consumption ratio of glucose, alanine, ammonium, arginine and glutamine at 24 h of 

fermentation.  

  Non-

Saccharomyces 

strains 

% of the total Time of 

culturability 

loss 

Fructose  Glucose Alanine Ammonium Arginine Glutamine 

sc  23.3 47.7 100.0 100.0 100.0 100.0 nd 

sc+hu CECT13130 27.2 37.6* 90.4* 68.1* 65.1* 100.0 96 h 

NSb 23.3 39.2* 93.1* 63.4* 66.7* 100.0 96 h 

CECT1444 25.7 46.2
♯
 91.6* 100.0

♯
 71.9*

♯
 100.0 72 h 

sc+mp Mp com 6.9*
♯
 40.7*

♯
 13.4*

♯
 69.1*

♯
 53.7*

♯
 88.4*

♯
 96 h 

Mp 51 13.9* 53.2* 96.7 91.2* 67.8* 100.0 48 h 

sc+sb   NSc 35.1* 51.6 100.0 100.0 91.4*
♯
 100.0 120 h 

NSd 30.4* 48.5 96.9 100.0 82.7* 100.0 nd 

CECT11046 28.8* 47.7 98.3 100.0 84.1* 100.0 nd 

sc+td  Td com 10.8* 51.6 99.4 100.0 75.9*
♯
 100.0 nd 

CECT13135 7.7* 51.6 99.9 100.0 93.5* 100.0 144 h 

sc means S. cerevisiae single fermentation, and mixed fermentations are presented as sc+hu 
(S. cerevisiae + H. uvarum), sc+mp (S. cerevisiae + M. pulcherrima), sc+sb (S. cerevisiae + S. 
bacillaris), sc+td (S. cerevisiae + T. delbrueckii). nd means not detected. * significance ≤0.05 
with respect control (sc) by one-way ANOVA. 

♯
significantly different from the other strains of the 

same species as determined by a post-hoc Tukey test. 

 

3.2. The influence of excreted compounds from S. cerevisiae and media 

composition on the culturability of non-Saccharomyces strains 

To further elucidate the culturability of non-Saccharomyces strains and the 

interaction with S. cerevisiae during mixed fermentation, we performed culture 

assays using S (supernatant from S. cerevisiae fermentation), MS (synthetic media 

mimicking S. cerevisiae fermentation) and MM (synthetic media mimicking mixed 

fermentation) based on the three stages of fermentation (Table 1). Although the non-

Saccharomyces strains maintained a population size of 107 - 108 cells/mL for 120 h, 
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as determined by cell counting under a microscope, not all strains were culturable 

during the five-day period. The culturability was dependent on the media used, as 

well as the yeast species and strain. 

No effect on culturability was seen in any media in fermentation stage 1 (S-1, 

MS-1, MM-1), which corresponded to the fermentation stage where culturable 

populations of non-Saccharomyces strains were the highest (generally between 107 

and 108 cfu/ml). However, in the media from fermentation stage 2 (only S-2), and in 

the media from fermentation stage 3 (all the media), a decrease in culturable 

populations was observed (Figures 3-6), although the extent of the decrease was 

species- and strain-dependent. 

 

Figure 3 The culturable population of three H. uvarum strains (CECT13130, NSb and 

CECT1444) grown in different synthetic media for 120 h. (A) the growth in supernatant from the 

second stage of S. cerevisiae fermentation S-2 (B) the growth in supernatant from the third 

stage of S. cerevisiae fermentation S-3 (C) the growth in synthetic media MS-3 (D) the growth 

in synthetic media MM-3. 

 

Within H. uvarum strains, the decrease of culturability was seen at 24 h in S-2 

and S-3 and at 120 h in MS-3 and MM-3 (Figure 3). H. uvarum strains lost 

culturability in both S-2 and S-3; however, the decrease in culturability in S-2 

occurred more slowly than in S-3. Further, among the three strains, CECT1444 

showed a much slower decrease in culturability in S-2. The media (MS-3 and MM-3) 
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also affected the culturability, but to a lesser extent, and they were evident only at 

120 h. There was also a strain difference, such that NSb was more affected than the 

other two strains. 

 

Figure 4 The culturable population of two M. pulcherrima strains (Mp com and Mp 51) grown in 

different synthetic media for 120 h. (A) the growth in supernatant from the second stage of S. 

cerevisiae fermentation S-2 (B) the growth in supernatant from the third stage of S. cerevisiae 

fermentation S-3 (C) the growth in synthetic media MS-3 (D) the growth in synthetic media  

MM-3. 

 

Regarding the M. pulcherrima strains, a slow decrease in culturability was 

observed in all media mimicking the fermentation stages (MS-2, MM-2, MS-3 and 

MM-3), whereas a sharp decrease was seen in the S. cerevisiae supernatants (S-2 

and S-3). Mp com and Mp51 showed different culturability in both S-2 and MS-3 

(Figure 4), with Mp com exhibiting higher sensitivity. 

The culturability of three S. bacillaris strains was less affected by different 

synthetic media, as some colonies were recovered (Figure 5). All of the strains 

showed a decrease in culturability during all studied periods (120 h), with no relevant 

differences between strains. Only in S-3 was a difference in sensitivity observed with 

strain NSc, which showed much lower culturability than the other two strains. 
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Figure 5 The culturable population of three S. bacillaris strains (NSc, NSd and CECT11046) 

grown in different synthetic media for 120 h. (A) the growth in supernatant from the second 

stage of S. cerevisiae fermentation S-2 (B) the growth in supernatant from the third stage of S. 

cerevisiae fermentation S-3 (C) the growth in synthetic media MS-3 (D) the growth in synthetic 

media MM-3. 

 

Similar to S. bacillaris, the effect of synthetic media on the culturability of the 

two T. delbrueckii strains was limited (Figure 6). However, when the cells were 

cultured in S-3, no colonies were recovered after 120 h. Instead, only a small 

decrease of culturability was observed in MS-3 and S-2. 

Although the decrease of culturability varied among different species, S-3 

consistently showed the most obvious effect compared with other synthetic media. 

For the two species more affected (H. uvarum and M. pulcherrima), a more obvious 

effect was shown in S-2 than in MS-3 or MM-3. Thus, it is likely that some 

substances secreted from S. cerevisiae played a principal role in the interaction 

between S. cerevisiae and non-Saccharomyces strains, and that changes in the 

media (ethanol, nitrogen and sugar) also mediated the interaction. 
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Figure 6 The culturable population of two T. delbrueckii strains (Td com and CECT13135) 

grown in different synthetic media for 120 h. (A) the growth in supernatant from the second 

stage of S. cerevisiae fermentation S-2 (B) the growth in supernatant from the third stage of S. 

cerevisiae fermentation S-3 (C) the growth in synthetic media MS-3 (D) the growth in synthetic 

media MM-3. 

 

3.3. The viability of the non-culturable cells 

To improve the understanding of the lack of culturability of the non-

Saccharomyces strains, all of the samples (34 cases in total) that did not grow on 

plates were tested using two different methods: membrane integrity using the 

LIVE/DEAD viability kit and recovery by suspension in liquid YPD with agitation. 

On one hand, these non-culturable cells were immediately analyzed using the 

LIVE/DEAD viability kit (Supplementary Figure 1). The results showed that live 

fluorescent cells were only found three times: non-culturable cells of the Mp com 

strain at 24 h in S-2 yielded 0.13% of live fluorescent cells, at 48 h in MM-3 8.17% 

and the Mp 51 strain at 120 h in MM-2 2.84 %. All other non-culturable cells yielded 

dead fluorescent cells. 

On the other hand, all non-culturable cells were evaluated by recovery 

analysis. The non-culturable cells with live fluorescent were recovered when 

incubated in liquid YPD medium, whereas some of the non-culturable cells with dead 

fluorescent could also be recovered. The latter cases were found seven times 
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involving three non-Saccharomyces species. For example, after 120 h exposure to 

mimicking media MS-3 and MM-3, H. uvarum NSb, as well as H. uvarum CECT1444 

after S-2 and the two T. delbrueckii strains after S-3, appeared dead in the 

fluorescence analysis but could be recovered. In the case of H. uvarum CECT13130, 

this observation was seen only in the early stages of exposure (48 h) to the media. 

Likewise, Mp com could be recovered after 120 h exposure to mimicking media MM-

2 but could not be recovered from MM-3. Both cases indicate the existence of an 

intermediate, transient step before the cells are completely dead. 

The LIVE/DEAD viability kit was again used to check the cells that could not 

be recovered by consecutive incubation in liquid YPD medium. All cells that could 

not be recovered yielded only dead fluorescent. 

 

4. Discussion 

The culturability loss of non-Saccharomyces strains during late stages of 

alcoholic fermentation has been well documented (Fleet, 2003). However, despite 

recent advances, the cellular mechanism underlying culturability loss is still a matter 

of discussion (Ciani and Comitini, 2015; Liu et al., 2015; Albergaria and Arneborg, 

2016). In a previous study (Wang et al., 2015c), we investigated how S. cerevisiae 

NSa interacted with H. uvarum NSb by the use of a compartmented dialysis system, 

cell-free supernatant and mimicking synthetic media. Due to the absence of a 

contact-dependent mechanism in S. cerevisiae NSa, in the present study we decided 

to focus on the effects of compounds secreted by S. cerevisiae NSa, and the 

changes in main metabolites (ethanol, glucose, fructose, amino nitrogen and 

ammonium nitrogen). 

Our results indicated that cell-free supernatant from S. cerevisiae 

fermentation influenced cellular culturability much more than mimicking synthetic 

media at the same fermentation stage (same chemical composition for major 

metabolites). Therefore, as mentioned in Wang et al. (2015c), some putative S. 

cerevisiae metabolites played a main role in the interaction between S. cerevisiae 

NSa and other non-Saccharomyces strains. A faster culturability loss was induced by 

S. cerevisiae supernatant at stage 3 than the initial two stages, which demonstrated 

the possible accumulation, or higher effect, of the S. cerevisiae secreted compounds 

as fermentation proceeded. Studies from Pérez-Nevado et al. (2006) and Williams et 

al. (2015) further related the accumulation to the amount of sugar consumed by S. 
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cerevisiae. Likewise, antimicrobial peptides identified by Branco et al. (2014) were 

derived from a glycolytic enzyme, showing a probable link with sugar metabolism of 

S. cerevisiae. More research is still required to illustrate how sugar consumption 

regulates the secretion of antimicrobial peptides or other putative metabolites. 

Moreover, according to our previous report (Wang et al., 2015c), as 

fermentation proceeds, the changes of the main metabolites also decreased the 

culturability of the cells, and the present results indeed showed that synthetic media 

at stage 3 caused a decrease in culturability. However, this effect occurs more slowly 

in the sensitive species and strains, and in our culture assays, complete culturability 

loss was mostly found after 48 h or 120 h. This indicates that the changes in the 

main metabolites play a role in the interaction between S. cerevisiae NSa and other 

non-Saccharomyces strains, and vice versa. Because not all of the species were 

equally affected, it also showed the capacity of some non-Saccharomyces strains to 

withstand a harsh environment (ethanol higher than 10% vol, glucose lower than 1 

g/L, fructose lower than 16 g/L and no available nitrogen). 

The interaction between S. cerevisiae and non-Saccharomyces strains also 

relied on the participating yeast species. In our mixed fermentations, cells of S. 

bacillaris and T. delbrueckii could coexist longer with S. cerevisiae than H. uvarum 

and M. pulcherrima. Other studies proposed that oxygen availability, glucose uptake 

rate and nitrogen source might contribute to the longer co-existence (Holm Hansen 

et al., 2001; Nissen et al., 2004; Andorrà et al., 2012; Taillandier et al., 2014). We 

indeed found that mixed fermentation inoculated with S. bacillaris or T. delbrueckii 

present a consumption rate of glucose, alanine, ammonium and arginine more 

similar to single fermentations with S. cerevisiae than those mixed fermentations 

inoculated with H. uvarum and M. pulcherrima. However, the relation between 

species tolerance and consumption of some nutrients still needs further 

investigation. 

As expected, strain differences within each species were observed in mixed 

fermentation, culture assays and recovery analyses. First, strains decrease their 

culturability to a different extent during mixed fermentation. Second, when incubated 

in the same synthetic media in culture assays, strains showed different culturability 

or tolerance to a harsh environment. Third, non-culturable cells from the same 

synthetic media showed different recovery abilities depending on the strain. The 

strain difference, to some extent, increased the complexity of interaction analysis 
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between S. cerevisiae and non-Saccharomyces strains. In our case, the hypothesis 

of “strain tolerance to hard environment” cannot simply explain the strain differences 

in mixed fermentations. H. uvarum CECT1444 exhibited a slow culturability decrease 

in S-2, MM-2 and MM-3 as compared to the other two strains and thus was regarded 

as a strain that is highly tolerant to harsh environments. However, despite being a 

highly tolerant strain, in mixed fermentation, the culturability decreased even earlier 

than the other two H. uvarum strains. When we analyzed the metabolites at 24 h of 

mixed fermentation inoculated with H. uvarum CECT1444, a faster consumption of 

glucose, ammonium and arginine was detected. Andorrà et al. (2012) and 

Kemsawasd et al. (2015b) reported the influence of nitrogen consumption on yeast 

growth and fermentation performance. Nevertheless, further research should be 

undertaken to elucidate this effect, which was also observed in strains Mp 51, S. 

bacillaris NSc and T. delbrueckii CECT13135 compared with other strains within the 

same species.    

Another important finding was the appearance of non-culturable cells when 

incubated with synthetic media, yielding more than 90 % of cells with “dead” 

fluorescence by viability analysis but that could be recovered by incubation in YPD 

medium. However, when these cells were incubated longer in the synthetic media 

(24 h more), all showed dead fluorescence and could no longer be recovered in YPD 

medium. This phenomenon demonstrated the existence of VBNC status of at least 

H. uvarum, M. pulcherrima and T. delbrueckii during alcoholic fermentation. As 

hypothesized by Branco et al. (2015), VBNC status could be understood as a 

transition status of yeast from culturable cells to dead cells, involving sub-lethally and 

severely injured cells. During this transition process, the ability to form colonies is the 

first lost vital activity and progressive changes in the permeability of cell membrane 

occur as found in this study, however the DNA or RNA remains stable (Andorrà et 

al., 2010; Wang et al., 2014; Wang et al., 2015a). Branco et al. (2015) measured 

how antimicrobial peptides secreted by S. cerevisiae affected cell viability and 

reported that injured cells had a similar pH as the external pH, whereas cells without 

compromised membranes (impermeable to propidium iodide) maintained a higher 

pH. Further research is still required to determine how the interactions between S. 

cerevisiae and non-Saccharomyces impacts physiological status and metabolic 

capacity of cells in different status. 
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In conclusion, we investigated the interaction between one S. cerevisiae strain 

and ten non-Saccharomyces strains during alcoholic fermentation. We demonstrated 

that the decrease of culturability was mainly caused by metabolites secreted by S. 

cerevisiae, although the change of the main metabolites in the media also played a 

role. We also found that culturability loss of non-Saccharomyces yeasts was not only 

species-dependent but also strain-dependent. The finding of VBNC status and strain 

differences in culturability is meaningful to the exploration of Saccharomyces - non-

Saccharomyces interactions. The understanding of these interactions is relevant for 

the development of non-Saccharomyces strains as starters in wine production. 
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Supplementary Table 1. The concentration of amino acids and ammonium in three selected stages of mixed fermentations inoculated with S. 

cerevisiae and one non-Saccharomyces species, and single fermentation with S. cerevisiae. All values are the average of different strains within the 

same species. Synthetic medium mimicking mixed fermentations is named MM, and synthetic medium mimicking S. cerevisiae fermentation is named 

MS. The Arabic numbers 1, 2 and 3 used in the name of synthetic media stand for the three stages selected in the fermentations. “nd” means not 

detected or the concentration is lower than 0.9 mg N/L. Synthetic media with only proline (30 mg N/L) is not listed.  

 

  

Species Synthetic 

media 

Alanine Ammonium Arginine Aspartic Cysteine Glycine Glutamic Glutamine Leucine Proline Tryptophane 

(mg N/L) 

H. uvarum MM-1 1.9 27.5 28.7 1.7 1.2 1.5 nd nd 1.5 30.0 2.8 

MS-1 nd nd nd 1.3 1.1 nd nd nd 1.7 30.0 0.9 

MM-2 nd nd 3.9 1.5 nd nd nd nd nd 30.0 1.2 

MS-2 nd nd nd nd nd nd nd nd nd 30.0 1.2 

M. pulcherrima MM-1 10.4 23.9 35.1 2.1 1.0 2.2 1.6 5.6 0.5 30.0 5.1 

MS-1 nd nd nd 1.3 1.1 nd nd nd 1.7 30.0 0.9 

MM-2 nd nd nd 1.6 nd nd nd nd 0.9 30.0 nd 

MS-2 nd nd nd nd nd nd nd nd nd 30.0 1.2 

S. bacillaris MM-1 nd nd 12.5 1.6 2.0 nd nd nd 1.0 30.0 1.4 

MS-1 nd nd nd 1.3 1.1 nd nd nd 1.7 30.0 0.9 

T. delbrueckii MM-1 nd nd 13.7 1.5 1.1 nd nd nd nd 30.0 3.8 

MS-1 nd nd nd 1.3 1.1 nd nd nd 1.7 30.0 0.9 
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Supplementary Figure 1. The cells with “L” (live) and “D” (dead) fluorescence in the viability assay. Cells were observed with white light (A), filter system I3 

(B) and filter system N2.1 (C).  
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GENERAL DISCUSSION 

The alcoholic fermentation for wine production involves great diversity of yeast 

species, which drive the development of the process and influence the final flavor 

characteristics of wine. Those diverse yeast species participate in alcoholic 

fermentation at different stages with specific yeast dynamics and succession during 

the process. A good assessment of yeast dynamics is desirable, to better control the 

metabolites appearing in the final product (Bisson and Joseph 2009). Especially in 

recent years mixed fermentation using selected S. cerevisiae and non-

Saccharomyces yeasts has been proposed for creating wine complexity (Jolly et al. 

2014, Lleixà et al. 2016, Masneuf-Pomarede et al. 2016) and is a trend in some 

wineries. Thus, the basic estimation and understanding of yeast dynamics is a 

requirement for the successful exploitation of those mixed cultures. At the same time, 

the emergence of culture-independent techniques indeed improves our assessment 

capacity after the finding of viable but non-culturable status of yeast in winemaking 

process (Divol and Lonvaud-Funel 2005). Further development of those culture-

independent techniques means a more rapid and accurate assessment of yeast 

dynamics. Furthermore, the role of yeast interaction in the dynamics has also been 

highlighted in recent studies (Albergaria and Arneborg 2016). The correlation 

between yeast interaction and yeast dynamics needs more studies to fully 

understand the process. 

 

In that framework this thesis has aimed to apply new culture-independent techniques 

to investigate yeast diversity, to analyze yeast status and to understand the yeast 

interaction during the alcoholic fermentation. 

 

When it comes to the reality of alcoholic fermentation during wine making, it is 

often considered that alcoholic fermentation is a complex microbiological process 

and that a great diversity of yeast participates in the process. Although the dominant 

species have been usually paid more attention, wine is never a product from 

alcoholic fermentation of single pure strains or species. Rather, a high diversity and 

species richness could be observed in the process ranging from dozens of to 

hundreds of them (Chapter 1), which mainly roots in microbiota exist on grapes and 

subsequently enter grape must when berries break (Barata et al. 2012). It would be 

interesting to follow these non-dominant species during alcoholic fermentation in the 
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future, because their existence not only contributes to ecological complexity but also 

probably correlates with evolution principles based on microbial interaction and even 

the complexity of final product. 

In addition to the great microbial diversity, another new finding that recently 

caused increasing interests is that microbial diversity distributes differently in each 

region (Pinto et al. 2015) or even vineyard (Chapter 1). The regional microbial 

community could be related with regional wine style, a factor neglected in the past 

and recently recovered (Bokulich et al. 2014, Setati et al. 2015). The European 

project WILDWINE has been performed to determine the “microbial fingerprint” of 

different wine regions and to establish artificial “natural winemaking” by applying 

selected multi-strain and multi-species starters (Mas et al. 2016). The final 

recognition of “microbial terroir” needs more experimental tests to demonstrate that 

this regional differential microbiota actually modulate wine styles (Barata et al. 2012). 

From our perspective, a necessary step is to know how they develop grape must by 

their participation in the alcoholic fermentation. 

Although the diverse yeast community is involved in alcoholic fermentation, 

their participation in alcoholic fermentation basically follows a pattern of early 

dominance of fungi, fast giving way to non-Saccharomyces yeasts and the final 

dominance of S. cerevisiae. This dynamic pattern can be varied due to artificial 

strategies including inoculation design, temperature control and nutrition regulation 

(Medina et al. 2012, Taillandier et al. 2014, Maturano et al. 2015). However, a full 

control of the alcoholic fermentation with great diversity has not yet been achieved, 

mainly due to incomplete understanding of yeast dynamics. To our knowledge, it is 

likely that yeast population dynamic correlates with interaction between S. cerevisiae 

and non-Saccharomyces yeasts. Yeast interaction and environmental changes 

impose yeast cells on a stressful environment, which cause that non-Saccharomyces 

gradually lose their culturability especially at late stage of fermentation. Therefore, 

systematic studies on the interaction between S. cerevisiae and non-Saccharomyces 

have been carried out in this thesis to know the nature of the interaction and its 

correlation with yeast dynamics during alcoholic fermentation. 

To restore and better explain yeast interaction during alcoholic fermentation, 

we established a simulation system. On one hand, to estimate the influence of 

environmental changes we used synthetic musts mimicking different stages of mixed 

fermentations. On the other hand, both cell-free supernatants from S. cerevisiae 
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fermentation and synthetic must mimicking these cell-free supernatants were 

designed to determine the toxic effect of S. cerevisiae exudates. In addition, cell 

contact was analyzed by using compartmented vessels and cell-free supernatants in 

all our trials. Based on this system, we mainly analyzed four factors: availability of 

nutrients and toxicity of ethanol, presence of toxin in S. cerevisiae exudates, cell 

contact, and the specificity of yeast species and strains. The methodology of this 

system could also be reference for the evaluation of other factors (such as pH, SO2 

and temperature) or other microbial interaction analysis in the future. 

The two environmental factors — availability of nutrients and toxicity of 

ethanol were evaluated together since nutrient depletion and ethanol production are 

simultaneous common stresses induced by alcoholic fermentations. Non-

Saccharomyces yeast species were conventionally regarded to be poorly adapted to 

such stresses and thus this could be a reason for the dominance of Saccharomyces. 

Marsit and Dequin (2015) even proposed that this is a strategy used by 

Saccharomyces yeast to establish competitive dominance in the ecological niche: 

they rapidly consume nutrients, transform carbohydrates into ethanol and finally they 

could catabolize ethanol for energy. Non-Saccharomyces yeast in our simulation 

system did present a tendency to decrease their population but at a much slow rate 

than in presence of S. cerevisiae. The slow decrease in population of non-

Saccharomyces yeasts in harsh environment with both limited availability of nutrients 

and high ethanol concentration shakes the former ideas, which over-emphasize the 

importance of these environmental factors. 

Although we know that nutrition addition can increase fermentation capacity of 

Saccharomyces and non-Saccharomyces yeast (Albergaria 2007, Taillandier et al. 

2014), more research is required to know the single factor effect of nutrition depletion 

on vitality of non-Saccharomyces yeast. Considering that Saccharomyces consume 

nutrients faster and produce biomass more efficiently than non-Saccharomyces 

(Andorrà et al. 2012), we can try to add some specific nutrients (Alanine, Ammonium, 

Arginine or Glutamine depending on the species, Chapter 5) or complex nutrition 

(yeast extract or peptone) into mixed fermentation to postpone the culturability loss 

of non-Saccharomyces yeast. It would be also interesting to try to establish the 

specific nitrogen requirements of different non-Saccharomyces yeast for maintaining 

culturability in the process. Kemsawasd et al. (2015b) reported that some amino 

acids had beneficial effect on growth, glucose consumption and ethanol production 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



General discussion 

 

 

192 

of non-Saccharomyces yeasts in single pure fermentation such as serine for L. 

thermotolerans, alanine for H. uvarum, alanine and asparagine for M. pulcherrima. 

Whether these amino acids favor the growth of non-Saccharomyces in mixed 

fermentations needs future studies to make it clear. In terms of ethanol toxicity alone, 

a slow decrease of H. uvarum culturability after 48 h was seen and with high ethanol 

concentration (12%) a decrease of culturability of one log unit was seen after 24 h 

(Chapter 4). This slow reduction indicated its relative high ethanol tolerance. The 

ethanol tolerance of other non-Saccharomyces yeast was not analyzed, but we can 

presume similar tolerance or even higher. Interestingly, Starm. bacillaris was 

reported to be more ethanol tolerant to S. cerevisiae based on the minimum 

inhibitory concentration for yeast growth (Salvadó et al. 2011). The application of 

high ethanol tolerant strains will highlight other factors involved in yeast interaction 

and it could be a future experimental strategy. 

The presence of toxic effects of S. cerevisiae exudates was indicated by our 

system when we compare the growth of non-Saccharomyces yeasts in presence of 

S. cerevisiae supernatants and in synthetic must with the main metabolites (sugar, 

ethanol and nitrogen) mimicking these supernatants, because the former induced 

faster culturability decrease than the latter (Chapter 4 and 5). The identity of the toxic 

effects have been recently determined as antimicrobial peptides, which corresponds 

to fragments of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein 

and correlates with GADPH encoding genes of TDH1, TDH2 and TDH3 (Branco et al. 

2014). If we imagine that GAPDH protein breaks and is transformed into 

antimicrobial peptides after it finishes the role in glycolysis process, it relates the 

appearance and increase of antimicrobial peptides with the sugar depletion during 

alcoholic fermentation. This hypothesis could initially explain why supernatants from 

late stage of fermentation affected the culturability of non-Saccharomyces yeasts 

more and faster than early stages of fermentation (Chapter 4 and 5). Media with low 

sugar concentration did not induce (or it was much lower) growth inhibition of non-

Saccharomyces yeasts, which we have observed (chapter 4) as well as reported in 

other studies (Pérez-Nevado et al. 2006, Williams et al. 2015). This might result from 

relative lower concentration of antimicrobial peptides when sugar is still available. 

Furthermore, for a good explanation of the formation process from GAPDH protein to 

antimicrobial peptides, it would be also interesting to analyze the downstream 

product of GAPDH protein in related non-Saccharomyces yeast species. 
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Although recent studies consistently indicated that the presence of toxic 

compounds (antimicrobial peptides) in S. cerevisiae exudates mainly accounted for 

the interaction between Saccharomyces and non-Saccharomyces yeasts, the 

incentive for their production is still unknown. It could be self-defensive strategy used 

by S. cerevisiae (Albergaria and Arneborg 2016), which have been domesticated by 

competition in nature. This can explain why S. cerevisiae produces the toxin in single 

pure fermentation without the existence of competitors — other non-Saccharomyces 

yeast species (chapter 4 and 5). Furthermore, all S. cerevisiae strains tested until 

now have been reported to be able to produce the toxic compounds alone despite 

that the production ability varied among S. cerevisiae strains (Kemsawasd et al. 

2015a). S. cerevisiae strains with different production ability might be further studied 

at genetic level to understand the secretion process. In addition, these antimicrobial 

peptides have a potential to be developed as reagents for microbial control in mixed 

fermentation, because purified antimicrobial peptides not only showed wide fungicide 

or fungistatic effect on non-Saccharomyces but also bactericide or bacteriostatic 

effects on Oenococcus oeni  (Branco et al. 2014). 

Cell contact was reported as a probable mechanism used by S. cerevisiae to 

interact with other yeast species (Nissen et al. 2003, Renault et al. 2013). 

Nevertheless, this mechanism seems to be strain-dependent according to recent 

studies (Kemsawasd et al. 2015a). The S. cerevisiae strain used in this study did not 

show the effect of cell contact, because culturability loss of non-Saccharomyces still 

happened when cell contact with S. cerevisiae was avoided by compartmented 

apparatus (Chapter 4). S. cerevisiae Saint Georges S101 has been the only strain 

reported until now with obvious contact-dependent mechanism in yeast interaction, 

and interestingly its production ability of antimicrobial peptides is relative low 

(Kemsawasd et al. 2015a). Future study might consider determining the relationship 

between the contact-dependent mechanism and low toxic compounds production. 

In addition to environmental factors, toxic compounds and cell contact, this 

thesis also found species and strain specificity in the interaction between S. 

cerevisiae and non-Saccharomyces (Chapter 5). It is apparent that S. cerevisiae is 

the most resilient yeast which is able to grow well in the fluctuating wine fermentation. 

The growth of non-Saccharomyces species is impaired by environmental changes 

and metabolites from S. cerevisiae, with Starm. bacillaris and T. delbrueckii less 

affected than H. uvarum and M. pulcherrima. Compared to species specificity, strain 
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variation seems like more complicated. The observation of high-tolerant strains 

within the same species is expected. Nevertheless, instead of a long coexistence 

with S. cerevisiae, the high-tolerant strains showed a faster culturability decrease in 

mixed fermentation. According to this phenomenon, we hypothesize that the 

existence of high-tolerant strains probably induces some regulation mechanism of S. 

cerevisiae in yeast interaction. We have tried to find some clues for the probable 

regulation mechanism in the consumption of main metabolites and faster 

consumption of glucose, fructose, alanine, ammonium, arginine or glutamine 

depending on species was seen (Chapter 5). Therefore, it is possible that the 

competition for nutrients in non-Saccharomyces induce more production of toxic 

compounds from S. cerevisiae. Future studies at genetic level will help to explain the 

possible regulatory mechanism. 

So, we have observed that the lack of culturability does not mean the cell lysis 

due to stable cell concentrations checked by microscopy. Thus, it was interesting to 

know how yeast interaction affects the viability of non-Saccharomyces. One of the 

sensitive parameters could be the RNA, because DNA is more stable molecule. The 

existence of rRNA from these non-Saccharomyces could be verified by culture-

independent techniques. In our study, 105-106 cells/mL of H. uvarum and Starm. 

bacillaris were quantified with stable rRNA and non-compromised membrane 

(Chapter 2, 3 and 4). Purified antimicrobial peptides not only decreased the 

culturability and membrane permeability but also disturbed intracellular pH 

homeostasis of H. guilliermondii cells (Branco et al. 2015), which underlines the main 

influence of yeast interaction on integrity of cell membrane. Furthermore, when 

stress was removed by providing favorable conditions, some non-Saccharomyces 

could resuscitate (Chapter 5, Branco et al. 2015). These phenomena also 

demonstrated that some non-Saccharomyces yeast cells existed at viable but non-

culturable (VBNC) state after losing their culturability in the interaction with 

Saccharomyces.  

The VBNC states found at late stage of alcoholic fermentation challenge our 

definition on “live or dead” cells. It is generally recognized that membrane integrity 

and rRNA stability are two key indexes for distinguish live or dead cells. However, 

some cells with compromised membrane could resuscitate (Chapter 5) and EMA-

qPCR required a cell recovery step to include live cells, which were permeable to 

EMA (Andorrà et al. 2010a). The stability of rRNA in yeast cells under stress also 
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stated the complexity: culturable S. cerevisiae and Starm. bacillaris showed rRNA 

decrease at the end of fermentation, whereas dead cells still kept low level of rRNA 

(Chapter 3).  Likewise, Andorrà et al. (2011) doubted that RNA degradation speed 

could change due to different death treatments and yeast species involved. 

Therefore, future studies analyzing physiological states of cells during the process 

from culturable to death might be helpful for our understanding (Díaz et al. 2010). 

The resuscitation ability of VBNC states should also be further analyzed considering 

their probable impact on wine quality. 

Investigation of yeast interaction was limited due to the methodological biases 

of culture-dependent techniques in the past. The development of real-time 

techniques for yeast diversity investigation correlates with the ability of directing 

yeast dynamics, which represent an advance in winemaking field (Bisson and 

Joseph 2009). In this thesis we used different culture-independent techniques to 

follow yeast interaction including massive sequencing, FISH, qPCR and DGGE. 

Small modifications have been made in some techniques for better analysis of yeast 

viability. Probable interference caused by phenol and pigments was considered 

when applying these techniques and final yeast identification and/or quantification 

was directly performed from wine samples (Chapter 1, 2 and 3). Their advantages 

and limitations are well discussed in the context of viable yeast identification and 

quantification. Noteworthy, the combined use of these techniques enables more 

comprehensive investigation. 

Massive sequencing exhibits good fungal diversity analysis in our study due to 

its main technical advantages: the high throughput analysis, which allows the 

detection of minor yeast population (Chapter 1). The main limitation of massive 

sequencing is that it only provides a qualitative assessment and thus should be 

paired with quantitative techniques for target group enumeration (Bokulich and Mills 

2012). Meanwhile, current operation as mentioned in recent extensive research are 

all based on rDNA amplification and thus cannot exclude the detection of dead cells 

and DNA remnant in our samples (Mayo et al. 2014). The use of massive 

sequencing with cDNA or dye treatment can be considered in the next step as we 

tried in this study for qPCR and DGGE. Furthermore, a reliable and complete 

bioinformatics interpretation of the large numbers of sequences obtained is still on 

the way to meet our need for yeast identification at species level, such as the 
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identification of no hit reads and close-relative species as the “uncultured 

Hanseniaspora/Saccharomyces” that we detected.  

FISH is considered promising technique for the investigation of viable yeast 

species in wine samples, because the hybridization probe direct combines with  

intracellular rRNA without the need of RNA extraction (Andorrà et al. 2011). A critical 

step for employing FISH into direct wine sample analysis is the development of 

specific hybridization probes with good fluorescence intensity. Hybridization probes 

were designed in this study, one for eight species of Hanseniaspora and the other 

targeting Starm. bacillaris, and both have been successfully used for analysis of wine 

samples (Chapter 2). FISH combined with fluorescence microscopy acts as a 

spatiotemporal snapshot, visually presenting target yeast cells within a mixed 

population, and FISH combined with flow cytometry can improve detection limits with 

the record of thousands of cells in several seconds. Therefore, as a technique for 

target yeast analysis, its application on investigation of other yeast species will 

depend on the development of corresponding hybridization probes. 

EMA treatment and reverse transcription of extracted RNA have been 

combined with qPCR and DGGE in this study for examining viable yeast population, 

which might involved yeast interaction at late stage of alcoholic fermentation. Both 

treatments demonstrated their advantages but also showed their limitations 

especially for the interference from dead cells. Dead cells higher than 107 cells/mL in 

wine sample will interfere with the detection of viable cells, which is lower than 103 

cells/mL when EMA-QPCR is used. For techniques based on reverse transcription of 

extracted RNA, the relative stability of rRNA after death treatment (75% ethanol 24h) 

could interfere with the determination of minor viable yeast population. Similar 

reports were also obtained by studies using heat treatment to kill cells (Hierro et al. 

2006, Andorrà et al. 2011). The relative stability of rRNA, as we have stated in FISH 

and RT-QPCR analysis (Chapter 2 and 3) is being analyzed in different cell states, 

which could provide some references for related techniques. In addition, other 

techniques such as fluorescence ratio imaging microscopy (FRIM) for pH gradient 

analysis (Branco et al. 2015) and rRNA precursors (pre-rRNA) analysis after nutrient 

stimulation (Cangelosi and Meschke 2014) could be considered in the future for a 

better estimation of yeast viability and measurement of yeast interaction. 
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To sum up, our results verify initial hypothesis that yeast population dynamic largely 

depends on the interaction between S. cerevisiae and non-Saccharomyces and that 

the combination of different culture-independent techniques could be the appropriate 

tools to understand that interaction. 

 

Our research used main indigenous strains isolated from Priorat region and related 

findings especially on yeast interaction will be of great value for applying them in 

controlled mixed fermentation. The metabolites from S. cerevisiae could be 

developed as microbial control reagents in winemaking field. In addition to the 

application significance, our study also highlights the role of interaction between S. 

cerevisiae and non-Saccharomyces in population dynamics and cell states. The 

developed culture-independent techniques promote our understanding of cell viability. 

What is important is this thesis opens the doors to research in the future with the 

new questions posed: 

(i) What kinds of metabolism exist in VBNC yeast cells and how they impact 

on wine quality? 

(ii) Does the synthesis of toxic compounds from GAPDH protein only exist in 

S. cerevisiae? If there is a positive answer, why?  

(iii) What is the incentive for toxin production in S. cerevisiae strains?  

(iv) Do regulation mechanisms exist to adjust the production of toxic 

compounds when S. cerevisiae is mixed with other non-Saccharomyces strains 

during alcoholic fermentation? Is consumption of nutrients involved in these 

regulation mechanisms? 

(v) How antimicrobial peptides affect cell states of different non-

Saccharomyces? 

(vi) Does nutrient consumption contribute to the high tolerance of non-

Saccharomyces species in harsh environments? 
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GENERAL CONCLUSIONS 

 

1. Culture-independent techniques not only enable a rapid identification and/or 

quantification of different wine yeast but also allow an evaluation of viable but non-

culturable yeast status (VBNC) during alcoholic fermentation. Each culture-

independent technique presents advantages and limitations. Therefore, the 

combined use of different culture-independent techniques and even traditional 

culture-dependent techniques are advised to have a comprehensive observation of 

yeast diversity and viability. 

 

2. Grape must from three vineyards in Priorat region showed distinct and rich fungal 

diversity. Starm. bacillaris and H. uvarum were two main non-Saccharomyces yeast 

detected in grape must and subsequent alcoholic fermentation. 

 

3. Quantifiable non-Saccharomyces yeast cells existed at viable but non-culturable 

state during late stage of alcoholic fermentation. 

 

4. Contact-dependent mechanism did not correlate with the culturability loss of non-

Saccharomyces in our mixed fermentation. Environmental changes such as ethanol, 

sugar and nitrogen concentration changes indeed affect culturability of non-

Saccharomyces. However, the interaction between S. cerevisiae and non-

Saccharomyces due to metabolites secreted from S. cerevisiae during the alcoholic 

fermentation had a main role in the culturability loss of non-Saccharomyces. 

 

5. The interaction between Saccharomyces and non-Saccharomyces yeasts is 

species and strain dependent.  
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1. Culture media 

YPD medium 

YPD medium (Yeast extract peptone dextrose medium) is a general medium for 

yeast growth. 

Glucose 20 g/L, peptone 20 g/L, yeast extract 10 g/L, agar 20 g/L (solid medium) 

 

Lysine medium 

Lysine medium is a selective medium which supports the growth of non-

Saccharomyces yeast. 

Lysine medium 66 g/L (Oxoid, USA), lactate potassium 4 mL/L (18 mL lactic acid 85% 

and 14 g KOH in 100mL distilled water), bring to the boil to dissolve completely; 

When the medium cools down to around 50 °C, add 1 mL lactic acid 10% to adjust 

the pH at 5. 

 

WL nutrient medium 

WL nutrient medium (Wallerstein Laboratories nutrient medium) is an identification 

medium on which yeasts form different morphologies and colors for discrimination 

(Cavazza et al. 1992). 

WL nutrient agar 75 g/L (Biogenetics, Italy), bring to the boil to dissolve completely 

and then autoclaved. 

 

Synthetic must 

Sugar (g/L): glucose 100, fructose 100; 

Acid (g/L): DL-malic acid 5, citric acid 0.5, tartaric acid 3; 

Mineral salts (g/L): KH2PO4 0.75, K2SO4 0.5, MgSO4·7H2O 0.25, CaCl2·2H2O 0.155, 

NaCl 0.2; 

Nitrogen: NH4Cl 0.46 g/L, amino acid mother solution 10 mL/L; 

Micronutrient mother solution 1 mL/L; 

Vitamins mother solution 10 mL/L; 

Solutions with sugar, acid, mineral salts and ammonium nitrogen dissolved is firstly 

autoclaved, then all the mother solutions are added after autoclaving and finally pH 

is adjusted to 3.3 with NaOH. After the volume adjustment until the required level, 

synthetic must is filtered by a 0.22 µm filtration system. 
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 Amino acid mother solution (g/L): Tyrosine 1.95 (heated to 100 °C), 

Tryptophan 17.42 (70 °C), Isoleucine 3.25 (70 °C), Aspartic Acid 4.42 

(disengagement of CO2), Glutamic acid 11.96 (disengagement of CO2), Arginine 

36.79, Leucine 4.81 (increase T °C until dissolve), Threonine 7.54, Glycine 1.82, 

Glutamine 49.92, Alanine 14.56, Valine 4.42, Methionine 3.12, Phenylalanine 3.77, 

Serine 7.8, Histidine 3.38, Lysine 1.69, Cysteine 2.08, Proline 59.93, dissolved in 20 

g/L NaHCO3 solution, filtered  by 0.2 µm filter and preserved at -20 °C. 

 Micronutrient mother solution (mg/L): MnSO4·H2O 4, ZnSO4·7H2O 4, 

CuSO4·5H2O 1, KI 1, CoCl2·6H2O 0.4, H3BO3 1, (NH4)6Mo7O24 1, dissolved in 

distilled water, filtered  by 0.2 µm filter and preserved at 4 °C. 

 Vitamins mother solution (g/L): myo-inositol 2, calcium panthothenate 0.15, 

nicotinic acid 0.2, chlorohydrate thiamine 0.025, pyridoxine 0.025, biotine 3mL (100 

mg/mL solution), dissolved in distilled water, filtered by 0.2 µm filter and preserved at 

-20 °C. 

 

2. Chemical analysis of grape must or synthetic must during alcoholic 

fermentation 

Density analysis 

Density analysis is commonly used in wineries for monitoring fermentation, because 

the decrease of density is directly proportional to the decrease of sugar during 

fermentation. Automatized densimeter (Densito 30PX Portable Density Meter, 

Mettler Toledo, Spain) was used for density analysis. 

 

Weight loss analysis 

Weight loss analysis is used in laboratories for fast monitoring fermentations, 

because the decrease of weight caused by CO2 emission is proportional to the sugar 

decrease during grape must fermentation. Analytical Balance (Cobos precision, 

Spain) was used for weight loss analysis. 

 

Glucose, fructose and ethanol analysis 

Concentrations of glucose, fructose and ethanol were separately analyzed by 

Ultrospec 2100 pro UV/Visible Spectrophotometer (GE Healthcare, USA) using 

enzymatic kits from Roche Diagnostics (Germany). 
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Acetic acid and glycerol analysis 

Concentrations of acetic acid and glycerol were separately tested by Miura One 

Multianalyzer (TDI, Spain) using the enzymatic kit from Biosystems S. A. (Spain). 

 

 

Amino acids and ammonium analysis 

Concentrations of individual amino acids and ammonium were analyzed by HPLC 

according to Andorrà et al. (2012). Samples preparation was performed at 80 °C for 

2 h with a mixture of 400 µL sample, 700 µL 1M borate buffer  (pH 9), 300 µL 

methanol, 10 µL L-2-aminoadipic acid (Internal standard, 1 g/L) and 15 µL 

diethylethoxymethylenemalonate (Fluka, Germany). Agilent 1100 Series HPLC 

(Agilent Technologies, Germany) were used for analysis comprising a quarternary 

pump, an autosampler and a multiple wavelength detector at 269, 280 and 300 nm. 

Nitrogen compound separation of sample (50 µL) was carried out using a 4.6 × 250 

nm, 5 µm ACE C18-HL column (Symta, Spain) with a guard column (ACE5C18-HL) 

through a binary gradient (phase A, 25 mM acetate buffer pH=5.8 with 0.02% sodium 

azide, phase B, 80:20 mixture of acetonitrile and methanol, Gómez-Alonso et al. 

2007) at a flow of 0.9 mL/min. The target nitrogen compounds were identified 

according to the retention time of corresponding standards and were quantified using 

the internal standard method. 

UNIVERSITAT ROVIRA I VIRGILI 
NEW APPROACHES TO ESTIMATE MICROBIAL DIVERSITY OF ALCOHOLIC FERMENTATION 
Chunxiao Wang 



Annex I 

 

 

212 

3. Plate counting 

Appropriate dilutions from samples are prepared and spread onto a medium on 

which each cell forms a colony, and thus by counting colonies we obtain yeast 

concentration in colony form units (cfu)/mL. Whitley Automatic Spiral Plater (AES 

Laboratoire, France) was used for plating and ProtoColHr automatic colony counter 

(Microbiology International, USA) was used for yeast quantification. 

         

 

4. The extraction of DNA and RNA from yeast in wine samples 

DNA extraction using the DNeasy plant minikit (Qiagen, USA, Hierro et al. 

2006) 

DNA was extracted following manufacturer’s instruction which contained cell lysis, 

removal of RNA and other cell constituents (cell debris, protein and polysaccharide), 

DNA cleaning and collection. Cell lysis was performed in a mini bead-beater 

(Biospec Products Inc., Okla) with presence of  700 µL buffer AP1 and 1 g glass 

beads (0.5 mm diameter) using three times of 1 min at maximum velocity with 

intervals of 1 minute on ice. RNA treatment was performed at 65 °C for 10 min with 4 

µL RNase A in cell suspension and other cell constituents were placed in a 

QIAshredder Mini spin column using 130 µL buffer AP2 in cell suspension at 4 °C. 

Then DNA was collected in DNeasy Mini spin column, washed by 675 µL buffer 

AP3 and 1 mL buffer AW and finally dissolved in 100 µL AE buffer. Reagents in bold 

are the original ones from the commercial kit. 

 

EMA treatment (Andorrà et al. 2010a) 

EMA treatment was performed before DNA extraction to bind EMA to the DNA from 

dead cells. Cells’ membrane was firstly recovered in YPD broth at 13 °C for 2 h in 

order to remove the ethanol interference. Cells suspension in distilled water was 

added EMA solution (2 µL 5 g/L into 1 mL suspension, final concentration 24 µM) 
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and incubated in dark for 10 min. Then two exposures for 30 seconds under the light 

(650 W halogen lamp at 20 cm from the samples), with an interval of 1 minute on ice 

were used for photolysis. Finally, cells was washed with sterile distilled water to 

remove the unstained EMA and collected for further DNA extraction. 

 

RNA extraction using the Masterpure complete DNA and RNA 

purification kit (Epicenter, USA) 

RNA was extracted following manufacturer’s instruction which contained cell lysis, 

total nucleic acid precipitation and DNA removal (Reagents in bold are the original 

ones from the commercial kit). Cell lysis was performed at 65 °C for 15 min with 

addition of 300 µL of tissue and cell lysis solution and 1 µL of proteinase K (25 

ng/µL) to cell pellet from samples by centrifugation. Total nucleic acid precipitation 

was further carried out by protein removal (add 150 µL MPC protein precipitation 

reagent to lysed samples on ice, vortex for 10 seconds, pellet the debris by 

centrifugation at 4 °C for 10 min at 14000 rpm and collect the supernantant), pellet 

total nucleic acids (add 500 µL isopropanol to supernatant, mix well, centrifuge at 

4 °C for 10 min at 14000 rpm and discard isopropanol), cleaning total nucleic acids 

using 70% ethanol and final suspending the total nucleic acids in 29.5 µL of DNase 

and RNase-free water. Total nucleic acids was treated with 6 U TURBO DNase 

(Ambion, USA) in 3.5 µL 10× buffer at 37 °C for 3 h or overnight (if needed) to 

completely remove DNA. 

 

Reverse transcription 

RNA was further synthesized into cDNA by reverse transcription using the following 

procedures. Promega (Italy). 0.5 µL of RNA was mixed with 4 µL of DNase and 

RNase-free water and 0.5 µL of random primers (500 ng/µL, Promega, Italy). After 

incubation at 72 °C for 5 min, they were chilled on ice for 5 min, then added with 7.5 

µL of mixture (2.5 µL of M-MLV RT 5× buffer, 2.5 µL of dNTP mix (10 mM each 

dNTP), 20 U of RNase inhibitor, 100 U of M-MLV reverse transcriptase and 1.5 µL of 

DNase and RNase-free water, all from Promega, Italy) and incubated at 42 °C for 1 h 

with a final step of 72 °C for 10 min to stop the reaction. 
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5. Molecular techniques for yeast identification and/or quantification 

5.8S-ITS-RFLP analysis 

5.8S-ITS-RFLP was used for yeast species identification comprising amplification 

with primers ITS1-ITS4, digestion with restriction enzymes (HinfI, HaeIII, CfoI, DdeI 

and MboI) and restriction profile analysis according to Esteve-Zarzoso et al. (1999) 

and Csoma and Sipiczki (2008). The main reaction parameters were listed as follows. 

(1) Primers: 

ITS1 5’-TCCGTACGTGAACCTGCGG-3’ 

ITS4 5’-TCCTCCGCTTATTGATATGC-3’ 

(2) PCR mixture (50 µL): 

1 µL of 10 µM primer ITS1, 1 µL of 10 µM primer ITS4, 1 µL of dNTP mix (10 mM 

each dNTP), 3 µL of 50 mM MgCl2, 5 µL of 10× buffer without Mg2+, 2.5 U of Taq 

DNA polymerase, 5 µL of DNA, sterile Milli-Q water until 50 µL. 

(3) PCR programs: 

95 °C 5 min; 40 cycles of 95 °C 30 s, 52 °C 1 min and 72 °C 1 min; and a final 

extension of 72 °C 10 min. 

(4) 1.5 % agarose gel electrophoresis to obtain profile of PCR products. 

(5) Digestion at 37 °C overnight with 20 µL of mixture: 

 1 µL of enzyme, 2 µL of buffer, 7 µL of sterile Milli-Q water, 10 µL of PCR products. 

(6) 3 % agarose gel electrophoresis to obtain restriction profiles with 

comparison to 100 bp of molecular weight marker (Invitrogen, USA). 

 

26S rDNA D1/D2 domain sequencing analysis 

26S rDNA D1/D2 domain sequencing analysis was used for yeast species 

identification comprising amplification with primers NL1-NL4 (Kurtzman and Robnett 

1998), sequencing by ABI3730 XL DNA sequencer (Macrogen, Korea) and 

performing BLAST analysis using sequence alignment against the NCBI database 

(http://blast.ncbi.nlm.nih.gov/). The main reaction parameters were listed as follows. 

(1) Primers: 

NL1 5’-GCATATCAATAAGCGGAGGAAAAG -3’ 

NL4 5’-GGTCCGTGTTTCAAGACGG-3’ 
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(2) PCR mixture (50 µL): 

1 µL of 10 µM primer NL1, 1 µL of 10 µM primer NL4, 1 µL of dNTP mix (10 mM 

each dNTP), 1.5 µL of 50 mM MgCl2, 5 µL of 10× buffer without Mg2+, 1,25 U of Taq 

DNA polymerase, 1 µL of DNA, sterile Milli-Q water until 50 µL. 

(3) PCR programs: 

95°C 5min; 36 cycles of 94 °C 1 min, 52 °C 2 min and 72 °C 2 min; and a final 

extension of 72 °C 5 min. 

(4) 1.5 % agarose gel electrophoresis to verify profile of PCR products and 

then PCR products is sent to Macrogen (Korea) for purification and sequencing as 

we mentioned above. 

 

DGGE 

DGGE was used for yeast species diversity analysis. It comprises amplification with 

primers U1GC-U2 (Andorrà et al. 2008) or NL1GC-LS2 (Cocolin et al. 2000), band 

separation by a polyacrylamide gel with a linear gradient of DNA denaturants, and 

then sequencing of the different bands eluted by ABI3730 XL DNA sequencer 

(Macrogen, Korea) and sequence alignment by BLAST from the NCBI database 

(http://blast.ncbi.nlm.nih.gov/). The complete procedures followed the description in 

Andorrà et al. (2008) and main parameters were listed as follows. 

(1) Primers: 

U1GC 5’-GCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCCGTGAAAT 

TGTTGAAAGGGAA-3’ 

U2 5’-GACTCCTTGGTCCGTGTT-3’ 

NL1GC 5’-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCCATATCAATAAGC 

GGAGGAAAAG-3’ 

LS2 5’-ATTCCCAAACAACTCGACTC-3’ 

(2) PCR mixture (50 µL): 

1.5 µL of 5 µM primer U1GC, 1.5 µL of 5 µM primer U2, 0.1 µL of dNTP mix (10 mM 

each dNTP), 1 µL of 50 mM MgCl2, 5 µL of 10× buffer without Mg2+, 1,25 U of Taq 

DNA polymerase, 1 µL of DNA, sterile Milli-Q water until 50 µL. 

1 µL of 10 µM primer NL1GC, 1 µL of 10 µM primer LS2, 1 µL of dNTP mix (10 mM 

each dNTP), 4 µL of 25 mM MgCl2, 5 µL of 10× buffer without Mg2+, 1,25 U of Taq 

DNA polymerase, 2 µL of DNA, sterile Milli-Q water until 50 µL. 
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(3) PCR programs: 

U1GC-U2: 94°C 4min; 35 cycles of 94 °C 30 s, 57 °C 1 min and 72 °C 1 min; and a 

final extension of 72 °C 7 min. 

NL1GC-LS2: 95 °C 5 min; 35 cycles of 95 °C 1 min, 52 °C 45 s and 72 °C 1 min; and 

a final extension of 72 °C 7 min. 

(4) The polyacrylamide gel with gradient from 35% to 55% was built By Econo 

Gradient Pump (Bio-Rad, USA) using solution A (0% denaturing solution) and B (100% 

denaturing solution). 20 mL of both solutions was added 20 µL TEMED (N, N, N, N’-

tetra-methyl-ethylenediamine) and 200 µL ammonium persulphate (0.1 g/mL) and 

then used for building the gel with pump speed of 10 mL/min and pump programme 

of T 0 s 55 % B, T 30 s 55 % B, T 3 min 35 % B and T 3.5 min 35 % B. After 

polymerization for 1 h, samples (20 µL DNA and 10 µL gel loading buffer) were 

loaded to the gel and electrophoresis was run at 60 °C in 1× TAE buffer for 4 h with 

a constant 170 V in DCode universal mutation detection system (Bio-Rad, USA). 

Then the gel was strained with ethidium bromide solution (1 µg/mL) or Sybr Green 

(25 µL in 250 µL 1×TAE buffer) for 15 min. The visualization was realized by MiniBis 

Pro (DNR Bio-Imaging System Ltd., Israel) and target band was excised and kept in 

50 µL of sterile water overnight for 4 °C. Re-amplification of 1 µL eluted DNA was 

done with same primers but without GC clamp and identified by sequencing analysis.  

 0% denaturing solution: 10 mL 40% Acrylamide/BisAcrylamide, 1 mL 50× TAE, 

distilled water until 50 mL. 

 100% denaturing solution: 21 g urea, 20 mL formamide, 10 mL 40% 

Acrylamide/BisAcrylamide, 1 mL 50× TAE, distilled water until 50 mL. 

 Gel loading buffer: 2.5 mL dye solution (0.05 g bromophenol blue, 0.05 g 

xylene cyanol, 10 mL 1× TAE buffer), 7 mL glycerol. 

 50× TAE buffer: 242 g/L trizma base, 57.1 g/L acetic acid glacial, 100 mL/L 

0.5 M EDTA (186.12 g/L at pH 8.0). 
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Massive sequencing 

Massive sequencing was used for fungi identification comprising amplification with 

modified NL1-NL4 primers, sequencing by a 454 Roche platform with the Genome 

Sequencing FLX System and sequence alignment using database of 26S rDNA 

sequences obtained from GenBank of NCBI. The whole process was conducted by 

LifeSequencing S. L. (Spain) with main parameters listed as follows. 

(1) DNA extraction was conducted as indicated in 4. 

(2) Primers: 

Modified NL1: 

5’-forward adaptor-MIDs for each sample-GCATATCAATAAGCGGAGGAAAAG -3’ 

Modified NL4: 5’-reverse adaptor-GGTCCGTGTTTCAAGACGG-3’ 

(3) DNA libraries were built for each sample by PCR using the improved 

primers, cleaned by primer-dimmer removal protocol and sequenced by a 454 FLX 

Roche sequencer. Subsequently, sequences with low quality or length lower than 

300 nt were removed, and sequences with high quality were aligned with a 

confidence cutoff value of 80 % and an e-value of 10-5. 

 

Estimate S v9.1.0 (Colwell, 2013) was used to further analyze biodiversity in single 

sample (Shannon diversity, Simpson diversity and estimated species richness) and 

similarity between two samples (Jaccard Classic and Bray-Curtis). 
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qPCR 

qPCR was used for yeast quantification comprising establishment of standard curves 

and analysis of unknown samples. Standard curves were built between Ct value and 

a series of cell concentration known (107, 106, 105, 104, 103, 102 cells/mL). Then Ct 

value obtained from unknown samples was calculated into cell concentration based 

on well-built standard curves. 

(1) Universal primers for yeast (Hierro et al. 2006): 

YEAST-F 5’-GAGTCGAGTTGTTTGGGAATGC-3’ 

YEAST-R 5’-TCTCTTTTCCAAAGTTCTTTTCATCTTT-3’ 

Primers for Saccharomyces (Hierro et al. 2007): 

CESP-F 5’-ATCGAATTTTTGAACGCACATTG-3’ 

SCER-R 5’-CGCAGAGAAACCTCTCTTTGGA-3’ 

Primers for Hanseniaspora (Hierro et al. 2007): 

CESP-F 5’-ATCGAATTTTTGAACGCACATTG-3’ 

HUV-R 5’-AACCCTGAGTATCGCCCACA-3’ 

Primers for Starm. bacillaris (Andorrà et al. 2010b): 

A-F 5’-CTAGCATTGACCTCATATAGG-3’ 

200-R 5’-GCATTCCCAAACAACTCGACTC-3’ 

(2) PCR mixture (25 µL): 

0.75 µL of 7 µM forward primer, 0.75 µL of 7 µM reverse primer, 12.5 µL of Power 

SybrGreen Master Mix (Applied Biosystems, USA), 5 µL of DNA, 6 µL sterile Milli-Q 

water. 

(3) PCR programs: 

95 °C 10 min; 40 cycles of 95 °C 15 s, 60 °C 1 min and 72 °C 30 s. 
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Commercial kit for viability test 

A commercial kit (LIVE/DEAD BactLightTM Bacterial Viablility Kit, Molecular Probes 

Inc, USA) was used to test cell viability. 1.5 µL 3.34 mM SYTO 9 dye and 0.7 µL 20 

mM propidium iodide (PI) was added to cell suspension  in sterile Milli-Q water (cell 

concentration around 106 cells/mL) after a wash step, which was used to remove the 

interference from sample background (media or wine). The observation was 

performed by fluorescence microscope (Leica DM 4000B, Germany) with filter 

system I3 (for cells stained with SYTO 9, green fluorescence) and N2.1 (for cells 

stained with PI, red fluorescence).  

 

 

FISH 

FISH was used to yeast identification and quantification comprising fixation by which 

cell morphology was stabilized and cell membrane was permeabilized, hybridization 

targeting intracellular rRNA by fluorescein isothiocyanate (FITC) labeled probes, 

washing away the excess probe and final analysis by fluorescence microscopy and 

flow cytometry. The main procedure was based on Andorrà et al. (2011) with small 

adjustments. 

(1) Probe for S. cerevisiae (Xufre et al. 2006): 

Sce-FITC 5’-FITC-TGACTTACGTCGCAGTCC-3’ 

Probe for eight species of Hanseniaspora (H. clermontiae, H. guilliermondii, H. 

lachancei, H. meyeri, H. opuntiae, H. pseudoguilliermondii, H. uvarum, H. valbyensis, 

Wang et al. 2014): 

H8b-FITC 5’-FITC-AGGTAATCCCAGTTGGTT-3’ 

H8b-com 5’-AGGCAATCCCGGTTGGTT-3’ (H8b-com is an oligonucleotide 

competitor used together with probe H8b-FITC to increase the specificity). 

Probe for Starm. bacillaris (Wang et al. 2014): 

Sba-FITC 5’-FITC-CTCCATGGCGCTCCTTTC-3’ 
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Probe design: Consensus sequences of related species were built by 

alignment by Clustal Omega (EMBL-EBI, http://www.ebi.ac.uk/Tools/msa/clustalo/), 

and then species-specific sequences were selected by comparison between 

consensus sequences and sequence of target species. Evaluation of these 

sequences was performed based on the accessibility map of S. cerevisiae (Inácio et 

al., 2003), general and mismatch analyses with mathFISH (Yilmaz et al., 2011, 

http://mathfish.cee.wisc.edu/index.html). 

(2) Fixation: Collected cells were suspended in 100 µL 1× phosphate-

buffered saline (PBS) and 300 µL 4% (v/v) of paraformaldehyde and kept at 4ºC for 

1 h with 1000 rpm agitation in a shaker. Fixed cells could be stored at −20°C if we 

centrifuged to collect cells and re-suspended cells with a 1:1 solution of 1× PBS and 

absolute ethanol. Hybridization: Approximately 106 fixed cells were collected by 

centrifugation and hybridized in a 50 μL solution containing 40 μL fresh hybridization 

buffer and 10 μL probes (final concentration for each probe was 10 ng/μL in the 

solution). The hybridization was kept at 46°C for 3 h in the dark. Washing: Cells 

were collected by centrifugation, re-suspended in 100 μL fresh washing buffer and 

incubated at 48°C for 30 min in the dark. Cell suspension preparation: Cells were 

collected and re-suspended in 100 µL 1× PBS, and analyzed immediately. 

 10× PBS (g/L): Na2HPO4 14.24, KH2PO4 2.04 g, NaCl 80.3, KCl 2.01, adjust 

the pH to 7.2, 0.2 µm filtration. 

  4 % Paraformaldehyde (200 mL): paraformaldehyde 8 g, Milli-Q water 190 

mL, 2 drops of 1 M NaOH (the solution become transparent), 10 mL 10× PBS, 0.2 

µm filtration, -20 °C storage. 

 Hybridization buffer (1 mL): 900 µL 1M NaCl, 1 µL 10% (w/v) SDS, 20 µL 1M 

Tris-HCl (pH 8.0), 10 µL v/v formamide, 69 µL Milli-Q water, 0.2 µm filtration. 

 Washing buffer (1 mL): 25 µL 1M Tris-HCl (pH 8.0), 500 µL 1M NaCl, 475 µL 

Milli-Q water, 0.2 µm filtration. 

(3) Visualization by fluorescence microscopy 

Epifluorescence microscope (Leica DM4000B, Wetzlar, Germany) equipped with 

filter I3 was used for cell observation and Neubauer chamber was used for yeast 

enumeration. 
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(4) Analysis by flow cytometry 

BD FACSAria III flow cytometer (BD Biosciences, California, USA) equipped with a 

15 mW, 488 nm argon-ion laser was used. Fluorescence was detected using a 530 

(±30) nm band pass filter. At least 10,000 events were acquired and recorded in the 

linear mode for side scatter and in the log mode for fluorescent signals. The data 

were collected and analyzed using the FACSDiva software (BD Biosciences, 

California, USA). 
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