
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 
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Abstract

Fuel cells are promising alternatives to conventional energy conversion devices. Cells
fueled with hydrogen are environmentally friendly and their efficiency is up to 3
times higher than that of high-temperature combustion devices. However, they
are still expensive and their durability is limited. One of the key factors in fuel cell
performance is the so-called water management. Water produced within the fuel cell
is evacuated through the gas channels, but at high current densities water can block
the channel, limiting the current density generated in the fuel cell and thus reducing
its efficiency. Novel numerical analysis methods with feasible computational cost
and high accuracy could help characterizing droplet transport in gas microchannels.
In this work we focus on modeling and simulation of droplet emergence, deformation
and detachment in fuel cell gas channels as this defines the most common mode of
liquid transport in the problem at hand. However, methods presented could be
applied to other problems involving a gas-liquid system, where liquid is found as
small droplets or films.

A semi-analytical model of a water droplet emerging from a pore of the gas
diffusion layer surface in a Polymer Electrolyte fuel cell channel is developed. The
geometry of the static and deformed shape is characterized and the main geometric
variables (i.e. radius, height, perimeter) are assumed to depend on the contact
angles only. The forces acting on the droplet are the drag force of the air and
the surface tension force, which acts as adhesion force. The analytical study solves
the problem of a growing droplet in a gas flow channel to see the effects of: i) air
velocity and liquid mass flow in droplet deformation and oscillation; and, ii) droplet
height in frequency of oscillation. The predicted values for both drag and surface
tension force are higher than the results found in literature. Higher air velocity
values lead to more deformation of the droplet and oscillation with lower frequency
but higher amplitude. Similar effects have been identified when the liquid mass flow
is increased, leading to faster detachment of the droplet.

A continuum Lagrangian formulation for the simulation of droplet dynamics is
proposed next. This model is developed in two and three dimensions. Using the La-
grangian framework, liquid surface can be accurately identified. The surface tension
force is computed using the curvature defined by the boundary of the Lagrangian
mesh. Special emphasis is given to the treatment of the surface tension term in the
linearized version of governing equations. The corresponding tangent matrix allows
for alleviating the severe time step size restrictions associated to the capillary wave
scale. A dynamic contact angle condition is developed in order to include effects
of rough surfaces in contact line evolution. Numerical examples of sessile drop in a
horizontal surface and sessile drop in an inclined plane are compared to experimen-
tal results. Results show excellent agreement with experimental data. Numerical
results are also compared the semi-analytical model previously developed by the
authors in order to discuss the limitations of the semi-analytical approach.

An embedded formulation for the simulation of immiscible coupled gas-liquid
problems is then presented. Previous model considered only the liquid domain, and
airflow effects were not included at the continuum level. The embedded method is
particularly designed for handling gas-liquid systems where liquid represents a small
fraction of the total domain. Gas and liquid are modeled using the Eulerian and
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the Lagrangian formulation, respectively. The Lagrangian domain (liquid) moves on
top of the fixed Eulerian mesh. The location of the material interface is accurately
defined by the position of the boundary mesh of the Lagrangian domain. The
individual fluid problems are solved in a partitioned fashion and are coupled using
a Dirichlet-Neumann algorithm. Neumann part of the coupling includes the entire
stress tensor (normal and tangential components). Representation of the pressure
discontinuity across the interface does not require any additional techniques being an
intrinsic feature of the method. The proposed formulation is validated with several
numerical examples and a convergence analysis is included as well.

Finally, the embedded formulation is used to model the problem of interest, which
is the dynamics of a droplet in a PEFC electrode channel. Numerical examples
include a time detachment analysis, where the droplet pins and detachment occurs
when a threshold value of contact angle hysteresis is reached. Results show good
agreement with experimental data available, and results using the semi-analytical
method again show the limitations of this model. An extension to the previous
example includes water injection into the gas channel in order to compare results
with previous studies in literature.

Resumen

Las pilas de combustible son una alternativa prometedora a los dispositivos de con-
versión de enerǵıa convencionales. Las pilas alimentadas con hidrógeno son respetu-
osas con el medio ambiente y su eficiencia es hasta 3 veces mayor que la de los
dispositivos de combustión de alta temperatura. Sin embargo, su precio todav́ıa es
elevado y su durabilidad es limitada. Uno de los factores clave en el rendimiento
de las pilas de combustible es la denominada gestión del agua. El agua producida
dentro de la pila es evacuada a través de los canales de gas, pero en condiciones de
alta densidad de corriente, el agua puede bloquear el canal, limitando la densidad de
corriente generada en la pila de combustible y reduciendo aśı su eficiencia. Nuevos
métodos de análisis numérico con un coste computacional factible y una mayor pre-
cisión podŕıan ayudar a caracterizar el transporte de gotas en microcanales de gas.
En este trabajo nos centramos en la formación de la gota, su deformación y poste-
rior desprendimiento en los canales de gas de las pilas de combustible, ya que esto
define el modo de transporte de la fase ĺıquida más común en el problema analizado.
Sin embargo, los métodos presentados podŕıan ser aplicados a otros problemas rela-
cionados con un sistema gas-ĺıquido, donde el ĺıquido se encuentra como pequeñas
gotas o peĺıculas.

En la presente tesis, se ha desarrollado un modelo semi-anaĺıtico de una gota de
agua que emerge de un poro de la superficie de la capa de difusión en un canal de
una pila de combustible tipo PEFC (Polymer Electrolyte fuel cell). La geometŕıa de
la gota estática y deformada se ha caracterizado y se ha supuesto que las principales
variables geométricas (radio, altura, peŕımetro) sólo dependen de los ángulos de
contacto. Las fuerzas que actúan sobre la gota son la fuerza de arrastre del aire y
la fuerza de tensión superficial, que actúa como fuerza de adherencia. El estudio
anaĺıtico resuelve el problema de una gota que crece en un canal de gas para ver los
efectos de: i) la velocidad del aire y del caudal de ĺıquido en la deformación de las
gotas y su oscilación; y, ii) la altura de la gota en la frecuencia de oscilación. Los

ii



valores predichos tanto para la fuerza de arrastre cómo para la tensión superficial
son más altos que los resultados encontrados en la literatura. A mayor velocidad del
aire, mayor es la deformación de la gota y sus oscilaciones tienen menor frecuencia
pero mayor amplitud. Se han identificado efectos similares cuando se incrementa el
caudal de ĺıquido, dando lugar a un desprendimiento más rápido de la gota. Los
valores de oscilación de frecuencia predichos son significativamente menores que los
valores de la literatura, pero estos resultados han sido obtenidos en condiciones
distintas de inyección de agua.

Como alternativa al modelo semi-anaĺıtico, se propone una formulación cont́ınua
Lagrangiana para la simulación de la dinámica de gotas. El modelo se ha desarrol-
lado en dos y tres dimensiones. Utilizando el enfoque Lagrangiano, la superficie del
ĺıquido se puede identificar con precisión. La fuerza de tensión superficial se cal-
cula utilizando la curvatura definida por el borde de la malla Lagrangiana. Se hace
especial hincapié en el tratamiento del término de tensión superficial en la versión
linealizada de las ecuaciones de gobierno. La matriz tangente correspondiente per-
mite suavizar las restricciones de paso de tiempo asociadas a la escala de la onda
capilar. Se ha incluido una condición de ángulo de contacto dinámico con el fin
de incluir los efectos de las superficies rugosas en la evolución de la ĺınea de con-
tacto. Los resultados obtenidos en los ejemplos numéricos de una gota estática en
una superficie horizontal y en un plano inclinado se han comparado con resultados
experimentales. Los resultados muestran una excelente concordancia con los datos
experimentales. También se han comparado los resultados numéricos con el mod-
elo semi-anaĺıtico desarrollado previamente por los autores con el fin de discutir las
limitaciones del enfoque semi-anaĺıtico.

Con el fin de incluir los efectos del aire sobre la gota, se presenta una formulación
incrustada (embedded de su terminoloǵıa en inglés) para la simulación de problemas
de varios fluidos inmiscibles. El modelo anterior sólo considera el dominio de ĺıquido,
y los efectos del flujo de aire no se incluyen. El método está diseñado especialmente
para la simulación de sistemas gas-ĺıquido donde el ĺıquido representa una pequeña
fracción del dominio. El gas y el ĺıquido se modelan mediante las formulaciones Eu-
leriana y Lagrangiana, respectivamente. El dominio Lagrangiano (ĺıquido) se mueve
por encima de la malla Euleriana fija. La ubicación de la interfaz material se define
exactamente por la posición del borde de la malla del dominio Lagrangiano. Los
problemas de cada fluido se resuelven de una manera particionada y se acoplan me-
diante un algoritmo de Dirichlet-Neumann. La representación de la discontinuidad
de la presión a través de la interfaz no requiere técnicas adicionales, ya que es una
caracteŕıstica intŕınseca del método. La formulación propuesta se valida con varios
ejemplos numéricos y también se ha incluido un análisis de convergencia.

Finalmente, la formulación embedded se utiliza para modelar el problema obje-
tivo, que es la dinámica de una gota en un canal de una pila PEFC. Los ejemplos
numéricos incluyen un análisis del tiempo de desprendimiento, donde la ĺınea de
contacto de la gota se fija y el desprendimiento se produce cuando se alcanza un
valor de umbral de la histéresis del ángulo de contacto. Los resultados concuerdan
satisfactoriamente con los datos experimentales disponibles, y los resultados uti-
lizando el modelo semi-anaĺıtico muestran de nuevo las limitaciones de este modelo.
Finalmente el ejemplo anterior se extiende incluyendo la inyección de agua en el
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canal de gas con el fin de comparar los resultados con estudios previos encontrados
en la literatura.
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Chapter 1

Introduction

1.1 Motivation

Why fuel cells? Developing environmentally friendly energy converting devices is
an emerging need in the modern world. Most conventional energy conversion devices
used rely upon fossil fuels, such as oil or coal, which are limited and produce a huge
amount of pollutants [10]. In the last decades, many alternatives have been proposed
to decrease air pollution, namely solar energy, wind power, hydroelectric power and
batteries. Among these alternatives, fuel cells have shown to be a promising energy
conversion device for several important industrial applications due to their efficiency
and high power density. Fuel cells is one of the leading candidates to replace internal
combustion engines for vehicles, as they are the only presently available technology
that can offer equivalent power density, range, and refueling times in a sustainable
way. Cells fueled with hydrogen are environmentally friendly and their efficiency is
up to 3 times higher than that of high-temperature combustion devices.

Apart from transportation, they can be used for portable electronics applications,
such as laptops or even for stationary power sources in emergency cases. Fuel cells
were invented more than 100 years ago, and they have been considerably improved
recently [12]. However, despite their advantages, they are still expensive and their
durability is limited to be commercialized at a large scale. There are still factors,
such as material degradation and water management, that require further studies
and design improvement. Intensive research is therefore required to reduce their
cost and enhance their life cycle.

What is a fuel cell? A fuel cell is an electrochemical device that has the ability to
turn the chemical energy in a fuel directly into electricity with high efficiency. Inside
the fuel cell, oxidation and reduction electrochemical reactions take place producing
low-voltage direct current (DC) and heat. The former is used to do useful work
while the latter is wasted or can be used in cogeneration applications.

When a fuel cell is fed with pure hydrogen, its theoretical efficiency is approx-
imately 83% [12]. This value is limited by the change in the free energy available
and the thermal energy in the reaction involved. For other fuels (i.e. methane) the
efficiency is lower. Other energy conversion devices, like reciprocating engines, are
limited by the efficiency of the Carnot cycle, which depends on the temperatures of
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Table 1.1: Types of fuel cells depending on their electrolyte, reactant gases and
working temperature [10]

Type Fuel Electrolyte Catalyst Temperature [◦C] Max Efficiency [%]

Alkaline H2 OH− Pt or Ni -20 − 250 64
Molten Carbonate H2/CO CO2−

3 Ni 620 − 660 50
Solid Oxide H2,CO O2− Ni/YSZ 600 − 1000 65

Polymer Electrolyte H2 H+ Pt -40 − 100 58
Direct Methanol CH3OH, H2O H+ Pt/Ru -40 − 100 40
Phosphoric Acid H2 H+ Pt 150 − 220 42

the hot source and the cold sink. In conventional steam plants and internal com-
bustion engines, this efficiency is usually less than 30%, and modern combined cycle
power plants can increase this value up to 60%.

There are different types of fuel cells depending on the materials used in the
electrolytes, the substances that react in the anode and the cathode and the working
temperature. Table 1.1 shows the different types of fuel cells, the fuel used, the
temperature and their maximum efficiencies, among other features. More details
can be found in reference [12].

The current work focuses on Polymer Electrolyte fuel cells (PEFC) because they
deliver high-power density while providing low weight, cost and volume [10]. Al-
though they are not the most efficient fuel cell type (Table 1.1), their wide range of
applications and working temperature makes them attractive for commercialization.
From the engineering point of view, their design and modeling are a challenge; phe-
nomena occurring within a fuel cell involve fluid dynamics, heat transfer, diffusion,
mass and ionic transport, electrochemistry and structural mechanics [10]. PEFCs
can work between -40 and 100◦C and use hydrogen as fuel, oxygen as reactant and
Nafion® as the electrolyte (Fig. 1.1).

Working principle of a PEFC The working principle of the PEFCs is based on
two electrochemical reactions. The process starts at the anode, where the hydrogen
flows in the anode gas channel and diffuses through the pores in the Gas Diffusion
Layer (GDL). Attached to the GDL is the Catalyst Layer (CL). The CL is made
using a platinum-based ink which is painted on either the membrane or the GDL.
The ink contains carbon, Pt and electrolyte. The resulting coating is a thin (about
10 µm) porous layer. The Pt catalyzes the first reaction: the hydrogen oxidation
reaction,

H2 −→ 2H+ + 2e- (1.1)

The next layer is the membrane made of Nafion® [13]. The membrane allows the
hydrogen protons to travel across its section but is impermeable for the electrons.The
electrons have to travel in the opposite direction through the GDL and the current
collector (that act as the walls of the anode gas flow channel) in order to meet
the protons at the other side of the membrane, thus generating the desired electric
current. In the cathode, the oxygen flows in the cathode gas channels, diffuses
through the GDL and reacts in the catalyst layer with the protons from the anode,
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Figure 1.1: Schematic view of a Polymer Electrolyte fuel cell [1]

performing the second reaction (oxygen reduction reaction):

2H+ + 2e- +
1

2
O2 −→ H2O (1.2)

The union of the anode GDL and CL, membrane and cathode CL and GDL is also
known as membrane electrode assembly (MEA). When fueled with hydrogen, the
fuel cell has zero emissions, since the only product of the electrochemical reaction
is water and heat. The water generated in the reaction is one of the key factors
influencing the fuel cell performance. The membrane requires humidification in
order to maintain proton conductivity; if there is not enough water (less than 6%
of volume fraction [14]), the membrane dries out and the fuel cell cannot operate1.
Alternatively, if the amount of water is excessive (volume fraction greater than 80%),
the pores in the CL and GDL fill with liquid water (flood) preventing the reactant
gases from diffusing through it. The exceeding water has therefore to be evacuated
through the cathode gas channels. The process of detecting and controlling water
distribution within the fuel cell and designing it in order to improve its performance
is often referred as water management.

Droplet dynamics and water management in gas channels Water manage-
ment is one of the most critical issues in fuel cell design [11], [2], [15], [16], [17],
[9], [18], [19], [20], [21]. During operation a fuel cell produces water. At moderate
current densities the water can leave the cell in vapor form. At high current densi-
ties however, water vapor condenses in the GDL blocking the pores in the layer and

1At 30◦C and 45% of water volume fraction, a membrane has a conductivity of 0.11 S cm−1

[14]
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blocking the gas channels [9]. Blocking of the pores in the GDL leads to a lack of
reactant at the reaction site (liquid water reduces gas diffusivity of the GDL) and
a limited current density is reached. Similarly, excess of water in channels leads to
non-uniform gas distribution and large pressure losses [22].

An exploded view of a PEFC is displayed in Fig. 1.2(a). The three main parts
can be clearly identified: the anode and cathode sides, and the MEA. Gases (usually
hydrogen in the anode side and air in the cathode side) enter the channels with
variable velocity depending on the working conditions. For a PEFC producing 1 A
cm−2, the velocity is 0.15 m s−1 [11]. PEFC’s gas channels are usually rectangular,
with a cross section of 1×1 mm and 5 cm long. The exceeding water diffuses through
the GDL and emerges as small droplets into the channel, as shown in Fig. 1.2(b).
The liquid mass flow Q̇ depends on the working conditions. If the current density
produced is 1 A cm−2, water is produced at a constant rate of 0.05 µl s−1 (see Section
2.4.3, Chapter 2).

(a) Exploded view of a PEFC

(b) Water droplet emerging into a fuel cell gas channel

Figure 1.2: Exploded view of a Polymer Electrolyte fuel cell (top) and detailed view
of gas channel with an emerging droplet (bottom)

Three types of liquid flow can form in the gas channels depending on different
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factors. These flows are usually known as droplet, film and slug flow [2], as shown
on Fig. 1.3. Droplet flows can be observed in fuel cell channels where the current
density is below 0.4 A cm−2. Current density values between 0.4 and 1.5 A cm−2

lead to water film formation in channels, whereas slugs are found for currents greater
than 2 A cm−2 [23].

Figure 1.3: Flow types that can be found in a PEFC cathode channel. Reproduced
from reference [2]

When a channel is completely flooded, a limiting current density is reached.
This may lead not only to an extremely low efficiency, but even to the failure of
the cell due to high pressure drops and oxygen starvation (leading to membrane
degradation due to peroxyde formation). If water removal from the cell could be
improved, higher current densities could be reached leading to fuel cells with higher
power using the same materials. This would make fuel cells cheaper, lighter and
smaller. Moreover, operation conditions leading to irreversible degradation of the
cell would be avoided thus improving the fuel cell durability. A model capable of
accurate water management predictions in gas channels must be developed. This
requires understanding of the following points:

a) Evolution of the liquid phase (in particular, droplet) geometry exposed to the
airflow in the channel. The forces acting on the droplet depend on the current
geometry, so it is vital to have it fully characterized in order to obtain an
accurate value of the forces.

b) Effect of flow rate on flow regime and droplet detachment. The detachment
velocity is a key factor for the water removal from the gas channel.

c) Evolution of the area coverage of the water in the GDL surface of the channel.
This variable is an indicator of the available area for the oxygen to diffuse
through the GDL. If the area is fully covered, the fuel cell cannot operate.
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d) Drag coefficient CD characterization for the droplet under static and dynamic
conditions. The drag force is responsible for the droplet deformation, and
depends on flow conditions. Thus, it is important to have the values of this
coefficient for the different flow regimes and droplet deformation states.

e) Consideration of two-way liquid-gas interactions in the channel. Droplets de-
form in airflow according to flow conditions. On the other hand, the presence of
droplets alter the conditions of the airflow. A continuous interaction between
both fluids has to be considered in order to predict detachment.

f ) Contact angle condition on rough surfaces. GDL surface is rough and heteroge-
neous, which affects droplet adhesion. Effects of substrate must be considered
in the numerical model in order to model not only ideal but also rough surfaces.

g) Multiple MEA models have been proposed in literature however they lack an
appropriate description of the channel/GDL interface under two-phase flow
conditions [14]. Accurate analytical and numerical two-phase channel models
are needed.

In the next section, a review of existing approaches devoted to water management
in gas channels is presented.

1.2 Literature Review

There is a vast literature devoted to the analysis of droplet dynamics in PEFC gas
channels [15], [8], [16], [17], [9]. Finding the conditions that lead to droplet shedding
is the main objective of these works. The physical system under consideration is a
two-phase flow within a microchannel, with one phase dominated by surface tension
effects. One can distinguish 3 main groups of approaches:

� analytical models

� numerical models

� experimental characterization

Analytical models Analytical models are based on a simple force balance equa-
tion. These models have a low computational cost and are relatively easy to im-
plement. However, they oversimplify the phenomena by using predefined droplet
shapes, neglect the continuum nature of droplets and are restricted to predicting
pre-detachment behavior, not being able to model film or slug flow.

Chen et al. [19] proposed an analytical model of a water droplet in a PEFC cath-
ode channel based on a macroscopic force balance. Other works of liquid droplets
dynamics in solid surfaces are reported in the literature, but this study was the first
one regarding a water droplet on a porous surface subjected to an airflow [19]. This
work used a force balance equation considering equilibrium shape of a droplet, thus
being able to find a relationship between the surface tension force and the external
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forces acting on the droplet, i.e. pressure, shear and viscous forces. The force bal-
ance resulted in a single equation relating the flow conditions, i.e. mean velocity
and air viscosity, and the droplet geometry, namely height, length and contact angle
hysteresis2. The analytical study considered a steady-state.

Several important conclusions were made in [19] regarding optimal channel ge-
ometry. First, if the product of the channel length-to-height aspect ratio by the
capillary number was greater than π

12
, the droplets could be prevented from lodging

in the channel. In addition, increasing the channel length while maintaining the
other parameters fixed, such as GDL hydrophobicity or gas velocity, enlarged the
instability window (the angle hysteresis that promotes droplet detachment). The
same effect could be achieved if the mean gas flow velocity was increased, which
meant that the pressure drop in the channel was higher. The last conclusion was
that by increasing the static contact angle, or equivalently, making the GDL/gas
channel interface more hydrophobic, water droplets could be prevented from lodg-
ing in the channel. The main drawback of that model was that it did not take
into account the effect of pinning (i.e., the contact line between the droplet and the
GDL surface was considered to be always circular). Droplet detachment depends on
contact line deformation [24]. Additionally, area coverage of the water in the GDL
surface was not included, and the two-way liquid-gas interaction was not taken into
account (points c and e from section 1.1).

Kumbur et al. [18] developed a model of a water droplet in the gas channel of a
PEFC in order to predict its detachment. By means of a macroscopic force balance
they related the droplet geometry with channel height, GDL hydrophobicity and
airflow velocity. The experimental data was used to find a relation between the
content of Teflon in the GDL surface and the surface tension. Thus, they improved
Chen’s work by relating the contact angle hysteresis with the flow conditions, the
Teflon content in the GDL and the roughness of the surface, in addition to several
geometric variables. Nevertheless, this model could still not account for geometry
of the deformed droplet, drag coefficient, area coverage and roughness effects of the
GDL (points a, d , c and f from section 1.1). An important conclusion was that at
low air velocities, the droplet instability was insensitive to the hydrophobicity of the
surface. That fact could be used to minimize costs in the PEFC manufacture and
avoid efficiency loss, since a highly hydrophobic GDL has more electrical resistance
and is more expensive [18]. The analytical equations in this study were also based
on the equilibrium of forces, i.e. it was a steady-state analysis.

An exhaustive analysis of the static and deformed shape of the water droplet
was done by Esposito et al. [24]. While the study of Kumbur et al. gave an analyt-
ical expression for the hysteresis angle, it did not characterize the main geometric
variables of the static and deformed droplet (point a from section 1.1). This study
was an improvement compared with the two previous works since the analytical
model was transient. Several geometric properties, such as advancing angle, droplet
radius, height and perimeter, were expressed as a function of the center of mass
x-coordinate (xCM) for a fixed droplet volume. Although the wetting area over the
GDL was approximated by a cylinder, results provided valuable information regard-

2Difference between the advancing and the receding angles, which are the contact angles when
the droplet is in its deformed state
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ing the studied phenomena. First, the drag force increased linearly with the increase
of xCM, whereas the force exerted by the surface tension and the inertial force had
a linear decay. On the other hand, xCM was found to decrease over time due to the
deformation of the droplet. The transient model as a function of the droplet height
proved to be valid for height over 0.5 mm, but the detachment height predictions
did not agree with the results of the experiments carried out by the same group.
One possible reason is that the drag coefficient used was that from a free spheri-
cal particle immersed in a fluid [24]. Therefore, an improvement on this coefficient
would probably result in a more accurate model (points d and e). Furthermore, the
models developed by Kumbur et al. and Esposito et al. do not take into account
the gravity force since they impose a force balance exclusively in the x direction.

An extension of the study done by Chen et al. [19] was done by Cho et al. [6].
The study focused on droplets that were initially spherical and their deformed shape
was close to a sphere, so the average curvature could be approximated by the initial
radius. The authors took the results of Chen et al. [19] as a starting point but
excluded the hypothesis of the droplet constant shape. Therefore, the study showed
different plots regarding the force components acting on the droplet, the droplet
shape change and the detachment velocity. At low gas velocities, the viscous force
proved to be dominant on small droplets whereas on large droplets the normal force
was dominant. On the other hand, the droplet deformation increased significantly
when the droplet height was close to the channel height. The detachment velocity
was analyzed using a generalized equation for the drag coefficient CD obtained with
fitted data for the conditions of the study. As expected, the detachment velocity
decayed with an increasing droplet diameter, and the relationship between the We-
ber and the Reynolds numbers found in reference [19] was corrected. Despite the
characterization of the droplet deformation, the authors did not characterize the de-
formed shape of the droplet, the evolution of the contact line with the GDL surface,
and roughness effects of the GDL (points a, d and f ).

Numerical models Numerical models use the continuum approach and are typ-
ically based on Navier-Stokes equations3. In principle, they allow to account for ar-
bitrary geometries and thus are not limited to droplet type of flow. However, their
implementation is more difficult and they are computationally expensive. Early
numerical studies of water transport in gas channels include works of Quan et al.
[25], Golpaygan and Ashgriz [26], and Theodorakakos et al. [15]. Zhu et al. [9] pre-
sented the first numerical analysis that considered water injection effects. The study
included a two-dimensional numerical simulation considering a straight channel of
250µm of height and 1000µm of length, with a micropore of width 50µm. The inter-
face between the water droplet and the air was simulated using the Volume of Fluid
(VOF) method [27], and the velocity of the two-phase mixture was modeled using
the Navier-Stokes equation. The surface tension was modeled using the Continuum
Surface Force (CSF, reference [28]) as a volumetric force in the momentum equation.
The main target of the study was to observe the effects of the static contact angle,
pore size and air and water inlet velocities on the water droplet dynamics, and to
predict a critical velocity for the water removal. As a result, it could be seen that

3Lattice-Boltzman approach has also been used, but it lies out of the scope of the present work
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if the hydrophobicity of the GDL surface grew, the shear stress and the pressure
forces dominated over the surface tension, thus promoting water removal and even-
tually detachment. Conversely, low hydrophobicity made the water droplet follow
a film pattern due to surface tension. For hydrophobic surfaces, the advancing and
receding angles evolved over time, whereas they remained constant if the surface was
hydrophilic. Although that study took into account several variables that affected
the behavior of the droplet, such as GDL hydrophobicity or water inlet velocity, it
did not consider a change in the channel geometry (e.g. trapezoidal cross-section
instead of squared). The contact angle on the GDL surface was considered constant,
neglecting roughness effects (point f from section 1.1). Some analytical models pre-
dicted that certain length-to-height ratio of the channel promoted water removal
[19] and that should have been taken into account. Moreover, the contact angle of
the droplet with the channel surface was considered a boundary condition in these
works, and contact angle hysteresis was not accounted for.

Considering the GDL surface completely hydrophobic, smaller pore size showed
a slower rate of both droplet deformation and break-up processes. Forces responsible
for droplet deformation and break-up (pressure and shear stress) were found to be
proportional to the air inlet velocity. Results showed that for both low and high
airflow velocities, water droplet formed a film flow. On the other hand, if the
water injection velocity was lowered, the effects were found negligible. However,
for high injection velocities (3 ms−1 in a 50 µl diameter pore) the water droplet
blocked the channel almost instantly, and then it attached to the top wall (which
was hydrophilic) forming a film pattern. Finally, the critical air velocity was found
to be lower for higher hydrophobicity values and larger dimensions of the droplet. In
addition, the predicted critical velocity was higher compared to the values obtained
in previous studies [15].

A three-dimensional numerical study was performed by the same authors [16].
It provided more accurate results, since it included such important parameters as
water coverage ratio, critical diameter, friction factor and water saturation. The
numerical model was once again based on the VOF method. Results were similar to
those from reference [9] regarding the static contact angle at the GDL surface: water
removal was achieved with a hydrophobic GDL surface for a constant velocity value.
The three-dimensional simulations also revealed that with higher hydrophobicity the
contact line of the droplet was shorter and the droplet could achieve larger height
prior to detachment. Moreover, it was stated that all the stages of water droplet
evolution (i.e. emergence, growth, deformation, detachment and removal) were al-
most periodic, and the frequency of these processes increased with decreasing the
wettability of the GDL [16]. It is important to remark that, despite the improve-
ments from their previous work, they still considered a constant contact angle in the
GDL surface (point f ).

The effects of the air inlet velocity were similar to those of GDL hydrophobic-
ity, adding the fact that the three-phase contact line deformed further downstream.
Fast removal and smaller detachment diameters were obtained for high air velocities.
Earlier detachment of droplets and larger detachment diameter were observed when
the water injection velocity was increased. Nevertheless, the detachment diameter
and flow resistance coefficient remained constant for low injection velocities. Be-
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sides, for equivalent water volume, smaller pore size resulted in smaller detachment
diameter. It is important to note that most of numerical simulations done until the
present day are based on the VOF method [9] [16] [15] [2]. An extensive review on
VOF-based models of droplet dynamics in fuel cell channels can be found in [29].

Some works found in literature use the Level-set (LS) method to model droplet
dynamics in fuel cell channels [6], [30]. Choi and Son [31] showed the effects of
number of pores in droplet dynamics in a PEFC channel. A similar model was used
by Akhtar and Kerkhof [30] to study the effects of contact angle in channel walls
on droplet detachment. LS method is able to handle complex topological changes
in geometries and is simple to implement. However, this method suffers from bad
mass conservation properties. VOF method is being widely used in two-phase flow
analysis because it is mass conservative and it can be found in many commercial
CFD software packages [29].

Experimental characterization Experimental characterization provides valu-
able data for water management studies. Experimental data is the key not only to
validate analytical and numerical modes, but also to better understanding droplet
dynamics in gas channels. One of the main problems related with fuel cell exper-
iments is the limited accessibility of these devices. Two types of experiments can
be identified: in-situ and ex-situ. In-situ experiments use sophisticated technologies
such as neutron imaging [32], [33], IR-thermography [34], [35], MRI [36] and X-ray
tomography [37]. These studies show valuable data of water distribution in channels,
but they are difficult to perform and rely upon expensive equipment. On the other
hand, most of ex-situ experiments are related with visualization using a transparent
window [15], [38], [2], [39], [40], [21], [20]. Although ex-situ studies cannot reproduce
an actual fuel cell channel, a good optical access to the channel is granted, enabling
the caption of high resolution images. These studies can obtain important data to
further understand wetting phenomena on porous substrates.

Zhang et al. [21] stated that for the experiments showed in their work, the airflow
velocity threshold for water removal was 4 ms−1 for 0.5×1×100 mm rectangular
channels. Under those conditions, water tended to attach to the channel walls and
flow in film form. Besides, Zhan et al. [20] took into account the channel turns,
concluding that velocities higher than 7 ms−1 for the air were enough to move the
water through the turns. Another solution to remove the water from the channels
was to increase the operation temperature since it lowered the surface tension of
the water, but it led to the dehydratation of the membrane, thus lowering the fuel
cell performance and efficiency. The ex-situ study developed by Colosqui et al. [38]
suggested that the effects of gravity were important depending on the orientation of
the channels. On the other hand, high resolution images had proven the appearance
of small residual droplets from previous films that acted as nucleating agents for the
droplet-to-film transition [38].

An experimental study was carried out by Theodorakakos et al. [15] in order
to study the water droplet dynamics inside the cathode microchannel. The set-up
of the experiment showed the droplet behavior from a top-view, so it was easy to
identify the shape and motion of the droplets. The results obtained suggested that
with the considered conditions, the flow pattern corresponded to a single droplet and
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no film flow was observed. On the other hand, the advancing and receding angles
could not be directly measured, which was a drawback. Those angles were obtained
in another experiment, where a water droplet was placed at the channel surface with
an airflow circulating around it. The forces acting on the water droplet were not the
same in the case of a droplet emerging from a pore than for a sessile droplet on a
surface [15], [16]. The obtained angles were used in a numerical simulation based on
the VOF method, and the results clearly showed the different dynamics for droplets
laying on a surface and droplets emerging from a pore. The main drawback of this
study was that the experiment was based on a droplet laying on a channel, and not
emerging from it, hence its lack of accuracy regarding and actual fuel cell.

Carton et al. [2] performed an experiment in order to compare the observed
phenomena with their numerical simulation. The experiment set-up was similar to
that from [15], with a water droplet placed in a channel. Therefore, the effects of
an emerging water droplet could not be recorded with enough accuracy. The results
obtained were similar to previous studies, but the main difference was that the set-
up of the experiment and the computational domain in the simulations was a double
serpentine channel. If one of the channels was blocked due to slug flow formation,
the other one had an increase in the velocity and pressure maximum values, which
could damage the PEFC membrane [2]. Moreover, water flooding affected directly
the fuel cell voltage, keeping it constant.

Recently, two studies of the cathode channel geometry have been performed [41],
[42]. They aim at developing channel designs that lead to lower air pressure drops
and promote water removal, which is an important contribution to predict optimal
flow rate in channels and area coverage of water in the GDL surface (points b and
c). Additionally, in [41] the authors identified the conditions that lead to water
stagnation in the fuel channel turns, which is one of the critical factors in the fuel
cell malfunction.

Figure 1.4: Microscale picture of the GDL surface covered with Teflon. Courtesy of
Marc Secanell, ESDLab, University of Alberta

Literature shows that models for the analysis of liquid water in PEFC gas chan-
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nels require further developments to provide accurate results. Although numerical
simulations show accurate results regarding the shape evolution of the liquid phase
inside the channel, the governing physics of the hysteresis angle remain without ex-
planation. Based on the literature review, the presented analytical models have the
following drawbacks:

� simplified expressions for adhesion force.

� differences between predicted and experimental results of drag force can be as
high as 100%.

� results for droplet frequency of oscillation should be experimentally validated.

Moreover, analytical models are restricted to droplet type of flow (slugs and films
cannot be considered) and cannot be used for post-detachment study. On the other
hand, the main disadvantages found in numerical models are:

� an explicit treatment of the surface tension term results in an impractical limit
for time step.

� a constant contact angle condition is typically used for the gas channel. GDLs
used in fuel cells are characterized by rough surfaces with chemical hetero-
geneity (Fig. 1.4) and contact angle is not constant.

� Eulerian methods reconstruct air-water interface and require special techniques
to improve mass conservation and represent material properties discontinuities
across the interface.

� Multiple droplets and their interaction modeling has not been performed.

1.3 Objectives

It is clear from literature that there is a need for further improving models for the
analysis of droplet dynamics in PEFC gas channels. The present thesis proposes
two kinds of models. First, an improved semi-analytical model is developed. This
model is capable of obtaining fast results for droplet detachment condition in gas
channels for droplet flow regime at a reduced computational cost (e.g. 1 s simulation
can be performed in 2 minutes). The new semi-analytical model should include the
following features missing in the existing models of the kind:

� an expression for adhesion force that accounts for an arbitrary contact line
geometry.

� an expression for drag force depending on droplet size, deformation state and
droplet height-channel height ratio.

The intrinsic limitations of semi-analytical model, such as not being able to pre-
dict post-detachment behavior or to perform multiple droplets analysis, are overcome
by a new numerical model. Although it is more computationally intensive (e.g. 1 s
simulation can be performed in 3 hours), it is not restricted to droplet flow regime (it
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can account for film and slug flow) and includes fully coupled gas-liquid interaction
description. The numerical model should include the following features:

� an implicit form of the surface tension term.

� accurate description of sharp discontinuity in flow variables across the air-
water interface.

� a dynamic contact angle condition to predict droplet shedding in rough sur-
faces.

� eliminate problems such as interface diffusion, mass conservation problems and
allow for much larger time steps than VOF.

The new semi-analytical and numerical models will be applied to fuel cells and
experimental validation.

1.4 Structure of the Thesis

The analysis of droplet dynamics in gas channels is the main research direction of this
thesis. The structure of the present work is oriented towards an improved model
to better understand the physical phenomena, first with a simple semi-analytical
model and then with a numerical model.

Chapter 2 presents an improved semi-analytical model of droplet dynamics in a
PEFC gas channel. The model is based on a simple equation that includes force
balance applied to droplet’s center of mass. A numerical study is carried out to
find an expression for the drag force depending on droplet size, deformation state
and ratio between droplet and channel height. Adhesion force is found by numerical
integration and can be used for any contact angle shape. This model has a low
computational cost but is limited to droplet flow. The model is validated with
experimental data and compared to the detailed numerical models.

Subsequent Chapters 3 and 4 present the basic model developments for the
numerical simulation of droplets in fuel cell gas channels. Chapter 3 presents a
Lagrangian model of a droplet on a rough surface. The governing equations and
boundary conditions described for the problem of interest are valid for two and
three dimensions. Space and time discretization of the governing equations is also
detailed. Special emphasis is given to the surface tension term and wetting model-
ing. Discretized equations are solved using two methods, the fractional step method
and the monolithic approach. Numerical examples are used to compare between
these two methods and to validate the model experimentally.

Chapter 4 is devoted to the description of a novel technique to study droplet
dynamics within a microchannel: the embedded method. This method couples the
Lagrangian formulation for droplets developed in Chapter 3 with an Eulerian model
for the gas. Governing equations, boundary conditions and solution strategy for
gas domain are described. The coupling technique to model gas-liquid interaction
is detailed. Validation examples are solved.
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In the last chapter the developed embedded model is applied to the simulation
of droplet dynamics in PEFC gas channels, both in two and three dimensions. Re-
sults are compared to experimental data and previous results found in literature.
Advantages of the proposed methodology in application to the problem of interest
are highlighted. Analysis of droplet oscillation frequency, water injection rate and
inlet air velocity are performed. Conclusions in Chapter 5 review the contributions
presented in this thesis.
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Chapter 2

A semi-analytical model for
droplet dynamics on the GDL
surface of a PEFC electrode

As discussed in Chapter 1, an analytical model of a droplet is a first approach
of solving the actual problem. Although involving multiple simplification of the
phenomena, it can provide useful results at a low computational cost when compared
to numerical models. In this chapter, a semi-analytic model of droplet dynamics in
gas channels is presented. It improves previous models used to understand the
formation of droplets on the GDL surface [19], [15], [8], [16], [17], [9].

2.1 Physical phenomena

The physics involved in droplet growth, deformation and detachment are explained
in the current section. One has to bear in mind that, although the subject of the
study is a small droplet of a few microliters of volume, its behavior depends on
multiple factors. The hydrophobicity of the surface where it is laying on is the
main variable that determines its shape [43]. The surrounding fluid (air in our case)
deforms the droplet via normal and viscous forces when set in motion [44], [45], [19],
[9]. When the deformation process starts, the contact force of the droplet with the
solid surface becomes unbalanced and starts increasing, deforming the gas-liquid
interface in order to recover the force balance [43]. It is clear, then, that these
phenomena have to be taken into account in the droplet model development.

2.1.1 Interfacial energies and contact angles

Interfacial energies Let us define the variables for characterizing liquids and
surfaces in adhesive contact. Interfacial (or surface) energies quantify the variation
of molecular bonds that occur when a surface is created. The first term that has
to be defined is the work of adhesion. Let us consider the system displayed in Fig.
2.1, where two unit areas of different media are in contact. The work of adhesion is
defined as the reversible work that needs to be done to separate these two unit areas
from contact to the infinity in vacuum [46]. Depending on the separated media,
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it is referred as work of adhesion (W12) when the two media are different or work
of cohesion (W11) when a single material is considered. This magnitude is always
positive since all media tend to attract each other in vacuum.

Figure 2.1: Work of adhesion

The next variables are the surface energy and the surface tension. Both of them
are defined as the free energy change (γ) when the surface area of a medium is
increased by a unit area, which is equivalent to separating two half-unit areas from
contact:

γ1 =
1

2
W11 (2.1)

where γ1 is expressed in N m−1 or, equivalently, in J m−2.
The previous parameters have been defined in vacuum. If the process takes place

in air, these values decrease since the media can absorb vapor [46]. The surface
tension value for liquid water in air at room temperature is equal to 72 mN m−1

[46], [19], [24], [16].
The interfacial energy (γ12) is identified as the free energy change when the

interfacial area of two immiscible fluids changes by a unit area, as shown in 2.2:

γ12 =
1

2
W11 +

1

2
W22 −W12 = γ1 + γ2 −W12 > 0 (2.2)

Figure 2.2: Interfacial energy

Note the positive condition, since if γ12 is negative it means that the area expands
indefinitely or, in other words, both fluids are miscible and the interface dissolves,
which is not the case of the present study. Eq. (2.2) is also known as the Dupré
equation, and it can be written in an alternative form. The interfacial energy is,
indeed, the same as the one expended on separating two media 1 in medium 2 (W121)
or in reverse (W212):

γ12 =
1

2
W121 =

1

2
W212 (2.3)
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If one considers a liquid-solid interface, Eq. (2.2) can be rewritten as follows:

γ12 = γSL = γS + γL −WSL (2.4)

Since the problem of a water droplet in contact with a solid surface and sur-
rounded by air involves three media, the third component must be added to the
previous equations. The work of adhesion in a third medium is defined as the en-
ergy change due to separating two media 1 and 2 in medium 3 (Fig. 2.3) and is
given by:

W132 = W12 +W33 −W13 −W23 = γ13 + γ23 − γ12 (2.5)

Figure 2.3: Work of adhesion considering a third medium

This magnitude can be either positive or negative. In the former case, the
condition γ13 + γ23 > γ12 is fulfilled and it means that medium 2 will spread over
medium 1. If it is negative, then medium 3 will displace medium 2, which will totally
wet the surface of medium 1.

One remark regarding adhesion energies and adhesion forces must be made. If
one wants to separate two surfaces, the required adhesion force depends on the path
and the duration of the process. Let us consider a simple example where two surfaces
of the same material are separated from one another in two different ways: normal
direction (the whole surface at a time) or peeling (Fig. 2.4). The energy needed in
both cases is the same, but the required force is different: the peeling process needs
a force 8 orders of magnitude less than the planar separation (see [46] for further
details).

(a) Separation in the normal direc-
tion

(b) Separation by peeling

Figure 2.4: Different paths of surface separation

17



Contact angles Let us consider a spherical droplet in medium V that approaches
and settles on the rigid flat surface S (Fig. 2.5).

Figure 2.5: Settling of a liquid droplet on a solid surface

The interfacial energies between the three media can be related using the static
contact angle as shown in Fig. 2.5:

γSV − γLV cosθ − γSL = 0 (2.6)

The contact angle observed is therefore the macroscopic manifestation of equi-
librium between the different surface free energies [46], [47]: γSL (solid-liquid), γLG
(liquid-gas) and γSG (solid-gas). The deduction of Eq. (2.6) is done considering that
the final total surface energy of the system is given by Eq. (2.7)

WTOT = γLV (Ac + Af)−WSVLAf (2.7)

where Af is the flat area of the droplet and Ac is the curved area. At equilibrium,
Eq. (2.7) becomes Eq. (2.8):

γLV (dAc + dAf)−WSVLdAf = 0 (2.8)

The expression in Eq. (2.8) can be divided by dAf, giving the following equation:

γLV

(
dAc

dAf

+ 1

)
−WSVL = 0 (2.9)

The ratio dAc

dAf
equals cosθ (see Appendix A) and if one does this substitution,

Eq. (2.9) reads:

γLV (cosθ + 1) = WSVL = γSV + γLV − γSL

γSL + γLV cosθ = γSV (2.10)

Further information regarding surface and interfacial forces can be found in
Chapter 17 of [46]. The previous equations do not depend on the size of the droplet.
However, when the curvature of the droplet is relatively high, the internal fluid
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pressure starts to be significant and it is known as Laplace pressure. The pres-
sure difference between the liquid and the gas surrounding the droplet are related
with the surface tension and the radius of curvature according to the Young-Laplace
equation:

pliq − pgas =
2γ

R
(2.11)

where pliq is the pressure inside the droplet, pgas is the pressure of the surrounding
gas, γ is the surface tension coefficient and R is the droplet radius.

The surface tension forces acting on the surface of the droplet have been described
so far. However, the present problem involves a water droplet placed within an
airflow, which generates two additional forces. The first one is the pressure force
that appears due to the pressure gradient across the droplet’s surface [19], [6]. The
other one is the viscous force that the air produces when it flows around the droplet.
Despite the fact that the mass of the droplet is extremely low, there is in fact an
extra force, the gravitational force. Dominance of one force over the rest is explained
in the following section.

2.1.2 Flow regime characterization

Several dimensionless numbers and flow pattern indicators are critical for describing
the phenomena at hand.

Airflow in channels First is the Reynolds number, which relates the inertial and
the viscous forces:

Re =
ρvL

µ
(2.12)

where ρ and µ are the fluid density and viscosity, respectively, v is the mean velocity
and L is a characteristic length (the droplet height in the present study). Typically,
a PEFC gas channel has a cross section of 1×1 mm. Air enters the channel at 0.15
m s−1, with a constant density of 1.2 kg m−3 and a dynamic viscosity of 1.83×10−6

Pa s (considering a constant temperature of 25◦C). Considering these values, airflow
in a PEFC gas channel has a Reynolds number equal to 98.5.

Droplets For droplets or a bubbles of a certain fluid, it is common to use several
dimensionless parameters that relate the aforementioned forces with the surface
tension force. First, there is the capillary number, which is the ratio between the
viscous and the surface tension forces acting on the droplet:

Ca =
µv

γ
(2.13)

where µ is the viscosity of water (1.98 × 10−5 Pa s for air at room temperature), v
is the air velocity (0.15 m s−1 in gas channels, see section 2.4.3) and γ is the surface
tension coefficient between the two phases (0.072 N m−1 for liquid water in air).
Using these values in Eq. (2.13) it yields Ca = 4.13 × 10−5 << 1, which means that
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surface tension force dominate over viscous effects in water, although the effects of
the latter cannot be completely neglected.

The Bond number expresses the ratio between gravitational forces and the surface
tension:

Bo =
ρgd2

γ
(2.14)

where ρ is the fluid density (1000 kg m−3 for liquid water at room temperature), g is
the gravity acceleration and d is the droplet diameter. In a 1×1 mm gas channel, the
maximum value of the droplet diameter is 0.8 mm, and therefore the Bond number is
0.087, which means that surface tension forces are dominant over the gravitational
forces. The Bond number is also known as the Eötvos number [6]. Finally, the
ratio between the inertial forces and the surface tension is described by the Weber
number:

We =
ρv2d

γ
(2.15)

For a typical fuel cell channel, and considering the same parameters as before,
the values of the Capillary and Weber numbers are 4.13 × 10−5 and 3 × 10−4,
respectively. Thus, the surface tension effects are dominant over the rest of the
forces in a fuel cell channel. The capillary and the Weber numbers are related by
the Reynolds number:

We = Ca ·Re (2.16)

Three types of flow patterns for water droplets can be distinguished: droplet,
film and slug flow. A parameter that indicates whether the droplet is closer to a
film or to a spherical droplet is the water coverage ratio (Aw), which is defined as
the ratio between water coverage area and GDL area in the channel. It is expected
that the higher the hydrophobicity of the GDL, the lower the water coverage ratio
[16]. The same relationship is found with the critical diameter (Dp), which is the
diameter of the detached sphere divided by the length of the microchannel.

The friction factor (f) is an indicator of the channel blockage, and it is defined
by the following formula:

f =
∆P

1
2
ρu2

a

(
L
DH

) (2.17)

where ∆P is the pressure drop in the channel, ua and ρ are the inlet velocity
and density of the air, respectively, and L and DH are the length and hydraulic
diameter of the channel. As the droplet grows, f grows as well until the droplet
detaches, which means a sudden drop of f . The water saturation (Sw) is another
parameter that follows a similar pattern, and it has been defined as the ratio of
water volume into the microchannel to the volume of the channel. In addition, the
water saturation is lower for more hydrophobic surfaces [16].
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2.1.3 Adhesion force modeling

When a droplet emerges from a pore in an airflow stream, the surface tension acts
as the adhesion force since the air drag force tends to detach the droplet from the
surface. One can distinguish between two types of adhesion models in literature:
analytical expression and spring model. In 1995, Extrand and Kumagai [43] derived
an analytical expression for the adhesion force:

F =

∫ 2π

0

γcosθ · cosφζdφ (2.18)

where γ is the surface tension between both fluids, θ is the contact angle with
the surface, φ is the azimuthal angle and ζ is the equivalent radius (Fig. 2.6).

Figure 2.6: Variables used for the adhesion force computation

This expression is valid for droplets with circular contact lines. Note that the
integration is done along the contact line and not the contact area. This force is con-
sidered to be a critical parameter for predicting the onset of the droplet detachment.
Simplified expressions considering a predefined contact line shape (e.g. elliptic or
parallel-sided) have been used in several studies [48], [49], [50], [5].

Celestini and Kofman [51] studied the fundamental vibration mode of a sup-
ported droplet, describing the surface tension force as a restoring force associated
with the deformation:

F = −γ∆S

dx
= −γS0h (θ)

R2
dx (2.19)

where S0 is the surface of the undeformed droplet, R is the radius of the truncated
sphere, dx is the displacement of the center of mass and h (θ) is a quadratic function
depending on the static contact angle. Note that Eq. (2.19) can be thought of as a
spring model equation since the force is linear with the displacement. Esposito et
al. [24] based their characterization of the surface tension force on the spring model
from Celestini and Kofman [51], taking Eq. (2.19) as a partial derivative. Even
though spring model of the surface tension is very intuitive, it is an approximation
of the actual phenomena. Moreover, the spring model can be misunderstood since
the spring force acts on the center of mass, whereas the adhesion force is applied at
the contact line with the surface.
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Figure 2.7: Droplet emerging on the GDL surface subjected to the drag and adhesion
forces

2.2 Model description

The semi-analytical model presented in this chapter includes the following improved
physical descriptions:

a) the adhesion force is obtained using the formula proposed by Extrand et al.
[43], which can be used to obtain the adhesion force for any contact line ge-
ometry.

b) an expression for CD based on CFD simulations considering several droplet
geometries under study is used (thus, the model is entitled semi-analytical).

c) an improved characterization of the droplet deformed geometry is used.

The model assumes that gravity and viscous effects are negligible compared to
the surface tension force. Fig. 2.7 shows a schematic view of the studied problem.
A water droplet emerges from a pore into a channel with a constant volume flow
Q̇. The air flows with a fully developed velocity profile and an average velocity
of umean. As the air flows around the droplet, it exerts a drag force, Fdrag, on
the droplet surface, which tends to deform it. Since this force breaks the droplet
equilibrium, the adhesion force acts in the opposite direction, thus taking the droplet
to a new equilibrium state. The difference between these two forces leads to droplet
oscillations [11].

The equation that characterizes the balance of forces acting on the droplet is
momentum conservation applied to the x-coordinate of the droplet center of mass:

m
d2xCM

dt2
= Fadh − Fdrag (2.20)
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where m is the mass of the droplet and is a function of time, xCM is the x-coordinate
of the center of mass and Fadh and Fdrag are the adhesion and drag forces, respec-
tively. Forces are described by the following equations:

Fdrag =
1

2
ρairu

2
airCDA (2.21)

and

Fadh = −γ
∫ l

0

cos (θ(l)) cos (ψ(l)) dl (2.22)

where ρair is the air density, CD is the drag coefficient, A is the frontal projected
area of the droplet and γ is the surface tension between the air and the water. Eq.
(2.22) is the analytical expression for the adhesion force given by Extrand et al. [43].

2.3 Droplet geometry model

The droplet geometry and forces acting on the droplet are coupled, so it is vital to
have the geometry of the droplet well characterized. In the model above, there are
several parameters that define the geometry of the droplet such as the advancing
and receding angles, the frontal area and the droplet thickness. In order to develop
analytical expressions for the geometry of the droplet, the droplet is idealized as
a semi-spherical cap together with a cone shape to model pinning [24], and these
parameters can be obtained as a function of the droplet volume. Even though the
idealized geometry cannot represent the complex geometries that might form, e.g.
slugs, it contains mechanisms to account for pinning and contact angle hysteresis.
This idealized geometry model is based on the one developed by Esposito et al.
[24] with several corrections and improvements. Details on the geometry model
development can be found in Appendix B.

The geometry model uses the water volume flow Q̇ and an initial chord length c
(distance AB in Figure 2.7) as input parameters to obtain the rest of the variables
at every time step. Considering a constant chord and a constant area of the middle
section for every deformation state, it is possible to find an expression of the chord
length c of the droplet as a function of the contact angles:

c =
R

sinθR

(1 + sinθAsinθR − cosθAcosθR) (2.23)

and also an expression for the middle section area of the droplet,

A = R2

2sinθR

(
[θA + θR − sin2θA + sin∆] sinθR + 4sin3

(
∆
2

)
sin
(
θA+θR

2

))
(2.24)

where ∆ = θA − θR is the contact angle hysteresis. The equations of the droplet
height and perimeter are shown below:

h = R (1− cosθA) (2.25)
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Table 2.1: Constants used in the fitting curve of the advancing and receding angles
relationship

θA a b c d

[2.39, 2.43) -0.5771 0.2414 -0.9432 0.2195
[2.43, π] -1.5154 0.6500 -1.1679 0.3164

P = R (θA + θR) +
2Rsinβ

2

sinθR

sin

(
θR +

β

2

)
(2.26)

More details about the formulation can be found in the ESDLab web page [52].
Using the model hypotheses together with equations (2.23) and (2.24), it is also
possible to derive an implicit equation that relates both advancing and receding
angles:

K3

4
=

sinθR

2K2
2

·K1 −→ K2
2 ·K3 − 2sinθR ·K1 = 0 (2.27)

where:

K1 =
(
(θA + θR − sin2θA + sin (∆)) sinθR + 4sin3

(
∆
2

)
sin
(
θA+θR

2

))
(2.28)

K2 = 1 + sinθAsinθR − cosθAcosθR (2.29)

K3 =
1

sin2θS

(
θS −

sin2θS

2

)
(2.30)

Eq. (2.27) does not depend on the droplet size. Since it is not feasible to find
an explicit equation for the receding angle, a fitting function needs to be found in
order to have an expression for this magnitude. A single expression to fit all the
values of the receding angle would introduce a high estimation error for values of the
advancing angle close to θS because from θA = 2.39 to 2.43 rad (values close to the
static angle), the receding angle drops quickly, whereas from 2.43 to π, θR decreases
almost linearly.

Using Eq. (2.27), a set of 200 values has been generated to estimate a fitting
curve in each interval, giving θA values from 2.39 rad to π with an increment of 0.005
rad. Therefore, two different equations are proposed to estimate the receding angle
based on the advancing angle. Both equations have been found using the commer-
cial software CurveExpert Basic, which uses the Levenberg-Marquardt algorithm to
perform nonlinear regression. Using this fitting curve software, the best curve for
both cases is:

θR =
a+ bθA

1 + cθA + dθ2
A

(2.31)

where the constants a, b, c and d have the values shown in Table 2.1.
In both cases, the coefficient of determination R2 is higher than 0.999, which

means that the proposed functions have an excellent fit with the numerical data.
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2.4 Droplet dynamics model

As shown in Eq. (2.20), the deformation of the droplet depends on the surface
tension and drag forces. Following sections provide with a detailed characterization
of these forces.

2.4.1 Drag coefficient model

Drag coefficient CD in Eq. (2.21) depends on the droplet geometry and the air
velocity, amongst other factors. In reference [24], this parameter is computed using
the formula proposed by White (see Chapter 4 [53]):

CD = 0.4 +
24

Re
+

6

1 +
√
Re

(2.32)

which is used to estimate the drag coefficient for a free sphere immersed in a gas
flow and is based on the droplet diameter. Of course, the droplet shape is far away
from a sphere, and this approximation has been identified as one of the factors that
take the model predictions away from the experimental data [24]. Consequently,
the best option is to implement the droplet geometry using a CFD software and
compute the drag force numerically. Since there are a lot of factors involved in the
value of Fdrag and CD, two of them have been chosen as the most important:

� The droplet height, which can be used as the characteristic length to compute
the Reynolds number, i.e. Reh

� The droplet deformation state, which can be described with the contact angle
hysteresis.

The rest of the parameters, such as the channel geometry, the air density, viscos-
ity and mean velocity or the water mass flow have been kept constant in the study of
the drag coefficient. The effects of the droplet height and its contact angle hysteresis
on the drag force have been studied by performing Computational Fluid Dynamics
(CFD) simulations of a rectangular channel with different droplet geometries (i.e.,
modifying the size and the shape) and different flow conditions. The simulations
were performed in 3D using Kratos1, considering a cross-sectional area of the chan-
nel with the same value for both height and width. Two examples of the droplet
geometries used in the numerical simulations are shown in Fig. 2.8.

In the simulations, the computational domain is a channel with a squared cross-
sectional area of 1 mm per side and 50 mm long (Fig. 2.9). The simulations have
been done considering a steady-state with a fully developed laminar profile for the
velocity and an average value of uair (Table 2.2 in Section 2.4.3) in the channel. The
governing equations for the air’s velocity and pressure are the stabilized mass and
momentum conservation equations (see Chapter 4). The boundary conditions are
the following:

� Dirichlet boundary condition for the velocity at the inlet; fully developed lam-
inar profile with average velocity uair.

1Kratos Multi-Physics System is a C++ object oriented FE framework [54]
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Figure 2.8: Static (left) and dynamic (right) droplet geometries used in the numerical
analysis of the drag force

� Neumann boundary condition for the pressure at the outlet, i.e. no viscous
stress (open boundary).

� No slip boundary condition to the rest of the walls and the droplet.

The droplet has been characterized as an obstacle laying on the channel floor.
The channel has been meshed using 500000 elements (P1+P1 tetrahedrals) and
solved using the iterative solver BICGSTAB. The nonlinearity in momentum equa-
tion is solved using the Newton-Raphson method. The drag force has been computed
as the sum of the pressure drag and the viscous drag.

Inlet

Outlet

(a) Modeled channel (b) Detail of the droplet

Figure 2.9: Computational domain of the gas channel used in the drag coefficient
calculation

Droplet height

The droplet height is clearly one of the main factors that influences the drag coef-
ficient value. The two previous cases have included a change in the droplet height.
Here the effect of this variable is studied alone. The computational domain is main-
tained at a constant geometry of 13 mm of height and width, and a length of 500
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mm. Using the values in Section 2.4.3, the considered heights correspond to the
values of the droplet from t = 0s to t = 1.5s, keeping the geometry in its static
configuration. The obtained results are shown in Fig. 2.10(a).
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Figure 2.10: Drag coefficient and drag force according to White (solid red line) and
semi-analytical model (dashed blue line)

These two curves in the resulting plot correspond to the numerical result of the
drag coefficient and the one obtained with Eq. (2.32) from White [53]. Note that
the difference in some cases is almost 100% of the value. Since the water droplet is
very small compared to the channel height, the hypothesis of the droplet under a
free air stream is invalid. Thus, the drag force cannot be computed with the classic
formula in Eq. (2.21). The new values of this parameter will be used. There is a
significant difference between the computed and the theoretical drag force as well,
as one can observe in Fig. 2.10(b)

In order to check that Eq. (2.21) is valid, two points have been chosen from the
data used in Fig. 2.10(b). The first one is the point where Reh = 712 and has half
the area of the point located in Reh = 1003. Since the force of the former (8 ×
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10−4 N) is approximately half the drag force on the latter (1.57 × 10−3 N), it can
be concluded that the equation for the drag force is valid in the scope of this work.

Droplet deformation

The other variable to be analyzed is the droplet deformation. The contact angle
hysteresis is the indicator of this state: when the droplet is static, both advancing
and receding angles are equal to the static contact angle, so the difference between
them is 0. As the air flows around the droplet, the advancing angle grows and
the receding angle diminishes as seen in Fig. B.3, thus increasing the difference
between both angles. A more deformed shape of the droplet implies that it is more
aerodynamic, which means that the drag coefficient is lower.

A three-dimensional deformed droplet has a complex geometry and is difficult
to characterize. In the present study, it has been considered that the droplet tends
to have the shape of a truncated ellipsoid, which coincides with previous studies
that have analyzed droplet deformation [43], [18], [50]. Although the shape of the
droplet has been approximated, geometry variables such as droplet chord length,
height, radius and frontal area have been maintained constant. Fig. 2.8 shows the
geometry of a static and deformed droplets. Numerical results obtained for three
different deformation states are depicted in Fig. 2.11(a). Results show that the
droplet deformation plays an important role in the value of both the drag coefficient
and force (Fig. 2.11(b)).

Drag coefficient parametric equation

In the previous sections, the effects of the droplet height and its contact angle
hysteresis on the drag coefficient have been studied. Multiple regression analysis
is performed with the data obtained from the numerical simulations. The software
Minitab v15 is used to run the statistical analysis, yielding the following output:

The regression equation is

Cd = 18.4 - 0.777 Re_h - 0.772 hyst

Predictor Coef SE Coef T P

Constant 18.40273 0,00731 182,33 0,000

Re_h -0.776998 0,00000924 -39,58 0,000

hyst -0,771978 0,003834 -19,04 0,000

S = 0,0182599 R-Sq = 97,7% R-Sq(adj) = 97,6\%

The drag coefficient as a function of Reynolds number and hysteresis angle is
shown in the second line of the analysis output. The previous table analysis each
variable independently and also shows its significance in the model, represented by
the p-value (rightmost column in the table). Given the chosen Confidence Interval
(95%), a variable is considered statistically significant when the p-value is lower
than 5% (i.e. p < 0.05). This percentage indicates the probability of accepting
a linear relationship when it actually do not exist (Type I error). The resulting
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Figure 2.11: Drag coefficient of the two deformed droplets compared to the static
geometry
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table indicates that the three variables included in the model have p-values lower
than 0.001, and thus they are statistically significant in the model. The resulting
equation is represented in a three-dimensional plot shown in Fig. 2.12.

Figure 2.12: Drag coefficient representation as a function of the hysteresis angle and
the Reynolds number for droplet heights less than 10% of channel height

The relationship between the drag coefficient and the considered variables can
be considered linear since the R− sq value of the resulting model is closer to 100%.
For droplet height to channel height ratios below 10% the flow conditions inside
the channel are not affected by the droplet and the drag force only depends on
the droplet geometry. On the other hand, for droplet height to channel height
ratios above 10%, the flow conditions in the channel are affected by the droplet.
In this case, both droplet height and height of the channel influence the results.
Furthermore, since the drag depends not only on the drop, Eq. (2.21) cannot be
used. Several simulations were performed in this case and it was found that the
drag force (expressed in µN) could be approximated by:

Fdrag = 5.81− 4.82ReH-h + 1.67Re2
H-h − 0.29Re3

H-h+

+0.03Re4
H-h − 8.66× 10−4 ·Re5

H-h − 1.43∆e−0.959ReH-h
(2.33)

The exponential term in Eq. (2.33) means that the difference between the static
and deformed cases increases as H − h decreases. The coefficients were obtained by
running simulations with air fluid properties, droplet heights from 0.01 to 8 mm and
channel geometries from 0.1 to 10 mm. In order to estimate the generality of the
equation, different fluid properties were also studied. Results showed that the drag
force obtained from the CFD simulation and the one predicted from the equation
above differed by less than 1%.
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Figure 2.13: Contact line of a deformed droplet

2.4.2 Adhesion force model

The surface tension force acts on the droplet when the droplet is in a non-equilibrium
configuration. The force is proportional to the droplet deformation. Celestini and
Kofman (2006) stated that this restoring force can be expressed as [51]:

FST = −γ∆S

dx
(2.34)

where γ is the water surface tension, ∆S is the surface variation due to the de-
formation and dx is the displacement of the center of mass from its original position.
Even though this form of the surface tension is very intuitive, it is an approximation
of the actual phenomena. Moreover, the spring model can be misunderstood since
the spring force acts on the center of mass, whereas the adhesion force is applied
at the contact line with the surface. Thus, in this work the adhesion force of the
droplet is computed numerically using Eq. (2.22), where θ is the contact angle and
ψ is the angle between the surface tension force in the xy plane and the x axis, as
shown in Fig. 2.6.

This expression is integrated numerically to obtain the approximated value of
the adhesion force at every deformation state [50]. As Antonini et al. showed in
their work [50], for hydrophobic surfaces with static contact angle greater than 90◦

the contact line of a deformed droplet can be described as a double ellipse, as shown
in Fig. 2.13. The proposed model considers that the y semi-radius remains constant
for the two ellipses, and the sum of the two x semi-radii is equal to the droplet
chord. Using this geometry and numerical integration, Eq. (2.22) is solved at every
time step. In our model, the contact angle distribution in every semi-ellipse has
been considered linear with respect to the x direction, going from the value of the
static contact angle to the value of the advancing or receding angle in each case.

2.4.3 Boundary conditions

In order to solve the differential equation (2.20), initial conditions must be imposed
for the x-coordinate of the center of mass. Since Eq. (2.20) is a second order
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Table 2.2: Parameters used in the simulation

Variable Symbol Value Units

Initial chord c0 0.07 mm
Water flow rate Q 0.047 µl s−1

Water surface tension γ 0.072 N m−1

Water density ρw 1000 kg m−3

Static contact angle θS 135 deg
Air density ρair 1.205 kg m−3

Air viscosity µair 1.98 × 10 −5 kg m−1 s−1

Air velocity uair 0.1483 m s−1

Channel height H 1 mm

differential equation, the following two initial conditions are imposed,

xCM|t=0 =
c0

2
(2.35)

dxCM

dt

∣∣∣∣
t=0

= vCM|t=0 = 0 (2.36)

In other words, at t = 0 the droplet is static. The term c0 refers to the droplet
chord at the beginning of the simulation. The rest of the parameters used in the
simulation are described in Table 2.2.

The velocity of the air inside the channel is given by the geometry of the channel
and the working conditions of the fuel cell. Typically, a fuel cell channel has a 1 mm
× 1 mm cross-sectional area and 5 cm length. An usual value for the current density
is 1 A cm−2, and for this current the amount of oxygen needed in the cathode is
given by:

ṁO2 =
I

4F
=
i · Aact

4F
(2.37)

where i is the current density, Aact is the active area of the channel and F is the
Faraday’s constant, which equals to 96485 C mol−1 or, equivalently, 96485 A s mol−1.
Given that the base of the channel is a rectangle of 1 by 50 mm, the oxygen needed
is:

ṁO2 =
1 A

cm2 · 0.5cm2

4 · 96485 C
mol

= 1.2955 · 10−6 mol O2

s
(2.38)

Finally, the necessary mass flow of air needed to have the desired current density
is:

ṁair = 1.2955 · 10−6 mol O2

s
× 1mol air

0.21mol O2
× 28.96 g

mol air
× 1m3

1205g
= 1.4827 · 10−7m3

s

(2.39)
For the considered geometry, this value of the mass flow gives an inlet air ve-

locity of 0.1483 m s−1. Eq. (2.20) and the aforementioned boundary conditions
are implemented in MATLAB and solved using an in-house 4th order Runge-Kutta
method.
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Figure 2.14: Flowchart of the algorithm to solve the dynamic problem

2.4.4 Geometry and dynamic model integration

Fig. 2.14 shows a flowchart of the algorithm implemented to solve the dynamic
model. For a known value of the water mass flow Q̇, the volume of the droplet is
obtained. The volume is used with the initial conditions to find the initial value of
the droplet chord and the x-coordinate of the center of mass. These values are used
in the time integration of the dynamic model.

At every time step, the new droplet volume is used to calculate the new chord
length and the x-coordinate of the center of mass. These parameters are used in the
geometrical model to find the contact angles and the rest of geometrical variables.
The forces at the current time step are computed using the known geometry of the
droplet. Then, the force balance results in the x-coordinate of the center of mass
and its velocity at the next time step. This process is repeated until the final time
step is reached.

2.5 Results and discussion

In this section, the most important results regarding the droplet dynamics are dis-
cussed. The total time of the simulation is 1 s, considering a droplet that is injected
at a constant flow rate. The inlet velocity of air is 0.1483 m s−1 (Table 2.2). The
time step size chosen for this simulation is 10−4 s, and the total computational time
is about 2 min.

The simulation shows the evolution of the droplet shape at every time step during
its execution. Fig. 2.15 shows the simulation state at four different time steps.

2.5.1 Validation

The semi-analytical model is validated by reproducing several experiments. Milne
et al. [5] measured the critical drag force needed to detach a sessile droplet from a
hydrophobic surface. Different droplet volumes were considered in order to obtain a
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(a) t = 0 s (b) t = 0.25 s

(c) t = 0.5 s (d) t = 1 s

Figure 2.15: Droplet deformed shape representation at different time steps of the
simulation
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Figure 2.16: Validation results of the semi-analytical model

relationship between volume and critical drag force. The experiment is reproduced
here by first computing the droplet geometry for every volume, setting a value of 0
for the water injection rate (Q̇ = 0) and increasing the velocity of the air until the
detachment condition is fulfilled. According to Milne’s work, the droplet detaches
when the contact angle hysteresis is greater than 30 degrees [5] (results obtained
for a GDL surface with Teflon). The drag force when the droplet detaches is easily
obtained from either Eq. (2.21) or (2.33). Fig 2.16 (a) shows the comparison between
the experimental results from Milne, the predicted values with the proposed model,
and the values obtained with the spring model in reference [24].

The values predicted with the current semi-analytical model are in good agree-
ment with the experimental data. The values obtained with a spring model largely
underpredict the critical drag force. The difference between the experimental data
and the predictions from the proposed model is larger at higher droplet volumes.
As the droplet grows, gravity and viscous effects become more important. In the
present model gravity effects are neglected, which can dominate for large droplet
sizes. However, the proposed model predicts well the drag force necessary for droplet
detachment for droplet volumes up to 100 µL.

In order to further validate the proposed model predictions, predicted droplet
size before detachment is compared to the experimental results reported by Zhang
et al. [21]. Zhang et al. [21] measured the droplet size before detachment for
droplets at different air velocity. In the simulations, the air velocity is fixed and
the droplet is allowed to grow until detachment takes place. Detachment occurs
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when the transient hysteresis angle reaches 30 degrees. Fig. 2.16 (b) compares the
experimental data in reference [21] and the predicted droplet size according to the
proposed model, using Milne’s conditions for the critical hysteresis angle. Results
obtained are in good agreement with the experimental data in reference [5] Both
results have the same tendency: the higher the air velocity, the lower the critical
droplet diameter. Thus, the critical hysteresis angle can be taken as 30◦.

2.5.2 Evolution of the center of mass, hysteresis angle and
forces

Fig. 2.17(a) shows the effect of air velocity on the droplet center of mass for a droplet
in a 1×1 mm rectangular channel typical of a fuel cell. For large flow rates, the center
of mass position is well below the center of mass of the static droplet indicating that
the center of mass approaches the advancing contact point (see point B in Fig.
2.7). When the velocity of the air is 0, the x-coordinate of the droplet center of
mass evolves without almost any oscillation, as expected. It has been observed, e.g.
references [24] [15], that the higher the air velocity, the bigger the amplitude of the
droplet oscillations, i.e. the droplet is more unstable and is prone to detach from the
GDL surface. The frequency of the oscillations however remains almost constant.

The green lines correspond to the spring model for the adhesion force proposed
in reference [24]. The proposed model predicts higher adhesion forces, resulting in a
stiffer droplet with less deformation. Therefore, the droplet is less prone to detach
from the GDL surface. For both models, results show that for higher velocities the
droplet is more deformed.

Since the two forces acting on the droplet have opposite directions, the center
of mass oscillates during droplet growth. The advancing and receding angles have
oscillations as well, as displayed on Fig. 2.17(b). In this simulation, as the droplet
grows, the drag force deforms the droplet. As the drag increases, the difference
between both angles also increases, which is represented as the hysteresis angle in
Fig. 2.17(b).

The two forces acting on the droplet are responsible for its oscillation. Larger
droplet sizes lead to increased values of the drag force. The surface tension force
is modeled using Eq. (2.22). The evolution of both forces over time is shown in
Figure 2.17(c). One can observe that the drag force oscillates with small amplitude
compared to the surface tension force. The main reason is that, for a certain droplet
size, the frontal area does not change much with the oscillation of the center of
mass x-coordinate. The drag force has a quadratic growth due to its quadratic
relationship with the droplet radius.

2.5.3 Detachment time and force

Using the proposed model, detachment times can be estimated based on the time it
takes for a droplet to reach a critical hysteresis angle. Based on previous research,
e.g. reference [5], it is estimated that a water droplet within airflow will detach from
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Table 2.3: Detachment time, height, width, and area covered for different water
injection rates (Q̇) and air velocities (uair)

Q̇ [µl s−1]
tdet [s] Acov [mm2] h [mm] w [mm]

u1 u2 u1 u2 u1 u2 u1 u2

0.01 49.32∗ 25.19
0.393

0.251
0.853

0.683
1.000

0.8
0.02 24.66∗ 12.58 0.681 0.799
0.04 11.52 6.31 0.376 0.834 0.683 0.978 0.8
0.08 5.31 4.60 0.356 0.812 0.682 0.952 0.8

the surface when the contact angle hysteresis is greater than 30 degrees2.

For a droplet in a fuel cell channel, the values in Table 2.2 are used to predict
detachment while the maximum hysteresis angle is set to 30◦. The proposed model
then predicts detachment after 9.83 s. When the droplet is subjected to airflow
it oscillates and therefore is more prone to detachment. This result highlights the
importance of a transient model for this problem. At high airflow rates, droplet
geometry and droplet height will be independent of current density, and drops will
not block the channel. However, at low air flow rates blockage is possible.

The detachment time is a function of the water injection rate [16], [9], [24], [18].
Several simulations have been done considering different values for the water inflow
and two air velocities (u1 = 0.15 ms−1, u2 = 0.5 ms−1) and the results are shown in
Table 2.3. These air velocities correspond to the air flow rate for a stoichiometric
ratio of one at two different current densities, 1 A cm−2 and 3 A cm−2, respectively.

The time values marked with an asterisk (∗) correspond to those cases where
the droplet blocks the channel before detachment. For the different water injection
rates and the air flowing at u2 = 0.5 ms−1, the droplet detaches when it reaches a
critical value of height, independently of liquid flow rate.

2.6 Conclusions

A semi-analytical model of a water droplet emerging from a GDL pore in a cathode
gas channel has been developed. Several numerical simulations have been done to
obtain the value of the drag coefficient for different droplet sizes. For a droplet
height to channel height ratio below 10% the drag coefficient exhibited linear rela-
tionship with the Reynolds number and hysteresis angle. For a droplet height to
channel height ratio above 10% the drag force shows a nonlinear relationship with
the Reynolds number and the contact angle hysteresis.

From the analysis of the drag coefficient it can be concluded that using a spherical
drop drag equation versus Reynolds number leads to underpredicted values of the
drag coefficient and therefore the drag force. The results for the adhesion force
show that the considered equation gives higher results than others obtained from
a spring model [24], [51]. Previous approaches using a spring model might have

2This value corresponds to the problem at hand, i.e., 1 mm droplets on a surface with θs = 135
deg
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underestimated the adhesion force by as much as 50%. A lower value of the adhesion
force means that the droplet oscillates with higher amplitude but with less frequency.

The value of the critical drag force corresponding to the droplet detachment is
consistent with the experimental data in reference [5]. The detachment condition
from reference [5] has been tested comparing the experimental data from reference
[21]. Results show that the proposed model using a constant value of the criti-
cal hysteresis angle (Milne’s condition) has good agreement with the experimental
results.

The water injection rate study reveals that for low air velocities, the droplet
blocks the channel before detaching the channel surface, whereas for high air ve-
locities the droplet detaches when it reaches a critical height value. Applying this
model to droplets in a fuel cell channel it has been found that at moderate flow rates
and low airflow velocities droplets are likely to block the channels. Further, GDL
coverage is at least 50% of the cross-sectional area, therefore it limits gas transport
to the GDL.

The semi-analytical model has shown to be a fast tool to obtain preliminary
results of droplet detachment in fuel cell gas channels. Simulations performed with
this model have a computational cost of the order of several minutes. The computa-
tional cost of similar simulations using a numerical model is of the order of several
hours.
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Chapter 3

A Lagrangian finite element model
for droplets

In this chapter, a numerical model in two and three dimensions for droplet dynam-
ics using a Lagrangian finite element formulation is proposed. Although analytical
models (such as [19] and the one proposed in the previous chapter) provide solutions
at low computational cost, they oversimplify the phenomena by either using prede-
fined droplet geometries or neglecting air-water interactions. For gravity-dominated
flows, such as film or slug flows, analytical models cannot characterize the geometry
and therefore they cannot be applied [11]. Moreover, a numerical model can be
used to predict the dynamics of the droplet after detachment. Detached droplets
can adhere to channel walls and modify flow conditions, or can reattach to the
GDL surface and interact with other droplets. Even for droplet flow, the difference
between experimental and analytical predictions can be as high as 30% for highly
deformed droplets.

Numerical methods can be used to provide more accurate droplet dynamics pre-
dictions at the cost of explicitly including a continuum description of both phases (air
and water) and their interaction in the model. Most of the studies in the literature
analyze the phenomena using an Eulerian formulation equipped with the Volume
of Fluid (VOF) method [55], [25], [16], [15]. This method is widely used since it is
already implemented in most of commercial FEM codes. VOF method can represent
complex interface geometries and has good mass conservation features. However,
it suffers from interface diffusion and it is restricted to small time steps due to the
explicit treatment of surface tension. Additionally, VOF method cannot be used to
describe a single phase (i.e. a droplet) since it depends on a background fixed mesh
(Fig. 3.1(a)). Hysing [56] used an Eulerian formulation, tracking the interface with
the level set method. Although results were obtained using large time steps, the
model could not be fully implicit since the interface could not be explicitly found
using the Eulerian approach. Moreover, level set method is not mass conservative.

An alternative to Eulerian models are the Lagrangian models, such as the one
proposed by Saksono and Perić [57]. Saksono and Perić [57] proposed an implicit
variational formulation for the surface tension term. One of the advantages of La-
grangian models is that they can track exactly the water domain and its boundary
(Fig. 3.1). This formulation could be used to describe quasistatic and dynamic
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problems [58]. However, the model relied upon an axisymmetric formulation, not
being able to solve complex geometries.

(a) Possible droplet representation in
VOF method

(b) Possible droplet representation us-
ing a Lagrangian framework

Figure 3.1: Schematic representation of a water droplet using an Eulerian formula-
tion with the VOF method (left) and a Lagrangian formulation (right)

Recent trends on water droplet dynamics research are reducing the working scale
to the molecular size. In other words, researchers have realized that the best way
to characterize the water droplet shape at any state is to model it as a subset of
particles. Although these studies go beyond the scope of the present work, the
results shown could give a different point of view for the studies in the macroscopic
scale. As an example, two studies that should be considered are [59] and [60].

In PEFC context, numerical studies based on the VOF method typically rely
upon an explicit treatment of the surface tension. This restricts the model to using
extremely small time steps (governed by the time scale associated with the propa-
gation of capillary waves) in order to achieve convergence [61]. This restriction is
an important drawback for practical PEFC simulations. Additionally, VOF studies
need very fine meshes to have an accurate description of the interface. This further
increases the computational cost of the corresponding simulations.

This chapter presents a Lagrangian model for liquid drops since it allows for:

a) accurate definition and track of the boundary

b) implicit surface tension modeling and thus using large time steps

c) good mass conservation

d) mesh-based definition of contact angles and thus accurate modeling of wetting
phenomena

e) symmetric resulting system
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3.1 Governing equations

Let us consider a spatial domain Ω ⊂ Rn, where n ∈ {2, 3} (see Fig. 3.2). The outer
boundary of the fluid is designated as ΓI . The part of the boundary in contact with
the solid substrate is denoted by ΓS.

Figure 3.2: Schematic representation of the considered single-phase system

The governing equations for the fluid are the mass and momentum conservation
equations [62], [53]:

ρ
Dv

Dt
−∇ · σ = ρg on Ω (3.1)

Dρ

Dt
+ ρ (∇ · v) = 0 on Ω (3.2)

where v is the velocity vector, σ is the Cauchy stress tensor, t is the time, g is the
body force and ρ is the fluid density. The operator Dφ

Dt
stands for the total material

derivative:
Dφ

Dt
=
∂φ

∂t
+ v · ∇φ (3.3)

For a Newtonian fluid, the Cauchy stress tensor is given by:

σ = −
(
p+

2

3
λεV

)
I + 2µD (3.4)

where p is the pressure, µ is the dynamic viscosity, λ is the bulk viscosity, εV = ∇·v
is the volumetric strain rate, I is the identity tensor and D = 1

2

(
∇v +∇Tv

)
is the

strain rate tensor.
If the density of the fluid is constant, first term in Eq. (3.2) is zero and the

equation takes the following form:

∇ · v = 0 (3.5)

Eq. (3.5) is known as the mass conservation equation. If one uses this expression in
Eq. (3.4), Cauchy stress tensor for an incompressible fluid yields:

σ = −pI + µ
(
∇v +∇Tv

)
(3.6)
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Combining Eqs. (3.1), (3.5) and (3.6) gives Navier-Stokes equations for an incom-
pressible fluid:

ρ
∂v

∂t
−∇ · µ

(
∇v +∇Tv

)
+∇p = ρg on Ω (3.7)

∇ · v = 0 on Ω (3.8)

Note that, since the model uses the Lagrangian description, the convective term
v·∇v is absent in the material derivative. Thermal effects are not taken into account
in the model. Thus, viscosity remains constant as well.

Boundary conditions

In order to solve the problem at hand, governing equations (3.7) and (3.8) must
be complemented with boundary conditions. In static conditions, the fluid has zero
displacement on the x direction and therefore a no-slip Dirichlet boundary condition
is imposed at ΓS:

v = 0 at ΓS (3.9)

The boundary condition applied in dynamic conditions is different for the contact
line (i.e., ∂Γ = ΓS ∩ ΓI). Further discussion can be found in Section 3.3.4. At
boundary ΓI , the following condition is prescribed:

σ · n = γκn at ΓI (3.10)

where n is the unit normal to ΓI , γ is the surface tension coefficient and κ is the
boundary curvature. Let us consider that the fluid is surrounded by an external fluid
in static conditions with relative pressure pext = 0. Eq. (3.10) reads that the normal
stress across ΓI is balanced by surface tension. For an incompressible Newtonian
fluid, the Cauchy stress tensor is given by Eq. (3.6). Projecting Eq. (3.10) onto
normal and tangential directions leads to the following conditions:

n · (σ · n) = γκ at ΓI (3.11)

t · (σ · n) = 0 at ΓI (3.12)

Using (3.6) in the previous equation yields1:

p− µn ·
([
∇v + ∇Tv

]
· n
)

= γκ at ΓI (3.13)

Considering that the projection of viscous stresses onto the normal direction can be
neglected, Eq. (3.13) becomes Laplace-Young equation:

p = γκ (3.14)

1In systems where there are surfactants or temperature changes, the surface tension coefficient
is variable. If surface tension varies, an additional term must be added in Eq. (3.13):

p− µn ·
([
∇v + ∇Tv

]
· n
)

= −γκ+ n · ∇γ at ΓI

However, surface tension gradients are not considered in the present work.
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3.2 FEM discretization

The first step towards the solution of Eqs. (3.7) and (3.8) is their discretization in
space. The functional spaces where their discrete form is defined are described next.

Let us consider a domain Ω ⊂ Rn, with n = 2, 3, and its smooth boundary Γ.
L2 (Ω) denotes the Hilbert space of scalar functions that are square integrable over
Ω, with inner product and norm defined by:

(u, v) =

∫
Ω

uv dΩ (3.15)

‖u‖L2 = (u, u)
1
2 (3.16)

For the discretization, not only the functions should be square integrable but also
their derivatives. The Sobolev space Hk (Ω) is the space where functions and their
derivatives up to order k are square integrable. Space L2 (Ω) is already a Sobolev
space, since H0 (Ω) = L2 (Ω). Space H1 (Ω) is defined as follows:

H1 (Ω) =

{
u ∈ L2 (Ω)

∣∣∣∣ ∂u

∂xi
∈ L2 (Ω) , i = 1, . . . , n

}
(3.17)

The following subspace will also be used in the discretization of governing equations:

H1
0 (Ω) =

{
u ∈ H1 (Ω) | u = 0 on Γ

}
(3.18)

For vector functions, such as velocity, this definition must be extended. We define
Hk (Ω) the space of vector functions v where each i component belongs to Hk (Ω),
ui ∈ Hk (Ω). Further details on the function spaces can be found in [63].

To obtain the Galerkin variational form of Eqs. (3.7) and (3.8), we first multiply
them by test functions and then integrate the product over the domain. Following
the notation of [63], the set of test functions that satisfy homogeneous boundary
conditions on ΓD reads:

V =
{
v ∈H1 (Ω) | v = 0 on ΓD

}
(3.19)

Note that V = H1
0 (Ω). For non-homogeneous boundary conditions, we have:

S =
{
v ∈H1 (Ω) | v = v̄ on ΓD

}
(3.20)

Following the notation presented in [64], the weak form of our boundary value prob-
lem is defined as follows: find v ∈ S such that ∀w ∈ V , ∀q ∈ L2 (Ω):∫

Ω

(
ρ
∂v

∂t
·w−w · (∇ · σ)

)
dΩ =

∫
Ω

ρg ·w dΩ (3.21)∫
Ω

q∇ · v dΩ = 0 (3.22)

where Ω = ΩW . Integrating by parts and applying Stokes theorem, Eq. (3.21) reads:∫
Ω

(
ρ
∂v

∂t
·w + µ

(
∇v +∇Tv

)
: ∇w− p∇ ·w

)
dΩ =

=

∫
Ω

ρg ·w dΩ +

∫
ΓN

w · σn dΓ

(3.23)
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Last term has been already defined in Eq. (3.10). Using this relationship, the weak
form of the governing equations is obtained:∫

Ω

(
ρ
∂v

∂t
·w + µ

(
∇v +∇Tv

)
: ∇w− p∇ ·w

)
dΩ =

=

∫
Ω

ρg ·w dΩ +

∫
ΓN

γκn ·w dΓ (3.24)∫
Ω

q∇ · v dΩ = 0 (3.25)

The resulting weak form has derivatives in both w and v, which means that functions
with at least continuous first derivatives must be used. Let us consider the regular
partition of Ω, T h (Ω), into nelem convex elements Ωe such that:

Ω ≈ Ωh =

nelem⋃
e=1

Ωe (3.26)

where nelem is the number of elements. Increasing nelem one obtains a better ge-
ometrical approximation of the computational domain. 3-noded triangles (in two
dimensions) and 4-noded tetrahedra (in three dimensions) are chosen to discretize
Ω for their simple implementation and their ability to represent complex domains
[65]. Following the standard FEM procedure ([63], [64]), velocity and pressure are
represented using interpolating functions as follows:

vi(x, t) ≈ vhi (x, t) =
∑
J=1

NJ(x)vJi (t) = NTvi (3.27)

p(x, t) ≈ ph(x, t) =
∑
J=1

NJ(x)pJ(t) = NTp (3.28)

where NJ(x) are vectors of interpolating functions, and vJi and pJ are the nodal
values for the i -th component of velocity and pressure, respectively, at node J .
In the present work, both velocity and pressure have been approximated by linear
Lagrangian functions (i.e., P1P1 elements have been chosen). This leads to lower
system sizes and therefore to solutions with lower computational cost. However,
both velocity and pressure have the same degree of interpolation and pressure must
be stabilized [64]. Using Eqs. (3.27) and (3.28) in Eqs. (3.24) and (3.25), and
integrating over elements, governing equations yield:

M ˙̄v + µLv̄ + Gp̄ = F̄ + F̄st (3.29)

Dv̄ = 0 (3.30)

where M is the mass matrix, L is the Laplacian matrix, G is the gradient matrix,
D is the divergence matrix, v̄ and p̄ are the velocity and pressure respectively, F̄ is
the body force vector and F̄st is the surface tension force vector. The matrices are
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assembled from the elemental contributions defined as:

M = mIJ = ρ

∫
Ωe

δIJNINJ dΩ (3.31)

L = lIJ =

∫
Ωe

∂NI

∂xk

∂NJ

∂xk
dΩ (3.32)

G = gIJ = −
∫

Ωe

∂NI

∂xk
NJ dΩ (3.33)

F̄ = fI = ρ

∫
Ωe

NIgk dΩ (3.34)

F̄st = fst,I = −
∫

ΓI

γκnkNI dΩ (3.35)

D = −GT (3.36)

where NI stands for the standard linear FE shape function at node I, Ωe is the
element integration domain and k refers to spatial variables x, y and z. Note that due
to using a Lagrangian framework for the domain, the elemental integration domains
in Eqs. (3.31)-(3.36) must be updated according to changing mesh configuration.
Governing equations have been discretized in space, but not in time. For sake of
clarity, the derivation is shown using Backward Euler scheme as the integration
scheme:

vn+1 − vn
∆t

= v̇n+1 (3.37)

However, the Newmark-Bossak integration scheme has been actually implemented
in our formulation (see Appendix C).

Finally, governing equations have been discretized in space and time and the
problem can be stated as follows: Given v̄n and p̄n at tn, find v̄n+1 and p̄n+1 at tn+1

as the solution of:

M
v̄n+1 − v̄n

∆t
+ µLv̄n+1 + Gp̄n+1 = F̄ + F̄st (3.38)

Dv̄n+1 = 0 (3.39)

The resulting system of equations can be solved using a monolithic scheme, i.e.,
pressure and velocity are solved simultaneously, or using a splitting method such as
the fractional step method, where velocity and pressure are decoupled [65]. Solution
strategy, advantages and disadvantages are discussed in the following sections. It
will be also shown that the presence of surface tension force at the domain boundary
precludes application of the classical splitting methods.

3.2.1 Monolithic approach

The monolithic (or coupled) approach is used to solve governing equations (3.38)
and (3.39). The absence of pressure in Eq. (3.39) is the source of instabilities in the
solution for velocity-pressure pairs that do not fulfill the inf-sup condition [63]. One
option relies in relaxing the incompressible condition by an adding extra term that
depends on pressure, as shown in [66]. Another option is to add some stabilization
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terms depending on mesh size and time step. Different methods have been presented
in literature, such as Galerkin/Least Squares (GLS) [67], Algebraic Sub-Grid Scales
(ASGS) [68], Orthogonal Sub-Scales (OSS) [69] and Finite Increment Calculus (FIC)
[70]. In our work, the ASGS stabilization technique is implemented because it is a
symmetric stabilization. Thus the system of governing equations remains symmetric.

Let us consider again the discretized governing equations Eqs. (3.24) and (3.25).
The stabilization of these equations is achieved by adding the following term to the
left-hand side:

ne∑
e=1

∫
Ωe

τ [F− L(vh)]
T L∗(wh) dΩ (3.40)

where the time-dependent residual is:

L(vh) =

[
ρ∂vh
∂t
− µ∇ · (∇vh) +∇ph
∇ · vh

]
=

[
ρ∂vh
∂t

+∇ph
∇ · vh

]
(3.41)

Note that the laplacian term in Eq. (3.41) is equal to 0 since linear interpolation
functions are considered for the space discretization. Since the discretization in
time has been performed applying Backward Euler scheme, the residual can be
approximated as:

L(vh) =

[
ρvn+1−vn

∆t
+∇pn+1

∇ · vn+1

]
(3.42)

where discrete velocity and pressure correspond to the solution at the next time step
n + 1. The term L∗ is the formal adjoint of L and it depends on the stabilization
technique chosen. For ASGS (see [68] for further details):

L∗(wh) =

[
−µ∆wh −∇qh
−∇ ·wh

]
=

[
−∇qh
−∇ ·wh

]
(3.43)

Using Eqs. (3.42) and (3.43) in Eq. (3.40), the stabilization term yields:∫
Ωe

τ1∇qh
(
ρ
vn+1 − vn

∆t
+∇pn+1 − f

)
dΩ +

∫
Ωe

τ2 (∇ ·wh) (∇ · vn+1) dΩ (3.44)

Terms multiplied by qh are added to the continuity equation, whereas terms multi-
plied by wh are added to the momentum equation. Expanding the first term and
substituting by the interpolating functions, Eq. (3.44) yields:∫

Ωe

ρ

∆t
τ1
∂NI

∂xk
NJ dΩ +

∫
Ωe

τ1
∂NI

∂xk

∂NJ

∂xk
dΩ−

∫
Ωe

τ1
∂NI

∂xk

( ρ

∆t
NJ +NJ

)
dΩ+

+

∫
Ωe

τ2
∂NI

∂xk

∂NJ

∂xk
dΩ

(3.45)

Parameters τ1 and τ2 are algorithmic stabilization parameters defined as:

τ =
1

2 ‖v̄‖
h

+
4ν

h2

(3.46)
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τ2 =
h2

τ1

= 2h ‖v̄‖+ 4ν (3.47)

where h is the element size and ν is the kinematic viscosity of the fluid.
The stabilized governing equations read:(

M
1

∆t
+ µL + SK

)
v̄n+1 + Gp̄n+1 = F̄ + F̄st + M

v̄n
∆t

(3.48)

(D + SD) v̄n+1 + SLp̄n+1 = F̄q (3.49)

where stabilization matrices are:

SK = sK,IJ =

∫
Ωe

τ2
∂NI

∂xk

∂NJ

∂xk
dΩ (3.50)

SD = sD,IJ =

∫
Ωe

ρ

∆t
τ1
∂NI

∂xk
NJ dΩ (3.51)

SL = sL,IJ =

∫
Ωe

τ1
∂NI

∂xk

∂NJ

∂xk
dΩ (3.52)

F̄q = fq,I =

∫
Ωe

ρgk
∂NI

∂xk

( ρ

∆t
NI +NI

)
dΩ (3.53)

Note that matrix SL can be interpreted as a laplacian term. The presence of this
term is particularly important for the computational efficiency of the method [71].

Although the nonlinear convective term is absent in Eq. (3.48), the system of
governing equations is still nonlinear. This is caused by the definition of these equa-
tions in terms of the unknown configuration Xn+1 and therefore dependence of the
discrete operators defined by Eqs. (3.31)-(3.36) on the unknown nodal position. An
option often encountered in numerical studies is to solve the linearized system of
equations using a Newton-Raphson method since it provides second-order conver-
gence of the non-linear iterative procedure. This is achieved by first expressing the
governing equations in residual form:

r̄m = F̄ + F̄st −M
v̄n+1 − v̄n

∆t
− (µL + SK) v̄n+1 −Gp̄n+1 = 0 (3.54)

r̄c = F̄q − (D + SD) v̄n+1 − SLp̄n+1 = 0 (3.55)

The Taylor series expansion of the residual is:

0 =

(
r̄m
r̄c

)
+

( ∂r̄m
∂v̄i

∂r̄m
∂p̄i

∂r̄c
∂v̄i

∂r̄c
∂p̄i

)(
dv̄
dp̄

)
+O (dv̄, dp̄)2 (3.56)

Neglecting terms of second order and higher, the Newton-Raphson equation to solve
is:

−
( ∂r̄m

∂v̄i
∂r̄m
∂p̄i

∂r̄c
∂v̄i

∂r̄c
∂p̄i

)(
dv̄
dp̄

)
=

(
r̄m
r̄c

)
(3.57)

where dv̄ = v̄i+1
n+1 − v̄in+1 and dp̄ = p̄i+1

n+1 − p̄in+1. Index i denotes the nonlinear
iteration of the Newton-Raphson solution. Derivatives of the residuals with respect
to velocity and pressure are easily obtained, and the system to solve reads:(

M 1
∆t

+ µL + SK + HST G
D + SD SL

)(
dv̄
dp̄

)
=

(
r̄m (v̄i, p̄i)
r̄c (v̄i, p̄i)

)
(3.58)
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Matrix HST is the result of linearizing surface tension term with respect the velocity.
Including this term is necessary to overcome time step restrictions that appear in
problems where surface tension effects are present2. The derivation of this term is
carried out in section 3.3.

Once the system (Eq. (3.58)) is solved, the velocity and the pressure are updated
as v̄i+1

n+1 = v̄in+1+dv̄ and p̄i+1
n+1 = p̄in+1+dp̄. The position of the nodes in ΩL is updated

as Xi+1
n+1 = Xn + ∆t · v̄i+1

n+1.

The integration domains necessary for the computation of the discrete operators
(Eqs. (3.31)-(3.36)) are updated according to this new configuration Xi+1

n+1. Once
the convergence of the iterative loop is achieved and the end-of-step velocity (v̄n+1)
and pressure (p̄n+1) are obtained, the definitive mesh position is computed as:

Xn+1 = Xn + ∆t · v̄n+1 (3.59)

3.2.2 Fractional step approach

The resulting system of equations (3.38)-(3.39) is symmetric due to using the La-
grangian description (no skew-symmetric convective term). However, this system
suffers from ill-conditioning due to different scales of velocity and pressure variables
[71]. Pressure segregation methods have been developed in the past to overcome this
difficulty. One such method is the fractional step method, presented by Chorin [72]
and Temam [73]. This method has shown to be significantly more efficient in compu-
tational cost, but it suffers from mass conservation problems. Recently, Ryzhakov et
al. [65] proposed a technique to alleviate this by improving the intermediate velocity
solution.

Fractional step approach can be applied at the continuum level [3] or at a purely
algebraic level [74]. For the sake of simplicity, we chose the latter option. First, an
intermediate velocity ṽ is introduced in Eq. (3.38):

M
(v̄n+1 − ṽ) + (ṽ− v̄n)

∆t
+(µL + HST ) v̄n+1 +G (p̄n+1 − p̄n + p̄n) = F̄+F̄st (3.60)

No approximation has been considered yet. Eq (3.60) can be split into two equations:

M
(ṽ− v̄n)

∆t
+ (µL + HST ) ṽ + Gp̄n = F̄ + F̄st (3.61)

M
(v̄n+1 − ṽ)

∆t
+ G (p̄n+1 − p̄n) = 0 (3.62)

Note that in Eq. (3.61) an approximation has been considered, assuming that the
laplacian and surface tension matrices are multiplied by ṽ instead of v̄n+1. Eq.

2Considering HST = 0 corresponds to methods where surface tension is treated explicitly.
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(3.62) can be rearranged as follows:

M
(v̄n+1 − ṽ)

∆t
+ G (p̄n+1 − p̄n) =

= M
v̄n+1

∆t
−M

ṽ

∆t
+ G (p̄n+1 − p̄n) = 0

M
ṽ

∆t
= M

v̄n+1

∆t
+ G (p̄n+1 − p̄n)

ṽ = v̄n+1 + ∆tM−1G (p̄n+1 − p̄n)

If last equation is multiplied by matrix D at both sides, it yields the pressure Poisson
equation:

Dṽ = Dv̄n+1 + ∆tDM−1G (p̄n+1 − p̄n) = ∆tDM−1G (p̄n+1 − p̄n) (3.63)

Matrix DM−1G can be approximated by L, DM−1G ≈ L, as the former one re-
quires performing global matrix-vector multiplications and is, thus, computationally
more expensive [75]. However, the resulting matrix L is singular. Considering this
approximation, Eq. (3.63) obtains the following form:

Dṽ = ∆tL (p̄n+1 − p̄n) (3.64)

To sum up, the resulting equations in the fractional step method are:

M
(ṽ− v̄n)

∆t
+ (µL + HST ) ṽ + Gp̄n = F̄ + F̄st (3.65)

Dṽ = ∆tDM−1G (p̄n+1 − p̄n) (3.66)

M
(v̄n+1 − ṽ)

∆t
+ G (p̄n+1 − p̄n) = 0 (3.67)

where Eq. (3.65) is the fractional momentum equation, Eq. (3.66) is the pressure
Poisson equation and Eq. (3.67) is referred as the end-of-step momentum equation.
Once Eq. (3.65) is solved for ṽ, pressure p̄n+1 is obtained by solving Eq. (3.66)
and finally the end-of-step velocity v̄n+1 is obtained using Eq. (3.67). Velocity and
pressure have been decoupled, but v̄n+1 has been approximated by ṽ in Eq. (3.65),
introducing a numerical error of order ∆t2.

The monolithic approach for solving Eqs. (3.48)-(3.49) is more computation-
ally intensive than fractional step method, since it involves solving both velocity
and pressure simultaneously. On the other hand, fractional step method needs
a boundary condition for pressure in ΓN in order to overcome the singularity of
the Laplacian matrix L in pressure Poisson’s equation (Eq. (3.66)). The essential
boundary condition p = 0 is valid for free surface problems where surface tension
effects are negligible. This boundary condition is not valid however in problems
involving surface tension effects, such as water droplet dynamics. Using the frac-
tional step method in droplets may lead to instabilities in the solution, specially for
low viscosity values. Section 3.4 includes an example where the performance of the
monolithic approach and the fractional step method is compared.
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Figure 3.3: Discrete boundary

3.3 Surface tension

The force term F̄st in Eq. (3.38) is the surface tension force, corresponding to the
projection of the Cauchy stress tensor onto the normal direction at the interface:

F̄st = −
∫

Γ

γκn ·w dΓ (3.68)

Negative sign in Eq. (3.68) means that the surface tension force is a vector pointing
inwards Ω when ΓI is convex, and it points outwards Ω when the boundary is
concave. Since surface tension term depends on the curvature, a model for curvature
in two and three dimensions must be developed first.

3.3.1 Curvature in two dimensions

The curvature in two dimensions is defined as follows [16], [15]:

κ = ∇s · n =

∥∥∥∥dn

ds

∥∥∥∥ (3.69)

where ∇s is the surface gradient operator (i.e., the conventional gradient without
the component normal to the surface) and dφ

ds
is the rate of change of variable φ

along a given curve. Eq. (3.69) can be interpreted as the change in direction of the
normal vector along the interface. This equation can be approximated using subsets
of three nodes at the interface on a Lagrangian mesh. Let us consider a segment
of the Lagrangian boundary defined by node I and its nearest neighbors. At every
node I, the curvature is computed using its nearest neighbors at the interface. Let us
denote the vector pointing from node I − 1 to node I as r1, and the vector pointing
from node I to node I + 1 as r2 (Figure 3.3). To find the change in direction of
the contact line at node I, one must normalize the vector r1 − r2. The normalized
vectors r1 and r2 will be denoted as r̂1 and r̂2:

r̂k =
rk
||rk||

(3.70)
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The curvature is the norm of the vector r̂1− r̂2 divided by the length of the polyline
pointing from node I − 1 to I + 1:

κ =
||̂r1 − r̂2||
||r1||+ ||r2||

(3.71)

Eq. (3.71) is a direct measure of the change in direction of the tangent vector along
the interface. Since tangent and normal vectors at the surface are orthogonal, the
curvature value remains unaltered. In addition to the curvature, one must compute
its sign at node I: if the midpoint of the line connecting the neighbors of node
I is inside the water domain, then the sign is positive (convex interface). On the
contrary, if the midpoint lies outside the water domain, the sign is negative and the
surface tension force at node I points outwards the interface.

In order to determine whether the midpoint is inside the water domain, the
following process is performed. For node I, the neighbor elements are identified (i.e.,
elements that contain node I). For every neighbor element, the shape functions
of every node are evaluated at coordinates of the midpoint. If the three shape
functions are positive in one or more elements, the midpoint is inside water domain
and curvature of node I is positive. Curvature is negative if there are no elements
that fulfill the previous condition.

3.3.2 Curvature in three dimensions

For many computer graphics applications (optimal triangulation, surface modeling
and denoising, to name a few), it is important to have an accurate approximation
of the simple geometry attributes, such as normal vector and surface curvature.
Usually, surfaces are represented by triangular meshes. The notion of continuous
normal vectors and curvatures is not trivial for discrete surfaces.

Curvature in three dimensions is usually computed using differential geometry.
Tasso et al. [76] compared several studies and Meyer’s method [77] provided the
most accurate results. The three-dimensional model for the curvature computa-
tion adopted here has been therefore based on Meyer’s method. The method is
summarized next.

Let S be a surface in R3 described by a parametrization of two variables. For
each point in S, the surface can be approximated by its tangent plane. This plane
is defined by the normal vector n at that point, and the point itself. For every
direction, normal curvature κN(θ) at point P is defined as the curvature of the
curve contained in the surface and in the plane defined by n and eθ (vector pointing
in the considered direction, as shown in Fig. 3.4(a)). Mean curvature is defined as
the average of the normal curvatures:

κH =
1

2π

∫ 2π

0

κN(θ)dθ (3.72)

Equation κH = 0 is the Euler-Lagrange equation for surface minimization. Sur-
face area minimization and mean curvature flow can be related using the following
equation:

2κHn = lim
d(A)→0

∇A
A

(3.73)
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where A is the infinitesimal area around point P , d(A) its diameter, and ∇A is the
gradient with respect to (x, y, z) coordinates of P . Fig. 3.4(b) shows a schematic of
the infinitesimal area around a point, its normal vector n and the principal directions
e1 and e2.

(a) Normal curvature (b) Principal directions

Figure 3.4: (a) Plane defined by normal vector to surface and tangent vector to the
considered curve and (b) Infinitessimal area around a considered point, with normal
vector n and principal directions e1 and e2

Left-hand side term in Eq. (3.73) is the Laplace-Beltrami operator of surface
S: K(P ) = 2κH(P )n(P ). For C 0 surfaces the above definition (Eq. (3.73)) must
be reformulated. Properties will be obtained using the immediately neighboring
triangles, also known as 1-ring neighborhood. The first step is to find the discrete
area around each vertex xi of the mesh. For each triangle, the local area is generated
connecting an interior point with the midpoints of the edges of adjacent triangles.
Usually this interior point is taken as the circumcenter, and the area becomes the
local Voronoi cell (AVoronoi). Fig. 3.5(a) shows the 1-ring neighborhood of node xi
and its Voronoi region (shaded area).

Note that all triangles in Fig. 3.5(a) are non-obtuse. When a triangle is obtuse,
part of the associated Voronoi cell lays outside the triangle. Two cases arise if the
triangle is obtuse: the angle formed in node xi is obtuse (Fig. 3.5(c)), or one of the
other two angles is obtuse (Fig. 3.5(d)). In the former case, AVoronoi is computed
as half the area of the triangle (AT/2), and as a quarter of the triangle area in the
latter case (AT/4). In either case, the cell is referred as AM instead of AVoronoi.

Once area AM has been computed for every node xi, the mean curvature normal
K(xi) has to be integrated over the area AM . From [77] it is shown that expressing
K(xi) as the Laplacian with respect the conformal space parameters and using
Gauss’ theorem, the mean curvature normal operator yields [77]:

K(xi) =
1

2AM

∑
j∈N1(i)

(cotαij + cot βij) (xi − xj) (3.74)
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(a) Voronoi area (b) Angles opposite to an edge

(c) Obtuse angle at node xi (d) Obtuse triangle, non-obtuse an-
gle at node xi

Figure 3.5: (a)-(b) 1-ring neighborhood of node xi with its Voronoi region (shaded
area) and angles opposite to an edge, (c)-(d) Voronoi region for obtuse triangles
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where αij and βij are the two angles opposite to edge xixj (Fig. 3.5(b)), and N1(i)
denotes the 1-ring neighborhood of node xi. The value of AM has been given for
obtuse triangles. For non-obtuse triangles, it can be shown that [77]:

AVoronoi =
1

8

∑
j∈N1(i)

(cotαij + cot βij) ‖xi − xj‖2 (3.75)

From Eq. (3.74), two important attributes can be obtained: the normal vector n
(Eq. (3.76)) and the mean curvature κH (Eq. (3.77)).

n =
K(xi)

‖K(xi)‖
(3.76)

κH =
1

2
‖K(xi)‖ (3.77)

Using Eqs. (3.76) and (3.77), the surface tension force term in three dimensions
yields:

F̄st = −
∫

Γ

γκn ·w dΓ

= −
∫

Γ

γ
1

2
‖K(xi)‖

K(xi)

‖K(xi)‖
·w dΓ

= −γ
2

∫
Γ

 1

2AM

∑
j∈N1(i)

(cotαij + cot βij) (xi − xj)

 ·w dΓ (3.78)

3.3.3 Implicit treatment of the surface tension term

The explicit treatment of the surface tension term leads to severe restrictions upon
the critical time step size in the simulation of dynamic problems [61],[78]. It is
governed by the time scale associated to the propagation of capillary waves [28],
[56], [61].

Let us consider a liquid-gas system with an interface Γ separating the domains.
Let us also consider the coordinate system (x, y), where x represents the direction
tangent to the interface and y is the orthogonal direction. Let us assume that
any perturbation in the interface (i.e., capillary wave) is governed by the mean
curvature flow and that it propagates as a harmonic plane wave [79]. Its amplitude
of oscillation can be expressed as [61]:

y(x, t) = A0e
i(kx−ωt) = f(t)eikx (3.79)

where A0 is the peak magnitude of oscillation, i is the unit complex number, k is
the wave number and ω is the angular frequency. The wave number k is equal to:

k =
2π

h
(3.80)
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where h is the element size. From Eq. (3.79), f(t) reads:

f(t) = A0e
−iωt (3.81)

Its time derivative has the following expression:

df(t)

dt
= f ′(t) = A0e

−iωt (−iω) = −iωA0e
−iωt = −iωf(t) (3.82)

For a capillary wave, the angular frequency and the wave number are related by
the dispersion equation [80]:

ω2 =
γ

ρL + ρG
k3 (3.83)

where γ is the surface tension coefficient and ρL and ρG are the liquid and the gas
densities, respectively. Taking into account Eq. (3.83), the following expression
arises for f ′(t):

f ′(t) = ±i
√

γ

ρL + ρG
k

3
2f(t) (3.84)

If Eq. (3.84) is solved using an explicit time integration scheme, such as forward
Euler, the region of absolute stability requires that:∣∣∣∣∆t√ γ

ρL + ρG
k

3
2

∣∣∣∣ < 1 (3.85)

This equation leads to the following time step constraint:

∆t <

√
ρL + ρG

γ
k−

3
2 =

√
ρL + ρG

γ

(
2π

h

)− 3
2

=

√
ρL + ρG
γ(2π)3

h3 (3.86)

For PEFC channels (1×1 mm cross-section), a typical droplet is ∼ 10−4 m in
height. Considering a mesh based on elements of 10−6 m, the critical time step
would be of the order of 10−8 s. Such small time step would be impractical for
PEFC simulations since usually they require to consider from several seconds to
several minutes of real time in order to study the desired phenomena.

Explicit treatment of the surface tension term implies that:

F̄st = F̄
n
st = −

∫
Γn

γκnn ·w dΓ (3.87)

Term κn denotes that curvature is being obtained using the known last step
domain configuration xn. To avoid severe time restriction (Eq. (3.86)), one has
to treat the surface tension implicitly3. This can be achieved by transforming the
curvature term in the integral form (Eq. (3.68)) applying the surface divergence
theorem [78]. Let us define the tangential gradient of a function f , considering that
it is differentiable in a neighborhood N of a surface Γ:

3Although surface tension is treated explicitly in the majority of Eulerian models using VOF,
the overall method is semi-implicit (a fully explicit method would introduce even smaller time step
restrictions due to acoustic wave propagation)
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∇sf (x) = ∇f (x)− n⊗ n · ∇f (x) x ∈ΓI (3.88)

where n is the normal vector of surface Γ. Note that this operator has been already
used in Eq. (3.69). If f is twice differentiable in a neighborhood N of Γ, then the
Laplace-Beltrami operator of f can be defined as [81], [56]:

∆sf (x) = ∇s · (∇sf (x)) x ∈ΓI (3.89)

In differential geometry, the identity map on a surface Γ is defined as idΓ (x) = x
for all x ∈ Γ. The surface gradient of the identity map yields:

∇sidΓ = ∇idΓ − n⊗ n · ∇idΓ = I− n⊗ n (3.90)

The Laplace-Beltrami operator applied to the identity mapping on a surface Γ
leads to the following expression:

∆sidΓ = ∇s · (∇sidΓ) = ∇s · (I− n⊗ n) = −∇s · n⊗ n = −κn (3.91)

where κ is the mean curvature of the surface. Note that Eq. (3.69) has been used
in the last step of Eq. (3.91). Using Eq. (3.91) in (3.68), yields:

F̄st =

∫
Γ

γκn ·w dΓ = −
∫

Γ

γ∆sidΓ ·w dΓ (3.92)

Integrating by parts and applying the surface divergence theorem ([78], [56],
[82]), Eq. (3.92) reads:

−
∫

Γ

γ∆sidΓ ·w dΓ = −
∫

Γ

γ∇s (∇sidΓ ·w) dΓ +

∫
Γ

γ∇sidΓ · ∇sw dΓ =

= −
∫
∂Γ

γ (m · ∇sidΓ) ·w d (∂Γ) +

∫
Γ

γ∇sidΓ · ∇sw dΓ =

= −
∫
∂Γ

γm ·w d (∂Γ) +

∫
Γ

γ∇sidΓ · ∇sw dΓ (3.93)

where ∂Γ is the boundary of Γ, and m4 is the normal of the boundary ∂Γ, perpen-
dicular to n and ds (unit vector tangent to ∂Γ), as shown on Figure 3.6. Note that
the second term in Eq. (3.93) has the form of a Laplacian term integrated by parts.

Terms ∇sidΓ and m depend on the domain configuration in Eq. (3.93). If this
equation is expressed using the unknown (current) configuration xn+1, an implicit
equation for the surface tension term is obtained:(

F̄st

)
n+1

= −
∫
∂Γn+1

γmn+1 ·w d (∂Γ) +

∫
Γn+1

γ (∇sidΓ)n+1 · ∇sw dΓ (3.94)

4Note that in Eq. (3.93), m · ∇sidΓ = m (I− n⊗ n) = m −m · n ⊗ n = m, since vectors m
and n and orthogonal (i.e., m · n = 0)
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(a) 3D case (b) 2D case

Figure 3.6: Interface domain, boundary and normal vector to the boundary

Note that Eq. (3.94) is evaluated over boundary Γ. A major drawback in Eulerian
formulations is that boundary Γ has to be explicitly found. This task can be rather
complex for high order schemes, specially in three dimensions, leading to significant
errors [56]. However, the Lagrangian formulation does not have this drawback since
the position of the boundary is defined by the deforming mesh.

Recall that governing equations (Eqs. (3.24) and (3.25)) are solved via the
Newton-Raphson iterative method for non-linear equations. Considering that the
identity map is equal to the unknown configuration xin+1, it can be updated in every
non-linear iteration (Eq. (3.58)) as follows:

(idΓ)i+1
n+1 = (idΓ)in+1 + ∆t dv̄ (3.95)

This term depends on the variable of interest and can be therefore substituted
in Eq. (3.94):

∫
Γn+1

γ (∇sidΓ)i+1
n+1 · ∇sw dΓ =

∫
Γn+1

γ (∇sidΓ)in+1 · ∇sw dΓ+

+ ∆t

∫
Γn+1

γ∇s dv̄ · ∇sw dΓ (3.96)

The right-hand side term in Eq. (3.96) is a Laplacian term, acting as a diffusive
term that can possibly be interpreted as a diffusion added to the interface nodes
in the tangential direction, responsible for stabilizing the surface tension effects for
relatively large time steps. Note also that this term is multiplied by the time step,
and therefore it will become more important for larger time steps.

Thus, the surface tension contributions that must be added to the right and
left-hand side of the momentum equation (Eq. (3.58)) are:

Fst = −
∫
∂Γn+1

γmn+1 ·w d (∂Γ) +

∫
Γn+1

γ (∇sidΓ)n+1 · ∇sw dΓ (3.97)
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HST = −∆t

∫
∂Γn+1

γdv̄ ·w d (∂Γ) + ∆t

∫
Γn+1

γ∇s dv̄ · ∇sw dΓ (3.98)

or in index notation:

FIk = −
∫
∂Γn+1

γNmk d (∂Γ) +

∫
Γn+1

γ (δij − ninj)
∂NI

∂xk
(δkj − nknj) dΓ

(3.99)

HIJij =− γ∆t

∫
∂Γn+1

NINJ d (∂Γ)+

+ γ∆t

∫
Γn+1

∂NI

∂xj

∂NJ

∂xl
(δji − njni) (δlk − nlnk) dΓ

(3.100)

Since vector mn+1 also depends on the unknown configuration, the same proce-
dure is applied to first term in Eq. 3.94 for its linearization, given that:

mi+1
n+1 = mi

n+1 + ∆t dv̄ (3.101)

The integral involving vector m is only added in case that the domain Ω is open
(recall that if Ω is closed, ∂Γ = ∅). This term will be added only on the contact line
nodes and they must be properly marked, as shown in Fig. 3.7.
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Figure 3.7: TRIPLE POINT flag used to identify the contact points

3.3.4 Dynamic contact angle condition and adhesion force

Dynamic contact angle condition

The surface tension term along the contact line ∂Γ (Fig. 3.6(a)) requires special
treatment. At ΓS (Fig. 3.2), since curvature is zero surface tension is also zero.
At the contact line, Eq. (3.68) is solved using the normal vector corresponding to
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the static equilibrium configuration neq instead of the actual normal vector n [29].
Fig. 3.8 shows the difference between the two normal vectors. The normal vector at
equilibrium is constant and forms an angle θS with the vertical axis (Fig. 3.8(b)),
whereas the actual normal vector depends on the configuration of the droplet and
forms an angle θ (Fig. 3.8(a)). The curvature at the nodes that represent the contact
line is computed using the normal vector at the contact line (n1 in Fig. 3.8(c)) and
the normal vector at its nearest neighbor node from ΓI (node 2 in Fig. 3.8(c)).
Using the definition of curvature from Eq. (3.69), the curvature at the contact line
is:

κ1 =

∥∥∥∥dn

ds

∥∥∥∥ =
‖n1 − n2‖

ds
(3.102)

where ds is the distance between nodes 1 and 2.

(a) Current configuration (b) Equilibrium configuration

(c) Normal vector at contact line node and its
nearest neighbor

Figure 3.8: (a)-(b) Normal vector and contact angle at current and equilibrium
configurations and (c) Normal vector at contact line node and its nearest neighbor
to obtain the curvature at contact line

An alternative to the above approach can be found in [57], [78].
When a droplet lays on a rough surface, such as those used in PEFC gas channels,

the concept of static contact angle cannot be used. In rough surfaces, the contact
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line pins and the contact angle changes from one equilibrium configuration to an-
other. The present work uses two threshold values, θmin and θmax, as contact angle
conditions. The contact line is fixed only within the range θ ∈ [θmin, θmax]. These
maximum and minimum values represent the measured contact angles for incipient
motion when the droplet is placed on a tilted plane of a given material. Further
details of the method are discussed in section 3.4.4. Note also the contact angle
might not correspond to that of the material due to surface roughness as described
by Wenzel and Cassie-Baxter models [83].

When the dynamic contact angle is not fulfilled (i.e., θ < θmin or θ > θmax),
the contact line is allowed to move. Instead of the no-slip boundary condition (Eq.
(3.9)), a slip boundary condition is applied at those nodes representing the contact
line:

v · n = 0 (3.103)

where n is the unit normal vector of the substrate.

Adhesion force

When an external force acts on a droplet, such as gravity, surface tension acts as
an opposing adhesion force in order to maintain equilibrium. Adhesion force acts
on the contact line, where the three phases (air, water and the substrate) meet [84].
Thus, the summation of surface tension force along the contact line is equal to the
adhesion force [43]:

Fadh = −γ
∫ l

0

cos (θ(l)) cos (ψ(l)) dl (3.104)

This expression has been already introduced in Chapter 2. Angles θ(l) and
ψ(l) are displayed in Fig. 2.6. For the three-dimensional problem, Eq. (3.104) is
evaluated on the nodes representing the contact line. However, in two dimensions,
the contact line is represented by two nodes. Thus, a lumped force is applied at
each node I [84]:

F 2D
adh,I = γ

π

2
Rcosθ (3.105)

where R is the radius of the contact line, assuming that it is circular. The total
adhesion force is therefore:

F 2D
adh = γ

π

2
R (cosθmin − cosθmax) (3.106)

3.4 Results and discussion

The numerical model has been implemented within Kratos Multi-Physics, a C++
object oriented FE framework [54]. The resulting system of equations is solved using
the Bi-conjugate gradient stabilized method (BICGSTAB). The additional term SD
in Eq. (3.49) precludes using solvers for symmetric systems of equations, such as
Conjugate Gradient (CG).

62



Table 3.1: Input parameters used in the solver for monolithic scheme

Parameter Value
Linear solver iterative tolerance 10−6

Linear solver max number of iterations 5000

Table 3.2: Input parameters used in the velocity and pressure solvers for fractional
step scheme

Parameter Value
Velocity iterative tolerance 10−6

Pressure iterative tolerance 10−3

Velocity solver max number of iterations 5000
Pressure solver max number of iterations 1000
Velocity relative tolerance 10−3

Velocity absolute tolerance 10−5

Pressure relative tolerance 10−2

Pressure absolute tolerance 10−4

Table 3.1 shows the input parameters used in the model when monolithic scheme
is used. Table 3.2 contains parameters used in velocity and pressure solvers when
the problem is solved using the fractional step scheme. These parameters are used
only in example 3.4.1, section Different solution schemes. The rest of examples are
solved using a monolithic scheme with parameters from Table 3.1.

Results were obtained using a Linux 12.04 box with an Intel® CoreTM i5 CPU
M450 @ 2.40Ghz with 4 processors. Time to perform simulations is different on each
example. Sessile drop examples only involved the solution of the Lagrangian domain,
and the cost was remarkably low. Depending on the droplet size, simulations in these
examples took between 20 and 300 seconds.

3.4.1 Static drop

The first example models a circular liquid droplet. The surface tension force is the
only acting force and gravity is neglected (g = 0). Fluid’s density, viscosity and
surface tension coefficient are set to 1 (ρ = 1 kg m−3, µ = 1 kg m−1 s−1, γ = 1
N m−1). The fluid domain is a circular droplet with radius R = 0.25 m. Initial
pressure in the liquid is set to p0 = 0 Pa. The domain is meshed using triangular
elements of size h = 1/25 m, as shown in Fig. 3.9(a).

According to Laplace-Young equation, the pressure in the interior of the droplet
must be equal to p = γ/R = 4 Pa at steady state. The result of the simulation of
1 s with a time step of 0.01 s is shown in Figs. 3.9. Pressure distribution within
the droplet is depicted in Fig. 3.9(b). Fig. 3.9(c) shows how pressure varies at the
center of the droplet during the simulation. It can be observed that the steady state
pressure is obtained in the second solution step. This value remains constant during
the rest of the simulation. No overshoot values or oscillations are observed in the
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triangular elements

(b) Pressure field at t = 1 s
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(c) Pressure evolution at the center of the droplet

Figure 3.9: (a) Mesh used to discretize the domain, (b) pressure distribution inside
the droplet and (c) pressure evolution at the central node

pressure solution.

Mesh sensitivity analysis

In order to check that the solution obtained by the current model does not depend
on the size of the mesh, the relative error as a function of the mesh size is plotted.
For different droplet sizes ranging from h = 0.1 to h = 0.005 m, a simulation of 1 s
using a time step of 10−2 s has been performed. Pressure at the center of the droplet
has been compared to the exact value, which in this case is p = 4 Pa. The relative
error has been obtained as:

error =
psim − pexact

pexact

· 100 (3.107)

Fig. 3.10 shows that for a coarse mesh with 27 nodes (Fig. 3.10(b)), the error is of
the order of 1%. As the mesh is refined, the error decreases. Thus, the solution of
the model does not depend on the mesh size.
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Figure 3.10: (a) Relative error vs number of nodes, (b) mesh with h = 0.1 m and
(c) mesh with h = 0.05 m
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Different solution schemes

Two different solution schemes have been presented in Section 3.2: the fractional step
method and the monolithic approach. The solution obtained with each method are
compared in Fig. 3.11. The example is solved for lower viscosity values (µ =0.001
kg m−1 s−1 and µ =0.00001 kg m−1 s−1 were considered) in order to reduce the
damping. The velocity at the boundary and the pressure at the first layer of nodes
in the vicinity of the boundary are analyzed (the coordinates of the nodes are (0.25,
0.5) and (0.29, 0.5), respectively). The pressure of the external fluid is neglected
(pext = 0) and the only acting force is the surface tension.

The solutions obtained using the coupled velocity-pressure (monolithic) solver
and the one of the fractional step solver are compared in Fig. 3.11(a). In the
fractional step method, the pressure at the liquid surface is fixed. This “strong”
way of imposing pressure violates the incompressibility condition, leading to the
motion of the boundary. Thus, the curvature and therefore the surface tension force
also deviate from the exact value. As a consequence, oscillations appear in the
solution. For low viscosity values the oscillations become more pronounced.

In the case of the coupled velocity-pressure (monolithic) solver no “artificial”
pressure boundary condition is necessary. One can see an exact stable solution.
Next, the surface tension (γ=0) term is neglected, however external pressure (pext =
4Pa) is applied. In this case both schemes show stable results (see Fig. 3.11(b)).
Evolution of the velocity at a boundary node for different schemes is depicted in
Fig. 3.11(c).

Different initial shapes

The same example is considered now using different initial configurations. Since
the initial shape considered first is the expected one at steady state (i.e., a circle),
the domain almost remains without deformation. Two initial configurations are
considered here in order to make the effects of surface tension more evident. A three-
dimensional cube domain of 0.5 m per side is considered first, where the boundary
has either zero or positive values for the curvature. Second configuration is a two-
dimensional step based on a square domain, where a quarter of it has been removed.
The second domain includes a corner where the curvature is negative. The evolution
of the two domains is shown in Fig. 3.12. In both configurations, steady state
solution exhibits circular and spherical shapes, respectively.

3.4.2 Dynamic drop

The free oscillations of a droplet are examined in this example. When its initial
shape is different from the equilibrium one (i.e., spherical if gravity is neglected) the
droplet exhibits several oscillations prior to reaching the equilibrium state. Lamb
(see p. 475 in [79]) performed an analytical study and found the expression for
droplets’ eigenfrequencies:

fn =
1

2π

√
n(n− 1)(n+ 2)γ

ρR3
(3.108)
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Figure 3.11: Comparison among the solutions obtained using the coupled (mono-
lithic) and the fractional step scheme in the liquid phase.
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Figure 3.12: Domain evolution for two different initial configurations

68



(a) Initial and final droplet shapes
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Figure 3.13: Shape and y-displacement evolution of an elliptic droplet with different
viscosities, in two and three dimensions

where n is the oscillation mode, ρ is the liquid’s density and R is the droplet radius.

The considered setup is similar to the one shown in the previous example. How-
ever, the initial shape of the droplet is elliptical instead of circular (Fig. 3.13(a)),
with a = 1 and b = 3 mm, as proposed in [85]. In the three-dimensional model,
the initial shape is an ellipsoid with a = c = 1 and b = 3 mm. The actual physical
density of water (ρ = 1000 kg m−3) is used in this example. The gravity force is
neglected. Two different values of viscosity are used in order to check its effect on
the resulting oscillations, and the time step is set to 10−5 s.

According to Eq. (3.108) and considering the first non-zero oscillation mode
(n=2), the frequency should be ∼ 43 Hz. The values obtained using the present
model (f = 46 Hz in 2D, f = 42 Hz in 3D) show a very good agreement with the
analytical value. The predicted value shows good agreement with the numerical
simulation results from [85] as well (∼ 50 Hz). Figs. 3.13(b) and 3.13(c) show the y-
displacement of an interface node P , with initial coordinates (0,1,0) mm. Resulting
displacement in the 3D example shows more oscillations than the 2D case. Since
z displacements are not taken into account in the 2D case, inertial effects in this
direction are neglected as well. Fig. 3.14 shows the evolution of the liquid domain
over the simulation.

It is important to note that both the viscosity and the time step used in the
numerical simulations have to be sufficiently low in order to observe oscillations in
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Figure 3.14: Domain evolution for an elliptic drop with µ = 10−5 Pa s
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Table 3.3: Prescribed (θs) and obtained (θobs) contact angles, and relative error (εθ)
between these variables

θs = 70 deg θs = 90 deg θs = 135 deg
θobs [deg] 70.15 89.91 135.08
εθ [%] 0.21 -0.10 0.06

the droplet boundary [85]. No oscillations may be detected for large viscosity values,
confirming the observation of Bouwhuis.

3.4.3 Sessile drop

Sessile drop in different substrates

The contact angle condition is validated first in this example. A square of 1×1 mm
is set as the initial configuration. Triangular elements of h = 0.1 mm have been used
to discretize the domain. Three different contact angles are taken into account: θs
= 70, 90 and 135 deg. For the considered droplet size, gravitational effects can be
neglected as given by the Bond number:

Bo =
ρgd2

γ
=

1000 · 9.81 · (10−3)
2

0.072
≈ 0.14 < 1 (3.109)

Results for the three different conditions are depicted in Fig. 3.15. Table 3.3
shows the difference between the prescribed and the modeled contact angle. Ob-
tained results show good agreement with the prescribed contact angle, giving a
maximum relative error of 0.21% with a relatively coarse mesh.

Sessile drop on a GDL surface This example aims to validate experimentally
the numerical model by characterizing a sessile drop. The experiments were carried
out as follows. A water droplet of a given volume was injected on top of a gas
diffusion layer (SIGRALET 24BC, GDL side). The experiment was performed with
droplets of volumes ranging from 3 to 30 µl. More details on the injection process
can be found in [86]. In order to find the static contact angle of the droplet with the
surface, the smallest droplet (3 µl volume) was generated at the tip of the needle.
The droplet of given volume was brought near to the membrane and allowed to
spread. After attaining the equilibrium contact angle, the needle was retracted and
the contact angle measurements were preformed.

After the injection process was finished, a snapshot of the resulting droplet was
taken at different time instances (Fig. 3.16 (a)-(c)). Using ImageJ software [87]
together with DropShape [88], the static contact angle was estimated (Fig. 3.16(d)).
The value of θs = 135 deg was used as a reference for the rest of the examples for
the contact angle condition.

Fig. 3.17(a) shows a direct comparison of numerical and numerical results. In
order to provide a more detailed comparison, the x and y scales have been normalized
to compare other droplet volumes. In Fig. 3.17(b) and 3.17(c) the x scale goes
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Figure 3.15: Droplet evolution for three different contact angles
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(a) Droplet injection at t = 0 s (b) Droplet injection at t = 5 s

(c) Sessile drop formed at t = 25 s (d) Image processing of experimental re-
sult

Figure 3.16: Injection process of a droplet on a hydrophobic surface. All images
have the same scale.
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Figure 3.17: Comparison between modeled (in 2D and 3D) and experimental
droplets with volumes from 3 to 30 µl using a scale in mm (top) and normalized
(bottom), using pinning with variable contact angle
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Table 3.4: Relative error between numerical and experimental results with respect
to contact angle (εθ), height (εh) and chord (εh) for different droplet volumes (V ),
considering fixed (fix) and dynamic (dyn) contact angles

V [µl]
εθ [%] εh [%] εc [%]

fix dyn fix dyn fix dyn
3 -1.40 -1.40 -2.42 -2.42 13.14 13.14
5 -7.56 -3.22 0.07 -0.27 25.00 2.84
10 -6.35 -2.49 -5.64 -4.18 23.93 7.73
20 -8.48 -3.45 -1.13 -6.28 27.67 7.89
30 -4.77 -2.50 -3.43 -2.60 9.66 3.11

from 0 to -1, being 0 the center of the droplet and -1 the minimum x coordinate.
The coordinates are taken from a spherical cap, meaning that a curve that passes
through the points xnorm = −1 and ynorm = 1 is a perfect spherical cap. Fig.
3.17(b) shows that the 3 µl drop obtained experimentally is a perfect spherical
cap, which means that for this droplet size surface tension dominates over gravity.
The numerical simulation using the method proposed here predicts a slightly more
deformed droplet.

Other droplet volumes ranging from 5 to 30 µl have been compared with experi-
mental data. As the droplet volume increases, gravity effects become more evident.
Fig. 3.17(c) shows the comparison between numerical and experimental results ob-
tained with a 30 µl-volume droplet. Overall, the obtained numerical profiles show
good agreement with experimental data. Results using the two-dimensional model
coincide with the model implemented in three dimensions, as shown in Figs. 3.17(b)
and 3.17(c)

Table 3.4 shows the relative errors of contact angle (εθ), drop height (εh) and
chord (εc) of numerical results compared to experimental data. Two numerical
models have been used. The former is based on a fixed value of the equilibrium
contact angle (“fix” columns), which corresponds to the aforementioned value of
135 deg. In the latter, a variable value of the contact angle is taken. The contact
line undergoes pinning as long as the contact angle is lower than 162 deg. In other
words, this threshold value is considered as the advancing contact angle.

Results in table 3.4 show that if the phenomenon is modeled considering a dy-
namic contact angle, the error is considerably reduced. This is not the case for
the 3 µl example, however, because in this case gravity effects are negligible and
therefore the contact angle remains constant. Differences between the two and the
three-dimensional model are again negligible. It can be concluded that for sessile
drop examples, a two-dimensional model is able to reproduce experimental results
with the same accuracy as the 3D model.

3.4.4 Sessile drop on an inclined plane

This example aims to show the effects of contact angle hysteresis and pinning ob-
served when an external force (such as gravity or air flowing) acts on a droplet. The
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sessile drop example is repeated but introducing a slight difference: the droplet is
laying on an inclined plane. A video camera is attached to the plane, and the plane
is tilted at a constant rate of 0.4 deg s−1. A schematic view of the experimental
set-up is depicted in Fig. 3.18.

θA

θR

θ

Figure 3.18: Experimental set-up to measure gravity effects on a sessile droplet

Fig. 3.20 shows the comparison between the measured contact angles (red square
and blue diamond markers) and the modeled values (red solid and blue dashed lines).
In these plots, REC and ADV stand for receding and advancing contact angles,
respectively. Results show that numerical values agree well with experimental data.
For each droplet volume, detachment can be read directly from its corresponding
plot, and it occurs when the tilt angle reaches its maximum value. For instance,
the 10 µl droplet detaches when the plane is tilted 36 deg, and the advancing and
receding angles are 150 and 115 deg, respectively.

Contact angle distribution along the contact line The contact line of a
deformed droplet with contact angle θs > 90 deg can be modeled as two semi-ellipses,
as shown in Chapter 2 and in reference [50]. Equations for both semi-ellipses are:

x2

a2
1

+
y2

b2
1

= 1 for x < 0 (3.110)

x2

a2
2

+
y2

b2
2

= 1 for x > 0 (3.111)

where:

b1 = b2 = R (3.112)

a1 + a2 = c = 2R (3.113)

where R is the radius of the circle (considering a circular contact line when it is
undeformed). The deformation parameter λ can be defined as the ratio between
both semi-radii a1 and a2 (i.e., λ = 1 for an undeformed droplet). One of the
hypothesis used in the semi-analytical model presented in Chapter 2 is that the
contact angle along the contact line is linear with respect the x coordinate for a
deformed droplet. The three-dimensional model can be used to check whether this
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(a) t = 0 s, θ = 0 deg (b) t = 20 s, θ = 8 deg

(c) t = 42.5 s, θ = 17 deg (d) t = 62.5 s, θ = 25 deg

Figure 3.19: Resulting animation of the modeled droplet during deformation process
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(c) V = 30 µl

Figure 3.20: Comparison between the measured contact angle (square and diamond
markers) and the modeled contact angle (solid and dashed lines)
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Figure 3.21: Contact angle along the contact line as a function of coordinate x and
the deformation parameter λ

assumption is valid or not. Fig. 3.21 shows the contact angle modeled along the
contact line for the 10uL-volume droplet.

Results show that this assumption is only valid if the contact line is circular
(λ = 1). For this case, results can be considered linear with respect coordinate
x since the obtained coefficient of determination is R2 = 0.996. The contact line
distribution for a deformed droplet (λ > 1) is a third-degree polynomial with respect
to x. The coefficient of determination for λ = 1.1 and λ = 1.2 is 0.995 and 0.997,
respectively, when results are fitted by a third-degree curve. These results can be
used to improve semi-analytical models like the one presented in Chapter 2.

3.5 Conclusions

A Lagrangian finite element model for droplets has been developed and validated
experimentally. The model proposed can represent the droplet surface exactly via
the Lagrangian boundary mesh, and it does not depend on a background fixed
mesh. An implicit surface tension model has been proposed. Results show that this
formulation is advantageous from the computational point of view; it alleviates the
severe time restrictions characteristic of the commonly used explicit surface tension
models.

For surface tension dominated problems, such as droplet analysis, solution ob-
tained with a monolithic scheme is stable. Surface tension acting on the droplet’s
surface precludes the use of pressure segregation method, such as fractional step.
For fluids with low viscosity, solution for problems with surface tension exhibit non-
stable behavior. A stable solution with fractional step method is obtained only if
surface tension effects are substituted by an artificial external pressure. However,
for droplet dynamics in gas channels the external pressure is variable and therefore
it is difficult to use these kinds of methods. On the other hand, monolithic scheme
is more computationally expensive than fractional step method.

Present model can be used to analyze the dynamics of a droplet with a given

78



arbitrary shape. Results show that the obtained frequency of oscillation is consis-
tent with the analytical solution. However, results obtained with two and three-
dimensional models can be significantly different for highly distorted initial shapes.
Since inertial effects in z direction are neglected in the 2D model, results obtained
by the 3D model exhibit more oscillations.

Sessile droplets in smooth and rough surfaces with a given contact angle can be
studied with the proposed model. Results show that given an arbitrary shape of the
domain, the steady state of the sessile droplet is reached. Contact angles obtained
in the simulation differ less than 1% from the prescribed value.

From the analysis of a sessile droplet laying on a rough surface it can be concluded
that numerical error is considerably lower when the proposed dynamic contact angle
condition is used. For rough surfaces, such as the ones encountered in PEFC elec-
trode channels, a static contact angle condition leads to significant numerical errors.
Whereas the error of the droplet’s chord length obtained with a dynamic contact
angle condition can be equal to 3%, the error obtained using a static contact con-
dition can be as high as 25%. Two and three-dimensional models obtain the same
results for sessile droplet examples.

Results from the tilted plane example show a linear relationship between tilting
angle and contact angles. Both advancing and receding angle numerical results are
in reasonable agreement with experimental data. However, values of the receding
contact angle observed experimentally have a non-linear relationship with tilted
plane angle. This difference may be caused by the absence of roughness effects in
the present model.

Distribution of the contact angle along the contact line has been studied. Re-
sults show that for circular (undeformed) contact lines, contact angle has a linear
relationship with x coordinate. Deformed contact lines show that this relationship
becomes a third-degree polynomial. This result is in contradiction with the assump-
tion made in Chapter 2 that the relationship remains linear. Future semi-analytical
models could be improved using this result. However, contact angle results obtained
using a linear and a third-order relationship differ less than 5%. Thus, if a linear
relationship is assumed, error obtained in contact angle along the line and adhesion
force is acceptable.
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Chapter 4

An embedded multiphase model

This chapter presents an embedded model to study air-water systems, such as
droplets in PEFC gas channels. A Lagrangian finite element model has been pro-
posed in the previous chapter. However, this model is limited to the study of a
single domain. In order to study droplet dynamics in PEFC channels, a model that
takes into account both air and water and their continuous interaction should be
developed. There exist several approaches in literature to study systems involving
two or more interacting phases.

4.1 Multiphase flow modeling

Multiphase flow problems are an active area of research and their applications in-
clude chemistry [89], biology [90], and engineering [91]. These problems usually
take into account multiple phenomena such as fluid transport, heat transfer, phase
change and chemical reactions. There exists a vast number of books ( [62], [92], [93])
and reviews ([29], [91]) on multiphase flow problems. In accordance with the topic
of the present work, we shall restrict our review to two-phase flow in microchannels
and consider exclusively the mechanical problem. Microchannels are gas channels
where at least one of the dimensions is below a few millimeters [91]. Such devices are
used in microreactors, micro heat exchangers or in low-temperature fuel cells. When
two or more fluids are present, it is vital to characterize their dynamics, as well as
the interface between them and their interaction. Dominant effects depend on the
considered scale. As explained in section 2.1.2, surface tension and viscous effects
become more important than gravitational or inertial effects within microchannels.
These latter effects however cannot be neglected. At the considered length scale
(i.e., droplets with less than 1 mm height), even if they are not dominant, they have
a significant impact on droplet dynamics.

Most multiphase flow models consider gas-liquid systems and, possibly, their
contact with the solid. The challenges of multiphase flow modeling consist in:

� detecting the interface between the phases

� accounting for changes in the material properties (i.e., density and viscosity)

� accurately representing the discontinuities in the flow variables (typically, pres-
sure) across the interface
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� accounting for surface tension and wetting of the solid phase

The way these challenges are tackled is strongly related to the kinematic frame-
works chosen for describing the continuum. One can distinguish between two kinds
of approaches: Eulerian and Lagrangian methods. Eulerian methods solve the fluid
dynamics problem using a fixed mesh and therefore they need additional techniques
to represent the interface between phases and describe its motion. Two alterna-
tives arise at this point: front-capturing and front-tracking methods. In the front-
capturing methods, the interface is described using a scalar function. The Volume
of Fluid (VOF) and the Level Set (LS) methods are the most known front-capturing
methods. The first published work on VOF was released in 1981 by Hirt and Nichols
[27]. Together with mass and momentum equations, the method is based on an ad-
ditional convection equation for the interface volume fraction variable Ck:

∂

∂t
(Ckρk) +∇ · (Ckρkvk) = 0 (4.1)

where ρk and vk are the density and the velocity of the fluid k, respectively. The
volume fraction variable, Ck, takes the value 0 for the nodes outside the fluid k,
1 inside the fluid, and between 0 and 1 when the considered element contains the
interface between two fluids. Consequently, the interface between fluids can be
determined by applying that surface-tracking technique to a fixed Eulerian mesh,
thus enabling the user to know the location and shape of it [9], [16]. The interface is
represented using piecewise constant functions. Piecewise linear interface calculation
(PLIC) techniques ([94], [95]) are the most used nowadays and have been included
in commercial codes. VOF method, however, has some drawbacks. For example,
the advective term of equation (4.1) is very difficult to discretize due to the jump
of the volume fraction function in the interface [55]. Moreover, artificial diffusion
of the interface is observed in the solution in case of coarse meshes in the vicinity
of the interface. However, Eulerian formulations can handle theoretically arbitrary
large deformations since the mesh is fixed and elements do no deteriorate.

Alternatively, LS method was presented by Osher and Sethian in 1988 [96] as
a general technique to capture a moving interface. It was then applied to two-
phase flows and other applications [91]. The basic idea of the level set method is to
represent the interface by the zero level set of a smooth scalar function φ(x) [97],
[98]:

φ(x) : Rn −→ R Γ = {x : φ(x) = 0} (4.2)

The position of the interface is known implicitly by the nodal values of φ: nodes
with positive values are inside the fluid, whereas negative values mark nodes outside
the fluid domain. The position of the interface is then obtained by interpolation
of nodal values of function φ. LS method has the advantage of being capable of
handling topological changes and complex shapes of the interface. It may however
give inaccurate results for normal vector and interface curvature, and it also fails
at mass conservation. Additional techniques to alleviate these drawbacks have been
reported in literature [4], [91], [99], [100], [101], [102].

Front-tracking methods on the other hand represent explicitly the interface using
Lagrangian markers. Several examples of this method can be found in references
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[4], [103] and [104]. The velocity of the interface is interpolated from the velocity
field given by the Eulerian mesh. This method requires remeshing of the boundary
interconnecting the interface markers.

An alternative to the Eulerian models are the Lagrangian models. These models
use moving meshes to represent the computational domains and thus the interface
is identified by the moving boundary mesh. In addition, boundary conditions such
as surface tension force are easier to be applied as the boundary is explicitly rep-
resented by the mesh. Moreover, the discretized equations system matrix becomes
symmetric due to the absence of the convective term. Multi-fluid models using a
pure Lagrangian finite element-based formulation for both air and water have been
presented in [3] and [105]. These models do not require any additional technique for
detecting the moving interface, and it remains sharp with time (interface smearing
is often observed in Eulerian approaches). However, steady-state solutions using
Lagrangian methods usually exhibit spurious velocities at the interface due to the
steep pressure gradient on the interface. Certain remedies based upon degree of
freedom duplication have been proposed in [106]. An additional disadvantage is
that the domain has to be remeshed after each time step in order to avoid mesh
degradation, and connectivity preserving techniques must be applied to maintain
the interface and avoid edge-swapping [3]. In the context of PEFC gas channels,
a model treating both the gas and the liquid droplets in a Lagrangian framework
would have a large computational cost due to remeshing.

Different kind of Lagrangian methods are the meshless methods, such as lattice
Boltzmann method (LBM). LBM is used for CFD simulations at the continuum
level. The basic idea of this method is to apply simplified kinetic models considering
essential physics at the mesoscopic level so that average macroscopic properties
follow the continuum equations [107]. This explicit algorithm is associated with a
square in two dimensions or with a cubic lattice in three-dimensional studies. The
particles evolve within this region synchronously from one point to its neighbors,
according to the lattice Boltzmann equation [107]. This equation describes the
particle dynamics and includes external forces and collisions between the different
particles. When the model describes two immiscible fluids, this method must be
equipped with a coloring function in order to avoid artificial diffusion. An advantage
of the Lattice Boltzmann method is the ease of implementation compared with
Navier-Stokes, since the governing equation of the former is semi-linear. However,
this method cannot prescribe macroscopic properties of the fluid (such as density,
viscosity or surface tension coefficient) because these properties are consequences of
mesoscopic dynamics, and is not mass conservative.

Smoothed Particle Hydrodynamics (SPH) method uses a set of discrete points
(or particles) to represent a whole physical system [108]. It was first developed
for astrophysics by Gingold and Monaghan [109], but recently it has been used in
fluid dynamics simulations. In this method, an interpolation kernel W (r) is used
to interpolate any function or material property at a given point using its neighbor
particles. Contrary to CFD-based method, smoothed particle hydrodynamics uses
these particles and a certain radius around them instead of cells. Although this
method can represent complex geometries and has good mass conservation proper-
ties, generally the number of particles needed to solve a problem is larger than the
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number of elements in a CFD simulation. Moreover, SPH and LB methods share
common drawbacks: the treatment of the boundaries is rather ambiguous [110], and
pressure solution tends to show a noisy behavior.

The Particle Finite Element Method (PFEM) is a combination of the particle
method and the Finite Element Method. It was presented by Oñate et al. [111] and
Idelsohn et al. [112]. In PFEM, the domain is represented by a set of particles that
move in a Lagrangian manner according to the velocity field [3]. Forces are obtained
using a background mesh, and the nodes of this mesh coincide with the particles.
Since all the information is stored in the particles, PFEM does not show numerical
diffusion due to remeshing. Mesh is obtained using Delaunay triangulation [113].
Conclusively, PFEM combines the advantages of both particle and FE methods. An
exhaustive review on Lagrangian methods can be found in Chapter 2 of reference
[3].

A numerical method that combines the advantages of both Eulerian and La-
grangian formulation would be beneficial for droplet dynamics simulation in gas
channels. This chapter presents a Lagrangian-Eulerian numerical approach, the em-
bedded method, to study air-water systems. Our particular problem of interest is
droplet dynamics in fuel cell gas channels, but the method can be used in any gas-
liquid or immiscible liquid-liquid system. The embedded concept, also known as
immersed boundary or fictitious domain approach, has been widely used for fluid-
structure interaction (FSI) modeling [114],[115], [116]. In FSI, this approach natu-
rally represents the structure from the Lagrangian point of view, whereas the Eule-
rian framework is used for the fluid.

For multi-fluid problems, this approach is much less studied and has been intro-
duced only recently. Conceptually, the embedded framework for multiphase analysis
was proposed in [117] (Chapter 5) and [118]. In both works it has been applied to a
particular class of problems dealing with the interaction of polymer melts with air.
Moreover, [118] proposes a model so as to account for complex thermal interaction
between the phases faced in fire situations. However, only a weak one-way mechan-
ical coupling was introduced since the stresses exerted by the air upon the liquid
(melted polymer) were negligible.

In the present work the formulation is further developed so as to account for the
two-way coupled nature of the problem. In airflow-droplet interaction problems the
forces exerted by air upon the liquid are dominant and thus cannot be neglected.
Moreover, the surface tension effects (neglected in previous works) are included in
the model. However, one must keep in mind that the overall “architecture” of the
method is inherited from [117] and [118].

In the embedded method, both fluids are solved in a partitioned manner. The
basic idea of this method is that the Lagrangian domain (representing the water)
moves on top of a fixed Eulerian mesh (air domain). Note that this formulation is
particularly advantageous in fuel cell gas channel applications, where water repre-
sents a small part of the whole domain. Additionally, the Lagrangian formulation
can naturally track the air-water interface.
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4.2 Numerical model

4.2.1 Governing equations

Let us consider Lagrangian domain ΩL (representing liquid) embedded into the
Eulerian domain ΩE (gas) with an external boundary ΓE (see Fig. 4.1). In the
embedded setting the interface ΓI between the two fluids is defined by the position
of the boundary of the Lagrangian domain ΓL. The interface ΓI splits the Eulerian
domain into two parts: the real one Ωr

E (representing the gas) and the fictitious
one Ωf

E that does not have physical meaning. Note that at the continuous level
the fictitious Eulerian domain exactly coincides with the Lagrangian domain and
ΓI = ΓL. Next we present the governing equations for the gas and the liquid
domains.

Figure 4.1: Embedded setting

Liquid domain represents water, whereas air is considered for the gas domain.
The governing system of equations in either domain is therefore the Navier-Stokes
equations equipped with the incompressibility condition:

ρ
Dv

Dt
− µ∇ · (∇v +∇T (v)) +∇p = ρg in Ωr

E and ΩL (4.3)

∇ · v = 0 in Ωr
E and ΩL (4.4)

where Dv
Dt

is the material time derivative of the velocity, p is the pressure, t is the
time, g is the body force, ρ is the fluid density and µ is the fluid dynamic viscosity.
The physical properties are defined as ρ = ρE and µ = µE in ΩE, and ρ = ρL and
µ = µL in ΩL.

Boundary and interface conditions

In order to ensure the well-posedness of the Navier-Stokes problem defined by Eqs.
(4.3) and (4.4), suitable boundary conditions must be specified. On the external
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boundary ΓE = ΓD ∪ ΓN , such that ΓD ∩ ΓN = ∅, the following conditions are
prescribed:

v = vpr at ΓD (4.5)

σ · n = σpr
n at ΓN (4.6)

where vpr is the prescribed velocity, n is the outer unit normal to ΓN , and σpr
n is

the prescribed traction vector.
On the internal interface ΓI the coupling conditions are:

JvK = 0 at ΓI (4.7)

JσK · n = γκn at ΓI (4.8)

where n now is the unit normal to the interface ΓI , γ and κ are the surface tension
coefficient and the interface curvature, respectively. The JxK symbol represents the
jump of the quantity x across the interface.

Eq. (4.7) expresses the continuity of all velocity components (JvK = vE − vL,
where indexes E and L distinguish the quantities corresponding to the air and water,
respectively). The equality of the normal components of velocity ensures no mass
flow across the interface. The tangential components’ equality is similar to a no-
slip condition and is necessary when fluids with non-zero viscosity are considered.
Eq. (4.8) expresses that the difference in the normal stress across the interface is
balanced by the surface tension force.

Projecting Eq. (4.8) onto the normal and tangential directions leads to the
following scalar interface conditions:

n · (JσK · n) = γκ at ΓI (4.9)

t · (JσK · n) = 0 at ΓI (4.10)

Noting that the jump in the stress across the interface is equal to the difference
between the stresses of the two fluids JσK = σE −σL and splitting the stress tensor
into volumetric and deviatoric part (Eq. (3.6))results in:

(pL − pE) +
[
µEn ·

([
∇v +∇Tv

]
E
· n
)
− µL · n ·

([
∇v +∇Tv

]
L
· n
)]

= γκ

(4.11)

µEt ·
([
∇v +∇Tv

]
E
· n
)
− µL · t ·

([
∇v +∇Tv

]
L
· n
)

= 0 (4.12)

4.2.2 Finite Element formulation for the gas

Governing equations (4.3) and (4.4) are discretized in space following the procedure
from Section 3.2. Linear velocity and pressure interpolations over 3-noded triangles
(2D) or 4-noded tetrahedra (3D) are used. For sake of simplicity, Backward Euler
time discretization scheme is chosen, although governing equations are discretized
using Newmark-Bossak scheme (see Appendix C). Newmark-Bossak scheme is an
unconditionally stable implicit time integration scheme with second-order accuracy.
Bossak modification improves stability for highly geometrically non-linear problems,
which is particularly advantageous for the problem at hand.
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Given v̄n and p̄n at tn, the time discrete problem consists in finding v̄n+1 and
p̄n+1 at tn+1 as the solution of:

M
v̄n+1 − v̄n

∆t
+
[
K̄ (v̄n+1) + µL

]
v̄n+1 + Gp̄n+1 = F̄ (4.13)

Dv̄n+1 = 0 (4.14)

where K̄(v̄n+1) is the non-linear convection operator, and the rest of terms have
been already defined in Section 3.2. The convection operator is assembled from the
elemental contribution defined as:

K̄ = kIJ = ρ

∫
Ωe

NI v̄k
∂NJ

∂xk
dΩ (4.15)

The conditions at the external boundary are:

v̄ = 0 at ΓD (4.16)

σ · n = 0 at ΓN (4.17)

Algebraic Sub-Grid Scales (ASGS) stabilization [68] is chosen as the technique
to stabilize governing system defined by Eqs. (4.13) and (4.14). These equations
are stabilized as discussed in Section 3.2.1, where the following term is added to the
left-hand side:

ne∑
e=1

∫
Ωe

τ [F− L(vh)]
T L∗(wh) dΩ (4.18)

where the time-dependent residual is:

L(vh) =

[
ρ∂vh
∂t

+ ρvh · ∇vh − µ∇ · (∇vh) +∇ph
∇ · vh

]
=

=

[
ρvn+1−vn

∆t
+ ρvn+1 · ∇vn+1 +∇pn+1

∇ · vn+1

] (4.19)

where the convective term has been linearized considering a constant convective
velocity equal to vn+1 [68]. Note that the Backward Euler time integration scheme
has been applied, as discussed in Chapter (3). The term L∗ for ASGS for linear
interpolation functions is equal to:

L∗(wh) =

[
−vn+1 · ∇wh −∇qh

−∇ ·wh

]
(4.20)

Using Eqs. (4.19) and (4.20) in Eq. (4.18), the stabilization term yields:∫
Ωe

τ1 (vn+1 · ∇wh +∇qh)
(
ρ
vn+1 − vn

∆t
+ ρvn+1 · ∇vn+1 +∇pn+1 − f

)
dΩ+

+

∫
Ωe

τ2 (∇ ·wh) (∇ · vn+1) dΩ

(4.21)
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Terms multiplied by qh are added to the continuity equation, whereas terms multi-
plied by wh are added to the momentum equation. The following terms are added
to Eq. (4.13): ∫

Ωe

τ1 (vn+1 · ∇wh)
(
ρ
vn+1

∆t
+ ρvn+1 · ∇vn+1

)
dΩ+

+

∫
Ωe

τ2 (∇ ·wh) (∇ · vn+1) dΩ+

+

∫
Ωe

τ1 (vn+1 · ∇wh)∇pn+1 dΩ−

−
∫

Ωe

τ1 (vn+1 · ∇wh)
(
ρ

vn
∆t

+ f
)

dΩ

(4.22)

On the other hand, the following terms are added to Eq. (4.14):∫
Ωe

τ1∇qh
(
ρ
vn+1

∆t
+ ρvn+1 · ∇vn+1

)
dΩ+

+

∫
Ωe

τ1∇pn+1∇qh dΩ−

−
∫

Ωe

τ1∇qh ·
(
ρ

vn
∆t

+ f
)

dΩ

(4.23)

The stabilized governing equations read:

M
v̄n+1 − v̄n

∆t
+
[
K̄ (v̄n+1) + µL + SK

]
v̄n+1 + [G + SG] p̄n+1 = F̄ + F̄m (4.24)

[D + SD] v̄n+1 + SLp̄n+1 = F̄q (4.25)

where the stabilization matrices read:

SK = sK,IJ =

∫
Ωe

[
τ1

(
v̄k
∂NI

∂xk

)(
ρ
NJ

∆t
+ ρv̄k

∂NJ

∂xk

)
+ τ2

∂NI

∂xk

∂NJ

∂xk

]
dΩ (4.26)

SG = sG,IJ =

∫
Ωe

τ1

(
v̄k
∂NI

∂xk

)
∂NJ

∂xk
dΩ (4.27)

SD = sD,IJ =

∫
Ωe

τ1
∂NI

∂xk

(
ρ

∆t
NJ + v̄k

∂NJ

∂xk

)
dΩ (4.28)

SL = sL,IJ =

∫
Ωe

τ1
∂NI

∂xk

∂NJ

∂xk
dΩ (4.29)

F̄m = fm,I =

∫
Ωe

ρgk

(
v̄k
∂NI

∂xk

)( ρ

∆t
NI +NI

)
dΩ (4.30)

F̄q = fq,I =

∫
Ωe

ρgk
∂NI

∂xk

( ρ

∆t
NI +NI

)
dΩ (4.31)

where parameters τ1 and τ2 are algorithmic stabilization parameters defined as:

τ =
1

2 ‖v̄‖
h

+
4ν

h2

(4.32)
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τ2 =
h2

τ1

= 2h ‖v̄‖+ 4ν (4.33)

where h is the element size and ν is the kinematic viscosity of the fluid.

Fractional step approach

For reducing the computational cost associated to the solution of the governing
system, the fractional splitting is applied. Fractional step or pressure projection
approach (see [72], [73] or [119]) uncouples the velocity and the pressure. Instead
of one large and poorly conditioned system of equations two smaller and better
conditioned systems are solved. Fractional step approach is applied here at a purely
algebraic level (according to [74]), splitting the momentum equation Eqs. (4.24)
into two parts by introducing the intermediate velocity ṽ.

Following the steps detailed in Section 3.2.2, the original monolithic system given
by Eqs. (4.24) and (4.25) is replaced by:

M
ṽ− v̄n

∆t
+
[
K̄ (ṽ) + µL + SK

]
ṽ + [G + SG] p̄n = F̄ (4.34)

M
v̄n+1 − ṽ

∆t
+ [G + SG] (p̄n+1 − p̄n) = 0 (4.35)

Dṽ = [∆tL− SD] (p̄n+1 − p̄n) (4.36)

In order to overcome the singularity of the Laplacian matrix L, an essential
boundary condition for the pressure (p = 0) at ΓN is specified. Eqs. (4.34), (4.35)
and (4.36) define the set of discrete governing equations in the Eulerian domain. The
fractional momentum equation is non-linear due to the dependence of the convective
term (and the corresponding stabilization terms) upon the unknown velocity. The
fixed point iteration method is applied for their solution. Once Eq. (4.34) is solved
for the fractional velocity ṽ, pressure p̄n+1 is obtained by solving Eq. (4.36) and
finally the end-of-step velocity v̄n+1 is obtained using Eq. (4.35).

4.2.3 Finite Element formulation for the liquid

The Lagrangian finite element model for the liquid has been already described in
Section 3.2.1. The governing equations are reproduced here for the sake of clarity:

(
M

1

∆t
+ µL + SK

)
v̄n+1 + Gp̄n+1 = F̄ + F̄int + M

v̄n
∆t

(4.37)

(D + SD) v̄n+1 + SLp̄n+1 = F̄q (4.38)

The force F̄int in Eq. (4.37) includes the Neumann term due to the interaction
with gas (normal and shear stresses as well as surface tension). They are described
in detail in Section 4.2.4.
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4.2.4 Coupling strategy

Lets us consider the Eulerian and the Lagrangian domains discretized with a finite
element mesh. Fig. 4.2(a) shows the overlapping meshes. One can distinguish the
boundary of the Lagrangian domain ΓL and its representation on the Eulerian mesh
ΓI . Note that as the element size h → 0 in both domains, the two boundaries
tend to coincide (i.e., ΓI ≈ ΓL). The embedded interface ΓI (see black polyline in
Fig. 4.2(b)) splits the Eulerian domain into real and fictitious parts Ωr

E and Ωf
E,

as already mentioned. Nodes and elements contained in Ωr
E will be denoted real,

whereas fictitious nodes and elements are those contained in Ωf
E (see Fig. 4.2(b)).

Elements cut by ΓI that contain both the real and the fictitious nodes will be referred
as interface elements. This is shown in Fig. 4.2(c), where the interface elements
are shown in gray, fictitious and real nodes are indicated by black and gray dots,
respectively.

To model the interaction of the two sub-domains, a coupling technique must be
implemented. A Dirichlet-Neumann coupling is proposed in this work. Effects of
water (Lagrangian fluid) onto air (Eulerian fluid) are represented via the Dirichlet
boundary condition at ΓI . The boundary condition ensures the interface condition
defined by Eq. (4.7). Effects of air onto water are represented by a Neumann
boundary condition applied at the water boundary ΓL. This boundary condition
represents the interface condition defined by Eqs. (4.11) and (4.12).

Dirichlet boundary condition

Fig. 4.2 shows that the interface ΓI intersects the Eulerian mesh at arbitrary po-
sitions. The Dirichlet boundary condition at the interface (i.e., vE = vL at ΓI)
can be applied in two different manners. First option relies upon dividing the cut
Eulerian elements into two new elements. Therefore, the intersection between ΓL
and Eulerian mesh coincide with the introduced nodes. Velocity can be therefore
prescribed in these new nodes and the boundary condition is applied in a strong
way. However, adding new nodes in the Eulerian mesh leads to resizing the global
system matrices at every solution step, increasing the computational cost.

An alternative to this option is to apply the Dirichlet boundary condition of
the interface in a weak sense by minimizing the difference between the velocity of
the Lagrangian and Eulerian domain at ΓL. The Dirichlet boundary condition is
therefore applied at the existing fictitious nodes of the interface elements (black
dots in Fig. 4.2(c)) according to the approach proposed originally in [120]. The
advantage of this option with respect to the previous one is that no degrees of
freedom are added and the global matrix structure remains unaltered.

Given the velocity vL of water at its boundary, the difference to be minimized is
given by (see e.g. [117] or [120] for details):∫

ΓI

(vn+1
k − vL

k )NI dΓI = 0 (4.39)

where vn+1
k is the k-th velocity component of the Eulerian domain and vL

k represents
the velocity of the Lagrangian domain at the interface. Discretizing the velocity (see
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(a) Superimposed discretized domains (b) Interface on the Eulerian mesh

(c) Interface elements

Figure 4.2: Embedded setting: real, fictitious and interface parts of the Eulerian
domain
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Section 3.2), Eq. (4.39) reads:

MΓI v̄n+1 = fΓI (4.40)

where v̄n+1 is the velocity of the nodes of the interface elements and:

MΓI = mΓI ,IJ =

∫
ΓI

NINJ dΓI (4.41)

fΓI = fΓI ,I =

∫
ΓI

N f
I vL

k dΓI (4.42)

where N f
I is the shape function of fictitious node I. Considering that the interface

elements contain both real and fictitious nodes (with a certain abuse of notation
v̄n+1 = v̄rn+1 + v̄fn+1, assuming that the entries in the vectors of the real nodal
velocities corresponding to the fictitious nodes are zero and vice versa1), one can
rewrite Eq. (4.40) as

MΓI v̄
r
n+1 + MΓI v̄

f
n+1 = fΓI (4.43)

which is a constraint that complements Eqs. (4.34), (4.35)) and (4.36) accounting
for the motion of the Lagrangian fluid. Eqs. (4.34), (4.35), (4.36) and Eq. (4.43) can
be solved in a staggered fashion according to [117] and [118], which is equivalent to
treating the constraint explicitly. Velocity at real nodes of interface elements (gray
dots in Fig. 4.3) is assumed to be equal to the velocity obtained at the previous
time step.

Figure 4.3: Explicit treatment of interface boundary condition for velocity.

This can be expressed as:

MΓI v̄
f
n+1 = fΓI −MΓI v̄

r
n+1 (4.44)

v̄rn+1 ≈ v̄rn (4.45)

1for example, let us consider a triangular interface element, whose nodes 1 and 3 are real and
2 is fictitious. Then v̄r = [v̄1, 0, v̄3]T and v̄f = [0, v̄2, 0]T
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where n corresponds to the time step index. Solving Eq. (4.44) the velocity at
the fictitious nodes (black dots in Fig. 4.3) is obtained. The velocity is applied as
the interface Dirichlet boundary condition at the next time step. This boundary
condition can be interpreted as the effect of water onto air. Elements with all nodes
in Ωf

E are excluded from the system.

Neumann boundary condition

Interface Neumann boundary condition represents the normal and shear stress com-
ponents exerted by the gas upon the liquid as well as the surface tension. It corre-
sponds to the interface condition defined by Eqs. (4.9) and (4.10). It is accounted
for by the term F̄int (Eq. (4.46)) in the momentum equation of the liquid (Eq.
(4.37)). This term is computed as a sum of the following contributions:

F̄int = F̄N + F̄st + F̄sh on ΓL (4.46)

where individual terms have the following expressions:

F̄N = fN,I = −
∫

ΓL

NInk dΓ + µE

∫
ΓL

(
∂NI

∂xk
+
∂NI

∂xl

)
E

nk dΓ on ΓL (4.47)

F̄st = fST,I = −
∫

ΓL

γκNInk dΓ on ΓL (4.48)

F̄sh = fsh,I = µE

∫
ΓL

(
∂NI

∂xk
+
∂NI

∂xl

)
E

mk dΓL (4.49)

where vector m is the vector tangent to ΓL, as shown in Fig. 3.6(a) in Chapter 3.
The integrands in the terms FN and Fsh are computed in the interface elements
of the Eulerian mesh and then are projected onto ΓL, where the integrals are com-
puted. The surface tension force is computed directly on the Lagrangian mesh.
Implementation of the viscous stresses is detailed in the next section.

Viscous stress implementation

Two-dimensional model The viscous stress tensor in two dimensions reads:

τ =

(
τxx τxy
τyx τyy

)
(4.50)

where its components are:

τxx = 2µ
∂u

∂x
(4.51)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
(4.52)

τyy = 2µ
∂v

∂y
(4.53)
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Figure 4.4: Triangular element with linear velocity interpolation

where u and v are the x and y velocity components. One has to find an expression
for the velocity derivatives within an element.

Let us consider the linear triangular element shown in Fig. 4.4. Velocity deriva-
tives can be found applying the chain rule:

∂v

∂x
=
∂v

∂ξ

∂ξ

∂x
=
∂v

∂ξ
J−1 (4.54)

where ξ represents the isoparametric coordinates (ξ, η), and J is the Jacobian matrix
of first derivatives. The shape functions using this system of coordinates is the
following:

N1 = ξ (4.55)

N2 = η (4.56)

N3 = 1− ξ − η (4.57)

The Cartesian coordinates (x, y) can be expressed using the isoparametric coordi-
nates as follows:

x = N1x1 +N2x2 +N3x3 = ξx1 + ηx2 + (1− ξ − η)x3 =

= (x1 − x3) ξ + (x2 − x3) η + x3

(4.58)

y = N1y1 +N2y2 +N3y3 = ξy1 + ηy2 + (1− ξ − η) y3 =

= (y1 − y3) ξ + (y2 − y3) η + y3

(4.59)

Considering these expressions, the Jacobian matrix reads:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
x13 y13

x23 y23

]
(4.60)

where xij = xi − xj. The inverse of the Jacobian takes the following form:

J−1 =
1

2A

[
y23 −y13

−x23 x13

]
(4.61)
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where A = 1
2
detJ is the area of the element. The velocity at any point of the element

can be obtained as follows:

u = N1u1 +N2u2 +N3u3 = ξu1 + ηu2 + (1− ξ − η)u3 =

= (u1 − u3) ξ + (u2 − u3) η + u3

(4.62)

v = N1v1 +N2v2 +N3v3 = ξv1 + ηv2 + (1− ξ − η) v3 =

= (v1 − v3) ξ + (v2 − v3) η + v3

(4.63)

Using Eqs. (4.54) and (4.61), the derivatives of the velocity in Cartesian coordinates
yields: (

∂u
∂x
∂u
∂y

)
= J−1

( ∂u
∂ξ
∂u
∂η

)
=

1

2A

(
y23u13 − y13u23

−x23u13 + x13u23

)
(4.64)

(
∂v
∂x
∂v
∂y

)
= J−1

( ∂v
∂ξ
∂v
∂η

)
=

1

2A

(
y23v13 − y13v23

−x23v13 + x13v23

)
(4.65)

Finally, the discrete expression for the viscous stress can be obtained by substi-
tuting Eqs. (4.64) and (4.65) in Eqs. (4.51)-(4.53).

Three-dimensional model The viscous stress tensor in three dimensions reads:

τ =

 τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 (4.66)

where its components are:

τxx = 2µ
∂u

∂x
(4.67)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
(4.68)

τxz = τzx = µ

(
∂u

∂z
+
∂w

∂x

)
(4.69)

τyy = 2µ
∂v

∂y
(4.70)

τyz = τzz = µ

(
∂v

∂z
+
∂w

∂z

)
(4.71)

τzz = 2µ
∂w

∂z
(4.72)

where u, v and w are the Cartesian components of the velocity. One has to find an
expression for the velocity derivatives within an element.

Let us consider the linear tetrahedron element shown in Fig. 4.5. Velocity
derivatives can be found applying the chain rule:

∂v

∂x
=
∂v

∂ξ

∂ξ

∂x
=
∂v

∂ξ
J−1 (4.73)
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Figure 4.5: Tetrahedron element with linear velocity interpolation

where ξ represents the isoparametric coordinates (ξ, η, ζ). The shape functions using
this system of coordinates is the following:

N1 = ξ (4.74)

N2 = η (4.75)

N3 = ζ (4.76)

N4 = 1− ξ − η − ζ (4.77)

Following the same procedure than the two-dimensional model, the derivatives
of the velocity in Cartesian coordinates yield: ∂u

∂x
∂u
∂y
∂u
∂z

 = J−1

 ∂u
∂ξ
∂u
∂η
∂u
∂ζ

 =
1

6V

 J inv11 u14 + J inv12 u24 + J inv13 u34

J inv21 u14 + J inv22 u24 + J inv23 u34

J inv31 u14 + J inv32 u24 + J inv33 u34

 (4.78)

where V = 1
6
detJ is the volume of the element and terms J invij correspond to the

i− j component of the inverse Jacobian:

J−1 =
1

6V

 y24z34 − y34z24 −x24z34 + x34z24 x24y34 − x34y24

−y14z34 + y34z14 x14z34 − x34z14 −x14y34 − x34y14

y14z24 − y24z14 −x14z24 + x24z14 x14y34 − x24y14

 (4.79)

Derivatives for components v and w are equivalent to Eq. (4.78).

4.2.5 Solution algorithm

All the necessary elements of the embedded method have been defined so far. The
overall algorithm of the air-water problem is presented in this section. Let us con-
sider that at the time step tn the solution (velocity v̄n and pressure p̄n) is known in
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both the domains ΩE and ΩL. To find the velocity and pressure fields at tn+1 the
following algorithm is implemented:

1. Solve the water problem using Eq. (3.58) and update the mesh position (Eq.
(3.59)).
Output: new position of the Lagrangian mesh, v̄n+1 p̄n+1 in Ωn+1

L

2. Identify the position of Lagrangian domain within the Eulerian one. Identify
the interface elements, the real and the fictitious elements and nodes.
Output: ΓI

3. In ΩE: fix the velocity at the real nodes of the interface elements to the known
gas velocity: v̄r, n+1 = v̄n.

4. Solve the minimization problem (Eq. (4.44)) obtaining the velocity at the
fictitious nodes of the interface elements v̄f, n+1.
Fix the velocity at the fictitious nodes (interface Dirichlet b.c.).

5. “Switch off” the fictitious Eulerian elements (ΩEf ).

6. Solve the gas problem (using real part of the Eulerian domain ΩEr) (Eqs.
(4.34), (4.35) and (4.36)) equipped with the interface Dirichlet boundary con-
dition applied to the fictitious nodes.
Output: velocity and pressure v̄n+1 and p̄n+1 in Ωn+1

E .

7. Project the air stresses onto the liquid boundary ΓL surface and compute the
corresponding force term F̄int (Eq. (4.46)) for the momentum equation of the
liquid (Eq. (4.37)).

8. Go to next time step

An iterative version of the coupled scheme is obtained by repeating steps 1-7
until convergence in terms of the velocity of the Lagrangian boundary nodes of ΓL
is achieved to the required precision ε:

‖δv̄‖
‖v̄n+1‖

< ε (4.80)

4.3 Examples

4.3.1 Static droplet

The first example models a circular liquid droplet (Lagrangian fluid L) immersed
into gas (Eulerian fluid E) at rest. The surface tension force is the only acting force
and gravity is neglected (g = 0). Both fluids have equal densities (ρE = ρL = 1 kg
m−3), viscosities (µE = µL = 1 kg m−1 s−1) and the corresponding surface tension
coefficient is γ = 1 N m−1. The domain is defined by a square of 1× 1 m filled with
gas E, and a circular droplet of liquid L with radius R = 0.25 m at the center of the
domain. The whole domain is meshed using triangular elements of size h = 1/25 m.
According to the Laplace-Young equation, the pressure jump across the interface
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(a) Eulerian domain (b) Lagrangian domain

Figure 4.6: Pressure field at the final time step

between the liquid and the surrounding gas is ∆p = γ/R = 4 Pa at the steady state.
The result of the simulation of 1 s with a time step of 0.01 s is shown in Fig. 4.6.

Fig. 4.7(a) shows the pressure profile across the middle section of the domain.
The purely Lagrangian multi-fluid formulation proposed in [3] has been implemented
to compare results with the analytical solution and the present embedded method.
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(b) Evolution of curvature over time

Figure 4.7: Comparison between the fully Lagrangian formulation ([3]), the embed-
ded method and the analytical solution. pinitE = 0 Pa

Results show that the pressure profile obtained with the presented method has
better agreement with the exact solution than the one obtained with the fully La-
grangian formulation. The pressure discontinuity at the interface is represented
exactly when using the present method.

De Mier [3] shows that if the pressure discontinuity is modeled by a continuous
approximation with steep gradient, the steady state solution exhibits spurious veloc-
ities at the interface because the pressure gradient term dominates in the governing
equation. This effect can be seen in 4.7(a), where the pressure discontinuity is ap-
proximated by a continuous steep change across the interface elements. One can
also observe slight under and over-shoots of pressure in the results corresponding
the fully Lagrangian method [3]. The corresponding spurious velocities, in turn,
lead to temporal evolution of curvature (which, according to the analytical solution
must be constant). Thus the solution deviates from the exact one (constant). Fig.
4.7(b) shows the evolution of the curvature at an interface node with coordinates
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(a) Pressure profiles across the middle section
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Figure 4.8: Results for the non-zero initial pressure in the gas phase (pinitE = 10 Pa)

(0.5, 0.75) according to both models. The result obtained with the embedded for-
mulation shows perfect agreement with the exact solution. In the fully Lagrangian
formulation, degrees of freedom should be duplicated at interface nodes in order to
alleviate steep pressure gradient effects, as proposed in [106].

Different initial conditions

Next, the example is examined under different initial conditions. A non-zero initial
pressure (10 Pa) is applied in gas E. Zero initial pressure in liquid L is maintained.
According to Laplace-Young equation, the pressure jump must remain ∆p = pL −
pE = γ/R = 4 Pa at the steady state. To achieve this value the pressure in liquid
L must increase up to 14 Pa. Fig. 4.8(a) shows that the simulation results coincide
with the analytical solution.

4.3.2 Oscillation of a droplet levitated by an airflow

In this section the behavior of a droplet exposed to an airflow is studied. This
example was studied by Bouwhuis et al. [85]. A liquid droplet is immersed in a
rectangular channel of 10 mm width. The initial shape of the droplet is a circle of
2 mm radius. A constant air flux is generated at the bottom of the channel. A
schematic representation of the test case is shown in Fig. 4.9. The data is taken
from [85].

For a given set of parameters the droplet levitates on top of the air cushion. At
the beginning, the droplet tends to approach the channel bottom. As the droplet
descends, the air velocity and pressure increase (the cushion is created) producing
the desired effect of levitation.

The parameters describing the behavior of the droplet can be combined into 3
dimensionless numbers: the Bond number Bo (accounting for gravity against surface
tension effects), the capillary number Ca (gas viscosity against surface tension) and
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Figure 4.9: Drop levitated by an airflow entering the domain with uniform velocity
Ua

the ratio between the dynamic viscosity of the gas and the liquid, Λ:

Bo =

√
ρLR2g

γ
(4.81)

Ca =
µEuE
γ

(4.82)

Λ =
µL
µE

(4.83)

where R is the unperturbed droplet radius and µL and µE are the liquid and gas
viscosities, respectively. The simulation was performed for Bo = 1, Ca = 2.5×10−4,
Λ = 11× 103. The time step used in the simulations was 10−5 s.

(a) t = 65 ms (b) t = 75 ms

Figure 4.10: Velocity field in the air domain

Fig. 4.10 shows the velocity pattern in the air domain. One can see the non-
steady oscillatory nature of the airflow. In the present work the dynamic simulation
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(b) Pressure profile in the air

Figure 4.11: Drop exposed to airflow

Table 4.1: Summary of the frequencies and “chimney” heights obtained in scenarios
1-3.

Set fx [Hz] hc [mm]

1 135 0.0985
2 120 0.2376
3 - -

was performed for both the gas and the liquid, while in [85] the inertial effects in
the gas were neglected.

The mean droplet shape after the onset of the periodic oscillations and the
corresponding air pressure across the “cushion” are shown in Fig. 4.11. Results are
compared against the ones of [85].

The “chimney” effect is observed as expected (an air bubble develops below
the drop and pierces the center of the droplet). The maximum pressure gradient
coincides with the neck position. The obtained pressure distribution and the droplet
shape closely resembles the results in [85].

In order to provide several reference results for the dynamic simulation, the test
was carried out for 3 other sets of data:

� Set 1: Bo = 0.8, Ca = 1.25× 10−5, Λ = 5.5× 103

� Set 2: Bo = 0.8, Ca = 2.5× 10−5, Λ = 5.5× 103

� Set 3: Bo = 0.8, Ca = 5× 10−4, Λ = 5.5× 103

For each case, the oscillations in x and y directions and the evolution of droplet’s
deformed shape are examined. The maximum displacements’ evolution of the droplet
surface is displayed in Fig. 4.12. The corresponding oscillation frequencies and the
“chimney” heights are summarized in Table 4.1.

Fig. 4.12 shows that the droplet reaches the stable periodic oscillatory state
for Sets 1 and 2. For Set 3, the droplet exhibits oscillation instability leading to
a non-convergent solution. This confirms the result of [85], where the continuous
growth of the oscillation amplitude and subsequent instability were reported.
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Figure 4.12: Vertical and horizontal displacements of the droplet’s surface

102



Figure 4.13: Two-fluid sloshing model (in meters)

4.3.3 Two-fluid sloshing

Two previous examples dealt with the problems where the effect of surface tension
was dominating and the liquid domain was not undergoing severe deformations.
Next, the embedded method is tested in application to the case where gravitational
effects are dominating, the domain undergoes severe deformations and the surface
tension effects are negligible.

This numerical test for two-fluid problems was proposed originally by Tezduyar
et al. in [121], studied in detail by Cruchaga et al. [4], [122] and recently by de Mier
[3]. The computational domain consists of a closed container with the dimensions
0.8 × 0.6 m. The container is filled with two immiscible fluids, the lighter one being
on top of the heavier one. The initial, inclined interface is linear with an average
height of 0.3 m. The fluid properties used in [121] are taken here as the reference
parameters. The top fluid has density ρL = 1 kg m−3, the dynamic viscosity is
constant µE = µL = 10−3 Pa s in both fluids, and the gravity acceleration is set to
g = −0.294 m s−2 in the vertical direction. The density value of the bottom fluid
is varied. A no-slip condition is set at the horizontal walls, while at the vertical
walls a slip condition is prescribed. Following the proposal of de Mier [3] the slip
condition in the Lagrangian domain is modeled by considering viscosity µL = 0 at
the elements encountered in contact with the wall.

Partitioning validation Prior to considering fluids with different densities, we
test the capability of the proposed partitioned approach in representing the hydro-
static case (ρE = ρL = 1 kg m−3). The corresponding exact solution is zero velocity
in the entire domain and the hydrostatic pressure distribution.

Before the coupling is applied, a non-zero velocity arises at the interface and
the pressure distribution is different from the hydrostatic one. However, the exact
hydrostatic solution is recovered already in the first time step (see Fig. 4.14). The
time step size used in the simulation is set to 0.01 s.

Time accuracy The convergence rate is assessed by measuring the absolute error
in the velocity as a function of time step size for the hydrostatic case. Four time
step sizes have been considered: dt=0.1 s, dt=0.01 s, dt=0.003 s, dt=0.001 s. Con-
vergence of the time approximation is displayed in Fig. 4.15. The diminishing of
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Figure 4.14: Pressure field in the Lagrangian domain for the density ratio 1:1. Prior
to the application of the coupling (left) and after applying the coupling (right).
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Figure 4.15: Error at t = 0.5 s against time step

the error with decreasing the time step is plotted. The error has been computed as
the sum of the nodal errors at time t = 0.5 s:

error =
∑
n

∥∥vy − vexacty

∥∥
where n is the number of nodes. Since the exact solution of the problem is the zero
velocity in the entire domain, the error is simply the sum of nodal velocities.

One can see that the proposed method exhibits linear convergence rate.

Fluids with different densities Next, two fluids with different densities are
considered. The densities of the bottom and the top fluids are ρL = 2 kg m−3 and
ρE = 1 kg m−3, respectively. The unstructured uniform triangular FE meshes with
approximately 20000 elements and the time step size of dt = 0.005 s have been
used if not mentioned otherwise. Fig. 4.16 displays the pressure fields at different
time instances for each domain. The Eulerian and the Lagrangian domains are
juxtaposed.

Pressure distribution along the vertical cut made at the end of the simulation
(t = 100 s) is shown on Fig. 4.17. One can see the continuous pressure and the
discontinuous pressure gradient at the interface due to density change. The pressure
distribution is hydrostatic at the steady state.

Fig. 4.19(a) shows the evolution of the relative height of the interface (hrel =
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(a) Lagrangian part: 0.5 s (b) Eulerian part: 0.5 s

(c) Lagrangian part: 6 s (d) Eulerian part: 6 s

(e) Lagrangian part: 21 s (f) Eulerian part: 21 s

Figure 4.16: Pressure contours for two-fluid sloshing with density ratio 2:1
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Figure 4.17: Pressure along the height (x=0.4 m) at time=0.5 s
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Figure 4.18: Liquid wave height at the left wall using different mesh sizes and time
steps. Density ratio 2:1
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(b) Density ratio 4:1

Figure 4.19: Liquid wave height at the left wall compared to reference [4]

h−0.3
0.3

. where hrel and h are the relative and absolute interface heights, respectively)
at the left vertical wall, comparing the results obtained using the present formula-
tions with the ones found in literature [4]. One can see a good agreement both in
the amplitude evolution and the frequency. However, slight difference (around 10
%) in the period of oscillation is observed for this case. It is worth mentioning that
Cruchaga et al. observed a slightly lower period of oscillation when their method
was applied without the mass correction technique (see e.g. p. 8 in [4]). No mass
correction was applied in the present work.

Fig. 4.18(a) displays the comparison of the solutions obtained using three differ-
ent meshes (5000, 10000 and 20000 elements). One can observe convergent solution.
The solution obtained with the iterative version of the coupling (convergence toler-
ance was set to ε = 10−6) is compared with the staggered one. Comparison of the
solutions obtained using time steps is shown in Fig. 4.18(b).

The same example is examined next, increasing the liquid density to ρL = 4 kg
m−3 and maintaining the gas density as ρE = 1 kg m−3. Fig. 4.19(b) shows the
evolution of the relative height of the interface at the left vertical wall (comparison
with the results reported in [4]). In this case, oscillation amplitude, frequency, and
the time it takes to reach the equilibrium position have increased with respect to
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the 2:1 density ratio exmaple. One can see a very good agreement with the results
found in [4].

In application to this example, the embedded approach allowed to avoid:

� interface distortions faced in the purely Lagrangian multi-fluid formulations
(see e.g. p. 71 in [3])

� necessity of using discontinuous pressure shape functions or enrichment for
representing the pressure gradient discontinuity

It is worth mentioning that the interface height at the steady state is coinciding with
the theoretical one (0.3), giving an insight of a good overall mass conservation of
the method. The volume change encountered at t = 100 s for the meshes containing
5000 and 20000 elements is of order of around 2% and 0.5%, respectively.

4.4 Conclusions

An embedded formulation for gas-liquid systems based upon a combination of the
Eulerian and the Lagrangian formulations has been presented in this chapter. Gas
is modeled by the Eulerian formulation, while the Lagrangian one is adopted for
the liquid. The fluids are coupled using a Dirichlet-Neumann coupling. The inter-
face Dirichlet boundary condition is satisfied in an integral sense minimizing the
velocity difference of the two fluids across the interface. This condition is applied
at the fictitious nodes of the interface elements of the Eulerian mesh. Normal and
shear stresses in the gas phase projected onto Lagrangian boundary mesh as well
as the surface tension provide Neumann boundary condition for the liquid surface.
Staggered approach for the solution of the coupled problem has been adopted. An
important advantage of the proposed embedded approach is that the interface posi-
tion is exactly defined by the Lagrangian mesh. The interface maintains itself sharp
without diffusion along time. The weak/strong pressure discontinuity along the in-
terface due density change/surface tension is naturally accounted for by the method.
Moreover, no interface breakups typical for the fully Lagrangian approaches occur.

The formulation is particularly advantageous for the problems where the gas
phase constitutes the major part of the overall computational domain (such as air-
water systems encountered in PEFC gas channels). This allows to take the maximum
advantage of the Lagrangian description for the liquid with changing boundaries
while not increasing considerably the overall computational cost due to re-meshing
or the use of the coupled velocity-pressure scheme.

Several test computations have been carried out to evaluate the performance of
the method. The formulation leads to stable solutions for a wide range of the density
ratios of the fluids involved. It has been found that for the staggered version of the
formulation is first order accurate in time. Viscous stress in the coupling is essential
in the problems dealing with droplets exposed to the air flux.

The main advantages of the formulation are

� Modular approach

� Natural representation of the pressure discontinuity across the interface
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� Application of Dirichlet boundary condition in an integral way using the fic-
titious nodes of the interface elements

� Additional techniques (typical for fully Eulerian formulations) for interface
tracking are not necessary

� Absence of problems with interface preservation (typical for the purely La-
grangian multi-fluid formulations)

� Good mass conservation

Keeping in mind all the advantages of the formulation, it is important to note that
it also has some limitations. For optimal functionality of the method the mesh
sizes of the involved domains should be similar. This precludes the use of highly
heterogeneous meshes. Time step size is generally restricted due to the danger of
the element inversion faced in the method used for the liquid in the present work.
Modeling the liquid domain using a novel Lagrangian explicit stream-line tempo-
ral integration [123] is a promising alternative that must be studied in the future
for alleviating zero-Jacobian restriction. While keeping the overall architecture of
the approach proposed here, this alternative Lagrangian formulation may lead to
considerable advantages in computational efficiency.
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Chapter 5

Analysis of droplet-gas
interactions in a PEFC channel
using an embedded formulation

This chapter is devoted to the study of droplet dynamics in a PEFC gas channel
using the models proposed in Chapters 3 and 4. As previously mentioned, the
semi-analytical model presented in Chapter 2 is restricted to droplet flow regime.
The embedded method can be used to perform simulations of water injection into a
PEFC gas channel under any condition. Thus, simulations of droplet, film and slug
flow, often encountered in an operating PEFC, can be performed.

The aim of this study is to model and validate the conditions that lead to droplet
detachment in gas channels, as well as slug or film formation. Critical variables
that affect fuel cell performance, such as critical air velocity leading to detachment,
droplet size and area coverage of water are calculated. These variables provide with
valuable information that can be used to predict fuel cell performance and durability.

5.1 Introduction

This thesis focuses on Polymer Electrolyte fuel cells (PEFC), highly promising effi-
cient energy conversion devices suitable for a wide range of applications. From the
engineering point of view, their design and modeling are a challenge. In the present
work the emphasis is given to the two-phase transport responsible for non-uniform
gas distribution and large pressure losses [22]. As explained in Chapter 1, the ex-
ceeding water produced in the cathode side of the membrane has to be evacuated
through the GDL (Fig. 5.1(a)) and the cathode gas channels (Fig. 5.1(b)).

Three types of liquid flow can form in the gas channels depending on different
factors. These flows are usually known as droplet, film and slug flow [2], as shown
on Fig. 1.3. This chapter is devoted to study droplet emergence, deformation and
conditions that lead to detachment in a PEFC gas channel using the formulations
presented in Chapters 3 and 4. Droplet detachment depends on several factors, such
as air velocity, GDL hydrophobicity and water injection rate [15], [16]. Effects of
these variables on droplet deformation and detachment are studied.

Moreover, it is also important to identify the conditions that lead to slug or film
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(a) Exceeding water produced in the membrane diffuses
through the GDL

(b) Water droplet emerging into a fuel cell gas channel

Figure 5.1: (a) Exceeding water produced within the membrane diffuses through the
GDL and emerges into the gas channel and (b) detailed view of gas channel with an
emerging droplet and air flowing from left to right

110



formation in gas channels. The presence of slugs in gas flow channels leads to large
pressure losses. On the other hand, films covering the GDL surface prevent air from
diffusing through the pores, leading to non-uniform gas distributions. These factors
can reduce both fuel cell efficiency and durability. Thus, it is vital to characterize
the effects of process parameters, such as air velocity or water volume flow rate, on
droplet, slug and film formation.

5.2 Results and discussion

In order to study water transport in PEFC gas channels and obtain results on droplet
deformation, detachment and GDL area coverage, which represent important factors
for fuel cell performance and durability, three cases are studied:

� Sessile droplet in free space: when droplet height to channel height ratio is
less than 10%, effects of channel height are negligible and the gas channel can
be modeled as an open channel with infinite height [11]. This flow type can
appear under low current density conditions (i ¡ 0.1 A cm−2).

� Sessile droplet in a channel: when the height ratio is greater than 10%, droplet
deformation and detachment depends on this ratio and inlet air velocity. When
the current density values are between 0.1 and 0.4 A cm−2, these larger droplets
may form in fuel cell channels.

� Droplet injection in a channel: for a given air velocity, slug or film flow can be
observed depending on the injection rate of water. Slugs or films are observed
when i ¿ 0.4 A cm−2.

The previous cases represent the different kinds of flow types found in operating
fuel cells. The governing equations for air and water are the Navier-Stokes equa-
tions. Droplet is modeled using a Lagrangian method while air is modeled with the
Eulerian formulation. These are coupled using an embedded strategy presented in
Chapter 4. The computational domain for the three cases of study is similar, with
different boundary conditions and channel sizes in each example. Let us consider a
rectangular channel of H × L in two dimensions (Fig. 5.2(a)) and H ×W × L in
three dimensions (Fig. 5.2(b)). Air enters into the channel through the inlet, Γin

E ,
and flows in the positive x-direction. A no-slip boundary condition for air velocity
is applied on the GDL surface, ΓGDL

E , and zero viscous stress in the normal direc-
tion is imposed at the outlet Γout

E (i.e., the outlet of the channel is considered an
open boundary). The channel has the sufficient length to ensure that results do not
depend on this parameter.

On the other hand, a water droplet is considered to occupy the central position
of the channel. The air-water interface is represented by ΓI (Fig. 5.2), whereas
ΓS denotes the wet area of the GDL (i.e., GDL surface covered by water). The
center of ΓS contains the region Γin

S , representing a circular pore with diameter D.
The distance between the pore and channel inlet is sufficiently big to avoid entrance
effects [6] and air velocity profile is fully developed before the droplet’s position. A
slip boundary condition for water velocity is applied at ΓS. Fluids’ properties that
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(a) 2D view of the channel

(b) 3D view of the channel

Figure 5.2: Schematic representation of a water droplet in a PEFC gas channel in
two (top) and three dimensions (bottom)
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Table 5.1: Water and air properties used in the simulations, considering T = 298 K
and p = 1 atm

Variable Symbol Value Units

Surface tension coefficient γ 0.072 N m−1

Water density ρw 1000 kg m−3

Water viscosity µw 10 −3 kg m−1 s−1

Air density ρair 1.205 kg m−3

Air viscosity µair 1.98 × 10 −5 kg m−1 s−1

have been used in the examples are displayed in Table 5.1. These values correspond
to a constant temperature of 298 K and a pressure of 1 atm.

5.2.1 Sessile droplet in a free space

Droplet oscillation has been studied since the mid-1800s. Early works of Lord
Rayleigh and Lamb [79] on free drop oscillation revealed that surface tension and
inertial forces produced a balancing-unbalancing process, yielding drop oscillations.
Recent studies on droplet dynamics in PEFC show that oscillations are responsible
for droplet detachment [5], [11], [16], [24].

A review on droplet oscillation can be found in Chapter 5 of Milne’s work [5].
This review is focused on constrained droplet oscillation (i.e., sessile droplets on
surfaces). When a constrained droplet oscillates, surface oscillation is coupled to
oscillation of the center of mass [5]. Thus, in the following examples droplet os-
cillations will be measured by the displacements of the center of mass in x and y
directions.

In this example, the frequency of oscillation of a sessile droplet subjected to
an airflow is studied. Milne [5] developed an experimental work to observe these
oscillations. In the experimental setup a droplet was placed on a Teflon surface, and
this setup was placed in a wind tunnel of 470×927×216 mm (height × length ×
width). Droplet oscillations were obtained with airflow a velocity that was increased
from 0 to 30 m s−1. For different droplet volumes, the frequency of oscillation was
observed. This example reproduces the experimental results obtained by Milne.

Drag force exerted by air on a sessile droplet does not depend on channel di-
mensions if the droplet height is below 10% of the channel height [11]. Droplet
volumes ranging from 13 to 100 µl are considered. The maximum droplet height,
corresponding to a volume of 100 µl, is 4.7 mm. Thus, channel height is set to 50
mm in order to fulfill the aforementioned condition. The droplet is considered to
have a constant volume with zero volume flow rate (Q̇ = 0). Boundary conditions
for the air are the following:

� Dirichlet boundary condition at Γin
E with v0

air = vair(0) and vstair = vair(tst)

� No-slip boundary condition at ΓGDL
E , vair = 0

� Slip boundary condition at Γwall
E , vair · n = 0
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Table 5.2: Parameters used in the sessile droplet in a free space example

Variable Symbol Value Units

Static contact angle θS 135 deg
Initial air velocity v0

air 1 m s−1

Steady-state air velocity vstair 6 m s−1

Channel height H 50 mm
Channel width W 50 mm
Channel length L 500 mm

Slip boundary condition on the upper wall of the channel is imposed in order to
recreate the wind tunnel flow conditions. Channel size as well as flow parameters are
detailed in Table 5.2. Channel geometry has been discretized using an unstructured
mesh of 20000 triangular elements (Fig. 5.3(a)). The mesh has been refined in the
region of the channel where the droplet is placed, as shown in Fig. 5.3(b). Element
sizes range from h = 10−2 m to h = 10−4 m. Droplet mesh is unstructured with 1000
triangular elements. Element size is constant, ranging from h = 10−4 (13 µl-volume
droplet) to h = 3 × 10−4 m (100 µl-volume droplet). Fig. 5.3(c) shows the mesh
used for the 13 µl-volume droplet. Simulations have been performed with a time
step δt = 10−3 s, and the simulation time is 1 s.

(a) Mesh used for channel domain

x

y

z

GiD

(b) Detail of the channel mesh around the
droplet

x

y

z

GiD(c) Mesh used for droplet domain

Figure 5.3: (a) Mesh used to represent the PEFC gas channel, (b) detail of the finer
mesh around the droplet and (c) mesh used to represent the 13 µl-volume droplet

Validation

Experimental results from Milne’s study on droplet oscillation are used to validate
the model presented in Chapters 3 and 4. Several air velocity values were used in
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the experiments, and the measured frequencies did not depend on the air velocity.
No data was provided to support this observation. For a droplet of 13 µl volume,
simulations have been performed varying air velocities and the droplet oscillation
frequency has been obtained. Fig. 5.4 shows that droplet frequency of oscillation
remains relatively constant for all simulations. In every case, oscillation is measured
as the x and y displacement of the node corresponding to the droplet’s centroid.
This result agrees with the aforementioned experimental observation.
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Figure 5.4: Frequency of oscillation in x and y directions for several air velocities

Effects of droplet volume on frequency of oscillation

Effects of the droplet volume on the frequency of oscillation are studied next. Sim-
ulations have been performed considering droplet volumes between 13 and 100 µl.
Initially, air enters the channel at vair = 1 m s−1. Afterwards, air velocity is in-
creased during 0.5 s up to 6 m s−1 and then is maintained constant. The evolution
of shape, pressure profile and velocity distribution for the case of a 13 µl-volume
droplet are depicted in Fig. 5.5.

One can observe a nearly hydrostatic pressure profile within the droplet, with
mild oscillations due to the drag exerted by air. After a certain time, the droplet
reaches a periodic state. At that moment, the drag exerted by the air is deforming
the droplet, whereas the adhesion force is opposing this force and trying to take the
droplet to a new equilibrium state. A recirculation pattern can be observed in Fig.
5.5(d). This phenomenon has been observed experimentally in reference [124].

Evolution of pressure and velocity distributions in the channel are displayed in
Fig. 5.6 and 5.7, respectively. Transient solution shows the vortex formation when
air flows past the droplet. These vortices can be observed in Figs. 5.6(b) and 5.6(c)
as circular regions with low pressure. At steady state, pressure is higher on the
upstream side of the droplet, and low pressure and velocity values are observed on
the wake side. A recirculation pattern for velocity is observed in this region, as
depicted in Fig. 5.8. It can be observed that viscous stress and pressure difference
across the droplet deform the droplet in the downstream direction. Surface tension
force act as a restoring force, acting on the opposite direction of external forces.
Consequently, the droplet oscillates due to this unbalancing and balancing process.
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(a) Pressure profile at t = 0 s (b) Velocity field at t = 0 s

(c) Pressure profile at t = 0.25 s (d) Velocity field at t = 0.25 s

Figure 5.5: Evolution of the droplet deformation, pressure profile and velocity field
within a PEFC channel

Fig. 5.9 shows the frequency of oscillation in x and y directions observed at
the droplet’s center of mass for several droplet volumes. Numerical results (square
and triangle markers) are compared to experimental data (represented by solid and
dashed lines) from reference [5]. They show good agreement, with a maximum
difference of 7%. It is important to note that the relationship between frequency of
oscillation and droplet volume is exponential. Transforming x axis in Fig 5.9 into
the inverse of the square root of volume, this relationship becomes linear.

Larger droplets have lower values of oscillation frequency, as already reported
in [24] and [5]. Results also show that in the limit case, a zero value of frequency
is achieved by an infinitely large drop [5]. Fig. 5.9 also shows numerical results
obtained with the semi-analytical model presented in Chapter 2. The semi-analytical
model estimates frequencies that are in reasonable agreement with computational
and experimental observations thereby further validating the model compared to the
results of Esposito et al. [24] which reported much higher frequencies. Even though
the predictions are in relatively good agreement, the semi-analytical model is not
able to provide the degree of accuracy obtained by the numerical model, especially as
the volume of the droplet increases. The semi-analytical model assumes a predefined
shape and does not consider gravitational effects. The former might be responsible
for the discrepancies for small droplet volumes while the latter may be the cause of
the differences for larger droplets.
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(c) Air pressure, t = 0.5 s
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(d) Air pressure, t = 1.0 s

Figure 5.6: Pressure profiles in air for the wind tunnel simulation
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Figure 5.7: Magnitude of the velocity profiles in air for the wind tunnel simulation

Figure 5.8: Velocity profile and streamlines on the wake side of the droplet
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Figure 5.9: Oscillation frequency versus the inverse of the square root of droplet
volume, according to experiments (exp), numerical model (mod) and semi-analytical
model (SA). Droplet volumes of 13, 30, 58 and 100 µl have been used to reproduce
the results from reference [5]

5.2.2 Sessile droplet in a channel

The previous example studied the oscillation of a sessile droplet immersed in an
airflow. In an operating PEFC channel, water emerges from the GDL. At high
current densities, water may not be evacuated fast enough. Under these conditions,
droplets may form with heights greater than 25% of the channel height, or even slugs
that block the channel. Thus, channel height plays an important role on droplet
oscillation and posterior detachment.

Cho et al. [7] performed an experimental study of droplet dynamics in a PEFC
gas channel. The experimental setup was a 1 × 1.6 × 40 mm channel where water
was injected in a GDL. The GDL material was carbon paper with 30% PTFE
loading. Static contact angle of the surface was 128◦. Their work analyzed the
effects of several parameters, such as air velocity, on droplet detachment size and
time. Experimental results from [7] are reproduced numerically in order to validate
the present model. An analytical model based on a force balance was presented by
the same authors in reference [6]. Results obtained with this model are also used
for validation.

Boundary conditions for the air velocity are the following:

� Dirichlet boundary condition at Γin
E with vair = v0

air

� No-slip boundary condition at ΓGDL
E and Γwall

E , vair = 0

Channel size as well as flow parameters are detailed in Table 5.3. Channel geometry
has been discretized using an unstructured mesh of 22000 triangular elements. Sim-
ilarly to the previous case, the mesh has been refined in the region of the channel
where the droplet is placed, as shown in Fig. 5.3(b). Element sizes range from
h = 2× 10−4 m to h = 10−5 m. Droplet mesh is unstructured with 1000 triangular
elements. Element size is constant, ranging from h = 10−5 (0.17 mm-height droplet)
to h = 4× 10−5 m (0.7 mm-height droplet). Simulations have been performed with
a time step δt = 10−4 s
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Table 5.3: Parameters used in the sessile droplet in a channel example

Variable Symbol Value Units

Static contact angle θS 128 deg
Channel height H 1 mm
Channel width W 1.6 mm
Channel length L 40 mm

One of the factors affecting droplet detachment is the velocity of the airflow.
Cho et al. [7] performed an experiment where the critical air velocity for different
droplet sizes was obtained. Experimental results are used to validate the numerical
model. For droplet diameters ranging from 0.6 to 1 mm, simulations have been
performed at varying air velocities and the critical value for detachment has been
obtained. For a sessile droplet in a GDL treated with Teflon, Cho et al. observed
that detachment occurs when contact angle hysteresis is greater than 40 deg [7].
Therefore, this value is taken as a threshold condition for droplet detachment. All
simulations have been performed with a time step δt = 10−4 s.

Detachment velocity

Fig. 5.10 shows experimental results from reference [7] (blue circle markers) and
numerical results (green diamond markers). For the given channel geometry and
droplet diameters, the critical air velocity needed for detachment ranges from 5 to
13 m s−1. Taking the channel height as the characteristic length, Reynolds numbers
range from 300 to 600, approximately.
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Figure 5.10: Critical air velocity for detachment as a function of droplet diame-
ter obtained with analytical model from [6] (red line), experimental data from [7]
(blue circle markers), the embedded model (green diamond markers) and the semi-
analytical model (black triangle markers)

Results show that higher values of critical air velocity are obtained for smaller
droplet sizes. This result is consistent with previous works [11], [15], [9], [26]. Ob-
tained numerical results show good agreement with experimental data from Cho et
al. [7]. Results are also compared to an analytical model developed by the same
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authors [6] (red line in Fig. 5.10), and with the semi-analytical model presented in
Chapter 2. The same trend is observed in all predicted values. The analytical model
in reference [6] predicts similar results to the embedded model for droplets with di-
ameters greater than 0.7 mm. Cho’s analytical model however overpredicts critical
air velocities for droplet detachment. Results obtained with the semi-analytical
model show reasonable agreement with experimental data, although values for crit-
ical air velocity are underpredicted for smaller droplet diameters.

Fig. 5.11 depicts droplet profile (blue solid line) and velocity distribution (red
dashed line) prior to detachment. Primary horizontal axis (bottom) represents x
coordinate (x = 0 mm corresponds to the center of droplet chord), whereas air
velocity is represented by secondary horizontal axis (top).
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Figure 5.11: Drop (blue solid line) and air velocity (red dashed line) profiles at
detachment in a PEFC channel

Detachment time

The time of detachment for a sessile droplet in a PEFC gas channel can be computed
using the simulations in the previous section. The experimental study of Cho et al.
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Table 5.4: Detachment time (tdet) and area covered (Acov) for different droplet
heights (h) according to current model and semi-analytical model presented in [11]

d [mm]
Embedded Semi-analytical Cho et al.

tdet [s] Acov [mm2] tdet [s] Acov [mm2] tdet [s] Acov [mm2]

0.6 1.02 0.107 1.24 0.122 0.88 0.097
0.7 1.62 0.146 1.92 0.163 1.24 0.122
0.8 2.42 0.190 2.71 0.205 1.56 0.142
0.9 3.45 0.241 4.69 0.296 2.0 0.168
1.0 4.73 0.298 6.3 0.360 2.42 0.190

[7] did not include details about detachment time. Let us consider the results shown
in Fig. 5.10. Assuming that the PEFC is generating 1 A cm−2 of current density,
a constant water volume rate Q̇ = 0.1 µl s−1 emerges into the gas channel. Given
the volume rate and the droplet size at detachment, the time needed for the droplet
to detach the GDL surface is obtained. A comparison between the analytical model
presented in [7] and the embedded and semi-analytical models is included in Table
5.4.

Time and area coverage values corresponding to the embedded model have been
obtained using detachment velocities from Fig. 5.10. Detachment time and area
for analytical and semi-analytical models have been obtained as follows. First, a
detachment diameter used in the previous example is considered. For this droplet
size, the detachment velocity predicted by the embedded model is extracted from
Fig. 5.10. Considering this velocity value as a reference, the critical droplet diameter
according to the other models is obtained. For instance, the critical velocity for a 0.8
mm-diameter droplet is 6.89 m s−1. Predicted sizes of the detached droplet for this
velocity are 0.69 and 0.83 mm according to Cho et al. [7] and the semi-analytical
model, respectively.

Detachment times are in agreement between the models, specially for droplets
with diameters below 0.8 mm. The semi-analytical model predicts sooner detach-
ment values. On the other hand, for droplets sizes above 1 mm, Cho et al. predict
channel blockage for velocities below 4.5 m s−1.

Deformation and contact angle evolution

The evolution of advancing and receding angles for the 0.7 mm-diameter droplet in
the simulation is shown in Fig. 5.12. The rate of change of contact angles is not
constant. Three regions can be distinguished in Fig. 5.12 during the deformation
process.

Initially, the droplet is in equilibrium (Fig. 5.13(a)) with no airflow. As air
starts flowing around the droplet, pressure and viscous forces deform the droplet in
the vertical direction (Fig. 5.13(b)). Both advancing and receding angles increase
at the same rate. This region is identified as I in Fig. 5.12. A transition area is
observed, where the receding angle remains constant (denoted as II in Fig. 5.12).
Increasing airflow velocity leads to higher pressure drop across the droplet, and

122



time REC ADV time_cor REC_cor ADV_cor time_z1 zone1 time_z2 zone2
0 128 128 0 128 128 0,08 100 0,15 100

0,001 125,8667 130,61655 0,04 130 131 0,08 105 0,15 105
0,002 127,6701 130,68582 0,08 131,8033 133,3024 0,08 110 0,15 110
0,003 128,3574 131,82893 0,12 132,4907 134,4455 0,08 115 0,15 115
0,004 127,9927 132,78407 0,16 132,1259 135,4006 0,08 120 0,15 120
0,005 127,1523 133,70502 0,2 131,2856 136,3216 0,08 125 0,15 125
0,006 126,796 134,67313 0,24 130,9293 137,2897 0,08 130 0,15 130
0,007 125,4768 134,81311 0,28 129,6101 137,4297 0,08 135 0,15 135
0,008 124,6295 135,41022 0,32 128,7628 138,0268 0,08 140 0,15 140
0,009 123,7698 135,44763 0,36 127,903 138,0642 0,08 145 0,15 145
0,01 124,4912 136,80414 0,4 128,1244 139,4207 0,08 150 0,15 150

0,011 123,1257 137,78174 0,44 127,2589 140,3983 0,08 155 0,15 155
0,012 121,8731 138,65921 0,48 126,0064 141,2758 0,08 160 0,15 160
0,013 122,9151 140,71764 0,52 126,0483 143,3342 0,08 165 0,15 165
0,014 123,3131 142,27228 0,56 125,4463 144,8888 0,08 170 0,15 170
0,015 119,6639 143,5061 0,6 123,7972 146,1227 0,08 175 0,15 175
0,016 118,182 145,16658 0,64 122,3153 147,7831 0,08 180 0,15 180
0,017 115,5917 146,88701 0,68 119,725 149,5036 0,08 185 0,15 185
0,018 111,7875 148,40146 0,72 115,9208 151,018 0,08 190 0,15 190
0,019 107,8377 150,0545 0,76 111,9709 152,6711 0,08 195 0,15 195
0,02 109,9407 152,22662 0,8 114,0739 154,8432 0,08 200 0,15 200

0,021 100,2766 143,35052 0,84 104,4098 145,9671 0,08 205 0,15 205
0,022 102,4587 147,23172 0,88 106,5919 149,8483 0,08 210 0,15 210
0,023 101,8121 146,95129 0,92 105,9453 149,5678 0,08 215 0,15 215
0,024 99,66108 141,53015 0,96 103,7943 144,1467 0,08 220 0,15 220
0,025 101,5287 149,04768 1 105,6619 151,6642 0,08 225 0,15 225
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Figure 5.12: Advancing (blue dashed line) and receding (red solid line) angle evolu-
tion for the 0.7 mm-diameter droplet

receding angle diminishes (Fig. 5.13(c)) until the droplet detaches from the GDL
surface (Fig. 5.13(d)). Rate of change of advancing contact angle is constant during
the deformation process, as shown in Fig. 5.12 (marked as III ). Same trends in
contact angle evolution were observed experimentally by Wu and Djilali [8]. Further
discussion of this result is included in section 5.2.3.
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Figure 5.13: Deformation process of a 0.7 mm-diameter droplet subjected to airflow

Evolution of pressure and velocity distributions in the channel are depicted in
Fig. 5.14 and 5.15, respectively. Similarly to the wind tunnel simulation, transient
solution shows vortex formation when air flows past the droplet (Figs. 5.14(b) and
5.14(c)). Effect of the channel wall can be observed in Fig. 5.14(d). After air flows
around the droplet, it recovers the velocity profile in a relatively small distance.
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However, when air flows around a droplet in a free space, the low pressure zone at
the wake of the droplet is significantly longer.

(a) Air pressure, t = 0.001 s

(b) Air pressure, t = 0.010 s

(c) Air pressure, t = 0.015 s

(d) Air pressure, t = 0.025 s

Figure 5.14: Pressure profiles in air for a 1 mm-diameter droplet

5.2.3 Droplet injection in a channel

Droplet emergence, deformation and detachment are studied in this case. Wu and
Djilali [8] performed an experiment to investigate the dynamics of water droplets
emerging from a squared 50×50 µm pore into a 250×250 µm air channel. Although
dimensions of the channel were different than from a channel typically encountered in
PEFCs, results provided with valuable data on droplet deformation and detachment.

Channel was build using a transparent elastomer (polydimethylsiloxane, PDMS)
with a static contact angle of 110 deg. This value is similar to that of carbon paper
without PTFE coating [8]. Different flow regimes were considered, with Reynolds
numbers ranging from 50 to 1200. Droplet flow was obtained for an air velocity of
10 m s−1 and water volume flow of 0.1 µl s−1. Inlet velocity of water was 0.04 m
s−1.
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(a) Air velocity, t = 0.001 s

(b) Air velocity, t = 0.010 s

(c) Air velocity, t = 0.015 s

(d) Air velocity, t = 0.025 s

Figure 5.15: Magnitude of the velocity profiles in air for a 1 mm-diameter droplet
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Table 5.5: Parameters used in the droplet injection in a channel example

Variable Symbol Value Units

Initial chord c 100 µm
Water flow rate Q 0.1 µl s−1

Water inlet velocity v0
w 0.04 m s−1

Static contact angle θS 110 deg
Air velocity v0

air 10 m s−1

Channel height H 250 µm
Channel width W 250 µm
Channel length L 3 mm
Pore diameter D 50 µm

This examples reproduces the experimental results from reference [8] to validate
the numerical model. Boundary conditions for the air and water are the following:

� Dirichlet boundary condition at Γin
E with vair = v0

air

� No-slip boundary condition at ΓGDL
E and Γwall

E , vair = 0

� Dirichlet boundary condition at Γin
S with vw = v0

w

Channel size as well as flow parameters are detailed in Table 5.5. Channel geometry
has been discretized using an unstructured mesh of 25000 triangular elements. The
mesh has been refined in the region of the channel where the pore and the emerging
droplet are placed (Fig. 5.3(b)). Element sizes range from h = 5 × 10−5 m to
h = 5×10−6 m. Droplet mesh is unstructured with 200 triangular elements. Element
size is constant with h = 5 × 10−6. Simulations have been performed with a time
step δt = 10−6 s
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GiD
Figure 5.16: Mesh used for the droplet injection example

Lagrangian inlet In order to simulate water injection into the droplet, water
must be injected in the Lagrangian domain. Inlet conditions, such as air entering
the channel, are represented via Dirichlet boundary conditions in fixed Eulerian
meshes. However, an inlet condition applied to a moving Lagrangian mesh is not
trivial. In this work, the water injection process is done by creating new nodes in a
specific region of the boundary, as shown in Fig. 5.17.

Initially, the inlet region is represented by a set of nodes with a given initial
velocity (colored in red in Fig. 5.17(a)). These nodes start to move according to
the given velocity, leaving an empty space in the domain (Fig. 5.17(b)). The area
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occupied by this empty space is the same than the increase of area of the whole
domain. After a certain time, when the distance from the nodes to the injection
boundary is bigger than a prescribed value, a new set of nodes is created (Fig.
5.17(c)). Since the Lagrangian domain is discretized using the PFEM methodology,
the re-meshing process introduces the new nodes in the updated mesh. This La-
grangian inlet method is advantageous for the problem at hand, since water can be
considered an infinite reservoir. However, the system size increases each time a new
node has been added, and the computational cost increases accordingly.
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Figure 5.17: Lagrangian inlet process in a channel

In this section, the dynamics of an emerging droplet in a PEFC gas channel are
studied. Water produced within the fuel cell emerges into the channel from the GDL
pores. Depending on the operating conditions, water may evolve as a droplet, a slug
or a film. The following examples recreate these flow types.

Droplet flow

Experimental validation Wu performed an experimental study to observe ef-
fects of air and water inflow velocities on droplet dynamics [8]. The experimental
setup was a rectangular channel of 250×250 µm cross-section and 3 mm length. Air
entered the channel at a constant velocity of 10 m s−1. Water was injected via a
50×50 µm pore with an inlet velocity of 0.04 m s−1. Wu observed that emergence
and posterior detachment process was repeated every 0.075 ms approximately, giv-
ing a frequency f = 13.2 Hz (i.e., approximately 13 droplets per second emerged and
detached from the pore). Experimental results are used to validate the numerical
model.

Fig. 5.18 depicts the process of water injection into a gas channel. Experi-
mental results obtained in [8] are displayed in left-hand side column. Right-hand
side column shows the predicted droplet profile according to the embedded method.
Channel walls are represented by black lines, whereas the blue line is the droplet
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profile. The gap in the channel surface is the pore where water is injected. Pre-
dicted profiles are similar to those observed in [8], specially at the beginning of the
injection process.

Evolution of contact advancing and receding angles according to Wu is shown
in Fig. 5.19. The same contact angle evolution has been obtained numerically in
Section 5.2.2 (Fig. 5.12). Three regions can be distinguished; (I) both advancing
and receding angles increase at the same rate, (II) receding angle remains constant
and (III) receding angle decreases at a constant rate.

Numerical results show good agreement with experimental data from reference
[8]. At early stages of droplet emergence (regions I and II), both predicted and mea-
sured contact angles have an excellent fit. After time t = 0.02 s, results obtained
with the present numerical method are overpredicted. This difference between re-
sults is probably due to significant effects on the z direction, which is not considered
in the 2D model. Additionally, the droplet starts to break up from water stream
injected through the pore. Droplet breakup has not been included in the present
model.

Comparison with VOF Zhu et al. [9] performed a numerical investigation of
droplet emergence in a channel using VOF method in two dimensions. The numerical
simulation is reproduced here. The computational domain of the simulation was the
same than the experimental setup in [8]. The position of the pore was different
in the numerical study. Instead of being in the center of the channel, the pore
location was at 250 µm from the inlet. The length of the channel was set to 1 mm,
although effects of the channel length on results were negligible [9]. Air entered the
channel at 10 m s−1. Water was injected via a 50 µm-diameter circular pore with
an inlet velocity of 0.1 m s−1. The time step used in the simulations has been set to
δt = 10−6 s, whereas results reported in [9] used a time step between 1 an 2 orders
of magnitude smaller. Results obtained in reference [9] are depicted in Fig. 5.20.

Results obtained by Zhu et al. [9] predict that a droplet is formed (Figs. 5.20(a)-
5.20(e)). The droplet reaches a critical height (Fig. 5.20(g)) and then it deforms on
the x-direction (Fig. 5.20(i)). Results according to the embedded formulation show
a droplet more deformed in x-direction are more prone to form a film pattern.

Let us consider the previous example. In the experimental setup from Wu [8]
injection pore is located at 1.5 mm from the channel entrance, and velocity of
injection is 0.04 m s−1. On the other hand, the computational domain from Zhu
[9] considers a pore located at 0.25 mm from the channel entrance and that water
is injected at 0.1 m s−1. Although the velocity of injection is higher in this second
example, pressure effects on the droplet are more important, as shown in Fig. 5.21.
Thus, water may form a film as it emerges from the pore. Both VOF and embedded
formulations however predict a film formation under these conditions.

Slug flow

The previous examples have performed analysis on droplet flow. However, slugs and
films may form in operating fuel cell gas channels [2]. Analytical models, such as
the semi-analytical model presented in Chapter 2 are restricted to droplet flow. The
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Figure 5.18: Experimental (left column) and simulated (right column) deformation
process of an emerging droplet into a gas channel. Experimental results extracted
from [8]
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time REC ADV time_cor REC_cor ADV_cor time_z1 zone1 time_z2 zone2 t_exp Wu exp, θR Wu exp, θA time_sim Embedded, θR Embedded, θA Embedded, θR
0 128 128 0 128 128 0,01 0 0,0165 0 0 70 65 0,005 70 70 70

0,001 125,8667 130,61655 0,0044 130 131 0,01 5 0,0165 105 0,005 70 70 0,006 67,122 73,959 67,122
0,002 127,6701 130,68582 0,0088 131,8033 133,3024 0,01 10 0,0165 110 0,01 78 87 0,007 74,135 85,302 69,483
0,003 128,3574 131,82893 0,0132 132,4907 134,4455 0,01 115 0,0165 115 0,015 79 92 0,008 76,198 96,285 74,135
0,004 127,9927 132,78407 0,0176 132,1259 135,4006 0,01 120 0,0165 120 0,02 72 90 0,009 69,483 101,99 76,198
0,005 127,1523 133,70502 0,022 131,2856 136,3216 0,01 125 0,0165 125 0,025 70 98 0,01 74,519 77,152 74,519
0,006 126,796 134,67313 0,0264 130,9293 137,2897 0,01 130 0,0165 130 0,03 67 100 0,011 81,811 85,959 81,811
0,007 125,4768 134,81311 0,0308 129,6101 137,4297 0,01 135 0,0165 135 0,035 63 101 0,012 84,637 93,624 84,637
0,008 124,6295 135,41022 0,0352 128,7628 138,0268 0,01 140 0,0165 140 0,04 54 105 0,013 81,543 81,63 81,543
0,009 123,7698 135,44763 0,0396 127,903 138,0642 0,01 145 0,0165 145 0,045 50 106 0,014 81,924 88,016 81,924
0,01 124,4912 136,80414 0,044 128,1244 139,4207 0,01 150 0,0165 150 0,05 44 108 0,015 83,096 97,8 83,096

0,011 123,1257 137,78174 0,0484 127,2589 140,3983 0,01 155 0,0165 155 0,055 39 108 0,016 88,686 109,47 81,686
0,012 121,8731 138,65921 0,0528 126,0064 141,2758 0,01 160 0,0165 160 0,06 31 102 0,017 90,826 111,09 80,826
0,013 122,9151 140,71764 0,0572 126,0483 143,3342 0,01 165 0,0165 165 0,065 10 109 0,018 87,082 111,22 79,082
0,014 123,3131 142,27228 0,0616 125,4463 144,8888 0,01 170 0,0165 170 0,07 11 114 0,019 87,577 113,22 77,577
0,015 119,6639 143,5061 0,066 123,7972 146,1227 0,01 175 0,0165 175 0,075 12 120 0,02 89,838 114,36 79,838
0,016 118,182 145,16658 0,0704 122,3153 147,7831 0,01 180 0,0165 180 0,021 88,224 95,285 78,224
0,017 115,5917 146,88701 0,0748 119,725 149,5036 0,01 185 0,0165 185 0,022
0,018 111,7875 148,40146 0,0792 115,9208 151,018 0,01 190 0,0165 190 0,023
0,019 107,8377 150,0545 0,0836 111,9709 152,6711 0,01 195 0,0165 195 0,024
0,02 109,9407 152,22662 0,088 114,0739 154,8432 0,01 200 0,0165 200 0,025

0,021 100,2766 143,35052 0,0924 104,4098 145,9671 0,01 205 0,0165 205 0,026
0,022 102,4587 147,23172 0,0968 106,5919 149,8483 0,01 210 0,0165 210 0,027
0,023 101,8121 146,95129 0,1012 105,9453 149,5678 0,01 215 0,0165 215 0,028
0,024 99,66108 141,53015 0,1056 103,7943 144,1467 0,01 220 0,0165 220 0,029
0,025 101,5287 149,04768 0,11 105,6619 151,6642 0,01 225 0,0165 225 0,03
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Figure 5.19: Advancing (blue diamond markers) and receding angles observed in [8]

present numerical method can overcome this drawback and can be used to reproduce
slug or film flow conditions.

At high current densities (i.e., i ≥ 2 A cm−2), water is produced at a faster rate
and may form slugs and block the channel when it emerges from the GDL pores. In
order to observe slug formation in the channel, air inlet velocity is set to 1.0 m s−1.
Water is injected through a 50 µm pore at a constant velocity v = 0.1 m s−1.

For the considered conditions, a slug is formed after 4 ms. Pressure drop across
the droplet and air velocity are not significantly altered for droplet height to chan-
nel height ratio of 0.5 (Figs. 5.23(a) and 5.23(b)). For ratios between 0.5 and 0.8,
the channel cross-section at the droplet position diminishes (Fig. 5.23(c)) and air
velocity increases. Droplet height to channel height ratios above 0.8 are character-
ized by a sudden increase of the pressure drop (Fig. 5.22(a)) as well as the velocity
magnitude (Fig. 5.23(d)). Pressure losses in PEFC channels reduce the fuel cell
efficiency due to non-uniform gas distribution [22].

Film flow

When a PEFC is producing a current density between 0.5 and 1.5 A cm−2, water is
prone to form films in the gas channels. In this example, the same computational
domain from Section 5.2.2 is considered. Air enters the channel at v = 5 m s−1,
and water is injected at a constant velocity of 0.01 m s−1. Pressure and velocity
distribution in air and water domains are depicted in Figs. 5.24-5.27.

Film flow formation in a PEFC gas channel can be therefore modeled using the
embedded approach. As shown in Fig. 5.25, as water covers the GDL surface,
air velocity is increased. Additionally, the area covered by water prevents air from
diffusing through the GDL pores, reducing the fuel cell efficiency.

5.3 Conclusions

A numerical study of droplet dynamics using an embedded formulation has been
carried out and validated experimentally. Oscillatory behavior of a sessile droplet
subjected to an airflow in a free space has been analyzed. Observed oscillations are
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(g) VOF, t = 3 ms
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(i) VOF, t = 3.3 ms
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Figure 5.20: Numerical results according to VOF model from [9] (left column) and
embedded model (right column) of the deformation process of an emerging droplet
into a gas channel.

131



(a) Air pressure profile at t = 0.4 ms. Pore located at 1.5 mm from entrance
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(b) Air pressure profile at t = 0.4 ms. Pore located at 0.25 mm from entrance

Figure 5.21: Air pressure profile at t = 0.4 ms for a channel with a pore located at
(a) 1.5 mm and (b) 0.25 mm from entrance.

consistent with previous works [24], [11], [5]. A simulation of 1 s has been performed
considering several droplet volumes, and the obtained numerical results agree well
with experimental observations from reference [5]. This result is particularly impor-
tant since droplet oscillation is responsible for droplet detachment [24], [11], [5], [16].
A recirculation pattern is observed within the droplet when it reaches steady-state,
as observed by Minor’s experiments [124]. Results obtained with the semi-analytical
model presented in Chapter 2 show the same trend.

The effect of airflow velocity on droplet detachment is also studied. Larger
droplets exhibit lower values of critical air velocity for detachment, but the time that
takes to reach this condition is longer. Results have been validated experimentally
using available data from Cho et al. [7]. Contact angle evolution observed in the
numerical simulations is similar to that from reference [8].

Results for water injection in a gas channel have been validated experimentally.
Predicted droplet profiles and experimental observations show good agreement at
early stages of droplet formation. Advancing contact angle increases approximately
at a constant rate, whereas receding contact angle shows three regions of different
behavior. Comparison between VOF and embedded models has studied as well.
Current model predicts film formation, whereas VOF results show that a droplet
is formed first. Large discrepancies with VOF results were observed, specially with
predicted flow type and contact angles on the advancing and receding points.

For low air velocities (i.e., less than 1 m s−1) water can block the channel, spe-
cially at high injection rates (i.e., 0.05 µl s−1). Alternatively, water films are formed
in fuel cell channels for air velocities greater than 10 m s−1. Critical air veloci-
ties are lower for emerging droplets than for already formed droplets. Therefore,
droplets formed in the channel are more difficult to detach from the GDL surface
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(a) Air pressure, t = 0.001 s

(b) Air pressure, t = 0.002 s

(c) Air pressure, t = 0.003 s

(d) Air pressure, t = 0.004 s

Figure 5.22: Slug formation in a gas channel. Pressure profiles in air
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(a) Air velocity, t = 0.001 s

(b) Air velocity, t = 0.002 s

(c) Air velocity, t = 0.003 s

(d) Air velocity, t = 0.004 s

Figure 5.23: Slug formation in a gas channel. Magnitude of velocity profiles in air
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(a) Air pressure, t = 0.001 s
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(b) Air pressure, t = 0.05 s
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(c) Air pressure, t = 0.15 s
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(d) Air pressure, t = 0.5 s

Figure 5.24: Pressure profiles in air
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Figure 5.25: Velocity profiles in air
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Figure 5.26: Pressure profiles in water
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Figure 5.27: Velocity profiles in water
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than emerging ones. It is worth mentioning that for water droplets in gas channels,
the one-way Neumann coupling and a “homogeneous” negligible (zero-velocity) in-
terface Dirichlet coupling are sufficient as the droplet velocity in the pre-detachment
stage is negligible.
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Chapter 6

Conclusions and future work

This chapter includes a summary of this thesis, where the main results and conclu-
sions are highlighted. Further improvements are identified as future work.

6.1 Summary and conclusions

The objective of this work has been the development and implementation of novel
techniques to study droplet dynamics in PEFC gas channels. Two models have been
presented and validated experimentally:

� Semi-analytical model: a numerical tool capable of obtaining fast results for
droplet detachment condition in gas channels for droplet flow regime at a
reduced computational cost.

� Embedded model: a novel numerical method to include the fully coupled
air-water interaction and overcome the intrinsic limitations of semi-analytical
model.

The first model, extending the idea of Esposito et al. [24], was based on a force
balance applied to an emerging droplet in a PEFC channel. Forces acting on the
droplet are drag force exerted by airflow and adhesion force. The latter has been
modeled in the present work using an analytical expression and integrated numeri-
cally at every time step. For the drag force, several numerical simulations have been
done to obtain the value of the drag coefficient for different droplet sizes. Results
show the drag force dependency on droplet height to channel height ratio. The
model has been validated, obtaining good agreement with available experimental
data. However, differences between semi-analytical model and experimental results
become more evident for higher droplet volumes. The semi-analytical model tends to
underpredict detachment velocities in such cases. This is probably caused by the ab-
sence of gravity effects and the assumed geometry used in the semi-analytical model.
For small droplets, where gravity effects are negligible, like the ones appearing in
fuel cell channels, the semi-analytical model shows good predictive capabilities.

Analytical models are not able to deal with strongly deforming droplets, predict
post-detachment behavior or to perform multiple droplets analysis. In order to
overcome these drawbacks, a monolithic Lagrangian finite element model for droplets
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has been developed and validated experimentally. The model proposed can represent
the droplet surface exactly via the Lagrangian boundary mesh, and it does not
depend on a background fixed mesh (contrary to Eulerian formulations, such as
Volume of Fluid). A monolithic (coupled velocity-pressure) scheme has been adopted
for the numerical solution of the governing equations. It has been discovered that
the presence of surface tension precludes using fractional step schemes. An implicit
surface tension model has been proposed. Results show that this formulation is
advantageous from the computational point of view; it alleviates the severe time
restrictions characteristic of the commonly used explicit surface tension models.

In order to model droplet dynamics in a PEFC gas channel, the developed La-
grangian model was coupled to an Eulerian model for the air. The coupling has been
done in an embedded fashion extending the idea proposed in [117] and [118]. The
fluids were coupled using a Dirichlet-Neumann coupling. An important advantage of
the proposed embedded approach is that the interface position is exactly defined by
the Lagrangian mesh. Thus, no additional techniques (typically used in fully Eule-
rian formulations) for interface tracking were necessary. The strong discontinuity of
pressure across the air-water interface due to surface tension effects was accounted
for naturally in the proposed model. The embedded formulation has been further
extended by including viscous effects on the interface as a boundary condition for
the water domain. Additionally, a two-way coupling technique has been included
to account for the continuous air-water interaction. The convergence of the method
has been studied, showing first order accuracy in time for the staggered version of
the method.

The embedded multi-phase formulation presented in this work has been used
to model the dynamics of a droplet in a PEFC channel. Oscillations of a sessile
droplet in a free space have been obtained using both semi-analytical and embedded
methods. Results were consistent with previous works, and excellent agreement was
obtained with experimental data available. Effects of droplet size on detachment
velocity and time have been also studied. Smaller droplets exhibit higher values
of air velocity needed for detachment. Reasonable agreement between results and
experimental data found in literature was obtained. Water injection in a gas chan-
nel has been studied and results have been compared to previous numerical and
experimental results. Excellent agreement between experimental observation and
numerical results has been obtained for early stages of droplet deformation. Results
for water injection in a gas channel have been validated experimentally. Predicted
droplet profiles and experimental observations show good agreement at early stages
of droplet formation. Advancing contact angle increases approximately at a constant
rate. On the other hand, receding angle increases during a short period of time, fol-
lowed by a transition zone where receding angle remains constant. As the droplet
volume increases, pressure and viscous effects deform the droplet in x-direction, and
receding constant angle decreases until detachment was observed. Numerical results
predict a lower rate of decrease than experimental results. This discrepancy may
be due to effects in z-direction, not included in the present model for droplets in
gas channels. Comparison between VOF and embedded models has studied as well.
Current model predicts film formation, whereas VOF results show that a droplet
was formed first. The present work manifests the first attempt of modeling droplet
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dynamics in PEFC channels using an embedded Eulerian-Lagrangian approach.

It is worth mentioning that in the last decade there has been a general trend for
most of numerical studies of water transport in fuel cell channels to use Volume of
Fluid method. This method can be found in most commercial software, which makes
it an attractive option to perform numerical modeling. The present work focuses on
the development of novel techniques to study air-water (or gas-liquid) interactions
in gas channels, instead of being limited to use an existing methodology. Results
show that the embedded approach is a viable alternative to most used models in the
fuel cell community and it can be used in future numerical studies.

6.2 Outcome

The following publications have been created as a result of the work presented in
this thesis:

� A. Jarauta, M. Secanell, J. Pons-Prats, P. B. Ryzhakov, S. R. Idelsohn, and
E. Oñate. A semi-analytical model for droplet dynamics on the GDL surface
of a PEFC electrode. International Journal of Hydrogen Energy, 40:5375-
5383,2015.

� P. B. Ryzhakov and A. Jarauta. An embedded approach for immiscible multi-
fluid problems. International Journal of Numerical Methods in Fluids, 2015
(published online).

� A. Jarauta, P.B. Ryzhakov, M. Secanell and J. Pons-Prats. Numerical study
of droplet dynamics in a Proton Exchange Fuel Cell gas channel using an em-
bedded formulation. Journal of Power Sources, 2015 (under review, submitted
on 2015/10/19).

6.3 Future work

a) Substrate roughness. Water droplets in gas channels emerge from GDL
pores. Although a dynamic contact angle condition has been included in the
model in order to account for the nature of GDL surface, roughness effects
should be studied in more detail.

b) Droplet breakup and coalescence. Water droplets in gas channels may
break into smaller droplets or may coalesce with other droplets in the channel.
Droplet breakup and coalescence should be included in the model.

c) Thermal effects. Polymer Electrolyte fuel cells can operate at temperatures
ranging from -40 to 100◦C. For low temperatures, ice formation in the GDL
pores drops the efficiency of the device, specially at start-up. On the other
hand, for temperatures above 70◦C part of the exceeding water evaporates.
Thermal effects should be included to model phase change in water.

143



d) Alternative solution schemes. A Lagrangian monolithic scheme has been
proposed for water. Monolithic schemes have a higher computational cost than
other numerical schemes, such as pressure-correction scheme. The computa-
tional cost can increase drastically when slug or film flow modeling, specially
in 3D studies. Alternative solution schemes for the water domain should be
studied.

e) Improved time accuracy. The time accuracy of the embedded formulation
is limited by the first time order accuracy of the coupling technique. Novel
coupling techniques should be implemented to improve the time accuracy of
the overall method.

f ) Computational optimization. Droplet dynamics in PEFC channels often
rely in fine meshes and small time steps. In order to perform numerical simu-
lations of a fuel cell in working conditions, the C++ code implemented in this
work should be further improved to reduce the computational cost.
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Appendix A

Area ratio deduction

The droplet in its static configuration it’s supposed to have the shape of a spherical
cap, as shown on Figure A.1.

Figure A.1: Characterization of a droplet with a spherical cap shape

According to the considered geometry, the aforementioned areas can be described
with equations (A.1) and (A.2), respectively.

Af = πa2 = π (rsinθ)2 = πr2sin2θ (A.1)

Ac = 2πrh = 2πr (r − rcosθ) = 2πr2 (1− cosθ) (A.2)

At equilibrium, equation (2.7) becomes (A.3)

γLV (dAc + dAf)−WSVLdAf = 0 (A.3)

The expression in equation (A.3) can be divided by dAf, giving the following
equation:

γLV

(
dAc

dAf

+ 1

)
−WSVL = 0 (A.4)
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The derivative of Ac with respect Af can be easily transformed using the chain
rule:

dAc

dAf

=
dAc

dθ

dθ

dAf

=
dAc

dθ
dAf

dθ

(A.5)

For a droplet of constant volume these derivatives can be found deriving the
area expressions with respect to θ. According to equations (A.1) and (A.2), both
areas depend on the radius of the sphere and the contact angle θ. However, the
radius may depend on the angle. The volume of a spherical cap has the following
expression:

Vcap =
πh

6

(
3a2 + h2

)
(A.6)

where a and h are the flat area radius and the cap height, respectively (Figure A.1).
This equation can be expressed as a function of r and θ:

Vcap =
π (r − rcosθ)

6

(
3 (rsinθ)2 + (r − rcosθ)2) =

=
πr (1− cosθ)

6

(
3r2sin2θ + r2 (1− cosθ)2) =

=
π

6
r3 (1− cosθ)

(
3sin2θ + (1− cosθ)2) =

=
π

6
r3 (1− cosθ)

(
2sin2θ + sin2θ + cos2θ − 2cosθ + 1

)
=

=
π

6
r3 (1− cosθ)

(
2sin2θ + 1− 2cosθ + 1

)
=

=
π

3
r3 (1− cosθ)

(
sin2θ + 1− cosθ

)
=

=
π

3
r3 (1− cosθ)

((
1− cos2θ

)
+ 1− cosθ

)
=

=
π

3
r3 (1− cosθ)

(
2− cosθ − cos2θ

)
=

=
π

3
r3
(
2− cos2θ − cosθ − 2cosθ + cos3θ + cos2θ

)
=

=
π

3
r3
(
2− 3cosθ + cos3θ

)
(A.7)

Thus, for a spherical cap of constant volume, the radius depends on θ:

r =

(
Vcap

π
3

(2− 3cosθ + cos3θ)

) 1
3

(A.8)
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Substituting the radius in equations (A.1) and (A.2) and deriving them with
respect to θ, one obtains the following relationship:

dAc

dAf

= cosθ (A.9)

Conclusively, equation (A.4) becomes:

γLV (cosθ + 1) = WSVL (A.10)
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Appendix B

Droplet Geometry Model

The first step in the development of the droplet model is the full characterization of
its geometry. The geometry model is based on the one developed by Esposito et al.
[24] but with several corrections and improvements, which will be discussed in the
following sections. The middle section of the deformed droplet is shown in Figure
B.1. It is important to note that point A is the reference for the coordinate system
used in the whole study (Figure 2.7).

Figure B.1: Deformed droplet geometry. Air flows from right to left

The main points and angles have been labeled in order to follow better the
explanation of each formula found. The first task is to characterize every distance
and angle, before finding the area of every sector in the droplet.

B.1 Angles and distances

According to Figure B.1, the angle α is:

θA =
π

2
+ α −→ α = θA −

π

2
(B.1)
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The first hypothesis used in the present model is that the segment ŌT is per-

pendicular to the segment ¯TB, hence the angle ÊTB is equal to γ. Therefore:

π =
π

2
+ θR + γ −→ γ =

π

2
− θR (B.2)

The angle β can be found at point O, knowing that the angle ĤOC is equal to
π
2
− α:

ĤOC + (β − γ) =
π

2
−→ π

2
− α + β −

(π
2
− θR

)
=
π

2

π

2
−
(
θA −

π

2

)
+ β − π

2
+ θR =

π

2
−→ π

2
− θA +

π

2
+ β + θR = π

β = θA − θR (B.3)

Once the angles have been characterized, the different distances are found. Dis-
tance ŌH can be found using:

sinα =
ŌH

R
−→ sin

(
θA −

π

2

)
= sinθAcos

π

2
− cosθAsin

π

2
= −cosθA =

ŌH

R

Therefore:

ŌH = −RcosθA (B.4)

The distance δ can be found using the distance ŌH:

R = ŌH + δ −→ δ = R− ŌH = R− (−RcosθA) = R (1 + cosθA) (B.5)

¯TC is given by:

¯TC

2
= Rsin

β

2
−→ ¯TC = 2Rsin

β

2
(B.6)

ĀC is obtained from geometrical arguments as:

ĀC = 2ĀH = 2Rcosα = 2R
(

cosθA −
π

2

)
= 2R

(
cosθAcos

π

2
+ sinθAsin

π

2

)
ĀC = 2RsinθA (B.7)

Also, C̄B can be obtained using the the sine theorem applied in the triangle

CTB. However, the angle ĈTB has to be found first. In the triangle COT:

β + 2ÔTC = π −→ ÔTC =
π

2
− β

2

Knowing that the angle ÔTB is equal to π
2
:
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ÔTC + ĈTB =
π

2
−→ π

2
− β

2
+ ĈTB =

π

2

Thus:

ĈTB =
β

2
(B.8)

Applying the sine theorem in the triangle CTB:

C̄B = ¯TC
sinβ

2

sinθR

= 2R
sin2 β

2

sinθR

(B.9)

B.1.1 Chord and height

The previous distances enable to find an expression for both the chord and the
droplet height:

c = ĀC + C̄B = 2RsinθA + 2R
sin2 β

2

sinθR

= 2R

(
sinθA +

sin2 β
2

sinθR

)
However, this equation can be further simplified:

c = 2R

(
sinθA +

sin2 β
2

sinθR

)
= 2R

(
sinθA +

1− cosβ

2sinθR

)
=

= R

(
2sinθA +

1− cos (θA − θR)

sinθR

)
=

=
R

sinθR

(2sinθAsinθR + 1− (cosθAcosθR + sinθAsinθR)) =

=
R

sinθR

(2sinθAsinθR + 1− cosθAcosθR − sinθAsinθR)

c =
R

sinθR

(1 + sinθAsinθR − cosθAcosθR) (B.10)

The droplet height can be easily found:

h = R + ŌH = R−RcosθA = R (1− cosθA) (B.11)

The rest of the distances can be found using the previous relationships. Distance
¯TB is found using again the sine theorem on the CTB triangle:

¯TB

sinT̂CB
=

¯TC

sinθR

−→ ¯TB =
2Rsinβ

2

sinθR

sinT̂CB

The angle T̂CB equals to:

T̂CB + θR +
β

2
= π −→ T̂CB = π − θR −

β

2
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Then, the distance ¯TB is:

¯TB =
2Rsinβ

2

sinθR

sin

(
π −

(
θR +

β

2

))
=

=
2Rsinβ

2

sinθR

(
sinπ · cos

(
θR +

β

2

)
− cosπ · sin

(
θR +

β

2

))

¯TB =
2Rsinβ

2

sinθR

sin

(
θR +

β

2

)
(B.12)

Distance ¯TE can be found using equation (B.12):

sinθR =
¯TE
¯TB

−→ ¯TE = ¯TB · sinθR =

(
2Rsinβ

2

sinθR

sin

(
θR +

β

2

))
sinθR

¯TE = 2Rsin

(
β

2

)
sin

(
θR +

β

2

)
(B.13)

Equivalently, the distance ĒB is equal to:

cosθR =
ĒB

¯TB
−→ ĒB = ¯TB · cosθR =

(
2Rsinβ

2

sinθR

sin

(
θR +

β

2

))
cosθR

ĒB = 2Rsin

(
β

2

)
sin

(
θR +

β

2

)
cotanθR (B.14)

It is important to note that this distance is negative for θR >
π
2
. The last distance

to be characterized is C̄E:

C̄E = C̄B − ĒB = 2R
sin2 β

2

sinθR

− 2Rsin

(
β

2

)
sin

(
θR +

β

2

)
cotanθR

C̄E = 2R
sinβ

2

sinθR

(
sin

β

2
− sin

(
θR +

β

2

)
cosθR

)
(B.15)

B.1.2 Perimeter

Once all the distances have been characterized, the perimeter is computed as follows:

P = ÂT + ¯TB = R
(

2π −
(
β + 2

(π
2
− α

)))
+

2Rsinβ
2

sinθR

sin

(
θR +

β

2

)
The first term of the previous expression can be simplified:

2π −
(
β + 2

(π
2
− α

))
= 2π −

(
θA − θR + π − 2

(
θA −

π

2

))
=
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= 2π − (θA − θR + π − 2θA + π) = 2π − (2π − θA − θR) = θA + θR

Therefore:

P = R (θA + θR) +
2Rsinβ

2

sinθR

sin

(
θR +

β

2

)
(B.16)

B.2 Area

The area of the middle section of the droplet can be calculated as:

A = Acirc − AÂH′C
− AĈT + ACTB (B.17)

The areas of the different sectors are found in the following sections. The area
of the circle is:

Acirc = πR2 (B.18)

On the other hand, the area of the sector A
ÂH′C

is:

A
ÂH′C

=
R2

2

(
2
(π

2
− α

)
− sin

(
2
(π

2
− α

)))
=
R2

2
(π − 2α− sin (π − 2α))

(B.19)
This expression can be simplified knowing that:

π − 2α = π − 2
(
θA −

π

2

)
= π − 2θA + π = 2π − 2θA (B.20)

and

sin (π − 2α) = sin (2π − 2θA) = sin2π · cos2θA − cos2π · sin2θA = −sin2θA (B.21)

Using equations (B.20) and (B.21) in (B.19), it yields:

A
ÂH′C

=
R2

2
(2π − 2θA + sin2θA) (B.22)

The area of AĈT is characterized as follows:

AĈT =
R2

2
(β − sinβ) (B.23)

The area of the triangle CTB can be easily found since distances C̄B and ¯TE
are already known:

ACTB =
1

2
C̄B · ¯TE =

1

2

(
2R

sin2 β
2

sinθR

)(
2Rsin

(
β

2

)
sin

(
θR +

β

2

))

ACTB =
2R2

sinθR

sin3

(
β

2

)
· sin

(
θR +

β

2

)
(B.24)
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B.2.1 Droplet area

Considering the equations for the different sections of the area, equation (B.17)
becomes:

A = πR2−R
2

2
(2π − 2θA + sin2θA)−R

2

2
(β − sinβ)+

2R2

sinθR

sin3

(
β

2

)
·sin

(
θR +

β

2

)
(B.25)

This equation can be further simplified using the known expression for β and
simplifying some terms:

A =
R2

2

(
θA + θR − sin2θA + sin (θA − θR) +

4sin3
(
θA−θR

2

)
sin
(
θA+θR

2

)
sinθR

)
(B.26)

Finally, the equation for the droplet area in any configuration yields:

A =
R2

2sinθR

([θA + θR − sin2θA + sin (θA − θR)] sinθR+

+ 4sin3

(
θA − θR

2

)
sin

(
θA + θR

2

))
(B.27)

B.3 Equation to solve

With all the distances and areas defined, the relationship between the advancing
and receding angles can be found. When there is no force acting on the droplet, it
can be considered as static with the geometry in Figure B.2.

The area of the static droplet is the following:

AS = R2
S

(
θS −

sin2θS

2

)
(B.28)

where the static radius RS can be found using the following equation:

cS = 2RSsinθS −→ RS =
cS

2sinθS

(B.29)

Therefore, the area of the static droplet can be written as follows:

AS =

(
cS

2sinθS

)2(
θS −

sin2θS

2

)
=

c2
S

4sin2θS

(
θS −

sin2θS

2

)
=
c2

S

4
·K3 (B.30)

Using the hypothesis of small deformations, the area of the middle section of
the droplet can be supposed constant. Therefore, using both equations (B.27) and
(B.30):

c2
S

4
·K3 =
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Figure B.2: Static droplet geometry

=
R2

2sinθR

(
[θA + θR − sin2θA + sin (θA − θR)] sinθR + 4sin3

(
θA − θR

2

)
sin

(
θA + θR

2

))
(B.31)

The radius R can be substituted using the equation (B.10), and the previous
equation yields:

c2
S

4
·K3 =

=
1

2sinθR

(
c · sinθR

(1 + sinθAsinθR − cosθAcosθR)

)2

(θA + θR − sin2θA + sin (θA − θR) + · · · )

(B.32)
The r.h.s. term can be further simplified and written in a more compact form:

c2
S

4
·K3 =

c2 · sinθR

2K2
2

·K1 (B.33)

From equation (B.33), it can be seen that both terms in each side have the chord
squared. It has been observed in some experiments that the chord length doesn’t
chance from the static droplet to the deformed one [24]. Therefore, both chord terms
can be cancelled, giving the following equation in compact form:

K3

4
=

sinθR

2K2
2

·K1 −→ K2
2 ·K3 − 2sinθR ·K1 = 0 (B.34)
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Figure B.3: Computed θR versus fitted θR

where:

K1 =

(
(θA + θR − sin2θA + sin (θA − θR)) sinθR + 4sin3

(
θA − θR

2

)
sin

(
θA + θR

2

))
(B.35)

K2 = 1 + sinθAsinθR − cosθAcosθR (B.36)

K3 =
1

sin2θS

(
θS −

sin2θS

2

)
(B.37)

Equation (B.34) is solved in MATLAB for θR, and in each step a different value
of θA is given, varying from θS to π. It is very important to note that the only two
variables in this equation are the angles, which means that their relationship is the
same regardless the size of the droplet. The result can be plotted in order to find a
relationship between the advancing and receding angles.

Since it is impossible to find an explicit equation for the receding angle, a fitting
function needs to be found in order to have an expression for this magnitude. Figure
B.3 shows the computed values for the receding angle and a fitting curve, compared
to the fitting curve found by the study of Esposito et al. [24]. From the yielding
plot, one can observe two clearly different parts: from θA = 2.39 to 2.43 rad, the
receding angle drops quickly, whereas from 2.43 to π θR decreases almost linearly.
Therefore, two different equations are proposed for the two parts of the curve. Using
the free software CurveFit, the best curve for both cases is:

θR =
a+ bθA

1 + cθA + dθ2
A

(B.38)

166



where the constants a, b, c and d have the values shown in Table 2.1.

B.4 Center of Mass

In this section, the expressions for both coordinates of the droplet center of mass
are developed.

B.4.1 Circle

The center of mass coordinates are the same than the point O:

xcirc = RsinθA (B.39)

ycirc = −RcosθA (B.40)

The center of mass x-coordinate of the sector ÂHC is the same than the circle:

x
ÂHC

= ĀH = RsinθA (B.41)

On the other hand, the y-coordinate has to be computed using some known
relationships. For a circular sector as the one shown on the following Figure B.4,
the x-coordinate of the center of mass is:

x
ÂHCO

=
2Rsinα2

3α2

(B.42)

Figure B.4: Center of mass of a circular sector
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Since the geometry is symmetric with respect the x axis, the y-coordinate of the
center of mass is 0. Thus, the center of mass of the sector AH’C can be computed
as the difference between the circular sector AH’CO and the triangle ACO:

x
ÂHC

=
x
ÂHCO

A
ÂHCO

− xACOAACO

AAHC

(B.43)

where

A
ÂHCO

=
1

2
R22α2 = R2α2 (B.44)

xACO =
2Rcosα2

3
(B.45)

AACO = 2 · 1

2
Rsinα2Rcosα2 = R2sinα2cosα2 = R2 sin2α2

2
(B.46)

AAHC = A
ÂHCO

− AACO = R2α2 −R2 sin2α2

2
(B.47)

Therefore, equation (B.43) becomes:

x
ÂHC

=
2Rsinα2

3α2
R2α2 − 2Rcosα2

3
R2 sin2α2

2

R2α2 −R2 sin2α2

2

(B.48)

Simplifying terms, the previous expression yields:

x
ÂHC

=
2Rsinα2

3
(1− cos2α2)

α2 − sin2α2

2

=
2Rsinα2

3

(
sin2α2

)
α2 − sin2α2

2

=
2Rsin3α2

3

α2 − sin2α2

2

(B.49)

In this case, the angle α2 is:

α2 =
π

2
− α =

π

2
−
(
θA −

π

2

)
= π − θA (B.50)

The expressions with the sine of α2 can be simplified:

sinα2 = sin (π − θA) = sinπ · cosθA − cosπ · sinθA = sinθA (B.51)

sin2α2 = sin (2π − 2θA) = sin2π · cos2θA − cos2π · sin2θA = −sin2θA (B.52)

Then, equation (B.49) becomes:

x
ÂHC

=
2
3
Rsin3θA

(π − θA) + sin2θA
2

(B.53)

However, this expression is based on the system of coordinates shown in Figure
B.4. The coordinates in the global system of coordinates are:

y
ÂHC

= −
2
3
Rsin3θA

(π − θA)− sin2θA
2

+Rsinα = −
2
3
Rsin3θA

(π − θA) + sin2θA
2

−RcosθA (B.54)
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Both equations (B.41) and (B.54) give an expression for the ÂHC center of mass.

The equations used for ĈT sector are the same than the ones for the ÂHC sector,
but this one is rotated with an angle α3 (Figure B.5). Using the relationships in the
previous section, but substituting the angle α2 by β

2
:

xĈT =
2
3
Rsin3 β

2

β
2
− sin2β

2

2

(B.55)

Figure B.5: Center of mass of the sector CT

This expression is for the sector before the rotation. The global coordinates of
the center of mass can be found with the projection of this distance using the angle
α3:

xĈT =

 2
3
Rsin3 β

2

β
2
− sin2β

2

2

 · cosα3 (B.56)

yĈT = −

 2
3
Rsin3 β

2

β
2
− sin2β

2

2

 · sinα3 (B.57)

Taking into account the coordinates of the point O in the global coordinates, the
final expressions yield:

xĈT = RsinθA +

(
2
3
Rsin3 β

2
β
2
− sinβ

2

)
· cosα3 (B.58)
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yĈT = −RcosθA −

(
2
3
Rsin3 β

2
β
2
− sinβ

2

)
· sinα3 (B.59)

The angle α3 can be easily computed as:

β

2
+ α3 + γ = β −→ α3 =

β

2
− γ (B.60)

Using both relationships expressed in (B.3) and (B.2), the previous expression
yields:

α3 =
θA − θR

2
−
(π

2
− θR

)
=
θA

2
− θR

2
− π

2
+ θR =

θA + θR

2
− π

2
(B.61)

The sine and cosine of α3 yield:

sinα3 = sin

(
θA + θR

2
− π

2

)
= sin

θA + θR

2
·cos

π

2
−cos

θA + θR

2
·sinπ

2
= −cos

θA + θR

2
(B.62)

cosα3 = cos

(
θA + θR

2
− π

2

)
= cos

θA + θR

2
· cos

π

2
+ sin

θA + θR

2
· sinπ

2
= sin

θA + θR

2
(B.63)

Finally, the expressions (B.58) and (B.59) yield:

xĈT = RsinθA +

(
2
3
Rsin3 β

2
β
2
− sinβ

2

)
· sinθA + θR

2
(B.64)

yĈT = −RcosθA +

(
2
3
Rsin3 β

2
β
2
− sinβ

2

)
· cos

θA + θR

2
(B.65)

The center of mass of CTE triangle can be easily found with the following rela-
tionships:

xCTE = ĀC +
2

3
C̄E = 2RsinθA +

2

3

(
2R

sinβ
2

sinθR

(
sin

β

2
− sin

(
θR +

β

2

)
cosθR

))
(B.66)

yCTE =
1

3
¯TE =

2R

3
sin

(
β

2

)
sin

(
θR +

β

2

)
(B.67)

The center of mass of ETB triangle depends on the value of θR since, according
to equation (B.14), the distance ĒB is negative or positive for certain values of the
receding angle. Therefore, the area of this triangle becomes negative when θR > π

2
,

whereas it is positive when θR < π
2

as shown in Figure B.6. Notice that the area is
exactly 0 when θR = π

2
.
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Figure B.6: Area of the ETB triangle depending on θR

Figure B.7: Triangle ETB for values of θR >
π
2
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Due to the change in the sign, two possible situations are studied depending
on the value of the receding angle in order to see if there is any difference in the
computation.

Figure B.7 shows the shape of triangle ETB when θR > π
2
. Therefore, the x

coordinate of the center of mass can be computed as follows:

xETB = ĀC + C̄B +
2

3
ĒB =

= 2RsinθA + 2R
sin2 β

2

sinθR

+

∣∣∣∣43Rsin

(
β

2

)
sin

(
θR +

β

2

)
cotanθR

∣∣∣∣ (B.68)

Figure B.8: Triangle ETB for values of θR <
π
2

On the other hand, when θR < π
2

as shown in Figure B.8, the x coordinate of
the center of mass can be computed as follows:

xETB = ĀC + C̄E +
1

3
ĒB = ĀC + C̄B − ĒB +

1

3
ĒB = ĀC + C̄B − 2

3
ĒB

= 2RsinθA + 2R
sin2 β

2

sinθR

− 4

3
Rsin

(
β

2

)
sin

(
θR +

β

2

)
cotanθR (B.69)

yETB =
1

3
¯TE =

2R

3
sin

β

2
sin

(
θR +

β

2

)
(B.70)

Looking at equations (B.68) and (B.69) it can be concluded that the same equa-
tion works for any value of the receding angle. It is important to note that this
result does not agree with the one shown by Esposito et al. [24]. The results found
in that study state that there is indeed a difference on the xETB equation depending
on the value of θR. When θR >

π
2
, the equation is the same that equation (B.68):

xETB = 2RsinθA + 2R
sin2 β

2

sinθR

− 4

3
Rsin

(
β

2

)
sin

(
θR +

β

2

)
cotanθR

Nonetheless, the equation for θR <
π
2

is the following:

xETB = 2RsinθA + 2R
sin2 β

2

sinθR

+
2

3
Rsin

(
β

2

)
sin

(
θR +

β

2

)
cotanθR
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The easiest way to see which formula makes sense is to plot both equations in
the same chart. Figure B.9 shows the difference between the previous expressions.
Before reaching any conclusion, it is worth mentioning that the plot has been ob-
tained using a droplet of a fixed chord, in this case 0.5mm. Therefore, according to
Esposito et al., the center of mass x-coordinate of the ETB triangle is always greater
than the chord. This result is not physical.

Figure B.9: Center of mass coordinates depending on θA

Alternatively, the present model uses the same formula for both cases and the
result makes sense: when θR >

π
2
, the center of mass of the ETB triangle is outside

the droplet and is greater than the chord. On the other hand, when θR < π
2

the
center of mass of the aforementioned triangle is inside the droplet, which means that
its x-coordinate has to be less than the chord.

Finally, the center of mass of the droplet can be computed using the different
equations displayed in the previous sections:

xdrop =
xcircAcirc − xÂHCAÂHC − xĈTAÂHC + xCTEACTE + xETBAETB

A
(B.71)

ydrop =
ycircAcirc − yÂHCAÂHC − yĈTAÂHC + yCTEACTE + yETBAETB

A
(B.72)

Having the center of mass well characterized, the previous equations are imple-
mented in MATLAB, and the relationship of both coordinates of the center of mass
with the advancing angle can be seen in Figure B.10. Additionally, the results ob-
tained by Esposito et al. [24] are displayed as well, proving that there is a good
agreement between both results.
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Figure B.10: Center of mass coordinates depending on θA

Two conclusions can be extracted from Figure B.10. Firstly, the y-coordinate
of the mass center is fairly constant with respect the advancing angle. In addition,
the relationship between the x-coordinate and θA is linear, so a fitting curve can
be obtained. This means that if one can find an explicit relationship between the
x-coordinate and the advancing angle, it is also possible to find its relationship with
the radius, the height and the perimeter of the droplet.

B.5 Volume of the droplet

Another important variable that needs to be parameterized is the droplet volume.
Figure B.2 shows the geometry of a static droplet laying on a horizontal surface.
Its volume can be computed as the difference between the volume of the sphere of
radius Rs minus the volume of the spherical cap:

Vdrop = Vsphere − Vcap (B.73)

B.5.1 Volume of the sphere

The equation for the sphere volume is well-known. For a sphere of radius Rs:

Vsphere =
4

3
πR3

s (B.74)
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B.5.2 Volume of the spherical cap

The volume of a spherical cap (Figure A.1 in Appendix A is computed according to
the following equation:

Vcap =
πδs
6

(
3
(cs

2

)2

+ δ2
s

)
(B.75)

where cs is the droplet chord, which is computed using equation (B.29), and the
distance δ (Figure B.1) can be computed using equation (B.5):

δs = Rs (1 + cosθs) (B.76)

Thus, using equations (B.29) and (B.76), equation (B.75) yields:

Vcap =
πRs (1 + cosθs)

6

(
3 (Rssinθs)

2 +R2
s (1 + cosθs)

2) =

=
π

6
R3
s (1 + cosθs)

[
3sin2θs + 1 + 2cosθs + cos2θs

]
(B.77)

The term between brackets in equation (B.77) can be further simplified:

3sin2θs + 1 + 2cosθs + cos2θs = 2sin2θs + sin2θs + 1 + 2cosθs + cos2θs =

= 2sin2θs + 1 + 2cosθs + 1 = 2
(
sin2θs + 1 + cosθs

)
(B.78)

On the other hand:

sin2θs = 1− cos2θs = (1− cosθs) (1 + cosθs) (B.79)

Substituting the term sin2θs in equation (B.78), it yields:

2
(
sin2θs + 1 + cosθs

)
= 2 [(1− cosθs) (1 + cosθs) + 1 + cosθs] =

= 2 (1 + cosθs) [(1− cosθs) + 1] = 2 (1 + cosθs) (2− cosθs) (B.80)

Getting back to equation (B.77), the term between brackets is substituted by
the simplified term in equation (B.80):

Vcap =
π

6
R3
s (1 + cosθs) 2 (1 + cosθs) (2− cosθs) =

π

3
R3
s (1 + cosθs)

2 (2− cosθs)

(B.81)
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B.5.3 Volume of the droplet

Finally, according to equations (B.73), (B.74) and (B.81), the volume of the droplet
is expressed by the following equation:

Vdrop =
4

3
πR3

s−
π

3
R3
s (1 + cosθs)

2 (2− cosθs) = R3
s

[
4

3
π − π

3
(1 + cosθs)

2 (2− cosθs)

]
(B.82)

Equation (B.82) can be used to have an explicit relationship between the droplet
chord and its volume:

cs = 2Rssinθs = 2sinθs

[
Vdrop

4
3
π − π

3
(1 + cosθs)

2 (2− cosθs)

] 1
3

(B.83)

It is worth mentioning that this equation is different than the one proposed by
Esposito et al. [24]:

cs = 2sinθs

[
Vdrop

4
3
π − π (1 + cosθs)

2 cosθs

] 1
3

(B.84)

B.5.4 Contact line

The surface tension force is a force that acts along the droplet contact line [43].
However, this line has not been characterized yet. In order to simplify the compu-
tation of the surface tension force, the contact line will be considered rectangular.
Since the volume and the area are already described by equations (B.82) and (B.28)
respectively, the thickness of the cylinder can be found as follows:

td =
V

A
=
R3

S

[
4
3
π − π

3
(1 + cosθS)2 (2− cosθS)

]
R2

S

(
θS − sin2θS

2

) =

= RS

[
4
3
π − π

3
(1 + cosθS)2 (2− cosθS)

](
θS − sin2θS

2

) (B.85)

Of course, this is a coarse approximation of the actual geometry of the contact
line, but future works will include a parametrization of the contact line depending
on the droplet deformation. As shown in [43], as soon as the droplet deforms, the
contact line deforms as well, from a circular shape to a less intuitive shape, formed
by half a circle and half an ellipse (Figure B.11).

This shape is closer to the actual one due to the effect of pinning [24], [43].
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Figure B.11: Droplet contact line once it is deformed
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Appendix C

Newmark-Bossak integration
scheme

The Newmark-Bossak method is a modification of the Newmark method to improve
the solution of highly geometrically non-linear problems. The original Newmark
algorithm is an unconditionally stable time integration scheme with second-order
accuracy. Bossak scheme introduces numerical dissipation, thus damping the high
frequencies. The Newmark-Bossak formulae for the acceleration and velocity read:

v̄n+1 =
γ

β

(
ūn+1 − ūn

δt

)
−
(
γ

β
− 1

)
v̄n −

δt

2

(
γ

β
− 2

)
ān (C.1)

ān+1 =
ūn+1 − ūn
βδt2

− 1

βδt
v̄n −

(
1− 2β

2β

)
ān (C.2)

where

γ =
1

2
− αB (C.3)

and

β =

(
1− αB

)2

4
(C.4)

with αB > 0. If αB = 0 we obtain the standard Newmark scheme at its optimal,
without any numerical dissipation. Numerical dissipation control is obtained by
varying the coefficient αB [66].
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