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Summary

Most of the current Supply Chain (SC) decision support tools are devoted to
the optimization of one objective function from a bias centralized perspective.
However, due to the SC dynamics and the volatility of the market, chemical
industry enterprises have to change the way to manage their SCs taking into
consideration the coexistence with other interacting participants and their un-
certain conditions, especially when they are surrounded with competitive third
parties (i.e. raw materials and utilities suppliers, clients, waste and recovery
systems, etc.).

Holding a large scale SC under the decision-making of one centralizing actor
may not be feasible; collaborating with other enterprises may add mutual value
to all participants. Such collaboration is hard to model, as each enterprise will
really seek to optimize its individual revenues without complete information
about the other enterprises decisions or their uncertain reaction, especially in
a highly competitive and uncertain environment.

Towards multi-enterprise-wide coordination (M-EWC), the aim of this the-
sis is to contribute to the Process System Engineering (PSE) by new decision-
support tools able to achieve global coordination/collaboration with all orga-
nizations participating in large-scale chemical SCs. Different approaches are
proposed in this thesis to capture the interaction between the enterprises of
contrasting/overlapping and competitive goals considering the role of the un-
certainty of each participant on the decision-making of the other interacting
participants and the decision-making of the whole system as well.

The first contribution of this thesis deals with the coordination with the
supporting enterprises (third parties). A global coordination framework is de-
veloped to integrate the third parties decisions as full SC management problems
in the decision-making process of a large-scale multi-product SC of multiple
echelons. A generic coordinated tactical model is developed to highlight the in-
teraction between the SC of interest and the third parties SC through the pro-
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duction vs. demand interaction between them. A comparison is undertaken be-
tween the proposed coordinated approach and the traditional non-coordinated
approach to highlight the potential of the global coordination on the tactical
decision-making and the resource consumption.

The second contribution of this thesis aims to highlight the potential of the
third parties pricing decisions and their role to improve the efficiency of the
SCM decision-making. To do so, the coordination framework proposed in the
above mentioned paragraph is extended to integrate the third parties price poli-
cies in the decision-making of large-scale multi-echelon multi-product SCs. The
third parties price policies are considered as degree of freedom decisions in the
global coordinated SC tactical model. Integrating the competitive third parties
price policies in the supply chain decision-making process as joint collaboration
tools rather than fixed economic transactions results in effective coordination,
so all participants can share responsibilities and future risks. Regardless of the
additional complexity to the model formulations, integrating the price policies
in the global coordinated decision-making process allows third parties to par-
ticipate and compete as important partners, and thus they can flexibly control
their financial channels.

Third, different approaches to approximate the third parties price policies
variations are proposed and compared based on the average and discounting
trends built on the demand elasticity theory. The consequences of using the
different proposed pricing approximation models on the global coordination
between the main enterprise and the third parties, regarding not only their ef-
fect on the tactical decision-making, but also the additional complexity in the
mathematical formulations to be solved, are analyzed and compared. A compar-
ison is undertaken between the discounting approximations and the traditional
average approximation to highlight the effect of the selection of the pricing
approximation on the tactical decision-making and the economic performance
of the global coordinated system.

Fourth, the inter-organizational coordination/collaboration between differ-
ent interacting enterprises is achieved based on cooperative and non-cooperative
systems. The decisions obtained from the cooperative, non-cooperative, and
standalone systems are analyzed and compared. Later, this thesis proves that
non-cooperative systems lead to better coordination/collaboration with higher
individual revenues, although the traditional cooperation hypothesis would lead
to higher global revenues, in comparison with the standalone case.

Fifth, a novel non-cooperative non-zero-sum Scenario-Based Dynamic Ne-
gotiation (SBDN) approach, with non symmetrical roles, is proposed to set
the best conditions for the coordination/collaboration contracts between enter-
prises of contrasting objectives participating as full SCs with their third parties
in a large-scale multi-enterprise multi-product SC. Under the leadership of the
manufacturer, the uncertain reaction of the follower partner resulted from the
uncertain behavior of its SC third parties is considered in the leader model as
a probability of acceptance. The proposed approach allows enough flexibility
for the negotiating partners to accept or reject the collaboration, as their SCs
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can function as standalone systems, so the collaboration is not a must.

Sixth, an evaluation methodology is proposed to evaluate the negotiation
outcome based on the probability distributions taking into consideration the
variability of the follower profits successful scenarios.

The final contribution of this thesis lies in developing an integrated game
theory approach for inter-organizational coordination. A non-cooperative non-
zero-sum Stackelberg game is developed to capture the contrasting goals under
different uncertain and competitive circumstances. The competition between
the Stackelberg game players and the counterpart third parties is modeled
through Nash Equilibrium game. Later in this document, a Stackelberg set
of Pareto frontiers is obtained, where each point corresponds to a possible
expected win-win coordination contract.

The comparison between the coordination/collaboration contracts resulted
from this integrated game theory and the SBDN approache under the same
circumstances shows how the coordination resulted from the integrated game
theory approach leads to better solutions for the follower player, while the
SBDN is a favorable approach for the leader player.

This thesis adds to the PSE different decision-support tools flexible and
practical enough to optimize large-scale multi-enterprise SCs taking into con-
sideration the decisions of all participants under different uncertain and compe-
tition circumstances. The proposed approaches in this thesis allow all possible
links and business channels, which can be cope with future interactions.






Resumen

La mayoria de las herramientas de toma de decisiones para cadenas de sumin-
istro (CSs) quimicas estan dedicadas a la optimizaciéon de una funcién objetivo
desde una perspectiva centralizada. Sin embargo, debido a la volatilidad del
mercado, las empresas de la industria quimica tienen que cambiar la forma de
gestionar sus CSs teniendo en cuenta la coexistencia con otros participantes,
incluyendo las empresas externas "terceros" (es decir, proveedores de materias
primas y de servicios piiblicos, clientes, sistemas de recuperaciéon de residuos,
etc.).

La gestion de una CS de gran escala bajo la toma de decisiones de un
actor centralizado puede no ser realista. Colaborar con otras empresas puede
incrementar los beneficios para todos los participantes. Esta colaboracion es
dificil de modelar, ya se trata de optimizar los ingresos individuales de cada
empresa teniendo en cuenta la informacion detallada sobre el resto de ellas
0 su reaccién incierta, especialmente en un entorno altamente competitivo e
incierto.

Hacia la coordinacién de multiples empresas quimicas a gran escala "To-
wards multi Enterprise-wide coordination (M-EWC)", el objetivo de esta tesis
es contribuir al sistema de Ingenieria de Procesos "Process System Engineering
(PSE)" mediante las nuevas herramientas de toma de decisiones capaces de
lograr la coordinacion /colaboracion global entre todas las organizaciones que
participan en las CSs. Diferentes enfoques son propuestos en esta tesis para
capturar la interacciéon entre las empresas con objetivos contrastantes y com-
petitivos teniendo en cuenta el papel de la incertidumbre de cada participante
en la toma de decisiones del resto de participantes que interacttian, asi como
la toma de decisiones global del sistema.

La primera contribuciéon de esta tesis se ocupa de la coordinacién con los
terceros. Una coordinacién global esta desarrollada para integrar las decisiones
de los terceros en el proceso de toma de decisiones de una CS completa, de
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gran escala, miltiples eslabones y varios productos. Se desarroll6 un modelo
tactico coordinado para resaltar las interacciones entre la CS bajo estudio y las
CSs de los terceros a través de la interaccion entre la produccion y la demanda.
Ademas se realiz6 una comparacion entre el enfoque coordinado propuesto y el
enfoque tradicional no coordinado para resaltar el potencial de la coordinaciéon
global en la toma de decisiones tacticas y el consumo de recursos.

La segunda contribucion de esta tesis tiene como objetivo enfatizar el po-
tencial de las decisiones de precio de los terceros y su impacto en la eficiencia
de la gestion de la CS. Para ello, la coordinacion global que se propone en
el parrafo anterior se amplia para integrar las politicas de precio de terceros
en la toma de decisiones de las CSs a gran escala. La politica de precio de
cada tercero se considera como un grado de libertad de decisién en el modelo
tactico de la CS global y coordinada. La integraciéon de las politicas de pre-
cios de los terceros competitivas en el proceso de toma de decisiones de la CS
global, como herramientas de colaboracién conjunta en lugar de transacciones
econOmicas fijas, da como resultado una coordinacién efectiva. Por lo tanto,
todos los participantes pueden compartir responsabilidades y riesgos futuros.
Independientemente de la complejidad adicional a la formulaciéon del modelo
matematico, la integracion de las politicas de precios en el proceso de toma de
decisiones de la CS global y coordinada permite a terceros participar y com-
petir como socios importantes, y por lo tanto se pueden controlar de forma
flexible sus canales financieros.

En tercer lugar, se proponen diferentes enfoques para aproximar las politicas
del precio de los terceros y se comparan basados en las tendencias aproximadas
(promedios) y descuentos de acuerdo a la teoria de la elasticidad de la demanda.
Las consecuencias del uso de los diferentes modelos de aproximaciéon de precio
contemplados en la coordinaciéon global entre la empresa principal y los terceros,
no soélo con respecto a su efecto sobre la toma de decisiones tacticas, sino
también la complejidad adicional en las formulaciones matematicas que hay
que resolver, son analizadas y comparadas. Se realizd la comparacion entre las
aproximaciones de descuento y la aproximaciéon de promedio tradicional para
resaltar el efecto de la seleccion de la aproximacion de precios en la toma de
decisiones técticas y el rendimiento econémico del sistema global coordinado.

Como cuarto punto, la coordinacién/colaboracion entre las diferentes orga-
nizaciones que interactian se logra mediante sistemas cooperativos y no coop-
erativos. Las decisiones obtenidas de los sistemas cooperativos, no cooperativos
y auténomos son analizadas y comparadas. En esta tesis se demuestra que los
sistemas no cooperativos conducen a una mejor coordinaciéon y colaboraciéon con
mayores ingresos individuales, aunque la hipétesis tradicional de cooperacion
da lugar a mayores ingresos globales en comparacién con el caso auténomo.

En quinto lugar, se propone un nuevo método no cooperativo basado en esce-
narios de negociacion dinamica "Scenario-Based Dynamic Negotiation (SBDN)"
de no suma cero, con reglas no simétricas, para crear las mejores condiciones de
contratos de coordinacién/colaboracion entre las empresas con objetivos con-
trastantes como unas CSs completas con sus terceros en una CS a gran escala,

Vi
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de multiples empresas y con varios productos. Bajo la direcciéon del fabricante
como lider, la reaccién incierta del seguidor result6é del comportamiento incierto
de sus terceros y es explicitamente considerado en el modelo del lider como una
probabilidad de aceptacion. El método propuesto presenta suficiente flexibili-
dad para que los negociadores acepten o rechacen la colaboracion, ya que sus
cadenas de suministro pueden funcionar como sistemas independientes, por lo
que la colaboracién no es obligatoria.

En sexto lugar, se propone una metodologia para evaluar el resultado de la
negociacion basandose en la distribucién de probabilidad, teniendo en cuenta
la variabilidad de los beneficios del seguidor en escenarios exitosos.

La contribucién final de esta tesis consiste en el desarrollo de un método
integrado de la teoria de juegos para la coordinacién entre organizaciones par-
ticipantes en CSs quimicas y globales. Un juego de Stackelberg no cooperativo
de suma no cero se ha desarrollado para capturar los objetivos contrastantes
bajo diferentes circunstancias de incertidumbre y competencias. La competen-
cia entre los participantes del juego de Stackelberg y su contraparte (terceros)
se modela aplicando el equilibrio de Nash. Més adelante en este documento, se
obtiene un conjunto de fronteras de Pareto de Stackelberg, donde cada punto
corresponde a un posible contrato de coordinaciéon que garantiza ganancias
(ganar-ganar).

La comparacion entre los contratos de coordinacion/colaboracion resultd
de esta teoria de juego integrada y la SBDN. Bajo las mismas circunstancias
se muestra cémo la coordinacién resultante de la teoria de juego integrada
conduce a mejores soluciones para el seguidor, mientras que el SBDN es un
enfoque favorable para el lider.

Esta tesis anade al PSE herramientas flexibles y préacticas de toma de deci-
siones para optimizar CSs de gran escala y multe empresas, teniendo en cuenta
las decisiones de todos los participantes bajo diferentes circunstancias de incer-
tidumbre y competencia. Las herramientas de toma de decisiones presentadas
en esta tesis permiten modelar todas las conexiones y canales de negociacion,
por lo tanto dichas herramientas pueden ser ampliadas para considerar futuras
interacciones con empresas adicionales (emergentes).

Vil
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Chapter 1

Introduction

1.1 Preface

he chemical industry is one of the major components of the global mar-
ket economy. Due to its hazardous nature and specific characteristics, it
cannot be managed by the same rules as other sectors. Chemical industry pro-
vides goods and services for all economic sectors with €3.16 billion total sales,
creating 1.20 million employments in 2014 (CEFIC, 2014). The world chemical
sales are driven by China (33.2 %), US (16.7 %), and EU (16.7 %). During the
last 20 years (Figure 1.1), EU lost the leading place in the chemical industry
global market due to the rapid industrial expand in Asia, especially India and
china.

Making the chemical industry more resource efficient is under the European
Commission’s economic targets by 2020. For example, according to CEFIC
(2014), achieving 20% increase in the energy efficiency is on the top of these
targets. The European Petrochemical Association (EPCA) jointly with CEFIC,
in their technical report (McKinnon, 2004) suggest that effective management
of the chemical industry through supply shain management (SCM) will en-
hance business competitiveness. Among the improvements that Process Sys-
tem Engineering (PSE) community stresses on are: effective allocation of re-
sources (Shah, 2005); collaboration and coordination (McKinnon, 2004; Gross-
mann, 2005; Papageorgiou, 2009); incorporating financial decisions (Shapiro,
2006); and sustainability (Gao & You, 2015; Grossmann, Apap, Calfa, Garcia-
Herreros, & Zhang, 2016).

New decision-support tools are needed to make the chemical industry more
resource efficient and more profitable, with less environmental impact and less
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Figure 1.1: Chemical industry sales (CEFIC, 2014)

losses driven by uncertainty. This thesis focuses on the optimization of chemi-
cal industry large-scale multi-enterprise SCs through achieving the best coordi-
nation and collaboration conditions between their organizations, including the
decisions of their third parties (i.e. raw materials and utilities suppliers, clients,
waste and recovery systems, etc.).

1.2 Enterprise-wide optimization

The global market dynamics form a pressure on the chemical industry SCs en-
terprises to remain competitive. This makes the enterprise-wide optimization
(EWO) one of the top concerns of the communities of Process System Engineer-
ing (PSE), Supply Chain Management (SCM), and Operational Research (OR)
Figure (1.2). In order to enhance SC enterprise-wide revenues, EWO Decision-
makers provide key tools based on chemical engineering knowledge from PSE;
advanced modeling techniques from SCM; and theoretical concepts from OR.

EWO involves the optimization of R&D operations, the movements of re-
sources through purchasing, manufacturing, storing, and distributing to the
final customers at different investment terms (strategic, tactical, and oper-
ational). The main objectives of EWO is to respond to the final customers
requirements with maximum enterprise-wide revenues, efficient facility utiliza-
tion, minimum inventory, and minimum ecological footprint (Grossmann, 2012;
Cardoso, Barbosa-Povoa, & Relvas, 2016). This can be achieved through de-
signing the SC at the strategic level, synchronizing the resources and economic
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Figure 1.2: Enterprise-wide optimization (EWO)

flows under the objectives of the enterprise/s at the tactical level, and control-
ling the batch operations in order to fulfill part or all of the final customer
requirements of goods and services (Figure 1.3).

PSE community has been pioneer in providing decision-support tools and
solution algorithms to enhance EWOQO. The last conferences, mainly the joint
event of PSE and the European Symposium on Computer Aided Process En-
gineering (ESCAPE)-PSE2015/ESCAPE25 in Copenhagen in May-June 2015;
the 10'" European Congress of Chemical Engineering (ECCE10) in Nice in
September-October 2015; and the American Institute of Chemical Engineers
(AIChE2015) annual meeting in Salt Lake City in November 2015 had a high
number of collaborations highlighting the goal of EWO. For more information,
see http://www.pse2015escape25.dk/, http://www.ecce2015.eu/, and http:
//www.aiche.org/conferences/aiche-annual-meeting/2015. We also have
participated in these conferences, amongst others, with different collaborations
regarding multi-enterprise wide coordination (M-EWC).


http://www.pse2015escape25.dk/
http://www.ecce2015.eu/
http://www.aiche.org/conferences/aiche-annual-meeting/2015
http://www.aiche.org/conferences/aiche-annual-meeting/2015
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Figure 1.3: Enterprise-wide optimization main elements

1.3 Centralized and decentralized supply chains

A Supply chain (SC) is a network of facilities (i.e manufacturing sites, dis-
tribution centers/warehouses, collection centers, retailers, customers, etc.) dis-
tributed in different geographical locations and interconnected together with
distribution links (Figure 1.4). The function of a SC is to produce products
(intermediate/final) to be distributed later to customers.

A SC is qualified as centralized when the nodes of the SC structure, in-
cluding the supporting enterprises facilities (i.e. raw materials and utilities
suppliers, clients, waste and recovery systems, etc.) are controlled by a cen-
tral enterprise stakeholder. Within centralized SCs decision-making, the whole
decisions are synchronized under the goals of a central decision-maker. This
biased situation neglects the roles of the interacting enterprises, including the
third parties, in the decision-making process, leading to unfair decisions, which

6
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may result in the withdrawal of business partners from the system.
This thesis explores and extends this line by integrating the decisions of the
interacting enterprises in the decision-making of the whole system of interest.

Figure 1.4: Supply chain network

A SC is decentralized when different enterprises participate as main decision-
makers in the SC structure, with their own decisions in their own facilities,
echelons, or full SCs (Figure 1.5). Decentralized decision-making influences the
system-wide performance and the decision-making process (Vonderembse et al.,
2006). Within decentralized SCs, enterprises stakeholders pursue their individ-
ual objectives, which are possibly contrasting, regardless of the other partners
objectives and uncertain reaction. Thus, additional complexity arises, as the
whole decisions have to be synchronized under the different performance indi-
cators of the different enterprises involved in the SC of interest.

The contrasting objectives mainly result on the value of the transfer price,
which depends on the participants roles and the bargaining power of each player
Gjerdrum, Shah, and Papageorgiou (2002); Zhang, Samsatli, Hawkes, Brett,
Shah, and Papageorgiou (2013).
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Figure 1.5: Decentralized supply chain network

Accordingly, this thesis extends the traditional definition of the SC from
a set of facilities to a set of echelons/SCs and enterprises, in which effective
multi-enterprise wide coordination (M-EWC) becomes a must, especially under
uncertain and competitive circumstances.

1.4 Multi-enterprise wide coordination

Due to the globalization and market volatility, enterprises have to extend the
scale of their SCs boundaries in order to cope with the new global market
trends. Accordingly, enterprises have to change the way of managing their
SCs towards "value preservation" in order to remain competitive and "value
growth" in order to be more innovative (Grossmann, 2004). In order to enhance
EWO, Varma, Reklaitis, Blau, and Pekny (2007) stress on the cross-functional
coordination between the various layers of SCM decision-making (strategic,
tactical, and operational).

In this current paradigm, as will be briefly discussed in chapter 2, current
EWO optimization models implicitly focus on monopolistic situations from a
centralized perspective, in which the decisions are imposed by one centralizing
player. Holding a large scale SC for one decision-maker may not be realistic.

8
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Thus collaborating with other enterprises may result in mutual benefits for all
participants, so that all can stay competitive in the global market. Such col-
laboration is hard to model, as it depends on: i) the cooperative behavior of
all participants, ii) uncertainty and risk propensity, and iii) the quality of the
information that each partner acquires about the others.

In this thesis, the cross-functional coordination proposed by Varma et al.
(2007) is extended to coordinate, at the same decision-making layer, the various
enterprises involved in the system of study through defining a new term coined
in this thesis as Multi-Enterprise Wide Coordination (M-EWC).

1.4.1 Global coordination

In order to stay competitive, chemical industry SCs have to integrate the de-
cisions of the external supporting enterprises (i.e. raw materials and utilities
suppliers, clients, waste and recovery systems, etc.) (called as third parties
along this document). Global coordination with third parties is weakly dealt
up today. Current Supply Chain (SC) tactical models focus on the material and
information flows along few echelons of a SC without a clear vision about the
third parties. The interaction with third parties is just represented by fixed pa-
rameters (unit price, capacity, etc.), usually regarded as a transaction process
rather than a collaborative process. However, the decision-making is affected
by the complex behavior of those third parties, especially if a detailed mas-
ter plan is to be established. Accordingly, the detailed characteristics of the
third parties must be integrated in the SC decision-making process as part of
the whole system, and a global coordination is to be attained, so to avoid any
unfair decisions.

Third parties must be given a degree of freedom through their price policies
in the optimization process of the whole system of interest, so that they flexibly
can control their financial channels and stay competitive. Since the third parties
price policies are changing with time (i.e. electricity has different prices during
the day), the decision support tools should be able to model/approximate the
complex price policies of the third parties in order to guarantee mutual benefits
for all participants.

1.4.2 Inter-organizational coordination

One of the major challenges facing M-EWC is integrating the financial mar-
keting decisions with the operational decisions through inter-organizational co-
ordination. Contrasting and competitive objectives appear between these two
functional areas due to the tendency of the enterprises decision-makers to opti-
mize their individual revenues without clear knowledge about the other inter-
acting organizations or their uncertain reaction to the different decisions, and
thus a additional complexity arises (see Figure 1.6).
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Contrasting
objectives

Figure 1.6: Enterprises contrasting and competing objectives

This thesis addresses this arising complexity through developing different
coordination/collaboration approaches based on individual and global objec-
tives, considering the detailed characteristics of all participants, including the
third parties. Figure 1.7 summarizes the information needed to establish the
coordination /collaboration.

Since the whole system performance is highly dependent on the collabo-
ration actions of each participant (Perea-Lopez, Grossmann, Ydstie, & Tah-
massebi, 2001), the necessity to anticipate the other partners responses under
different circumstances is a must. Multi enterprise-wide coordination should
not be contemplated by itself since enterprises are facing dynamic market
with high degree of uncertainty. Considering uncertainty explicitly helps in
increasing the decisions robustness, and assures efficient capacity utilization
(Papageorgiou, 2009). Evidently, considering uncertainty makes the decentral-
ized decision-making process more complex, especially when synchronizing the
activities of the multi-enterprise SC under the different objectives (contrast-
ing/competitive) of different organizations. Accordingly, new decision support
tools are needed to integrate different uncertain sources when constructing the
coordination/collaboration models in order to reduce the risks and losses driven
by uncertainty.

10
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Figure 1.7: Coordination/collaboration information context

In this thesis, the proposed flexible coordination/collaboration approaches
help enterprises decision-makers anticipating the other partners uncertain re-
actions to their decisions based on quantifying the probability of acceptance
under different uncertain circumstances. Unlike the current PSE literature, the
proposed coordination/collaboration approaches are flexible enough to help
decision-makers in evaluating the coordination outcome based on their profits
scenarios probabilities and risk behaviors under the different uncertain circum-
stances, including the uncertain nature of the third parties.

However, the trade-off between the payoffs of the different enterprises in-
volved may lead to fundamental changes in the tactical decisions of the partic-
ipating enterprises, in which is a challenge to be explored and analyzed. Such
an analysis requires the consideration of the uncertain reaction associated with
the different proposed coordination contracts, which results from their unknown
decision process.

11






Chapter 2

State-of-the-Art

2.1 Introduction

Enterprise wide optimization (EWO) is one of the growing arecas in PSE
(Grossmann, 2005; Varma et al., 2007; Wassick, 2009; Grossmann, 2012).
This can be seen from the increasing number of publications in the last 20 years
(Figure 2.1).

2200

400 2000
350 1800
i 1600
1400
230 1200
200 1000
150 600
100 L
400
50 200
[ == Jlljlllll . Pl

Figure 2.1: Articles published (left) under a topic of "enterprise optimization" and
their citations (right) (Web of Science, 2016)

o et

EWO involves in different sectors such as: chemicals production (Wassick,
2009; Velez & Maravelias, 2013), pharmaceutical industry (Sousa, Liu, Pa-
pageorgiou, & Shah, 2011; Susarla & Karimi, 2012; Ierapetritou, Muzzio, &

13
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Reklaitis, 2016), shale gas (Cafaro & Grossmann, 2014; Elia, Li, & Floudas,
2015; Calderon, Guerra, Papageorgiou, Siirola, & Reklaitis, 2015), oil and gas
production (Li, Ding, & Floudas, 2011; Gupta & Grossmann, 2012; Nikolaou,
2013), biofuel (Yue, You, & Snyder, 2014; Yeh, Whittaker, Realff, & Lee, 2015),
petroleum (Neiro & Pinto, 2004; Rocha, Grossmann, & de Aragao, 2009; Fer-
nandes, Relvas, & Barbosa-Povoa, 2013; Tong, You, & Rong, 2014) (Figure
2.2).

Chemical
production

Pharmaceutical
industry

0il and gas
production

Enterprise-
wide
optimization
(EWO0)

Petroleum Shale gas

Biofuel
industry

Figure 2.2: Enterprise-wide optimization (EWO) sectors

However, current literature works focus on optimizing chemical SCs from a
centralized perspective. They disregard the coexistence with other participants,
including the third parties, leading to unpractical decisions. This chapter in-
cludes a literature review of EWO through SC optimization from centralized
and decentralized perspectives, followed by highlighting the main challenges
and thesis objectives. The thesis outline can be found at the end of this chap-
ter to describe the thesis document map.

2.2 Supply chain management(SCM)

The Council of Supply Chain Management (SCM) Professional (CSCMP, 2016)
definition will be adopted here, as it copes with the context of this thesis:
"Supply chain management encompasses the planning and management of all

14
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activities involved in sourcing and procurement, conversion, and all logistics
management activities. Importantly, it also includes coordination and collab-
oration with channel partners, which can be suppliers, intermediaries, third
party service providers, and customers. In essence, supply chain management
integrates supply and demand management within and across companies ".
SC managers provide decisions at different hierarchical levels: strategic (de-
sign), tactical (planning), and operational (scheduling and process control).

2.2.1 Strategic (design) decision-making

SC design is an important component of EWO, as strategic decisions affect the
value of the enterprise business. Efficient SC strategic decision-making affects
the success of enterprises, especially, the large-scale ones. SC strategic (de-
sign) decision-makers provide long-term planning decisions (2-5 years), includ-
ing configuring the SC network structure (internally and externally) in order
to serve some or all of the customers’ demands that cope with the enterprise/s
goals. The basic information needed to build a design model are the fixed costs
(investment, overhead, etc.) and variable costs (operating, manufacturing, dis-
tribution, taxes, etc.), market conditions, and availability of resources. Design
models are usually solved under economic objective functions (annual profit,
total capital cost, net present value (NPV), etc.).

The first long-term design model was the capacity expansion MILP of
Sahinidis, Grossmann, Fornari, and Chathrathi (1989). Fernandes et al. (2013)
propose a MILP model for the optimal design and retrofit of downstream
petroleum multi-entity multi-product SC. The strategic decisions are the op-
timal depot locations, capacities, transportation modes and routes under the
objective function of maximizing the total profit. The authors consider the dif-
ferent enterprises of the refineries, transportation, and inventory depots through
a detailed cost structure based on shared margins and costs. The authors test
their model on the Portuguese petroleum SC.

For water SC networks, Gao and You (2015) propose a mixed-integer linear
fractional (MILFP) model for the optimal design and planning of freshwater
supply network for shale-gas production. The strategic designs are on the selec-
tion of the freshwater sources, transportation modes, and water management
options (disposal, wastewater treatment, on-site water treatment) under the
objective function of maximizing the profit per unit freshwater consumption.
The authors implement three solution algorithms to solve the MILFP model:
parametric algorithm, reformulation-linearization method, Branch-and-Bound,
and Charnes-Cooper transformation method.

Strategic decisions must account for uncertainty and risk measures in order
to avoid any future disruptions. Ahmed and Sahinidis (2003) propose a multi-
stage MILP stochastic capacity expansion model with fixed-charge expansion
costs. Shen and Qi (2007) propose a MINLP stochastic design model for a dis-
tribution SC network under the uncertainty of demand. To solve the stochastic
design model, the authors propose an embedded Lagrangian relaxation based
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solution algorithm in branch and bound. The Lagrangean relaxation subprob-
lems are then solved through a low-order polynomial algorithm. Georgiadis,
Tsiakis, Longinidis, and Sofioglou (2011) propose a MILP multi-product de-
sign model under time varying demand uncertainty. The authors captured the
uncertainty in terms of a number of likely scenarios during the lifetime of the
SC network. The resulting model is solved using standard branch-and-bound
algorithms.

The definition of robust and resilient SCs in conjunction with stochastic
programming allows solving SC design complex problems with high risk miti-
gation. Klibi and Marte (2012) propose a risk modeling approach for resilient
SCs design and evaluation under uncertainty of demands, depots capacity, and
ship-to-point processes. The authors analyze several stochastic programming
models under several resilience formulations. Then they model the resilience
disruptions, and evaluate the design decisions accordingly. Liu and Papageor-
giou (2013) address the capacity planning and production of global SCs under
different objectives: total cost, total flow time, and total lost sales. The authors
solve the MOO using e-constraint method and lexicographic minimax method
considering the cost, responsiveness, and customer service level, simultaneously.
Garcia-Herreros, Wassick, and Grossmann (2014) propose a 2SSP design model
for resilient SCs. The strategic decisions involve in selection of distribution cen-
ters, locations, storage capacities, and distribution flows at distribution centers
nodes under the objective function of minimizing the sum of investment costs
and expected distribution costs. The authors solve the large-scale model using
multi-cut Benders decomposition algorithm.

Designing sustainable SCs has gained much attention due to environmental
social concerns. Duque, Barbosa-Povoa, and Novais (2010) integrate the en-
vironmental impact into an industrial SC design and planning MILP model.
Eco-indicator 99 is selected as the environmental performance based on life
cycle assessment (LCA). Minimizing the Eco-indicator 99 is considered as ad-
ditional objective function besides the economic one. Their MOO model is
solved using e-constraint method and the Pareto-solution curve is obtained.
Pinto-Varela, Barbosa-Pévoa, and Novais (2011) propose a MILP design and
planning bi-objective model under the objective function of maximizing the an-
nual profit and minimizing the Eco-indicator. Zeballos, Gomes, Barbosa-Povoa,
and Novais (2012) propose a generic MILP closed-loop SC (CLSC) design and
planning model under the uncertainty of quantity and quality of the return
products. Their model is formulated as 2SSP and solved using scenarios under
the objective function of profit maximization. You, Tao, Graziano, and Sny-
der (2012) propose a multi-objective MILP design model for cellulosic ethanol
SCs under economic, environmental, and social objectives. The economic ob-
jective is to minimize the total annualized cost; the environmental objective is
to minimize greenhouse gas emissions; and the social objective is to maximize
the number of created local jobs. The MOO model is solved using e-constraint
method and the Pareto-solutions is obtained. The decisions obtained are the
optimal SC configuration, facility selection, equipment technology, production
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planning, inventory, and logistics levels. Cardoso, Barbosa-Pévoa, and Relvas
(2013) propose a MILP design and planning CLSC model considering, simul-
taneously, the production, distribution and reverse logistics. The uncertainty
of products demands is tackled through scenario-tree approach towards maxi-
mizing the expected NPV. The design decisions are on capacity and location
of facilities (production plants, warehouses, and retailers), processes technol-
ogy, inventory, forward and reverse flows amounts. Kalaitzidou, Longinidis,
and Georgiadis (2015) propose a generalized multi-period MILP model for the
optimal design of multi-product CLSC. Their model is solved using standard
branch-and-bound algorithm to find the optimal design and planning decisions
that satisfy markets demands with minimum overall capital and operational
cost.

For designing flexible SCs, Kalaitzidou, Longinidis, Tsiakis, and Geor-
giadis (2014) propose a flexible design model considering generalized produc-
tion and warehousing nodes. Their proposed model considers that produc-
tion/warehousing nodes can receive material from any supplier or any other
generalized production/warehousing node, and deliver resources to markets or
any other production/warehousing node. The model is optimized to find out
the optimal SC structure that satisfies the market demands with minimum
overall capital and operational cost.

Challenges in strategic decision-making

Strategic decision-making has been widely studied. However, the following is-
sues need further research:

e Designing global decentralized SCs considering all possible connections
and nodes.

e designing/redesigning inventory systems for multi-echelon SCs under dif-
ferent sources of uncertainty (i.e. lead time, unit prices, inventory cost,

etc.)

e Modeling and solving complex multi-stage multi-scale stochastic design
large-scale SCs.

e Coordinating between the different scales of multi-layer SCs under un-
certainty.

e Solving the nonlinearities of any of the objective functions when dealing
with MOO.

e Integrating design and control decisions, including safety measures.

e Implementing to real industry SCs.
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2.2.2 Tactical (planning) decision-making

Tactical or medium-term planning involve in providing a master plan regard-
ing the allocation of activities to capacities. This includes the optimal resources
acquisition, manufacturing production, storage, and distribution levels that sat-
isfy (or not) the market demands of the final products over a time horizon up
to several months.

Tactical optimization models are constructed based on material and energy
balances at the SC nodes with known data such as market demands, distances
between entities, unit costs, chemical processes recipes, capacities (raw mate-
rial supply, production, storage), etc. Typical tactical models are solved under
the objective function of maximizing revenues or minimizing costs. However,
many objective functions can be analyzed through multi objectives or multi-
criteria optimizations. The mathematical formulations of the tactical problems
may results in LP, MILP, or MINLP programs. Discrete variables arise from
incorporating financial issues such as discrete cost functions, price fluctuations,
price policies, etc. Nonlinearities arise from the chemical processes recipes, cost
functions, etc.

Tactical decision-making has been studied so far in the PSE literature.
Wilkinson, Cortier, Shah, and Pantelides (1996) propose a tactical model for
the optimal production and distribution of a continent-wide industrial SC (3
factories, 14 markets warehouses, over 100 products). Their model gives each
factory flexibility to store in any warehouse and to deliver products to any
market. McDonald and Karimi (1997) develop a multi-period LP tactical model
for the optimal sourcing and production of multi-product multi-site real SC.
Their model formulation takes into account additional constraints such as single
sourcing, internal sourcing, and transportation times.

Based on time-indexed formulation, Timpe and Kallrath (2000) propose a
multi-period multi-site MILP tactical model to optimize the production and
distribution levels at different time scales. For more complex problems, Jack-
son and Grossmann (2003) develop a multi-period NLP tactical model for the
production and distribution of multi-product multi-site SC (4 sites, 118 prod-
ucts, 5 markets). The main feature of their model is considering non-linear
process recipes for each production plant. To reduce the computational times,
the authors propose two solution techniques based on Lagrangean decompo-
sition, spatial decomposition and temporal decomposition. According to the
context of their paper, the temporal decomposition provides optimal solutions
in less computational time comparing with the spatial decomposition. Neiro
and Pinto (2004) proposed a multi-period MINLP planning model to optimize
the stream flow rates, qualities, operational variables, inventory and entities
assignment of a petroleum SC. The SC under study (59 exploration sites, 11
refineries, five terminals, 20 types of supply petroleum, 32 products) includes
different process units, storage tanks, terminals and pipelines, which are inter-
connected by intermediate streams. The processing units are modeled based on
the framework proposed by Pinto and Moro (2000). Schulz, Diaz, and Bandoni
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(2005) address a large-scale problem through multi-period MILP and MINLP
tactical models for a petrochemical pipeline SC. The objective function of their
proposed model is to maximize total profit considering discontinuous product
delivery and penalties for not meeting markets demands and inventory targets.

solving large-scale tactical models is one of the big challenges of PSE. For
pharmaceutical large-scale SCs, Sousa et al. (2011) optimize the tactical de-
cisions of a pharmaceutical SC from the production stages at primary and
secondary sites to products distribution to customers. To solve the large-scale
model, the authors propose two decomposition algorithms. The first algorithm
is based on decomposing the SC into independent primary and secondary sub-
problems and solving each one separately. The second algorithm is using tem-
poral decomposition by separating the main problem into several independent
sub-problems, one per each time period. Susarla and Karimi (2012) develop
a global MILP tactical model for multi-period multi-product multi-national
pharmaceutical SC (34 entities producing 9 different products). Their model
accounts for the optimal procurement, production, and distribution levels tak-
ing into consideration the international tax differentials, after-tax profit, storage
costs, material shelf-lives and waste treatment/disposal.

For food industry large-scale SCs, van Elzakker, Zondervan, Raikar, Hoog-
land, and Grossmann (2014a) address the tactical optimization of fast moving
consumer goods industry (i.e. ice-cream, yoghurt, etc.). They develop tactical
MILP model taking into consideration shelf-life restrictions in order to prevent
unnecessary waste and missed sales. To do so, they analyze and compare three
methods: i) tracking the age of products directly, ii) forcing inventory at the end
of products shelf-life, iii) using the hybrid method (a combination of the last
two methods). According to the context of the problem they analyze, the first
method is computationally inefficient, although it provides optimal solutions.
The second method leads to less optimal solutions, but in less computational
time. The hybrid method leads to near optimal solutions with reduction in the
computational time of factor 5 when compared with the first method. Later
on, the authors van Elzakker, Zondervan, Raikar, Hoogland, and Grossmann
(2014b) propose a decomposition algorithm based on single stock keeping sub-
models in order to reduce the computational time of the same problem with
high number of stock-keeping units. Slack variables are introduced into the ca-
pacity constraints of their model in order to represent the interaction between
the stock-keeping units.

Due to the volatility of markets, tactical management under uncertainty is
one of the spot topics of PSE literature. Amaro and Barbosa-Povoa (2009) pro-
pose a multi-period LP tactical model for the optimization of the RM supply,
production, storage, and distribution levels of CLSCs under the uncertainty
of demands and retail price. They solve the resulting model using a standard
Branch and Bound (B&B) method. Verderame and Floudas (2009) propose a
multi-site tactical with production disaggregation model to calculate the pro-
duction and shipment profile for the multi-product large-scale SC network un-
der the uncertainty of demand. the authors tackle uncertainty through the

19



2. State-of-the-Art

robust optimization approach extended from Lin, Janak, and Floudas (2004).
You, Pinto, Grossmann, and Megan (2011b) address the inventory-distribution
tactical management under uncertainty for industrial gas SCs. To tackle the
uncertainty of demand and loss or addition of customers, a multi-period multi-
stage stochastic MINLP model is proposed to determine the optimal deliveries,
replenishments, and inventories. To solve the non-convex MINLP stochastic
model, the authors develop a tailored branch-and-refine algorithm based on suc-
cessive piecewise-linear approximation. A clustering-based heuristic approach
is proposed to solve the routing model. Niknejad and Petrovic (2016) address
the reverse logistics within inventory-production planning framework under
uncertainty. The authors analyze two alternative recovery routes including re-
manufacturing and disposal routes. The uncertainty of demand and return
quantities of products of different quality levels are modeled using fuzzy trape-
zoidal numbers. A two phase fuzzy MILP algorithm is developed to optimize
the inventory and production planning of the network under study.

For logistics management, Dondo, Méndez, and Cerda (2011) integrate the
vehicle routing with cross-docking and time windows in the tactical model of
hybrid multi-echelon multi-item distribution networks. The main goal of their
MILP tactical model is to satisfy the markets demands at minimum transporta-
tion cost. The authors solve the mathematical model using a branch-and-cut
algorithm. Kopanos, Puigjaner, and Georgiadis (2012) develop a production-
logistics tactical model for a real-life multi-site food SC using different alter-
native transport modes for delivering the final products. The main feature of
their model is considering products families instead of products. Changeovers
are considered in their model formulation and optimized. Dondo and Méndez
(2016) develop a tactical model to optimize the forward and backward flows and
logistics of a SC network. Their coordinate the vehicles tours in order to assure
efficient forward and backwards flows. To reduce the computational times, the
authors present a column-generation based decomposition algorithm.

Challenges in tactical decision-making

The above-described works focus on the SC echelons based on single flow in-
formation biased by a centralizing decision-maker. They disregard the detailed
characteristics of the resources flows from/to other interacting enterprises and
third parties. Such information is not sufficient to cope with the new com-
petitive market trends resulting in the collaboration with other partners and
the incorporation of their decisions, including third parties. Furthermore, the
impact of each interacting enterprise on the other enterprises decision-making
through efficient coordination is weakly dealt up to now, especially for large-
scale SCs, when a detailed master plan is to be established. From this point,
many issues need further research:

o Coordinating multi-enterprise decentralized SCs considering the decisions
of all participates, including third parties.
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e Integrating financial issues such as third parties price policies in the tac-
tical decision-making.

e Considering detailed representation of resources and echelons.

e Analyzing the competition among enterprises from a decentralized per-
spective.

e Considering the uncertain reaction of any participating enterprise on the
other enterprises decisions.

e Analyzing the impact of the uncertain behavior of third parties on the
global SC decision-making.

e Modeling the contrasting objectives between the enterprises of different
interests.

e Integrating planning-scheduling levels with detailed description of the
production process and capacity allocation.

e Incorporating new sources of uncertainty and developing/combining new
solution techniques.

e Developing sustainable tactical models with new environmental metrics.

2.2.3 Operational (scheduling) decision-making

Scheduling (lot sizing or sequencing) decision making involves in allocating
equipment and production resources over a short time period to manufacture a
set of products to be delivered to the SC and then to the customer. Operational
decision-makers provide answers to how, when, and where questions at the
unit process scale. "How to produce" refers to resources requirements (energy,
product, etc.); "when to produce" refers to the sequencing of tasks (start and
end times of each task); and "where to produce" corresponds to the assignment
of tasks to process units. A scheduling model aims to minimize the operating
costs, makespan (total length of the schedule), or to maximize the profit for a
time period up to days based on known data such as demand and supply.

Scheduling problems can be divided into offline and online problems. Of-
fline scheduling is based on available data about current and future situations.
Whereas, online scheduling is based on available past and current data without
complete information about the future events.

Operational (scheduling) decision-making has been studied so far. Kondili,
Pantelides, and Sargent (1993) propose the first State Task Network (STN)
mathematical formulation to represent the batch processes. The STN is built
on unit-to-task allocation and equal time discretization. Binary variables are
used to allocate tasks to units at each scheduling time period resulting in
MILP model. The main features of their model is that tasks, feedstock, in-
termediate and final products (states) are represented as the network nodes.
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Shah, Pantelides, and Sargent (1993) modifies the (Kondili et al., 1993) model
including relaxation improvements to reduce the computational times. Pan-
telides (1994) develop an alternative representation for the scheduling problem
as Resource Task Network (RTN). Schilling and Pantelides (1996) propose a
scheduling MILP model with continuous time representation based on the RTN
proposed by Pantelides (1994). To reduce the computational times, they de-
velop a branch-and-bound algorithm considering both continuous and discrete
variables. Mockus and Reklaitis (1999) extend the continuous-time scheduling
to consider nonlinearities for batch and continuous processes.

Later on, many significant research works have been carried out to improve
the operational decision-making. Bok, Grossmann, and Park (2000) propose a
multi-period scheduling model for continuous process networks. To reduce the
computational times, a bi-level decomposition algorithm is used by relaxing
the original large problem into small relaxed problems. Sanmarti, Puigjaner,
Holczinger, and Friedler (2002) develop a novel S-graph representation to solve
complex recipes processes with less computational times. The nodes of the S-
graph represent the production tasks, whiled the arcs represent the correlations
among tasks. Maravelias and Grossmann (2003) propose a new continuous-time
MILP scheduling model based on STN for multipurpose batch plants. Their
modeling approach accounts for tasks constraints, variable batch sizes and pro-
cessing times, storage policies, batch mixing/splitting, and sequence-dependent
changeover times. For multi-stage batches, Prasad and Maravelias (2008) de-
velop a MILP scheduling model for the optimal selection of batches, assignment
of batches to units, and sequencing of batches under the objective functions:
minimizing the makespan, lateness and production cost, and maximizing the
profit.

For single-stage batch plants, Castro, Erdirik-Dogan, and Grossmann (2008)
develop a short-term scheduling model for single-stage batch plants with sequence-
dependent changeovers and the number of used batches. Their modeling ap-
proach allows a single task to be processed in all batches. According to the
context of their work, their proposed approach leads to better performance
than the traditional RTN with less computational times. Later on, Castro and
Grossmann (2012) solve the short-term scheduling of single-stage batch plants
with different units and different tasks. Three time representations are com-
pared for their model: i) immediate precedence, ii) general precedence, and iii)
multiple-time grids. They find out that multiple-time grids representation leads
to better performance with less computational times. Liang and Hui (2016)
propose a MILP scheduling model to minimize the makespan of single-stage
multi-product batch production with sequence-dependent changeovers. Sub-
tour elimination methodology is proposed to reduce the computational times.

For pharmaceutical applications, Maravelias and Grossmann (2004) propose
a scheduling MILP optimization model for the tasks testing of new products
development. The main features of their model is that it allows the installation
of new resources during the testing course as decision variables in function of
the handling cost and duration of the test.
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For bio-energy processes, Dunnett, Adjiman, and Shah (2007) propose a
scheduling model for biomass-to-heat batch plants. They adapt the STN ap-
proach to represent the biomass harvesting, densification, drying, storage and
transportation activities.

Scheduling under uncertainty is one of the main issues under research,
Subramanian, Maravelias, and Rawlings (2012) develop a MILP re-scheduling
model within state-space framework, in which scheduling disturbances are mod-
eled. Their proposed approach is based on single-solution. The authors deal
with the scheduling as on-line deterministic problem, in which the model is op-
timized based on current data and forecasts to obtain a single solution. When
new data becomes available, they re-optimize (re-schedule) the model to de-
termine another single solution. Zhang, Cremer, Grossmann, Sundaramoorthy,
and Pinto (2016a) develop a MILP scheduling model for power continuous
industrial processes providing interruptible load. To tackle the uncertainty of
demand, the authors proposed an adjustable robust optimization approach con-
sidering recourse decisions in the form of linear decision rules.

For sustainable scheduling, Zhou, Cheng, and Hua (2000) address the multi-
objective scheduling integrating environmental issues for petrochemical indus-
trial processes. A goal programming (GP) model is developed based on the ana-
lytic hierarchy process to evaluate the priorities of the objectives and to weight
the deviation variables. Yue and You (2013) develop a multi-product multi-
purpose scheduling model using the bi-criterion optimization method under
economic and environmental objectives. Maximizing the productivity is consid-
ered as the economic objective,whereas minimizing the environmental impact is
considered as the environmental objective. The bi-objective model is solved us-
ing e-constraint method. Their approach results in a mixed-integer linear frac-
tional program (MILFP), which is solved using a reformulation-linearization
method and Dinkelbach’s algorithm. For closed-loop scheduling, Cafaro and
Cerdéa (2014) present a MILP continuous-time scheduling model considering
the reverse flows of multi-products pipelines transferring oil products in both
directions. The model calculates the precise time instants for the oil flow re-
versals to provide input and output schedules in one step.

Challenges in operational decision-making

Scheduling problems have been solved widely with a focus on single site prob-
lems. However, few studies consider multi-site scheduling problems due to the
high computational times arising from the additional complexity. Many issues
are still at the beginning such as:

e Scheduling multi-site problems with dynamic and differential equations.
e Incorporating financial issues such as prices adjustments over time.
e Sustainable scheduling with detailed production process description.

e Considering synthesis in hybrid systems.
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e Scheduling under new sources of uncertainty (i.e capacities).
e Re-scheduling when changes occur in the decentralized SC network.

e Developing/modifying solution algorithms to reduce the computational
times of non-linear scheduling models of complex recipes.

e Modeling real-time scheduling under uncertainty considering the lead
time variability from batch to batch.

e Developing new evolutionary meta-heuristics to solve feasibility problems.

e Integrating scheduling and design complex models under uncertainty.

2.3 Integrated supply chain management

Efficient SC operation ideally requires the integration of different decisions at
different SCM hierarchical layers (Grossmann, 2004; Shah, 2005; Varma et al.,
2007; Maravelias & Sung, 2009; Papageorgiou, 2009). The necessity to integrate
different decisions associated to different time and economic scales is one of the
complex topics in PSE.

Many works have been carried out to integrate the decision-making of the
SCM hierarchical levels. A good state-of-the-art can be found in Maravelias
and Sung (2009), who review the main integration challenges and propose two
main approaches for the production planning and scheduling integration:

i) including the scheduling decision variables directly in the tactical mod-
els. However, although this approach would lead to optimal solutions, the size
of the problem is increased leading to additional complexity. Many works have
been carried out to solve large-scale integrated problems through developing ad-
vanced solution strategies. For example, Erdirik-Dogan and Grossmann (2007)
develop a bi-level decomposition technique based on rolling horizon for the
optimization of integrated planning-scheduling problem of a single plant multi-
product batch reactors with sequence-dependent changeovers. They anticipate
the changeovers in the batch problem using sequencing constraints for more ac-
curate predictions. Later on, Terrazas-Moreno, Trotter, and Grossmann (2011)
extend this work to multi-site multi-period SCs. To reduce the computational
time, they develop a new hybrid method combining bi-level with spatial La-
grangean decomposition.

ii) approximating the scheduling decisions by relaxing all or part of the
scheduling constraints, or aggregating some of the decision variables. Sung and
Maravelias (2007) include a convex approximation of the scheduling decisions
as a set of linear surrogate constraints into the planning model. The scheduling
model is solved off-line to obtain the convex approximation of the production
levels, and the total production cost is estimated in function of the production.
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Neiro and Pinto (2004) integrates the planning and scheduling decisions
for a complex real petroleum SC of refineries, terminals, and pipelines net-
works as multi-period large-scale MINLP problem. They integrate the pro-
cessing units model of Pinto, Joly, and Moro (2000) into the tactical model
formulation. The decisions obtained are the stream flow rates, properties, op-
erational variables, inventory and entities assignment. Kopanos, Puigjaner, and
Maravelias (2011) propose a MILP planning-scheduling model integrating the
discrete-time planning grid with the continuous-time scheduling. They con-
sider sequence-dependent switchover times and costs for product families, and
sequence-independent switchover for products belonging to the same family. At
the planning level, the product orders are handled at intermediate due-dates
considering holding and backlog costs. At the scheduling level, the equipment
unit constraints, switchover times and costs, maintenance activities, and idle
production periods are considered.

Shin and Lee (2016) propose a planning-scheduling model to optimize the
RM procurement system from multiple suppliers by a manufacturer under un-
certainty. They formulate the planning problem as a Markov decision process
(MDP) incorporating demand and supply uncertainties. Their integrated model
is decomposed into subproblems: the planning problem for ordering RMs, and
the scheduling problem for unloading the orders. The authors integrate the
inventory dynamics at the planning level with the detailed unloading sched-
ule at the scheduling level in order to compute the state-transition and the
cost of MDP formulation. Their integrated model is solved using dynamic pro-
graming method. To reduce the computational times, linear approximation
and heuristics-based estimation of cost and state transition are used for this
problem. Zhao, Ierapetritou, and Rong (2016) propose a MINLP planning-
scheduling model for a real-world ethylene plant. The planning model incorpo-
rates the operating variables and energy utilization in both the thermal cracking
and the down-stream process.

For the scheduling and control integration, Chu and You (2012) propose an
integration approach to solve the scheduling and the control problems, simulta-
neously. The model formulation contains discrete variables from the scheduling
problem and constraints from the control problem. Their approach results in
a non-convex mixed-integer nonlinear fractional model, which is solved using
Dinkelbach’s algorithm. The model is implemented and solved on-line to four
case studies of polymer manufacturing networks with different products num-
bers.

For the design and scheduling integration, Kallrath (2002) integrate schedul-
ing and strategic planning in a MILP multi-period model for multi-site real
production SCs. For simultaneous planning, scheduling and control, Gutiérrez-
Limon, Flores-Tlacuahuac, and Grossmann (2016) propose a mixed integer
dynamic model for the optimal planning, scheduling and control of continuous
reactors. A heuristic strategy is developed as a reactive approach to tackle the
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uncertainty of demand. The heuristic strategy is based on re-scheduling of the
products to be manufactured after the disturbance.

For the design and planning integration, Kallrath (2002) propose a simul-
taneous design and planning model for multi-site SCs. Their integration model
aims to optimize the equipment selection, RM acquisition, production levels
under the objective function of maximizing the net profit. Tsiakis and Papa-
georgiou (2008) develop a MILP design-planning model for a multi-echelon
multi-product multi-site SC with outsourcing possibilities under operational
and financial constraints. The operational constraints include efficiency, pro-
duction and supply and material balance constraints. The financial constraints
include the import duties, plant utilization, exchange rates and plant mainte-
nance. You and Grossmann (2008) propose a MINLP design-planning model
of multi-product SC taking into consideration the capacity expansion under
the objective functions to maximize the NPV and to minimize the expected
lead time (as a measure of responsiveness). Their problem is formulated as
bi-criterion optimization model and solved using the e-constraint method. The
Pareto-solutions curve is obtained to represent the trade-off between the eco-
nomic criteria and the SC responsiveness. They integrate the stock-out prob-
ability with the demand uncertainty in order to predict the stock levels. The
model is optimized over the selection of manufacturing sites and distribution
centers, process technology, production and inventory levels.

Later on, You, Grossmann, and Wassick (2011a) propose a multi-period
MILP design-planning model for the optimal capacity, production and distri-
bution for the multi-site multi-product Dow chemical manufacturing SC. The
authors consider capacity modification and reactor modifications (due to chang-
ing product type) in the model formulation. They solve the large-scale model
and compare the results using Lagrangean decomposition and bi-level decom-
position algorithms. According to the context of their approach, the bi-level
decomposition is more efficient in terms of computational times and optimality

gaps.

Considering SCM integration for closed-loop SCs (CLSC), Lee, Gen, and
Rhee (2009) develop a design-planning model for reverse-logistics SCs to opti-
mize the re-manufacturing processes, technology design, and disassembly strate-
gies. They solve the logistics problem using a priority-bases genetic algorithm
approach (priGA) with encoding method. Zhang, Shang, and Li (2011) develop
a design-planning model for the reverse logistics of a municipal solid wastes SC.
Their model aims to optimize the re-manufacturing, storage, and distribution
activities under uncertainty. To solve the large-scale model, the authors propose
a piecewise interval programming. Salema, Barbosa-Povoa, and Novais (2010)
propose a design-planning MILP model for a country size glass industry SC to
optimize the SC structure, RM supply, manufacturing, storage, and distribution
levels. Later on, Zeballos et al. (2012) extend the work of Salema et al. (2010)
by considering the uncertainty of the reverse flows (quantity and quality). Car-
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doso et al. (2013) develop an integrated design-planning model to optimize
the reverse logistics, facilities location, reprocessing, and capacity expansion of
a CLSC under uncertainty of demand. Zeballos, Méndez, Barbosa-Povoa, and
Novais (2014) develop a multi-period multi-stage design-planning model for the
optimization of CLSCs considering the emissions costs of the different logistic
modes. The model is formulated as multi-stage stochastic program to tackle
the uncertainty of supply and demand under the objective function of mini-
mizing the total expected cost minus the expected revenues. In order to reduce
the computational time of the problem, the authors apply scenario reduction
algorithms to generate a representative subset of scenarios.

Challenges in integrated supply chain management

Although the integration leads to effective SCM decision-making, it yields large-
scale and complex optimization problems. The necessity to solve the arising
complexity from integrating the different decisions at different time and eco-
nomic scales is one of the challenging topics. Many issues need more research
such as:

e Integrating SCM hierarchical levels for large scale multi-period problems.

o Integrating SCM decision-making for decentralized SCs, including effi-
cient hierarchical coordination.

e Incorporating different business functionalities and financial issues at dif-
ferent decision levels.

e Considering logistics and inventory management.

e Developing/modifying algorithms to solve stochastic integration models.
e Combining different techniques to manage uncertainty.

e Designing a plant or a reactor simultaneously with the scheduling/planning.

e Considering new sustainability measures, risk, and resilience.

Table 2.1 summarizes the aforementioned literature works that tackle the
strategic, tactical, operational, and integrated supply chain management.
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2.4 Financial management

Current SCM decision support tools provide decisions based on the chemical
process operations knowledge rather than the marketing decisions. However,
incorporating financial issues in the decision-making process is necessary to
enhance business functionality and the corporate value of the enterprise.

A few works address the financial performance in the decision-making pro-
cess. For example, Longinidis and Georgiadis (2013) integrate the financial
performance and credit solvency within the SC design process under economic
uncertainty. A multi-objective MINLP model is developed including the finan-
cial as economic added value and credit solvency through a valid credit scoring
formulations.

Prices as dynamic marketing variables affect the products demands, so any
decision related to pricing will affect the whole system decision-making. In
the traditional economic literature, decisions related to prices were taken by
marketing managers (Dorward, 1987). One of the early studies to incorporate
the price theory with the SC decisions is Whitin (1955), who analyzes the co-
ordination between the price theory and the inventory control based on the
lot-size and price dependent demand for a news-vendor problem. Later on,
Federgruen and Heching (1999) optimize the pricing and the inventory replen-
ishment strategies under the uncertainty of demand. Their model formulation
considers that the prices can be adjusted over time in function of the amounts
ordered and the initial stock at the first time period. The order-up-to-level is
considered as a base-stock level with an optimal price policy each time period.
If the stored amounts are less than the base-stock level, a discount price is
offered in function of the initial stock. Chen and Simchi-Levi (2004) coordinate
between the pricing, ordering, and inventory decisions for single-product SC
under demand uncertainty. They consider a fixed and variable ordering cost
in function of the ordered amounts. The main objective is to obtain the best
pricing strategy and inventory policy that maximize the expected profit of the
SC. Their model is similar to the model proposed by Federgruen and Hech-
ing (1999), but the last do not consider a fixed cost for the quantity ordered.
Later on, Rodriguez and Vecchetti (2012) propose a scenario-based mid-term
planning model considering the sales contracts at different price levels under
different demand scenarios.

Price promotion based on discounting is one of the important elements of
the product trade. Price elasticity of demand as a discounting strategy has
first been used by Weng (1995) to determine the retail price for a single buyer
SC. Later on, Kallrath (2002) presents a nonlinear pricing correlation between
the RM purchase and unit price within an integrated design-operational frame-
work. Shapiro (2004) extends the SC optimization models to include revenue
functions based on price elasticity of demand. Xiangtong, Bard, and Yu (2004)
develop a SC planning model for a single supplier-retailer SC under uncertainty
of demand. The authors analyze the deviation of the SC cost under different
demand disruptions scenarios using price discount policies based on price elas-
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ticity of demand theory. Wang (2005) extends the typical quantity discounts
by incorporating the markets annual volume for a two-echelon SC. Hsieh, Liu,
and Wang (2010) propose a short-term discounting model based on price elas-
ticity of demand for one distributor-multiple retailers SC. In their model, the
distributor offers different price discounts for the retailers considering a linear
price-demand function and constant elasticity demand. Liu, Shah, and Papa-
georgiou (2012) propose a MILP planning model for multi-product SC consid-
ering products price fluctuation based on price elasticity of demand. Hashem,
Baboli, and Sazvar (2013) develop a MINLP multi-period planning model for
multi-product multi-site production SC considering retail price discounts.

Considering individual objectives, Viswanathan and Wang (2003) propose a
quantity discount methodology based on price elasticity of demand for a single-
vendor single-retailer SC considering individual revenues. Unlike Weng (1995),
the authors implement a Stackelberg game to determine the equilibrium point
between the vendor and the retailer. Iida (2012) studies the effect of the pro-
duction cost reduction on the decentralized SC of one production plant and
multiple suppliers. Wang, Huang, and Wei (2015) address the relationship be-
tween a manufacturer and a retailer based on price discounts. The optimization
models are solved in a decentralized way to obtain the optimal order quantity
and selling price for the retailer, and the optimal wholesale price and lot size
for the manufacturer. Then the model is solved as a joint centralized model to
find the optimal order quantity, the selling price, and the lot size.

Challenges in financial management

However, the reviewed literature regards the interactions with other enterprises,
including third parties as economic transactions represented by fixed parame-
ters (capacity, price, etc.). Understanding the third parties policies is crucial
for effective enterprises coordination and business development. None of the
reviewed literature integrates the price policy of third parties as part of the
decision-making process. By doing so, much information is lost leading to sub-
optimal decisions, which may affect the global SC equilibrium, especially in a
competitive uncertain environment.

Enterprises decision makers not only have to focus on their financial in-
terests, but also on the dynamic interaction with other interacting/supporting
participants and their uncertain behaviors. However, none of the reviewed liter-
ature addresses the uncertain behavior of other participants resulted from the
uncertainty of price policy from a decentralized perspective. Many challenges
arise from these gaps, such as:

e Integrating financial cash flows with the SC process operations.

e Controlling the enterprise cash flow and enhancing the corporate value
(Shapiro, 2004).

e Quantifying probability of acceptance,robustness, and financial risk.
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e Incorporating pricing decisions with the inventory and control decisions.

e Integrating financial issues of the other participants, including third par-
ties policies.

e Investigating pricing approximations methods.

e Incorporating the uncertainty of price polices in the decentralized SC
decision-making.

e Analyzing the impact of the decisions related to pricing on the SC activ-
ities and performance.

e Developing/modifying decomposition techniques to reduce the computa-
tional time resulting from incorporating the financial decisions of other
participants.

2.5 Coordination/collaboration management

Enterprises decision-makers in chemical industry seek value preservation in or-
der to remain competitive and value growth in order to become more innovative
(Grossmann, 2004). However, due to globalization, SC dynamics, and market
volatility, chemical industry SCs enterprises have to change the way of manag-
ing their SCs in order to remain competitive and innovative.

Many decision-support tools have been proposed to help enterprises in op-
timizing their SCs, especially at the tactical level, which is the focus of this
thesis. Most of these works, as briefly discussed in the above-sections (2.2, 2.3,
2.4) are devoted to optimize the overall objective of the whole system from a
centralized perspective. However, managing a large scale SC by one centralizing
decision-maker may not be feasible. Thus, collaborating with other enterprises
may add value to all participants, so that all can remain competitive in the
global dynamic market. Such collaboration is hard to model, as it depends on
the cooperative behavior of all participants, which is also affected by the un-
certain nature of their third parties. Each participant enterprise will really seek
to optimize its individual revenues (possibly contrasting) without considering
the risks associated with the uncertain reaction of others, and thus complexity
arises.

A few works at the bargaining literature have been carried out to solve
the arising complexity through negotiations built on cooperative and non-
cooperative approaches. Cooperative approaches such as: cost-sharing (Meca,
Timmer, Garcia-Jurado, & Borm, 2004), backorder cost-sharing (Hennet &
Arda, 2008), risk-sharing (Inderfurth & Clemens, 2014), revenue-sharing (Cao,
Wan, & Lai, 2013; Govindan & Popiuc, 2014; Heese & Kemahlioglu-Ziya, 2016),
multi-agent systems (Moyaux, Chaib-draa, & D’Amours, 2006; Cao, Feng, &
Ma, 2007; Banaszewski, Arruda, Simao, Tacla, Barbosa-Pévoa, & Relvas, 2013;
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Yuan, Xu, Zhang, & Rong, 2013; Singh, Chu, & You, 2014). Non-cooperative
approaches such as: rebates and return contracts (Taylor & Xiao, 2009), quan-
tity flexibility contracts (Lian & Deshmuck, 2009), Shortage penalty (Li, Li, &
Cai, 2013), option-contracts (Li, Ritchken, & Wang, 2009; Zhao, Wang, Cheng,
Yang, & Huang, 2010; Zhao, Ma, Xie, & Cheng, 2013; Yi & Guo, 2015), buy-bak
contracts (Zhao, Choi, Cheng, Sethi, & Wand, 2014), compensation contracts
(He, 2015), game theory (Li et al., 2009; Xiong, Zhou, Li, Chan, & Z., 2013;
Huang, Song, Lee, & Ching, 2013; Yue & Fengqi, 2014).

For cooperative approaches, the participating enterprises decision-makers
agree on forming a coalition towards a common objective function. Meca et al.
(2004) use a cooperative cost-sharing approach to optimize the tactical deci-
sions of a decentralized inventory SC. They consider a collective of enterprises
cooperating to minimize the joint inventory cost based on cost sharing. Hennet
and Arda (2008) propose a cooperative model for a producer-supplier SC based
on sharing the backorder costs and capacity reservation in order to maintain re-
sources flows. Based on risk-sharing, Inderfurth and Clemens (2014) propose a
price coordination contact for a buyer-supplier newsvendor SC with a stochas-
tic demand. Their cooperative framework is based on sharing the risks between
the actors. Assuming that both actors are exposed to risks of over-production
or under-delivery. As a result, they find out that sharing the risk affects the
buyers orders and the suppliers production decisions. Yi and Guo (2015) pro-
pose a put-option coordination contract between a risk-neutral manufacturer
and a risk-averse retailer in a two echelon simple SC.

A trading method based on revenue-sharing has been also suggested as a
cooperative methodology. Cao et al. (2013) propose a revenue-sharing approach
to capture the competence between different retailers competing on a limited
production of one manufacturer under uncertainty of production and final de-
mands. The relationship between the manufacturer and competing retailers is
modeled as a Stackelberg game under the leading role of the manufacturer. Ac-
cording to their framework, the manufacturer provides the initial production
plan based on her/his uncertain conditions regardless of the uncertain reaction
of the retailers, which may lead to SC disruptions. Furthermore, the retailers
are obliged to buy from one manufacturer giving them a narrow space of op-
tions to negotiate or reject. Later on, Govindan and Popiuc (2014) propose an
analytical model for the coordination of two-echelon reverse flow decentralized
SC based on a revenue-sharing contract. In their model, they consider that the
retailer has to make a discount for the customer as a motivation to return the
used products (as incentives). Heese and Kemahlioglu-Ziya (2016) propose a
revenue-sharing coordination contract for a single supplier-retailer SC. Their
analytical model is based on enhancing the information flows between the part-
ners through paying incentives to the retailer for preparing sales reports.

Multi-agent systems (Moyaux et al., 2006) emulate the cooperative negoti-
ations among different interacting enterprises (agents). In this line, Cao et al.
(2007) propose a Pinch Multi-Agent Genetic Algorithm (PMAGA) model to
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optimize the tactical decisions of a water network SC with various participants.
In their approach, all participating enterprises (agents) cooperate to minimize
the total use of freshwater. Banaszewski et al. (2013) develop a multi-agent
auction-protocol tactical model for the optimal planning of a Brazilian oil SC.
The participating agents representing the entities of the SC cooperate to op-
timize the oil products transport plan (types, amounts, allocation) under the
objective function of minimizing the total cost of the whole SC. Bid values
and the sequence of auction commitments are also identified in their approach.
Yuan et al. (2013) propose a multi-agent stochastic model based on global
convex constraints. In their model, the participating agents cooperate to max-
imize the summation of their objective profits. Singh et al. (2014) develop an
agent-based model to solve the competition between different bio-fineries as
corn markets considering different corn purchase prices among biofineries. The
agent-based is implemented to simulate the corn markets. The dynamic corn
purchase prices are obtained using a double-auction process by the biofineries
agents, farmer agents, and a food market agent. After obtaining the corn pur-
chase prices, the MINLP design model of the main biofinery SC is optimized
under the objective function of maximizing the NPV.

However, multi-agent-based systems are based on cooperative situations, in
which all participants cooperate towards a common goal. This approach disre-
gards the individual objectives of all participants and their uncertain behavior,
which may lead to sub-optimal decision-making of the whole system.

Non-cooperative negotiations are used when the participating enterprises
seek to optimize their individual objectives. Many works have been carried
out to set coordination contracts between the negotiating players. Based on
rebate and return contracts, Taylor and Xiao (2009) address and compare the
coordination for a manufacturer-retailer SC based on two different contracts:
rebate and return contracts. For rebate contracts, the supplier agrees on pay-
ing incentives to the retailer for the quantities sold to customers above an
agreed threshold. For the return contract, the manufacturer agrees on paying
compensations to the retailer for unsold amounts. They analyze both coor-
dination contracts under the uncertainty of the customer demand. According
to the context of their approach, the coordination based on rebate contracts
leads to better solutions than the return-contracts. Zhao et al. (2010) propose
an option-contract cooperative approach for a supplier-retailer SC based on
coordinating the manufacturer production capacity with the retailer reserved
quantities.

Lian and Deshmuck (2009) propose a quantity flexibility contract between
a supplier and a retailer. In their approach, the retailer receives discounts in
case of purchasing in advance. Li et al. (2013) propose a coordination contract
agreement based on shortage penalty for a very simplified SC structure of
one seller and one buyer (no external markets). Such a method gives high
dominance to the buyer partner, as the seller is obliged to collaborate. Zhao
et al. (2013) propose a negotiation method based on bi-directional contracts
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(call/put options) for a manufacturer-retailer SC network. For the call option,
the manufacturer has to buy a specific amount of products at a specific price for
reserving the production capacity, while for the put option, the retailer must
pay an allowance for canceling or returning an order.

Xiong et al. (2013) propose an analytical model to coordinate between a
virgin RM supplier and a non-integrated manufacturer within a decentralized
closed-loop SC based on non-cooperative game using a backward induction.
Based on buy-back contracts, Zhao et al. (2014) coordinate between a supplier
and a retailer participating in a two-echelon SC under demand uncertainty. The
retailer assigns a price per unit quantity purchased from the supplier with the
condition to return a specific amount at the end of the sales season. Based on
compensation contracts, He (2015) proposes a coordination framework based
on complete and partial compensation contracts a decentralized reverse chan-
nel re-manufacturer-supplier SC. The acquisition pricing and manufacturing
decisions under the uncertainty of demand and recovery rate are obtained.

During the last decade, Game Theory (GT) has witnessed an increased
interest from the PSE and management science communities, as its necessity to
incorporate various decision-makers into the decision-making process increases.
This can be seen from the proliferation of game-theoretic publications in SCM
(Wang, 2005; Colson, Marcotte, & Savard, 2007; Li et al., 2009; Leng & Parlar,
2010; Xiong et al., 2013; Huang et al., 2013; Yue & Fengqi, 2014).

Within GT perspective, enterprises contrasting or competing objectives are
considered as game players. The objective function in GT is called payoff func-
tion in case of maximizing the profits, or loss function in case of minimizing
the cost. The possible actions/reactions of the game players are referred as
strategies. A game can be either a zero-sum-game or non-zero-sum game. For
zero-sum-games, the amount gained by one player is the same as the amount
lost by other players. In this case it is not possible to determine when a player
should cooperate to obtain a cumulative benefit. For non-zero-sum games, the
amount gained by one player is not the same as the amount lost by other play-
ers, so the gains of one player cannot be deduced from the gains of the others.
The game can be considered as dynamic, when the game is repeated sequen-
tially. This type of games are known in the literature as multi-stage games
(Cachon & Netessine, 2004).

For non-cooperative games, game players seek, independently, to optimize
their individual benefits. Nash Equilibrium (NE) (Nash, 1950) and Stackelberg
(Stackelberg, 1934) games are approaches to solve non-cooperative games. NE
is used when the roles of the game players are symmetric (i.e. no one is leading
the game), and they simultaneously make their decisions. The NE solution is
reached when none of the game players can improve her /his benefits by chang-
ing just her/his own strategy, unilaterally. On the other hand, the Stackelberg
game can be played when the roles of the game players are not symmetric; one
of the players is leading the game by playing the first move to achieve its best
results taking into consideration that the other players are seeking the same
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objective.

Many works have been carried out to optimize decentralized SCs through
GT based on non-cooperative cases. Wang (2005) develop a non-cooperative
Stackelberg game model for a single buyer-single seller SC based on quantity
discounts under the leading role of the seller. Li et al. (2009) propose an co-
ordination contract for a manufacturer-retailer SC considering asymmetric in-
formation under the uncertainty of the price and demand. A Stackelebrg game
is implemented under the leading role of the manufacturer. According to their
approach, the leader proposes coordination option-contract. Leng and Parlar
(2010) implement the Nash equilibrium game to obtain the optimal production
levels of different competing suppliers around a single manufacturer in an as-
sembly SC. They study different scenarios to identify the optimal production
levels of each supplier and the retail price of the manufacturer. Huang et al.
(2013) model the interaction between a manufacturer and different used prod-
ucts suppliers as a Stackelberg game under the leading role of the manufacturer
in a decentralized reverse flow SC.

Yue and Fengqi (2014) analyze complex SC structure with different suppli-
ers and retailers around a manufacturer. A non-cooperative Stackelberg game
is implemented to model the interactions between the manufacturer (as leader)
and the suppliers/retailers (as followers). They solve the competence between
the different suppliers and retailers through a non-cooperative game based
on generalized NE. The Stackleberg game model is formulated as a bi-level
MINLP model with the manufacturer problem as the upper-level and the sup-
pliers/customers problems as the lower-level. The bi-level model is simplified to
MILP, and the lower-level LP problems are replaced by their KKT conditions
in the upper-level problem. However, the competing suppliers are considered
obliged to provide resources to the manufacturer disregarding the competition
among different clients. This gives a dominant leadership to the manufacturer.
Furthermore, in their proposed Stackelberg game bi-level model, the follower
model has been simplified in order to be replaced in the leader model, thus
losing practicality. The original model cannot resolved if the follower model in
non-convex MINLP (Colson et al., 2007). This simplification would not be real-
istic if the supplier participates as full SC. Moreover, their proposed approach
disregards the uncertainty of all participants.

Table 2.2 summarizes the coordinated management literature review.
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Challenges in coordination management

However, current coordination methods, either for cooperative or non-cooperative
cases, implicitly focus on simple SC structures, in which the negotiating players
are forced to collaborate (no external providers/clients). None of the reviewed
literature considers the standalone case of any of the participants, thus giving
less flexibility to accept /reject the collaboration. Moreover, none of the reviewed
literature evaluates the negotiation outcome based on the revenues probabil-
ities and risk behavior. The coordination contract may lead to fundamental
changes in the tactical decisions of of all participants, forming a challenge to
be more explored and analyzed. Such an analysis requires the consideration
of the reaction associated with the competing third parties which results from
their unknown decision process and uncertain nature. The reviewed literature
allows to provide individual decisions based on monopolistic situations, where
decisions are imposed by one centralizing player without complete informa-
tion about the other players or their reaction to the uncertain nature of their
third parties. So, coordination/collaboration based on information sharing is
needed to secure confident relationships between participants, thus, both share
future risks, especially in an uncertain market environment. Effective negoti-
ations able to capture the contrasting goals of all participants, including the
third parties in the tactical decision-making process are needed towards op-
timal multi enterprise-wide coordination. Consequentially, many issues need
more investigation, such as:

o Representing the negotiating partners with their full SCs.

e Comparing the coordination based on cooperative and non-cooperative
cases.

e Considering external providers/clients (standalone case).
e Quantifying the probability of acceptance and willingness to collaborate

e Analyzing the effect of the uncertain reaction of each enterprise on the
decision-making of all participants.

e Incorporating the uncertainty of the third parties in the negotiations.
e Analyzing the coordination effect on the tactical decision-making.

e Evaluating the coordination outcome.

e Considering the variations of the benefits scenarios around the mean.
e Coordinating real-sized complex decentralized SCs.

e Solving the game complex MINLP bi-level model without simplifying.
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2.6 Thesis research challenges

Although PSE and OR literature have room for multi-enterprise coordination
(M-EWC), a few works have been carried out to fill this room. New decision-
support tools are needed towards efficient coordination management integrating
the marketing decisions with the operational decisions, while keeping high busi-
ness performance. After an extensive literature review, the coordination man-
agement in the chemical industry can be identified as the object of interest.
Towards multi enterprise-wide coordination(M-EWC), the following challenges
still require specific attention:

e Global Large-scale chemical industry SCs should be analyzed with detail
description of all echelons, resources and information flows (transfer price,
shared products, market conditions, duties, etc.). The dynamic interac-
tion between these echelons, represented by their enterprises stakeholders
should be also explored.

e Most of the reviewed literature focus on the coordination between differ-
ent SC decision-making layers through integrated SCM. There is a need
to investigate the inter-organizational coordination.

e SC tactical decision-makers use to construct the optimization models
based on knowledge related to a centralizing decision-maker without knowl-
edge about the interacting enterprises within the same SC of interest.
By doing so, much information is lost, leading to sub-optimal decision-
making. New modeling approaches based on knowledge sharing among
all participants are vital to avoid SCs disruptions.

e Current SC tactical optimization models deal with the resources and in-
formation flows along its own SC echelons, minimizing the role of the com-
plex behavior of third parties by representing them with fixed parameters
(price, capacity, etc.). However, the decisions based on this picture are
not sufficient when the third parties significantly affect these decisions,
especially when a global coordination is to be established in a compet-
itive uncertain environment. Specific incorporation of the third parties
objectives in the tactical decision-making process should be addressed in
depth.

e External resources prices have been regarded in the literature to represent
the transaction relationships between centralizing partners and third par-
ties rather than as a collaborative process. By doing so, the competition
among the third parties is disregarded, which may lead to losing partners
from the whole SC network. New decision-support tools able to treat the
prices as collaborative/coordination outcomes are needed to guarantee
mutual benefits for all participants.

e Since the third parties price policies are hard to model, the typical lit-
erature assumption is to use average approximation, so to simplify. Such
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simplification may lead to lose important information leading to ineffi-
cient coordination. Moreover, average price policy approximation may
not be the optimal decision. New pricing approaches within the tactical
management based on different price approximation possibilities are to
be explored and compared with the traditional average approximation.
The impact of these approaches on the tactical decision-making is to be
explored.

Multi-enterprise wide coordination is weakly dealt up today, especially
for large-scale chemical industry SCs when a detailed master plan is to
be established. None of the reviewed literature addresses the interaction
between organizations as main partners participating as full SCs under
uncertain competitive conditions in the presence of third parties. To avoid
double marginalization, a new negotiation approach is needed to establish
the best conditions for the coordination/collaboration contracts between
the organizations of contrasting objectives.

Usually, the decentralized SC decision-making process is carried out with-
out considering the risk that may be faced due to the overlapping con-
trasting/competing decisions considering the uncertain reaction of other
partners, especially when they all interact with competing third parties.
This stresses on the need of effective coordination/collaboration that is
able to capture these contrasting/competing objectives in a single ap-
proach.

Current decision-support tools for decentralized SCs decision-making pro-
vides decisions based on cooperative or non-cooperative approaches. A
methodological framework to analyze and compare both approaches on
the same SC network is needed.

Efficient uncertainty management is one of the challenging topics facing
the PSE community due to the accompanied complexity. None of the
reviewed literature considers the uncertain behavior of the third parties
resulting from the dynamics of their price policies. This stresses on the
necessity to develop new expected win-win coordination/collaboration
approaches able to capture the uncertain reaction of the interacting en-
terprises resulted from the uncertain nature of their competing third par-
ties.

The reviewed literature addresses the coordination for simple SC struc-
tures, mostly supplier-retailer SCs, where none of them can function at
the standalone case. There is a need to address the coordination for com-
plex large-scale SC networks, where all participants can function at the
standalone case. This leads to another challenge, which is quantifying
the probability of acceptance or willingness to collaborate, which has not
been quantified up to day.



Thesis objectives

e The reviewed literature provides single coordination contract without giv-
ing any flexibility to the negotiating partners to evaluate different options
based on more information related to their risk behavior and preferences.
Accordingly, a new coordination/collaboration framework that is able to
provide different coordination contracts to cope with different risk behav-
iors. These coordination contracts must be able to represent the trade-off
between the contrasting objectives from a holistic point of view.

e Due to the volatility of the global market, it is necessary to examine the
relation between the SCs coordination/collaboration and the uncertainty
reduction effect, and to analyze how this affects the enterprises players
willingness to collaborate.

e Further research is needed to help enterprises decision-makers to evaluate
and assess the effect of their response to the other partners choices taking
into account the variability of their revenues scenarios around the mean.

e All of the reviewed literature bi-level approaches tempts to simplify the
MINLP mathematical formulations of the follower model. New solution
methods are to be explored, without simplifying, and implemented to
real-data industrial cases.

Accordingly, and towards efficient multi-enterprise wide coordination (M-
EWC), this thesis is developed to highlight these challenges through six main
issues: i) global coordination, ii) integration of competitive third parties, iii)
pricing approximation modeling, iv) cooperative vs. non-cooperative negoti-
ations, v) non-cooperative dynamic negotiations, and vi) inter-organizational
coordination using game theory.

2.7 Thesis objectives

As described above, up to this moment, there has not been proposed any quan-
titative methodology to coordinate various enterprises in a large-scale decen-
tralized SC, considering the detailed description of each participant SC. There
has not been proposed any decision-support tool that allows third parties to
participate in the decision-making process as collaborative partners rather than
external partners. Moreover, there has not been proposed any decision-support
tool that quantifies the probability of acceptance of the players actions. Ac-
cordingly, the necessity to develop effective global tactical decision-making with
effective coordination is increasing, especially in a highly competitive and un-
certain situations.

The overall goal of this thesis is to develop different decision-support tools
able to, holistically, optimize the tactical decisions of chemical industry large-
scale multi-enterprise multi-product decentralized SCs taking into considera-
tion the decisions of all participants. In order to achieve this overall goal, the
following objectives are to be accomplished:
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e To develop generic tactical decision-making models with detailed descrip-
tion of all participants.

e To propose partnership collaboration tools between enterprises and third
parties, and to build and compare different price policies approximation
models.

e To analyze and compare cooperative and non-cooperative collaborations,
in comparison with the standalone system.

e To set the best conditions for inter-organizational coordination contracts
under uncertainty, considering the uncertain reaction of one of the part-
ners.

e To achieve inter-organizational coordination/collaboration through on
game theory under uncertain and competitive circumstances.

e To study and compare the M-EWC role on the uncertainty reduction.

e To propose a coordination assessment strategy that copes with different
decision-makers risk-behaviors.

e To study and compare the coordination effect on the tactical decisions of
all participants.

2.8 Thesis outline

This thesis is structured bearing in mind the issues previously discussed. Figure
2.3 describes schematically the outline of this document.

This thesis document is divided into four parts. Part I includes this intro-
ductory view of the problem to be addressed (Chapter 1); a State-of-the-Art
review, followed by emerging research challenges and objectives (Chapter 2),
and the methods and tools utilized through this thesis (Chapter 3)

Part II and Part III represent the main body of this thesis. Part II deals
with the global coordination of large-scale chemical industry SCs with their
supporting organizations (third parties) from a tactical management point of
view. For this purpose, Chapter 4 proposes generic global tactical model coor-
dinating the resources flows to/from the third parties under the global coordi-
nated SC overall objective function. Here, the third parties participate in the
global tactical decision-making process with their detailed characteristics as
full SCs management problems. Chapter 5 deals with the global coordination
of large-scale SCs surrounded by competitive third parties. A novel coordinated
framework is proposed considering the price policies as joint collaboration tools
within the overall decision-making process. Then, this framework is extended
to propose and compare different price policies approximations models based
on the traditional average approximation and discounting approaches.
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Part III extends the global coordination framework developed in Part II to
address the inter-organizational coordination between several participating or-
ganizations of contrasting and competitive objectives, as full SCs, in the system
of interest, with their competitive third parties under uncertainty. In Chapter
6, cooperative and non-cooperative collaboration approaches are analyzed and
compared. Then, a novel scenario-based dynamic negotiation (SBDN) approach
is proposed as a coordination/collaboration new methodology built on expected
win-win principles; risk behavior; and probability of acceptance. The competi-
tive third parties participate in the proposed SBDN approach with their price
policies based on Chapter 5 and their uncertain nature.

In Chapter 7, the inter-organizational coordination is achieved using a novel
integrated game theory approach. A Stackelberg and Nash Equilibrium games
are implemented to capture the contrasting and competitive objectives between
the participating enterprises considering the uncertain behavior of all partic-
ipants. In Part III, the uncertainty is tackled through Monte-Carlo Sampling
method. To end this part, a set of coordination contracts is proposed and com-
pared as a novel Stackelberg set of Pareto frontiers.

Finally, Part IV includes Chapter 8, which summarizes the thesis contribu-
tions and outcomes, and draws emerging concluding remarks for future work.
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Chapter 3

Methods and Tools

3.1 Introduction

he major aim of the PSE community is to develop decision-support tools to

help, systematically, chemical industry enterprises to effectively optimize

their industry, from the molecular size (Sahinidis & Tawarmalani, 2000; Ache-

nie, Gani, & Venkatasubramanian, 2002; Gani & Ng, 2015); product design

(Subramanian, Pekny, Reklaitis, & Blau, 2003; Smith & Ierapepritou, 2011);

experiment design (Telen, Vercammen, Logist, & Impe, 2014); up to SCM (You
& Grossmann, 2011; Cafaro & Grossmann, 2014).

The multi-enterprise wide coordination (M-EWC) problems tackled in this
thesis are complex and require quick response to the volatile markets, so it
implies the use of efficient methods and tools. In this chapter, the decision-
making tools used for developing the tactical optimization models throughout
this thesis are illustrated. The theoretical concepts of these tools and their im-
plementations in the chemical process industry are discussed. First, the current
optimization approaches are illustrated, followed by analyzing the different pro-
gramming methods and solvers. Then, the decision-making approaches under
uncertainty, multi-objective optimization, and game theory are described.

3.2 Decision making
Different decision-making approaches are implemented to identify the best de-
cisions, usually classified as descriptive or normative approaches (Bell, Raiffa,

& Tversky, 1999).
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3.2.1 Descriptive approaches

Descriptive decision-making approaches are concerned with identifying the ob-
served nature of a problem. However, descriptive approaches do not do not
concern about solving the problem. Among the descriptive approaches used
are: 1) forecasting, and ii) simulation methods.

i) Forecasting: this method is based on future projections of what will hap-
pen in the future such as (market demands, supply, price, etc.). Such a method
is highly empirical, and needs much statistical analysis.

ii) Simulation: the user simulate the behavior of a system with different
degrees of accuracy to imitate a real system. The user fixes the system pa-
rameters while keeping checking the feasibility. Although simulation methods
provide the best performance of a system, it does not optimize it.

3.2.2 Normative approaches

Normative approaches are concerned with solving a problem based on a set of
rules using mathematical programming or heuristic techniques .

Mathematical programming

Mathematical programming methods seek to optimize the decision-making
problems based on real or integer variables within constraints.

Heuristic methods

Heuristic methods are based on feasible approximate solutions, but they do not
guarantee optimality. Among the heuristic methods are: i) Lagrangian heuris-
tics, and ii) Meta-heuristics.

i) Lagrangian heuristics (relaxation) are based on finding the problem solu-
tion based on iterations. The first solution point is obtained for the optimization
problem. Then, different iterations are trained to find the feasible ones around
the first solution within upper and lower bounds. When the gap between the
best upper and lower bounds is near to a certain value, the local optima is
found.

ii) Meta-heuristics are based on finding a solution space using robust stochas-
tic methods. Among the current meta-heuristic algorithms are genetic algo-
rithms, tabu search, hyper-heuristics, path relinking, neural networks, simu-
lated annealing, scatter search, ant colony optimization, etc.

3.3 Optimization methods and tools
The optimization process aims to maximize or minimize a performance met-

ric of a system with degree of freedom variables under different quality and
inequality constraints. Decisions can be taken based on the resulting optimal
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performance. To optimize the chemical process industry SCs, decision-support
tools and modeling techniques are required at different enterprise investment
levels (design, operation, and control). To construct an optimization mathe-
matical model, four main elements have to be identified:

e Objective function: the main goal of the enterprise (e.g. maximize rev-
enues, minimize cost, minimize environmental impact, maximize social
benefits, etc.).

e Degree of freedom variables: the independent variables (continuous,
semi-continuous, and discrete) such as production levels, storage amounts,
open or close facility /unit, prices, etc.

e Parameters: available data such as customer demands, unit costs, effi-
ciencies, distances, capacities, production recipes, etc.

e Equality constraints: such as mass balances, purchase, production, in-
ventory capacity limits, correlations between variables, etc.

The optimization can be continuous or discrete. Continuous optimization
problems include continuous degree of freedom variables. Discrete optimization
problems involve binary (integer) variables (e.g.: yes/no decisions, open/close
facility, equipment allocation, price allocation to demand, etc.). The optimal
decisions of the optimization problems are the best values of the degree of
freedom variables that satisfy the problem constraints.

The mathematical formulations of the optimization problems result in dif-
ferent programming models:

3.3.1 Linear programming (LP)

Linear programming (LP) is a continuous mathematical program with linear
correlated variables. Eq. (3.1) illustrates a LP optimization problem with a
profit maximization objective function. x represents the continuous decision
variables; g(z) and h(z) represent the equality and inequality constraints, re-
spectively. The problem is LP when the functions Z(z), g(z), and h(z) are
linear.

h(z) =0, h:R" — R!

max Z(x) (3.1)
g(z) <0, g:R* — R™

The feasible region of a LP problem is called "polyhedron S". To solve LP
problems, ¢ number of iterations are required to solve i number of constraints.
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Two solution methods are used to solve LP problems: i) the simplex method
(Dantzig, 1951, 1963), and ii) interior point method (Gonzaga, 1992; Marriot
& Hallo, 1998).

i) Simplex method

The simplex method (vertex-following) is based on finding the optima on the
polyhedron S by moving from one vertex (corner) to another vertex. The sim-
plex algorithm starts from testing the optimality of an initial solution vertex.
If it is not optimal, the algorithm identifies adjacent vertex and the optimality
is tested again until finding the optima (Figure 3.1(a)). More information can
be found in Dantzig (1963).

ii) Interior-point methods

The interior-point method is based on searching through the interior of the
feasible region S using iterations without touching the border. An initial feasible
interior point is assumed, then the search for the optimal solution (vertex) is
started from the interior moving through the possible feasible region (Figure
3.1(b)). Further details can be found in Marriot and Hallo (1998).

/Optimal solution /Opﬁmal vertex

Initial
Initial vertex interior point

(a) Simplex method (b) Interior point method

Figure 3.1: LP solution methods

3.3.2 Mixed-integer programming (MIP)

Mixed-integer programming (MIP) results from problems with binary variables,
logical conditions (and, or, not, etc.), or special ordered sets (sets of non-zero
values). MILP models results from enterprise-wide optimization (EWO) prob-
lems such as discontinuous operations and scheduling (Floudas & Lin, 2004;
Méndez, Cerda, Grossmann, Harjunkoski, & Fahl, 2006; Shah & Ierapetri-
tou, 2015; Bindlish, 2016) logistics and multi-period optimization (Grossmann,
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2005; Gebreslassie, Yao, & You, 2012), and linear approximations (piecewise)
of complex non-linear problems.

MIP problems can be represented by Eq. (3.2), where ¢, b, and d are coef-
ficients vectors, and A and B are the coefficients matrices. x and y represent
the continuous and discrete variables, respectively.

Ay+ Bx <b
max Z(z,y) =cy +dxs xz€X CR” (3.2)

yeyYy czm

The methods to solve MILP problems are enumerative algorithms based on
pruning criteria. This means that not all feasible solutions are tested for opti-
mality. The solution times of MILP programs depend on the model formulation;
the use of redundant constraints may help in reducing the computational time.
Different algorithms are used to solve MILP problems: i) Branch and Bound
(B&B) algorithm, and ii) Branch & Cut (B&C) algorithm.

i) Branch and Bound (B&B) algorithm

Branch & Bound (B&B) algorithm with LP-relaxation (Land & Doig, 1960) is
widely used to solve MILP problems. B&B algorithm is a tree search method, in
which the original problem is partitioned (divide and conquer) into continuous
sub-problems. For example, for maximization problems, lower bounds are used
during the optimization process to avoid extensive searches in the feasible tree
space. All discrete variables are relaxed to continuous variables, and the first
node "tree root node" is established from solving the relaxed LP problem. The
branching then starts to search for sub-problems and compare the results until
finding the optima.

Dakin (1965) extends the B&B algorithm considering three criteria: in-
feasibility, optimality, and value dominance. The branching and dividing the
solution space is based on creating nodes with additional constraints on lower
and upper bounds. The algorithm accepts a new integer solution if it is better
than the old one by at least a specific value. The branching starts when the
pruning criteria fail.

Different search strategies are used for B&B algorithms such as depth-first
and back-tracking rule methods. The search terminates if the solution space of
the LP-relaxation is bounded.

ii) Branch & Cut (B&C) methods

One of the important issues for solving MILP problems is tracing infeasibil-
ity. Branch & Cut (B&C) algorithm (Padberg & Rinaldi, 1987) can be used
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alternatively or additionally to the B&B algorithm to solve MILP problems.
When the LP-relaxation problem finds an optimal, new cutting planes (linear
valid inequalities) are added to the linear relaxations, so that the size of the
feasible space is reduced without eliminating integer solutions. This forces the
non-integer variables of the relaxed solutions to take integer values (Kallrath,
2000).

Many solvers are used to solve MILP problems such as CPLEX, XPRESS,
GUROBI, etc. In this thesis, the CPLEX solver is used to solve MILP models
due to its sophisticated solution packages and ability to give solutions in less
computational time.

3.3.3 Non-linear programming (NLP)

For the optimization problem as in Eq. (3.1), if any of the functions Z(z) or
any of the constraints functions h(z) and g(z) is nonlinear, the problem is
considered as a NLP problem. The presence of nonlinearities is very common
in the PSE problems, such as the reaction kinetics of the chemical processes
(i.e. batch process synthesis, flows, etc.), pricing models, etc. The complexity
of the NLP problems arises when solving the convergence resulting in many
local optimals. For convex NLP problems, the local minimum is equal to the
global minimum.

Lagrangian method (Kuhn & Tucker, 1951) is used to solve NLP prob-
lems with equality and inequality constraints. Lagrangian method is based on
transforming the problem into an unconstrained model using the Lagrangian
multipliers A and p as in Eq. (3.3).

Lz, \ 1) = Z(x) + Mh(z) — pg(z) YA€ R ue R (3.3)

Many algorithms are used to solve NLP optimization problems with high num-
ber of inequality constraints, such as generalized reduced optimization algo-
rithm (GRG) (Abadie & Carpenter, 1969; Abadie, 1978), sequential quadratic
programming (SQP) (Fletcher, 1987), and interior point method (IPM) (Wright,
1996). For problems with low nonlinear terms, sequential linear programming
(SLP) can be used.

Many solvers are used to solve NLP problems such as MINOS, CONOPT,
IPOT, KNITRO, etc. In this thesis, the CONOPT solver is used to solve the
developed NLP models. More review about NLP algorithms and solution tech-
niques can be found in Biegler (2010).

3.3.4 Mixed integer non-linear programming (MINLP)

Mixed integer non-linear programming (MINLP) tackles optimization problems
with nonlinear and integer variables (Eq. (3.4)). The vector = (x1, 22, ..., 2,)
represents the n continuous variables, and the vector y = (y1,42,...,y,;,) rep-
resents the m discrete variables. The problem is considered as MINLP when
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there is nonlinearity in one of the functions Z(x,y), h(z,y), and g(z,y).

A feasible solution is obtained when any augmented vector ¥ = x €p y satis-
fies the constraints of Eq. (3.4). Any feasible solution leads to objective function
more than or equal to the feasible solutions can be considered as an optimal
solution. This means that the problem might lead to more than one optimum.

rze X CR”
yey czm

maxZ(z,y) (3.4)
h(z,y) =0

g(z,y) <0

The complexity of the MINLP problems arises from the non-convexity of
the feasible region and the objective function. Different methods are used to
solve MINLP problems such as:

i) Branch & Bound (B&B)

Branch & Bound (B&B) (Gupta & Ravindran, 1985) is based on building a
search tree. The integer variables are relaxed as first step, then the solution of
the relaxed problem is considered as lower bound (for minimization problems),
so that the search tree is built.

ii) Generalized Benders Decomposition (GBD)

The generalized benders decomposition (GBD) algorithm (Geoffrion, 1972) is
based on dividing the MINLP non-conve problem into two spaces: complicating
and non-complicating variables spaces. The binary variables are classified as
complicating variables. Then the problem is divided into a sequence of NLP
sub-problems (by fixing the binary variables), and MILP master problems. The
NLP sub-problems generate the upper bounds of the problem, and the MILP
master problems generate a combination of discrete variables to be used as
lower-bounds for the NLP sub-problems. The optimal solution then can be
found when the upper and lower bounds match.

iii) Outer-Approximation (OA)

The Outer-Approximation (OA) algorithm (Duran & Grossmann, 1986) is
based on dividing the MINLP non-convex problem into NLP sub-problems and
MILP master problems. A feasible region is defined by the optimal solutions of
the NLP sub-problems. The master problems are generated by approximating
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the non-linear constraints of the NLP sub-problems optimal solutions (feasible
region).

Although, the interest arises to solve MINLP problems, still finding the
global optima of non-convex MINLP problems is a challenge. Different solvers
are used to solve convex and non-convex MINLP problems, such as: DICOPT
(convex /non-convex), GloMIQO (convex,/non-convex cuadratic), SBB (convex),
BARON (convex/non-convex), SCIP (convex/non-convex), etc.

In this thesis, most of the developed mathematical models are non-convex
MINLP, so to reflect real and practical applications. DICOPT and GloMIQO
solvers are used through the General Algebraic Modeling System (GAMS).
Initial solutions are provided to the problem to help finding the optima in less
computational time.

3.4 Bi-level optimization

The bi-level optimization deals with the optimization of two problems simul-
taneously: an upper-level problem and a lower-level problem. The idea of the
bi-level formulation is that the upper-level optimization model is solved taking
into consideration the optimal solution of the lower-level problem, as both are
solved simultaneously (the lower-level problem is embedded as constraints in
the upper-level problem).

Eq. (3.5) represents a typical bi-level optimization problem. The terms
Z(z,y) and z(z,y) are the upper-level and lower-level objective functions, re-
spectively. X and Y represent the upper-level and lower-level decision vari-
ables; G(x,y) and H(x,y) represent the upper-level inequality and equality
constraints, while g(x,y) and h(x,y) represent the lower-level inequality and
equality constraints. It can be noticed that the constraints of the upper-level
problem depend on both the upper-level and the lower levels decision variables
(z and y).

H(z,y) =0
max Z(x,y)
e G(a,y) <0
where, (3.5)
h(z,y) =
y € max z(z,y)
vere g(z,y) <0
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In case the lower-level problem results in a convex and regular model formu-
lation, it can be replaced by its Karush-Kuhn-Tucker (KKT) conditions (Kuhn
& Tucker, 1951), thus transforming it into constraints in the upper-level opti-
mization model (Eq. (3.6)). This reformulation results in a monolithic model
(single-level formulation) that can be solved at once. The vectors A € R™ and
u € RY are the KKT multipliers.

l
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When the model does not have inequality constraints m = 0, then the KKT
multipliers turns into the Lagrange multipliers (see Eq. (3.3)). However, bi-level
optimization problems are limited to small-size problems up to date. Solving
large-scale non-convex MINLP bi-level models is still a challenging research
topic. In this thesis, the developed bi-level MINLP models are solved using
iterations scenarios, as will be seen in Chapters 6 & 7.

3.5 Game theory

Game Theory (GT) is used to solve the interaction between different enter-
prises decision-makers sharing some interests. During the last few years, GT
has witnessed an increasing interest of the PSE community, as its necessity to
incorporate various actors into the decision-making process increases. This can
be seen from the proliferation of GT publications, especially in SCM (Cachon,
2003; Cachon & Netessine, 2004; Wang, 2005; Hennet & Arda, 2008; Leng &
Parlar, 2010; Zhao et al., 2010; Li et al., 2013; Yue & Fengqi, 2014; Chu, You,
Wassick, & Agarwal, 2015; Ramos, Boix, Aussel, Montastruc, & Domenech,
2016).

Within GT, stakeholders of contrasting and competitive objectives are con-
sidered as game players. The performance metric is called "payoff function" in
case of maximizing the profits, or "loss function" in case of minimizing the cost.
The possible actions and reactions of the game players are named as the game
strategies. Depending on the interaction among the different game players, the
game is classified as cooperative or non-cooperative game.

Cooperative games: the game players are supposed to agree on forming a
coalition towards the optimization of a shared objective function under a given
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set of conditions.

Non-cooperative games: the game players seek, independently, to opti-
mize their individual payoffs.

A game can be zero-sum-game, non-zero-sum game, or dynamic game:

Zero-sum-game: the amount gained by one game player is the same as
the amount lost by the other game player. In this case, a cumulate revenue is
not possible from their cooperation.

Non-zero-sum game: the amount gained by one game player is not equal
to the amount lost by the other game player/s. This means that the gains of
one player cannot be deduced from the gains of the other players.

Dynamic game: or "multi-stage game" is when the game is repeated se-
quentially.

In this thesis, non-cooperative games (Stackleberg and Nash Equilibrium
games) are implemented and solved for the coordination between the negotiat-
ing enterprises stakeholders in an uncertain competitive environment.

3.5.1 Nash Equilibrium (NE)

Nash Equilibrium (NE) (Nash, 1950) is implemented for non-cooperative games
when the roles of the game players are symmetric (i.e. no one is leading the
game). Within NE games, the game players make their actions (decisions),
simultaneously. The NE equilibria is obtained when none of the game players
can improve her/his payoffs by changing just her/his own strategy, unilaterally.

Eq. (3.7) illustrates the NE mathematical formulation; ¢ € 1,2, ..., I repre-
sents the number of the NE-game players; k; represents the strategy of player 4,
and k_; represents the strategy of the rest of the NE game players (all players
except player i); Z; is the objective function of player i.

The NE-game equilibria strategy k* is achieved when none of the game
players ¢ can improve her /his payoffs by changing only her/his own strategy k;
(Eq. (3.8)).

Dilemma example

One of the famous NE-game examples is the dilemma case. The NE-game play-
ers decide between collaborating or not (Figure 3.2). To find the NE-equilibria,
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we have to analyze all the movements (possible strategies). If player 1 decides
to collaborate, player 2 best response will be to collaborate, as she/he will get
5 units instead of zero. If player 1 decides not to collaborate, the best response
of player 2 will be to collaborate (payoff 15 units). If player 2 decides either
to collaborate or not, player 1 must collaborate. So the NE-equilibria between
both of them is to collaborate.

player 2
collaborate?
no yes
o
@
‘: ® no| 10, 10 0,15
5§
& g '
B =
NE

Figure 3.2: NE-game: Dilemma example

3.5.2 Stackleberg game

The Stackelberg game (Stackelberg, 1934) can be played between stakeholders
of contrasting objectives within a non-cooperative framework, and their roles
are not symmetric. That is, one of the Stackelberg game players makes the first
game move; this player who is leading the game is called "Stackelberg-game
leader", and the others are called as "Stackelberg-game followers".

Mathematically, a single-leader single-follower Stackelberg game forms a bi-
level model (Colson et al., 2007), where the leader model is considered at the
upper-level problem, and the follower model is considered at the lower-level
problem. In this case, the leader makes actions taking into consideration the
optimal response of the follower, as both the upper-level and the lower-level
problems are solved simultaneously (see Eq.(3.5)).

However, when the lower-level problem is non-convex, it is impossible to be
replaced using the KKT conditions method (Bard, 1998; Colson et al., 2007).

In this thesis, the proposed Stackelberg-game models are built as bi-level
models, with non-convex MINLP upper-level and lower-levels problems. An-

other solution methodology is proposed without simplifying.
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If the Stackelberg-game is implemented to the Dilemma example with player
2 as the leader. The Stackelberg-game equilibrium will be, the same as the NE,
when both collaborate (Figure 3.3).

Leader
collaborate?
no yes
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Figure 3.3: Stackelberg-game Equilibrium

3.6 Multi-objective optimization

Multi-objective optimization (MOO) or "vector optimization" refers to the op-
timization considering, simultaneously, multiple objectives resulting from in-
troducing new issues such as social, environmental and risk regimes as part
of the optimization objective functions together with the economic objectives.
EWO problems involve multiple conflicting objectives, in which the trade-offs
between those conflicting objectives, which is often analyzed as a Pareto of
solutions, affects the decision-making process.

Eq. (3.9) describes the general mathematical formulation of a MOO prob-
lem: X represents the solution vectors (feasible space).

maz.cx (Z1(x), Zo(x), ..., Zn(x)) n>272:X—R" (3.9)

The Pareto of solutions is identified based on the dominance concept (Mes-
sac, Ismail-Yahaya, & Mattson, 2003; Deb, 2008). A solution z; € X is a
Pareto solution when z; € X dominates x5 € X if:

1. Zi(z1) > Zi(z2) Vi € n (for all objective functions) and
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2. Zi(x1) > Zi(x2) at least j € n (for at least one objective function)

Different approaches are used to solve MOO problems such as € —constraint
(Messac et al., 2003), goal programming (Charnes & Cooper, 1961), multi-
parametric programming (Pistikopoulos, Galindo, & Dua, 2007; Oberdieck &
Pistikopoulosb, 2016), wighted-sum (Fishburn, 1967; Triantaphyllou, 2000),
metaheuristics through genetic algorithm (Lin, Fowler, & Pfund, 2013), lexico-
graphic minimax (Liu & Papageorgiou, 2013), and surrogate modelling (Beck,
Friedrich, Brandani, & Fraga, 2015).

However, the current MOO approaches focus on the objectives of one or-
ganization without considering the different objective functions of different
participating organizations in the system of study. In this thesis, the differ-
ent individual objective functions are considered when optimizing large-scale
multi-enterprise SCs.

3.7 Decision-making under uncertainty

Due to the SC dynamics and the volatility of the markets, the presence of
uncertainty is one of the basic characteristics of EWO problems. Enterprises
managers usually take decisions based on the assumptions that all information
is known. However, robust responsiveness through considering uncertainty ex-
plicitly is a must in order to guarantee efficient capacity utilization, market
competitiveness, and efficient infrastructure decisions (Papageorgiou, 2009).
Uncertainty sources can be classified as: i) exogenous (e.g. demand, sup-
ply, etc.), and ii) endogenous (e.g. yield, capacity, etc.) (Jonsbraten, Wets, &
Woodruff, 1998). The trend of considering uncertainty is based on forecasting
the behavior of the uncertainty sources based on current situation data using
future projections. Two main approaches are implemented to address uncer-
tainty: i) reactive, and ii) preventive approaches (Li & Ierapetritou, 2007).

3.7.1 Reactive approaches

Using the reactive approaches, the deterministic model is modified to react
and respond to the uncertain events. Reacting with unexpected events may
lead to re-scheduling or re-planning decisions. Heuristics and intelligent agents-
based methodologies are often used to modify the deterministic models due to
their short computational times. Two main methods are used to solve reactive
problems: i) model predictive control, and ii) multi-parametric programming.

i) Model predictive control

Model predictive control (MPC) formulations anticipate the process perfor-
mance and control variables through integrating optimal control, stochastic
control, and process control systems within the future preferences (Camacho
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& Bordons, 1995). MPC algorithm allows to optimize the control model (usu-
ally dynamic) in function of the forecasted future control variables considering
a finite time-horizon. The length of the time horizon affects the efficiency of
the solutions; longer horizons lead to more efficient solutions, but with higher
computational efforts (Geyer, 2011; Tan, Tippett, & Bao, 2016).

MPC has many applications in EWO within the context of SCM due to
its ability to predict the system behavior and deal with disturbances. Wang,
Rivera, and Kempf (2007) propose a MPC-based decision model for the tacti-
cal planning of a semiconductors manufacturing SC under uncertainty of the
RM supply and market demand. The MPC controllers predict the system per-
formance by forecasting the future supply and demand. Alessandri, Gaggero,
and Tonelli (2011) implement the MPC to a real-time tactical transport model.
Lopez-Negrete, D’ Amato, Biegler, and Kumara (2013) propose a fast non-linear
MPC (NMPC) model for on-line non-linear dynamic real-time optimization.
They use NLP sensitivity to compute fast approximations of non-linear solu-
tions. They prove that the combination method leads to the same efficiency but
with less computational time comparing with the original MPC. Niu, Zhao, Xu,
Shao, and Qian (2013) implement the MPC to control the inventory under the
uncertainty of demand. They consider the inventory decisions as control vari-
ables and the pricing as manipulated variables. For multi-time scale systems,
Tan et al. (2016) implement the MPC with non-uniformly spaced optimization
horizon for multi-time scale dynamic processes.

However, MPC algorithms require high computational efforts, especially for
on-line non-linear and close-loop MPC with fast sampling rates. To reduce the
computational efforts, MPC has been combined with multi-parametric pro-
gramming (Bemporad, Borrelli, & Morari, 2002; Pistikopoulos et al., 2007;
Krieger & Pistikopoulos, 2014; Rivotti & Pistikopoulos, 2015) based on disas-
sembling the original MPC problem into smaller problems and solving each of
them as a multi-parametric programming problem.

ii) Multi-parametric programming

Multi-parametric programming is used as an optimization technique to define
the optimal solution profile (or solution map) of a problem as a function of
the uncertain varying parameters (Pistikopoulos, 2009). Eq. (3.10) illustrates
the typical multi-parametric programming formulations, in which f(x, ¢) is the
objective function; x € X is the vector of optimization variables, ¢ € O is the
parameters vector, and © is the parameter space.
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Z(¢) = mazzexcre f(z, P)
g9(z,¢) <0 (3.10)

¢€eO® CR™

Multi-parametric programming has many applications in PSE within differ-
ent contexts such as: bi-level programming (Dominguez & poulos, 2010), con-
strained dynamic programming (Rivotti & Pistikopoulos, 2014), MPC (Krieger
& Pistikopoulos, 2014), MOO (Oberdieck & Pistikopoulosb, 2016).

Dominguez and poulos (2010) use multi-parametric programming algorithm
to solve integer and mixed-integer bilevel programming problems. They repre-
sent the integer and continuous variables of the lower-level problem as linear or
polynomial terms in the upper-level problem. Then they reformulate the convex
non-linear terms using linearization techniques to employ a continuous multi-
parametric programming algorithm. Rivotti and Pistikopoulos (2014) propose
a multi-parametric programming approach to solve multi-stage MILP inven-
tory scheduling problem within the constrained dynamic programming con-
text. they decompose the problem into a set of multi-parametric programming
MILP problems to be solved sequentially in order to obtain the global opti-
mal solution. Krieger and Pistikopoulos (2014) integrate the multi-parametric
programming with the MPC algorithm through online parametric estimation.
They prove that the integrated algorithm leads to better performance compared
with the nominal MPC, according to the context of their paper. Oberdieck and
Pistikopoulosb (2016) propose an approximation algorithm based on multi-
parametric programming to calculate the explicit Pareto frontier for convex
quadratic MOO problems with linear constraints.

Nevertheless, mitigating uncertainty is not always associated to the reac-
tion to the random events, this needs also incorporating already deterministic
information in the model formulation.

3.7.2 Preventive approaches

Unlike the reactive approaches, preventive approaches incorporate the uncer-
tain parameters in the optimization models based on their forecasted behavior.

There are several preventive techniques to tackle uncertainty such as: i)
Stochastic programming, ii) Chance-constrained programming, iii) fuzzy pro-
gramming, and iv) robust optimization, amongst others.
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i) Stochastic programming

Stochastic programming is the most commonly preventive technique to tackle
uncertainty. Within stochastic programming, SCs’ enterprises set their con-
straints based on optimizing the expected performance metric (minimize ex-
pected cost, maximize expected profit, etc.). As a scenario-based approach,
the uncertain parameters as included as random scenarios (e.g. demand, price,
yield, etc.) in terms of their probability distribution (Sahinidis, 2004). The pur-
pose of the stochastic programming is to obtain the optimal expected decisions
that are able to hedge against the average of the uncertain events.

According to the sequence of the uncertain events, stochastic programming
can be two-stage or multi-stage stochastic programming. Within two-stage
stochastic programing (2-SSP), the decisions are divided into first stage de-
cisions and second stage decisions. The first stage decisions are made before
the uncertainty revealing (here and now), while the second stage decisions are
made when the uncertainty events reveals (recourse-wait and see). Stochastic
programming can be multi-stage when the uncertain events reveal in multiple
stages, sequentially, in which decisions are made over a sequence of periods.

Eq. (3.11) represents the general formulation of 2SSP problems: £ repre-
sents the random vector of the uncertain data; S(x, &) represents the set of the
optimal second-stage decision variables (expected decisions).

maxzexcrnG(x) = f(x) + E[S(z,§)] (3.11)

Stochastic programming has been implemented to different PSE problems.
Tsiakis, Shah, and Pantelides (2001) develop a 2-SSP MILP design-planning
model for a multi-echelon SC subjected to demand uncertainty. Gupta and
Maranas (2003) develop a bi-level stochastic planning model under uncertainty
of demand. Cheng, Subrahmanian, and Westerberg (2003) propose a 2-SSP
multi-period SC design-planning model considering the uncertainty of tech-
nology availability and demand. They model the uncertainty of technology
availability as a Markov chain, and the demands with probability distribution.

For large scale problems, a stochastic programming model has been pro-
posed by Santoso, Ahmed, Goetschalckx, and Shapiro (2005), who integrate
the accelerated Benders decomposition algorithm with the sample average ap-
proximation (SAA) method for the SC stochastic design model with continuous
distributions for the uncertain parameters.

For petrochemical SCs, a 2-SSP MINLP design optimization model is pro-
posed by Al-Qahtani, Elkamel, and Ponnambalam (2008) considering the un-
certainty of process yield, raw material cost, retail price, and market demand.
They consider the risk in terms of profit variability in the objective function.

You, Wassick, and Grossmann (2009) develop a 2-SSP multi-period plan-
ning model under the uncertainty of demand and freight rate. They evaluate
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the potential improvement of using stochastic programming by implementing a
rolling horizon approach. You and Grossmann (2011) propose a MINLP design
model integrating stochastic inventory under supply and demand uncertain-
ties. The authors model the demand and supply variations, and develop an
equivalent deterministic optimization model under the objective function of
maximizing the net present value (NPV). They evaluate the SC responsiveness
to the market demand scenarios through the expected lead time.

For closed-loop SCs, Baptista, Gomes, and Barbosa-Pévoa (2012) propose
a 2-SSP closed-loop model under uncertainty of demand. They solve the large-
scale stochastic model using L-shaped method.

For resilient SCs, Garcia-Herreros et al. (2014) develop a 2-SSP model for
the optimal design-planning of resilient SCs considering disruption probabilities
of products demands. The selection and location of the distribution centers are
considered as the first-stage variables, while the resources flows are considered
as the second-stage variables.are assigned to each facility.

However, stochastic models deal with the random values of the performance
scenarios as average. Even if they consider the variance, the impact of the dif-
ferences between these scenarios is still neglected, as they deal equally with the
performance values around the mean.

In this thesis, the average of the performance scenarios is not considered as
evaluation criteria of the proposed coordination contracts. Instead, the proba-
bility of acceptance is calculated to reflect the impact of each performance sce-
nario on the decision-making of all participants. Furthermore, the uncertainty
of 3™ parties and its effects on the global decision-making is also addressed in
this thesis.

ii) Chance-constrained programming

Chance-constrained or probabilistic constrained programming Charnes and
Cooper (1959) tackles uncertainty by modeling the reliability of the solutions.
The methodology is based on determining a certain confidence level (probability
level), in which some of the model constraints are bounded by this level. This
is applied to avoid the complexity resulted from the use of stochastic second-
stage actions and the violation of constraints (Arrellano-Garcia & Wozny, 2009;
Mesfin & Shuhaimi, 2010; Ross, Kuzu, & Li, 2016).

Arrellano-Garcia and Wozny (2009) propose a chance-constrained program-
ming method for a large-scale nonlinear dynamic optimization problem of re-
active batch distillation processes. In their model, some of the constraints are
bounded by a predefined confidence level, which is computed by bounding a
feasible region of the uncertain input variables. The output feasible region is
mapped and the trade-off between robustness and profitability is analyzed.
Later on, Mesfin and Shuhaimi (2010) propose a linear steady state chance-
constrained model with single and joint chance constraints. Their model is ap-
plied to optimize a gas processing plant subjected to composition and feed flow
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rate uncertainties. Their chance-constrained model is converted to its equiv-
alent deterministic model. According to the context of their approach, the
chance-constrained formulations lead to better performance than the two-stage
stochastic and worst-case approaches.

Considering the supplier-buyer relationship, Ross et al. (2016) implement
the chance-constrained programming method for the supplier evaluation under
disruptions in the supplier delivery. They consider the supplier on-time-delivery
disruption risk scenarios as the supplier performance risk metric. However, their
work can be extended to consider other risk performance metrics considering
the disruptions from the buyer side. Furthermore, the conflicting objectives on
the transfer price between the supplier and the buyer are not analyzed in their
work, which will be the main focus of this thesis.

Comparing with the fuzzy programming, Cao, Gu, and Xin (2009) propose
a MINLP chance-constrained and fuzzy programming models for the scheduling
of refinery crude oil problem under the uncertainty of crude oil blinds demands.
To simplify the computational efforts, they transform the chance-constrained
model into its equivalent stochastic MILP model using the method proposed by
Quesada and Grossmann (1995), then the stochastic MILP model is converted
into its equivalent MILP deterministic model using the probabilistic theory.
The fuzzy equivalent MILP model is converted to its crisp MILP model using
the method proposed by Liu and Iwamura (1998). They solve the last two
models using the branch-and-bound method. Both models are applied to large-
scale refinery case study (267 continuous variables, 68 binary variables, and 320
constraints). They show that the chance-constrained method leads to slightly
better performance, comparing with the fuzzy programming.

However, converting the chance-constrained models to their equivalent de-
terministic models is not an easy task due to the non-convexity of the feasible
regions. Accordingly, different approximation methods are proposed such as
sample average approximation (SAA) (Pagnoncelli, Ahmed, & Shapiro, 2009),
sequential convex approximation (Hong, Yang, & Zhang, 2011), and kernel
smoothing (Calfa, Grossmann, Agarwal, Bury, & Wassick, 2015).

Pagnoncelli et al. (2009) propose a method to approximate a joint portfolio
chance-constrained problem with single constraint and random returns. Their
proposed approach is based on replacing the actual probability distribution by
an empirical distribution generated from random samples in order to evaluate
the chance constrained. They conclude that small size samples lead to good
performance. Hong et al. (2011) propose a sequential convex approximation
algorithm to solve the stochastic chance-constrained problem. Their algorithm
is a scenario-based, in which for each scenario, the sequential convex approxi-
mation model is solved using a gradient-based Monte-Carlo. However, such a
scenario-based method needs high computational time to find the optimal, es-
pecially for large-scale industrial problems. Calfa et al. (2015) reformulate the
data-driven chanced-constrained into algebraic constraints. They approximate
the unknown true continuous probability density and distribution functions
using kernel smoothing, so they can construct the confidence set based on the
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reformulated distribution function. However, such a method requires a large
number of data in order to obtain efficient approximation.

iii) Fuzzy programming

The fuzzy programming method (Bellman & Zadeh, 1970) deals with the un-
certain sources as fuzzy numbers and the uncertain constraints as fuzzy sets.
A fuzzy number refers to a set of possible values.

Fuzzy optimization has many PSE applications. Peidro, Mula, Jiménez,
and Botella (2010) propose a fuzzy linear programming tactical model for a
multi-echelon multi-period automobile SC under uncertain fuzzy demand and
supply. Aviso, Tan, and Culaba (2010) develop a fuzzy programming design
model of water and wastewater reuse decentralized SC under uncertainty. The
authors weight the effect of the network total benefit on the individual firms
goals through fuzzy programming. Ng, Chemmangattuvalappil, and Ng (2015)
propose a systematic fuzzy programming model for the optimal design of chem-
ical product molecules considering robustness. They represent the robustness
by the standard deviation between the experimental data and the estimated
data resulted from the prediction model.

For MOO, Kasivisvanathan, Ng, Tay, and Ng (2012) propose a MOO fuzzy
programming model to palm oil mills SCs producing crude palm oil. A degree
of satisfaction is developed to analyze the multiple objective functions (envi-
ronmental, economic) based on reliability. The fuzzy goals are predefined as
the upper and lower bounds of the multiple objective functions. Mirhedaya-
tian, Azadi, and Saen (2014) use the fuzzy programming for the evaluation
of green production SC with dual-role factors, undesirable outputs and fuzzy
data. They consider the inputs (RM acquisition, R&D, distribution, quality,
advertisement, and reliability costs), outputs (production levels, flexibility of
supplier, satisfaction, services), and dual-role factors as fuzzy triangular num-
bers. The outputs are considered as qualitative factors which are given a range
between 1 and 5.

Comparing with the stochastic programming, Liu and Sahinidis (1996) show
that the two-stage stochastic programming leads to better performance than
the fuzzy programming, according to the context of process planning.

Combining the fuzzy programing with other approaches, Zhang et al. (2011)
combine the fuzzy programming, the scatter evolutionary algorithm, and stochas-
tic programming methods in one approach to optimize the tactical decisions of
multi-echelon automobile SC under the demand and price uncertainties. Nie,
Huang, Li, and Liu (2014) propose a multi-stage chance-constrained fuzzy dy-
namic programming approach for the strategic-tactical planning of energy SC
under uncertainty. They evaluate the reliability of satisfying the system con-
straints as well as the risk of not satisfying them under different uncertain
scenarios. Kundu, Kar, and Maiti (2014) develop a chance-constrained model
with fuzzy parameters for two fixed-charge transportation problems.
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iv) Robust optimization

Robust optimization (Ben-Tal, El-Ghaoui, & Nemirovski, 2009) aims to op-
timize the problem for the worst-case scenario by describing a deterministic
equivalent "counterpart" of an uncertainty set that is feasible for all uncertainty
events. Eq. (3.12) illustrates a simple robust optimization problem: u € U and
A correspond to the uncertain values and the robust counterpart, respectively.

mazzexZ(x) : A(u,x) <, YueU (3.12)

Robust optimization has many applications to short-term problems. Bert-
simas and Sim (2003) propose a computationally tractable robust integer pro-
gramming to address data uncertainty for network flows problems. Their ap-
proach allows to control the degree of conservatism in function of the probabilis-
tic bounds on constraint violation by restricting the uncertain parameters that
take their worst-case values. Lin et al. (2004) propose a robust optimization
model for continuous-time scheduling under the uncertainty of the process-
ing times, demands, and prices. The model bounds the uncertain parameters
between lower and upper bounds. Later on, this work has been extended by
Janak, Lin, and Floudas (2007) to incorporate the probability distribution of
the uncertain parameters.

Li and Li (2015) propose a robust optimization approximation to solve a
chance-constrained model for a planning-scheduling problem. Their solution
algorithm is divided into two steps: first, identifying the maximum set size
that leads to feasible solutions, second, reducing this size to reliable solutions
with best probability of constraint satisfaction (predefined reliability). After
analyzing the relation between the uncertainty set size and reliability, the au-
thors conclude that the reliability does not have to be monotonically related
to the uncertainty set size. Later on, Yuan, Li, and Huang (2016) consider
the correlation between the uncertain parameters when developing the robust
optimization models.

Robust optimization methods prove to be more tractable comparing with
their stochastic programing counterpart (Li et al., 2011). However, recourse ac-
tions (reactions to uncertainty events) are not included in the robust optimiza-
tion methods, thus limiting their applications to short-term problems (Zhang,
Grossmann, Heuberger, Sundaramoorthy, & Pinto, 2015; Grossmann et al.,
2016). Accordingly, adjustable robust optimization techniques are proposed to
account recourse actions for many PSE problems such as: inventory manage-
ment (Ben-Tal, Goryashko, Guslitzer, & Nemirovski, 2004), logistics planning
(Ben-Tal, Chung, Mandala, & Yao, 2011), operational planning (Verderame &
Floudas, 2009), and process scheduling (Li & Ierapetritou, 2008; Zhang, Lima,
& Grossmann, 2016b).
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3.7.3 Monte-Carlo sampling

Monte-Carlo sampling method is based on repeated random sampling of un-
certain parameters. It is also used to calculate the regression confidence of a
sample to predict the model performance under different random scenarios.
Monte-Carlo sampling method has many PSE applications such as: experimen-
tal modeling, simulation, optimization, regression, probability distribution and
risk analysis, fault diagnosis, etc.

Jung, Blau, Pekny, Reklaitis, and Eversdyk (2004) use the Monte-Carlo
sampling method to generate random set of safety stock scenarios in order
to accommodate the demand uncertainty in the SC planning-scheduling op-
timization model. The required safety stock levels are obtained to maintain
the customer satisfaction under different uncertain scenarios. Sin, Meyer, and
Gernaey (2010) use the Monte-Carlo sampling method to predict the behav-
ior of the cellulose hydrolysis under different uncertain parameters based on
experimental data.

For pharmaceutical applications, Eberle, Sugiyama, and Schmidt (2014) im-
plement the Monte-Carlo sampling method to improve the lead time of pharma-
ceutical batch production processes. The use of Monte-Carlo sampling method
is to predict the future total lead-time and to obtain the summation of the
probability distribution of each lead-time.

Monte-Carlo sampling method is also used to emulate non-linear complex
models as in the work of Lambert, Rivotti, and Pistikopoulos (2013), who
propose a Monte-Carlo-based approximation technique to approximate non-
linear dynamic systems in order to apply linear-model predictive control (MPC)
algorithms. The linearization process is based on generating N-step-ahead affine
algebraic representations based on the conditional variances of the original
mathematical model. This can be done by manipulating different variables
using Monte-Carlo sampling method.

The use of Monte-Carlo sampling method as part of the optimization proce-
dure is a practical way in reducing the complexity of the model formulation. In
this thesis, Monte-Carlo sampling method is used to generate a high number
of scenarios for the uncertain parameters. The use of Monte-Carlo sampling
method in this thesis helps in obtaining the individual expected performance
of the enterprises SCs participating in large-scale decentralized network. This
also leads to obtain the probability distribution curves of the enterprises ex-
pected revenues to help decision-makers evaluating the different coordination
contracts proposed in this document.

3.7.4 Financial risk management

The expected decisions resulted from the preventive approaches cannot hedge
extreme uncertain events. So, efficient risk management is paramount in order
to avoid any future disruptions. The trade-off between the risk metrics and the
revenues must be considered in the optimization process.
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Different risk metrics have been proposed in PSE literature such as vari-
ability index (Ahmed & Sahinidis, 1998); risk premium (Applequist, Pekny, &
Reklaitis, 2000); variance (Gupta & Maranas, 2003); probabilistic financial risk
(Barbaro & Bagajewicz, 2004; You et al., 2009); downside risk (Eppen, Martin,
& Schrage, 1989; Cheng et al., 2003); value at risk (VaR) and conditional value
at risk (Gebreslassie et al., 2012; Zhang et al., 2016a).

Ahmed and Sahinidis (1998) propose a variability index as a robustness
measure to represent the variability of the second-stage costs for a 2-SSP pro-
cess design and operation model. Their framework is based on penalizing the
second-stage costs that are above the expected cost.

Applequist et al. (2000) present a risk premium metric as an objective func-
tion besides the the expected NPV within the context of SC MOO stochastic
strategic-tactical model under demand uncertainty. Their risk premium metric
is calculated as a function of the relation between the expected NPV and vari-
ance. They find out that the expected revenues vary linearly with the variance.

Gupta and Maranas (2003) also analyze the variability of the expected costs
scenarios through the variance. They assume a variance target as a constraint,
where the variance of the probability distribution of the cost must be less or
equal this target. Their model is optimized as a multi-stage stochastic pro-
gram considering the uncertainty of demand and a risk-neutral decision-maker.
However, representing the variability of the expected performance using the
variance may not be optimal, as they deal equally with the extreme events
around the mean.

The downside-risk, first proposed by Eppen et al. (1989) is also considered
as a financial risk metric. Cheng et al. (2003) consider the downside risk as an
additional objective function besides maximizing the revenues and minimizing
the process lifetime under the uncertainty of demand and technology evolution.
They deal with the problem as a multi-period MOO Markov decision process
with recourse, in which a 2SSP is solved each timespan. A set of solutions is
obtained as a Pareto frontier. Later on, Barbaro and Bagajewicz (2004) manage
the risk in a similar way, by identifying a cost target while minimizing the
downside risk besides maximizing the expected NPV for a capacity expansion
problem in the framework of two-stage stochastic programming.

Gebreslassie et al. (2012) analyze the conditional value at risk (CVaR) and
downside risk as additional objective functions besides the expected revenues
for the strategic design of hydrocarbon bio-refinery SC subjected to uncertainty
of hydrocarbon biofuel demand and biomass supply. In order to reduce the
computational time efforts, the authors implement the decomposition technique
based on the Multi-cut Benders decomposition algorithm developed by You
and Grossmann (2013). Later on, Zhang et al. (2016a) incorporate the CVaR
as a financial risk metric in the stochastic operational model of power-intensive
plants under the uncertainty of electricity price and product demand. According
to the context of their work, the authors conclude that considering risk-averse
approach leads to better solutions than the risk-neutral approach.

Different risk measures have been analyzed and compared. You et al. (2009)
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analyze different risk measures ( variance, variability index, downside risk, prob-
abilistic financial risk) for a SC tactical problem under uncertainty of demand
and freight rates. According to the context of their study, they conclude that
the probabilistic financial risk and the downside risk lead to better perfor-
mance. Later on, Cardoso et al. (2016) integrate four risk measures for the
strategic-tactical MOO optimization of closed-loop SCs: variance, variability
index, downside risk and CVaR. They conclude that the selection of the risk-
measure depends on the risk behavior of the decision-maker; variability index
is the most adequate for risk-averse decision makers, while the CVaR is the
most adequate for risk-seeking decision makers.

However, the financial risk metrics depend on the firm preference. In this
thesis, different solutions are proposed according to the enterprises decision-
makers preferences and risk-behavior. Another metric is developed in this thesis
to evaluate the variability of the performance metric scenarios based on the
probability of acceptance. Furthermore, the effect of the uncertain behavior
of the external partners (third parties) on the different risk behavior decision-
makers is also analyzed in this thesis.

3.8 Modeling systems

Several commercial systems can be used to implement the mathematical mod-
els (deterministic, stochastic, etc.) such as the General Algebraic Modeling
System (GAMS), the Advanced Integrated Multidimensional Modeling Soft-
ware (AIMMS), A Mathematical Programming Language (AMPL), and the
Open Programming Language (OPL). These modeling systems are connected
automatically with several optimization solvers. They also have the ability to
interface with other database packages or programs.

In this thesis, the GAMS modeling system is used to implement the devel-
oped mathematical models.
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Chapter 4

Global Coordination of Large-Scale Supply Chains
with Third Parties

4.1 Introduction

Current Supply Chain (SC) tactical models focus on the optimization from

a centralized perspective, disregarding the decisions of the supporting ex-
ternal enterprises "third parties" (raw materials and utilities suppliers, clients,
waste and recovery systems, etc.). Third parties, which might face different
enterprises (clients/providers), are represented by fixed parameters (price, ca-
pacity, etc.) in the decision-making process. By doing so, much information
is lost leading to sub-optimal decisions, especially when a global coordination
with a detailed master plan to be established in a competitive environment.

This chapter extends the tactical decision-making scope by including the
detailed description of the third parties as full SC management problems. A
global coordination framework is proposed to coordinate the decisions of the
main production SC enterprises and their third parties within a global SC net-
work with multiple echelons (main production SC and third parties SCs). A
generic coordinated tactical model is developed to optimize the decision-making
of multi-site multi-echelon multi-product global SCs under the objective func-
tion of minimizing the total cost of the whole system (main production SC
cost plus the third parties SC cost), considering the production vs. demand
coherence.

The advantages of the proposed generic model is illustrated using a case
study which coordinates a multi-site multi echelon polystyrene production SC

(as main enterprise) with a multi-site multi-echelon energy generation SC (as
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third party). The results show that the behavior of the third parties has a
significant role in improving the global decision-making.

4.2 Problem statement and methodology

This chapter aims to optimize a global SC decision-making through coordi-
nating the tactical decisions of all participants (main enterprise SC and third
parties). The main enterprise multi-site multi-echelon multi-product SC con-
sists of supplying, production, distribution, and storage echelons (Figure 4.1).

. 3rd pﬂ['ty

Figure 4.1: Main enterprise SC network

A global coordination approach is proposed based on incorporating the de-
tailed information of the third parties as full SC management problem (Figure
4.2). The proposed approach is flexible enough to capture different simultane-
ous partitions; the resulted global SC network deals with the partitions SCs
as echelons among the entire system. Within the coordinated framework, each
echelon is able to, simultaneously, play different roles (e.g.: client in one SC,
provider in another SC) according to the boundaries of the specific system to
be optimized.

The resulting global SC is coordinated through the production vs. demand
coherence among their production echelons. The main SC enterprise and the
3' parties agree to collaborate towards optimizing the objective function of
the whole system (summation of their objective functions).
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Figure 4.2: Global coordinated SC network

4.3 Mathematical formulation: a holistic model

A generic coordinated tactical model is developed, in which it integrates the
detailed characteristics of the third parties as full SCs in the tactical decision-
making process of multiple echelons. To do so, a set of echelons (el, €2,...,F)
is developed with their corresponding new subsets linking the elements (pro-
duction plants/products/warehouses/markets) to their corresponding echelon.
The proposed model also includes a set of external suppliers S and markets M.
A set of resources R is developed to represent RM, intermediate/final prod-
ucts, energy, etc. Discrete time formulation is considered with a time hori-
zon T. The coordinated model is built on several equality and inequality con-
straints representing the resources and economic balances, activities (produc-
tion/storage/distribution) relations, and minimum/maximum capacities.

Eq. (4.1) represents the coordination between the production echelons of
the SCs through the internal demand InD, . ; vs. production between the
supplying and production echelons.
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[nDr’,e’,t = § prfr,r’,e-PRDr’,e,t
r'€R,r'#r

Vr € Rie€c E;e € E;teT

The final customer demand dem, .+ of resource r must be satisfied from
the SC echelons e (Eq. (4.2)). This equation can be easily modified to consider
other policies such as penalty costs.

> DLV,eery >dempoy Ve € Mire RiteT (4.2)
ecE,e#e’

Egs. (4.3), and (4.4) represent the minimum and maximum production, and
storage capacities, respectively. No capacity constraints are considered for the
external suppliers and the external markets, as they are out of the optimization
boundary of the SC of interest.

prd < PRD, ., < prd’&% VreRiec EsteT  (4.3)
St < STyeq < sted VreRec (E—-S—M)teT  (4.4)

Eq. (4.5) illustrates the resources balance, which must be satisfied at each
echelon node. The resources stored at any time period in any echelon menus
the safety stock menus the previously stored resources must be equal to the in-
coming resources menus the outgoing resources. The term (prfy ;s . PRD, ¢ 1)
represents the coordination among the several echelons, where the internal de-
mand of the interacting resource 1’ (energy, wastewater, intermediate products,
maintenance, etc.) is equal to the production levels of this resources in the
provider SC echelon. This value depends on the utilized recipe represented by
the production factor prf, ,s . using resources r, assuming linear correlation.

STrer— sty 0% —STpes 1= > DLVye et + PRDycy

T,e

e'eE e #e
- Z DLV, et — Z prT,r’,e~PRDr/,e,t (45)
e’’€E,e'"#e r’'€R,r#r!

Vre Riec E;teT
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The objective function is to minimize the total cost of the global SC (Eq.
(4.6)), which is the summation of the echelons SCs costs.

TCOST = COSt, (4.6)

eckE

Eq. (4.7) represents the cost of each echelon SC COST,, which is equal to
the summation of the external resources acquisition, production, storage and
distribution costs, respectively.

COST. =Y CRM,;+ CPRy+ CST,; + CTR., (4.7)
teT

The externally supplied resources acquisition cost CRM, ; is equal to the
amount of external resources needed for the production processes multiplied
by the unitary acquisition cost urm, . for each echelon each time period (Eq.
(4.8)). This equation can be extended when considering different pricing func-
tions as in Chapter 5. The production cost CPR, ; is computed by considering
the unitary production cost upry. ., of the resource r in echelon e (plants) each
time period (Eq. (4.9)). The storage cost C'ST, ; (Eq. (4.10)) is obtained based
on the amount of resources (RM, intermediate products, final products, etc.)
stored each time period. Finally, the distribution cost CTR,; is calculated
based on the distance between the different echelons and the unitary transport
cost, which depends on the product type, transport route, etc. (Eq. (4.11)).

CRMy =Y PretQres Ve€EteT (4.8)
reR
CPRey =Y uprresPRDycy  Ve€EteT (4.9)
reR
CSTeyr =Y ustrc.STyer Ve€EteT (4.10)
reR

CTR.; = Z Z disecr utry oo DLVpe oy Ye€ EjteT  (4.11)
r€Re'€E,e'#e

The total sales are computed based on the retailed price of the final prod-
uct delivered to the external markets (Eq. (4.12)). Although, according to Eq.
(4.2), additional delivery amounts to the external markets is allowed, its even-
tual revenues are not included, so this eventual mismatch between the deliver-
ing echelons and the external markets can be penalized, and the sales can be
computed according to Eq. (4.13).
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SALE, = Z Z err@t.demm,ez,t Vee E (4.12)

reRe’' e M teT

SALE. =Y > Y [uplr,e,t.demr,e,e/,t + (rpriet — uplres) Y DLVT,e,ef,t}
reRe’ €M teT e'eM
Vee E
(4.13)

Eq. (4.14) represents the total sales of the global SC, which is the summation
of the echelons sales.

TSALE = SALE, (4.14)

ecE

Finally, the total SC profit (Eq. 4.15) is computed as the difference between
the total sales and the total costs.

PROF = TSALE — TCOST (4.15)

These mathematical formulations result in a LP tactical model, which is
flexible enough to deal with the arising complexity due to the incorporation of
different SCs with their detailed characteristics. The proposed model is generic
enough to be applied to single echelon and large-scale multi-echelon SCs, de-
pending on the boundary of the SC under study. Furthermore, the developed
LP model can be easily extended to cope with the nonlinearities resulted from
considering complex production recipes, cost functions, uncertainty (e.g: prices
fluctuations, non-linear forecasted demands, resources availability, etc.). The
proposed model also has room to consider discrete decisions such as assign-
ment production and distribution elements, piecewise price functions, etc.

4.4 Case study

The advantages of the proposed model has been illustrated using a case study
of a multi-site multi-echelon multi-product polystyrene production-distribution
SC and a multi-site multi-echelon energy generation SC (Figure 4.3).

The polystyrene production SC consists of 4 raw materials suppliers (supl,
sup2, sup3, and supd), 3 polystyrene production plants (pll, pl2, and pl3), 2
distribution centers (dcl and de2), and 4 markets (mkl, mk2, mk3, and mk4).
The polystyrene production SC produce 2 products (A and B) using rml and
rm2 to produce product A, and rm3 and rm4 to produce product B. The
polystyrene production SC receives energy from the energy generation SC. The
SC includes a wastewater treatment plant (WWTP) with an energy rate of
0.43 kWh/ton.
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Case study

Figure 4.3: Global SC network

The energy generation SC includes one RM supplier of different biomass
sources and coal (wood pellets-bl, coal- b2, petcock-b3, and marc waste-b4)
feeding 6 renewable energy generation plants: 3 gasification plants (g1, g2, and
93) and 3 combustion plants (g4, g5, and g6). The energy generation SC has
200 kg safety stock of RM with a storage capacity of 1000 tons/time period.
It is assumed that the RM transport and storage is on the charge of the SCs
enterprises; no minimum capacities are considered for any of the SCs activities.

The characterization parameters of the whole system network are summa-
rized in Tables (Appendix B.1-B.11).

The coordination approach regards the polystyrene production SC enter-
prise as the main enterprise, and the energy generation enterprise as the third
party. This results in a global SC with multiple echelons (Figure 4.4).
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[ ] 3rd party Main enterprise
' Energy generation SC Polystyrene production SC

g2

Figure 4.4: Coordinated global SC network

4.5 Results and discussion: coordinated vs. non-
coordinated systems

The model formulations are implemented to GAMS and solved using CPLEX
12.50 to the above case study for 10 time periods; 1000 working hours each. The
results of the proposed coordinated approach are analyzed and compared with
the traditional non-coordinated approach. The coordinated approach results in
one tactical model to be solved under the objective function of minimizing the
total cost of the whole SC network. The non-coordinated approach results in
two tactical models to be optimized, separately, under the objective function
of minimizing the individual costs considering the interaction between the SCs
(supply/demand) as fixed parameters.

4.5.1 Tactical decision-making

Then the optimal tactical decisions of the global SC are obtained. The results
show that different tactical decisions are obtained for both polystyrene and
energy SC enterprises. Figures 4.5 and 4.6 illustrate the polystyrene production
levels of products A and B resulted from the cooperative coordinated and non-
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coordinated approaches. It is noticed that the polystyrene production orders
resulted from the coordination system have been reallocated to reduce the load
on the energy generation SC. For example, using the coordinated approach, to
produce product A, the polystyrene production plant pl1 functions at the first
time periods (¢1-t4) to the high demands at ¢4, and the excess amounts will be
stored and distributed later at t4.

For the non-coordination system, the production plants pl2 and pl3 are
overloaded up to their production capacities, while pl1 is shut all time periods
except at t4 due to the high demand at this time period. This non-cooperative
behavior forms a load pressure on the energy generation plants feeding pl2 and
pl3 (see Figure 4.3). The dominance of the polystyrene production plant pl2 to
produce product A is due to its closest distance to the dominant RM suppliers
sup2 and sup3 (see Table Appendix B.10), while the polystyrene production
plants pl1 and pl3 dominate producing product B.
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Figure 4.5: Polystyrene production levels (product A)
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Figure 4.6: Polystyrene production levels (product B)

Consequently, the polystyrene storage levels (Figures 4.7 and 4.8) have been
reallocated to follow the production levels (see Figures 4.5 and 4.6). For exam-
ple, the storage levels are high at time periods t1-t3 and ¢8 to store the excess
of the high production levels at those time periods, so to be distributed later
at higher demand periods (i.e t4 and t9).
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Figure 4.7: Polystyrene storage levels (product A)
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Figure 4.8: Polystyrene storage levels (product B)
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Figure 4.9 shows the energy flows between the energy generation plants
and the polystyrene production plants. Figure 4.9(a) illustrates the energy
flows resulted from optimizing the coordinated SC model. Figure 4.9(b) shows
the energy required for the polystyrene production resulted from solving the
polystyrene production SC model, separately. These energy amounts are intro-
duced as fixed energy demands for optimizing the energy SC tactical model,
separately (non-coordinated). It is noticed that using the proposed coordinated
approach results in less energy order loads resulting from functioning all the
polystyrene production plants. This can be seen clearly in Figure 4.10.
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Figure 4.9: Energy flows (supplied /demanded)
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The energy generation levels among the renewable energy plants can be seen
in Figure 4.10. It is noticed that the energy generation levels follow the energy
demands by the polystyrene plants as in Figure 4.9 and the energy external
markets (see Table Appendix B.11). The trend of the coordinated system is
to function the cheapest energy generation plants (combustion plants g4, g5
and ¢6), while the non-coordinated system leads to function the combustion
plants g5 and g6 up to their generation capacity (5 GWh/time period) and the
gasification plant g2 (expensive choice) in order to cover the rest of the energy
demands.
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Figure 4.10: Energy generation levels
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Accordingly, using the non-coordinated system, the polystyrene SC enter-
prise decision-maker forms a pressure on the energy generation SC to generate
energy according to her/his best conditions, leading to generate many energy
plants up to their capacity. Such a bias situation may lead to infeasible solu-
tions in case of higher energy demands than the energy generation capacity, and
thus leads to disruptions in the whole system. This stresses the importance of
the proposed coordinated approach, as it incorporates the detailed description
of the energy generation SC to avoid infeasible and expensive solutions. Using
the coordination approach leads to different SC behaviors, and thus affects the
tactical decision-making of the whole system.

4.6 Economic analysis

As described in the above section, the coordination approach leads to flexible
and feasible solutions for all participants. This section analyses the effect of
the coordination approach on the total costs. Table 4.1 summarizes the eco-
nomic results of both participating SCs, comparing with the non-coordinated
system. It is noticed that the coordination leads to 2.5% savings in the total
cost (434,170 m.u.) in 10 time periods.

Table 4.1: Economic analysis

Non-coordinated SCs Coordinated SCs

Echelon 1 (Energy SC) cost (10® m.u.) 7,373 6,894
Echelon 2 (Polystyrene SC) cost (10® m.u.) 10,745 10,790
Total cost (10® m.u.) 18,118 17,684

Figure 4.11 illustrates the economic breakdown of the total costs resulting
from the coordinated system, in comparison with the non-coordinated system.
It can be observed that coordinated SCs behave in favor of the global SC objec-
tive function. The distribution cost of the polystyrene production SC slightly
increase by 2.3%, but, simultaneously, the energy generation SC improves the
savings of the RM acquisition, distribution, and energy generation total costs by
4.9% (34,357 m.u.), 0.3% (1,584 m.u.), and 7.8% (442,974 m.u.), respectively.
Although the coordination leads to slightly increase (0.42%) in the polystyrene
production SC total cost, but, a high savings (6.95%) in the energy generation
SC can be achieved. Consequently, a trade-off among the decisions of both SCs
enterprises (main enterprise and the third party) can be seen.
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Figure 4.11: Total cost breakdown

4.7 Final considerations

In this chapter, a global coordination approach has been proposed and com-
pared with the traditional non-coordinated approach. The tactical decisions of
the SCs enterprises have been coordinated with their supporting external enter-
prises "third parties" (raw materials and utilities suppliers, clients, waste and
recovery systems, etc.). A generic LP coordinated tactical model is presented
considering the detailed description of the participants (main enterprises and
third parties) as full multi-site multi-echelon multi-product SCs, flexibly linked
together among a global SC network of multiple echelons.

The resulting coordinated tactical model is useful to analyze the behavior
of the echelons SCs, which is found to be different than the non-coordinated
system. Such a behavior affects the tactical decisions of both SCs, since the
coordinated model allows to find better global behavior. Al these elements are
incorporated in the proposed coordinated tactical model, which is able to opti-
mize any multi-site multi-echelon multi-product SC problem, taking into con-
sideration the detailed characteristics of each echelon/ organization interacting
within one global SC network.

The proposed model allows coordinating the production, storage and dis-
tribution activities of all echelons, and thus it helps in improving the global
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objective of the whole system. All participants organizations decisions are af-
fected by the decision-making of the whole system. This allows the participants
organizations to share responsibilities. This work can be easily extended to in-
corporate uncertainty issues, so all participants can also share future risks.

The coordination approach has been tested and compared to a global multi-
site multi-echelon multi-product SC with two interacting SCs (polystyrene pro-
duction SC and renewable energy generation SC). The results show improve-
ments in the total cost with less RM use, while meeting the same market
requirements.

Finally, this chapter adds to PSE a new decision-support tool able to coor-
dinate the information of all participants involved in system of study towards
global objectives and optimal resource management.

Next chapter, this work will be extended to incorporate the decisions of the
external competitive suppliers through optimal integration of their complex
policies.

4.8 Nomenclature

Indices

echelon (production plant, distribution center, market,...)
resource (raw material, product, energy, steam, cash,...)
time period

echelons (production plant, distribution center, market...)
final customer

external suppliers

resource (raw material, product, energy, steam, cash,...)
time period

Nmezmye Tvo
[l
0]

Parameters

dise er distance between echelon e and echelon e’

demy e e’ external demand of resource r at echelon e from echelon e’ (final
consumer), time ¢

Dre,t unitary resource r cost from echelon e (supplier), time ¢

prd;e maximum delivering capacity of resource r at echelon e (produc-
tion plant/supplier), time ¢

prd:’féf; minimum delivering capacity of resource r at echelon e (produc-
tion plant/supplier), time ¢

PV frrt e production factor of resource r’ from resource r in echelon e

Stifé”k initial stock level of resource r in echelon e

Stet maximum storage capacity in echelon e for resource r, time ¢

Semin minimum storage capacity in echelon e for resource r, time ¢

UPTr.et unitary production cost value to produce resource r from at

echelon e, time t
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UPly,e,t

UStye,t
ULTy ¢ e

TPr,e,t

Variables
COST.
CPRe:+
CRM. +
CSTet
CTR.:
DLVr,e/,e,t

]nDr’ el t
PRD,: .,
PROF
Qr,e,t

SALE.
STr,e,t
TCOST
TSALE
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unitary penalty cost for extra-delivery of resource r at echelon
e (market), time ¢

unitary storage cost of resource r at echelon e, time ¢

unitary transport cost for resource r from echelon e to echelon
e/

retailed price of resource r at echelon e, time ¢

cost of echelon e

production cost at echelon e, time ¢

externally supplied resources cost at echelon e, time ¢

storage cost at echelon e, time ¢

transport cost at echelon e, time ¢

amount of resource r delivered from echelon ¢’ to echelon e, time
t

internal demand of resource v’ from echelon ¢, time ¢
production levels of resource 7’ in echelon (plant) e, time ¢
total profit

resources r purchased from external suppliers at echelon e, time
t

sales of echelon e

storage level of resource r in echelon e, time ¢

total cost

total sales



Chapter 5

Optimal Integration of Competitive Third Parties

5.1 Introduction

he competitiveness among chemical industry SCs enterprises stresses the
necessity of effective coexistence between them through global coordina-
tion considering their supporting enterprises (third parties) (resource suppliers,
clients, waste & recovery systems, etc.). In the reviewed literature, the rela-
tionships between third parties and their clients/providers are characterized by
simple economic transactions represented by fixed parameters, and they are
usually modeled by average prices. The pricing behavior of the third parties
resources is usually neglected, which may affect the SC equilibrium.

Since demand is a price sensitive (Viswanathan & Wang, 2003), prices can
be considered as a driving force for effective decision-making. So, incorporating
the pricing decisions of the third parties with some discounts can be considered
as joint collaboration tool to capture competitiveness. The prices polices of the
third parties, as dynamic marketing variables, affect the supply /demand orders,
and thus any pricing decision will affect the global coordination of the whole
network under study. None of the reviewed literature integrate the third par-
ties prices policies as part of the decision-making process of global interacting
SCs. By doing so, the impact of the third parties on the decision-making of the
business partners and vice versa is neglected, leading to sub-optimal decisions
from the global point of view, especially in a highly competitive environment.
Accordingly, integrating the third parties decisions and policies in the global
coordinated SCs decision-making becomes a challenging problem as enterprises
seek competitive performance, especially when their coordination is highly af-
fected by the competitive behavior of their third parties.
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In this chapter, the global coordination framework proposed in Chapter 4 is
extended to integrate the resources and financial flows of the surrounding third
parties based on the trade-off between the third parties marketing and the
coordinated SC operations. The global coordinated SC boundary is extended
to incorporate the price polices of the competitive third parties, thus enabling
them a degree of freedom to control their financial nodes with the global coor-
dinated SC. A generic tactical coordinated base model is developed integrating
the decisions of the competitive third parties and prices policies as part of the
decision-making process of multi-echelon multi-product coordinated SC.

Then, to achieve a more realistic evaluation of those prices policies in each
marketing situation, different pricing approximation models are proposed and
compared to estimate the price policy of each third party. The pricing approx-
imation models are developed based on fixed, piecewise, and polynomial price
vs. demand relationships. The piecewise and polynomial pricing approxima-
tion models are built on prices discounts based on price elasticity of demand,
so the third parties can compete in the global market. The use of different
price approximation functions results in LP, NLP, and MINLP tactical opti-
mization models aiming to minimize the global coordinated SC cost. The effects
of using the proposed models on the global SCs coordination are verified and
compared using the case study extended from Chapter 4. The results show that
the pricing approximation type affects the individual and global SCs tactical
decision-making, with the worst decisions regarding the use of average pricing
approximation.

5.2 Problem statement and methodology

The objective of this chapter is to achieve global coordination considering the
dynamic interaction among the participating enterprises and their competitive
third parties in a multi-site multi-echelon multi-product SC (Figure 5.1). The
coordination framework proposed in Chapter 4 is extended to include the third
parties decisions in the global SC tactical decision-making process. The global
SC consists of a production SC echelon and a provider SC echelons, all of them
are surrounded by different competitive third parties. The main production SC
produces products to final customers using resources (RM, intermediate prod-
ucts,ete.) from the provider SC and third parties. The provider production SC
delivers products to final customers and to the production SC using resources
from third parties. The main partners of collaboration are the global coordi-
nated decision-maker and the third parties.
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’ Global coordinated SC »

- — oy,

Figure 5.1: Coordinated global SC network

Each participating third party has its own real price policy in function of
the quantity demanded by the global coordinated SC decision-maker (Figure
5.2). These real price polices will be incorporated into the global tactical model
as a joint collaboration tool between the global coordinated SC decision-maker
and all competitive third parties. Such polices are complex to integrate into
the model formulation, so, and in order to be more realistic, different pricing
approximation models are developed based on average fixed, piecewise, and
polynomial functions to estimate the real prices policies of all third parties.
The participating enterprises cooperative in one global coordinated network,
taking into consideration their detailed information and the price policies of
their competitive third parties. All of them collaborate to enhance the global
coordination that satisfies the markets demands under the summation of their
objective functions.
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Price

Demand

Figure 5.2: 3'¢ party real price policy
5.3 Mathematical formulations

The generic coordinated tactical model proposed in Chapter 4 is conveniently
modified and extended for the purpose of this chapter. The main objective of
the proposed coordinated tactical model is to achieve the global coordination
with all participants through synchronizing their activities taking into consid-
eration their detailed characteristics as full SCs with their competitive third
parties. This can be done by integrating the trade-off between the third parties
prices and quantity demanded (Eq. (5.1)). As first step, the prices of the third
parties resources are considered as degree of freedom decisions in the tactical
base model. Then, this base model is extended to test the different pricing ap-
proximations. To do so, a set echelons (¢ € D) is proposed to represent the
third parties in the model formulations.

Eq. (4.8) in Chapter 4 is extended to include the unit resource price P, ./,
as decision variable among the global coordinated model (Eq. (5.1))

CRMey= Y, > ProtQreer Ve€EteT (5.1)
e’'eD,e’#ErER

Then, the generic base model is divided into several tactical pricing models
according to the pricing approximation approach, as explained in the next sub-
sections:

5.3.1 Average fixed pricing model

The real price policy of each third party is approximated to an average fixed
price vs. quantity demanded. In this case, the quantity demanded is considered
perfectly elastic over the time horizon ¢ (Figure 5.3).

Eq. (5.2) illustrates the price P, ; function considering average fixed ap-
proximation.
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Price (F)

Y

Quantity demanded ()

Figure 5.3: Fixed pricing vs. demand

Py = Z(P mar 4 pfminy /2) Ve' € D;e' e E;e' # E;teT  (5.2)

’ !
re’,t re’t

reR

5.3.2 Polynomial pricing model

Based on the price elasticity of demand, a polynomial pattern is adjusted (Fig-
ure 5.4). The price of the external resources P, ./, can be calculated as in Eq.
(5.3), where ¢, , is a parameter depending on the initial price, resource capacity,

and price elasticity of demand.

Price (P)

L 2

Quantity demanded (@)

Figure 5.4: Polynomial pricing vs. demand

A
Prey = Cap(Qreret)®™ VreERd €D ecEid £#EteT (53)
a=1
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Different polynomial grades can be implemented using Eq. (5.3), depending
on the polynomial grade function represented by A.

5.3.3 Piecewise pricing model

The piecewise pricing model is based on assigning different prices to the quan-
tity demanded per time. several pricing zones (n = 1,2, ..., N) are defined by
each third party depending on the quantity demanded @ ¢ ., along the time
horizon T (Figure 5.5).

\
|
— Pret
B |
g |
L |
|
a— _'_ P —
| | |
x1 | x2 | xn |
Qr.elet -
(23] Q2 on

Quantity Demanded (@)

Figure 5.5: Piecewise pricing vs. demand

To allocate each quantity to its corresponding price, binary variables (z1,
x2,...,xn) (Eq. (5.4)) are used.

Z Tperpm <1 Vre Rie’ € Diec E;e/ #£e;tcT (5.4)
neN

The resources quantities constraints each pricing zone are identified as in
Eq. (5.5).

max max
il?r,e',t,n-Qr,e/,e,t,n—l S Qnreretn < xTve’atvn'Qr,ehe,t,n
/ /
Vre Rje' € Diec E;e #£esne NjteT

It is assumed that the quantity demanded @ ¢/, from each third party
can be ordered once at any time period. This means that @, ¢ ¢+ is equal to

Q1, or Q2, (...), or @n (Eq. (5.6)).

94



Case study

Qrer et = Z Qe etn Vre Rje' € Diec B¢ #e;teT (5.6)
neN

The price elasticity of demand ED,. . ., is calculated as in Eq. (5.7).

5@”7‘,6’,6,75,71

EDT,e’,e,t,n = 5P
Nyre t,n

Vr€ Rie' € Dijec Eysne N;teT  (5.7)

The external resource price Pn,. ¢/ ;. each pricing zone is identified as in Eq.

(5.8), where et .n corresponds to the price limit of any pricing zone n € N.

max < max
Lre'tn-dre tn > Pnr,e/,t,n < Lre tn-dr e tn

(5.8)
VreRie €eD;neN;teT

Then the third parties resources prices P, . ; is calculated as in Eq. (5.9)

Pres=» Pnpeyn VreReeDiteT (5.9)
neN

The above mathematical formulations result in LP (fixed pricing model),
NLP (polynomial pricing model), and MINLP (piecewise pricing model) pro-
grams. These programs are solved to minimize the total cost of the global
coordinated SC. The tactical master plan is to be obtained over the resources
acquisition from third parties, unit transfer price, production, storage, and dis-
tribution flows and directions along a discrete time horizon 7.

5.4 Case study

The impact of using the proposed LP/NLP/MINLP pricing approximation
models on the individual and global decision-making is demonstrated using a
case study modified and extended from chapter 4 (Section 4.4). Four biomass
and coal suppliers compete as third parties to provide resources (b1, b2, b3, and
b4) to the energy generation SC (Figure 5.6).

On the other side, four suppliers compete as third parties to sell 4 types of
RMs (rml, rm2, rm3, and rm4) to the polystyrene production SC. The main
purpose is to determine the resources physical/economic flows (blue lines in the
figure) between third parties and the global SC along the considered planning
horizon that guarantee optimal coordination among all participants.
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Figure 5.6: Case study

5.4.1 Pricing models implementation

The third parties price policies have been assumed arbitrarily, based on their
current market prices range, along the considered planning time horizon. Each
competitive third party has its own price policy. Then, these complex price
policies are approximated resulting in four pricing approximation models: i)
average fixed, ii) piecewise, iii) quartic polynomial, and iv) linear polynomial
(Figures 5.7 and 5.8), to be used during the optimization process of the coor-
dinated global SC.
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Fixed pricing

Table 5.1 summarizes the resources average fixed prices resulting from the
average fixed pricing approximation.

Table 5.1: Resources average fixed prices

Resource  Price (m.u./kg)

rml 1.00
rm?2 0.90
rm3 0.90
rm4 0.85
bl 0.060
b2 0.040
b3 0.065
b4 0.055

Polynomial pricing

Two polynomial trends are considered and compared for this study: quartic
polynomial (with polynomial degree 4) and linear polynomial (with polynomial
degree 1) (see Figures 5.7 and 5.8). The characteristics of the polynomial pricing
approximation model (Eq. (5.3)) are illustrated in Table 5.2

Table 5.2: Polynomial pricing approximation parameters

Quartic polynomial Linear polynomial

Raw material cl c2 c3 c4 ch ‘ cl c2
rml 8.43E-25 7.61E-18 -5.03E-12 5.04E-09 1.155 ‘ -6.0E-07 1.15
rm2 -2.32E-23  2.95E-17  -1.01E-11 1.43E-07 1.003 | -8.5E-07 1.00
rm3 -2.32E-23  2.95E-17 -1.01E-11 1.43E-07 1.003 | -8.5E-07 1.00
rm4 0 3.68E-17  -1.33E-11  -2.50E-07  1.007 | -1.25E-6 1.00
bl -2.5E-29 8.82E-22  -4.05E-15 -2.89E-10 0.070 | -4.0E-09 0.070
b2 -3.6E-29 7.33E-22  -3.01E-15 1.26E-10 0.045 | -2.6 E-09  0.045
b3 -3.6E-29 1.03E-21  -4.54E-15 -1.54E-10 0.075 | -4.5 E-09  0.075
b4 -1.3E-29 7.36E-22  -3.56E-15  -4.25E-10  0.065 | -4.0E-09 0.065
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Piecewise pricing

For this study, three pricing zones are considered (n=3) for each third party
resource feeding the global SC. The price elasticity of demand (ED) for the
first and the third pricing zones (n=1 & n=3) is equal to zero. All competitive
third parties offer price discounts at zone 2 (n=2) based on the price elasticity
of demand theory. The price elasticity of demand is considered (-20) for the
third party resources feeding the polystyrene production SC echelon, and (-25)
for the resources feeding the energy generation SC echelon.

Table 5.3 summarizes the parameters needed to implement the piecewise
linear pricing model (see also Figures 5.5, 5.7, and 5.8).

Table 5.3: Piecewise approximation parameters

Prices constraints (m.u./kg) Quantity constraints (tons)
max. price min. price ‘ max. zone 1 max. zone 2 max. zone 3
rml 1.15 0.86 | 60 360 450
rm2 1.00 0.75 | 45 270 300
rm3 1.00 0.75 | 45 270 300
rmd 1.00 0.70 \ 30 210 240
bl 0.070 0.054 | 450 3,000 4,000
b2 0.045 0.035 | 450 3,000 4,000
b3 0.075 0.058 | 450 3,000 4,000
b4 0.065 0.050 | 450 3,000 4,000

5.5 Results and discussions

The proposed pricing approximation models, within the global SC framework,
are implemented to the above case study considering third parties prices poli-
cies, resources balances, processes availability, and capacities over 10 time pe-
riods planning horizon; 1000 working hours each. The resulting LP, NLP, and
MINLP models are modeled using GAMS and solved using different optimiza-
tion packages on Windows 7 computer with Intel Core™ i7-2600 CPU 3.40GHz
processor with 16.0 GB of RAM.

5.5.1 Solution procedure

The solution procedure is divided into two steps: i) optimization, and ii) sim-
ulation.
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i) Optimization step:

The optimization step involves in solving each pricing model (4 global tacti-
cal models), separately, under the objective function of minimizing the total
SC cost. The optimal tactical decisions are obtained from this step, and com-
pared for each pricing approximation model (resources flow distribution @ from
the third parties, resources unit price P, production levels, storage levels, and
distribution flows and directions).

ii) Simulation step:

Then, the optimal resources purchase flows () from the third parties resulting
from the optimization step (step i) are allocated to their real prices each time
period (according to Figures 5.7 and 5.8). Then, the pricing approximation
models are simulated using the optimal resources @ and their real prices to
obtain the associated real total costs. These real total costs are compared with
the total costs resulted from the pricing approximation models in order to find
out the most adequate pricing approximation method.

The results are analyzed and compared in order to evaluate the efficiency of
these alternative pricing approximation approaches over the tactical decisions
of the participating partners. The optimal tactical decisions resulted from the
pricing approximation models are analyzed and compared to study their role in
capturing the competition among the interacting third parties. The results show
that the selection of the pricing approximation approach affects the tactical
decision-making of all participants.

In the next paragraphs, the effects of the pricing modeling on the tactical
decision-making of both the polystyrene production SC echelon and the energy
generation SC echelon are studied in details, and compared.

5.5.2 Results: polystyrene production SC

The results show that the pricing approximation models affect the tactical
decision-making of the polystyrene production SC. The RM purchase levels
from the third parties (suppliers) vary according to each pricing approximation
model. For example, rm1 and rm2 suppliers compete to deliver for producing
polystyrene product A, while rm3 and rm4 suppliers compete for polystyrene
product B. It is noticed in Figure 5.9 that rm2 and rm4 dominate the RM
purchase amounts using most of the pricing approximation approaches, except
the piecewise pricing approach. The dominance of rm2 is due to it lower prices
than rml (see Figure 5.7) and less distance to the dominant polystyrene pro-
duction plants (pl2 and pi3) (see Table Appendix B.10 and Figure 5.11).

The trend of using the price approximation models, considering price dis-
counting policies, is to purchase high quantities of RM from the third parties in

order to get higher discounts. This can be clearly seen in Figure 5.9(d); using
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the linear polynomial pricing approach leads to purchase rm4 up to its supply-
ing capacity (240 tons) all time periods to produce product B, and rm3 at time
periods t1, t3 and t5 also up to its supplying capacity in order to get the least
price offer. This leads to excess products to be stored for later distribution, and
to stop producing polystyrene product B at time periods t4 and ¢10 (Figure
5.12(d)). However, the trend of using the average fixed pricing approximation
is to purchase from all RM suppliers (except rml due to its high price) at all
time periods (Figure 5.9(a)), as its decisions do not consider any discounts.
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Figure 5.9: Polystyrene SC RM purchased
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Analyzing the results obtained from using the piecewise pricing approxi-
mation (Figure 5.9(b)), it is noticed that, rather than the rest of the pricing
approaches, the rm3 supplier dominates the purchase orders most of the time
periods for polystyrene product B production. Regardless of its higher price
comparing with rm4, the difference between their prices is low (Figure 5.10(b)),
so the trend is to purchase from the highest supplying capacity (rm3). At the
contrary, although rm1 has higher supplying capacity than rm2, the decision
is to purchase from the supplier of the last rm2 up to its capacity (300 tons)
due to the large difference in their prices (Figure 5.10(a)). This leads to excess
production of product A, to be stored and distributed later at higher demands
periods (see Figure 5.11(b)), and this explains why the purchase level of rm2
is very low (16.40 tons) at time period t10. So, a trade-off can be seen between
the supplying capacity and the RM unit price.
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Figure 5.10: Piecewise pricing approximation analysis
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Consequently, the polystyrene production levels are affected by the selection
of the pricing approximation approach (Figures 5.11 and 5.12). For example,
the polystyrene production levels of product A (Figure 5.11) are affected by
the RM rm2 purchase orders (Figure 5.9) resulted from the different pricing
approximation models, since rm2 dominates the RM orders to produce product
A. The selection of the RM supplier also affects the operation of the polystyrene
production plants (produce or not). For example, the polystyrene production
plant pl2 dominates producing polystyrene product A using all the pricing
approximation approaches, as it is close to the rm2 supplier location (see Table
Appendix B.10). Furthermore, the pricing approximation affects the efficiency
of the coordination among the echelons SCs within the global SC network. For
example, at t10, the production levels of product A (Figures 5.11(b)), 5.11(c),
and 5.11(d)) are very low although the final customer demand is still high.
This is due to the high purchase levels of rm2 at te first time periods leading
to excess production, so this demand can be satisfied by the stored products
in the previous time periods (Figure 5.13).
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Figure 5.11: Polystyrene product A production
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Figure 5.12 illustrates the polystyrene production decisions of product B.
It is noticed that the polystyrene production plants pi1 and pl3 dominate the
production levels of product B in the majority of the pricing models. This
can be explained due to the dominance of the RM supplier of rm4 to produce
product B, as the polystyrene production plant pl1 has the closest distance
with the rm4 supplier sup4 location (see Table B.10). This can be seen clearly
in Figure 5.12(b) using the piecewise pricing approach, the production plant pl1
dominates the production levels of product B at time periods t5, t7, t8 and ¢10,
when the rm4 dominates the RM purchase orders. However, the decision using
the linear polynomial pricing approach is to operate the polystyrene production
plant pl2 besides the other production plants to produce product B at time
periods t1, t3 and t5 (Figure 5.12(d)). This can be explained due to the high
purchase orders of rm3 at those time periods (Figure 5.9(d)), considering that
the polystyrene production plant pl2 is the closest to the rm3 supplier location.
This stresses the distribution role in the global coordination.
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Figure 5.12: Polystyrene product B production
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As it is mentioned before, the storage action has a potential role in this study
(Figure 5.13). Using prices discounts through the different proposed pricing ap-
proximation approaches drives the decision-maker to purchase higher quantities
of raw materials in order to obtain lower prices. This leads to produce extra
products (A and B) to be stored for later distribution in further time periods.
The role of the storage actions in the discounting pricing models can be see
in Figures 5.13(b), 5.13(c), and 5.13(d); the discounting pricing models result
in higher storage levels than the average fixed pricing model (Figure 5.13(a)).
The linear polynomial approximation model results in the highest total storage
amounts (3802 tons) (Figure 5.13(d)), in comparison with the average fixed
pricing (842 tons), piecewise pricing (1718 tons), and the quartic Polynesian
pricing (1721 tons). The average fixed pricing approximation model yields the
lowest storage amounts, as strategy does not consider any discounts. It is no-
ticed that the piecewise and quartic polynomial pricing approximation models
result in high storage levels of polystyrene product A at time periods t7, t8
and t9 (Figures 5.13(b), 5.13(c)). This is due to the high production levels of
product A in those time periods, so that the excess amounts are stored and dis-
tributed at time ¢10, where the production action is very low (Figures 5.11(b)
and 5.11(c)).
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The internal energy demand by the polystyrene SC production plants (the
coordination item) is also affected by the pricing approximation modeling (Fig-
ure 5.14). It is noticed that the internal energy demands follow the polystyrene
production activities, which are affected by the pricing modeling. For example,
the internal energy demand using the linear polynomial pricing modeling (Fig-
ure 5.14(d)) is high at time periods ¢1, t3 and ¢5, as the polystyrene production
levels are very high in those time periods to produce product B.
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5.5.3 Results: energy generation SC

Consequently, and within the coordination framework, the pricing modeling
leads to changes in the tactical decision-making of the energy generation SC
echelon (Figure 5.15). According to the coordination requirements, the energy
generation SC has to fulfill the energy demanded by the polystyrene SC (Fig-
ure 5.14) besides the other external energy markets. It is noticed in Figure
5.15 that the energy generation plants g4, g5 and g6 (combustion technology)
dominate the energy generation levels using most of the pricing approxima-
tion approaches, except the linear polynomial approach. Most of the pricing
approximation models result in closing the energy generation plants g1, g2 and
93 (gasification technology).

However, the linear polynomial model leads to operate the energy genera-
tion plants g1 and g2 at time periods t1, t3 and t5 when the energy generation
plants p4 and p5 exceed their capacities in order to follow the high energy de-
mand by the polystyrene production plants at those time periods resulted from
purchasing high RM amounts (see Figure 5.9(d)). Furthermore, the linear poly-
nomial pricing approximation model results in very low energy generation level
at time period ¢10 (128 MWh; 0.32 % of the total energy generation) (Figure
5.15(d)) due to the low polystyrene production level resulting from the small
purchase amount of RM at this time period (see Figures 5.9(d) and 5.14(d)).
It is also noticed that the piecewise and the quartic polynomial approximation
models result in similar energy generation levels most of the time periods (Fig-
ures 5.15(b) and 5.15(c)). However, at time period ¢6, the piecewise pricing
model leads to operate the energy generation plant g6 up to its generation ca-
pacity (Figure 5.15(b)) in order to cope with the high energy demand resulting
from operating the polystyrene production plant pl3 (Figure 5.12(b)) resulting
from the high raw material 7m3 order amounts at this time period (Figure
5.9(b)).
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Consequently, the raw materials orders for the energy generation vary ac-
cording to the pricing approximation method (Figure 5.16). It is noticed that
the raw material b2 supplier dominates the supplying orders using all the pric-
ing approximation approaches. This can be explained by the operation of the
energy generation plants g4, g5 and ¢6, in which the raw material 2 has the
highest efficiency (2.6 kWh/kg) (see Table B.1), although the raw material b1
has the lowest price. Here it can be seen the trade-off between the efficiency
and the price in the pricing modeling. However, the raw material b2 purchase
quantities vary according to the pricing approximation modeling. For example,
the linear polynomial approximation model results in purchasing the highest
amounts of RM b2 (16,042 tons), especially at time periods ¢1, ¢3 and ¢5 to fol-
low the energy demand resulting from purchasing high amounts of RM purchase
for the polystyrene SC (see Figure 5.9(d)). It is also noticed that the piecewise
and quartic polynomial approximation models lead to very low purchase quan-
tities of raw material b2 at time period t10; 660 tons for the piecewise and
the quartic polynomial pricing models, and 49 tons for the linear polynomial
pricing model.
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Figure 5.16: Energy SC raw material purchase levels

5.5.4 Economic analysis

After obtaining the decisions resulting from each pricing approximation model,
the simulation step starts to obtain the real total costs corresponding to these
optimal decisions. The tactical RM purchase levels obtained from the different
pricing models (Figures 5.9 and 5.16) are allocated to their corresponding real

118



Results and discussions

prices following the 3'¢ parties prices policies as in Figures 5.7 and 5.8). It is
worth to remind that the real prices policies of the 3" parties are complex to
model, so different pricing approximation models are proposed to estimate these
policies and to obtain the optimal RM purchase orders from the 3'¢ parties.
Then, in order to compare these pricing approximations, the pricing models are
simulated considering the optimal RM purchase amounts and their real prices
to obtain the real total costs considering the original price policy.

The total SC cost resulted from the different pricing approximation models
are illustrated and compared with the real total costs in Figures 5.17 and
Table 5.4. It is noticed that the piecewise pricing approximation results in the
lowest real total cost (16.42 x10% m.u.). The linear polynomial and the average
fixed pricing approximation models lead to the worst decisions resulting in the
highest real total costs; 16.58 x10° m.u. and 16.57 x10° m.u., respectively (Table
5.4). Unexpectedly, the traditional average approximation method leads to the
highest RM purchase cost (5.08 x10° m.u.); 4.3 %, 6.4 % and 3.5% higher than
the quartic polynomial, linear polynomial, and piecewise pricing approximation
models, respectively. The trend of the fixed pricing approximation model does
not allow the 34 parties to flexibly control their financial nodes, giving them
less margins to compete.

17.2

H Pricing model

H Real policy

Total cost (10¢ m.u.)

Fixed Quartic Polynomial Linear Polynomial Piecewise

Figure 5.17: SC total cost (pricing models vs. real policies)

Table 5.4 summarizes the model statistics of the proposed pricing approx-
imation models. It is noticed that the most adequate pricing approximation

119
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method (piecewise approximation) requires higher computational efforts (CPU
= 5.8 sec.) than the others, while the worst pricing approximation requires less
computational efforts (CPU = 0.05 sec.).

Table 5.4: Models statistics

Total cost (10° m.u.)

Model Single Single Discrete CPU Pricing Real
equations  variables variable (sec)
Fixed LP 2,752 4,991 - 0.05 17.00 16.57
Piecewise MINLP 3,336 5,495 240 5.80 16.26 16.42
Quartic NLP 2,952 5,191 - 0.13 16.26 16.42
Polynomial
Linear NLP 2,952 5,191 - 0.11 16.49 16.58

Polynomial

An important point arises here is to find another fixed pricing approxima-
tion, rather than the average one, that leads to better decisions of lower real
total costs. To examine this point, different fixed pricing approximation models
have been developed to estimate the 3" parties prices polices. Each real price
policy pattern is divided into five ranges: maximum price (F1), two interme-
diates prices (F2 & F4), minimum price (F5), besides the average fixed model
analyzed before (here named as F3) (Table 5.5). The optimal RM purchase
orders resulted from each fixed pricing model along the planning time horizon
are obtained. Then these RM amounts are allocated to their corresponding real
prices as in Figures 5.7 and 5.8. The fixed pricing models are simulated using
the optimal RM amounts and their corresponding real prices to obtain the
real total costs. Figure 5.18 and Table 5.5 illustrate the total costs resulting
from the optimization and the simulation models of the different fixed pric-
ing approximations (pricing vs. real total costs). It is noticed that the optimal
RM purchase orders resulted from the fixed pricing approximation model (F4)
lead to the best real total cost (16.42 x10° m.u.), which is similar to the total
real costs resulted from the piecewise pricing model (see Table 5.4). Unlike the
traditional way to approximate real price policies, the average price approxi-
mation (F3) leads to the worst decisions resulting in the highest total real cost
(16.57x105 m.u.).
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18.5
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Figure 5.18: SC total cost (fixed pricing models vs. real policies)

Table 5.5: Fixed pricing and real total costs

Total cost (10° m.u.)

Fixed pricing  Real policy

F1 (maximum) 18.04 16.44
F2 (intermediate) 17.68 16.43
F3 (average) 17.00 16.57
F4 (intermediate) 16.54 16.42
F5 (minimum) 16.09 16.47

5.6 Final considerations

A generic coordinated global model is proposed integrating the decisions of the
third parties as part of the decision-making procedure. The third parties price
policies are incorporated into the coordinated model formulations as degree of
freedom decisions, giving them flexibility to participate in the global decision-
making of multi-site multi-echelon multi-product production-distribution SC.
Different pricing approximation models are proposed and compared to es-
timate the third parties prices complex policies based on fixed, piecewise and
polynomial approximations. This results in LP, NLP, and MINLP models to be
solved using different solution packages. The advantages of using the different
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pricing approximation models on the SC global coordination and the tactical
decision-making are illustrated using a case study extended from Chapter 4
that coordinates the polystyrene production SC with an energy generation SCs
considering their competitive third parties. The results show that integrating
the third parties decisions in the global tactical model allows them to partici-
pate as partners in the decision-making process, and thus giving them enough
margins to compete. Dealing with the third parties pricing as a collaborative
tool rather than fixed economic transactions gives the third parties enough
freedom to participate and control their financial channels, so to be able to
compete in the global market environment.

Furthermore, the results show that the proposed pricing approximation
models significantly affect the global SCs coordination, resulting in different
tactical and economic decisions for all participants. The trend of the global
SC using the discounting pricing models based on piecewise and polynomial
approximations is to order higher amounts of resources from the third par-
ties in order to get lower prices. This results in extra production, taking the
advantage of the storage to store the excess products for later distribution re-
sulting in different economic performance. Comparing with the real total costs
resulting from the different pricing approximation models, the piecewise pric-
ing approach leads to the best pricing approximations with significant savings
(4.6 %) in terms of the total cost, in comparison with the average fixed pric-
ing approximation. So, the traditional average pricing approximation is not
recommended.

The proposed global coordinated tactical models are generic and flexible
enough to be extended to cope with more SCs interactions and echelons, in
which each echelon SC, including the third parties can play different roles;
clients on one hand and providers on the other hand. Furthermore, the pricing
models can be considered as base line for further inter-organizational negotia-
tions.

By this chapter, a global coordinated framework is developed taking into
consideration the decisions of all participants, including their competitive third
parties, based on negotiations built on cooperative actions. In Part IT (Chap-
ters 4 and 5), the main production SC enterprise is obliged to cooperate with
the provider SC, as it cannot function at the standalone case. However, what
if all participants have standalone positive revenues, in which the coordination
based on cooperative negotiations becomes risky, as all participants will seek to
optimize their individual revenues, regardless of the other participants decisions
and their uncertain reaction resulted from the uncertainty of their third par-
ties price policies, all in uncertain competitive environment. This makes inter-
organizational coordination/collaboration a must, based on non-cooperative
approaches, as will see in the next part.
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5.7 Nomenclature

Indices
e
r
t

Sets

NmzzEU

Parameters

Ca,r

E-Dr,e’,e,t,n

max
Plrery

T

Pmin

re’ t,n

max
re’ e, t,n

echelon (production plant, distribution center, market,...)
resource (raw material, product, energy, steam, cash,...)
time period

Third parties echelons

echelons (production plant, distribution center, market...)
final customer

number of piecewise pricing zones

resource (raw material, product, energy, steam, cash,...)
time period

parameter depends on the polynomial grade a of resource r
price elasticity of demand of resource r purchased from echelon
e’ (third party) to echelon e at price zone n, time ¢

maximum price at echelon e’ (third party), time ¢

minimum price at echelon e’ (third party), time ¢

maximum price of resource r at echelon e’ (third party), price
zone n, time t

minimum price of resource r at echelon €’ (third party), price
zone n, time ¢

maximum amount of resource r in price zone n at echelon e’
(third party), time ¢

Continuous variables

CRM..,
Pr,e',t

Pnr,e’,t
Qr,e/,e,t

Qnr,e’,e,t,n

cost of the externally supplied resources at echelon e, time ¢
Price of resource r at echelon e’ (third parties), time ¢

Price of resource r at echelon e’ (3rd party), price zone n, time ¢
resource  purchased from echelon e’ (3™ party), time ¢
resource 7 purchased from echelon €’ (3™ party) to echelon e at
price zone n, time t

Discrete variables

Trel t,n

Binary variable for pricing zone n of resource r at echelon e’ (3™
party), time ¢
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Chapter 6

Scenario-Based Dynamic Negotiation (SBDN) under
Uncertainty

6.1 Introduction

he previous part of this thesis (Part II) covers the global SCs coordination

(SCsCo) through synchronizing the SCs activities between the cooperat-

ing enterprises. The third parties have been integrated into the global decision-

making process through their price policies as collaboration tools rather than

fixed economic transactions. All participants cooperate to enhance the total
system performance.

However, due to the globalization and market dynamics, chemical industry
SCs enterprises seek "value reservation" in order to stay competitive (Gross-
mann, 2004). Current PSE literature focus on the optimization of chemical
industry SCs under the decision-making of one player (centralized decision-
maker). However, this may not be feasible, especially when dealing with large-
scale SCs with independent enterprises participating as complete production
SCs, in which they can operate at the standalone case. Each enterprise will
really seek to optimize its individual revenues, regardless of the risk associated
with the uncertain reaction of the other interacting partners resulted from the
uncertain behavior of their third parties. Thus, the complexity arises when
synchronizing the tactical decisions of the global decentralized SC under the
different (contrasting) goals of the different participants.

The resolution of this complexity through cooperative/non-cooperative ne-
gotiations has been slightly studied in the PSE literature, as described in Chap-

ter 2. Most of the reviewed literature, either for cooperative or non-cooperative
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organizations, deal with simple SC structures, in which the negotiating part-
ners are forced to collaborate (no standalone revenues). The reviewed literature
tends to reduce the role of the follower partner in the decision-making process
by simplifying its SC model. By doing so, much information is lost leading
to sub-optimal decision-making. Furthermore, none of the reviewed literature,
although it is important, considers the uncertain behavior of the supporting
enterprises (third parties) in the decision-making process, in which may lead
to future disruptions and possible lost of business partners from the global SC
network. So effective negotiations able to capture the contrasting goals of the
interacting enterprises through win-win coordination/collaboration contracts is
a must, especially under uncertain external conditions.

Consequently, this chapter participates in the PSE literature by develop-
ing a novel decision-support tool able to optimize the tactical decisions of
large-scale multi-enterprise SCs taking into consideration the individual goals
of all participants (decentralized), including the third parties. Cooperative and
non-cooperative systems are analyzed and compared through negotiations. The
boundary of the SC of interest from Part II is expanded to consider the pres-
ence of external clients and providers with certain behaviors.

A novel Scenario-Based Dynamic Negotiation (SBDN) approach that con-
stitutes in the PSE by proposing to set the best conditions for coordina-
tion/collaboration contracts between the enterprises of contrasting objectives
through identifying and managing new win-win scenarios. The negotiating part-
ners (provider and client) participate as complete production SCs, functioning
at the standalone case, in a multi-enterprise large-scale SC under uncertainty.
The interaction between the negotiating partners with their respective contrast-
ing objectives is captured through non-cooperative non-zero-sum SBDN with
non-symmetric roles. The client stakeholder (as the leader partner) builds a set
of coordination/collaboration agreements anticipating the uncertain reaction of
the provider (follower partner), which is subjected to uncertainty resulted from
the uncertain nature of the third parties. This uncertainty is summarized in a
single behavioral expression to be considered in the leader objective function,
as a quantified probability of acceptance.

A novel decision-support method is proposed to evaluate the overall nego-
tiation outcome, based on the probability distributions of the expected profits
and risk behaviors, in comparison with the standalone cases. Finally, the pro-
posed SBDN approach results in different MINLP models, which are generic
and flexible enough to be applied to real-sized industries with centralized and
decentralized decision-making systems.

6.2 Problem statement

The problem statement involves in a large-scale multi-enterprise multi-echelon
multi-product SC network with decentralized decision-making system (Figure
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6.1). The client production SC produces different products to final customers
using diferent resources from external suppliers and providers (main provider
and third parties). The client SC can operate at the standalone case using
the different resources from the external suppliers and providers. On the other
hand, the main provider SC produces different products to final customers;
external clients; and the main client. The inner component between the main
provider and the main client is considered the negotiation item (Figure 6.1).
To optimize the global decentralized decision-making under the different enter-
prises objectives, a complexity arises to identify the inner component (physi-
cal/economic) flows along the considered planning time horizon. The value of
this inner product is an income to the main provider and a cost to the main
client.

s H Decentralized SC ~
/ , Provider Client $ \

_______________
aff <

Figure 6.1: Decentralized SC network and stakeholders

6.3 Methodology

The coordination/collaboration is analyzed and compared based on cooperative
and non-cooperative organizations, and compared with the standalone cases.

6.3.1 Scenario-Based Dynamic Negotiation (SBDIN)

A non-cooperative non-zero-sum Scenario-Based Dynamic Negotiation (SBDN)
approach with non-symmetric roles is proposed to capture the contrasting ob-
jectives of the negotiating partners under uncertainty. The main purpose of the
proposed SBDN is to set the best conditions for the collaboration/coordination
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contract between the negotiating partners (main client and main provider), par-
ticipating as complete production SCs in the SC of interest. Since any coordina-
tion contract is documented between pairs of stakeholders, the main client and
the main provider are considered to sign the contract, while the other partic-
ipants (e.g. suppliers, customers, external providers, external clients, etc.) are
considered as third parties. These third parties participate in the decentralized
decision-making procedure with their prices policies as proposed in Part II).
The main items of the coordination/collaboration contract are the quantity
flows of the inner component from the provider SC to each production plant
of the client SC, and the unit transfer price at each time slot over the discrete
planning time horizon (see Figure 6.2).

-
'
/
4

1 \

| 1

I 1

I 1

1 |

| Uncertain 1

| sources 1

I 1

1 |

I 1

] |

] |

I Uncertain 1

| sources 1
Probability of I

| acceptance i

I

| = Simulation-based optimization 1

| (Monte-Carlo sampling) = Coordination/collaboration contracty

o Uncertainty o Unit transfer price
! o Probability of acceptance o Quantity demanded I
\\ = 37 party price policy S — = 37 party price policy /
= Probability distribution e i * Nominal profit /
A ar Expected profit - Non-symmetrical roles = Expected profit P rd
e e e e e o o m o Em EE o O O e e e e o -

Figure 6.2: SBDN negotiation partners

Based on non-symmetric roles, the client decision-maker (as leader partner)
builds a set of coordination/collaboration contracts according to her/his best
conditions and the provider (as follower) expected response function. The fol-
lower expected response function is characterized by the uncertain reaction of
the follower to the different coordination/collaboration contracts offers at each
time period over the discrete planning horizon, which is modeled as probabil-
ity of acceptance. This uncertain reaction of the follower partner results from
the uncertain behavior of its SC third parties. In this chapter, the uncertainty
of the third parties price policies are considered when building the coordina-
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tion/collaboration contracts, however, the SBDN approach is able to capture
any uncertainty source that may affect the decentralized SC decision-making.

The SBDN negotiation outcome depends on the quality of the knowledge
that the leader acquires about the follower SC and the market conditions. For
example, good knowledge about i) the economic situation of the participants,
especially at the standalone case, ii) the market conditions, iii) the main goals
of enterprises stakeholders, iv) knowledge about third parties (e.g.: prices poli-
cies), v) uncertainty conditions and risk propensity of the participants, and
finally vi) the willingness to collaborate (Figure 6.3). And since sharing knowl-
edge is subjected to uncertainty, the proposed SBDN is built on the basis on
incomplete information of the follower conditions.

Economic
situation

Willingness
to
collaborate

Market
conditions

SBDN
knowledge

Uncertainty
and Risk
propensity

Enterprises
goals

31d parties

Figure 6.3: SBDN negotiation knowledge

The proposed SBDN methodology is built on win-to-win conditions. This
means that information about the standalone profits of all participants is nec-
essary in order to assess the coordination/collaboration agreement. This part
is one of the added value of this chapter, as both negotiating partners SCs can
operate as standalone production SCs, thus giving the follower partner flexi-
bility to accept/reject the final coordination/collaboration agreement. Figure
6.4 summarizes the SBDN methodology, which is divided into two main parts:
preparation of the coordination/collaboration contracts, and ii) assessing the
coordination contracts and preparing the final agreement.
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Figure 6.4: SBDN methodology flowchart
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i) Coordination/collaboration contracts

Before starting the negotiations, both negotiating partners obtain their stan-
dalone profits to be used as benchmarks for the preparation and the assessment
of the coordination/collaboration contracts. Then, the SBDN negotiation starts
from the leader side. Based on dynamic "sequential" negotiations, the leader
partner designs a set of possible coordination/collaboration contracts, resulting
in a set of quantities and unit transfer prices for the inner component (negotia-
tion elements) based on her/his optimal conditions. To do so, a set of prices are
proposed based on the knowledge that the leader acquires about the compet-
itive external clients (follower third parties) and external market conditions.
Then, a set of optimal quantities over time is obtained and proposed to the
follower partner together with their corresponding unit transfer prices. Both
negotiating partners then optimize their SCs tactical models, individually, tak-
ing into consideration the bargaining flows (quantities vs. unit transfer price)
over a discrete planning horizon.

In this step, the expected profits of the follower partner are obtained based
on the coordination/collaboration contracts offers considering the uncertainty
of the third parties’ price policies. Monte-Carlo sampling method is used to
generate a random set of scenarios for the uncertain sources, so that the follower
profits scenarios can be obtained.

ii) Coordination/collaboration assessment

In this step, the proposed coordination/collaboration contracts offers are re-
duced to three to cope with the different decision-makers risk behaviors (risk
seeking, risk neutral, or risk averse). The final coordination/collaboration con-
tracts are assessed from each trading partner side as follows:

From the leader side:

The leader partner has to anticipate if the follower would accept each proposed
coordination/collaboration contract offer taking into consideration the uncer-
tain reaction associated with the follower external conditions. This uncertain
reaction is modeled and quantified as probability of acceptance. Additionally
to the incomplete knowledge that the leader partner knows about the follower
external conditions, this probability of acceptance can be calculated consider-
ing a set of external feasible scenarios (follower SC) of the third parties price
policies using the Monte-Carlo sampling approach. Then, this probability of
acceptance function is considered to calculate the leader expected profits. The
final coordination/collaboration agreement proposed by the leader partner will
be the one that leads to the highest expected profit, which in turn depends
on the risk behavior of the leader partner. In this thesis, the three coordina-
tion/collaboration agreements associated with all risk behaviors are analyzed
and compared.
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From the follower side:

On the basis of the proposed coordination agreements proposed by the leader
partner, the follower assesses the risks associated with accepting or rejecting
the offers, in comparison with the standalone case. The assessment step is based
on the probability distribution of the follower profits scenarios resulted from
the Monet-Carlo sampling method. It is worth mentioning that the follower
assessment process does not consider the mean of the profits scenarios as the
assessment reference, instead, the distribution of the values of these scenarios
around the mean is considered. The final response depends also on how the
follower partner manages uncertainty, which depends on the risk behavior of
the decision-maker (risk-seeking, risk-neutral, or risk-averse).

6.3.2 Cooperative negotiation methodology

The cooperative negotiations in this chapter is similar to the coordination ap-
proach proposed in Chapter 4. The difference, as will be explained in the math-
ematical model, is that this cooperative approach is between the two main
negotiating partners. The cooperative negotiation deals with the different en-
terprises SCs as one system, in which the negotiating partners decide to form
a coalition towards maximizing the SC overall revenues from a global perspec-
tive. The results obtained from the non-cooperative SBDN will be compared
with the cooperative and the standalone systems.

6.4 Mathematical formulations

A generic tactical coordinated MINLP model is developed to optimize the tac-
tical decisions of a large-scale multi-enterprise multi-product SC from a decen-
tralized perspective. The developed model is built to cope with the different
systems (cooperative, non-cooperative SBDN, and standalone). The mathemat-
ical formulations are built to be flexible enough to incorporate, simultaneously,
all possible participants within the boundaries of the SC of interest. The nego-
tiating enterprises stakeholders participate with their respective complete SCs
and third parties in the decentralized decision-making process. Furthermore,
the model formulations allows the participants to play different roles (e.g.: a
client for one enterprise and a provider for another enterprise) within a large-
scale decentralized system.

To represent the negotiation methodology, a set of supply chains (scl,
s¢2...5C) is considered in the mathematical model formulations linking each SC
to its corresponding negotiation partner (leader L, follower F'). Furthermore,
a set of third parties D is considered (leader external providers zv, follower
external clients xc, external suppliers s, and final customers m). All these third
parties participate in the model formulations with their perspective price poli-
cies according to Chapter 5. The tactical model also includes a set of resources
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r (raw materials and utilities, products, waste, etc.), production plants pl, and
warehouses w. A subset 7’ is considered to represent the inner component re-
source (negotiation item). This negotiation item can be purchased from third
parties (external providers zv), and/or sold to other third parties (external
clients xc).

Figure 6.5 illustrates the main interaction terms between the leader and the
follower SCs, including their third parties. @, .+ represents the quantity of
the negotiation resource r’ delivered by the follower SC F each planning time
period t at a unit transfer price p,s sc. F'Crs sczc,t Tepresents the flows of the
same kind of resource r’ from the follower SC F' to external clients zc at a unit
price peys get. V Ly g sc,r corresponds to the resources v’ flows provided by the
external providers zv to the leader SC L at a unit price pv,s g4 .
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Figure 6.5: Variable interactions between participants

Eq. (6.1) represents the negotiation resource r’ quantities demanded Q L, 1 4
by the leader SC production plants pl. These quantities are equal or more than
the resource r’ production F'PD, ;s pi/ sc+ in the follower SC using resource
r from third parties (external suppliers s) multiplied by a production factor
frrr.se menus the quantities sold F'Cy s¢ ger to third parties (external clients
x¢) each planning time period ¢. This production factor depends on the utilized
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production recipe, assuming linear correlations.

Z QLT’,pl,tZ Z Z Z FPDnr’,pl’,sc,t-fr,r’,sc

plePL sceF TGR/ pl’€PL
sceSC r#r pl#pl/
- g FCyi sewet vr'e RiteT

sceF
xceD

(6.1)

Eq. (6.2) represents the resources MK, y sc.m ¢ flows from the warehouses
w of the participating supply chains sc to third parties (final customers m)

Z MK, semt < xdemy sem, ¢ Vsce SC;r e Ryme D;teT  (6.2)
weW

The negotiation item resource r’ balance at the warehouses of the par-
ticipating SCs is illustrated in Eq. (6.3). ST, w,sct corresponds to the stor-
age levels of 7' at warehouse w of any of the negotiating partners SC at
time ¢. The term (3, . p ZplGPL FPRO pisct =2 seer dowew @rwseaw t—
Y sk 2meeD Orw,sc,oe,t) 18 considered to represent the mass balance of re-
source r’ in the follower SC. FPRO,s , sc+ corresponds to the follower SC
production levels of 7' in the production plants pl each planning time pe-
riod t. Q. w.scw,t represents the quantity flows of 7/ from the warehouses
w of the follower SC to the warehouses w’ of the leader SC each planning
time period t. Cyv 4y se,zc,t Tepresents the quantity flows of ' from the ware-
houses w of the follower SC to the external clients zc each planning time
PeriOd t. The term (ZSCEL Zw’EW Qr/,w/,w,sc,t + ZscEL ZerD ‘/T’,."cv,w,sc,t -
Y sceL D reR ZplePL LPRO; ypl sc.t-facy rsc) is considered when the SC be-
longs to the leader partner. Qs u w,sc,t corresponds to the quantity flows of
r’ at the warehouses w of the leader SC from the follower SC warehouses w’
each time period t. Vi 34w sc,t Tepresents the quantity of r’ purchased from
the external providers xv. LPRO, ; pi sc.+ is the production levels of resource r
(intermediate product, final product, etc.) from r/ in the leader SC production
plants pl each time period ¢, based on the production recipe represented by
facys r sc, assuming linear correlations.
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stock
STr’,u;,sc,t + STT/,U;7sc,t - STT’,w,sc,t—l = § § FPROT’,pl,sc,t

sceF ple PL
- E E Qr/,w,sc,w/,t - g E Cr’,w,sc,mc,t
sceF w'ew sceF xceD
w’ #w
+ E E QT’,w’,w,sc,t + E § er’,zv,w,sc,t (63)
sceEL w'eWw sceL zveED
w’'#w

- Z Z Z LPROT",T’Pl,SC,t'facr’,r,sc

sceL reR plePL
’
r#r

Vr € Rysce SCowe WiteT

Here, it can be seen the the generality and the flexibility of the proposed model,
as it allows all possible links between all possible participants, including the
third parties. Furthermore, the proposed model formulations can be easily ex-
tended to consider the complete SC structure of the third parties, as will be
seen in Chapter 7.

Eq. (6.4) and Eq. (6.5) illustrate the production and storage minimum and
maximum capacities, respectively.

PRO™T ... < PRO, yi sex < PROYSY .., Vr€Ripl € PL;sce SC;teT
(6.4)
ST o < STrwseq < STHSE., Vr€ Rywe Wisc€ SC;t €T (6.5)

The objective function is to maximize the individual enterprises profits
PROF;. (Eq. (6.6)), which is the difference between the individual economic
sales and costs.

PROF,. = SALE,, — COST,.  Vsc e SC (6.6)

The economic sales SALE;. (Eq. (6.7)) are equal to the sales to final cus-
tomers m plus the sales to the leader partner SC L plus the sales to external
clients xc.
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SALESC = Z Z Z ZMKr,w,sc,m,t~Tpr,sc,m

reRweW meD teT

+ Z Z ZQT’,SC7t'pT,,SC + Z Z Z ZFCT’,sc,xc,t-pcr’,xc7t (67)

sceF y'ceRteT sceF y'cRxzceD teT
r/7ﬁr ’r/;é’r
Vsc € SC

The SC cost COSTs, is obtained based on the external resources acquisition
cost CRM;,., production cost C' PR, storage cost C'STy,, distribution CT R,
negotiation resource cost (D, .c; > cr 2 rer @i se,t-Pr sc), and purchase cost

from external providers (3. cp D .ccr 2mer duter VL wo,se,t-PUr 2vt) (EqQ.
(6.8)). Here, it can be noticed the conflict of interest resulting from the contrast-

ing objectives between the negotiating partners, as the value of the negotiation
resource (@ sc,t-Prisc) is considered as a cost when the SC belongs to the
leader (Eq. (6.8)) and as an income when the SC belongs to the follower part-
ner (Eq. (6.7)). @y sct and py 5. are the coordination/collaboration contract
items, to be documented using the SBDN.

COSTse = CRMy. + CPRy. + CST,c + CTR,,

+ Z Z ZQW,sc,t-pr’,sc + Z Z Z ZVLT’,;cv,sc,t~pvr’,wv,t (68)

sceLr'eRteT r"€RxzveD sceL teT
Vsc € SC

All third parties (external suppliers s, final customers m, external clients
xe, and external providers zv) participate by their price policies considering the
piecewise pricing model proposed in Chapter 5. For example, Eqgs. ((6.9)-(6.14))
explain the integration of the external provider xv price policy in the mathemat-
ical model. Different price ranges n are offered by the external providers zv to
the leader according to the quantity demanded each time period ¢, V L,/ 44 sct.n
and pvy zy¢n are the quantity purchased from the external providers xv by
the leader SC and the unit price at each pricing zone n each time period ¢.
PE,/ zy,sc,n is the price elasticity of demand of the resource r’ at each pricing
zone n. The binary variable ¥, ;,, is used to allocate each purchase quantity
V L+ g0 sc.t tO its corresponding unit price pu,s g, ;. The rest of the third parties
are integrated using the same methodology.

min max
yr'vtyn'VLr’,rv,sc,t,n—l < VL?“’#TU,SC%” < yT',tyn'VLr’,rv,sc,t,n

, (6.9)
Vr' € Rysce Lyzve D;teTiyne N
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min max
Yr' t,n-PUrs 2y t.n < PUr zvt,n < Yr' tn-PUr zo t n—1

, (6.10)
Vr'e Rijazve D;teT;ne N

5VLT/ ,TV,8C,t,n

PET’,M},sc,n = opv . vr' € R;sce Lyizve D;teT;ne N
r,xv,t,n
(6.11)
DUy zvt = Z PUr’ zv,t,n vr' e Rizve DiteT (612)
neN

VL gv,set = Z VL go,sctn Vr' € Rjsce Lizv e Dit €T (6.13)
nenN

Z Yot gotn < 1 Vr' € Rjzv € Dt €T (6.14)
neN

The external resources r acquisition cost C RM,. from the external suppliers
s is computed as in Eq. (6.15). vrmy. s sc and RM, s 04 correspond to the
amounts and unit price of the external resources r purchased from suppliers s
each time period t. Both values are computed using the same methodology as
in Egs. ((6.9) - (6.14)), with different price policy.

CRM;, = Z Z Zvrmr,s,sc,bRMr,s,sc,t Vsce SC (615)

reRseDteT

The production cost CPR,, is calculated as in Eq. (6.16). FPRO; pi st
and uprdf,s s. correspond to the production levels of resource 7’ in the follower
SC each time period ¢ and the unit production cost. PRO; p s¢.+ and uproy sc
represent the production levels of resource r in each production plant pl each
time period ¢ and the unit production cost.

CPRec= > Y. Y3 FPROu psctuprdfe s

sceSC plePLr'eRteT
(6.16)

+ Z Z Z PROr,pl7sc,t~upror,sc Vsc e SC

rcRplePLteT
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The storage cost C'ST. is computed as in Eq. (6.17) considering the unit
storage costs ustr,. u, sc and ust,s 4, . of resources r and r/, respectively. ST R, . sc.t
and ST} 4 sc,t correspond to the storage levels of resources r and r’ each time
period ¢, respectively.

CSTSC == Z Z Z ZSTT/,w,sc,t~UStr’,w,sc

sceFr'eRweW teT
(6.17)

+ Z Z Z STRT,w,sc,t-UStrr,w,sc Vsc e SC

reRweW teT

The distribution cost CT R, (Eq. (6.18)) is computed based on the travel
distances df s, (between follower SC and leader warehouses w’, dss s, (from
external suppliers), and dm,_s. (to final customers) and their units transport
costs Utr fr s, ULTSy oc, and utrm, s, respectively. It is assumed that the re-
source r’ transport is on the expenses on the follower partner. The distribution
costs of ' from external providers and to the external clients are considered on
the expenses of their enterprises.

CTRsc = Z Z Z Z Qr’,sc,w’,t-dfsc,w/-Utrfr/,sc

r"eRteT w' eW sceF

+ Z Z Z RMT,s,sc,t~d55,sc~UtT8T,SC (618)

reRteT s€D

+ Z Z Z MK, sem.t-8Mim se UETMy 50 Vsc € SC

reRteT meD

The above model formulations are generic enough that can be applied to
standalone systems (by eliminating the resources interactions @, s+ ). Further-
more, the proposed model can be extended/modified to cope with the cooper-
ative systems by considering the overall profit as the objective function (Eq.
(6.19))

Tprofit= Y PROF, (6.19)
sceSC

Uncertainty management

The leader partner has to anticipate the follower reaction to the different coordi-
nation contracts offers, which is subjected to uncertainty due to the uncertain
nature of its third parties. The uncertain reaction of the follower partner is
represented in the leader SC model as a probability of acceptance probs. (Eq.
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(6.20)). A Monte-Carlo sampling method is used to generate a random set of
the third parties’ price policies (VrMy s sc.ts TPr.se,m, and pcys get). The prob-
ability of acceptance is computed considering the frequency of the successful
profits scenarios (NSs.), in comparison with the standalone profits scenarios
using the same generated scenarios. T'N,. is the total number of generated
scenarios. The probability of acceptance thus reflects the variations among the
different values of the profits scenarios, as the mean does not represent these
variations. By doing so, the impact of each profit scenario is considered in the
decentralized decision-making process.

NS
TNg.

Vsce F (6.20)

probs. =

Then, the leader expected profit EX PROFj. is obtained considering the
probability of acceptance values (Eq. (6.21)). PROF;, corresponds to the leader
profit if the follower accepts the coordination agreement, S P RO F. is the leader
standalone profit (if the follower rejects the agreement).

EXPROFs. = probs.. PROFs. + (1 — probs.), SPROF;, Vsce L (6.21)

The above model formulations result in different MINLP tactical models,
which can be applied to different SC structures. It is flexible enough to cap-
ture all possible links among different participants, including third parties.
The proposed model can be implemented to simple/complex SCs with central-
ized/decentralized decision-making considering cooperative, non-cooperative,
and standalone systems. Incorporating the price policies of the third parties,
regardless of the added complexity, allows them to participate in the decen-
tralized decision-making, and thus control their financial nodes under different
uncertain conditions. This incorporation may result in equilibrium between
the external providers and the follower partner on one side, and between the
external clients and the leader partner on the other side.

6.5 Case study

The proposed MINLP tactical models are implemented and solved for the case
study extended from Chapter 5 in order to illustrate the proposed SBDN ap-
proach. Additionally, external providers and clients are added to the decen-
tralized SC structure (Figure 6.6). The planning horizon is reduced from 10 to
6 time periods, and the capacity of each energy generation plant is increased
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from 5MWe to 6MWe in order to reflect the competitive pressure among part-
ners, as the energy generation SC here is not the only energy provider to the
polystyrene production SC.

Figure 6.6: Global SC network

The negotiating partners are the polystyrene production SC organization
(as leader) and the energy generation SC organization (as follower) (Figure
6.7). The internal energy is considered as the negotiation item to be agreed
(quantities and price). Each negotiating partner owns independent SC with its
own providers and clients. The polystyrene SC receives energy from the fol-
lower SC and from the electricity local grid (as external provider). The energy
generation SC sells energy to the leader SC, external markets and the local
grid (as external client). This gives the negotiating partners more flexibility
to assess the negotiation outcome, especially the follower partner, as it is not
obliged to collaborate.

Table 6.1 illustrates the external energy prices from and to the global SC

network. These prices are according to the Spanish public electricity tariffs
(Ministry of Industry, Energy and Tourism, 2015).
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Figure 6.7: Decentralized SC stakeholders

Table 6.1: Nominal energy prices

Price (m.u./kWh)

Energy price to external markets 0.20
Energy price to local grid (demand <2GWh per time period) 0.21
Energy price to local grid (2GWh<demand< 4GWh per time period) 0.20
Energy price to local grid (4GWh<demand < 6GWh per tine period) 0.19
Local grid energy price to external markets 0.22
Local grid energy price to polystyrene production SC (demand>2GWh per time 0.22
period)

Local grid energy price to polystyrene production SC (2GWh<demand<4GWh 0.21

per time period)

Local grid energy price to polystyrene production SC (4GWh<demand<8GWh 0.20
per time period)
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6.5.1 Monte-Carlo Sampling

Monte-Carlo sampling method is used, as part of the optimization process,
in order to obtain the probability of acceptance of the different coordina-
tion/collaboration contracts and the probability distribution of the follower
profits scenarios. To do so, the developed MINLP tactical model of the follower
partner SC is solved for each coordination/collaboration contract considering
the generated scenarios. A set of random scenarios (500 scenarios) is gener-
ated for each energy price policy of each participating third party around the
follower partner SC, as follows:

(a) Local grid energy price to external markets (Figure 6.8).
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Figure 6.8: Probability density (a)

(b) Renewable energy price to the local grid, price zone 1 (Figure 6.9).
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Figure 6.9: Probability density (b)
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(c) Renewable energy price to the local grid, price zone 2 (Figure 6.10).
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Figure 6.10: Probability density (c)

(d) Renewable energy price to the local grid, price zone 3 (Figure 6.11).
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Figure 6.11: Probability density (d)

(e) Renewable energy price to the external markets (Figure 6.12).
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Figure 6.12: Probability density (e)

The prices scenarios are generated based on a normal distribution function
(Figures 6.8-6.12), with standard deviation (¢ = 0.03 m.u./kWh) for all price
policies, and a mean (u) equal to the current nominal prices as in Table 6.1.
When solving the follower SC tactical model for this huge number of prices
scenarios, the first normal distribution is generated (Figure 6.8), and then the
remainder normal distributions are generated considering that they are corre-
lated with the first one. The variations in the generated price scenarios can
be justified by the volatile changes in the energy prices. So, their prediction
depends on the perception of the volatile market prices by the leader decision-
maker, and obviously, these predictions significantly affect the results of the
presented case study. So, from these generated scenarios, the corresponding
follower reactions are anticipated, so the leader SC expected profits can be
obtained.

6.6 Results and discussions

The resulting MINLP tactical models are implemented on the General Alge-
braic Modeling System GAMS 24.2.3, and solved for 6 time periods; 1000 work-
ing hours each, using the Global mixed-integer quadratic optimizer "GloMIQO"
(Misener & Floudas, 2013). A Windows 7 computer with an Intel Core™ i7-
2600 CPU 3.40 GHz processor with 16.0 GB of RAM is used.

6.6.1 Cooperative vs. non-cooperative systems

The individual tactical models are solved based on the current nominal energy
prices (Table 6.1) considering the standalone, cooperative and non-cooperative
systems. From the leader side, several prices (contract prices) are offered for the
internal energy in the range [0.14-0.20] m.u./kWh. These prices depend on the
knowledge that the leader acquires about the follower SC external energy prices
(renewable energy price to local grid, local grid energy price to external markets,
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and renewable energy price to external markets) and market conditions. Indeed,
the leader may offer lower prices than 0.14 m.u./kWh, but this contract would
not be accepted by the follower partner.

The individual and the overall nominal profits are obtained (Figures 6.13,
6.14 and 6.15). The non-cooperative models are solved as described before. The
dotted lines on the figures describe the standalone nominal profits of the leader
(Figure 6.13) and the follower (Figure 6.14), as their collaboration makes sense
when their individual profits exceed these lines.

From the leader side, Figure 6.13 shows that the non-cooperative system
results in higher individual profits than the cooperative one at all the considered
contract price offers, although the cooperative system leads to higher overall
profits (Figure 6.15).
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= Cooperative I Non-cooperative = = «Standalone
Figure 6.13: Leader nominal profits
From the follower side, Figure (6.14) illustrates that the cooperative system

would lead to better solutions at contract price offers above 0.17 m.u./kWh, at
the nominal situation, without considering its external uncertain conditions.
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Figure 6.14: Follower nominal profits

It is noticed in Figure (6.15) that the non-cooperative total profit decreases
at contract price 0.22 m.u./kWh, as the leader decision is to purchase most of
the energy from the local grid, returning to the standalone case.
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Furthermore, the mathematical formulation of the non-cooperative system
is less complex, as it leads to better solutions in 32% and 63% less computa-
tional time, in comparison with the standalone and the cooperative systems,
respectively (Table 6.2). This is because the follower individual model is solved
based on fixing the transfer price offered by the leader partner, so fixing this
degree of freedom variable leads to less computational efforts. The CPU times
in the table are the summation fo both the CPU of the leader and the follower
partners.

Table 6.2: Models statistics

Single Single Discrete CPU

equations  variables variables (sec)
Standalone 2,166 2,942 306 15.6
Cooperative 2,165 2,926 306 31.6
Non-cooperative 2,166 2,942 306 11.8

6.6.2 Coordination contract agreement

Based on the non-cooperative SBDN negotiation, the leader partner aims to
reduce the aforementioned contract price offers by anticipating the follower
uncertain reaction. To do so, the probability of acceptance of each coordina-
tion/collaboration contract offer is computed (Table 6.3) taking into consid-
eration the follower expected profits resulting from the Monte-Carlo sampling
method. The successful scenarios are the number of scenarios of favorable profit,
in comparison with the standalone profit scenarios. It is noticed that the prob-
ability of acceptance is 0% for the contract prices less than 0.16 m.u./kWh,
while it increases as the contract price increases, up to 100% at contract price
0.22 m.u./kWh (see Figure 6.16).

Table 6.3: Probability of acceptance

0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22

No. of successful 0 0 0 89 314 393 440 477 498
scenarios

Probability of Ac- 0% 0% 0% 18% 63% 79% 88% 95% 100%
ceptance

Then, based on the probability of acceptance values, the leader estimates its
SC expected profit (Eq. (6.21)) for each contract offer considering the nominal
profits (in case of the follower acceptance) and the standalone profits (Table
6.4). The best coordination/collaboration contract agreement results from pur-
chasing 24.71 GWh (all the energy amounts needed for polystyrene production)
from the follower partner.
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It is noticed that at contract price 0.22 m.u./kWh, the decision for the leader
partner is to purchase all the energy needed (24.71 GWh) from the local grid
at energy prices in the range of [0.20-0.22] m.u./kWh (Table 6.1), returning to
the standalone case.

Table 6.4: Coordination contracts from the leader side

Contract Contract Grid Nominal profit Standalone Probability Expected
price energy energy (if accepted) profit of accep- profit
(m.u./kWh) (GWh) (GWh) (10%m.u.) (10°m.u.)  tance (10°m.u.)
0.14 24.71 0 9.25 7.47 0% 7.47

0.15 24.71 0 8.99 7.47 0% 7.47

0.16 24.71 0 8.74 7.47 0% 7.47

0.17 24.71 0 8.48 7.47 18% 7.65

0.18 24.71 0 8.23 7.47 63% 7.95

0.19 24.71 0 7.99 7.47 79% 7.88

0.20 24.71 0 7.7 7.47 88% 7.74

0.21 24.71 0 7.51 7.47 95% 7.50

0.22 0 24.71 7.47 7.47 100% 7.47
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Figure 6.16: Leader expected profit vs probability of acceptance
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The results reveal the impact of the local grid (as external provider "third
party") energy price policy on the selection of coordination contract. For ex-
ample, the local grid offers different price possibilities to the leader according
to specific energy supplied each planning time period (see Table 6.1). So, it is
better for the leader to maintain the coordination/collaboration contract with
the follower, as the last does not impose any energy constraints (within its SC
generation capacities). For example, Table 6.5 illustrates the contracted supply
schedule of the contract energy amounts at unit price 0.21 m.u./kWh along the
6 planning periods. Purchasing 24.71 GWh from the follower (the summation
of the energy amounts in Table 6.5) at contract price 0.21 m.u./kWh costs the
leader partner 5.19x10% m.u. However, purchasing the same amounts from the
local grid, considering the energy amounts constraints, results in 5.38x10® m.u.
cost.

Table 6.5: Contract energy (price 0.21 m.u./kWh)

Energy (GWh)

Energy tl t2 t3 t4 t5 t6
generation

plants

gl 1.47 147 1.59 1.47  0.75 1.47
g2 2.56 1.53  2.56 1.53 095 1.31
g3 1.53 0.67 1.53 0.67 0.67 0.98

However, the coordination/collaboration contract proposed depends on the
quality of the knowledge that the leader acquires about the follower partner
and her /his perception about the external market conditions. So, within the
context of the proposed SBDN methodology, the leader expected profit (based
on the probability of acceptance) is considered as the main criterion for selecting
the final coordination contract proposed. Other criteria may lead to different
coordination contracts.

The selection of the coordination contract depends on the risk-behavior
of the leader decision-maker. For example, if the leader offers prices 0.14-0.16
m.u./kWh, this would lead to 0% probability of acceptance resulting from the
high frequency of the follower negative profits scenarios. This means that the
leader decision-maker is not advised to chose the coordination contracts of
the highest nominal profits. On the other side, selecting higher prices with
higher probability of acceptance is neither advised, since this decision might
not be profitable for the leader. For example, for the presented case study, if the
leader decision-maker is risk-averse, she/he would offer the coordination con-
tract (24.71 GWh at price 0.21 m.u./kWh) with 95% probability of acceptance;
this decision leads to very low profits (0.5% higher than the standalone profit) .

Finally, from the leader side, the coordination contracts agreement (24.71
GWh at prices 0.17-0.19 m.u/kWh) are the best leader offers with the highest
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expected profits. Most of the reviewed literature tempts to assume a risk be-
havior of any/all the negotiating partners, however, in this chapter, different
coordination contracts are proposed to cope with the different decision-makers
risk behaviors, as follows:

Risk-seeking strategy

If the leader decision-maker is a risk-seeker, she/he would offer to purchase
24.71 GWh at contract price 0.17 m.u./kWh, taking into consideration the
18% probability of acceptance. This coordination contract leads to 8.48x10°
m.u. nominal profit (if the follower accepts); 14% higher than the standalone
nominal profit.

Risk-neutral strategy

If the leader is a risk-neutral, her /his strategy would be to purchase 24.71 GWh
at 0.18 m.u./kWh, considering that this contract leads to 63% follower success-
ful profits scenarios. This strategy results in 10 % leader pofits improvements
(8.23x10% m.u), in comparison with the standalone nominal profit. This coor-
dination contract leads to the highest leader expected profit (7.95x10° m.u.).

Risk-averse strategy

Here, the leader would offer the coordination contract (24.71 GWh at 0.19
m.u./kWh), resulting in 7.99x10° m.u nominal profit (7% higher than the stan-
dalone profit). The leader would offer this collaboration/coordination contract
taking into consideration the follower high probability of acceptance (79%)

6.6.3 Negotiation outcome assessment

The follower partner is supposed to receive one coordination contract proposed.
In this thesis, the three aforementioned coordination contracts are assessed by
the follower partner, depending on how risky the organization is. To do so,
the follower expected profits are obtained considering the successful scenarios
(Table 6.6).

Table 6.6: Follower expected profit vs. coordination contracts

Contract contract Successful Expected Standalone

price amount profits profit (xlO6 expected

(m.u./kWh) (GWh) probability m.u.) profit (x10°
m.u.)

0.17 24.71 18% 2.46 2.73

0.18 24.71 63% 2.71 2.73

0.19 24.71 79% 2.95 2.73
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The cumulative expected profit probability of the follower resulting from
accepting the collaboration/coordination contracts (0.17-0.19 m.u/kWh) are
obtained, in comparison with the standalone case (dotted curves in Figures
6.17, 6.18 and 6.19. The response of the follower (accept/reject) to the leader
offer depends to a high extent on her/his risk behavior, as follows:

Risk-seeking response

If the follower has a risk-seeking behavior, the response is likely to accept the
contract price 0.17 m.u./kWh (amount 24.71 GWh) considering the 18% suc-
cessful profits scenarios. As shown in Figure 6.17, the follower has a probability
to gain more than 4x10° m.u. by accepting this offer, in comparison with the
standalone profits scenarios. The expected profit (mean) of the 18 % success-
ful profit scenarios lead to an expected profit 22% higher than the standalone
expected profit for the same scenarios.
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Figure 6.17: Follower expected profit cumulative probabilities for contracts around
0.17 m.u./kWh

Risk-neutral response

If the follower is a risk-neutral, the decision will be probably to accept the coor-
dination/collaboration contract (24.71 GWh at price 0.18 m.u./kWh). Indeed,
this response compensates the follower decision-maker, as 63% of the profits
scenarios are successful (see Table 6.6) with higher frequencies (Figure 6.18),
in comparison with the standalone profits scenarios. Furthermore, the expected
profit (mean) of the 63% successful scenarios is 12% more than the expected
standalone profit of the same scenarios. It is noticed from (Figure 6.18) that
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the cumulative probabilities of the follower profits if accepting the offer are
high comparing with the standalone profits scenarios probabilities.

o
e

0.6

Cummulative Probability

! | | | | |
2 4 6 8 10 12

o =3

Follower Expected Profit (x10° m.u.)

Figure 6.18: Follower expected profit cumulative probabilities for contracts around
0.18 m.u./kWh

Risk-averse response

The risk-averse behavior of the follower would lead to accept the contract offer
(24.71 GWh at price 0.19 m.u./kWh), as 79% (393 of the 500 profits) scenarios
are successful with higher frequencies (Figure 6.19) in comparison with the
standalone profits scenarios. Moreover, the expected profit of the successful
scenarios leads to 19% more gains than the standalone expected profit of the
same scenarios.

Finally, it can be seen in Figures 6.17, 6.18 and 6.19 that increasing the
contract price by 0.01 m.u./kWh leads to a potential increase in the follower
expected successful profit cumulative probabilities.
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Figure 6.19: Follower expected profit cumulative probabilities for contracts around
0.19 m.u./kWh

6.7 Results: Tactical decision-making

The effect of the coordination/collaboration resulted from the non-cooperative
SBDN on the decentralized tactical decision-making is analyzed and compared
with the standalone case. The tactical decisions obtained are the RMs purchase
levels and the corresponding unit prices, internal energy (negotiation resource)
flows and the unit transfer price, sales to markets and unit retail prices, stor-
age, production and distribution levels over the 6 planning time periods.

The internal energy flows to the leader SC production plants resulted from
the coordination/collaboration contract (24.71 GWh at 0.17 m.u./kWh) in
comparison with the standalone case are illustrated in Figure 6.20. It is no-
ticed that the coordination contract results in purchasing all the energy needed
for the polystyrene production (24.71 GWh) from the follower partner. The
polystyrene production plant pl2 dominates the internal energy orders from
the follower SC; 38% of the total energy demand (Figure 6.20(a)). However, at
the standalone case, all energy needed for the polystyrene production is pur-
chased from the local grid. The trend of the standalone system is to order high
amounts of energy from the local grid along the planning time periods in order
to get lower prices (0.20-0.22 m.u./kWh). This leads to overload the polystyrene
production plant pl2, while closing the polystyrene production plants pl1 and
pl3 at several time periods (Figure 6.20(b)). In both cases, the total energy
purchase amount is the highest at time period ¢4 in order to cope with the high
polystyrene customers’ demand at this tine period.
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Figure 6.20: Internal energy amounts (coordination vs. standalone)

Figures 6.21 and 6.22 show how the coordination affects the polystyrene
production activities, in comparison with the standalone case. Although the
total production is the same in both cases, the coordination results in oper-
ating the polystyrene production plants all time periods (Figures 6.21(a) and
6.22(a)) to follow the internal energy orders. This leads to expand the distri-
bution links resulting in higher distribution activities (Table 6.7). On th other
side, at the standalone case, the polystyrene production at time period ¢2 ex-
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ceeds the customer demand (Figures 6.21(b) and 6.22(b)), in which the excess
products will be stored for later distribution. This explains the high storage
amounts of the leader SC at the standalone case (Table 6.7).

Figure 6.21 shows the polystyrene production activities of product A. The
coordination leads to operate the polystyrene production plant pi2 to produce
67% (1,134 tons) of the total product A demand, comparing with 84% (1,419
tons) using the standalone system. This difference is due to the different energy
purchase orders along the planning time periods (see Figure 6.20). As explained
before, the polystyrene production plant pl2 is the closest to the resource rm?2
supplier sup2, which dominates the RM purchase orders (49% of the total RM
purchase amouunts).
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Figure 6.21: Polystyrene production levels (product A)

To produce product B, the coordination leads to operate the polystyrene
production plant pll to produce 72% of the total production levels (Figure
6.22(a)). This also can be explained by its short distance to the resource rm4
supplier location, which dominates the rm supply for product B. However, at
the standalone case, the polystyrene production plant pl2 dominates producing
product B (Figure 6.22(b)), as it is close to the rm3 supplier, which dominates
the RM supply (see Figure 6.23).
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The follower tactical decisions are also affected by the coordination contract.
For example, Figure 6.24 illustrates the expected energy generation levels of
the follower SC using the coordination/collaboration contract (24.71 GWh at
0.17 m.u/kWh), in comparison with the standalone case. The coordination
contract results in equal distribution of energy generation activities among the
renewable energy generation plants (Figure 6.24(a)) with a total generation
of 15 GWh per time period; 15% more than the standalone expected energy
generation per time (Figure 6.24(b)). This increase in the energy generation is
due to the internal energy orders (24.71 GWh) according to the coordination
contract, resulting in 18% increase in the expected RM purchase amounts,
in comparison with the standalone expected amounts. The coordination also
results in reductions in the expected energy sales to the local grid and the
external markets.
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Figure 6.24: Follower SC expected energy generation

6.7.1 Leader decisions-breakdown

The leader tactical/economic total decisions are analyzed and compared for
the proposed coordination contracts considering the different risk strategies
(risk-seeking, risk-neutral, and risk-averse). Table 6.7 summarizes the tacti-
cal decisions-breakdown of the different proposed coordination contracts, in
comparison with the standalone case. It is noticed that the RM purchase and
polystyrene production amounts are the same for all cases; 3,450 tons and 3,380
tons, respectively, but with different orders along the planning time periods. It
is noticed that the coordination contracts result in 7-13% lower storage levels,
and 4-5% higher distribution levels, in comparison with the standalone case. At
the standalone case, the leader has to purchase high amounts of energy from
the local grid in order to get lower prices resulting in peak productions.
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Table 6.7: Leader tactical decisions-breakdown

Contract Contract Contract Standalone
price (0.17  price (0.18 price (0.19
m.u./kWh) m.u./kWh) m.u./kWh)

RM purchase (tons) 3,449.75 3,449.75 3,449.75 3,449.75
Energy from grid (GWh) 0 0 0 24.71
Contract Energy (GWh) 24.71 24.71 24.71 0
Production (tons) 3,380.40 3,380.40 3,380.40 3,380.40
Distribution (k.tons.km)  1,328.19 1,332.07 1,328.19 1,271.50
Storage (tons.h) 468.90 495.00 468.90 530.18

Consequently, the selection of the coordination contract affects the economic
decisions of the leader decision-maker (Figure 6.25). In the presented case study,
the coordination/collaboration contracts 0.17, 0.18 , 0.19 m.u./kWh lead to
1x10% m.u., 0.75x10% m.u., and 0.51x10°% m.u savings in the energy purchase
costs; 24%, 17%, and 11%, respectively, in comparison with the standalone
case. Furthermore, these coordination/collaboration contracts result in 26x103
m.u. and 42x10% m.u. savings in the RM purchase and polystyrene production
costs, in comparison with the standalone case.
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o os]
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e
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M RM purchase WEnergy from Grid M Internal Energy
M Production M Distribution d Storage

Figure 6.25: Leader economic decisions
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Table 6.8 summarizes the final economic decisions of the leader partner re-
sulted from the different coordination contracts, in comparison with the stan-
dalone case. As the decision is to fulfill the final customer demand, the total
economic sales are the same in all cases (18.59x10° m.u.). However, the coor-
dination contracts 0.17, 0.18, amd 0.19 m.u./kWh result in 14%, 10%, and 7%
improvements in the leader profits, respectively, comparing with the standalone
case.

Table 6.8: Leader economic summary

Contract Contract Contract Standalone
price  (0.17  price (0.18 price (0.19
m.u./kWh) m.u./kWh) m.u./kWh)

Cost (x10% m.u.) 10.11 10.36 10.61 11.12
Sales (x10° m.u.)  18.59 18.59 18.59 18.59
Profit (x10° m.u.)  8.48 8.23 7.99 7.47

6.7.2 Follower expected decisions-breakdown

Figure 6.26 summarizes the economic decisions of the follower partner using
the different coordination contracts, in comparison with the standalone case.
As mentioned before, the coordination results in 15% increase in the expected
energy generation, which in turn leads to 16.5% reductions in the expected
economic energy sales to third parties (local grid and external markets). Unlike
what is expected, the follower partner could not sell more energy to third parties
to compensate these reductions, as the corresponding cost is high; generating
1% more energy leads to 1% increase in the follower SC expected cost. The
coordination results in 14% increase in the expected energy generation cost,
ensuing in 16% increase in the RM purchase cost.

164



20
18
16
14
12
10

Values (10° m.u.)

=T L AN+ =]

0.17 m.u./KWh

@ RM purchase

M Energy generation

Results: Tactical decision-making

0.18 mu./kWh  0.19 m.u./KWh Standalone
M Storage W Distribution
M Sales tolocal grid @ Sales to external markets

B Contract energy

Figure 6.26: Follower expected economic decisions

Table 6.9 summarizes the consequences of the follower expected decisions
resulting from the different coordination contracts proposed, in comparison
with the consequences associated to the expected standalone decisions. Their
values are obtained after solving the follower model for external prices generated

using the same Mont
seen that 10% in the
price 0.17 m.u/kWh.

e- Carlo sampling technique previously discussed. It can be
follower expected total profit is reduced using the contract
However, the leader partner, would offer this price taking

into consideration that the follower would accept as she/he is expected to gain
in 18% (probability of acceptance) of the generated scenarios resulted from this
offer. It can be noticed also that the contract price 0.19 m.u/kWh is likely to
be accepted by the follower partner, with 79% probability of acceptance.

Table 6.9: Follower economic summary

Contract Contract Contract Standalone

price (0.17  price (0.18 price (0.19

m.u./kWh) m.u./kWh) m.u./kWh)
Cost (x10% m.u.) 15.38 15.42 15.38 13.16
Sales (x10° m.u.)  17.83 18.13 18.33 15.90
Profit ()(106 m.u.) 2.46 2.71 2.95 2.74

Finally, Figures (6.27 - 6.30) summarize the energy (resource r') decisions
(expected in the follower case) using the different coordination contracts.

165



6. Scenario-Based Dynamic Negotiation (SBDN) under Uncertainty

- ~ x
/
y (g \
] Energy generation Polystyrene production \
le ‘l. (Follower) (Leader) 1
1 |
0GWh
| - Exp. profit 2.74x10°m.u. - Profit 7.47 x10° m.u. |
I %- - Exp. cost 13.16 x105m.u. — - Cost 11.12 x10°m.u. -m 1
1 l
I i I
lg . :
I %
I ' 10.92 GWh 65.63 GWh 24.71 GWh |
| 2.23x10%mu 13.67x10°mu  5.20x105m.u |
. I
: Local grid Local grid % % .......... % I
! g L . 2 S 88 !
S | ¥ ! v 7 °Y¢ .
\ /
N 7/
N —— e M M o L
Figure 6.27: Energy expected flows (standalone)
AT T T TS EE TS S EEEEEEEE s =~ X
7
y @ \
] Energy generation Polystyrene production \
lg ‘l‘ (Follower) (Leader) 1
1 |
| - Exp. profit 2.46x10°m.u w - Profit 8.48x10¢m.u |
I %‘ - Exp. cost 15.38 x106m.u 017 - Cost 10.11 x105m.u ‘m |
|' 5 17 m.u/ - Exp. profit 7.65x105m.u ° |
| ' I
lg :
1 %
' 9.10 GWh 55.81 GWh I
| 0GWh
| 1.91x10°mu 11.73x105m.u I
. 1
: Local grid Local grid % % ---------- %? I
! i e ] - 2 S 8 B
‘ Y BEEN
\ /
N 7/
N —— e M M o L

Figure 6.28: Energy expected flows (contract price: 0.17 m.u./kWh)
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Figure 6.30: Energy expected flows (contract price: 0.19 m.u./kWh)
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6.8 Final considerations

The main goal of this chapter has been to develop decision-support tools to
help SC managers in making efficient decisions for multi-enterprise large-scale
multi-site multi-echelon multi-product SCs from a decentralized perspective.
To do so, different coordination/collaboration scenarios are analyzed based on
cooperative and non-cooperative systems, and compared with the standalone
system.

A Scenario-Based Dynamic Negotiation (SBDN) approach is proposed to
set the best conditions for the coordination/collaboration contract between
the participating enterprises of overlapping/contrasting objectives under un-
certainty. Since any contract is documented between pairs of enterprises stake-
holders, the rest of participants must be regarded as third parties, in which
they participate in the decentralized decision-making process by their prices
policies and uncertain behavior. The interaction between the negotiating en-
terprises (client and provider, both participate as complete SCs with their third
parties "external clients and providers" is modeled through a non-cooperative
non-zero-sum SBDN with non symmetric roles built on expected win-to-win
principles. The client decision-maker, as the negotiation leader partner, de-
signs a set of coordination contracts anticipating the uncertain response of the
provider (as follower) resulted from the uncertain nature of the surrounding
third parties. This uncertain response is modeled as probability of acceptance,
which is able to capture the variations of the follower profits scenarios re-
sulted from the Monte-Carlo sampling method. Furthermore, and unlike the
reviewed literature, an assessment methodology is proposed to help SCs en-
terprises decision-makers to evaluate the final coordination contract agreement
based on their possible risk-behavior (risk-seeking, risk-neutral, and risk averse)
and cumulative probabilities.

The proposed approach is implemented through the mathematical formula-
tions of different tactical MINLP generic and flexible models, which have been
solved for a case study of a large-scale multi-enterprise multi-echelon multi-
product SC with different providers and clients industrial production SCs.

The results show that using the the non-cooperative SBDN, it is possible to
identify and manage high individual profits expectations likely to be accepted
by all participants. The results show the importance of the transfer price on the
negotiation process; for the presented case study, increasing the unit transfer
price by 0.01 m.u. leads to potential increase in the cumulative probability of
the follower successful profits scenarios.

Moreover, the proposed approach gives flexibility to the negotiating part-
ners to accept/reject the coordination/collaboration, based on the fact that

their individual SCs can function as standalone systems. This flexibility can
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be counted as added value of the proposed SBDN approach. This th leader is
not given a monopolistic role in the negotiation process. Furthermore, the pro-
posed approach identifies coordination situations that cope with the different
risk behaviors of the negotiating partners decision makers.

The proposed methodologies are flexible enough to be applied to real cases
when enterprises seek collaborations under different sources of uncertainty. The
enterprises decision-makers are able to assess the impact of their tactical de-
cisions and the other partners’ decisions on their actions. The use of Monte-
Carlo sampling method adds value to the proposed approach, as both negoti-
ating partners can evaluate the coordination/collaboration contracts based on
methodologically generated set of data and, unlike the reviewed literature, the
assessment process considers the variability between the follower profits sce-
narios rather than the mean.

Finally, the proposed SBDN method allows the third parties to participate
in the decision-making process through their price policies and uncertain be-
havior, thus giving them enough freedom to control their financial nodes in
order to stay competitive. The uncertain nature of the third parties affects the
follower response to the leader offers, and thus affects the tactical decisions of
the whole system. Integrating the price policies of the competitive third parties
in the tactical model formulations may lead to equilibrium situations between
the each negotiating partner and the third parties of the counterpart. The char-
acteristics of this equilibrium will be analyzed in the next chapter (Chapter 7),
where the proposed SBDN method is compared with the game theory method.

6.9 Nomenclature

Indices

r resource (raw material, product, energy, steam, cash,...)
! negotiation resources

sc supply chain

t time period

Sets

D third parties

I follower supply chain

L leader supply chain

m final customers

n piecewise pricing zone

pl production plants

R resources (raw material, product, energy, steam, cash,...)
T time period

w warehouses/distribution centers

w’ external warehouses/distribution centers
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xc external clients

TV external providers

Parameters

AdMm, sc distance between final customer m and supply chain
dss,sc distance between external supplier s and supply chain
facy v sc production factor of resource r from 7/, leader SC
frot sc production factor of resource v’ from r, follower SC

PE,/ 20 scm price elasticity of demand of resource r’ purchased from external
providerxzv at price zone n

PRO st minimum production capacity of resource r in production plant
pl, time ¢

PRO s + maximum production capacity of resource r in production plant
pl, time ¢

min .. . ’ . .

DU o tm minimum price of resource r’ from external provider zv, price

zone n, time ¢
max : : . / . .

PV S b maximum price of resource r° from external provider zwv, price
zone n, time ¢

TDr,sc,m retail price of resource r (final product) to market m

STstock stock amounts of 7’ in warehouse w, time ¢

ST e minimum storage capacity of resource r in warehouse w, time ¢

ST et maximum storage capacity of resource r in warehouse w, time ¢

uprdf,s s unit production cost of resource r’, follower SC

uprdr sc unit production cost of resource r

USETr w0, sc unit storage cost of resource r

US4 sc unit storage cost of resource r’

/ ravel distance of resource r’ from warehouse w’, follower

df sc,w t 1 dist f " f h " foll SC

utr frr se units transport cost of resource 7/, follower SC

UtT Sy, sc unit transport cost of resource r (raw material)

ULT My, sc unit transport cost of resource r (ﬁnal product)

VL etn_1 Minimum purchase amount of resource r’ from external provider
zv at price zone n — 1, leader SC, time ¢

VL%, tn Mmaximum purchase amount of resource r’ from external provider

zv, price zone n, leader SC, time ¢
xdemy se,m,e  external markets m demands of resources r, time ¢

Continuous variables

Cr w,sc,z0,t quantity flows of resource r’ from warehouse w to external client
xc, follower SC, time ¢

COSTs. supply chain cost

CPR;. production cost

CRM,. external resources purchase cost

CSTsc storage cost

CTRs. distribution cost

EXPROFs. leader expected profit

FC scmept quantity of resources r’ sold to external client xc, follower SC,
time ¢

FPD, ;s pi sct production of resources r’ from resources r in production plants
pl, follower SC, time ¢
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FPROT’,pl,sc,t
LPROT’,T,pl,sc,t

MKr,w,sc,m,t
Dr! sc

DPCr ze,t
PROr,pl,sc,t
PROF;.
probsc
pvr',_atv,t

min
pvr’,zv,t,n

Qr’,sc,t

Qr’,w,sc,w’,t

Qr’ 2w’ w,se,t

QLT’,pl,t
RMT,s,sc,t

NSse
SALFEs.
SPROF,.
STT’,w,sc,t
STRr,w,sc,t
TN
Tprofit

VT’,zv,w,sc,t

VLT’,z'u,sc,t
VLT’,zv,sc,t,n

VUM s,sc,t

Nomenclature

production of resource ' in production plant pl, follower SC,
time ¢

production of resource r from resource r’ in production plant pl,
leader SC, time ¢

resources r flows from warehouse w to market m, time ¢
resources r’ unit transfer price

unit price of resources r’ to external client xc, time ¢
production levels of resource r in production plant pl, time ¢
aggregated profit

probability of acceptance

unit price of resource r’ from external provider zv, time ¢

unit price of resource r’ from external provider zv at price zone
n, time ¢t

resources r’ flows from/to supply chain, time ¢

resource ' flows from follower warehouse w to leader warehouse
w’, time t

resource r’ flows from follower warehouse w’ to leader warehouse
w, time ¢

resource ' demanded by production plants pl, time ¢

resource r (raw material) purchased from external supplier s,
time ¢

number of successful profits scenarios

economic sales

standalone profit, leader SC

storage of resources v’ in warehouse w, time t

storage of resource r in warehouse w, time ¢

total number of generated scenarios (Monte-Carlo)

overall profit

resource r’ flows from external provider xv to warehouses w,
leader SC, time t

resourcesr’ flows from external provider zv, leader SC, time ¢
resource v’ flows from external provider xv, price zone n, leader
SC, time ¢

unit price of resource r (raw material) purchased from external
supplier s, time ¢

Discrete variables

Yr! t,n

Binary variable for pricing zone n of resource r’, time ¢
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Chapter 7

Integrated Game Theory Modeling under Uncertain
Competitive Environment

7.1 Introduction

The dynamic competitive nature of chemical industry SCs underscores the
necessity of decision-support tools able to capture the individual objectives
of all participants enterprises towards efficient multi-enterprise wide coordina-
tion (M-EWC). Current decision-support tools on decentralized SCs decision-
making (Cao et al., 2013; Huang et al., 2013; Yue & Fengqi, 2014; Yi & Guo,
2015; Heese & Kemahlioglu-Ziya, 2016) disregard the risk associated with the
presence of competitive clients and providers in an uncertain market environ-
ment, and most of the literature works do not consider the standalone case,
assuming that the collaboration is a must.

In the previous chapter, a scenario-based dynamic negotiation method is
proposed for the coordination between enterprises of contrasting objectives
considering the uncertain reaction of the follower partner. In this chapter, the
coordination contracts are obtained using Game Theory (GT), and compared
with the SBDN method proposed in Chapter 6 using the same case study. The
problem statement and the model formulations of the previous chapter are ex-
tended to consider the global view of the SC of interest, in which all providers
and clients act as complete SCs, including the external clients and providers
(third parties). The SBDN considers tha uncertainty around the follower part-
ner SC, however the problem statement of the previous chapter is extended
to consider the uncertain behavior of all participants, including the uncertain
behavior of the follower partner, resulting from the uncertain nature of their
third parties.
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As previously described in Chapter 2, most of the literature on decentral-
ized SCs coordination based on either cooperative or non-cooperative games
focus on simple SC structures disregarding the co-existence of competitive
providers/clients and their uncertain behavior. Moreover, most of the reviewed
literature tends to linearize the mathematical formulations in order to simplify
and to mitigate the computational efforts, which may lead to lose some prac-
ticality resulting in sub-optimal decisions. GT provides a suitable platform to
solve such situations of contrasting and competitive interactions.

Current non-cooperative GT models allow to provide individual decisions
based on static cases, without considering the whole SC perspective and how
the other players decisions affect the whole system equilibrium. It is important
to understand how the other participating enterprises may react, without giv-
ing the monopoly to one player (leader provider or client). Therefore, effective
games that are able to deal with the firms contrasting objectives and their cor-
responding interaction including their competitive third parties are necessary
in order to enhance the M-EWC and to avoid any potential disruption that
may lead to withdraw important partners from the whole system.

Consequently, this chapter aims to develop an integrated GT method for
the coordination of multi-enterprise Supply Chains (SCs) in a competitive un-
certain environment, by suggesting the best terms for the coordination con-
tracts between enterprises of contrasting/overlapping objectives. The proposed
method considers different providers and different clients participating in a
large-scale multi-echelon multi-product SC network, which gives flexibility to
the game players to accept or reject the GT outcome. The contrasting ob-
jectives between the provider (production SC) and the client (manufacturing
SC) are captured through a non-cooperative non-zero-sum single-leader single-
follower Stackelberg game, which is built on expected win-win principles. It
is important to highlight that the proposed GT method takes into account
the uncertain behavior of the enterprises unfolding from the uncertain nature
of their competitive third parties. The competence between each Stackelebrg
game player and the counterpart third parties is expected to lead to Nash Equi-
librium (NE) situation.

A novel method is proposed to represent the game theory outcome as an
expected win-win Stackelberg set of "Pareto frontier", where each point corre-
sponds to a possible coordination/collaboration contract. The Stackelberg set
of Pareto frontier gives a wider set of options for the game players to negotiate
later based on more information related to their SCs operational conditions
and risk behaviors. The values on the Pareto frontier represent the trade-off
between the enterprises payoffs. The Stackelberg payoff matrix is built under
the nominal conditions, and then evaluated under different probable uncertain
scenarios using a Monte-Carlo simulation. Both game players must carefully
evaluate the game outcome, based on their expected payoffs and respective
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variances. The results show that the coordinated decisions lead to higher ex-
pected payoffs compared to the standalone cases. This leads to uncertainty
reduction, and thus stressing their willingness to collaborate.

To achieve the main goal of this chapter, many objectives are to be ad-
dressed, such as:

e To integrate the Stackelberg and NE games in a single integrated GT
approach.

e To bring the competitive third parties into the game as complete SCs
with their price policies.

e To develop a Stackelberg set of "Pareto frontier" considering the uncer-
tain behavior of all game players.

e To analyze the relationship between the possible coordination contracts
and the "uncertainty effects reduction cost"

e To identify the resources and the economic flows through the global SC
nodes that result in acceptable financial returns over a discrete planning
horizon.

7.2 Problem statement

This chapter addresses the inter-organizational coordination/collaboration be-
tween different participants based on non-cooperative systems. The problem
statement of Chapter 6 is extended to consider the SCs of the external provider
and client as part of the global system (Figure 7.1). Two main enterprises with
their complete production SCs are considered for this chapter: the provider and
the main client. The main provider is supposed to sell an inner component /s
to the main client and to external clients (third parties). The main client is
supposed to purchase this inner component from the main provider and from
external providers (third parties).

175



7. Integrated Game Theory Modeling under Uncertain Competitive Environment

s Decentralized SC »
Provider SC Client SC \
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Figure 7.1: Decentralized global SC network

Under such a scenario, two main issues arise (Figure 7.2):

e Competence between providers/clients: the main provider and the exter-
nal provider compete to provide resources to the main client, while the
main client and the external client compete to purchase resources from
the main provider.

e contrasting objectives: when the main enterprises interact the inner com-
ponent "conflicting resource", where the provider enterprise seeks maxi-
mum value while the client enterprise seeks a minimum value.
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Figure 7.2: Contrasting and competitive objectives

7.3 Methodology

In order to represent the individual objectives of each enterprise, the contrasting
and competitive objectives between the different actors are captured through
an integrated GT (Stackelberg-NE) approach based on non-cooperative games.
The Stackelberg-game is to capture the contrasting objectives, while the NE-
game is to capture the competence among the players of interest.

7.3.1 Stackelberg-game

Under win-win (nominal/expected) conditions, the contrasting goals of the
main provider and the main client are modeled through non-cooperative non-
zero-sum single-leader single-follower Stackelberg game, with non-symmetric
roles. The Stackelberg game players are the main client "as the game leader"
and the main provider "as the follower". The Stackelberg game item is the inner
component and the coordination/collaboration contract must include the trans-
fer price of the game item and the inner component flows (physical/economic)
between their SCs over a discrete planning horizon. The Stackelberg game re-
action function is identified to be the physical flows of the inner component
from the follower SC to each manufacturing plant of the leader SC. Based
on the available information that each game player possesses about the other
player, each one acts to optimize her/his SC individual payoff by taking into
account that the other player is pursuing the same objective. The Stackelberg-
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game leader player makes the first move of the Stackelberg game anticipating
the reaction of the follower by offering the transfer price of the game item.
Consequently, the follower player reacts by optimizing its production plan to
provide the offered amount of the game item (Figure 7.3). This is repeated until
the Stackelberg Payoff matrix is built. Each cell of the Stackelberg Payoff ma-
trix corresponds to a possible coordination/collaboration contract (i.e. transfer
price and quantity demanded flows over time). It is worth mentioning that the
Stackelberg Payoff matrix depends on the knowledge each player has previously
acquainted about the other, and thus different solutions may be obtained.

7 Action

- ~
7/ Transfer price \

: 1
1 \ I
: 1
! |
| . |
| Uncertain
sources | 1
: |
! |
: |
! |
: |
! Uncertain : 1
1 Uncertain
| sources e 1
Reaction 1
| ) ) ; : 1
= Reaction: optimal amounts flows Amnunts flows ® Action: unit transfer price |
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= 3dparties SCs & price policies Non-cooperative = 3" parties SCs & price policies 1
\ = Uncertainty reduction cost _ Non-zero-sum * Uncertainty reduction cost 1
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Figure 7.3: Stackelberg-game methodological framework

Next, the Stackelberg Payoff matrix is evaluated using a set of generated
scenarios through a Monte-Carlo sampling method, which considers:

1. the uncertain behavior of the follower SC resulting from the uncertain
prices of the resources to/from its third parties.

2. the uncertain behavior of the leader SC resulting from the uncertain prices
of the resources from its third parties.

3. the uncertain behavior of both the follower and leader SCs resulting from
the uncertain nature of their third parties.

The expected payoffs of the game players are obtained on the basis of gener-
ated scenarios considering the aforementioned uncertain cases. The Stackelberg
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game output is represented as a Stackelberg set of "Pareto frontier" that guar-
antees win-win outcomes (nominal/expected). Both game players must care-
fully evaluate the game outcome, based on their expected payoffs and respective
variances.

7.3.2 Nash Equilibrium game

The Nash Equilibrium (NE) game is used as non-cooperative game when the
roles of the game players are not symmetric (i.e, no one is leading the game).
NE-game is used to find the best strategy for competitive situations. In this
chapter, the competitive NE-game players are (see Figure 7.2):

e The main provider (Stackelberg-game follower player) and the external
providers competing to sell resources to the main client (Stackelberg-game
leader player).

e The main client (Stackelberg game leader player) and the external clients
competing to purchase resources from the main provider (Stackelberg
game follower player).

The idea of the NE-game is that each player is playing her/his best moves
taking into consideration that the other player is playing also his/her best in a
simultaneous way. To do so, each NE-game player must consider the best strat-
egy of the other competitive NE-game player. The NE solution (equilibrium)
is achieved when no one of the NE-game players can improve her/his payoff by
changing only her/his own strategy while the other players strategies remain
unchanged.

7.3.3 Integrated Stackelberg-NE Game

To integrate the Stackelberg and the NE games, each Stackelberg-game player
must consider the optimal strategy of the competitive external provider/client
(NE-game player) when making the Stackelberg move (transfer price/amounts).
In other words, the main client must consider the optimal price strategy of the
competitive external client (third party) when offering the price, and the main
provider as a Stackelberg game player must consider the optimal amounts that
the external provider (third party) offers to the main client. This means that
the main client and the main provider play different roles: Stackelberg and NE
game players.

Finally, the decisions achieved are the raw material (RM) acquisition and
unit prices, the inner component flows and transfer price (game coordina-
tion/collaboration contract items), production, storage, and distribution ac-
tivities and directions. The integrated methodology is explained in details in
the mathematical formulations (next section).
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7.4 Mathematical formulations

A generic tactical model is developed which integrates the Stackelberg-game
with the NE-game in one mathematical formulation. In the next sections, the
GT theoretical models are described separately (sections 7.4.1 & 7.4.2). Then,
both models are integrated into a single novel GT theoretical model (section
7.4.3). Afterward, the single model will be translated into a SC tactical model
multi-enterprise which is able to capture the competence and the contrasting
objectives between various players.

7.4.1 Stackelberg-game theoretical model

Mathematically, a single-leader single-follower Stackelberg-game forms a bi-
level model (Colson et al., 2007), where the leader SC model is considered at
the upper-level problem, and the follower SC model is considered at the lower-
level problem. The idea of the bi-level formulation is that the leader makes
her/his actions taking into consideration the optimal decisions of the follower,
as both the upper-level and the lower-level problems are solved simultaneously.
Eq. (7.1) summarizes the bi-level model formulation. The terms Z and z are the
upper-level and lower-level objective functions, respectively. X and Y represent
the upper-level and lower-level decision variables; G and H represent the upper-
level inequality and equality constraints, while g and h represent the lower-level
inequality and equality constraints. It can be noticed that the constraints of the
upper-level problem depend on both the upper-level and lower levels decision
variables (z and y). The Stackelberg-game leader player is represented by L,
and the Stackelberg-game follower player is represented by F.

HL(xa y) =0
max Zr(x,y)
e Grla,y) <0
where, (7.1)
hF(fE, y) =
y € max zr(z,y)
e gr(z,y) <0

In case the follower SC model is convex and regular, the bi-level model can
be formulated by replacing the lower-level model by its Karush-Kuhn-Tucker
(KKT) conditions (Bard, 1998), thus transforming it into constraints in the
leader SC optimization model (upper-level problem). This manipulation results
in a monolithic model that can be solved at once.
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7.4.2 NE-game theoretical model

Assuming a NE-game with ¢ € (1,2...T) players, k; the strategy of player i, and
k_; is the strategy of the rest of the competitive players (all players except 7).
The NE-game equilibrium is achieved when all competitive players make their
strategies, simultaneously, by taking into consideration the strategies of the
rest of the players. The objective function is to maximize the payoff of player
i (Eq. (7.2)) taking into consideration the others players strategies.

The NE-game equilibrium strategy is achieved when none of the game play-
ers can improve her/his payoffs by changing only her/his own strategy (Eq.
7.3).

Ji(ky k2) > filks, k) (7.3)

7.4.3 Integrated game model

Here, the Stackelberg-game and the NE-game theoretical models are inte-
grated into one algorithm (Egs. (7.4)-(7.8)), considering that the Stackelberg-
game players are also NE-game players. ¢ represents the NE-game competitive
providers, and j represents the NE-game competitive clients. The Stackelberg-
game Leader player L as NE-game player (L € J) competes with the rest of
the clients (—j) players. The Stackelberg-game follower player F' € I as NE-
game player competes with the rest of the providers (—i) players. So, when
maximizing the payoff of the Stackelberg-game players Z; & zp, the strategy
of the rest of the NE-game players must be considered (Eq. (7.4)).

HL(xaya kL? k—j) =0
max ZLeJ(xa Y, kL, k—j)

zeX kEX,y Gr(v,y,kr,k—j) <0

where,

hF(%?% CIF7q7i) =0
ye max ZFGI(xa Y, qr, Q—’L)

Y,q€Y,
yeY.geY,x gF(x7yaQF7Q—i)SO

From the Stackelberg-game leader side, the NE equilibrium strategy kj is
achieved when the leader cannot improve her/his payoff by changing only
her/his own strategy kr, (Eq. (7.5)). From the Stackelberg-game follower side as
NE-game player, the NE equilibrium strategy ¢} is achieved when the follower
cannot improve her /his payoff by changing only her/his own strategy ¢r (Eq.

(7.6)).
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ZLG.](x*»y*vk27k*—j) 2 ZLGJ(xayvkL»kij) (75)

ZFEI(x*vy*aqu')qii) 2 ZFEI(x7yaQF7q*—i) (76)

The NE equilibrium strategy for the external clients as NE-game players
(—7) is achieved when no one of them can improve her /his benefits by changing
only her/his own strategy (Eq. (7.7)). The NE equilibrium strategy for the
external providers (—i) is achieved when no one of them can improve her /his
benefits by changing only her/his own strategy (Eq. (7.8)).

foi (K2, k1) > f—j(k—j. kL) (7.7)
f=ilq" s, a7) > f-i(q—i,qF) (7.8)

Then the solution of the integrated GT algorithm can be considered as the
Stackelberg-NE equilibrium. In the next section, the above integrated-GT al-
gorithm is incorporated within a practical multi-enterprise SC tactical model.

7.4.4 The tactical integrated-GT model

To represent the integrated-GT approach within a decentralized SC frame-
work, a set of enterprises supply chains (scl, sc2...5C) is considered with their
new subsets linking each SC to its corresponding enterprise game player SC:
Stackelberg-game leader and NE- game player (L), Stackelberg-game follower
and NE-game player (F), external provider as NE-game player (V'), and exter-
nal client as NE-game player (C). The model formulation also includes the set
of external suppliers s and final customers m, a set of resources r, production
plants pl, warehouses/distribution centers w. The Stackelberg-game item to be
negotiated is the inner component 7’

The Stackelberg and NE game strategies are represented in Figure 7.4. The
Stackelberg-game leader strategy is the action which corresponds to the unit
transfer price pL, . of the game item (the strategy = in Egs. ((7.4) - (7.6)). The
Stackelberg-game follower strategy is the reaction QF} s.; which corresponds
to the negotiation resource amounts from the follower SC each time period ¢,
representing y in Eqgs. ((7.4) - (7.6)).
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Figure 7.4: Mathematical model main items

The NE-game competitive players are represented in the mathematical for-
mulation: competitive clients (the Stackelberg-game leader L and the external
client C'), and the competitive providers (Stackelebrg-game follower F' and the
external provider V). The NE-game players strategies are:

o The price that each client offers to the main provider: pL;s ¢ vs. pCys sc ¢,
representing the NE-game strategies k7, and k_; of Egs. ((7.4) - (7.8)).

e The amounts that each provider can sell to the main client: QF, 4.+ and
VL, gct, representing the NE game strategies gp and ¢_; of Egs. ((7.4)

- (7.8)).

The Stackelberg-game reaction function QF L, g, + must be equal to the
production levels FPRD,. ;s 1 sc.+ of the game resource item 7’ from resource r
of the follower SC (using the production recipe represented by f ,/ s.) minus
the quantity flows to the external client (Eq. (7.9)).

Z Z QFLT’,sc,w’,t = Z Z FPRDr,r’,pl,sc,t~fr,r’,sc

teT w'eWw TGRI plePL
r#T (7.9)
—Z Z FCy sewrt Vsce Fir' e RiteT
teT w'eW
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To avoid infeasible solutions in the leader SC model when considering the
follower Stakelberbg-game strategy (reaction function), the follower Stackelberg
resources flows QF L, gc v+ must be less than the maximum storage capacity
ST, + and higher than the minimum storage capacity S ﬂfﬁf,,t of the leader

SC of the game resource item ' (Eq. (7.10)).

STﬁ”Z‘,yt <QFLy seprp < S ﬂ“ff/t Yw' e Wisce Fir' e Rit €T
(7.10)

Eq. (7.11) illustrates the leader SC demand (Ldem, ) of resource 7/,
which is equal or more than the resource r’ production FPRD, ,/ pir sc.+ in the
follower SC using resource r from external suppliers s multiplied by a produc-
tion factor f, , sc menus the quantities sold F'Cys 5¢ scr+ to external clients C
each planning time period t. This production factor depends on the utilized
production recipe, assuming linear correlations.

Z Ldemr’,pl,tz Z Z Z FPRDT,T’,pl’,sc,t-fr,r’,sc

plePL sceF reR pl'ePL
sceSC r#r plsﬁpl/

- Z FCT’,sc,sc’,t vr' e R,t eT
scelF

sc’'eC
sc#sc!

(7.11)

The final customer demand (zdem,. s¢.m i) of resource r may be satisfied (or
not) from any participating supply chains (Eq. (7.12)), M K, . sc,m,+ represents
the resources flows from the warehouses w to the final customers m.

Z MK, wsemit < Tdemy sem Vsce SC;re Ryme M;teT (7.12)
weWw

Eq. (7.13) illustrates the mass balance of the game item resource ' at the
warehouses of the game players SCs. ST, 4 sc ¢ corresponds to the storage lev-
els of r’ at warehouse w each time period t; FPD, i s+ corresponds to the
follower SC production levels of 7’ in the production plants pl each planning
time period ¢; QF Ly 4 sc,w ¢ Tepresents the quantity flows of v’ from the ware-
houses w of the follower SC to the warehouses w’ of the leader SC each time
period t; FCp 4 scr t Tepresents the quantity flows of v from the warehouses
w of the follower SC to the the warehouse w’ of the external client C each
planning time period ¢.
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QL ' w,sct corresponds to the quantity flows of 7/ at the warehouses
w of the leader SC from the follower SC warehouses w’ each time period ¢;
VL, w,sc,e Tepresents the quantity of r' purchased from the external vendors
SC. LPRD, y pi.sc,. is the production levels of resource r (intermediate prod-
uct, final product, etc.) from 7’ in the leader SC production plants pl each time
period ¢, based on the production recipe represented by fac, , s, assuming
linear correlations. F'Cp 4 sc 1S the quantity flows of " at the warehouses w
of the client SC from the warehouses w’ of the follower SC; CPy 1 sc.t cOrTe-
sponds to the quantity flows from warehouses w to the production plants pl,
client sc C. VL, 4 ' sc represents the quantity flows of 7’ from the warehouses
w of the external provider SC to the warehouses w’ of the leader SC; V Py, p1 sc.t
corresponds to the quantity flows from warehouses w of the external provider
SC to production plants pl each time period t.

stock
STT’,w,sc,t + STT’,w,sc,t - STT’,w,sc,tfl = § E FPDT’,pl,sc,t

sceF plePL

- E E QFLT’,w,sc,w',t - E E FCT’,w,sc,w’,t
sceEF w'eWw sceEF w'eWw
w’ #w w'£w

+ E E QLT’,w’,w,sc,t + E E VLT’,w/,w,sc,t
sce€EL w'eWw sceEL w'ew
w' #w w'#w

_ Z Z Z LPRD,s ypi set-facy v sc (7.13)

sceL reR plePL

rr!
+ § § FOT’,w’,w,sc - § E C113111,pl,sc,t
sceCyw'eWw sceC plePL
w' #w
- E E VLT’7w,w',sc + E E VPw,pl,sc,t
sceV w'ew sceV ple PL
w’'#w

Vr € Rysce SCowe WiteT

Eq. (7.14) and Eq. (7.15) illustrate the production and storage minimum
and maximum capacities, respectively.

PR min S PRDr,pl,sc,t S PRD™Max

r,pl,sc,t r,pl,sc,t
(7.14)
Vr € R;pl € PL;sce SC;teT
ST o < STy ser < STSE.,  Vr € Ryw e Wisc€ SCit €T (7.15)
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Eq. (7.16) represents the NE-game strategies of the providers (QF L, sc w1
& V'L, 4 w,t)- The quantity offered to the main client by the Stackelberg-game
follower QF Ly ¢ .+ must be equal or more than the total quantity needed for
the leader SC manufacturing processes minus the quantity V' L, v ., ¢ offered
from the competitive external provider. So, if the optimal quantity that the
NE-game player V offers to the main client is known, then this optimal value
can be substituted in Eq. (7.16), resulting in the NE-game equilibrium between
the main providers.

Z QFLT’,sc,w’,t > Z Z LPRDT’,T,pl,t-facT’,r,pl - Z VLT’,w’,w,t

w'eWw reR plePL w' eW
r#r’ w’'#w
Vsce F;r' e Rit €T

(7.16)

As the game is non cooperative, the objective function is to maximize the
individual payoffs PAY OF F. of the game players (Eq. (7.17)).

PAYOFF,;, = SALE;. — COST,, (7.17)

The total SC sales SALE;. (Eq. (7.18)) are the sales to the final markets
plus the sales to the external clients plus the sales to the leader SC. This is
according to the role of the SC of interest. Here, rp, ,, represents the retail
price of the final product (7). The term (QF, sc.pL,/) represents the sales to
the leader player SC when the SC belongs to the follower game player. The
term (V Ly sc.¢.pVyr sc,t) represents the sales to the leader when the SC belongs
to the external vendor (V).

SALESC = Z Z Z MKr,sc,m,ta Tpr,sc,m

reRmeM teT

+ Z Z Z QFT’,sc,t-er’,sc + Z Z Z VLT",sc,t-p‘/;",sc,t (718)

sceEF r'eRteT sceVr'eRteT

Vsc e SC

The SC cost (Eq. (7.19)) is the summation of the RM purchase (CRMj.),
production (CPRDj;.), storage (C'STs.), transport (CTR;.), Stackelberg-game
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item (QF, sct-pLy sc) cost, purchase cost of resource 1’ from external providers
(V Ly 5e4-pVir set), and purchase cost at the client SC (FCy sct.pCr sct), Te-
spectively. The term (QF, sct.pLy s.) and the term (V Ly gc.0.pVi sc,t) are the
inner product cost from the follower SC and from the external provider in case
the SC of interest belongs to the leader L each time planning period ¢. The term
(FCy s¢,t-pCys sc,t) is the purchase cost of 7/ from the follower SC in case the
SC of interest corresponds to the external client C. Here can be understood the
contrasting objectives between the Stackelberg-game players, as the same term
(QF, sct-pLy sc) is considered as a sale when the SC belongs to the follower
F (Eq. 7.18), while it is considered as a cost when the SC belongs to the leader
L (Eq. 7.19).

COST,. = CRM,. + CPRD,. + CST,. + CTR,.

+ Z Z ZQFT’,sc,t-er’,sc + Z Z ZVLT’,sc,pr;"’,sc,t

sceL ' eRteT sceLr'eRteT (7.19)

+ Z Z ZFCT",sc,t~pCr’,sc,t Vsce SC

sceCr'eRteT

The RM purchase CRM,. cost (Eq. (7.20)) from the external suppliers
s is the RM purchased quantity (RM, s sc;) multiplied by the RM unit price
(vrmy s sc.t), which is computed following the piecewise pricing model proposed
in Chapter 5, where different unit prices are offered by the external suppliers s
depending on the quantity demanded, based on the elasticity demand theory.

CRMye =Y > > RMy s 0rMysscs  Vsc € SC (7.20)
reRseSteT

The production cost CPR,. is computed on the basis of the unit produc-
tion cost (uprd, ) in each production plant pl as in Eq. (7.21). PRD, p) sc.t
corresponds to the production levels of resource r in production plants pl each
planing time period ¢.

CPRDyc=»_ Y Y PRDypecruprdrpec Vsc€SC  (T.21)
teT plePLreR

The SC storage cost C'STs. is computed on the basis of the unit storage
cost (uSty w,sc) of resource r in each warehouse w each planning time period ¢
(Eq. (7.22)).
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CST,. = Z Z Z ST w,sc,t-UStr ), sc Vsce SC (7.22)

teT weW reR

The SC transport cost (CTRj.) is calculated in function of the travel dis-
tance dis; sc of resource r and the unit transport cost utr, 5. (Eq. (7.23)).

CTRye =YY Qrictdisyscutryse  Vsce SC (7.23)

teT reRr

It is assumed that the optimal strategy of the NE-game players lie in a range
of different possible values, in which any value behind these ranges results in
reducing the payoff of any of their SCs. For example, it is assumed that the
NE-game strategy pCi sc: follow the piecewise price model with n optimal
cases (Eqgs.(7.24) - (7.28)). Different optimal sets of prices are offered by the
NE-game player (external client SC C) to the follower player according to the
quantity purchased each time period ¢, F'Cys ¢+, corresponds to the quantity
purchased from the follower at unit price pCy ¢+ (NE-game strategy) at each
pricing zone n each time period ¢. The binary variable x, ; ,, is used to allocate
each purchase quantity F'C, 5+ to its corresponding unit price pCr sc .

T - T
Vr' € Risce Cit€T;ne N

min mazx
xT‘lvtm‘pCr/,sc,t,n < pCT’VSCi»” < ‘TT'»tm'pCr/,sc,t,n—l

’ (7.25)
Vr' e Ryjsce CiteT;ne N
pCr’,sc,t = Z pCr’,sc,t,n vr' e R;sce CiteT (726)
neN
FCpisep =Y FCpicrn V' €RjsceCiteT (7.27)
neN
Y wpserm <1l W ERsceCitel (7.28)

neN

The NE-game player (external provider V') optimal strategy VL, sc; is
integrated in the same way.
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Uncertainty management

The expected payoft (FExzPAY OF Fs.) (Eq. (7.29)) of the SC is evaluated using
NS generated probable uncertain scenarios around a specific mean (u) and
standard deviation (o). Monte-Carlo sampling method is used for this regard.

The expected payoff then is calculated as the mean of the resulted set of of
payoffs scenarios PAY OF Fs; 5.

ZnsENS PAYOFFSCJLS

ExzPAYOFF,, =
T O NS

Vsc e SC (7.29)

A simplified way to calculate the probability of acceptance prob. is adopted
from Chapter 5 based on the follower payoffs successful scenarios; SNy, and
T N, correspond to the successful and total number of the follower SC payoffs
scenarios (Monte-Carlo sampling) (Eq. (7.30)).

SNsc
T'Ngc

probg. = Vsc € F (7.30)

As a result of the integrated GT mathematical formulation, MINLP non-
convex models are obtained. In this case, solving the Stackelberg-game leader
and folower MINLP models as a bi-level model using the traditional Karush-
Kuhn-Tucker (KKT) conditions method (see Section 3.4 in Chapter 3) is im-
possible (Bard, 1998; Colson et al., 2007), as the follower MINLP non-convex
model cannot be reduced into constraints, unless it is simplified to an LP
model formulation. Accordingly, and in order not to lose practicality and to
avoid sub-optimal decisions, an alternative method is proposed by building the
Stackelberg-payoff matrix.

The developed integrated-GT tactical model formulation is generic and flex-
ible enough to be applied when different clients and providers participate in a
decentralized large-scale SC. It is able to capture the contrasting and competi-
tive objectives in one single comprehensive approach. The mathematical model
is able to cope with the different roles the same game player may act. Each
SC enterprise stakeholder can act as a provider for other clients’ SC/s, and
as a client for other providers’ SC/s. The flexibility of the generic model and
its ability to contain all possible SCs (centralized /decentralized, standalone)
including the third parties SCs adds to the PSE and OR researches a new
comprehensive approach able to solve complex decentralized decision-making
structures. Furthermore, evaluating the expected payoffs of the participating
SCs enterprises stakeholders helps in reducing the uncertainty effects that each
game player may face due to the uncertain market environment.
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7.5 Case study

To illustrate the practicality of the proposed integrated GT approach, the re-
sulting MINLP tactical models are implemented and solved for the same case
study of Chapter 6 in order to compare the obtained results.

The Stackelberg-game players are the polystyrene production SC enterprise
decision-maker (as leader), and the energy generation SC (as follower), partic-
ipating as complete SCs (Figure 7.5).

Figure 7.5: Decentralized SC game players

The Stackelberg-game follower player is supposed to sell energy to the
Stackelberg-game leader player SC and also to the local grid as external client.
The polystyrene manufacturing SC is supposed to purchase energy from the
energy generation SC and from the local grid as external provider. The leader
action is the internal energy unit transfer price. The Stackelberg-game leader
offers between 0.14 m.u./kWh and 0.22 m.u./kWh. The reaction function of
the Stackelberg game is the internal energy amounts that the follower provides
to each production site of the leader SC along a planning horizon of 6 time
periods.

The electricity local grid plays different roles in the decentralized decision-
making process as NE-game players: external provider competing with the
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Stackelberg-game follower, and external client competing with the Stackleberg-
game leader .It is assumed, for comparison issues with the SBDN, that the
electricity grid participates as simple two-echelons SC (seller-buyer SC). The
Spanish local grid is considered for this work with current (selling/purchasing)
nominal prices as shown in Table 6.1 of the previous chapter. To obtain the ex-
pected payoffs of the game players, 500 scenarios are generated for each of the
energy price policies of the supporting third parties, using Monte-Carlo sam-
pling method, assuming normal distribution with equal probabilities: standard
deviation (o) = 0.03; the mean (u) for the energy prices of the third parties
around the follower SC is equal to the current energy prices as in Table 6.1. For
the leader SC, the mean (u) is the external provider energy prices according to
the quantity demanded as in Table 7.1.

Table 7.1: The mean (u) of the local grid (external provider) energy prices

o (m.u./kWh)

Local grid energy price to polystyrene SC (demand<2GWh) 0.20
Local grid energy price to polystyrene SC (2GWh<demand<4GWh) 0.19
Local grid energy price to polystyrene SC (4GWh<demand<8GWh) 0.18

To be more practical, all RM suppliers (third parties) participate in the
decentralized decision-making by their pricing policies following the piecewise
pricing model of Chapter 5.

Assumptions

e The optimal strategies of the NE-game players (local grid as external
provider and external client) are known within a range (optimal zones).
For example, the best strategy for the local grid as competitive provider
lies between 2GWh to 8GWh which are assigned to energy prices (0.20
m.u/kWh to 0.22 m.u./kWh). The best strategy of the local grid as a NE-
game competitive client lies within the price range (0.19-0.21 m.u./kWh)
as in Table 6.1.

e The transport and the storage costs of the RM from the external suppliers
are charged by the RM buyers (energy generation enterprise/polystyrene
manufacturing enterprise).

e The energy sold/purchased can not be stored.

7.6 Results and discussion

The resulting non-cooperative non-zero-sum integrated GT model has been
solved for the above-mentioned case study, and the Stackelberg-payoff matrix
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is built under the nominal conditions (energy prices around the decentralized
SC as in Table 6.1, considering the NE-game competitive players optimal strate-
gies. Then the nominal Stackelberg-payoff matrix is evaluated under different
uncertain disruptions:

1. The follower uncertain conditions resulted from the uncertain nature of its
third parties. 500 probable scenarios are generated for the energy prices
around the follower SC (o = 0.03, u = energy prices as in Table 6.1.

2. The leader uncertain conditions resulted from the uncertain nature of its
3rd party. 500 probable scenarios are generated for the energy prices of
its third parties (o =0.03, ;1 = energy prices as in Table 7.1).

3. The uncertain external conditions of the leader and follower resulting
from both of the aforementioned cases above.

The case study is modeled using the General Algebraic Modeling System
GAMS 24.2.3 on a Windows 7 computer with Intel Core™ i7-2600 CPU
3.40GHz processor with 16.0 GB of RAM. The resulting MINLP tactical mod-
els have been solved for 6 time periods; 1000 working hours each, using Global
mixed-integer quadratic optimizer "GloMIQO" (Misener & Floudas, 2013). The
R-project program 3.2.1 is used for statistical computing. The tactical decisions
achieved are the RM acquisition, game items flows and unit transfer prices,
production, storage, and distribution levels. Table 7.2 summarizes the model
statistics of each game player model. The CPU times when considering uncer-
tainty is multiplied by the number of the generated scenarios.

Table 7.2: Models statistics

Game Model Single Single Discrete CPU (sec)
player equations variables variables each action
Leader MINLP 964 1653 126 7.95
Follower ~MINLP 1202 1289 180 3.85

7.6.1 Coordination under nominal conditions

The above-mentioned case study is solved at the nominal conditions (at the
energy prices around the decentralized SC, as in Table 6.1). The nominal pay-
offs of the Stackelberg-game players are obtained for each leader action (energy
unit transfer price) and follower reaction (internal energy flows) (Table 7.3).
The marked payoffs values in the table are obtained based on the proposed
leader transfer price and the follower optimal amounts. When the leader offers
transfer prices from 0.14 m.u./kWh to 0.16 m.u./kWh, the follower responds
with 0 GWh energy amounts, returning to its SC standalone case (payoff= 2.44
x10% m.u.). But, when the leader increases the transfer price to 0.17 m.u./kWh,
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the best for the follower is to provide 6 GWh distributed among the leader
manufacturing plants along 6 time periods. When the leader offers 0.18-0.19
m.u./kWh, the best for the follower is to provide 23.10 GWh. When the leader
offers up to 0.22 m.u./kWh, the follower is ready to sell all the energy amounts
(24.71 GWh) needed for the leader SC production.

The Stackelberg-payoff matrix is represented in Figure 7.6. The leader and
the follower nominal standalone payofls are obtained to be used as benchmarks
for bounding the winning zone. It is noticed that at energy prices from to 0.14-
0.17 m.u./kWh, the leader is winning while the follower is losing (contrasting
objectives) until reaching to the prices 0.17-0.20 m.u./kWh where the win-win
zone lies. The coordination/collaboration among their SCs is viable in the win-
win zone as their willingness to collaborate increases.
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Figure 7.6: Leader payoffs vs. follower payoffs
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Since the transfer prices (0.17-0.20 m.u./kWh) with the follower correspond-
ing amounts lead to a win-win coordination/collaboration, more transfer price
possibilities are examined within the same range (0.175-0.205 m.u./kWh) in or-
der to reach a decent coordination/collaboration contract (Figure 7.7). Different
Stackelberg set of Pareto solutions can be established (the dark lines/points) as
in the figure, where each point on the graph corresponds to an optimal contract
of coordination, but they do not guarantee the equilibrium.

847 ]
~+ Pareto frontiers win (L)-win (F)

8.27

8.07

7.87

Leader Payoff (x10°m.u.)

2.44 2.64 2.84 3.04 3.24
Follower Payoff (x10m.u.)

=—Follower standalone payoff bound =—Leader standalone payoff bound

Figure 7.7: Stackelberg set of Pareto solutions (nominal conditions)

As shown in Figure 7.8, a Pareto trade-off between the players benefits can
be established if the leader offers are between 0.175 and 0.205 m.u./kWh. Ac-
cordingly, the Stackelberg equilibrium is represented as a set of Pareto frontier,
the so called Stackelberg set of "Pareto frontier", so to give the game play-
ers a wide range of options to be negotiated, simultaneously, based on more
data available, risk behavior, and preferences. Analyzing the extreme points on
the Pareto frontier, the highest leader payoff is 8.33x10% m.u. (at price 0.175
m.u./kWh) is 11.5 % higher than its SC standalone payoff. This value results in
the lowest follower Payoff (2.47x10° m.u.); 1.1 % higher than its nominal stan-
dalone payoff. On the other side, the highest follower payoff is 3.21x10° m.u. (at
price 0.205 m.u./kWh and energy amount 24.71 GWh); 31.4 % higher than its
standalone payoff. This point corresponds to the lowest leader payoff (7.56x10°
m.u.); 1.2 % higher than its standalone payoff. In any of the solution points
between those extreme solutions on the Stackelberg set of "Pareto frontier",
the follower shall be able to offer all the required energy to the leader (24.71
GWh) with a significant profit potential with respect to the standalone case,
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and the leader would also obtain benefits from this deal. Other equilibrium
points can be found in this game, but they do not take the maximum profit of
this win-win potential.
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2.44 2.54 2.64 2.74 2.84 2.94 3.04 3.14 3.24 334
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===Follower standalone payoff bound =] eader standalone payeff bound

Figure 7.8: Stackelberg set of Pareto frontier (nominal conditions)

It is worth mentioning that each point on Figures (7.6 & 7.7) leads to a
NE solution but does not guarantee a Stackelberg equilibrium, However, just
the points on the "Pareto frontier" (Figure 7.8) lead to Stackelberg and NE
equilibrium. The NE-game competitive providers are competing for the total
demand of 24.71 GWh. However, the equilibrium is that the follower sells the
entire amount to the leader SC, while the local grid (as NE-game provider) sells
zero amount, as its optimal price range is still high (Figure 7.9(a)). So that if
the local grid tries to change its strategy through its restricted optimal price
policy, still the leader will buy all the energy amounts form the follower, as the
follower does not restrict any amounts limits to specific prices. The local grid
(as NE-game player client) has its optimal price strategy restricted to specific
energy amounts (Figure 7.9(b)). So, the equilibrium is that the follower sells
the 24.71 GWh without price restrictions to the leader. So, no one of the NE-
game provides nor clients can improve its benefits by just moving through its
optimal strategy, as mentioned before, each optimal strategy is considered in
the model formulations as one package.
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Figure 7.9: Local grid optimal strategies

7.6.2 Tactical decisions: Leader SC

The tactical decisions, associated to the trade-off between the benefits of the
different players, are affected by the Stackelberg-NE equilibrium. For exam-
ple, Figure 7.10 shows the internal energy flows from the follower SC to the
leader SC polystyrene manufacturing plants at a possible coordination contract:
24.71GWh at 0.185 m.u./kWh (Figure 7.10(a)), namely the 5" point on the
"Pareto frontier" from the left of Figure 7.8, comparing with the standalone case
(Figure 7.10(b)). It is noticed that in the standalone case, the leaders decision
should be to shutdown polystyrene plant pl3 because of the local grid energy
market prices, which are higher at low demand levels. However, a proper coor-
dination contract would enable to maintain the polystyrene plant pl3 working,
so both leader and follower may get higher benefits. Furthermore, the coordi-
nation contract leads to function the polystyrene manufacturing plant pll all
time periods at its manufacturing capacity to produce product B, in which
the energy will be provided from the energy generation plant g4. Functioning

197



7. Integrated Game Theory Modeling under Uncertain Competitive Environment

the polystyrene manufacturing plant pll leads to higher benefits as it is the
closest to the rm4 supplier (see Table Appendix B.10) which dominates the
RM purchase levels for producing polystyrene product B.
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Figure 7.10: Internal energy flows to polystyrene manufacturing plants

It is worth noticing from Figure 7.11 that in order to produce product A, the
polystyrene production plant pl2 dominates the production levels: 54.1 % of the
total product A amounts under the coordination contract (0.185 m.u./kWh for
24.71 GWh) (Figure 7.11(a)), and 83.9 % under the standalone case (Figure
7.11(b)). Unlike the standalone case, the collaboration between the follower
and the leader players would maintain all the polystyrene manufacturing plants
working at all time periods to produce product A following the internal energy
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provided from the follower (Figure 7.10(a)). The dominance of the polystyrene
production plant pl2 for producing product A can be explained by the short
distance between pl2 and the RM supplier sup2 (see Table Appendix B.10),
as the RM rm2 dominates the RM purchase levels for producing product A
(see Figure 7.13). Furthermore, polystyrene manufacturing plant pl2 has the
highest production capacity among the other plants.
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Figure 7.11: Product A production levels

Instead, to produce polystyrene product B (Figure 7.12), the coordination
would lead to the dominance of production plant pl1 (75.4% of the total product
B), as it is the closest to the rm4 supplier as explained before. However, at the
standalone case, the production plant pl2 dominates again producing product
B (75 % of the total production of product B) due to the local grid energy (as

199



7. Integrated Game Theory Modeling under Uncertain Competitive Environment

external provider) higher prices at low demand levels (see Figure 7.9(a)). So,
the leader decision is to purchase higher amounts of energy for the production
plant pl2 to gain lower prices and functioning it up to its production capacity
to produce both products A and B.
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Figure 7.12: Product B production levels

Figure 7.13 shows the RM purchase levels at the possible coordination con-
tract, 0.185 m.u./kWh : 24.71 GWh, comparing with the standalone case. It
is noticed that rm?2 dominates the RM purchase levels; 49 % (1690.91 tons)
of the total RM purchase levels to produce polystyrene product A. The domi-
nance of rm2 is due to its lower price and higher capacity comparing with rm1l
(see Table Appendix B.7). Under the coordination contract, the rm2 purchase
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levels are the highest (785.83 tons, namely, 22.8 %) at time period ¢3 (Figure
7.13(a)), as the production levels of product A are the highest at the same
time period (see Figure 7.11(a)). However, under the standalone case, the rm2
purchase levels are the highest (796.36 tons, namely 23.10 %) at time period
t4 (Figure 7.13(b)) so to satisfy the high polystyrene production levels at the
same time period (Figure 7.11(b)).

For producing product B, rm4 dominates the RM purchase levels (1298.39
tons, or else 37.6 %) (Figure 7.12(a)), comparing with the standalone case, so
to satisfy the production levels of pll , which is the closest to rm4 supplier.
Furthermore, the decision is to purchase rm4 up to its supplying capacity (240
tons), so to get the highest price discount. At the standalone case, rm3 dom-
inates the RM purchase levels (1320.11 tons, namely 38.3 %) for producing
polystyrene product B (Figure 7.13(b)) as its supplier sup3 is the closest to
the polystyrene production plant pi2 (see Table Appendix B.10) which dom-
inates the production levels of product B (Figure 7.12(b)). Moreover, at the
standalone case, the polystyrene production plant pl2 is working up to its pro-
duction capacity, stressing the necessity to buy higher amount of RM with
higher supplying capacity to get the highest possible discount, as briefely de-
scribed in Chapter 5. So, the rm3 is the best option here. The excess of the
production will be stored for later distribution.
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Figure 7.13: Leader RM purchase levels

Consequently, the storage decisions (Figure 7.14) are affected by the man-
ufacturing levels resulted from the coordination. The coordination contract
(24.71 GWh at 0.185 m.u./kWh) would result in 8.8 % decrease in the total
storage of product A (350.05 tons) (Figure 7.14(a)), as the production activi-
ties are distributed among the 3 polystyrene manufacturing plants to produce
product A. The storage levels of product B is increased by 246.30 tons; 64.8 %
higher than the standalone case, and this is due to the high production levels of
product B at time period t3 (Figure 7.12(a)) following the high internal energy
provided by the follower at this time period (Figure 7.10(a)). The excess of the
polystyrene production will be stored for later distribution.
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Figure 7.14: Leader SC storage levels

Table 7.4 summarizes the economic decisions of the leader. The total eco-
nomic sales are the same (18.59x10°m.u.) as the decision is to fulfill the final
polystyrene markets demands. The coordination based on 24.71 GWh internal
energy at price 0.185 m.u./kWh would improve the total cost of the leader SC
with 5.7 % (with 0.60x10°m.u. savings), in comparison with the standalone
case. This leads to 7.5 % gains in 6 time periods, in comparison with the stan-
dalone case at the nominal conditions.

Table 7.4: Leader SC economic summary (nominal conditions)

Contract Standalone

price: 0.185

m.u./kWh
Cost (x10° m.u.) 10.52 11.12
Sales (x10° m.u.) 18.59 18.59
Profit (x10% m.u.) 8.07 7.47

7.6.3 Tactical decisions: Follower SC

It is noticed from Figure 7.15 that the coordination would lead the follower to
generate 16.71 GWh more energy; 18.60 % more than the standalone case. It
is also worth noticing that the energy sales to the local grid has been reduced
by 11.4 % (8 GWh) due to the coordination contract (0.185 m.u./kWh to
24.71 GWh), comparing with the standalone case. In the standalone case, the
follower has to sell 11.40 % (8 GWh) more energy to the local grid in order
to compensate the lack of the coordination. However, the follower could not
be able to sell higher amounts of energy to the local grid as the cost becomes
higher and the market prices do not compensate.

203



7. Integrated Game Theory Modeling under Uncertain Competitive Environment

20

16

12

8

4

0
tl t2 t3 t4 t5 t6

Time periods

Energy (GWh)

® Internal energy m Energy to Grid ® Energy to markets

(a) Contract price: 0.185 m.u./kWh

20

16

12

8

4

0
tl t2 t3 t4 t5 t6

Time periods

Energy [GWh)

M Internal energy M Energy to Grid B Energy to markets

(b) Standalone
Figure 7.15: Follower SC energy sales

Figure 7.16 illustrates the energy generation activities along the planning
horizon resulting from the coordination contract (0.185 m.u./kWh to 24.71
GWh) (Figure 7.16(a)) and the standalone case (Figure 7.16(b)). The coordi-
nation contract would lead to functioning the energy generation plants (g4, ¢5,
and ¢g6) up to their generation capacities (6 GWh) all time periods in order to
sell 24.71 GWh to the leader SC. However, in the standalone case, the follower
decides not to function the energy generation plants up to their generation ca-
pacities. The cost of generating 1GWh is high (0.17 m.u./kWh), and the local
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grid higher prices are restricted to lower energy amounts (Figure 7.9(a)) which
does not compensate the follower.
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Figure 7.16: Energy generation levels
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To understand this point; assume that the follower at the standalone case
wants to sell the highest possible amount (up to energy generation capacities).
The best option is to operate the energy generation plants (g4, g5, and ¢6).
So, the maximum energy generation = 3 x 6 x 6 = 108 GWh to be distributed
between the local grid as external client and the fixed energy markets. The
energy sales to the energy markets = 12 GWh (fixed demand 2 GWh per time
period). So, the sales to the local grid will be 96 GWh (16 GWh per time pe-
riod). According to Figure 7.9(b), to sell higher energy amounts (more than 4
GWHh), the price is 0.19 m.u./kWh. So, the energy economic sales = (96 x 0.19)
+ (12 x 0.20) = 20.60x10%m.u. The cost of producing 108 GWh = 108 x 0.17 =
18.36x10%m.u. This means that the follower SC payoff is equal to 2.24x10m.u.,
so the follower loses. And this explains why at the standalone case, the follower
could not generate energy up to the generation capacity.

The follower SC RM purchase levels (Figure 7.17) follow the energy gener-
ation levels. The RMs b2 and b4 dominate the RM purchase levels due to their
lower prices (see Table B.1). However, the coordination would lead to 20.8 %
(7.94x103tons) higher RM purchase amounts in order to follow the higher levels
of the energy generation.
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Figure 7.17: Follower RM purchase levels

Table 7.5 summarizes the follower economic decisions resulting from the
coordination contract (24.71 GWh at 0.185 m.u./kWh) in comparison with the
standalone case. The coordination contract achieves 17.8 % improvement in
the total economic sales leading to 18.8 % increase in the follower SC cost and
11.48 % total gains.

Table 7.5: Follower SC economic summary (nominal conditions)

Contract Standalone

price: 0.185

m.u./kWh
Cost (x10% m.u.) 18.27 15.38
Sales (x10° m.u.) 20.99 17.82
Profit (x10° m.u.) 2.72 2.44

7.6.4 Coordination under the follower uncertain condi-
tions

The integrated GT outcome is evaluated under the uncertain conditions of the
follower SC resulting from the uncertain nature of its third parties. To do so,
the Stackelberg payoff matrix in Table 7.3 is evaluated using Monte-Carlo sam-
pling method. The follower SC model is solved for 500 scenarios generated from
each energy price policy of the third parties considering: mean (u) = energy
prices as in Table 6.1; standard deviation (o) = 0.03. The expected payoffs
of the follower are obtained. Here, the leader payoffs are not affected, as the
uncertainty is considered just around the follower SC. Table 7.6 illustrates the
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Stackelberg payoff matrix considering the leader payoffs and the follower ex-
pected payoffs. It is noticed that the expected follower payoff at the standalone

case (2.74x10% m.u.) increases; 12.20 % more than its standalone nominal pay-
off (2.44x10m.u.).

The Stackelberg leader payoft-follower expected payoff matrix is represented
in Figure 7.18. The leader standalone payoff and the follower expected stan-
dalone payoff are obtained to mark the winning zone. It is noticed that the
follower expected standalone payoff has been shifted by 0.29x10°m.u. to the
right side, in comparison with Figure 7.6. This means that the leader has to
offer higher prices in order to compensate the follower in case of any possi-
ble disruptions. The follower is expected to gain more under her/his uncertain
conditions, and thus his/her expectations from the leader becomes higher, ex-
cluding the leader price offer 0.17 m.u./kWh from the game (it becomes inside
the losing zone of the follower). The new win-expected win zone starts from
the leader price 0.18 m.u./kWh (Figure 7.18).
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Figure 7.18: Leader payoff vs. follower expected payoff
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7. Integrated Game Theory Modeling under Uncertain Competitive Environment

Then, a different set of leader prices offers are examined between 0.18
m.u./kWh and 0.21 m.u./kWh, and the leader win and the follower expected
win payoffs are obtained (Figure 7.19). The Stackelberg set of "Pareto frontier"
is established for each scenario; in which each point corresponds to a possible
coordination contract. Comparing with the payoffs under the nominal condi-
tions of Figure 7.7, it can be seen that the leader price offers 0.175 and 0.178
m.u./kWh are also excluded from the game.
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Figure 7.19: Leader win-follower expected win solutions

The Stackelberg set of "Pareto frontier" under the follower uncertain con-
ditions can be established if the leader’s offers are between 0.18 m.u./kWh and
0.205 m.u./kWh (Figure 7.20) and the follower response is between 23.10 and
24.71 GWh. In any of these cases, the follower shall be able to offer between
23.10 GWh and 24.71 GWh to the leader with a significant profit potential
respect to the standalone case, the leader would also gain from this deal.

Figure 7.21 shows the follower nominal/expected payoffs. Here, it can be
seen clearly the positive shift of the follower expected payoff up to its nominal
payoff; an increase of 12.2 % (0.29x10%m.u.) of the follower expected standalone
payoff leads to 6.6 % increase in the follower profit expectations. This results
in excluding the prices offers (> 0.18 m.u./kWh).
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Figure 7.20: Leader win-follower expected win solutions
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Figure 7.21: Follower nominal vs. expected payoffs
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Follower uncertainty reduction effects

The probability of acceptance of the follower is calculated for each coordination
contract possibility. The variance (02) of the follower expected payoffs is calcu-
lated and plotted on Figure 7.22. It is noticed that the probability of acceptance
increases when the leader price offers increase, resulting in higher expectations
of the follower payoffs. It is worth noticing that the coordination reduces the
variance of the follower expected payoff by 27.34 % comparing with the variance
at the expected standalone case. The variance using the different coordination
contracts is not the same, as the internal energy amounts (contract amounts)
are not the same; lower energy amounts lead to higher uncertainty and thus to
higher variance in the profits scenarios. This means that the coordination guar-
antee an "uncertainty effect reduction" of the expected payoffs of the follower
(expected payoff = contract payoff + market payoff). The coordination assures
stable benefits regardless of the uncertain conditions along the planning time
horizon (Figures 7.22 and 7.23). Such market stability stresses the willingness
of the game players to collaborate taking into consideration that both of them
can improve the quality of their SCs, such as reducing operational cost so to
assure higher benefits than what they get from the coordination contract.
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Figure 7.22: Probability of acceptance and variance (Follower uncertain conditions)

Figure 7.23 shows the breakdown of the expected payoff of the follower under
the different coordination contracts. It is to be noticed that the standalone
case results in zero uncertainty effect reduction which is risky for the follower.
However, the uncertainty effect reduction increases (lower variance) when the
coordination contract prices increase.
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Figure 7.23: Follower contract and market payoffs (follower uncertain conditions)

7.6.5 Stackelberg vs. SBDN approach

The results obtained in this chapter using the integrated game theory approach
are compared with the results obtained in Chapter 6 using the scenario-based
dynamic negotiations (SBDN) under the uncertainty of the follower partner.
Using the SBDN;, the best coordination contract offered by the leader under
the uncertainty of the follower corresponds to the transfer price 0.18 m.u./kWh
for 24.71 GWh. This solution is the same best solution resulting in this chapter
(see Table 7.6 & Figure 7.20). Table 7.7 summarizes the coordination contract
results (transfer price 0.18 m.u./kWh for 24.71 GWh) from the SBDN and the
integrated GT approach. It is noticed that the integrated GT approach leads
to better follower expected payoff with a difference of 1.7 % comparing with
the SBDN approach.

Table 7.7: Comparison: SBDN vs. integrated game theory

SBDN (Chapter 6) | Integrated GT (this chapter)
Contract Contract Leader Follower Leader Follower
price energy payoff expected payoff expected
(m.u./kWh)  (GWh) (x10m.u.) payoff (x10%m.u.) payoff
(x10°m.u.) (x10°m.u.)
0.18 24.71 8.23 2.71 | 8.21 2.76

Uunlike the SBDN;, the contracted energy supply (Figure 7.24) corresponds
to the optimal amounts that the follower decides according to her/his best
conditions leading to higher expected payoffs. On the contrary, for the SBDN,
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the leader decides the energy flows at each time period (Figure 7.25) according
to her/his best expected conditions based on the probability of acceptance of
the follower. This is why the SBDN leads to 0.02x10%m.u. more gains for the
leader SC in 6 time periods, in comparison with the integrated GT approach.
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Figure 7.24: Internal energy flows using integrated GT at price 0.18 m.u./kWh
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Figure 7.25: Internal energy flows using SBDN at price 0.18 m.u./kWh
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7.6.6 Coordination under the leader uncertain conditions

In this section, the Stackelberg payoff matrix at the nominal conditions is eval-
uated considering the uncertain behavior of the (game leader). The MINLP
tactical model of the leader SC is solved for the generated 500 scenarios of the
local grid price policy using Monte-Carlo sampling method: mean (4 = local
grid energy prices as in Table 7.1; standard deviation (o) = 0.03. Table 7.8 il-
lustrates the Stackelberg payoff matrix considering the leader expected payoffs
and the follower nominal payoffs for each coordination contract offer. It can
be noticed that the coordination would lead to 6.80 % (0.50x10° m.u.) higher
leader expected payoffs at the standalone case (7.98x10° m.u.) comparing with
its nominal standalone payoff (7.47x10° m.u.).

Given that the expected standalone payoff of the leader is higher than its
nominal standalone payoff, and that unlike the case of the follower, the leader
has to offer lower prices (Figures 7.26). The winning zone at the nominal,
follower uncertain conditions, and leader uncertain conditions is summarized
as below:

e 0.17 m.u./kWh < Winning zone "nominal conditions" < 0.21 m.u./kWh
(Figure 7.6).

e 0.18 m.u./kWh < Winning zone "follower uncertain conditions" < 0.21
m.u./kWh (Figure 7.18).

e 0.17 m.u./kWh < Winning zone "leader uncertain conditions" < 0.19
m.u./kWh (Figure 7.26).

Here can be seen the contrasting objectives under the leader and the follower

uncertain conditions, as the leader offers higher prices and the follower seeks
lower prices.
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Figure 7.26: Leader expected payoffs vs. follower payoffs

Different sets of contract price offers are examined within the winning zone
under the leader uncertain conditions to obtain the leader expected win and
follower win payoffs (Figure 7.27). Different sets of "Pareto frontiers" are estab-
lished for each leader price offer. Comparing with the nominal payoffs in Figure
7.7, the uncertain conditions of the leader SC bring the price 0.173 m.u./kWh
into the game while excluding the prices (0.19-0.205 m.u./kWh).

The trade-off between the players payoffs under the uncertain conditions of
the leader player is represented as Stackelberg set of "Pareto frontier" (Figure
7.28). In any of the solution points, the follower shall be able to offer between
23.10 GWh and 24.71 GWh to the leader with a significant profit potential re-
spect to her /his standalone case, the leader would also obtain expected benefits
from this deal. The similar prices on the Pareto frontier correspond to different
contract energy amounts (23.10-24.71 GWh).
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Figure 7.27: Leader expected payoffs vs. follower payoffs
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Figure 7.28: Leader expected payoffs vs. follower payoff. * Similar prices correspond
to different energy amounts
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Leader uncertainty effect reduction

The variances (02) of the leader expected payoffs under the coordination con-
tracts (resulted from the Stackelberg set of "Pareto frontier" are obtained to-
gether with the leader expected standalone payoff (Figure 7.29). It is noticed
that the coordination would reduce the uncertainty effect that the leader may
face, as the variances of the expected payoffs decrease from 0.50 (x10% m.u.)?
to almost zero. This means that the coordination guarantee a confident payoff

"contract payoff" whatever is the uncertain market situation around the leader
SC.

0.5
S 04
E
= 03
X \ . Contract price (m.u./kWh)
g 02
=
Rl
]
= &l v % £}
0.0 0.188 0.185 0.183 0.180 0.178 0.175 0.173
7.98 8.06 8.14 8.22 8.30 8.38

Leader Expected payoff (x105m.u.)

Figure 7.29: Leader expected payoffs variance

7.6.7 Coordination under uncertainty of all participants

The Stackelberg payoff matrix at the nominal conditions (Table 7.3) is eval-
uated considering the uncertain behavior of the leader and the follower game
players resulting from the uncertain nature of their competitive third parties.
Then, the Stackelberg expected payoff matrix is built for the expected pay-
off leader-follower (Table 7.9). It is noticed that the coordination under both
game players uncertain conditions would lead to 6.80 % higher leader expected
standalone payoffs (7.98x10% m.u.) comparing with the nominal standalone
payoff (7.47x10% m.u.). Also, the coordination leads to 12.20 % increase in the
follower expected standalone payoff comparing with the standalone nominal
payoff (2.44x10° m.u.), in 6 time periods.
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The expected standalone payoffs of the game players delimit the zone where
the winning is expected (Figure 7.30). It can be seen that when both conditions
of uncertainty are in force, this zone becomes reduced to contract prices from

0.18 m.u./kWh to 0.19 m.u./kWh.
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Figure 7.30: Leader expected payoffs vs. follower expected payoffs

The Stackelberg set of "Pareto frontier" is obtained (Figure 7.31) when the
leader and the follower act under uncertain conditions. In any of these solution
points, shall the follower offer the energy amounts between 21.00 GWh and
24.71 GWh to the leader with a significant profit expectations respect to the
expected standalone case, the leader would also obtain expected benefits from
this deal in case she/he offers prices from 0.18 m.u./kWh to 0.188 m.u./kWh.
The rest of the energy amounts needed for the production SC of the leader is
to be supplied from the local grid. The similar prices on the Pareto frontier
correspond to different energy contract amounts.
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Figure 7.31: Stackelberg set of Pareto frontier under leader and follower uncertain
conditions. * Similar prices correspond to different energy amounts

Table 7.10 summarizes the possible coordination contracts based on the
different uncertain conditions. It should be noticed, as it is mentioned in the
above sections, that each game player seeks its SC individual nominal /expected
benefits; the follower seeks higher prices and the leader seeks lower prices. And
when considering the uncertain conditions of both of them, a compromise can
be reached for the trade-off between their expected payoffs, excluding the lower
prices less than 0.18 m.u./kWh from the follower side, and the prices greater
than 0.188 m.u./kWh from the leader side.

Table 7.10: Coordination contracts summary

Coordination contract

Price Energy
(m.u./kWh) amount
(GWh)
Nominal conditions 0.175-0.205 24.71
Follower uncertain condition  0.18-0.205 23.10-24.71
Leader uncertain conditions 0.173-0.188 23.10-24.71
Leader and follower uncer-  0.18-0.188 21.00-24.71

tain conditions

From all the above-mentioned cases, the uncertain behavior of the game
players affects the trade-off between their payoffs, and thus affects the equilib-
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Switching the game players roles

rium of the whole system. Each coordination contract is able to mitigate the
uncertainty of the third parties resulted from the dynamic market situation.
The coordination proves to be viable under the nominal and uncertain condi-
tions, thus stressing the SCs enterprises stakeholders willingness to collaborate
and negotiate the different proposed solutions

7.7 Switching the game players roles

The coordination/collaboration contracts in the above mentioned sections are
obtained considering that the manufacturer (client) is the game leader. How-
ever, in this section, the analysis of the decisions obtained when the roles of
the game players are switched, in which the client is dealt as the follower game
player, is analyzed. The provider as the game leader offers the coordination
contract price and the client as the game follower responds with the required
energy amounts along the planning horizon (reaction function).

As in the opposite case, at the nominal conditions, the Stackelberg payoff
matrix is built (Table 7.11 and Figure 7.32) for the presented case study. It is
noticed that, unlike Table 7.3, the coordination contract price offer starts from
0.22 m.u./kWh. The follower player in this case is the provider, in which she/he
will try higher prices first.

Compared with Figure 7.6 at the same nominal conditions, Figure 7.32
shows that switching the roles of the game players leads to exclude the coordi-
nation contract price 0.17 m.u./kWh from the game. At price 0.17 m.u./kWh,
before switching the roles (Table 7.3), the provider payoff as follower is 2.35x10°
m.u.; 7.8% more than when switching the roles (Table 7.11) for the same energy
amount (24.71 GWh). This is because the follower is the one who decides the
internal energy flows (reaction function) according to its SC best conditions.
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Figure 7.32: Leader vs. follower payoffs
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Switching the game players roles

The Stackelberg set of "Pareto frontier" is obtained from switching the roles
(Figure 7.33). Compared with Figure 7.8 under the same nominal conditions,
switching the roles leads to exclude lower prices 0.175-0.180 m.u./kWh from
the game, and adding higher prices 0.208-0.210 into the game for the same
reason explained in the above paragraph. This is due to the leading role of the
provider, who seeks higher prices.
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=Leader standalone payoff bound ——rFollower standalone payoff bound

Figure 7.33: Stackelberg set of Pareto frontier

Figure 7.34 shows a comparison between the Stackelberg set of "Pareto fron-
tiers" obtained from the original roles (client as leader: Figure 7.7) and from
switching the roles (client as follower: Figure 7.33). Unexpectedly, the tradi-
tional myth of leading the game does not guarantee higher payoffs, although it
affects the game outcome. According to the methodology of this chapter, the
follower player decides the internal energy amounts (reaction function) along
the planning horizon according to its SC best conditions.
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Figure 7.34: Stackelberg set of Pareto frontier: switching the game players roles

As it is noticed in Figure 7.35, the client role as follower leads to higher pay-
offs; ~ 1.32 % (100.74 x103m.u.) than when leading the game for the presented
case study.

It is also noticed from Figure 7.36 that the provider role as follower leads
to ~ 6.5 % higher payoffs than when leading the game.
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Figure 7.36: Provider game role (Leader vs. follower)
Unlike the traditional myth of being the leader, leading the game does not

guarantee higher revenues. The game revenues depend not only on the game
players roles, but also on the reaction function, which marks the difference.
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7.8 Final considerations

This chapter presents an integrated Game Theory (GT) method as a decision-
support tool for Multi Enterprise-Wide Coordination (M-EWC) by determining
the best coordination/collaboration between the enterprises with contrasting
and competitive objectives participating in a multi-enterprise multi-echelon
multi-product SC network under uncertainty.

Based on non-symmetric roles, the interaction between the enterprises with
contrasting objectives is modeled as non-cooperative non-zero-sum Stackelberg-
game under the leading role of the manufacturer (client). The methodological
framework of the Stackelberg-game is based on building the payoff matrix under
the nominal conditions. This payoff matrix then is evaluated using Monte-Carlo
sampling method by considering: i) the uncertain conditions of the follower, ii)
the uncertain conditions of the leader, and iii) the uncertain conditions of both
game players resulting from the uncertain nature of their competitive third par-
ties, so that the Stackelberg expected payoff matrix is built. The competitions
between the clients (on one side) and between the providers (on the other side)
are solved using Nash Equilibrium (NE) games, in which the Stackelberg-game
players (client and provider) are modeled as competitive NE-game players with
the external clients and the external providers (third parties).

The integrated GT outcome is represented as a novel Stackelberg set of
"Pareto frontier", where each solution point is a Stackelberg-NE equilib-
rium coordination contract. The resulting coordination contracts are able to
mitigate the uncertainty effects of external conditions associated to each one of
the game players while keeping their expectations of potential of higher profits,
compared to their respective standalone cases. Furthermore, the integrated-GT
tactical model formulation is generic and flexible enough to be applied when
different clients and different providers participate in a decentralized large-scale
SC network.

The game players roles have been switched to study their effect on the game
outcome. The results on the presented case study show that, the traditional
myth of leading the game does not guarantee higher payoffs, although it affects
the game outcome. The game player role as follower rather than as leader re-
sults in higher payoffs. The game revenues depend not only on the game players
roles, but also on the reaction function, which marks the difference.

In summary, the results show that efficient coordination is able to reduce
the risks that each game player may face due to the volatile markets, thus
stressing their willingness to collaborate under extreme conditions. The flex-
ibility of the generic model and its ability to contain all possible SCs (cen-
tralized /decentralized, standalone/non-cooperative) including the third parties
SCs add to the PSE and OR researches a new comprehensive approach able
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Nomenclature

to solve complex decentralized decision-making structures, allowing all possible
links and nodes among all possible stakeholders.

7.9 Nomenclature

Indices
r
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B3I I oM

<Qe e~

Parameters

ST ma
r’w!t

S min

raw’t

r,pl,sc,t
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uprdr, sc
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r’ sc,t,n

mazx
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,SCst,
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resource (raw material, product, energy, steam, cash,...)
negotiation resources

supply chain

time period

NE-game competitive providers

NE-game competitive clients

follower supply chain

leader supply chain

final customers

piecewise pricing zone

production plants

resources (raw material, product, energy, steam, cash,...)
time period

warehouses/distribution centers

external warehouses/distribution centers
external client SC

external provider SC

maximum storage capacity of resource r’ at warehouse w’,
leader SC, time ¢

minimum storage capacity of resource r’ at warehouse w’,
leader SC, time ¢

minimum production of resource r in production plant pl,
time ¢

maximum production of resource r in production plant pl,
time ¢

retail price of resource r (final product)

unit price of resources r purchased from external suppliers
s, time ¢

unit production cost of resource r

unit storage cost of resource r in warehouse w

travel distance of the resource r, supply chain sc

unit transport cost of resource r, supply chain sc

minimum unit price of resource r’, client sc C, price zone n,
time ¢

maximum unit price of resource r’, client sc C, price zone n,
time ¢

mean
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standard deviation

Continuous variables

qr
er’,sc
QFT’,sc,t

pCT’,sc,t
VLT/,sc,t

upper-level decision variables

lower-level decision variables

upper-level inequality constraints

upper-level equality constraints

upper-level objective function

lower-level objective function

lower-level inequality constraints

lower-level equality constraints

strategy of player ¢

strategy of the rest of the competitive players

objective function of player 4

optimal strategy of the rest of the competitive players (—i)
optimal strategy of player (i

optimal strategy of the follower as NE-game player
strategy of the follower as NE-game player

unit transfer price of the game item r’

amounts of resource v’ from the follower SC each time period
t

unit price of resource r’, client sc C, time ¢

amounts of resource v’ purchased from the external provider,
time ¢
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QVL’I‘/ 2w’ w,sc,t

plant pl, follower SC, time ¢

production recipe of producing resource r’ from resource r,
follower Sc, time ¢

amounts of resource r’ from follower SC to each warehouse
w’ of the leader SC, time ¢

demand of resource ' by production plant pl, leader SC,
time ¢

resource v’ flows from the follower SC to the external clients
SC C, time t

final customer demand of resource r, time t

resources 7 flows from the warehouses w to the final cus-
tomers m, time ¢

storage levels of 7’ at warehouse w, time ¢

production levels of r’ in production plant pl, follower Sc,
time ¢

quantity flows of r’ from warehouse w of the follower SC to
the the warehouse w’ of the external client C, time ¢
quantity flows of 7’ at warehouse w of the leader SC from
the follower SC warehouses w’, time ¢

quantity flows of ' from the external provider warehouses
w’ to leader warehouses w, time ¢

LPRD, ;1 sc.e Production levels of resource r (intermediate product, final
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Nomenclature

production recipe of resource r from resource r’, time ¢
quantity flows of resource 7’ at the warehouses w of the client
SC from the warehouses w’ of the follower SC, time t
quantity flows from warehouses w to production plants pl,
client SC, time ¢t

quantity flows of r’ from warehouses w of the external
provider SC to the warehouses w’ of the leader SC
quantity flows from warehouses w to to production plants pl,
provider SC, time ¢t

production levels of resource r at production plant pl, time
t

aggregated payoff, supply chain sc

economic sales, supply chain sc

cost, supply chain sc

resources r’ purchased from the external provider, leader SC,
time ¢

unit price of resource r’, provider sc V, time ¢

production cost

external resources purchase cost

storage cost

distribution cost

unit price of resource r’, client SC C, time ¢

resources r (i.e. RM) purchased from external suppliers s,
time ¢

resources r flows, supply chain sc, time ¢

resource r’, client sc C, price zone n, time ¢

unit price of resource r’, client sc C, price zone n, time ¢
expected payoff

profit scenario

probability of acceptance

number of payoffs successful scenarios

total number of generated scenarios (Monte-Carlo sampling)

Discrete variables

Ty’ t,n

Binary variable for pricing zone n of resource r’, time ¢
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Anew room is opened in this thesis coined as "multi-enterprise wide coordi-
nation (M-EWC)" to help chemical industry enterprises to manage their
supply chains (SCs) in the presence of different interacting participants un-
der uncertain competitive situations. To fill this room, several decision-support
tools and solution approaches are proposed and compared from centralized and
decentralized decision-making perspectives considering cooperative and non-
cooperative organizations, and taking into account the decisions of all partic-
ipants. The advantages and the applicability of the different proposed novel
approaches have been briefly highlighted along this document.

The first part of this thesis (Part I) is the welcoming part to the M-EWC
room. Within Part I, Chapter 1 addresses the importance of this thesis through
highlighting the necessity of effective global and inter-organizational coordina-
tion/collaboration among several enterprises involved in large-scale SC complex
systems, with their overlapping, contrasting and competitive goals in highly
uncertain and competitive circumstances. The main objectives of this thesis
towards optimal M-EWC are listed at the end of this chapter followed by the
thesis outline as a guiding map of this document.

Since M-EWC problems tackled in this thesis are complex systems, the ne-
cessity to quick decisions implies the use of efficient method and tools. Chapter
3 underlies the methods and tools used for developing the new models through-
out this thesis. The theoretical concepts and implementations of these methods
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and tools in the chemical industry are discussed in details. This chapter also
illustrates the decision-making approaches and solution methods considering
uncertainty, multi-objective optimization, and game theory.

Extensive state-of-the-art review and challenges are discussed in Chapter
2. Since SCs coordination has become a spot subject recently, many research
challenges are emerged from the current state-of-the-art, such as: i) the global
coordination considering the detailed information of all participants; ii) optimal
integration of the supporting external enterprises (i.e. raw materials and utili-
ties suppliers, clients, waste and recovery systems, etc.); iii) inter-organizational
coordination between several enterprises participating as complete SCs with
their complex model structures in a global multi-enterprise SC network, includ-
ing their competitive third parties under uncertainty; iv) coordination contract
evaluation under uncertainty taking into consideration the variability of the
profits scenarios and their probabilities; v) expected win-win global coordina-
tion/collaboration considering the decisions of all participants under uncertain
and competitive circumstances.

In Part I, a global coordination based on cooperative systems of large-scale
chemical industry SCs enterprises with the external supporting organizations
is achieved from a tactical management point of view.

In Chapter 4, a global cooperative-based coordination framework is pro-
posed considering the detailed description of the external supporting partici-
pants (third parties) SCs within a global coordinated SC network with multi-
ple echelons. This proposed coordinated approach is compared with the non-
coordinated traditional approach, which represents the interaction with the
third parties as economic transactions usually considered as fixed parameters
(prices, capacities, etc.). A generic coordinated tactical model is developed tak-
ing into consideration the detailed characteristics of all participants (main SC
enterprise and third parties SC). Each enterprise is represented as complete
multi-site multi-echelon multi-product SC when developing the global tactical
model.

The results of the presented case study show that the behavior of each ech-
elon of the global system leads to different tactical decisions, which allows to
obtain better global performance, resulting in potential improvements in the
overall cost of the coordinated system. Furthermore, the proposed coordina-
tion approach leads to less consumption of resources while meeting the same
market requirements. Unlike the current literature reviewed in Chapter 2, this
chapter constitutes an advance in PSE because of the flexibility of the proposed
coordinated model and its ability to integrate the detailed information of all
participants involved in the system of study towards better global objectives
and optimal resource management. Thus, all participants are able to share
responsibilities and future risks, so they can compete in the dynamic global
market.
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Later, this global coordination framework is extended in Chapter 5 to con-
sider the price policies of the different competitive third parties surrounding
the global coordinated SC of Chapter 4 as part of the new global system. A
generic tactical coordinated model is proposed integrating the price policies
of the third parties as part of the decision-making process. When solving the
developed tactical models to a global multi-site multi-echelon SC case study
of real data, the results show that incorporating the price policies of the third
parties as part of the global decision-making process allows them to partici-
pate as business partners, and thus compete in the global market. Dealing with
the pricing as a collaborative tool between the third parties and the enterprises
decision-makers, rather than as fixed economic transaction, allows enough mar-
gins for the third parties to control their financial channels and economic flows
with the global coordinated SC. This chapter proves the potential of the pricing
decisions in improving the SCM efficiency.

Then, and since the real price policies of the third parties may be complex
to model, different pricing approximation models are presented and compared
to estimate these policies based on average fixed and discounted piecewise and
polynomial approximations. The pricing approximation approaches result in
different complex tactical models. These models have been implemented to a
multi-echelon multi-product large-scale supply chain case study. The results
show that the selection of the pricing approximation approach significantly af-
fects the global coordination and the tactical decisions of the whole system.
Additionally, the trend of the global decision-maker using the discounting pric-
ing approximation models based on the piecewise and polynomial trends is to
purchase higher amounts of external resources from the third parties in differ-
ent time periods in order to get lower prices. This leads to extra production
in order to cope with the high RM purchase levels, getting the advantage of
the storage system to store the excess products for later distribution. Such a
behavior results in different economic performance for all participants.

When compared with the SC real total costs resulting from the optimal
amounts obtained from the pricing models and their corresponding real prices,
according to the real policies, a piecewise pricing model leads to the best pric-
ing approximations with significant savings in the total SC cost. Unlike the
usual habit of average approximations, the average pricing model is not rec-
ommended, as it leads to the worst decisions with the highest total cost, in
comparison with the other pricing approximation models.

Unlike the reviewed literature on SCs coordination, Part IT proposes a global
coordination framework, which is generic and flexible enough to allow all pos-
sible links and interaction channels with more enterprises willing to participate
in the system.
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However, the main argument arises here is if the different actors refuse to
cooperate under a global objective function (Part II), especially when their SCs
can function, profitability, as standalone systems. The last part of this thesis
tackles this argument through inter-organizational coordination/collaboration
from a decentralized decision-making perspective, based on non-cooperative
systems, in comparison with the cooperative and the standalone systems.

Part III deals with optimizing global multi-enterprise SCs under the ob-
jective functions of different non-cooperative participants. In such a situation,
enterprises seek individual objectives (possibly contrasting/competitive) with-
out considering the uncertain behavior of the other participants and the way
how they may react to the different decisions, especially when they are sur-
rounded by third parties in a highly uncertain and competitive environment.

In Chapter 6, different decision-support and solution approaches are pro-
posed to help SC managers in making effective decisions in a decentralized
environment under uncertainty. The coordination is proposed considering co-
operative, and non-cooperative systems, comparing with the standalone case.
The results show that the coordination based on non-cooperative systems, con-
sidering the detailed characteristics of all participants as complete SCs, leads
to higher individual revenues, although the cooperation would lead to better
total performance, in comparison with the standalone systems.

A non-cooperative Scenario-Based Dynamic Negotiation (SBDN) approach
is proposed for M-EWC coordination of multi-echelon multi-product SCs sur-
rounded by competitive third parties of uncertain price policies. The inter-
actions between the main enterprises SCs and the third parties are modeled
through the pricing models proposed in Chapter 5. Looking for win-win situa-
tion, the contrasting objectives between the negotiating partners (provider and
client) are captured through a non-zero-sum SBDN with non symmetric roles,
under the leading role of the client partner (manufacturing SC).

The methodological framework is based on anticipating the follower possible
reactions resulting from the uncertain behavior of the third parties, which are
projected as probability of acceptance in the objective function of the leader
model. This probability of acceptance, as a measure of the willingness to col-
laborate, is one of the main added values of this chapter: it captures the vari-
ations of the follower profits scenarios obtained under different uncertain cir-
cumstances (Monte-Carlo sampling). Another added value of this chapter is the
assessment methodology: a novel methodology is presented to evaluate a set of
possible coordination contracts based on different risk behaviors (risk-seeking,
risk-neutral, and risk averse) considering the cumulative probabilities of the
follower profits scenarios. Moreover, the proposed SBDN approach allows the
negotiating partners to accept or reject the collaboration. This flexibility is an
added value of this chapter as, unlike the reviewed literature, the leader partner
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is not given a monopolistic role to impose the collaboration.

The results of the presented case study show that using the SBDN approach,
it is possible to obtain and manage high individual benefit expectations likely
to be accepted by the negotiating partners. Furthermore, the results show the
importance of the transfer price of the conflicting resource on the negotiation
process, since a small increase in the transfer price significantly increases the
successful profits scenarios of the follower partner with higher probabilities, in
comparison with the standalone case. The selection of the coordination contract
affects the individual decisions of all participants, and thus affects the economic
performance of the whole system. This chapter adds to PSE a decision-support
tool that is able to identify expected win-win coordination. It allows all possible
interactions and business channels with more participants.

The resulting coordination contracts from Chapter 6 may lead to equilib-
rium situations between the participating providers and clients. The character-
istic of this equilibrium is analyzed in the last chapter (Chapter 7), where the
SBDN results are compared with results obtained from the integrated Game
Theory (GT) method.

In Chapter 7, a novel integrated GT method is proposed for the inter-
organizational coordination under uncertain and competitive circumstances.
The competences between the providers/clients are captured through Nash
Equilibrium (NE) games. The contrasting objectives between the main game
players (provider and client, participating as full production SCs) are mod-
eled through a non-cooperative non-zero-sum non-symmetric roles Stackelberg-
game under the leading role of the client. This concept is similar to the SBDN
concept, however, the difference is in the methodology. In the SBDN;, the leader
designs the coordination contract by offering the transfer price and the quanti-
ties along time (see Chapter 6). While, the Stackelberg game is based on sharing
the preparation of the coordination contract: the leader offers the transfer price
of the inner component (conflicting resource), and the follower player offers the
quantities over the planning time horizon. The SBDN methodology proposed
in Chapter 6) considers the uncertainty of the follower partner as a way to
help the leader partner to anticipate the follower response when designing the
coordination agreement, and to help the follower partner to evaluate the coor-
dination agreement offered by the leader partner.

The problem statement of Chapter 6 is extended to consider the uncertain
behavior of all participants resulting from the uncertain conditions of all third
parties. Furthermore, a generic global model is developed considering the full
SCs of the external providers/clients (NE- game players) as part of the system,
while the external suppliers/customers are considered as third parties, in which
they participate with their price policies as in Chapter 5. By this, the holistic
global coordinated model proposed in this chapter covers all the issues tackled

239



8. Conclusions and Future Work

in the aforementioned chapters, and extends them to globally cope with all
possible future enterprises SCs under all possible disruptions.

The integrated GT approach is based on building and evaluating the Stack-
elberg (expected) payoff matrix under different uncertain situations with the
help of the Monte-Carlo sampling method. A set of optimal coordination con-
tracts are built and represented as a novel Stackelberg set of Pareto frontiers.
The proposed integrated GT approach helps SCs enterprises stakeholders to
identify and manage coordination contracts able to mitigate any possible dis-
ruptions, while keeping expected individual profits improvements, in compar-
ison with the standalone case. For the presented case study, the results show
that effective coordination/collaboration contracts lead to reductions in the
uncertainty effects, represented by the variance of the profit scenarios, that
each game player may face due to the dynamic market, and thus stressing their
willingness to collaborate.

The game players roles have been switched to study their effect on the game
outcome. The results on the presented case study show that, the traditional
myth of leading the game does not guarantee higher payoffs, although it affects
the game outcome. The game player role as follower rather than as leader re-
sults in higher payoffs. The game revenues depend not only on the game players
roles, but also on the reaction function, which marks the difference.

The results of the integrated GT approach are compared with the SBDN
approach proposed in Chapter 6 considering the uncertain behavior of the fol-
lower game player using the same case study. The integrated GT approach
leads to better follower expected payoffs than the SBDN approach, while the
SBDN leads to better profits for the leader partner. This difference is due to
the different methodologies. Unlike the SBDN, the contract energy amounts
of the coordination contracts resulting from the integrated GT approach are
the optimal amounts that the follower decides according to her/his best con-
ditions, and that explains why the integrated GT approach is more profitable
for the follower player. On the other side, using the SBDN, the leader decides
the contract energy amounts according to her/his best conditions considering
the probability of acceptance of the follower. This explains why the SBDN is
more profitable for the leader partner.

In summary, this thesis adds to the PSE and OR communities several
decision-support tools that are practical and generic enough to be applied
to different situations (standalone, centralized, and decentralized) allowing all
participants to share responsibilities and risks under different competitive and
uncertain circumstances. This thesis proves that the performance of the SC
decentralized system depends on the actions and the role of each participant.

This thesis covers all the research objectives illustrated in 2.7. Many future
research works can be emerged from this document to open the door for new
researchers.
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Future research work

Future research work

This thesis opens a wide range of opportunities for future research in the line
of multi enterprise-wide coordination (M-EWC).

Further research is needed to consider the competence between different
leaders/followers, and tools to implement it in real cases. The quality
of the data sharing is to be more investigated and integrated into the
decentralized modeling system.

Further research is needed to consider the environmental and social is-
sues in the decentralized-decision making process. This leads to develop
new solution techniques able to solve the problem while managing large
number of objective functions.

New sources of uncertainty are to be incorporated such as the resources
availability, market trends, product quality, operational uncertainty, ca-
pacities, competitive behavior, uncertainty of social issues, environmental
measures, etc.

Combining preventive with reactive approaches when tackling uncertainty
based on reliability measures is one of the current challenges to be inves-
tigated.

New methods are to be developed to address the risk-sharing among the
collaborating partners.

The use of grid computing methods based on decomposition techniques is
a new interesting topic, in which it can be applied to solve more complex
SC models with less computational efforts.

New combined techniques to tackle uncertainty are to be investigated,
such as multi-parametric programming and stochastic programming, and
to study how this combination affects the M-EWC decision-making.

More research efforts are required to use complementarity programs for
decentralized SC decision-making modeling.
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Appendix B

Case Study Data

his appendix presents the case study data used along the thesis (Tables
B.1-B.11).

Table B.1: Energy generation parameters

Generation cost (m.u./kWh)  Generation ratio (m.u./kWh)

RM price (m.u./kg)

gl-g3 g4-g6 gl-g3 g4-g6
bl (Wood pellets) 0.070 0.26 0.13 0.73 1.50
b2 (Coal) 0.045 0.20 0.14 2.00 2.60
b3 (Petcoke) 0.075 0.21 0.15 0.85 1.80
b4 (Marc waste) 0.065 0.23 0.135 0.80 2.00

Table B.2: Distance between RM supplier and energy generation plants

Supplier Distance to energy plants (km)

gl g2 g3 g4 g5 g6

sl 180 150 200 180 150 200
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Table B.3: Polystyrene market demands

Demand (tons)

Products Markets Time periods

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

mk1 774 720 108.0 144.0 720 90.0 774 63.0 126.0 72.0

A mk2 774 72,0 108.0 1440 720 90.0 774 63.0 126.0 720
mk3 774 720 108.0 144.0 720 90.0 774 63.0 126.0 72.0

mk1 774 720 108.0 144.0 720 90.0 774 63.0 126.0 72.0

B mk?2 774 720 108.0 1440 720 90.0 774 63.0 126.0 72.0
mk3 774 720 1080 144.0 72.0 90.0 774 63.0 126.0 720

Table B.4: Polystyrene maximum storage capacity

Distribution center

Polystyrene product

Max. storage capacity (tons/period)

A 500
dcl

B 500

A 400
dc2

B 400

Table B.5: Polystyrene maximum production capacity

Production plant

Polystyrene product

Max. production capacity (kg/day)

A 6,500
pll

B 7,500

A 8,000
pl2

B 9,000

A 3,000
pl3

B 4,000

Table B.6: Polystyrene unitary production cost and energy requirement

Polystyrene product RM  Production cost (m.u./kg)  Energy required (kWh/kg)
rml 0.64 7.33
A
rm?2 0.62 7.33
rm3 0.56 6.98
B
rm4 0.53 6.98
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Table B.7: Polystyrene RM supply capacity and prices

RM  Price (m.u./kg) Max. capacity (kg/day)

rml 1.15 15,000
rm2 1.00 10,000
rm3 1.00 10,000
rm4 1.00 8,000

Table B.8: Distance between polystyrene distribution centers and markets

DC Distance to markets (km)

mk1 mk2 mk3
dcl 100 140 120
dc2 120 150 175

Table B.9: Distance between polystyrene production plants and distribution centers

Production plant Distance to DC (km)

dcl dc2
pll 160 120
pl2 150 130
pl3 120 150

Table B.10: Distance between RM suppliers and polystyrene production plants

Distance to PL (km)

Supplier
pll pl2 pl3
supl 100 150 145
sup2 200 120 130
sup3 110 70 80
sup4 170 220 215

Table B.11: Energy markets demands

Energy markets Demand (kWh)
Time period
t1-t4 t5-t10

mel 300 5000

me2 200 600
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