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Abstract

This dissertation presents the results of our research on some recent develop-
ments in Abstract Algebraic Logic (AAL), namely on the Suszko operator [24],
the Leibniz filters [37], and truth-equational logics [55]. Part I builts and develops
an abstract framework which unifies under a common treatment the study of the
Leibniz, Suszko, and Frege operators in AAL. Part IT generalizes the theory of the
strong version of protoalgebraic logics, started in [37], to arbitrary sentential logics.

The interplay between several Leibniz- and Suszko-related notions led us to
consider a general framework based upon the notion of S-operator (inspired by
that of “mapping compatible with S-filters” [24, p. 199]), which encompasses the
Leibniz, Suszko, and Frege operators. In particular, when applied to the Leibniz
and Suszko operators, new notions of Leibniz and Suszko S-filters arise as instances
of more general concepts inside the abstract framework built. The former general-
izes the existing notion of Leibniz filter for protoalgebraic logics [37] to arbitrary
logics, while the latter is introduced here for the first time. Several results, both
known and new, follow quite naturally inside this framework, again by instantiating
it with the Leibniz and Suszko operators. Among the main new results, we prove
a General Correspondence Theorem (Theorem 1.38), which generalizes Blok and
Pigozzi’s well-known Correspondence Theorem for protoalgebraic logics [10], as well
as Czelakowski’s less known Correspondence Theorem for arbitrary logics [24]. We
characterize protoalgebraic logics in terms of the Suszko operator as those logics in
which the Suszko operator commutes with inverse images by surjective homomor-
phisms (Theorem 3.12). We characterize truth-equational logics in terms of their
(Suszko) S-filters (Theorem 2.30), in terms of their full g-models (Corollary 2.31),
and in terms of the Suszko operator, a characterization which strengthens that of
[65], as those logics in which the Suszko operator is a structural representation from
the set of S-filters to the set of Alg(S)-relative congruences, on arbitrary algebras
(Theorem 4.13). Finally, we prove a new Isomorphism Theorem for protoalgebraic
logics (Theorem 3.8), in the same spirit of the famous one for algebraizable logics
[11] and for weakly algebraizable logics [25].

Endowed with a notion of Leibniz filter applicable to any logic, we are able
to generalize the theory of the strong version of a protoalgebraic logic developed
in [37] to arbitrary sentential logics. Given a sentential logic S, its strong version
ST is the logic induced by the class of matrices whose truth set is Leibniz filter.
We study three definability criteria of Leibniz filters: equational, explicit and log-
ical definability. Under (any of) these assumptions, we prove that the ST-filters
coincide with Leibniz S-filters on arbitrary algebras. Finally, we apply the general
theory developed to a wealth of non-protoalgebraic logics covered in the literature.
Namely, we consider Positive Modal Logic PML [28], Belnap’s logic B [8], the
subintuitionistic logics wkK, [19] and Visser’s logic VPL [58], and Lukasiewicz’s
infinite-valued logic preserving degrees of truth [35]. We also consider the gener-
alization of the last example mentioned to logics preserving degrees of truth from
varieties of integral commutative residuated lattices [17], and further generaliza-
tions to the non-integral case, as well as to the case without multiplicative constant.
We classify all the examples investigated inside the Leibniz and Frege hierarchies.
While none of the logics studied is protoalgebraic, all the respective strong versions
are truth-equational (though this need not hold in general).






Resum

Aquesta dissertacié presenta els resultats de la nostra recerca sobre alguns
temes recents en Logica Algebraica Abstracta (LAA), concretament, 1’operador
de Suszko [24], els filtres de Leibniz [37], i les logiques truth-equacionals [55]. La
primera part construeix i desenvolupa un marc abstracte que unifica sota un mateix
tractament 'estudi dels operadors de Leibniz, Suszko, i Frege en AAL. La segona
part generalitza la teoria de la versié forta d’una logica protoalgebraica, que va
comencar a [37], a logiques sentencials arbitraries.

La noci6 abstracta que abasta els operadors de Leibniz, de Suszko, i de Frege,
és la de S-operador (Definition 1.1). Hem investigat especialment una subclasse de
S-operadors, els anomenats S-operadors de compatibilitat, que té origen en [24, p.
199] sota el nom de “mapping compatible with S-filters”. L’operador de Frege no és
un S-operador de compatibilitat, mentre que els operadors de Leibniz i de Suszko ho
sén. De fet, provem que I’operador de Leibniz és I'inic S-operador de compatibilitat
que commuta amb imatges inverses d’homomorfismes exhaustius (Theorem 1.24);
i que 'operador de Suszko és el més gran S-operador de compatibilitat monoton
(Lemma 1.20). D’altra banda, l'operador de Frege és un S-operador de compatibi-
litat si i només si S és una logica plenament Fregeana (Proposition 2.48). Cercant
propietats generals comuns als tres S-operadors paradigmatics en AAL, hem in-
trodiiit la nova nocié de coheréncia (Definition 1.28), una propietat més feble que
la de commutar amb imatges inverses d’homomorfismes exhaustius. Sota la hipote-
si de coheréncia d’una familia de S-operadors, hem establert un Teorema General
de la Correspondeéncia (Theorem 1.38), que generalitza altres teoremes de la cor-
respondéncia coneguts en AAL, concretament el de Blok i Pigozzi per a logiques
protoalgebraiques [10, Theorem 2.4], i el de Czelakowski per a logiques arbitrari-
es [24, Proposition 2.3], aix6 com una primera generalitzacié del primer teorema
esmentat obtinguda per Font i Jansana [37, Corollary 9.1].

Una familia de S-operadors V té associades amb ella les nocions de V-classe i
de V-filtre (Definitions 1.12 i 1.15). Quan s’apliquen a les families de S-operadors
i ﬁs, respectivament, el primer concepte origina dues families de g-models plens,
mentre que el segon origina noves nocions de filtres de Leibniz i de Suszko, com
a casos particulars. Proposem com a nova definicié de filtre de Leibniz justament
la noci6é de $2-filtre. Aquesta nova proposta generalitza a logiques arbitraries la
nocié ja existent per a logiques protoalgebraiques [37, Definition 1]. A més, el fet
que es pugui aplicar a qualsevol logica obre la possibilitat de generalitzar alguns
resultats sobre logiques protoalgebraiques a logiques sentencials arbitraries. Per
example, donada una logica sentencial S, els S-filtres de Leibniz sén precisament
els elements minims dels g-models plens de S (Proposition 2.9; compareu amb
[36, Proposition 3.6]). La nocié de filtre de Suszko s’introdueix aqui per primera
vegada, i també ha estat investigada en detall. Els S-filtres de Suszko resulten ser
els elements minims dels g-models plens de S que a més sén creixents (“up-sets”).
De fet, donada una algebra arbitraria A i un F' € FisA, F és un filtre de Suzko
de A siinomés si (FisA)F és un g-model ple de S (Theorem 2.29). A més, els
filtres de Suszko s’han revelat forca conectats ams les logiques truth-equacionals,
introdiiides en [55]. En efecte, una logica S és truth-equacional si i només si tots
els S-filtres s6n de Suszko, per a algebres arbitraries (Theorem 2.30).
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També s’obtenen de manera natural diferents resultats, tant coneguts com nous,
a dins d’aquest marc un cop aplicat als operadors de Leibniz i de Suszko. En par-
ticular, hem obtingut noves caracteritzacions d’algunes classes de logiques de la
jerarquia de Leibniz. Per esmentar-ne les principals, caracteritzem les logiques pro-
toalgebraiques en termes de I'operador de Suszko com aquelles on aquest operador
commuta amb imatges inverses d’homomorfismes exhaustius (Theorem 3.12). Ca-
racteritzem les logiques truth-equacionals en termes dels seus filtres de Suszko com
ja hem dit, perd també en termes dels seus g-models plens (Corollary 2.31), i en
termes de l'operador de Suszko mateix, com les logiques on aquest operador és
una representacié estructural del conjunt de S-filtres en el conjunt de congrueéncies
Alg(S)-relatives, per a algebres arbitraries (Theorem 4.13); aquesta caracteritzacié
reforca la de [55]. A més, la mateixa condicié, imposada només sobre l'algebra de
les formules, caracteritza la veritat equacionalment definible a la classe LMod>"(S)
(Theorem 4.21), un problema deixat obert a [55]. Finalment, provem un nou te-
orema d’isomorfisme per a logiques protoalgebraiques (Theorem 3.8), en el mateix
espirit que els famosos teoremes d’isomorfisme per a logiques algebritzables ([11,
Theorem 3.7]; veure [48, Theorem 5.2] per al cas no finitari) i per a logiques feble-
ment algebritzables ([25, Theorem 4.8]).

Un cop dotats d’una nocié de filtre de Leibniz aplicable a qualsevol logica, ens
va semblar natural generalitzar la teoria de la versi6 forta d’una logica protoalge-
braica, desenvolupada en [37], a 10giques sentencials arbitraries. Donada una logica
sentencial S, la seva versié forta ST és la logica induida per la classe de matrius
que tenen com a conjunt de veritat un filtre de Leibniz. Ens vam centrar espe-
cialment en la interaccié entre els S-filtres de Leibniz i els S*-filtres, mitjancant
algunes condicions sota les quals aquestes dues families de S-filtres coincideixen.
Algunes d’aquestes condicions impliquen a més que les classes de S-algebres i de
ST-algebres coincideixin, fet que com sabem també passa al cas protoalgebraic, on
val Alg(S) = Alg™(S) = Alg*(S™) = Alg(S™), per a qualsevol logica protoalgebraica
S. Perd resulta que aixod no és un fet general, atés que la classe Alg(S™) pot estar
estrictament continguda a la classe Alg(S), com testimonien alguns dels exemples
de logiques no protoalgebraiques estudiades.

Hem considerat tres criteris de definibilitat dels filtres de Leibniz: definabili-
tat equacional, definibilitat explicita, i definibilitat logica. El primer és un nou
criteri, mentre que els altres dos sén generalitzacions a logiques arbitraries de les
respectives nocions introduides per a 1dgiques protoalgebraiques a [37]. Sota qual-
sevol d’aquestes hipotesis, els ST-filtres coincideixen amb els S-filtres de Leibniz
en algebres arbitraries. Una familia gran d’exemples abastada pel primer tipus de
definibilitat esmentat és la classe de logiques basades en semireticles (“semilattice-
based”) amb teoremes. De fet, aquestes logiques sempre tenen els seus filtres de
Leibniz equacionalment definibles pel conjunt de equacions 7(z) = {z &~ T}, on
T(z) € Thmg (Corollary 6.11). A més, la seva versié forta és la logica T-assercional
respecte de Alg(S). Conseglientement, la versié forta de qualsevol logica basada en
semireticles amb teoremes és truth-equacional.

Finalment, hem aplicat la teoria general desenvolupada a un cert nombre de
logiques no protoalgebraiques estudiades a la literatura. Concretament, a la Logica
Positiva Modal PML [28], a la 1dgica de Belnap B [8], a les logiques subintuicionis-
tes wkC, [19] 1 de Visser VPL [58], i a la 1ogica infinito-valorada de Lukasiewicz que
preserva graus de veritat [35]. També hem considerat la generalitzaci6é del darrer
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exemple esmentat a logiques que preserven graus de veritat respecte de varietats
de reticles residuats integrals i commutatius [17], aixi com les generalitzacions als
casos no integrals i sense constant multiplicativa. Hem classificat tots els exemples
investigats dins de les jerarquies de Leibniz i de Frege. Un resum d’aquests fets es
troba a les taules 4 i 5. Cap de les logiques estudiades és protoalgebraica, mentre
que totes les respectives versions fortes sén truth-equacionals (fet que no es déna
en general). D’altra banda, les versions fortes obtingudes varien des de no proto-
algebraiques a BP-algebritzables. Un cop més, aquesta situacié contrasta amb la
versié forta d’una logica protoalgebraica, que sempre és protoalgebraica.
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Introduction

Abstract Algebraic Logic (AAL) is a discipline inside Logic which takes a global
perspective on the algebraization of different logical systems, mainly propositional,
that have been considered in several fields such as Philosophy, Computer Science
or the Foundations of Mathematics. Emphasis is put on the general process of
associating to a given logic a class of algebras sharing very deep bonds with the
logical system itself. The classical example is Classical Propositional Logic (CPC)
and its famous algebraic counterpart, the class of Boolean Algebras. Similarly,
and to name just a few more well-known examples, Intuitionistic Propositional
Logic (ZPC) is canonically associated with the class of Heyting Algebras, while the
implication fragment of CPC is canonically associated with Rasiowa’s implication
algebras [56]. These, so-to-speak, “individualized” algebraic studies of particu-
lar logics, nowadays are seen as part of the discipline of Algebraic Logic (AL),
started still in the XIXth century, and culminated in the so-called Lindenbaum-
Tarski method, which emerged in the 1920s and was formalized in the 1940s and
1950s. For historical information about AAL, see [23, 34, 39].

All the examples of logics mentioned so far are, in AAL terminology, algebraiz-
able. The degree to which each particular logic shares strong connections with its
algebraic counterpart is one of the core problems addressed in AAL, and it gave
rise to the so-called Leibniz hierarchy. This hierarchy classifies logics according
to the algebraic properties enjoyed by the Leibniz operator over the logical filters
on arbitrary algebras. The Leibniz operator is one of the cornerstone concepts in
AAL, and was first introduced in the seminal work of Blok and Pigozzi [11]. Tt
soon acquired the key role which still plays today in AAL, and one may safely
say that any other operator put forward in AAL will always stand in comparison
with the Leibniz operator. In fact, two further operators have been also considered
in AAL, though studied to a far less extent. Namely, the Frege operator and the
Suszko operator. Coincidently, the first one also gave rise to a hierarchy bearing
its name, this time classifying logics according to some replacement properties they
may satisfy. The Frege hierarchy was coined in [32], but its four classes of logics had
already appeared separately in a plethora of different works [22, 29, 36, 54, 59].
The Suszko operator, on the other hand, didn’t give rise to any (new) hierarchy in
AAL, but was soon recognised as a good candidate to extend the Leibniz hierarchy
outside the scope of protoalgebraic logics, potentially to arbitrary logics. The rea-
son why this was the case is quite simple: protoalgebraic logics are characterized
by the monotonicity of the Leibniz operator; the Suszko operator is always mono-
tonic; for protoalgebraic logics, both operators coincide. The Suszko operator was
formally introduced by Czelakowski in [22], though he attributes its invention and
first characterization to Suszko, in unpublished lectures.

xvii
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The original motivation for the work that eventually developed into the present
dissertation was to undertake a thorough study of the Suszko operator in AAL.
Broadly speaking, the goal was to try to mimic several known properties of pro-
toalgebraic logics in the non-protoalgebraic realm, as well as to generalize some
more recent developments in AAL to non-protoalgebraic logics, namely the notion
of Leibniz filter [37]. The only work in the literature exclusively dedicated to the
Suszko operator was — and still is, to the author’s knowledge — [24]. This seminal
paper about the Suszko operator lays the groundwork for the present investigation,
and contains already several explicit clues to some of our new notions and results
— one can highlight the notion of “mapping compatible with S-filters” [24, p. 199]
as a predecessor version of an S-compatibility operator (see Definition 1.1), the
notion of deductive homomorphism as the particular case of an homomorphism
being ﬁg—compatible (see Definition 1.25 and Lemma 1.27), the “Correspondence
Property for deductive homomorphisms” [24, Proposition 2.3] as an instance of the
General Correspondence Theorem 1.38, and its very last result [24, Theorem 2.8]
which, in the presence of the (unknown at the time) definitions of truth-equational
logic and Suszko filter, is remarkably insightful (compare the mentioned result with
Theorems 2.30 and 3.11).

Protoalgebraicity is usually thought in AAL as say, the least assumption one
can ask for a well-behaved logic. However, we have come to realize that the class of
truth-equational logics, introduced by Raftery in [55], and independent from that
of protoalgebraic logics, still exhibits very well-behaviours, at least with respect to
the properties of the Leibniz operator one wished to find parallel in the Suszko op-
erator. Surprisingly enough, or maybe not, the Suszko operator plays a prominent
role in [55]. This paper soon became the main reference in the quest for finding
properties of the Suszko operator inside truth-equational logics, which culminated
in Section 4.1. Section 4.2 also addresses a problem rose in [55]. Furthermore,
given Raftery’s characterisation of truth-equational logics in terms of the Suszko
operator [55, Theorem 28], the problem of finding similar characterizations for the
remaining classes in the Leibniz hierarchy — answered in Section 3.2 — seemed
not only natural, but also an interesting loose end to learn more about the Suszko
operator.

The study of the Suszko operator made way to realize that the key points behind
the proofs of several results concerning both the Leibniz and the Suszko operator,
relied not so much in the definitions of these particular operators, but rather in
a few compatibility arguments of congruences in general, and in the behaviour of
these operators with respect to inverse images by surjective homomorphisms. In
other words, Part I of the present work nourished from a particular instance of
S-operator — the Suszko operator.

The second part of this work is easier to track down, as not only it relies heavily
on, but actually follows rather closely, the paper [37]. The goal of generalizing the
protoalgebraic notion of Leibniz filter bifurcated in its generalization to arbitrary
logics and the new notion of Suszko filter. The latter is strictly related to truth-
equational logics, as shown in Theorem 2.30. The former leads to the definition
of strong version of an arbitrary sentential logic, which is the core subject of Part
II. Indeed, the strong version of a logic, henceforth denoted by S¥, is the logic
induced by the class of all matrices whose designated set is a Leibniz filter of S.
Leibniz filters were originally defined for protoalgebraic logics in [37] as the least
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elements among the class of S-filters which share the same Leibniz congruence.’

The existence of a minimum element for each such class of S-filters is guaranteed
by the protoalgebraic assumption over the underlying logic. However, a new notion
of Leibniz filter is proposed in Part I which is applicable to arbitrary logics, and
moreover coincides with the known one for protoalgebraic logics. It is only natural
then to consider the logic induced by the class of all matrices whose designated set
is a Leibniz filter of S, according to our new definition. This is what we propose to
do in Part II.

The formalization of the strong version of a logic S sheds some light on the
phaenomenon of pairs of logics strongly related found in many areas of non-classical
logics. For instance, in [37] it is shown that the global modal consequence re-
lation of the class of all Kripke frames is the strong version of the local modal
consequence given by that same class, and that the Lukasiewicz’s n-valued logic is
the strong version of the Lukasiewicz’s n-valued logic preserving degrees of truth.
Many interesting non-classical logics are nevertheless not protoalgebraic. For exam-
ple, Positive Modal Logic [28], Belnap’s logic [8], logics preserving degrees of truth
from the varieties of integral commutative residuated lattices [17], subintuitionistic
logics [16, 19], etc. We shall cover these examples, among others, in Chapter 7.

It is worth mentioning that the problem of generalizing “the phanomenon
of linked pairs of deductive systems independently of the protoalgebraicity of the
weaker member of the pair” had already been tackled in [38]. Here, the existence
of enough Leibniz filters is the assumption upon which the protoalgebraic setting
of [37] is extended to arbitrary logics. But our new definition of Leibniz filter
guarantees the existence of these filters regardless of any further assumption over
the underlying logic. Actually, [38] exhibits an example of a subintuitionistic logic,
concretely w/C,, which although naturally associated to its extension sk, under the
rule (N), does not form a Leibniz-linked pair with it. As we shall see in Section 7.3,
sK, is indeed the strong version of wk,, that is, (wkK,)T = sK,. In retrospect,
and taking Proposition 5.1 into account, one also recognises that in [31] another
pair of logics whose weak member is non-protoalgebraic was already seen to share
the same bonds as those of the strong version for protoalgebraic logics. This pair is
composed by the Lukasiewicz infinite logic preserving degrees of truth, Lgo, and its
companion preserving truth, L})O In Section 7.4, we shall cover this example inside
the more general case of integral commutative residuated lattices.

Summary of contents. The structure of this thesis is divided in two parts,
as we have unfolded already. Both parts aim at extending some traditional, and
some more recent, AAL tools, to non-protoalgebraic logics. We now proceed to
detail their content.

Part I

Chapter 1 is devoted to construct a general framework upon which a common
study of the Leibniz, Suszko, and Frege operators can be built. The core notion
is that of S-operator (Definition 1.1), although probably of more relevance is its
refinement of S-compatibility operator (Definition 1.19). As already mentioned,
this latter notion was originally introduced (in rigor, for congruential S-operators)

n fact, these (equivalence) classes of S-filters had already been pointed out in [36, p.59]
and [25, p.650].
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under a similar name in [24, p. 199]. Another important new concept is that
of coherence, which may be seen as a weaker property than commutativity with
inverse images by surjective homomorphisms. We prove that the three paradigmatic
examples of S-operators — Leibniz, Suszko, and Frege — are coherent, while only
the Leibniz operator commutes with inverse images by surjective homomorphisms.
Furthermore, this notion allows us to prove the main result of Chapter 1 — the
General Correspondence Theorem (Theorem 1.38). This result generalizes several
known correspondence theorems in AAL, namely Blok and Pigozzi’s well-known
Correspondence Theorem for protoalgebraic logics [10, Theorem 2.4], Czelakowski’s
less known Correspondence Theorem [24, Proposition 2.3] for arbitrary logics, and
it also generalizes the first strengthening obtained for protoalgebraic logics by Font
and Jansana [37, Corollary 9.1].

In Chapter 2, the general framework just built is instantiated with the three
main examples of S-operators. Some new concepts arising from these particular
instances will turn out to be quite relevant, especially those of Leibniz filter and
Suszko filter. A wealth of both known and new results in AAL emerges rather
naturally inside the general framework of S-operators, of which we may point out a
characterization of truth-equational logics in terms of Suszko filters (Theorem 2.30),
as well as another characterization for this class of logics in terms of their full g-
models (Corollary 2.31).

The two main results of Part I, however, appear in Chapter 3. Namely, a
new Isomorphism Theorem for protoalgebraic logics (Theorem 3.8) in the same
spirit of the famous one for algebraizable logics ([11, Theorem 3.7]; see also [48,
Theorem 5.2] for the non-finitary case) and for weakly algebraizable logics ([25,
Theorem 4.8]); as a corollary, another isomorphism theorem characterizing equiv-
alential logics is obtained (Corollary 3.9); and finally, following the path set by
Raftery’s characterization of truth-equational logics in terms of the Suszko opera-
tor, we characterize protoalgebraic and equivalential logics in terms of this operator
as well. Together with [55, Theorem 28], similar characterizations for weakly alge-
braizable and algebraizable logics follow as corollaries.

Finally, in Chapter 4, we undertake a small detour on truth-equational logics,
providing some new contributions to the study of this class of logics. The main
result is a new characterisation of the Suszko operator inside this class of logics
(Theorem 4.2). We present yet another family of coherent S-compatibility operators
for logics having Alg(S) as an algebraic semantics (or equivalently, Alg*(S)), of
which truth-equational logics are a (proper) subclass.

Part I1

We begin Chapter 5 by introducing the definition of the strong version ST of
an arbitrary sentential logic S and proving some rather general properties about
ST. In particular, we shall characterize the ST-full g-models in terms of those of
S, and prove that the strong(er) version of ST, i.e., (ST)*, is still ST.

In Chapter 6 we investigate some conditions one may impose on S, in order
to find general results which encompass several of the forthcoming examples. Do
notice that placing S inside the Leibniz hierarchy, either makes ST collapse into S
(assuming S truth-equational), or makes our study converge with the one in [37]
(assuming S protoalgebraic). So, we shall need to impose some condition(s) over
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S, but one(s) necessarily weaker than protoalgebraicity, and/or weaker than truth-
equationality. We will do this through some definability criteria of the Leibniz filters
of §, namely explicit, logical, and equational definability. The two first criteria had
already been considered in [37], and a generalization with parameters of the first
one appears in [51], but always within the scope of protoalgebraic logics. The
last criterion is new, and derives from the equational definability of S-filters that
characterizes truth-equational logics [55].

Finally, in Chapter 7, we apply the general results previously established to a
plethora of (non-protoalgebraic) examples. For each logic considered, we will find
the respective strong version, and characterize its Leibniz and Suszko filters on the
S-algebras. Furthermore, we investigate explicit, logical, and equational definabil-
ity of the Leibniz filters. Surprisingly enough, all examples considered will turn out
to have its Leibniz filters equationally and logically definable, but not all of them
will have its Leibniz filters explicitly definable.

A final word of notice is in order here. This dissertation is, one may say, an
expanded version of two rather long papers yet to appear at the time of writing,
with some additional material (mainly, that concerning the Frege operator?, and
all of Chapter 4). The content of Part I is based on [2], while that of Part II is
based on [3]. Their structure differs of course from the present one, but the main
notions and results are the same, and arose from joint work with Josep Maria Font
and Ramon Jansana.

2A distinction between congruential S-operators is made in Part I to encompass the Frege
operator, while in [2] the S-operators are, by definition, congruential.






CHAPTER 0

Preliminaries

0.1. Foundations

Set Theory. We will be working within the standard theory of Zermelo-
Fraenkel with the Axiom of Choice (ZFC). We assume that the reader is familiar
with the basic notions of set theory (see [46], for instance), and we will focus here
on fixing some notation.

Given a map f: A — B, we denote its extension to power sets with the same
symbol; that is, we consider f: Z(A) — (B) defined, for each X C A, by
f(X) = {f(a) : @ € X} C B. The associated “inverse image” map, which is
usually denoted as f~1: 2(B) — P(A), is defined, for each Y C B, by f~1(Y) =
{a € A: f(a) € Y} C A; this map is not the set-theoretic inverse of the extended
map f, but rather its residuum, because it satisfies, for every X C A and every
Y C B, that X C f~1(Y) if and only if f(X) C Y. The extension construction will
be iterated in a natural way, still keeping the same symbol; for instance, for a family
€ C P(A), we define f(€) == {f(X): X € ¢}, and for 2 C 2(Y), f~1(2) =
{ fiY):vye2 } Similarly, f is extended to cartesian products component-wise;
in particular, f: A x A — B x B is defined as f({a,a’)) = (f(a), f(a’)) for every
a,a’ € A. This map can itself be extended to power sets as before.

Let f: A — B be a map. The residuum condition between f and f~! implies
that for every X C A, X C f'(f(X)), and for every Y C B, f(f~}(Y)) C Y.
As for the converse inclusions, one should keep in mind the following basic facts,
which we shall henceforth use without any explicit mention:

1. f is surjective if and only if f(f~1(Y)) =Y, for every Y C B;
2. f is injective if and only if f=1(f(X)) = X, for every X C B.

A final word on notation: from this point on, we shall refrain from using paren-
thesis when denoting images and inverse images by maps, whenever its usage results
too heavy, and/or the context is clear. For example, we shall write f X instead of
f(X), and f~'Y instead of f=1(Y).

First-order structures. A similarity type, or logical language, is a tuple £ =
(F,R), where F = (f;)ier is to be understood as a family of function symbols, with
each f; associated to a finite arity > 0, and R = (r;);jes is to be understood as a
family of relation symbols, with each r; associated to a finite arity > 0. A function
symbol of arity 0 is called a constant symbol. Both families 7 and R can be empty,
and can be finite or infinite. A similarity type is called algebraic, if R = @; and it
is called (purely) relational, if F = &.

Let £ = (F,R) be a similarity type. A structure of type L, or simply an
L-structure, is a tuple M = (M, Faq, Raq), where:

® )M is a non-empty set, called the universe, or domain, of M;

1
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B 7, is a family of functions on M indexed by F and such that arities are
preserved; i.e., each n-ary function symbol f € £ has a corresponding inter-
pretation fM: M™ — M in Faq;

B R is a family of relations on M indexed by R and such that arities are
preserved; i.e., each n-ary relation symbol r € R has a corresponding inter-
pretation rM C M™in R

It is common practice to denote the domain of a given structure with a capital

italic letter, namely by that corresponding to the structure’s denotational symbol,
regardless of this last being calligraphic (e.g., a first-order structure .4 and its
domain A), double-struck (e.g., a lattice L and its domain L), or boldface (e.g.,
an algebra A and its domain A). Given a finite similarity type £, say with F =
(f1,.-., fn) and R = (ry,..., 7)), we shall denote the L-structure M simply by

M= (M, M MMM,

sim

Apart from the cornerstone notion of L-structure, we only need to introduce one fur-
ther concept concerning first-order logic, namely that of homomorphism between £-
structures. We do so, to stress that all the forthcoming notions of homomorphisms
(e.g., order homomorphism, lattice homomorphism, algebraic homomorphism, ma-
trix homomorphism) are particular instances of the this more general case, suitably
restricted to the underlying language.

Let A, B be L-structures. A map h: A — B is an (L£-)homomorphism, if:

m (c?) = B, for every constant symbol ¢ € L;

® h(fA>ar,...,an)) = fB(h(ar),...,h(ay)), for every n-ary function symbol

f € L, with n >0, and every ay,...,a, € A;
B if (ay,...,a,) € 74, then (h(ay),...,h(a,)) € 75, for every n-ary relation
symbol r € L, with n > 0, and every ay,...,a, € A.

Finally, we will sporadically make use of two first-order connectives, namely
the first-order conjunction and implication, which will be denoted by & and —
respectively. The familiar symbols V and 3 are to be understood here as part of the
meta-language, meaning for all and there exists, respectively. The symbols = and
< stand for if ... then and if and only if, respectively.

0.2. Lattice Theory

Posets. Let X be a set. A partial order on X is a reflexive, anti-symmetric,
and transitive, binary relation < on X. A partially ordered set (poset for short)
is a relational structure P = (P, <), where < is a partial order on P. Given
a poset (P,<), we take for granted that the reader is familiar with the notions
of upper bound (dually, lower bound), mazimal element (dually, minimal element),
mazimum (dually, minimum), and supremum (dually, infimum), of a subset Y C X
all with respect to the order <. We shall denote the infimum and supremum of a
given subset Y C X by AY and VY, respectively.

Let Py = (P1,<;) and Py = (P5, <5) be two posets. A map f: P — P is:

1. order preserving, or an order homomorphism, if for every x,y € Py,

z <1y = f(z) <2 f(y)-

2. order reversing, if for every x,y € Py,

r<iy=f(y) <s f(2).
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3. order reflecting, if for every x,y € Py,

flx) <2 fly) =z <1y

4. an order embedding, if for every x,y € Py,

r<i1y e f(2) <2 fy)
5. an order isomorphism, if it is a surjective order embedding.

If a map is order reflecting, then it is injective. In particular, every order
embedding is injective and every order isomorphism is bijective.
Given a poset P = (P, <), amap f: P — P is:
1. expansive, if for every x € P, x < f(x);
2. idempotent, if for every x € P, f(f(x)) = f(x);
3. a closure on P if it is expansive, order preserving and idempotent.

Lattices. Lattices can be introduced via relational structures or via algebraic
structures. We present here both definitions, not so much for the sake of complete-
ness, but rather because we will use both of them in an exhaustive and indistin-
guishable manner.

A lattice (viewed as poset) is a relational structure L = (L, <), where < is a
partial order on L such that, for every a,b € L, both the infimum and supremum
of a and b exist; and, a lattice (viewed as an algebra) is an algebraic structure
L = (L,A,V), where A and V are two binary operations on L such that, for every
a,b,c € L,

Idempotency: aNa=aand aVa=a;

Commutativity: aNb=bANaand aVb=bVa;

Associativity: a AN(bA¢c)=(aAb)Acand aV (bVe)=(aVb)Vc;
Absorption: a A (aVb)=aand aV (aAb) =a .

Both definitions are equivalent, in the following sense: given a lattice (as a
poset), say L = (L, <), then L* = (L, A, V), where

a Ab=inf{a,b} and aVb=sup{a,b},

is a lattice (as an algebra). Conversely, given a lattice (as an algebra), say L =
(L,N\,V), then LP = (L, <), where

a<b iff aAb=a,

is a lattice (as a poset). Furthermore, it holds (L*)? = L and (L?)* = L. In light of
these facts, we can (and will) speak interchangeably of a lattice L = (L, A, V) and
its partial order <, as well of the lattice L = (L, <) and its meet and join operations
A and V, respectively.

A poset L = (L, <) is a meet-semilattice, if for every a,b € L, the infimum of
a and b exists; dually, it is a join-semilattice, if for every a,b € L, the supremum
of a and b exists. Unless explicitly stated (as, for instance, in Lemma 2.27), all
semilattices in this thesis will be meet-semilattices.

A lattice Ly is a sublattice of a lattice Ly, if Ly C L; and the meet and join
operations of Lo are the restriction of the meet and join operations of Li, re-
spectively. The definitions of meet-sub-semilattice and join-sub-sublattice are the
expected ones.

The maximum element in a lattice, if it exists, is called the top element; dually,
the minimum element of a lattice, if it exists, is called the bottom element. A lattice
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is bounded, if it has a top and a bottom element. A lattice L is distributive, if for
every a,b,c € L, the distributive laws hold:

B Distributivity of A w.r.t. V:aA(bVe)=(aAb)V(aAc);

B Distributivity of V. w.r.t. Az aV (bAc)=(aVb)A(aVec).
FEach identity implies the other.

Let L1 = <L1, N1, \/1> and LQ = <L2, Na, \/2> be two lattices. A map fi L1 — L2
is a lattice homomorphism, if for every a,b € L1,

h(a A1 b) = h(a) Aa h(b) and h(aV1b) = h(a) Vs k(D).

A map satisfying only the first condition is called a meet-homomorphism and a map
satisfying only the second condition is called a join-homomorphism. An injective
lattice homomorphism is called an embedding. A surjective embedding is called a
lattice isomorphism.

Since lattices can be be seen simultaneously as posets and algebras, it is natural
to relate the concepts of order homomorphism and lattice homomorphism. In fact,
we shall deal quite often with order isomorphisms, and then speak of the respective
algebraic structures as isomorphic. Proposition 0.1.3 justifies this apparent abuse.

Proposition 0.1. Let Ly and Ly be two lattices and let h: L1 — Lo be a map.

1. If h is a lattice homomorphism, then it is an order homomorphism.
2. If h is a lattice embedding, then it is an order embedding.
8. The map h is a lattice isomorphism if and only if it is an order isomorphism.

So, to retain, although lattices can be seen interchangeably as ordered struc-
tures and algebraic structures, the respective notions of structure homomorphisms
do not coincide.

Complete and algebraic lattices. A lattice L is complete, if for every X C L
there exists its infimum and its supremum, denoted by A X and \/ X, respectively.
Comparing with the (algebraic) definition of lattice, we are furthermore imposing
the existence of arbitrary meets and joins. An easy induction argument establishes
the existence of meets and joins of finite non-empty sets in lattices. Hence, every
finite lattice is complete. More interesting examples of complete lattices will appear
throughout the text.

A sublattice where arbitrary meets and joins exist, and moreover coincide with
those taken over the original lattice, is called a complete sublattice. A meet sub-
semilattice (respectively, join sub-semilattice) where arbitrary meets exist, and
moreover coincide with those taken over the original lattice, is called a meet-
complete sub-semilattice (respectively, join-complete sub-semilattice).

Let L be a lattice. An element a € L is compact, if for every X C L such that
a <\ X (in particular, \/ X must exist), there exists a finite subset ¥ C X such
that @ < VY. A lattice is compactly generated, if every element is a supremum
of compact elements. Notice that if we assume L to be complete, we may forget
the proviso that \/ X must exist. A lattice is algebraic, if it is both complete and
compactly generated.

Lattice filters, prime filters and ultrafilters. Let L = (L,V, A) be a lat-
tice. A non-empty subset F' C L is a (lattice) filter of L, if it satisfies the following
conditions:

® [ is closed under meets, i.e., if a,b € F, then a Ab € F;
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m [ is upwards-closed, i.e., if a € F and b € L is such that a < b, then b € F'.

The dual notion of filter is that of ideal. That is, a non-empty subset I C L is an
ideal of L, if I is closed under joins and downwards-closed.

We shall denote the set of all filters of a lattice L by Filt(L). The poset (Filt(L)U
{@}, C) is an algebraic lattice with infima and suprema given by

i€l i€l il i€l
where for every H C L,
[H) :=({F eFilt(L)u{o}: H C F}.

If H is non-empty, then [H ) is the least filter of L containing H, also called the
filter generated by H. The filter generated by the singleton {a} C A will be simply
denoted by [a), and is usually called the principal filter generated by a; dually, (a]
denotes the principal ideal generated by a.

The following proposition, and subsequent corollary, will be used either explic-
itly or implicitly in all the examples of Chapter 7.

Proposition 0.2. Let L be a lattice and H C L non-empty. The filter generated
by H exists and is given by
[H) = {beL:al/\.../\an <b, for some ay,...,a, € H andsomen>0}.

The filter generated by @ exists if and only if L has a maximum element, say
T € L, and in this case [@) = {T}.

Corollary 0.3. Let L be a lattice and H C L. If H is a filter and a ¢ H, then
[H,a) = {beL:a/\cgb, forsomecGH}.

Notice that L is always a filter of L. A filter is proper, if it is not L. A proper
filter F' C L is said to be prime, if for every a,b € L, it holds

aVbe F=aecForbekF.

We shall denote the set of all prime filters of a lattice L by PrFilt(L). Notice that
neither @ nor L are prime filters of L.

In Chapter 7, we will sometimes need to extend lattice filters to prime filters.
A famous result allow us to do this.

Theorem 0.4 (Prime Filter Theorem). Let L be a distributive lattice. If I C L is
an ideal and F C L a proper filter such that I N F = &, then there exists a prime
filter P such that F C P and INP = .

Galois connections. Let P; = (P;, <y) and Py = (P5, <) be posets. A pair
(f,g) of maps f: P, — Py and g : P, — P establishes a Galois connection between
P1 and P, if for every x € P, and every y € Ps,

r<19(y) & y<o flo).

Galois connections entail several consequences, which we next compile in a single
result. All the proofs can be found in [27, Chapter 7].

Proposition 0.5. Let Py = (P1,<3) and Py = (P, <3) be posets and let f: P, —
P; and g: P, — Py establish a Galois connection between P1 and Ps.

1. f and g are both order reversing.
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The composition function g o f is a closure on Pj.

The composition function f o g is a closure on Ps.

The set of fixed points of g o f is Ran(g).

The set of fixed points of f o g is Ran(f).

The maps f and g restrict to mutually inverse dual order isomorphisms be-
tween the set of fized points of g o f and the set of fized points of f o g.

S Cuds o b

0.3. Closure operators

This is a core topic when working with sentential logics. Though we will not give
a detailed treatment of it, understanding the (omitted) proofs should be amenable
to the reader.

Closure relations, closure operators and closure systems. Let A be
a set. A closure relation on A is a relation F C Z?(A) x A such that for every
X UY C A and every z,y € A, the following conditions hold:

m Fgtensivity: if x € X, then X F x;

B Monotonicity: if X CY and X F y, then Y I y;

B Cut: if Y F x, for every x € X, and X F y, then Y I y.

A closure relation F is finitary, if moreover it satisfies the additional condition:

B Finitarity: if X F x, then there exists a finite subset Y C X such that Y F z.

It is not difficult to show that monotonicity holds in the presence of extensivity
and cut, but tradition keeps all three conditions together.

A closure operator over A is a map C' : Z(A) — P(A) such that for every
X, Y CA,

® Frtensivity: X C C(X);

® Monotonicity: if X CY, then C(X) C C(Y);

® [dempotency: C(C(X)) = C(X).
A closure operator C is finitary, if it satisfies moreover the additional condition:

® Fipitarity: C(X) =UJ{C(Y):Y C X,Y finite}.

A subset X C A is said to be C-closed, if C(X) = X. Notice that a closure

operator over A is precisely a closure on A. Finally, a closure system on A is a
collection € C Z(A) such that

B AcC;

m ¢ is closed under arbitrary intersections of non-empty families.

The following notation will be used quite often and in a rather essential way.
Given a family ¥ C #(A) and a subset F' C A, we define €7 .= {G € ¢ : F C G}.
Note that such a family is always an up-set in the poset (¢, C), and if € is a closure
system, so is €F.

Every closure operator induces a closure system, and vice-versa. Indeed, given
a closure system % on a set A, the map C : £(A) — L (A), defined by

cxX)=({rec:Xcv},

is a closure operator over A. Conversely, given a closure operator C on a set A, the
collection

¢={XCA:C(X)=X}
is a closure system on A. Moreover, denoting by CO(A) and CS(A) the sets
of all closure operators and closure systems on a set A, respectively, the posets
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(CO(A), C) and (CS(A), C) are dually order isomorphic under the mappings C' — €
and € — C.
Similarly, every closure relation induces a closure operator, and vice-versa.

Indeed, given a closure relation - on A, the map Cr: £(A) — P (A), defined by
C'._(X):{acEA:Xl—x}7

is a closure operator over A. Conversely, given a closure operator C on a set A, the
relation Fo € (A) x A, defined by

Xtox iff IEO(X),

is a closure relation on A.

It should be clear that finitary closure operators induce finitary closure rela-
tions, and vice-versa, through the same maps as above. It only remains to see how
does this condition translates to closure systems. This is the content of the famous
Schmidt’s Theorem.

Let A be any cardinal. A family D = {X, : ¢ € I} C HP(A) is A-directed, if for
every subfamily {X; : j € J} C D of cardinal < X there exists X; € D such that
X; C X, for every j € J. In particular, w-directed families are also called simply
directed, or upwards-directed. A closure system € on A is inductive, if it is closed
under unions of non-empty directed families.

Theorem 0.6 (Schmidt’s Theorem). A closure system € is inductive if and only
if its associated closure operator C if finitary.

Closure systems and complete lattices. There is a close connection be-
tween closure systems and complete lattices.

Theorem 0.7. If € is a closure system, then (€,C) is a complete lattice, with
infima and suprema given by

ZTi:ﬂTi and \%/TZ:C(UTZ-),

il iel iel i€l
for every {T; : i€ I} C €.

Actually, up to isomorphism, the converse is also true. That is, every complete
lattice is order isomorphic to the lattice of closed sets of some closure operator.
Algebraic lattices (which are, by definition, complete lattices) also stand in bijection
with a (sub-)family of closure systems.

Theorem 0.8. If € is an inductive closure system, then (€¢,C) is an algebraic
lattice.

Again, up to isomorphism (!), the converse is also true. That is, every algebraic
lattice is order isomorphic to the lattice of closed sets of some inductive closure
system.

We finally state some useful lemmas for dealing with closure operators, which
we shall make use of further ahead.

Lemma 0.9. If C is a closure operator over a set A, then for every X C A,

< <
C(X)= \/{C(Y) (Y CX,Y finite} = \/{C({m}) cxe X}
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Comparing Lemma 0.9 with the defining condition of finitary closure operator,
one sees that “finitarity is an essentially set theoretical property rather than a
lattice theoretical one” [34, p. 36].

0.4. Universal Algebra

It is often said that Abstract Algebraic Logic is to Algebraic Logic as Universal
Algebra is to Algebra. The whole topic of Universal Algebra is far beyond the scope
of the present work, and we shall only cover here the needed material. We will how-
ever look with some detail at relative congruences, as they will be transversal to all
our work. We refer the reader to the classical reference [18] for the most common
constructions regarding algebras, such as subalgebras, quotient algebras, homomor-
phic images, direct, subdirect, and reduced products (in particular, ultraproducts),
and free algebras.

Algebras and the formula algebra. An algebra is an L-structure where £
is an algebraic similarity type. That is, an algebra A is a tuple

A= (A (fNecr),
where A is a non-empty set, and each element f4 indexed by the n-ary symbol
f € L is an n-ary function in A. It is usual to drop the superscript 4 in the algebra
operations. An algebra is trivial, if its universe has a single element.
Unless otherwise stated, we henceforth assume fixed an arbitrary algebraic
similarity type L.
Let A, B be algebras. A map h: A — B is an (algebraic) homomorphism, if

h(fA(al, A an)) = fB(h(al), ol h(an)),
for every m-ary operation symbol f € L and every ai,...,a, € A. We write
h € Hom(A, B), or just h: A — B, to indicate that h is a homomorphism from
A to B. An homomorphism h: A — A is called an endomorphism. A bijective
homomorphism is called an (algebraic) isomorphism.

Let us fix a countably infinite set of variables Var, disjoint from £. The algebra
of terms, or formula algebra', F'm is the absolutely free algebra generated by the
set Var over the language £. Its universe is denoted by Fm,, and its members are
called (L-)terms or (L-)formulas. We write ¢(x1,...,2,) when we want to stress
that every variable occurring in the £-formula ¢ occurs in {z1,...,2,}. It follows
by the universal mapping property of F'm that every map from Var to Fm, can be
uniquely extended to an endomorphism of F'm; such a map is called a substitution.

Given ¢(z1,...,2,) € Fm, and a1,...,a, € A, we denote by ¢?(a1,...,ay)
the interpretation on A of the formula ¢ under any homomorphism h € Fm — A
such that h(xz;) = a;, for every 1,...,n. We extend this notation to subsets of
formulas I'(z1, ..., z,) C Fm, as expected, i.e., [4(a1,...,a,) = {v2(a1,...,a,) :
v € T'}; and also to the cartesian product Fmz x Fm, so that given 7(x1,...,2,) C
Fm, x Fmg, 74(aq,...,a,) = {(5‘4(@1, s ap), € (ar, .. an))  (6,€) € T}.

The next proposition tell us that “the interpretation of formulas behave like
fundamental operations insofar as homomorphisms (...) are concerned” [18, p. 63];
this fact will be repeatedly used in the sequel without any explicit mention.

n the context of Algebraic Logic, the terms of an algebraic similarity type can be considered
as the formulas of a propositional logic. In a first-order context however, the L-formulas here
defined would be just the L-terms.
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Proposition 0.10. Let A be an algebra and h: A — B a homomorphism. For
every L-formula o(z1,...,z,) € Fmz and every ay,...,an, € A, it holds

h(@A(ah LERE an)) - QDB (h(al)a R h(an))

Given a set A, let A* denote the set of all finite sequences of elements in A. It
is known that, if A is an infinite set, then A* has the same cardinality as A. Now,
on the one hand, every formula in the language L is a finite sequence of symbols of
the set VarU L, so |Fmg| < |VarU L|* = |[VarU £]. On the other hand, there exists
an injective map from Var U £ to Fm, (just assign to each variable itself, and to
each n-ary function symbol f € £ the formula fz;...xz,, with z1,...,z, € Var),
so [Var U £] < |[Fm|. Hence,

[Frnz| = [Var U £].

In particular, and since we have fixed an infinite countable set of variables Var, if
the language L is finite (and this will be the case in all the examples covered in
Chapter 7), then |[Fmg| = w.

Equational logic. An L-equation is a pair of formulas (p, 1) € Fm, x Fm,.
We shall denote the set of all L-equations by Eq,, and we will usually write ¢ =
1 instead of (p, ) in order to stress the equational setting rather than the set
theoretical one.

An homomorphism h: Fm — A satisfies an equation ¢ = ¢ € Eq,, if h(p) =
h(v); this fact is sometimes denoted by A F ¢ = 1 [h]. A particular case often
used is the following: an element a € A satisfies an equation ¢(z) ~ ¥(z) € Eq,,
if o(a) = 9 (a); fact which is denoted by A F ¢ = 1 [a].

Let A be an algebra and ¢(z1,...,z,),¢¥(z1,...,2,) € Fme. The equation
@ =P holds in A, or ¢ = 1 is valid in A, fact which we shall denote by A F ¢ =~ 1,
if p2(ay,...,a,) = vA(ay,...,ay), for every ai,...,a, € A. Given a class of
algebras K, we denote by K F ¢ = 1 the fact that the equation ¢ =~ v holds in
every algebra of K.

An L-quasi-equation is a first-order formula of the form

ap~p & ... & ay, =B, >axf,

where o, 8 € Fm, and «y, 8; € Fmg, for every ¢ = 1,...n. Equations are to be
understood as particular cases of quasi-equations with an empty antecedent.

Let A be an algebra. A quasi-equation oy =~ 1 & ... & a, = B, > a = f
holds in A, or is true in A, fact which we shall denoteby AE oy ~ 1 & ... & a,, =
Bn — a = [, if every homomorphism h: Fm — A which satisfies all the equations

a; &~ fB;, with i = 1,...,n, also satisfies the equation o ~ f.
A generalized L-quasi-equation is a (possibly infinitary) first-order formula of
the form
Kraimpi—axp,
icl

where «, 8 € Fm, and «;, 8; € Fig, for every i € I, for some (possibly infinite) set
I. In other words, generalized quasi-equations admit an infinite antecedent; and in
doing so, they are indeed more general than quasi-equations. The notion of validity
of a generalized quasi-equation is the expected one.
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Let K be a class of L-algebras. The equational (consequence) relation relative
to K, hereby denoted by Fy! C Z(Eq,) x Eq, is defined as follows:

et~y iff VA e KVh e Hom(Fm, A)
Vo~ ecIlh(d) =h(e) = h(p)~ h(y)

for every I' U {¢ ~ ¢} C Eq,. We write simply %! to denote h?%}. It should be

clear that?
AE o~y iff VYh € Hom(Fm,A) h(p) = h(y)
it oEY o=,
and that

AFairfp & ... &a, =B, saxf iff {aa=xpi,...,an =B} EY axpb.

Varieties, quasi-varieties and generalized quasi-varieties. A class oper-
ator maps classes of algebras to classes of algebras, all of the same similarity type.
Let K be a class of algebras and let A be an algebra. We define the following class
operators:

® A € I(K) iff A is isomorphic to some member of K;
A € S(K)
A € H(K
A eP(K
Ac PU(

A € Pr(K) iff A is a reduced product of a non-empty family of members of
K.

)

iff A is a subalgebra of some member of K;

) iff A is a homomorphic image of some member of K;

) iff A is a direct product of a non-empty family of members of K;
K) iff A is an ultraproduct of a non-empty family of members of K;

®m A c P, g(K)iff Aisan Areduced product® of a non-empty family of mem-
bers of K;

®m A € Pg(K) iff A is a subdirect product of a non-empty family of members of
K;

®m A € U(K) iff every subalgebra of A countably generated is a member of K.
Notice that reduced products are the w-reduced products. We say that a class
of algebras K is closed under a class operator O, if O(K) C K. Given two class
operators O; and Oy, we write O; < Oy to denote the fact O;(K) C Oy(K), for every
class of algebras K.

Of course, trivial algebras are all isomorphic. We shall denote by Triv an
arbitrary, but fixed, trivial algebra. The constant map from any algebra to any
trivial algebra is obviously a homomorphism, therefore any non-empty class closed
under H contains all trivial algebras.

A non-empty class of algebras K is a variety, if it is closed under subalgebras,
homomorphic images and direct products. Hence, varieties contain all trivial alge-
bras. Given a class of algebras K, the variety generated by K, which we shall denote
by V(K), is the least variety containing the class K. The existence of such variety
is justified by the following famous result:

2We have chosen to add the supscript °? to the relative equational consequence relation lieKq
just to emphasize that it is a closure relation on Eq, rather than Fm .

3A A-reduced product is a reduced products modulo a A-complete filter; a A-complete filter
on a set [ is a filter of (1) closed under intersections of families of cardinal < A.
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Theorem 0.11 (Tarski). For every class of algebras K,
V(K) = HSP(K).

A non-empty class of algebras K is a quasivariety, if it is closed under subalge-
bras, isomorphisms, reduced products and contains a trivial algebra. Every variety
is a quasivariety, since Pr < Py < HP. Given a class of algebras K, the quasivariety
generated by K, which we shall denote by Q(K), is the least quasivariety containing
the class K. The existence of such quasivariety is ensured by another famous result:

Theorem 0.12 (Mal'cev). For every class of algebras K,
Q(K) = ISPPy (KU {Triv}) = ISPr(KU {Triv}).

If we admit direct products of empty families, defining them as [, A; = Triv,
then we can state a more elegant version of Mal’cev theorem as Q(K) = ISPPy(K) =
ISPRr(K).

A non-empty class of algebras K is a generalized quasivariety, if it is closed un-
der subalgebras, isomorphisms, direct products, closed under the operator U, and
contains a trivial algebra. A result from Universal Algebra tells us that every alge-
bra can be embedded into an ultraproduct of its finitely generated subalgebras (see,
for instance, [18, Theorem 2.14]). So, if a class of algebras is closed under ISPy,
then it is closed under U. As a consequence, every quasivariety is a generalized
quasivariety.

Given a class of algebras K, the generalized quasivariety generated by K, which
we shall denote by GQ(K), is the least generalized quasivariety containing the class
K. The following theorem is not so well known as the previous analogous ones for
varieties and quasivarieties; to the author’s knowledge, it was formally stated for
the first time in [9, Corollary 8.2].

Theorem 0.13. For every class of algebras K,
GQ(K) = UISP(K U {T'riv}).

Again, if we admit direct products over an empty family of indexes, we can
write simply GQ(K) = UISP(K).

Subdirectly irreducible algebras. Let {A; : i € I} be a family of algebras.
An embedding o : A — [[,o; A; is said to be subdirect, if the image a(A) is a
subdirect product of the family {A;};cr. In this case, A is said to be subdirectly
embeddable into [];.; As, or a subdirect embedding of [],c; Ai;. An algebra A is
subdirectly irreducible, if for every subdirect embedding o : A — [];.; A;, there
exists ¢ € I such that m;oa : A — A; is an isomorphism, where m; : A — A; is the
i-th projection of A. A classical result from Birkhoff (which we shall need to make
use of once — at Proposition 7.34) is the following:

Theorem 0.14 (Birkhoff). Fvery algebra is isomorphic to a subdirect product of
subdirectly irreducible algebras.

Notice that, in particular, if V is a variety, then every algebra A € V is iso-
morphic to a subdirect product of subdirectly irreducible algebras {A; : i € I}
such that A; € V, for every i € I. Indeed, by definition of subdirect product, the
i-th projection of A is surjective, that is, m;(A) = A;, and since V is closed under
homomorphic images, it follows that A; € V, for every i € I.
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Congruences. Let A be a set. A relation R C A x A is an equivalence relation
on A, if it is reflexive, symmetric and transitive. That is, if for every a,b,c € A,

® (a,a) € R;
® if (a,b) € R, then (b,a) € R;
® if (a,b) € R and (b,c) € R, then (a,c) € R.

We shall denote the set of all equivalence relations on A by EqrA. The poset
(EqrA, C) is a complete lattice, with infima and suprema given by

No0i=()0:; and \/6:=|J{0i0...00; sio,... i € I,k < oo},
i€l i€l il
where o denotes the relational composition of two relations, which we assume the
reader to be familiar with.
Given 0 € EqrA and a € A, the equivalence class of a under 0 is defined by
a/f={be A:{(a,b) € 0}. Also, given F C A, we write F/0 := {a/0 : a € F}.
Now, let A be an algebra. A relation § C A x A is a congruence relation
on A, if it is an equivalence relation on A and moreover it is compatible with
language operations on A, that is, for every n-ary operation symbol f € £ and
every a1, ...,Gn,b1,...,b, € A,
m if (a;,b;) €0, foreveryi =1,...,n, then (fA(ay,...,a,), fA(b1,...,b,)) € 6.
We shall denote the set of all congruence relations on A by ConA. The poset
(ConA, C) is a complete sublattice of (EqrA, C). Its least element is the identity
map on A, which will be denoted by ida, and its largest element is A x A. An
algebra A is simple, if ConA = {ida, A x A}. The poset (ConA, C) is an algebraic
lattice. Given X C A x A, we shall denote the least congruence containing X by
O4(X), and refer to it as the congruence generated by X. That is,

O04(X) = (){v € ConA: X C}.

When X = {{a,b)}, we write simply ©“4(a,b), and call it the principal congruence
generated by the pair (a,b). Applying Lemma 0.9 to the closure operator 04, we
get:

Lemma 0.15. For every A and every X C A x A,
04(X) =\/{0%(a,b) : (a,b) € X}.

Let A be an algebra and F' C A. A congruence 6 € ConA is compatible with
F, if for every a,b € A, if (a,b) € 6 and a € F, then b € F. That is, 0 is compatible
with F', if it does not identify elements in F' with elements outside F'. The following
characterizations of compatibility should be borne in mind, as we will make use of
them thoroughly without any explicit mention.

Lemma 0.16. Let A be an algebra, 8 € ConA and F' C A. The following condi-
tions are equivalent:

(i) 0 is compatible with F;

(i) a € F < a/0 € F/0, for every a € A;

(iti) F =77 F, where 7 : A — A/0 is the canonical map;

(iv) F = U,cpa/0; in other words, F is a union of equivalence classes of 0.
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A very special congruence associated to any given homomorphism is its kernel.
The kernel of h: A — B is the congruence defined by

Kerh := {(a,b) € A x A: h(a) = h(b)}.
It will be useful to record here two of its elementary properties.

Lemma 0.17. Let h: A — B.

1. For every F C A, Kerh is compatible with F if and only if k" 1hF = F.
2. For every 0 € EqrA, Kerh C 0 if and only if h~*ho = 6.

It is easy to check that congruences are preserved by inverse images of arbitrary
homomorphisms. Preservation under direct images requires some conditions upon
the homomorphisms.

Proposition 0.18. Let A, B be algebras and h: A — B.

1. If € ConB, then h='6 € ConA.
2. If 0 € ConA, h is surjective and Kerh C 0, then hf € ConB.

Relative congruences. Let K be a class of algebras and A an algebra (not
necessarily in K). A congruence § € ConA is a K-congruence, or a congruence
relative to K, if A/0 € K. We shall denote the set of all congruences of A relative
to a class of algebras K by Conk A. Notice that if K is closed under H (for instance,
if K is a variety) and A € K, then CongA = ConA.

In general, the poset (Conk A, C) need not be a complete lattice. We next state
a sufficient condition to be so, as well as a (stronger) sufficient condition to be an
algebraic lattice.

Proposition 0.19. Let A be an algebra. If K is closed under isomorphisms and
subdirect products, then ConkA is closed under non-empty arbitrary intersections.
If moreover K contains a trivial algebra, then CongA is a closure system; hence,
(Conk A, C) is a complete lattice.

Given an algebra A and a class of algebras K closed under | and Pg, the
lattice (Conk A, C) is not necessarily a sublattice of (ConA, C), because joins might
not coincide; but in light of Proposition 0.19 it is always a meet-complete sub-
semilattice. Under the stated assumption on K, and given X C A x A, we shall
denote by O£ (X) the K-congruence generated by X, i.e.,

O (X) :=(){0 € ConkA : X C 0}.

Proposition 0.20. Let A be an algebra. If K is a quasivariety, then Cong A is an
inductive closure system; hence, (Cong A, C) is an algebraic lattice.

Next, and just like we did in Proposition 0.18 for congruences in general, we
state sufficient conditions for relative congruences to be preserved by direct and
inverse images of homomorphisms.

Proposition 0.21. Let K be a class of algebras closed under isomorphisms and
subdirect products, A, B algebras and h: A — B.

1. If € Conk B, then h™10 € Conk A.

2. If 0 € Conk A, h is surjective and Kerh C 0, then hf € ConkB.

Another technical lemma which will be useful later on relates images of surjec-
tive homomorphisms with generated relative congruences.
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Lemma 0.22. Let K be a class of algebras closed under isomorphisms, subdirect
products, and containing a trivial algebra, and let 7(x) CEq,. Ifh: A — B isa
surjective homomorphism, then

OR (h6@ (t4(X))) = 08 (B (hX)),
for every X C A.

Finally, and similarly to Lemma 0.15 for congruences in general, by applying
Lemma 0.9 to the closure operator @‘é, we get:

Lemma 0.23. If K is closed under isomorphisms, subdirect products, and contains
a trivial algebra, then

0k (X) = \/ {6 (a,b) : (a,b) € X},
for every A and every X C A x A.

0.5. Abstract Algebraic Logic

Sentential logics. Let £ be an algebraic similarity type. Its elements will be
called connectives. A closure relation F on the set of L-formulas is structural, or
substitution invariant, if it satisfies the additional condition:

® Structurality: If T' - ¢, then o(I") - o(p), for every substitution o and
every ' U {¢} C Fm,.
A consequence relation on Fmy is a structural closure relation over Fmyz. A (sen-
tential) logic is a pair S = (F'm,Fg), where kg is a consequence relation on Fm.
A logic S is finitary, if the consequence relation g is finitary. A Hilbert-style rule
is a pair (I', ¢), where T is a (possibly infinite) set of formulas and ¢ is a formula.
The cardinal of a Hilbert-style rule (T', @) is given by the cardinal of I'. Given an
algebra A and a set of Hilbert-style rules H, an S-filter F' € FigA is closed under
H, if for every (T',p) € H and every h : Fm — A such that h(T") C F, it holds
h(p) € F. A logic S is of course determined by the set of all Hilbert-style rules
(T, o) such that (T, ) € Fs.

Given a logic § = (F'm,tg), the Fg-closed sets of formulas are called S-
theories. The set of all S-theories shall be denoted by ThS. Since ThS is a closure
system, it has a least element, which shall be denoted by Thmg, and whose elements
are called the theorems of S, i.e., formulas ¢ € Fm, such that @ s ¢. The set of
theorems may be empty. A logic S is inconsistent, if every formula is an S-theorem,
i.e., Thmgs = Fm,. A logic S is inconsistent if and only if its only S-theory is the
set of all formulas, i.e., ThS = {Fm,}. A logic S is almost inconsistent, if it does
not have theorems and every formula is a consequence of every formula. A logic &
is almost inconsistent if and only if its only S-theories are the empty set and set of
all formulas, i.e., ThS = {&,Fm,}.

Let & = (Fm,Fs) be a logic in a language £. A logic &' = (Fm,Fg/) in the
language L is an extension of S, if Fs C Fg/; and it is an aziomatic extension of
S, if there exists a set of formulas Ax C Fm, closed under substitutions such that,
for every I' C Fm, and every ¢ € Fm,, it holds

FFS/QD iff FUAXFs‘(p

So, an extension S’ of a logic S has the same underlying language as S and fur-
thermore, if (I', ) € kg, then (I', ) € Fg/. Notice that, in particular, for every
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¢ € Ax, it holds Ax Fs ¢ by extensivity of S, and therefore @ Fs/ ¢. Hence,
Ax C Thmg:.

Now, let S = (F'm,+s) be a logic in a language £ and let £ be a language
such that £ C £L'. A logic §' = (Fm,tg/) in the language £’ is an expansion of S,
and S is a fragment of §', if Fs C Fgr; and it is a conservative expansion of S, if
for every I' C Fm, and every ¢ € Fm, in the language £, it holds

Ths ¢ iff Thgo.

So, an expansion S8’ of a logic S has an underlying language containing that of S
and furthermore every consequence in S holds in 8’ as well.

Let S be a logic. The cardinal of S is the least infinite cardinal x < [Fmg|"
such that for every set of formulas I' and every formula ¢, if I' Fs ¢, then there
exist a set A C I' with |A] < & such that A ks ¢. Hence finitary logics are the
logics with cardinal w and the non-finitary logics with a countable set of connectives
have cardinal w;.

S-filters. Let S be a logic and A an algebra. An S-filter of A is a subset
F C A such that, for every h: Fm — A and every ' U {¢} C Fmg, if T' ks ¢
and h(I') C F, then h(p) € F. The set of all S-filters of A will be denoted by
FisA. In general, FigA is a closure system for every algebra A. The closure
operator associated with FisA will be denoted by Fg?. The set of all S-filters of
A containing a given F' € FisA shall be denoted by (FisA)¥. Notice that if « is
the cardinal of S, then for every algebra A the union of any x-directed family of
S-filters is still an S-filter. Hence, given any cardinal \ < k, FisA is closed under
unions A-directed families, for every A. An important fact which should always be
borne in mind is the following: The S-filters of the formula algebra F'm are precisely
the S-theories. In symbols, FisF'm = ThS. Traditionally, the associated closure
operator is denoted by Cng instead of Fg& ™.

The interplay between S-filters and homomorphisms will be a cornerstone of
our work. The next crucial lemma states sufficient conditions for the property of
being an S-filter to be preserved under images and inverse images by (surjective)
homomorphisms.

Lemma 0.24. Let S be a logic, A, B algebras, h: A — B, and G C B.
1. If G € FisB, then h™'G € FisA.
2. If h is surjective and h™1G € FisA, then G € FisB.
3. If h is surjective and Kerh is compatible with F' € FisA, then hF € FisB.

Another technical lemma which will be useful later on relates images of surjec-
tive homomorphisms with generated S-filters. Do compare it with Lemma 0.22.

Lemma 0.25 ([10, Lemma 1.1 (v)]). If h: A — B is a surjective homomorphism,
then

Fgg (hFe§ (X)) = Feg (hX),
for every X C A.

Transformers and structural representations. This topic is developed in
the literature at a much more abstract level, but for our purposes, it is enough to
introduce it only for the closure systems 7hS and Conajgs)Fm. For the general
theory, see [9, 44, 45].
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Let us start by fixing some notation. Given an algebra A and a set of equations
7(2) C Eq,, we denote by 7 A the set of all a € A satisfying every equation in 7(x)
when interpreted in A, i.e.,

TA={ac A: AF 7(z)[a]}.
Moreover, given F' C A, we write
TAF) = {(6%(a),e%(a)) : 6~ e € T(zx),a € F} .

We write simply 74 (a) instead of 74({a}) — which makes the present notation
agree with the l-ary case of that introduced on page 9.

A transformer from formulas to equations is a map 7 : Z(Fm) — Z(Eq,)
such that, for every I' C Fm,

() = [J 7).
yel’

A transformer 7 from formulas to equations is structural if it commutes with sub-
stitutions, i.e., if for every substitution o : F'm — F'm and every ¢ € Fm,, it holds
7™ (o(p)) = o(7F™(p)) — notice that the o on the right is the extension to the
powerset of cartesian products of the o on the left, following the notation intro-
duced on page 1. Structural transformers from formulas to equations are univocally
determined by a set of equations in at most one variable. Indeed, a transformer
T PFmg) - P(Eq,) is structural if and only if there exists a set of equa-
tions E(z) C Eq, such that 7F™(p) = EF™(y), for every . Since in particular
7(z) = EF™(z), it is safe, and notationally simpler, to identify a transformer 7
with the associated set 7(z) of equations determining it.

Let now S be a logic, K a class of algebras closed under isomorphisms and
subdirect products, and A an arbitrary algebra. A map ¥ : FisA — CongA is a
representation, if it is injective and preserves arbitrary suprema. A representation
U FisA — CongA is structural, if it commutes with endomorphisms, in the sense
that W(Fgg (h(F))) = O&(h(T(F))), for every endomorphism h € Hom(A, A).
These notions, despite of being here introduced under the original names, are par-
ticular instances of more general concepts. See, for example, [45, Definition 17,
Lemma 18, Definition 24]. For future reference, we record here an important result
concerning structural representations, which in our setting follows as a particular
case of [44, Theorem 5.1] and [44, Corollary 5.9]. See also the proof of [11, Theorem
3.7 (1))

Theorem 0.26. Let S be a logic and K a class of algebras closed under isomor-
phisms and subdirect products. If ® : ThS — CongF'm is a structural representa-
tion, then there exists a structural transformer T : Z(Fm) — P(Eq,) such that
®(Cng(T)) = OF™(vF™(T)), for every I C Fm.

For the sake of completeness, if K is a T-algebraic semantics for S (see (1)
below), then 7 induces a structural representation ® : ThS — Conggk)Fm, given
by ®(T) = O™ (rF™(T)), for every T € ThS.

Algebraic semantics. Let S be a logic and 7(x) C Eq,. A class of algebras
K is a T-algebraic semantics for S, if

Fkse e 7(0)EdT(0), (1)
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for every TU{p} C Fm,. A logic defined by condition (1) is called the T-assertional
logic of K, and it is sometimes denoted by S(K, 7). So, a class K is a T-algebraic
semantics for a logic § if and only if S = S(K, 7).

A T-algebraic semantics for a logic S need not to be unique. The definition
makes it clear that any other class of algebras K’ such that Fy; = F! is also
a T-algebraic semantics for S. Also, a class of algebras K can be an algebraic
semantics for a logic S witnessed by two different sets of equations. So, although
intuitive, the notion of algebraic semantics leaves much to be desired concerning
the “uniqueness” one would reasonably imagine an algebraic counterpart of a logic
to enjoy. There is, nevertheless, a distinguished 7-algebraic semantics for S, in
case one such 7-algebraic semantics actually exists (there are logics without any
algebraic semantics; see [15, Theorem 2.19]).

Definition 0.27 ([15, Definition 2.7]). Let S be a logic and 7(z) € Eq,. The
class of T-models of S is defined by

KS,7)={A:Ttsp = () EY 7(¢)}.

Notice that K(S,7) is non-empty, as all trivial algebras belong to it. Actually,
K(S,T) is a generalized quasi-variety, axiomatized by the set of quasi-equations

{& T7(y) = 7(p): TFs e, TU{p} C Fmg}.
yel’
Notice also that, if K is a 7-algebraic semantics for S, then K C K(S,7). But
K(S,T) itself need not be, in general, a T-algebraic semantics for S. However,

Proposition 0.28 ([15, Proposition 2.8]). Let S be a logic. If there exists a T-
algebraic semantics for S, then the class K(S, T) is the largest T-algebraic semantics

for S.

In Chapter 4 we shall have more to say about the largest 7-algebraic semantics
of truth-equational logics (see Definition 0.38).

The Leibniz, Suszko, Tarski, and Frege operators. Let A be an alge-
bra. The set of all congruences on A compatible with a given F C A* forms a
complete sublattice of the lattice ConA. Its least element is, of course, the identity
congruence on A. Its largest element, known as the Leibniz congruence of F, plays
a prominent role in Abstract Algebraic Logic, and is denoted by £2(F). Observe
that # € ConA is compatible with F C A if and only if § C £24(F). Another
trivial, but useful observation, is that 24 (@) = 24(A4) = A x A.

Two further congruences, both relevant to AAL, also arise from the notion of
a congruence being compatible with a set. The first, given F' C A, is called the
Suszko congruence of F, and it is defined as the largest congruence of A compatible
with every G € (FisA)¥; it is easy to see that one can equivalently define it by

Q8(F) = {2%G):G e FisA,F CG}. (2)

“We depart slightly from the usual practice of introducing the Leibniz and Suszko congruences
for S-filters, and consider here arbitrary subsets instead.
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The second, given ¥ C Z(A), is called the Tarski congruence of €, and it is
defined as the largest congruence compatible with every G € ¥, or, equivalently,
by

Q46) = {R4F): Fe?}. (3)

From (2) and (3) it follows that the Suszko congruence can be defined in terms
of the Tarski congruence by the identity

QA(F) = 34((FisA)Y). (4)

Observe that the Leibniz and Tarski congruences are independent of any logic.
Indeed, they depend only on A, and F' C Aor ¥ C (A), respectively. In contrast,
the Suszko congruence depends on the underlying logic S, fact which is reflected in
the notation.

The main characterization of the Leibniz congruence is the following (the proof
can be found in [21, Theorem 3.2]):

Proposition 0.29. Let A be an algebra and FF C A. For every a,b € A,
(a,b) € RAF) iff Yo(z,z) e FmyVee A
©*(a,¢) € F < ¢?(b,c) € F.

In fact, the Leibniz congruence gets its name from this characterization, since
it can be viewed as the first-order analogue of Leibniz’s second-order definition of
identity:

Two objects in the domain of discourse are equal if they share all the properties
that can be expressed in the language of discourse.

Having (2) in mind, a similar characterization for the Suszko congruence follows
immediately as corollary, and we will make use of it in Chapter 7.

Corollary 0.30. Let S be a logic, A an algebra and ' C A. For every a,b € A,
(a,b) € QL(F) iff VF' e (FisA)F Vo(z,z) e Fm, Ve e A
©A(a,?) € F' < ¢*(b,e) € F'.

We can consider the map assigning to each subset F' C A its Leibniz congruence
nA (F); when restricting its domain to the set of S-filters of A, we refer to the map
N4 FisA — ConA as the Leibniz operator on A. Similarly, the Suszko operator
on A is the map 24: FisA — ConA defined by F — 24(F). Observe that,
given any X C A, 24(X) = {R4(F) € FisA: X C F} = {R4(F) € FisA :
Fgg(X) C F} = ﬁg(Fgg(X)). Finally, the Tarski operator on A is the map
2: P(FisA) — ConA defined by € — 24(%).

Given that these congruences and operators are defined on every algebra, it is
natural to consider the family £2 := {£2° : A an algebra} and call it the Leibniz
operator. Similarly, we call the family s = {ﬁg : A an algebra} the Suszko
operator. This terminology makes it easy to name properties that necessarily involve
the whole family, in particular, those that relate the operators on different algebras,
or those concerning a single algebra and holding in all of them (see for instance
Definition 0.37).

We have already seen how congruences (in general) and S-filters behave with
respect to images and inverse images by (surjective) homomorphisms. Lastly, we
consider the behaviour of each one of the three distinguished AAL congruences
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with respect to inverse images by surjective homomorphisms. We sum it up in next
proposition, which will turn out to be a most crucial one to our study.

Proposition 0.31. Let S be a logic, A, B algebras, and h: A — B surjective. For
every € U{G} C FisB,

1. h12B(@) = 24(h106);

2. h"10B(%) = QAL 16);

3. 4(h'G) C 2B(0).

The Suszko operator does not behave as well as the Leibniz and Tarski opera-
tors, at least with respect to inverse images by surjective homomorphisms. Indeed,
h_lﬁg (G) need not be equal to ﬁg‘(h_lG). To support this statement we must
wait until Proposition 3.15, but it can already be foreseen that, when working with
the Suszko operator, the usual arguments used with the Leibniz operator will not
go as smoothly as one could hope. The quest for a weaker commutativity property
shared by both the Leibniz and Suszko operators is one of the main goals addressed
in Part T of this work.

Since it will be later needed, we record here a very interesting result relating
algebraic semantics with the Suszko operator.

Proposition 0.32 ([55, Corollary 9]). If a logic S has a T-algebraic semantics,
then for every A and every F € FigA,

TA(F) C 34(F).
The Frege relation of F C A on A (again, relative to S) is defined by
AA(F) = {<a,b> € Ax A:Fgl(F,a) = Fgl(F, b)}.

Notice that, unlike the previous operators we have seen so far, the equivalence
relation A?(F) is not necessarily a congruence. In fact, an important property to
keep in mind is that, for every algebra A, the largest congruence below A?(F) is
the Suszko congruence ﬁg‘(F) We call the map given by F s A% (F), restricted
to FisA, the Frege operator on A. Similarly to the Suszko operator, observe
that given any X C A, AS(X) = A% (Fg?(X )). Moreover, the Frege operator is
always order preserving. Finally, the relation A% ™ (@) is called the interderivability
relation, and traditionally (p, ) € AL™ (@) is abbreviated by ¢ s 1.

Matrices, generalized matrices, (g-)models, and full g-models of a
logic. A (logical) matriz is a pair (A, F), where A is an L-algebra and F' C A.
Every matrix M = (A, F) induces a logic whose consequence relation 4 is defined,
for every ' U {¢} C Fm, by

'Fyme < forall h: Fm — A, if h(T') C F, then h(p) € F.

Similarly, every class M of matrices induces a logic whose consequence relation
is defined by

Fui= () P (5)
MeM
Let S be a logic. A matrix M is a model of S if Fs C Faq. It follows from the

definition itself that (A, F) is a model of S if and only if F' is an S-filter of A. The
class of all models of a logic S is denoted by Mod(S).

Let 7(z) C Eq, and M a class of matrices. We say that truth is equationally
definable in M by T, or that T defines truth in M, if for every (A, F) € M, F = T A;
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and that truth is implicitly definable in M, if for every (A, F), (A, G) e M, F = G.
Clearly, if truth is equationally definable in M, then it is also implicitly definable
in M.

Let M = (A, F) and N = (B, G) be matrices. A matriz homomorphism from
M to N is an algebraic homomorphism h: A — B such that F C h~'G. Notice
that this notion is still a particular case of the first-order definition of homomor-
phism between structures, considering the first order language £ = (F', R’), where
F' = F and R’ = {r}, with r a l-ary relation symbol. A matrix homomorphism
h: M — N is strict, if h"1G = F; and it is deductive®, if h(a) = h(b) implies
Fgg(F,a) = Fg2(F,b). A most crucial fact about strict and surjective matrix
homomorphisms is the following:

Proposition 0.33. If there is a strict surjective homomorphism between two ma-
trices, then these matrices define the same logic.

Just like the operators defined for classes of algebras on page 10, similar op-
erators can be defined for classes of matrices (we skip the details here — see [60,
Chapter 9]). A famous theorem by Czelakowski characterizes the class Mod(S), for
a logic § with cardinal &, as the least class of matrices closed under images and in-
verse images by strict surjective homomorphisms, submatrices, k-reduced products
of matrices, and containing a trivial matrix. We record this result here for future
reference.

Theorem 0.34 (Czelakowski). Let S be a logic with cardinal x° in a countable
language, and M a class of L-matrices. The following conditions are equivalent:
(i) M = Mod(S);
(ii) M s closed under the operators Hs_l, Hs, S, Px_r and contains a trivial
matrix;
(iii)) M = Hg'HsSP,_r(N), for some class of matrices N containing a trivial
matriz.

The notion of a matrix can be seen as a particular case of a more general notion.
A generalized matriz, or g-matriz for short, is a pair MM = (A, €), where A is an
algebra and @ C Z(A) is a closure system. Every g-matrix 9t = (A, %) induces a
consequence relation oy as in (5) by taking the class of matrices {(A, F) : F € €}.
A g-matrix 9 is a generalized model (g-model for short) of a logic S if Fs C Fop.
One can easily check that (A, %) is a g-model of S if and only if € C FisA. Often,
for simplicity, the term “g-model” is applied to % rather than to the pair (A, %).
The class of all g-models of a logic S is denoted by GMod(S).

Among the g-models of a logic there are some of special importance to AAL.
A family € C FisA is full it ¢ = {G € FisA : 4(¢) C 24(G)}. This
notion is obviously relative to the logic, but in general there will be no need to
specify it. Notice that, given an arbitrary family ¥ C FisA, it always holds that
O4(%) € 24(G) for every G € €. Thus, % is full when it is exactly the set
of all the S-filters on A which £24(%) is compatible with. The family FisA is
obviously full, for every A. It is easy to see that every full family of S-filters is a

5The notion of deductive matrix homomorphism was first introduced by Czelakowski in [24,
p. 200].

SNotice that, since the cardinal of a logic is infinite (by definition) and the language of S is
countable (by assumption), either Kk = w or kK = w1.
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closure system, because a congruence compatible with every element of a family of
subsets is compatible with its intersection. Full families of S-filters are also called
full g-models. The class of all full g-models of a logic S is denoted by FGMod(S).

We have chosen as definition of full g-model one among its many equivalent
formulations, by reasons that will become clear later on. Nevertheless, we shall
make use of several characterizations, which we next sum up, and among which is
the original definition [36, Definition 2.8].

Proposition 0.35. Let A be an algebra, € C FisA, and let 7: A — A/ A7)
be the canonical projection. The following conditions are equivalent:

(i) € is full;
(ii) 7€ = Fis(A/34(%));
(iii) € = 7\ Fis(A/24(F));
(iv) € = h=1FisB, for some algebra B and some surjective h: A — B.

A matrix (A, F) is Leibniz-reduced, or simply reduced, if .QA(F ) =ida; and it
is Suszko-reduced if 24 (F) =ida. A g-matrix (A, €) is reduced if 24(%) =ida.
The classes of all reduced (g-)models according to these three criteria are denoted
by, respectively,

Mod*(S) = {(A, F) € Mod(S) : 24(F) = ida},
Mod®*(S) = {(A, F) € Mod(S) : 24 (F) =ida},
GMod*(S) == {(A, %) € GMod(S) : 24(%) = ida}.
Two further classes of matrices will be of interest to us, namely:
LMod*(S) == {(Fm/QF™(T),T/2F™(T)) : T € ThS},
LMod®(S) = {(Fm/QE™(T), T/ 2E™(T)) : T € ThS}.

The classical reference for the theory of matrices is [60]. Another major reference
is [23, Chapter 0]; for the theory of generalized matrices, see [36, Chapter 1].

The classes of algebras Alg"(S) and Alg(S). Two classes of algebras are
considered as naturally, and intrinsically, associated with a logic in AAL. They are
obtained by considering the algebraic reducts of the classes of reduced (g-)models
seen above.

Alg*(S) := { A : there is F € FisA such that NAF) =idp}, (6)
AlgS'S := { A : there is F € FisA such that 22 (F) =ida}, (7)
Alg(S) := { A : there is ¢ C FisA such that £4(%) = ida}. (8)

Observe that, since the Tarski operator is order reversing and FigsA is always full,
definition (8) is equivalent to:

Alg(S) = {A: QA (FisA) =ida) (9)

= {A : there is € C FisA full such that 4(%) =ida}. (10)

The next lemma sums up the standard characterizations of these classes, as well
as the known relations between them. An important idea to retain is that, for all
three operators, the class of algebraic reducts of the reduced (g-)models coincides,

up to isomorphism, with the class of algebraic reducts of the respective reductions
of (g-)models of the logic.



22 CHAPTER 0. PRELIMINARIES

Lemma 0.36. Let S be a logic.

1. Alg*(S) = I{A/QA (F): A an algebra, F € FisA}.

2. A|gSus I{A/QA(F) : A an algebra, F € FisA}.

3. Alg(S I{A/.QA %) : A an algebra, € C FisA}
= I{A/.QA(‘K) : A an algebra, € C FisA full}
= I{A/.QA (FisA): A an algebra}.

4. Alg(S) = Alg®'s.

5. Alg(S) = Ps(Alg™(S)).

Notice that, as a consequence of 5, it always holds
Alg™(S) C Alg(S).

Lastly, we introduce the famous class of Lindenbaum-Tarski algebras and its Suszko
analogous, obtained by considering the Leibniz- and Suszko-reductions of models
over the formula algebra, respectively. That is,

LAIg*(S) = {Fm/QF™(T) : T € ThS}, (11)
LAIgSY(S) := {Fm/QE™(T) : T € ThS}. (12)

The Leibniz hierarchy. The main classification of sentential logics in AAL
is the so called Leibniz hierarchy, displayed in Figure 1. It places a given logic S
inside a class of logics, according to the algebraic properties enjoyed by the Leibniz
operator over the S-filters on arbitrary algebras. In this section we present those
classes of logics within the Leibniz hierarchy which we will take more interest in.

regularly
BP-algebraizable

N

. finitely regularly
BP-algebraizable alsebraizable

SN SN

finitary finitely finitely regularly
equivalential algebraizable algebraizable

4 \ / \
/
o finitel \ / larl
Alg*(8) is a nitely ; regularly
quasivariety equivalential algebraizable weakly algebraizable

NN N

equlvalentlal weakly algebraizable assertional
protoalgebralc truth- equatlonal
/ /
s 7/
s/ ¥
s Alg(S) is an

Alg™(S)=Alg(S)
algebraic semantics

FIGURE 1. The Leibniz hierarchy and some related properties.
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Among the many equivalent characterizations of these classes, we have chosen
as definitions the ones that fit more naturally within the general framework we
intend to settle in Part I of the present work. As we shall make use of several
properties concerning the Leibniz operator, we start by introducing them.

Definition 0.37. Let S be a logic. The Leibniz operator:

B is order preserving, if for every A and every F,G € FisA such that F' C G,
it holds £24(F) C 24(G);

B is order reflecting, if for every A and every F,G € FisA such that .QA(F) C
24(@), it holds F C G;

® is completely order reflecting, if for every A and every {F; :i € I} U{G} C
FisA such that (,., 24(F;) € 2%(G), it holds (,; F; C G.

B commutes with inverse images by homomorphisms, if for every A, B and every
G € FisB, it holds h "' 28 (G) = 24(h'G);

B is continuous, if it commutes with unions of directed families whose union is
an S-filter, i.e., if for every A and every directed family {F; : i € I} C FisA
such that |,.; F; € FisA, it holds 2% (U, Fi) = U,c; 22 (F)).

Definition 0.38. A logic S is:

B protoalgebraic, if the Leibniz operator is order preserving;
B cquivalential, if it is protoalgebraic and the Leibniz operator commutes with
inverse images by homomorphisms;

finitely equivalential, if it is protoalgebraic and the Leibniz operator is con-
tinuous;

truth-equational, if the Leibniz operator is completely order reflecting;
weakly algebraizable, if it is protoalgebraic and truth-equational;
algebraizable, if it is equivalential and truth-equational;

finitely algebraizable, if it is finitely equivalential and truth-equational.

We see that some classes of logics were left out of Definition 0.38. We proceed
to introduce them. To this end, recall the notion of T-assertional logic of a class of
algebras K, given on page 17. Also, a class of algebras is pointed when there is an
L-term ¢ that is constant in the class (that is, for each algebra in the class, all the
interpretations of the £-term ¢ coincide).

Definition 0.39. A logic S is assertional, if it is the {x =~ c}-assertional logic of
some pointed class of algebras K, where ¢ is a constant term in K.

Assertional logics are also called “pointed assertional” (for example, in [55, Def-
inition 8]) or “c-assertional” (for example, in [14, Definition 3.1.1]) in the literature.
In [4] this class of logics is claimed to legitimately belong to the Leibniz hierarchy.
The classes of logics in Figure 1 with the word regularly on its name are precisely
the intersection of the class of assertional logics with the respective class of logics
featuring (the rest of) its name. Actually, following this line of thought, the class of
assertional logics could be legitimately called “regularly truth-equational logics” (in
fact, the original motivation behind the word “regularly” was to distinguish those
algebraizable logics such that Alg*(S) is relatively point-regular, and this property
also holds for assertional logics, as shown in [4, Corollary 9]). Finally, by impos-
ing S finitary to the (regularly) finitely algebraizable we add the prefix BP, which
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stands for “Blok and Pigozzi”, who first introduced and studied the notion of alge-
braizability in their famous monograph [11]; the logics they called “algebraizable”
correspond to the class of BP-algebraizable logics in the present terminology.

Algebraizable logics are traditionally presented (and apart from terminology
and finitariness issues, were also originally defined) via two structural transformers,
one from formulas to equations and another from equations to formulas. In fact, we
shall make use of this equivalent characterization in several examples of Chapter 7.
A logic § is algebraizable if and only if there exists a class of algebra K, a set
of equations in at most one variable 7(z) C Eq, and a set of formulas in at
most two variables p(z,y) € Fm, such that for every I' U {¢} C Fm, and every
MU {6 ~ e} C Eq,,

Tks e ™) BT (p), ( )

Ml §~ee ph ()Fsp "(0,¢), ( )

x oy A= T (pF™ (2, y)), (ALG3)

z s pF (TFm(:J:)) ( )

These four conditions hide some redundancy. Indeed, (ALG1) + (ALG3) < (ALG2)

+ (ALG4). The set 7(x) C Eq, is called a set of defining equations for & (which

recall, is precisely the terminology introduced for truth-equational logics; this is

no coincidence of course, every T witnessing the algebraizability of S witnesses the

truth-equationality of S as well); the set p(z,y) C Fm is called a set of equivalence

formulas for S; and the class K is called an equivalent algebraic semantics for S. In

case K is a generalized quasi-variety, one speaks of the equivalent algebraic semantics

for §. Unlike algebraic semantics, equivalent algebraic semantics are unique modulo

the respective equational consequence relation; that is, if K, K’ are two equivalent
algebraic semantics for a logic S, then Fy! = Fl.

The latest addition to the Leibniz hierarchy is due to Raftery, in the paper [55],
where he characterizes the class of truth-equational logics through the completely
order reflecting property of the Leibniz operator, which is precisely the algebraic
property which we here take as formal definition. For this reason it is, among all
classes of logics in Definition 0.38, the least studied in the literature, and the one
we will take more interest in. This being said, we record here a few results about
truth-equational logics, all established by Raftery in the cited paper. The first one
may help to clarify the naming of this class of logics.

Theorem 0.40. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational;
(ii) Truth is equationally definable in LMod™*(S);
(ii5) Truth is equationally definable in Mod*(S);
(iv) Truth is equationally definable in Mod>"(S).

A set of equations witnessing the truth-equationality of a logic S is called a set
of defining equations for S. The proof of [55, Theorem 27] exhibits a set of defining
equations for any given truth-equational logic.

Proposition 0.41. If S is truth-equational, then T () = 0y ﬁgm({z}) is a set
of defining equations for S, where o, : Fm — Fm is the substitution sending all
variables to x.
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Two important facts to bear in mind relating assertional logics and truth-
equational logics are the following;:

Proposition 0.42. Let S be a logic.

1. Fvery assertional logic S(K, {z ~ T}), where T is a constant term of K, is
truth-equational with set of defining equations T(x) = {x ~ T}.

2. Every truth-equational logic with set of defining equations T(x) = {z ~ T},
where T is a constant term of Alg(S), is the assertional logic S(Alg(S), ).

A key result to both parts of our study is the following (we state here a slight
enhancement of the cited result, which follows easily from it):

Proposition 0.43 ([55, Proposition 22]). Let S be a logic and T(z) C Eq,. The
following conditions are equivalent:

(i) S is truth-equational with the set of defining equations T(x);
(i) For every A and every F € FisA,

F={acA:m%(a) C 24(F)}. (13)
(#ii) For every A € Alg(S) and every F € FisA,
F={acA: 74(a) C .QA(F)}.

Finally, we justify the dashed arrows in Figure 1. These conditions are relevant
to AAL (and we shall consider them along the exposition), but since they are not
characterized in terms of algebraic properties of the Leibniz operator — or at least
no such characterization is known — they lie outside the Leibniz hierarchy. Their
place in Figure 1 is fairly known: if S is protoalgebraic, then Alg*(S) = Alg(S)
[36, Proposition 3.2]; and if S is finitary and finitely equivalential, then Alg*(S) is
a quasivariety [47, p. 426]. Despite not belonging to the Leibniz hierarchy, these
conditions are still consistent with the diagram interpretation of seeing converging
arrows as the intersection of the involved classes of logics. So, for instance, S is
truth-equational and Alg*(S) = Alg(S) if and only if S is weakly algebraizable
(Proposition 3.6); or, S is assertional and Alg*(S) is a quasivariety if and only if
S is regularly BP-algebraizable (Corollary 4.12). Similarly, having an algebraic
semantics is not per se a condition placing some given logic within the Leibniz
hierarchy. However, Raftery proved that:

Proposition 0.44 ([55, Corollary 21]). If S is truth-equational with defining equa-
tions T(x), then Alg(S) is a T-algebraic semantics for S.

For an exhaustive study of the Leibniz hierarchy and the main results in AAL,
see [13, 23, 34, 36, 39|.

The Frege hierarchy. Parallel to the Leibniz hierarchy, there is another im-
portant hierarchy in AAL, this time built upon algebraic properties of the Frege
operator. Once again, we choose among the known characterizations of the follow-
ing classes, the one which suits better within the general framework we intend to
settle.

Definition 0.45. A logic S is:

m sclfertensional, if AL™(2) € ConFm.
® Fregean, if for every T € ThS, AS™(T) € ConFm.
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B fully selfextensional, if for every algebra A, A?(@) € ConA.
® fully Fregean, if for every algebra A and every F' € FigA, A? (F) € ConA.

Notice that, since for arbitrary A and arbitrary F' C A, ﬁg(F) is the largest
congruence below Ag(F ), one could have equivalently defined:

S is selfextensional, it AE™ (@) = OF™(ThS).

S is Fregean, if for every T € ThS, AL™(T) = ﬁgm(T)

S is fully selfextensional, if for every algebra A, A% (@) = ﬁA(]:igA).

S is fully Fregean, if for every algebra A and every F € FisA, Ag(F) =
8(P).

The inclusions between these four classes of logics are straightforward, having
in mind that A% (o) = A% (Fgfé(@)) = Ag‘(ﬂ]—'iSA). That these inclusions are
all strict is far from trivial, but that is indeed the case. Figure 2 displays the so
called Frege hierarchy. This hierarchy is far less studied than the Leibniz hierarchy.

fully
Fregean

SN

fully
Fregean selfextensional

/

selfextensional

F1GURE 2. The Frege hierarchy.

As a final remark, and to avoid misunderstandings, the diagram interpretation
by which the target of two converging arrows is seen as the intersection of the
source classes of logics is still an open problem for the Frege hierarchy, at least in
the general case; for logics with theorems however, fully Fregean logics are indeed
those logics that are both Fregean and fully selfextensional [4, Theorem 26].

Semilattice-based logics. A class of algebras K (of the same similarity type
L) has semilattice reducts, if there exists a binary term A (which can be either a
primitive connective, i.e., A € L, or defined by an L-term in two variables) such
that for every A € K, (A, A) is a semilattice. For every A € K, let <4 denote
the partial order induced by A4, that is, a <A b < a A% b = q, for every a,b € A.
The logic preserving degrees of truth w.r.t. K is the logic induced by the class of
matrices {(A,[a)) : A € K,a € A}, that is, the pair S = (Fm£,|:§>, where IZE is
defined by

FEs o < VYAcKVheHom(Fm,A)Vae A
if Vy € T'a < h(y), then a <2 h(yp),



0.5. Abstract Algebraic Logic 27

for every ' U {¢} C Fm,. In case K is a quasivariety, the logic S,% is finitary
because the class of matrices defining it is first-order definable” and hence closed
under ultraproducts. In the case of a finite set of premisses, the relation IZE can be
re-written as follows:

oFEs ¢ & YAcKVheHom(Fm,A)
a <* h(y),
and
Myt Fr ¢ = VYA€KVhcHom(Fm, A)
h(m) A% A () <% h(p).

Finitary logics preserving degrees of truth are also called semilattice-based logics.
Notice that a semilattice-based logic S,% has theorems if and only if the semilattice
reducts in K have a term-definable maximum. In this case, notice that all theorems
can be identified, since they are all interpreted as the maximum element on the
algebras in K. Observe also that ¢ #EE 1 if and only if K F ¢ =~ ¢ if and only
if V(K) E ¢ &~ ¢. As a consequence, the interderivability relation is necessarily a
congruence. In other words, every semilattice-based logic is selfextensional. In fact,
semilattice-based logics are precisely the selfextensional logics with a conjunction
(given a logic S, a binary L-term A is a conjunction for S, if x,y Fs x Ay and
x Ay ks zy):

Theorem 0.46 ([52, Theorem 3.2]). A finitary logic S has a conjunction and is
selfextensional if and only if it is a semilattice-based logic.

Semilattice-based logics with theorems enjoy a very neat characterization of
their logical filters on S-algebras. Namely, if SE is a semilattice-based logic with
theorems, then for every A € Alg(éﬁ%)7 FisA = FiltA. Since (principal) lattice
filters separate points, an important consequence is that:

Theorem 0.47 ([52, Theorem 3.13]). FEvery semilattice-based logic is fully selfex-
tensional.

Furthermore, for every semilattice-based logic SE, the class of S}%—algebras is
a variety, and is given by AIg(SKS) = V(K).

Assume now that each A € K is upper-bounded, with its maximum element
14 € A being term-definable by the same L-term. The logic preserving truth w.r.t.
K is the {z ~ 1}-assertional logic of K, that is, the pair S = (Fm., FL), where Fj
is defined by

I'Eky <& VAcKVYheHom(Fm,A)
if Vy € T h(y) = 14, then h(p) = 14,

for every T'U {¢} C Fmg. It is clear by the definitions involved that Fk is an
extension of EE.

The intuition behind the name “preserving degrees of truth” and “preserving
truth” is fairly clear: in |:§7 each a € A is to be understood as an attainable degree
of truth in A € K; while in F} the truth is to be understood as represented by

"A class of L-structures is elementary, or first-order definable, if it is the class of models
of some set of first-order sentences of £. Every elementary class of structures is closed under
ultraproducts.
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the element 14 € A, for each A € K. In the literature, particular classes of K are
taken and the resulting logic |=§ is studied in greater detail. For instance, logics
preserving degrees of truth w.r.t. varieties of residuated lattices are covered in [17].
The particular case of Lukasiewicz’s infinite valued logic preserving degrees of truth,
hereby denoted by Lgo, is treated in [35]. For a more philosophical discussion on

the whole subject of preserving degrees of truth, see [33].



Part 1

S-operators in Abstract Algebraic
Logic

“An algebraic instrument which would make all logics amenable to its
methods is available — it is the Suszko operator. For protoalgebraic
logics, the Suszko and the Leibniz operator coincide.”

[23, p. 9]






CHAPTER 1

S-operators

1.1. S-operators

We wish to settle a general framework upon which a common study of the
Leibniz, Suszko and Frege operators can be built. The ground definition is the
following:

Definition 1.1. An S-operator on A is a map VA : FigcA — EqrA.

Clearly, the Leibniz, Suszko, and Frege operators, are all S-operators — see
page 17. We shall also be interested in the Tarski operator, although it is left out
of the scope of Definition 1.1. In order to cope with it, we consider three further
maps associated to each S-operator.

Definition 1.2. Let V4 be an S-operator on A.
(a) The lifting of VA to the power set is the map vAa . P (FisA) — EqrA,
defined by
VA@) = {VA(F): F e},
for every € C FisA.
(b) The relativization of VA (to the logic S) is the map %34: FisA — EqrA,
defined by

V&(F) = {VAWF) : F' € FisA, F C F'}y = VA((FisA)F),

for every F € FigA.
(c) The map VATl Eqrd — P(FisA) is defined by

VAT (0) = {G € FisA: 0 C VA(G)},
for every 6 € EqrA.

Notice that the relativization of an S-operator is still an S-operator, since
(EqrA, C) is a complete lattice. In particular, the relativization of the Leibniz
operator is the Suszko operator — see (2) on page 18. Furthermore, the lifting of the
Leibniz operator is the Tarski operator. Notice also that VAil(H) ={G € FisA:
VA(G) € [0, Ax A]}, which somehow justifies the notation chosen, though vA s
not, of course, the set-theoretical inverse of V4. Finally, we may sometimes write
Npop VAF) instead of \{VA(F') : F' € FisA,F C F'}, which is obviously an
abuse of notation.

The following elementary relations between an S-operator and its relativization
and lifting are immediate consequences of the definitions involved.

Lemma 1.3. Let VA be an S-operator on A.
1. %é“(F) C VA(F) for every F € FisA;
2. VA(€) C VA(F) for every F € €.

31
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Quite often we shall be interested in the behaviour of the “same” S-operator
taken on different algebras. For instance, Proposition 0.31.1 makes use of both
24 and 28. By a family of S-operators we understand a (proper) class {V4 :
A an arbitrary algebra} such that for each A, V4 is an S-operator on A. The
whole family will be denoted simply by V, following the tradition on the Leibniz
and Suszko operators — 2 and 2s.

We shall also consider several properties that may be enjoyed by the Leibniz,
Suszko, and Frege operators. Among these is the monotonicity of each such S-
operator. In general, an S-operator VA : FisA — EqrA is

(i) order preserving, if for every F, G € FisA such that FF C G, it holds VA(F) C
VAG);
(ii) order reflecting, if for every F,G € FisA such that VA(F) C VA(G), it
holds F C G
(iii) completely order reflecting, if for every {F; :i € I} U{G} C FisA such that
Nicr VA(F) € VA(G), it holds (,.; Fi C G.
It should be clear that the relativization of an S-operator is always order pre-
serving. Interestingly enough, an S-operator is order preserving whenever, and only

i€l

when, it coincides with its own relativization.
Lemma 1.4. An S-operator VA is order preserving if and only if VA = 'v“g‘

PrOOF. If VA is order preserving, then VA(F) = N{VA(G) : G € FisA,F C
G} = VA(F), for every F € FisA. Conversely, if VA = V4, then for every
F,G € FisA such that F C G, it holds VA(F) = V&(F) = VA((FisA)F) C
VA((FisA)%) = V&(G) = VA(G). O

The property of being completely order reflecting can also be characterized
using the relativization operator. The next lemma is essentially the generalization
of [565, (5) p. 108]) to S-operators.

Lemma 1.5. An S-operator VA is completely order reflecting if and only if, for
every F,G € FisA, if VA(F) C VA(Q), then F C G.

PROOF. Suppose V4 is a completely order reflecting S-operator on A. Let F,G €
FisA such that VA(F) C VA(G). Since VA(F) = %A((]:igA)F), it follows
by hypothesis that F = (FisA)¥ C G. Conversely, let {F; : i € I} U{G} C
FisA such that (),c; VA(F;) C VA(G). Then, V&(N,c; F) C Nie; VA(E) C
Nicr VA(F;) € VA(G). 1t follows by hypothesis that (,.; F; C F. O

The following proposition states that the maps 4 and VA~ establish a Galois
connection. Given Proposition 0.5, several consequences, and most crucial ones,
follow from it.

Proposition 1.6. Let VA be an S-operator on A. The maps TA and vA~
establish a Galois connection between P (FisA) and Eq,(A), both ordered under
the subset relation.

PROOF. Let ¥ C FisA and 0 € Eq,.(A). Suppose that 0 C VA%). It F € €,
then VA(%) C VA(F), and hence § C VA(F), that is, F € VA_l(Q). Thus,
€ C VA_l(O). Conversely, suppose that ¢ C VA_l(G). Then, § C VA(G), for
every G € €. Thus, § C VA(%). O
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Corollary 1.7. Let VA be an S-operator on A.

1. The maps T4 and VA are order reversing.

2. The map VAT 6 T4 s a closure operator over FisA, i.e., is a closure on
P(FisA).

The map VAovA™ s a closure on EqrA.

The set of fized points of vAT o T4 s Ran(VA_l).

The set of fixed points of Taova™ s Ran(%A).

The maps TA and VA restrict to mutually inverse dual order isomorphisms
between the set of fized points of VAT 6 A and the set of fixed points of
VAaoval,

S T o

‘We shall consider the fixed points of both closures VAT 60T and VAovAaT!
often enough to deserve a proper name.

Definition 1.8. Let V4 be an S-operator on A. A family € C FisA is VA-full
if ¢ = VA_l(ﬁA(‘K)), ie,if ¢ e Ran(VA_l). A relation 6§ € EqrA is VA-full if
6 = VA(VATH(6)), ie., if § € Ran(V4).

Thus, the maps ¥4 and VA restrict to mutually inverse dual order isomor-
phisms between the sets of all VA-full families of S-filters of A and the set of
all VA-full relations on A. The reason behind the terminology “full” will become
clear once we arrive at Proposition 2.1. A useful characterization of these VA-full
objects, which is also a consequence of the Galois connection, is the following.

Proposition 1.9. Let VA be an S-operator on A.

1. € C FisA is V-full if and only if it is the largest 2 C FisA such that
VA(2) =YA(%).

2. 0 € EqrA is V-full if and only if it is the largest ' € A x A such that
VATl (9 = vAT ().

In particular, both the closure system FisA and the congruence A x A are
V-full objects, for any S-operator VA and any algebra A. Another trivial, yet
meaningful, observation is that if V4 is order preserving, then every V-full family
of S-filters of A is an up-set in FigA.

Congruential S-operators. One distinguished feature of the Leibniz and
Suszko operators, when seen as S-operators, is that their output is always a con-
gruence on the algebra’s domain. This property turns out to be relevant in a great
deal of the general results we will establish. The Frege operator, on the other hand,
fails to satisfy such property in general.

Definition 1.10. An S-operator V4 on A is congruential, if VA(F) € ConA, for
every F' € FigA.

Although it seems to concern only the Leibniz operator, the following result
turns out to be crucial in the study of congruential S-operators, and we shall make
use of it innumerous times through the rest of this work.

Proposition 1.11. For every 8 € ConA,

—1

24710) = 7 Fis(A/0) and Fis(AJ0) = 7247 (0),
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where m : A — A/6 is the canonical map. Moreover, the extended mappings
7 P(A) = P(A)0) and m=1: P(A)0) — P(A) restrict to order isomorphisms
between the sets QAil(G) and Fis(A/0).

PROOF. Let F e 247 (#). This means that 6 is compatible with F', and hence that
7 lnF = F € FisA. Since 7 is surjective, by Lemma 0.24.2, 7 F € Fis(A/0).
So, F € m 1 Fis(A/f). Conversely, let G € Fis(A/0). Tt follows by Lemma
0.24.1 that 7~ 'G € FisA. Moreover, again by the surjectivity of 7, 77~ !G = G.
So, 7r*1(7r7r’1G) = 771G, which tells us that @ is compatible with 77'G. Thus,
771G ¢ QA_l(O). This proves the first equality, and the second follows from it
by surjectivity of m. As to the second part of the statement, observe that we have
just seen that both 7 and 7~ are into (actually, onto) the respective co-domains.
Moreover, (7r [FisA ) o (7r_1 [ Fis(A/0) ) = 1idr;s(A,/9), Decause 7 is surjective, and
(7Y 7iscaso) ) © (7 [Fisa ) = idrisa, by definition of 247 (). So, they are
mutually inverse bijections. Since they are both order preserving, they are in fact
order isomorphisms. O

1.2. V-classes and V-filters
Definition 1.12. Let VA be an S-operator on A and F € FisA. The V-class of
F is the set
[F]¥ == 247 (VA(F)) = {G € FisA: VA(F) C 24(G)}.
The first basic fact about V-classes is that they are closure systems on FisA.

Proposition 1.13. Let VA be an S-operator on A. For every F € FisA, the
V-class [F]V is a closure system on FisA.

PROOF. Let {F;:i€ I} C[F]V. Then,
VAF) C (N 24F) c 24 F)-
iel iel
Hence, (;c; Fi € [F]V. Moreover, since 24(A) = A x A, it trivially holds A €
IF]V. O

Assuming V congruential, Proposition 1.13 can be strengthened as follows:

Proposition 1.14. Let VA be a congruential S-operator on A. For every F €
FisA, the V-class [F]V is a full g-model of S.

PROOF. By definition, [F]V = £247 (VA(F)). Since VA(F) € Con(A) by hy-
pothesis, it follows by Proposition 1.11 that [F]V = 7~ Fis(A/VA(F)), where
7m:A— A/VA(F) is the canonical map. It follows by Proposition 0.35 that [F]V
is a full g-model of S. O

Given that every closure system is closed under intersections, it makes sense to
consider the smallest element in each V-class.

Definition 1.15. Let V4 be an S-operator on A and F € FigsA. The least
element of the V-class of F' will be denoted by FV; ie., FY = N[F]Y. We say
that F is a V-filter if F = FV. The set of all V-filters of A will be denoted by
Fig A.
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It is worth noticing that if S has no theorems, then for any A the only V-filter
of A is the empty filter, because @ € FisA and QA(Q) = A x A; so for every
F € FisA, it holds @ € [F]V and hence necessarily @ = ([F]V. It is therefore
clear that the interesting applications of the notions of V-class and V-filter will
concern only logics with theorems; however, technically we need not assume this in
any result.

Proposition 1.16. Every S-operator VA on A is order reflecting, and therefore
injective, on Fiy A.

PROOF. Let F,G € Fi¥ A such that VA(F) C VA(G). Then [G]Y C [F]V. Thus,
F=N[F]Y cNIG]Y =G. O

In general, an S-operator V4 need not be order preserving on F ig A. Another
useful monotonicity related property, this time concerning the elements of V-classes,
is the following;:

Lemma 1.17. If VA is an order preserving S-operator on A, then the map F —
FY is monotonic, i.c., if F C G, then FV C GV.

ProOOF. If F C G, then VA(F) C VA(G) by order preservation, so [G]Y C [F]V,
and therefore GV = N[G]Y C N[F]Y = FV. O

Since V-classes are, by definition, sets of S-filters of the form QAil(VA (F)),
for some F € FisA, we can apply Proposition 1.11 to # = VA(F), provided that
V is congruential.

Proposition 1.18. Let VA be a congruential S-operator on A. An S-filter F €
FisA is a V-filter of A if and only if F/NVA(F) is the least S-filter of A/VA(F).

PROOF. Let m : A — A/VA(F) be the canonical map. Since .QA_I(VA(F)) =
[F]V, it follows by Proposition 1.11 that 7 induces an order isomorphism between
[F]V and Fis(A/VA(F)). Since order isomorphisms send least elements to least
elements, the result should be clear. O

1.3. S-compatibility operators

The main notion of this chapter was first introduced in [24, p. 199] for the
particular case where the S-operators have as outputs congruences on the algebra’s
domain.

Definition 1.19. An S-compatibility operator on A is an S-operator VA : Fig A —
EqrA such that VA(F) C 24(F), for every F € A.

The least S-compatibility operator on A is the map id4 : FisA — EqrAd
defined by F' + id 4, for every F' € FigA. The largest S-compatibility operator on
A is obviously £2. Since for every F € FisA, ﬁg(F) C RA(F), ﬁg‘ is also an
S-compatibility operator on A. Actually, the Suszko operator is the largest order
preserving S-compatibility operator:

Lemma 1.20. For every A, the Suszko operator ﬁg‘ is the largest order preserving
S-compatibility operator on A.
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PROOF. Let V4 be an order preserving S-compatibility operator on A. For every
F e FisA,
VAR) =V&(F) = () VA C (] 24F) = Q8(F),
F'DF F'DF

using Lemma 1.4 and S-compatibility. (]
We next state some basic facts concerning V-classes and V-filters.

Lemma 1.21. Let VA be an S-compatibility operator on A. For every F € FisA,
1. F e [F]Y;
2. FV CF.
If moreover V4 is order preserving, then
3. (FisA)F C[F]Y;
4. [F]Y = (FisA)Y if and only if F = FV, i.c., if and only if F is a V-filter.

PROOF. 1. By S-compatibility, VA(F) C 24(F). 2. Since F belongs to its own
V-class by 1, FV = N[F]Y C F. 3. If F' € (FisA)¥, then VA(F) C VA(F') C
24(F"), and therefore F' € [F]V. 4. Suppose that [F]Y = (FisA)". Then,
FY = NIF]Y = N(FisA)f' = F. Conversely, suppose that FF = FV. Clearly
then, [F]Y C (FisA)¥'. Moreover, by 3, (FisA)Y C [F]V. O

Finally, we state some straightforward consequences of the facts that the Leib-
niz operator is the largest S-operator, and the Suszko operator is the largest order
preserving one (from Chapter 2 on, we shall use a more familiar notation for the
£2- and ﬁg—related notions; for the time being, we use the notation introduced in
Definitions 1.12 and 1.15).

Lemma 1.22. Let VA be an S-compatibility operator on A. For every F € FisA,
1. [F]®? C [F]Y;
2. FV C F9;
3. Bvery V-filter is an 2-filter.

PROOF. 1. Since VA(F) C 24(F), by S-compatibility. 2. Just notice that
FY = NOIFIY € O[F]? = F2, using 1. 3. Since FV C F? C F, using 2 and
F e [F]2, for 24(F) C Q4(F). 0

Lemma 1.23. Let VA be an order preserving S-compatibility operator on A. For
every F' € FisA,

L. [F]%s ¢ [F]7;

2. FV C F¥s;

3. Every V-filter is an ﬁg—ﬁlter.

PROOF. 1. SinceNVA(F) je ﬁg‘(F), by Lemma 1.20. 2. Just notice that FYV =
NIFTY - NIF]*?s = F?s using 1. 3. Since FV C F%s C F, using 2 and
F e [F]9s, for Q4(F) C 24(F). O

1.4. Coherent families of S-operators

The main notion of this section — coherence — serves as a generalization of
the property of commuting with inverse images by surjective homomorphisms. The
reason why we wish to generalize this property is simple. First, as we next show,
the only S-compatibility operator commuting with inverse images by surjective
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homomorphisms is the Leibniz operator, which obviously makes this property of
little use for a general treatment. But furthermore, and most importantly, our three
paradigmatic examples of S-operators — the Leibniz, Suszko and Frege operators
— turn out to be coherent.

Let VA and VB be S-operators on A and B, respectively. We say that the
pair (VA, VB) commutes with inverse images by (surjective) homomorphisms if for
every (surjective) h: A — B and every G € FisB,

VAMhLT'G) = hIVE(G).

A family V of S-operators commutes with inverse images by (surjective) homo-
morphisms if for all algebras A and B the pair (VA, VB) commutes with inverse
images by (surjective) homomorphisms in the above sense.

Theorem 1.24. IfV is a family of S-compatibility operators that commutes with
inverse images by surjective homomorphisms, then V = 2.

PROOF. Let A arbitrary and F € FigA. Let 7 : A — A/24(F) be the canon-
ical map. It is clearly surjective. Moreover, since Kerm = .QA(F) is compatible
with F, we have F = 7 7 F and 7F € }'ig(A/.QA(F)). Now, it follows by
S-compatibility that

vANE) (R A (F)) C QA IV E/QAF)) = ida ga )

Hence, VA/2%(F)(F/QA(F)) = 42 F)(p/0QA(F)). Applying 7= on both
sides, using our hypothesis, and the fact that the Leibniz operator commutes with
inverse images by surjective homomorphisms,

VA(F) = VA(r 'nF) = n L vA/ 2 () (£ 04 (F))
=7 1A ENF/QAF)) = QA (nIn F) = QAF).
Since we have chosen A and F' € FisA arbitrary, we conclude that V = 2. ]

Do notice that Theorem 1.24 characterizes the Leibniz operator among S-
compatibility operators, but not necessarily among the S-operators in general (in-
deed, it does not, as we shall see in Theorem 2.52 when studying the Frege operator).

An immediate consequence is that the Suszko operator commutes with inverse
images by surjective homomorphisms if and only if Qs = £2, which as we know, is
equivalent to protoalgebraicity. This characterization will be the starting point for
similiar characterizations of other classes of logics within the Leibniz hierarchy in
terms of the Suszko operator (Theorem 3.13). For the time being, it confirms what
we had already advanced after Proposition 0.31, namely, that the Suszko operator
does not commute, in general, with inverse images by surjective homomorphisms.
In order to find a commutativity property suitable for a unified treatment of the
remaining two paradigmatic S-operators, we introduce the following technical no-
tion.

Definition 1.25. Let V be a family of S-operators. Let A be an algebra, F' €
FisA and € C FisA. A homomorphism h: A — B is V-compatible with F' if
Kerh C VA(F); and it is V-compatible with € if it is V-compatible with every
member of %, that is, if Kerh C VA(%).
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Notice that a homomorphism h: A — B is §2-compatible with F' € FisA
if and only if Kerh C £24(F) if and only if Kerh is compatible (in the usual
sense) with F. Also, given an S-compatibility operator V, observe that if h is
V-compatible with F, then it is also £2-compatible with F'. So, by Lemmas 0.17.1
and 0.17.2, F = h~'hF and VA(F) = h"'hVA(F).

Definition 1.25, when instantiated with the Leibniz, Suszko and Frege opera-
tors, turns out to be equivalent to two already known notions concerning matrix
homomorphisms.

Lemma 1.26. Let A, B algebras, h : A — B and F € FisA. The following
conditions are equivalent:

1. h is £2-compatible with F';
2. the matriz homomorphism h: (A, F) — (B,hF) is strict.

Proor. Having in mind Lemma 0.16, notice that
h: (A, F) = (B,hF) is strict iff A 'hF=F
iff Kerh C 24(F).
O

Lemma 1.27. Let A, B algebras, h : A — B and F € FisA. The following
conditions are equivalent:

1. his ﬁg-compatible with F;

2. h is As-compatible with F;

3. the matriz homomorphism h: (A, F) — (B, hF) is deductive.

ProoF. Having in mind that ﬁg‘(F ) is the largest congruence on A below A% (F),
notice that

h: (A, F) = (B,hF) is deductive iff Va,be A
if ha = hb, then Fg4 (F,a) = Fg&(F,b)
iff Kerh C A% (F)
iff Kerh C ﬁ?(F)
]

Deductive homomorphisms were introduced in [24] and used to extend Blok
and Pigozzi’s Correspondence Theorem to arbitrary logics ([24, Proposition 2.3],
here stated as Theorem 2.34), which follows in our setting as an instance of the
General Correspondence Theorem 1.38.

We are now ready to introduce the main (new) definition of the present section,
and probably of the whole Part 1.

Definition 1.28. A family V of S-operators is coherent, if for every surjective
homomorphism h: A — B and every G € FisB, if h is V-compatible with h~1G,
then VA(h™1G) = h"1VE(Q).

The family {id” : A an algebra} is trivially a coherent family of S-compatibility
operators. For let A, B algebras, h : A — B surjective, G € FigB and assume
Kerh C id2(h™'G) = ida. Then, Kerh = ida. So, h is injective, and therefore it
is an isomorphism. Hence, h~1idB(G) = h~lidg = ida = id2(h™'G).
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It should be clear by the definition itself that coherence is a weaker property
than commuting with inverse images of surjective homomorphisms. Taking Theo-
rem 1.24 into account, the Leibniz operator is a coherent family of S-operators.

It is also possible, and in fact it will sometimes be rather practical, to use
coherence stated in terms of commutativity with images by surjective homomor-
phisms instead of inverse images. The next lemma holds only for S-compatibility
operators.

Lemma 1.29. A family V of S-compatibility operators is coherent if and only if
for every surjective h: A — B and every F' € FigA, if h is V-compatible with F,
then hVA(F) = VB(hF).

PROOF. Suppose V is coherent. Let F' € FisA and h: A — B be surjective and
V-compatible with F. Hence, F = h™'hF and hF € FisB. It follows by coherence
that VA(F) = VA(h™'hF) = h='VB(hF), and hence that hVA(F) = VE(hF)
because h is surjective. Conversely, let G € FisB and let h: A — B be surjective
and V-compatible with h~1G. Since h™!G € FisA, it follows by the assumption
and the surjectivity of h that

AVALTIG) = VB(hh1G) = VB(G).
Applying the property in Lemma 0.17.2 to the VA-compatibility of » with h™'G,
we obtain
VAMRTIG) = h VA LTIG) = hIVE(G),
which shows that V is coherent. (]

Of course, isomorphisms are both surjective and V-compatible with any S-filter,
as their kernel is the identity.

Corollary 1.30. IfV is a coherent family of S-compatibility operators and h: A —
B is an isomorphism, then for every F' € FisA and every G € FisB, it holds
hVA(F) = VB(hF) and VA(h1G) = h~1VE(Q).

Another interesting characterization of coherence comes in terms of the map
-1
vAT.

Proposition 1.31. A family V of S-compatibility operators is coherent if and only
if, for every surjective homomorphism h: A — B,

VA (Kerh) = {F € FisA : h"'VB(hF) = VA(F)}. (14)

PROOF. Suppose V is coherent. Let F € VA_I(Kerh). Then, Kerh C VA(F) C
QA(F), using S-compatibility. Therefore, F = h~'hF and hence hF € FisB.
Since V is a coherent by hypothesis, h~"'VEB(hF) = VA(F). Now, let F € FisA
such that h~'VB(hF) = VA(F). Then, since Kerh C h=*VB(hF) always holds,
it follows that Kerh C VA(F) and therefore that F' € va~! (Kerh).

Conversely, suppose that surjective homomorphisms satisfy the identity (14).
Let A, B any two algebras, let h € A — B surjective, let G € FisB and as-
sume h is V-compatible with 2~'G. That is, Kerh C VA(h™'G). So, h™!G €
VA_l(Kerh). It follows by hypothesis that h~'VEB(hh™1G) = VA(h~'G). Since
h is surjective, G = hh™'G, and we therefore obtain h~'VB(G) = VA(R™!G).
Thus, V is coherent. O
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We finish this section by proving that coherence is preserved under relativiza-
tion.

Proposition 1.32. If V is a coherent family of S-compatibility operators, then
the family Vs = {V& : A an algebra} is also a coherent family of S-compatibility
operators.

PROOF. It is clear by the definition of 654 that, if V is a family of S-compatibility
operators, then so is %5. Now, let G € FisB and let h: A — B be surjective
and V#-compatible with h~'G, i.e., such that Kerh C V&(h7'G). Let F' €
(FisA)h 'Y ie., such that h=*G C F’. Then, Kerh C VA(h~1G) C VA(F') C
VA(F"). Hence, h is V-compatible with F’, and therefore F’ = h~'hF’ and
hF’ € FisB. It follows by hypothesis that

VAF') = VAW 'hF') = k' VB (R F'). (15)

Next, we claim that:
Claim. h((FisA)" '¢) = (FisB)%: Let F' € FisA be such that h~'G C F'.
We have already seen that under the present assumptions, hF’' € FisB, and
obviously G = hh™'G C hF'. Conversely, let G’ € FisB be such that G C G'.

Then we know that G’ = hh~™'G’ and h™'G’ € FisA, and moreover h~'G C
hla".

Now, using (15), commutativity of h=! with intersections, and the claim,

76) = (VAR F € (FisA)* '€}
=P 'VE(hF) . F' e (FisA)" ¢}
(VB F) : F e (Fisa) )
—pt (ﬂ{vB(G’) G e (]-"iSB)G}) — VB Q).
We conclude that the family Vs is coherent. O

In particular, the Suszko operator, being the relativization of the Leibniz op-
erator, is also a coherent family of S-operators.

Proposition 1.33. Let V be a coherent family of S-compatibility operators, and
let h: A — B be surjective.
1. For any 9 C FisB, if h is V-compatible with h=*2, then VA(h=19) =
h=1VB ().
2. For any € C FisA, if h is V-compatible with €, then hNA(€) = VB(hE).

PROOF. 1. Assume that h is V-compatible with h=12, i.e., Kerh C VA(h~12).
For each G € 2, VA(h"12) C VA(h™'G), and hence h is V-compatible with
h~'G. So, by coherence,

)= (VARG = () IVEG) =h! () VE(G) =hn1TE(9).

Geo Geo Ge2

2. Assume now that h is V-compatible with 4. Thus, if F' € ¥, then h is V-
compatible with F, which implies that A~'hF = F. Therefore, h"'h%€ = €, so
that we can say that h is V-compatible with h='h%. Moreover, since Kerh C
VA(F) for each F € €, we also have that Kerh C V4(%), which by Lemma 0.17.2
implies that h—1h§A((5) = %A(%). Then we can apply point 1 to find that
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VA%) = VAL h%) = h1UB(h%) and then by surjectivity of h we conclude
that hVA(%) = hh 'VB(hg) = VB(h%). O

V-full objects under coherence. In this section we show that, for coherent
families of congruential S-compatibility operators, the V-full objects defined in
Section 1.1 can be given finer characterizations. Let us start by pointing out a
particular case of Proposition 1.31.

Proposition 1.34. IfV is a coherent family of S-compatibility operators, then for
every § € ConA,

-1

VAT (0) = {F € FisA: n 'VA(n F) = VA(F)}

=1{G € Fis(A)9) : n'VAY(G) = VA(r~'G)}.
PrOOF. For the first equality we apply Proposition 1.31 to the quotient homo-
morphism 7 : A — A/6. To obtain the second note that the inclusion from left
to right is clear. The other inclusion follows from the fact that if F' € FigA is

such that 7='VA/?(x F) = VA(F), then Kerr is compatible with F and therefore
7F € Fis(A/0). 0

This allows us to establish the following characterization of V4-full families of
S-filters:

Corollary 1.35. Let V be a coherent family of congruential S-compatibility oper-
ators and € C FisA. Then € is a VA-full g-model of S if and only if

€ = {F € FisA: h"'VB(hF) = VA(F)},

for some surjective homomorphism h : A — B, which can be taken to be the
canonical map 7 : A — A/VA(F).

PROOF. Suppose € C FigA is a VA-full g-model of S, i.e., € = VA~ (V4(%)).
Let B := A/VA(€) and let 7 : A — A/VA(%) the quotient homomorphism.
Then ¢ = VA~ (Kerw). Thus from Proposition 1.31 we obtain ¢ = {F € FisA:
7 IVB(nF) = VA(F)}. Assume now that ¢ = {F € FisA : h"'VE(hF) =
VA(F )} for some surjective homomorphism h : A — B. Then again by Proposition
1.31 we have ¢ = VA~ (Kerh). Thus ¢ € Ran(VA ™) and hence it is VA-full. [

Considering the proof above and Proposition 1.34, a slightly different corollary
can be stated as follows:

Corollary 1.36. Let V be a coherent family of congruential S-compatibility oper-
ators, and € C FisA. Then € is VA-full if and only if

¢ =n"{G € Fis(A/0) : n'VAG) = VA(r~'G)},
for some 8 € ConA, which can be taken to be %A(%).
Finally, we address the V-full congruences.

Proposition 1.37. Let V be a coherent family of S-compatibility operators and
0 € ConA. Then 0 is VA-full if and only if

'v‘A/e({G € Fis(A/8) : n VA (@) = VA(W_lG)}) —ida .
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ProoF. Fix 7 = {G € Fis(A/9) : n7'VAY(G) = VA(r~1G)}. Observe
that by the comment after Definition 1.28, 7w is V-compatible with &, and there-
fore, using Proposition 1.34 and Lemma 1.33.1, # is VA-full if and only if § =
vA (VA_l(F))) = VA(r19) = 7-1VA/%(2). This implies, by surjectivity of ,
that VA4/%(2) = 7n-1¥A/%(2) = n(h) = id /9. Conversely, if VA (g) = idayp,
then 6 = m tidasg = W‘lﬁA/G(.@), which establishes that 6 is VA-full by the
above consideration. (|

Here arrived, observe that by instantiating the above results with the Leib-
niz operator, which is a coherent family of congruential S-compatibility operators,
we find the result proved directly in Proposition 1.11, namely that .QAil(G) =
Fis(A/0). Indeed, since the Leibniz operator commutes with inverse images by
surjective homomorphisms, the family & in the above proof is precisely Fis(A/0).

1.5. The General Correspondence Theorem

We are now able to prove the main theorem of the present chapter — the
General Correspondence Theorem 1.38. By applying this result to the Leibniz
and to the Suszko operators (Theorems 2.12 and 2.34, respectively), we will see
that it generalizes and strengthens Blok and Pigozzi’s well-known Correspondence
Theorem for protoalgebraic logics [10, Theorem 2.4], and Czelakowski’s less known
Correspondence Theorem [24, Proposition 2.3] for arbitrary logics, respectively. It
also generalizes the strengthening obtained for protoalgebraic logics by Font and
Jansana of the first result ([37, Corollary 9.1]).

Theorem 1.38 (General Correspondence Theorem). Let V be a coherent family
of §-compatibility operators. For every surjective h: A — B and every F' € FisA,
if h is V-compatible with F, then h induces an order isomorphism between [F]]VA
and ﬂhFﬂvB, whose inverse is given by h™1.

PROOF. Since h is V-compatible with F', it is also £2-compatible with F'. So, by
Lemmas 0.17.1 and 0.24.3, F = h~'hF and hF € FisB.

Take first any F’' € [[F]}VA. Then Kerh C VA(F) C 24(F') and hence by
Lemma 0.24.3, h"'hF’ = F' and hF' € FisB. Moreover, since h is both £2-
compatible with F’ and V-compatible with F' and both §2 and V are coherent, we
can apply Lemma 1.29 to both and obtain that VB(hF) = hVA(F) C hQ4(F') =
28 (hF'). This tells us that hF’ € [hF]V".

Now take any G € [[hF]]VB, i.e., such that VB(hF) C 25(G). We know that
h~'G € FisA and that hh~'G = G. Observe that h is V-compatible with h = h F,
since this is F'. Then, by coherence, we have

VAF) = VAW 'hF) = 'VB(hF) Ch ' 02B(G) = 24(h71G).

This shows that h~1G € [F]V".

Thus, we have established that h induces a bijection between [F ]]VA and
[hF ]]VB, whose inverse is given by h~!. Since both maps are obviously order
preserving, they are in fact order isomorphisms. O

Since order isomorphisms put the least elements of the two ordered sets into
correspondence, we obtain:
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Corollary 1.39. Under the assumptions of Theorem 1.38, F is a V-filter of A if
and only if hF is a V-filter of B.

Another corollary about V-filters, which follows by Theorem 1.38 and will be
very useful in Part II, is the following:

Corollary 1.40. Let S be a logic and V a coherent family of congruential S-
compatibility operators. For every A and every F € FisA,

FY/AF) = (F/VA(F)
and it is the least S-filter of A/VA(F).

PrOOF. Let m: A — A/VA(F) be the canonical map. Fix B := A/VA(F). Since
7 is surjective and V4A-compatible with F' (because Kerh = VA(F)), it follows by
the General Correspondence Theorem 1.38 that 7w induces an isomorphism between
[F]Y and [7 F]V, whose inverse is given by 7 1. As a consequence, since F'V is the
least element of [F]Y, 7(FV) must be the least element of [r F]]V, which is (7 F)V.
That is, 7(FV) = (7 F)V. Finally, notice that VB(rF) = idg, by Lemma 1.45.
So, [7F]V = Fis(B). Thus, (rF)V is the least S-filter of B. O

Given Proposition 1.32, we can apply the General Correspondence Theorem
1.38 to the relativization of an S-operator and obtain:

Theorem 1.41. Let V be a coherent family of S-compatibility operators. For every

surjective h: A — B and every F € FisA, if h is Vs-compatible with F', then h
~A ~B

induces an order isomorphism between [F]Vs and [RF]Vs , whose inverse is given

by h~ 1.

1.6. Classes of algebras associated with a family of S-operators

We saw in Lemma 0.36 that the classes of algebras usually associated with
a logic through the Leibniz and the Suszko operators can be obtained either by
considering reduced models, or by a process of reduction. By analogy, one can
apply the first procedure to families of S-operators and the second procedure to
families of congruential S-operators.

Throughout this section, we shall assume without any further reference to be
dealing with congruential S-operators.

Definition 1.42. Let V be a family of S-operators. Define

AlgV(S) = 1{A/VA(F): A an algebra, F € FisA},

Algy(S) = I{A:thereis F' € FigA such that VA(F) =ida},
AgYs(S) = 1{A/VAF): A an algebra, F € FigA),
Alge (S) = I{A:thereis F € FisA such that V§'(F) = ida},
Algg(S) = I{A/%A(%) : A an algebra, ¢ C FisA},

Algs(S) = I{A:thereis ¢ C FisA such that V4(%) =ida}.

So, for each family V, %5, and %, we associate two classes of algebras: the
class of V-reduced algebras (respectively, %5— and %—) and the class of V-reductions
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(respectively, Vs- and %—) We have chosen to define all these classes as closed
under the operator I, but in fact, having in mind Corollary 1.30, it is easy to see
that the reductions’ classes could have been defined without it.

Lemma 1.43. The classes
{A: there is F € FisA such that VA(F) = ida},
{A: there is F € FisA such that V4(F) = ida},
{A: there is € C FisA such that VA¢) = ida},
are all closed under isomorphisms.

Given Lemma 0.36.3, as well as condition (4) on page 136, concerning the
Tarski operator (that is, the lifting of the Leibniz operator), let us first observe
that the two last classes of algebras in Definition 1.42 can also be given similar
characterizations.

Lemma 1.44. Let V be a family of S-operators.

1. AIg¥(S) = 1{A/VA(€) : A an algebra, € C FisA V-full} ;
2. Alg(S) = 1{A: VA(FisA) = ida};
3. Nige(S) = I{A : there is a V-full € C FisA such that VA% = ida},

Proor. 1. The inclusion from right to left is obvious. To prove the converse
inclusion, observe that given any ¥ C FisA, by the Galois connection (Propo-
sition 1.6 and related results) the congruence %A(%) is a V-full congruence and
hence there is some V-full 2 C FigA such that VA(2) = VA(¥); therefore,
A)NVA@) = A/VA2) € NgY(S).

2. The inclusion from right to left is obvious. Conversely, given any ¥ C FisA
such that VA (%) = id 4, it also holds VA(FisA) = ida, since ¥ is order reversing,
So, Alge(S) € {A : VA(FisA) =ida}.

3. The inclusion from right to left is once again obvious. Conversely, just no-
tice that FigA is always a V-full family of S-filters. So, A|g$(8) - I{A :
there is a V-full ¢ C FisA such that VA(€) = ida}, by 2. O

Our next goal is to see that the two classes of algebras associated with a coher-
ent family of S-compatibility operators coincide; and so do the respective classes
associated with its relativization and its lifting. In fact, these last classes all coin-
cide among them. The key point is to see that the “process of V-reduction” applied
to any model of S always produces a “V-reduced” model.

Lemma 1.45. Let V be a coherent family of S-compatibility operators. For every
F € FisA and every 0 € ConA, if § C VA(F), then VA/Y(F/0) = VA(F) /0. In
particular,
A .
VANTENF/VA(F)) = ida/vace).-

ProoF. Consider the canonical projection 7 : A — A/6, which is surjective and
is V-compatible with F' by the assumption. Then, by coherence and Lemma 1.29,
VA/Y(F/0) = VA (rF) = aVA(F) = VA(F)/0. For the last identity, take
6 = VA(F). O

Proposition 1.46. If V is a coherent family of S-compatibility operators, then
AlgVS = AlgoS.
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PROOF. The inclusion Algy (S) C Alg¥(S) holds in general, because A = A/id4,
and the reverse inclusion is a consequence of Lemma 1.45. ]

Moreover, we can apply Propositions 1.32 and 1.46 to %5.

Corollary 1.47. If V is a coherent family of S-compatibility operators, then
Alg¥s(S) = Algg_(S).

In particular, taking V = 2 and V = ﬁs, Proposition 1.46 and Corollary 1.47
yield the equalities Alg(S) = Algg,(S) = Alg*(S), and Alg®s(S) = Algg (S) =
Alg5U(8), respectively, which are already known (Lemma 0.36).

The proofs of the next two results are completely analogous, modulo Lemma
1.33, to those of Lemma 1.45 and Proposition 1.46, respectively.

Lemma 1.48. Let V be a coherent family of S-compatibility operators. For every
€ C FisA,

~A
VNA/V (€) @ VNA @ :
(€/VA(©) 5% )

Proposition 1.49. If V is a coherent family of S-compatibility operators, then
Alg¥(S) = Alge(S).

Finally, we arrive at:

Proposition 1.50. If V is a coherent family of S-compatibility operators, then
Alg¥(8) = Algg(S) = Alg™S(S) = Algs (S).

PROOF. By definition, for each F' € FisA, fVig‘(F) = %A((}"iSA)F). From this

it follows that Alge (S) € Algg(S) and that /—\Ige‘S (S) C Algﬁ(S). To see the
reverse inclusion in the first case, assume that A € Algy(S). By Lemma 1.44.2,
VA(FisA) = ida. But, fixing Fy = FisA, V&(F) = VA((FisA)F) =
VA(FisA) = ida. Therefore, A € Alge (S). Given Corollary 1.47, we are done.

(]

Since, by Proposition 1.32, coherence is preserved through relativization, it is
legitime to apply the results just proved for a coherent V to %5, and in particular, to
consider the classes of algebras associated to the lifting of %3 and to its relativization
to S. But, since %3 is an order preserving S-operator, in view of Lemma 1.4, the
relativization of %5 13 %5 itself. Therefore, its associated classes of algebras would
still be the class Alg(S).

So, given a coherent family of congruential S-compatibility operators, the
classes of algebras in Definition 1.42 collapse into just two, namely /-\Igv(S) and

Alg¥s(S). The fact that these classes coincide or not, will be relevant in some
results to come — see Proposition 3.4 or Lemma 3.3, for instance.






CHAPTER 2

The Leibniz, Suszko and Frege operators

2.1. The Leibniz operator as an S-compatibility operator

Among all the S-operators we shall consider, the Leibniz operator is by far the
most well studied one. As we will soon see, instantiating the results of Chapter 1
with V = §2 yields both new and familiar notions. But since these later have
already well-settled notations and terminology — for instance, Alg*(S) — we shall,
from now on, write ( )* instead of ( )% in all supscripts concerning the Leibniz
operator.

We start our study of this famous operator by viewing it just as an S-operator.
From this assumption alone, we will see that some powerful consequences already
arise as by-products of the Galois connection established in Proposition 1.6. We
then proceed to view the Leibniz operator in its full extension, that is, as a congru-
ential S-compatibility operator.

As already remarked, the lifting of the Leibniz operator N4 is the familiar
Tarski operator 4. As to the map QA_l, observe that if # € ConA, then

2471(0) = {F € Fis(A): 0 C 24(F)}
= {F € Fis(A) : 0 is compatible with F}.

Let us first characterize the 2-full objects in terms of some well-known con-
cepts.

Proposition 2.1. A set € C FisA is £2-full if and only if it is a full g-model of
S.

PROOF. Tt holds, 247 ($#4(%)) = {G € Fis(A) : FA(€) € 24(G)}. Now, by
definition 1.8, ¥ is £2-full when it equals the left-hand side of the equality; and by
definition it is a full g-model of S when it equals the right-hand side. O

Proposition 2.2. A congruence 0 € ConA is £2-full if and only if € Conpjg(s)A.

PRrOOF. By instantiating Proposition 1.37 with the Leibniz operator, and having
in mind that this S-operator commutes with inverse images by surjective homo-
momorphisms, we have that 6 is £2-full if and only if £24/¢ (Fis(A/0)) = idayo,
which is equivalent to A/0 € Alg(S) by condition (4) on page 136, and equivalent
to 0 € COHA|g(5)A. O

The two preceding results allow us to instantiate Proposition 1.6 and Corollary
1.7.6 in a more familiar form.

Corollary 2.3. The maps 24 and .QA_l establish a Galois connection between
P (FisA) and Eqp(A) and restrict to mutually inverse dual order isomorphisms
between the poset of all full g-models of S on A and the poset Conpjgs)A.

47
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The second part of this statement is the well-known Isomorphism Theorem [36,
Theorem 2.30]. We see that it arises here naturally as a by-product of the Galois
connection established in Proposition 1.6, taking V = £2. Finally, from Propo-
sitions 1.9 and 2.1, we get the following characterization of the full g-models of

S.

Proposition 2.4. A subset € C FisA is a full g-model of S if and only if € is
the largest 9 C FisA such that 24(€) = 34(2).

To finish our study of the Leibniz operator as an S-operator, we state a most
crucial fact, originally proved in [22, Theorem 1.26], which within our framework
follows as an immediate consequence of Lemma 1.4 and Definition 0.38.

Proposition 2.5. A logic S is protoalgebraic if and only if the Leibniz and the
Suszko operators coincide.

Therefore, when dealing with protoalgebraic logics, all pairs of notions associ-
ated with the Leibniz and Suszko operators, such as those of £2- and ﬁg—classes,
those of £2- and ﬁg—ﬁlters, and the respective associated classes of algebras; in
particular, Proposition 2.5 directly implies that Alg*(S) = Alg(S).

We now introduce the notions of §2-class and §2-filter. As we will see, these
concepts will play an important réle in our study. Recall, by Definition 1.12, the
§2-class of F', which we shall also call the Leibniz class of F', is defined by

[F]* = 247 (24(F)) = {G € FisA : 24(F) C 24(G)}.
By Definition 1.15, F'* denotes the least element of the Leibniz class [F]*; we shall
call this element the Leibniz filter of F'. We say that F' is a Leibniz filter if F' = F*|
and we denote the set of all Leibniz filters of A by Fi5A. This is the same notation
used in [37] for protoalgebraic logics.

A clarification is in order here. Leibniz filters were originally introduced in
[37], within the scope of protoalgebraic logics, as the least elements of the class

[F] :={G € FisA: Q4(F) = 24(G)} C [F]".

Indeed, [37, Definition 1] is preceded by: “(...) it makes sense to single out a special
element of each equivalence class under the kernel of QA, namely its least element.”
In fact, these equivalence classes had already been pointed out in [36, p. 59] and
explicitly considered in [25, p. 650]. Leibniz filters were also studied in [51], namely
its definability with parameters, but once again within the protoalgebraic setting.
Our present definition of Leibniz filter generalizes the former one, as we next prove
(Lemma 2.6), in the sense that both definitions coincide for protoalgebraic logics.
Furthermore, as we shall see, every Leibniz filter according to our new definition
is also a Leibniz filter according to [37, Definition 1] (if we apply it to arbitrary
logics). But a word of advice must be taken with respect to [38, p. 177]. There,
a generalization of Leibniz filters for arbitrary logics is also proposed, namely: an
S-filter F € FisA is Leibniz, if it is the least element of the class [F]. Despite the
fact that [F] C [F]*, for every F' € FisA, this notion does not coincide, in general,
with the present one. Indeed, while in general the least element of [F] does not
necessarily exist, the least element of [F]* always does.

Lemma 2.6. For every F' € FisA,
1. F*CN[F) CF;
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2. if F = F*, then F = ([F];
3. if S is protoalgebraic, then F = F* (i.e., F is a Leibniz filter) if and only if

PROOF. Let F € FisA. Since F € [F], it holds ()[F] € F. Moreover, it is
clear that [F] C [F]*. Therefore, F* = N[F]* € N[F]. From (i), (ii) follows
immediately. Now to prove (iii) assume that S is protoalgebraic and F = ([F].
Then, since F* C F it follows by order preservation of £2 that 24 (F*) C 24(F),
and since F* € [F]*, it must also hold 24(F) C 24(F*). Thus, 24(F) =
024(F*). So, F* € [F], and hence F = [F] C F*. O

Since the Leibniz operator is a congruential S-operator, we know by Proposition
1.14 that £2-classes are full g-models of S. But the fact that it is furthermore an
S-compatibility operator entails a deeper connection between these classes and
Leibniz congruences.

Proposition 2.7. For every F € FisA, [F]* is a full g-model of S. Moreover,
GA([FY) = 2A(F). (16)

PROOF. By Proposition 1.14, taking VA = 24, it follows that [F]* is a full g-
model of §. Now, on the one hand, since F' € [F]*, it holds ﬁA([[F]]*) C A(F).
On the other hand, for every G € [F]*, it holds 24(F) C £24(G). Therefore,
24(F) € Neeprp- 274G = GA([FTY). 0

Recall that, in general, FV need not be a V-filter of A. The Leibniz filters of
A, however, are indeed the S-filters of the form F*, for some F' € FigA.

Proposition 2.8. For every F' € FisA, F* is a Leibniz filter of A.

PRrROOF. The inclusion (F*)* C F* follows by Lemma 1.21.2. As for the converse
inclusion, since F* € [F]*, it follows that 24 (F) C 24(F*), and hence [F*]* C
[F]*. Thus, F* =O[F]* € O[F*]* = (F*)*. O

Taking Lemma 2.6.3 into account, [36, Proposition 3.6] tells us that: For every
protoalgebraic logic S, an S-filter is a Leibniz filter if and only if it is the least
element of some full g-model of S. We can now see that this remains true for
arbitrary logics if we replace the notion of Leibniz filter of [36, 37] by the present
one.

Proposition 2.9. An S-filter F' of A is a Leibniz filter if and only if there exists
a full g-model (A, €) of S such that F = (€.

PROOF. Suppose F' € FigA is a Leibniz filter. It is, by definition, the least element
of its Leibniz class, which we have seen to be a full g-model of S in Proposition 2.7.
Conversely, suppose F' = (% and (A, %) is a full g-model of S. Since (€ € ¥, it
holds £34(€) C 24(F). Hence, [F]* = 247 (24(F)) C 24 (§#4(%)) = ¢,
where the last equality follows by Proposition 2.1. Thus, F = (4 C N[F]* = F*.
Since the converse inclusion always holds, it follows F' = F*, i.e., F' is a Leibniz
filter of A. O

Instantiating Proposition 1.18 for the Leibniz operator we obtain the next
proposition; one can see that it generalizes [37, Proposition 10] and [36, Proposition
3.6 (iii)], again taking Lemma 2.6.3 into account.
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Proposition 2.10. A filter F € FisA is a Leibniz filter of A if and only if
F/QA(F) is the least S-filter of A/24(F).

In case every S-filter turns out to be a Leibniz filter, we have:

Proposition 2.11. The Leibniz operator is order reflecting if and only if, for every
A, every S-filter of A is a Leibniz filter of A.

PROOF. The Leibniz operator is order reflecting iff, for every A and every F,G €
FisA such that 24(F) € 24(G) it holds F C G, iff for every A and every
F,G € FisA such that G € [F]* it holds F' C G, iff, for every A, every S-filter of
A is a Leibniz filter of A. O

Next, we apply the General Correspondence Theorem 1.38 to the Leibniz op-
erator.

Theorem 2.12 (Correspondence Theorem for Leibniz classes). For every surjective
h: A — B and every F' € FisA, if h is §2-compatible with F, then h induces
an order isomorphism between [F]* and [hF]*, whose inverse is given by h~!.
Moreover, for each G € [F]*, h induces an order isomorphism between [G] and
[hG].

PROOF. Since the Leibniz operator is a coherent family of S-compatibility opera-
tors, we can apply Theorem 1.38 to it, and obtain the first part of the statement.
For the second part, take any G, H € [F]*; note that from G € [F]* it follows that
[G] C [F]*. By the established isomorphism, h"'hG = G and h"'hH = H. Now,
using Proposition 0.31.1 and the surjectivity of h,

NAH) = 24G) iff 24h hH)=02%"h"'hG)
iff h 1B (hH)=hr"1028haG)
if 2BhH)=0280ha),

which shows that H € [G] if and only if hF' € [AG]. Thus, the order isomorphism
induced by h between [F]* and [hF]* restricts to one between [G] and [hG]. O

It is not difficult to see that [F]* = Ugepy-[G], that is, the sets [G] divide
the Leibniz class [F]* into disjoint “layers” according to the value of the Leibniz
operator. Thus, the second part of Theorem 2.12 is telling us that the isomorphism
between the two Leibniz classes is the disjoint union of isomorphisms, one for each
corresponding pair of “layers”.

Corollary 2.13. Under the assumptions of Theorem 2.12, I is a Leibniz filter of
A if and only if hF is a Letbniz filter of B.

Bearing in mind Lemma 1.26, Corollary 2.13 can be re-stated as (this alterna-
tive formulation will be useful in Part II):

Proposition 2.14. Let h : (A, F) — (B,G) be a strict surjective matriz homo-
morphism. Then F' € Fi§(A) if and only if G € Fis(B).

Theorem 2.12 generalizes and strengthens the well-known Correspondence The-
orem for protoalgebraic logics, as formulated in [12, Corollary 7.7], and its strength-
ening given in [37, Corollary 9]. Indeed,
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Theorem 2.15 (Correspondence Theorem for protoalgebraic logics). A logic S is
protoalgebraic if and only if every strict surjective matriz homomorphism between
S-models h: (A, F) — (B, G) induces an order isomorphism between (Fis A)F and
(FisB)%, whose inverse is given by h™'.

PROOF. Assume S is protoalgebraic. If h: (A, F) — (B, G) is strict and surjective,
then F = h~'G and G = hh™'G = hF, so that F = h~'hF. This means that,
viewed as an algebraic homomorphism, h is £2-compatible with F. Therefore, we
can apply Theorem 2.12 to obtain that A induces an order isomorphism between
[F]* and [G]*, with inverse given by h~!. This isomorphism restricts to an order
isomorphism between (FisA)™ and (FisB)%, because by protoalgebraicity, these
up-sets are contained in [F]* and [G]*, respectively, and F' and G correspond to
each other under h and h=!. The converse implication would be proved as in [23],
i.e., by showing that the stated condition easily implies that the Leibniz operator
is order preserving. O

Let us now address the question of which full g-models have the form of a
Leibniz class.

Proposition 2.16. Let (A, %) be a full g-model of S. The following conditions
are equivalent:

(i) € = [F]*, for some F € FisA;

(ii) A)Q2A(€) € Alg*(S).

PROOF. Suppose € = [F]*, for some F € FigA. Then, £24(¢) = QA([F]*) =
QA(F), by Proposition 2.7, and therefore A/ ﬁA(%) € Alg*(S). Conversely, sup-
pose A/A(€) € Alg*(S). Fix B = A/A(€). By the assumption, there
exists G € FisB such that 2%(G) = idg. This implies that [G]* = FisB.
Now, let 7: A — B be the canonical projection. Since % is full by assumption,
¢ = 7' FisB. Thus, ¢ = 7~ '[G]*. Finally, Kerr = 7~ lidg = n~'25(Q) =
.QA(W*lG), therefore 7 is £2-compatible with 7 1G. Now we can apply the Cor-
respondence Theorem 2.12 for Leibniz classes and conclude that ¢ = 7~ [G]* =
[#=1G]*. That is, F := 7~ 'G € FisA witnesses the desired property. O

What happens then if every full g-model of a logic S is of the form [F]*, for
some F € FigA?

Proposition 2.17. Let S be a logic. The following conditions are equivalent:

(i) For every A, the family of full g-models of S on A is {[F]* : F € FisA};
(i) Alg(S) = Alg*(S).

PROOF. (i) = (i1): The inclusion Alg*(S) C Alg(S) holds in general. As for the
converse inclusion, let A € Alg(S) and let F' € A witness this fact, i.e., ﬁ? (F) =
ida. Now, by assumption, every full g-model of S is of the form of some Leibniz
class. In particular, since Suszko classes are full g-models, it follows that for every
F € FisA there exists G € FisA such that [F]" = [G]*. Now, on the one hand,
since (FisA)F C [F]3", it follows that 24(G) C Npp 2AF) = GA(F).
On the other hand, since G € [G]*, it follows that ﬁg‘(F) C N4(G). Thus,
24(G) = ﬁg‘(F) = ida, and therefore A € Alg™(S).

(ii) = (i): If € is full, then A/24(%) € Alg(S). From the assumption it follows
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that A/24(%) e Alg*(S), and from Proposition 2.16 that € = [F]*, for some
F e FisA. U

Proposition 2.17 allows us to prove a suggestive characterization of the con-
dition Alg(S) = Alg*(S) in terms of the Leibniz and Suszko operators, which is
readily seen as a weaker property than protoalgebraicity (as depicted in Figure 1).

Proposition 2.18. Let S be a logic. It holds Alg(S) = Alg™(S) if and only if, for
every A and every F € FisA, there exists G € FisA such that 24(F) = 24(G).

PROOF. Suppose Alg(S) = Alg*(S). Tt follows by Proposition 2.17 that every full
g-model of § is of the form of some Leibniz class. In particular, since Suszko
classes are full g-models of S, for every F' € FisA there exists G € FisA such
that [F]3* = [G]*. But then, 2£(F) = @4([F[*) = ZA([G]*) = 24(G), as
desired. As for the converse, let A € Alg(S). Since Alg(S) = Alg®"(S), there is
F € FisA such that ﬁg (F) =ida. It follows by hypothesis that there exists G €
FisA such that ﬁg(F) = 24(G) = ida. Thus, A € Alg*(S). This establishes
that Alg(S) C Alg™(S); the converse inclusion always holds. O

Compare Proposition 2.18 with the following rephrasing of Proposition 2.5: S is
protoalgebraic if and only if, for every A and every F € FisA, 28(F) = .QA(F).
Given Proposition 2.17, we get as an immediate corollary:

Corollary 2.19. If a logic S is protoalgebraic, then every full g-model of S is of
the form [F]*, for some F € FisA and some algebra A.

In order to get the converse implication, one must impose [F]* to be precisely
the up-set on FisA generated by F™.

Theorem 2.20. Let S be a logic. The following conditions are equivalent:
(i) S is protoalgebraic.
(ii) Every full g-model of S is of the form (FisA)Y, for some S-filter F of some
algebra A;
(iii) Every full g-model of S is of the form (FisA)¥, for some Leibniz S-filter F
of some algebra A;
(iv) [F]* = (FisA)F", for every F € FisA and every algebra A.

PROOF. (i) = (i1): Let (A, %) be a full g-model of S. So, € = {G € FisA :
024(€) C 2°(G)}. Since by the assumption the Leibniz operator is order preserv-
ing, it trivially follows that € is an up-set. Since % is moreover a closure system,
it must be of the form (FisA)¥, for some S-filter F of A, namely F =) ¥%.

(#9) < (#i1): This should be clear, given Proposition 2.9.

(#4) = (iv): Clearly, since for every F € FisA and every A, [F]* is a full g-
model of S, by Proposition 2.7; F* is a Leibniz filter of A, by Proposition 2.8; and
F* =O[F]* by definition.

(iv) = (i): Let A be an algebra and let F,G € FisA such that F' C G. Then,
F* C F C G. Tt follows by hypothesis that G € [F]*. So, 24(F) C 24(G).
Thus, the Leibniz operator is order preserving on every A, and this shows that S
is protoalgebraic. O

Notice that we can replace Suszko filter by Leibniz filter in condition (iii).
The preceding result extends [36, Theorem 3.4], which proves only the equivalence
between items (i) and (ii).
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It is interesting to compare Proposition 2.20, which characterizes protoalgebraic
logics in terms of their §2-classes, with Corollary 2.31, which characterizes truth-
equational logics in terms of their {2s-classes.

2.2. The Suszko operator as an S-compatibility operator

We now undertake a similar study to the one done in Section 2.1, this time
for the Suszko operator. Once again, since the notation AlgS"(S) is already well
settled in AAL, we shall change all superscripts ( )ﬁs to ()Su.

Unlike the Leibniz operator, the Suszko operator viewed only as an S-operator
yields poor results. For instance, the Galois connection established in Proposition
1.6, in the absence of meaningful characterizations of the 53—full objects, has little
consequences.

Let us start by instantiating the notions of V-class and V-filter for the Suszko
operator. Recall that, by Definition 1.12, the ﬁg—class of F, which we shall also
call the Suszko class of F, is defined by

[FI5" = 247 (F4(F)) = {G € FisA: S4(F) C 24(@)}.

By Definition 1.15, FS" denotes the least element of the Suszko class [F]5*. We
say that F' is a Suszko filter if F = F5", and we denote the set of all Suszko filters
of A by Fi"A.

We next collect some useful basic facts concerning ﬁs—classes and ﬁg—ﬁlters,
all of them either particular cases, or straightforward consequences, of Lemmas 1.21
and 1.22.

Lemma 2.21. Let F' € FigA. Then,
1. FS"C F*C F;
2. Every Suszko filter is a Leibniz filter;
3. if F C G, then [G]®" C [F]®" and F5" C GSY;
4. (FisA)F C [F]S" C (FisA)F™";
5. [F]®" = (FisA)Y if and only if F = F5Y, i.c., if and only if F is a Suszko
filter.

PROOF. 1. The first inclusion holds because 24 (F) C 24(F), so [F]* C [F]5",
and therefore FS* = N[F]%* € N[F]* = F*; the second inclusion holds because
F € [F]*. 2. It follows by Lemma 1.22.3, taking V = 2s. 8. By monotonicity of
the Suszko operator we have ﬁg(F) C ﬁé(G), so [G]®* C [F]®", and therefore
FSt' = O[F]®* € NIG]®" = GS". 4. The first inclusion follows by Lemma 1.21.3,
taking V = §2s; the second inclusion follows by the fact FSU = O[F]S". 5. By
Lemma 1.21.4, taking V = 2. O

Suszko classes will be once again full g-models of S, because the Suszko operator
is a congruential S-operator. The fact that it is furthermore an S-compatibility
operator allows us to establish a nice connection between Suszko classes and Suszko
congruences, very much in the same spirit as the one established in (16) for the
Leibniz case.

Proposition 2.22. For every F € FisA, [F]" is a full g-model of S. Moreover,

QA([F]P) = 4(F) . (17)



54 CHAPTER 2. THE LEIBNIZ, SUSZKO AND FREGE OPERATORS

PROOF. By Proposition 1.14, taking VA = ﬁ?, it follows that [F]5" is a full
g-model of §. Now, on the one hand, since (FisA)f C [F]5%, by Lemma 2.21.4,
it holds ﬁA([[F]]S”) C ﬁA((]—"z'SA)F) = ﬁg‘(F) On the other hand, for every
G € [F]®", it holds 34(F) C 24(G). Therefore, 24 (F) € Ngepppse 24(G) =
QA (LFTSY). 0

The similarity of (17) and (16) on page 47, reinforces the parallelism be-
tween the Leibniz and the Suszko operators under our general treatment of S-
compatibility operators. This parallelism however also has its downfalls. For ex-
ample, unlike the case of F*, which always is a Leibniz filter, FS" needs not be
a Suszko filter in general. The following example witnessing this fact is due to
Tommaso Moraschini.

Example 2.23. Consider the language £ = (0,<, ¢q,¢o,¢3, T), where O and <
are unary function symbols and ¢y, ¢, c3, T are constant symbols. Consider the set
A = {a,b,c,d, 1} and the L-algebra A = (A, 04,04 a,b,d, 1), where the unary
operations 04 and O4 are given by the table below. Consider also the logic
S = (Fm,tFgs) defined by the calculus with axiom and rules displayed below (x is
a variable).

o4 | oA Axiom: T
al a c Rule 1: c¢1,c0Fs
b 1 Rule 2 c¢9,c3bs
d d
d| d 1
1| a d

Fact 1. Clearly, the proper S-filters of A are the subsets containing 1, not contain-
ing a,b simultaneously, and not containing b, d simultaneously. In particular, the
set F':={1,b,c} is an S-filter of A.

Fact 2. (FisA)¥ = {F, A}, because the only proper subsets of A containing F' are
{1,a,b,c} and {1,b, ¢, d}, but neither is an S-filter of A by the observation in Fact
1.

Fact 3. Q4(F) = QA4F) = {{1,¢},{a,d},{b}}, where for simplicity a con-
gruence is described by its partition. One can check by hand that £24(F) =
{{l,c},{a, d},{b}}. The other equality follows by Fact 2, which implies that
GAF) = QAF) N RA(A) = QA(F).

Fact 4. F5" = {1,c}. To see this, first observe that [F]** = [F]* = {G €
FisA : Q4(F) C .QA(G)}, which is a direct consequence of Fact 3. But to
say that 24(F) C 24(G) is to say that £24(F) is compatible with G or, by
Lemma 0.16, that G is a union of blocks of £24(F). Using the description of S-
filters in Fact 1 and the description of the blocks of £24(F) in Fact 3, we conclude
that [F]5" = {{17C},F7{17a,c7 d},A}. From this it follows that F5" = {1,c}, as
claimed.

Fact 5. ﬁg‘(FS“) = ida. This is because F' and {1,a,c} are two S-filters of A,
which contain FS" = {1, ¢}, and it is easy to check that £24(F)n 24 ({1,a,c}) =
id 4, using just compatibility arguments and the fact that for any congruence = of
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this algebra, 1 = ¢ if and only if a = d.

Fact 6. (FS%)S" = {1}. Tt follows by Fact 5 that [F5U]5" = FisA. Thus,
(FS")SY = min [FS]3" = N FisA = {1}.

We conclude that FS% o (FS%)St, That is, FSU is not a Suszko filter of A. O

As a consequence, the converse of the implication in Lemma 2.21.2 is false, for
FSU is always a Leibniz filter (by Proposition 2.9 and Proposition 2.22, for it is
the least element of the full g-model [F]5"), and Example 2.23 exhibits one such
FS" which is not a Suszko filter. However, in case FS" is indeed a Suszko filter
of A, then it is the largest one below F. In order to see it, we first instantiate
Lemma 1.17 with the Suszko operator:

Lemma 2.24. For every A, if F,G € FisA are such that F C G, then FS* C GSv.

Lemma 2.25. If Fg” is a Suszko filter of A, then it is the largest Suszko S-filter
of A below F.

PROOF. Let G € Fi$"(A) such that G C F. It follows by Lemma 2.24 that
G = G® C FS". As a consequence, if Fgu is a Suszko filter of A, then it is
necessarily the largest one below F'. O

We next instantiate Proposition 1.18 with the Suszko operator, and state some
algebraic properties of the set Fi3%(A) which will be later useful.

Proposition 2.26. A filter F' € FisA is a Suszko filter of A if and only if
F/ﬁg(F) is the least S-filter of A/ﬁg(F)

Lemma 2.27. For every A, Fi%"(A) is a join-complete sub-semilattice of FisA.

PROOF. Let {F; : i € I} C Fi%"(A). Since F; C Vier Fi, for every i € I, it
follows by Lemma 2.24 that F; = F>" C (\/,o, F;)S", for every i € I. Thus,
Vier Fi € (Viep Fi)3", by definition of supremum. The converse inclusion always
holds. Therefore, \/,c; F; = (\,c; F3)®", and hence \/,; F; € Fi%"(A). O
Lemma 2.28. For every A, Fis'(A) is closed under unions of r-directed families,
where K is the cardinal of S.

PRrOOF. Let F C ]—'i%“A be a k-directed family of Suszko filters of A. Recall that
FisA is always closed under unions of k-directed families (see page 15). Hence,
JF € FisA. But then, | J F must be the supremum of the family F. It follows by
Lemma 2.27 that | JF is a Suszko filter of A. O

We have seen in Proposition 2.9 that Leibniz filters are precisely the least
elements of full g-models. Since we have just seen that every Suszko filter is a
Leibniz filter, in particular they are also least elements of full g-models. A natural
question is: which full g-models of S have Suszko filters as least elements?

Theorem 2.29. For every F € FisA, the following conditions are equivalent:
(i) F is a Suszko filter of A;
(i) <A, (figA)F> is a full g-model of S;

(iii) F =€, for some full g-model € C FisA such that € is an up-set.
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PROOF. (i) = (i4): This follows from Lemma 2.21.6, which tells us that [F]5" =
(FisA)F, and Proposition 2.22, which tells us that [F]5" is always full.

(ii) = (441): This is because (FisA)¥ is an up-set and F = ((FisA)F.

(#91) = (4): On the one hand, observe that F' € € because €, being full, is a
closure system. This implies that (FisA)f C ¢, because ¢ is an up-set. On
the other hand, since F = (¢ by assumption, clearly ¢ C (FisA)f'. That
is, € = (FisA)F', which proves the final assertion. Moreover, since % is full,
¢ = (FisA)F = {G € FisA: 84((FisA)F) C 24(G)}. But, 4 ((FisA)F) =
ﬁg‘(F) So, (FisA)F = [F]°", and therefore F = N[F]®" is a Suszko filter. O

The next result gives an important answer to the following natural question:
what happens if every S-filter is Suszko?

Theorem 2.30. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational;
(ii) For every algebra A, every S-filter of A is a Suszko filter;

(iii) For every algebra A € Alg(S), every S-filter of A is a Suszko filter.

PROOF. (i) = (iii): Let A € Alg(S) and F' € FisA. By hypothesis, taking
Definition 0.38 into account, the Leibniz operator nN4is completely order reflecting.
Now, let G € [F]S". Then, 24(F) C 24(F). It follows by Lemma 1.5 that F C G.
Hence, F' is a Suszko filter of A.

(#i1) = (i1): Let A be an arbitrary algebra and F' € FisA. Fix B = A/ﬁg‘(F)
and let 7: A — B be the canonical map. Fix Fy := (| FisB. Notice that 7 F €
FisB, by Lemma 0.24.3. Since Fy C « F', using that the Suszko operator is order
preserving and Lemma 1.45 we obtain that 5§(F0) - ﬁg(ﬂF) = idp. Hence,
ﬁg(Fo) = ﬁg (7 F'). Now, by hypothesis, both Fy and 7 F" are Suszko filters of B,
because B € Algsu(S) = Alg(S). Since by Proposition 1.16 the Suszko operator is
always injective over Suszko filters, it follows that F/ ﬁg(F) =Fy,=(FisB. By
Proposition 2.26, this establishes that F' is a Suszko filter.

(ii) = (i): Let A and G, F € FigA such that 24(F) C 24(G). Then, G € [F]5".
Since F' = FS" by hypothesis, it follows that F' C G. It follows by Lemma 1.5 that
the Leibniz operator £24 is completely order reflecting. Again, taking Definition
0.38 into account, S is truth-equational. ]

An analogous condition to (ii) stated with Leibniz filters rather than Suszko
filters does not suffice to establish truth-equationality. A counter-example is [55,
Example 2]. There, a logic S in the language £ = {T,0, ¢} is presented such that,
for every A and every F' € FisA,

a€F & [(a,0%) € Q4F) or (a, TA) € 24(F)].
It is easily seen then that the Leibniz operator is order reflecting. As a consequence,
every S-filter is Leibniz, by Proposition 2.11. Nevertheless, Raftery proves that S
is not truth-equational.

As a corollary of Theorem 2.30, we obtain a characterization of truth-equational
logics in terms of their full g-models.

Corollary 2.31. Let S be a logic. The following conditions are equivalent:

(i) S is truth-equational.
(i) <A, (}"@'SA)F> is a full g-model of S, for every F € FisA and every A.
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(iii) [F]3* = (FisA)F, for every F € FisA and every A.
Proor. It follows by Lemma 2.21.5 and in Theorem 2.29 to Theorem 2.30. O

But we had already seen that, for protoalgebraic logics, every full g-model is of
the form of a Leibniz class (Corollary 2.19). Moreover, for these logics, the £2- and
ﬁg—classes coincide. Therefore, taking Definition 0.38 into account, we confirm a
known characterization of weakly algebraizable logics in terms of their full g-models:

Corollary 2.32 ([36, Theorem 3.8 (iii)]). A4 logic S is weakly algebraizable if and
only if the full g-models of S are exactly all the g-matrices of the form <A, (}"iSA)F>
for any algebra A and any F € FisA.

It is also possible to obtain a characterization of weakly algebraizable logics
solely in terms of notions related to the Suszko operator.

Proposition 2.33. A logic S is weakly algebraizable if and only if all its full g-
models are Suszko classes and all its S-filters are Suszko filters.

PROOF. Suppose S is weakly algebraizable. Since in particular it is protoalgebraic,
it follows by Theorem 2.20 that every full g-model of S is of the form (FisA)¥,
for some algebra A and some F' € FigA. Since S is moreover truth-equational, it
follows by Corollary 2.31 that (FisA)F = [F]5". Thus, every full g-model of S is
a Suszko class, and by Theorem 2.30 every S-filter is a Suszko filter.

Conversely, suppose the two properties hold. It follows by the second property and
Theorem 2.30 that S is truth-equational. Also, by Corollary 2.31, every Suszko
class is of the form (FisA)¥, for some algebra A and some F € FigA. Since
F = F* = FS" under truth-equationality, it follows by the first property and
Theorem 2.20 that S is protoalgebraic. Thus, S is weakly algebraizable. (I

So far we have explored the notions of ﬁs—class, 53—ﬁlter and ﬁg—full g-model.
We now proceed to study the notion of coherence for the Suszko operator. Recall
that by Proposition 1.32 the Suszko operator is a coherent family of S-compatibility
operators. We can, as a consequence, apply the General Correspondence Theo-
rem 1.38 to it, or given the fact that ﬁg is the relativization of §2, apply instead
Theorem 1.41.

Theorem 2.34 (Correspondence Theorem for Suszko classes). For every surjective
h: A — B and every F € FigA, if h is ﬁg—compatz'ble with F', then h induces an
order isomorphism between [F]5* and [hF]5", whose inverse is given by h™'.

Let us see that Theorem 2.34 strengthens Czelakowski’s Correspondence The-
orem for deductive homomorphisms [24, Proposition 2.3], which states (in the
present terminology) that h is an isomorphism between (FisA)f and (FisB)"F
under the assumption that h is a surjective and deductive matrix homomorphism
between (A, F) and (B,hF). Now, we know by Lemma 1.27 that h is a deductive
matrix homomorphism if and only if it is ﬁs—compatible with F, viewed as an al-
gebraic homomorphism. Thus, compared with [24, Proposition 2.3], Theorem 2.34
extends the isomorphism to the whole Suszko classes [F]5" and [hF]5", which
contain (FisA)F and (FisB)"F respectively, by Lemma 2.21.4.

Corollary 2.35. Under the assumptions of Theorem 2.34, F is a Suszko filter of
A if and only if hF is a Suszko filter of B.
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It so happens that, just like Blok and Pigozzi did for protoalgebraic logics, one
can state a correspondence theorem characterizing the class of truth-equational
logics.

Theorem 2.36 (Correspondence Theorem for truth-equational logics). A logic
S is truth-equational if and only if every strict surjective matriz homomorphism
between S-models h: (A, F) — (B,G) that is §2s-compatible with F induces an
order isomorphism between (FisA)Y and (]-'iSA)Gsu, whose inverse is given by
ht.

PROOF. Suppose S is truth-equational. Let h: (A, F) — (B,G) be a strict sur-
jective matrix homomorphism between S-models that is ﬁg—compatible with F.
It follows by Theorem 2.34 that h induces an order isomorphism between [F]5"
and [hF]5", whose inverse is given by h=!. But, [F]>" = (FisA)f and [G]>" =
(FisA)Y, by Corollary 2.31 and G = G°" by Theorem 2.30.

Conversely, assume the stated property. We shall prove that every S-filter is a
Suszko filter, from which the desired conclusion will follow by Theorem 2.30. Let
F € FisA and fix B = A/ﬁé(F) Then, the canonical projection 7: A — B
is a strict and surjective matrix homomorphism between the S-models (A, F') and
(B,F/ ﬁ?(F)), and it is clearly §2 s-compatible with F. Therefore, by the assump-
tion, 7 induces an order isomorphism between (FisA)¥ and (fiSB)”Fsu, with
inverse given by m~!. Now, on the one hand, the Suszko operator is a coherent fam-
ily of S-compatible operators, therefore by Lemma 1.29, 5?(7rF) = wﬁgl(F) =
idp. This implies that [7F]5" = FisB and hence that 7 F5" = N FisB and
(.7:2'3B)’TFSu = FisB. On the other hand, we can apply Theorem 2.34 to 7, and
we find that it induces an order isomorphism between [F]" and [r F]" = FisB,
with inverse given by m~! as well. Thus, necessarily [F]5" = (FisA)F. Tt follows
by Corollary 2.31 that F' is a Suszko filter of A. O

Finally, by just extending the scope of the order isomorphism in the last result
to all strict and surjective matrix homomorphisms, we reach weakly algebraizable
logics.

Theorem 2.37. A logic S is weakly algebraizable if and only if every strict surjec-
tive matriz homomorphism between S-models h: (A, F) — (B, G) induces an order
isomorphism between (FisA)Y and (]—'z'gA)Gsu, whose inverse is given by h™1.

ProoF. If § is weakly algebraizable, in particular it is protoalgebraic and by The-
orem 2.15 we obtain the order isomorphism between (FisA)f and (FisA)Y; but
since S is also truth-equational, every S-filter is a Suszko filter and hence GS" = G,
which produces the desired result. Conversely, assume the stated property, and
observe that in particular it holds for all surjective homomorphisms h that are
ﬁg—compatible with F'. Therefore, by Theorem 2.36, S is truth-equational. But
then all S-filters will be Suszko, so that G = @G, and the assumed condition
establishes, for all the h described, an order isomorphism between (FisA)f and
(FisA)C. Thus we can apply Theorem 2.15 and conclude that S is protoalgebraic
as well. That is, S is weakly algebraizable. O

Finally, we investigate the case where all full g-models of a logic are of the form
of some Suszko class, just like we did in Proposition 2.17 for Leibniz classes.
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Proposition 2.38. Let S be a logic. The following conditions are equivalent:

(i) Every full g-model of S is of the form [F]°", for some algebra A and some
F e FisA;

(i) The Suszko operator ﬁg‘ : Fis A — Conpgg(s)(A) is surjective, for every A;
that is, Ran(ﬁ?) = Conpg(s)A.

PROOF. (i) = (ii): Let A arbitrary and 6 € Conpig(s)(A). Then, § = O4(%), for
some full g-model ¥ C FisA, by Corollary 2.3. It follows by hypothesis that there
exists F' € FisA such that € = [F]5". So,

24(6) = A ([FT™) = 28(P),
using Proposition 2.22. Thus, ﬁg : Fis A — Conpjg(s)(A) is surjective.
(ii) = (i): Let € C FisA be a full g-model of S. Since £24(%) € Conpygs)(A),
it follows by hypothesis that 24(%) = 5?(F), for some F € FisA. Since
ﬁA([[F}]S“) = ﬁ?(F) and [F]5" is a full g-model of S, by Proposition 2.22, it
follows by the Isomorphism Theorem for full g-models (Corollary 2.3) that € =
[F]5e. O

Contrast Proposition 2.38 with the Leibniz operator case, where in general, nA
is always onto Conpig+(s)A. Moreover, assuming S to be truth-equational, gives us
a more meaningful consequence:

Proposition 2.39. Let S be a truth-equational logic. The following conditions are
equivalent:

(i) S is weakly algebraizable;
(i) Every full g-model of S is of the form [F]5", for some algebra A and some
F e FisA.

PROOF. (i) = (it): Since S is in particular protoalgebraic, all the Suszko and Leib-
niz related notions coincide, by Proposition 2.5. In particular, Alg*(S) = Alg(S).
The result now follows by Proposition 2.17.

(1) = (i): Let A arbitrary and F € FisA. Since 24(F) e Conpjg+(5)A4 C
Conpg(s) A, it follows by hypothesis (havind in mind Proposition 2.38) that there
exists G € FisA such that 24(F) = ﬁg‘(G) As a consequence, [F]* = [G]>".
Now, since § is truth-equational by assumption, every S-filter of A is a Suszko filter
(and hence a Leibniz filter as well), by Theorem 2.30. Therefore, F' = F* = G5 =
G. Thus, .QA(F) = ﬁg (F). It follows by Proposition 2.5 that S is protoalgebraic.
Since S is moreover truth-equational by assumption, we conclude that S is weakly
algebraizable. ([

Suszko-full g-models of S. A thourough study of the closure properties of
the class of (Leibniz-)full g-models of a logic can be found in [40]. Although we
have not undertaken such an exhaustive study for the class of Suszko-full g-models
of a logic, we record here the results obtained for this new class of g-models.

In Corollary 2.31 we have characterized truth-equational logics in terms of their
(Leibniz-) full g-models (recall, every Suszko class is a full g-model of S). We now
wish to characterize truth-equational logics in terms of their Suszko-full g-models
as well. Of course, in Proposition 2.20 we did implicitly characterize protoalgebraic
logics in terms of their Suszko-full g-models, as these coincide with the (Leibniz-)
full g-models under protoalgebraicity. Here however, such characterization is not
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immediate, and in fact makes use of several results from [55] (some of them will
be discussed in more detail in Chapter 4). While we are at it, we use it to prove
that the Suszko operator is order reflecting if and only if S is truth-equational,
and therefore this seemingly stronger property does not take us any further than
injectivity of the Suszko operator (bearing in mind Raftery’s [55, Theorem 28]).

Proposition 2.40. Let S be a logic. The following conditions are equivalent:

(i) S is truth-equational;
(ii) (A, (FisA)"') is a Suszko-full g-model of S, for every F € FisA and every
A
(i) The Suszko operator ﬁg‘ is order reflecting, for every algebra A.

PrOOF. Notice that
Q2 ((FisA)T) = QL4(F) = Q4(F),
FCF’
by monotonicity of the Suszko operator.
(ii) < (iii): Suppose (FisA)F is a Suszko-full g-model, for every A and F € FisA.
Then,

(FisA)" = 247 (22((FisA)))
= 087 (B3(F) = {F' e FisA: f§3(F) € 24(F)}.
So, given G, G’ € FisA such that ﬁg(G) C ﬁg(G’), it must hold G C G'.

Conversely, suppose the Suszko operator ﬁg is order reflecting, for every al-
gebra A. Then,

~ A—1 % ) ~NA—1,~
G871 (2 (FisA)")) = 327 (82)
={F' e FisA: Q4(F) C 4(F)} = (FisA)F.
Hence, (FisA)T is a Suszko-full g-model, for every F € FisA.

(#41) = (4): Our hypothesis is stronger than injectivity of the Suszko operator,
which in turn is equivalent to truth-equationality, by Theorem 3.11.

(i) = (413): Suppose S is truth-equational, say witnessed by 7(z) C Eq,. Then,
for every algebra A and every F' € FigA,
F={aceA:7%a)C QA(F)},
by Proposition 0.43. Now, let F, F’ € FisA such that ﬁg‘(F) C ﬁg‘(F’). Then,
TA(F) C 4(F) € Q3(F') C @A),
where the first inclusion holds by Proposition 0.44 and [55, Corollary 9]. It follows
again by Proposition 0.43 that F C F”. d

Moreover, the coincidence of Leibniz-full g-models and Suszko-full g-models
characterizes protoalgebraicity:

Proposition 2.41. Let S be a logic. The following conditions are equivalent.

(i) S is protoalgebraic.
(i) The full g-models of S coincide with its Suszko-full g-models.
(iii) [F]* = [F]5" for every F € FisA and every A.
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ProoOF. The implications from (i) to (ii) and to (iii) are a direct consequence
of Proposition 2.5. Now assume (ii). Since every Suszko-full g-model is always
an up-set, the condition implies that the full g-models of S are all up-sets, and
by Theorem 2.20 this implies that S is protoalgebraic. Finally, assume (iii) and
consider any A and any F,G € FigA such that ' C G. Then by Lemma 2.21.4,
G € [G]® C [F]®* = [F]*, which implies that 24(F) C 24(G). This shows
that the Leibniz operator is order preserving on every A, which implies that S is
protoalgebraic. O

By contrast, the coincidence of the following Leibniz- and Suszko-related no-
tions does not characterize protoalgebraicity.

m [* = [SU for every F € FisA and every A.
B F is a Suszko filter if and only if F' is a Leibniz filter, for every F € FisA
and every A.

The reason is that these two properties hold (vacuously) in all truth-equational
logics, because as we have seen in Theorem 2.30, in them all filters are Suszko filters,
and hence also Leibniz filters. In Chapter 7, we will also find non-protoalgebraic
and non-truth-equational logics S such that Leibniz and Suszko filters coincide on
the S-algebras (for example, PML and wk,).

2.3. The Frege operator as an S-operator

In this section we undertake the study of the Frege operator as an S-operator.
We know that it is not, in general, a congruential S-operator. In fact, it is clear
from the definitions involved, that A£™ is a congruential S-operator on F'm if
and only if § is Fregean; and that Ag is a congruential S-operator on A, for every
A, if and only if S is fully Fregean. Surprisingly enough, as well shall see further
ahead, the same characterizations hold when imposing S-compatibility rather than
congruentiality.

Let us start by considering the notion of Ag-class. By Definition 1.12, the
Ag-class of F', which we shall also call the Frege class of F', is defined by

[F]4 = 247 (A2(F)) = {G € FisA : AL(F) C 24(G)}.

This time we cannot guarantee that the Ag-classes are full g-models of S, as
we lack S-compatibility. Still, by Proposition 1.13, we do have:

Proposition 2.42. For every F € FisA, [F]4 is a closure system on FisA.

By Definition 1.15, F4 denotes the least element of the Frege class [F]4. We
say that F' is a Frege filter if F = F, and we denote the set of all Frege filters of
A by .7-"1':’5‘ A. Recall that, in general, whenever working with the notion of V-filter
we assume that S has theorems, otherwise the least element of any V-class is the
empty filter. A rather useful characterization of Ags-filters is the following:

Lemma 2.43. Let S be a logic and A an algebra. An S-filter F' € FisA is a Frege
filter of A if and only if AS(F) C Q24(F) if and only if F € [F]A.

PROOF. The last equivalence holds by definition of Frege class. Now, suppose
F € FisA is a Frege filter of A. That is, F = FA. Since AZ(F) C 24(F4),
we are done. Conversely, suppose A% (F) C 24(F). Let G € FisA such that
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G € [F]A. That is, AZ(F) C 24(G). Since S has theorems, (| FisA # @. Let
be (N FisA. Let a € F. Then, Fg&(F,b) = F = Fg&(F, a). So,

(b,a) € AZ(F) € 24(Q).

Since b € G, it follows by compatibility that a € G. Thus, F' C (. Since moreover
F € [F]? by assumption, it follows that F' is a As-filter of A. O

Assuming S protoalgebraic, we immediately get:

Corollary 2.44. Let S be a protoalgebraic logic and A an algebra. An S-filter
F € FisA is a Frege filter of A if and only if Ag(F) = .QA(F).

An interesting property enjoyed by Frege filters is the following:
Proposition 2.45. If F is a Frege filter of A, then F = a/A% (F), for any a € F.

PROOF. Let F € FiA and a € F. Let b € a/AS(F). Then, (a,b) € AG(F) C
24(F), by Lemma 2.43. Tt follows by compatibility that b € F. Hence, a/A% (F) C
F. The converse inclusion holds in general. Indeed, given any other element ¢ € F,
we have Fgg (F,a) = F = Fg& (F, ¢), and therefore (a,c) € AZ(F), i.e.,a/AS(F) =
¢/A%(F). Now, since trivially ¢ € ¢/A§(F) = a/AS(F), it follows that F C
a/AZ(F). O

Another interesting fact is that every Frege filter is a Leibniz filter. Recall
that given an S-compatibility operator V, every V-filter is a Leibniz filter (Lemma
1.22.3). But the Frege operator is not, in general, an S-compatibility operator.
Nevertheless,

Lemma 2.46. Fvery Frege filter is a Leibniz filter.

PROOF. Let A arbitrary. Let F € FifA. Then, A§(F) C 24(F). Since
N4(F) C R4(F*), it follows that A% (F) C 24(F*), i.e., F* € [F]4, and hence
by assumption F' = FA C F*, O

A final remark about F4, and perhaps an unexpected one, is that it always
contains F. This contrasts with F5" and F*, which are always contained in F.

Lemma 2.47. For every A and every F € FisA, F C FA.

PROOF. It holds, AZ(F) C 24(FA), because FA € [F]A. Since S has theorems,
N FisA # @. Let b € () FisA. Let a € F. Then, Fg& (F,b) = F = Fg& (F,a). So,
(b,a) € AZ(F) C 24(FA). Since b € FA, it follows by compatibility that a € F4,
Thus, F C FA. O

In general, the Frege operator fails to be a congruential S-operator, as well as
an S-compatibility operator. Clearly, given the definitions involved, a logic & is
Fregean if and only if Ag ™ is a congruential S-operator on Fm; and it is fully
Fregean if and only if, for every A, Ag is a congruential S-operator on A. More
interestingly though,

Proposition 2.48. A logic S is Fregean if and only if Agm is an S-compatibility
operator on Fm; and it is fully Fregean if and only if, for every A, A? is an
S-compatibility operator on A.
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PROOF. Suppose S is Fregean. Clearly then, AL™(T) = ﬁfm(T) c F™(T),
for every T € ThS. Conversely, suppose AL™(T) C 2F™(T), for every T € ThS.
Since Agm is order preserving, we have

AF™T) = [ AE™(T)C () 2F™1) = 25™(T),
T'DT T'DT

for every T' € ThS. The converse inclusion always holds. We conclude that Ag m=
(Zg ™. Thus, S is Fregean. The second statement is proved similarly, for arbitrary
A. O

Rephrasing Proposition 2.48: A logic S is Fregean if and only if Agm(T) -
0F™(T), for every T € ThS. One cannot avoid to compare this with the original
definition of protoalgebraic logics [10, Definition 2.1]: A logic is protoalgebraic if
and only if 2F™(T) C Agm(T), for every T € ThS. But unlike the protoalgebraic
scenario (recall, a logic is protoalgebraic if and only if .QA(F) C A?(F), for every
F € FisA and every A), the inclusion A% ™(T) C 2F™(T) does not lift from the
formula algebra to arbitrary algebras. Indeed, again by Proposition 2.48, a logic is
fully Fregean if and only if A4 (F) C 24(F), for every A and every F € FisA;
and it is well-known that there are Fregean logics which are not fully Fregean (as
first shown in [6]).

Given Lemma 2.43, we get as immediate corollaries:

Corollary 2.49. A logic S is Fregean if and only if every S-theory is a Frege
theory.

Corollary 2.50. A logic S is fully Fregean if and only if, for every A, every S-filter
of A is a Frege filter of A.

We have studied so far the consequences of imposing the Frege operator to be
a congruential S-operator, or an S-compatibility operator. We are left to study
coherence for this operator. This is what we do next.

Theorem 2.51. The Frege operator Ag is a coherent family of S-operators.

PRrROOF. Let A, B two algebras and G € FigB. Let h : A — B surjective and
Ag-compatible with A~1G, that is, such that Kerh C Ag(h_lG). Having in mind
Lemma 1.27, it follows by Czelakowski’s Correspondence Theorem for deductive
homomorphisms [24, Proposition 2.3] that h induces an order isomorphism between
(FisA)hflG and (FisB)“, whose inverse is given by h~!. As a consequence, for
every F' e (figA)hilG, it holds that hF € (FisB)Y and h"'hF = F.

First, notice that for every c € A,

Fg(G,he) = Fg§(hh™'G, he)

FgB (hF‘g?(h_lG7 )
hFgg (h'G, o),

using the fact that h is surjective, Lemma 0.25 (taking X = {h~1G, c}), and having
in mind that Fg4 (h~'G,¢) € (FisA)" G, so hFgh(h~'G,c) € (FisB)C.
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Now, for every a,b € A,

(a,b) € W TAE(G) <« (ha,hb) € AZ(G)

& FgB(G, ha) = FgB (G, hb)

& hFgs(h~'G,a) = hFgd (h™1G,b)
& Fgd(h™'G,a) = Fgd(h™'G,b)
& (a,b) € AZ(h71G),

having in mind that Fga (h™1G, a) € (FisA)" "¢, and hence h~*hFga(h™1G,a) =
Fgg(h'G,a); and similarly for Fg& (h~'G,b).
Thus,
h'AS(G) = A5 (h'@),
as desired. O

Theorem 2.51 definitely stands in favor of the new notion of coherence. For
it remarkably captures the three main operators in AAL. Recall, we knew already
that the Leibniz and Suszko operators were coherent families of S-operators. The
former, because it commutes with inverse images by surjective homomorphisms,
and the later because coherence is preserved under relativization (Proposition 1.32).
Actually, given this fact, one could try to find a new coherent S-operator /Tg. But
bear in mind that the Frege operator is order preserving, and therefore Ag :}TS,
by Lemma 1.4.

Since coherence is a weaker property of commutativity with inverse images
by surjective homomorphisms, it is natural to ask: when does the Frege operator
commute with inverse images by surjective homomorphisms? Surprisingly enough:

Theorem 2.52. A logic S is protoalgebraic if and only if the Frege operator As
commutes with inverse images by surjective homomorphisms.

PRrROOF. =: Let A, B algebras, h € Hom(A, B) surjective, G € FisB and a,b €
A. Notice that h~'G € FisA. It holds,
(a,b) € AZ(h™'G) iff Fgg(h'G,a) =Fgg(h 1G,b)

iff h~'Fgf (G, ha) = h~'Fgg (G, hb)

iff Fgf (G, ha) = Fg§ (G, hb)

iff (ha,hd) € AB(G)

iff (a,b) € h1AB(G),
where we have used [34, Corollary 6.21.2] and the fact that h is surjective.
<: Let A, B algebras, h € Hom(A, B) surjective and G € FisB. Since ﬁg(G) -
AZ(@), it follows that

W 1REB(G) Ch ' AB(G) = A2 (h'G).
Now, hflﬁg(G) € Con(A) and ﬁ?(h’lG) is the largest congruence on A below
AZ(h7'G). Hence,
W 128G C 24(hTIG).

The converse inclusion holds in general, by 0.31.3. We conclude that the Suszko

operator commutes with inverse images by surjective homomorphisms. It follows
by Theorem 1.24 that §2 = 2, and hence S is protoalgebraic. (]
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Do notice that the same condition imposed upon the Suszko operator also
characterizes protoalgebraic logics, and which will be formally stated in Theorem
3.12.

Since there exist protoalgebraic logics which are not Fregean (any protoalge-
braic logic which is not selfextensional witnesses this fact; for instance, Lukasiewicz’s
infinite valued logic), a consequence of Theorem 2.52 is that commuting with inverse
images by surjective homomorphisms does not characterize the Leibniz operator
among the S-operators. Although it does so among the S-compatibility operators,
as we have seen in Theorem 1.24.

Although the Frege operator is not, in general, an S-compatibility operator,
the defining condition of coherence for this S-operator also holds with direct images
rather than with inverse images by surjective homomorphisms. Recall that this is
always the case for an S-compatibility operator V, as we saw in Lemma 1.29. But
unlike the S-compatibility operators, here it does not characterize coherence of the
Frege operator.

Lemma 2.53. For every surjective h: A — B and every F € FisA, if h is
As-compatible with F, then hA&(F) = A (hF).

PROOF. Let F € FisA and h: A — B be surjective and Ag-compatible with F'.
Since Kerh C AZ(F) and §24(F) is the largest congruence below A% (F), it follows
that Kerh C 24(F) C 24(F). Hence, F = h™'hF and hF € FisB. It follows
by coherence of the Frege operator that A% (F) = A% (h™'hF) = h—'AB(hF),
and hence that hA% (F) = AZ(hF) because h is surjective. O

We are now able to prove a correspondence theorem for the Frege operator.

Theorem 2.54 (Correspondence Theorem for the Frege operator). For every sur-
jective h: A — B and every F € FisA, if h is As-compatible with F, then h
induces an order isomorphism between [F]4 and [hF]A, whose inverse is given by
h=t.
PROOF. From the assumption that h is Ag-compatible with F', that is Kerh C
A% (F), and the fact that ﬁg(F ) is the largest congruence below A% (F), it follows
that Kerh C ﬁg‘(F) - QA(F). Therefore, h~'hF = F, and that hF € FisB.

Take first any F/ € [F]A. Then Kerh C AZ(F) C £24(F') and hence
h~™'hF’ = F' and hF' € FisB. Moreover, since h is both 2-compatible with F’
and Ag-compatible with F' and both §2 and Ag are coherent, we can apply Lem-
mas 1.29 and 2.53 and obtain that AS(hF) = hA%(F) C hQ4(F') = QB (hF").
This tells us that hF” € [hF]A.

Now take any G € [hF]A4, i.e., such that AS(hF) C 2B(G). We know that
h™1G € FisA and that hh~'G = G. Observe that h is As-compatible with
h~'hF, since this is F. Then, by coherence, we have

AZ(F) = AG (W 'hF)=h'AB(hF) C b 102B(G) = 24(h71a).

This shows that h~1G € [F]4.

Thus, we have established that h induces a bijection between [F]4 and [hF]4,
whose inverse is given by h~!. Since both maps are obviously order preserving, they
are in fact order isomorphisms. O

Notice that, for the first time so far, we have stated a correspondence theorem
which is not an instance of the General Correspondence Theorem 1.38.
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Two interesting corollaries of Theorem 2.51 are the following (known) charac-
terizations of full selfextensionality and full Fregeanity.

Corollary 2.55. Let S be a logic. The following conditions are equivalent:
(i) For every A € Alg(S), AZ (N FisA) =ida;
(ii) For every A, A% (N FisA) = Q2(NFisA), i.e, S is fully selfextensional.

PROOF. (ii) = (i): Just notice that, for every A € Alg(S), ﬁg‘(ﬂ FisA) =ida.
(i) = (i1): Let A arbitrary. Fix B = A/ﬁé(ﬂ FisA). Consider the canonical
map m : A — B. Notice that Kerm is compatible with (| FisA. Therefore,
7 FisA € FisB and n~'n (| FisA = [ FisA. Also, since (| FisA is a Suszko
filter of A, it follows by Proposition 2.26 that 7 () FisA is the least S-filter of B,
that is, 7 [ FisA = [ FisB. Moreover, Kerm = ﬁg‘(ﬂ FisA) C AS (N FisA).
So, 7 is a surjective homomorpism Ag-compatible with 7~!7 (| FisA. Finally,
since B € Alg(S), it follows by hypothesis idg = AZ (N FisB) = AB(x N FisA).
Therefore,

ﬁé(ﬂ FisA) =Kerm =7~ lidp = ﬂ_lA?(Wﬂ]:isA)
= Ag(ﬂ'_lﬂm}—isA) = Aé(ﬂ ]:isA)7
using coherence of the Frege operator. 0

Corollary 2.56. Let S be a logic. The following conditions are equivalent:
(i) For every A € Alg(S) and every F € FisA, A5 (F) = ﬁf(F),
(ii) For every A and every F € FisA, A& (F) = 24(F), i.e, S is fully Fregean.

PROOF. (i1) = (i): Trivial.

(i) = (i1): Let A arbitrary. Fix B = A/ﬁg(F) Consider the canonical map
m : A — B. Notice that Kerm is compatible with F'. Therefore, 7F € FisB
and 7~ '7F = F. Moreover, Kerm = 24(F) C AZ(F). So, 7 is a surjective
homomorpism Ag-compatible with 717 F. Finally, since B € Alg(S), it follows
by hypothesis that A (7F) = ﬁ?(wF) = idg. Therefore,

GA4(F) =Kerrm = 7 lidg = 7 ' AB(nF) = A% (x~'7F) = AZ(F),
using coherence of the Frege operator. O
We finish our study about the Frege operator by addressing the injectivity

of this S-operator. Given the logical relevance the property has for the Suszko
operator, it seems quite natural to consider it for the Frege operator as well.

Proposition 2.57. Let S be a logic. The following conditions are equivalent:
(i) S has theorems;
(ii) There exists T(x) C Eq, such that for every A and every F € FisA,
F={acA:m*a)CAZ(F)}. (18)
(iii) There exists T(x) C Eq, such that for every A € Alg(S) and every F €
FisA,
F={acA:m*a)C AZ(F)}.
If (any) of these conditions hold, then T(x) can be taken to be T(x) = {x =~ ¢(x)},
where @ is a theorem of S with at most the variable x.
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PROOF. (i) = (i1): Suppose S has theorems. Then, it has a theorem with at most
the variable z, say ¢(x) € Thimg. Let A arbitrary, F € FisA and a € A. Consider
7(z) = {x =~ p(z)}. It holds,

T(a) CAS(F) & (a,9*(a)) € AG(F)
& Fg§(Fa) = Fes(F,¢*(a)
& Fgd(Fa)=F
& aelF,

noticing that p4(a) € F and F € FisA.

(#9) = (¢d7): Trivial.

(#i1) = (i): Let 7(z) C Eq, as given by the hypothesis. Suppose, towards an
absurd, that S has no theorems. Then, @ € FigA, for every A. Consider a trivial
algebra A with universe A = {a}. Notice then that 74(a) = {(a,a)}. Moreover,
(a,a) € AZ(2) € BEqrA. It follows by hypothesis that a € @, which is absurd.

The last statement is justified by the proof of (i) = (ii). O

Notice that taking 7(z) = @ above forces S to be the inconsistent logic, which
trivially has theorems (every formula is a theorem). Proposition 2.57 and Proposi-
tion 2.48 allows us to give an easy proof of a very recent result concerning Fregean
logics [4, Corollary 12]:

Corollary 2.58. If S is Fregean with theorems, then S is assertional.

PROOF. Since S has theorems, it has a theorem with at most the variable z, say
T(z) € Thms. Fix 7(z) == {x ~ T(x)}. Let T € ThS arbitrary. It follows by (the
last statement of) Proposition 2.57 that T' = {p € Fm, : 7F™(p) € AE™(T)}.
Since AE™(T) € 2F™(T), by Proposition 2.48, it follows that T C {¢ € Fm :
TFm(p) € 2F™(T)}. Conversely, let ¢ € Fm, such that 7F™(p) € 2F™(T).
That is, (¢, T(¢)) € 2F™(T). Since T(p) € T, it follows by compatibility that
¢ € T. Hence, truth is equationally definable in LMod*(S) with a set of defining
equations 7(z) = {z = T(x)}. Together with Theorem 0.40, it follows by definition
that S is assertional. O

Condition (18) ressembles condition (13) from Proposition 0.43, which is stated
with the Leibniz operator instead of the Frege operator. And the analogy does not
end here. As we know, the property of the Leibniz operator being completely
order reflecting characterizes truth-equationality of the underlying logic. Similarly,
the same property imposed on the Frege operator characterizes the logic having
theorems. Actually, injectivity of the Frege operator suffices to force the existence
of theorems; however, injectivity of the Leibniz operator does not suffice to establish
truth-equationality, as Raftery shows in [55, Example 2].

Corollary 2.59. Let S be a logic. The following conditions are equivalent:

(i) S has theorems;
(i) The Frege operator is injective;
(iii) The Frege operator is completely order reflecting.

PROOF. (i) = (i4i): Let A arbitrary and {F; : i € I} U{G} C FisA such that

Nier A% (F;) € AS(G). Notice that Nicr Fi € FisA. Under our hypothesis, let
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7(z) C Eq, be as given by Proposition 2.57. Then,

(N R) ca8(NF) € (N A4(F) € 44(G).

icl icl icl

by Proposition 2.57 (notice that condition (18) implies T4(F) C AS(F), for any
F € FisA), monotonicity of the Frege operator, and the assumption, respectively.
So, N;er Fi € G, again by Proposition 2.57.
(iii) = (i1): Trivial.
(#7) = (4): Suppose, towards an absurd, that S has no theorems. Then, @ € FisA,
for every A. Consider a trivial algebra A with universe A = {a}. Notice that
(a,a) € A8 (o) and (a,a) € AS(Fgf(a)). So necessarily, A% (2) = AZ(Fg&(a)).
It follows by hypothesis that @ = Fg?(a), which is absurd, since a € Fgg(a). Thus,
S must have theorems. O

An interesting corollary is that the injectivity of the three main (families of)
S-operators is closely related.

Corollary 2.60. If the family Qs is injective, then the family £2 is injective; and,
if the family 2 is injective, then the family As is injective.

PROOF. Injectivity of the Suszko operator on arbitrary algebras is equivalent to
truth-equationality, by Theorem 3.11, which under Definition 0.38 clearly implies
injectivity of the Leibniz operator on arbitrary algebras. Injectivity of the Leibniz
operator on any algebra forces the existence of theorems, since £24(2) = 24(A).
Finally, the existence of theorems is equivalent to injectivity of the Frege operator
on arbitrary algebras, by Corollary 2.59. O

Consequently, given Raftery’s [55, Theorem 28], if a logic is truth-equational,
then the Suszko, Leibniz and Frege operators are all injective on arbitrary algebras.



CHAPTER 3

The Leibniz hierarchy revisited

In this chapter we give two (partial) presentations of the Leibniz hierarchy, one
in terms of order isomorphisms between the set of S-filters and the set of Alg(S)-
congruences on arbitrary algebras (Theorem 3.10), and another in terms of the
Suszko operator (Theorems 3.12 and 3.13). In both cases, the new characterizations
extend, or complete, the already existing ones to larger classes of logics within the
Leibniz hierarchy.

3.1. An isomorphism theorem for protoalgebraic logics

In the previous chapter we have looked at the three main S-operators sep-
arately. We have considered the notions of V-class, V-filter and coherence for
V =12, ﬁg, Ags and obtained a wealth of characterizations, several known and a
few new, of the main classes of logics within the Leibniz hierarchy, as well as a
plethora of correspondence theorems resulting from the notion of coherence and
the General Correspondence Theorem 1.38. All this was done without using the
notions involved for the different S-operators simultaneasly. It turns out that the
interplay of these notions also gives raise to some new results in AAL. Namely,
a new isomorphism theorem for protoalgebraic logics (Theorem 3.8) in the same
spirit of the famous one for algebraizable logics ([11, Theorem 3.7]; see also [48,
Theorem 5.2] for the non-finitary case; and [39, Corollary 3.14] for a presentation
which resembles more ours) and for weakly algebraizable logics ([25, Theorem 4.8]).
As a corollary, another isomorphism theorem characterizing equivalential logics is
obtained (Corollary 3.9).

Our starting point is a (known) result that states an isomorphism theorem for
protoalgebraic logics, but unlike the previous mentioned ones, it does not charac-
terize this class of logics.

Proposition 3.1 ([37, Theorem 3]). If S is protoalgebraic, then for every A,
4. FigA — Conpg(s)A is an order isomorphism.

The converse of Proposition 3.1 is false, as we will see in Chapter 7. Under
truth-equationality however, it does hold (Proposition 3.5). In order to see it, we
first prove some auxiliary results.

Proposition 3.2. Let S be a logic. The following conditions are equivalent:
(i) For every A, 24 : Fit(A) — Conpjg=(s)(A) is an order isomorphism;
(ii) For every A € Alg(S), 24 : Fi(A) — Conag*(s)(A) is an order isomor-
phism.

PrOOF. We prove the non-trivial implication only. Let A be an arbitrary algebra.
Let F,G € Fi5(A) such that FF C G. Consider the canonical map 7 : A —
A/QA(F). Fix B = A/§4(F). Since Kerr = 4(F) C 24(G) C 2%(G) and

69
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Kerm = ﬁ?(F) C 24(F), it follows by Corollary 2.13 that 7G € Fi}(B) and
7F € Fig(B). But B € Alg(S). So, it follows by hypothesis that £27 is monotone
over Fig(B). Therefore, since 7F C 7@, it follows

2B (xF) C 2B(rq).

Since the Leibniz operator commutes with inverse images by surjective homomor-
phisms, and Kerr is compatible with both F' and G, it follows that

AF) =27 o F) =7 128 F) C 7108 (xG) = R4 (r 1 G) = 24(G).

Hence, we have established monotonicity. The injectivity is trivial, since the Leibniz
operator is always injective on the Leibniz filters, by Proposition 1.16. Finally, we
prove surjectivity. Let 6 € Conpjg-(s)(A). So, 8 = .QA(F), for some F' € FisA.
Consider this time the canonical map 7 : A — A/04(F). Fix B .= A/Q4(F).
Since Kerm = 24 (F) and = is surjective, it holds 7 F' € FigB. But B € Alg*(S) C
Alg(S). So, it follows by surjectivity of 8 on FisB that

2 (xF) = 25(0),

for some G € Fi5(B). Since  is surjective, we have G = w7~ 'G. Moreover,
771G € FisA. Now, since the Leibniz operator commutes with inverse images by
surjective homomorphisms, it holds

QAF) = Q4 nF) =7 1028(zF) = n102B(G) = 24(r1G).

We are left to see that 7'G is a Leibniz filter of A. But notice that, as a con-
sequence of the above expression, Kerm = .QA(F) is compatible with 7~'G. So,
since 1 !G = G € Fi%(B), it follows by Corollary 2.13 that 771G € Fi5(A).
Thus,

0= 4F) = 24="10),
with 771G € Fig(A). O

Lemma 3.3. If for every A € Alg(S), 24 : FigA — Conpjg=(s)A is an order
isomorphism, then Alg(S) = Alg*(S).

PROOF. Let A € Alg(S). Consider the S-filter Fy := (| FisA € FisA. It is clearly
the smallest Leibniz filter. Since we are assuming that 24 is order preserving
on Leibniz filters, it follows that £24(Fy) C 24(F) for every F € Fi5A. So,
[F]* C [Fo]*, for every F € FigA. Now, let G € FisA be arbitrary. Since
4G e Conpg=(s) A, it follows by the assumption (surjectivity) that there exists
some F € FijA such that 24(G) = 24(F); so, G € [G]* = [F]* C [Fo]*. Thus,
[Fo]* = FisA. It follows by Proposition 2.16 that A/f24(FisA) € Alg*(S).
But since A € Alg(S), 24(FisA) = idy and A = A/A(FisA). Therefore,
A € Alg"(S). This shows that Alg(S) C Alg"(S). The converse inclusion always
holds. (]

It is well-known that, if S is protoalgebraic, then the classes Alg*(S) and Alg(S)
coincide (see the remarks after Proposition 2.5). We are now able to see that, under
truth-equationality, the converse also holds.

Proposition 3.4. Let S be a truth-equational logic. If Alg™(S) = Alg(S), then S
is protoalgebraic.
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Proor. If Alg™(S) = Alg(S), then by Proposition 2.17 every full g-model of § is
of the form [G]*, for some G € FisA and some algebra A. In particular, so are
Suszko classes. Take any F € FisA, for an arbitrary A. Then, [F]5" = [G]*, for
some G € FigA. Hence, F5" = G*. But, since S is truth-equational by hypothesis,
by Theorem 2.30 every S-filter of A is a Suszko filter, and in general every Suszko
filter is a Leibniz filter, by Lemma 2.21.2. Therefore, F = F5" = G* = G. Thus,
[F]®" = [F]*. Since this has been proved for all F' € FisA and all A, this implies
protoalgebraicity by Proposition 2.41. O

Given Lemma 3.3 and Proposition 3.4, it is clear that the converse of Proposi-
tion 3.1 does indeed hold under truth-equationality, as we had previously claimed.

Proposition 3.5. Let S be a truth-equational logic. If for every A, 24 : FigA —
Conpig+(s)A is an order isomorphism, then S is protoalgebraic.

Another consequence of Proposition 3.4 is the following:

Corollary 3.6. A logic S is weakly algebraizable if and only if it is truth-equational
and Alg*(S) = Alg(S).

Going back to Proposition 3.1, as it turns out, it still holds if we replace the
set of Leibniz filters by the set of Suszko filters; and this time the converse also
holds! Our next goal is to prove this refinement of Proposition 3.1. First, observe
that the proof of Lemma 3.3 works, mutatis mutandis, for Suszko filters, since
NFisA € }"ig“A, for every A. Therefore:

Lemma 3.7. If for every A € Alg(S), 24: FiStA — Conpjg«(s)A is an order
isomorphism, then Alg(S) = Alg™(S).

However, the proof of Proposition 3.2 does not. For, when establishing surjec-
tiveness, one cannot apply Corollary 2.35 to the canonical map 7 : A — A/ .QA(F ),
as it is not ﬁg—compatible with F. Anyway, with Lemma 3.7 at hand, we are now
able to prove the refinement of Proposition 3.1 we are looking for.

Theorem 3.8. A logic S is protoalgebraic if and only if for every A, 24 Fi%“A —
Conpg+(s)A is an order isomorphism.

PRrROOF. The direct implication is just a rephrasing of Proposition 3.1, because
under protoalgebraicity the Leibniz filters and the Suszko filters coincide. Now
assume the stated condition. We will prove separately that ﬁg(F ) = .QA(F Su)
and that 24 (F) = 24(F5), for every F € FisA; this will imply that the Leib-
niz and the Suszko operators coincide, which is equivalent to protoalgebraicity
by Proposition 2.5. So, let F' € FisA. To prove the first equality note that
since ﬁg‘(F) € Conpjg(s)4, it follows by Lemma 3.7 and the surjectivity of nA
that there exists G € Fi%"A such that 5§(F) = 24(G). This implies that
[F]°" = [G]*, and hence that F5' = G* = G, because every Suszko filter is
a Leibniz filter. Thus, 24(F) = 24(FS"). As to the second equality, since
QA(F) € Conpjg-(s) A, it follows from the assumption that there exists H € F i A
such that 24(F) = 24(H). Then, [F]* = [H]*, and hence F* = H* = H, again
because every Suszko filter is a Leibniz filter. Thus, 24(F) = 24(F*). More-
over, * = H is a Suszko filter. That is, (F*)5" = F*. Now, since F* C F, it
holds [F]5" C [F*]5", and therefore (F*)5* C FS%. So, F* C FS". The converse
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inclusion always holds, by Lemma 2.21.1. Thus, F* = F5" which implies that
0NA(F) = QA(FS). 0

Here arrived, and taking Definition 0.38 into account, we readily obtain an
isomorphism theorem characterizing equivalential logics.

Corollary 3.9. A logic S is equivalential if and only if the Leibniz operator com-
mutes with inverse images by homomorphisms and for every A, 24: }'i%“A —
Conpig~(s)A is an order isomorphism.

It is not difficult to see that Theorem 3.8 and Corollary 3.8 provide alternative
proofs for the known isomorphism theorems for algebraizable and weakly algebraiz-
able logics previously mentioned. Just notice that, bringing truth-equationality into
the picture, every S-filter is a Suszko filter, by Theorem 2.30. We state them alto-
gether for the sake of completeness:

Theorem 3.10. Let S be a logic.

1. S is protoalgebraic if and only if for every A, 04 fig“A — Conpjg(s)A s
an order isomorphism.

2. S is equivalential if and only if the Leibniz operator commutes with inverse
images by homomorphisms and for every A, the operator 04 restricts to an
order isomorphism between ]-"if?;“A and Conpg(s)A.

3. S is weakly algebraizable if and only for every A, N4 FisA— Conpjg+(s)A
is an order isomorphism.

4. S is algebraizable if and only if the Leibniz operator commutes with inverse
images by homomorphisms and for every A, the operator 24: FisA —
Conpig+(s)A is an order isomorphism.

PrOOF. Theorem 3.8, Corollary 3.9, [39, Corollary 3.14] and [11, Theorem 3.7]
(for S finitary) or [48, Theorem 5.2] (for S arbitrary), respectively. O

3.2. The Leibniz hierarchy via the Suszko operator

This section is devoted to characterize several classes of logics within the Leib-
niz hierarchy in terms of the Suszko operator. Our starting point is the only
known such characterization (to our knowledge), namely Raftery’s characteriza-
tion of truth-equational logics [55, Theorem 28] in terms of global injectivity of
the Suszko operator. We take the chance to prove it directly within our framework
and furthermore to show that one only needs to demand injectivity of the Suszko
operator over the class of S-algebras.

Theorem 3.11 ([55, Theorem 28]). Let S be a logic. The following conditions are
equivalent:

(i) S is truth-equational;

(i) The Suszko operator ﬁg‘ is injective, for every A;
(i) The Suszko operator ﬁg is injective, for every A € Alg(S).

PROOF. (i) = (ii): By Proposition 1.16, for every A, the Suszko operator 24
is injective on the Suszko filters ]-'i%“A. Now, if § is truth-equational, then by
Theorem 2.30 every S-filter of A is a Suszko filter of A. Thus, for every A, the
Suszko operator ﬁg is injective.

(ii) = (iii): Trivial.
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(#4i) = (i): Let A arbitrary and F € FisA. Fix Fy = (| Fis (A/ﬁg(F)) Notice
that A/ﬁg(F) e Alg®(S) = Alg(S). Moreover, by Lemma 0.24.3, F/ﬁg‘(F) €
Fis (A/ﬁg(F)) Necessarily then, Fy C F/ﬁ?(F) On the other hand, since
the SEszko operator is always order preserving, and using Lemma 1.45, we have
ﬁg/né(F) (Fy) C ﬁg‘/ng(m (F/QA(F)) = ida/g3ap)- 1t follows by hypothesis
that F/ﬁg‘(F) = Fy =) Fis (A/ﬁg(F)) By Proposition 2.26, it follows that F'
is a Suszko filter of A. Since both A and F' were chosen arbitrarily, every S-filter
is a Suszko filter. It follows by Theorem 2.30 that S is truth-equational. (]

Next, we know by Theorem 1.24 that the Leibniz operator is the only S-
compatibility operator commuting with inverse images by surjective homomor-
phisms. Therefore:

Theorem 3.12. A logic S is protoalgebraic if and only if the Suszko operator
commutes with inverse images by surjective homomorphisms.

PROOF. It follows immediately by Theorem 1.24, having in mind that the Leibniz
operator is order preserving if and only if 2 = 25, by Lemma 1.4. O

With Theorems 3.11 and 3.12 at hand, we readily get characterizations for
other classes of logics within the Leibniz hierarchy.

Theorem 3.13. Let S be a logic.

1. S is equivalential if and only if the Suszko operator commutes with inverse
images by homomorphisms.

2. S is weakly algebraizable if and only if the Suszko operator is injective and
commutes with inverse images by surjective homomorphisms.

3. S is algebraizable if and only if the Suszko operator is injective and commutes
with inverse images by homomorphisms.

4. S is finitely algebraizable if and only if the Suszko operator is injective, con-
tinuous, and commutes with inverse images by homomorphisms.

PROOF. 1. Suppose S is equivalential. Then, by Definition 0.38, S is protoalge-
braic and the Leibniz operator commutes with inverse images by homomorphisms.
But protoalgebraicity implies the coincidence of the Suszko and Leibniz opera-
tors. Thus the Suszko operator commutes with inverse images by homomorphisms.
Conversely, suppose that the Suszko operator commutes with inverse images by
homomorphisms. In particular, it commutes with inverse images by surjective ho-
momorphisms. So, by Theorem 3.12, S is protoalgebraic. Consequently, the Leibniz
and Suszko operators coincide, and therefore the Leibniz operator commutes with
inverse images by homomorphisms. Thus, S is equivalential.

2. Tt follows by Theorems 3.11 and 3.12.
3. It follows by 1 and Theorem 3.11.

4. Suppose S is finitely algebraizable. Then, by Definition 0.38, S is finitely equiv-
alential and truth-equational. In particular, it is protoalgebraic, and therefore the
Leibniz and Suszko operators coincide. Hence, under our hypothesis, the Suszko
operator is continuous. Moreover, by 1, the Suszko operator commutes with inverse
images by homomorphisms. Finally, it follows by Theorem 3.11 that the Suszko
operator is injective. Conversely, suppose the Suszko operator is injective, con-
tinuous, and commutes with inverse images by homomorphisms. In particular, it
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commutes with inverse images by surjective homomorphisms. So, by Theorem 3.12,
S is protoalgebraic. Consequently, the Leibniz and Suszko operators coincide, and
therefore the Leibniz operator is continuous and injective. Given Definition 0.38,
S is finitely algebraizable. O

Do notice that the analogous characterizations to those of 1 and 3 stated for
the Leibniz operator require moreover monotonicity; see [39, Theorems 3.13.2 and
3.13.5).

Next, we show that Theorem 3.8 can also be stated with the Suszko operator.
Let us start by applying Proposition 1.16 taking V = 55:

Proposition 3.14. For every A, ﬁg: ]—'ig“A — Conpjg(s)A is an order embed-
ding.

PRrOOF. The Suszko operator ﬁg is order preserving on FigA, hence so is its
restriction to figuA. Moreover, by Proposition 1.16, the Suszko operator ﬁg‘
is order reflecting on Fi3"A. Finally, ﬁ? is into Conpgsu(s)A and AlgS'(S) =
Alg(S), by Lemma 0.36.4. d

It is therefore natural to ask under what assumptions does the operator
Qg‘: ]-'z'guA — Conpjg(s)A become an order isomorphism. That is, to consider
Theorem 3.8 stated with the Suszko operator instead of the Leibniz operator.

Theorem 3.15. Let S be a logic. The following conditions are equivalent:
(i) S is protoalgebraic;
(i) For every A, 24 : Fit"A — Conag(s)A is an order isomorphism;
(iii) For every A, £24: FiS"A — Conpg(s)A is surjective.

PROOF. (i) = (ii): By Proposition 2.5 and Corollary 2.19, if S is protoalgebraic,
then 24 = ﬁ? and Alg(S) = Alg"(S). Therefore Conpjg(s)A = Conpjg(s)A, and
then Theorem 3.8 establishes (ii).

(i1) = (iii): Trivial.

(iii) = (i): Let A arbitrary and F,G € FisA such that F C G. Since 24 ¢
Conpjg(s)(A) € Conpjg(s)A, it follows by hypothesis that there exists H € FigtA
such that ﬁg(H) = QA(F). Then,

QA ([H]®) = 22(F) = 24(F) = GA([F]),

using Propositions 2.7 and 2.22. It follows by the well-known isomorphism theo-
rem for full g-models, here Corollary 2.3 (of course, bearing in mind that £2- and
2 s—classes are full g-models of S), that [H]S* = [F]. Now, since H is a Suszko
filter, it follows by Theorem 2.29 that [H]>* = (FisA)¥. Since F € [F], we have
H C F C G. Therefore, G € [F], that is, £24(F) C 24(G). Since A is arbitrary,
we conclude that the Leibniz operator is order preserving. O

Here arrived, we are able to give another (partial) presentation of the Leibniz
hierarchy in terms of the Suszko operator, this time highlighting order theoretical
properties. To this end, and similarly to the definition of continuity for the Leibniz
operator on page 23, the Suszko operator is continuous, if it commutes with unions
of upwards-directed families of S-filters whose union is an S-filter.

Theorem 3.16. Let S be a logic.
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1. S is protoalgebraic if and only if for every A, ﬁg: fig“A — Conapjg(s)A is
an order isomorphism.

2. S is truth-equational if and only if for every A, ﬁg‘: FisA — Conpgs)A is
an order embedding.

3. S is weakly algebraizable if and only if for every A, ﬁg: FisA — Conpjgs)A
is an order isomorphism.

4. S is algebraizable if and only if the Suszko operator commutes with inverse
images by homomorphisms and for every A, ﬁé: FisA — Conpgs)A is an
order isomorphism.

5. S is finitely algebraizable if and only if the Suszko operator is continuous and
for every A, ﬁg: FisA — Conpgs)A is an order isomorphism.

Proor. 1. This is contained in Theorem 3.15.

2. The operator ﬁg is always an order embedding of fi?guA into Conpjg(s)4, by
Proposition 3.14. Moreover, truth-equationality implies that FisA = Fi3" A, by
Theorem 2.30. So, ﬁg‘ is actually an order embedding of FisA into Conpgs)A.-
Conversely, the Suszko operator ﬁg is an order isomorphism, and hence in partic-
ular injective, for every A. It follows by Theorem 3.11 that S is truth-equational.

3. Suppose S is weakly algebraizable. By Theorems 3.8 and Theorem 2.30,
24 is an isomorphism between FisA and Conpjg+(s)A, for every A. Moreover,
since S is protoalgebraic, the Suszko operator and the Leibniz operator coincide,
Alg"(S) = Alg(S), and we obtain the desired isomorphism. Conversely, suppose
that the Suszko operator ﬁg is an isomorphism between FisA and Conpigs)A,
for every A. In particular, it is injective on S-filters, and hence by Theorem 3.11
S is truth-equational. Moreover, every S-filter is a Suszko filter, by Theorem 2.30,
so that the Suszko operator ﬁg is actually surjective over the Suszko filters of A.
It follows from Theorem 3.15 that S is protoalgebraic. Altogether, S is weakly
algebraizable.

4. It follows by 3 and Theorem 3.15.2.

5. Tt follows by 5 and [39, Theorem 3.13], having in mind that the Suszko and
Leibniz operators coincide under both hypothesis. O






CHAPTER 4

Truth-equational logics revisited

In this chapter, we give some contributions to the study of truth-equational
logics, which started in [55]. Namely, we prove a new characterization of the Suszko
operator in terms of (any) defining set of equations witnessing truth-equationality
(Proposition 4.2), which will allow us to arrive at a strenghtning of Raftery’s [55,
Theorem 28] by characterizing truth-equational logics as those logics where the
Suszko operator ﬁg‘ : FisA — Conpjgs)A is a structural representation, for
every algebra A (Theorem 4.13). With this characterization at hand, we prove that
definability of truth on the class LMod®"(S) is equivalent to the Suszko operator
ﬁgm : ThS — Conpjg(s)F'm being a structural operator on the formula algebra,
thus unifying this weaker definability property with the rest of the theory developed
for truth-equational logics — a problem left unsolved in [55]. We also give a
necessary condition for the continuity of the Suszko operator, a property already
considered in [23, Section 7]; and finally, we present yet another coherent family of
S-compatibility operators for truth-equational logics.

4.1. The Suszko operator for truth-equational logics

Let us start with a technical lemma, which arises by putting Propositions 0.43
and 1.11 together.

Lemma 4.1. Let S be a truth-equational logic with a set of defining equations
7(x) CEq,. For every A and every X C A,

Fis(A/0) =7 (FisA)* and = 'Fis(A/0) = (FisA)",

where 6 = 62\4|g(5) (T4(X)) and 7 : A — A/0 is the canonical map.

PROOF. First, let us fix ¢ = {F € FisA : G,ﬁg(s) (T4(X)) C .QA(F)} and

0= @flg(s)(TA(X)). It follows by Proposition 1.11 that

Fis(A/0) =€ and n 'Fis(A/0) =F.
Now, since .QA(F) € Conpjg(s)4, it holds
¢ ={FeFisA:0C QAF)} ={F e FisA: 7(X) C 24(F)}.
But, by Proposition 0.43,
(FeFisA: TA(X)C QA(F)} = {F € FisA: X CF} = (FisA)" .

t

Proposition 4.2. Let S be a truth-equational logic with a set of defining equations
7(z) CEq,. For every A and every X C A,

34 (Fg§ (X)) = Oiy(s) (T7(X)).

T
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In particular, if F € FisA, then
33(F) = 0flgs) (T(F)).

PRrROOF. Let X C A. Fix 6 := @flg(s)(TA(X)). First of all, since 6 € Conpjg(s)A,
it holds A/ € Alg(S), and therefore £24/° (Fis(A/0)) = idase, by (9) on page
21. Now, let 7 : A — A/ be the canonical map. Then,
28 (Fed (X)) = 28(X)

- B ((Fisa)")

= 24 (r ' Fis(A/9))

=7 LA (Fis(A/9))

= W_l(idA/g)

= Kerm

= Ohig(s) (TH(X)),

using Lemma 4.1 and Proposition 0.31.2. (|

Notice that, given an arbitrary logic & (not necessarily truth-equational), for
every A and every F' € FisA, it always holds that ﬁg‘(F) € Conpig(syA. This
fact is an easy consequence of Lemma 0.36. Therefore, Ran(ﬁg) C Conpjg(s)A.
So, the meaningful part of Proposition 4.2 is not saying that ﬁf (F) is an Alg(S)-
congruence of A, but rather determining it as the least Alg(S)-congruence of A
containing 74 (F).

Several consequences follow from Proposition 4.2. Some immediate corollaries
are:

Corollary 4.3. If S is truth-equational with a set of defining equations T(x) C Eq,,
then
25 (Cs({z})) = OKgts) (T(@)).
Recall the notation introduced in Proposition 0.41,

Too(@) = 0, 5™ (Cns({2})),

where o, : Fm — F'm is the substitution sending all variables to x. The following
fact is contained in [55, Proposition 32], and will be useful later on.

Corollary 4.4. If S is truth-equational with a set of defining equations T(x) C Eq,,
then T C T.

PROOF. Since 7(z) C 9{,;'(‘5) (t(z)) = ﬁgm (Cns({z})), by Corollary 4.3, it fol-
lows that
7(2) = 0o7(2) C 0, 2E™ (Cns({z})) = Too ().

Another interesting consequence is the following:

Proposition 4.5. Let S be a truth-equational logic. For every A and every X C A,
Conpg(s)A

FeEE(x) = \/ 2(Fed(a).
acX
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PrOOF. Let 7(z) C Eq, be a defining set of equations for S, which exists under
our hypothesis. Notice that

Conpg(s)A
@,ﬁg(S)(TA(X)) = \/ {@ﬂg(S)(TA(a)) ra€ X},
by Lemma 0.23, since Alg(S) is closed under IPg by Lemma 0.36.5. But under our
hypothesis, £74 (Fgd (X)) = OA ) (r4(X)) and 04, g (r4(a) = 2 (Fed (a).
by Proposition 4.2. O

Notice that the relevant inclusion is C, as the converse one always holds, by
monotonicity of the Suszko operator, the fact that Q?(Fg?(X)) € Conpjg(s)A and
definition of supremum. In fact, Proposition 4.5 can be generalized as follows:

Proposition 4.6. If S is truth-equational, then the Suszko operator preserves
suprema, t.€.,

FisA Conpjg(s)A
s\ r)= \/ Q84F),
el el

for every algebra A and arbitrary families {F; € FisA :i € I}.

PrOOF. Let 7(z) C Eq, be a defining set of equations for &, which exists under
our hypothesis. It holds,

.Qg( \/ F) = Qé(Fg?(U Fz))
iel icl
= O (TA( U Fi))
iel
ConA|g(5>A
= \/ Ggg(S) (TA(Fz'))
iel
Conpgsy)A
iel
using Proposition 4.2 (twice) and Lemma 0.23, having in mind that Alg(S) is closed
under IPs by Lemma 0.36.5. ([

Proposition 4.2 also makes possible to investigate two further algebraic prop-
erties enjoyed by the Suszko operator for truth-equational logics, namely its com-
mutativity with direct images of surjective homomorphisms and with unions of
upwards-directed families whose union is an S-filter. Recall, commutativity with
inverse images by surjective homomorphisms characterizes protoalgebraicity, by
Theorem 3.12. The property of commuting with direct images of surjective homo-
morphisms turns out to be just one aspect of a strenghtening of Raftery’s charac-
terization for truth-equational logics in terms of the Suszko operator.

Proposition 4.7. If S is truth-equational, then the Suszko operator commutes
with images by surjective homomorphisms, in the sense that, for every A, B, every
surjective h: A — B and every F' € FisA,

28 (Fgg (hF)) = OR s (R 22(F)).



80 CHAPTER 4. TRUTH-EQUATIONAL LOGICS REVISITED

PrOOF. Let 7(z) C Eq, be a defining set of equations for S, which exists under
our hypothesis. Notice that

ﬁg (Fgg(hF)) = Oﬁg(S) ("'B(hF))
= ORig(s) (1Oig(s) (T (F)))
= Ofe(s) (W 28(F))
using Proposition 4.2 (twice) and Lemma 0.22. d
Lemma 4.8. If S is truth-equational and Alg(S) is a quasivariety, then
= {4(X) : X CF finite},
for every algebra A and every F € FisA.

PROOF. First of all, notice that (Conag(s)A, C) is an algebraic lattice, by Propo-
sition 0.20. So,

G5(F) = Ofgs) (T7(F))
= U{ Ag(s) () 19 S TA(F) ﬁnite}

< U {@Alg(S) (TA )): XCF ﬁnite}
= U{#2(Fed(x)) : X C F finite}
= U{P4(x): X C F finite}

c ),

using Proposition 4.2 (twice) and monotonicity of the Suszko operator. The middle
inclusion is justified as follows: if ¥ C A x A is finite and such that ¥ C 74(F),
then necessarily a finite number of elements of F' is involved in those equations,
and at most all equations in 7(z) for each one of these elements are involved. [

Proposition 4.9. If S is truth-equational and Alg(S) is a quasivariety, then the
Suszko operator is continuous.

PROOF. Let A be an algebra and {F; : i € I} C FisA be an upwards-directed

family of S-filters of A such that | J;.; F; € FisA. The inclusion

U ‘QS ) C Qs (U Fl)
i€l iel

always holds, by monotonicity of the Suszko operator. Conversely, it follows by

Lemma 4.8 that
ﬁg( U F) -U {fz‘g(F’) .FC|JF ﬁnite}.
iel iel

Now, let F' C |J;c; F; finite, say I’ = {a;,,...,a;,}. For each a;, there exists
Fj € U, Fi such that a;; € Fj, with j = 1,...,n. Since the family is upwards-
directed, there exists k € I such that F; U...UF, C Fy. So, I’ C F}. It follows
by monotonicity of the Suszko operator that ﬁg‘(F’) C 5? (Fy). Thus,

U {ﬁg‘(F’) .F'c|JFR ﬁnite} c|yaar

i€l i€l
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Proposition 4.9 generalizes [25, Theorem 5.7], which tells us that for logics such
that Alg*(8S) is a quasivariety,

S is weakly algebraizable if and only if S is finitely algebraizable.

Indeed, adding protoalgebraicity to the assumptions of Proposition 4.9, implies
that the Leibniz and Suszko operators coincide, and that Alg*(S) = Alg(S). So, it
follows by Proposition 4.9 that the Leibniz operator is continuous, and therefore,
according to Definition 0.38, S is finitely algebraizable. The converse implication
holds in general.

We now undertake a short detour: if we replace the assumption Alg(S) being
a quasivariety in Proposition 4.9 by Alg*(S) being a quasivariety instead, then
necessarily Alg*(S) = Alg(S), and much stronger consequences follow. Indeed, if
the truth-equationality of S is witnessed by a finite set of defining equations, then
S is actually BP-algebraizable.

Lemma 4.10. If a logic S is truth-equational with a finite set of defining equations
and Alg(S) is a quasivariety, then S is finitary.

PROOF. On the one hand, if S is truth-equational with a set of defining equations
7(z) (finite or not), then Alg(S) is a T-algebraic semantics for S, by Proposi-
tion 0.44. On the other hand, since Alg(S) is a quasivariety, IZZCIIg( s is finitary.
Finally, since the equational translation witnessing the completeness of S w.r.t.
heA?g( sy is finitary by hypothesis, it follows that S is finitary. O

Proposition 4.11. Let S be truth-equational with a finite set of defining equations.
The following conditions are equivalent:

(i) Alg*(S) is a quasivariety;

(i) S is BP-algebraizable.

PROOF. (i) = (i1): Since Alg™(S) is a quasivariety by hypothesis, in particular,
it is closed under Pg. Hence, Alg*(S) = Alg(S). This fact together with truth-
equationality implies that S is weakly algebraizable, by Corollary 3.6. Now, S is
finitary by Lemma 4.10. Finally, for finitary logics, weakly algebraizability together
with Alg"(8S) being a quasivariety implies that S is BP-algebraizable, by [25, The-
orem 5.7].

(11) = (i): Finitary and finitely equivalential logics are such that Alg*(S) is a
quasivariety [47, p. 426]. O

Corollary 4.12. Let S be an assertional logic. The following conditions are equiv-
alent:

(i) Alg*(S) is a quasivariety;

(i) S is regularly BP-algebraizable.

This corollary may be rephrased as: A logic S is regularly BP-algebraizable if
and only if S is assertional and Alg*(S) is a quasivariety. This tells us that the
topmost class of Figure 1 is the intersection of the classes at the left and right ends.
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Going back to the main goal of this section, by putting together Raftery’s [55,
Theorem 28] with Proposition 4.6 and Proposition 4.7, we arrive at:

Theorem 4.13. Let S be a logic. The following conditions are equivalent:

(i) S is truth-equational;
1) The Suszko operator 024 FisA — Conpgs)A is a structural representa-
S g(S)
tion, for every algebra A;
ii) The Suszko operator §24 : FisA — Conags)A s a structural representa-
s g(S)
tion, for every algebra A € Alg(S).

PROOF. (i) = (ii): Suppose S is truth-equational. Then, ﬁg is injective, for
every A, by Raftery’s [55, Theorem 28]; ﬁg preserves suprema, for every A, by
Proposition 4.6; and ﬁ? commutes with endomorphisms, for every A, by Propo-
sition 4.7 (having in mind that endomorphisms are surjective homomorphisms).
(#4) = (¢41): Trivial.

(#i1) = (4): Since by hypothesis, ﬁg is injective for every A € Alg(S), the result
follows by Theorem 3.11. (]

Notice that an analogous condition stated just for the formula algebras would
not hold under the same proof. For injectivity of the Suszko operator on the formula
algebras does not suffice to establish truth-equationality, as Raftery shows in [55,
Example 1].

Here arrived, it is natural to consider the same condition imposed upon the
Leibniz operator. Appart from the terminology, and for the particular case of
finitary logics, such result is contained in [11, Theorem 3.7]. We next state it for
arbitrary logics.

Theorem 4.14. Let S be a logic. The following conditions are equivalent:

(i) S is algebraizable;
(i) The Leibniz operator N4 FisA — Conpig(s)A is a structural representa-
tion, for every algebra A;
(iii) The Leibniz operator F™ . ThsS — Conpg+(s)F'm is a structural represen-
tation.

PROOF. (i) = (ii): If S is algebraizable, then the Leibniz operator £24 : Fig A —
Conpg+(s)A is an order isomorphism which commutes with inverse images of ho-
momorphisms, for arbitrary A. So, it preserves arbitrary suprema, it is injective.
We are left to see it commutes with endomorphisms. Let h € Hom(A, A) be a
homomorphism and let F' € FisA be an S-filter. On the one hand,

F C h™'Fgd (hF) Q4(F) C 24(h'Fg§ (hF))
Q4(F) C h™' 024 (Fgg (hF))
h2A(F )Chh L4 (Fgd (hF)) C 24 (Fgd (hF))
)

@;\“,g J(h2A(F)) C 24 (Fed(h

Pl

using protoalgebracity and the hypothesis. On the other hand, since the Leibniz
operator £24 is (always) onto Conpg=(s) A, let G € Fis(B) be such that 4G =
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Onig-(s) (M2 (F)). Then,
24(G) = Oig-(s5) (W RA(F)) = h24(F) C 24(G),

= N4(F) Cch124(0)
= 4F) C R4 'G)
= FCh'G,

= hF Chh 'GCG
= Fg§(hF) C G,
= 04 (Fgd(hF)) C 24(G) = @;{‘,g*(s) (h24(F))

using the hypothesis, injectivity of 24 (which holds by truth-equationality of S),
and protoalgebraicity.
(i3) = (iii): Trivial.
(i41) = (i): Let T,T" € ThS such that T C T". Since 2F™ preserves suprema by
hypothesis, it follows that
Conpgr (s) F'm Ths
of™~T) \/ ef™r)=e"™T\/ T)=0""1).

Hence, 2F™(T) € 2F™(T"). This establishes protoalgebraicity (see for instance,
[23, Theorem 1.1.3], where it is also proved that monotonicity of £25™ is equivalent
to meet-continuity). Together with the fact that 2™ is injective, it follows that S
is weakly algebraizable (see for instance, [25]). Finally, let us see that £2%™ com-
mutes with inverse images by substitutions. Let ¢ : Fm — F'm be a substitution
and let T € ThS. We must prove that

QF™(e7T) = o1 2F™(T).
It is easy to check that o1 £2F™(T) is a congruence on F'm, and that furthermore
it is compatible with o=*(T)). So the inclusion o~ 02%™(T) C 25 (01T is clear.
As for the converse inclusion, we have
@ﬂ;ﬁ(s) (O'\QFm(U_lT)) = nfm (Cns(oo_lT))
QFm (T)

N

)

using the fact that 2™ : ThS — Conpjg(s)F'm commutes with images of substi-
tutions by hypothesis, and that we have just seen it to be moreover order-preserving
(bear in mind that oo~ !T C T, so Cns(co~1T) C Cns(T) = T). Then,

QF™ (7T C o e QF ™ (07T
- 07165?(5) (J.QFm(UflT)) C o tF™(T).
Altogether, the Leibniz operator 2F™ : ThS — Conpjg+ sy F'm is meet-continuous,

injective and commutes with inverse images of substitutions. This establishes that
S is algebraizable, by [48, Theorem 5.2]. O

4.2. Truth definability in LMod>"(S)

In this section we adress truth-definability on the class LMod®"(S). Recall that
by Theorem 0.40 truth definability on any of the classes LMod*(S), Mod*(S), and

113

l\/IodS”(S) is equivalent to truth-equationality of the underlying logic S. But, “in
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contrast, the equational definability of truth in LModS“(S) does not imply its equa-
tional (or even implicit) definability of truth in any of the other matrixz semantics
mentioned (...).” [55, p.121] So, we pick up this “loose end” of [55] and, under the
light of Theorem 4.13, unify it with the truth-definability in the remaining matrix
semantics.

We start with an auxiliary lemma, whose proof follows that of [55, Proposition
22], mutatis mutandis for Suszko congruences.

Lemma 4.15. Let S be a logic, A an algebra and F € FisA. A set of equations
7(x) C Eq, defines the S-filter of the matriz (A Q24(F), F/Q&(F)) if and only
if

F={acA:7m%a) C Q4(F)}.
PROOF. Let B = A/ﬁg‘(F) and let 7 : A — B be the canonical projection. Let
a € A. Notice that

n(a) € TB iff Vo~ e€ T(x) B (m(a

iff VémeeT(x) 7r(6A(a

iff VomeeT(z)(6%(a),e*(a)) € FE(F)

iff T4(a) C DE(F).
So, TB = 7(F) if and only if F = n 7B = {a € A : 74(a) C 24(F)}. The

result should now be clear. O

Corollary 4.16. Truth is equationally definable in LI\/IOdS“(S) if and only if, for
every T € ThS,

T = {p € Fm, : 7F™(p) C QE™(T)}).

Next, we prove that the particular case of Lemma 4.1 and Proposition 4.2
for the formula algebras F'm holds under the hypothesis of truth definability in
the class LModS“(S). The proofs are entirely analogous to the respective ones for
arbitrary algebras.

Lemma 4.17. If truth is equationally definable in LModS"(S), then for every T' C
Fmﬂ;

Fis(Fm/0) = (ThS)" and « 'Fis(Fm/6) = (ThS)".

Fm

where 6 = 9{,;”(‘5) (r¥™(I)) and 7 : Fm — Fm/0 is the canonical map.

PROOF. First, let us fix € = {T € ThS : @K};?S) (rFm™()) € 2F™(T)} and
0= @flgzs) (rF™(T)). It follows by Proposition 1.11 that

Fis(Fm/0) =n¢ and n 'Fis(Fm/0)=%.
Now, since 2F™(T) e Conag(s)F'm, it holds
€ ={TeThS:0C 2F™T)} ={T e ThS:vF™() C 2F™(T)}.
But, by Proposition 0.43,

(T eThsS: 7F™() C QF™T)} = {T e ThS : T C T} = (ThS)".
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Proposition 4.18. If truth is equationally definable in LModsu(S), then for every
T - FmL,

25™ (Cns(I) = Ongls) (T7™(I)).
ProoF. Let I' C Fm,. Fix 0 := @z;’(‘S) (TF™(T)). First, since 6 € Conajg(s)Fm,

it holds Fm/6 € Alg(S), and therefore 2Fm/6 (Fis(Fm/0)) = idgum e, by (9) on
page 21. Now, let 7 : Fm — F'm/0 be the canonical map. Then,

PE™ (Cns (1) = FE™(T)
= 3 ((Ths)")
= F™ (n 1 Fis(Fm/9))
= 7 L Q2F™ (Fisg(Fm/0))

=7 Nidpmyp)

= Kerm
= Oppts) (TF™(I)),
using Lemma 4.17 and Proposition 0.31.2. (]

Here arrived, we can apply the proofs of Proposition 4.6 and Theorems 4.7,
done for an arbitrary algebra A, to the formula algebra F'm, and obtain:

Proposition 4.19. If truth is equationally definable in LMod>"(S), then the Suszko
operator ﬁgm preserves suprema, i.e.,

ThS Conpg(sy Fm
afm(\V =\ a23m),
el el

for arbitrary families {T; € ThS :i € I}.

Proposition 4.20. If truth is equationally definable in LMod>"(S), then the Suszko
operator .Qg ™ commutes with substitutions, in the sense that, for every substitution
oc:Fm — Fm and every T € ThS,

5™ (Cns(oT)) = Ofms) (0 2E™(T)).
Finally, we are able to prove the main result of this section.

Theorem 4.21. Let S be a logic. The following conditions are equivalent:

(i) Truth is equationally definable in LMod®™(S);
1) e Suszko operator () : — Conpjg(s m) 1s a structural represen-
ii) The Suszk ng ThS — C g(s) (F' l

tation.

PROOF. (i) = (ii): Suppose truth is equationally definable in LMod®"(S). Then,
ﬁgm is clearly injective. Moreover, ﬁgm preserves suprema and commutes with
substitutions, by Proposition 4.19 and Proposition 4.20.

(#i) = (4): Under the hypothesis, it follows by Theorem 0.26 that there exists
7(z) C Eq, such that £2E5™(T) = @fl;'(’s) (TF™(T)), for every T € ThS. Now, let
T € ThS arbitrary and ¢ € Fm,. Assume first ¢ € T. Clearly then, 7F™(p) C
Fm(T) C @zg(ls)(TFm(T)) = NEF™(T). Conversely, assume that 7™ (p) C
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§3E™(T). Then, 5, (+7™(9)) € FFE™(T) = Ofms, (+7™(T)). Hence,

ﬁgm(CnS( )) ®A|g(5)( Fm(TaSD))
ThS
AIg(S)(TFm (T)) \/ @Alg(S) " (¢))

Alg(S)(TFm(T))
=ﬂs (D).

Thus, ﬁgm (Cns(T,¢)) = ﬁgm(T) It now follows by injectivity of ﬁgm that
Cns(T,p) = T, and therefore ¢ € T. Finally, it follows by Corollary 4.16 that
truth is equationally definable in LMod®"(S). O

As a consequence, since Raftery shows in [55, Example 1] that equational defin-
ability in the class LMod>"(S) does not suffice to ensure that S is truth-equational,
the property of ﬁgm ThS — Conpjgs)yF'm being a structural representation
does not lift to arbitrary algebras, bearlng in mind Theorem 4.13.

As a final remark, we observe that for a very special set of defining equations,
it does hold the equivalence between truth-equationality of a logic S and the equa-
tional definability of truth in the class of matrices LMod™*(S).

Proposition 4.22. Let S be a logic. The following conditions are equivalent:

(i) S is truth-equational with a set of defining equations {x =~ T}, where T is a
constant term of LAIgS"(S);

(ii) Truth is equationally definable in LMod>"(S) by {x ~ T}, where T is a
constant term of LAIgS"(S);

PROOF. (i) = (it): It follows by [55, Proposition 18 (ii)] that truth is equationally
definable in LMod®"(S) by the equational translation 7(z) = {z ~ T}.

(i1) = (i): Tt follows by [55, Corollary 21] that LAIgS"(S) is a {z ~ T }-algebraic
semantics for S. So, S is the assertional logic S(LAIg™(S),{z =~ T}). It follows
by Proposition 0.42.1 that S is truth-equational with a set of defining equations
{x ~ T}, where T is a constant term of LAIg®"(S). O

4.3. The largest algebraic semantics for truth-equational logics

Let us recall Definition 0.27. Given a logic S and 7(x) C Eq,, the class of
7-models of S is defined by

KS,7)={A:Ttsp = () EY 7(p)}.

Also, by Proposition 0.28 this class is the largest among all the T-algebraic seman-
tics for S, if there is one. Notice of course that K(S,7) depends explicitly on T,
and that given two sets of equations 7,7, the classes K(S,7) and K(S,7’) need
not coincide.

By simply manipulating the definitions involved, one can re-write the identity
above as follows:

Proposition 4.23. Let S be a logic and 7(x) C Eq,. It holds,

K(S,7)={A:7(A) € FisA}.
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Another immediate consequence of Proposition 0.28, is that whenever Alg(S)
is a T-algebraic semantics for S, it is necessarily contained in K(S, 7). Moreover,
Proposition 0.44 tells us that Alg(S) is always a 7-algebraic semantics for truth-
equatinal logics, with 7(z) a set of defining equations for S. Therefore:

Corollary 4.24. If S is a truth-equational logic with a set of defining equations
7(z) C Eq,, then
Alg(S) C K(S, 7).

It is worth mentioning that these two classes of algebras need not coincide,
even at the top most class of logics in the Leibniz hierarchy. In fact, a regularly
BP-algebraizable counter-example is CPC, as shown in [11, pp. 15-16], having in
mind that Alg*(CPC) = Alg(CPC) = BA.

We next characterize the least S-filter of an algebra in terms of the defining
equations witnessing truth-equationality.

Lemma 4.25. Let S be a truth-equational logic with a set of defining equations
T(z) € Eq,.

1. For every A, the least S-filter of A is the S-filter generated by T(A);

2. For A € Alg(S), the least S-filter of A is exactly T(A).

PROOF. 1. Since 74(7(A)) Cida C 24(N FisA), it follows by Proposition 0.43
that 7(A) C (| FisA. Hence, Fg&(1(A)) = N FisA. 2. Now, let A € Alg(S).
Let a € ((FisA. Then, a € F, for every F € FisA. It follows again by Proposi-
tion 0.43 that 74 (a) C £2(FisA) = ida. Thus, a € T(A). O

Notice that, Proposition 4.23 and Lemma 4.25 provide an alternative proof of
Corollary 4.24. Notice also that, for truth-equational logics, the fact that the least
S-filter of A is exactly 7(A) does not characterize the algebras in Alg(S), but rather
the algebras in K(S, 7). Indeed, in light of Lemma 4.25, Proposition 4.23 can be
re-written for truth-equational logics as:

Proposition 4.26. Let S be a truth-equational logic with a set of defining equations
7(z) CEqp. It holds,

K(S,7)={A:7(A)=(FisA}.
Two interesting corollaries are the following:

Corollary 4.27. If S is truth-equational witnessed by two sets of defining equations
T and 7', then

7() =||=8A?g(s) 7' (z)

PROOF. Let A € Alg(S). We know that Alg(S) C K(S,7) and Alg(S) C K(S, 1),
by Corollary 4.24. So,
T(A) = FisA=1'(A),

by Proposition 4.26. So, given h € Hom(Fm, A) such that e4(hx) = §4(haz), for
every € &~ § € T(x), that is, he € 7(A), it necessarily holds haz € 7/(A), that is,
¢A(hx) = §'4(hx), for every € ~ §' € 7(x). Hence, 7(z) F) 7/(x). Similarly,
7'(z) E 7(x). Thus,

T(2) Fpigs) T (@)-
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So, altough the classes K(S,7) and K(S,7’) need not coincide, the defining
equations involved are interderivable w.r.t. to the equational consequence relation
relative to Alg(S). An example of this situation is deduced from [34, Exercise
3.3]. Indeed, since HA is a {——x = T }-algebraic semantics for CPC, we have
HA C K(CPC,{——x =~ T}), On the other hand, given any A € HA\BA, it holds
A ¢ K(CPC,{x ~ T}), otherwise A F ——x ~ T — x =~ T. Nevertheless, it does
hold ==z &~ T Fg) @ ~ T, and of course, Alg(CPC) = BA.

Corollary 4.28. If S is truth-equational with a set of defining equations T(x), then
K(S, 7o) C K(S,T).

PROOF. Let A € K(S, T ). Since 7 C T4, by Corollary 4.4, it follows that

T (A) C 7(A).
But, T (A) = () FisA, by Proposition 4.26 and assumption. Moreover, 7(A) C
() FisA, by Lemma 4.25.1. So,

T(A) = ﬂ]-"iSA.
Hence, A € K(S, T), again by Proposition 4.26. O

Thus, K(S,T) can be seen as a distinguished algebraic semantics, for truth-

equational logics. Indeed, it is the least among all the algebraic semantics of the

form K(S, ), with 7(x) C Eq, a defining set of equations for S. Another curiosity
concerning the class K(S, T) is the following:

Proposition 4.29. If S is truth-equational with a set of defining equations T(x),
then K(S,T) is a T-algebraic semantics for S.

PROOF. The result follows from the fact that
Alg(S) CK(S,Tw) CK(S,T),

and that both classes Alg(S) and K(S,7) are 7-algebraic semantics for S. In-
deed, the first inclusion follows by Proposition 0.41 and Corollary 4.24, while the
second inclusion follows by Corollary 4.28. That both classes Alg(S) and K(S, )
are T-algebraic semantics for S follows by Proposition 0.44 and Proposition 0.28,
respectively. O

Compare Proposition 4.29 with Proposition 0.44. Both classes Alg(S) and
K(S, T ) are T-algebraic semantics, for every set of defining equations 7(z) wit-
nessing the truth-equationality of S.

4.4. Another coherent family of S-compatibility operators

Definition 4.30. Let S be a logic with a 7-algebraic semantics K such that
Alg*(S) C K. For every A and F € FigA, define

VAL (F) == O o) (TA(F)).

Bear in mind that the IPg(K)-relative congruences of A form a closure system,
by Proposition 0.19, and therefore \I/,,‘f{ « is well-defined, for every A. Also, notice
that if K is a 7-algebraic semantics for S, then so is IPg(K) (because the equational
consequence relations relative to each class coincide). So, another option would be
assuming that K is an algebraic semantics closed under IPg(K) — which is not a
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stonger assumption than the plain existence of an algebraic semantics — and work
with K-relative congruences instead. We choose a slightly heavier notation in favour
of a less lengthy hypothesis.

Let us first see that we are indeed in the presence of a family of S-compatibility
operators.

Proposition 4.31. Let S be a logic with a T-algebraic semantics K such that
Alg*(S) C K. For every A, the map \Ilf)K : FisA — Con(A) is a congruential
order preserving S-compatibility operator on A.

PROOF. Let F' € FisA. Notice that ﬁg‘(F) € Conpigs)A C Conipgk)(A), be-
cause Alg(S) = IPg(Alg*(S)) C IPg(K). Moreover, T4(F) C ﬁg(F), by Proposi-
tion 0.32. So,

O, ) (TA(F)) C 24(F) C 2A(F).

Thus, \II;‘_‘,K is an S-compatibility operator on A. By definition, it is congruential;
and it is clearly order preserving. O

More interestingly, ¥, x = {\Il_ﬁK : A an algebra} is a coherent family of S-
operators. We need some auxiliary lemmas to establish it.

Lemma 4.32. Let m7(x) C Eq,. For every surjective h : A — B and every G C B,

1. 7B(G) = h7A(h™1G);
2. TA(h71G) C h17B(G).

PROOF. 1. For every X C A, h74(X) = 7B(hX). So, taking X = h~'G, we have
htA(h~1G) = 7B(hh~1G) = TB(G), using surjectiveness of h.

2. In general, it holds 74(h~'G) C h=*h7A(h~'G). But, h74(h™'G) = 7B(G),
by 1. So, 74 (h~1G) C h'TB(G). O

Lemma 4.33. Let 7(x) C Eq, and K be a class of algebras closed under isomor-
phisms and subdirect products. For every surjective h : A — B and every G C B,

{6 € Conk(A) : Kerh C 0 and T*(h™'G) C 0} =
={h7'0' : ¢’ € Conk(B) and 75 (G) C ¢'}.

ProOOF. Let 6 € Conk(A) such that Kerh C 6 and 74(h™'G) C 6. It follows
by Lemma 4.32.1 that 7B(G) = hrA(h™'G) C h#. Moreover, it follows by
Lemma 0.21.2 that hf € Conk(B). Also, § = h™'h6, by Lemma 0.17.2, since
Kerh C 6. So, take 8 = hf. Conversely, let § € Conk(B) such that 78(G) C ¢'.
It follows by Lemma 4.32.2 that 74(h~'G) C h™'7B(G) C h~1¢'. Also, notice
that Kerh C =16, since idg C ¢’'. So, take § = h=1¢'. O

Theorem 4.34. Let S be a logic with a T-algebraic semantics K such that Alg™(S) C
K. The family ¥, k is a coherent family of S-compatibility operators.

PrOOF. Let A, B be any two algebras, G € FisB and h : A — B a surjective
homomorphism V.. x-compatible with h=1G. That is, Kerh C \Ilf’K(h’lG) =
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O, k) (TA(h™'G)). Then,
‘I’ﬁ\,K(hflG) = @ﬂgs(K)(TA(hflG))

= ({0 € Conpy(k)(A) : Kerh C 0 and 74 (h"'G) C 6}
= [{n'6': 6 € Conpy(y(B) and 75(G) C '}
= h ({0 € Conpy)(B) : T5(G) C 0'}
= h7'OR k) (TP(G))
= hT2k(G),

using Lemma 4.33. O

So, to every logic S with a 7T-algebraic semantics containing Alg*(S), one can
associate a coherent family of congruential order preserving S-compatibility op-
erators. In particular, for every logic having Alg"(S), or equivalently Alg(S), as
a T-algebraic semantics, there exists a coherent family of congruential order pre-
serving S-compatibility operators. Recall that this is the case for truth-equational
logics, by Proposition 0.44.

We finish our study of these families of S-compatibility operators by studying
its associated classes of algebras. Let S be a logic with a T-algebraic semantics K
such that Alg*(S) C K. Recall, by Definition 1.42, that

Algy_ , (S) :={A: W2 (F) =ida, for some F € FisA}
Alg'=K(8S) = {A/T2((F): F € FisA}
Since W k is a coherent family of S-compatibility operators, we know a priori

by Proposition 1.46 that Algy,_, (S) = Alg?7¥(S). But we can in fact give a nicer
characterization.

Proposition 4.35. Let S be a logic with a T-algebraic semantics K such that
Alg™(S) C K. It holds,

Algy_ (S) = Alg"™(S) = IPg(K).

PROOF. Let A € IPg(K). On the one hand, K C K(S, 7), by Proposition 0.28. On
the other hand, K(S,T) is a generalized quasivariety, and hence closed under IPg,
by Theorem 0.13. So, A € K(S, 7). Therefore, T7(A) € FisA, by Proposition 4.23.
Moreover, necessarily ida € Conypyky(A). Hence,

U2k (T(A)) = Ofp, () (T4(T(A))) € Ofp, () (ida) = ida.
Thus, A € Algy_ ().
Conversely, let A € Algy_,(S) and F' € FisA such that WﬁK(F) = ida. That
is, Gﬁ‘)s(K) (TA(F)) = ida. Therefore, ida is a IPs(K)-congruence of A. Hence,

A= Alida € IPg(K). Since IPg(K) is closed under isomorphisms, it follows that
A € IPg(K). O

As a final remark, observe that under the assumptions of Definition 4.30, it
always holds Alg*(S) C K C K(S8, 1), bearing in mind Proposition 0.28. The limit
cases are therefore K = Alg"(S) and K = K(S, 7). In case S is truth-equational (and
consequently has an algebraic semantics containing Alg*(S), by Proposition 0.44),
taking K := Alg*(S) would lead us to ¥ = 537 in light of Proposition 4.2 and since
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IPs(Alg™(S)) = Alg(S). Still in case S is truth-equational, taking K := K(S,7),
which complies with the assumption Alg*(S) C K(S,7) by Corollary 4.24, and
with the assumption of being an algebraic semantics by Proposition 0.28, gives us
a coherent family of S-compatibility operators ¥ such that Algy, = K(S,7), by
Proposition 4.35 and the fact that K(S, 7) is a generalized quasivariety.






Part 11

The strong version of a sentential
logic

“It has often been observed that some sentential logics come naturally
in pairs, one stronger than the other but with the same theorems, and
with the peculiarity that the theories of the stronger logic are exactly
the theories of the weaker one that are closed under some additional

inference rule.”

(37, p. 2]






CHAPTER 5

The strong version of a sentential logic

5.1. The strong version of a sentential logic

In [37] the notion of the strong version of a protoalgebraic logic is introduced,
built upon the original definition of Leibniz filter for protoalgebraic logics, also
introduced in the cited paper and which we have made reference to on page 48.
Now that we have defined a new notion of Leibniz filter for arbitrary logics (also on
page 48), it is only natural to consider the notion of strong version of an arbitrary
sentential logic along the same lines of [37]. This is what we propose to do in the
present section.

Of course, we have introduced not only a new notion of Leibniz filter for ar-
bitrary sentential logics, but also a new, and stronger, notion of Suszko filter. For
protoalgebraic logics both concepts happen to coincide with the notion of Leibniz
filter given in [37]. So, to start with, if we follow the idea developed in [37] of
considering the strong version of a protoalgebraic logic as the logic induced by its
Leibniz filters, we have now two legitimate candidates to consider when defining
the strong version of an arbitrary sentential logic. Namely, the logic induced by the
class of matrices {(A, F) : A an algebra, F' € .Fing} of the Leibniz filters, and the
logic induced by the class of matrices {(A, F) : A an algebra, F € Fig"A} of the
Suszko filters. But, as we will see, both choices induce the same logic, and moreover
the logic so defined has a much simpler definition, independent of the notions of
Leibniz and Suszko filters: it is the logic induced by the class of the matrices (A, F')
where F is the least S-filter of A.

Proposition 5.1. Let S be a logic. The classes of matrices
{(A,F): A is an algebra, F € FigA}

and

{(A,F): A is an algebra and F is its least S-filter}

induce the same logic.

ProOF. First of all recall that on every algebra A, the least S-filter is Leibniz.
Therefore the second class of matrices is included in the first. This implies that the
logic induced by the first class is an extension of the one induced by the second.
To prove that the logics are equal, let us see that for every matrix (A, F') with F' €
Fi5A there exists a matrix (B, G) where G is the least S-filter of B that induces
the same logic as the one induced by (A, F'). Consider an £-matrix (A, F') such that
F e FisAandlet m: A — A/Q%(F) be the canonical quotient homomorphism.
By Corollary 1.40, w F™* is the least S-filter of A/.QA(F), and since F' is Leibniz,
F = F* hence mF = wF*. Moreover, 7 is a strict surjective homomorphism from
(A, F) to (A/Q24(F),n F); thus, as it is well known (recall Proposition 0.33), both
matrices induce the same logic. O

95
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Corollary 5.2. Let S be a logic. The classes of matrices
{{A,F): A is an algebra, F € FizA}

and
{{A,F): A is an algebra, F € .Fi%“A}

induce the same logic.

PROOF. Just bear in mind that every Suszko S-filter is a Leibniz S-filter and that
the least S-filter of any algebra is a Suszko S-filter. O

Proposition 5.1 and Corollary 5.2 motivate the next definition.

Definition 5.3. Let S be a logic. The strong version of S, denoted by S™, is the
logic induced by the class of matrices

{{A,F): A an algebra, F € FigA};
or equivalently, the logic induced by the class of matrices
{(A,F): A an algebra, F € Fig"A};
or equivalently, the logic induced by the class of matrices
{{A,F): A an algebra and F is its least S-filter}.

We can restrict the classes of matrices in Definition 5.3 to matrices whose
algebras are in Alg™(S) or Alg(S).

Proposition 5.4. Let K be any of the classes of algebras Alg*(S) or Alg(S). The
logic 8T is induced by any of the classes of matrices {<A7ﬂ]-'i5A> A€ K},
{{A,F): AcK F e FizA}, and {{A, F): Ac K F € Fi"A}.

PROOF. Let I denote the consequence relation of any of the logics induced by any of
the classes of matrices above. In the six cases, it is clear that Fg+ C . Conversely,
let A be an arbitrary algebra and F € FiA. Then F/24(F) is the least S-filter of
A/ (F) (which is always a Leibniz S-filter), by Corollary 1.40, and A/24(F) €
Alg*(S) C Alg(S), by Lemma 0.36.1. Moreover the logic induced by (A, F) and
the logic induced by (A/Q4(F), F/24(F)) are the same, by Proposition 0.33. It
follows that - C s+. The same reasoning holds with F' € Fi3"A. O

In the next proposition we collect some obvious consequences of the definition
of the strong version for further reference.

Proposition 5.5. Let S be a logic.

1. 8T is an extension of S.

2. Fis+A C FisA, for every A.

3. The Leibniz and Suszko S-filters are ST -filters.

4. If the Leibniz operator is order reflecting, then ST = S. In particular, if S is
truth-equational, then ST = S.

PRroOF. Clearly, ST is an extension of S. As a consequence, Fis+ A C FisA, for
every A. Also, as ST is induced by all matrices whose distinguished set is a Leibniz
S-filter, as well as by all matrices whose distinguished set is a Suszko S-filter, these
special S-filters will always be ST-filters. Thus, Fi%'A C FisA C Fis+A. Finally,
assume that the Leibniz operator is order reflecting. It follows by Proposition 2.11
that every S-filter, on an arbitrary algebra, is a Leibniz filter. It should be clear
that ST collapses into S. O
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A particular case of the situation considered in the last item of Proposition 5.5
is when S is Fregean and has theorems. For [4, Corollary 11] shows that in this case
S is truth-equational. Of course, assuming S protoalgebraic, even if this does not
make ST collapse into S, it transfers us back to the scope of [37], and so it would
be a rather redundant assumption to consider. Thus, when analysing examples,
we will concentrate mainly in discussing the strong version of non truth-equational
and non protoalgebraic logics. Moreover we will also concentrate on logics with
theorems since, as follows from the next proposition, the logics without theorems
have, in each type, the same strong version, namely the almost inconsistent logic.

Proposition 5.6. If S has no theorems, then S* is almost inconsistent.

PrROOF. If § has no theorems, then @ € FigA, for every A. Necessarily then & is
the least S-filter of A, for every A. Therefore, ST is the logic induced by the class
of matrices {(A, @) : A an algebra}. Now, let ¢ € Fm, arbitrary. Notice that, for
every 1 € Fmg, it vacuously holds ¢ s+ 1. Hence, any non-empty S*-theory is
Fm,. Moreover, ST clearly does not have theorems. Thus, Fm,; and & are the
only ST-theories. Hence, ST is almost inconsistent. O

We state a basic lemma and some of its consequences.

Lemma 5.7. For every A, the least S-filter of A and the least ST -filter of A are
the same. In particular, S and ST have the same set of theorems.

PROOF. Let A arbitrary. Notice that the least S-filter of A is always a Leibniz
S-filter of A. Hence, it is an ST-filter of A, and necessarily the least one, since
Fis+A C FisA. [l

An immediate consequence of this fact is:
Corollary 5.8. For every logic S, (ST)T =ST.

PROOF. The logic (S7)" is induced by the class of matrices
{{A,F): F is the least S*-filter of A},

which, by Lemma 5.7, is precisely the logic induced by the class of matrices {(A, F) :
F is the least S-filter of A}. O

As a matter of fact, Lemma 5.7 already enables us to establish a criterion which
will reveal to be most useful when looking for the strong version of a given logic S.

Proposition 5.9. Let S be a logic. If S’ is a logic such that

1. & is truth-equational;

2. Alg(S') = Alg(S);

3. the least S-filter and the least S'-filter on A coincide, for every A € Alg(S’);
then S’ = ST.

PROOF. Let 8’ be a logic satisfying the conditions 1, 2 and 3. Let 7 be a set of
defining equations for &’. On the one hand, it follows by Lemma 4.25 that 7A
is the least S'-filter of A, for every A € Alg(S’). On the other hand, Alg(S’) is
a T-algebraic semantics for &', by [55, Corollary 26]. So, &’ is the logic induced
by the class of matrices {(A,T7A) : A € Alg(S")}, by [15, Theorem 2.3]. But,
Alg(S) = Alg(S’) and the least S-filter and the least S'-filter on A coincide, for
every A € Alg(S’), by hypothesis. So, S’ is the logic induced by the class of matrices
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{{A,F): A e Alg(S) and F is the least S-filter of A}. Now, this logic is precisely
ST, by Proposition 5.4. O

The converse of Proposition 5.9 is false, for the strong version of a logic need
not be truth-equational. In order to see it, suppose, towards an absurd, that the
strong version of every logic is truth-equational. Let S be any logic such that the
Leibniz operator is order reflecting. It follows by Proposition 5.5.4 that S = S*. It
now follows by hypothesis that S is truth-equational. We conclude that the order
reflecting property of the Leibniz operator suffices to establish truth-equationality.
We reach an absurd, for Raftery shows that this is not the case in general. Indeed,
[65, Example 2] provides a counter-example, as already observed on page 56.

It is also not true, in general, that Alg(S) = Alg(S™). We shall see in Chapter 7
that Positive Modal Logic PML, and the subintuitionistic logics SV%H and S\%/qu’
are logics S such that Alg(S™) C Alg(S). This contrasts with the protoalgebraic
scenario where Alg*(ST) = Alg(S™) = Alg(S) = Alg"(S) always holds.

5.1.1. Leibniz and Suszko ST-filters. We now briefly study the Leibniz
and Suszko STt-filters. As we shall see, the Leibniz ST-filters coincide with the
Leibniz S-filters. As to Suszko filters, one must pay careful attention and distinguish
between Suszko S-filters and Suszko ST-filters.

First, it is easy to see that Leibniz (respectively, Suszko) S-filters are always
Leibniz (respectively, Suszko) ST-filters:

Proposition 5.10. For every A, fi%“A C ]-'i%iA and FigA C Fig, A

PROOF. We had already observed that [F]%. C [F]% and [F]34% C [F]2". Hence,

if [ e Fi$"A, ie, F =[F]%, then necessarily ' = ﬂ[[F]]‘SS‘i, ie, F e fi'SS‘iA.
The same reasoning holds for Leibniz filters. O

But in fact, Leibniz S-filters do coincide with Leibniz ST-filters. In order to
see it, we first prove an auxiliary lemma.

Lemma 5.11. For every A and every F' € Fis+ A, F§ = F¢,.

PrOOF. Since [F5. C [F]s, it is clear that F¢ = N[F]s € N[F]s+ = Fi+.
But also, since F§ € FiA C Fig+ A and moreover 24(F) C 24(F%), because
F% € [F]s, then F§ € [F]%+. Therefore, it must hold Fg, C F&. O

Given Lemma 5.11, we shall henceforth denote the least element of any Leibniz
class of an ST-filter, whether considered over S or S, simply by F*. Nonetheless,
we shall still have to distinguish between the Suszko filters over these two logics,
and we shall do this by explicitly referring to the underlying logic, i.e., using Fg"
and Fgﬁ. This situation is somehow similar to the one we find in the Leibniz and
Suszko operators, where the later is dependent on the logic, which is reflected in
the notation 557 as opposed to 2.

Corollary 5.12. For every A, FigA = Fig, A.

Proor. Let F' € FigA. Then, F € Fis+A and moreover F' = F¢ = FZ,.
Conversely, let I’ € Fig. A. Then, ' € FisA and moreover F' = F§, = Fg. O
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5.2. Leibniz/Suszko S-filters vs. ST-filters

Following [37], we want to answer the question: When are the S*-filters on
an arbitrary algebra exactly the Leibniz S-filters on it? Actually, in our general
setting, it is also reasonable to ask: When are the ST-filters on an arbitrary algebra
exactly the Suszko S-filters on it? The answer for protoalgebraic logics is given in
[37, Theorem 19]. Based on this result, two natural conjectures arise. The first
is that for any logic S, ST is truth-equational if and only if for every algebra A
the St-filters of A are exactly the Leibniz S-filters of A. The second is that ST is
truth-equational if and only if for every algebra A the ST-filters of A are exactly
the Suszko S-filters of A. We record these conjectures here for future reference.

Conjecture A. Let S be a logic. The following conditions are equivalent:
(1) Fis+A = Fi5A, for every algebra A;
(ii) ST is truth-equational.

Conjecture B. Let S be a logic. The following conditions are equivalent:
(i) Fis+A = FiSU A, for every algebra A;
(ii) ST is truth-equational.

One of each implications above is easily seen to be true. In the case of Conjec-
ture B, it always holds (i3) = (7).

Proposition 5.13. If, for every algebra A, Fis+A = Fig“A, then 8T is truth-
equational.

PRrROOF. Let A arbitrary. By Proposition 5.10, fi%“A - fi%‘iA. Hence, under
the hypothesis, every St-filter of A is an ST-Suszko filter of A. It follows by
Theorem 2.30 that ST is truth-equational. 1

A counter-example to the converse of Proposition 5.13 is the Lukasiewicz’s
infinite valued logic preserving degrees of truth. We shall see in due time that LOSO
satisfies that, for every A, n4. ]:i;s A— ConAlg*(Lgo)
(see Proposition 7.60). Now, if the converse implication of Proposition 5.13 were
true, then 024 : fii‘;A — ConAlg*(Logo)
every A. But this condition is equivalent to protoalgebraicity, by Theorem 3.8, and
it is known that Lfo is not protoalgebraic [35, Theorem 3.11]. We conclude that
Conjecture B is false.

As to Conjecture A, it always holds (i) = (it).

A is an order-isomorphism

A would be an order-isomorphism, for

Proposition 5.14. If ST is truth-equational, then Fis+ A = Fi5A, for every
algebra A.

PrROOF. Let A arbitrary. Under the hypothesis, it follows by Theorem 2.30 that
Fis+A = ]:i‘ss‘iA. But, ]—'i‘SSB‘rA C Fisr A = FigA, using Corollary 5.12. Thus,
Fis+A C FigA. The converse inclusion holds in general. O

We are left with the converse implication of Proposition 5.14. In general, as-
suming the S-filters of an arbitrary algebra to be exactly the Leibniz S-filters of that
same algebra, is equivalent to the order reflecting property of the Leibniz operator
over the S-filters (Proposition 5.15). In particular, applied to the logic ST:

Proposition 5.15. Let S be a logic. The following conditions are equivalent:
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(i) Fis+A = Fi5A, for every A;
(ii) The Leibniz operator 024 is order reflecting on Fig+ A, for every A.

PRrROOF. Since FigA = Fig, A, for every A, by Lemma 5.12, the result follows
from Proposition 2.11. O

But Raftery has proved that truth-equationality is equivalent to the completely
order reflecting property of the Leibniz operator. In fact, the logic S presented
in [55, Example 2] is a counter-example to the converse of Proposition 5.14. As
we have seen already on page 56, the Leibniz operator is order reflecting over the
S-filters. As a consequence, FisA = FigA C Fis+ A C FisA, for every algebra
A, using Proposition 2.11 on the first equality. Consequently, FigA = Fig+ A, for
every A. Moreover, S = S*, by Proposition 5.5.4. Nevertheless, Raftery proves
that S is not truth-equational. We conclude that Conjecture A is false as well.

The rest of this section is devoted to investigate two sufficient conditions under
which the conditions in Conjecture A are indeed equivalent. The first condition is
imposed on the logic ST, and it is therefore of a more theoretical interest rather
than of a practical usage, since we usually do not know a priori how does the strong
version of a given logic § behaves. The second condition however is imposed on
the logic S, and it will not only be very useful in Chapter 7, but also appears often
enough to justify an abstract study of it.

Let us start by proving that requiring ST to be protoalgebraic suffices to fill
the gap between the property of being order reflecting and that of being completely
order reflecting of the Leibniz operator on the ST-filters. Of course, under this
assumption, trivially ST is truth-equational if and only if it is weakly algebraizable.

Proposition 5.16. Let S be a logic in a countable language. If ST is protoalgebraic,
then the following conditions are equivalent:

(i) Fis+ A= Fi5A, for every A;

(ii) ThST = Th*S;

(iii) St is weakly algebraizable;

(iv) S8t is truth-equational;

(v) For every A, FisA is closed under intersections.

PROOF. (i) = (it): Trivial.

(#9) = (4i1): The Leibniz operator is always injective over Leibniz filters. So, under
the hypothesis, the Leibniz operator 2F™ : ThS*t — Conpjg(s+)Fm is injective.
Since it is also surjective (always) and order-preserving (by hypothesis), it follows
by [25, Theorem 4.8] that S is weakly algebraizable.

(#91) = (iv): This holds by definition.

(i) = (v): If 8T is truth-equational, then for every A, Fig+A = fi‘%‘iA,
by Theorem 2.30. Moreover, since St is protoalgebraic by hypothesis, for ev-
ery A, f’ii‘iA = Fig A = FigA, using Corollary 5.12. Thus, for every A,
Fis+ A= FigA, and hence Fi5A is closed under intersections.

(v) = (i): Since S* is protoalgebraic by hypothesis, for every A, }'ii‘iA =
Figy A = FigA, using Corollary 5.12. Let x be the cardinal of S. Consider
the class of matrices

M = Matr*(S) = {(A, F) : A an algebra, F € FigA}
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as a class of first-order structures. Notice that M is closed under images and
inverse images by strict surjective homomorphisms, by Proposition 2.14. Also, by
assumption, the family Fi5A is closed under intersections and, by Lemma 2.28,
it is closed under s-directed families. It follows by [26, Theorem 3] that M is
closed under substructures and k-reduced products. Finally, M contains all trivial
matrices. Since Fy = Fg+, it follows by Czelakowski’s Theorem 0.34 that M =
Matr(S*). Thus, FifA = Fig+ A, for every A. O

Proposition 5.16 generalizes [37, Theorem 19], because if S is protoalgebraic,
then so is ST. An example that is now captured (and that wasn’t previously)
is Lukasiewicz’s infinite valued logic preserving degrees of truth. For Lgo is not
protoalgebraic, but its strong version, which is Lukasiewicz’s infinite valued logic
Ll is so.

Next, we move on to the second sufficient condition, this time upon the original
logic S, making the conditions in Conjecture A equivalent. We shall henceforth say
that a given logic S enjoys property (%) if and only if

VA € Alg(S) 024 FisA— Conpjg(s)A is an order isomorphism. (%)

That (%) holds for any protoalgebraic logic was shown in Proposition 3.1. That
(%) is strictly weaker than protoalgebraicity is witnessed by Lukasiewicz’s infinite
valued logic preserving degrees of truth Lgo, as we will se in Section 7.4.

We have already seen that (x) can be extended to arbitrary algebras (Propo-
sition 3.2); and that (x) implies Alg*(S) = Alg(S) (Lemma 3.3). But in fact, the
classes of algebras associated with ST also collapse into these two under the prop-
erty (x).

Lemma 5.17. If a logic S satisfies (%), then Alg(ST) = Alg*(St) = Alg"(S) =
Alg(S).

PROOF. The inclusion Alg*(S1) C Alg"(S) holds in general, since ST is an exten-
sion of S. As for the converse inclusion, let A € Alg*(S). Then, ida € Conpjg+(s)A.
It follows by hypothesis that id4 = .QA(G), for some G € FigA C Fis+A. Hence,
Alg"(S) C Alg"(S*). Next, under our hypothesis, we know by Lemma 3.3 that
Alg(S) = Alg"(S). Then, Alg(S) = Alg"(S) = Alg"(ST) C Alg(S™). Finally, the
inclusion Alg(S™) C Alg(S) holds in general, again because ST is an extension of
S. O

Notice that Lemma 5.17 might be useful for testing if a given logic satisfies
condition ().

Proposition 5.18. Let S be a logic satisfying (). For every A and every F €
FisA,

Q4(F) = 24(F),
and

Q4(F) = Q4(F3).

PROOF. First of all, recall that the property (x) lifts to arbitrary algebras, by
Proposition 3.2. So, let A arbitrary. Given F' € FisA, there exists G € FiA
such that 24(F) = 24(G), by (x). Hence, [F]* = [G]* and therefore F* =
G* = G. Next, we know that Alg"(S) = Alg(S), by Lemma 3.3. So, since
ﬁg(F) € Conpggs)A, it follows by hypothesis that there exists H € FigA
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such that ﬁ?(F) = NA(H). As a consequence, [F]5" = [H]*, and therefore
F$% = H* = H. The result now follows. o

Recall that if S is protoalgebraic, then it satisfies property (). Moreover,
the Leibniz and Suszko operators coincide, and F§" = F*, for every A and every
F € FisA. Hence, the identities in Propositions 5.18 collapse into one. Another
immediate consequence of these two propositions is the following:

Corollary 5.19. A logic satisfying (x) is protoalgebraic if and only if its Leibniz
and Suszko filters coincide.

PRrROOF. Necessity should be clear. As to sufficiency, assume that the Leibniz filters
and Suszko filters coincide on arbitrary algebras. As a consequence, for every A,
FS" is a Suszko filter of A, for it is always a Leibniz one. It follows by Lemma 2.25
and the assumption that, for every ' € FisA, F gu is the largest Leibniz filter
below F. But, Fgu C F* C F. Hence, necessarily FS“ = F*. It now follows by
Proposition 5.18 that for every A and every F € FisA,

Q4(F) = QA(F3") = R4(F") = QA(F).
Thus, S is protoalgebraic by Proposition 2.5. O

As we have advanced already, property (x) makes the two conditions in Con-
jecture A equivalent. We now proceed to prove this fact (Proposition 5.21). To this
end, let us first see that the property (%) is inherited by the strong version ST.

Lemma 5.20. If S satisfies property (x), then so does ST.

PROOF. Just notice that Fig, A = Fi5A for every A, by Corollary 5.12, and
moreover Alg*(S) = Alg*(ST), by Lemma 5.17. O

Proposition 5.21. Let S be a logic satisfying (x). The following conditions are
equivalent:

(i) Fis+A = Fi5A, for every A;

(ii) ThST = Th*S;

(iti) ST is weakly algebraizable;

(iv) 8T is truth-equational;

(v) Truth is implicitly definable in Mod™(S™).

PROOF. (i) = (i) Trivial.

(#i) = (i4i): Our hypothesis, together with property (*) and Lemma 5.17, gives
us that the Leibniz operator 2™ : ThSt — Conpjg+(s+)Fm is an order isomor-
phism. Thus, ST is weakly algebraizable, by [25, Theorem 4.8].

(#91) = (iv) and (iv) = (v): These implications hold in general.

(v) = (i): Let A arbitrary and F € Fig+A. Fix B = A/Q*(F). Let 7 :
A — B be the canonical map. Since Kermr = 24(F) C 24(F*), Kerr is com-
patible with both F' and F*. Consequently, F = 7~ '7F and F* = 7~ 'nF*;
moreover, since both F, F* € Fig+A, also nF,nF* € Fis+B. Now, it follows
by Corollary 1.40 that wF* = (nF)*. Notice that ST satisfies property (x),
by Lemma 5.20. Therefore, it follows by Proposition 5.18 applied to ST that
28 (nF) = QP ((rF)*) = 28 (n F*). Moreover, 27 (1 F) = idpg, by Lemma 1.45.
So, both (B, nF), (B, nF*) € Mod*(S). It follows by assumption that 7 F = w F*.
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Finally, F = 7~ '7nF = n~'n F* = F*. Therefore, Fig+ A C FigA, for every A.
The converse inclusion holds in general. U

Once again, Proposition 5.21 generalizes [37, Theorem 19], since every protoal-
gebraic logic satisfies property (x).

5.3. Full g-models of ST

We next characterize the full g-models of the strong version ST in terms of
those of S.

Proposition 5.22. Let S be a logic. Then € C Fig+ A is a full g-model of ST if
and only if there exists a full model 2 C FisA of S such that € = 2 N Fis+ A.
In other words,

FGMod(S1) = {(A,% N Fig+ A) : (A,€) € FGMod(S)}.

PROOF. Let € C Fig+ A a full g-model of S*. Take 2 = {F € FisA : 34(%) C
QA(F)}. Clearly, € C 2 N Fis+A, because Fig+A C FisA. Conversely, let
F € 9N FigtA. Since F € 9, 04(%) C 24(F). Since F € Fig+A and
% C Fis+ A is a full g-model of ST by hypothesis, it follows that I’ € €. Finally,
we show that 2 is a full g-model of S. Let G € FisA such that 24(2) C 24(Q).
Notice that
246) < () RAF) = 242) C 24(G).
Feo

Hence, G € 2. To prove the converse implication, let 2 C FigA be a full g-model
of § such that € = 2 N Fis+A. First of all, notice that 2 N Fig+ A # &, because
N2 € 2 (since Z is a closure system) and moreover (|2 € Fi§A C Fig+A
(since the least element of a full g-model of S is always a Leibniz S-filter). Now,
let G € Fig+A such that £4(2 N Fig+ A) C 24(G). Then,

04(2) C 42N Fis: A) C 24(Q).

Since & is a full g-model of S and G € Fig+ A C FisA, it follows that G € 2. So,
G € 92N Fig+A. Thus, 2N Fig+ A is a full g-model of ST. O

If the logic S and its strong version S* share the same algebraic counterpart,
that is Alg(S) = Alg(S™), and bearing in mind Corollary 2.3, then for every algebra
A the lattice of the full models of S on A and the lattice of the full models of ST
on A are isomorphic, because both are isomorphic to the lattice of congruences
Conpjg(s)A. Furthermore, the isomorphism has a nice and natural description.

Proposition 5.23. Let S be a logic such that Alg(S) = Alg(S™). For every A and
all full g-models €, €' of S on A, if € N Fis+t A=%"NFig+ A, then¥ =%".

PRrROOF. Let A arbitrary. Under the assumption, Conpjg(s)A = Conpjg(s+)A. Hav-
ing in mind Corollary 2.3, the poset of full-models of S on A is order isomorphic
to the poset of full-models of S on A, under the map 2 — % = {F € Fis+A :
ﬁA(.@) C QA(F)} — this map is in fact the composition of two isomorphisms 2
24(2) A 9, where a(2) = 4(2) and B(0) = {F € Fig+ A : 6 C 24(F)},
for every full g-model 2 C FisA and every 6 € Conpjgs+)A. Now, let ¢, ¢’ be
two full g-models of S on A. Assume ¥ N Fig+ A = €' N Fis+ A. We claim that
% =€ NFis+A. Let F € €. Then, F € Fig+ A and 24(%) C 24(F). Since
% is a full g-model of S, it follows that F' € ¥. Hence, F' € € N Fig+A. We
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have established that € C € N Fig+ A; the converse inclusion should be clear. So,
C =€ NFistA =% NFigt A =%" Next, we claim that ﬁA(%) = ﬁA(?).
Since Z is a full g-model of ST, we have ¥ = {F € Fig+ A : 24(%) C 24(F)}.
So, BA(E) = B(a(€)) = € = BRA(E). Since B is injective, it follows that
0A(¢) = A (F). Similarly, 24(¢") = 24(€7). Hence,

04(6) = QAF) = 34T = QA¢).
It now follows by Proposition 2.4 that ¢ = €. (]

A corollary of the two previous propositions is:

Corollary 5.24. Let S be a logic such that Alg(S) = Alg(ST). For every algebra
A, the set of all full g-models of S on A is order isomorphic to the set of all full
g-models of ST on A, both sets ordered under inclusion. The isomorphism is given
by the map € — € N Fis+ A.

It is also natural to consider the special full St-models of the form of some
Leibniz or Suszko S*-class. But one must carefully distinguish between Leibniz, or
Suszko, classes, when taken over S and S*. In general, the later are contained in
the former. Indeed,

[Flz, = {GeFistA: 24F)C 24G)}
C {Ge FisA: 24F) C 24(G)}
= [Fls.
and, since 25(F) = 24((FisA)F) C 24((Fis+ A)F) = 4, (F),
[FI$2 = {Ge FistA: 4, (F)C 24(0)}
C {Ge FisA: Q4(F) C 24(G)}
= [Fls

The following two lemmas summarise the situation.

Lemma 5.25. Let S be a logic and 8’ one of its extensions. Then for every algebra
A and every S'-filter F' of A,

[Fls = [F]s N FissA and [F]3 C [F]3 N Fis A.
In particular, for every F € Fis+ A, [F|s+ = [F]lsNFist+A and ﬂF]]g‘i C [F]I%n
Fis+A.

PROOF. The equality is obvious from the definitions. The inclusion follows from
the fact that 22(F) C 4(F). O

Lemma 5.26. If F € Fi" A, then [F]3% = [F]% N Fis+ A.

PRrROOF. If F € FiS" A, then [F]3" = (FisA)¥, by Lemma 2.21.5. Moreover, since
F = NO[F]%" and [F]3% C [F]%, it must be the case F' = [F]34 (because F
is also an ST-filter). That is, F € Figt A. So, [F]2% = (Fis+A)F, again by
Lemma 2.21.5. Thus,

[FI3% = (Fis+ A)F = (FisA)F 0 Figt A = [F]3' N Fis+ A.



CHAPTER 6

Definability of Leibniz filters

We have already mentioned that placing S inside the Leibniz hierarchy, either
makes ST collapse into S (assuming S truth-equational), or makes our study con-
verge with the one in [37] (assuming S protoalgebraic). In order to establish general
results which allow us to encompass a wealth of non-protoalgebraic examples, we
shall need to impose some condition(s) over S, but one(s) necessarily weaker than
protoalgebraicity, and/or weaker than truth-equationality. We will do this through
three definability criteria of the Leibniz filters of & — explicit, logical, and equa-
tional definability — , all of which weaker conditions than truth-equationality, as
well as through property (x), which we have seen already to be a weaker condition
than protoalgebraicity.

6.1. Leibniz filters equationally definable

In this section we shall consider a new definability criterion for Leibniz filters.
One might say it is an equational analogous to the explicit definability of Leibniz
filters considered in [37].

Truth-equational logics are characterized by the existence of a set of equations
7(z) C Eq, such that for every A and every F € FisA, F = {a € A: 7(a) C
24(F)}, that is, by the existence of a set of equations 7(z) that defines the fil-
ters of the logic out of their Leibniz congruence in the way just described (see
Proposition 0.43). We will consider this kind of definability of filters enjoyed by
truth-equational logics but only for the Leibniz filters and study properties that
follow from having the Leibniz filters defined in this way.

Definition 6.1. A logic S has its Leibniz filters equationally definable, if there
exists a set of equations 7(z) C Eq, such that, for every A and every F € FisA,

F*={ac A:7%(a) C 24(F)}.

Note that if S has its Leibniz filters equationally definable, then for every A
and every F € FisA, I is a Leibniz S-filter if and only if F = {a € A : 74(a) C
©24(F)}. This justifies the name. But our definition provides a definition of the
Leibniz filter associated with a filter of the logic out of the Leibniz congruence of
the later one.

All truth-equational logics have their Leibniz filters equationally definable be-
cause these logics have all the logical filters equationally definable. But the property
for a logic of having its Leibniz filters equationally definable is strictly weaker than
truth-equationality, as it will be witnessed by any of the logics studied in Chapter 7.

Proposition 6.2. Let S be a logic with its Leibniz filters equationally definable.
For every A, FigA is closed under intersections of arbitrary families. Henceforth,
FisA is a closure system.

105
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PROOF. Let {F;:i € I} C Fi5A. We know that (,_; F; € FisA. Moreover,

icl
ﬂieIFi = ﬂiez F;

Nicrla€ A: 74(a) C -QA(Fi)}
{aeA:74(a) C 2(Nie; F)}
= (ﬂiel Fi)*7

using our hypothesis twice and the fact that (., $2(F;) € £2(;c; Fi). The con-
verse inclusion holds in general. O

N

If S has its Leibniz filters equationally definable, not only for every algebra A
the set Fi5A is a closure system; it is, as we will see in Corollary 6.9, the closure
system Fig+ A.

The next characterization of when a logic has its Leibniz filters equationally
definable restricts the condition in Definition 6.1 to the algebras in Alg™(S).

Proposition 6.3. Let S be a logic. Then S has its Leibniz filters equationally
definable if and only if there is a set of equations T(x) C Eq, such that for every
A € Alg*(S) and every F € FisA, F* ={a € A: 1%(a) C 24(F)}.

PrOOF. The implication from left to right follows from the definition. Assume
there is a set of equations 7(z) C Eq, such that for every A € Alg*(S) and
every F € FisA, F* = {a € A: 74(a) C 24(F)}. Let A be arbitrary and let
F € FisA. Let in addition B := A/2“(F) and 7 : A — B the canonical map.
By Corollary 1.40, 7 F* = (7 F)* and this set is the least S-filter of B. Moreover
B € Alg*(S). From the assumption it follows that

(rF)* ={n(a) :a € A, 7B(n(a)) C 2B (xF)}
={n(a):a € A, 7B (n(a)) Cidp}.

Thus we have, a € F* if and only if 7(a) € 7 F* = (7 F)* if and only if 78(7(a)) C
idp if and only if 74(a) C Kerm = 24(F). O

Note that the proof above also works if we take the class of algebras Alg(S)
instead of Alg™(S), because the first is include d in the second. A more interesting
result is the following.

Proposition 6.4. Let S be a logic. For any set of equations 7(x) C Eq., the
following conditions are equivalent:

(i) S has its Leibniz filters equationally definable by T.
(ii) For every A € Alg"(S), TA is the least S-filter of A.
(iii) For every A € Alg(S), TA is the least S-filter of A.

PROOF. (i) = (4¢i1): Assume that S has its Leibniz filters equationally definable
by 7(x). Let A € Alg(S) and let F be its least S-filter. This S-filter is Leibniz.
Note now that 74(7A) C idg C £2(F). Therefore the assumption implies that
7A C F. Now let a € F. Then, since F is the least S-filter of A, for every
G € FisA, a € G* and therefore the assumption implies that 74(a) C 24(Q).
Hence, 74(a) C 24(FisA) = ida. Thus, a € TA.

(#44) = (i7): This is immediate since Alg*(S) C Alg(S).

(it) = (7): Assume that for every A € Alg™(S), TA is the least S-filter of A. Let
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A be arbitrary and let F € FisA. Consider the algebra B := A/24(F) and
the canonical quotient map 7= : A — B. Then B € Alg*(S). By Corollary 1.40,
7F* = (nF)* and it is the least S-filter of B. From the assumption we have
7F* = 7B. Then, a € F* if and only if 7(a) € #F* = 7B if and only if
7B(7(a)) C idp if and only if 74 (a) C Kerr = 24(F). O

Compare Proposition 6.4 with Lemma 4.25. Assuming ST truth-equational
with a set of defining equations T only gives us that 7 A is the least S-filter of A,
for every A € Alg(S™). And recall, Alg(S™) C Alg(S). The key point here is that
equational definability of Leibniz filters extends this property to the larger class
Alg(S).

Next, we exhibit a large family of logics having its Leibniz filters equationally
definable.

Proposition 6.5. If S is a semilattice-based logic with theorems, then its Leibniz
filters are equationally definable by T(x) = {x ~ T(z)}, with T(x) € Thmg.

PROOF. First, recall from the preliminaries (see page 27) that if S is a semilattice-
based logic with theorems, then every theorem of S is interpreted as the maximum
element for each algebra in K. Let T € Thms. We can assume, without loss of
generality, that T has at most one variable, say x € Var. Since S is a semilattice-
based logic with theorems, for every A € Alg(S), FisA = FiltA, and hence the
least S-filter of A is {T4}. Thus, (FisA = TA, with 7(2) = {z ~ T(x)}. The
result now follows by Proposition 6.4. O

Since not all logics covered in Chapter 7 will be semilattice-based, we state yet
another sufficient condition to cope with the remaining logics.

Proposition 6.6. If St is truth-equational with a set of defining equations T and
Alg(S) = Alg(S™), then S has its Leibniz filters equationally definable by T.

PROOF. Let A € Alg(S). We show that 7A is the least S-filter of A. Then
Proposition 6.4 implies the result. From the assumption follows that A € Alg(ST).
Then since ST is truth-equational with a set of defining equations 7, we have that
TA is the least St-filter of A. But by Lemma 5.7, the least St-filter of A equals
the least S-filter of A. Hence we obtain the desired conclusion. O

We now wish to prove that, under the assumption of equational definability
of Leibniz S-filters, the logic ST is truth-equational (Corollary 6.8). The next
theorem, though it may seem slightly off the topic, turns out to provide the right
setting to the establish goal we are after.

Theorem 6.7. If S is a logic with its Leibniz filters equationally definable by T(x) C
Eq., then all the classes Alg*(ST), Alg(S™), Alg™(S) and Alg(S) are a T-algebraic
semantics for ST.

PROOF. Let K be any of the classes Alg*(S) and Alg(S). We know by Proposi-
tion 5.4 that ST is the logic induced by the class of matrices {(A, (| FisA): A €
K}. But FisA = TA, for every A € K, by Proposition 6.4. Hence, S* is com-
plete w.r.t. a matrix semantics where truth is equationally definable by 7. It follows
by [15, Theorem 2.3] that K is a 7-algebraic semantics for ST. As for the classes
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Alg*(ST) and Alg(S™), just observe that, under the hypothesis, the Leibniz ST-
filters are also equationally definable by 7, using Lemma 5.11. Since (87)" = ST,
by Corollary 5.8, we can apply the proof just done to the logic ST. O

As a consequence, given a logic S with its Leibniz filters equationally definable
by T, Alg(S) is a T-algebraic semantics for S if and only if § = ST. In particular,
since all the examples covered in Chapter 7 will have its Leibniz filters equationally
definable by some 7, and none of them coincide with its own strong version, Alg(S)
will not be a T-algebraic semantics for each such S.

An important consequence of Theorem 6.7 is that the equational definability
of the Leibniz filters of S suffices to ensure the equational definability of (all) S*-
filters, under the same set of equations. That is,

Corollary 6.8. If S is a logic that has its Leibniz filters equationally definable by
7(x) C Eqg, then ST is truth-equational with a set of defining equations T.

PROOF. Let A arbitrary and F' € Fig+ A. Let a € F. Since ST has a T-algebraic
semantics by Theorem 6.7, it follows by Proposition 0.32 that 7(F) C ﬁ?+ (F) C
24(F). So, T(a) € 24(F). Conversely, let a € A such that 7(a) C 24(F).
Since F' € Fis+A C FigA, it follows by hypothesis that « € F* C F. Thus,
F=1{acA:7(a) C Q4F)}. Tt follows by Proposition 0.43 that ST is truth-
equational with a set of defining equations 7. O

Notice that Proposition 6.6 establishes a sufficient condition for the converse
to hold.

Corollary 6.9. If S is a logic with its Leibniz filters equationally definable, then
Fis+ A= Fi5A, for every A.

PRrOOF. It follows by Corollary 6.8 and Proposition 5.14. O

An immediate consequence of Corollary 6.8 is that, if S has its Leibniz filters
equationally definable by the set of equations 7(z) = {x ~ T}, where T is a
constant term of Alg(S), then the strong version ST is the {x ~ T }-assertional
logic of Alg(S). Let us record this fact:

Corollary 6.10. If S is a logic with its Leibniz filters equationally definable by
7(x) = {x = T}, where T is a constant term of Alg(S), then ST is an assertional
logic. Moreover,

'75‘4»: ':Xlg* (S): ':Lg(s) .

PRrROOF. Under the hypothesis, Alg(ST) is a {z & T }-algebraic semantics for S*,
by Theorem 6.7. The result follows by [4, Theorem 7]. The identities follow imme-
diately by Theorem 6.7 and the equational set of equations involved. U

Given Proposition 6.5, we can already summarise the situation for the majority
of the examples studied in Chapter 7.

Corollary 6.11. If S is a semilattice-based logic with theorems, then:

1. 8T is an assertional logic; in particular, ST is truth-equational.
=T _ =T

2. Fs+= ':Alg*(s)* ':Alg(S)‘

3. For every A, Fis+ A = FiSA.
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Our next goal is to arrive at a general characterization of FE“ in terms of the
Leibniz S-filters extending F, for arbitrary A and F' € FisA, under the assumption
of equational definability of Leibniz filters (Corollary 6.13).

Let & be a logic with Leibniz filters equationally definable by 7. Since for
every A and every F' € FisA, F g“ is always a Leibniz S-filter (having in mind
Proposition 2.9, and the fact F g“ is by definition the least element of the S-full
model [F]3%), definability of Leibniz filters immediately implies that F§" = {a €
A 1(a) € QA(FSY)}. But as it turns out, for these special Leibniz S-filters,
a different equational characterization is also valid, this time using the Suszko
operator.

Proposition 6.12. Let S be a logic with its Leibniz filters equationally definable,
say by T(x) C Eqp. For every A, every F € FisA and every a € A,

FS'={ac A:1%(a) C 24(F)}.

PROOF. Consider the canonical map 7 : A — A/ﬁ?(F) Fix B = A/ﬁg‘(F) €
Alg(S). By Corollary 1.40, 7 FS" = (7 F)5" and it is the least S-filter of B. By
Proposition 6.4, 7 F5" = 7B. Then, a € F5" if and only if n(a) € 7F>" = 7B if
and only if 78(7(a)) C idp if and only if 74 (a) C Kerm = ﬁg‘(F) O

Corollary 6.13. Let S be a logic with its Leibniz filters equationally definable. For
every A and every F € FigA,

Fg"= () G-
Ge(FisA))F

PRrROOF. Let A arbitrary and F' € FigA. It holds,
a€FS" & 1A)C 2AF)
& VG e (FisA)F 74(a) C 24(G)
< ac ﬂGe(]—'isA)F G*,

using Proposition 6.12 and the hypothesis. U

Corollary 6.14. Let S be a logic with its Leibniz filters equationally definable. For
every A and every F € FisA, F is a Suszko filter of A if and only if F C G*, for
every G € (FisA)F.

Finally, we consider equational definability of Leibniz filters together with con-
dition (*).

Proposition 6.15. Let S be a logic with its Leibniz filters equationally definable.
The following conditions are equivalent:

(i) ST satisfies property ();

(ii) ST is weakly algebraizable.

PROOF. (i) = (i1): By Corollary 5.12 and Corollary 6.9, respectively, for every A,
Figr A = FigA = Fis+ A. So, by hypothesis, for every A, the Leibniz operator
N4 Figr A > Conpjg+(s+)A is an order-isomorphism. This implies that ST is
weakly algebraizable.

(#) = (i): This holds in general, since every weakly algebraizable logic is protoal-
gebraic, and every protoalgebraic logic satisfies property (x). O
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Corollary 6.16. If S is a logic satisfying (x) and with its Leibniz filters equationally
definable, then ST is weakly algebraizable.

PROOF. Notice that under the assumption, ST satisfies property (%), by Lemma
5.20. The result now follows by Proposition 6.15. U

6.2. Leibniz filters explicitly definable

Following [37], we now address explicit definability of Leibniz filters by a set
of formulas in at most one variable. We will start by proving that this assumption
taken together with condition (x) actually implies that S is protoalgebraic. Given
that every logic S studied in the examples is non-protoalgebraic, we know a priori
that, either S does not satisfy (), or it does not have its Leibniz filters explicitly
definable (a non-exclusive disjunction, of course). The main result of the section is
Theorem 6.23, where we will see that explicit definability of Leibniz filters implies
that the Leibniz S-filters on arbitrary algebras coincide with the S™-filters.

Let us start by the following definition from [37, Definition 28] but now ex-
tended to arbitrary logics and to our notion of Leibniz filter:

Definition 6.17. A logic S has its Leibniz filters explicitly definable, if there exists
a set of formulas I'(xz) C Fm, such that, for every A and every F € FisA,

F*={a€ A:T*a) C F}.

In practice, we might find an explicit characterization of the Leibniz filters of
S only for algebras in Alg*(S). But Proposition 6.18 ensures us that it does extend
to arbitrary algebras.

Proposition 6.18. Let S be a logic. Then S has its Leibniz filters explicitly de-
finable if and only if there is a set of formulas T'(x) C Fmy such that for every
A € Aig*(S) and every F € FisA, F* ={a € A:T4(a) C F}.

PrROOF. The implication from left to right follows from the definition. Assume
there is a a set of formulas I'(x) C Fm, such that, for every A € Alg"(S) and
every ' € FisA, F* = {a € A:T%(a) C F}. Let A arbitrary and F € FisA.
Let 7 : A — A/Q%(F) be the canonical map. Fix B = A/Q4(F) € Alg*(S).
Notice that Kerm = 24(F) C 24(F*). Now, using compatibility arguments,
Corollary 1.40, and the hypothesis, a € F* if and only if w(a) € 7 F* if and only
if 7(a) € (mF)* if and only if 'B(n(a)) C 7 F if and only if 71['4(a) C ©F if and
only if '4(a) e 7~ 1(7F) = F. O

A simple observation that will turn out to be quite relevant for proving Theo-
rem 6.23 is that, under the assumption of explicit definability of Leibniz filters, the
map F— F* from FisA to FisA is monotonic, for every A.

Lemma 6.19. Let S be a logic with Leibniz filters explicitly definable. For every
A, if F,G € FisA are such that F C G, then F* C G*.

PROOF. It is quite obvious, because if FF C G and a € A is such that FA(a) CF,
then I'(a) C G. O

Corollary 6.20. Let S be a logic with Leibniz filters explicitly definable. For every
A and every F € FisA, F* is the largest Leibniz filter below F.
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Proor. Let G € FigA such that G C F. Then G = G* C F* C F and we are
done. O

A consequence of the monotonicity of the map F' — F* is the following:

Proposition 6.21. If a logic satisfies condition (%) and has its Leibniz filters ex-
plicitly definable, then it is protoalgebraic.

PROOF. Let A arbitrary and F' € FisA. Then,

24F) = Nocrisar PG
= ﬂGe(}'isA)F QA(G*)
= ‘QA(nGe(]-'isA)FG*)
= 04F)
= AF),

using Proposition 5.18 (twice), property (x) and Corollary 6.20. The result now
follows by Proposition 2.5. O

By Proposition 6.21, failure of protoalgebraicity must be due to failure of (at
least) one of the two conditions, property (x) or the Leibniz filters being explicitly
definable. These two conditions can fail independently of one another. Indeed,
as we shall see in Chapter 7, Lukasiewicz’s infinite valued logic preserving degrees
of truth LS, satisfies condition () and does not have its Leibniz filters explicitly
definable (see Proposition 7.60 and Proposition 7.61, respectively); on the other
hand, Positive Modal Logic PML, has its Leibniz filters explicitly definable and
does not satisfy property (x) (see Proposition 7.3.4 and Corollary 7.11, respectively).

Since the map F' +— F™* is monotonic under explicit definability of the Leibniz
filters (Lemma 6.19), the proofs of [37, Proposition 13, Corollary 14] can be repli-
cated under this assumption. We do it in the general setting, without assuming the
language to be countable, something assumed in [37].

Proposition 6.22. Let S be a logic with Leibniz filters explicitly definable.

1. For every A, Fi5A is closed under intersections.
2. For every A, Fi5A is closed under unions of k-directed families, where k is
the cardinal of S.

PRrROOF. 1. Let I'(z) C Fm, witness the assumption. Let {F; : i € I} C Fi5A be
a family of Leibniz filters of A. We know that (,.; F; € FisA. Moreover,

(Fi=()F=({acA:T*0) C F;}

i€l iel iel

={acA:T*a) CF}= (ﬂF)

el i€l

*
)

using our hypothesis twice.

2. Let {F; : i € I} C Fi5A be a r-directed family. First recall that (J,c; Fi

is an S-filter. Hence, it is necessarily the supremum \/,.; F;. To prove that

it is a Leibniz S-filter, notice that since the map F — F* is monotone under
the assumption of explicit definability of the Leibniz filters, and F; C (J,c; Fi, it

holds F; = Fj C (U;ep Fi)*. Hence (U,c; Fi)* = U,er Fi- Therefore, |J,c; Fi =

Vier Fi € (U;e; Fi)*. The converse inclusion holds in general. O
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Theorem 6.23. Let S be a logic in a countable language and with its Leibniz filters
explicitly definable. For every A,

Fis+ A = FisA.
PROOF. Let k be the cardinal of S. Consider the class of matrices
M= {(A, F): A an algebra, F € FigA}

as a class of first-order structures. The class M is closed under Hy and H !, by
Propositions 2.14. Also, the family Fi5A is closed under intersections and -
directed families, by Propositions 6.22. It follows by [26, Theorem 3] that M is
closed under substructures and k-reduced products. Finally, M contains all trivial
matrices. Since Fy = Fg+, it follows by Czelakowski’s Theorem 0.34 that M =
Matr(S*). Thus, FifA = Fig+ A, for every A. O

Let I'(x) be a set of formulas in one variable z. We use the notation = - I'(x)
to refer collectively to the set of rules

x by, with v € I'(x).

Corollary 6.24. If S is a logic in a countable language with its Leibniz filters
explicitly definable by T'(z) C Fmg, then ST is the extension of S by the additional
rules

x +T(x),

PrOOF. If S has its Leibniz filters explicitly definable, then for every T' € ThS, T
is closed under the rules x F I'(z) if and only if T'= T*. Since by Theorem 6.23,
ThST = Th*S, the result follows. O

Not only is property (%) equivalent to S being protoalgebraic under the as-
sumption of explicit definability of Leibniz filters, by Proposition 6.21, but with
Theorem 6.23 at hand, it is also fairly easy to see that it is equivalent to ST being
protoalgebraic, and even to ST weakly algebraizable.

Corollary 6.25. Let S be a logic in a countable language with Leibniz filters ex-
plicitly definable. The following conditions are equivalent:

(i) ST is protoalgebraic;

(i) S is protoalgebraic;

(iii) S satisfies property (x);

(iv) ST satisfies property (x);

(v) St is weakly algebraizable.

PROOF. (i) = (it): Let A arbitrary and F,G € FigsA such that F' C G. It follows
by Lemma 6.19 that F* C G*. Moreover,

Q4 (F) = Q4(F7) C 24(G") = 24(0),
using Proposition 5.18 (twice) and the hypothesis. Thus, S is protoalgebraic.
(#4) = (#¢): This holds in general, by Proposition 3.1.
(#i1) = (4v): This holds in general, by Lemma 5.20.
(iv) = (v): By Corollary 5.12 and Theorem 6.23, respectively, Fis, A = FigA =
Fig+ A, for every A. So, the Leibniz operator 24 : Fig+ A — Conpjg«(s+)A is an
order-isomorphism, for every A. This implies that ST is weakly algebraizable.

v) = (1): This holds in general. O
(v) = (9) g
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We end up this section with a result putting together explicit and equational
definability.

Proposition 6.26. If S has its Leibniz filters both explicit and equationally defin-
able, then for every A € Alg(S) and every F € FisA, F* = Fg".

PrROOF. We know by Lemma 6.19 that for every A and every F,G € FigA such
that F¥ C @, it holds F* C G*. So, it follows by Corollary 6.13 that for every
A € Alg(S) and every F € FisA, F5' = NeeFisayr G7=F. O

Corollary 6.27. If S has its Leibniz filters both explicit and equationally definable,
then for every A € Alg(S), FisA = FistA.

ProOOF. The inclusion ]-'z'i«uA C FisA always holds. Let F € fi%“A. Then
F = FE“. Therefore, by last proposition, F' = FE“ = F*. Hence F' is a Leibniz
S-filter. 0

Note that the corollary implies that if S has its Leibniz filters both explicitly
and equationally definable, then for every A and every F' € FisA, F. g“ is a Suszko
S-filter. For recall, FE“ is always a Leibniz filter, for every A and every F € FisA
(although in general, it need not be Suszko filter).

6.3. Leibniz filters logically definable

Finally, we consider yet another type of syntactical definability of Leibniz filters,
called logical definability, which as we will see is a weaker property than the explicit
definability of Leibniz filters. Still, it is enough to guarantee that the Leibniz S-
filters, where S is any logic whose Leibniz filters are logically definable, coincide
with the ST-filters, on arbitrary algebras (Theorem 6.32).

The original motivation behind the following definition is the paragraph after
[37, Definition 28], where the definability of Leibniz filters closed under a set of
logical rules in at most one variable is considered.

Definition 6.28. A logic S has its Leibniz filters logically definable, if there exists
a set of Hilbert-style rules #, such that, for every A and every F € FigA, F is
Leibniz if and only if F' is closed under the rules in .

Let us first check that explicit definability is indeed a stronger property than
logical definability.

Lemma 6.29. If S has its Leibniz filters explicitly definable by a set of formulas
I(z) C Fmg, then S has its Leibniz filters logically definable by the set of rules
z k().

PROOF. Assume S has its Leibniz filters explicitly definable by a set of formulas
I(z) € Fmg. Let A arbitrary and F € FigA. If F is a Leibniz filter of A, then
F =F*={a€F:T4) C F}. Clearly then, F is closed under the set of rules
x = T'(z). Conversely, if F is closed under the set of rules x s I'(x), then for every
a € F, T4(a) C F. So, under the hypothesis, ' C I'*. Therefore, I is a Leibniz
filter of A. O

The converse is false. That is, logical definability of Leibniz filters does not
imply explicit definability of Leibniz filters. A counter-example will appear in
Section 7.4.
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Similarly to the case of equational and explicit definability of Leibniz filters,
logical definability of Leibniz filters on the class Alg™(S) suffices to extended the
property to arbitrary algebras.

Proposition 6.30. Let S be a logic. Then S has its Leibniz filters logically definable
if and only if if there exists a set of Hilbert-style rules H, such that, for every
A € Alg™(S) and every F € FisA, F is Leibniz if and only if F is closed under
the rules in H.

PROOF. Necessity is trivial. As to sufficiency, let A arbitrary and F € FigA.
The matrices (A, F) and (A/Q4(F), F/£2*(F)) induce the same logic, by Propo-
sition 0.33. Hence, they satisfy the same Hilbert-style rules. In particular, F' is
closed under the rules in H if and only F/24(F) is closed under the rules in 7.
Moreover, F is a Leibniz filter of A if and only if F/£24(F) is a Leibniz filter of
A/.QA(F)7 by Corollary 1.39. Altogether, F' is a Leibniz filter of A if and only if
F/24(F) is a Leibniz filter of A/£24(F) if and only if (using the assumption here)
F/2(F) is closed under the rules in # if and only if F is closed under the rules
in H. O

Next, we wish to find analogous results to Theorem 6.23 and Corollary 6.24,
this time stated with logical definability of Leibniz filters as hypothesis.

Proposition 6.31. Let S be a logic with Leibniz filters logically definable by a set
of Hilbert-style rules, all of which of cardinality < k.

1. For every A, Fi5A is closed under intersections.
2. For every A, Fi5A is closed under unions of k-directed families.

PrOOF. 1. Let {F; : i € I} C Fi5A be a family of Leibniz filters of A. We
know that (), ; F; € FisA. Let (I',p) € H, where H is a set of Hilbert-style rules
witnessing the hypothesis. Let h € Hom(F'm, A) such that h(T") C (., F;. Since
Nic;r Fi € F; and Fj is a Leibniz filter, for every i € I, it follows by hypothesis that
h(e) € F;, for every i € I. Thus, h(¢) € (\;c; Fi. We conclude that (), ; F; is
closed under the rules in H. It follows again by hypothesis that [, ; F; is a Leibniz
filter of A.

2. Let {F; : i € I} C Fi5A be a s-directed family of Leibniz filters of A. Recall
that (J;c; Fi is an S-filter (see page 15). To prove that it is a Leibniz S-filter, let
(I, ) € H, where H is a set of Hilbert-style rules witnessing the hypothesis. Let
h € Hom(Fm, A) such that h(I') C (J,c; Fi. Then, for each v € I, there exists
Jy € I such that h(y) C Fj; . Since |[I'| < x and {F; : i € I} is a x-directed family,
there exists j € I such that F; C Fj, for every v € I'. Hence, h(I") C Fj. Since F)
is a Leibniz filter of A, it follows by hypothesis that h(y) € F;. Necessarily then,
h(¢) € U;c; Fi- We conclude that | J,; F; is closed under the rules in H. It follows
by hypothesis that |, ; F; is a Leibniz filter of A. O

icl

el
Here arrived, we can mimic the proof of Theorem 6.23, and obtain:

Theorem 6.32. Let S be a logic in a countable language with Leibniz filters logically
definable by a set of Hilbert-style rules. For every A,
Fis+A = FisA.
We are left to prove an analogous result to Corollary 6.24 for logical definability
of Leibniz filters.
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Corollary 6.33. If S is a logic in a countable language with its Leibniz filters
logically definable by a set of Hilbert-style rules H, then ST is the extension of S
by the additional rules in H.

PROOF. Let S’ denote the extension of S by the rules in H. On the one hand, ST
extends S and moreover every ST-filter of an arbitrary algebra A is closed under
the rules in H, because Fis+A = FisA by Theorem 6.32; hence, &’ < §*. On
the other hand, since S’ extends S, it holds FisrA C FigsA, for every A; since
moreover every S’-filter is closed under the rules in #, it follows by our hypothesis
that FisrA C FisA C Fig+ A, for every A; therefore, ST < &'. O

Notice that Theorem 6.32 generalizes Theorem 6.23 and Corollary 6.33 gener-
alizes Corollary 6.24, in light of Lemma 6.29.






CHAPTER 7

Examples of non-protoalgebraic logics

In this chapter, we study several examples of non-protoalgebraic and non-truth-
equational logics. For each logic considered, we wish to find its strong version, and
characterize its Leibniz and Suszko filters. We shall also apply the definability
results of Chapter 6 to each example. Sometimes the strong version will turn out
to be a well known logic in the literature, while in some cases, at least as far as we
know, a logic not previously considered. In the latter situation, we will classify the
new logic within the Leibniz hierarchy.

A word on notation. In the following, whenever dealing with Suszko filters, we
shall drop the subscript of the underlying logic, as we will always be referring to
Suszko filters over the original logic S and not over its strong version ST. Actually,
since all strong versions covered here will turn out to be truth-equational, there is no
risk of misunderstanding, as every St-filter is a Suszko ST-filter, by Theorem 2.30.

7.1. Positive Modal Logic

Positive modal Logic, hereby denoted by PML, is the negation-free (or posi-
tive) fragment of the local consequence of the least normal modal logic I, which
corresponds to the local consequence of the class of all Kripke frames, named w/C
in [37] (while the global consequence of the class of all Kripke frames is denoted by
sK). For information on PML we address the reader to [28, 50].

Consider the modal language £’ = {A,V,—, -, 0,0, T, L}, where we assume
the logics wkK and sK to be formalized. Consider also the positive fragment of L',
given by £ = {A,Vv,0,0, T, L}. It is well-known that the logic wK is equivalential,
witnessed by the set of congruence formulas {0"(p < ¢) : n € w}, and that sk
is algebraizable, witnessed by the set of congruence formulas {p + ¢} and the
set of defining equations {z ~ T}. Its equivalent algebraic semantics is the class
of (normal) modal algebras NMA. Since the logic wk is protoalgebraic, the pair
wk and sK falls into the scope of [37]. It turns out that (wK)* = sK and that
Fiy A = FigcA, for every A € NMA. Furthermore, the sK-filters coincide with
the open lattice filters on (normal) modal algebras, i.e., the lattice filters closed
under the interpretation of O (see [37, 13ff.], under the notation K* and K?).

Our study of the first non-protoalgebraic example PML will follow closely the
study undertaken in [37] of wK and its strong version sK. The intuitive candidates
for both the strong version of PML and the Leibniz PML-filters will be the ones
expected. First, let us introduce the class of algebras which will play the rdle of
normal modal algebras when we restrict ourselves to the positive fragment of wkC.

Definition 7.1. An algebra A = (A, A4, vA, 04 04 1,0) is a positive modal
algebra, if (A, A%, vA,1,0) is a bounded distributive lattice and 04, &4 are two
unary modal operations satisfying, for every a,b € A:

117
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1. O4(a A4 b) = 0% A2 OA; 2. OA(a vAb) = OAa vA OAb;
3. O A4 OAb < OA(a A2 D); 4. O4(a VA b) < 04 vA OAp;
5. 041 =1, 6. 040 =0.

The class of all positive modal algebras will be denoted by PMA. The set of
lattice filters of a positive modal algebra A will be denoted by FiltA. A lattice
filter F of a positive modal algebra A is open if it is closed under O4. The set of
open lattice filters of A will be denoted by Filtp A.

Notice that distributive lattices, and in particular Boolean algebras, can be
expanded as positive modal algebras. Indeed, given a distributive lattice B we can
define two unary modal operations OF : B — B and OB : B — B both as the
identity map on B. The algebra we obtain trivially satisfies all the conditions in
Definition 7.1.

Let us start by collecting some known facts about the logic PML, which can
all be found in [50].

Theorem 7.2.

1. PML is not protoalgebraic.

PML is fully selfextensional.

PML = S5ya-

For every A € PMA, FiltA = Fipm A.
Alg*(PML) C Alg(PML) = PMA.

In particular, given A € PMA, it follows by 4 above that {1} is the least
PML-Ailter of A, and hence it is necessarily a Leibniz and Suszko S-filter of A.
Since PML is a semilattice-based logic with theorems, we know in advance

several facts about both PML and PMLT.

Gt Co e

Proposition 7.3.
1. PML" is assertional, and PMLT = SLg*(PML) = ;Ig("PML) = Spua-
2. For every algebra A, Fippe+ A = Fipp A,
3. PML has its Leibniz filters equationally definable by 7(x) = {z = T}.
4. PML does not satisfy (x).

PROOF. Theorem 7.2.3 implies that PM L is semilattice-based, hence 1 and 2 follow
by Corollary 6.11. 3 follows by Proposition 6.5. Finally, 4 follows by Lemma 5.17
and Theorem 7.2.5. O

Our next goal is to find an algebraic characterization of the Leibniz PM L-filters
on positive modal algebras.

Proposition 7.4. Let A € PMA. FEvery Leibniz PML-filter of A is an open lattice
filter.

ProOOF. Let A € PMA. Since PML has its Leibniz filters equationally definable
by 7(z) = {z ~ T}, if F € Fisy A, then F = {a € A: (a,1) € 24(F)}. Let
us see that F' is closed under 04, If ¢ € F, then (a,1) € 24(F), and therefore
(04a,041) € 24(F). Now, since 041 =1 € F, it follows that 04a € F. O

We could try to show directly that every open lattice filter is a Leibniz filter
but we will follow a different, quite informative, path. We will show that every
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open lattice filter on a positive modal algebra is also a Suszko filter. Therefore
it will follow that the Leibniz and Suszko PM L-filters coincide on positive modal
algebras and that these are precisely the open lattice filters.

Lemma 7.5. Let A € PMA and F € Filtg A. For every a,b € F,
(a,b) € 270, (F).

PROOF. Let F' € Filtg A. Since, in particular, it is a lattice filter, F' € FipacA.
Let a,b € F. Let ¢(x,Z) € Fmz and € € A arbitrary. We claim that

©?(a,¢) € F' & ¢*(b,) € F', (19)
for every F’ € (FipacA)F. The proof goes by induction on ¢ € Fmg.

®y(2,Z) = x € Var: Let F' € (FipmeA)F. We have pA(a,¢) = a and
©A(b,€) = b. Since both a,b € F C F’ by assumption, (19) holds.

B po(2,2) =T: Let F' € (FippeA)F. We have ?(a,¢) = 1 and ¢2(b,¢) = 1.
Since 1 € F’, (19) holds trivially.

mp(2,2) = L: Let F' € (FippreA)F. We have 2 (a,¢) = 0 and ¢2(b,¢) = 0.
Since 0 ¢ F”, (19) holds vacuously.

B o(x,z) = P(x,Z) AN&(x,Z): The inductive hypothesis tells us that (19) holds
for ¢ and &. Let F' € (FippmeA)Y. Assume p(a,¢) € F'. Since p™(a,¢) =
PA(a,e) A €4(a,T) < ¥4(a,?),&(a,C), and F’ is upwards-closed, it follows
that ¢4 (a,¢) € F’ and £4(a,c) € F'. Tt follows by the inductive hypothesis
that ¢4 (b,¢) € F’ and £4(b,¢) € F’. Since F' is closed under meets, it
follows that ¢ (b,¢) = ¢ (b,¢) A4 £4(b,¢) € F'. Similarly, one proves that
©A(b,¢) € F' implies p4(a,¢) € F'.

B o(z,Z) = YP(z,Z)VE(x, Z): The inductive hypothesis tells us that (19) holds for
Y and €. Let F' € (FippmeA)E. Since PMA is a distributive lattice, it follows
as a consequence of the Prime Filter Theorem 0.4, that every lattice filter of
A is the intersection of the prime lattice filters containing it. In particular,
F' = N{P € PrFiltA : F' C P}. Clearly then, ¢*(a,¢) € F' if and only
if 9A(a,c) € P, for every P € (PrFiltA)F’| if and only if ¥4(a,¢) € P or
¢4(a,e) € P, for every P € (PrFiltA)F,, if and only if ¢4(b,¢) € P or
¢4(b,¢) € P (using the inductive hypothesis, since F C F’ C P), for every
P e (PrFiltA)F’ | if and only if o2 (b,¢) € P, for every P € (PrFiltA)F", if
and only if ¢2(b,¢) € F'.

B o(z,Z) = OY(x,Z): The inductive hypothesis tells us that (19) holds for .
Let F' € (FipmcA)T. Assume ¢4 (a,c) € F'. Consider

O YF)={de A: 0% e F'}.

Claim. O7Y(F') is a lattice filter extending F: Since 041 = 1, it holds
1€ O YF"). Let d,e € O~ Y(F’). Then, O04d € F' and 04 € F’. Since F’
is closed under meets, it follows that O4d A4 04 € F'. But, O4dAA 0% =
O04(d A4 e), because A € PMA. So, dA%e € O71(F"). Now, let d € O~(F")
and d < e. Then 04d < O4¢, because A € PMA. Since 04d € F’ and F’
is upwards-closed, it follows that O4e € F'. So, e € O~(F’). Finally, let
d € F. Since F is open, it follows that O04d € F. Since F C F', it follows
that 04d € F'. So, d € O~ (F'). Thus, F C O~ Y(F").

Now, notice that 14 (a,¢) € O71(F’), because 92 (a,¢) = 044 (a,c) € F'.
Since O~ Y(F") € (FisA)¥ by the Claim, it follows by the inductive hypothesis
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that ¢4 (b,¢) € O~ (F'). That is, p2(b,¢) = O4A(b,¢) € F'. Similarly one
proves that ¢ (b,¢) € F’ implies ¢ (a,c) € F'.

B o(x,Z) = OY(x,Z): The inductive hypothesis tells us that (19) holds for
. Let F' € (FippmeA)Y. Assume ¢?(a,¢) € F'. Suppose, towards a
contradiction, that o4 (b,¢) ¢ F'. We claim that

A (b,) ¢ Fg§ (F,9*(a,7)).

For if not, let d € F such that dA44(a,¢) < ¢4 (b,¢). Notice that Od € F C
F', because F is open. Also, 04 (14 (a,¢)) = ¢*(a,¢) € F', by assumption.
So, O4d A4 OA (YA (a,€)) € F/, because F” is closed under meets. Hence,

044 A% OA(pA(a,e)) < OA(d A A (a,2)) < OAYA(b,2),

using the fact that A € PMA and the monotonicity of ©. Since F’ is upwards-
closed, it follows that o (b,¢) = 0444 (b,€) € F’, which contradicts our as-
sumption. But then, Fg;gMc (F, wA(aj)) is lattice filter extending F' which
contains 1) (a,¢) but does not contain 1) (b,¢). This contradicts our induc-
tive hypothesis.

From (19) and Corollary 0.30 it follows that (a,b) € ﬁéMﬂ(F). O

Proposition 7.6. Let A € PMA. Every open lattice filter of A is a Suszko PML-
filter.

PROOF. Let A € PMA and F € FiltgA. Let a € F. Since also 1 € F, it follows
by Lemma 7.5 that (1,a) € ﬁ%Mﬁ(F). Now, since ﬁ;}‘Mﬁ(F) C 2A(F5Y), and
moreover 1 € FS (bear in mind that FS" € Fipyc A = FiltA), it follows that
a € FS'. So, F C FS". Thus, F is a Suszko filter of A. O

Theorem 7.7. Let A € PMA. The Leibniz and Suszko PML-filters of A coincide
with the open lattice filters of A. That is,

FirpmreA = Figh oA = Filtg A.

PROOF. Just notice that ]-'i%‘}\AEA C FipppeA C FiltgA C ]-'i%jva, using
Propositions 7.4 and 7.6. U

We next address the explicit definability of the Leibniz PM L-filters. Recall that
in general, given an arbitrary logic S, an algebra A, and an S-filter F' € FigA, F§"
is a Leibniz filter of A. But in general, F§" needs not be a Suszko filter of A, as
witnessed by Example 2.23. However, for the logic PML, it follows by Theorem 7.7
that:

Lemma 7.8. Let A € PMA. For every F € FipymeA, FSU is a Suszko filter of A.

Let us abbreviate O04(04(...04a)...), where the operation 04 appears n
times, with n € N, simply by O0™a. Next, it is easy to check that:

Lemma 7.9. Let A € PMA. For every F € Fippr A, the set
Fo={ac A: 0% € F, for every n € N}

is the largest open filter included in F'.
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PRrROOF. Clearly, 1 € Fp, since 041 =1 € F. Now, let a,b € Fn. Then, 0" € F
and 0" € F, for every n € N. But,

O0"%(a Ab) =0"aAO"D,

because A € PMA. Since F is closed under meets, it follows that O"(a A b) € F,
for every n € N. Hence, a Ab € Fn. Next, let a € Fg and let b € A such that
a <b. Then, O"a € F, for every n € N. Since a < b and A € PMA, it follows that
O"q < O™, for every n € N. Since F' is upwards-closed, it follows that 0O"b € F,
for every n € N. So, b € Fg. So far we have seen that Fp is a lattice filter. To
see that Fp is open, let a € Fg. Then, 0% € F, for every n € N. Clearly then,
07(0a) € F, for every n € N. So, O4a € Fp. To see that Fiy extends F, let a € F.
Taking n = 0, it is immediate that a € Fp. Finally, to prove the maximality
condition, let F” C A be an open filter below F and let a € F’. Since F”’ is open,
it follows that O0"a € F/ C F, for every n € N. Thus, a € Fg. O

Proposition 7.10. Let A € PMA. For every F € FipmcA,
F* = F® = Fy.

PRrROOF. Let A € PMA and F € FippreA. On the one hand, since FS" is a Suszko
PML-filter of A, by Lemma 7.8, it follows by Lemma 2.25 that FS" is the largest
Suszko PM L-filter below F'. On the other hand, Fp is the largest open lattice filter
below F, by Lemma 7.9. It follows by Theorem 7.7 that FS" = Fy. As to F*, it is
also an open filter below F' and moreover FS" C F*. Therefore, F* = Fp. O

Corollary 7.11. The logic PML has its Leibniz filters explicitly definable by the
set of formulas T'(x) = {O0"x : n € N}.

PRrROOF. Since Alg"(PML) C PMA, by Theorem 7.2.5, the result follows from
Proposition 7.10 and Lemma 6.18. (]

Hence, PML has its Leibniz filters both explicitly and equationally definable.
This being the case, notice that the first equality in Proposition 7.10 agrees with
Proposition 6.26.

Let us fix the Necessitation rule:

(N): zFOx.

Since we have seen in Corollary 7.11 that PML has its Leibniz filters explicitly
definable by I'(x) = {O0™xz : n € N}, it easily follows by Corollary 6.24 that:

Theorem 7.12. The logic PML™ is the inferential extension of PML by the rule
(N).

We finish our study of PML by showing it lies outside the classes of logics in
Figure 1 (so far, we only know that PML is not protoalgebraic, by Theorem 7.2.1),
and by completing its classification inside the Frege hierarchy (so far, we know that
PML is fully selfextensional, by Theorem 7.2.2). To this end, we explore in further
detail an example of a positive modal algebra taken from [50, p. 438].
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1=T4 | F e FipucA | 0=04(F) | blocks'ofo |
u A={0,a,b,1} Ax A {0,a,b,1}
{1} 61 {1} {0,a,0}
b {1,a} ida {0} {a} {0} {1}
{1,a,b) 6, (0} {1,a,b}
0=14 o

FIGURE 3 & TABLE 1. The 4-element chain, its PM L-filters, and
their Leibniz congruences.

Example 7.13. Consider the 4-element chain A = {0,a,b, 1}, ordered by 0 < b <
a < 1, and the algebra A = {A, A4, vA, 04 OA 1,0}, where the meet and join
operations are defined as the infimum and supremum of this order, respectively,
and the two modal-like operations are defined by:

S £ if x €{0,1} oAy 1T if x € {0,1}

b, ifz e {a,b} a, if z € {a,b}
It is routine to check that A is indeed a positive modal algebra. As a consequence,
FippmreA = FiltA. The Leibniz operator on these filters is described in Table 1.

Proposition 7.14. PML is neither truth-equational nor Fregean.

PRroOF. Having in mind Theorem 7.7, Fi%}, . A = Filtg A = {{1},{1,a,b}, A} C
FiltA = FippmcA. Hence, it follows by Theorem 2.30 that PML is not truth-
equational. Finally, suppose towards an absurd, that PML is Fregean. Since more-
over it has theorems, it follows by [4, Corollary 11] that PML is truth-equational,
which we have just seen to be false. O

An interesting consequence is that the logic w/C is not Fregean, for Fregeanity
is preserved by fragments, and we have just seen that that PML is not Fregean.

As for the strong version PML™T, we prove that it is neither protoalgebraic nor
selfextensional. Moreover, the class of PM L -algebras is strictly included in the
class of PML-algebras.

Proposition 7.15. Alg(PML') C PMA.

PROOF. On the one hand, since PML < PMLT, Alg(PMLY) C Alg(PML) =
PMA. On the other hand, consider A € PMA as given in the Example 7.13. No-
tice that Fipyp+A = FitA = FiltgA = {{1}7{17a,b},Ai, by Theorem 7.7.

Now, from Table 1 it follows that ‘Qé/\/lﬁ* (A) = Ax A, QéML* ({1,(1,1)}) =

24({1,a,b}) N 24(A) = 0, # ida, and finally 24 ., ({1}) = 24({1}) n
24({1,a,0}) N 24(A) = 61 N6 # ida. Indeed, (a,b) € 0; N 0. Therefore,
A ¢ AlgS (PMLT) = Alg(PMLT). O

We are therefore in the presence of a logic S such that Alg(S™) C Alg(S).
Indeed, Alg(PML') C PMA = Alg(PML). Furthermore, it must also be the case
that Alg"(PMLT) C Alg*(PML), for otherwise Alg(PML) = IPgAlg*(PML) =

LA block of 6 is an equivalence class under 6.
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IPsAlg* (PMLY) = Alg(PML™). This situation contrasts with the protoalgebraic
scenario, where in general, for every protoalgebraic logic S, Alg(S) = Alg*(S) =
Alg"(8T) = Alg(S™).

Proposition 7.16. PML™ is not protoalgebraic.

ProoF. This follows from Corollary 6.25, since PML has its Leibniz filters explic-
itly definable, by Corollary 7.11, but as we have observed already, PML does not
satisfy property (). O

Example 7.17. Consider the 3-element chain B = {0, a, 1}, ordered by 0 < a < 1,
and the algebra B = {B,A\B vB OB &B 1,0}, where the meet and join operations
are defined as the infimum and supremum of this order, respectively, and the two
modal-like operations are defined by:

A z, ifx=1 A z, ifx=0
0%z = Ol =
0, ifze{0,a} 1, ifx € {a,1}

It is routine to check that B is indeed a positive modal algebra.
Proposition 7.18. PML™ is not selfextensional.

PROOF. Recall that PMLY = Sgy;a. On the one hand, x 4F-pp o+ A0z, because
for every A € Alg(PMLT) C PMA and every h : Fm — A, h(z) = 1 if and only if
h(x A Dz) = 1. On the other hand, we claim that Gz Fpp e+ O(x A Ox). Indeed,
consider B € PMA, as given in Example 7.17. Let h : Fm — B such that h(x) = a.
Then, h(Oz) = OBh(z) = OBa =1, but h(O(zADz)) = OB(anBDOBa) = 0B0 =
0. Thus, A(PMLT) ¢ ConFm. O

As a final remark on the logic PML™T, we record here that PMLT is the
positive modal fragment of s/C, a situation similar to that of PML and wk. The
proof of this fact is outside the scope of the present thesis, and should appear in
[3].

7.2. Belnap’s logic

Our next example is Belnap’s four-valued logic, widely known in the literature
after the work [8]. For a study of Belnap’s logic from an AAL perspective, see [30].
Recall that a logic without theorems has as strong version the almost inconsistent
logic. So, in order to use the results of [30] in a meaningful way, we shall add a
constant term to the language there considered, thus forcing Belnap’s logic to have
theorems, and only affecting the results by minor changes (namely, by disregarding
the empty set as a B-filter). That is, we shall be working within the language
L={(AV,~,T,L). We will also use the abbreviation ¢ — ¥ for - V 1.

Definition 7.19. A De Morgan algebra is an algebra A = (A, A4, vA,=4,0,1)
such that:

1. The reduct (A, A%, v4,1,0) is a bounded distributive lattice;
2. The De Morgan laws hold, that is, =4 (aVAb) = =AaA2=4band =4 (aA?b) =
—Aq vA ~Ap, for every a,b € A;

A A_A

3. The unary operation —* is idempotent, that is, = —=“*a = a for every a € A.

The class of all De Morgan algebras will be denoted by DMA.
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A reference for De Morgan algebras is [7, Chapter XI|. On every De Morgan
algebra A, we define the binary operation —4 by setting a —4 b := —“4a VA b.
Given A € DMA, we shall denote by FiltA the set of all lattice filters of A, and
by PrFiltA the set of all prime lattice filters of A. A lattice filter F' € FiltA is
implicative, if for every a,b € A such that a,a =4 b € F, it holds b € F. The set
of all implicative lattice filters of A € DMA will be denoted by Filt_, A. It is easily
seen that {1} is the least (implicative) lattice filter of any A € DMA.

We next compile some basic properties that hold in all De Morgan algebras,
and which we shall make use of, sometimes without any explicit reference.

Lemma 7.20. Let A € DMA. For every a,b € A,

1.1-s%a=aq;

2. =4a=a—40;

3. If a < b, then -Ab < =4q;

4. (aN2b) A c=a—=4 (b—=2c).

The class DMA is a variety. This variety is generated by the four-element De
Morgan algebra, which shall be denoted by 9. It has universe My = {0, a,b,1},
and the lattice operations and the negation operation defined as depicted in Fig-
ure 4.

1=-"40

_|9.R4a:a b:—\m‘lb

M1 =0

FIGURE 4. The lattice 9M4.

Definition 7.21. Belnap’s logic B is the semilattice-based logic SgMA.

Let us first collect some known facts about the logic B. To this end, we exhibit
an auxiliary example of a De Morgan algebra taken from [30] (but adding T to the
signature there considered).

Example 7.22. Consider the 6-element De Morgan lattice 91, with universe
Mg ={0,a,b,c,d, 1}, sometimes called “the crystal lattice”, and whose structure is
described in Figure 5. By direct inspection of the table it is clear that the Leibniz
B-filters of Mg are {1}, {1,c} and Ms. Now, 24({1}) = 6; and 24({1,¢}) = 6y,
but 6; and 65 are not comparable. Thus, the Leibniz operator is not order preserv-
ing on the Leibniz filters of this algebra. Moreover, it is easy to see that the Suszko
B-filters of Mg are here {1} and Mg. Thus, this example also shows that not every
Leibniz filter is a Suszko filter; the converse implication does indeed hold, as seen
in Lemma 2.21.
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0=1=T4 F e Fig(Mg) | 0 = Qm5(F) blocks of 6
M6 M6 X M6 M6
{1} o, {1} {0}
{1,0,717, C, d} {a7b7 G, d}

{1,¢} {1, ¢}
{1,¢,a} 02 {a} {b}
{1,¢,b} {d, 0}

-1=0

F1GURE 5 & TABLE 2. The algebra Mg, its B-filters, and their
Leibniz congruences.

Theorem 7.23.

~

. B is fully selfextensional.

2. B is not protoalgebraic.

3. B is not truth-equational.

4. B is not Fregean.

5. Sin, = Sdua-

6. For every A € DMA, FigA = FiltA.
7. Alg"(B) C Alg(B) = DMA.

PrROOF. 1. Since B is semilattice-based, it follows by Theorem 0.46. 2. In Ex-
ample 7.22, the two comparable B-filters of Mg, {1} and {1,c}, are such that
24({1}) ¢ 2°({1,¢}). 3. As seen in Example 7.22, not every B-filter of M is a
Suszko filter; therefore, B is not-truth-equational, by Theorem 2.30. 3. Suppose,
towards an absurd, that B is Fregean. Since moreover it has theorems, it follows by
[4, Corollary 11] that B is truth-equational, which we have just seen to be false. 5.
Proved in [30, Proposition 2.5]. 6-7. Since B is semillatice-based, both 6 and the
equality in 7 follow by the general theory seen in the preliminaries (see page 27).
The strict inclusion of 7 is proved in [30, p. 16]. O

Some consequences of Theorem 7.23 and general facts of the theory developed
so far are:

Proposition 7.24.
1. BY is assertional, and BY = Si..5) = Sy = Soma-
2. For every algebra A, Fig+ A = FigA.
3. B has its Leibniz filters equationally definable by 7(x) = {x =~ T}.
4. B does not satisfy ().

PrOOF. By definition B is semilattice-based, hence by Corollary 6.11 it follows 1
and 2. By Proposition 6.5, it follows 3. Finally, using Lemma 5.17 and Theo-
rem 7.23.7, it follows 4. O

We aim at finding an algebraic characterization of the Leibniz B-filters on De
Morgan algebras. To this end, let us recall the characterization of the Leibniz
operator on De Morgan algebras provided in [30, Proposition 3.13]. For every
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A € DMA, every F € FigA, and every a,b € A,
(a,b) € RA(F) iff Vee A, aVAce FebvAceF

-AavAce F o -AbvAce F (20)

Bear in mind that adding a constant to the underlying language does not affect
congruences in general, and therefore (20) is still valid in our setting.

Theorem 7.25. Let A € DMA. The Leibniz B-filters of A coincide with the
implicative lattice filters of A. That is,

FizA = TFilt_, A.

PROOF. Let F € FigA. Then F = {a € A: (a,1) € 24(F)} because {x ~ T}
defines the Leibniz filters. Assume that a,a —4 b € F. Then (a,1),(a —4
b,1) € 2A(F). Therefore, (a —4 b,1 =4 b) € 24(F). Since 1 =4 b = b,
(a =2 b,b) € 24(F). Since a -4 b € F, it follows that b € F.

Conversely, let F' € Filt_, A. Since B has its Leibniz filters equationally defin-
able by {z ~ T} it will be enough to prove that F = {a € A : (a,1) € 24(F)}.
By compatibility of £24(F) and the fact that 1 € F we have that {a € A: (a,1) €
N24(F)} C F. Conversely, let a € F. To prove that (a,1) € 24(F), by (20), we
must prove that, for every ¢ € A, it holds

aVAcec Fel1vAce F (a)

and
~AavAce Fe-A1vAce (b)
Now, (a) always holds, since on the one hand a < a VA ¢ and F is upwards-closed,
and on the other hand 1 VA ¢ =1¢€ F. As to (b), by definition of —4 and since
-41 = 0, it amounts to
a—=AceFsceF.

Now, if ¢ € F, then a =4 ¢ = =4a VA ¢ € F, because F is upwards-closed. If
a -4 ¢ € F, then since a € F and F is implicative, it follows that ¢ € F. Thus,
indeed (a,1) € 24(F). O

As for the B-Suszko filters on De Morgan algebras, given the general theory of
Chapter 6, we immediately get:

Corollary 7.26. Let A € DMA. For every F € FigA,
Pr= ) G
Ge(FigA)F

As a consequence, a B-filter F' of A is a Suszko B-filter if and only if F C G*, for
every G € (FigA)F.

We now turn our attention to the explicit and logical definability of the Leibniz
B-filters. Belnap’s logic does not have its Leibniz filters explicitly definable by any
set of formulas I'(z) € Fm,. In order to see it, we use Proposition 6.27. Since B
has its Leibniz filters equationally definable, it suffices to exhibit A € DMA such
that FigA # Fip'A. Take the 6-element De Morgan lattice Mg, as described in
Example 7.22. As mentioned there, the Suszko filters of Mg do not coincide with
the Leibniz ones. Therefore, and in contrast with the case of PML, Belnap’s logic
does not have its Leibniz filters explicitly definable.
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Proposition 7.27. The logic B does not have its Leibniz filters explicitly definable.

Consequently, we cannot use Corollary 6.24 in order to find an axiomatization
for BT. Nevertheless, since B has its Leibniz B-filters logically definable, as we next
show, we will still be able to find one. To this end, let us fix the rule Modus Ponens:

(MP): z,y —wzhkuy.

Proposition 7.28. The logic B has its Leibniz filters logically definable by the rule
Modus Ponens.

PRrOOF. By Theorems 7.23.6 and 7.25, for every A € Alg*(B) C DMA and every
F € FigA, F is a Leibniz B-filter of A if and only if F' is an implicative lattice
filter of A if and only if F' is closed under Modus Ponens. Hence, the result follows
from Proposition 6.30. O

Corollary 7.29. The logic B is the inferential extension of B by the rule Modus
Ponens.

PROOF. The result follows by Corollary 6.33, since B has its Leibniz filters logically
definable by Modus Ponens, by Proposition 7.28. (]

We now wish to characterize the map F' — F*, given A € DMA and F' € FigA.
To this end, we introduce a generalization of the transformation ® considered in
[30, pp. 16,19], which in turn is a generalization of the so called “Birula-Rasiowa
transformation” in [53, Defini¢do 7.2, p. 15].

Definition 7.30. Let A € DMA. We define
O(F):={ac A:-%a ¢ F},
for every F' C A. We also define
U(F)={ac A:Vbc Aifa -2 bec F, then b e F},
for every F C A.

The transformation ¥ can be seen as a generalization of ®, because —4a =

a -4 0and 0 ¢ F. In fact, for every proper lattice filter F' of a A € DMA,
U(F) C ®(F). But the inclusion may be strict. Consider again the De Morgan
algebra Mg depicted in Example 7.22. Take F' := {1,c¢}. It is easy to see that
®(F) = {1,a,b,c}, because =a = a ¢ F, -4 =b ¢ F, - c = d ¢ F, and
-41 =0 ¢ F. On the other hand, b ¢ F but a -4 b = -4aVvAb =c € F.
So, a ¢ W(F). Similarly, b ¢ U(F). Indeed, ¥(F) = {1,¢} € {1,a,b,c} = ®(F).
Interestingly enough, both transformations coincide over prime lattice filters.

Lemma 7.31. Let A € DMA. For every P € PrFiltA,

O(P) =T(P).
PROOF. Let a € ¥(P). Since 0 ¢ P (because P is proper), -a = a =4 0 ¢ P.
So, a € ®(P). Conversely, let a € ®(P). So, -4a ¢ P. Let a —+“ ¢ € P. That

is, =a VA ¢ € P. Since P is prime and ~“%a ¢ P, it follows that ¢ € P. Hence,
a € U(P). O

The next result sheds some light on why we are here considering the transfor-
mation ¥ rather than the original ®.
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Proposition 7.32. Let A € DMA. If F' € FiltA, then U(F) € FiltA.

PROOF. 1€ ¥U(F), because 1 =4 b=-A1vAb=0VvAb=b, for every b € A. Let
a € U(F) and b € A such that a < b. Then, -4p < =44a, by Lemma 7.20.3. Let
¢ € Asuch that b —»4 ¢ € F. Notice that b 54 ¢ = =4pvBe < ~AqvBec=q -4 ¢
Since F' is upwards-closed, it follows that a =4 ¢ € F. Since a € ¥(F), it follows
that b € F. Next, let a,b € U(F). Let ¢ ¢ F. Then, b -4 ¢ ¢ F, because
b € U(F). Then, a =4 (b =4 ¢) ¢ F, because a € ¥(F). But, (a A% b) =4 ¢c =
a—4 (b =4 ¢), by Lemma 7.20.4. So, (a A2 b) -4 c¢ F. Thus,aA*bec F. O

We are now ready to provide a characterization of the operation that turns a
lattice filter F' of a De Morgan algebra into its associated Leibniz filter F™*.

Proposition 7.33. Let A € DMA. For every F € FigA,
F*=Y(F)NF.

PRrROOF. We first check that £24(F) is compatible with W(F). Let (a,b) € 24(F)
and let a € W(F). Let ¢ € A such that ¢ ¢ F. We have (a =4 ¢,b =4 ¢) € 24(F),
because 24(F) € ConA. Since a =4 ¢ ¢ F, because a € U(F), it follows by
compatibility that b —4 ¢ ¢ F. That is, b € W(F). Thus, £24(F) is compatible
with W(F). That is, 24(F) C .QA(\I/(F)) So U(F) € [F]*, having in mind that
U(F) € FipA, by Proposition 7.32 and Theorem 7.23.6. Therefore, F* C U(F).
Also, in general, F* C F'. Hence, F* C U(F)NF.

Conversely, let a € U(F)N F. We claim that (a,1) € 24(F). Since a € F and
F' is upwards-closed, it trivially holds

Vee A avceFel1lvAc=1€F
Moreover, since a € ¥(F) and ¢ < a =4 ¢, it holds
VeeA a—AceFeceF.

That is,
Vee A —-AavAce Fe-A1vAce F.

It follows by (20) that (a,1) € 24(F). But 24(F) C 24(F*). Since 1 € F*, it
follows by compatibility that a € F™*. O

We finish our study of Belnap’s logic by proving that B* is neither protoalge-
braic nor selfextensional. First, we show that BT and B have the same algebraic
counterpart.

Proposition 7.34. Alg(B1) = DMA = Alg(B).

PROOF. Since B < BT, it is clear that Alg(BT) C Alg(B) = DMA. As for the
converse inclusion, we observe that every subdirectly irreducible De Morgan algebra
— there are only three, namely, 94, 3 and 2 [7, XI.2, Theorem 6] — belongs to
Alg*(B™). Indeed, since {1} is always an implicative lattice filter (see page 124),
and the three algebras are simple, (M4, {1}),(3,{1}),(2,{1}) € Mod*(B*). It
follows by Birkhoff’s subdirect representation theorem (see Theorem 0.14 and the
comments after it) that DMA = IPg ({9, 3,2}) C IPg(Alg"(B")) = Alg(B). O

Corollary 7.35. The logic B is not protoalgebraic.
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PROOF. Suppose, towards an absurd, that B is protoalgebraic. Then, Alg™(BT) =
Alg(BT) = DMA, using Proposition 7.34. But, Alg"(BT) C Alg"(B), because
B < B*. It follows that DMA = Alg*(B*) C Alg"(B) C Alg(5) = DMA. This
contradicts the fact that Alg*(B) C Alg(B) in Theorem 7.23.7. O

Corollary 7.36. The logic Bt is not selfextensional.

PROOF. Suppose, towards an absurd, that BT is selfextensional. Then, since BT
has a conjunction, it follows by Theorem 0.46 that B is semilattice-based. Then,
it is semilattice-based of Alg(B) = DMA, using Proposition 7.34. Consequently,
BT = BgMA = B, and we reach an absurd (for instance, BT is truth-equational,
while B is not). O

7.3. Subintuitionistic logics

Subintuitionistic logics are logics in the language of intuitionistic logic that
have Intuitionistic Propositional Logic as an extension. In this section, we shall
be working in the language £ = (A,V,—, T, L), and also make use of two non-
primitive unary operators defined by = = ¢ — L and Op = T — ¢, for
every ¢ € Fm,. Subintuitionistic logics usually enjoy a relational semantics given
by classes of Kripke models where the implication — is interpreted as the strict
implication in modal logic. That is,

© —subint. ¥ = D(SO —’modal ¢)

Such approach to subintuitionistic logics is, for example, the one undertaken in
[19] and [16]. Following the previous examples however, we choose to approach
subintuitionistic logics by semantically defining them as the semilattice-based logic
of some variety having as subvariety the class of Heyting algebras. To this end, we
start by introducing the class of weakly Heyting algebras [20, Definition 3.1].

Definition 7.37. A weakly Heyting algebra is an algebra A = (A, A4, vA, =4 1,0)
such that (A, A4, vA 1,0) is a bounded distributive lattice and —# is a binary
connective satisfying:

(a—=2b)A2 (a—=2c)=a—2 (bA20);

(a—=2e) A2 (b—=Ac)=(aVvAb) =4 ¢

(a =2 A2 (b—=Ac)<a—2c

a—4a=1.

- oo

The class of all weakly Heyting algebras will be denoted by WH. As usual,
for any weakly Heyting algebra A, we denote by FiltA the set of lattice filters of
A and by Filtg A the set of lattice filters of A closed under the operation 04,
given by O04q := 1 —4 a; this filters will be called open. We shall abbreviate
O04(04(...0%a)...), where the operation 04 appears n times, with n € N, simply
by O™a. We next collect some basic properties valid in any weakly Heyting algebra.

Lemma 7.38. Let A € WH. For every a,b,c,€ A,

1. Ifa<b, thena -4 b=1;
2. If a < b, then 04 < O4.

We will consider the following equations:
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(eq-N):  zAOx =~z (z < Dz);
(e¢-MP): zA(z = y)ANy=zA(x—y) (zA(z—y) <y);
(eq-RT): (z—=y)ADOz =y ~z—y (z =y <Oz —y)).

We shall denote by WH ), WHp), and WH gr,, the subvarieties of WH ax-
iomatized by the equations defining WH plus the equation (eq-N), (eq-MP), and
(eq-RT), respectively. For the sake of completeness, we can also consider the sub-
varieties of WH axiomatized by the equations defining WH plus any combination
of two of the above equations. However, we will not consider the subvarieties
WH g1 mpy and WH ey because they induce BP-algebraizable logics. A detailed
study of all possible combinations can be found in [16]. The subvariety axiomatized
by the equations defining WH plus the equations (MP) and (N) is the variety HA
of all Heyting algebras. These varieties are related as follows [20, Fig. 1]:

FIGURE 6. Some subvarieties of the variety of Heyting algebras.

Going upwards in the diagram the lines depict strict inclusions of the classes of
algebras. The semillatice-based logic of WH, SV%H, is sometimes denoted by w/C,
(for instance, in [19]), and is called the strict implicational fragment of w/C. The
logic wk, is a paradigmatic example in our new proposal for a strong version of
a sentential logic, since it had been already observed in [38, Example 49] that the
pair of logics composed of wC, and its extension by the Necessitation rule (N), say
sKs, share several properties which resemble the well behaved pair w/k and sk.
Nevertheless, wi, and sk, do not constitute a Leibniz-linked pair, as observed
in the cited example. However, as we shall see in Theorem 7.40, (wk,)t = sK,.
Therefore, our new approach towards a strong version of a (non-protoalgebraic)
logic encompasses pairs of logics which were already recognised to be somehow
strongly related, but whose relation failed to be formally captured under a general
theory in AAL.

There are many subintuitionistic logics studied in the literature. For references,
we address the reader to [16, 19] and the papers there cited. We shall be interested
in studying the semilattice-based logics of WH, WH x,, WH (s, and WH gz, (hereby
denoted by SE, for appropriate K), as well as the {z = T }-assertional logics of the
same classes of algebras (hereby denoted by S}I , for appropriate K). These logics
stand in relation according to the following diagram, which is obtained from [16,
Theorem 2.55], having in mind [16, Definition 4.5].
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T
SWH(MP)

<
WH ()

<
S

FIGURE 7. Relations between the subintuitionistic logics to be studied.

Going upwards in the diagram the lines depict strict extensions of the logics.
The logic ZPC denotes of course Intuitionistic Propositional Logic, while the logic
VPL denotes Visser’s Propositional Logic (sometimes also called Basic Proposi-
tional Logic, and denoted by BPL) [58]. Let us collect some facts about the logics
depicted above, all of which proved in [16, 19].

Theorem 7.39.
. < < < .
1. Nome of the logics Sy, Swhs SWH(RT>’ SV—\F,H(RT), and SWH(N> = Sv—l\—/H(N) is

protoalgebraic; the logic S\%/H(IVIP is equivalential; the logic S\;\r/H(MP) is alge-

)
braizable;

2. None of the logics SV%,H, SVSVH(RT), and S\%/H(MP) is Fregean; the logic SV%,H(N) is
Fregean.

Fig< A =FiltA, with K € {WH, WH x,, WH ), WH iy } and A € Alg(Sg);
K

Fisr A=TFilto A, with K € {WH, WHx,, WH 0, WH ser) } and A € Alg(S7);

Alg(S)) = Alg(S5) = K, with K € {WH ), WH ) };

Alg(S]) € Alg(S3) = K, with K € {WH, WH ¢ };

Alg*(S5) C Alg(SS), with K € {WH, WHx,, WH 51, }.

XD T

We also known that all the logics SVS\/H’ SVS\/H(RT)’ SVSVH(MP), and SVSVH(N) are fully

selfextensional, by Theorem 0.47. Moreover, AIg*(SVSVHWP)) = AIg(SV%, since

H(MP))’
the logic SV%H(MP) is protoalgebraic. As a consequence, the logic SV%H(MP) satisfies
property (x). On the contrary, a consequence of item 6 above is that none of the
. < < < .
logics Sy, SV—VH(N), and SV—VH(RT) satisfy property (*).
With the information of Theorem 7.39 at hand, we can already establish that
SJ is the strong version of the logic Sg, for K € {WH, WH ), WH yp), WH 5r, }.
Indeed, for each such K, /-\Ig(SKS) = K and since SE is a semilattice-based logic, it
follows immediately by Corollary 6.11 that S is the strong version of SKS.

Theorem 7.40. The logic S is the strong version of S,%.

Once again, we are in the presence of a logic S such that Alg(S™)
Indeed, [16, Theorem 4.41.1] tells us that AIg((SV%,H)'*‘) = Alg(Sin)

AR
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AIg(SVSVH). The same remarks are true for the logic SVSVH(RT), also by the cited
result.

In the following, let K € {WH, WH ), WH\p), WH &1  }. We now wish to char-
acterize the Leibniz and Suszko S,%—ﬁlters on SKS—algebraS. To start with, we know
that SE has its Leibniz filters equationally definable by 7(z) = {« &~ T}, by Propo-
sition 6.5, for it is a semilattice-based logic.

Proposition 7.41. Let A € K. FEvery Leibniz SE—ﬁlter F of A is an open lattice
filter of A.

PROOF. Let A € K and F' € Fig . A. Since the Leibniz filters of SE are equa-
K

tionally definable by {z ~ T}, we have F = {a € A : (a,1) € 24(F)}. Let
a € F. Then (a,1) € 2%(F). Therefore (04a,041) € 24(F). Since 041 = 1,
because A € K C WH, we have (04a,1) € 24(F). It follows by compatibility that
04 € F. O

Lemma 7.42. Let A € K and F € Filtp A. For every a,b € F,
(a,b) € 24 (F).
K

PrRoOOF. Let A € WH and F € Filtg A. Since, in particular, F is a lattice filter, it
holds F' € Fig< A. Let a,b € F. Let ¢(x,%) € Fm, and ¢ € A arbitrary. We claim
K
that
©A(a,?) € F' < ¢*(b,) € F', (21)
for every F' € (Fig< A)F. The proof goes by induction on ¢ € Fmg.
K

" o(x,Z) =x € Var: Let F' € (}'isKgA)F. We have 9 (a,¢) = a and 2 (b,¢) =
b. Since both a,b € F C F’ by assumption, (21) holds.

® p(x,z) =T: Let F' € (.FiSKgA)F. We have ¢ (a,¢) = 1 and ¢?(b,c) = 1.
Since 1 € F”, (21) holds trivially.

® o(z,Z) = L: Let F' € (]—'iSKgA)F. We have p4(a,¢) = 0 and ¢2(b,¢) = 0.
Since 0 ¢ F”, (21) holds vacuously.

B o(z,z) = Y(x,Z) A&(z,Z): The inductive hypothesis tell us that (21) holds
for ¢ and &. Let F’ € (]-"Z'SKgA)F. Assume ¢ (a,¢) € F'. Since p?(a,¢) =
YA (a,c) A £4(a,c) < ¢¥A(a,©),&(a,c), and F' is upwards-closed, it follows
that ¢4 (a,¢) € F’ and £4(a,¢) € F'. Tt follows by the inductive hypothesis
that ¢4(b,¢) € F' and ¢4(b,¢) € F’. Since F’ is closed under meets, it
follows that ¢2(b,¢) = ¢4 (b,¢) A2 ¢A(b,¢) € F'. Similarly, one proves that
©A(b,¢) € F" implies p4(a,c) € F'.

B o(x,z) = Y(x,Z) VE(x,Z): The inductive hypothesis tell us that (21) holds
for ¢ and £. Let F' € (]-"iSKg A)F. Since K is a distributive lattice, it follows
as a consequence of the Prime Filter Theorem 0.4, that every lattice filter of
A is the intersection of the prime lattice filters containing it. In particular,
F' = N{P € PriFiltA : F' C P}. Clearly then, p4(a,¢) € F’ if and only
if pA(a,¢) € P, for every P € (PrFiltA)F’ | if and only if ¥2(a,¢) € P or
¢A(a,¢) € P, for every P € (PrFiltA)¥’, if and only if 4(b,c) € P or
¢€4(b,¢) € P (using the inductive hypothesis, since F C F’ C P), for every
P e (PrFiltA)™ | if and only if o2 (b,¢) € P, for every P € (PrFiltA)F", if
and only if p2(b,¢) € F'.
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B o(z,Z) = Y(z,z) = &(x,Z): The inductive hypothesis tell us that (21) holds
for ¢ and &. Let F' € (Fig< A)F. Assume ¢?(a,¢) € F'. Fix d := ¢*(a,?).
K

Consider the set

H={ecA:d—=*acF'}.
Claim. H is a lattice filter extending F: First, 1 € H, becaused -4 d=1¢
F’ since A € K C WH. Next, let e, f € H. Notice that

d=A (ent f)=(d =) (d=A f) e F,

since A € K C WH and F” is closed under meets. Hence, H is closed under
meets. Now, let e € H and f € A such that e < f. Then, d -4 e <
d =4 f, because A € K C WH. Since F' is upwards-closed, it follows that
d -4 f € F'. Hence, H is upwards-closed. Finally, let ¢ € F. Then,
04 =1 =4 ¢ € F C F', using the hypothesis (F open). Moreover, since
d <1, itholds 1 -4 e < d -4 a, because A € K C WH. Since F’ is
upwards-closed, it follows that e € H. Thus, F' C H.
Now, since ¢2(a,¢) = ¥4 (a,¢) =4 A(a,¢) € F’, we have £4(a,¢) € H. Tt
follows by the inductive hypothesis that £¢4(b,¢) € H. That is,

A (a,e) =2 ¢A(b0) € F. (i)
This time, fix d := ¢4 (b, ), and consider the set

G={ecA:d—=AecF'}

Similarly, one proves that G is a lattice filter extending F. Moreover, d —
d=1¢€ F'. So,d=?4(b,¢) € G. It follows by the inductive hypothesis that
YA (a,¢) € G. That is,

YA(b,2) =4 A (a,c) € F'. (ii)
But,

(oA (y—2) <(z—2)
holds in every A € K C WH. Thus, it follows by (i) and (ii), together with F’
being closed under meets and upwards-closed, that ¢ (b,¢) = 1A(b,c) —4
¢4(b,©) € F'. Similarly one proves that ¢4(b,¢) € F’ implies ¢ (a,¢) € F'.

From (21) and Corollary 0.30 it follows that (a,b) € ﬁ?,f (F). O

Proposition 7.43. Let A € K. Every open filter of A is a Suszko SE—ﬁlter of A.

ProoOF. Let A € WH and F € FiltgA. Let a € F. Since also 1 € F, it follows
by Lemma 7.42 that (1,a) € ﬁgg (F). Since ﬁgS(F) C 2(F5") and moreover
K K

1 € F5" (bear in mind that F" € Fig< A = FiltA), it follows that a € F5". So,
K
F C FS". Thus, F is a Suszko filter of A. O

Theorem 7.44. Let A € K. The Leibniz and Suszko S,% -filters of A coincide with
the open lattice filters of A. That is,

]—'z’"‘SKSA = ]-"ii‘%A = Filtg A.
PROOF. Just notice that fii%A - .Fi";SA C Filtg A C fz‘ssug A. O
K K K

We are now able to see that apart from Visser’s logic, none of the subintuition-
istic logics covered is truth-equational.
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Theorem 7.45. None of the logics SVSVH, SVSVH(RT) and SVSV
The logic VPL is truth-equational.

Houpy 0 truth-equational.

PrOOF. Let K € {WH, WH 1), WHp,}. Suppose, towards an absurd, that S,% is
truth-equational. Then, S,% = (SE)ﬂL = 8¢, by Theorems 5.5.4 and 7.40. Since the
inclusions in Figure 7 are strict, we reach an absurd. We are left to prove that VPL
is truth-equational. Since for every A € Alg(VPL) C WH, FiyprA = Filtg A =
]-'i%‘;;cA, by Theorems 7.39.4 and 7.44, the result follows from Theorem 2.30. [J

As a consequence:

Corollary 7.46. None of the logics SV%H, SVSVH(RT), and S\%,H(MP) is Fregean. The
logic VPL is fully Fregean.

PROOF. Let K € {WH, WH gz, WH ) }. Suppose towards an absurd, that Sg is
Fregean. Since moreover it has theorems, it follows by [4, Corollary 11] that SE is
truth-equational, which we have just seen to be false. As for Visser’s logic, we have
seen it already to be both fully selfextensional and Fregean. Since moreover it has
theorems, it follows by [4, Theorem 24| that it is fully Fregean. O

In the following, let K € {WH, WH ), WH r), WH i }. Having found the
strong version of S,% and characterized its Leibniz and Suszko SKS—ﬁlters, we now
turn our attention to the explicit definability of Leibniz SE—ﬁlters. Recall that in
general, given an arbitrary logic S, an algebra A, and F € FisA, F5" is always a
Leibniz filter of A. So, it follows by Theorem 7.44 that:

Lemma 7.47. Let A € K. For every ' € Fig<A, FS is a Suszko filter of A.
K

Moreover,
Lemma 7.48. Let A € K. For every ' € Fig<A, the set
K
o={a€A:0% €F, for every n € N}
is the largest open filter included in F'.
PRrROOF. Clearly, 1 € Fp, since 041 =1 —41=1¢ F. Now, let a,b € Fg. Then,
O"%a € F and O"b € F, for every n € N. Now, by induction on n € N, one proves
that
D"(a /\A b) — 0" /\A mid) ,
using the fact that a =4 (b A4 ¢) = (a =2 b) A (a =4 ¢), since A € K C WH.
We show the case n = 2 to give an idea of the arguments used in the induction
proof.

0%a A D% = (1 =4 (1 5% a)) A% (1 =2 (152 0))
=14 (1 ->%a) At (1 -2D))
=1- (154 (an?D))
=D0%(a A D) .
Since F is closed under meets, it follows that O"(a A4 b) € F, for every n € N.
Hence, a A% b € Fn. Next, let a € Fy and let b € A such that a < b. Then,

O"%a € F, for every n € N. Since a < b and A € K C WH, it easily follows by
Lemma 7.38.4 that O"a < O"b, for every n € N. Since F' is upwards-closed, it
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follows that O"b € F, for every n € N. So, b € Fn. To see that Fg is open, let
a € Fg. Then, O"a € F, for every n € N. Clearly then, 0"(0a) € F, for every
n € N. So, 0% € Fn. To see that Fy extends F, let a € F. Taking n = 0, it is
immediate that ¢ € Fg. Finally, to prove the maximality condition, let F/ C A be
an open filter below F and let a € F’. Since it is open, it follows that O"a € F', for
every n € N. Thus, a € Fg. (]

Proposition 7.49. Let A € K. For every F' € Fig< A,
K
F*=F%={a€ A:0"% € F, for every n € N}

PROOF. We know by Lemma 2.25 that if /5" is a Suszko filter, then it is the largest
one below F. And this is indeed the case for SE and algebras in K, by Lemma 7.47.
Since open filters coincide with Suszko filters on weakly Heyting algebras and Fp
is the largest open filter below F', the result follows. As to F*, it is also an open
filter below F and moreover FS" C F*, O

Corollary 7.50. The logic S,% has its Leibniz filters explicitly definable by the set
of formulas T'(z) = {O0"x : n € N}.

PROOF. Since Alg" (SKS) C K, the result follows from Lemma 6.18. O

Let us fix the Necessitation rule:
(N): zFOz.
Another consequence of the general theory of Chapter 6, particularly of Corol-
lary 6.24, is the following:

Corollary 7.51. The logic S) is the inferential extension of SE by the rule (N).

But this comes with no surprise, as it had already been established in [16,
Lemma 2.35]. We finish our study of subintuitionistic logics, by proving that none
of the strong versions studied, save Visser’s logic, is selfextensional.

Proposition 7.52. None of the logics SVT\/H; SVT/H(RTV and SVT/H(MP) is selfexten-
sional.

PrOOF. Let K € {WH,WH g7, WH,}. Suppose, towards an absurd, that S,
is selfextensional. Then, since S;(r has a conjunction, it follows by Theorem 0.46
that S is semilattice-based. Now, we have two cases. In case Alg(S/ ) = AIg(S,%)
(that is, if K = WH ), then Fig< A = FiltA, for every A € Alg(Sg) = Alg(S7).

Consequently, S = S,%, and we reach an absurd, as the inclusions in Figure 7

are strict. In case Alg((Sg)*) € Alg(Sg<) (that is, if K = WH or K = WH r)),
it follows by Theorem 0.47 that Alg(SJ) is a variety; but this contradicts [16,
Teorema 4.41.2], which tell us that Alg(S)) is not even a quasivariety. g

7.4. Semilattice-based logic of CIRL

In this section we study the semilattice-based logic Sgg, of the variety of com-
mutative integral residuated lattices (the class CIRL will be formally introduced in
Definition 7.53), together with Sz, the {z ~ 1}-assertional logic of that same
class, under the light of the general results established in Chapters 5 and 6. In
particular, we aim at characterizing the Leibniz and Suszko SERL—ﬁlters, as well as

finding the strong version (SéRL)+. For a thorough study of the logic SéRL, see
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[17]. Moreover, particular examples of multi-valued logics, such as Hajek’s Basic
Logic BL, Lukasiewicz’s infinite valued logic t.., Product Logic II, and Goédel’s
Logic GL?, are axiomatic extensions® of the logic Stz . At the end of the section
we explain how to obtain similar results for these particular logics.

The underlying language throughout this section will be £ = (A,V,—,®,1).
Our starting point is the definition of commutative residuated lattice.

Definition 7.53. An algebra A = (A, A4, VA =4 04,14) is a commutative
residuated lattice if:

1. (A, A4, vA) is a lattice;

2. (A,®4,14) is a commutative monoid*;

3. =4 is the residuum of ®#, that is, for every a,b € A, a4 ¢ < biff ¢ <

a —4 b, where <4 is the lattice order.

A commutative residuated lattice is integral, if it satisfies additionally:

4. 14 is the top element of A of <A,

The class of all (respectively, integral) commutative residuated lattices will be de-
noted by CRL (respectively, CIRL)®.

The class of (commutative integral) residuated lattices is a variety; an equa-
tional axiomatization can be found in [43, Theorem 2.7]. Given A € CRL, we
shall denote by FiltA the set of the lattice filters of A and by Filt_, A the subset
of implicative lattice filters, i.e., the set of all lattice filters F' € FiltA such that
whenever a,a -2 b€ F, then b€ F.

We next compile some useful properties known to hold on the algebras in CRL
(see for example, [43, Lemma 2.6]%), all of which we will make use of at some point
along the exposition.

Lemma 7.54. Let A € CRL. For every a,b,c € A,
1. a®? (a =2 b) <b;

a—(b—c)=(a02b) =4 c¢;

aS(a—>A b) =4 b;

a<(b—=4(a0D);

Ifa<b, thenb =4 c<a—4c;

If a <0, then ¢ 54 a < ¢ —4 a;

If a <b, then a @4 c < b4 ¢;

(a=AD) A4 (a—=Ac)<a—2 (bAAe);

0 NS G Lo

2All these logics are BP-algebraizable having as equivalent algebraic semantics a subvariety
of CIRL.

3In rigor, are axiomatic extensions of the expansion of the logic SéIRL by the constant 0.

4A monoid is an algebra (A, o,e), where o is a binary operation on A which is associative
and with a (left and right) identity e.

5We follow the notation of [43, p. 96]. The class of algebras having as defining conditions
those of CRL, but considered over the language £ = (A, V,—,®, 1,0), is denoted in the literature
by FLe. Similarly, the class of algebras having as defining conditions those of CRL and satisfying
moreover that 0 is the bottom element of A, also considered over the language £ = (A,V,—
,®,1,0), is denoted in the literature by FLew. See [43, Table 3.1, p. 188]. In general, residuated
lattices are the O-free reducts of FL-algebras.

6In [43, Lemma 2.6] the residuated lattices are not assumed to be commutative, and therefore
the properties of Lemma 7.54 are stated with the left and right division operations, denoted by \
and / respectively, which in our setting both collapse into the operation —.
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9. (a—=Ac) A2 (b—=A¢)<(a \/A b) =4 ¢;
10. a -2 b< (b—=Ac) =4 (a =4 ¢);

11. a 52 b < (c =% a) =4 (c =4 D);
12. (a—=2b) 04 (b—=4¢c)<(a—2c).

We usually refer to property (5) as suffizing; and to property (6) as prefizing.
Also, since the operation ®4 is commutative, property (7) can be applied on the
left as well.

Lemma 7.55. Let A € CRL. A lattice filter F' € Filt A is implicative if and only
if it is closed under the operation ®*.

PROOF. Assume that F' is an implicative lattice filter. Let a,b € F. Notice that
a <b—?2 (a®2b), by Lemma 7.54.4. Since a € F and F is upwards-closed, it
follows that b —4 (a ®2 b) € F. Since b € F and F is implicative, it follows that
a ®2 b € F. Conversely, assume that F is closed under the operation ®#. Let
a,a =4 b € F. It follows by assumption that a ®4 (a =4 b) € F. Moreover,
a®? (a —4 b) < b, by Lemma 7.54.1. Hence, since F is upwards-closed, b € F. 0O

Notice that none of the properties stated in Lemma 7.54 (neither the respective
proofs, for what matters) make reference to the constant 1. Notice also that, given
A € CIRL, 14 plays two important roles simultaneously: it is the multiplicative
constant of the operation ®4, and it is also the top element w.r.t. the order induced
by AA. Either considered separately, or taken together, these two conditions allow
us to prove some more useful properties.

Lemma 7.56. Let A € CRL. For every a,b,c € A,
1. a<biff 14 <a—4b;
2.14 54 a=q;
3. 14<a—>4a
In addition, if A € CIRL,
4. a®Ab<andb.

We are interested in the semilattice-based logic SéR,_ and in the {z ~ 1}-
assertional logic S|z, . In the literature, these logics are known under the terminol-
ogy of “preserving degrees of truth” and “preserving truth”, respectively. The main
reference for logics preserving degrees of truth from varieties of commutative inte-
gral residuated lattices is [17]; the particular case of Lukasiewicz’s logic preserving
degrees of truth can be found in [35].

Theorem 7.57.

1. SéRL is not protoalgebraic.

2. SgRL s not truth-equational.

3. SgRL is not Fregean.

4. StrL is BP-algebraizable, witnessed by the set of congruence formulas
p(z,y) = {z < y} and the set of defining equations T(x) = {x ~ 1}; its
equivalent algebraic semantics is CIRL.

For every A € CIRL, Fig< A =FiltA.

6. For every A € CIRL, ]:131I A Filt_, A.

7. Alg (SCIRL) - Alg(SCIRL) - Alg (SCIRL) - Alg(SéIRL) = CIRL.

&
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PROOF. 1. It is well-known that every extension of a protoalgebraic logic is still
protoalgebraic. Moreover, Lgo is not protoalgebraic, and SgRL < Lgo 2. It is
not difficult to see that that every extension of a truth-equational logic is still
truth-equational (if S < &', then every S’-filter is an S-filter, and these last are
equationally definable by assumption). Again, it is known that LOSO is not truth-
equational. 8. Suppose, towards an absurd, that SéRL is Fregean. Since moreover
it has theorems, it follows by [4, Corollary 11] that SERL is truth-equational, which
we have just seen to be false. 4.—7. [17, p. 1036, p. 1040 and Propositions
2.9,3.1,3.4]. O

For the first time in our examples, the strong version happens to be a fairly
well studied logic in the literature, whose properties allow us to spot it right away
as the strong version we are after. Indeed, it follows immediately by Corollary 6.11
that:

Theorem 7.58. The logic S¢ir, is the strong version of SéRL.

Furthermore, for arbitrary A, fi(sg )+A = ]-'i;< A, again by Corollary 6.11.
CIRL Cli
Therefore, without any further effort, we get: o
Theorem 7.59. Let A € CIRL. The Leibniz 8§RL-ﬁlter5 of A coincide with the

implicative lattice filters of A. That is,

Fit< A=Filt_A.
ScirL
Another result which follows almost effortless, given the properties known about

S¢irL, is the following:

Proposition 7.60. The logic SERL satisfies (x).

PROOF. Since St g, is algebraizable, the Leibniz operator
2% Figi, A= Conpge(sp, )A

is an order-isomorphism, for every A. But, Alg*(S&g,) = CIRL = Alg*(SSg,)
and Figy A = Filt_,A = Fige A, for every A € CIRL, by Theorems 7.57 and

CIRL

7.59. O
An important consequence is:

Proposition 7.61. The logic SéRL does not have its Leibniz filters explicitly de-
finable.

PRrROOF. It follows by Propositions 7.60 and 6.21, having in mind that SéRL is not
protoalgebraic. (|

Although SéRL does not have its Leibniz filters explicitly definable, it does have
its Leibniz filters logically definable.

Proposition 7.62. The logic SERL has its Leibniz filters logically definable by the
rule Modus Ponens.

PROOF. Just notice that, in light of Theorem 7.59, for every A € Alg*(SéRL) and

every F' € Fig< A, Fis a Leibniz SéRL—ﬁlter of A if and only if F' is an implicative
CIRL

lattice filter if and only if is closed under Modus Ponens. Hence, the result follows

from Proposition 6.30. O
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Consequently [17, Corollary 2.11],

Corollary 7.63. The logic Stir, is the inferential extension of SéRL by the rule
Modus Ponens.

PROOF. The result follows by Corollary 6.33, since SERL has its Leibniz filters
logically definable by Modus Ponens, by Proposition 7.62. (]

Moreover, since SERL is semilattice-based, it follows by Proposition 6.5 that:

Proposition 7.64. The logic SéRL has its Leibniz filters equationally definable by
@) = {z~ T}

Notice that the same result follows by Proposition 6.6, because (SERL)Jr =
Sliry is truth-equational and moreover Alg(S5g,) = Alg(S&r)-
Applying one more time the results of Chapter 6, we obtain:

Corollary 7.65. Let A € CIRL. For every I' € Fig< A,
CIRL
QAF) = QA4F*) and % (F)=Q*F").
CIRL
Moreover,
I A

GE(Fi_< AF
SCIRL

As a consequence, F' is a Suszko SaRL—ﬁlter of A if and only if F C G*, for every
Ge (.7:2'55 A)F.
CIRL

Finally, and similarly to Belnap’s logic, we will give a characterization of the
operation that turns a SgRL-ﬁlter F into its associated Leibniz SéRL—ﬁlter F*, for
commutative integral residuated lattices, inspired once again by the Birula-Rasiowa
transformation.

Definition 7.66. Let A € CIRL. For every F' € FiltA, define
U(F):={ac A:Vbec Aifa -2 bec F, then be F}.
Proposition 7.67. Let A € CIRL. If F' € FiltA, then ¥(F) € Filt_, A.

PROOF. First note that 1 € U(F), because 1 —4 b = b, by Lemma 7.56.2, for
every b € A. Let a € U(F) and b € A such that ¢ < b. Then, a =2 b=1¢ F,
by Lemma 7.56.1. Since a € ¥(F), it follows that b € F. Next, let a,b € U(F).
We claim that a ©3 b € W(F). Let ¢ ¢ F. Then, b -4 c ¢ F, because b € U(F).
Then, a =4 (b -4 ¢) ¢ F, because a € ¥(F). But,

(a@db) =2 c=a—-2 (b4 ¢),

by Lemma 7.54.2. So, (a ©2b) -4 c ¢ F. Thus, a ©2 b € U(F). Since a 04 b <
a A b, by Lemma 7.56.4, and we have seen already U(F) to be upwards-closed,
it follows that a A4 b € F. Finally, let a,a =4 b € U(F). Since ¥(F) C F,
a—AbeF. Sincea € U(F),be F. O
Proposition 7.68. Let A € CIRL. For every F € Fig< A,

CIRL

NA(F) = 27 (U(F)).
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PRrROOF. We claim that £24(F) is compatible with W(F). Let (a,b) € 24(F) and
a € U(F). Let ¢ € A such that b =4 ¢ € F. Then, (a =4 ¢,b =4 ¢) € QA(F).
Since b =4 ¢ € F, it follows that a =4 ¢ € F. Since a € U(F), it follows that
c € F. So, b€ U(F). Thus, 24(F) C 24 (V(F)).

Conversely, we claim that .QA(\IJ(F)) is compatible with F. Let (a,b) €
N4 (U(F)) and let @ € F. Then, (a =4 bb —4 b) € 24(V(F)). Since
b—A4b=1¢ Y(F), it follows that a =4 b € ¥(F). Also, a < (a =4 b) -4 b,
by Lemma 7.54.3. So, (a =4 b) =4 b € F, because F is upwards-closed. Since
a —4 b€ W(F), it follows that b € F. Thus, 24 (¥(F)) C 24(F). O

Corollary 7.69. Let A € CIRL. For every ' € Fig< A,
CIRL
F* =39(F).

PROOF. On the one hand, since 24(F) C 24 (¥(F)), we have ¥(F) € [F]*, and
hence F* C W(F). On the other hand, since 24 ((F)) C N4(F) C 2A(F*), we
have F* € [U(F)]*, and hence ¥(F)* C F*. But U(F) = U(F)*, because ¥(F) is
an implicative lattice filter of A, by Proposition 7.67, and the Leibniz SéRL—ﬁlters
of A coincide with the implicative lattice filters of A, by Theorem 7.59. (|

We finish our study of the logic SéRL by proving that its strong version is not
selfextensional (this result is not new however, it follows from [17, Theorem 4.12]).

Proposition 7.70. The logic Stig, s not selfextensional.

PROOF. Suppose, towards an absurd, that Stz is selfextensional. Then, since
S¢rL has a conjunction, it follows by Theorem 0.46 that Stjr, is semilattice-based.
Then, it is semilattice-based of Alg(S¢r.) = CIRL, using Theorem 7.57.7. Con-
sequently, Str. = SéRL, and we reach an absurd (for instance, S}, is truth-
equational, while S5z, is not). O

As final remarks, we explain how the results of the present section apply to
some particular semilattice-based logics of subvarieties of commutative integral
residuated lattices, whose strong versions turn out be well-known multi-valued
logics. In the following, let £’ be the expansion of £ by the constant 0, i.e.,
L' = (A V,—,®,1,0). Let us also define the unary operation ~%a = a —4 0,
for every L’-algebra A and every a € A.

Hajek’s basic logic BL
A BL-algebra is an L'-algebra A = (A, A4, vA, =4 ©4 1,0), where

1. The reduct (A, V,—,®, 1) belongs to CIRL;

2. a AN b=ae? (a =AD), for every a,b € A;

3. (a =4 b)vA (b =4 a) =1, for every a,b € A.
Let us denote the semilattice-based logic of the class of all BL-algebras by BLS.
The {x &~ 1}-assertional logic of BL is usually known as Héjek’s basic logic BL. It
is known that BL is BP-algebraizable witnessed by the set of equivalence formulas
p(z,y) = {z + y} and the set of defining equations 7(z) = {x ~ T}, and that
LS is an extension of BLS. From this latter fact follows 1 and 2 below, reasoning
similarly as in Theorem 7.57.1 and 2. Also, since BLS is a semilattice-based logic
with theorems, items 3 and 4 below follow by Corollary 6.11.

1. BLS is not protoalgebraic.
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2. BLS is not truth-equational.
3. (BLS)t = BL;

4. FipcA = Fig < A, for every BL-algebra A.

Lukasiewicz infinite valued logic L,
An MV-algebra is an L£'-algebra A = (A, A4, VA, =4 ©41,0), where
1. A is a BL-algebra;

2. =A-4q = q, for every a € A.

Let us denote the class of all MV-algebras algebras by MV. The semilattice-based
logic of MV is usually known as the Lukasiewicz’s infinite valued logic preserving
degrees of truth L= [35], while the {z ~ 1}-assertional logic of MV is the famous
Lukasiewicz’s infinite valued logic Fo,. It is known that Lgo is not protoalgebraic
[35, Theorem 3.11], and that L., is BP-algebraizable witnessed by the set of equiva-
lence formulas p(x,y) = {x <> y} and the set of defining equations 7(z) = {x ~ T}
[35, Theorem 2.1]. Again, since LOSo is a semilattice-based logic with theorems,
items 2 and 3 below follow by Corollary 6.11.

1. LS is not truth-equational.
2. (Lgo)Jr = Loo;
3. Firn A= ]—'z';:S A, for every A € MV.

That Lgo is not truth-equational follows from the proof of [35, Theorem 3.10], where
an MV-algebra is exhibited such that the Leibniz operator is not injective over its
Lgo—ﬁlters. So, in fact, truth is not even implicitly definable in Mod*(Lgo).

Product Logic II
A product algebra is an L'-algebra A = (A, A4, vA, =4, 04, 1,0), where

1. A is a BL-algebra;

2. ~A-Ac < ((a o4c) =4 (boA c)) —4 (a =2 b), for every a,b,c € A;

3. a N ~4a =0, for every a € A.
Let us denote the semilattice-based logic of the class of all product algebras by
IIS. The {x ~ 1}-assertional logic of the class of all product algebras is usually
known as the Product Logic II. It is known that ITS is not protoalgebraic [17,
Example B.3], while IT is BP-algebraizable witnessed by the set of equivalence
formulas p(z,y) = {z < y} and the set of defining equations 7(x) = {& ~ T}.
Again, since IIS is a semilattice-based logic with theorems, items 2 and 3 below
follow by Corollary 6.11.

1. IIS is not truth-equational.
2. (II)* =11;
3. FinA = Fij;< A, for every product algebra A.

To see 1, we reason as follows: suppose, towards an absurd, that IS is truth-
equational; then, it coincides with its own strong version, by Proposition 5.5.4;
hence, by 2 above, IIS = II; as a consequence II< is protoalgebraic; we reach an
absurd.

Godel’s Logic GL
A Gédel algebra is an L'-algebra A = (A, A4, VA, =4 ©41,0), where

1. A is a BL-algebra;
2. a ®4 a = a, for every a € A.
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Let us denote the semilattice-based logic of the class of all product algebras by
GLS. The {x ~ 1}-assertional logic of the class of all Godel algebras is usually
known as the Godel Logic’s GL. Tt is known that GL is BP-algebraizable witnessed
by the set of equivalence formulas p(x,y) = {z < y} and the set of defining
equations 7(x) = {x ~ T}. But in this case, the operations A4 and ®4 coincide,
and therefore Godel algebras form a subvariety of generalized Heyting algebras [17,
p. 1046]. It follows by [17, Theorem 4.12] that GLS = GL. So, having in mind
Corollary 6.11, GL= coincides with its own strong version.

7.5. An intermediate logic between the semilattice-based logic of CRL
and the {z A 1 ~ 1}-assertional logic of CRL

We now wish to generalize the results of the previous section by considering
commutative residuated lattices not necessarily integral. The motivation is to cap-
ture some more examples of substructural logics covered in the literature — most
notably, the Classical and Intuitionistic Linear Logics without exponentials — as
the strong versions of two new (at least to our knowledge) non-protoalgebraic logics.

The semilattice-based logic of CRL, SCSRL, does not have theorems, because there
are commutative residuated lattices which are not integral (recall that a semilattice-
based logic SE has theorems if and only if the semilattice reducts in K have a
term-definable maximum element). Consequently, the strong version (SCSRL)"’ is
the almost inconsistent logic. This being the case, and for the first time so far, we
shall work with an extension of the semilattice-based logic under consideration, one
which has as theorems a distinguished set of formulas whose interpretation in the
associated semilattice reducts is algebraically meaningful. The underlying language
in the present section will (still) be £ = (A,V,—, ©,1).

Recall that the logic &g, is induced by the class of matrices {(A, [a)) : A €
CRL,a € A} and therefore also by the class of matrices {(A,F) : A € CRL,F €
FiltA}. The substructural logic usually associated with CRL is the logic induced
by the class of matrices {(A,[14)) : A € CRL}, where [14) is the up-set of 14;
in other words, it is the 7T-assertional logic of the class of algebras CRL, where
7(z) = {x A1 = 1}. According to the notation on page 17, such logic is denoted
by S(CRL, {z ANl 1}); for ease of notation however, we shall denote it by SZg, .
So, the consequence relation Fsz s defined by

Iksz ¢ iff VA € CRLVh € Hom(Fmg, A)
if Yy € T' 14 < h(y), then 14 < h(p),

for every I' C Fm, and every ¢ € Fmz. We next collect some (known) facts about
the logic S&g, . These results can be found in [49, Chapter 6] (stated explicitly for
the {x A1 & 1}-assertional logic of CRL), but also follow from [43, Section 2.6]
(stated more generally for the {z A 1 & 1}-assertional logic of the variety FL of
FL-algebras).

Theorem 7.71.

1. 8Zg, is BP-algebraizable, witnessed by the set of congruence formulas p(x,y) =
{z <> y} and the set of defining equations T(x) = {x A1 &~ 1}; its equivalent
algebraic semantics is CRL.

2. For every A € CRL, Fisz A={F € Filt,A: 14 ¢ F}.

3. Alg"(SZp,) = Alg(SZr.) = CRL.
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For the sake of simplicity, from this point on we shall refrain from distinguishing
notationally the £-term 1 and its interpretation 14, whenever the context is clear.

We are interested in finding a logic as close as possible to the semilattice-based
logic of CRL and whose strong version happens to be the logic Sfg, . Since it must
have the same theorems as SZg, , the natural candidate is the least logic in between
SERL and 8%, with the same theorems as the latter. The logic with these properties
is defined by the class of matrices

{{A,F): A€ CRL,F €FiltA,1 € F},

as we will show in Proposition 7.73. We denote the consequence relation induced
by the class of matrices above by SéRL. Before going any further note that this
consequence relation is finitary because the class of matrices above is first-order
definable and hence closed under ultraproducts. Moreover, since for every A € CRL,
{a € A:14 < a} is a lattice filter that contains {14}, it follows by the definitions
involved that S5, < Sgry < SZi-

Let us first determine the class of SfRL—algebras.

Proposition 7.72. CRL = Alg*(S5, ) = Alg(Sck,)-
PROOF. Just notice that, since SCSRL < SéRL < S
CRL = Alg"(SZr.) C Alg*(Sgxy) € Alg(Scky) C Alg(Sgr.) = CRL,

using Theorem 7.71.3, and the fact that SCSRL is, by definition, the semilattice-based
logic of CRL. O

Proposition 7.73. The logic SfRL is the least logic in between SCSRL and S, with
the same theorems that Sy, .
PROOF. Let us first show that the theorems of SZg, and S?RL are the same. Since
SéRL < SZgys it is clear that if @ FSC%RL ¢, then & Fsr . Conversely, assume
D bsz, - Let A € CRL and F € FiltA such that 1 C F. It follows by assumption
that 1 < h(p). Since 1 € F and F is upwards-closed, it follows that h(p) € F.
Thus, I Fge< .
CRL

Assume now that S is a logic such that SCSRL <8 < 8%k and with the same
theorems that SZg, . Then, CRL = Alg(SZg,) C Alg(S) C AIg(SCSRL) = CRL, using
Theorem 7.71.3 and the fact that SERL is semilattice-based of CRL. Thus, for every
A € CRL, every S-filter of A is an SCSRL-ﬁlter of A, and therefore it is a lattice
filter of A. Moreover, since 1 is a theorem of Sy, 14 belongs to every S-filter
of A. Therefore {(A,F) : A € Alg*(S),F € FisA} C {{A,F): A€ CRL,F €
FiltA,14 € F}. This implies that S, < S. O

The consequence relation SfRL has a useful and enlightening characterization.

Proposition 7.74. For every I' C Fm, and every ¢ € Fm,
['Fg< ¢ iff YA€ CRLVa € AVh € Hom(Fmg, A)
CRL

if ¥y € T 1A% a < h(7), then 1 A% a < h(yp).

PROOF. Let us temporarily denote by F the consequence relation defined by the
condition on the right hand side of the ‘iff’ Note that F is the consequence relation
induced by the class of matrices {(A,[l A% a)) : A € CRL,a € A}. This class is
easily seen to be first-order definable. Therefore it is closed under ultraproducts,
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and this implies that the induced consequence relation is finitary. Moreover, since
this class is included in {(A, F) : A € CRL, F € FiltA,1 € F}, then SgRL <E.
Conversely, suppose that I' E . Let A € CRL and F' a lattice filter of A such
that 1 € F. Let h € Hom(Fmg, A) be such that h(I') C F. Now since F is finitary,
let TV C T be a finite set such that I" E . Then h(T') C F. Since F is a lattice
filter there is a € F such that a < h(y) for every v € I''. Therefore, 1 A a < h(y)
for every v € T". Thus, 1 A a < h(p). Since 1 € F, we have h(p) € F. It follows
that I - o< . Therefore I' F¢< ¢. O

SCRL CRL

Let us now see that the logic SéRL falls outside the classes of logics in Figure 1.

Theorem 7.75.

1. 8§RL is not protoalgebraic.
2. SéRL is not truth-equational.

PROOF. Notice that SéRL < SéRL, because CIRL C CRL, and every lattice filter F' €
FiltA, with A € CIRL, is necessarily such that 1 € F. Now, we know that S(%RL is

neither protoalgebraic nor truth-equational, by Theorem 7.57.1 and 2, respectively.
O

Unlike in the integral case, we have now left the semilattice-based setting, and
we can no longer apply the general results of Chapter 5 concerning this family of log-
ics. So, our strategy to find the strong version of SéRL will be different. For the logics
PML and B, we first characterized the Leibniz filters in order to find its respec-
tive strong version. For the subintuitionistic logics and the logic SéRL it followed
straightforwardly by Corollary 6.11. This time we will use Proposition 5.9, using
as candidate for the strong version the logic S7, . We know already that SZg, is
truth-equational, for it is algebraizable. We also know that AIg(SéRL) = Alg(SZrL)-
It remains to be checked that the least Sgg, and the least Sg, -filter coincide for
every A € Alg(S&z. ) = CRL. This is what we do next, by first characterizing the
Sk -filters of the algebras in CRL.

Proposition 7.76. For every A € CRL, the SéRL—ﬁlteTs coincide with the lattice
filters of A containing 1. That is,

Figc A={F e€FitA:1€ F}.

CRL

ProOF. Let A € CRL and F' € Fig< A. Notice that using the definition of SéRL
CRL
it easily follows that

gl_sfm 1, a@yl-sjﬂx/\y, J;Ay}—S;L z,y.

This implies that F' € FiltA and 1 € F. From the definition of SéRL it follows

immediately that if F' € FiltA is such that 1 € F, then F € ]-'iS< A. O
CRL

Hence, for every A € CRL, the least SéRL—ﬁlter on A is [1), which is exactly
the least SZg, -filter on A. We are now able to apply Proposition 5.9:

Theorem 7.77. The logic SZg 1is the strong version of SéRL.

Having in mind that SZg, is algebraizable and thus truth-equational, it readily
follows from Proposition 5.14 that:
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Theorem 7.78. Let A € CRL. The Leibniz SéRL—ﬁlters of A coincide with the
implicative lattice filters of A containing 1. That is,
}'i‘*ﬁ A={FeFit,A:1€F}.
CRL

Although not semilattice-based, SfRL still has its Leibniz filters equationally

definable. For we know that Sfg, is truth-equational witnessed by the set of defining
equations 7(z) = {x A 1 ~ 1} and moreover Alg(Sgg, ) = CRL = Alg(SZy, ). Hence,
it follows by Proposition 6.6 that:

Proposition 7.79. The logic SéRL has its Leibniz filters equationally definable by
T(z) ={xANl~1}.

Furthermore, the fact that SZg, is algebraizable also allows us to prove:
Proposition 7.80. The logic SéRL satisfies (x).

PROOF. Since SZg, is algebraizable, n4. }"iSCrRLA — ConA|g*(5CTRL)A is an order-
isomorphism, for every A. But, Alg*(SZg,) = CRL = Alg*(Sgy, ) and Fisz, A =
{F € FitL,A : 1 € F} = Fig< A, for A € CRL, by Theorems 7.75 and 7.78,

CRL

respectively. O
We can therefore apply the general theory of Chapter 6 and obtain:

Corollary 7.81. Let A € CRL. For every F' € Fig< A,
CRL
QAF) = Q4F) and 2 (F) = Q*F™).
CRL

Moreover,

Pr= ) G

As a consequence, F is a Suszko SéRL—ﬁlter of A if and only if ' C G*, for every
Ge (.Fi8;< A)F
CRL

Another interesting consequence is the following:

Proposition 7.82. The logic SéRL does not have its Leibniz filters explicitly defin-
able.

ProoF. It follows by Propositions 7.80 and 6.21, having in mind that SéRL is not
protoalgebraic. O

Just like the integral case, although SfRL does not have its Leibniz filters ex-
plicitly definable, it does have its Leibniz filters logically definable. Indeed, given
Theorem 7.78, it easily follows that SéRL has its Leibniz filters logically definable
by the rule Modus Ponens.

Proposition 7.83. The logic SéRL has its Leibniz filters logically definable by the
rule Modus Ponens.

PROOF. Just notice that, in light of Theorem 7.78, for every A € Alg” (SéRL) = CRL
and every F € ]—'iSiLA, F is a Leibniz SéRL—ﬁlter of A if and only if F' is an
implicative lattice filter if and only if is closed under Modus Ponens. Hence, the
result follows from Proposition 6.30. O
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Consequently,

Corollary 7.84. The logic SZg, is the inferential extension of SSRL by the rule
Modus Ponens.

ProoOF. The result follows by Corollary 6.33, since SéRL has its Leibniz filters
logically definable by the rule Modus Ponens, by Proposition 7.83. (]

Our final goal is to find a characterization of F* using again some Birula-
Rasiowa style transformation, as we did for the integral case. The natural candidate
for the transformation ¥ is now:

Definition 7.85. Let A € CRL. For every F € Filt A, define
U(F):={acA:Vbe Aif (aA?*1) =2 bc F,then bec F}.

Proposition 7.86. Let A € CRL. For every F € FiltA, U(F) € Filt, A and
1€ U(F).

PrOOF. First of all, 1 € W(F), because (1 A4 1) -4 b =1 =4 b = b, using
Lemma 7.56.2. Next, let a € U(F') and b € A such that a < b. Let ¢ € A be such
that (bAA1) =4 ¢ € F. Since aA1 < bAA1, we have (bAA1) =4 ¢ < (anA1) -4
¢, by suffixing. Since F is upwards-closed, it follows that (a A4 1) =4 ¢ € F. Since
a € U(F), it follows that ¢ € F. Hence, b € U(F). This shows that U(F) is
an up-set. To prove that it is closed under meets, let a,b € W(F). Suppose that
c¢ F. Then, (b A2 1) =4 ¢ ¢ F, because b € ¥(F), and therefore (a A4 1) —
(bAA1) =4 ¢) ¢ F, because a € ¥(F). Thus, ((aA*1) 04 (bAA 1)) =4 c ¢ F,
by Lemma 7.54.2. Now, notice that (a A2 1) ©4 (bAA1) < (aA21) 041 =ar? 1
and similarly that (a A 1) ®2 (b A4 1) < bAA 1, by Lemma 7.54.7. Therefore,
(an?1) oA (bA21) < (aAA 1) A2 (DAAT) = (aA?D)AA L. So, ((aABb) AR 1) =4
¢ < ((an?1)o? (bA? 1)) =4 ¢, by suffixing. Since F is upwards-closed, it
follows that ((a A% b) A% 1) =4 ¢ ¢ F. Thus, a A b € ¥(F). Finally we
prove that W(F) is implicative. To this end, and given Lemma 7.55, it is enough
to prove that W(F) is closed under ®4. Let a,b € W(F). Let ¢ ¢ F. Then,
(bAA1) -4 ¢ ¢ F, because b € U(F). Then, (a A*1) = ((bAA1) =4 ¢) ¢ F,
because a € U(F). Hence, ((a A* 1) @4 (b A% 1)) =4 ¢ ¢ F, by Lemma 7.54.2.
Now, notice that (a A4 1) @2 (bA4 1) < a®2band (a A1) 02 (bAA 1) <
141 =1, by Lemma 7.54.7. So, (a A21) A (bAA1) < 1A (a®Ab). Therefore,
(1A% (@ae2b)) 52 c< ((an?1) 04 (bAA 1)) =4 ¢, by suffixing. Since F is an
up-set and ((a A*b) A4 1) -4 ¢ ¢ F, we have (1 A4 (a ©2 b)) =4 ¢ ¢ F. Thus,
a®Abe U(F). O

Proposition 7.87. Let A € CRL. For every F € Fig< A,
CRL
NAF) = 24 (V(F)).

PRrROOF. We claim that £24(F) is compatible with W(F). Let (a,b) € 24(F) and
a € U(F). Then, ((a A1) =4 b, (bAA1) =4 b) € 24(F). Since

1<b=Ab< (bA21) 540,
by Lemma 7.56.3 and suffixing, respectively, and F' is upwards-closed, it follows
that (b A4 1) -4 b € F. By compatibility, we have (a A4 1) =4 b € F. Since
a € U(F), it follows that b € F. Thus, 2%(F) C 24 (¥(F)).
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Conversely, we claim that 24 (¥(F)) is compatible with F. Let (a,b) €
24 (U(F)) and let a € F. Then, (a =4 b,b =4 b) € 24(¥(F)). Since 1 < b —»4
b,and 1 € U(F), and ¥(F) is upwards-closed, it follows that b —4 b € W(F). Then,
by compatibility, a =4 b € U(F). Now, a < (a =4 b) =4 b, by Lemma 7.54.3.
Since a € F and F is upwards-closed, it follows that (a —4 b) =4 b € F. Also,
since (a —4 b) A4 1 < a —4 b, it follows by suffixing that

(a—=2D) 52 b< ((a—=2D) A2 1) =4 0.

Therefore, ((a —4 b) A4 1) =4 b € F. Since, as we have seen, a =4 b € U(F), it
follows that b € F. Thus, 24(¥(F)) C 24(F). 0

Corollary 7.88. Let A € CRL. For every F € Fig< A,
CRL
F* = U(F).

PROOF. On the one hand, since 24(F) C 24 (¥(F)), we have ¥(F) € [F]*, and
hence F* C W(F). On the other hand, since 24 (¥(F)) C 24(F) C 24(F*),
we have F* € [U(F)]*, and hence ¥(F)* C F*. But U(F) = ¥U(F)*, because
we have seen that W(F') is an implicative lattice filter of A containing {1}, by
Proposition 7.86, and the Leibniz SéRL-ﬁlters of A are precisely these filters, by
Theorem 7.78. O

We finish our study by showing that neither SfRL nor SZg, belong to any of
the classes of the Frege hierarchy. This contrasts with the previous example, where
the semilattice-based logic SéRL is of course fully selfextensional. The two proofs
are very similar, but both are necessary, as selfextensionality is not preserved by
extensions, and therefore we cannot use a contra-positive argument here.

Proposition 7.89. The logic SéRL is not selfextensional.

PROOF. Suppose, towards an absurd, that SfRL is selfextensional. Then, since SéRL
has a conjunction, it follows by Theorem 0.46 that SCSRL is semilattice-based. Then,
it is semilattice-based of AIg(SéRL) = CRL, using Proposition 7.72. Consequently,
S&rL = SCSRL, and we reach an absurd (for instance, SéRL has theorems, while SERL
has not). O

Proposition 7.90. The logic STg is not selfextensional.

PROOF. Suppose, towards an absurd, that SZg, is selfextensional. Then, since SZg,
has a conjunction, it follows by Theorem 0.46 that SZg, is semilattice-based. Then,
it is semilattice-based of Alg(SZg, ) = CRL, using Theorem 7.71.3. Consequently,
Sl = SCSRL, and we reach an absurd (for instance, SZz, has theorems, while SCSRL
has not). O

As a final remark, we explain how to apply the results of the present section to
Classical and Intuitionistic Linear Logic without exponentials, hereby denoted by
CLL and ZLL, respectively. The underlying language for linear logic without expo-
nentials is £ = (A, V,—,©,1,0, T, L), that is, the expansion of £ by the constants
0, T, L. An IL-algebra” is an algebra A = (A, A4, vA =4 04 14 04, T4 14),
where

1. The reduct (A, A4, vA, =4 ©4,14) belongs to CRL;

7Following the terminology of [57, Definition 8.2, p. 71].



148 CHAPTER 7. EXAMPLES OF NON-PROTOALGEBRAIC LOGICS

2. 14 is the bottom element of A, that is, for every a € A, 14 < a;
3. T4 is the top element of A, that is, for every a € A, a < T4,

Let us denote by IL the class of all IL-algebras. Consider once again the equational
transformer 7(z) = {x A1 = 1}. Define S as the logic induced by the class
of matrices {(A,T7A) : A € IL}. Then, ZLL = S and moreover ZLL is BP-
algebraizable witnessed by the set of congruence formulas p(z,y) = {z < y} and
the set of defining equations 7(z) [49, Section 6.3]. Now, define the logic S; as
the logic induced by the class of matrices {(A,F) : A € IL,F € FiltA,7A C F}.
Under similar proofs to those undertaken in the present section, one shows that:

1. S,f is not protoalgebraic, nor truth-equational, nor selfextensional.
2. (SH*T =1LL;

3. ZLL is the inferential extension of S,f by the rule Modus Ponens;
4. FizprA = .Fizf A, for every A € IL.

The classical case is carried out similarly, with the help of a non-primitive
binary connective —, defined by —¢ = ¢ — 0. A CL-algebra is an algebra A =
(A, NA VA A A 14,04, TA, 1L4), where

1. A€l

2. =A-4q = q, for every a € A.
Let us denote by CL the class of all CL-algebras. Define S| as the logic induced by
the class of matrices {(A,T7A) : A € CL}. Then, CLL = S and moreover CLL
is BP-algebraizable witnessed by the set of congruence formulas p(x,y) and the
set of defining equations 7(z), both given as above [49, Section 6.4]. Now, define
the logic Sé,_ as the logic induced by the class of matrices {(A,F) : A € CL,F €
FiltA,7A C F}. Under similar proofs to those undertaken in the present section,
one shows that:

1. Sé_ is not protoalgebraic, nor truth-equational, nor selfextensional.
2. (ST =CLL;

3. CLL is the inferential extension of Sa by the rule Modus Ponens;
4. FicrrA = J-"z';iA, for every A € CL.

7.6. An intermediate logic between the semilattice-based logic of CRLr
and the {z A (x — z) ® x — z}-assertional logic of CRLr

We finish our examples of non-protoalgebraic logics with yet another general-
ization of the previous section, namely that obtained by dropping the existence of
the multiplicative constant on Definition 7.53.

Throughout the present section, we shall be working within the language £ =
(A, V,—,®). Let us start by introducing the class of residuated lattices without
multiplicative constant which we shall be interested in.

Definition 7.91. An algebra A = (A, A4, VA, =4 0A4) is a commutative residu-
ated lattice without multiplicative constant, if:
1. (A, A4, VvA) is a lattice;
2. (A, ®4) is a commutative semigroup®;
3. =4 is the residuum of ®4, that is, for every a,b € A, a ®4 ¢ < biff ¢ <
a—4b.

8A semigroup is an algebra (A, o), where o is a binary operation on A which is associative.
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A commutative residuated lattice without multiplicative constant is relevant, if:

4. for every a,b,c € A, ((a =4 a) A (b =4 b)) =4 c <.
The class of all relevant commutative residuated lattices without multiplicative
constant will be denoted by CRLr.

So, when compared with Definition 7.53, we are here relaxing condition 2, de-
manding only the presence of a commutative semigroup, rather than a commutative
monoid. In other words, we drop the existence of the multiplicative constant 1, not
only from the language but by allowing the semigroup not to have a unit.

Notice that the reducts of the algebras in CRL to the language L are algebras
in CRLr. Indeed, let A € CRL and consider its L-reduct, say A[.. It is clear
that A, satisfies conditions 1-3 of Definition 7.91. As to condition 4, since by
Lemma 7.56.3, 1 < d =4 d, for every d € A, it follows by that

1=1A21<(a—=2a) A (b—=2)),
for every a,b € A, and therefore by suffixing
((a—>A a) A4 (b =4 b)) A c<1 st ce=c,

for every a,b,c € A. So, Al is indeed a relevant commutative residuated lattice
without multiplicative constant. Thus, CRL[;= {A[;: A € CRL} C CRLr. This
fact motivates the notation chosen for CRLr, despite the fact that, in rigor, these
algebras are not commutative residuated lattices according to Definition 7.53.

It is important to realize that all the conditions stated in Lemma 7.54 still hold
in CRLr, as none of them relies on the multiplicative constant of the underlying
residuated lattice. We shall make use of these properties throughout the present
section, although they are formally stated for algebras in CRL. We next state some
more useful inequalities which hold in all relevant commutative residuated lattices
without multiplicative constant.

Lemma 7.92. Let A € CRLr. For every a,b,c € A,

1. (a =% a) 242 b < b;

2. (a =4 a) =4 (a—=4a)<(a—?a);

3. (a—4a)o? (a—=4a)<(a—>?a);

4. if for everyi=1,...,n, withn € N, a; =4 a; < a;, then

/\;4:1,‘..,n a; =4 /\;iln a; < /\len ;-

Proor. 1. Take b = a in the relevance condition of Definition 7.91. 2. Take
b=a—=%ainl & TItholds (¢ -4 a) < (a =4 a) =2 (a =4 a), by
Lemma 7.54.10, taking a = b = c. Hence, it follows by residuation that (a —4
a) ®? (a =2 a) < (a =4 a). 4. The proof goes by induction on n € N. The basis
case follows immediately from the assumption a; -4 g < a. Now, assume that
the stated property holds for n > 1. Let ay,...,a,41 € A such that a; =4 a; < a;,
for every i = 1,...,n 4+ 1. It follows by the inductive hypothesis that

Mot Nos Mo
i=1,. i=1 )

i=1,...,n TN ) ¢

9This condition appears in [5, pp. 275,321], but it is its algebraic treatment in [41] for the
Relevance Logic R that lays the groundwork for the results of this section. It also appears in
[42, p. 373], where in fact a first study of SZ, seen as a strong version is carried out, and the
semilattice-based logic SCSRL is proposed as “weak version” of ST, . For the sake of completeness,

the condition also appears explicitly in [1, p. 22].
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Hence,
( /\Aai A /\Aai) AA an4+1 < /\Aai AA Apy1 = /\Aai.
i=1,...,n i=1,...,n i=1,....,n i=1,...,n+1
Now, since a,4; —4 Gnt1 < Gpt1, it follows that
A A A A A A
( /\ a; — /\ CLZ‘> A (an+1 — an+1) < /\ a;.
=1 n 1=1,...,n 1=1,...,n+1

Finally, by suffixing and using the relevance condition, we have

/\Aai —)A /\Aai

i=1,....,n+1 i=1,...,n+1
A A A A A A A
< [ /\ a; — /\ ai) A (a”+1 — an+1)] — /\ a;
1=1,..., n i=1 n 1=1,...,n+1

IA
P>
bS

&

O

Once again, the semilattice-based logic of CRLr, SCSRLr7 does not have theorems.
Consequently, its strong version is the almost inconsistent logic. Recall that SCSRLr
is induced by the class of matrices {(A,[a)) : A € CRLr,a € A} and therefore also
by the class of matrices {(A, F): A € CRLr, F € FiltA}.

The fragment of intuitionistic linear logic associated with the class CRLr is the
T-assertional logic of CRLr, with 7(z) := {z A (z = z) ~  — z}. Following the
notation introduced on page 17, such logic is denoted by S(CRLr7 {x ANz —zx)=
T — :r:}), once again for ease of notation, we shall denote it by SZg,,. By definition,
SZri, is the logic induced by the class of matrices {(A,T7A) : A € CRLr}, where
(recall the notation introduced on page 16)

TA={acA: AET(@)[a]} ={a€A:a—-2a<a}.
In other words, its consequence relation '_SERL, is defined by

I'bsz, ¢ iff VA€ CRLrVh € Hom(Fmg, A)
if Vy € T' h(y) € TA, then h(p) € TA,

or equivalently,

Ibsz, ¢ it VAeCRLrVh € Hom(Fm,, A)
if Vy € T h(7) = h(7) < h(7), then h(p) =4 h(p) < h(p),

for every I' C Fm, and every ¢ € Fm,. It is clear that 7 A is now playing the role
of the up-set [1) in the non-integral case, or if one prefers, the role of the singleton
{1} in the integral case. We next collect some (not-so-known) properties about
the logic Sfg,, in Theorem 7.98. These results can be found in [49, Section 6.5],
but given the fact that this is an unpublished reference, and therefore may be of
difficult access to the reader, we exhibit the proofs. To this end, we first prove some
auxiliary lemmas regarding the distinguished set 7 A, with A € CRLr, which in any
case are very insightful.

Lemma 7.93. For every A € CRLr, TA is an implicative lattice filter of A.
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PROOF. First of all, TA is non-empty, because for every ¢ € A, ¢ =4 ¢ € TA
by Lemma 7.92.2. To see that 7A is an up-set, let a € 7A and b € A such that
a <b So,a—?a<a<b Itfollows by suffixing and Lemma 7.92.1 that
b =4 b < (a—=*a) -2 b<b Thus, b € TA. Next, we prove that TA is
closed under meets. Let a,b € TA. So, a A g <agand b =4 b <b It follows
by Proposition 7.92.4 that (a A4 b) =4 (a A2 b) < aA?b. So, a N4 b € TA.
We are left to see that TA is implicative. Let a,b such that a -4 a < a and
(a =2 b) =4 (a 54 b) <a—2b. It holds,
(@ =A4b) 4 (a =A4b) = ((a A D) oA a) 4 b
by Lemma 7.54.2. But,
(a%Ab) oda=a0? (a%Ab) <b,
by Lemma 7.54.1. So,
b—2b< ((a—>A b) @Aa) -4,
by suffixing. So, using the second assumption,
b=oAb<(a—=2b) =2 (a—=2b) <a—-20.

But, since a = a < a by the first assumption,

a—)AbS (a—>Aa) —>Ab§b,
by suffixing and Lemma 7.92.1, respectively. Altogether,

b—=Ab<a—2b<b.

Hence, TA is implicative. O

Lemma 7.94. For every A € CRLr,
TA = FiltA({a —%a:a€ A}).

PROOF. On the one hand, for every a € A, a =+ a € TA by Lemma 7.92.2. Since
moreover TA is a lattice filter of A by Lemma 7.93, the inclusion Filt4 ({a S E
a € A}) C TA follows. On the other hand, let b € Filt4 ({a =4 a:a€ A}). So,
there exist ay,...,a, € A such that (a; =4 a1) A% ... A% (a,, =4 a,) < b. Now,
since a; =4 a; € TA, for every i = 1,...,n, and moreover TA is both closed under
meets and an up-set by Lemma 7.93, it follows that b € T A. ]

Lemma 7.95. For every A € CRLr and every a,b € A,
a<b & a—-2beTA.

PROOF. Suppose a < b. Then, a = a < a —4 b by suffixing. Since a —4
a € TA and TA is upwards-closed, by Lemma 7.94, it follows that a —4 b €
TA. Conversely, suppose a =4 b € 7A. Having Lemma 7.94 in mind, there
exist ai,...,a, € A such that /\il,...,n(ai —4 a;) < a =4 b. Since for every
i=1,...,n, it holds (a; =4 a;) =4 (a; = a;) < a; =* a;, by Lemma 7.92.2,
it follows by Lemma 7.92.4 that /\ilw’n(ai —4 q;) =4 /\il,m,n(ai -4 q;) <
ALyl =2 a). So, ALy (e = a) A AL (@ = ag) Sa A,

It follows by suffixing, Lemma 7.54.3 and Lemma 7.92.1 that

a<(a—=2b) =2b< ( /\A(ai -4 q;) =4 /\A(ai -4 ai)) -4 b <b.
i=1,...,n

i=1,...,n
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O

Also, notice that the proof of Lemma 7.55 is done exclusively using properties
of Lemma 7.54. Hence, it still holds for algebras in CRLr.

Lemma 7.96. Let A € CRLr. A lattice filter F' € FiltA is implicative if and only
if it is closed under the operation ©O4.

Lemma 7.97. Let A € CRLr. For every F € Filt_, A such that TACF,
Va,be A (a,b) € RAF) iff acAbeF
PROOF. Define R C A x A by
VYa,bec A (a,b) € R iff aAbeF.
We prove that R is the largest congruence on A compatible with F.
® Reflexive: Since a =4 a=(a -2 a) A (a -4 a)=a—2acTACF.
® Symmetric: This should be clear, given the definition of <.
® Transitive: Let a,b,c € A such that ¢ <4 b€ F and b <2 ¢ € F. Since F is
upwards-closed, it follows that a -4 b€ F and b -4 ¢ € F. Since
a—=2b<(b—=2e) =2 (a =2 0),

by Lemma 7.54.10, and moreover F' is upwards-closed and implicative, it follows
that a =4 ¢ € F. Similarly, c 4 a € F. So, a <4 c € F.
® Compatible with A: Let a,b € A such that a1 <4 b, € F and ay <4 by € F.
Since F is upwards-closed, it follows that a; —4 b; € F and as —* by € F. Now,
by suffixing,

a1 *)A b1 < (a1 /\A CLQ) *>A bl,
and

ag —>A bg < (a1 /\A ag) —>A bg.
Moreover,

((a1 A4 ag) —A4 bl) A ((a1 A4 ag) —A4 bg) < (a1 A4 a2> —A4 (bl AA bg),

by Lemma 7.54.8. Since F is closed under meets and upwards-closed, it follows
that (a1 /\A ag) —>A (bl /\A bg) c F. Similarly, (bl /\A bg) —)A (a1 /\A CLQ) e F. SO,
((11 /\A (12) (—)A (bl /\A b2) € F.
® Compatible with V: Let a,b € A such that a1 <4 b, € F and ag <4 by € F.
Since F is upwards-closed, it follows that a; —* by € F and as —4 by € F. Now,

a1 —>A b <aq —)A (bl \/A bg),
and

az -4 b < ag -4 (b vA ba),

by Lemma 7.54.6. Moreover,
(a1 —>A (bl \/A bg)) /\A (CLQ —>A (b1 \/A bg)) < (a1 \/A ag) —>A (bl \/A bg),

by Lemma 7.54.9. Since F is closed under meets and upwards-closed, it follows
that ((11 \/A ag) —>A (bl \/A bg) c F. Similarly, (bl \/A bz) —)A (a1 \/A CLQ) e F. SO,
((11 /\A CLQ) (—)A (bl /\A bz) € F.

® Compatible with —: Let a,b € A such that a; <4 b, € F and ay <4 by € F.
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Since F' is upwards-closed, it follows that a; —A b, e Fand ayg 52 by € F. On
the one hand,

by =4 a1 < (a3 =2 az) =4 (by =4 ay),
by Lemma 7.54.10. On the other hand,

ag =3 by < (by = ag) = (by =7 by),
this time by Lemma 7.54.11. Since F is upwards-closed, both (a1 —4 ay) —4
(by =4 az) € F and (b; =4 ag) =4 (by =4 by) € F. Moreover,

(a1 = az) =4 (b1 = a2)] O [(b1 = az) =2 (b1 =4 by)]
< (a1 = ag) =2 (b1 =4 by), (22)

by Lemma 7.54.12. Now, since F is closed under ®# (by Lemma 7.96, because F
is implicative), it follows that

[(al —A4 ag) —A4 (bl —A4 ag)} @A [(bl -4 (LQ) —A (bl -4 bz)] e F.
Since F' is upwards-closed, it follows by (22) that (a; —4 ag) =4 (b =4 by) € F.
Similarly, (b1 —)A bg) —>A (0,1 —>A ag) cF. SO, (a1 —)A Clg) (—)A (bl —>A bg) e F.
compatible with ®: Let a,b € A such that aq A b € Fanday <4 by € F. Since

F is upwards-closed, it follows that a; —A b € Fand ay =4 by € F. We claim
that

(a1 —>A bl) @A (ag —)A b2) < (a1 @A 0,2) —>A (bl @A b2) (23)
By residuation (right-to-left), this amounts to
a1 @A a9 @A ((a1 —)A bl) @A (CLQ —>A bg)) <b @A bs.
But indeed,

a1 ©* az 04 ((a1 =4 by) 04 (a2 = ba))
((11 o4 (a1 -4 b1)) o4 (ag o4 (a2 -4 b2))

< by 04 be.

Since F is closed under ®4 (by Lemma 7.96, because F' is implicative), it follows
that (a; —4 b)) ©4 (az —* by) € F. Since F is upwards-closed, it follows by (23)
that ((11 @A CLQ) —A (bl @A bg) cF. Similarly, (bl @A b2) —A (a1 @A ag) € F. So,
(a1 ©4 ap) <4 (b 02 by) € F.

® Compatible with F: Let a,b € A such that a <34 b € F and a € F. Since F is
upwards-closed, it follows that a —“ b € F. Since F is implicative, it follows that
beF.

® Largest compatible with F': Let € ConA compatible with F'. Let {(a,b) € 6. Since
6 € ConA, it follows that (a <+ b,b <4 b) € 0. But, b2 b=b—>2bcTACF.
Since 6 is compatible with F, it follows that a <+ b € F. O

Theorem 7.98.
1. Alg™(8Zg.,) = Alg(SZ.,) = CRLr.
2. For every A € CRLr, Fisz A= {FeFilt ,A:TACF}.
3. Slri, 15 BP-algebraizable, witnessed by the set of congruence formulas
p(z,y) = {z < y} and the set of defining equations T(z) = {z A (z —
)R T — ;v}; its equivalent algebraic semantics is CRLr.
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PROOF. 1. Since for every A € CRLr, TA € FiltA, by Lemma 7.93, and the
logic S&,, is induced by the class of matrices {(A, F) : A € CRLr, F € FiltA},
it is clear by definition of SZg,, that SCSRLr < SZaiy» and therefore Alg(SZg.,) C
AIg(SCSRLr) = CRLr (recall that, given a semilattice logic SE, it holds AIg(SE) =
V(K)). Conversely, let A € CRLr. Notice that the matrix (A,TA) is reduced.
Indeed, given Lemmas 7.93, 7.95, and 7.97, we have

(a,b) € RA(TA) iff aeoAbeTA iff a=b,
for every a,b € A. Now, clearly by definition of Sfg,, TA € ]-'ischLrA. So,
CRLr C Alg" (SZry,) € Alg(STri,)-
2. Since for every A € CRLr, TA € Filt_, A, by Lemma 7.93, and moreover
{a =4 a:a€ A} CTA, by Lemma 7.94, it is clear by definition of ST, that

Glsr, vz, zybss

CRLr TNy, xTAY FSgRLr Y, T,T—=Y F‘5“€—Ru Y-

This implies that every SZg, ,-filter of A € CRLr is non-empty, closed under meets,
upwards-closed and implicative. Hence, Fisz A C {F € Filt,A : TA C F}.
Conversely, let A € CRLr and F € Filt_, A such that TA C F. Consider the
algebra B = A/24(F). Let 7 : A — B be the canonical map.

Claim. 7B = wF: Let b € mF. So, there exists a € F' such that b = w(a). Let
us see that

(an? (a = a)) <2 (a—>* a) € F.

On the one hand, since (a =4 a) A a < a =4 a, it follows by Lemma 7.95
that ((a =4 a) A a) =4 (a »# a) € TA C F. On the other hand, since
a®4 (a =4 a) < a, by Lemma 7.54.1, it follows by residuation that a < (a —4
a) —*? a. Since a € F and F is upwards-closed, it follows that (a —4 a) —4
a € F. Now,

((a S a)) AA ((a —A4q) -4 a)
<(a—%a) -4 ((a —Aa) A4 a),

by Lemma 7.54.8. Since both (a =4 a) -4 (a —=? a) € TA C F and
(a =% a) -4 a € F and F is closed under meets and upwards-closed, it follows
that (a =4 a) =4 ((a =4 a) A% a) € F. Hence indeed,

(a A (a = a)) <4 (a—*a) € F.
It follows by Lemma 7.97 that
(a A (a =2 a),a =2 a) € RAF).
So, m(a A (a =4 a)) = m(a =4 a). That is, m(a -4 a) < 7(a). So,
b—=Bb=mn(a) =B n(a) =7(a =2 a) <7(a) =b.

Thus, b € TB.
Conversely, let b € 7B. Since 7 is surjective, there exists a € A such that
b= n(a). Since, b -8 b < b, it holds

m((a —A4 )4 a) = (r(a) —B m(a)) AB 7(a)

=b-Bo)Atb=b-Bb=r(a " a).
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So, ((a =? a) AM* a,a -4 a) € NA(F). Since a =4 a € TA C F, it follows

by compatibility that (a —A a) A q € F. Since F is upwards-closed, it follows

that a € F. Hence, b = w(a) € 7 F.
Finally, since Kerm = .QA(F ) is compatible with F, it follows that

F=r"'7F =x"'(1B).

But, 7B € Fisz, B. Thus, I' € Fisz, A, by Lemma 0.24.1.
3. Fix p(z,y) = {z +> y} and 7(z) = {& A (z = z) = © — x}. By definition,
SZry, is the T-assertional logic of CRLr. So, condition (ALG1) on page 24 holds
taking K = CRLr. We claim that condition (ALG3) holds as well for CRLr, that
is, v ~ y Ak, T(p(z,y)). Assume A € CRLr and let h : Fm — A such that
h(z) = h(y) = a. On the one hand, h[(z ¢ y) A ((z < y) = (z + y))] = (a &4
a) A ((a <2 a) 24 (a 4 a)) = (a <2 a) 24 (a < a), using Lemma 7.92.2.
On the other hand, h((z +> y) = (z ¢ y)) = (a <4 a) -4 (a +* a). Hence,
CRLr E 7(p(z,y)). Conversely, assume A € CRLr and let h : Fm — A such
that h[(z < y) A ((z > y) = (z © y))] = h((z < y) = (z < y)). Since
h((z < y) = (z > y)) = h(z & y) =4 h(z > y) € TA and TA is upwards-
closed, it follows that h(z <> y) € TA. So, both h(z) =4 h(y) € TA and h(y) =4
h(z) € TA. It now follows by Lemma 7.95 that h(xz) < h(y) and h(y) < h(x). So,
h(z) = h(y). Thus, CRLr E z = y. We conclude that (ALG3) holds for CRLr, as
claimed. Therefore, S7g,, is finitely algebraizable witnessed by p and 7. Finally,
as we had seen already that SZg, is finitary, it is in fact BP-algebraizable. The
last statement follows by 1. O

We now turn our attention to a logic not previously considered in the literature,
at least to our knowledge. Following the previous example, we consider the least
logic in between SgRLr and SZg,, with the same theorems as S ,. The logic with
these properties is defined by the class of matrices

{(A,F} : A€ CRLrF eFiltA,7A C F},

as we will show in Proposition 7.100. We denote the consequence relation induced
by the class of matrices above by SéRLr. Once again, this consequence relation is
finitary because the class of matrices above is first-order definable and hence closed
under ultraproducts. Moreover, since for every A € CRLr, 7 A is a lattice filter of A,
by Lemma 7.93, it follows from the definitions involved that S&s,, < Sgky, < S&kir-

Having defined both SZg, and Sg, it is worth mentioning that the these
logics are expansions of the logics SZg,, and Sgy,, (by a constant 1), respectively.
Indeed, recall that CRL [ € CRLr, and notice that furthermore, given a lattice
filter F' € FiltA such that 1 € F, with A € CRL, it is necessarily the case that
7(A) C F, because 1 < a —4 a, for every a € A, by Lemma 7.56.3.

Let us now determine the class of SéRLr-algebras.

Proposition 7.99. CRLr = Alg(Sg,,) = Alg* (Scky,)-
PROOF. Just notice that, since SCSRU < Sghir < SZaies
CRLr = Alg™ (SZry,) C Alg” (SéRLr) < A'E(SéRLr) < Alg(SCSRLr) = CRLr,

using Theorem 7.98.1, and the fact that SCSRLr is, by definition, the semilattice-based
logic of CRLr. O
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Proposition 7.100. The logic SéRLr is the least logic in between SCSRLr and S&ry,
with the same theorems that SZg, ,.

PROOF. Let us first show that the theorems of Sfg,, and SéRLr are the same. Since
Schir < SZris, it is clear that if @ }_Sfmr ¢, then & sz . Conversely, assume
o l_SgRLr p. Let A € CRLr, F € FiltA such that TA C Fand h: Fm — A. It

follows by assumption that h(¢) € T A. Clearly then, h(¢) € F. Thus, @ Fg< ¢.

CRLr
Assume now that S is a logic such that SCSRLr < § < 8%y, and with the same

theorems that SZg.,- Then, CRLr = Alg(SZx,,) C Alg(S) C Alg(S&,,) = CRLr.
Thus for every A € CRLr, every S-filter of A is a SCSRLr—ﬁlter and therefore, since
it is non-empty, it is a lattice filter of A. Moreover, since all formulas of the form
x — x are theorems of SZg,,, and having Lemma 7.94 in mind, 7 A is included in
every S-filter of A. Therefore, {(A, F) : A € Alg(S),F € FisA} C {(A,F): Ae
CRLr, F € FiltA,7A C F}. This implies that S&y, < S. 0

Once again, let us see that the logic SéRLr falls outside the classes of logics in
Figure 1.

Theorem 7.101.

1. SéRLr s not protoalgebraic.
2. 'SéRLr is mot truth-equational.

PrOOF. The logic SéRL is an expansion of SfRLr. Now, both protoalgebraicity and
truth-equationality are preserved through expansions. And we know that 8§RL is
neither protoalgebraic nor truth-equational, by Theorem 7.75.1 and 2, respectively.

O

In order to find the strong version of the logic Sy, ,, we follow the same strategy
as we did for the non-integral case. That is, we first prove that Alg(SZg.,) =
AIg(SfRLr), and that moreover for any SfRLr—algebra, the least SZg(,-filter and the
least SéRLr coincide. To this end, we next characterize the SéRLr filters of algebras
in CRLr.

Proposition 7.102. Let A € CRLr. The SéRLr-ﬁlters of A coincide with the lattice
filters of A containing T A. That is,
Figx A={F e€FiltA:TAC F}.
CRLr

PROOF. On the one hand, using the definition of S?Ru and Lemma 7.94, it easily
follows that

o+ H H .

S5 T =, T,y Sjmx/\y, TNy Sjmx’y

CRLr

So, given A € CRLr and F' € Fig< A, it must hold F' € FiltA and TA C F. On

CRLr

the other hand, from the definition of SfRL it follows immediately that if F' € FiltA
is such that 7A C F, then F € Fig< A. O

CRL

Here arrived, and unlike the logic SéRL, it is not immediate to see that the least
SéRLr—ﬁlter of an algebra in CRLr coincides with its least SZg, -filter. Of course, the
natural candidate is 7A. To see that it fulfils our requirements, notice that it is
an implicative lattice filter of A € CRLr, by Lemma 7.93, and that moreover, the
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SjRLr—ﬁlters of any A € CRLr are precisely those lattice filters which contain TA,
by Proposition 7.102. Therefore, for every A € CRLr,

(Fisz A=()Fisg, A=TA.

CRLr

We are now able to apply Proposition 5.9:
Theorem 7.103. The logic Sfg,, is the strong version of SéRLr'
It readily follows by Proposition 5.14 that:

Theorem 7.104. Let A € CRLr. The Leibniz SéRLr—ﬁlters of A coincide with the
implicative lattice filters of A which contain TA. That is,
]-'z';< A={FeFit,A:TACF}.
CRLr
Once again, although not semilattice-based, 8§RLr still has its Leibniz filters
equationally definable. For we know that SZg,, is truth-equational, and moreover
AIg(SfRLr) = CRLr = Alg(SZg,,)- Hence, it follows by Proposition 6.6 that:

Proposition 7.105. The logic S?Ru has its Leibniz filters equationally definable
by 7(z) = {z A (x = 2) =z — a}.

Furthermore, the fact that SZg,, is algebraizable gives us:
Proposition 7.106. The logic SéRLr satisfies ().

PROOF. Since SZg,, is algebraizable, 24 : Fisz, A — Conppg(sz, A is an order-
isomorphism, for every A. But, Alg*(SZg,,) = CRLr = Alg*(Sg,,) and Fisg, A=

{F € Fit,A : TA C F} = fij;< A, for every A € CRLr, by Theorem 7.98,
CRLr

Proposition 7.99 and Theorem 7.104. (]
We can therefore apply the results of Chapter 6 and get:
Corollary 7.107. Let A € CRLr. For every F' € Fig<x A,
C

RLr
QAF) = QAF) and 2 (F)=Q4(F%).
CRLr
Moreover,
FSu — m a*.
Ge(Fi AT
CRLr

As a consequence, F' is a Suszko SéRLr—ﬁlter of A if and only if F C G*, for every

(Fig<A)F.
CRLr
Just like the non-integral case, the logic SéRLr fails to satisfy the explicit defin-

ability of its Leibniz filters.

Proposition 7.108. The logic SéRLr does mot have its Leibniz filters explicitly
definable.

ProoF. It follows by Propositions 7.106 and 6.21, having in mind that SéRLr is not
protoalgebraic. O

Nevertheless, SéRLr does admit the logical definability of its Leibniz filters.

Proposition 7.109. The logic SéRL has its Leibniz filters logically definable by the
rule Modus Ponens.
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PROOF. Just notice that, in light of Theorem 7.104, for every A € Alg* (SéRLr) and
every I' € ]:iSfRL,A’ F is a Leibniz SéRLr—ﬁlter of A if and only if F' is an implicative
lattice filter if and only if is closed under Modus Ponens. Hence, the result follows
from Proposition 6.30. (]

Consequently,

Corollary 7.110. The logic SZg,, is the inferential extension of SfRLr by the rule
Modus Ponens.

PrOOF. The result follows by Corollary 6.33, since SfRLr has its Leibniz filters
logically definable by the rule Modus Ponens, by Proposition 7.109. ([

We now wish to find a Birula-Rasiowa style characterization of F*. Not sur-
prisingly, the set T A is also reflected in the definition of the transformation .

Definition 7.111. Let A € CRLr. For every F € FiltA such that 7A C F, define
U(F):={acA:Ybe AVce TAif (an*c) > be F, thenb € FJ}.

Proposition 7.112. Let A € CRLr. For every F' € FiltA such that TA C F,
U(F) is an implicative lattice filter of A and such that TA C U(F).

PROOF. First, let a € ¥(F) and b € A such that a < b. Let c€e TA and d € A
such that (b A% ¢) -4 d € F. Notice that a A% ¢ < b A4 c. Hence, by suffixing, it
follows that

(bA2e) 52 d < (an?e) =4 d

Since F' is upwards-closed, it follows that (a A4 ¢) =4 d € F. Since a € W(F), it
follows that d € F. Hence, b € U(F).

Now, let a,b € U(F). Let d € A such that d ¢ F. Let ¢ € TA. Then,
[bA2 ((a =4 a) A (¢ =2 ¢))] =4 d ¢ F, because b € U(F) and (a —4
a) A (¢ =% ¢) € TA. Then, [a A ((b =2 b) A% (c 54 ¢))] =2 [(0A4 ((a =4
a) A (¢ =4 ¢))) =4 d] ¢ F, because a € U(F) and (b =4 b) A4 (c »4 ¢) € TA.
That is,

[[a A (b =2 b) A (c >4 0)] 04 [bAA ((a =4 a) A% (c -2 c))]] SAd¢F,
by Lemma 7.54.2. Now,

[a

a

(b=2D) A% (c =2 0)] @2 [bA? ((a =2 a) A (c =72 ¢))]

AA
o4 (a =4 a)

[VARVAN
8

using Lemma 7.54.7 twice and 1, respectively. Similarly,
[a A (b =2 b) A% (c =2 0))] @4 DA% ((a =2 a) A (c =% )]

<(b—2b) %
<b.
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Finally,
a AA ((b SAD) AL (e oA )] O b AA ((a A ) A (e oA )]
<(c=2 ) (c=2¢)
<(c—=40)
<cg

using Lemma 7.54.7 twice, Lemma 7.92.3, and the fact that ¢ € T A, respectively.
So, by definition of infimum,
[an? (b =2 b)) A% (c =2 ¢))] 02 [bA% ((a =2 a) A% (c =2 ¢))] < (an?b)Ade
So, by suffixing,
((a Aty At c) 2 d

< [[an® (02 0) A% (e 52 )] 0% p A% ((a =2 a) A% (e 54 0)]] =4 d.
Since F' is upwards-closed, it follows that ((a A b) A4 c) —A4 d ¢ F, for every
ce€TA. Thus, a A b€ U(F).

Next, let a,b € U(F). Let d € A such that d ¢ F. Let ¢ € 7A. Then,
(bA2 (c =4 ¢)) =4 d ¢ F, because b € U(F). Then, (a A (c =4 ¢)) =4
[(bAA (c =4 ¢)) =4 d] ¢ F, because a € U(F). That is,

[(a A (e =2 0) 0? (DAt (c —4 0))] —Ad¢F,
by Lemma 7.54.2. Now,
(an? (c =2 ¢)) 0% (bA? (e 52 ) <a@?b,
using Lemma 7.54.7 twice. Moreover,

(an(c=2e)) o (bAt (c—=2c) < (e )% (et ) <c—s?c<e,
using Lemma 7.54.7 twice again, Lemma 7.92.3, and the fact that ¢ € T A, respec-
tively. So, by definition of infimum,

(antc) @ (bate) < (a@?b) A e
So, by suffixing,
((a o4 b) A4 ¢) —4d< [(a AA ¢) o4 (b/\A )] —A4d¢F

Since F is upwards-closed, it follows that ((a ® b) A4 ¢) =4 d ¢ F, for every
c € A. Thus, a ©4 b € U(F).

So far, we have proved that ¥(F') is an implicative lattice filter of A. We
are left to prove that it contains 7A. Let a € TA. Let b € A and ¢c € TA
such that (a AA c) —Ap e F. Since a -4 a < a and ¢ -2 ¢ < ¢, it holds
(@ =4 a) A (c =4 ¢) < a A c. Tt follows by suffixing that (a A4 ¢) —4
b < ((@a =4 a) A (c =4 ¢)) =4 b. Since F is upwards-closed, it follows that
((a =2 a) At (c =24 ¢)) 52 be F. But ((a =% a) A (c =2 ¢)) =2 b < b, by
the relevance condition. Again, since F' is upwards-closed, it follows that b € F.
Hence, a € ¥(F). Thus, TA C U(F). O
Proposition 7.113. Let A € CRLr. For every F' € Figx A,

CRLr

NA(F) = 27 (U(F)).
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PRrROOF. We claim that £24(F) is compatible with W(F). Let (a,b) € 24(F) and
a € U(F). Let c € TA. It holds, ((a A (¢ =4 ¢)) =2 b, (bAA (c =4 ¢)) -4
b) € 24 (F). Moreover, by suffixing,

bbb < (bA% (c =2 ) =20
Since b -4 b € TA C F and F is upwards-closed, it follows that (b A (e =4
¢)) =4 b€ F. It follows by compatibility that (a A% (¢ +# ¢)) =4 b € F. Since
a € W(F), it follows that b € F. Thus, 24(F) C 24 (¥(F)).

Conversely, we claim that 24 (¥(F)) is compatible with F. Let (a,b) €
N4 (U(F)) and let @ € F. Then, (a =4 bb —4 b) € 24(V(F)). Since
b =4 becTA C U(F), it follows by compatibility that a —4 b € U(F). Now,
a < (a =4 b) =4 b, by Lemma 7.54.3. Since a € F and F is upwards-closed, it
follows that (a =4 b) =4 b€ F. Let c € TA. Since (a =2 b) A c<a—Ab, it
follows by suffixing that

(a—=2b) =2b< ((a—=2b) A% c) =20,
So, ((a =+ b)Ac) =4 b€ F. Since a -4 b € U(F), it follows that b € F. Thus,
N4(U(F)) C R4(F). 0

Corollary 7.114. Let A € CRLr. For every F € Fig<x A,
CRLr
F* =9(F).

PROOF. On the one hand, since 24(F) C 24 (¥(F)), we have ¥(F) € [F]*, and
hence F* C ¥(F). On the other hand, since .QA(\I/(F)) C RAF) C 24(F),
we have F* € [U(F)]*, and hence ¥(F)* C F*. But U(F) = U(F)*, because
we have seen that W(F') is an implicative lattice filter of A containing TA, by
Proposition 7.112, and the Leibniz SéRLr—ﬁlters of A are precisely these filters, by
Theorem 7.104. (]

We finish our study by showing that neither S?RU nor SZg,, belong to any of
the classes of the Frege hierarchy.

Proposition 7.115. The logic SéRLr is mot selfextensional.

PROOF. Suppose, towards an absurd, that SéRLr is selfextensional. Then, since
SgRLr has a conjunction, it follows by Theorem 0.46 that SgRLr is semilattice-based.
Then, it is semilattice-based of AIg(SéRLr) = CRLr, using Proposition 7.99. Conse-
quently, Sfg(, = SCSRU, and we reach an absurd (for instance, SSTRL has theorems,
while SCSRLr has not). O

Proposition 7.116. The logic SZg,, is not selfextensional.

PROOF. Suppose, towards an absurd, that SZg , is selfextensional. Then, since
SZrL, has a conjunction, it follows by Theorem 0.46 that SZg,, is semilattice-based.
Then, it is semilattice-based of Alg(SZg,,) = CRLr, using Theorem 7.98.1. Conse-
quently, Sfg,, = SCSRLr, and we reach an absurd (for instance, STz, has theorems,
while SCSRLr has not). O

As final remarks, we make a few comments on how the results of the present
section relate to the system R of Relevance Logic. Consider the class of £L—algebras
in CRLr which satisfy moreover the additional condition:

1. ®4 is square increasing, that is, for every a € A, a < a ©4 a.
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Let us denote such class by CRLrsq. All the auxiliary results we have proved con-
cerning the set T A, with A € CRLryq, are still valid. In particular, the logic S(":'Rl_rsq
induced by the class of matrices {(A,TA) : A € CRLry,} is BP-algebraizable wit-
nessed by the set of equivalence formulas p(x,y) = {z <> y} and the set of defining
equations 7(z) = { A (x — z) &« — z}. Given A € CRLry, the Serir,filters of
A are the implicative lattice filters containing 7A. Also, let SéRLqu be the logic in-
duced by the class of matrices {(A, F): A€ CRLrg, F € FiltA, 7A C F} Given
A € CRLryq, the S?RLrsq—ﬁlters of A are the lattice filters containing 7 A. Now, it
can be proved that, for every A € CRLryq and every a,b € A, a A b <aeAb. As
a consequence, and having in mind Lemma 7.96, every lattice filter of A € CRLrgq
is implicative. Consequently, Stg, = SéRLrsq.

Consider the language £’ = (A, V,—,®,0), that is, the expansion of £ by the
constant 0. Consider moreover the unary operation =“4a := a —4 0, for every £'-
algebra A and a € A. An R-algebra is an £'-algebra A = (A, A4, VA =4 ©4,0),
where

1. The reduct (A, A4, VA, —4 ©4) belongs to CRLrg;

2. =A4-4¢ < q, for every a € A.
Let us denote the class of all R-algebras by R. All the auxiliary results we have
proved concerning the set TA, restricted to A € R, can be found in [42]. In
particular, R is the logic induced by the class of matrices {(A,TA) : A € R}. Tt is
well-known that R is BP-algebraizable witnessed by the set of equivalence formulas
p(z,y) = {z +> y} and the set of defining equations 7(z) = {zA(z = z) &z — =z}
[11, Theorem 5.8]. Now, define the logic R~ as the logic induced by the class of
matrices {(A,F> :AeRF eFiltA T7A C F} By the same considerations as
above, we have RS = R.






Conclusions

In this dissertation we have aimed at extending the traditional AAL tools to
non-protoalgebraic logics. The two main concepts investigated to this end were the
Suszko operator [24] and the Leibniz filters [37]. Each of these concepts motivated
a broader and independent study that eventually culminated in the two parts of
the present dissertation. Part I builts and develops an abstract framework which
intends to unify under a common treatment the study of the Leibniz, Suszko, and
Frege operators in AAL. Part II generalizes the theory of the strong version of
protoalgebraic logics, started in [37], to arbitrary sentential logics.

The abstract notion which ecompasses the Leibniz, Suszko, and Frege, operators
is that of S-operator (Definition 1.1). Its origin roots back to [24, p. 199], under
the name of “mapping compatible with S-filters”. In the quest of finding general
properties common to the three paradigmatic AAL S-operators, we have introduced
the new notion of coherence (Definition 1.28), a weaker property than commuting
with inverse images by surjective homomorphisms. Under the assumption of coher-
ence of a family of S-operators, we established a General Correspondence Theorem
(Theorem 1.38), which generalizes several known correspondence theorems in AAL,
namely Blok and Pigozzi’s well-known Correspondence Theorem for protoalgebraic
logics [10, Theorem 2.4], Czelakowski’s less known Correspondence Theorem [24,
Proposition 2.3] for arbitrary logics, and also the first strengthening obtained for
protoalgebraic logics by Font and Jansana [37, Corollary 9.1].

A family of S-operators V has associated to it the notions of V-class and V-
filter. We propose as new notion of Leibniz filter precisely that of §2-filter (see
page 48). Our new definition of Leibniz filter coincides with the previous one
for protoalgebraic logics ([37, Definition 1]), and furthermore it is applicable to
arbitrary sentential logics. This fact pathed the way to generalize several known
results for protoalgebraic logics, to arbitrary sentential logics. For instance, given
any sentential logic S, the Leibniz S-filters are precisely the least elements of the
full g-models of S (Proposition 2.9; compare with [36, Proposition 3.6]). The notion
of §2s-filter was also thoroughly investigated. The Suszko S-filters turn out to be
the least elements of the full g-models of & which are moreover up-sets. In fact,
given an arbitrary algebra A and F' € FisA, F is a Suszko filter of A if and
only if (FisA)¥ is a full g-model of S (Theorem 2.29). Suszko filters revealed to
be deeply connected with the class of truth-equational logics, introduced in [55].
Indeed, a logic S is truth-equational if and only if every S-filter is a Suszko filter
(Theorem 2.30). Furthermore, with the notion of Suszko filter at hand, a new
Isomorphism Theorem for protoalgebraic logics was proved (Theorem 3.8), very
much in the same spirit of the famous one for algebraizable logics ([11, Theorem
3.7]; see [48, Theorem 5.2] for the non-finitary case) and for weakly algebraizable
logics ([25, Theorem 4.8]).
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Following the characterization of truth-equational logics in terms of the Suszko
operator given in [55], new characterizations in terms of the Suszko operator
for other classes of logics belonging to the Leibniz hierarchy were proved (The-
orems 3.13 and 3.16). To mention just one, a logic is protoalgebraic if and only if
the Suszko operator commutes with inverse images by surjective homomorphisms
(Theorem 3.12).

Some new contributions to the study of truth-equational logics were also put
forward, specially concerning the behaviour of Suszko operator inside this class of
logics. These results are collected in Chapter 4. In particular, we have established
that a logic is truth-equational if and ony if the Suszko operator ﬁg is a structural
representation, for every A (Theorem 4.13). The same condition imposed only over
the formulas algebra F'm turns out to characterize truth definability in the class
LMod>"(S) (Theorem 4.21), a problem left open in [55].

Chapter 5 was devoted to developing a general theory of the strong version
ST of a sentential logic S. We payed special attention to the interplay between
the Leibniz S-filters and the ST-filters, namely by investigating several conditions
upon which these two families of S-filters coincide. Some of these conditions force
moreover the classes of S-algebras and St-algebras to coincide. For as it turns out,
the class Alg(S™) may be strictly contained in the class Alg(S). This situation con-
trasts with the protoalgebraic scenario, where in general, for every protoalgebraic
logic S, Alg(S) = Alg*(S) = Alg"(S™) = Alg(S™).

In Chapter 6 we considered three definability criteria for the Leibniz S-filters
— equational, explicit, and logical. The first one is a new criterion, while the
latter two are generalizations to arbitrary sentential logics of the respective notions
introduced for protoalgebraic logics in [37]. Table 3 summarizes the situation for
the examples covered in Chapter 7.

Definability of Leibniz filters

Equational | Explicit | Logical
PML Yes Yes Yes
B Yes No Yes
%,H = wk, Yes Yes Yes
VS\/H(RT) Yes Yes Yes
SVSVH(N) = VPL Yes Yes Yes
SV%,H(MP) Yes Yes Yes
SSrL Yes No Yes
éRL Yes No Yes
éRLr Yes No Yes

TABLE 3. Leibniz filters’ definability criteria of the logics covered
in Chapter 7

In Chapter 7 we applied the general results of Chapters 5 and 6 to a wealth of
non-protoalgebraic logics covered in the literature. Namely, Positive Modal Logic
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[28], Belnap’s logic [8], some subintuitionistic logics studied in [16], logics preserv-
ing degrees of truth w.r.t. varieties of integral commutative residuated lattices [17],

as well as two logics not previously considered (at least to our knowledge), which

are intermediate logics between the semilattice-based logics and the algebraizable

logics usually associated with the class of commutative residuated lattices and com-

mutative residuated lattices without multiplicative constant, respectively. For each
particular logic S, we have characterized its Leibniz and Suszko S-filters, as well as
determined its strong version ST. Both S and ST were classified inside the Leibniz
and Frege hierarchies. We summarize the situation in Tables 4 and 5.

Leibniz hierarchy Frege hierarchy

Proto. | Truth-eq. | Fregean | Self. | Fully Self. | Fully Freg.
PML No No No Yes Yes No
B No No No Yes Yes No
wky No No No Yes Yes No
S%IH(RT) No No No Yes Yes No
VPL No Yes Yes Yes Yes Yes
VSVH<MP) Yes No No Yes Yes No
SSrL No No No Yes Yes No
SéRL No No No No No No
Schis No No No No No No

TABLE 4. Classification of the logics covered in Chapter 7 inside

the Leibniz and Frege hierarchies.

Leibniz hierarchy Frege hierarchy

Proto. | Truth-eq. | BP-algebraizable | Selfextensional
PMLY No Yes No No
Bt No Yes No No
wkyT No Yes No No
8\;\|—/H(RT) No Yes No No
VPL No Yes Yes Yes
SVT,H(MP) Yes Yes Yes No
StirL Yes Yes Yes No
SerL Yes Yes Yes No
S&rir Yes Yes Yes No

TABLE 5. Classification of the strong versions of the logics covered
in Chapter 7 inside the Leibniz and Frege hierarchies.
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It should come with no surprise that the vast majority of the logics studied
is neither protoalgebraic nor truth-equational. In fact, these two conditions were
a priori requesites for their study in the first place. Also, observe that the logics
SéRL and SéRLr fall outside both hierarchies. Interestingly enough, all the strong
versions studied turned out to be truth-equational (altough this is not a general
fact, as observed on page 122). It is worth adding that the strong versions which
are not protoalgebraic (namely, PMLT, BT, wk,t, and S\}VH(RT)) constitute new
examples of “strictly” truth-equational logics. As for the Frege hierarchy, appart
from Visser’s logic, all the strong versions studied fall outside the Frege hierarchy.
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