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Abstract

This dissertation presents the results of our research on some recent develop-
ments in Abstract Algebraic Logic (AAL), namely on the Suszko operator [24],
the Leibniz filters [37], and truth-equational logics [55]. Part I builts and develops
an abstract framework which unifies under a common treatment the study of the
Leibniz, Suszko, and Frege operators in AAL. Part II generalizes the theory of the
strong version of protoalgebraic logics, started in [37], to arbitrary sentential logics.

The interplay between several Leibniz- and Suszko-related notions led us to
consider a general framework based upon the notion of S-operator (inspired by
that of “mapping compatible with S-filters” [24, p. 199]), which encompasses the
Leibniz, Suszko, and Frege operators. In particular, when applied to the Leibniz
and Suszko operators, new notions of Leibniz and Suszko S-filters arise as instances
of more general concepts inside the abstract framework built. The former general-
izes the existing notion of Leibniz filter for protoalgebraic logics [37] to arbitrary
logics, while the latter is introduced here for the first time. Several results, both
known and new, follow quite naturally inside this framework, again by instantiating
it with the Leibniz and Suszko operators. Among the main new results, we prove
a General Correspondence Theorem (Theorem 1.38), which generalizes Blok and
Pigozzi’s well-known Correspondence Theorem for protoalgebraic logics [10], as well
as Czelakowski’s less known Correspondence Theorem for arbitrary logics [24]. We
characterize protoalgebraic logics in terms of the Suszko operator as those logics in
which the Suszko operator commutes with inverse images by surjective homomor-
phisms (Theorem 3.12). We characterize truth-equational logics in terms of their
(Suszko) S-filters (Theorem 2.30), in terms of their full g-models (Corollary 2.31),
and in terms of the Suszko operator, a characterization which strengthens that of
[55], as those logics in which the Suszko operator is a structural representation from
the set of S-filters to the set of Alg(S)-relative congruences, on arbitrary algebras
(Theorem 4.13). Finally, we prove a new Isomorphism Theorem for protoalgebraic
logics (Theorem 3.8), in the same spirit of the famous one for algebraizable logics
[11] and for weakly algebraizable logics [25].

Endowed with a notion of Leibniz filter applicable to any logic, we are able
to generalize the theory of the strong version of a protoalgebraic logic developed
in [37] to arbitrary sentential logics. Given a sentential logic S, its strong version
S+ is the logic induced by the class of matrices whose truth set is Leibniz filter.
We study three definability criteria of Leibniz filters: equational, explicit and log-
ical definability. Under (any of) these assumptions, we prove that the S+-filters
coincide with Leibniz S-filters on arbitrary algebras. Finally, we apply the general
theory developed to a wealth of non-protoalgebraic logics covered in the literature.
Namely, we consider Positive Modal Logic PML [28], Belnap’s logic B [8], the
subintuitionistic logics wKσ [19] and Visser’s logic VPL [58], and Lukasiewicz’s
infinite-valued logic preserving degrees of truth [35]. We also consider the gener-
alization of the last example mentioned to logics preserving degrees of truth from
varieties of integral commutative residuated lattices [17], and further generaliza-
tions to the non-integral case, as well as to the case without multiplicative constant.
We classify all the examples investigated inside the Leibniz and Frege hierarchies.
While none of the logics studied is protoalgebraic, all the respective strong versions
are truth-equational (though this need not hold in general).





Resum

Aquesta dissertació presenta els resultats de la nostra recerca sobre alguns
temes recents en Lògica Algebraica Abstracta (LAA), concretament, l’operador
de Suszko [24], els filtres de Leibniz [37], i les lògiques truth-equacionals [55]. La
primera part construeix i desenvolupa un marc abstracte que unifica sota un mateix
tractament l’estudi dels operadors de Leibniz, Suszko, i Frege en AAL. La segona
part generalitza la teoria de la versió forta d’una lògica protoalgebraica, que va
començar a [37], a lògiques sentencials arbitràries.

La noció abstracta que abasta els operadors de Leibniz, de Suszko, i de Frege,
és la de S-operador (Definition 1.1). Hem investigat especialment una subclasse de
S-operadors, els anomenats S-operadors de compatibilitat, que té origen en [24, p.
199] sota el nom de “mapping compatible with S-filters”. L’operador de Frege no és
un S-operador de compatibilitat, mentre que els operadors de Leibniz i de Suszko ho
són. De fet, provem que l’operador de Leibniz és l’únic S-operador de compatibilitat
que commuta amb imatges inverses d’homomorfismes exhaustius (Theorem 1.24);
i que l’operador de Suszko és el més gran S-operador de compatibilitat monòton
(Lemma 1.20). D’altra banda, l’operador de Frege és un S-operador de compatibi-
litat si i només si S és una lògica plenament Fregeana (Proposition 2.48). Cercant
propietats generals comuns als tres S-operadors paradigmàtics en AAL, hem in-
trodüit la nova noció de coherència (Definition 1.28), una propietat més feble que
la de commutar amb imatges inverses d’homomorfismes exhaustius. Sota la hipòte-
si de coherència d’una família de S-operadors, hem establert un Teorema General
de la Correspondència (Theorem 1.38), que generalitza altres teoremes de la cor-
respondència coneguts en AAL, concretament el de Blok i Pigozzi per a lògiques
protoalgebraiques [10, Theorem 2.4], i el de Czelakowski per a lògiques arbitràri-
es [24, Proposition 2.3], aixó com una primera generalització del primer teorema
esmentat obtinguda per Font i Jansana [37, Corollary 9.1].

Una família de S-operadors ∇ té associades amb ella les nocions de ∇-classe i
de ∇-filtre (Definitions 1.12 i 1.15). Quan s’apliquen a les famílies de S-operadors
Ω i ∼

ΩS , respectivament, el primer concepte origina dues famílies de g-models plens,
mentre que el segon origina noves nocions de filtres de Leibniz i de Suszko, com
a casos particulars. Proposem com a nova definició de filtre de Leibniz justament
la noció de Ω-filtre. Aquesta nova proposta generalitza a lògiques arbitràries la
noció ja existent per a lògiques protoalgebraiques [37, Definition 1]. A més, el fet
que es pugui aplicar a qualsevol lògica obre la possibilitat de generalitzar alguns
resultats sobre lògiques protoalgebraiques a lògiques sentencials arbitràries. Per
example, donada una lògica sentencial S, els S-filtres de Leibniz són precisament
els elements mínims dels g-models plens de S (Proposition 2.9; compareu amb
[36, Proposition 3.6]). La noció de filtre de Suszko s’introdueix aquí per primera
vegada, i també ha estat investigada en detall. Els S-filtres de Suszko resulten ser
els elements mínims dels g-models plens de S que a més són creixents (“up-sets”).
De fet, donada una àlgebra arbitrària A i un F ∈ FiSA, F és un filtre de Suzko
de A si i només si (FiSA)F és un g-model ple de S (Theorem 2.29). A més, els
filtres de Suszko s’han revelat força conectats ams les lògiques truth-equacionals,
introdüides en [55]. En efecte, una lògica S és truth-equacional si i només si tots
els S-filtres són de Suszko, per a àlgebres arbitràries (Theorem 2.30).
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També s’obtenen de manera natural diferents resultats, tant coneguts com nous,
a dins d’aquest marc un cop aplicat als operadors de Leibniz i de Suszko. En par-
ticular, hem obtingut noves caracteritzacions d’algunes classes de lògiques de la
jerarquía de Leibniz. Per esmentar-ne les principals, caracteritzem les lògiques pro-
toalgebraiques en termes de l’operador de Suszko com aquelles on aquest operador
commuta amb imatges inverses d’homomorfismes exhaustius (Theorem 3.12). Ca-
racteritzem les lògiques truth-equacionals en termes dels seus filtres de Suszko com
ja hem dit, però també en termes dels seus g-models plens (Corollary 2.31), i en
termes de l’operador de Suszko mateix, com les lògiques on aquest operador és
una representació estructural del conjunt de S-filtres en el conjunt de congruències
Alg(S)-relatives, per a àlgebres arbitràries (Theorem 4.13); aquesta caracterització
reforça la de [55]. A més, la mateixa condició, imposada només sobre l’àlgebra de
les fórmules, caracteritza la veritat equacionalment definible a la classe LModSu(S)
(Theorem 4.21), un problema deixat obert a [55]. Finalment, provem un nou te-
orema d’isomorfisme per a lògiques protoalgebraiques (Theorem 3.8), en el mateix
espirit que els famosos teoremes d’isomorfisme per a lògiques algebritzables ([11,
Theorem 3.7]; veure [48, Theorem 5.2] per al cas no finitari) i per a lògiques feble-
ment algebritzables ([25, Theorem 4.8]).

Un cop dotats d’una noció de filtre de Leibniz aplicable a qualsevol lògica, ens
va semblar natural generalitzar la teoria de la versió forta d’una lògica protoalge-
braica, desenvolupada en [37], a lògiques sentencials arbitràries. Donada una lògica
sentencial S, la seva versió forta S+ és la lògica induïda per la classe de matrius
que tenen com a conjunt de veritat un filtre de Leibniz. Ens vam centrar espe-
cialment en la interacció entre els S-filtres de Leibniz i els S+-filtres, mitjançant
algunes condicions sota les quals aquestes dues famílies de S-filtres coincideixen.
Algunes d’aquestes condicions impliquen a més que les classes de S-àlgebres i de
S+-àlgebres coincideixin, fet que com sabem també passa al cas protoalgebraic, on
val Alg(S) = Alg∗(S) = Alg∗(S+) = Alg(S+), per a qualsevol lògica protoalgebraica
S. Però resulta que això no és un fet general, atés que la classe Alg(S+) pot estar
estrictament continguda a la classe Alg(S), com testimonien alguns dels exemples
de lògiques no protoalgebraiques estudiades.

Hem considerat tres criteris de definibilitat dels filtres de Leibniz: definabili-
tat equacional, definibilitat explícita, i definibilitat lògica. El primer és un nou
criteri, mentre que els altres dos són generalitzacions a lògiques arbitràries de les
respectives nocions introduïdes per a lògiques protoalgebraiques a [37]. Sota qual-
sevol d’aquestes hipòtesis, els S+-filtres coincideixen amb els S-filtres de Leibniz
en àlgebres arbitràries. Una família gran d’exemples abastada pel primer tipus de
definibilitat esmentat és la classe de lògiques basades en semireticles (“semilattice-
based”) amb teoremes. De fet, aquestes lògiques sempre tenen els seus filtres de
Leibniz equacionalment definibles pel conjunt de equacions τ (x) = {x ≈ >}, on
>(x) ∈ ThmS (Corollary 6.11). A més, la seva versió forta és la lògica τ -assercional
respecte de Alg(S). Consegüentement, la versió forta de qualsevol lògica basada en
semireticles amb teoremes és truth-equacional.

Finalment, hem aplicat la teoria general desenvolupada a un cert nombre de
lògiques no protoalgebraiques estudiades a la literatura. Concretament, a la Lògica
Positiva Modal PML [28], a la lògica de Belnap B [8], a les lògiques subintuïcionis-
tes wKσ [19] i de Visser VPL [58], i a la lògica infinito-valorada de Łukasiewicz que
preserva graus de veritat [35]. També hem considerat la generalització del darrer
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exemple esmentat a lògiques que preserven graus de veritat respecte de varietats
de reticles residuats integrals i commutatius [17], així com les generalitzacions als
casos no integrals i sense constant multiplicativa. Hem classificat tots els exemples
investigats dins de les jerarquies de Leibniz i de Frege. Un resum d’aquests fets es
troba a les taules 4 i 5. Cap de les lògiques estudiades és protoalgebraica, mentre
que totes les respectives versions fortes són truth-equacionals (fet que no es dóna
en general). D’altra banda, les versions fortes obtingudes varien des de no proto-
algebraiques a BP-algebritzables. Un cop més, aquesta situació contrasta amb la
versió forta d’una lògica protoalgebraica, que sempre és protoalgebraica.
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Introduction

Abstract Algebraic Logic (AAL) is a discipline inside Logic which takes a global
perspective on the algebraization of different logical systems, mainly propositional,
that have been considered in several fields such as Philosophy, Computer Science
or the Foundations of Mathematics. Emphasis is put on the general process of
associating to a given logic a class of algebras sharing very deep bonds with the
logical system itself. The classical example is Classical Propositional Logic (CPC)
and its famous algebraic counterpart, the class of Boolean Algebras. Similarly,
and to name just a few more well-known examples, Intuitionistic Propositional
Logic (IPC) is canonically associated with the class of Heyting Algebras, while the
implication fragment of CPC is canonically associated with Rasiowa’s implication
algebras [56]. These, so-to-speak, “individualized” algebraic studies of particu-
lar logics, nowadays are seen as part of the discipline of Algebraic Logic (AL),
started still in the XIXth century, and culminated in the so-called Lindenbaum-
Tarski method, which emerged in the 1920s and was formalized in the 1940s and
1950s. For historical information about AAL, see [23, 34, 39].

All the examples of logics mentioned so far are, in AAL terminology, algebraiz-
able. The degree to which each particular logic shares strong connections with its
algebraic counterpart is one of the core problems addressed in AAL, and it gave
rise to the so-called Leibniz hierarchy. This hierarchy classifies logics according
to the algebraic properties enjoyed by the Leibniz operator over the logical filters
on arbitrary algebras. The Leibniz operator is one of the cornerstone concepts in
AAL, and was first introduced in the seminal work of Blok and Pigozzi [11]. It
soon acquired the key rôle which still plays today in AAL, and one may safely
say that any other operator put forward in AAL will always stand in comparison
with the Leibniz operator. In fact, two further operators have been also considered
in AAL, though studied to a far less extent. Namely, the Frege operator and the
Suszko operator. Coincidently, the first one also gave rise to a hierarchy bearing
its name, this time classifying logics according to some replacement properties they
may satisfy. The Frege hierarchy was coined in [32], but its four classes of logics had
already appeared separately in a plethora of different works [22, 29, 36, 54, 59].
The Suszko operator, on the other hand, didn’t give rise to any (new) hierarchy in
AAL, but was soon recognised as a good candidate to extend the Leibniz hierarchy
outside the scope of protoalgebraic logics, potentially to arbitrary logics. The rea-
son why this was the case is quite simple: protoalgebraic logics are characterized
by the monotonicity of the Leibniz operator; the Suszko operator is always mono-
tonic; for protoalgebraic logics, both operators coincide. The Suszko operator was
formally introduced by Czelakowski in [22], though he attributes its invention and
first characterization to Suszko, in unpublished lectures.

xvii
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The original motivation for the work that eventually developed into the present
dissertation was to undertake a thorough study of the Suszko operator in AAL.
Broadly speaking, the goal was to try to mimic several known properties of pro-
toalgebraic logics in the non-protoalgebraic realm, as well as to generalize some
more recent developments in AAL to non-protoalgebraic logics, namely the notion
of Leibniz filter [37]. The only work in the literature exclusively dedicated to the
Suszko operator was — and still is, to the author’s knowledge — [24]. This seminal
paper about the Suszko operator lays the groundwork for the present investigation,
and contains already several explicit clues to some of our new notions and results
— one can highlight the notion of “mapping compatible with S-filters” [24, p. 199]
as a predecessor version of an S-compatibility operator (see Definition 1.1), the
notion of deductive homomorphism as the particular case of an homomorphism
being ∼

ΩS -compatible (see Definition 1.25 and Lemma 1.27), the “Correspondence
Property for deductive homomorphisms” [24, Proposition 2.3] as an instance of the
General Correspondence Theorem 1.38, and its very last result [24, Theorem 2.8]
which, in the presence of the (unknown at the time) definitions of truth-equational
logic and Suszko filter, is remarkably insightful (compare the mentioned result with
Theorems 2.30 and 3.11).

Protoalgebraicity is usually thought in AAL as say, the least assumption one
can ask for a well-behaved logic. However, we have come to realize that the class of
truth-equational logics, introduced by Raftery in [55], and independent from that
of protoalgebraic logics, still exhibits very well-behaviours, at least with respect to
the properties of the Leibniz operator one wished to find parallel in the Suszko op-
erator. Surprisingly enough, or maybe not, the Suszko operator plays a prominent
rôle in [55]. This paper soon became the main reference in the quest for finding
properties of the Suszko operator inside truth-equational logics, which culminated
in Section 4.1. Section 4.2 also addresses a problem rose in [55]. Furthermore,
given Raftery’s characterisation of truth-equational logics in terms of the Suszko
operator [55, Theorem 28], the problem of finding similar characterizations for the
remaining classes in the Leibniz hierarchy — answered in Section 3.2 — seemed
not only natural, but also an interesting loose end to learn more about the Suszko
operator.

The study of the Suszko operator made way to realize that the key points behind
the proofs of several results concerning both the Leibniz and the Suszko operator,
relied not so much in the definitions of these particular operators, but rather in
a few compatibility arguments of congruences in general, and in the behaviour of
these operators with respect to inverse images by surjective homomorphisms. In
other words, Part I of the present work nourished from a particular instance of
S-operator — the Suszko operator.

The second part of this work is easier to track down, as not only it relies heavily
on, but actually follows rather closely, the paper [37]. The goal of generalizing the
protoalgebraic notion of Leibniz filter bifurcated in its generalization to arbitrary
logics and the new notion of Suszko filter. The latter is strictly related to truth-
equational logics, as shown in Theorem 2.30. The former leads to the definition
of strong version of an arbitrary sentential logic, which is the core subject of Part
II. Indeed, the strong version of a logic, henceforth denoted by S+, is the logic
induced by the class of all matrices whose designated set is a Leibniz filter of S.
Leibniz filters were originally defined for protoalgebraic logics in [37] as the least
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elements among the class of S-filters which share the same Leibniz congruence.1
The existence of a minimum element for each such class of S-filters is guaranteed
by the protoalgebraic assumption over the underlying logic. However, a new notion
of Leibniz filter is proposed in Part I which is applicable to arbitrary logics, and
moreover coincides with the known one for protoalgebraic logics. It is only natural
then to consider the logic induced by the class of all matrices whose designated set
is a Leibniz filter of S, according to our new definition. This is what we propose to
do in Part II.

The formalization of the strong version of a logic S sheds some light on the
phænomenon of pairs of logics strongly related found in many areas of non-classical
logics. For instance, in [37] it is shown that the global modal consequence re-
lation of the class of all Kripke frames is the strong version of the local modal
consequence given by that same class, and that the Lukasiewicz’s n-valued logic is
the strong version of the Lukasiewicz’s n-valued logic preserving degrees of truth.
Many interesting non-classical logics are nevertheless not protoalgebraic. For exam-
ple, Positive Modal Logic [28], Belnap’s logic [8], logics preserving degrees of truth
from the varieties of integral commutative residuated lattices [17], subintuitionistic
logics [16, 19], etc. We shall cover these examples, among others, in Chapter 7.

It is worth mentioning that the problem of generalizing “the phænomenon
of linked pairs of deductive systems independently of the protoalgebraicity of the
weaker member of the pair” had already been tackled in [38]. Here, the existence
of enough Leibniz filters is the assumption upon which the protoalgebraic setting
of [37] is extended to arbitrary logics. But our new definition of Leibniz filter
guarantees the existence of these filters regardless of any further assumption over
the underlying logic. Actually, [38] exhibits an example of a subintuitionistic logic,
concretely wKσ, which although naturally associated to its extension sKσ under the
rule (N), does not form a Leibniz-linked pair with it. As we shall see in Section 7.3,
sKσ is indeed the strong version of wKσ, that is, (wKσ)+ = sKσ. In retrospect,
and taking Proposition 5.1 into account, one also recognises that in [31] another
pair of logics whose weak member is non-protoalgebraic was already seen to share
the same bonds as those of the strong version for protoalgebraic logics. This pair is
composed by the Lukasiewicz infinite logic preserving degrees of truth, Ł≤∞, and its
companion preserving truth, Ł1

∞. In Section 7.4, we shall cover this example inside
the more general case of integral commutative residuated lattices.

Summary of contents. The structure of this thesis is divided in two parts,
as we have unfolded already. Both parts aim at extending some traditional, and
some more recent, AAL tools, to non-protoalgebraic logics. We now proceed to
detail their content.

Part I
Chapter 1 is devoted to construct a general framework upon which a common

study of the Leibniz, Suszko, and Frege operators can be built. The core notion
is that of S-operator (Definition 1.1), although probably of more relevance is its
refinement of S-compatibility operator (Definition 1.19). As already mentioned,
this latter notion was originally introduced (in rigor, for congruential S-operators)

1In fact, these (equivalence) classes of S-filters had already been pointed out in [36, p.59]
and [25, p.650].
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under a similar name in [24, p. 199]. Another important new concept is that
of coherence, which may be seen as a weaker property than commutativity with
inverse images by surjective homomorphisms. We prove that the three paradigmatic
examples of S-operators — Leibniz, Suszko, and Frege — are coherent, while only
the Leibniz operator commutes with inverse images by surjective homomorphisms.
Furthermore, this notion allows us to prove the main result of Chapter 1 — the
General Correspondence Theorem (Theorem 1.38). This result generalizes several
known correspondence theorems in AAL, namely Blok and Pigozzi’s well-known
Correspondence Theorem for protoalgebraic logics [10, Theorem 2.4], Czelakowski’s
less known Correspondence Theorem [24, Proposition 2.3] for arbitrary logics, and
it also generalizes the first strengthening obtained for protoalgebraic logics by Font
and Jansana [37, Corollary 9.1].

In Chapter 2, the general framework just built is instantiated with the three
main examples of S-operators. Some new concepts arising from these particular
instances will turn out to be quite relevant, especially those of Leibniz filter and
Suszko filter. A wealth of both known and new results in AAL emerges rather
naturally inside the general framework of S-operators, of which we may point out a
characterization of truth-equational logics in terms of Suszko filters (Theorem 2.30),
as well as another characterization for this class of logics in terms of their full g-
models (Corollary 2.31).

The two main results of Part I, however, appear in Chapter 3. Namely, a
new Isomorphism Theorem for protoalgebraic logics (Theorem 3.8) in the same
spirit of the famous one for algebraizable logics ([11, Theorem 3.7]; see also [48,
Theorem 5.2] for the non-finitary case) and for weakly algebraizable logics ([25,
Theorem 4.8]); as a corollary, another isomorphism theorem characterizing equiv-
alential logics is obtained (Corollary 3.9); and finally, following the path set by
Raftery’s characterization of truth-equational logics in terms of the Suszko opera-
tor, we characterize protoalgebraic and equivalential logics in terms of this operator
as well. Together with [55, Theorem 28], similar characterizations for weakly alge-
braizable and algebraizable logics follow as corollaries.

Finally, in Chapter 4, we undertake a small detour on truth-equational logics,
providing some new contributions to the study of this class of logics. The main
result is a new characterisation of the Suszko operator inside this class of logics
(Theorem 4.2). We present yet another family of coherent S-compatibility operators
for logics having Alg(S) as an algebraic semantics (or equivalently, Alg∗(S)), of
which truth-equational logics are a (proper) subclass.

Part II
We begin Chapter 5 by introducing the definition of the strong version S+ of

an arbitrary sentential logic S and proving some rather general properties about
S+. In particular, we shall characterize the S+-full g-models in terms of those of
S, and prove that the strong(er) version of S+, i.e., (S+)+, is still S+.

In Chapter 6 we investigate some conditions one may impose on S, in order
to find general results which encompass several of the forthcoming examples. Do
notice that placing S inside the Leibniz hierarchy, either makes S+ collapse into S
(assuming S truth-equational), or makes our study converge with the one in [37]
(assuming S protoalgebraic). So, we shall need to impose some condition(s) over
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S, but one(s) necessarily weaker than protoalgebraicity, and/or weaker than truth-
equationality. We will do this through some definability criteria of the Leibniz filters
of S, namely explicit, logical, and equational definability. The two first criteria had
already been considered in [37], and a generalization with parameters of the first
one appears in [51], but always within the scope of protoalgebraic logics. The
last criterion is new, and derives from the equational definability of S-filters that
characterizes truth-equational logics [55].

Finally, in Chapter 7, we apply the general results previously established to a
plethora of (non-protoalgebraic) examples. For each logic considered, we will find
the respective strong version, and characterize its Leibniz and Suszko filters on the
S-algebras. Furthermore, we investigate explicit, logical, and equational definabil-
ity of the Leibniz filters. Surprisingly enough, all examples considered will turn out
to have its Leibniz filters equationally and logically definable, but not all of them
will have its Leibniz filters explicitly definable.

A final word of notice is in order here. This dissertation is, one may say, an
expanded version of two rather long papers yet to appear at the time of writing,
with some additional material (mainly, that concerning the Frege operator2, and
all of Chapter 4). The content of Part I is based on [2], while that of Part II is
based on [3]. Their structure differs of course from the present one, but the main
notions and results are the same, and arose from joint work with Josep Maria Font
and Ramon Jansana.

2A distinction between congruential S-operators is made in Part I to encompass the Frege
operator, while in [2] the S-operators are, by definition, congruential.





CHAPTER 0

Preliminaries

0.1. Foundations

Set Theory. We will be working within the standard theory of Zermelo-
Fraenkel with the Axiom of Choice (ZFC). We assume that the reader is familiar
with the basic notions of set theory (see [46], for instance), and we will focus here
on fixing some notation.

Given a map f : A → B, we denote its extension to power sets with the same
symbol; that is, we consider f : P(A) → P(B) defined, for each X ⊆ A, by
f(X) := {f(a) : a ∈ X} ⊆ B. The associated “inverse image” map, which is
usually denoted as f−1 : P(B)→P(A), is defined, for each Y ⊆ B, by f−1(Y ) =
{a ∈ A : f(a) ∈ Y } ⊆ A; this map is not the set-theoretic inverse of the extended
map f , but rather its residuum, because it satisfies, for every X ⊆ A and every
Y ⊆ B, that X ⊆ f−1(Y ) if and only if f(X) ⊆ Y . The extension construction will
be iterated in a natural way, still keeping the same symbol; for instance, for a family
C ⊆ P(A), we define f(C ) :=

{
f(X) : X ∈ C

}
, and for D ⊆ P(Y ), f−1(D) :={

f−1(Y ) : Y ∈ D
}
. Similarly, f is extended to cartesian products component-wise;

in particular, f : A × A → B × B is defined as f
(
〈a, a′〉

)
:= 〈f(a), f(a′)〉 for every

a, a′ ∈ A. This map can itself be extended to power sets as before.
Let f : A → B be a map. The residuum condition between f and f−1 implies

that for every X ⊆ A, X ⊆ f−1(f(X)
)
, and for every Y ⊆ B, f

(
f−1(Y )

)
⊆ Y .

As for the converse inclusions, one should keep in mind the following basic facts,
which we shall henceforth use without any explicit mention:

1. f is surjective if and only if f(f−1(Y )) = Y , for every Y ⊆ B;
2. f is injective if and only if f−1(f(X)) = X, for every X ⊆ B.

A final word on notation: from this point on, we shall refrain from using paren-
thesis when denoting images and inverse images by maps, whenever its usage results
too heavy, and/or the context is clear. For example, we shall write fX instead of
f(X), and f−1Y instead of f−1(Y ).

First-order structures. A similarity type, or logical language, is a tuple L =
〈F ,R〉, where F = 〈fi〉i∈I is to be understood as a family of function symbols, with
each fi associated to a finite arity ≥ 0, and R = 〈rj〉j∈J is to be understood as a
family of relation symbols, with each ri associated to a finite arity > 0. A function
symbol of arity 0 is called a constant symbol. Both families F and R can be empty,
and can be finite or infinite. A similarity type is called algebraic, if R = ∅; and it
is called (purely) relational, if F = ∅.

Let L = 〈F ,R〉 be a similarity type. A structure of type L, or simply an
L-structure, is a tupleM = 〈M,FM,RM〉, where:

� M is a non-empty set, called the universe, or domain, ofM;

1
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� FM is a family of functions on M indexed by F and such that arities are
preserved; i.e., each n-ary function symbol f ∈ L has a corresponding inter-
pretation fM : Mn →M in FM;

� RM is a family of relations on M indexed by R and such that arities are
preserved; i.e., each n-ary relation symbol r ∈ R has a corresponding inter-
pretation rM ⊆Mn in RM.

It is common practice to denote the domain of a given structure with a capital
italic letter, namely by that corresponding to the structure’s denotational symbol,
regardless of this last being calligraphic (e.g., a first-order structure A and its
domain A), double-struck (e.g., a lattice L and its domain L), or boldface (e.g.,
an algebra A and its domain A). Given a finite similarity type L, say with F =
〈f1, . . . , fn〉 and R = 〈r1, . . . , rm〉, we shall denote the L-structureM simply by

M = 〈M,fM1 , . . . , fMn , rM1 , . . . , rMm 〉.

Apart from the cornerstone notion of L-structure, we only need to introduce one fur-
ther concept concerning first-order logic, namely that of homomorphism between L-
structures. We do so, to stress that all the forthcoming notions of homomorphisms
(e.g., order homomorphism, lattice homomorphism, algebraic homomorphism, ma-
trix homomorphism) are particular instances of the this more general case, suitably
restricted to the underlying language.

Let A,B be L-structures. A map h : A→ B is an (L-)homomorphism, if:
� h(cA) = cB, for every constant symbol c ∈ L;
� h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)), for every n-ary function symbol
f ∈ L, with n > 0, and every a1, . . . , an ∈ A;

� if 〈a1, . . . , an〉 ∈ rA, then 〈h(a1), . . . , h(an)〉 ∈ rB, for every n-ary relation
symbol r ∈ L, with n > 0, and every a1, . . . , an ∈ A.

Finally, we will sporadically make use of two first-order connectives, namely
the first-order conjunction and implication, which will be denoted by & and → ,
respectively. The familiar symbols ∀ and ∃ are to be understood here as part of the
meta-language, meaning for all and there exists, respectively. The symbols ⇒ and
⇔ stand for if . . . then and if and only if, respectively.

0.2. Lattice Theory

Posets. Let X be a set. A partial order on X is a reflexive, anti-symmetric,
and transitive, binary relation ≤ on X. A partially ordered set (poset for short)
is a relational structure P = 〈P,≤〉, where ≤ is a partial order on P . Given
a poset 〈P,≤〉, we take for granted that the reader is familiar with the notions
of upper bound (dually, lower bound), maximal element (dually, minimal element),
maximum (dually, minimum), and supremum (dually, infimum), of a subset Y ⊆ X,
all with respect to the order ≤. We shall denote the infimum and supremum of a
given subset Y ⊆ X by

∧
Y and

∨
Y , respectively.

Let P1 = 〈P1,≤1〉 and P2 = 〈P2,≤2〉 be two posets. A map f : P1 → P2 is:
1. order preserving, or an order homomorphism, if for every x, y ∈ P1,

x ≤1 y ⇒ f(x) ≤2 f(y).

2. order reversing, if for every x, y ∈ P1,

x ≤1 y ⇒ f(y) ≤2 f(x).
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3. order reflecting, if for every x, y ∈ P1,

f(x) ≤2 f(y)⇒ x ≤1 y.

4. an order embedding, if for every x, y ∈ P1,

x ≤1 y ⇔ f(x) ≤2 f(y).

5. an order isomorphism, if it is a surjective order embedding.
If a map is order reflecting, then it is injective. In particular, every order

embedding is injective and every order isomorphism is bijective.
Given a poset P = 〈P,≤〉, a map f : P → P is:

1. expansive, if for every x ∈ P , x ≤ f(x);
2. idempotent, if for every x ∈ P , f(f(x)) = f(x);
3. a closure on P if it is expansive, order preserving and idempotent.

Lattices. Lattices can be introduced via relational structures or via algebraic
structures. We present here both definitions, not so much for the sake of complete-
ness, but rather because we will use both of them in an exhaustive and indistin-
guishable manner.

A lattice (viewed as poset) is a relational structure L = 〈L,≤〉, where ≤ is a
partial order on L such that, for every a, b ∈ L, both the infimum and supremum
of a and b exist; and, a lattice (viewed as an algebra) is an algebraic structure
L = 〈L,∧,∨〉, where ∧ and ∨ are two binary operations on L such that, for every
a, b, c ∈ L,

� Idempotency: a ∧ a = a and a ∨ a = a ;
� Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a ;
� Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c ;
� Absorption: a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a .
Both definitions are equivalent, in the following sense: given a lattice (as a

poset), say L = 〈L,≤〉, then La = 〈L,∧,∨〉, where

a ∧ b = inf{a, b} and a ∨ b = sup{a, b},

is a lattice (as an algebra). Conversely, given a lattice (as an algebra), say L =
〈L,∧,∨〉, then Lp = 〈L,≤〉, where

a ≤ b iff a ∧ b = a,

is a lattice (as a poset). Furthermore, it holds (La)p = L and (Lp)a = L. In light of
these facts, we can (and will) speak interchangeably of a lattice L = 〈L,∧,∨〉 and
its partial order ≤, as well of the lattice L = 〈L,≤〉 and its meet and join operations
∧ and ∨, respectively.

A poset L = 〈L,≤〉 is a meet-semilattice, if for every a, b ∈ L, the infimum of
a and b exists; dually, it is a join-semilattice, if for every a, b ∈ L, the supremum
of a and b exists. Unless explicitly stated (as, for instance, in Lemma 2.27), all
semilattices in this thesis will be meet-semilattices.

A lattice L2 is a sublattice of a lattice L1, if L2 ⊆ L1 and the meet and join
operations of L2 are the restriction of the meet and join operations of L1, re-
spectively. The definitions of meet-sub-semilattice and join-sub-sublattice are the
expected ones.

The maximum element in a lattice, if it exists, is called the top element; dually,
the minimum element of a lattice, if it exists, is called the bottom element. A lattice
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is bounded, if it has a top and a bottom element. A lattice L is distributive, if for
every a, b, c ∈ L, the distributive laws hold:

� Distributivity of ∧ w.r.t. ∨: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) ;
� Distributivity of ∨ w.r.t. ∧: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) .

Each identity implies the other.
Let L1 = 〈L1,∧1,∨1〉 and L2 = 〈L2,∧2,∨2〉 be two lattices. A map f : L1 → L2

is a lattice homomorphism, if for every a, b ∈ L1,

h(a ∧1 b) = h(a) ∧2 h(b) and h(a ∨1 b) = h(a) ∨2 h(b).

A map satisfying only the first condition is called a meet-homomorphism and a map
satisfying only the second condition is called a join-homomorphism. An injective
lattice homomorphism is called an embedding. A surjective embedding is called a
lattice isomorphism.

Since lattices can be be seen simultaneously as posets and algebras, it is natural
to relate the concepts of order homomorphism and lattice homomorphism. In fact,
we shall deal quite often with order isomorphisms, and then speak of the respective
algebraic structures as isomorphic. Proposition 0.1.3 justifies this apparent abuse.

Proposition 0.1. Let L1 and L2 be two lattices and let h : L1 → L2 be a map.
1. If h is a lattice homomorphism, then it is an order homomorphism.
2. If h is a lattice embedding, then it is an order embedding.
3. The map h is a lattice isomorphism if and only if it is an order isomorphism.

So, to retain, although lattices can be seen interchangeably as ordered struc-
tures and algebraic structures, the respective notions of structure homomorphisms
do not coincide.

Complete and algebraic lattices. A lattice L is complete, if for everyX ⊆ L
there exists its infimum and its supremum, denoted by

∧
X and

∨
X, respectively.

Comparing with the (algebraic) definition of lattice, we are furthermore imposing
the existence of arbitrary meets and joins. An easy induction argument establishes
the existence of meets and joins of finite non-empty sets in lattices. Hence, every
finite lattice is complete. More interesting examples of complete lattices will appear
throughout the text.

A sublattice where arbitrary meets and joins exist, and moreover coincide with
those taken over the original lattice, is called a complete sublattice. A meet sub-
semilattice (respectively, join sub-semilattice) where arbitrary meets exist, and
moreover coincide with those taken over the original lattice, is called a meet-
complete sub-semilattice (respectively, join-complete sub-semilattice).

Let L be a lattice. An element a ∈ L is compact, if for every X ⊆ L such that
a ≤

∨
X (in particular,

∨
X must exist), there exists a finite subset Y ⊆ X such

that a ≤
∨
Y . A lattice is compactly generated, if every element is a supremum

of compact elements. Notice that if we assume L to be complete, we may forget
the proviso that

∨
X must exist. A lattice is algebraic, if it is both complete and

compactly generated.

Lattice filters, prime filters and ultrafilters. Let L = 〈L,∨,∧〉 be a lat-
tice. A non-empty subset F ⊆ L is a (lattice) filter of L, if it satisfies the following
conditions:

� F is closed under meets, i.e., if a, b ∈ F , then a ∧ b ∈ F ;
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� F is upwards-closed, i.e., if a ∈ F and b ∈ L is such that a ≤ b, then b ∈ F .
The dual notion of filter is that of ideal. That is, a non-empty subset I ⊆ L is an
ideal of L, if I is closed under joins and downwards-closed.

We shall denote the set of all filters of a lattice L by Filt(L). The poset 〈Filt(L)∪
{∅},⊆〉 is an algebraic lattice with infima and suprema given by∧

i∈I
Fi =

⋂
i∈I

Fi and
∨
i∈I

Fi =
[⋃
i∈I

Fi

)
,

where for every H ⊆ L,[
H
)

:=
⋂{

F ∈ Filt(L) ∪ {∅} : H ⊆ F
}
.

If H is non-empty, then
[
H
)
is the least filter of L containing H, also called the

filter generated by H. The filter generated by the singleton {a} ⊆ A will be simply
denoted by [a), and is usually called the principal filter generated by a; dually, (a]
denotes the principal ideal generated by a.

The following proposition, and subsequent corollary, will be used either explic-
itly or implicitly in all the examples of Chapter 7.

Proposition 0.2. Let L be a lattice and H ⊆ L non-empty. The filter generated
by H exists and is given by[

H
)

=
{
b ∈ L : a1 ∧ . . . ∧ an ≤ b, for some a1, . . . , an ∈ H and some n > 0

}
.

The filter generated by ∅ exists if and only if L has a maximum element, say
> ∈ L, and in this case

[
∅
)

= {>}.

Corollary 0.3. Let L be a lattice and H ⊆ L. If H is a filter and a /∈ H, then[
H, a

)
=
{
b ∈ L : a ∧ c ≤ b, for some c ∈ H

}
.

Notice that L is always a filter of L. A filter is proper, if it is not L. A proper
filter F ⊆ L is said to be prime, if for every a, b ∈ L, it holds

a ∨ b ∈ F ⇒ a ∈ F or b ∈ F.

We shall denote the set of all prime filters of a lattice L by PrFilt(L). Notice that
neither ∅ nor L are prime filters of L.

In Chapter 7, we will sometimes need to extend lattice filters to prime filters.
A famous result allow us to do this.

Theorem 0.4 (Prime Filter Theorem). Let L be a distributive lattice. If I ⊆ L is
an ideal and F ⊆ L a proper filter such that I ∩ F = ∅, then there exists a prime
filter P such that F ⊆ P and I ∩ P = ∅.

Galois connections. Let P1 = 〈P1,≤1〉 and P2 = 〈P2,≤2〉 be posets. A pair
〈f, g〉 of maps f : P1 → P2 and g : P2 → P1 establishes a Galois connection between
P1 and P2, if for every x ∈ P1 and every y ∈ P2,

x ≤1 g(y) ⇔ y ≤2 f(x).

Galois connections entail several consequences, which we next compile in a single
result. All the proofs can be found in [27, Chapter 7].

Proposition 0.5. Let P1 = 〈P1,≤1〉 and P2 = 〈P2,≤2〉 be posets and let f : P1 →
P2 and g : P2 → P1 establish a Galois connection between P1 and P2.

1. f and g are both order reversing.
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2. The composition function g ◦ f is a closure on P1.
3. The composition function f ◦ g is a closure on P2.
4. The set of fixed points of g ◦ f is Ran(g).
5. The set of fixed points of f ◦ g is Ran(f).
6. The maps f and g restrict to mutually inverse dual order isomorphisms be-

tween the set of fixed points of g ◦ f and the set of fixed points of f ◦ g.

0.3. Closure operators

This is a core topic when working with sentential logics. Though we will not give
a detailed treatment of it, understanding the (omitted) proofs should be amenable
to the reader.

Closure relations, closure operators and closure systems. Let A be
a set. A closure relation on A is a relation ` ⊆ P(A) × A such that for every
X ∪ Y ⊆ A and every x, y ∈ A, the following conditions hold:

� Extensivity: if x ∈ X, then X ` x;
� Monotonicity: if X ⊆ Y and X ` y, then Y ` y ;
� Cut: if Y ` x, for every x ∈ X, and X ` y, then Y ` y .

A closure relation ` is finitary, if moreover it satisfies the additional condition:
� Finitarity: if X ` x, then there exists a finite subset Y ⊆ X such that Y ` x.
It is not difficult to show that monotonicity holds in the presence of extensivity

and cut, but tradition keeps all three conditions together.
A closure operator over A is a map C : P(A) → P(A) such that for every

X,Y ⊆ A,
� Extensivity: X ⊆ C(X);
� Monotonicity: if X ⊆ Y , then C(X) ⊆ C(Y );
� Idempotency: C(C(X)) = C(X).

A closure operator C is finitary, if it satisfies moreover the additional condition:
� Finitarity: C(X) =

⋃{
C(Y ) : Y ⊆ X,Y finite

}
.

A subset X ⊆ A is said to be C-closed, if C(X) = X. Notice that a closure
operator over A is precisely a closure on A. Finally, a closure system on A is a
collection C ⊆P(A) such that

� A ∈ C ;
� C is closed under arbitrary intersections of non-empty families.
The following notation will be used quite often and in a rather essential way.

Given a family C ⊆P(A) and a subset F ⊆ A, we define C F := {G ∈ C : F ⊆ G}.
Note that such a family is always an up-set in the poset 〈C ,⊆〉, and if C is a closure
system, so is C F .

Every closure operator induces a closure system, and vice-versa. Indeed, given
a closure system C on a set A, the map C : P(A)→P(A), defined by

C(X) =
⋂{

Y ∈ C : X ⊆ Y
}
,

is a closure operator over A. Conversely, given a closure operator C on a set A, the
collection

C =
{
X ⊆ A : C(X) = X

}
is a closure system on A. Moreover, denoting by CO(A) and CS(A) the sets
of all closure operators and closure systems on a set A, respectively, the posets
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〈CO(A),⊆〉 and 〈CS(A),⊆〉 are dually order isomorphic under the mappings C 7→ C

and C 7→ C.
Similarly, every closure relation induces a closure operator, and vice-versa.

Indeed, given a closure relation ` on A, the map C` : P(A)→P(A), defined by

C`(X) =
{
x ∈ A : X ` x

}
,

is a closure operator over A. Conversely, given a closure operator C on a set A, the
relation `C ⊆ P(A)×A, defined by

X `C x iff x ∈ C(X),

is a closure relation on A.
It should be clear that finitary closure operators induce finitary closure rela-

tions, and vice-versa, through the same maps as above. It only remains to see how
does this condition translates to closure systems. This is the content of the famous
Schmidt’s Theorem.

Let λ be any cardinal. A family D = {Xi : i ∈ I} ⊆P(A) is λ-directed, if for
every subfamily {Xj : j ∈ J} ⊆ D of cardinal < λ there exists Xk ∈ D such that
Xj ⊆ Xk, for every j ∈ J . In particular, ω-directed families are also called simply
directed, or upwards-directed. A closure system C on A is inductive, if it is closed
under unions of non-empty directed families.

Theorem 0.6 (Schmidt’s Theorem). A closure system C is inductive if and only
if its associated closure operator C if finitary.

Closure systems and complete lattices. There is a close connection be-
tween closure systems and complete lattices.

Theorem 0.7. If C is a closure system, then 〈C ,⊆〉 is a complete lattice, with
infima and suprema given by

C∧
i∈I

Ti =
⋂
i∈I

Ti and
C∨
i∈I

Ti = C
(⋃
i∈I

Ti

)
,

for every {Ti : i ∈ I} ⊆ C .

Actually, up to isomorphism, the converse is also true. That is, every complete
lattice is order isomorphic to the lattice of closed sets of some closure operator.
Algebraic lattices (which are, by definition, complete lattices) also stand in bijection
with a (sub-)family of closure systems.

Theorem 0.8. If C is an inductive closure system, then 〈C ,⊆〉 is an algebraic
lattice.

Again, up to isomorphism (!), the converse is also true. That is, every algebraic
lattice is order isomorphic to the lattice of closed sets of some inductive closure
system.

We finally state some useful lemmas for dealing with closure operators, which
we shall make use of further ahead.

Lemma 0.9. If C is a closure operator over a set A, then for every X ⊆ A,

C(X) =
C∨{

C(Y ) : Y ⊆ X,Y finite
}

=
C∨{

C({x}) : x ∈ X
}
.



8 CHAPTER 0. PRELIMINARIES

Comparing Lemma 0.9 with the defining condition of finitary closure operator,
one sees that “finitarity is an essentially set theoretical property rather than a
lattice theoretical one” [34, p. 36].

0.4. Universal Algebra

It is often said that Abstract Algebraic Logic is to Algebraic Logic as Universal
Algebra is to Algebra. The whole topic of Universal Algebra is far beyond the scope
of the present work, and we shall only cover here the needed material. We will how-
ever look with some detail at relative congruences, as they will be transversal to all
our work. We refer the reader to the classical reference [18] for the most common
constructions regarding algebras, such as subalgebras, quotient algebras, homomor-
phic images, direct, subdirect, and reduced products (in particular, ultraproducts),
and free algebras.

Algebras and the formula algebra. An algebra is an L-structure where L
is an algebraic similarity type. That is, an algebra A is a tuple

A =
〈
A, 〈fA〉f∈L

〉
,

where A is a non-empty set, and each element fA indexed by the n-ary symbol
f ∈ L is an n-ary function in A. It is usual to drop the superscript A in the algebra
operations. An algebra is trivial, if its universe has a single element.

Unless otherwise stated, we henceforth assume fixed an arbitrary algebraic
similarity type L.

Let A,B be algebras. A map h : A→ B is an (algebraic) homomorphism, if

h
(
fA(a1, . . . , an)

)
= fB

(
h(a1), . . . , h(an)

)
,

for every n-ary operation symbol f ∈ L and every a1, . . . , an ∈ A. We write
h ∈ Hom(A,B), or just h : A → B, to indicate that h is a homomorphism from
A to B. An homomorphism h : A → A is called an endomorphism. A bijective
homomorphism is called an (algebraic) isomorphism.

Let us fix a countably infinite set of variables Var, disjoint from L. The algebra
of terms, or formula algebra1, Fm is the absolutely free algebra generated by the
set Var over the language L. Its universe is denoted by FmL, and its members are
called (L-)terms or (L-)formulas. We write ϕ(x1, . . . , xn) when we want to stress
that every variable occurring in the L-formula ϕ occurs in {x1, . . . , xn}. It follows
by the universal mapping property of Fm that every map from Var to FmL can be
uniquely extended to an endomorphism of Fm; such a map is called a substitution.

Given ϕ(x1, . . . , xn) ∈ FmL and a1, . . . , an ∈ A, we denote by ϕA(a1, . . . , an)
the interpretation on A of the formula ϕ under any homomorphism h ∈ Fm→ A

such that h(xi) = ai, for every 1, . . . , n. We extend this notation to subsets of
formulas Γ(x1, . . . , xn) ⊆ FmL as expected, i.e., ΓA(a1, . . . , an) = {γA(a1, . . . , an) :
γ ∈ Γ}; and also to the cartesian product FmL×FmL, so that given τ (x1, . . . , xn) ⊆
FmL × FmL, τA(a1, . . . , an) =

{
〈δA(a1, . . . , an), εA(a1, . . . , an)〉 : 〈δ, ε〉 ∈ τ

}
.

The next proposition tell us that “the interpretation of formulas behave like
fundamental operations insofar as homomorphisms (...) are concerned” [18, p. 63];
this fact will be repeatedly used in the sequel without any explicit mention.

1In the context of Algebraic Logic, the terms of an algebraic similarity type can be considered
as the formulas of a propositional logic. In a first-order context however, the L-formulas here
defined would be just the L-terms.
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Proposition 0.10. Let A be an algebra and h : A → B a homomorphism. For
every L-formula ϕ(x1, . . . , xn) ∈ FmL and every a1, . . . , an ∈ A, it holds

h
(
ϕA(a1, . . . , an)

)
= ϕB

(
h(a1), . . . , h(an)

)
.

Given a set A, let A∗ denote the set of all finite sequences of elements in A. It
is known that, if A is an infinite set, then A∗ has the same cardinality as A. Now,
on the one hand, every formula in the language L is a finite sequence of symbols of
the set Var∪L, so |FmL| ≤ |Var∪L|∗ = |Var∪L|. On the other hand, there exists
an injective map from Var ∪ L to FmL (just assign to each variable itself, and to
each n-ary function symbol f ∈ L the formula fx1 . . . xn, with x1, . . . , xn ∈ Var),
so |Var ∪ L| ≤ |FmL|. Hence,

|FmL| = |Var ∪ L|.

In particular, and since we have fixed an infinite countable set of variables Var, if
the language L is finite (and this will be the case in all the examples covered in
Chapter 7), then |FmL| = ω.

Equational logic. An L-equation is a pair of formulas 〈ϕ,ψ〉 ∈ FmL × FmL.
We shall denote the set of all L-equations by EqL, and we will usually write ϕ ≈
ψ instead of 〈ϕ,ψ〉 in order to stress the equational setting rather than the set
theoretical one.

An homomorphism h : Fm→ A satisfies an equation ϕ ≈ ψ ∈ EqL, if h(ϕ) =
h(ψ); this fact is sometimes denoted by A � ϕ ≈ ψJhK. A particular case often
used is the following: an element a ∈ A satisfies an equation ϕ(x) ≈ ψ(x) ∈ EqL,
if ϕA(a) = ψA(a); fact which is denoted by A � ϕ ≈ ψJaK.

Let A be an algebra and ϕ(x1, . . . , xn), ψ(x1, . . . , xn) ∈ FmL. The equation
ϕ ≈ ψ holds in A, or ϕ ≈ ψ is valid in A, fact which we shall denote by A � ϕ ≈ ψ,
if ϕA(a1, . . . , an) = ψA(a1, . . . , an), for every a1, . . . , an ∈ A. Given a class of
algebras K, we denote by K � ϕ ≈ ψ the fact that the equation ϕ ≈ ψ holds in
every algebra of K.

An L-quasi-equation is a first-order formula of the form

α1 ≈ β1 & . . . & αn ≈ βn → α ≈ β,

where α, β ∈ FmL and αi, βi ∈ FmL, for every i = 1, . . . n. Equations are to be
understood as particular cases of quasi-equations with an empty antecedent.

Let A be an algebra. A quasi-equation α1 ≈ β1 & . . . & αn ≈ βn → α ≈ β

holds inA, or is true inA, fact which we shall denote byA � α1 ≈ β1 & . . . & αn ≈
βn → α ≈ β, if every homomorphism h : Fm→ A which satisfies all the equations
αi ≈ βi, with i = 1, . . . , n, also satisfies the equation α ≈ β.

A generalized L-quasi-equation is a (possibly infinitary) first-order formula of
the form ¯

i∈I
αi ≈ βi → α ≈ β,

where α, β ∈ FmL and αi, βi ∈ FmL, for every i ∈ I, for some (possibly infinite) set
I. In other words, generalized quasi-equations admit an infinite antecedent; and in
doing so, they are indeed more general than quasi-equations. The notion of validity
of a generalized quasi-equation is the expected one.
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Let K be a class of L-algebras. The equational (consequence) relation relative
to K, hereby denoted by �eq

K ⊆P(EqL)× EqL, is defined as follows:

Π �eq
K ϕ ≈ ψ iff ∀A ∈ K ∀h ∈ Hom(Fm,A)

∀δ ≈ ε ∈ Π h(δ) = h(ε) ⇒ h(ϕ) ≈ h(ψ)

for every Γ ∪ {ϕ ≈ ψ} ⊆ EqL. We write simply �eq
A to denote �eq

{A}. It should be
clear that2

A � ϕ ≈ ψ iff ∀h ∈ Hom(Fm,A) h(ϕ) = h(ψ)
iff ∅ �eq

A ϕ ≈ ψ,

and that

A � α1 ≈ β1 & . . . & αn ≈ βn → α ≈ β iff {α1 ≈ β1, . . . , αn ≈ βn} �eq
A α ≈ β.

Varieties, quasi-varieties and generalized quasi-varieties. A class oper-
ator maps classes of algebras to classes of algebras, all of the same similarity type.
Let K be a class of algebras and let A be an algebra. We define the following class
operators:

� A ∈ I(K) iff A is isomorphic to some member of K;
� A ∈ S(K) iff A is a subalgebra of some member of K;
� A ∈ H(K) iff A is a homomorphic image of some member of K;
� A ∈ P(K) iff A is a direct product of a non-empty family of members of K;
� A ∈ PU(K) iff A is an ultraproduct of a non-empty family of members of K;
� A ∈ PR(K) iff A is a reduced product of a non-empty family of members of

K;
� A ∈ Pλ−R(K) iff A is an λ-reduced product3 of a non-empty family of mem-
bers of K;

� A ∈ PS(K) iff A is a subdirect product of a non-empty family of members of
K;

� A ∈ U(K) iff every subalgebra of A countably generated is a member of K.
Notice that reduced products are the ω-reduced products. We say that a class
of algebras K is closed under a class operator O, if O(K) ⊆ K. Given two class
operators O1 and O2, we write O1 ≤ O2 to denote the fact O1(K) ⊆ O2(K), for every
class of algebras K.

Of course, trivial algebras are all isomorphic. We shall denote by Triv an
arbitrary, but fixed, trivial algebra. The constant map from any algebra to any
trivial algebra is obviously a homomorphism, therefore any non-empty class closed
under H contains all trivial algebras.

A non-empty class of algebras K is a variety, if it is closed under subalgebras,
homomorphic images and direct products. Hence, varieties contain all trivial alge-
bras. Given a class of algebras K, the variety generated by K, which we shall denote
by V(K), is the least variety containing the class K. The existence of such variety
is justified by the following famous result:

2We have chosen to add the supscript eq to the relative equational consequence relation �eq
K

just to emphasize that it is a closure relation on EqL rather than FmL.
3A λ-reduced product is a reduced products modulo a λ-complete filter; a λ-complete filter

on a set I is a filter of P(I) closed under intersections of families of cardinal < λ.
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Theorem 0.11 (Tarski). For every class of algebras K,

V(K) = HSP(K).

A non-empty class of algebras K is a quasivariety, if it is closed under subalge-
bras, isomorphisms, reduced products and contains a trivial algebra. Every variety
is a quasivariety, since PR ≤ PU ≤ HP. Given a class of algebras K, the quasivariety
generated by K, which we shall denote by Q(K), is the least quasivariety containing
the class K. The existence of such quasivariety is ensured by another famous result:

Theorem 0.12 (Mal’cev). For every class of algebras K,

Q(K) = ISPPU(K ∪ {Triv}) = ISPR(K ∪ {Triv}).

If we admit direct products of empty families, defining them as
∏

∅Ai
∼= Triv,

then we can state a more elegant version of Mal’cev theorem as Q(K) = ISPPU(K) =
ISPR(K).

A non-empty class of algebras K is a generalized quasivariety, if it is closed un-
der subalgebras, isomorphisms, direct products, closed under the operator U, and
contains a trivial algebra. A result from Universal Algebra tells us that every alge-
bra can be embedded into an ultraproduct of its finitely generated subalgebras (see,
for instance, [18, Theorem 2.14]). So, if a class of algebras is closed under ISPU,
then it is closed under U. As a consequence, every quasivariety is a generalized
quasivariety.

Given a class of algebras K, the generalized quasivariety generated by K, which
we shall denote by GQ(K), is the least generalized quasivariety containing the class
K. The following theorem is not so well known as the previous analogous ones for
varieties and quasivarieties; to the author’s knowledge, it was formally stated for
the first time in [9, Corollary 8.2].

Theorem 0.13. For every class of algebras K,

GQ(K) = UISP(K ∪ {Triv}).

Again, if we admit direct products over an empty family of indexes, we can
write simply GQ(K) = UISP(K).

Subdirectly irreducible algebras. Let {Ai : i ∈ I} be a family of algebras.
An embedding α : A →

∏
i∈I Ai is said to be subdirect, if the image α(A) is a

subdirect product of the family {Ai}i∈I . In this case, A is said to be subdirectly
embeddable into

∏
i∈I Ai, or a subdirect embedding of

∏
i∈I Ai. An algebra A is

subdirectly irreducible, if for every subdirect embedding α : A →
∏
i∈I Ai, there

exists i ∈ I such that πi ◦α : A→ Ai is an isomorphism, where πi : A→ Ai is the
i-th projection of A. A classical result from Birkhoff (which we shall need to make
use of once — at Proposition 7.34) is the following:

Theorem 0.14 (Birkhoff). Every algebra is isomorphic to a subdirect product of
subdirectly irreducible algebras.

Notice that, in particular, if V is a variety, then every algebra A ∈ V is iso-
morphic to a subdirect product of subdirectly irreducible algebras {Ai : i ∈ I}
such that Ai ∈ V, for every i ∈ I. Indeed, by definition of subdirect product, the
i-th projection of A is surjective, that is, πi(A) = Ai, and since V is closed under
homomorphic images, it follows that Ai ∈ V, for every i ∈ I.
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Congruences. Let A be a set. A relation R ⊆ A×A is an equivalence relation
on A, if it is reflexive, symmetric and transitive. That is, if for every a, b, c ∈ A,

� 〈a, a〉 ∈ R;
� if 〈a, b〉 ∈ R, then 〈b, a〉 ∈ R;
� if 〈a, b〉 ∈ R and 〈b, c〉 ∈ R, then 〈a, c〉 ∈ R.

We shall denote the set of all equivalence relations on A by EqrA. The poset
〈EqrA,⊆〉 is a complete lattice, with infima and suprema given by∧

i∈I
θi =

⋂
i∈I

θi and
∨
i∈I

θi =
⋃{

θi0 ◦ . . . ◦ θik : i0, . . . , ik ∈ I, k <∞
}
,

where ◦ denotes the relational composition of two relations, which we assume the
reader to be familiar with.

Given θ ∈ EqrA and a ∈ A, the equivalence class of a under θ is defined by
a/θ := {b ∈ A : 〈a, b〉 ∈ θ}. Also, given F ⊆ A, we write F/θ := {a/θ : a ∈ F}.

Now, let A be an algebra. A relation θ ⊆ A × A is a congruence relation
on A, if it is an equivalence relation on A and moreover it is compatible with
language operations on A, that is, for every n-ary operation symbol f ∈ L and
every a1, . . . , an, b1, . . . , bn ∈ A,

� if 〈ai, bi〉 ∈ θ, for every i = 1, . . . , n, then 〈fA(a1, . . . , an), fA(b1, . . . , bn)〉 ∈ θ.

We shall denote the set of all congruence relations on A by ConA. The poset
〈ConA,⊆〉 is a complete sublattice of 〈EqrA,⊆〉. Its least element is the identity
map on A, which will be denoted by idA, and its largest element is A × A. An
algebra A is simple, if ConA = {idA, A×A}. The poset 〈ConA,⊆〉 is an algebraic
lattice. Given X ⊆ A × A, we shall denote the least congruence containing X by
ΘA(X), and refer to it as the congruence generated by X. That is,

ΘA(X) :=
⋂{

ϑ ∈ ConA : X ⊆ ϑ
}
.

When X = {〈a, b〉}, we write simply ΘA(a, b), and call it the principal congruence
generated by the pair 〈a, b〉. Applying Lemma 0.9 to the closure operator ΘA, we
get:

Lemma 0.15. For every A and every X ⊆ A×A,

ΘA(X) =
∨{

ΘA(a, b) : 〈a, b〉 ∈ X
}
.

Let A be an algebra and F ⊆ A. A congruence θ ∈ ConA is compatible with
F , if for every a, b ∈ A, if 〈a, b〉 ∈ θ and a ∈ F , then b ∈ F . That is, θ is compatible
with F , if it does not identify elements in F with elements outside F . The following
characterizations of compatibility should be borne in mind, as we will make use of
them thoroughly without any explicit mention.

Lemma 0.16. Let A be an algebra, θ ∈ ConA and F ⊆ A. The following condi-
tions are equivalent:

(i) θ is compatible with F ;
(ii) a ∈ F ⇔ a/θ ∈ F/θ, for every a ∈ A;
(iii) F = π−1πF , where π : A→ A/θ is the canonical map;
(iv) F =

⋃
a∈F a/θ; in other words, F is a union of equivalence classes of θ.
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A very special congruence associated to any given homomorphism is its kernel.
The kernel of h : A→ B is the congruence defined by

Kerh :=
{
〈a, b〉 ∈ A×A : h(a) = h(b)

}
.

It will be useful to record here two of its elementary properties.

Lemma 0.17. Let h : A→ B.
1. For every F ⊆ A, Kerh is compatible with F if and only if h−1hF = F .
2. For every θ ∈ EqrA, Kerh ⊆ θ if and only if h−1hθ = θ.

It is easy to check that congruences are preserved by inverse images of arbitrary
homomorphisms. Preservation under direct images requires some conditions upon
the homomorphisms.

Proposition 0.18. Let A,B be algebras and h : A→ B.
1. If θ ∈ ConB, then h−1θ ∈ ConA.
2. If θ ∈ ConA, h is surjective and Kerh ⊆ θ, then hθ ∈ ConB.

Relative congruences. Let K be a class of algebras and A an algebra (not
necessarily in K). A congruence θ ∈ ConA is a K-congruence, or a congruence
relative to K, if A/θ ∈ K. We shall denote the set of all congruences of A relative
to a class of algebras K by ConKA. Notice that if K is closed under H (for instance,
if K is a variety) and A ∈ K, then ConKA = ConA.

In general, the poset 〈ConKA,⊆〉 need not be a complete lattice. We next state
a sufficient condition to be so, as well as a (stronger) sufficient condition to be an
algebraic lattice.

Proposition 0.19. Let A be an algebra. If K is closed under isomorphisms and
subdirect products, then ConKA is closed under non-empty arbitrary intersections.
If moreover K contains a trivial algebra, then ConKA is a closure system; hence,
〈ConKA,⊆〉 is a complete lattice.

Given an algebra A and a class of algebras K closed under I and PS, the
lattice 〈ConKA,⊆〉 is not necessarily a sublattice of 〈ConA,⊆〉, because joins might
not coincide; but in light of Proposition 0.19 it is always a meet-complete sub-
semilattice. Under the stated assumption on K, and given X ⊆ A × A, we shall
denote by ΘAK (X) the K-congruence generated by X, i.e.,

ΘAK (X) :=
⋂{

θ ∈ ConKA : X ⊆ θ
}
.

Proposition 0.20. Let A be an algebra. If K is a quasivariety, then ConKA is an
inductive closure system; hence, 〈ConKA,⊆〉 is an algebraic lattice.

Next, and just like we did in Proposition 0.18 for congruences in general, we
state sufficient conditions for relative congruences to be preserved by direct and
inverse images of homomorphisms.

Proposition 0.21. Let K be a class of algebras closed under isomorphisms and
subdirect products, A,B algebras and h : A→ B.

1. If θ ∈ ConKB, then h−1θ ∈ ConKA.
2. If θ ∈ ConKA, h is surjective and Kerh ⊆ θ, then hθ ∈ ConKB.

Another technical lemma which will be useful later on relates images of surjec-
tive homomorphisms with generated relative congruences.
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Lemma 0.22. Let K be a class of algebras closed under isomorphisms, subdirect
products, and containing a trivial algebra, and let τ (x) ⊆ EqL. If h : A → B is a
surjective homomorphism, then

ΘBK
(
hΘAK

(
τA(X)

))
= ΘBK

(
τB(hX)

)
,

for every X ⊆ A.

Finally, and similarly to Lemma 0.15 for congruences in general, by applying
Lemma 0.9 to the closure operator ΘAK , we get:

Lemma 0.23. If K is closed under isomorphisms, subdirect products, and contains
a trivial algebra, then

ΘAK (X) =
∨{

ΘAK (a, b) : 〈a, b〉 ∈ X
}
,

for every A and every X ⊆ A×A.

0.5. Abstract Algebraic Logic

Sentential logics. Let L be an algebraic similarity type. Its elements will be
called connectives. A closure relation ` on the set of L-formulas is structural, or
substitution invariant, if it satisfies the additional condition:

� Structurality: If Γ ` ϕ, then σ(Γ) ` σ(ϕ), for every substitution σ and
every Γ ∪ {ϕ} ⊆ FmL.

A consequence relation on FmL is a structural closure relation over FmL. A (sen-
tential) logic is a pair S = 〈Fm,`S〉, where `S is a consequence relation on FmL.
A logic S is finitary, if the consequence relation `S is finitary. A Hilbert-style rule
is a pair 〈Γ, ϕ〉, where Γ is a (possibly infinite) set of formulas and ϕ is a formula.
The cardinal of a Hilbert-style rule 〈Γ, ϕ〉 is given by the cardinal of Γ. Given an
algebra A and a set of Hilbert-style rules H, an S-filter F ∈ FiSA is closed under
H, if for every 〈Γ, ϕ〉 ∈ H and every h : Fm → A such that h(Γ) ⊆ F , it holds
h(ϕ) ∈ F . A logic S is of course determined by the set of all Hilbert-style rules
〈Γ, ϕ〉 such that 〈Γ, ϕ〉 ∈ `S .

Given a logic S = 〈Fm,`S〉, the `S -closed sets of formulas are called S-
theories. The set of all S-theories shall be denoted by T hS. Since T hS is a closure
system, it has a least element, which shall be denoted by ThmS , and whose elements
are called the theorems of S, i.e., formulas ϕ ∈ FmL such that ∅ `S ϕ. The set of
theorems may be empty. A logic S is inconsistent, if every formula is an S-theorem,
i.e., ThmS = FmL. A logic S is inconsistent if and only if its only S-theory is the
set of all formulas, i.e., T hS = {FmL}. A logic S is almost inconsistent, if it does
not have theorems and every formula is a consequence of every formula. A logic S
is almost inconsistent if and only if its only S-theories are the empty set and set of
all formulas, i.e., T hS = {∅,FmL}.

Let S = 〈Fm,`S〉 be a logic in a language L. A logic S ′ = 〈Fm,`S′〉 in the
language L is an extension of S, if `S ⊆ `S′ ; and it is an axiomatic extension of
S, if there exists a set of formulas Ax ⊆ FmL closed under substitutions such that,
for every Γ ⊆ FmL and every ϕ ∈ FmL, it holds

Γ `S′ ϕ iff Γ ∪Ax `S ϕ.

So, an extension S ′ of a logic S has the same underlying language as S and fur-
thermore, if 〈Γ, ϕ〉 ∈ `S , then 〈Γ, ϕ〉 ∈ `S′ . Notice that, in particular, for every
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ϕ ∈ Ax, it holds Ax `S ϕ by extensivity of S, and therefore ∅ `S′ ϕ. Hence,
Ax ⊆ ThmS′ .

Now, let S = 〈Fm,`S〉 be a logic in a language L and let L′ be a language
such that L ⊆ L′. A logic S ′ = 〈Fm,`S′〉 in the language L′ is an expansion of S,
and S is a fragment of S ′, if `S ⊆ `S′ ; and it is a conservative expansion of S, if
for every Γ ⊆ FmL and every ϕ ∈ FmL in the language L, it holds

Γ `S′ ϕ iff Γ `S ϕ.

So, an expansion S ′ of a logic S has an underlying language containing that of S
and furthermore every consequence in S holds in S ′ as well.

Let S be a logic. The cardinal of S is the least infinite cardinal κ ≤ |FmL|+
such that for every set of formulas Γ and every formula ϕ, if Γ `S ϕ, then there
exist a set ∆ ⊆ Γ with |∆| < κ such that ∆ `S ϕ. Hence finitary logics are the
logics with cardinal ω and the non-finitary logics with a countable set of connectives
have cardinal ω1.

S-filters. Let S be a logic and A an algebra. An S-filter of A is a subset
F ⊆ A such that, for every h : Fm → A and every Γ ∪ {ϕ} ⊆ FmL, if Γ `S ϕ
and h(Γ) ⊆ F , then h(ϕ) ∈ F . The set of all S-filters of A will be denoted by
FiSA. In general, FiSA is a closure system for every algebra A. The closure
operator associated with FiSA will be denoted by FgAS . The set of all S-filters of
A containing a given F ∈ FiSA shall be denoted by (FiSA)F . Notice that if κ is
the cardinal of S, then for every algebra A the union of any κ-directed family of
S-filters is still an S-filter. Hence, given any cardinal λ < κ, FiSA is closed under
unions λ-directed families, for every A. An important fact which should always be
borne in mind is the following: The S-filters of the formula algebra Fm are precisely
the S-theories. In symbols, FiSFm = T hS. Traditionally, the associated closure
operator is denoted by CnS instead of FgFmS .

The interplay between S-filters and homomorphisms will be a cornerstone of
our work. The next crucial lemma states sufficient conditions for the property of
being an S-filter to be preserved under images and inverse images by (surjective)
homomorphisms.

Lemma 0.24. Let S be a logic, A,B algebras, h : A→ B, and G ⊆ B.
1. If G ∈ FiSB, then h−1G ∈ FiSA.
2. If h is surjective and h−1G ∈ FiSA, then G ∈ FiSB .
3. If h is surjective and Kerh is compatible with F ∈ FiSA, then hF ∈ FiSB .

Another technical lemma which will be useful later on relates images of surjec-
tive homomorphisms with generated S-filters. Do compare it with Lemma 0.22.

Lemma 0.25 ([10, Lemma 1.1 (v)]). If h : A→ B is a surjective homomorphism,
then

FgBS
(
hFgAS (X)

)
= FgBS (hX),

for every X ⊆ A.

Transformers and structural representations. This topic is developed in
the literature at a much more abstract level, but for our purposes, it is enough to
introduce it only for the closure systems T hS and ConAlg(S)Fm. For the general
theory, see [9, 44, 45].
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Let us start by fixing some notation. Given an algebra A and a set of equations
τ (x) ⊆ EqL, we denote by τA the set of all a ∈ A satisfying every equation in τ (x)
when interpreted in A, i.e.,

τA := {a ∈ A : A � τ (x)JaK}.

Moreover, given F ⊆ A, we write

τA(F ) := {〈δA(a), εA(a)〉 : δ ≈ ε ∈ τ (x), a ∈ F} .

We write simply τA(a) instead of τA({a}) — which makes the present notation
agree with the 1-ary case of that introduced on page 9.

A transformer from formulas to equations is a map τ : P(FmL) → P(EqL)
such that, for every Γ ⊆ FmL,

τFm(Γ) =
⋃
γ∈Γ

τFm(γ).

A transformer τ from formulas to equations is structural if it commutes with sub-
stitutions, i.e., if for every substitution σ : Fm→ Fm and every ϕ ∈ FmL, it holds
τFm

(
σ(ϕ)

)
= σ

(
τFm(ϕ)

)
— notice that the σ on the right is the extension to the

powerset of cartesian products of the σ on the left, following the notation intro-
duced on page 1. Structural transformers from formulas to equations are univocally
determined by a set of equations in at most one variable. Indeed, a transformer
τ : P(FmL) → P(EqL) is structural if and only if there exists a set of equa-
tions E(x) ⊆ EqL such that τFm(ϕ) = EFm(ϕ), for every ϕ. Since in particular
τ (x) = EFm(x), it is safe, and notationally simpler, to identify a transformer τ
with the associated set τ(x) of equations determining it.

Let now S be a logic, K a class of algebras closed under isomorphisms and
subdirect products, and A an arbitrary algebra. A map Ψ : FiSA → ConKA is a
representation, if it is injective and preserves arbitrary suprema. A representation
Ψ : FiSA→ ConKA is structural, if it commutes with endomorphisms, in the sense
that Ψ(FgAS (h(F ))) = ΘAK (h(Ψ(F ))), for every endomorphism h ∈ Hom(A,A).
These notions, despite of being here introduced under the original names, are par-
ticular instances of more general concepts. See, for example, [45, Definition 17,
Lemma 18, Definition 24]. For future reference, we record here an important result
concerning structural representations, which in our setting follows as a particular
case of [44, Theorem 5.1] and [44, Corollary 5.9]. See also the proof of [11, Theorem
3.7 (i)].

Theorem 0.26. Let S be a logic and K a class of algebras closed under isomor-
phisms and subdirect products. If Φ : T hS → ConKFm is a structural representa-
tion, then there exists a structural transformer τ : P(FmL) → P(EqL) such that
Φ
(
CnS(Γ)

)
= ΘFmK

(
τFm(Γ)

)
, for every Γ ⊆ FmL.

For the sake of completeness, if K is a τ -algebraic semantics for S (see (1)
below), then τ induces a structural representation Φ : T hS → ConGQ(K)Fm, given
by Φ(T ) := ΘFmK

(
τFm(T )

)
, for every T ∈ T hS.

Algebraic semantics. Let S be a logic and τ (x) ⊆ EqL. A class of algebras
K is a τ -algebraic semantics for S, if

Γ `S ϕ ⇔ τ (Γ) �eq
K τ (ϕ), (1)
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for every Γ∪{ϕ} ⊆ FmL. A logic defined by condition (1) is called the τ -assertional
logic of K, and it is sometimes denoted by S(K, τ ). So, a class K is a τ -algebraic
semantics for a logic S if and only if S = S(K, τ ).

A τ -algebraic semantics for a logic S need not to be unique. The definition
makes it clear that any other class of algebras K′ such that �eq

K′ = �eq
K is also

a τ -algebraic semantics for S. Also, a class of algebras K can be an algebraic
semantics for a logic S witnessed by two different sets of equations. So, although
intuitive, the notion of algebraic semantics leaves much to be desired concerning
the “uniqueness” one would reasonably imagine an algebraic counterpart of a logic
to enjoy. There is, nevertheless, a distinguished τ -algebraic semantics for S, in
case one such τ -algebraic semantics actually exists (there are logics without any
algebraic semantics; see [15, Theorem 2.19]).

Definition 0.27 ([15, Definition 2.7]). Let S be a logic and τ (x) ⊆ EqL. The
class of τ -models of S is defined by

K(S, τ ) := {A : Γ `S ϕ ⇒ τ (Γ) �eq
A τ (ϕ)} .

Notice that K(S, τ ) is non-empty, as all trivial algebras belong to it. Actually,
K(S, τ ) is a generalized quasi-variety, axiomatized by the set of quasi-equations{¯

γ∈Γ
τ (γ) → τ (ϕ) : Γ `S ϕ , Γ ∪ {ϕ} ⊆ FmL

}
.

Notice also that, if K is a τ -algebraic semantics for S, then K ⊆ K(S, τ ). But
K(S, τ ) itself need not be, in general, a τ -algebraic semantics for S. However,

Proposition 0.28 ([15, Proposition 2.8]). Let S be a logic. If there exists a τ -
algebraic semantics for S, then the class K(S, τ ) is the largest τ -algebraic semantics
for S.

In Chapter 4 we shall have more to say about the largest τ -algebraic semantics
of truth-equational logics (see Definition 0.38).

The Leibniz, Suszko, Tarski, and Frege operators. Let A be an alge-
bra. The set of all congruences on A compatible with a given F ⊆ A4 forms a
complete sublattice of the lattice ConA. Its least element is, of course, the identity
congruence on A. Its largest element, known as the Leibniz congruence of F , plays
a prominent rôle in Abstract Algebraic Logic, and is denoted by ΩA(F ). Observe
that θ ∈ ConA is compatible with F ⊆ A if and only if θ ⊆ ΩA(F ). Another
trivial, but useful observation, is that ΩA(∅) = ΩA(A) = A×A.

Two further congruences, both relevant to AAL, also arise from the notion of
a congruence being compatible with a set. The first, given F ⊆ A, is called the
Suszko congruence of F , and it is defined as the largest congruence of A compatible
with every G ∈ (FiSA)F ; it is easy to see that one can equivalently define it by

∼
ΩA
S (F ) :=

⋂{
ΩA(G) : G ∈ FiSA , F ⊆ G

}
. (2)

4We depart slightly from the usual practice of introducing the Leibniz and Suszko congruences
for S-filters, and consider here arbitrary subsets instead.
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The second, given C ⊆ P(A), is called the Tarski congruence of C , and it is
defined as the largest congruence compatible with every G ∈ C , or, equivalently,
by

∼
ΩA(C ) :=

⋂{
ΩA(F ) : F ∈ C

}
. (3)

From (2) and (3) it follows that the Suszko congruence can be defined in terms
of the Tarski congruence by the identity

∼
ΩA
S (F ) = ∼

ΩA
(
(FiSA)F

)
. (4)

Observe that the Leibniz and Tarski congruences are independent of any logic.
Indeed, they depend only onA, and F ⊆ A or C ⊆P(A), respectively. In contrast,
the Suszko congruence depends on the underlying logic S, fact which is reflected in
the notation.

The main characterization of the Leibniz congruence is the following (the proof
can be found in [21, Theorem 3.2]):

Proposition 0.29. Let A be an algebra and F ⊆ A. For every a, b ∈ A,

〈a, b〉 ∈ ΩA(F ) iff ∀ϕ(x, z) ∈ FmL ∀c ∈ A

ϕA(a, c) ∈ F ⇔ ϕA(b, c) ∈ F.

In fact, the Leibniz congruence gets its name from this characterization, since
it can be viewed as the first-order analogue of Leibniz’s second-order definition of
identity:
Two objects in the domain of discourse are equal if they share all the properties

that can be expressed in the language of discourse.
Having (2) in mind, a similar characterization for the Suszko congruence follows
immediately as corollary, and we will make use of it in Chapter 7.

Corollary 0.30. Let S be a logic, A an algebra and F ⊆ A. For every a, b ∈ A,

〈a, b〉 ∈ ∼
ΩA
S (F ) iff ∀F ′ ∈ (FiSA)F ∀ϕ(x, z) ∈ FmL ∀c ∈ A

ϕA(a, c) ∈ F ′ ⇔ ϕA(b, c) ∈ F ′.

We can consider the map assigning to each subset F ⊆ A its Leibniz congruence
ΩA(F ); when restricting its domain to the set of S-filters of A, we refer to the map
ΩA : FiSA→ ConA as the Leibniz operator on A. Similarly, the Suszko operator
on A is the map ∼

ΩA
S : FiSA → ConA defined by F 7→ ∼

ΩA
S (F ). Observe that,

given any X ⊆ A, ∼
ΩA
S (X) =

⋂
{ΩA(F ) ∈ FiSA : X ⊆ F} = {ΩA(F ) ∈ FiSA :

FgAS (X) ⊆ F} = ∼
ΩA
S (FgAS (X)). Finally, the Tarski operator on A is the map

∼
Ω : P(FiSA)→ ConA defined by C 7→ ∼

ΩA(C ).
Given that these congruences and operators are defined on every algebra, it is

natural to consider the family Ω := {ΩA : A an algebra} and call it the Leibniz
operator. Similarly, we call the family ∼

ΩS := { ∼ΩA
S : A an algebra} the Suszko

operator. This terminology makes it easy to name properties that necessarily involve
the whole family, in particular, those that relate the operators on different algebras,
or those concerning a single algebra and holding in all of them (see for instance
Definition 0.37).

We have already seen how congruences (in general) and S-filters behave with
respect to images and inverse images by (surjective) homomorphisms. Lastly, we
consider the behaviour of each one of the three distinguished AAL congruences
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with respect to inverse images by surjective homomorphisms. We sum it up in next
proposition, which will turn out to be a most crucial one to our study.

Proposition 0.31. Let S be a logic, A,B algebras, and h : A→ B surjective. For
every C ∪ {G} ⊆ FiSB,

1. h−1ΩB(G) = ΩA(h−1G);
2. h−1 ∼

ΩB(C ) = ∼
ΩA(h−1C );

3. ∼
ΩA
S (h−1G

)
⊆ ∼
ΩB
S (G).

The Suszko operator does not behave as well as the Leibniz and Tarski opera-
tors, at least with respect to inverse images by surjective homomorphisms. Indeed,
h−1 ∼

ΩB
S (G) need not be equal to ∼

ΩA
S (h−1G). To support this statement we must

wait until Proposition 3.15, but it can already be foreseen that, when working with
the Suszko operator, the usual arguments used with the Leibniz operator will not
go as smoothly as one could hope. The quest for a weaker commutativity property
shared by both the Leibniz and Suszko operators is one of the main goals addressed
in Part I of this work.

Since it will be later needed, we record here a very interesting result relating
algebraic semantics with the Suszko operator.

Proposition 0.32 ([55, Corollary 9]). If a logic S has a τ -algebraic semantics,
then for every A and every F ∈ FiSA,

τA(F ) ⊆ ∼
ΩA
S (F ).

The Frege relation of F ⊆ A on A (again, relative to S) is defined by

ΛAS (F ) :=
{
〈a, b〉 ∈ A×A : FgAS (F, a) = FgAS (F, b)

}
.

Notice that, unlike the previous operators we have seen so far, the equivalence
relation ΛAS (F ) is not necessarily a congruence. In fact, an important property to
keep in mind is that, for every algebra A, the largest congruence below ΛAS (F ) is
the Suszko congruence ∼

ΩA
S (F ). We call the map given by F 7→ ΛAS (F ), restricted

to FiSA, the Frege operator on A. Similarly to the Suszko operator, observe
that given any X ⊆ A, ΛAS (X) = ΛAS

(
FgAS (X)

)
. Moreover, the Frege operator is

always order preserving. Finally, the relation ΛFmS (∅) is called the interderivability
relation, and traditionally 〈ϕ,ψ〉 ∈ ΛFmS (∅) is abbreviated by ϕ a`S ψ.

Matrices, generalized matrices, (g-)models, and full g-models of a
logic. A (logical) matrix is a pair 〈A, F 〉, where A is an L-algebra and F ⊆ A.
Every matrixM = 〈A, F 〉 induces a logic whose consequence relation `M is defined,
for every Γ ∪ {ϕ} ⊆ FmL, by

Γ `M ϕ ⇔ for all h : Fm→ A, if h(Γ) ⊆ F , then h(ϕ) ∈ F.

Similarly, every class M of matrices induces a logic whose consequence relation `M
is defined by

`M:=
⋂
M∈M

`M . (5)

Let S be a logic. A matrix M is a model of S if `S ⊆ `M. It follows from the
definition itself that 〈A, F 〉 is a model of S if and only if F is an S-filter of A. The
class of all models of a logic S is denoted by Mod(S).

Let τ (x) ⊆ EqL and M a class of matrices. We say that truth is equationally
definable in M by τ , or that τ defines truth in M, if for every 〈A, F 〉 ∈ M, F = τA;
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and that truth is implicitly definable in M, if for every 〈A, F 〉, 〈A, G〉 ∈ M, F = G.
Clearly, if truth is equationally definable in M, then it is also implicitly definable
in M.

LetM = 〈A, F 〉 and N = 〈B, G〉 be matrices. A matrix homomorphism from
M to N is an algebraic homomorphism h : A → B such that F ⊆ h−1G. Notice
that this notion is still a particular case of the first-order definition of homomor-
phism between structures, considering the first order language L′ = 〈F ′,R′〉, where
F ′ = F and R′ = {r}, with r a 1-ary relation symbol. A matrix homomorphism
h : M → N is strict, if h−1G = F ; and it is deductive5, if h(a) = h(b) implies
FgAS (F, a) = FgBS (F, b). A most crucial fact about strict and surjective matrix
homomorphisms is the following:

Proposition 0.33. If there is a strict surjective homomorphism between two ma-
trices, then these matrices define the same logic.

Just like the operators defined for classes of algebras on page 10, similar op-
erators can be defined for classes of matrices (we skip the details here — see [60,
Chapter 9]). A famous theorem by Czelakowski characterizes the class Mod(S), for
a logic S with cardinal κ, as the least class of matrices closed under images and in-
verse images by strict surjective homomorphisms, submatrices, κ-reduced products
of matrices, and containing a trivial matrix. We record this result here for future
reference.

Theorem 0.34 (Czelakowski). Let S be a logic with cardinal κ6 in a countable
language, and M a class of L-matrices. The following conditions are equivalent:
(i) M = Mod(S);
(ii) M is closed under the operators H−1

S , HS, S, Pκ−R and contains a trivial
matrix;

(iii) M = H−1
S HSSPκ−R(N), for some class of matrices N containing a trivial

matrix.

The notion of a matrix can be seen as a particular case of a more general notion.
A generalized matrix, or g-matrix for short, is a pair M = 〈A,C 〉, where A is an
algebra and C ⊆P(A) is a closure system. Every g-matrix M = 〈A,C 〉 induces a
consequence relation `M as in (5) by taking the class of matrices

{
〈A, F 〉 : F ∈ C

}
.

A g-matrix M is a generalized model (g-model for short) of a logic S if `S ⊆ `M.
One can easily check that 〈A,C 〉 is a g-model of S if and only if C ⊆ FiSA. Often,
for simplicity, the term “g-model” is applied to C rather than to the pair 〈A,C 〉.
The class of all g-models of a logic S is denoted by GMod(S).

Among the g-models of a logic there are some of special importance to AAL.
A family C ⊆ FiSA is full if C =

{
G ∈ FiSA : ∼

ΩA(C ) ⊆ ΩA(G)
}
. This

notion is obviously relative to the logic, but in general there will be no need to
specify it. Notice that, given an arbitrary family C ⊆ FiSA, it always holds that
∼
ΩA(C ) ⊆ ΩA(G) for every G ∈ C . Thus, C is full when it is exactly the set
of all the S-filters on A which ∼

ΩA(C ) is compatible with. The family FiSA is
obviously full, for every A. It is easy to see that every full family of S-filters is a

5The notion of deductive matrix homomorphism was first introduced by Czelakowski in [24,
p. 200].

6Notice that, since the cardinal of a logic is infinite (by definition) and the language of S is
countable (by assumption), either κ = ω or κ = ω1.
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closure system, because a congruence compatible with every element of a family of
subsets is compatible with its intersection. Full families of S-filters are also called
full g-models. The class of all full g-models of a logic S is denoted by FGMod(S).

We have chosen as definition of full g-model one among its many equivalent
formulations, by reasons that will become clear later on. Nevertheless, we shall
make use of several characterizations, which we next sum up, and among which is
the original definition [36, Definition 2.8].

Proposition 0.35. Let A be an algebra, C ⊆ FiSA, and let π : A → A/
∼
ΩA(C )

be the canonical projection. The following conditions are equivalent:
(i) C is full;
(ii) πC = FiS

(
A/

∼
ΩA(C )

)
;

(iii) C = π−1FiS
(
A/

∼
ΩA(C )

)
;

(iv) C = h−1FiSB, for some algebra B and some surjective h : A→ B.

A matrix 〈A, F 〉 is Leibniz-reduced, or simply reduced, if ΩA(F ) = idA; and it
is Suszko-reduced if ∼

ΩA
S (F ) = idA. A g-matrix 〈A,C 〉 is reduced if ∼

ΩA(C ) = idA.
The classes of all reduced (g-)models according to these three criteria are denoted
by, respectively,

Mod∗(S) :=
{
〈A, F 〉 ∈ Mod(S) : ΩA(F ) = idA

}
,

ModSu(S) :=
{
〈A, F 〉 ∈ Mod(S) : ∼

ΩA
S (F ) = idA

}
,

GMod∗(S) :=
{
〈A,C 〉 ∈ GMod(S) : ∼

ΩA(C ) = idA
}
.

Two further classes of matrices will be of interest to us, namely:

LMod∗(S) :=
{
〈Fm/ΩFm(T ), T/ΩFm(T )〉 : T ∈ T hS

}
,

LModSu(S) :=
{
〈Fm/

∼
ΩFm
S (T ), T/∼ΩFm

S (T )〉 : T ∈ T hS
}
.

The classical reference for the theory of matrices is [60]. Another major reference
is [23, Chapter 0]; for the theory of generalized matrices, see [36, Chapter 1].

The classes of algebras Alg∗(S) and Alg(S). Two classes of algebras are
considered as naturally, and intrinsically, associated with a logic in AAL. They are
obtained by considering the algebraic reducts of the classes of reduced (g-)models
seen above.

Alg∗(S) :=
{
A : there is F ∈ FiSA such that ΩA(F ) = idA}, (6)

AlgSuS :=
{
A : there is F ∈ FiSA such that ∼

ΩA
S (F ) = idA}, (7)

Alg(S) :=
{
A : there is C ⊆ FiSA such that ∼

ΩA(C ) = idA}. (8)

Observe that, since the Tarski operator is order reversing and FiSA is always full,
definition (8) is equivalent to:

Alg(S) =
{
A : ∼

ΩA(FiSA) = idA
}

(9)

=
{
A : there is C ⊆ FiSA full such that ∼

ΩA(C ) = idA
}
. (10)

The next lemma sums up the standard characterizations of these classes, as well
as the known relations between them. An important idea to retain is that, for all
three operators, the class of algebraic reducts of the reduced (g-)models coincides,
up to isomorphism, with the class of algebraic reducts of the respective reductions
of (g-)models of the logic.
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Lemma 0.36. Let S be a logic.
1. Alg∗(S) = I

{
A/ΩA(F ) : A an algebra, F ∈ FiSA

}
.

2. AlgSuS = I
{
A/

∼
ΩA
S (F ) : A an algebra, F ∈ FiSA

}
.

3. Alg(S) = I
{
A/

∼
ΩA(C ) : A an algebra, C ⊆ FiSA

}
= I
{
A/

∼
ΩA(C ) : A an algebra, C ⊆ FiSA full

}
= I
{
A/

∼
ΩA(FiSA) : A an algebra

}
.

4. Alg(S) = AlgSuS .
5. Alg(S) = PS(Alg∗(S)).

Notice that, as a consequence of 5, it always holds

Alg∗(S) ⊆ Alg(S).

Lastly, we introduce the famous class of Lindenbaum-Tarski algebras and its Suszko
analogous, obtained by considering the Leibniz- and Suszko-reductions of models
over the formula algebra, respectively. That is,

LAlg∗(S) := {Fm/ΩFm(T ) : T ∈ T hS}, (11)

LAlgSu(S) := {Fm/
∼
ΩFm
S (T ) : T ∈ T hS}. (12)

The Leibniz hierarchy. The main classification of sentential logics in AAL
is the so called Leibniz hierarchy, displayed in Figure 1. It places a given logic S
inside a class of logics, according to the algebraic properties enjoyed by the Leibniz
operator over the S-filters on arbitrary algebras. In this section we present those
classes of logics within the Leibniz hierarchy which we will take more interest in.
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Figure 1. The Leibniz hierarchy and some related properties.
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Among the many equivalent characterizations of these classes, we have chosen
as definitions the ones that fit more naturally within the general framework we
intend to settle in Part I of the present work. As we shall make use of several
properties concerning the Leibniz operator, we start by introducing them.

Definition 0.37. Let S be a logic. The Leibniz operator:
� is order preserving, if for every A and every F,G ∈ FiSA such that F ⊆ G,
it holds ΩA(F ) ⊆ ΩA(G);

� is order reflecting, if for every A and every F,G ∈ FiSA such that ΩA(F ) ⊆
ΩA(G), it holds F ⊆ G;

� is completely order reflecting, if for every A and every {Fi : i ∈ I} ∪ {G} ⊆
FiSA such that

⋂
i∈I Ω

A(Fi) ⊆ ΩA(G), it holds
⋂
i∈I Fi ⊆ G.

� commutes with inverse images by homomorphisms, if for everyA,B and every
G ∈ FiSB, it holds h−1ΩB(G) = ΩA(h−1G);

� is continuous, if it commutes with unions of directed families whose union is
an S-filter, i.e., if for every A and every directed family {Fi : i ∈ I} ⊆ FiSA
such that

⋃
i∈I Fi ∈ FiSA, it holds ΩA

(⋃
i∈I Fi

)
=
⋃
i∈I Ω

A(Fi).

Definition 0.38. A logic S is:
� protoalgebraic, if the Leibniz operator is order preserving;
� equivalential, if it is protoalgebraic and the Leibniz operator commutes with
inverse images by homomorphisms;

� finitely equivalential, if it is protoalgebraic and the Leibniz operator is con-
tinuous;

� truth-equational, if the Leibniz operator is completely order reflecting;
� weakly algebraizable, if it is protoalgebraic and truth-equational;
� algebraizable, if it is equivalential and truth-equational;
� finitely algebraizable, if it is finitely equivalential and truth-equational.

We see that some classes of logics were left out of Definition 0.38. We proceed
to introduce them. To this end, recall the notion of τ -assertional logic of a class of
algebras K, given on page 17. Also, a class of algebras is pointed when there is an
L-term c that is constant in the class (that is, for each algebra in the class, all the
interpretations of the L-term c coincide).

Definition 0.39. A logic S is assertional, if it is the {x ≈ c}-assertional logic of
some pointed class of algebras K, where c is a constant term in K.

Assertional logics are also called “pointed assertional” (for example, in [55, Def-
inition 8]) or “c-assertional” (for example, in [14, Definition 3.1.1]) in the literature.
In [4] this class of logics is claimed to legitimately belong to the Leibniz hierarchy.
The classes of logics in Figure 1 with the word regularly on its name are precisely
the intersection of the class of assertional logics with the respective class of logics
featuring (the rest of) its name. Actually, following this line of thought, the class of
assertional logics could be legitimately called “regularly truth-equational logics” (in
fact, the original motivation behind the word “regularly” was to distinguish those
algebraizable logics such that Alg∗(S) is relatively point-regular, and this property
also holds for assertional logics, as shown in [4, Corollary 9]). Finally, by impos-
ing S finitary to the (regularly) finitely algebraizable we add the prefix BP, which
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stands for “Blok and Pigozzi”, who first introduced and studied the notion of alge-
braizability in their famous monograph [11]; the logics they called “algebraizable”
correspond to the class of BP-algebraizable logics in the present terminology.

Algebraizable logics are traditionally presented (and apart from terminology
and finitariness issues, were also originally defined) via two structural transformers,
one from formulas to equations and another from equations to formulas. In fact, we
shall make use of this equivalent characterization in several examples of Chapter 7.
A logic S is algebraizable if and only if there exists a class of algebra K, a set
of equations in at most one variable τ (x) ⊆ EqL and a set of formulas in at
most two variables ρ(x, y) ⊆ FmL such that for every Γ ∪ {ϕ} ⊆ FmL and every
Π ∪ {δ ≈ ε} ⊆ EqL,

Γ `S ϕ⇔ τFm(Γ) �eq
K τFm(ϕ), (ALG1)

Π �eq
K δ ≈ ε⇔ ρFm(Π) `S ρFm(δ, ε), (ALG2)

x ≈ y

�

�eq
K τFm

(
ρFm(x, y)

)
, (ALG3)

x a`S ρFm
(
τFm(x)

)
. (ALG4)

These four conditions hide some redundancy. Indeed, (ALG1) + (ALG3)⇔ (ALG2)
+ (ALG4). The set τ (x) ⊆ EqL is called a set of defining equations for S (which
recall, is precisely the terminology introduced for truth-equational logics; this is
no coincidence of course, every τ witnessing the algebraizability of S witnesses the
truth-equationality of S as well); the set ρ(x, y) ⊆ FmL is called a set of equivalence
formulas for S; and the class K is called an equivalent algebraic semantics for S. In
case K is a generalized quasi-variety, one speaks of the equivalent algebraic semantics
for S. Unlike algebraic semantics, equivalent algebraic semantics are unique modulo
the respective equational consequence relation; that is, if K,K′ are two equivalent
algebraic semantics for a logic S, then �eq

K = �eq
K′ .

The latest addition to the Leibniz hierarchy is due to Raftery, in the paper [55],
where he characterizes the class of truth-equational logics through the completely
order reflecting property of the Leibniz operator, which is precisely the algebraic
property which we here take as formal definition. For this reason it is, among all
classes of logics in Definition 0.38, the least studied in the literature, and the one
we will take more interest in. This being said, we record here a few results about
truth-equational logics, all established by Raftery in the cited paper. The first one
may help to clarify the naming of this class of logics.

Theorem 0.40. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational;
(ii) Truth is equationally definable in LMod∗(S);
(iii) Truth is equationally definable in Mod∗(S);
(iv) Truth is equationally definable in ModSu(S).

A set of equations witnessing the truth-equationality of a logic S is called a set
of defining equations for S. The proof of [55, Theorem 27] exhibits a set of defining
equations for any given truth-equational logic.

Proposition 0.41. If S is truth-equational, then τ∞(x) := σx
∼
ΩFm
S ({x}) is a set

of defining equations for S, where σx : Fm → Fm is the substitution sending all
variables to x.



0.5. Abstract Algebraic Logic 25

Two important facts to bear in mind relating assertional logics and truth-
equational logics are the following:

Proposition 0.42. Let S be a logic.
1. Every assertional logic S

(
K, {x ≈ >}

)
, where > is a constant term of K, is

truth-equational with set of defining equations τ (x) = {x ≈ >}.
2. Every truth-equational logic with set of defining equations τ (x) = {x ≈ >},

where > is a constant term of Alg(S), is the assertional logic S
(
Alg(S), τ

)
.

A key result to both parts of our study is the following (we state here a slight
enhancement of the cited result, which follows easily from it):

Proposition 0.43 ([55, Proposition 22]). Let S be a logic and τ (x) ⊆ EqL. The
following conditions are equivalent:
(i) S is truth-equational with the set of defining equations τ (x);
(ii) For every A and every F ∈ FiSA,

F =
{
a ∈ A : τA(a) ⊆ ΩA(F )

}
. (13)

(iii) For every A ∈ Alg(S) and every F ∈ FiSA,

F =
{
a ∈ A : τA(a) ⊆ ΩA(F )

}
.

Finally, we justify the dashed arrows in Figure 1. These conditions are relevant
to AAL (and we shall consider them along the exposition), but since they are not
characterized in terms of algebraic properties of the Leibniz operator — or at least
no such characterization is known — they lie outside the Leibniz hierarchy. Their
place in Figure 1 is fairly known: if S is protoalgebraic, then Alg∗(S) = Alg(S)
[36, Proposition 3.2]; and if S is finitary and finitely equivalential, then Alg∗(S) is
a quasivariety [47, p. 426]. Despite not belonging to the Leibniz hierarchy, these
conditions are still consistent with the diagram interpretation of seeing converging
arrows as the intersection of the involved classes of logics. So, for instance, S is
truth-equational and Alg∗(S) = Alg(S) if and only if S is weakly algebraizable
(Proposition 3.6); or, S is assertional and Alg∗(S) is a quasivariety if and only if
S is regularly BP-algebraizable (Corollary 4.12). Similarly, having an algebraic
semantics is not per se a condition placing some given logic within the Leibniz
hierarchy. However, Raftery proved that:

Proposition 0.44 ([55, Corollary 21]). If S is truth-equational with defining equa-
tions τ (x), then Alg(S) is a τ -algebraic semantics for S.

For an exhaustive study of the Leibniz hierarchy and the main results in AAL,
see [13, 23, 34, 36, 39].

The Frege hierarchy. Parallel to the Leibniz hierarchy, there is another im-
portant hierarchy in AAL, this time built upon algebraic properties of the Frege
operator. Once again, we choose among the known characterizations of the follow-
ing classes, the one which suits better within the general framework we intend to
settle.

Definition 0.45. A logic S is:
� selfextensional, if ΛFmS (∅) ∈ ConFm.
� Fregean, if for every T ∈ T hS, ΛFmS (T ) ∈ ConFm.
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� fully selfextensional, if for every algebra A, ΛAS (∅) ∈ ConA.
� fully Fregean, if for every algebra A and every F ∈ FiSA, ΛAS (F ) ∈ ConA.

Notice that, since for arbitrary A and arbitrary F ⊆ A, ∼
ΩA
S (F ) is the largest

congruence below ΛAS (F ), one could have equivalently defined:

� S is selfextensional, if ΛFmS (∅) = ∼
ΩFm(T hS).

� S is Fregean, if for every T ∈ T hS, ΛFmS (T ) = ∼
ΩFm
S (T ).

� S is fully selfextensional, if for every algebra A, ΛAS (∅) = ∼
ΩA(FiSA).

� S is fully Fregean, if for every algebra A and every F ∈ FiSA, ΛAS (F ) =
∼
ΩA
S (F ).

The inclusions between these four classes of logics are straightforward, having
in mind that ΛAS (∅) = ΛAS

(
FgAS (∅)

)
= ΛAS

(⋂
FiSA

)
. That these inclusions are

all strict is far from trivial, but that is indeed the case. Figure 2 displays the so
called Frege hierarchy. This hierarchy is far less studied than the Leibniz hierarchy.

fully
Fregean

�� ��

Fregean

��

fully
selfextensional

��
selfextensional

Figure 2. The Frege hierarchy.

As a final remark, and to avoid misunderstandings, the diagram interpretation
by which the target of two converging arrows is seen as the intersection of the
source classes of logics is still an open problem for the Frege hierarchy, at least in
the general case; for logics with theorems however, fully Fregean logics are indeed
those logics that are both Fregean and fully selfextensional [4, Theorem 26].

Semilattice-based logics. A class of algebras K (of the same similarity type
L) has semilattice reducts, if there exists a binary term ∧ (which can be either a
primitive connective, i.e., ∧ ∈ L, or defined by an L-term in two variables) such
that for every A ∈ K, 〈A,∧A〉 is a semilattice. For every A ∈ K, let ≤A denote
the partial order induced by ∧A, that is, a ≤A b⇔ a ∧A b = a, for every a, b ∈ A.
The logic preserving degrees of truth w.r.t. K is the logic induced by the class of
matrices

{
〈A, [a)〉 : A ∈ K, a ∈ A

}
, that is, the pair S≤K = 〈FmL,�≤K 〉, where �≤K is

defined by

Γ �≤K ϕ ⇔ ∀A ∈ K ∀h ∈ Hom(Fm,A) ∀a ∈ A

if ∀γ ∈ Γ a ≤A h(γ), then a ≤A h(ϕ),
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for every Γ ∪ {ϕ} ⊆ FmL. In case K is a quasivariety, the logic S≤K is finitary
because the class of matrices defining it is first-order definable7 and hence closed
under ultraproducts. In the case of a finite set of premisses, the relation �≤K can be
re-written as follows:

∅ �≤K ϕ ⇔ ∀A ∈ K ∀h ∈ Hom(Fm,A)

a ≤A h(ϕ),

and

{γ1, . . . , γn} �≤K ϕ ⇔ ∀A ∈ K ∀h ∈ Hom(Fm,A)

h(γ1) ∧A . . . ∧A h(γn) ≤A h(ϕ).

Finitary logics preserving degrees of truth are also called semilattice-based logics.
Notice that a semilattice-based logic S≤K has theorems if and only if the semilattice
reducts in K have a term-definable maximum. In this case, notice that all theorems
can be identified, since they are all interpreted as the maximum element on the
algebras in K. Observe also that ϕ

�

�≤K ψ if and only if K � ϕ ≈ ψ if and only
if V(K) � ϕ ≈ ψ. As a consequence, the interderivability relation is necessarily a
congruence. In other words, every semilattice-based logic is selfextensional. In fact,
semilattice-based logics are precisely the selfextensional logics with a conjunction
(given a logic S, a binary L-term ∧ is a conjunction for S, if x, y `S x ∧ y and
x ∧ y `S x, y):

Theorem 0.46 ([52, Theorem 3.2]). A finitary logic S has a conjunction and is
selfextensional if and only if it is a semilattice-based logic.

Semilattice-based logics with theorems enjoy a very neat characterization of
their logical filters on S-algebras. Namely, if S≤K is a semilattice-based logic with
theorems, then for every A ∈ Alg(S≤K ), FiSA = FiltA. Since (principal) lattice
filters separate points, an important consequence is that:

Theorem 0.47 ([52, Theorem 3.13]). Every semilattice-based logic is fully selfex-
tensional.

Furthermore, for every semilattice-based logic S≤K , the class of S≤K -algebras is
a variety, and is given by Alg(S≤K ) = V(K).

Assume now that each A ∈ K is upper-bounded, with its maximum element
1A ∈ A being term-definable by the same L-term. The logic preserving truth w.r.t.
K is the {x ≈ 1}-assertional logic of K, that is, the pair S1

K = 〈FmL,�1
K〉, where �1

K
is defined by

Γ �1
K ϕ ⇔ ∀A ∈ K ∀h ∈ Hom(Fm,A)

if ∀γ ∈ Γ h(γ) = 1A, then h(ϕ) = 1A,

for every Γ ∪ {ϕ} ⊆ FmL. It is clear by the definitions involved that �1
K is an

extension of �≤K .
The intuition behind the name “preserving degrees of truth” and “preserving

truth” is fairly clear: in �≤K , each a ∈ A is to be understood as an attainable degree
of truth in A ∈ K; while in �1

K the truth is to be understood as represented by

7A class of L-structures is elementary, or first-order definable, if it is the class of models
of some set of first-order sentences of L. Every elementary class of structures is closed under
ultraproducts.
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the element 1A ∈ A, for each A ∈ K. In the literature, particular classes of K are
taken and the resulting logic �≤K is studied in greater detail. For instance, logics
preserving degrees of truth w.r.t. varieties of residuated lattices are covered in [17].
The particular case of Lukasiewicz’s infinite valued logic preserving degrees of truth,
hereby denoted by Ł≤∞, is treated in [35]. For a more philosophical discussion on
the whole subject of preserving degrees of truth, see [33].



Part I

S-operators in Abstract Algebraic
Logic

“An algebraic instrument which would make all logics amenable to its
methods is available — it is the Suszko operator. For protoalgebraic
logics, the Suszko and the Leibniz operator coincide.”

[23, p. 9]





CHAPTER 1

S-operators

1.1. S-operators

We wish to settle a general framework upon which a common study of the
Leibniz, Suszko and Frege operators can be built. The ground definition is the
following:

Definition 1.1. An S-operator on A is a map ∇A : FiSA→ EqrA.

Clearly, the Leibniz, Suszko, and Frege operators, are all S-operators — see
page 17. We shall also be interested in the Tarski operator, although it is left out
of the scope of Definition 1.1. In order to cope with it, we consider three further
maps associated to each S-operator.

Definition 1.2. Let ∇A be an S-operator on A.
(a) The lifting of ∇A to the power set is the map ∼∇A : P(FiSA) → EqrA,

defined by
∼∇A(C ) :=

⋂{
∇A(F ) : F ∈ C

}
,

for every C ⊆ FiSA.
(b) The relativization of ∇A (to the logic S) is the map ∼∇AS : FiSA → EqrA,

defined by
∼∇AS (F ) :=

⋂
{∇A(F ′) : F ′ ∈ FiSA , F ⊆ F ′} = ∼∇A

(
(FiSA)F

)
,

for every F ∈ FiSA.
(c) The map ∇A−1 : EqrA→P(FiSA) is defined by

∇A−1(θ) := {G ∈ FiSA : θ ⊆ ∇A(G)},

for every θ ∈ EqrA.

Notice that the relativization of an S-operator is still an S-operator, since
〈EqrA,⊆〉 is a complete lattice. In particular, the relativization of the Leibniz
operator is the Suszko operator — see (2) on page 18. Furthermore, the lifting of the
Leibniz operator is the Tarski operator. Notice also that ∇A−1(θ) =

{
G ∈ FiSA :

∇A(G) ∈ [θ,A×A]
}
, which somehow justifies the notation chosen, though ∇A−1 is

not, of course, the set-theoretical inverse of ∇A. Finally, we may sometimes write⋂
F ′⊇F ∇A(F ) instead of

⋂
{∇A(F ′) : F ′ ∈ FiSA , F ⊆ F ′}, which is obviously an

abuse of notation.
The following elementary relations between an S-operator and its relativization

and lifting are immediate consequences of the definitions involved.

Lemma 1.3. Let ∇A be an S-operator on A.
1. ∼∇AS (F ) ⊆ ∇A(F ) for every F ∈ FiSA;
2. ∼∇A(C ) ⊆ ∇A(F ) for every F ∈ C .

31
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Quite often we shall be interested in the behaviour of the “same” S-operator
taken on different algebras. For instance, Proposition 0.31.1 makes use of both
ΩA and ΩB. By a family of S-operators we understand a (proper) class {∇A :
A an arbitrary algebra} such that for each A, ∇A is an S-operator on A. The
whole family will be denoted simply by ∇, following the tradition on the Leibniz
and Suszko operators — Ω and ∼

ΩS .
We shall also consider several properties that may be enjoyed by the Leibniz,

Suszko, and Frege operators. Among these is the monotonicity of each such S-
operator. In general, an S-operator ∇A : FiSA→ EqrA is
(i) order preserving, if for every F,G ∈ FiSA such that F ⊆ G, it holds∇A(F ) ⊆
∇A(G);

(ii) order reflecting, if for every F,G ∈ FiSA such that ∇A(F ) ⊆ ∇A(G), it
holds F ⊆ G;

(iii) completely order reflecting, if for every {Fi : i ∈ I} ∪ {G} ⊆ FiSA such that⋂
i∈I ∇A(Fi) ⊆ ∇A(G), it holds

⋂
i∈I Fi ⊆ G.

It should be clear that the relativization of an S-operator is always order pre-
serving. Interestingly enough, an S-operator is order preserving whenever, and only
when, it coincides with its own relativization.

Lemma 1.4. An S-operator ∇A is order preserving if and only if ∇A = ∼∇AS .

Proof. If ∇A is order preserving, then ∇A(F ) =
⋂
{∇A(G) : G ∈ FiSA , F ⊆

G} = ∼∇A(F ), for every F ∈ FiSA. Conversely, if ∇A = ∼∇A, then for every
F,G ∈ FiSA such that F ⊆ G, it holds ∇A(F ) = ∼∇AS (F ) = ∼∇A

(
(FiSA)F

)
⊆

∼∇A
(
(FiSA)G

)
= ∼∇AS (G) = ∇A(G). �

The property of being completely order reflecting can also be characterized
using the relativization operator. The next lemma is essentially the generalization
of [55, (5) p. 108]) to S-operators.

Lemma 1.5. An S-operator ∇A is completely order reflecting if and only if, for
every F,G ∈ FiSA, if ∼∇AS (F ) ⊆ ∇A(G), then F ⊆ G.

Proof. Suppose ∇A is a completely order reflecting S-operator on A. Let F,G ∈
FiSA such that ∼∇AS (F ) ⊆ ∇A(G). Since ∼∇AS (F ) = ∼∇A

(
(FiSA)F

)
, it follows

by hypothesis that F =
⋂

(FiSA)F ⊆ G. Conversely, let {Fi : i ∈ I} ∪ {G} ⊆
FiSA such that

⋂
i∈I ∇A(Fi) ⊆ ∇A(G). Then, ∼∇AS (

⋂
i∈I Fi) ⊆

⋂
i∈I

∼∇AS (Fi) ⊆⋂
i∈I ∇A(Fi) ⊆ ∇A(G). It follows by hypothesis that

⋂
i∈I Fi ⊆ F . �

The following proposition states that the maps ∼∇A and∇A−1 establish a Galois
connection. Given Proposition 0.5, several consequences, and most crucial ones,
follow from it.

Proposition 1.6. Let ∇A be an S-operator on A. The maps ∼∇A and ∇A−1

establish a Galois connection between P(FiSA) and EqL(A), both ordered under
the subset relation.

Proof. Let C ⊆ FiSA and θ ∈ EqL(A). Suppose that θ ⊆ ∼∇A(C ). If F ∈ C ,
then ∼∇A(C ) ⊆ ∇A(F ), and hence θ ⊆ ∇A(F ), that is, F ∈ ∇A−1(θ). Thus,
C ⊆ ∇A−1(θ). Conversely, suppose that C ⊆ ∇A−1(θ). Then, θ ⊆ ∇A(G), for
every G ∈ C . Thus, θ ⊆ ∼∇A(C ). �
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Corollary 1.7. Let ∇A be an S-operator on A.
1. The maps ∼∇A and ∇A−1 are order reversing.
2. The map ∇A−1 ◦ ∼∇A is a closure operator over FiSA, i.e., is a closure on

P(FiSA).
3. The map ∼∇A ◦ ∇A−1 is a closure on EqrA.
4. The set of fixed points of ∇A−1 ◦ ∼∇A is Ran(∇A−1).
5. The set of fixed points of ∼∇A ◦ ∇A−1 is Ran(∼∇A).
6. The maps ∼∇A and ∇A−1 restrict to mutually inverse dual order isomorphisms

between the set of fixed points of ∇A−1 ◦ ∼∇A and the set of fixed points of
∼∇A ◦ ∇A−1.

We shall consider the fixed points of both closures ∇A−1 ◦∼∇A and ∼∇A ◦∇A−1

often enough to deserve a proper name.

Definition 1.8. Let ∇A be an S-operator on A. A family C ⊆ FiSA is ∇A-full
if C = ∇A−1(∼∇A(C )

)
, i.e., if C ∈ Ran(∇A−1). A relation θ ∈ EqrA is ∇A-full if

θ = ∼∇A
(
∇A−1(θ)

)
, i.e., if θ ∈ Ran(∼∇A).

Thus, the maps ∼∇A and ∇A−1 restrict to mutually inverse dual order isomor-
phisms between the sets of all ∇A-full families of S-filters of A and the set of
all ∇A-full relations on A. The reason behind the terminology “full” will become
clear once we arrive at Proposition 2.1. A useful characterization of these ∇A-full
objects, which is also a consequence of the Galois connection, is the following.

Proposition 1.9. Let ∇A be an S-operator on A.
1. C ⊆ FiSA is ∇-full if and only if it is the largest D ⊆ FiSA such that

∼∇A(D) = ∼∇A(C ).
2. θ ∈ EqrA is ∇-full if and only if it is the largest θ′ ∈ A × A such that
∇A−1(θ′) = ∇A−1(θ).

In particular, both the closure system FiSA and the congruence A × A are
∇-full objects, for any S-operator ∇A and any algebra A. Another trivial, yet
meaningful, observation is that if ∇A is order preserving, then every ∇-full family
of S-filters of A is an up-set in FiSA.

Congruential S-operators. One distinguished feature of the Leibniz and
Suszko operators, when seen as S-operators, is that their output is always a con-
gruence on the algebra’s domain. This property turns out to be relevant in a great
deal of the general results we will establish. The Frege operator, on the other hand,
fails to satisfy such property in general.

Definition 1.10. An S-operator ∇A on A is congruential, if ∇A(F ) ∈ ConA, for
every F ∈ FiSA.

Although it seems to concern only the Leibniz operator, the following result
turns out to be crucial in the study of congruential S-operators, and we shall make
use of it innumerous times through the rest of this work.

Proposition 1.11. For every θ ∈ ConA,

ΩA
−1(θ) = π−1FiS(A/θ) and FiS(A/θ) = πΩA

−1(θ),
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where π : A → A/θ is the canonical map. Moreover, the extended mappings
π : P(A) → P(A/θ) and π−1 : P(A/θ) → P(A) restrict to order isomorphisms
between the sets ΩA−1(θ) and FiS(A/θ).

Proof. Let F ∈ ΩA−1(θ). This means that θ is compatible with F , and hence that
π−1πF = F ∈ FiSA. Since π is surjective, by Lemma 0.24.2, πF ∈ FiS(A/θ).
So, F ∈ π−1FiS(A/θ). Conversely, let G ∈ FiS(A/θ). It follows by Lemma
0.24.1 that π−1G ∈ FiSA. Moreover, again by the surjectivity of π, ππ−1G = G.
So, π−1(ππ−1G

)
= π−1G, which tells us that θ is compatible with π−1G. Thus,

π−1G ∈ ΩA−1(θ). This proves the first equality, and the second follows from it
by surjectivity of π. As to the second part of the statement, observe that we have
just seen that both π and π−1 are into (actually, onto) the respective co-domains.
Moreover,

(
π �FiSA

)
◦
(
π−1 �FiS(A/θ)

)
= idFiS(A/θ), because π is surjective, and(

π−1 �FiS(A/θ)
)
◦
(
π �FiSA

)
= idFiSA, by definition of ΩA−1(θ). So, they are

mutually inverse bijections. Since they are both order preserving, they are in fact
order isomorphisms. �

1.2. ∇-classes and ∇-filters

Definition 1.12. Let ∇A be an S-operator on A and F ∈ FiSA. The ∇-class of
F is the set

JF K∇ := ΩA
−1(∇A(F )

)
=
{
G ∈ FiSA : ∇A(F ) ⊆ ΩA(G)

}
.

The first basic fact about ∇-classes is that they are closure systems on FiSA.

Proposition 1.13. Let ∇A be an S-operator on A. For every F ∈ FiSA, the
∇-class JF K∇ is a closure system on FiSA.

Proof. Let {Fi : i ∈ I} ⊆ JF K∇. Then,

∇A(F ) ⊆
⋂
i∈I
ΩA(Fi) ⊆ ΩA

(⋂
i∈I

Fi
)
.

Hence,
⋂
i∈I Fi ∈ JF K∇. Moreover, since ΩA(A) = A × A, it trivially holds A ∈

JF K∇. �

Assuming ∇ congruential, Proposition 1.13 can be strengthened as follows:

Proposition 1.14. Let ∇A be a congruential S-operator on A. For every F ∈
FiSA, the ∇-class JF K∇ is a full g-model of S.

Proof. By definition, JF K∇ = ΩA
−1(∇A(F )). Since ∇A(F ) ∈ Con(A) by hy-

pothesis, it follows by Proposition 1.11 that JF K∇ = π−1FiS
(
A/∇A(F )

)
, where

π : A→ A/∇A(F ) is the canonical map. It follows by Proposition 0.35 that JF K∇

is a full g-model of S. �

Given that every closure system is closed under intersections, it makes sense to
consider the smallest element in each ∇-class.

Definition 1.15. Let ∇A be an S-operator on A and F ∈ FiSA. The least
element of the ∇-class of F will be denoted by F∇; i.e., F∇ :=

⋂
JF K∇. We say

that F is a ∇-filter if F = F∇. The set of all ∇-filters of A will be denoted by
Fi∇S A.
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It is worth noticing that if S has no theorems, then for any A the only ∇-filter
of A is the empty filter, because ∅ ∈ FiSA and ΩA(∅) = A × A; so for every
F ∈ FiSA, it holds ∅ ∈ JF K∇ and hence necessarily ∅ =

⋂
JF K∇. It is therefore

clear that the interesting applications of the notions of ∇-class and ∇-filter will
concern only logics with theorems; however, technically we need not assume this in
any result.

Proposition 1.16. Every S-operator ∇A on A is order reflecting, and therefore
injective, on Fi∇S A.

Proof. Let F,G ∈ Fi∇S A such that∇A(F ) ⊆ ∇A(G). Then JGK∇ ⊆ JF K∇. Thus,
F =

⋂
JF K∇ ⊆

⋂
JGK∇ = G. �

In general, an S-operator ∇A need not be order preserving on Fi∇S A. Another
useful monotonicity related property, this time concerning the elements of∇-classes,
is the following:

Lemma 1.17. If ∇A is an order preserving S-operator on A, then the map F 7→
F∇ is monotonic, i.e., if F ⊆ G, then F∇ ⊆ G∇.

Proof. If F ⊆ G, then ∇A(F ) ⊆ ∇A(G) by order preservation, so JGK∇ ⊆ JF K∇,
and therefore G∇ =

⋂
JGK∇ ⊆

⋂
JF K∇ = F∇. �

Since ∇-classes are, by definition, sets of S-filters of the form ΩA
−1(∇A(F )),

for some F ∈ FiSA, we can apply Proposition 1.11 to θ = ∇A(F ), provided that
∇ is congruential.

Proposition 1.18. Let ∇A be a congruential S-operator on A. An S-filter F ∈
FiSA is a ∇-filter of A if and only if F/∇A(F ) is the least S-filter of A/∇A(F ).

Proof. Let π : A → A/∇A(F ) be the canonical map. Since ΩA−1(∇A(F )) =
JF K∇, it follows by Proposition 1.11 that π induces an order isomorphism between
JF K∇ and FiS

(
A/∇A(F )

)
. Since order isomorphisms send least elements to least

elements, the result should be clear. �

1.3. S-compatibility operators

The main notion of this chapter was first introduced in [24, p. 199] for the
particular case where the S-operators have as outputs congruences on the algebra’s
domain.

Definition 1.19. An S-compatibility operator onA is an S-operator∇A : FiSA→
EqrA such that ∇A(F ) ⊆ ΩA(F ), for every F ∈ A.

The least S-compatibility operator on A is the map idA : FiSA → EqrA
defined by F 7→ idA, for every F ∈ FiSA. The largest S-compatibility operator on
A is obviously ΩA. Since for every F ∈ FiSA, ∼

ΩA
S (F ) ⊆ ΩA(F ), ∼

ΩA
S is also an

S-compatibility operator on A. Actually, the Suszko operator is the largest order
preserving S-compatibility operator:

Lemma 1.20. For every A, the Suszko operator ∼
ΩA
S is the largest order preserving

S-compatibility operator on A.
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Proof. Let ∇A be an order preserving S-compatibility operator on A. For every
F ∈ FiSA,

∇A(F ) = ∼∇AS (F ) =
⋂
F ′⊇F

∇A(F ′) ⊆
⋂
F ′⊇F

ΩA(F ′) = ∼
ΩA
S (F ),

using Lemma 1.4 and S-compatibility. �

We next state some basic facts concerning ∇-classes and ∇-filters.

Lemma 1.21. Let ∇A be an S-compatibility operator on A. For every F ∈ FiSA,
1. F ∈ JF K∇;
2. F∇ ⊆ F .

If moreover ∇A is order preserving, then
3. (FiSA)F ⊆ JF K∇;
4. JF K∇ = (FiSA)F if and only if F = F∇, i.e., if and only if F is a ∇-filter.

Proof. 1. By S-compatibility, ∇A(F ) ⊆ ΩA(F ). 2. Since F belongs to its own
∇-class by 1, F∇ =

⋂
JF K∇ ⊆ F . 3. If F ′ ∈ (FiSA)F , then ∇A(F ) ⊆ ∇A(F ′) ⊆

ΩA(F ′), and therefore F ′ ∈ JF K∇. 4. Suppose that JF K∇ = (FiSA)F . Then,
F∇ =

⋂
JF K∇ =

⋂
(FiSA)F = F . Conversely, suppose that F = F∇. Clearly

then, JF K∇ ⊆ (FiSA)F . Moreover, by 3, (FiSA)F ⊆ JF K∇. �

Finally, we state some straightforward consequences of the facts that the Leib-
niz operator is the largest S-operator, and the Suszko operator is the largest order
preserving one (from Chapter 2 on, we shall use a more familiar notation for the
Ω- and ∼

ΩS -related notions; for the time being, we use the notation introduced in
Definitions 1.12 and 1.15).

Lemma 1.22. Let ∇A be an S-compatibility operator on A. For every F ∈ FiSA,
1. JF KΩ ⊆ JF K∇;
2. F∇ ⊆ FΩ;
3. Every ∇-filter is an Ω-filter.

Proof. 1. Since ∇A(F ) ⊆ ΩA(F ), by S-compatibility. 2. Just notice that
F∇ =

⋂
JF K∇ ⊆

⋂
JF KΩ = FΩ, using 1. 3. Since F∇ ⊆ FΩ ⊆ F , using 2 and

F ∈ JF KΩ, for ΩA(F ) ⊆ ΩA(F ). �

Lemma 1.23. Let ∇A be an order preserving S-compatibility operator on A. For
every F ∈ FiSA,

1. JF K
∼
ΩS ⊆ JF K∇;

2. F∇ ⊆ F
∼
ΩS ;

3. Every ∇-filter is an ∼
ΩS-filter.

Proof. 1. Since ∇A(F ) ⊆ ∼
ΩA
S (F ), by Lemma 1.20. 2. Just notice that F∇ =⋂

JF K∇ ⊆
⋂

JF K
∼
ΩS = F

∼
ΩS , using 1. 3. Since F∇ ⊆ F

∼
ΩS ⊆ F , using 2 and

F ∈ JF K
∼
ΩS , for ∼

ΩA
S (F ) ⊆ ΩA(F ). �

1.4. Coherent families of S-operators

The main notion of this section — coherence — serves as a generalization of
the property of commuting with inverse images by surjective homomorphisms. The
reason why we wish to generalize this property is simple. First, as we next show,
the only S-compatibility operator commuting with inverse images by surjective
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homomorphisms is the Leibniz operator, which obviously makes this property of
little use for a general treatment. But furthermore, and most importantly, our three
paradigmatic examples of S-operators — the Leibniz, Suszko and Frege operators
— turn out to be coherent.

Let ∇A and ∇B be S-operators on A and B, respectively. We say that the
pair 〈∇A,∇B〉 commutes with inverse images by (surjective) homomorphisms if for
every (surjective) h : A→ B and every G ∈ FiSB,

∇A(h−1G) = h−1∇B(G).

A family ∇ of S-operators commutes with inverse images by (surjective) homo-
morphisms if for all algebras A and B the pair 〈∇A,∇B〉 commutes with inverse
images by (surjective) homomorphisms in the above sense.

Theorem 1.24. If ∇ is a family of S-compatibility operators that commutes with
inverse images by surjective homomorphisms, then ∇ = Ω.

Proof. Let A arbitrary and F ∈ FiSA. Let π : A → A/ΩA(F ) be the canon-
ical map. It is clearly surjective. Moreover, since Kerπ = ΩA(F ) is compatible
with F , we have F = π−1πF and πF ∈ FiS

(
A/ΩA(F )

)
. Now, it follows by

S-compatibility that

∇A/Ω
A(F )(F/ΩA(F )) ⊆ ΩA/Ω

A(F )(F/ΩA(F )) = idA/ΩA(F ).

Hence, ∇A/ΩA(F )(F/ΩA(F )) = ΩA/Ω
A(F )(F/ΩA(F )). Applying π−1 on both

sides, using our hypothesis, and the fact that the Leibniz operator commutes with
inverse images by surjective homomorphisms,

∇A(F ) = ∇A(π−1πF ) = π−1∇A/Ω
A(F )(F/ΩA(F ))

= π−1ΩA/Ω
A(F )(F/ΩA(F )) = ΩA(π−1πF ) = ΩA(F ).

Since we have chosen A and F ∈ FiSA arbitrary, we conclude that ∇ = Ω. �

Do notice that Theorem 1.24 characterizes the Leibniz operator among S-
compatibility operators, but not necessarily among the S-operators in general (in-
deed, it does not, as we shall see in Theorem 2.52 when studying the Frege operator).

An immediate consequence is that the Suszko operator commutes with inverse
images by surjective homomorphisms if and only if ∼

ΩS = Ω, which as we know, is
equivalent to protoalgebraicity. This characterization will be the starting point for
similiar characterizations of other classes of logics within the Leibniz hierarchy in
terms of the Suszko operator (Theorem 3.13). For the time being, it confirms what
we had already advanced after Proposition 0.31, namely, that the Suszko operator
does not commute, in general, with inverse images by surjective homomorphisms.
In order to find a commutativity property suitable for a unified treatment of the
remaining two paradigmatic S-operators, we introduce the following technical no-
tion.

Definition 1.25. Let ∇ be a family of S-operators. Let A be an algebra, F ∈
FiSA and C ⊆ FiSA. A homomorphism h : A → B is ∇-compatible with F if
Kerh ⊆ ∇A(F ); and it is ∇-compatible with C if it is ∇-compatible with every
member of C , that is, if Kerh ⊆ ∼∇A(C ).
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Notice that a homomorphism h : A → B is Ω-compatible with F ∈ FiSA
if and only if Kerh ⊆ ΩA(F ) if and only if Kerh is compatible (in the usual
sense) with F . Also, given an S-compatibility operator ∇, observe that if h is
∇-compatible with F , then it is also Ω-compatible with F . So, by Lemmas 0.17.1
and 0.17.2, F = h−1hF and ∇A(F ) = h−1h∇A(F ).

Definition 1.25, when instantiated with the Leibniz, Suszko and Frege opera-
tors, turns out to be equivalent to two already known notions concerning matrix
homomorphisms.

Lemma 1.26. Let A,B algebras, h : A → B and F ∈ FiSA. The following
conditions are equivalent:

1. h is Ω-compatible with F ;
2. the matrix homomorphism h : 〈A, F 〉 → 〈B, hF 〉 is strict.

Proof. Having in mind Lemma 0.16, notice that

h : 〈A, F 〉 → 〈B, hF 〉 is strict iff h−1hF = F

iff Kerh ⊆ ΩA(F ).

�

Lemma 1.27. Let A,B algebras, h : A → B and F ∈ FiSA. The following
conditions are equivalent:

1. h is ∼
ΩS-compatible with F ;

2. h is ΛS-compatible with F ;
3. the matrix homomorphism h : 〈A, F 〉 → 〈B, hF 〉 is deductive.

Proof. Having in mind that ∼
ΩA
S (F ) is the largest congruence on A below ΛAS (F ),

notice that

h : 〈A, F 〉 → 〈B, hF 〉 is deductive iff ∀a, b ∈ A

if ha = hb, then FgAS (F, a) = FgAS (F, b)

iff Kerh ⊆ ΛAS (F )

iff Kerh ⊆ ∼
ΩA
S (F ).

�

Deductive homomorphisms were introduced in [24] and used to extend Blok
and Pigozzi’s Correspondence Theorem to arbitrary logics ([24, Proposition 2.3],
here stated as Theorem 2.34), which follows in our setting as an instance of the
General Correspondence Theorem 1.38.

We are now ready to introduce the main (new) definition of the present section,
and probably of the whole Part I.

Definition 1.28. A family ∇ of S-operators is coherent, if for every surjective
homomorphism h : A→ B and every G ∈ FiSB, if h is ∇-compatible with h−1G,
then ∇A(h−1G) = h−1∇B(G).

The family {idA : A an algebra} is trivially a coherent family of S-compatibility
operators. For let A,B algebras, h : A → B surjective, G ∈ FiSB and assume
Kerh ⊆ idA(h−1G) = idA. Then, Kerh = idA. So, h is injective, and therefore it
is an isomorphism. Hence, h−1idB(G) = h−1idB = idA = idA(h−1G).
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It should be clear by the definition itself that coherence is a weaker property
than commuting with inverse images of surjective homomorphisms. Taking Theo-
rem 1.24 into account, the Leibniz operator is a coherent family of S-operators.

It is also possible, and in fact it will sometimes be rather practical, to use
coherence stated in terms of commutativity with images by surjective homomor-
phisms instead of inverse images. The next lemma holds only for S-compatibility
operators.

Lemma 1.29. A family ∇ of S-compatibility operators is coherent if and only if
for every surjective h : A→ B and every F ∈ FiSA, if h is ∇-compatible with F ,
then h∇A(F ) = ∇B(hF ).

Proof. Suppose ∇ is coherent. Let F ∈ FiSA and h : A → B be surjective and
∇-compatible with F . Hence, F = h−1hF and hF ∈ FiSB. It follows by coherence
that ∇A(F ) = ∇A

(
h−1hF

)
= h−1∇B(hF ), and hence that h∇A(F ) = ∇B(hF )

because h is surjective. Conversely, let G ∈ FiSB and let h : A→ B be surjective
and ∇-compatible with h−1G. Since h−1G ∈ FiSA, it follows by the assumption
and the surjectivity of h that

h∇A(h−1G) = ∇B(hh−1G) = ∇B(G).

Applying the property in Lemma 0.17.2 to the ∇A-compatibility of h with h−1G,
we obtain

∇A(h−1G) = h−1h∇A(h−1G) = h−1∇B(G),
which shows that ∇ is coherent. �

Of course, isomorphisms are both surjective and∇-compatible with any S-filter,
as their kernel is the identity.

Corollary 1.30. If ∇ is a coherent family of S-compatibility operators and h : A→
B is an isomorphism, then for every F ∈ FiSA and every G ∈ FiSB, it holds
h∇A(F ) = ∇B(hF ) and ∇A(h−1G) = h−1∇B(G).

Another interesting characterization of coherence comes in terms of the map
∇A−1.

Proposition 1.31. A family ∇ of S-compatibility operators is coherent if and only
if, for every surjective homomorphism h : A→ B,

∇A−1(Kerh
)

=
{
F ∈ FiSA : h−1∇B(hF ) = ∇A(F )

}
. (14)

Proof. Suppose ∇ is coherent. Let F ∈ ∇A−1(Kerh
)
. Then, Kerh ⊆ ∇A(F ) ⊆

ΩA(F ), using S-compatibility. Therefore, F = h−1hF and hence hF ∈ FiSB.
Since ∇ is a coherent by hypothesis, h−1∇B(hF ) = ∇A(F ). Now, let F ∈ FiSA
such that h−1∇B(hF ) = ∇A(F ). Then, since Kerh ⊆ h−1∇B(hF ) always holds,
it follows that Kerh ⊆ ∇A(F ) and therefore that F ∈ ∇A−1(Kerh

)
.

Conversely, suppose that surjective homomorphisms satisfy the identity (14).
Let A,B any two algebras, let h ∈ A → B surjective, let G ∈ FiSB and as-
sume h is ∇-compatible with h−1G. That is, Kerh ⊆ ∇A(h−1G). So, h−1G ∈
∇A−1(Kerh

)
. It follows by hypothesis that h−1∇B(hh−1G) = ∇A(h−1G). Since

h is surjective, G = hh−1G, and we therefore obtain h−1∇B(G) = ∇A(h−1G).
Thus, ∇ is coherent. �



40 CHAPTER 1. S-OPERATORS

We finish this section by proving that coherence is preserved under relativiza-
tion.

Proposition 1.32. If ∇ is a coherent family of S-compatibility operators, then
the family ∼∇S = {∼∇AS : A an algebra} is also a coherent family of S-compatibility
operators.

Proof. It is clear by the definition of ∼∇AS that, if ∇ is a family of S-compatibility
operators, then so is ∼∇S . Now, let G ∈ FiSB and let h : A → B be surjective
and ∼∇AS -compatible with h−1G, i.e., such that Kerh ⊆ ∼∇AS

(
h−1G

)
. Let F ′ ∈

(FiSA)h−1G, i.e., such that h−1G ⊆ F ′. Then, Kerh ⊆ ∼∇AS (h−1G) ⊆ ∼∇AS (F ′) ⊆
∇A(F ′). Hence, h is ∇-compatible with F ′, and therefore F ′ = h−1hF ′ and
hF ′ ∈ FiSB. It follows by hypothesis that

∇A(F ′) = ∇A
(
h−1hF ′

)
= h−1∇B

(
hF ′

)
. (15)

Next, we claim that:

Claim. h
(
(FiSA)h−1G

)
= (FiSB)G: Let F ′ ∈ FiSA be such that h−1G ⊆ F ′.

We have already seen that under the present assumptions, hF ′ ∈ FiSB, and
obviously G = hh−1G ⊆ hF ′. Conversely, let G′ ∈ FiSB be such that G ⊆ G′.
Then we know that G′ = hh−1G′ and h−1G′ ∈ FiSA, and moreover h−1G ⊆
h−1G′.

Now, using (15), commutativity of h−1 with intersections, and the claim,
∼∇AS (h−1G) =

⋂{
∇A(F ′) : F ′ ∈ (FiSA)h

−1G
}

=
⋂{

h−1∇B
(
hF ′

)
: F ′ ∈ (FiSA)h

−1G
}

= h−1
(⋂{

∇B
(
hF ′

)
: F ′ ∈ (FiSA)h

−1G
})

= h−1
(⋂{

∇B(G′) : G′ ∈ (FiSB)G
})

= h−1∼∇BS (G).

We conclude that the family ∼∇S is coherent. �

In particular, the Suszko operator, being the relativization of the Leibniz op-
erator, is also a coherent family of S-operators.

Proposition 1.33. Let ∇ be a coherent family of S-compatibility operators, and
let h : A→ B be surjective.

1. For any D ⊆ FiSB, if h is ∇-compatible with h−1D , then ∼∇A(h−1D) =
h−1∼∇B(D).

2. For any C ⊆ FiSA, if h is ∇-compatible with C , then h∼∇A(C ) = ∼∇B(hC ).

Proof. 1. Assume that h is ∇-compatible with h−1D , i.e., Kerh ⊆ ∼∇A(h−1D).
For each G ∈ D ,

∼∇A(h−1D) ⊆ ∇A(h−1G), and hence h is ∇-compatible with
h−1G. So, by coherence,
∼∇A(h−1D) =

⋂
G∈D

∇A(h−1G) =
⋂
G∈D

h−1∇B(G) = h−1
⋂
G∈D

∇B(G) = h−1∼∇B(D).

2. Assume now that h is ∇-compatible with C . Thus, if F ∈ C , then h is ∇-
compatible with F , which implies that h−1hF = F . Therefore, h−1hC = C , so
that we can say that h is ∇-compatible with h−1hC . Moreover, since Kerh ⊆
∇A(F ) for each F ∈ C , we also have that Kerh ⊆ ∼∇A(C ), which by Lemma 0.17.2
implies that h−1h

∼∇A(C ) = ∼∇A(C ). Then we can apply point 1 to find that
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∼∇A(C ) = ∼∇A(h−1hC ) = h−1∼∇B(hC ) and then by surjectivity of h we conclude
that h∼∇A(C ) = hh−1∼∇B(hC ) = ∼∇B(hC ). �

∇-full objects under coherence. In this section we show that, for coherent
families of congruential S-compatibility operators, the ∇-full objects defined in
Section 1.1 can be given finer characterizations. Let us start by pointing out a
particular case of Proposition 1.31.

Proposition 1.34. If ∇ is a coherent family of S-compatibility operators, then for
every θ ∈ ConA,

∇A−1(θ) =
{
F ∈ FiSA : π−1∇A/θ(πF ) = ∇A(F )

}
= π−1{G ∈ FiS(A/θ) : π−1∇A/θ(G) = ∇A(π−1G)

}
.

Proof. For the first equality we apply Proposition 1.31 to the quotient homo-
morphism π : A → A/θ. To obtain the second note that the inclusion from left
to right is clear. The other inclusion follows from the fact that if F ∈ FiSA is
such that π−1∇A/θ(πF ) = ∇A(F ), then Kerπ is compatible with F and therefore
πF ∈ FiS(A/θ). �

This allows us to establish the following characterization of ∇A-full families of
S-filters:

Corollary 1.35. Let ∇ be a coherent family of congruential S-compatibility oper-
ators and C ⊆ FiSA. Then C is a ∇A-full g-model of S if and only if

C =
{
F ∈ FiSA : h−1∇B(hF ) = ∇A(F )

}
,

for some surjective homomorphism h : A → B, which can be taken to be the
canonical map π : A→ A/

∼∇A(C ).

Proof. Suppose C ⊆ FiSA is a ∇A-full g-model of S, i.e., C = ∇A−1(∼∇A(C )
)
.

Let B := A/
∼∇A(C ) and let π : A → A/

∼∇A(C ) the quotient homomorphism.
Then C = ∇A−1(Kerπ

)
. Thus from Proposition 1.31 we obtain C =

{
F ∈ FiSA :

π−1∇B(πF ) = ∇A(F )
}
. Assume now that C =

{
F ∈ FiSA : h−1∇B(hF ) =

∇A(F )
}
for some surjective homomorphism h : A→ B. Then again by Proposition

1.31 we have C = ∇A−1(Kerh
)
. Thus C ∈ Ran(∇A−1) and hence it is∇A-full. �

Considering the proof above and Proposition 1.34, a slightly different corollary
can be stated as follows:

Corollary 1.36. Let ∇ be a coherent family of congruential S-compatibility oper-
ators, and C ⊆ FiSA. Then C is ∇A-full if and only if

C = π−1{G ∈ FiS(A/θ) : π−1∇A/θ(G) = ∇A(π−1G)
}
,

for some θ ∈ ConA, which can be taken to be ∼∇A(C ).

Finally, we address the ∇-full congruences.

Proposition 1.37. Let ∇ be a coherent family of S-compatibility operators and
θ ∈ ConA. Then θ is ∇A-full if and only if

∼∇A/θ
({
G ∈ FiS(A/θ) : π−1∇A/θ(G) = ∇A(π−1G)

})
= idA/θ.
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Proof. Fix D :=
{
G ∈ FiS(A/θ) : π−1∇A/θ(G) = ∇A(π−1G)

}
. Observe

that by the comment after Definition 1.28, π is ∇-compatible with D , and there-
fore, using Proposition 1.34 and Lemma 1.33.1, θ is ∇A-full if and only if θ =
∼∇A
(
∇A−1(θ)

)
= ∼∇A(π−1D) = π−1∼∇A/θ(D). This implies, by surjectivity of π,

that ∼∇A/θ(D) = ππ−1∼∇A/θ(D) = π(θ) = idA/θ. Conversely, if
∼∇A/θ(D) = idA/θ,

then θ = π−1idA/θ = π−1∼∇A/θ(D), which establishes that θ is ∇A-full by the
above consideration. �

Here arrived, observe that by instantiating the above results with the Leib-
niz operator, which is a coherent family of congruential S-compatibility operators,
we find the result proved directly in Proposition 1.11, namely that ΩA−1(θ) =
FiS(A/θ). Indeed, since the Leibniz operator commutes with inverse images by
surjective homomorphisms, the family D in the above proof is precisely FiS(A/θ).

1.5. The General Correspondence Theorem

We are now able to prove the main theorem of the present chapter — the
General Correspondence Theorem 1.38. By applying this result to the Leibniz
and to the Suszko operators (Theorems 2.12 and 2.34, respectively), we will see
that it generalizes and strengthens Blok and Pigozzi’s well-known Correspondence
Theorem for protoalgebraic logics [10, Theorem 2.4], and Czelakowski’s less known
Correspondence Theorem [24, Proposition 2.3] for arbitrary logics, respectively. It
also generalizes the strengthening obtained for protoalgebraic logics by Font and
Jansana of the first result ([37, Corollary 9.1]).

Theorem 1.38 (General Correspondence Theorem). Let ∇ be a coherent family
of S-compatibility operators. For every surjective h : A→ B and every F ∈ FiSA,
if h is ∇-compatible with F , then h induces an order isomorphism between JF K∇

A

and JhF K∇
B , whose inverse is given by h−1.

Proof. Since h is ∇-compatible with F , it is also Ω-compatible with F . So, by
Lemmas 0.17.1 and 0.24.3, F = h−1hF and hF ∈ FiSB.

Take first any F ′ ∈ JF K∇
A . Then Kerh ⊆ ∇A(F ) ⊆ ΩA(F ′) and hence by

Lemma 0.24.3, h−1hF ′ = F ′ and hF ′ ∈ FiSB. Moreover, since h is both Ω-
compatible with F ′ and ∇-compatible with F and both Ω and ∇ are coherent, we
can apply Lemma 1.29 to both and obtain that ∇B(hF ) = h∇A(F ) ⊆ hΩA(F ′) =
ΩB(hF ′). This tells us that hF ′ ∈ JhF K∇

B .
Now take any G ∈ JhF K∇

B , i.e., such that ∇B(hF ) ⊆ ΩB(G). We know that
h−1G ∈ FiSA and that hh−1G = G. Observe that h is ∇-compatible with h−1hF ,
since this is F . Then, by coherence, we have

∇A(F ) = ∇A
(
h−1hF

)
= h−1∇B(hF ) ⊆ h−1ΩB(G) = ΩA(h−1G).

This shows that h−1G ∈ JF K∇
A .

Thus, we have established that h induces a bijection between JF K∇
A and

JhF K∇
B , whose inverse is given by h−1. Since both maps are obviously order

preserving, they are in fact order isomorphisms. �

Since order isomorphisms put the least elements of the two ordered sets into
correspondence, we obtain:
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Corollary 1.39. Under the assumptions of Theorem 1.38, F is a ∇-filter of A if
and only if hF is a ∇-filter of B.

Another corollary about ∇-filters, which follows by Theorem 1.38 and will be
very useful in Part II, is the following:

Corollary 1.40. Let S be a logic and ∇ a coherent family of congruential S-
compatibility operators. For every A and every F ∈ FiSA,

F∇/∇A(F ) =
(
F/∇A(F )

)∇
and it is the least S-filter of A/∇A(F ).

Proof. Let π : A→ A/∇A(F ) be the canonical map. Fix B := A/∇A(F ). Since
π is surjective and ∇A-compatible with F (because Kerh = ∇A(F )), it follows by
the General Correspondence Theorem 1.38 that π induces an isomorphism between
JF K∇ and JπF K∇, whose inverse is given by π−1. As a consequence, since F∇ is the
least element of JF K∇, π(F∇) must be the least element of JπF K∇, which is (πF )∇.
That is, π(F∇) = (πF )∇. Finally, notice that ∇B(πF ) = idB, by Lemma 1.45.
So, JπF K∇ = FiS(B). Thus, (πF )∇ is the least S-filter of B. �

Given Proposition 1.32, we can apply the General Correspondence Theorem
1.38 to the relativization of an S-operator and obtain:

Theorem 1.41. Let ∇ be a coherent family of S-compatibility operators. For every
surjective h : A → B and every F ∈ FiSA, if h is ∼∇S-compatible with F , then h

induces an order isomorphism between JF K
∼∇
A

S and JhF K
∼∇
B

S , whose inverse is given
by h−1.

1.6. Classes of algebras associated with a family of S-operators

We saw in Lemma 0.36 that the classes of algebras usually associated with
a logic through the Leibniz and the Suszko operators can be obtained either by
considering reduced models, or by a process of reduction. By analogy, one can
apply the first procedure to families of S-operators and the second procedure to
families of congruential S-operators.

Throughout this section, we shall assume without any further reference to be
dealing with congruential S-operators.

Definition 1.42. Let ∇ be a family of S-operators. Define

Alg∇(S) := I
{
A/∇A(F ) : A an algebra, F ∈ FiSA

}
,

Alg∇(S) := I
{
A : there is F ∈ FiSA such that ∇A(F ) = idA

}
,

Alg
∼∇S (S) := I

{
A/

∼∇AS (F ) : A an algebra, F ∈ FiSA
}
,

Alg∼∇S
(S) := I

{
A : there is F ∈ FiSA such that ∼∇AS (F ) = idA

}
,

Alg
∼∇(S) := I

{
A/

∼∇A(C ) : A an algebra, C ⊆ FiSA
}
,

Alg∼∇(S) := I
{
A : there is C ⊆ FiSA such that ∼∇A(C ) = idA

}
.

So, for each family ∇, ∼∇S , and
∼∇, we associate two classes of algebras: the

class of ∇-reduced algebras (respectively, ∼∇S - and
∼∇-) and the class of ∇-reductions
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(respectively, ∼∇S - and ∼∇-). We have chosen to define all these classes as closed
under the operator I, but in fact, having in mind Corollary 1.30, it is easy to see
that the reductions’ classes could have been defined without it.

Lemma 1.43. The classes{
A : there is F ∈ FiSA such that ∇A(F ) = idA

}
,{

A : there is F ∈ FiSA such that ∼∇AS (F ) = idA
}
,{

A : there is C ⊆ FiSA such that ∼∇A(C ) = idA
}
,

are all closed under isomorphisms.

Given Lemma 0.36.3, as well as condition (4) on page 136, concerning the
Tarski operator (that is, the lifting of the Leibniz operator), let us first observe
that the two last classes of algebras in Definition 1.42 can also be given similar
characterizations.

Lemma 1.44. Let ∇ be a family of S-operators.

1. Alg
∼∇(S) = I

{
A/

∼∇A(C ) : A an algebra, C ⊆ FiSA ∇-full
}
;

2. Alg∼∇(S) = I
{
A : ∼∇A(FiSA) = idA

}
;

3. Alg∼∇(S) = I
{
A : there is a ∇-full C ⊆ FiSA such that ∼∇A(C ) = idA

}
,

Proof. 1. The inclusion from right to left is obvious. To prove the converse
inclusion, observe that given any C ⊆ FiSA, by the Galois connection (Propo-
sition 1.6 and related results) the congruence ∼∇A(C ) is a ∇-full congruence and
hence there is some ∇-full D ⊆ FiSA such that ∼∇A(D) = ∼∇A(C ); therefore,
A/

∼∇A(C ) = A/
∼∇A(D) ∈ Alg

∼∇(S).
2. The inclusion from right to left is obvious. Conversely, given any C ⊆ FiSA
such that ∼∇A(C ) = idA, it also holds ∼∇A(FiSA) = idA, since

∼∇ is order reversing.
So, Alg∼∇(S) ⊆ I

{
A : ∼∇A(FiSA) = idA

}
.

3. The inclusion from right to left is once again obvious. Conversely, just no-
tice that FiSA is always a ∇-full family of S-filters. So, Alg∼∇(S) ⊆ I

{
A :

there is a ∇-full C ⊆ FiSA such that ∼∇A(C ) = idA
}
, by 2. �

Our next goal is to see that the two classes of algebras associated with a coher-
ent family of S-compatibility operators coincide; and so do the respective classes
associated with its relativization and its lifting. In fact, these last classes all coin-
cide among them. The key point is to see that the “process of ∇-reduction” applied
to any model of S always produces a “∇-reduced” model.

Lemma 1.45. Let ∇ be a coherent family of S-compatibility operators. For every
F ∈ FiSA and every θ ∈ ConA, if θ ⊆ ∇A(F ), then ∇A/θ(F/θ) = ∇A(F )

/
θ. In

particular,
∇A/∇

A(F )(F/∇A(F )
)

= idA/∇A(F ).

Proof. Consider the canonical projection π : A → A/θ, which is surjective and
is ∇-compatible with F by the assumption. Then, by coherence and Lemma 1.29,
∇A/θ

(
F/θ

)
= ∇A/θ

(
πF
)

= π∇A(F ) = ∇A(F )
/
θ. For the last identity, take

θ = ∇A(F ). �

Proposition 1.46. If ∇ is a coherent family of S-compatibility operators, then
Alg∇S = Alg∇S.
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Proof. The inclusion Alg∇(S) ⊆ Alg∇(S) holds in general, because A ∼= A/idA,
and the reverse inclusion is a consequence of Lemma 1.45. �

Moreover, we can apply Propositions 1.32 and 1.46 to ∼∇S .

Corollary 1.47. If ∇ is a coherent family of S-compatibility operators, then
Alg

∼∇S (S) = Alg∼∇S
(S).

In particular, taking ∇ = Ω and ∇ = ∼
ΩS , Proposition 1.46 and Corollary 1.47

yield the equalities AlgΩ(S) = AlgΩ(S) = Alg∗(S), and Alg
∼
ΩS (S) = Alg ∼

ΩS (S) =
AlgSu(S), respectively, which are already known (Lemma 0.36).

The proofs of the next two results are completely analogous, modulo Lemma
1.33, to those of Lemma 1.45 and Proposition 1.46, respectively.

Lemma 1.48. Let ∇ be a coherent family of S-compatibility operators. For every
C ⊆ FiSA,

∼∇A/
∼∇
A

(C )(C /∼∇A(C )
)

= id
A/

∼∇
A

(C )
.

Proposition 1.49. If ∇ is a coherent family of S-compatibility operators, then
Alg

∼∇(S) = Alg∼∇(S).

Finally, we arrive at:

Proposition 1.50. If ∇ is a coherent family of S-compatibility operators, then
Alg

∼∇(S) = Alg∼∇(S) = Alg
∼∇S (S) = Alg∼∇S

(S).

Proof. By definition, for each F ∈ FiSA ,
∼∇AS (F ) = ∼∇A

(
(FiSA)F

)
. From this

it follows that Alg∼∇S
(S) ⊆ Alg∼∇(S) and that Alg

∼∇S (S) ⊆ Alg
∼∇(S). To see the

reverse inclusion in the first case, assume that A ∈ Alg∼∇(S). By Lemma 1.44.2,
∼∇A(FiSA) = idA. But, fixing F0 :=

⋂
FiSA, ∼∇AS (F0) = ∼∇A

(
(FiSA)F0

)
=

∼∇A(FiSA) = idA. Therefore, A ∈ Alg∼∇S
(S). Given Corollary 1.47, we are done.

�

Since, by Proposition 1.32, coherence is preserved through relativization, it is
legitime to apply the results just proved for a coherent∇ to ∼∇S , and in particular, to
consider the classes of algebras associated to the lifting of ∼∇S and to its relativization
to S. But, since ∼∇S is an order preserving S-operator, in view of Lemma 1.4, the
relativization of ∼∇S is ∼∇S itself. Therefore, its associated classes of algebras would
still be the class Alg

∼∇(S).
So, given a coherent family of congruential S-compatibility operators, the

classes of algebras in Definition 1.42 collapse into just two, namely Alg∇(S) and
Alg

∼∇S (S). The fact that these classes coincide or not, will be relevant in some
results to come — see Proposition 3.4 or Lemma 3.3, for instance.





CHAPTER 2

The Leibniz, Suszko and Frege operators

2.1. The Leibniz operator as an S-compatibility operator

Among all the S-operators we shall consider, the Leibniz operator is by far the
most well studied one. As we will soon see, instantiating the results of Chapter 1
with ∇ = Ω yields both new and familiar notions. But since these later have
already well-settled notations and terminology — for instance, Alg∗(S) — we shall,
from now on, write ( )∗ instead of ( )Ω in all supscripts concerning the Leibniz
operator.

We start our study of this famous operator by viewing it just as an S-operator.
From this assumption alone, we will see that some powerful consequences already
arise as by-products of the Galois connection established in Proposition 1.6. We
then proceed to view the Leibniz operator in its full extension, that is, as a congru-
ential S-compatibility operator.

As already remarked, the lifting of the Leibniz operator ΩA is the familiar
Tarski operator ∼

ΩA. As to the map ΩA−1, observe that if θ ∈ ConA, then

ΩA
−1(θ) =

{
F ∈ FiS(A) : θ ⊆ ΩA(F )

}
=
{
F ∈ FiS(A) : θ is compatible with F

}
.

Let us first characterize the Ω-full objects in terms of some well-known con-
cepts.

Proposition 2.1. A set C ⊆ FiSA is Ω-full if and only if it is a full g-model of
S.

Proof. It holds, ΩA−1(∼
ΩA(C )

)
=
{
G ∈ FiS(A) : ∼

ΩA(C ) ⊆ ΩA(G)
}
. Now, by

definition 1.8, C is Ω-full when it equals the left-hand side of the equality; and by
definition it is a full g-model of S when it equals the right-hand side. �

Proposition 2.2. A congruence θ ∈ ConA is Ω-full if and only if θ ∈ ConAlg(S)A.

Proof. By instantiating Proposition 1.37 with the Leibniz operator, and having
in mind that this S-operator commutes with inverse images by surjective homo-
momorphisms, we have that θ is Ω-full if and only if ∼

ΩA/θ
(
FiS(A/θ)

)
= idA/θ,

which is equivalent to A/θ ∈ Alg(S) by condition (4) on page 136, and equivalent
to θ ∈ ConAlg(S)A. �

The two preceding results allow us to instantiate Proposition 1.6 and Corollary
1.7.6 in a more familiar form.

Corollary 2.3. The maps ∼
ΩA and ΩA−1 establish a Galois connection between

P(FiSA) and EqL(A) and restrict to mutually inverse dual order isomorphisms
between the poset of all full g-models of S on A and the poset ConAlg(S)A.

47
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The second part of this statement is the well-known Isomorphism Theorem [36,
Theorem 2.30]. We see that it arises here naturally as a by-product of the Galois
connection established in Proposition 1.6, taking ∇ = Ω. Finally, from Propo-
sitions 1.9 and 2.1, we get the following characterization of the full g-models of
S.

Proposition 2.4. A subset C ⊆ FiSA is a full g-model of S if and only if C is
the largest D ⊆ FiSA such that ∼

ΩA(C ) = ∼
ΩA(D).

To finish our study of the Leibniz operator as an S-operator, we state a most
crucial fact, originally proved in [22, Theorem 1.26], which within our framework
follows as an immediate consequence of Lemma 1.4 and Definition 0.38.

Proposition 2.5. A logic S is protoalgebraic if and only if the Leibniz and the
Suszko operators coincide.

Therefore, when dealing with protoalgebraic logics, all pairs of notions associ-
ated with the Leibniz and Suszko operators, such as those of Ω- and ∼

ΩS -classes,
those of Ω- and ∼

ΩS -filters, and the respective associated classes of algebras; in
particular, Proposition 2.5 directly implies that Alg∗(S) = Alg(S).

We now introduce the notions of Ω-class and Ω-filter. As we will see, these
concepts will play an important rôle in our study. Recall, by Definition 1.12, the
Ω-class of F , which we shall also call the Leibniz class of F , is defined by

JF K∗ := ΩA
−1(

ΩA(F )
)

=
{
G ∈ FiSA : ΩA(F ) ⊆ ΩA(G)

}
.

By Definition 1.15, F ∗ denotes the least element of the Leibniz class JF K∗; we shall
call this element the Leibniz filter of F . We say that F is a Leibniz filter if F = F ∗,
and we denote the set of all Leibniz filters of A by Fi∗SA. This is the same notation
used in [37] for protoalgebraic logics.

A clarification is in order here. Leibniz filters were originally introduced in
[37], within the scope of protoalgebraic logics, as the least elements of the class

[F ] := {G ∈ FiSA : ΩA(F ) = ΩA(G)} ⊆ JF K∗.

Indeed, [37, Definition 1] is preceded by: “(...) it makes sense to single out a special
element of each equivalence class under the kernel of ΩA, namely its least element.”
In fact, these equivalence classes had already been pointed out in [36, p. 59] and
explicitly considered in [25, p. 650]. Leibniz filters were also studied in [51], namely
its definability with parameters, but once again within the protoalgebraic setting.
Our present definition of Leibniz filter generalizes the former one, as we next prove
(Lemma 2.6), in the sense that both definitions coincide for protoalgebraic logics.
Furthermore, as we shall see, every Leibniz filter according to our new definition
is also a Leibniz filter according to [37, Definition 1] (if we apply it to arbitrary
logics). But a word of advice must be taken with respect to [38, p. 177]. There,
a generalization of Leibniz filters for arbitrary logics is also proposed, namely: an
S-filter F ∈ FiSA is Leibniz, if it is the least element of the class [F ]. Despite the
fact that [F ] ⊆ JF K∗, for every F ∈ FiSA, this notion does not coincide, in general,
with the present one. Indeed, while in general the least element of [F ] does not
necessarily exist, the least element of JF K∗ always does.

Lemma 2.6. For every F ∈ FiSA,
1. F ∗ ⊆

⋂
[F ] ⊆ F ;
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2. if F = F ∗, then F =
⋂

[F ];
3. if S is protoalgebraic, then F = F ∗ (i.e., F is a Leibniz filter) if and only if

F =
⋂

[F ].

Proof. Let F ∈ FiSA. Since F ∈ [F ], it holds
⋂

[F ] ⊆ F . Moreover, it is
clear that [F ] ⊆ JF K∗. Therefore, F ∗ =

⋂
JF K∗ ⊆

⋂
[F ]. From (i), (ii) follows

immediately. Now to prove (iii) assume that S is protoalgebraic and F =
⋂

[F ].
Then, since F ∗ ⊆ F it follows by order preservation ofΩA thatΩA(F ∗) ⊆ ΩA(F ),
and since F ∗ ∈ JF K∗, it must also hold ΩA(F ) ⊆ ΩA(F ∗). Thus, ΩA(F ) =
ΩA(F ∗). So, F ∗ ∈ [F ], and hence F =

⋂
[F ] ⊆ F ∗. �

Since the Leibniz operator is a congruential S-operator, we know by Proposition
1.14 that Ω-classes are full g-models of S. But the fact that it is furthermore an
S-compatibility operator entails a deeper connection between these classes and
Leibniz congruences.

Proposition 2.7. For every F ∈ FiSA, JF K∗ is a full g-model of S. Moreover,
∼
ΩA

(
JF K∗

)
= ΩA(F ). (16)

Proof. By Proposition 1.14, taking ∇A = ΩA, it follows that JF K∗ is a full g-
model of S. Now, on the one hand, since F ∈ JF K∗, it holds ∼

ΩA
(
JF K∗

)
⊆ ΩA(F ).

On the other hand, for every G ∈ JF K∗, it holds ΩA(F ) ⊆ ΩA(G). Therefore,
ΩA(F ) ⊆

⋂
G∈JF K∗ Ω

A(G) = ∼
ΩA

(
JF K∗

)
. �

Recall that, in general, F∇ need not be a ∇-filter of A. The Leibniz filters of
A, however, are indeed the S-filters of the form F ∗, for some F ∈ FiSA.

Proposition 2.8. For every F ∈ FiSA, F ∗ is a Leibniz filter of A.

Proof. The inclusion (F ∗)∗ ⊆ F ∗ follows by Lemma 1.21.2. As for the converse
inclusion, since F ∗ ∈ JF K∗, it follows that ΩA(F ) ⊆ ΩA(F ∗), and hence JF ∗K∗ ⊆
JF K∗. Thus, F ∗ =

⋂
JF K∗ ⊆

⋂
JF ∗K∗ = (F ∗)∗. �

Taking Lemma 2.6.3 into account, [36, Proposition 3.6] tells us that: For every
protoalgebraic logic S, an S-filter is a Leibniz filter if and only if it is the least
element of some full g-model of S. We can now see that this remains true for
arbitrary logics if we replace the notion of Leibniz filter of [36, 37] by the present
one.

Proposition 2.9. An S-filter F of A is a Leibniz filter if and only if there exists
a full g-model 〈A,C 〉 of S such that F =

⋂
C .

Proof. Suppose F ∈ FiSA is a Leibniz filter. It is, by definition, the least element
of its Leibniz class, which we have seen to be a full g-model of S in Proposition 2.7.
Conversely, suppose F =

⋂
C and 〈A,C 〉 is a full g-model of S. Since

⋂
C ∈ C , it

holds ∼
ΩA(C ) ⊆ ΩA(F ). Hence, JF K∗ = ΩA

−1(ΩA(F )) ⊆ ΩA−1( ∼ΩA(C )) = C ,
where the last equality follows by Proposition 2.1. Thus, F =

⋂
C ⊆

⋂
JF K∗ = F ∗.

Since the converse inclusion always holds, it follows F = F ∗, i.e., F is a Leibniz
filter of A. �

Instantiating Proposition 1.18 for the Leibniz operator we obtain the next
proposition; one can see that it generalizes [37, Proposition 10] and [36, Proposition
3.6 (iii)], again taking Lemma 2.6.3 into account.
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Proposition 2.10. A filter F ∈ FiSA is a Leibniz filter of A if and only if
F/ΩA(F ) is the least S-filter of A/ΩA(F ).

In case every S-filter turns out to be a Leibniz filter, we have:

Proposition 2.11. The Leibniz operator is order reflecting if and only if, for every
A, every S-filter of A is a Leibniz filter of A.

Proof. The Leibniz operator is order reflecting iff, for every A and every F,G ∈
FiSA such that ΩA(F ) ⊆ ΩA(G) it holds F ⊆ G, iff for every A and every
F,G ∈ FiSA such that G ∈ JF K∗ it holds F ⊆ G, iff, for every A, every S-filter of
A is a Leibniz filter of A. �

Next, we apply the General Correspondence Theorem 1.38 to the Leibniz op-
erator.

Theorem 2.12 (Correspondence Theorem for Leibniz classes). For every surjective
h : A → B and every F ∈ FiSA, if h is Ω-compatible with F , then h induces
an order isomorphism between JF K∗ and JhF K∗, whose inverse is given by h−1.
Moreover, for each G ∈ JF K∗, h induces an order isomorphism between [G] and
[hG].

Proof. Since the Leibniz operator is a coherent family of S-compatibility opera-
tors, we can apply Theorem 1.38 to it, and obtain the first part of the statement.
For the second part, take any G,H ∈ JF K∗; note that from G ∈ JF K∗ it follows that
[G] ⊆ JF K∗. By the established isomorphism, h−1hG = G and h−1hH = H. Now,
using Proposition 0.31.1 and the surjectivity of h,

ΩA(H) = ΩA(G) iff ΩA(h−1hH) = ΩA(h−1hG)

iff h−1ΩB(hH) = h−1ΩB(hG)

iff ΩB(hH) = ΩB(hG),

which shows that H ∈ [G] if and only if hF ∈ [hG]. Thus, the order isomorphism
induced by h between JF K∗ and JhF K∗ restricts to one between [G] and [hG]. �

It is not difficult to see that JF K∗ =
⋃
G∈JF K∗ [G], that is, the sets [G] divide

the Leibniz class JF K∗ into disjoint “layers” according to the value of the Leibniz
operator. Thus, the second part of Theorem 2.12 is telling us that the isomorphism
between the two Leibniz classes is the disjoint union of isomorphisms, one for each
corresponding pair of “layers”.

Corollary 2.13. Under the assumptions of Theorem 2.12, F is a Leibniz filter of
A if and only if hF is a Leibniz filter of B.

Bearing in mind Lemma 1.26, Corollary 2.13 can be re-stated as (this alterna-
tive formulation will be useful in Part II):

Proposition 2.14. Let h : 〈A, F 〉 → 〈B, G〉 be a strict surjective matrix homo-
morphism. Then F ∈ Fi∗S(A) if and only if G ∈ Fi∗S(B).

Theorem 2.12 generalizes and strengthens the well-known Correspondence The-
orem for protoalgebraic logics, as formulated in [12, Corollary 7.7], and its strength-
ening given in [37, Corollary 9]. Indeed,
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Theorem 2.15 (Correspondence Theorem for protoalgebraic logics). A logic S is
protoalgebraic if and only if every strict surjective matrix homomorphism between
S-models h : 〈A, F 〉 → 〈B, G〉 induces an order isomorphism between (FiSA)F and
(FiSB)G, whose inverse is given by h−1.

Proof. Assume S is protoalgebraic. If h : 〈A, F 〉 → 〈B, G〉 is strict and surjective,
then F = h−1G and G = hh−1G = hF , so that F = h−1hF . This means that,
viewed as an algebraic homomorphism, h is Ω-compatible with F . Therefore, we
can apply Theorem 2.12 to obtain that h induces an order isomorphism between
JF K∗ and JGK∗, with inverse given by h−1. This isomorphism restricts to an order
isomorphism between (FiSA)F and (FiSB)G, because by protoalgebraicity, these
up-sets are contained in JF K∗ and JGK∗, respectively, and F and G correspond to
each other under h and h−1. The converse implication would be proved as in [23],
i.e., by showing that the stated condition easily implies that the Leibniz operator
is order preserving. �

Let us now address the question of which full g-models have the form of a
Leibniz class.

Proposition 2.16. Let 〈A,C 〉 be a full g-model of S. The following conditions
are equivalent:
(i) C = JF K∗, for some F ∈ FiSA;
(ii) A/ ∼ΩA(C ) ∈ Alg∗(S).

Proof. Suppose C = JF K∗, for some F ∈ FiSA. Then, ∼
ΩA(C ) = ∼

ΩA(JF K∗) =
ΩA(F ), by Proposition 2.7, and therefore A/ ∼ΩA(C ) ∈ Alg∗(S). Conversely, sup-
pose A/ ∼ΩA(C ) ∈ Alg∗(S). Fix B := A/

∼
ΩA(C ). By the assumption, there

exists G ∈ FiSB such that ΩB(G) = idB. This implies that JGK∗ = FiSB.
Now, let π : A → B be the canonical projection. Since C is full by assumption,
C = π−1FiSB. Thus, C = π−1JGK∗. Finally, Kerπ = π−1idB = π−1ΩB(G) =
ΩA(π−1G), therefore π is ΩA-compatible with π−1G. Now we can apply the Cor-
respondence Theorem 2.12 for Leibniz classes and conclude that C = π−1JGK∗ =
Jπ−1GK∗. That is, F := π−1G ∈ FiSA witnesses the desired property. �

What happens then if every full g-model of a logic S is of the form JF K∗, for
some F ∈ FiSA?

Proposition 2.17. Let S be a logic. The following conditions are equivalent:
(i) For every A, the family of full g-models of S on A is

{
JF K∗ : F ∈ FiSA

}
;

(ii) Alg(S) = Alg∗(S).

Proof. (i) ⇒ (ii): The inclusion Alg∗(S) ⊆ Alg(S) holds in general. As for the
converse inclusion, let A ∈ Alg(S) and let F ∈ A witness this fact, i.e., ∼

ΩA
S (F ) =

idA. Now, by assumption, every full g-model of S is of the form of some Leibniz
class. In particular, since Suszko classes are full g-models, it follows that for every
F ∈ FiSA there exists G ∈ FiSA such that JF KSu = JGK∗. Now, on the one hand,
since (FiSA)F ⊆ JF KSu, it follows that ΩA(G) ⊆

⋂
F ′⊇F Ω

A(F ′) = ∼
ΩA
S (F ).

On the other hand, since G ∈ JGK∗, it follows that ∼
ΩA
S (F ) ⊆ ΩA(G). Thus,

ΩA(G) = ∼
ΩA
S (F ) = idA, and therefore A ∈ Alg∗(S).

(ii) ⇒ (i): If C is full, then A/ ∼ΩA(C ) ∈ Alg(S). From the assumption it follows
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that A/ ∼ΩA(C ) ∈ Alg∗(S), and from Proposition 2.16 that C = JF K∗, for some
F ∈ FiSA. �

Proposition 2.17 allows us to prove a suggestive characterization of the con-
dition Alg(S) = Alg∗(S) in terms of the Leibniz and Suszko operators, which is
readily seen as a weaker property than protoalgebraicity (as depicted in Figure 1).

Proposition 2.18. Let S be a logic. It holds Alg(S) = Alg∗(S) if and only if, for
every A and every F ∈ FiSA, there exists G ∈ FiSA such that ∼

ΩA
S (F ) = ΩA(G).

Proof. Suppose Alg(S) = Alg∗(S). It follows by Proposition 2.17 that every full
g-model of S is of the form of some Leibniz class. In particular, since Suszko
classes are full g-models of S, for every F ∈ FiSA there exists G ∈ FiSA such
that JF KSu = JGK∗. But then, ∼

ΩA
S (F ) = ∼

ΩA
(
JF KSu) = ∼

ΩA
(
JGK∗

)
= ΩA(G), as

desired. As for the converse, let A ∈ Alg(S). Since Alg(S) = AlgSu(S), there is
F ∈ FiSA such that ∼

ΩA
S (F ) = idA. It follows by hypothesis that there exists G ∈

FiSA such that ∼
ΩA
S (F ) = ΩA(G) = idA. Thus, A ∈ Alg∗(S). This establishes

that Alg(S) ⊆ Alg∗(S); the converse inclusion always holds. �

Compare Proposition 2.18 with the following rephrasing of Proposition 2.5: S is
protoalgebraic if and only if, for every A and every F ∈ FiSA, ∼

ΩA
S (F ) = ΩA(F ).

Given Proposition 2.17, we get as an immediate corollary:

Corollary 2.19. If a logic S is protoalgebraic, then every full g-model of S is of
the form JF K∗, for some F ∈ FiSA and some algebra A.

In order to get the converse implication, one must impose JF K∗ to be precisely
the up-set on FiSA generated by F ∗.

Theorem 2.20. Let S be a logic. The following conditions are equivalent:
(i) S is protoalgebraic.
(ii) Every full g-model of S is of the form (FiSA)F , for some S-filter F of some

algebra A;
(iii) Every full g-model of S is of the form (FiSA)F , for some Leibniz S-filter F

of some algebra A;
(iv) JF K∗ = (FiSA)F∗ , for every F ∈ FiSA and every algebra A.

Proof. (i) ⇒ (ii): Let 〈A,C 〉 be a full g-model of S. So, C = {G ∈ FiSA :
∼
ΩA(C ) ⊆ ΩA(G)}. Since by the assumption the Leibniz operator is order preserv-
ing, it trivially follows that C is an up-set. Since C is moreover a closure system,
it must be of the form (FiSA)F , for some S-filter F of A, namely F =

⋂
C .

(ii)⇔ (iii): This should be clear, given Proposition 2.9.
(iii) ⇒ (iv): Clearly, since for every F ∈ FiSA and every A, JF K∗ is a full g-
model of S, by Proposition 2.7; F ∗ is a Leibniz filter of A, by Proposition 2.8; and
F ∗ =

⋂
JF K∗ by definition.

(iv) ⇒ (i): Let A be an algebra and let F,G ∈ FiSA such that F ⊆ G. Then,
F ∗ ⊆ F ⊆ G. It follows by hypothesis that G ∈ JF K∗. So, ΩA(F ) ⊆ ΩA(G).
Thus, the Leibniz operator is order preserving on every A, and this shows that S
is protoalgebraic. �

Notice that we can replace Suszko filter by Leibniz filter in condition (iii).
The preceding result extends [36, Theorem 3.4], which proves only the equivalence
between items (i) and (ii).
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It is interesting to compare Proposition 2.20, which characterizes protoalgebraic
logics in terms of their Ω-classes, with Corollary 2.31, which characterizes truth-
equational logics in terms of their ∼

ΩS -classes.

2.2. The Suszko operator as an S-compatibility operator

We now undertake a similar study to the one done in Section 2.1, this time
for the Suszko operator. Once again, since the notation AlgSu(S) is already well
settled in AAL, we shall change all superscripts ( )

∼
ΩS to ( )Su.

Unlike the Leibniz operator, the Suszko operator viewed only as an S-operator
yields poor results. For instance, the Galois connection established in Proposition
1.6, in the absence of meaningful characterizations of the ∼

ΩS -full objects, has little
consequences.

Let us start by instantiating the notions of ∇-class and ∇-filter for the Suszko
operator. Recall that, by Definition 1.12, the ∼

ΩS -class of F , which we shall also
call the Suszko class of F , is defined by

JF KSu := ΩA
−1( ∼

ΩA
S (F )

)
=
{
G ∈ FiSA : ∼

ΩA
S (F ) ⊆ ΩA(G)

}
.

By Definition 1.15, F Su denotes the least element of the Suszko class JF KSu. We
say that F is a Suszko filter if F = F Su, and we denote the set of all Suszko filters
of A by FiSu

S A.
We next collect some useful basic facts concerning ∼

ΩS -classes and
∼
ΩS -filters,

all of them either particular cases, or straightforward consequences, of Lemmas 1.21
and 1.22.

Lemma 2.21. Let F ∈ FiSA. Then,
1. F Su ⊆ F ∗ ⊆ F ;
2. Every Suszko filter is a Leibniz filter;
3. if F ⊆ G, then JGKSu ⊆ JF KSu and F Su ⊆ GSu;
4. (FiSA)F ⊆ JF KSu ⊆ (FiSA)FSu ;
5. JF KSu = (FiSA)F if and only if F = F Su, i.e., if and only if F is a Suszko

filter.

Proof. 1. The first inclusion holds because ∼
ΩA
S (F ) ⊆ ΩA(F ), so JF K∗ ⊆ JF KSu,

and therefore F Su =
⋂

JF KSu ⊆
⋂

JF K∗ = F ∗; the second inclusion holds because
F ∈ JF K∗. 2. It follows by Lemma 1.22.3, taking ∇ = ∼

ΩS . 3. By monotonicity of
the Suszko operator we have ∼

ΩA
S (F ) ⊆ ∼

ΩA
S (G), so JGKSu ⊆ JF KSu, and therefore

F Su =
⋂

JF KSu ⊆
⋂

JGKSu = GSu. 4. The first inclusion follows by Lemma 1.21.3,
taking ∇ = ∼

ΩS ; the second inclusion follows by the fact F Su =
⋂

JF KSu. 5. By
Lemma 1.21.4, taking ∇ = ∼

ΩS . �

Suszko classes will be once again full g-models of S, because the Suszko operator
is a congruential S-operator. The fact that it is furthermore an S-compatibility
operator allows us to establish a nice connection between Suszko classes and Suszko
congruences, very much in the same spirit as the one established in (16) for the
Leibniz case.

Proposition 2.22. For every F ∈ FiSA, JF KSu is a full g-model of S. Moreover,
∼
ΩA

(
JF KSu) = ∼

ΩA
S (F ) . (17)
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Proof. By Proposition 1.14, taking ∇A = ∼
ΩA
S , it follows that JF KSu is a full

g-model of S. Now, on the one hand, since (FiSA)F ⊆ JF KSu, by Lemma 2.21.4,
it holds ∼

ΩA
(
JF KSu) ⊆ ∼

ΩA
(
(FiSA)F

)
= ∼
ΩA
S (F ). On the other hand, for every

G ∈ JF KSu, it holds ∼
ΩA
S (F ) ⊆ ΩA(G). Therefore, ∼

ΩA
S (F ) ⊆

⋂
G∈JF KSu Ω

A(G) =
∼
ΩA

(
JF KSu). �

The similarity of (17) and (16) on page 47, reinforces the parallelism be-
tween the Leibniz and the Suszko operators under our general treatment of S-
compatibility operators. This parallelism however also has its downfalls. For ex-
ample, unlike the case of F ∗, which always is a Leibniz filter, F Su needs not be
a Suszko filter in general. The following example witnessing this fact is due to
Tommaso Moraschini.

Example 2.23. Consider the language L = 〈2,3, c1, c2, c3,>〉, where 2 and 3

are unary function symbols and c1, c2, c3,> are constant symbols. Consider the set
A = {a, b, c, d, 1} and the L-algebra A = 〈A,2A,3A, a, b, d, 1〉, where the unary
operations 2A and 3A are given by the table below. Consider also the logic
S = 〈Fm,`S〉 defined by the calculus with axiom and rules displayed below (x is
a variable).

2A 3A

a a c

b b 1
c d d

d d 1
1 a d

Axiom: >

Rule 1: c1, c2 `S x

Rule 2: c2, c3 `S x

Fact 1. Clearly, the proper S-filters of A are the subsets containing 1, not contain-
ing a, b simultaneously, and not containing b, d simultaneously. In particular, the
set F := {1, b, c} is an S-filter of A.

Fact 2. (FiSA)F = {F,A}, because the only proper subsets of A containing F are
{1, a, b, c} and {1, b, c, d}, but neither is an S-filter of A by the observation in Fact
1.

Fact 3. ∼
ΩA
S (F ) = ΩA(F ) =

{
{1, c} , {a, d} , {b}

}
, where for simplicity a con-

gruence is described by its partition. One can check by hand that ΩA(F ) ={
{1, c} , {a, d} , {b}

}
. The other equality follows by Fact 2, which implies that

∼
ΩA
S (F ) = ΩA(F ) ∩ΩA(A) = ΩA(F ).

Fact 4. F Su = {1, c}. To see this, first observe that JF KSu = JF K∗ =
{
G ∈

FiSA : ΩA(F ) ⊆ ΩA(G)
}
, which is a direct consequence of Fact 3. But to

say that ΩA(F ) ⊆ ΩA(G) is to say that ΩA(F ) is compatible with G or, by
Lemma 0.16, that G is a union of blocks of ΩA(F ). Using the description of S-
filters in Fact 1 and the description of the blocks of ΩA(F ) in Fact 3, we conclude
that JF KSu =

{
{1, c} , F , {1, a, c, d} , A

}
. From this it follows that F Su = {1, c}, as

claimed.

Fact 5. ∼
ΩA
S (F Su) = idA. This is because F and {1, a, c} are two S-filters of A,

which contain F Su = {1, c}, and it is easy to check that ΩA(F ) ∩ΩA
(
{1, a, c}

)
=

idA, using just compatibility arguments and the fact that for any congruence ≡ of
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this algebra, 1 ≡ c if and only if a ≡ d.

Fact 6. (F Su)Su = {1}. It follows by Fact 5 that JF SuKSu = FiSA. Thus,
(F Su)Su = min JF SuKSu =

⋂
FiSA = {1}.

We conclude that F Su 6= (F Su)Su. That is, F Su is not a Suszko filter of A. �

As a consequence, the converse of the implication in Lemma 2.21.2 is false, for
F Su is always a Leibniz filter (by Proposition 2.9 and Proposition 2.22, for it is
the least element of the full g-model JF KSu), and Example 2.23 exhibits one such
F Su which is not a Suszko filter. However, in case F Su is indeed a Suszko filter
of A, then it is the largest one below F . In order to see it, we first instantiate
Lemma 1.17 with the Suszko operator:

Lemma 2.24. For every A, if F,G ∈ FiSA are such that F ⊆ G, then F Su ⊆ GSu.

Lemma 2.25. If F Su
S is a Suszko filter of A, then it is the largest Suszko S-filter

of A below F .

Proof. Let G ∈ FiSu
S (A) such that G ⊆ F . It follows by Lemma 2.24 that

G = GSu ⊆ F Su. As a consequence, if F Su
S is a Suszko filter of A, then it is

necessarily the largest one below F . �

We next instantiate Proposition 1.18 with the Suszko operator, and state some
algebraic properties of the set FiSu

S (A) which will be later useful.

Proposition 2.26. A filter F ∈ FiSA is a Suszko filter of A if and only if
F/

∼
ΩA
S (F ) is the least S-filter of A/ ∼ΩA

S (F ).

Lemma 2.27. For every A, FiSu
S (A) is a join-complete sub-semilattice of FiSA.

Proof. Let {Fi : i ∈ I} ⊆ FiSu
S (A). Since Fi ⊆

∨
i∈I Fi, for every i ∈ I, it

follows by Lemma 2.24 that Fi = F Su
i ⊆ (

∨
i∈I Fi)Su, for every i ∈ I. Thus,∨

i∈I Fi ⊆ (
∨
i∈I Fi)Su, by definition of supremum. The converse inclusion always

holds. Therefore,
∨
i∈I Fi = (

∨
i∈I Fi)Su, and hence

∨
i∈I Fi ∈ FiSu

S (A). �

Lemma 2.28. For every A, FiSu
S (A) is closed under unions of κ-directed families,

where κ is the cardinal of S.

Proof. Let F ⊆ FiSu
S A be a κ-directed family of Suszko filters of A. Recall that

FiSA is always closed under unions of κ-directed families (see page 15). Hence,⋃
F ∈ FiSA. But then,

⋃
F must be the supremum of the family F . It follows by

Lemma 2.27 that
⋃
F is a Suszko filter of A. �

We have seen in Proposition 2.9 that Leibniz filters are precisely the least
elements of full g-models. Since we have just seen that every Suszko filter is a
Leibniz filter, in particular they are also least elements of full g-models. A natural
question is: which full g-models of S have Suszko filters as least elements?

Theorem 2.29. For every F ∈ FiSA, the following conditions are equivalent:
(i) F is a Suszko filter of A;
(ii)

〈
A, (FiSA)F

〉
is a full g-model of S;

(iii) F =
⋂

C , for some full g-model C ⊆ FiSA such that C is an up-set.
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Proof. (i) ⇒ (ii): This follows from Lemma 2.21.6, which tells us that JF KSu =
(FiSA)F , and Proposition 2.22, which tells us that JF KSu is always full.
(ii)⇒ (iii): This is because (FiSA)F is an up-set and F =

⋂
(FiSA)F .

(iii) ⇒ (i): On the one hand, observe that F ∈ C because C , being full, is a
closure system. This implies that (FiSA)F ⊆ C , because C is an up-set. On
the other hand, since F =

⋂
C by assumption, clearly C ⊆ (FiSA)F . That

is, C = (FiSA)F , which proves the final assertion. Moreover, since C is full,
C = (FiSA)F =

{
G ∈ FiSA : ∼

ΩA
(
(FiSA)F

)
⊆ ΩA(G)

}
. But, ∼

ΩA
(
(FiSA)F

)
=

∼
ΩA
S (F ). So, (FiSA)F = JF KSu, and therefore F =

⋂
JF KSu is a Suszko filter. �

The next result gives an important answer to the following natural question:
what happens if every S-filter is Suszko?

Theorem 2.30. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational;
(ii) For every algebra A, every S-filter of A is a Suszko filter;
(iii) For every algebra A ∈ Alg(S), every S-filter of A is a Suszko filter.

Proof. (i) ⇒ (iii): Let A ∈ Alg(S) and F ∈ FiSA. By hypothesis, taking
Definition 0.38 into account, the Leibniz operatorΩA is completely order reflecting.
Now, letG ∈ JF KSu. Then, ∼

ΩA
S (F ) ⊆ ΩA(F ). It follows by Lemma 1.5 that F ⊆ G.

Hence, F is a Suszko filter of A.
(iii) ⇒ (ii): Let A be an arbitrary algebra and F ∈ FiSA. Fix B := A/

∼
ΩA
S (F )

and let π : A → B be the canonical map. Fix F0 :=
⋂
FiSB. Notice that πF ∈

FiSB, by Lemma 0.24.3. Since F0 ⊆ πF , using that the Suszko operator is order
preserving and Lemma 1.45 we obtain that ∼

ΩB
S (F0) ⊆ ∼

ΩB
S (πF ) = idB. Hence,

∼
ΩB
S (F0) = ∼

ΩB
S (πF ). Now, by hypothesis, both F0 and πF are Suszko filters of B,

because B ∈ AlgSu(S) = Alg(S). Since by Proposition 1.16 the Suszko operator is
always injective over Suszko filters, it follows that F/ ∼ΩA

S (F ) = F0 =
⋂
FiSB. By

Proposition 2.26, this establishes that F is a Suszko filter.
(ii)⇒ (i): LetA and G,F ∈ FiSA such that ∼

ΩA
S (F ) ⊆ ΩA(G). Then, G ∈ JF KSu.

Since F = F Su by hypothesis, it follows that F ⊆ G. It follows by Lemma 1.5 that
the Leibniz operator ΩA is completely order reflecting. Again, taking Definition
0.38 into account, S is truth-equational. �

An analogous condition to (ii) stated with Leibniz filters rather than Suszko
filters does not suffice to establish truth-equationality. A counter-example is [55,
Example 2]. There, a logic S in the language L = {>,2,3} is presented such that,
for every A and every F ∈ FiSA,

a ∈ F ⇔
[
〈a,2Aa〉 ∈ ΩA(F ) or 〈a,>A〉 ∈ ΩA(F )

]
.

It is easily seen then that the Leibniz operator is order reflecting. As a consequence,
every S-filter is Leibniz, by Proposition 2.11. Nevertheless, Raftery proves that S
is not truth-equational.

As a corollary of Theorem 2.30, we obtain a characterization of truth-equational
logics in terms of their full g-models.

Corollary 2.31. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational.
(ii)

〈
A, (FiSA)F

〉
is a full g-model of S, for every F ∈ FiSA and every A.
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(iii) JF KSu = (FiSA)F , for every F ∈ FiSA and every A.

Proof. It follows by Lemma 2.21.5 and in Theorem 2.29 to Theorem 2.30. �

But we had already seen that, for protoalgebraic logics, every full g-model is of
the form of a Leibniz class (Corollary 2.19). Moreover, for these logics, the Ω- and
∼
ΩS -classes coincide. Therefore, taking Definition 0.38 into account, we confirm a
known characterization of weakly algebraizable logics in terms of their full g-models:

Corollary 2.32 ([36, Theorem 3.8 (iii)]). A logic S is weakly algebraizable if and
only if the full g-models of S are exactly all the g-matrices of the form

〈
A, (FiSA)F

〉
for any algebra A and any F ∈ FiSA.

It is also possible to obtain a characterization of weakly algebraizable logics
solely in terms of notions related to the Suszko operator.

Proposition 2.33. A logic S is weakly algebraizable if and only if all its full g-
models are Suszko classes and all its S-filters are Suszko filters.

Proof. Suppose S is weakly algebraizable. Since in particular it is protoalgebraic,
it follows by Theorem 2.20 that every full g-model of S is of the form (FiSA)F ,
for some algebra A and some F ∈ FiSA. Since S is moreover truth-equational, it
follows by Corollary 2.31 that (FiSA)F = JF KSu. Thus, every full g-model of S is
a Suszko class, and by Theorem 2.30 every S-filter is a Suszko filter.
Conversely, suppose the two properties hold. It follows by the second property and
Theorem 2.30 that S is truth-equational. Also, by Corollary 2.31, every Suszko
class is of the form (FiSA)F , for some algebra A and some F ∈ FiSA. Since
F = F ∗ = F Su under truth-equationality, it follows by the first property and
Theorem 2.20 that S is protoalgebraic. Thus, S is weakly algebraizable. �

So far we have explored the notions of ∼
ΩS -class,

∼
ΩS -filter and

∼
ΩS -full g-model.

We now proceed to study the notion of coherence for the Suszko operator. Recall
that by Proposition 1.32 the Suszko operator is a coherent family of S-compatibility
operators. We can, as a consequence, apply the General Correspondence Theo-
rem 1.38 to it, or given the fact that ∼

ΩS is the relativization of Ω, apply instead
Theorem 1.41.

Theorem 2.34 (Correspondence Theorem for Suszko classes). For every surjective
h : A→ B and every F ∈ FiSA, if h is ∼

ΩS-compatible with F , then h induces an
order isomorphism between JF KSu and JhF KSu, whose inverse is given by h−1.

Let us see that Theorem 2.34 strengthens Czelakowski’s Correspondence The-
orem for deductive homomorphisms [24, Proposition 2.3], which states (in the
present terminology) that h is an isomorphism between (FiSA)F and (FiSB)hF
under the assumption that h is a surjective and deductive matrix homomorphism
between 〈A, F 〉 and 〈B, hF 〉. Now, we know by Lemma 1.27 that h is a deductive
matrix homomorphism if and only if it is ∼

ΩS -compatible with F , viewed as an al-
gebraic homomorphism. Thus, compared with [24, Proposition 2.3], Theorem 2.34
extends the isomorphism to the whole Suszko classes JF KSu and JhF KSu, which
contain (FiSA)F and (FiSB)hF respectively, by Lemma 2.21.4.

Corollary 2.35. Under the assumptions of Theorem 2.34, F is a Suszko filter of
A if and only if hF is a Suszko filter of B.
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It so happens that, just like Blok and Pigozzi did for protoalgebraic logics, one
can state a correspondence theorem characterizing the class of truth-equational
logics.

Theorem 2.36 (Correspondence Theorem for truth-equational logics). A logic
S is truth-equational if and only if every strict surjective matrix homomorphism
between S-models h : 〈A, F 〉 → 〈B, G〉 that is ∼

ΩS-compatible with F induces an
order isomorphism between (FiSA)F and (FiSA)GSu , whose inverse is given by
h−1.

Proof. Suppose S is truth-equational. Let h : 〈A, F 〉 → 〈B, G〉 be a strict sur-
jective matrix homomorphism between S-models that is ∼

ΩS -compatible with F .
It follows by Theorem 2.34 that h induces an order isomorphism between JF KSu

and JhF KSu, whose inverse is given by h−1. But, JF KSu = (FiSA)F and JGKSu =
(FiSA)G, by Corollary 2.31 and G = GSu by Theorem 2.30.
Conversely, assume the stated property. We shall prove that every S-filter is a
Suszko filter, from which the desired conclusion will follow by Theorem 2.30. Let
F ∈ FiSA and fix B := A/

∼
ΩA
S (F ). Then, the canonical projection π : A → B

is a strict and surjective matrix homomorphism between the S-models 〈A, F 〉 and
〈B, F/∼ΩA

S (F )〉, and it is clearly ∼
ΩS -compatible with F . Therefore, by the assump-

tion, π induces an order isomorphism between (FiSA)F and (FiSB)πFSu , with
inverse given by π−1. Now, on the one hand, the Suszko operator is a coherent fam-
ily of S-compatible operators, therefore by Lemma 1.29, ∼

ΩB
S (πF ) = π

∼
ΩA
S (F ) =

idB. This implies that JπF KSu = FiSB and hence that πF Su =
⋂
FiSB and

(FiSB)πFSu = FiSB. On the other hand, we can apply Theorem 2.34 to π, and
we find that it induces an order isomorphism between JF KSu and JπF KSu = FiSB,
with inverse given by π−1 as well. Thus, necessarily JF KSu = (FiSA)F . It follows
by Corollary 2.31 that F is a Suszko filter of A. �

Finally, by just extending the scope of the order isomorphism in the last result
to all strict and surjective matrix homomorphisms, we reach weakly algebraizable
logics.

Theorem 2.37. A logic S is weakly algebraizable if and only if every strict surjec-
tive matrix homomorphism between S-models h : 〈A, F 〉 → 〈B, G〉 induces an order
isomorphism between (FiSA)F and (FiSA)GSu , whose inverse is given by h−1.

Proof. If S is weakly algebraizable, in particular it is protoalgebraic and by The-
orem 2.15 we obtain the order isomorphism between (FiSA)F and (FiSA)G; but
since S is also truth-equational, every S-filter is a Suszko filter and hence GSu = G,
which produces the desired result. Conversely, assume the stated property, and
observe that in particular it holds for all surjective homomorphisms h that are
∼
ΩS -compatible with F . Therefore, by Theorem 2.36, S is truth-equational. But
then all S-filters will be Suszko, so that GSu = G, and the assumed condition
establishes, for all the h described, an order isomorphism between (FiSA)F and
(FiSA)G. Thus we can apply Theorem 2.15 and conclude that S is protoalgebraic
as well. That is, S is weakly algebraizable. �

Finally, we investigate the case where all full g-models of a logic are of the form
of some Suszko class, just like we did in Proposition 2.17 for Leibniz classes.
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Proposition 2.38. Let S be a logic. The following conditions are equivalent:
(i) Every full g-model of S is of the form JF KSu, for some algebra A and some

F ∈ FiSA;
(ii) The Suszko operator ∼

ΩA
S : FiSA→ ConAlg(S)(A) is surjective, for every A;

that is, Ran( ∼ΩA
S ) = ConAlg(S)A.

Proof. (i)⇒ (ii): Let A arbitrary and θ ∈ ConAlg(S)(A). Then, θ = ∼
ΩA(C ), for

some full g-model C ⊆ FiSA, by Corollary 2.3. It follows by hypothesis that there
exists F ∈ FiSA such that C = JF KSu. So,

∼
ΩA(C ) = ∼

ΩA
(
JF KSu) = ∼

ΩA
S (F ),

using Proposition 2.22. Thus, ∼
ΩA
S : FiSA→ ConAlg(S)(A) is surjective.

(ii) ⇒ (i): Let C ⊆ FiSA be a full g-model of S. Since ∼
ΩA(C ) ∈ ConAlg(S)(A),

it follows by hypothesis that ∼
ΩA(C ) = ∼

ΩA
S (F ), for some F ∈ FiSA. Since

∼
ΩA

(
JF KSu) = ∼

ΩA
S (F ) and JF KSu is a full g-model of S, by Proposition 2.22, it

follows by the Isomorphism Theorem for full g-models (Corollary 2.3) that C =
JF KSu. �

Contrast Proposition 2.38 with the Leibniz operator case, where in general, ΩA

is always onto ConAlg∗(S)A. Moreover, assuming S to be truth-equational, gives us
a more meaningful consequence:

Proposition 2.39. Let S be a truth-equational logic. The following conditions are
equivalent:
(i) S is weakly algebraizable;
(ii) Every full g-model of S is of the form JF KSu, for some algebra A and some

F ∈ FiSA.

Proof. (i)⇒ (ii): Since S is in particular protoalgebraic, all the Suszko and Leib-
niz related notions coincide, by Proposition 2.5. In particular, Alg∗(S) = Alg(S).
The result now follows by Proposition 2.17.
(ii) ⇒ (i): Let A arbitrary and F ∈ FiSA. Since ΩA(F ) ∈ ConAlg∗(S)A ⊆
ConAlg(S)A, it follows by hypothesis (havind in mind Proposition 2.38) that there
exists G ∈ FiSA such that ΩA(F ) = ∼

ΩA
S (G). As a consequence, JF K∗ = JGKSu.

Now, since S is truth-equational by assumption, every S-filter ofA is a Suszko filter
(and hence a Leibniz filter as well), by Theorem 2.30. Therefore, F = F ∗ = GSu =
G. Thus, ΩA(F ) = ∼

ΩA
S (F ). It follows by Proposition 2.5 that S is protoalgebraic.

Since S is moreover truth-equational by assumption, we conclude that S is weakly
algebraizable. �

Suszko-full g-models of S. A thourough study of the closure properties of
the class of (Leibniz-)full g-models of a logic can be found in [40]. Although we
have not undertaken such an exhaustive study for the class of Suszko-full g-models
of a logic, we record here the results obtained for this new class of g-models.

In Corollary 2.31 we have characterized truth-equational logics in terms of their
(Leibniz-) full g-models (recall, every Suszko class is a full g-model of S). We now
wish to characterize truth-equational logics in terms of their Suszko-full g-models
as well. Of course, in Proposition 2.20 we did implicitly characterize protoalgebraic
logics in terms of their Suszko-full g-models, as these coincide with the (Leibniz-)
full g-models under protoalgebraicity. Here however, such characterization is not
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immediate, and in fact makes use of several results from [55] (some of them will
be discussed in more detail in Chapter 4). While we are at it, we use it to prove
that the Suszko operator is order reflecting if and only if S is truth-equational,
and therefore this seemingly stronger property does not take us any further than
injectivity of the Suszko operator (bearing in mind Raftery’s [55, Theorem 28]).

Proposition 2.40. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational;
(ii)

〈
A, (FiSA)F

〉
is a Suszko-full g-model of S, for every F ∈ FiSA and every

A.
(iii) The Suszko operator ∼

ΩA
S is order reflecting, for every algebra A.

Proof. Notice that
∼∼
ΩA
S
(
(FiSA)F

)
=
⋂
F⊆F ′

∼
ΩA
S (F ′) = ∼

ΩA
S (F ),

by monotonicity of the Suszko operator.
(ii)⇔ (iii): Suppose (FiSA)F is a Suszko-full g-model, for everyA and F ∈ FiSA.
Then,

(FiSA)F = ∼
ΩA
S
−1(∼∼

ΩA
S
(
(FiSA)F

))
= ∼
ΩA
S
−1( ∼

ΩA
S (F )

)
=
{
F ′ ∈ FiSA : ∼

ΩA
S (F ) ⊆ ∼

ΩA
S (F ′)

}
.

So, given G,G′ ∈ FiSA such that ∼
ΩA
S (G) ⊆ ∼

ΩA
S (G′), it must hold G ⊆ G′.

Conversely, suppose the Suszko operator ∼
ΩA
S is order reflecting, for every al-

gebra A. Then,
∼
ΩA
S
−1(∼∼

ΩA
S
(
(FiSA)F

))
= ∼
ΩA
S
−1(∼

ΩA
S (F )

)
=
{
F ′ ∈ FiSA : ∼

ΩA
S (F ) ⊆ ∼

ΩA
S (F ′)

}
= (FiSA)F .

Hence, (FiSA)F is a Suszko-full g-model, for every F ∈ FiSA.
(iii) ⇒ (i): Our hypothesis is stronger than injectivity of the Suszko operator,
which in turn is equivalent to truth-equationality, by Theorem 3.11.
(i) ⇒ (iii): Suppose S is truth-equational, say witnessed by τ (x) ⊆ EqL. Then,
for every algebra A and every F ∈ FiSA,

F =
{
a ∈ A : τA(a) ⊆ ΩA(F )

}
,

by Proposition 0.43. Now, let F, F ′ ∈ FiSA such that ∼
ΩA
S (F ) ⊆ ∼

ΩA
S (F ′). Then,

τA(F ) ⊆ ∼
ΩA
S (F ) ⊆ ∼

ΩA
S (F ′) ⊆ ΩA(F ′),

where the first inclusion holds by Proposition 0.44 and [55, Corollary 9]. It follows
again by Proposition 0.43 that F ⊆ F ′. �

Moreover, the coincidence of Leibniz-full g-models and Suszko-full g-models
characterizes protoalgebraicity:

Proposition 2.41. Let S be a logic. The following conditions are equivalent.
(i) S is protoalgebraic.
(ii) The full g-models of S coincide with its Suszko-full g-models.
(iii) JF K∗ = JF KSu for every F ∈ FiSA and every A.
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Proof. The implications from (i) to (ii) and to (iii) are a direct consequence
of Proposition 2.5. Now assume (ii). Since every Suszko-full g-model is always
an up-set, the condition implies that the full g-models of S are all up-sets, and
by Theorem 2.20 this implies that S is protoalgebraic. Finally, assume (iii) and
consider any A and any F,G ∈ FiSA such that F ⊆ G. Then by Lemma 2.21.4,
G ∈ JGKSu ⊆ JF KSu = JF K∗, which implies that ΩA(F ) ⊆ ΩA(G). This shows
that the Leibniz operator is order preserving on every A, which implies that S is
protoalgebraic. �

By contrast, the coincidence of the following Leibniz- and Suszko-related no-
tions does not characterize protoalgebraicity.

� F ∗ = F Su, for every F ∈ FiSA and every A.
� F is a Suszko filter if and only if F is a Leibniz filter, for every F ∈ FiSA
and every A.

The reason is that these two properties hold (vacuously) in all truth-equational
logics, because as we have seen in Theorem 2.30, in them all filters are Suszko filters,
and hence also Leibniz filters. In Chapter 7, we will also find non-protoalgebraic
and non-truth-equational logics S such that Leibniz and Suszko filters coincide on
the S-algebras (for example, PML and wKσ).

2.3. The Frege operator as an S-operator

In this section we undertake the study of the Frege operator as an S-operator.
We know that it is not, in general, a congruential S-operator. In fact, it is clear
from the definitions involved, that ΛFmS is a congruential S-operator on Fm if
and only if S is Fregean; and that ΛAS is a congruential S-operator on A, for every
A, if and only if S is fully Fregean. Surprisingly enough, as well shall see further
ahead, the same characterizations hold when imposing S-compatibility rather than
congruentiality.

Let us start by considering the notion of ΛS -class. By Definition 1.12, the
ΛS -class of F , which we shall also call the Frege class of F , is defined by

JF KΛ := ΩA
−1(

ΛAS (F )
)

=
{
G ∈ FiSA : ΛAS (F ) ⊆ ΩA(G)

}
.

This time we cannot guarantee that the ΛS -classes are full g-models of S, as
we lack S-compatibility. Still, by Proposition 1.13, we do have:

Proposition 2.42. For every F ∈ FiSA, JF KΛ is a closure system on FiSA.

By Definition 1.15, FΛ denotes the least element of the Frege class JF KΛ. We
say that F is a Frege filter if F = FΛ, and we denote the set of all Frege filters of
A by FiΛSA. Recall that, in general, whenever working with the notion of ∇-filter
we assume that S has theorems, otherwise the least element of any ∇-class is the
empty filter. A rather useful characterization of ΛS -filters is the following:

Lemma 2.43. Let S be a logic and A an algebra. An S-filter F ∈ FiSA is a Frege
filter of A if and only if ΛAS (F ) ⊆ ΩA(F ) if and only if F ∈ JF KΛ.

Proof. The last equivalence holds by definition of Frege class. Now, suppose
F ∈ FiSA is a Frege filter of A. That is, F = FΛ. Since ΛAS (F ) ⊆ ΩA(FΛ),
we are done. Conversely, suppose ΛAS (F ) ⊆ ΩA(F ). Let G ∈ FiSA such that
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G ∈ JF KΛ. That is, ΛAS (F ) ⊆ ΩA(G). Since S has theorems,
⋂
FiSA 6= ∅. Let

b ∈
⋂
FiSA. Let a ∈ F . Then, FgAS (F, b) = F = FgAS (F, a). So,

〈b, a〉 ∈ ΛAS (F ) ⊆ ΩA(G).

Since b ∈ G, it follows by compatibility that a ∈ G. Thus, F ⊆ G. Since moreover
F ∈ JF KΛ by assumption, it follows that F is a ΛS -filter of A. �

Assuming S protoalgebraic, we immediately get:

Corollary 2.44. Let S be a protoalgebraic logic and A an algebra. An S-filter
F ∈ FiSA is a Frege filter of A if and only if ΛAS (F ) = ΩA(F ).

An interesting property enjoyed by Frege filters is the following:

Proposition 2.45. If F is a Frege filter of A, then F = a/ΛAS (F ), for any a ∈ F .

Proof. Let F ∈ FiΛSA and a ∈ F . Let b ∈ a/ΛAS (F ). Then, 〈a, b〉 ∈ ΛAS (F ) ⊆
ΩA(F ), by Lemma 2.43. It follows by compatibility that b ∈ F . Hence, a/ΛAS (F ) ⊆
F . The converse inclusion holds in general. Indeed, given any other element c ∈ F ,
we have FgAS (F, a) = F = FgAS (F, c), and therefore 〈a, c〉 ∈ ΛAS (F ), i.e., a/ΛAS (F ) =
c/ΛAS (F ). Now, since trivially c ∈ c/ΛAS (F ) = a/ΛAS (F ), it follows that F ⊆
a/ΛAS (F ). �

Another interesting fact is that every Frege filter is a Leibniz filter. Recall
that given an S-compatibility operator ∇, every ∇-filter is a Leibniz filter (Lemma
1.22.3). But the Frege operator is not, in general, an S-compatibility operator.
Nevertheless,

Lemma 2.46. Every Frege filter is a Leibniz filter.

Proof. Let A arbitrary. Let F ∈ FiΛSA. Then, ΛAS (F ) ⊆ ΩA(F ). Since
ΩA(F ) ⊆ ΩA(F ∗), it follows that ΛAS (F ) ⊆ ΩA(F ∗), i.e., F ∗ ∈ JF KΛ, and hence
by assumption F = FΛ ⊆ F ∗. �

A final remark about FΛ, and perhaps an unexpected one, is that it always
contains F . This contrasts with F Su and F ∗, which are always contained in F .

Lemma 2.47. For every A and every F ∈ FiSA, F ⊆ FΛ.

Proof. It holds, ΛAS (F ) ⊆ ΩA(FΛ), because FΛ ∈ JF KΛ. Since S has theorems,⋂
FiSA 6= ∅. Let b ∈

⋂
FiSA. Let a ∈ F . Then, FgAS (F, b) = F = FgAS (F, a). So,

〈b, a〉 ∈ ΛAS (F ) ⊆ ΩA(FΛ). Since b ∈ FΛ, it follows by compatibility that a ∈ FΛ.
Thus, F ⊆ FΛ. �

In general, the Frege operator fails to be a congruential S-operator, as well as
an S-compatibility operator. Clearly, given the definitions involved, a logic S is
Fregean if and only if ΛFmS is a congruential S-operator on Fm; and it is fully
Fregean if and only if, for every A, ΛAS is a congruential S-operator on A. More
interestingly though,

Proposition 2.48. A logic S is Fregean if and only if ΛFmS is an S-compatibility
operator on Fm; and it is fully Fregean if and only if, for every A, ΛAS is an
S-compatibility operator on A.
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Proof. Suppose S is Fregean. Clearly then, ΛFmS (T ) = ∼
ΩFm
S (T ) ⊆ ΩFm(T ),

for every T ∈ T hS. Conversely, suppose ΛFmS (T ) ⊆ ΩFm(T ), for every T ∈ T hS.
Since ΛFmS is order preserving, we have

ΛFmS (T ) =
⋂
T ′⊇T

ΛFmS (T ′) ⊆
⋂
T ′⊇T

ΩFm(T ′) = ∼
ΩFm
S (T ),

for every T ∈ T hS. The converse inclusion always holds. We conclude that ΛFmS =
∼
ΩFm
S . Thus, S is Fregean. The second statement is proved similarly, for arbitrary

A. �

Rephrasing Proposition 2.48: A logic S is Fregean if and only if ΛFmS (T ) ⊆
ΩFm(T ), for every T ∈ T hS. One cannot avoid to compare this with the original
definition of protoalgebraic logics [10, Definition 2.1]: A logic is protoalgebraic if
and only if ΩFm(T ) ⊆ ΛFmS (T ), for every T ∈ T hS. But unlike the protoalgebraic
scenario (recall, a logic is protoalgebraic if and only if ΩA(F ) ⊆ ΛAS (F ), for every
F ∈ FiSA and every A), the inclusion ΛFmS (T ) ⊆ ΩFm(T ) does not lift from the
formula algebra to arbitrary algebras. Indeed, again by Proposition 2.48, a logic is
fully Fregean if and only if ΛAS (F ) ⊆ ΩA(F ), for every A and every F ∈ FiSA;
and it is well-known that there are Fregean logics which are not fully Fregean (as
first shown in [6]).

Given Lemma 2.43, we get as immediate corollaries:

Corollary 2.49. A logic S is Fregean if and only if every S-theory is a Frege
theory.

Corollary 2.50. A logic S is fully Fregean if and only if, for every A, every S-filter
of A is a Frege filter of A.

We have studied so far the consequences of imposing the Frege operator to be
a congruential S-operator, or an S-compatibility operator. We are left to study
coherence for this operator. This is what we do next.

Theorem 2.51. The Frege operator ΛS is a coherent family of S-operators.

Proof. Let A,B two algebras and G ∈ FiSB. Let h : A → B surjective and
ΛS -compatible with h−1G, that is, such that Kerh ⊆ ΛAS (h−1G). Having in mind
Lemma 1.27, it follows by Czelakowski’s Correspondence Theorem for deductive
homomorphisms [24, Proposition 2.3] that h induces an order isomorphism between
(FiSA)h−1G and (FiSB)G, whose inverse is given by h−1. As a consequence, for
every F ∈ (FiSA)h−1G, it holds that hF ∈ (FiSB)G and h−1hF = F .

First, notice that for every c ∈ A,

FgBS (G, hc) = FgBS (hh−1G, hc)
= FgBS

(
hFgAS (h−1G, c)

)
= hFgAS (h−1G, c),

using the fact that h is surjective, Lemma 0.25 (taking X = {h−1G, c}), and having
in mind that FgAS (h−1G, c) ∈ (FiSA)h−1G, so hFgAS (h−1G, c) ∈ (FiSB)G.
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Now, for every a, b ∈ A,

〈a, b〉 ∈ h−1ΛBS (G) ⇔ 〈ha, hb〉 ∈ ΛBS (G)
⇔ FgBS (G, ha) = FgBS (G, hb)
⇔ hFgAS (h−1G, a) = hFgAS (h−1G, b)
⇔ FgAS (h−1G, a) = FgAS (h−1G, b)
⇔ 〈a, b〉 ∈ ΛAS (h−1G),

having in mind that FgAS (h−1G, a) ∈ (FiSA)h−1G, and hence h−1hFgAS (h−1G, a) =
FgAS (h−1G, a); and similarly for FgAS (h−1G, b).

Thus,
h−1ΛBS (G) = ΛAS (h−1G),

as desired. �

Theorem 2.51 definitely stands in favor of the new notion of coherence. For
it remarkably captures the three main operators in AAL. Recall, we knew already
that the Leibniz and Suszko operators were coherent families of S-operators. The
former, because it commutes with inverse images by surjective homomorphisms,
and the later because coherence is preserved under relativization (Proposition 1.32).
Actually, given this fact, one could try to find a new coherent S-operator ∼ΛS . But
bear in mind that the Frege operator is order preserving, and therefore ΛS = ∼

ΛS ,
by Lemma 1.4.

Since coherence is a weaker property of commutativity with inverse images
by surjective homomorphisms, it is natural to ask: when does the Frege operator
commute with inverse images by surjective homomorphisms? Surprisingly enough:

Theorem 2.52. A logic S is protoalgebraic if and only if the Frege operator ΛS
commutes with inverse images by surjective homomorphisms.

Proof. ⇒: Let A,B algebras, h ∈ Hom(A,B) surjective, G ∈ FiSB and a, b ∈
A. Notice that h−1G ∈ FiSA. It holds,

〈a, b〉 ∈ ΛAS (h−1G) iff FgAS (h−1G, a) = FgAS (h−1G, b)
iff h−1FgBS (G, ha) = h−1FgBS (G, hb)
iff FgBS (G, ha) = FgBS (G, hb)
iff 〈ha, hb〉 ∈ ΛBS (G)
iff 〈a, b〉 ∈ h−1ΛBS (G),

where we have used [34, Corollary 6.21.2] and the fact that h is surjective.
⇐: Let A,B algebras, h ∈ Hom(A,B) surjective and G ∈ FiSB. Since ∼

ΩB
S (G) ⊆

ΛBS (G), it follows that

h−1 ∼
ΩB
S (G) ⊆ h−1ΛBS (G) = ΛAS (h−1G).

Now, h−1 ∼
ΩB
S (G) ∈ Con(A) and ∼

ΩA
S (h−1G) is the largest congruence on A below

ΛAS (h−1G). Hence,
h−1 ∼

ΩB
S (G) ⊆ ∼

ΩA
S (h−1G).

The converse inclusion holds in general, by 0.31.3. We conclude that the Suszko
operator commutes with inverse images by surjective homomorphisms. It follows
by Theorem 1.24 that Ω = ∼

ΩS , and hence S is protoalgebraic. �
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Do notice that the same condition imposed upon the Suszko operator also
characterizes protoalgebraic logics, and which will be formally stated in Theorem
3.12.

Since there exist protoalgebraic logics which are not Fregean (any protoalge-
braic logic which is not selfextensional witnesses this fact; for instance, Lukasiewicz’s
infinite valued logic), a consequence of Theorem 2.52 is that commuting with inverse
images by surjective homomorphisms does not characterize the Leibniz operator
among the S-operators. Although it does so among the S-compatibility operators,
as we have seen in Theorem 1.24.

Although the Frege operator is not, in general, an S-compatibility operator,
the defining condition of coherence for this S-operator also holds with direct images
rather than with inverse images by surjective homomorphisms. Recall that this is
always the case for an S-compatibility operator ∇, as we saw in Lemma 1.29. But
unlike the S-compatibility operators, here it does not characterize coherence of the
Frege operator.

Lemma 2.53. For every surjective h : A → B and every F ∈ FiSA, if h is
ΛS-compatible with F , then hΛAS (F ) = ΛBS

(
hF
)
.

Proof. Let F ∈ FiSA and h : A → B be surjective and ΛS -compatible with F .
Since Kerh ⊆ ΛAS (F ) and ∼

ΩA
S (F ) is the largest congruence below ΛAS (F ), it follows

that Kerh ⊆ ∼
ΩA
S (F ) ⊆ ΩA(F ). Hence, F = h−1hF and hF ∈ FiSB. It follows

by coherence of the Frege operator that ΛAS (F ) = ΛAS
(
h−1hF

)
= h−1ΛBS (hF ),

and hence that hΛAS (F ) = ΛBS (hF ) because h is surjective. �

We are now able to prove a correspondence theorem for the Frege operator.

Theorem 2.54 (Correspondence Theorem for the Frege operator). For every sur-
jective h : A → B and every F ∈ FiSA, if h is ΛS-compatible with F , then h

induces an order isomorphism between JF KΛ and JhF KΛ, whose inverse is given by
h−1.

Proof. From the assumption that h is ΛS -compatible with F , that is Kerh ⊆
ΛAS (F ), and the fact that ∼

ΩA
S (F ) is the largest congruence below ΛAS (F ), it follows

that Kerh ⊆ ∼
ΩA
S (F ) ⊆ ΩA(F ). Therefore, h−1hF = F , and that hF ∈ FiSB.

Take first any F ′ ∈ JF KΛ. Then Kerh ⊆ ΛAS (F ) ⊆ ΩA(F ′) and hence
h−1hF ′ = F ′ and hF ′ ∈ FiSB. Moreover, since h is both Ω-compatible with F ′
and ΛS -compatible with F and both Ω and ΛS are coherent, we can apply Lem-
mas 1.29 and 2.53 and obtain that ΛBS (hF ) = hΛAS (F ) ⊆ hΩA(F ′) = ΩB(hF ′).
This tells us that hF ′ ∈ JhF KΛ.

Now take any G ∈ JhF KΛ, i.e., such that ΛBS (hF ) ⊆ ΩB(G). We know that
h−1G ∈ FiSA and that hh−1G = G. Observe that h is ΛS -compatible with
h−1hF , since this is F . Then, by coherence, we have

ΛAS (F ) = ΛAS (h−1hF ) = h−1ΛBS (hF ) ⊆ h−1ΩB(G) = ΩA(h−1G).

This shows that h−1G ∈ JF KΛ.
Thus, we have established that h induces a bijection between JF KΛ and JhF KΛ,

whose inverse is given by h−1. Since both maps are obviously order preserving, they
are in fact order isomorphisms. �

Notice that, for the first time so far, we have stated a correspondence theorem
which is not an instance of the General Correspondence Theorem 1.38.
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Two interesting corollaries of Theorem 2.51 are the following (known) charac-
terizations of full selfextensionality and full Fregeanity.

Corollary 2.55. Let S be a logic. The following conditions are equivalent:
(i) For every A ∈ Alg(S), ΛAS (

⋂
FiSA) = idA;

(ii) For every A, ΛAS (
⋂
FiSA) = ∼

ΩA
S (
⋂
FiSA), i.e, S is fully selfextensional.

Proof. (ii)⇒ (i): Just notice that, for every A ∈ Alg(S), ∼
ΩA
S (
⋂
FiSA) = idA.

(i) ⇒ (ii): Let A arbitrary. Fix B := A/
∼
ΩA
S (
⋂
FiSA). Consider the canonical

map π : A → B. Notice that Kerπ is compatible with
⋂
FiSA. Therefore,

π
⋂
FiSA ∈ FiSB and π−1π

⋂
FiSA =

⋂
FiSA. Also, since

⋂
FiSA is a Suszko

filter of A, it follows by Proposition 2.26 that π
⋂
FiSA is the least S-filter of B,

that is, π
⋂
FiSA =

⋂
FiSB. Moreover, Kerπ = ∼

ΩA
S (
⋂
FiSA) ⊆ ΛAS (

⋂
FiSA).

So, π is a surjective homomorpism ΛS -compatible with π−1π
⋂
FiSA. Finally,

since B ∈ Alg(S), it follows by hypothesis idB = ΛBS (
⋂
FiSB) = ΛBS (π

⋂
FiSA).

Therefore,
∼
ΩA
S (
⋂
FiSA) = Kerπ = π−1idB = π−1ΛBS (π

⋂
FiSA)

= ΛAS (π−1π
⋂
FiSA) = ΛAS (

⋂
FiSA),

using coherence of the Frege operator. �

Corollary 2.56. Let S be a logic. The following conditions are equivalent:
(i) For every A ∈ Alg(S) and every F ∈ FiSA, ΛAS (F ) = ∼

ΩA
S (F );

(ii) For every A and every F ∈ FiSA, ΛAS (F ) = ∼
ΩA
S (F ), i.e, S is fully Fregean.

Proof. (ii)⇒ (i): Trivial.
(i) ⇒ (ii): Let A arbitrary. Fix B := A/

∼
ΩA
S (F ). Consider the canonical map

π : A → B. Notice that Kerπ is compatible with F . Therefore, πF ∈ FiSB
and π−1πF = F . Moreover, Kerπ = ∼

ΩA
S (F ) ⊆ ΛAS (F ). So, π is a surjective

homomorpism ΛS -compatible with π−1πF . Finally, since B ∈ Alg(S), it follows
by hypothesis that ΛBS (πF ) = ∼

ΩB
S (πF ) = idB. Therefore,

∼
ΩA
S (F ) = Kerπ = π−1idB = π−1ΛBS (πF ) = ΛAS (π−1πF ) = ΛAS (F ),

using coherence of the Frege operator. �

We finish our study about the Frege operator by addressing the injectivity
of this S-operator. Given the logical relevance the property has for the Suszko
operator, it seems quite natural to consider it for the Frege operator as well.

Proposition 2.57. Let S be a logic. The following conditions are equivalent:
(i) S has theorems;
(ii) There exists τ (x) ⊆ EqL such that for every A and every F ∈ FiSA,

F =
{
a ∈ A : τA(a) ⊆ ΛAS (F )

}
. (18)

(iii) There exists τ (x) ⊆ EqL such that for every A ∈ Alg(S) and every F ∈
FiSA,

F =
{
a ∈ A : τA(a) ⊆ ΛAS (F )

}
.

If (any) of these conditions hold, then τ (x) can be taken to be τ (x) = {x ≈ ϕ(x)},
where ϕ is a theorem of S with at most the variable x.
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Proof. (i)⇒ (ii): Suppose S has theorems. Then, it has a theorem with at most
the variable x, say ϕ(x) ∈ ThmS . Let A arbitrary, F ∈ FiSA and a ∈ A. Consider
τ (x) := {x ≈ ϕ(x)}. It holds,

τA(a) ⊆ ΛAS (F ) ⇔ 〈a, ϕA(a)〉 ∈ ΛAS (F )
⇔ FgAS (F, a) = FgAS (F,ϕA(a))
⇔ FgAS (F, a) = F

⇔ a ∈ F,

noticing that ϕA(a) ∈ F and F ∈ FiSA.
(ii)⇒ (iii): Trivial.
(iii) ⇒ (i): Let τ (x) ⊆ EqL as given by the hypothesis. Suppose, towards an
absurd, that S has no theorems. Then, ∅ ∈ FiSA, for every A. Consider a trivial
algebra A with universe A = {a}. Notice then that τA(a) = {〈a, a〉}. Moreover,
〈a, a〉 ∈ ΛAS (∅) ∈ EqrA. It follows by hypothesis that a ∈ ∅, which is absurd.
The last statement is justified by the proof of (i)⇒ (ii). �

Notice that taking τ (x) = ∅ above forces S to be the inconsistent logic, which
trivially has theorems (every formula is a theorem). Proposition 2.57 and Proposi-
tion 2.48 allows us to give an easy proof of a very recent result concerning Fregean
logics [4, Corollary 12]:

Corollary 2.58. If S is Fregean with theorems, then S is assertional.

Proof. Since S has theorems, it has a theorem with at most the variable x, say
>(x) ∈ ThmS . Fix τ (x) := {x ≈ >(x)}. Let T ∈ T hS arbitrary. It follows by (the
last statement of) Proposition 2.57 that T = {ϕ ∈ FmL : τFm(ϕ) ⊆ ΛFmS (T )}.
Since ΛFmS (T ) ⊆ ΩFm(T ), by Proposition 2.48, it follows that T ⊆ {ϕ ∈ FmL :
τFm(ϕ) ⊆ ΩFm(T )}. Conversely, let ϕ ∈ FmL such that τFm(ϕ) ⊆ ΩFm(T ).
That is, 〈ϕ,>(ϕ)〉 ∈ ΩFm(T ). Since >(ϕ) ∈ T , it follows by compatibility that
ϕ ∈ T . Hence, truth is equationally definable in LMod∗(S) with a set of defining
equations τ (x) = {x ≈ >(x)}. Together with Theorem 0.40, it follows by definition
that S is assertional. �

Condition (18) ressembles condition (13) from Proposition 0.43, which is stated
with the Leibniz operator instead of the Frege operator. And the analogy does not
end here. As we know, the property of the Leibniz operator being completely
order reflecting characterizes truth-equationality of the underlying logic. Similarly,
the same property imposed on the Frege operator characterizes the logic having
theorems. Actually, injectivity of the Frege operator suffices to force the existence
of theorems; however, injectivity of the Leibniz operator does not suffice to establish
truth-equationality, as Raftery shows in [55, Example 2].

Corollary 2.59. Let S be a logic. The following conditions are equivalent:
(i) S has theorems;
(ii) The Frege operator is injective;
(iii) The Frege operator is completely order reflecting.

Proof. (i) ⇒ (iii): Let A arbitrary and {Fi : i ∈ I} ∪ {G} ⊆ FiSA such that⋂
i∈I Λ

A
S (Fi) ⊆ ΛAS (G). Notice that

⋂
i∈I Fi ∈ FiSA. Under our hypothesis, let
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τ (x) ⊆ EqL be as given by Proposition 2.57. Then,

τA
(⋂
i∈I

Fi

)
⊆ ΛAS

(⋂
i∈I

Fi

)
⊆
⋂
i∈I
ΛAS (Fi) ⊆ ΛAS (G).

by Proposition 2.57 (notice that condition (18) implies τA(F ) ⊆ ΛAS (F ), for any
F ∈ FiSA), monotonicity of the Frege operator, and the assumption, respectively.
So,

⋂
i∈I Fi ⊆ G, again by Proposition 2.57.

(iii)⇒ (ii): Trivial.
(ii)⇒ (i): Suppose, towards an absurd, that S has no theorems. Then, ∅ ∈ FiSA,
for every A. Consider a trivial algebra A with universe A = {a}. Notice that
〈a, a〉 ∈ ΛAS (∅) and 〈a, a〉 ∈ ΛAS (FgAS (a)). So necessarily, ΛAS (∅) = ΛAS (FgAS (a)).
It follows by hypothesis that ∅ = FgAS (a), which is absurd, since a ∈ FgAS (a). Thus,
S must have theorems. �

An interesting corollary is that the injectivity of the three main (families of)
S-operators is closely related.

Corollary 2.60. If the family ∼
ΩS is injective, then the family Ω is injective; and,

if the family Ω is injective, then the family ΛS is injective.

Proof. Injectivity of the Suszko operator on arbitrary algebras is equivalent to
truth-equationality, by Theorem 3.11, which under Definition 0.38 clearly implies
injectivity of the Leibniz operator on arbitrary algebras. Injectivity of the Leibniz
operator on any algebra forces the existence of theorems, since ΩA(∅) = ΩA(A).
Finally, the existence of theorems is equivalent to injectivity of the Frege operator
on arbitrary algebras, by Corollary 2.59. �

Consequently, given Raftery’s [55, Theorem 28], if a logic is truth-equational,
then the Suszko, Leibniz and Frege operators are all injective on arbitrary algebras.



CHAPTER 3

The Leibniz hierarchy revisited

In this chapter we give two (partial) presentations of the Leibniz hierarchy, one
in terms of order isomorphisms between the set of S-filters and the set of Alg(S)-
congruences on arbitrary algebras (Theorem 3.10), and another in terms of the
Suszko operator (Theorems 3.12 and 3.13). In both cases, the new characterizations
extend, or complete, the already existing ones to larger classes of logics within the
Leibniz hierarchy.

3.1. An isomorphism theorem for protoalgebraic logics

In the previous chapter we have looked at the three main S-operators sep-
arately. We have considered the notions of ∇-class, ∇-filter and coherence for
∇ = Ω,

∼
ΩS ,ΛS and obtained a wealth of characterizations, several known and a

few new, of the main classes of logics within the Leibniz hierarchy, as well as a
plethora of correspondence theorems resulting from the notion of coherence and
the General Correspondence Theorem 1.38. All this was done without using the
notions involved for the different S-operators simultaneasly. It turns out that the
interplay of these notions also gives raise to some new results in AAL. Namely,
a new isomorphism theorem for protoalgebraic logics (Theorem 3.8) in the same
spirit of the famous one for algebraizable logics ([11, Theorem 3.7]; see also [48,
Theorem 5.2] for the non-finitary case; and [39, Corollary 3.14] for a presentation
which resembles more ours) and for weakly algebraizable logics ([25, Theorem 4.8]).
As a corollary, another isomorphism theorem characterizing equivalential logics is
obtained (Corollary 3.9).

Our starting point is a (known) result that states an isomorphism theorem for
protoalgebraic logics, but unlike the previous mentioned ones, it does not charac-
terize this class of logics.

Proposition 3.1 ([37, Theorem 3]). If S is protoalgebraic, then for every A,
ΩA : Fi∗SA→ ConAlg∗(S)A is an order isomorphism.

The converse of Proposition 3.1 is false, as we will see in Chapter 7. Under
truth-equationality however, it does hold (Proposition 3.5). In order to see it, we
first prove some auxiliary results.

Proposition 3.2. Let S be a logic. The following conditions are equivalent:
(i) For every A, ΩA : Fi∗S(A)→ ConAlg∗(S)(A) is an order isomorphism;
(ii) For every A ∈ Alg(S), ΩA : Fi∗S(A) → ConAlg∗(S)(A) is an order isomor-

phism.

Proof. We prove the non-trivial implication only. Let A be an arbitrary algebra.
Let F,G ∈ Fi∗S(A) such that F ⊆ G. Consider the canonical map π : A →
A/

∼
ΩA
S (F ). Fix B := A/

∼
ΩA
S (F ). Since Kerπ = ∼

ΩA
S (F ) ⊆ ∼

ΩA
S (G) ⊆ ΩA(G) and

69
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Kerπ = ∼
ΩA
S (F ) ⊆ ΩA(F ), it follows by Corollary 2.13 that πG ∈ Fi∗S(B) and

πF ∈ Fi∗S(B). But B ∈ Alg(S). So, it follows by hypothesis that ΩB is monotone
over Fi∗S(B). Therefore, since πF ⊆ πG, it follows

ΩB(πF ) ⊆ ΩB(πG).

Since the Leibniz operator commutes with inverse images by surjective homomor-
phisms, and Kerπ is compatible with both F and G, it follows that

ΩA(F ) = ΩA(π−1πF ) = π−1ΩB(πF ) ⊆ π−1ΩB(πG) = ΩA(π−1πG) = ΩA(G).

Hence, we have established monotonicity. The injectivity is trivial, since the Leibniz
operator is always injective on the Leibniz filters, by Proposition 1.16. Finally, we
prove surjectivity. Let θ ∈ ConAlg∗(S)(A). So, θ = ΩA(F ), for some F ∈ FiSA.
Consider this time the canonical map π : A → A/ΩA(F ). Fix B := A/ΩA(F ).
Since Kerπ = ΩA(F ) and π is surjective, it holds πF ∈ FiSB. But B ∈ Alg∗(S) ⊆
Alg(S). So, it follows by surjectivity of ΩB on Fi∗SB that

ΩB(πF ) = ΩB(G),

for some G ∈ Fi∗S(B). Since π is surjective, we have G = ππ−1G. Moreover,
π−1G ∈ FiSA. Now, since the Leibniz operator commutes with inverse images by
surjective homomorphisms, it holds

ΩA(F ) = ΩA(π−1πF ) = π−1ΩB(πF ) = π−1ΩB(G) = ΩA(π−1G).

We are left to see that π−1G is a Leibniz filter of A. But notice that, as a con-
sequence of the above expression, Kerπ = ΩA(F ) is compatible with π−1G. So,
since ππ−1G = G ∈ Fi∗S(B), it follows by Corollary 2.13 that π−1G ∈ Fi∗S(A).
Thus,

θ = ΩA(F ) = ΩA(π−1G),

with π−1G ∈ Fi∗S(A). �

Lemma 3.3. If for every A ∈ Alg(S), ΩA : Fi∗SA → ConAlg∗(S)A is an order
isomorphism, then Alg(S) = Alg∗(S).

Proof. LetA ∈ Alg(S). Consider the S-filter F0 :=
⋂
FiSA ∈ FiSA. It is clearly

the smallest Leibniz filter. Since we are assuming that ΩA is order preserving
on Leibniz filters, it follows that ΩA(F0) ⊆ ΩA(F ) for every F ∈ Fi∗SA. So,
JF K∗ ⊆ JF0K∗, for every F ∈ Fi∗SA. Now, let G ∈ FiSA be arbitrary. Since
ΩA(G) ∈ ConAlg∗(S)A, it follows by the assumption (surjectivity) that there exists
some F ∈ Fi∗SA such that ΩA(G) = ΩA(F ); so, G ∈ JGK∗ = JF K∗ ⊆ JF0K∗. Thus,
JF0K∗ = FiSA. It follows by Proposition 2.16 that A/ ∼ΩA(FiSA) ∈ Alg∗(S).
But since A ∈ Alg(S), ∼

ΩA(FiSA) = idA and A ∼= A/
∼
ΩA(FiSA). Therefore,

A ∈ Alg∗(S). This shows that Alg(S) ⊆ Alg∗(S). The converse inclusion always
holds. �

It is well-known that, if S is protoalgebraic, then the classes Alg∗(S) and Alg(S)
coincide (see the remarks after Proposition 2.5). We are now able to see that, under
truth-equationality, the converse also holds.

Proposition 3.4. Let S be a truth-equational logic. If Alg∗(S) = Alg(S), then S
is protoalgebraic.
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Proof. If Alg∗(S) = Alg(S), then by Proposition 2.17 every full g-model of S is
of the form JGK∗, for some G ∈ FiSA and some algebra A. In particular, so are
Suszko classes. Take any F ∈ FiSA, for an arbitrary A. Then, JF KSu = JGK∗, for
some G ∈ FiSA. Hence, F Su = G∗. But, since S is truth-equational by hypothesis,
by Theorem 2.30 every S-filter of A is a Suszko filter, and in general every Suszko
filter is a Leibniz filter, by Lemma 2.21.2. Therefore, F = F Su = G∗ = G. Thus,
JF KSu = JF K∗. Since this has been proved for all F ∈ FiSA and all A, this implies
protoalgebraicity by Proposition 2.41. �

Given Lemma 3.3 and Proposition 3.4, it is clear that the converse of Proposi-
tion 3.1 does indeed hold under truth-equationality, as we had previously claimed.

Proposition 3.5. Let S be a truth-equational logic. If for every A, ΩA : Fi∗SA→
ConAlg∗(S)A is an order isomorphism, then S is protoalgebraic.

Another consequence of Proposition 3.4 is the following:

Corollary 3.6. A logic S is weakly algebraizable if and only if it is truth-equational
and Alg∗(S) = Alg(S).

Going back to Proposition 3.1, as it turns out, it still holds if we replace the
set of Leibniz filters by the set of Suszko filters; and this time the converse also
holds! Our next goal is to prove this refinement of Proposition 3.1. First, observe
that the proof of Lemma 3.3 works, mutatis mutandis, for Suszko filters, since⋂
FiSA ∈ FiSu

S A, for every A. Therefore:

Lemma 3.7. If for every A ∈ Alg(S), ΩA : FiSu
S A → ConAlg∗(S)A is an order

isomorphism, then Alg(S) = Alg∗(S).

However, the proof of Proposition 3.2 does not. For, when establishing surjec-
tiveness, one cannot apply Corollary 2.35 to the canonical map π : A→ A/ΩA(F ),
as it is not ∼

ΩS -compatible with F . Anyway, with Lemma 3.7 at hand, we are now
able to prove the refinement of Proposition 3.1 we are looking for.

Theorem 3.8. A logic S is protoalgebraic if and only if for everyA, ΩA : FiSu
S A→

ConAlg∗(S)A is an order isomorphism.

Proof. The direct implication is just a rephrasing of Proposition 3.1, because
under protoalgebraicity the Leibniz filters and the Suszko filters coincide. Now
assume the stated condition. We will prove separately that ∼

ΩA
S (F ) = ΩA(F Su)

and that ΩA(F ) = ΩA(F Su), for every F ∈ FiSA; this will imply that the Leib-
niz and the Suszko operators coincide, which is equivalent to protoalgebraicity
by Proposition 2.5. So, let F ∈ FiSA. To prove the first equality note that
since ∼

ΩA
S (F ) ∈ ConAlg(S)A, it follows by Lemma 3.7 and the surjectivity of ΩA

that there exists G ∈ FiSu
S A such that ∼

ΩA
S (F ) = ΩA(G). This implies that

JF KSu = JGK∗, and hence that F Su = G∗ = G, because every Suszko filter is
a Leibniz filter. Thus, ∼

ΩA
S (F ) = ΩA(F Su). As to the second equality, since

ΩA(F ) ∈ ConAlg∗(S)A, it follows from the assumption that there exists H ∈ FiSu
S A

such that ΩA(F ) = ΩA(H). Then, JF K∗ = JHK∗, and hence F ∗ = H∗ = H, again
because every Suszko filter is a Leibniz filter. Thus, ΩA(F ) = ΩA(F ∗). More-
over, F ∗ = H is a Suszko filter. That is, (F ∗)Su = F ∗. Now, since F ∗ ⊆ F , it
holds JF KSu ⊆ JF ∗KSu, and therefore (F ∗)Su ⊆ F Su. So, F ∗ ⊆ F Su. The converse
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inclusion always holds, by Lemma 2.21.1. Thus, F ∗ = F Su, which implies that
ΩA(F ) = ΩA(F Su). �

Here arrived, and taking Definition 0.38 into account, we readily obtain an
isomorphism theorem characterizing equivalential logics.

Corollary 3.9. A logic S is equivalential if and only if the Leibniz operator com-
mutes with inverse images by homomorphisms and for every A, ΩA : FiSu

S A →
ConAlg∗(S)A is an order isomorphism.

It is not difficult to see that Theorem 3.8 and Corollary 3.8 provide alternative
proofs for the known isomorphism theorems for algebraizable and weakly algebraiz-
able logics previously mentioned. Just notice that, bringing truth-equationality into
the picture, every S-filter is a Suszko filter, by Theorem 2.30. We state them alto-
gether for the sake of completeness:

Theorem 3.10. Let S be a logic.
1. S is protoalgebraic if and only if for every A, ΩA : FiSu

S A→ ConAlg∗(S)A is
an order isomorphism.

2. S is equivalential if and only if the Leibniz operator commutes with inverse
images by homomorphisms and for every A, the operator ΩA restricts to an
order isomorphism between FiSu

S A and ConAlg∗(S)A.
3. S is weakly algebraizable if and only for every A, ΩA : FiSA→ ConAlg∗(S)A

is an order isomorphism.
4. S is algebraizable if and only if the Leibniz operator commutes with inverse

images by homomorphisms and for every A, the operator ΩA : FiSA →
ConAlg∗(S)A is an order isomorphism.

Proof. Theorem 3.8, Corollary 3.9, [39, Corollary 3.14] and [11, Theorem 3.7]
(for S finitary) or [48, Theorem 5.2] (for S arbitrary), respectively. �

3.2. The Leibniz hierarchy via the Suszko operator

This section is devoted to characterize several classes of logics within the Leib-
niz hierarchy in terms of the Suszko operator. Our starting point is the only
known such characterization (to our knowledge), namely Raftery’s characteriza-
tion of truth-equational logics [55, Theorem 28] in terms of global injectivity of
the Suszko operator. We take the chance to prove it directly within our framework
and furthermore to show that one only needs to demand injectivity of the Suszko
operator over the class of S-algebras.

Theorem 3.11 ([55, Theorem 28]). Let S be a logic. The following conditions are
equivalent:
(i) S is truth-equational;
(ii) The Suszko operator ∼

ΩA
S is injective, for every A;

(iii) The Suszko operator ∼
ΩA
S is injective, for every A ∈ Alg(S).

Proof. (i) ⇒ (ii): By Proposition 1.16, for every A, the Suszko operator ∼
ΩA
S

is injective on the Suszko filters FiSu
S A. Now, if S is truth-equational, then by

Theorem 2.30 every S-filter of A is a Suszko filter of A. Thus, for every A, the
Suszko operator ∼

ΩA
S is injective.

(ii)⇒ (iii): Trivial.
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(iii)⇒ (i): Let A arbitrary and F ∈ FiSA. Fix F0 :=
⋂
FiS

(
A/

∼
ΩA
S (F )

)
. Notice

that A/ ∼ΩA
S (F ) ∈ AlgSu(S) = Alg(S). Moreover, by Lemma 0.24.3, F/ ∼ΩA

S (F ) ∈
FiS

(
A/

∼
ΩA
S (F )

)
. Necessarily then, F0 ⊆ F/

∼
ΩA
S (F ). On the other hand, since

the Suszko operator is always order preserving, and using Lemma 1.45, we have
∼
Ω
A/

∼
ΩAS (F )

S (F0) ⊆ ∼
Ω
A/

∼
ΩAS (F )

S
(
F/

∼
ΩA
S (F )

)
= idA/ ∼

ΩAS (F ). It follows by hypothesis
that F/ ∼ΩA

S (F ) = F0 =
⋂
FiS

(
A/

∼
ΩA
S (F )

)
. By Proposition 2.26, it follows that F

is a Suszko filter of A. Since both A and F were chosen arbitrarily, every S-filter
is a Suszko filter. It follows by Theorem 2.30 that S is truth-equational. �

Next, we know by Theorem 1.24 that the Leibniz operator is the only S-
compatibility operator commuting with inverse images by surjective homomor-
phisms. Therefore:

Theorem 3.12. A logic S is protoalgebraic if and only if the Suszko operator
commutes with inverse images by surjective homomorphisms.

Proof. It follows immediately by Theorem 1.24, having in mind that the Leibniz
operator is order preserving if and only if Ω = ∼

ΩS , by Lemma 1.4. �

With Theorems 3.11 and 3.12 at hand, we readily get characterizations for
other classes of logics within the Leibniz hierarchy.

Theorem 3.13. Let S be a logic.
1. S is equivalential if and only if the Suszko operator commutes with inverse

images by homomorphisms.
2. S is weakly algebraizable if and only if the Suszko operator is injective and

commutes with inverse images by surjective homomorphisms.
3. S is algebraizable if and only if the Suszko operator is injective and commutes

with inverse images by homomorphisms.
4. S is finitely algebraizable if and only if the Suszko operator is injective, con-

tinuous, and commutes with inverse images by homomorphisms.

Proof. 1. Suppose S is equivalential. Then, by Definition 0.38, S is protoalge-
braic and the Leibniz operator commutes with inverse images by homomorphisms.
But protoalgebraicity implies the coincidence of the Suszko and Leibniz opera-
tors. Thus the Suszko operator commutes with inverse images by homomorphisms.
Conversely, suppose that the Suszko operator commutes with inverse images by
homomorphisms. In particular, it commutes with inverse images by surjective ho-
momorphisms. So, by Theorem 3.12, S is protoalgebraic. Consequently, the Leibniz
and Suszko operators coincide, and therefore the Leibniz operator commutes with
inverse images by homomorphisms. Thus, S is equivalential.
2. It follows by Theorems 3.11 and 3.12.
3. It follows by 1 and Theorem 3.11.
4. Suppose S is finitely algebraizable. Then, by Definition 0.38, S is finitely equiv-
alential and truth-equational. In particular, it is protoalgebraic, and therefore the
Leibniz and Suszko operators coincide. Hence, under our hypothesis, the Suszko
operator is continuous. Moreover, by 1, the Suszko operator commutes with inverse
images by homomorphisms. Finally, it follows by Theorem 3.11 that the Suszko
operator is injective. Conversely, suppose the Suszko operator is injective, con-
tinuous, and commutes with inverse images by homomorphisms. In particular, it
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commutes with inverse images by surjective homomorphisms. So, by Theorem 3.12,
S is protoalgebraic. Consequently, the Leibniz and Suszko operators coincide, and
therefore the Leibniz operator is continuous and injective. Given Definition 0.38,
S is finitely algebraizable. �

Do notice that the analogous characterizations to those of 1 and 3 stated for
the Leibniz operator require moreover monotonicity; see [39, Theorems 3.13.2 and
3.13.5].

Next, we show that Theorem 3.8 can also be stated with the Suszko operator.
Let us start by applying Proposition 1.16 taking ∇ = ∼

ΩS :

Proposition 3.14. For every A, ∼
ΩA
S : FiSu

S A → ConAlg(S)A is an order embed-
ding.

Proof. The Suszko operator ∼
ΩA
S is order preserving on FiSA, hence so is its

restriction to FiSu
S A. Moreover, by Proposition 1.16, the Suszko operator ∼

ΩA
S

is order reflecting on FiSu
S A. Finally, ∼

ΩA
S is into ConAlgSu(S)A and AlgSu(S) =

Alg(S), by Lemma 0.36.4. �

It is therefore natural to ask under what assumptions does the operator
∼
ΩA
S : FiSu

S A → ConAlg(S)A become an order isomorphism. That is, to consider
Theorem 3.8 stated with the Suszko operator instead of the Leibniz operator.

Theorem 3.15. Let S be a logic. The following conditions are equivalent:
(i) S is protoalgebraic;
(ii) For every A, ∼

ΩA
S : FiSu

S A→ ConAlg(S)A is an order isomorphism;
(iii) For every A, ∼

ΩA
S : FiSu

S A→ ConAlg(S)A is surjective.

Proof. (i) ⇒ (ii): By Proposition 2.5 and Corollary 2.19, if S is protoalgebraic,
then ΩA = ∼

ΩA
S and Alg(S) = Alg∗(S). Therefore ConAlg(S)A = ConAlg∗(S)A, and

then Theorem 3.8 establishes (ii).
(ii)⇒ (iii): Trivial.
(iii) ⇒ (i): Let A arbitrary and F,G ∈ FiSA such that F ⊆ G. Since ΩA ∈
ConAlg∗(S)(A) ⊆ ConAlg(S)A, it follows by hypothesis that there exists H ∈ FiSu

S A

such that ∼
ΩA
S (H) = ΩA(F ). Then,

∼
ΩA

(
JHKSu) = ∼

ΩA
S (F ) = ΩA(F ) = ∼

ΩA
(
JF K∗

)
,

using Propositions 2.7 and 2.22. It follows by the well-known isomorphism theo-
rem for full g-models, here Corollary 2.3 (of course, bearing in mind that Ω- and
∼
ΩS−classes are full g-models of S), that JHKSu = JF K. Now, since H is a Suszko
filter, it follows by Theorem 2.29 that JHKSu = (FiSA)H . Since F ∈ JF K, we have
H ⊆ F ⊆ G. Therefore, G ∈ JF K, that is, ΩA(F ) ⊆ ΩA(G). Since A is arbitrary,
we conclude that the Leibniz operator is order preserving. �

Here arrived, we are able to give another (partial) presentation of the Leibniz
hierarchy in terms of the Suszko operator, this time highlighting order theoretical
properties. To this end, and similarly to the definition of continuity for the Leibniz
operator on page 23, the Suszko operator is continuous, if it commutes with unions
of upwards-directed families of S-filters whose union is an S-filter.

Theorem 3.16. Let S be a logic.
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1. S is protoalgebraic if and only if for every A, ∼
ΩA
S : FiSu

S A → ConAlg(S)A is
an order isomorphism.

2. S is truth-equational if and only if for every A, ∼
ΩA
S : FiSA→ ConAlg(S)A is

an order embedding.
3. S is weakly algebraizable if and only if for every A, ∼

ΩA
S : FiSA→ ConAlg(S)A

is an order isomorphism.
4. S is algebraizable if and only if the Suszko operator commutes with inverse

images by homomorphisms and for every A, ∼
ΩA
S : FiSA→ ConAlg(S)A is an

order isomorphism.
5. S is finitely algebraizable if and only if the Suszko operator is continuous and

for every A, ∼
ΩA
S : FiSA→ ConAlg(S)A is an order isomorphism.

Proof. 1. This is contained in Theorem 3.15.
2. The operator ∼

ΩA
S is always an order embedding of FiSu

S A into ConAlg(S)A, by
Proposition 3.14. Moreover, truth-equationality implies that FiSA = FiSu

S A, by
Theorem 2.30. So, ∼

ΩA
S is actually an order embedding of FiSA into ConAlg(S)A.

Conversely, the Suszko operator ∼
ΩA
S is an order isomorphism, and hence in partic-

ular injective, for every A. It follows by Theorem 3.11 that S is truth-equational.
3. Suppose S is weakly algebraizable. By Theorems 3.8 and Theorem 2.30,
ΩA is an isomorphism between FiSA and ConAlg∗(S)A, for every A. Moreover,
since S is protoalgebraic, the Suszko operator and the Leibniz operator coincide,
Alg∗(S) = Alg(S), and we obtain the desired isomorphism. Conversely, suppose
that the Suszko operator ∼

ΩA
S is an isomorphism between FiSA and ConAlg(S)A,

for every A. In particular, it is injective on S-filters, and hence by Theorem 3.11
S is truth-equational. Moreover, every S-filter is a Suszko filter, by Theorem 2.30,
so that the Suszko operator ∼

ΩA
S is actually surjective over the Suszko filters of A.

It follows from Theorem 3.15 that S is protoalgebraic. Altogether, S is weakly
algebraizable.
4. It follows by 3 and Theorem 3.15.2.
5. It follows by 5 and [39, Theorem 3.13], having in mind that the Suszko and
Leibniz operators coincide under both hypothesis. �





CHAPTER 4

Truth-equational logics revisited

In this chapter, we give some contributions to the study of truth-equational
logics, which started in [55]. Namely, we prove a new characterization of the Suszko
operator in terms of (any) defining set of equations witnessing truth-equationality
(Proposition 4.2), which will allow us to arrive at a strenghtning of Raftery’s [55,
Theorem 28] by characterizing truth-equational logics as those logics where the
Suszko operator ∼

ΩA
S : FiSA → ConAlg(S)A is a structural representation, for

every algebra A (Theorem 4.13). With this characterization at hand, we prove that
definability of truth on the class LModSu(S) is equivalent to the Suszko operator
∼
ΩFm
S : T hS → ConAlg(S)Fm being a structural operator on the formula algebra,

thus unifying this weaker definability property with the rest of the theory developed
for truth-equational logics — a problem left unsolved in [55]. We also give a
necessary condition for the continuity of the Suszko operator, a property already
considered in [23, Section 7]; and finally, we present yet another coherent family of
S-compatibility operators for truth-equational logics.

4.1. The Suszko operator for truth-equational logics

Let us start with a technical lemma, which arises by putting Propositions 0.43
and 1.11 together.

Lemma 4.1. Let S be a truth-equational logic with a set of defining equations
τ (x) ⊆ EqL. For every A and every X ⊆ A,

FiS
(
A/θ

)
= π

(
FiSA

)X and π−1FiS
(
A/θ

)
=
(
FiSA

)X
,

where θ := ΘAAlg(S)(τA(X)) and π : A→ A/θ is the canonical map.

Proof. First, let us fix C :=
{
F ∈ FiSA : ΘAAlg(S)(τA(X)) ⊆ ΩA(F )

}
and

θ := ΘAAlg(S)(τA(X)). It follows by Proposition 1.11 that

FiS
(
A/θ

)
= πC and π−1FiS

(
A/θ

)
= C .

Now, since ΩA(F ) ∈ ConAlg(S)A, it holds

C =
{
F ∈ FiSA : θ ⊆ ΩA(F )

}
=
{
F ∈ FiSA : τA(X) ⊆ ΩA(F )

}
.

But, by Proposition 0.43,{
F ∈ FiSA : τA(X) ⊆ ΩA(F )

}
=
{
F ∈ FiSA : X ⊆ F

}
=
(
FiSA

)X
.

�

Proposition 4.2. Let S be a truth-equational logic with a set of defining equations
τ (x) ⊆ EqL. For every A and every X ⊆ A,

∼
ΩA
S (FgAS (X)) = ΘAAlg(S)(τA(X)).

77
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In particular, if F ∈ FiSA, then
∼
ΩA
S (F ) = ΘAAlg(S)(τA(F )).

Proof. Let X ⊆ A. Fix θ := ΘAAlg(S)(τA(X)). First of all, since θ ∈ ConAlg(S)A,
it holds A/θ ∈ Alg(S), and therefore ∼

ΩA/θ
(
FiS(A/θ)

)
= idA/θ, by (9) on page

21. Now, let π : A→ A/θ be the canonical map. Then,
∼
ΩA
S (FgAS (X)) = ∼

ΩA
S (X)

= ∼
ΩA

((
FiSA

)X)
= ∼
ΩA

(
π−1FiS(A/θ)

)
= π−1 ∼

ΩA/θ
(
FiS(A/θ)

)
= π−1(idA/θ)
= Kerπ

= ΘAAlg(S)(τA(X)),

using Lemma 4.1 and Proposition 0.31.2. �

Notice that, given an arbitrary logic S (not necessarily truth-equational), for
every A and every F ∈ FiSA, it always holds that ∼

ΩA
S (F ) ∈ ConAlg(S)A. This

fact is an easy consequence of Lemma 0.36. Therefore, Ran( ∼ΩA
S ) ⊆ ConAlg(S)A.

So, the meaningful part of Proposition 4.2 is not saying that ∼
ΩA
S (F ) is an Alg(S)-

congruence of A, but rather determining it as the least Alg(S)-congruence of A
containing τA(F ).

Several consequences follow from Proposition 4.2. Some immediate corollaries
are:

Corollary 4.3. If S is truth-equational with a set of defining equations τ (x) ⊆ EqL,
then

∼
ΩFm
S
(
CnS({x})

)
= ΘFmAlg(S)(τ (x)).

Recall the notation introduced in Proposition 0.41,

τ∞(x) := σx
∼
ΩFm
S
(
CnS({x})

)
,

where σx : Fm→ Fm is the substitution sending all variables to x. The following
fact is contained in [55, Proposition 32], and will be useful later on.

Corollary 4.4. If S is truth-equational with a set of defining equations τ (x) ⊆ EqL,
then τ ⊆ τ∞.

Proof. Since τ (x) ⊆ ΘFmAlg(S)(τ (x)) = ∼
ΩFm
S
(
CnS({x})

)
, by Corollary 4.3, it fol-

lows that
τ (x) = σxτ (x) ⊆ σx

∼
ΩFm
S
(
CnS({x})

)
= τ∞(x).

�

Another interesting consequence is the following:

Proposition 4.5. Let S be a truth-equational logic. For every A and every X ⊆ A,

∼
ΩA
S (FgAS (X)) =

ConAlg(S)A∨
a∈X

∼
ΩA
S
(
FgAS (a)

)
.
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Proof. Let τ (x) ⊆ EqL be a defining set of equations for S, which exists under
our hypothesis. Notice that

ΘAAlg(S)(τA(X)) =
ConAlg(S)A∨

{ΘAAlg(S)(τA(a)) : a ∈ X},

by Lemma 0.23, since Alg(S) is closed under IPS by Lemma 0.36.5. But under our
hypothesis, ∼

ΩA
S (FgAS (X)) = ΘAAlg(S)(τA(X)) and ΘAAlg(S)

(
τA(a)

)
= ∼
ΩA
S
(
FgAS (a)

)
,

by Proposition 4.2. �

Notice that the relevant inclusion is ⊆, as the converse one always holds, by
monotonicity of the Suszko operator, the fact that ∼

ΩA
S (FgAS (X)) ∈ ConAlg(S)A and

definition of supremum. In fact, Proposition 4.5 can be generalized as follows:

Proposition 4.6. If S is truth-equational, then the Suszko operator preserves
suprema, i.e.,

∼
ΩA
S (
FiSA∨
i∈I

Fi) =
ConAlg(S)A∨

i∈I

∼
ΩA
S (Fi),

for every algebra A and arbitrary families {Fi ∈ FiSA : i ∈ I}.

Proof. Let τ (x) ⊆ EqL be a defining set of equations for S, which exists under
our hypothesis. It holds,

∼
ΩA
S (
FiSA∨
i∈I

Fi) = ∼
ΩA
S
(
FgAS (

⋃
i∈I

Fi)
)

= ΘAAlg(S)

(
τA
(⋃
i∈I

Fi
))

=
ConAlg(S)A∨

i∈I
ΘAAlg(S)(τA(Fi))

=
ConAlg(S)A∨

i∈I

∼
ΩA
S (Fi),

using Proposition 4.2 (twice) and Lemma 0.23, having in mind that Alg(S) is closed
under IPS by Lemma 0.36.5. �

Proposition 4.2 also makes possible to investigate two further algebraic prop-
erties enjoyed by the Suszko operator for truth-equational logics, namely its com-
mutativity with direct images of surjective homomorphisms and with unions of
upwards-directed families whose union is an S-filter. Recall, commutativity with
inverse images by surjective homomorphisms characterizes protoalgebraicity, by
Theorem 3.12. The property of commuting with direct images of surjective homo-
morphisms turns out to be just one aspect of a strenghtening of Raftery’s charac-
terization for truth-equational logics in terms of the Suszko operator.

Proposition 4.7. If S is truth-equational, then the Suszko operator commutes
with images by surjective homomorphisms, in the sense that, for every A,B, every
surjective h : A→ B and every F ∈ FiSA,

∼
ΩB
S
(
FgBS (hF )

)
= ΘBAlg(S)

(
h
∼
ΩA
S (F )

)
.
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Proof. Let τ (x) ⊆ EqL be a defining set of equations for S, which exists under
our hypothesis. Notice that

∼
ΩB
S
(
FgBS (hF )

)
= ΘBAlg(S)(τB(hF ))

= ΘBAlg(S)(hΘAAlg(S)(τA(F )))

= ΘBAlg(S)
(
h
∼
ΩA
S (F )

)
using Proposition 4.2 (twice) and Lemma 0.22. �

Lemma 4.8. If S is truth-equational and Alg(S) is a quasivariety, then
∼
ΩA
S (F ) =

⋃
{ ∼ΩA
S (X) : X ⊆ F finite},

for every algebra A and every F ∈ FiSA.

Proof. First of all, notice that 〈ConAlg(S)A,⊆〉 is an algebraic lattice, by Propo-
sition 0.20. So,

∼
ΩA
S (F ) = ΘAAlg(S)

(
τA(F )

)
=

⋃{
ΘAAlg(S)(ϑ) : ϑ ⊆ τA(F ) finite

}
⊆

⋃{
ΘAAlg(S)

(
τA(X)

)
: X ⊆ F finite

}
=

⋃{∼
ΩA
S
(
FgAS (X)

)
: X ⊆ F finite

}
=

⋃{∼
ΩA
S (X) : X ⊆ F finite

}
⊆ ∼

ΩA
S (F ),

using Proposition 4.2 (twice) and monotonicity of the Suszko operator. The middle
inclusion is justified as follows: if ϑ ⊆ A × A is finite and such that ϑ ⊆ τA(F ),
then necessarily a finite number of elements of F is involved in those equations,
and at most all equations in τ (x) for each one of these elements are involved. �

Proposition 4.9. If S is truth-equational and Alg(S) is a quasivariety, then the
Suszko operator is continuous.

Proof. Let A be an algebra and {Fi : i ∈ I} ⊆ FiSA be an upwards-directed
family of S-filters of A such that

⋃
i∈I Fi ∈ FiSA. The inclusion⋃

i∈I

∼
ΩA
S (Fi) ⊆

∼
ΩA
S

(⋃
i∈I

Fi

)
always holds, by monotonicity of the Suszko operator. Conversely, it follows by
Lemma 4.8 that

∼
ΩA
S

(⋃
i∈I

Fi

)
=
⋃{ ∼

ΩA
S (F ′) : F ′ ⊆

⋃
i∈I

Fi finite
}
.

Now, let F ′ ⊆
⋃
i∈I Fi finite, say F ′ = {ai1 , . . . , ain}. For each aij there exists

Fj ∈
⋃
i∈I Fi such that aij ∈ Fj , with j = 1, . . . , n. Since the family is upwards-

directed, there exists k ∈ I such that F1 ∪ . . . ∪ Fn ⊆ Fk. So, F ′ ⊆ Fk. It follows
by monotonicity of the Suszko operator that ∼

ΩA
S (F ′) ⊆ ∼

ΩA
S (Fk). Thus,⋃{∼

ΩA
S (F ′) : F ′ ⊆

⋃
i∈I

Fi finite
}
⊆
⋃
i∈I

∼
ΩA
S (Fi).

�
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Proposition 4.9 generalizes [25, Theorem 5.7], which tells us that for logics such
that Alg∗(S) is a quasivariety,

S is weakly algebraizable if and only if S is finitely algebraizable.

Indeed, adding protoalgebraicity to the assumptions of Proposition 4.9, implies
that the Leibniz and Suszko operators coincide, and that Alg∗(S) = Alg(S). So, it
follows by Proposition 4.9 that the Leibniz operator is continuous, and therefore,
according to Definition 0.38, S is finitely algebraizable. The converse implication
holds in general.

We now undertake a short detour: if we replace the assumption Alg(S) being
a quasivariety in Proposition 4.9 by Alg∗(S) being a quasivariety instead, then
necessarily Alg∗(S) = Alg(S), and much stronger consequences follow. Indeed, if
the truth-equationality of S is witnessed by a finite set of defining equations, then
S is actually BP-algebraizable.

Lemma 4.10. If a logic S is truth-equational with a finite set of defining equations
and Alg(S) is a quasivariety, then S is finitary.

Proof. On the one hand, if S is truth-equational with a set of defining equations
τ (x) (finite or not), then Alg(S) is a τ -algebraic semantics for S, by Proposi-
tion 0.44. On the other hand, since Alg(S) is a quasivariety, �eq

Alg(S) is finitary.
Finally, since the equational translation witnessing the completeness of S w.r.t.
�eq

Alg(S) is finitary by hypothesis, it follows that S is finitary. �

Proposition 4.11. Let S be truth-equational with a finite set of defining equations.
The following conditions are equivalent:
(i) Alg∗(S) is a quasivariety;
(ii) S is BP-algebraizable.

Proof. (i) ⇒ (ii): Since Alg∗(S) is a quasivariety by hypothesis, in particular,
it is closed under PS. Hence, Alg∗(S) = Alg(S). This fact together with truth-
equationality implies that S is weakly algebraizable, by Corollary 3.6. Now, S is
finitary by Lemma 4.10. Finally, for finitary logics, weakly algebraizability together
with Alg∗(S) being a quasivariety implies that S is BP-algebraizable, by [25, The-
orem 5.7].
(ii) ⇒ (i): Finitary and finitely equivalential logics are such that Alg∗(S) is a
quasivariety [47, p. 426]. �

Corollary 4.12. Let S be an assertional logic. The following conditions are equiv-
alent:
(i) Alg∗(S) is a quasivariety;
(ii) S is regularly BP-algebraizable.

This corollary may be rephrased as: A logic S is regularly BP-algebraizable if
and only if S is assertional and Alg∗(S) is a quasivariety. This tells us that the
topmost class of Figure 1 is the intersection of the classes at the left and right ends.
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Going back to the main goal of this section, by putting together Raftery’s [55,
Theorem 28] with Proposition 4.6 and Proposition 4.7, we arrive at:

Theorem 4.13. Let S be a logic. The following conditions are equivalent:

(i) S is truth-equational;
(ii) The Suszko operator ∼

ΩA
S : FiSA → ConAlg(S)A is a structural representa-

tion, for every algebra A;
(iii) The Suszko operator ∼

ΩA
S : FiSA → ConAlg(S)A is a structural representa-

tion, for every algebra A ∈ Alg(S).

Proof. (i) ⇒ (ii): Suppose S is truth-equational. Then, ∼
ΩA
S is injective, for

every A, by Raftery’s [55, Theorem 28]; ∼
ΩA
S preserves suprema, for every A, by

Proposition 4.6; and ∼
ΩA
S commutes with endomorphisms, for every A, by Propo-

sition 4.7 (having in mind that endomorphisms are surjective homomorphisms).
(ii)⇒ (iii): Trivial.
(iii) ⇒ (i): Since by hypothesis, ∼

ΩA
S is injective for every A ∈ Alg(S), the result

follows by Theorem 3.11. �

Notice that an analogous condition stated just for the formula algebras would
not hold under the same proof. For injectivity of the Suszko operator on the formula
algebras does not suffice to establish truth-equationality, as Raftery shows in [55,
Example 1].

Here arrived, it is natural to consider the same condition imposed upon the
Leibniz operator. Appart from the terminology, and for the particular case of
finitary logics, such result is contained in [11, Theorem 3.7]. We next state it for
arbitrary logics.

Theorem 4.14. Let S be a logic. The following conditions are equivalent:

(i) S is algebraizable;
(ii) The Leibniz operator ΩA : FiSA → ConAlg∗(S)A is a structural representa-

tion, for every algebra A;
(iii) The Leibniz operator ΩFm : T hS → ConAlg∗(S)Fm is a structural represen-

tation.

Proof. (i)⇒ (ii): If S is algebraizable, then the Leibniz operator ΩA : FiSA→
ConAlg∗(S)A is an order isomorphism which commutes with inverse images of ho-
momorphisms, for arbitrary A. So, it preserves arbitrary suprema, it is injective.
We are left to see it commutes with endomorphisms. Let h ∈ Hom(A,A) be a
homomorphism and let F ∈ FiSA be an S-filter. On the one hand,

F ⊆ h−1FgAS (hF ) ⇒ ΩA(F ) ⊆ ΩA(h−1FgAS
(
hF )

)
⇒ ΩA(F ) ⊆ h−1ΩA

(
FgAS (hF )

)
⇒ hΩA(F ) ⊆ hh−1ΩA

(
FgAS (hF )

)
⊆ ΩA

(
FgAS (hF )

)
⇒ ΘAAlg∗(S)

(
hΩA(F )

)
⊆ ΩA

(
FgAS (hF )

)
using protoalgebracity and the hypothesis. On the other hand, since the Leibniz
operator ΩA is (always) onto ConAlg∗(S)A, let G ∈ FiS(B) be such that ΩA(G) =
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ΘAAlg∗(S)
(
hΩA(F )

)
. Then,

ΩA(G) = ΘAAlg∗(S)
(
hΩA(F )

)
⇒ hΩA(F ) ⊆ ΩA(G),

⇒ ΩA(F ) ⊆ h−1ΩA(G)

⇒ ΩA(F ) ⊆ ΩA(h−1G)

⇒ F ⊆ h−1G,

⇒ hF ⊆ hh−1G ⊆ G

⇒ FgAS (hF ) ⊆ G,

⇒ ΩA
(
FgAS (hF )

)
⊆ ΩA(G) = ΘAAlg∗(S)

(
hΩA(F )

)
using the hypothesis, injectivity of ΩA (which holds by truth-equationality of S),
and protoalgebraicity.
(ii)⇒ (iii): Trivial.
(iii)⇒ (i): Let T, T ′ ∈ T hS such that T ⊆ T ′. Since ΩFm preserves suprema by
hypothesis, it follows that

ΩFm(T )
ConAlg∗(S)Fm∨

ΩFm(T ′) = ΩFm(T
T hS∨

T ′) = ΩFm(T ′).

Hence, ΩFm(T ) ⊆ ΩFm(T ′). This establishes protoalgebraicity (see for instance,
[23, Theorem 1.1.3], where it is also proved that monotonicity ofΩFm is equivalent
to meet-continuity). Together with the fact that ΩFm is injective, it follows that S
is weakly algebraizable (see for instance, [25]). Finally, let us see that ΩFm com-
mutes with inverse images by substitutions. Let σ : Fm→ Fm be a substitution
and let T ∈ T hS. We must prove that

ΩFm(σ−1T ) = σ−1ΩFm(T ).

It is easy to check that σ−1ΩFm(T ) is a congruence on Fm, and that furthermore
it is compatible with σ−1(T ). So the inclusion σ−1ΩFm(T ) ⊆ ΩB

(
σ−1T

)
is clear.

As for the converse inclusion, we have

ΘFmAlg∗(S)
(
σΩFm(σ−1T )

)
= ΩFm

(
CnS(σσ−1T )

)
⊆ ΩFm(T ),

using the fact that ΩFm : T hS → ConAlg∗(S)Fm commutes with images of substi-
tutions by hypothesis, and that we have just seen it to be moreover order-preserving
(bear in mind that σσ−1T ⊆ T , so CnS(σσ−1T ) ⊆ CnS(T ) = T ). Then,

ΩFm(σ−1T ) ⊆ σ−1σΩFm(σ−1T )

⊆ σ−1ΘFmAlg∗(S)
(
σΩFm(σ−1T )

)
⊆ σ−1ΩFm(T ).

Altogether, the Leibniz operatorΩFm : T hS → ConAlg∗(S)Fm is meet-continuous,
injective and commutes with inverse images of substitutions. This establishes that
S is algebraizable, by [48, Theorem 5.2]. �

4.2. Truth definability in LModSu(S)

In this section we adress truth-definability on the class LModSu(S). Recall that
by Theorem 0.40 truth definability on any of the classes LMod∗(S), Mod∗(S), and
ModSu(S) is equivalent to truth-equationality of the underlying logic S. But, “in
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contrast, the equational definability of truth in LModSu(S) does not imply its equa-
tional (or even implicit) definability of truth in any of the other matrix semantics
mentioned (...).” [55, p.121] So, we pick up this “loose end” of [55] and, under the
light of Theorem 4.13, unify it with the truth-definability in the remaining matrix
semantics.

We start with an auxiliary lemma, whose proof follows that of [55, Proposition
22], mutatis mutandis for Suszko congruences.

Lemma 4.15. Let S be a logic, A an algebra and F ∈ FiSA. A set of equations
τ (x) ⊆ EqL defines the S-filter of the matrix 〈A/ ∼ΩA

S (F ), F/∼ΩA
S (F )〉 if and only

if
F = {a ∈ A : τA(a) ⊆ ∼

ΩA
S (F )}.

Proof. Let B = A/
∼
ΩA
S (F ) and let π : A → B be the canonical projection. Let

a ∈ A. Notice that

π(a) ∈ τB iff ∀δ ≈ ε ∈ τ (x) δB
(
π(a)

)
= εB

(
π(a)

)
iff ∀δ ≈ ε ∈ τ (x) π

(
δA(a)

)
= π

(
εA(a)

)
iff ∀δ ≈ ε ∈ τ (x) 〈δA(a), εA(a)〉 ∈ ∼

ΩA
S (F )

iff τA(a) ⊆ ∼
ΩA
S (F ).

So, τB = π(F ) if and only if F = π−1τB = {a ∈ A : τA(a) ⊆ ∼
ΩA
S (F )}. The

result should now be clear. �

Corollary 4.16. Truth is equationally definable in LModSu(S) if and only if, for
every T ∈ T hS,

T = {ϕ ∈ FmL : τFm(ϕ) ⊆ ∼
ΩFm
S (T )}.

Next, we prove that the particular case of Lemma 4.1 and Proposition 4.2
for the formula algebras Fm holds under the hypothesis of truth definability in
the class LModSu(S). The proofs are entirely analogous to the respective ones for
arbitrary algebras.

Lemma 4.17. If truth is equationally definable in LModSu(S), then for every Γ ⊆
FmL,

FiS
(
Fm/θ

)
= π

(
T hS

)Γ and π−1FiS
(
Fm/θ

)
=
(
T hS

)Γ
.

where θ := ΘFmAlg(S)(τFm(Γ)) and π : Fm→ Fm/θ is the canonical map.

Proof. First, let us fix C :=
{
T ∈ T hS : ΘFmAlg(S)

(
τFm(Γ)

)
⊆ ΩFm(T )

}
and

θ := ΘFmAlg(S)
(
τFm(Γ)

)
. It follows by Proposition 1.11 that

FiS
(
Fm/θ

)
= πC and π−1FiS

(
Fm/θ

)
= C .

Now, since ΩFm(T ) ∈ ConAlg(S)Fm, it holds

C =
{
T ∈ T hS : θ ⊆ ΩFm(T )

}
=
{
T ∈ T hS : τFm(Γ) ⊆ ΩFm(T )

}
.

But, by Proposition 0.43,{
T ∈ T hS : τFm(Γ) ⊆ ΩFm(T )

}
=
{
T ∈ T hS : Γ ⊆ T

}
=
(
T hS

)Γ
.

�
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Proposition 4.18. If truth is equationally definable in LModSu(S), then for every
Γ ⊆ FmL,

∼
ΩFm
S (CnS(Γ)) = ΘFmAlg(S)(τFm(Γ)).

Proof. Let Γ ⊆ FmL. Fix θ := ΘFmAlg(S)(τFm(Γ)). First, since θ ∈ ConAlg(S)Fm,
it holds Fm/θ ∈ Alg(S), and therefore ∼

ΩFm/θ
(
FiS(Fm/θ)

)
= idFm/θ, by (9) on

page 21. Now, let π : Fm→ Fm/θ be the canonical map. Then,
∼
ΩFm
S
(
CnS(Γ)

)
= ∼
ΩFm
S (Γ)

= ∼
ΩFm

((
T hS

)Γ)
= ∼
ΩFm

(
π−1FiS(Fm/θ)

)
= π−1 ∼

ΩFm/θ
(
FiS(Fm/θ)

)
= π−1(idFm/θ)
= Kerπ

= ΘFmAlg(S)
(
τFm(Γ)

)
,

using Lemma 4.17 and Proposition 0.31.2. �

Here arrived, we can apply the proofs of Proposition 4.6 and Theorems 4.7,
done for an arbitrary algebra A, to the formula algebra Fm, and obtain:

Proposition 4.19. If truth is equationally definable in LModSu(S), then the Suszko
operator ∼

ΩFm
S preserves suprema, i.e.,

∼
ΩFm
S (

T hS∨
i∈I

Ti) =
ConAlg(S)Fm∨

i∈I

∼
ΩA
S (Ti),

for arbitrary families {Ti ∈ T hS : i ∈ I}.

Proposition 4.20. If truth is equationally definable in LModSu(S), then the Suszko
operator ∼

ΩFm
S commutes with substitutions, in the sense that, for every substitution

σ : Fm→ Fm and every T ∈ T hS,
∼
ΩFm
S
(
CnS(σT )

)
= ΘFmAlg(S)

(
σ
∼
ΩFm
S (T )

)
.

Finally, we are able to prove the main result of this section.

Theorem 4.21. Let S be a logic. The following conditions are equivalent:
(i) Truth is equationally definable in LModSu(S);
(ii) The Suszko operator ∼

ΩFm
S : T hS → ConAlg(S)(Fm) is a structural represen-

tation.

Proof. (i) ⇒ (ii): Suppose truth is equationally definable in LModSu(S). Then,
∼
ΩFm
S is clearly injective. Moreover, ∼

ΩFm
S preserves suprema and commutes with

substitutions, by Proposition 4.19 and Proposition 4.20.
(ii) ⇒ (i): Under the hypothesis, it follows by Theorem 0.26 that there exists
τ (x) ⊆ EqL such that ∼

ΩFm
S (T ) = ΘFmAlg(S)(τFm(T )), for every T ∈ T hS. Now, let

T ∈ T hS arbitrary and ϕ ∈ FmL. Assume first ϕ ∈ T . Clearly then, τFm(ϕ) ⊆
τFm(T ) ⊆ ΘFmAlg(S)(τFm(T )) = ∼

ΩFm
S (T ). Conversely, assume that τFm(ϕ) ⊆
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∼
ΩFm
S (T ). Then, ΘFmAlg(S)(τFm(ϕ)) ⊆ ∼

ΩFm
S (T ) = ΘFmAlg(S)(τFm(T )). Hence,

∼
ΩFm
S
(
CnS(T, ϕ)

)
= ΘFmAlg(S)(τFm(T, ϕ))

= ΘFmAlg(S)(τFm(T ))
T hS∨

ΘFmAlg(S)(τFm(ϕ))

⊆ ΘFmAlg(S)(τFm(T ))

= ∼
ΩFm
S (T ).

Thus, ∼
ΩFm
S
(
CnS(T, ϕ)

)
= ∼
ΩFm
S (T ). It now follows by injectivity of ∼

ΩFm
S that

CnS(T, ϕ) = T , and therefore ϕ ∈ T . Finally, it follows by Corollary 4.16 that
truth is equationally definable in LModSu(S). �

As a consequence, since Raftery shows in [55, Example 1] that equational defin-
ability in the class LModSu(S) does not suffice to ensure that S is truth-equational,
the property of ∼

ΩFm
S : T hS → ConAlg(S)Fm being a structural representation

does not lift to arbitrary algebras, bearing in mind Theorem 4.13.
As a final remark, we observe that for a very special set of defining equations,

it does hold the equivalence between truth-equationality of a logic S and the equa-
tional definability of truth in the class of matrices LModSu(S).

Proposition 4.22. Let S be a logic. The following conditions are equivalent:
(i) S is truth-equational with a set of defining equations {x ≈ >}, where > is a

constant term of LAlgSu(S);
(ii) Truth is equationally definable in LModSu(S) by {x ≈ >}, where > is a

constant term of LAlgSu(S);

Proof. (i)⇒ (ii): It follows by [55, Proposition 18 (ii)] that truth is equationally
definable in LModSu(S) by the equational translation τ (x) = {x ≈ >}.
(ii) ⇒ (i): It follows by [55, Corollary 21] that LAlgSu(S) is a {x ≈ >}-algebraic
semantics for S. So, S is the assertional logic S

(
LAlgSu(S), {x ≈ >}

)
. It follows

by Proposition 0.42.1 that S is truth-equational with a set of defining equations
{x ≈ >}, where > is a constant term of LAlgSu(S). �

4.3. The largest algebraic semantics for truth-equational logics

Let us recall Definition 0.27. Given a logic S and τ (x) ⊆ EqL, the class of
τ -models of S is defined by

K(S, τ ) := {A : Γ `S ϕ ⇒ τ (Γ) �eqA τ (ϕ)} .

Also, by Proposition 0.28 this class is the largest among all the τ -algebraic seman-
tics for S, if there is one. Notice of course that K(S, τ ) depends explicitly on τ ,
and that given two sets of equations τ , τ ′, the classes K(S, τ ) and K(S, τ ′) need
not coincide.

By simply manipulating the definitions involved, one can re-write the identity
above as follows:

Proposition 4.23. Let S be a logic and τ (x) ⊆ EqL. It holds,

K(S, τ ) =
{
A : τ (A) ∈ FiSA

}
.
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Another immediate consequence of Proposition 0.28, is that whenever Alg(S)
is a τ -algebraic semantics for S, it is necessarily contained in K(S, τ ). Moreover,
Proposition 0.44 tells us that Alg(S) is always a τ -algebraic semantics for truth-
equatinal logics, with τ (x) a set of defining equations for S. Therefore:

Corollary 4.24. If S is a truth-equational logic with a set of defining equations
τ (x) ⊆ EqL, then

Alg(S) ⊆ K(S, τ ).

It is worth mentioning that these two classes of algebras need not coincide,
even at the top most class of logics in the Leibniz hierarchy. In fact, a regularly
BP-algebraizable counter-example is CPC, as shown in [11, pp. 15-16], having in
mind that Alg∗(CPC) = Alg(CPC) = BA.

We next characterize the least S-filter of an algebra in terms of the defining
equations witnessing truth-equationality.

Lemma 4.25. Let S be a truth-equational logic with a set of defining equations
τ (x) ⊆ EqL.

1. For every A, the least S-filter of A is the S-filter generated by τ (A);
2. For A ∈ Alg(S), the least S-filter of A is exactly τ (A).

Proof. 1. Since τA(τ (A)) ⊆ idA ⊆ ΩA(
⋂
FiSA), it follows by Proposition 0.43

that τ (A) ⊆
⋂
FiSA. Hence, FgAS (τ (A)) =

⋂
FiSA. 2. Now, let A ∈ Alg(S).

Let a ∈
⋂
FiSA. Then, a ∈ F , for every F ∈ FiSA. It follows again by Proposi-

tion 0.43 that τA(a) ⊆ ∼
Ω(FiSA) = idA. Thus, a ∈ τ (A). �

Notice that, Proposition 4.23 and Lemma 4.25 provide an alternative proof of
Corollary 4.24. Notice also that, for truth-equational logics, the fact that the least
S-filter ofA is exactly τ (A) does not characterize the algebras in Alg(S), but rather
the algebras in K(S, τ ). Indeed, in light of Lemma 4.25, Proposition 4.23 can be
re-written for truth-equational logics as:

Proposition 4.26. Let S be a truth-equational logic with a set of defining equations
τ (x) ⊆ EqL. It holds,

K(S, τ ) =
{
A : τ (A) =

⋂
FiSA

}
.

Two interesting corollaries are the following:

Corollary 4.27. If S is truth-equational witnessed by two sets of defining equations
τ and τ ′, then

τ (x)

�

�eq
Alg(S) τ

′(x)

Proof. Let A ∈ Alg(S). We know that Alg(S) ⊆ K(S, τ ) and Alg(S) ⊆ K(S, τ ′),
by Corollary 4.24. So,

τ (A) =
⋂
FiSA = τ ′(A),

by Proposition 4.26. So, given h ∈ Hom(Fm,A) such that εA(hx) = δA(hx), for
every ε ≈ δ ∈ τ (x), that is, hx ∈ τ (A), it necessarily holds hx ∈ τ ′(A), that is,
ε′A(hx) = δ′A(hx), for every ε′ ≈ δ′ ∈ τ (x). Hence, τ (x) �eq

A τ ′(x). Similarly,
τ ′(x) �eq

A τ (x). Thus,
τ (x)

�

�eq
Alg(S) τ

′(x).
�
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So, altough the classes K(S, τ ) and K(S, τ ′) need not coincide, the defining
equations involved are interderivable w.r.t. to the equational consequence relation
relative to Alg(S). An example of this situation is deduced from [34, Exercise
3.3]. Indeed, since HA is a {¬¬x ≈ >}-algebraic semantics for CPC, we have
HA ⊆ K(CPC, {¬¬x ≈ >}), On the other hand, given any A ∈ HA\BA, it holds
A /∈ K(CPC, {x ≈ >}), otherwise A � ¬¬x ≈ >→ x ≈ >. Nevertheless, it does
hold ¬¬x ≈ >

�

�eq
BA x ≈ >, and of course, Alg(CPC) = BA.

Corollary 4.28. If S is truth-equational with a set of defining equations τ (x), then

K(S, τ∞) ⊆ K(S, τ ).

Proof. Let A ∈ K(S, τ∞). Since τ ⊆ τ∞, by Corollary 4.4, it follows that

τ∞(A) ⊆ τ (A).

But, τ∞(A) =
⋂
FiSA, by Proposition 4.26 and assumption. Moreover, τ (A) ⊆⋂

FiSA, by Lemma 4.25.1. So,

τ (A) =
⋂
FiSA.

Hence, A ∈ K(S, τ ), again by Proposition 4.26. �

Thus, K(S, τ∞) can be seen as a distinguished algebraic semantics, for truth-
equational logics. Indeed, it is the least among all the algebraic semantics of the
form K(S, τ ), with τ (x) ⊆ EqL a defining set of equations for S. Another curiosity
concerning the class K(S, τ∞) is the following:

Proposition 4.29. If S is truth-equational with a set of defining equations τ (x),
then K(S, τ∞) is a τ -algebraic semantics for S.

Proof. The result follows from the fact that

Alg(S) ⊆ K(S, τ∞) ⊆ K(S, τ ),

and that both classes Alg(S) and K(S, τ ) are τ -algebraic semantics for S. In-
deed, the first inclusion follows by Proposition 0.41 and Corollary 4.24, while the
second inclusion follows by Corollary 4.28. That both classes Alg(S) and K(S, τ )
are τ -algebraic semantics for S follows by Proposition 0.44 and Proposition 0.28,
respectively. �

Compare Proposition 4.29 with Proposition 0.44. Both classes Alg(S) and
K(S, τ∞) are τ -algebraic semantics, for every set of defining equations τ (x) wit-
nessing the truth-equationality of S.

4.4. Another coherent family of S-compatibility operators

Definition 4.30. Let S be a logic with a τ -algebraic semantics K such that
Alg∗(S) ⊆ K. For every A and F ∈ FiSA, define

ΨAτ ,K(F ) := ΘAIPS(K)
(
τA(F )

)
.

Bear in mind that the IPS(K)-relative congruences of A form a closure system,
by Proposition 0.19, and therefore ΨAτ ,K is well-defined, for every A. Also, notice
that if K is a τ -algebraic semantics for S, then so is IPS(K) (because the equational
consequence relations relative to each class coincide). So, another option would be
assuming that K is an algebraic semantics closed under IPS(K) — which is not a
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stonger assumption than the plain existence of an algebraic semantics — and work
with K-relative congruences instead. We choose a slightly heavier notation in favour
of a less lengthy hypothesis.

Let us first see that we are indeed in the presence of a family of S-compatibility
operators.

Proposition 4.31. Let S be a logic with a τ -algebraic semantics K such that
Alg∗(S) ⊆ K. For every A, the map ΨAτ ,K : FiSA → Con(A) is a congruential
order preserving S-compatibility operator on A.

Proof. Let F ∈ FiSA. Notice that ∼
ΩA
S (F ) ∈ ConAlg(S)A ⊆ ConIPS(K)(A), be-

cause Alg(S) = IPS(Alg∗(S)) ⊆ IPS(K). Moreover, τA(F ) ⊆ ∼
ΩA
S (F ), by Proposi-

tion 0.32. So,

ΘAIPS(K)
(
τA(F )

)
⊆ ∼
ΩA
S (F ) ⊆ ΩA(F ).

Thus, ΨAτ ,K is an S-compatibility operator on A. By definition, it is congruential;
and it is clearly order preserving. �

More interestingly, Ψτ ,K = {ΨAτ ,K : A an algebra} is a coherent family of S-
operators. We need some auxiliary lemmas to establish it.

Lemma 4.32. Let τ (x) ⊆ EqL. For every surjective h : A→ B and every G ⊆ B,

1. τB(G) = hτA(h−1G);
2. τA(h−1G) ⊆ h−1τB(G).

Proof. 1. For every X ⊆ A, hτA(X) = τB(hX). So, taking X = h−1G, we have
hτA(h−1G) = τB(hh−1G) = τB(G), using surjectiveness of h.
2. In general, it holds τA(h−1G) ⊆ h−1hτA(h−1G). But, hτA(h−1G) = τB(G),
by 1. So, τA(h−1G) ⊆ h−1τB(G). �

Lemma 4.33. Let τ (x) ⊆ EqL and K be a class of algebras closed under isomor-
phisms and subdirect products. For every surjective h : A→ B and every G ⊆ B,{

θ ∈ ConK(A) : Kerh ⊆ θ and τA(h−1G) ⊆ θ
}

=

=
{
h−1θ′ : θ′ ∈ ConK(B) and τB(G) ⊆ θ′

}
.

Proof. Let θ ∈ ConK(A) such that Kerh ⊆ θ and τA(h−1G) ⊆ θ. It follows
by Lemma 4.32.1 that τB(G) = hτA(h−1G) ⊆ hθ. Moreover, it follows by
Lemma 0.21.2 that hθ ∈ ConK(B). Also, θ = h−1hθ, by Lemma 0.17.2, since
Kerh ⊆ θ. So, take θ′ = hθ. Conversely, let θ′ ∈ ConK(B) such that τB(G) ⊆ θ′.
It follows by Lemma 4.32.2 that τA(h−1G) ⊆ h−1τB(G) ⊆ h−1θ′. Also, notice
that Kerh ⊆ h−1θ′, since idB ⊆ θ′. So, take θ = h−1θ′. �

Theorem 4.34. Let S be a logic with a τ -algebraic semantics K such that Alg∗(S) ⊆
K. The family Ψτ ,K is a coherent family of S-compatibility operators.

Proof. Let A,B be any two algebras, G ∈ FiSB and h : A → B a surjective
homomorphism Ψτ ,K-compatible with h−1G. That is, Kerh ⊆ ΨAτ ,K(h−1G) =
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ΘAIPS(K)
(
τA(h−1G)

)
. Then,

ΨAτ ,K(h−1G) = ΘAIPS(K)
(
τA(h−1G)

)
=

⋂{
θ ∈ ConIPS(K)(A) : Kerh ⊆ θ and τA(h−1G) ⊆ θ

}
=

⋂{
h−1θ′ : θ′ ∈ ConIPS(K)(B) and τB(G) ⊆ θ′

}
= h−1

⋂{
θ′ ∈ ConIPS(K)(B) : τB(G) ⊆ θ′

}
= h−1ΘBIPS(K)

(
τB(G)

)
= h−1ΨBτ ,K(G),

using Lemma 4.33. �

So, to every logic S with a τ -algebraic semantics containing Alg∗(S), one can
associate a coherent family of congruential order preserving S-compatibility op-
erators. In particular, for every logic having Alg∗(S), or equivalently Alg(S), as
a τ -algebraic semantics, there exists a coherent family of congruential order pre-
serving S-compatibility operators. Recall that this is the case for truth-equational
logics, by Proposition 0.44.

We finish our study of these families of S-compatibility operators by studying
its associated classes of algebras. Let S be a logic with a τ -algebraic semantics K
such that Alg∗(S) ⊆ K. Recall, by Definition 1.42, that

AlgΨτ,K(S) :=
{
A : ΨAτ ,K(F ) = idA, for some F ∈ FiSA

}
AlgΨτ,K(S) :=

{
A/ΨAτ ,K(F ) : F ∈ FiSA

}
Since Ψτ ,K is a coherent family of S-compatibility operators, we know a priori

by Proposition 1.46 that AlgΨτ,K(S) = AlgΨτ,K(S). But we can in fact give a nicer
characterization.

Proposition 4.35. Let S be a logic with a τ -algebraic semantics K such that
Alg∗(S) ⊆ K. It holds,

AlgΨτ,K(S) = AlgΨτ,K(S) = IPS(K).

Proof. Let A ∈ IPS(K). On the one hand, K ⊆ K(S, τ ), by Proposition 0.28. On
the other hand, K(S, τ ) is a generalized quasivariety, and hence closed under IPS,
by Theorem 0.13. So, A ∈ K(S, τ ). Therefore, τ (A) ∈ FiSA, by Proposition 4.23.
Moreover, necessarily idA ∈ ConIPS(K)(A). Hence,

ΨAτ ,K(τ (A)) = ΘAIPS(K)(τA(τ (A))) ⊆ ΘAIPS(K)(idA) = idA.

Thus, A ∈ AlgΨτ,K(S).
Conversely, let A ∈ AlgΨτ,K(S) and F ∈ FiSA such that ΨAτ ,K(F ) = idA. That
is, ΘAIPS(K)(τA(F )) = idA. Therefore, idA is a IPS(K)-congruence of A. Hence,
A ∼= A/idA ∈ IPS(K). Since IPS(K) is closed under isomorphisms, it follows that
A ∈ IPS(K). �

As a final remark, observe that under the assumptions of Definition 4.30, it
always holds Alg∗(S) ⊆ K ⊆ K(S, τ ), bearing in mind Proposition 0.28. The limit
cases are therefore K = Alg∗(S) and K = K(S, τ ). In case S is truth-equational (and
consequently has an algebraic semantics containing Alg∗(S), by Proposition 0.44),
taking K := Alg∗(S) would lead us to Ψ = ∼

ΩS , in light of Proposition 4.2 and since
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IPS(Alg∗(S)) = Alg(S). Still in case S is truth-equational, taking K := K(S, τ ),
which complies with the assumption Alg∗(S) ⊆ K(S, τ ) by Corollary 4.24, and
with the assumption of being an algebraic semantics by Proposition 0.28, gives us
a coherent family of S-compatibility operators Ψ such that AlgΨ = K(S, τ ), by
Proposition 4.35 and the fact that K(S, τ ) is a generalized quasivariety.





Part II

The strong version of a sentential
logic

“It has often been observed that some sentential logics come naturally
in pairs, one stronger than the other but with the same theorems, and
with the peculiarity that the theories of the stronger logic are exactly
the theories of the weaker one that are closed under some additional
inference rule.”

[37, p. 2]





CHAPTER 5

The strong version of a sentential logic

5.1. The strong version of a sentential logic

In [37] the notion of the strong version of a protoalgebraic logic is introduced,
built upon the original definition of Leibniz filter for protoalgebraic logics, also
introduced in the cited paper and which we have made reference to on page 48.
Now that we have defined a new notion of Leibniz filter for arbitrary logics (also on
page 48), it is only natural to consider the notion of strong version of an arbitrary
sentential logic along the same lines of [37]. This is what we propose to do in the
present section.

Of course, we have introduced not only a new notion of Leibniz filter for ar-
bitrary sentential logics, but also a new, and stronger, notion of Suszko filter. For
protoalgebraic logics both concepts happen to coincide with the notion of Leibniz
filter given in [37]. So, to start with, if we follow the idea developed in [37] of
considering the strong version of a protoalgebraic logic as the logic induced by its
Leibniz filters, we have now two legitimate candidates to consider when defining
the strong version of an arbitrary sentential logic. Namely, the logic induced by the
class of matrices

{
〈A, F 〉 : A an algebra, F ∈ Fi∗SA

}
of the Leibniz filters, and the

logic induced by the class of matrices
{
〈A, F 〉 : A an algebra, F ∈ FiSu

S A
}
of the

Suszko filters. But, as we will see, both choices induce the same logic, and moreover
the logic so defined has a much simpler definition, independent of the notions of
Leibniz and Suszko filters: it is the logic induced by the class of the matrices 〈A, F 〉
where F is the least S-filter of A.

Proposition 5.1. Let S be a logic. The classes of matrices

{〈A, F 〉 : A is an algebra, F ∈ Fi∗SA}

and
{〈A, F 〉 : A is an algebra and F is its least S-filter}

induce the same logic.

Proof. First of all recall that on every algebra A, the least S-filter is Leibniz.
Therefore the second class of matrices is included in the first. This implies that the
logic induced by the first class is an extension of the one induced by the second.
To prove that the logics are equal, let us see that for every matrix 〈A, F 〉 with F ∈
Fi∗SA there exists a matrix 〈B, G〉 where G is the least S-filter of B that induces
the same logic as the one induced by 〈A, F 〉. Consider an L-matrix 〈A, F 〉 such that
F ∈ Fi∗SA and let π : A → A/ΩA(F ) be the canonical quotient homomorphism.
By Corollary 1.40, πF ∗ is the least S-filter of A/ΩA(F ), and since F is Leibniz,
F = F ∗, hence πF = πF ∗. Moreover, π is a strict surjective homomorphism from
〈A, F 〉 to 〈A/ΩA(F ), πF 〉; thus, as it is well known (recall Proposition 0.33), both
matrices induce the same logic. �

95



96 CHAPTER 5. THE STRONG VERSION OF A SENTENTIAL LOGIC

Corollary 5.2. Let S be a logic. The classes of matrices{
〈A, F 〉 : A is an algebra, F ∈ Fi∗SA

}
and {

〈A, F 〉 : A is an algebra, F ∈ FiSu
S A

}
induce the same logic.

Proof. Just bear in mind that every Suszko S-filter is a Leibniz S-filter and that
the least S-filter of any algebra is a Suszko S-filter. �

Proposition 5.1 and Corollary 5.2 motivate the next definition.

Definition 5.3. Let S be a logic. The strong version of S, denoted by S+, is the
logic induced by the class of matrices{

〈A, F 〉 : A an algebra, F ∈ Fi∗SA
}

;

or equivalently, the logic induced by the class of matrices{
〈A, F 〉 : A an algebra, F ∈ FiSu

S A
}

;

or equivalently, the logic induced by the class of matrices{
〈A, F 〉 : A an algebra and F is its least S-filter

}
.

We can restrict the classes of matrices in Definition 5.3 to matrices whose
algebras are in Alg∗(S) or Alg(S).

Proposition 5.4. Let K be any of the classes of algebras Alg∗(S) or Alg(S). The
logic S+ is induced by any of the classes of matrices

{
〈A,

⋂
FiSA〉 : A ∈ K

}
,{

〈A, F 〉 : A ∈ K, F ∈ Fi∗SA
}
, and

{
〈A, F 〉 : A ∈ K, F ∈ FiSu

S A
}
.

Proof. Let ` denote the consequence relation of any of the logics induced by any of
the classes of matrices above. In the six cases, it is clear that `S+ ⊆ `. Conversely,
letA be an arbitrary algebra and F ∈ Fi∗SA. Then F/ΩA(F ) is the least S-filter of
A/ΩA(F ) (which is always a Leibniz S-filter), by Corollary 1.40, and A/ΩA(F ) ∈
Alg∗(S) ⊆ Alg(S), by Lemma 0.36.1. Moreover the logic induced by 〈A, F 〉 and
the logic induced by 〈A/ΩA(F ), F/ΩA(F )〉 are the same, by Proposition 0.33. It
follows that ` ⊆ `S+ . The same reasoning holds with F ∈ FiSu

S A. �

In the next proposition we collect some obvious consequences of the definition
of the strong version for further reference.

Proposition 5.5. Let S be a logic.
1. S+ is an extension of S.
2. FiS+A ⊆ FiSA, for every A.
3. The Leibniz and Suszko S-filters are S+-filters.
4. If the Leibniz operator is order reflecting, then S+ = S. In particular, if S is

truth-equational, then S+ = S.

Proof. Clearly, S+ is an extension of S. As a consequence, FiS+A ⊆ FiSA, for
every A. Also, as S+ is induced by all matrices whose distinguished set is a Leibniz
S-filter, as well as by all matrices whose distinguished set is a Suszko S-filter, these
special S-filters will always be S+-filters. Thus, FiSu

S A ⊆ Fi∗SA ⊆ FiS+A. Finally,
assume that the Leibniz operator is order reflecting. It follows by Proposition 2.11
that every S-filter, on an arbitrary algebra, is a Leibniz filter. It should be clear
that S+ collapses into S. �
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A particular case of the situation considered in the last item of Proposition 5.5
is when S is Fregean and has theorems. For [4, Corollary 11] shows that in this case
S is truth-equational. Of course, assuming S protoalgebraic, even if this does not
make S+ collapse into S, it transfers us back to the scope of [37], and so it would
be a rather redundant assumption to consider. Thus, when analysing examples,
we will concentrate mainly in discussing the strong version of non truth-equational
and non protoalgebraic logics. Moreover we will also concentrate on logics with
theorems since, as follows from the next proposition, the logics without theorems
have, in each type, the same strong version, namely the almost inconsistent logic.

Proposition 5.6. If S has no theorems, then S+ is almost inconsistent.

Proof. If S has no theorems, then ∅ ∈ FiSA, for every A. Necessarily then ∅ is
the least S-filter of A, for every A. Therefore, S+ is the logic induced by the class
of matrices {〈A,∅〉 : A an algebra}. Now, let ϕ ∈ FmL arbitrary. Notice that, for
every ψ ∈ FmL, it vacuously holds ϕ `S+ ψ. Hence, any non-empty S+-theory is
FmL. Moreover, S+ clearly does not have theorems. Thus, FmL and ∅ are the
only S+-theories. Hence, S+ is almost inconsistent. �

We state a basic lemma and some of its consequences.

Lemma 5.7. For every A, the least S-filter of A and the least S+-filter of A are
the same. In particular, S and S+ have the same set of theorems.

Proof. Let A arbitrary. Notice that the least S-filter of A is always a Leibniz
S-filter of A. Hence, it is an S+-filter of A, and necessarily the least one, since
FiS+A ⊆ FiSA. �

An immediate consequence of this fact is:

Corollary 5.8. For every logic S, (S+)+ = S+.

Proof. The logic (S+)+ is induced by the class of matrices{
〈A, F 〉 : F is the least S+-filter of A

}
,

which, by Lemma 5.7, is precisely the logic induced by the class of matrices {〈A, F 〉 :
F is the least S-filter of A}. �

As a matter of fact, Lemma 5.7 already enables us to establish a criterion which
will reveal to be most useful when looking for the strong version of a given logic S.

Proposition 5.9. Let S be a logic. If S ′ is a logic such that
1. S ′ is truth-equational;
2. Alg(S ′) = Alg(S);
3. the least S-filter and the least S ′-filter on A coincide, for every A ∈ Alg(S ′);

then S ′ = S+.

Proof. Let S ′ be a logic satisfying the conditions 1, 2 and 3. Let τ be a set of
defining equations for S ′. On the one hand, it follows by Lemma 4.25 that τA
is the least S ′-filter of A, for every A ∈ Alg(S ′). On the other hand, Alg(S ′) is
a τ -algebraic semantics for S ′, by [55, Corollary 26]. So, S ′ is the logic induced
by the class of matrices {〈A, τA〉 : A ∈ Alg(S ′)}, by [15, Theorem 2.3]. But,
Alg(S) = Alg(S ′) and the least S-filter and the least S ′-filter on A coincide, for
everyA ∈ Alg(S ′), by hypothesis. So, S ′ is the logic induced by the class of matrices
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{〈A, F 〉 : A ∈ Alg(S) and F is the least S-filter of A}. Now, this logic is precisely
S+, by Proposition 5.4. �

The converse of Proposition 5.9 is false, for the strong version of a logic need
not be truth-equational. In order to see it, suppose, towards an absurd, that the
strong version of every logic is truth-equational. Let S be any logic such that the
Leibniz operator is order reflecting. It follows by Proposition 5.5.4 that S = S+. It
now follows by hypothesis that S is truth-equational. We conclude that the order
reflecting property of the Leibniz operator suffices to establish truth-equationality.
We reach an absurd, for Raftery shows that this is not the case in general. Indeed,
[55, Example 2] provides a counter-example, as already observed on page 56.

It is also not true, in general, that Alg(S) = Alg(S+). We shall see in Chapter 7
that Positive Modal Logic PML, and the subintuitionistic logics S≤WH and S≤WH(RT)

,
are logics S such that Alg(S+) ( Alg(S). This contrasts with the protoalgebraic
scenario where Alg∗(S+) = Alg(S+) = Alg(S) = Alg∗(S) always holds.

5.1.1. Leibniz and Suszko S+-filters. We now briefly study the Leibniz
and Suszko S+-filters. As we shall see, the Leibniz S+-filters coincide with the
Leibniz S-filters. As to Suszko filters, one must pay careful attention and distinguish
between Suszko S-filters and Suszko S+-filters.

First, it is easy to see that Leibniz (respectively, Suszko) S-filters are always
Leibniz (respectively, Suszko) S+-filters:

Proposition 5.10. For every A, FiSu
S A ⊆ FiSu

S+A and Fi∗SA ⊆ Fi∗S+A

Proof. We had already observed that JF K∗S+ ⊆ JF K∗S and JF KSu
S+ ⊆ JF KSu

S . Hence,
if F ∈ FiSu

S A, i.e., F =
⋂

JF KSu
S , then necessarily F =

⋂
JF KSu
S+ , i.e., F ∈ FiSu

S+A.
The same reasoning holds for Leibniz filters. �

But in fact, Leibniz S-filters do coincide with Leibniz S+-filters. In order to
see it, we first prove an auxiliary lemma.

Lemma 5.11. For every A and every F ∈ FiS+A, F ∗S = F ∗S+ .

Proof. Since JF K∗S+ ⊆ JF K∗S , it is clear that F ∗S =
⋂

JF K∗S ⊆
⋂

JF K∗S+ = F ∗S+ .
But also, since F ∗S ∈ Fi∗SA ⊆ FiS+A and moreover ΩA(F ) ⊆ ΩA(F ∗S), because
F ∗S ∈ JF K∗S , then F ∗S ∈ JF K∗S+ . Therefore, it must hold F ∗S+ ⊆ F ∗S . �

Given Lemma 5.11, we shall henceforth denote the least element of any Leibniz
class of an S+-filter, whether considered over S or S+, simply by F ∗. Nonetheless,
we shall still have to distinguish between the Suszko filters over these two logics,
and we shall do this by explicitly referring to the underlying logic, i.e., using F Su

S
and F Su

S+ . This situation is somehow similar to the one we find in the Leibniz and
Suszko operators, where the later is dependent on the logic, which is reflected in
the notation ∼

ΩS , as opposed to Ω.

Corollary 5.12. For every A, Fi∗SA = Fi∗S+A.

Proof. Let F ∈ Fi∗SA. Then, F ∈ FiS+A and moreover F = F ∗S = F ∗S+ .
Conversely, let F ∈ Fi∗S+A. Then, F ∈ FiSA and moreover F = F ∗S+ = F ∗S . �
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5.2. Leibniz/Suszko S-filters vs. S+-filters

Following [37], we want to answer the question: When are the S+-filters on
an arbitrary algebra exactly the Leibniz S-filters on it? Actually, in our general
setting, it is also reasonable to ask: When are the S+-filters on an arbitrary algebra
exactly the Suszko S-filters on it? The answer for protoalgebraic logics is given in
[37, Theorem 19]. Based on this result, two natural conjectures arise. The first
is that for any logic S, S+ is truth-equational if and only if for every algebra A
the S+-filters of A are exactly the Leibniz S-filters of A. The second is that S+ is
truth-equational if and only if for every algebra A the S+-filters of A are exactly
the Suszko S-filters of A. We record these conjectures here for future reference.

Conjecture A. Let S be a logic. The following conditions are equivalent:
(i) FiS+A = Fi∗SA, for every algebra A;
(ii) S+ is truth-equational.

Conjecture B. Let S be a logic. The following conditions are equivalent:
(i) FiS+A = FiSu

S A, for every algebra A;
(ii) S+ is truth-equational.

One of each implications above is easily seen to be true. In the case of Conjec-
ture B, it always holds (ii)⇒ (i).

Proposition 5.13. If, for every algebra A, FiS+A = FiSu
S A, then S+ is truth-

equational.

Proof. Let A arbitrary. By Proposition 5.10, FiSu
S A ⊆ FiSu

S+A. Hence, under
the hypothesis, every S+-filter of A is an S+-Suszko filter of A. It follows by
Theorem 2.30 that S+ is truth-equational. �

A counter-example to the converse of Proposition 5.13 is the Lukasiewicz’s
infinite valued logic preserving degrees of truth. We shall see in due time that Ł≤∞
satisfies that, for every A, ΩA : Fi∗

Ł≤∞
A→ ConAlg∗(Ł≤∞)A is an order-isomorphism

(see Proposition 7.60). Now, if the converse implication of Proposition 5.13 were
true, then ΩA : FiSu

Ł≤∞
A → ConAlg∗(Ł≤∞)A would be an order-isomorphism, for

every A. But this condition is equivalent to protoalgebraicity, by Theorem 3.8, and
it is known that Ł≤∞ is not protoalgebraic [35, Theorem 3.11]. We conclude that
Conjecture B is false.

As to Conjecture A, it always holds (i)⇒ (ii).

Proposition 5.14. If S+ is truth-equational, then FiS+A = Fi∗SA, for every
algebra A.

Proof. Let A arbitrary. Under the hypothesis, it follows by Theorem 2.30 that
FiS+A = FiSu

S+A. But, FiSu
S+A ⊆ Fi∗S+A = Fi∗SA, using Corollary 5.12. Thus,

FiS+A ⊆ Fi∗SA. The converse inclusion holds in general. �

We are left with the converse implication of Proposition 5.14. In general, as-
suming the S-filters of an arbitrary algebra to be exactly the Leibniz S-filters of that
same algebra, is equivalent to the order reflecting property of the Leibniz operator
over the S-filters (Proposition 5.15). In particular, applied to the logic S+:

Proposition 5.15. Let S be a logic. The following conditions are equivalent:
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(i) FiS+A = Fi∗SA, for every A;
(ii) The Leibniz operator ΩA is order reflecting on FiS+A, for every A.

Proof. Since Fi∗SA = Fi∗S+A, for every A, by Lemma 5.12, the result follows
from Proposition 2.11. �

But Raftery has proved that truth-equationality is equivalent to the completely
order reflecting property of the Leibniz operator. In fact, the logic S presented
in [55, Example 2] is a counter-example to the converse of Proposition 5.14. As
we have seen already on page 56, the Leibniz operator is order reflecting over the
S-filters. As a consequence, FiSA = Fi∗SA ⊆ FiS+A ⊆ FiSA, for every algebra
A, using Proposition 2.11 on the first equality. Consequently, Fi∗SA = FiS+A, for
every A. Moreover, S = S+, by Proposition 5.5.4. Nevertheless, Raftery proves
that S is not truth-equational. We conclude that Conjecture A is false as well.

The rest of this section is devoted to investigate two sufficient conditions under
which the conditions in Conjecture A are indeed equivalent. The first condition is
imposed on the logic S+, and it is therefore of a more theoretical interest rather
than of a practical usage, since we usually do not know a priori how does the strong
version of a given logic S behaves. The second condition however is imposed on
the logic S, and it will not only be very useful in Chapter 7, but also appears often
enough to justify an abstract study of it.

Let us start by proving that requiring S+ to be protoalgebraic suffices to fill
the gap between the property of being order reflecting and that of being completely
order reflecting of the Leibniz operator on the S+-filters. Of course, under this
assumption, trivially S+ is truth-equational if and only if it is weakly algebraizable.

Proposition 5.16. Let S be a logic in a countable language. If S+ is protoalgebraic,
then the following conditions are equivalent:
(i) FiS+A = Fi∗SA, for every A;
(ii) T hS+ = T h∗S;
(iii) S+ is weakly algebraizable;
(iv) S+ is truth-equational;
(v) For every A, Fi∗SA is closed under intersections.

Proof. (i)⇒ (ii): Trivial.
(ii)⇒ (iii): The Leibniz operator is always injective over Leibniz filters. So, under
the hypothesis, the Leibniz operator ΩFm : T hS+ → ConAlg(S+)Fm is injective.
Since it is also surjective (always) and order-preserving (by hypothesis), it follows
by [25, Theorem 4.8] that S+ is weakly algebraizable.
(iii)⇒ (iv): This holds by definition.
(iv) ⇒ (v): If S+ is truth-equational, then for every A, FiS+A = FiSu

S+A,
by Theorem 2.30. Moreover, since S+ is protoalgebraic by hypothesis, for ev-
ery A, FiSu

S+A = Fi∗S+A = Fi∗SA, using Corollary 5.12. Thus, for every A,
FiS+A = Fi∗SA, and hence Fi∗SA is closed under intersections.
(v) ⇒ (i): Since S+ is protoalgebraic by hypothesis, for every A, FiSu

S+A =
Fi∗S+A = Fi∗SA, using Corollary 5.12. Let κ be the cardinal of S. Consider
the class of matrices

M = Matr∗(S) = {〈A, F 〉 : A an algebra, F ∈ Fi∗SA}
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as a class of first-order structures. Notice that M is closed under images and
inverse images by strict surjective homomorphisms, by Proposition 2.14. Also, by
assumption, the family Fi∗SA is closed under intersections and, by Lemma 2.28,
it is closed under κ-directed families. It follows by [26, Theorem 3] that M is
closed under substructures and κ-reduced products. Finally, M contains all trivial
matrices. Since `M = `S+ , it follows by Czelakowski’s Theorem 0.34 that M =
Matr(S+). Thus, Fi∗SA = FiS+A, for every A. �

Proposition 5.16 generalizes [37, Theorem 19], because if S is protoalgebraic,
then so is S+. An example that is now captured (and that wasn’t previously)
is Lukasiewicz’s infinite valued logic preserving degrees of truth. For Ł≤∞ is not
protoalgebraic, but its strong version, which is Lukasiewicz’s infinite valued logic
Ł1
∞, is so.

Next, we move on to the second sufficient condition, this time upon the original
logic S, making the conditions in Conjecture A equivalent. We shall henceforth say
that a given logic S enjoys property (?) if and only if

∀A ∈ Alg(S) ΩA : Fi∗SA→ ConAlg∗(S)A is an order isomorphism. (?)

That (?) holds for any protoalgebraic logic was shown in Proposition 3.1. That
(?) is strictly weaker than protoalgebraicity is witnessed by Lukasiewicz’s infinite
valued logic preserving degrees of truth Ł≤∞, as we will se in Section 7.4.

We have already seen that (?) can be extended to arbitrary algebras (Propo-
sition 3.2); and that (?) implies Alg∗(S) = Alg(S) (Lemma 3.3). But in fact, the
classes of algebras associated with S+ also collapse into these two under the prop-
erty (?).

Lemma 5.17. If a logic S satisfies (?), then Alg(S+) = Alg∗(S+) = Alg∗(S) =
Alg(S).

Proof. The inclusion Alg∗(S+) ⊆ Alg∗(S) holds in general, since S+ is an exten-
sion of S. As for the converse inclusion, letA ∈ Alg∗(S). Then, idA ∈ ConAlg∗(S)A.
It follows by hypothesis that idA = ΩA(G), for some G ∈ Fi∗SA ⊆ FiS+A. Hence,
Alg∗(S) ⊆ Alg∗(S+). Next, under our hypothesis, we know by Lemma 3.3 that
Alg(S) = Alg∗(S). Then, Alg(S) = Alg∗(S) = Alg∗(S+) ⊆ Alg(S+). Finally, the
inclusion Alg(S+) ⊆ Alg(S) holds in general, again because S+ is an extension of
S. �

Notice that Lemma 5.17 might be useful for testing if a given logic satisfies
condition (?).

Proposition 5.18. Let S be a logic satisfying (?). For every A and every F ∈
FiSA,

ΩA(F ) = ΩA(F ∗),
and

∼
ΩA
S (F ) = ΩA(F Su

S ).

Proof. First of all, recall that the property (?) lifts to arbitrary algebras, by
Proposition 3.2. So, let A arbitrary. Given F ∈ FiSA, there exists G ∈ Fi∗SA
such that ΩA(F ) = ΩA(G), by (?). Hence, JF K∗ = JGK∗ and therefore F ∗ =
G∗ = G. Next, we know that Alg∗(S) = Alg(S), by Lemma 3.3. So, since
∼
ΩA
S (F ) ∈ ConAlg(S)A, it follows by hypothesis that there exists H ∈ Fi∗SA
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such that ∼
ΩA
S (F ) = ΩA(H). As a consequence, JF KSu = JHK∗, and therefore

F Su
S = H∗ = H. The result now follows. �

Recall that if S is protoalgebraic, then it satisfies property (?). Moreover,
the Leibniz and Suszko operators coincide, and F Su

S = F ∗, for every A and every
F ∈ FiSA. Hence, the identities in Propositions 5.18 collapse into one. Another
immediate consequence of these two propositions is the following:

Corollary 5.19. A logic satisfying (?) is protoalgebraic if and only if its Leibniz
and Suszko filters coincide.

Proof. Necessity should be clear. As to sufficiency, assume that the Leibniz filters
and Suszko filters coincide on arbitrary algebras. As a consequence, for every A,
F Su is a Suszko filter of A, for it is always a Leibniz one. It follows by Lemma 2.25
and the assumption that, for every F ∈ FiSA, F Su

S is the largest Leibniz filter
below F . But, F Su

S ⊆ F ∗ ⊆ F . Hence, necessarily F Su
S = F ∗. It now follows by

Proposition 5.18 that for every A and every F ∈ FiSA,
∼
ΩA
S (F ) = ΩA(F Su

S ) = ΩA(F ∗) = ΩA(F ).

Thus, S is protoalgebraic by Proposition 2.5. �

As we have advanced already, property (?) makes the two conditions in Con-
jecture A equivalent. We now proceed to prove this fact (Proposition 5.21). To this
end, let us first see that the property (?) is inherited by the strong version S+.

Lemma 5.20. If S satisfies property (?), then so does S+.

Proof. Just notice that Fi∗S+A = Fi∗SA for every A, by Corollary 5.12, and
moreover Alg∗(S) = Alg∗(S+), by Lemma 5.17. �

Proposition 5.21. Let S be a logic satisfying (?). The following conditions are
equivalent:
(i) FiS+A = Fi∗SA, for every A;
(ii) T hS+ = T h∗S;
(iii) S+ is weakly algebraizable;
(iv) S+ is truth-equational;
(v) Truth is implicitly definable in Mod∗(S+).

Proof. (i)⇒ (ii) Trivial.
(ii) ⇒ (iii): Our hypothesis, together with property (?) and Lemma 5.17, gives
us that the Leibniz operator ΩFm : T hS+ → ConAlg∗(S+)Fm is an order isomor-
phism. Thus, S+ is weakly algebraizable, by [25, Theorem 4.8].
(iii)⇒ (iv) and (iv)⇒ (v): These implications hold in general.
(v) ⇒ (i): Let A arbitrary and F ∈ FiS+A. Fix B := A/ΩA(F ). Let π :
A → B be the canonical map. Since Kerπ = ΩA(F ) ⊆ ΩA(F ∗), Kerπ is com-
patible with both F and F ∗. Consequently, F = π−1πF and F ∗ = π−1πF ∗;
moreover, since both F, F ∗ ∈ FiS+A, also πF, πF ∗ ∈ FiS+B. Now, it follows
by Corollary 1.40 that πF ∗ = (πF )∗. Notice that S+ satisfies property (?),
by Lemma 5.20. Therefore, it follows by Proposition 5.18 applied to S+ that
ΩB(πF ) = ΩB

(
(πF )∗

)
= ΩB(πF ∗). Moreover, ΩB(πF ) = idB, by Lemma 1.45.

So, both 〈B, πF 〉, 〈B, πF ∗〉 ∈ Mod∗(S). It follows by assumption that πF = πF ∗.
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Finally, F = π−1πF = π−1πF ∗ = F ∗. Therefore, FiS+A ⊆ Fi∗SA, for every A.
The converse inclusion holds in general. �

Once again, Proposition 5.21 generalizes [37, Theorem 19], since every protoal-
gebraic logic satisfies property (?).

5.3. Full g-models of S+

We next characterize the full g-models of the strong version S+ in terms of
those of S.

Proposition 5.22. Let S be a logic. Then C ⊆ FiS+A is a full g-model of S+ if
and only if there exists a full model D ⊆ FiSA of S such that C = D ∩ FiS+A.
In other words,

FGMod(S+) = {〈A,C ∩ FiS+A〉 : 〈A,C 〉 ∈ FGMod(S)}.

Proof. Let C ⊆ FiS+A a full g-model of S+. Take D = {F ∈ FiSA : ∼
ΩA(C ) ⊆

ΩA(F )}. Clearly, C ⊆ D ∩ FiS+A, because FiS+A ⊆ FiSA. Conversely, let
F ∈ D ∩ FiS+A. Since F ∈ D , ∼

ΩA(C ) ⊆ ΩA(F ). Since F ∈ FiS+A and
C ⊆ FiS+A is a full g-model of S+ by hypothesis, it follows that F ∈ C . Finally,
we show that D is a full g-model of S. Let G ∈ FiSA such that ∼

ΩA(D) ⊆ ΩA(G).
Notice that

∼
ΩA(C ) ⊆

⋂
F∈D

ΩA(F ) = ∼
ΩA(D) ⊆ ΩA(G).

Hence, G ∈ D . To prove the converse implication, let D ⊆ FiSA be a full g-model
of S such that C = D ∩FiS+A. First of all, notice that D ∩FiS+A 6= ∅, because⋂

D ∈ D (since D is a closure system) and moreover
⋂

D ∈ Fi∗SA ⊆ FiS+A

(since the least element of a full g-model of S is always a Leibniz S-filter). Now,
let G ∈ FiS+A such that ∼

ΩA(D ∩ FiS+A) ⊆ ΩA(G). Then,
∼
ΩA(D) ⊆ ∼

ΩA(D ∩ FiS+A) ⊆ ΩA(G).

Since D is a full g-model of S and G ∈ FiS+A ⊆ FiSA, it follows that G ∈ D . So,
G ∈ D ∩ FiS+A. Thus, D ∩ FiS+A is a full g-model of S+. �

If the logic S and its strong version S+ share the same algebraic counterpart,
that is Alg(S) = Alg(S+), and bearing in mind Corollary 2.3, then for every algebra
A the lattice of the full models of S on A and the lattice of the full models of S+

on A are isomorphic, because both are isomorphic to the lattice of congruences
ConAlg(S)A. Furthermore, the isomorphism has a nice and natural description.

Proposition 5.23. Let S be a logic such that Alg(S) = Alg(S+). For every A and
all full g-models C , C ′ of S on A, if C ∩ FiS+A = C ′ ∩ FiS+A, then C = C ′.

Proof. Let A arbitrary. Under the assumption, ConAlg(S)A = ConAlg(S+)A. Hav-
ing in mind Corollary 2.3, the poset of full-models of S on A is order isomorphic
to the poset of full-models of S+ on A, under the map D 7→ D := {F ∈ FiS+A :
∼
ΩA(D) ⊆ ΩA(F )}— this map is in fact the composition of two isomorphisms D

α7→
∼
ΩA(D) β7→ D , where α(D) := ∼

ΩA(D) and β(θ) := {F ∈ FiS+A : θ ⊆ ΩA(F )},
for every full g-model D ⊆ FiSA and every θ ∈ ConAlg(S+)A. Now, let C , C ′ be
two full g-models of S on A. Assume C ∩ FiS+A = C ′ ∩ FiS+A. We claim that
C = C ∩ FiS+A. Let F ∈ C . Then, F ∈ FiS+A and ∼

ΩA(C ) ⊆ ΩA(F ). Since
C is a full g-model of S, it follows that F ∈ C . Hence, F ∈ C ∩ FiS+A. We
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have established that C ⊆ C ∩ FiS+A; the converse inclusion should be clear. So,
C = C ∩ FiS+A = C ′ ∩ FiS+A = C ′. Next, we claim that ∼

ΩA(C ) = ∼
ΩA(C ).

Since C is a full g-model of S+, we have C = {F ∈ FiS+A : ∼
ΩA(C ) ⊆ ΩA(F )}.

So, β ∼
ΩA(C ) = β(α(C )) = C = β

∼
ΩA(C ). Since β is injective, it follows that

∼
ΩA(C ) = ∼

ΩA(C ). Similarly, ∼
ΩA(C ′) = ∼

ΩA(C ′). Hence,
∼
ΩA(C ) = ∼

ΩA(C ) = ∼
ΩA(C ′) = ∼

ΩA(C ′).

It now follows by Proposition 2.4 that C = C ′. �

A corollary of the two previous propositions is:

Corollary 5.24. Let S be a logic such that Alg(S) = Alg(S+). For every algebra
A, the set of all full g-models of S on A is order isomorphic to the set of all full
g-models of S+ on A, both sets ordered under inclusion. The isomorphism is given
by the map C 7→ C ∩ FiS+A.

It is also natural to consider the special full S+-models of the form of some
Leibniz or Suszko S+-class. But one must carefully distinguish between Leibniz, or
Suszko, classes, when taken over S and S+. In general, the later are contained in
the former. Indeed,

JF K∗S+ = {G ∈ FiS+A : ΩA(F ) ⊆ ΩA(G)}
⊆ {G ∈ FiSA : ΩA(F ) ⊆ ΩA(G)}
= JF K∗S .

and, since ∼
ΩS(F ) = ∼

ΩA
(
(FiSA)F

)
⊆ ∼
ΩA

(
(FiS+A)F

)
= ∼
ΩA
S+(F ),

JF KSu
S+ = {G ∈ FiS+A : ∼

ΩA
S+(F ) ⊆ ΩA(G)}

⊆ {G ∈ FiSA : ∼
ΩA
S (F ) ⊆ ΩA(G)}

= JF KSu
S .

The following two lemmas summarise the situation.

Lemma 5.25. Let S be a logic and S ′ one of its extensions. Then for every algebra
A and every S ′-filter F of A,

JF K∗S′ = JF K∗S ∩ FiS′A and JF KSu
S′ ⊆ JF KSu

S ∩ FiS′A.

In particular, for every F ∈ FiS+A, JF K∗S+ = JF K∗S ∩FiS+A and JF KSu
S+ ⊆ JF KSu

S ∩
FiS+A.

Proof. The equality is obvious from the definitions. The inclusion follows from
the fact that ∼

ΩA
S (F ) ⊆ ∼

ΩA
S′(F ). �

Lemma 5.26. If F ∈ FiSu
S A, then JF KSu

S+ = JF KSu
S ∩ FiS+A.

Proof. If F ∈ FiSu
S A, then JF KSu

S = (FiSA)F , by Lemma 2.21.5. Moreover, since
F =

⋂
JF KSu
S and JF KSu

S+ ⊆ JF KSu
S , it must be the case F =

⋂
JF KSu
S+ (because F

is also an S+-filter). That is, F ∈ FiSu
S+A. So, JF KSu

S+ = (FiS+A)F , again by
Lemma 2.21.5. Thus,

JF KSu
S+ = (FiS+A)F = (FiSA)F ∩ FiS+A = JF KSu

S ∩ FiS+A.

�



CHAPTER 6

Definability of Leibniz filters

We have already mentioned that placing S inside the Leibniz hierarchy, either
makes S+ collapse into S (assuming S truth-equational), or makes our study con-
verge with the one in [37] (assuming S protoalgebraic). In order to establish general
results which allow us to encompass a wealth of non-protoalgebraic examples, we
shall need to impose some condition(s) over S, but one(s) necessarily weaker than
protoalgebraicity, and/or weaker than truth-equationality. We will do this through
three definability criteria of the Leibniz filters of S — explicit, logical, and equa-
tional definability — , all of which weaker conditions than truth-equationality, as
well as through property (?), which we have seen already to be a weaker condition
than protoalgebraicity.

6.1. Leibniz filters equationally definable

In this section we shall consider a new definability criterion for Leibniz filters.
One might say it is an equational analogous to the explicit definability of Leibniz
filters considered in [37].

Truth-equational logics are characterized by the existence of a set of equations
τ (x) ⊆ EqL such that for every A and every F ∈ FiSA, F = {a ∈ A : τ (a) ⊆
ΩA(F )}, that is, by the existence of a set of equations τ (x) that defines the fil-
ters of the logic out of their Leibniz congruence in the way just described (see
Proposition 0.43). We will consider this kind of definability of filters enjoyed by
truth-equational logics but only for the Leibniz filters and study properties that
follow from having the Leibniz filters defined in this way.

Definition 6.1. A logic S has its Leibniz filters equationally definable, if there
exists a set of equations τ (x) ⊆ EqL such that, for every A and every F ∈ FiSA,

F ∗ = {a ∈ A : τA(a) ⊆ ΩA(F )}.

Note that if S has its Leibniz filters equationally definable, then for every A
and every F ∈ FiSA, F is a Leibniz S-filter if and only if F = {a ∈ A : τA(a) ⊆
ΩA(F )}. This justifies the name. But our definition provides a definition of the
Leibniz filter associated with a filter of the logic out of the Leibniz congruence of
the later one.

All truth-equational logics have their Leibniz filters equationally definable be-
cause these logics have all the logical filters equationally definable. But the property
for a logic of having its Leibniz filters equationally definable is strictly weaker than
truth-equationality, as it will be witnessed by any of the logics studied in Chapter 7.

Proposition 6.2. Let S be a logic with its Leibniz filters equationally definable.
For every A, Fi∗SA is closed under intersections of arbitrary families. Henceforth,
Fi∗SA is a closure system.

105
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Proof. Let {Fi : i ∈ I} ⊆ Fi∗SA. We know that
⋂
i∈I Fi ∈ FiSA. Moreover,⋂

i∈I Fi =
⋂
i∈I F

∗
i

=
⋂
i∈I{a ∈ A : τA(a) ⊆ ΩA(Fi)}

⊆ {a ∈ A : τA(a) ⊆ Ω(
⋂
i∈I Fi)}

=
(⋂

i∈I Fi
)∗,

using our hypothesis twice and the fact that
⋂
i∈I Ω(Fi) ⊆ Ω(

⋂
i∈I Fi). The con-

verse inclusion holds in general. �

If S has its Leibniz filters equationally definable, not only for every algebra A
the set Fi∗SA is a closure system; it is, as we will see in Corollary 6.9, the closure
system FiS+A.

The next characterization of when a logic has its Leibniz filters equationally
definable restricts the condition in Definition 6.1 to the algebras in Alg∗(S).

Proposition 6.3. Let S be a logic. Then S has its Leibniz filters equationally
definable if and only if there is a set of equations τ (x) ⊆ EqL such that for every
A ∈ Alg∗(S) and every F ∈ FiSA, F ∗ = {a ∈ A : τA(a) ⊆ ΩA(F )}.

Proof. The implication from left to right follows from the definition. Assume
there is a set of equations τ (x) ⊆ EqL such that for every A ∈ Alg∗(S) and
every F ∈ FiSA, F ∗ = {a ∈ A : τA(a) ⊆ ΩA(F )}. Let A be arbitrary and let
F ∈ FiSA. Let in addition B := A/ΩA(F ) and π : A → B the canonical map.
By Corollary 1.40, πF ∗ = (πF )∗ and this set is the least S-filter of B. Moreover
B ∈ Alg∗(S). From the assumption it follows that

(πF )∗ = {π(a) : a ∈ A, τB(π(a)) ⊆ ΩB(πF )}

= {π(a) : a ∈ A, τB(π(a)) ⊆ idB}.

Thus we have, a ∈ F ∗ if and only if π(a) ∈ πF ∗ = (πF )∗ if and only if τB(π(a)) ⊆
idB if and only if τA(a) ⊆ Kerπ = ΩA(F ). �

Note that the proof above also works if we take the class of algebras Alg(S)
instead of Alg∗(S), because the first is include d in the second. A more interesting
result is the following.

Proposition 6.4. Let S be a logic. For any set of equations τ (x) ⊆ EqL, the
following conditions are equivalent:
(i) S has its Leibniz filters equationally definable by τ .
(ii) For every A ∈ Alg∗(S), τA is the least S-filter of A.
(iii) For every A ∈ Alg(S), τA is the least S-filter of A.

Proof. (i) ⇒ (iii): Assume that S has its Leibniz filters equationally definable
by τ (x). Let A ∈ Alg(S) and let F be its least S-filter. This S-filter is Leibniz.
Note now that τA(τA) ⊆ idA ⊆ ΩA(F ). Therefore the assumption implies that
τA ⊆ F . Now let a ∈ F . Then, since F is the least S-filter of A, for every
G ∈ FiSA, a ∈ G∗ and therefore the assumption implies that τA(a) ⊆ ΩA(G).
Hence, τA(a) ⊆ ∼

ΩA(FiSA) = idA. Thus, a ∈ τA.
(iii)⇒ (ii): This is immediate since Alg∗(S) ⊆ Alg(S).
(ii) ⇒ (i): Assume that for every A ∈ Alg∗(S), τA is the least S-filter of A. Let
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A be arbitrary and let F ∈ FiSA. Consider the algebra B := A/ΩA(F ) and
the canonical quotient map π : A → B. Then B ∈ Alg∗(S). By Corollary 1.40,
πF ∗ = (πF )∗ and it is the least S-filter of B. From the assumption we have
πF ∗ = τB. Then, a ∈ F ∗ if and only if π(a) ∈ πF ∗ = τB if and only if
τB(π(a)) ⊆ idB if and only if τA(a) ⊆ Kerπ = ΩA(F ). �

Compare Proposition 6.4 with Lemma 4.25. Assuming S+ truth-equational
with a set of defining equations τ only gives us that τA is the least S-filter of A,
for every A ∈ Alg(S+). And recall, Alg(S+) ⊆ Alg(S). The key point here is that
equational definability of Leibniz filters extends this property to the larger class
Alg(S).

Next, we exhibit a large family of logics having its Leibniz filters equationally
definable.

Proposition 6.5. If S is a semilattice-based logic with theorems, then its Leibniz
filters are equationally definable by τ (x) = {x ≈ >(x)}, with >(x) ∈ ThmS .

Proof. First, recall from the preliminaries (see page 27) that if S is a semilattice-
based logic with theorems, then every theorem of S is interpreted as the maximum
element for each algebra in K. Let > ∈ ThmS . We can assume, without loss of
generality, that > has at most one variable, say x ∈ Var. Since S is a semilattice-
based logic with theorems, for every A ∈ Alg(S), FiSA = FiltA, and hence the
least S-filter of A is {>A}. Thus,

⋂
FiSA = τA, with τ (x) = {x ≈ >(x)}. The

result now follows by Proposition 6.4. �

Since not all logics covered in Chapter 7 will be semilattice-based, we state yet
another sufficient condition to cope with the remaining logics.

Proposition 6.6. If S+ is truth-equational with a set of defining equations τ and
Alg(S) = Alg(S+), then S has its Leibniz filters equationally definable by τ .

Proof. Let A ∈ Alg(S). We show that τA is the least S-filter of A. Then
Proposition 6.4 implies the result. From the assumption follows that A ∈ Alg(S+).
Then since S+ is truth-equational with a set of defining equations τ , we have that
τA is the least S+-filter of A. But by Lemma 5.7, the least S+-filter of A equals
the least S-filter of A. Hence we obtain the desired conclusion. �

We now wish to prove that, under the assumption of equational definability
of Leibniz S-filters, the logic S+ is truth-equational (Corollary 6.8). The next
theorem, though it may seem slightly off the topic, turns out to provide the right
setting to the establish goal we are after.

Theorem 6.7. If S is a logic with its Leibniz filters equationally definable by τ (x) ⊆
EqL, then all the classes Alg∗(S+), Alg(S+), Alg∗(S) and Alg(S) are a τ -algebraic
semantics for S+.

Proof. Let K be any of the classes Alg∗(S) and Alg(S). We know by Proposi-
tion 5.4 that S+ is the logic induced by the class of matrices {〈A,

⋂
FiSA〉 : A ∈

K}. But
⋂
FiSA = τA, for every A ∈ K, by Proposition 6.4. Hence, S+ is com-

plete w.r.t. a matrix semantics where truth is equationally definable by τ . It follows
by [15, Theorem 2.3] that K is a τ -algebraic semantics for S+. As for the classes
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Alg∗(S+) and Alg(S+), just observe that, under the hypothesis, the Leibniz S+-
filters are also equationally definable by τ , using Lemma 5.11. Since (S+)+ = S+,
by Corollary 5.8, we can apply the proof just done to the logic S+. �

As a consequence, given a logic S with its Leibniz filters equationally definable
by τ , Alg(S) is a τ -algebraic semantics for S if and only if S = S+. In particular,
since all the examples covered in Chapter 7 will have its Leibniz filters equationally
definable by some τ , and none of them coincide with its own strong version, Alg(S)
will not be a τ -algebraic semantics for each such S.

An important consequence of Theorem 6.7 is that the equational definability
of the Leibniz filters of S suffices to ensure the equational definability of (all) S+-
filters, under the same set of equations. That is,

Corollary 6.8. If S is a logic that has its Leibniz filters equationally definable by
τ (x) ⊆ EqL, then S+ is truth-equational with a set of defining equations τ .

Proof. Let A arbitrary and F ∈ FiS+A. Let a ∈ F . Since S+ has a τ -algebraic
semantics by Theorem 6.7, it follows by Proposition 0.32 that τ (F ) ⊆ ∼

ΩA
S+(F ) ⊆

ΩA(F ). So, τ (a) ⊆ ΩA(F ). Conversely, let a ∈ A such that τ (a) ⊆ ΩA(F ).
Since F ∈ FiS+A ⊆ FiSA, it follows by hypothesis that a ∈ F ∗ ⊆ F . Thus,
F = {a ∈ A : τ (a) ⊆ ΩA(F )}. It follows by Proposition 0.43 that S+ is truth-
equational with a set of defining equations τ . �

Notice that Proposition 6.6 establishes a sufficient condition for the converse
to hold.

Corollary 6.9. If S is a logic with its Leibniz filters equationally definable, then
FiS+A = Fi∗SA, for every A.

Proof. It follows by Corollary 6.8 and Proposition 5.14. �

An immediate consequence of Corollary 6.8 is that, if S has its Leibniz filters
equationally definable by the set of equations τ (x) = {x ≈ >}, where > is a
constant term of Alg(S), then the strong version S+ is the {x ≈ >}-assertional
logic of Alg(S). Let us record this fact:

Corollary 6.10. If S is a logic with its Leibniz filters equationally definable by
τ (x) = {x ≈ >}, where > is a constant term of Alg(S), then S+ is an assertional
logic. Moreover,

`S+= �>Alg∗(S)= �>Alg(S) .

Proof. Under the hypothesis, Alg(S+) is a {x ≈ >}-algebraic semantics for S+,
by Theorem 6.7. The result follows by [4, Theorem 7]. The identities follow imme-
diately by Theorem 6.7 and the equational set of equations involved. �

Given Proposition 6.5, we can already summarise the situation for the majority
of the examples studied in Chapter 7.

Corollary 6.11. If S is a semilattice-based logic with theorems, then:
1. S+ is an assertional logic; in particular, S+ is truth-equational.
2. `S+= �>Alg∗(S)= �>Alg(S).
3. For every A, FiS+A = Fi∗SA.
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Our next goal is to arrive at a general characterization of F Su
S in terms of the

Leibniz S-filters extending F , for arbitraryA and F ∈ FiSA, under the assumption
of equational definability of Leibniz filters (Corollary 6.13).

Let S be a logic with Leibniz filters equationally definable by τ . Since for
every A and every F ∈ FiSA, F Su

S is always a Leibniz S-filter (having in mind
Proposition 2.9, and the fact F Su

S is by definition the least element of the S-full
model JF KSu

S ), definability of Leibniz filters immediately implies that F Su
S = {a ∈

A : τA(a) ⊆ ΩA(F Su
S )}. But as it turns out, for these special Leibniz S-filters,

a different equational characterization is also valid, this time using the Suszko
operator.

Proposition 6.12. Let S be a logic with its Leibniz filters equationally definable,
say by τ (x) ⊆ EqL. For every A, every F ∈ FiSA and every a ∈ A,

F Su
S = {a ∈ A : τA(a) ⊆ ∼

ΩA
S (F )}.

Proof. Consider the canonical map π : A → A/
∼
ΩA
S (F ). Fix B = A/

∼
ΩA
S (F ) ∈

Alg(S). By Corollary 1.40, πF Su = (πF )Su and it is the least S-filter of B. By
Proposition 6.4, πF Su = τB. Then, a ∈ F Su if and only if π(a) ∈ πF Su = τB if
and only if τB(π(a)) ⊆ idB if and only if τA(a) ⊆ Kerπ = ∼

ΩA
S (F ). �

Corollary 6.13. Let S be a logic with its Leibniz filters equationally definable. For
every A and every F ∈ FiSA,

F Su
S =

⋂
G∈(FiSA)F

G∗.

Proof. Let A arbitrary and F ∈ FiSA. It holds,

a ∈ F Su
S ⇔ τA(a) ⊆ ∼

ΩA
S (F )

⇔ ∀G ∈ (FiSA)F τA(a) ⊆ ΩA(G)
⇔ a ∈

⋂
G∈(FiSA)F G

∗,

using Proposition 6.12 and the hypothesis. �

Corollary 6.14. Let S be a logic with its Leibniz filters equationally definable. For
every A and every F ∈ FiSA, F is a Suszko filter of A if and only if F ⊆ G∗, for
every G ∈ (FiSA)F .

Finally, we consider equational definability of Leibniz filters together with con-
dition (?).

Proposition 6.15. Let S be a logic with its Leibniz filters equationally definable.
The following conditions are equivalent:
(i) S+ satisfies property (?);
(ii) S+ is weakly algebraizable.

Proof. (i)⇒ (ii): By Corollary 5.12 and Corollary 6.9, respectively, for every A,
Fi∗S+A = Fi∗SA = FiS+A. So, by hypothesis, for every A, the Leibniz operator
ΩA : FiS+A → ConAlg∗(S+)A is an order-isomorphism. This implies that S+ is
weakly algebraizable.
(ii)⇒ (i): This holds in general, since every weakly algebraizable logic is protoal-
gebraic, and every protoalgebraic logic satisfies property (?). �
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Corollary 6.16. If S is a logic satisfying (?) and with its Leibniz filters equationally
definable, then S+ is weakly algebraizable.

Proof. Notice that under the assumption, S+ satisfies property (?), by Lemma
5.20. The result now follows by Proposition 6.15. �

6.2. Leibniz filters explicitly definable

Following [37], we now address explicit definability of Leibniz filters by a set
of formulas in at most one variable. We will start by proving that this assumption
taken together with condition (?) actually implies that S is protoalgebraic. Given
that every logic S studied in the examples is non-protoalgebraic, we know a priori
that, either S does not satisfy (?), or it does not have its Leibniz filters explicitly
definable (a non-exclusive disjunction, of course). The main result of the section is
Theorem 6.23, where we will see that explicit definability of Leibniz filters implies
that the Leibniz S-filters on arbitrary algebras coincide with the S+-filters.

Let us start by the following definition from [37, Definition 28] but now ex-
tended to arbitrary logics and to our notion of Leibniz filter:

Definition 6.17. A logic S has its Leibniz filters explicitly definable, if there exists
a set of formulas Γ(x) ⊆ FmL such that, for every A and every F ∈ FiSA,

F ∗ = {a ∈ A : ΓA(a) ⊆ F}.

In practice, we might find an explicit characterization of the Leibniz filters of
S only for algebras in Alg∗(S). But Proposition 6.18 ensures us that it does extend
to arbitrary algebras.

Proposition 6.18. Let S be a logic. Then S has its Leibniz filters explicitly de-
finable if and only if there is a set of formulas Γ(x) ⊆ FmL such that for every
A ∈ Alg∗(S) and every F ∈ FiSA, F ∗ = {a ∈ A : ΓA(a) ⊆ F}.

Proof. The implication from left to right follows from the definition. Assume
there is a a set of formulas Γ(x) ⊆ FmL such that, for every A ∈ Alg∗(S) and
every F ∈ FiSA, F ∗ = {a ∈ A : ΓA(a) ⊆ F}. Let A arbitrary and F ∈ FiSA.
Let π : A → A/ΩA(F ) be the canonical map. Fix B = A/ΩA(F ) ∈ Alg∗(S).
Notice that Kerπ = ΩA(F ) ⊆ ΩA(F ∗). Now, using compatibility arguments,
Corollary 1.40, and the hypothesis, a ∈ F ∗ if and only if π(a) ∈ πF ∗ if and only
if π(a) ∈ (πF )∗ if and only if ΓB(π(a)) ⊆ πF if and only if πΓA(a) ⊆ πF if and
only if ΓA(a) ∈ π−1(πF ) = F . �

A simple observation that will turn out to be quite relevant for proving Theo-
rem 6.23 is that, under the assumption of explicit definability of Leibniz filters, the
map F 7→ F ∗ from FiSA to Fi∗SA is monotonic, for every A.

Lemma 6.19. Let S be a logic with Leibniz filters explicitly definable. For every
A, if F,G ∈ FiSA are such that F ⊆ G, then F ∗ ⊆ G∗.

Proof. It is quite obvious, because if F ⊆ G and a ∈ A is such that ΓA(a) ⊆ F ,
then ΓA(a) ⊆ G. �

Corollary 6.20. Let S be a logic with Leibniz filters explicitly definable. For every
A and every F ∈ FiSA, F ∗ is the largest Leibniz filter below F .
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Proof. Let G ∈ Fi∗SA such that G ⊆ F . Then G = G∗ ⊆ F ∗ ⊆ F and we are
done. �

A consequence of the monotonicity of the map F 7→ F ∗ is the following:

Proposition 6.21. If a logic satisfies condition (?) and has its Leibniz filters ex-
plicitly definable, then it is protoalgebraic.

Proof. Let A arbitrary and F ∈ FiSA. Then,
∼
ΩA
S (F ) =

⋂
G∈(FiSA)F Ω

A(G)
=

⋂
G∈(FiSA)F Ω

A(G∗)
= ΩA(

⋂
G∈(FiSA)F G

∗)
= ΩA(F ∗)
= ΩA(F ),

using Proposition 5.18 (twice), property (?) and Corollary 6.20. The result now
follows by Proposition 2.5. �

By Proposition 6.21, failure of protoalgebraicity must be due to failure of (at
least) one of the two conditions, property (?) or the Leibniz filters being explicitly
definable. These two conditions can fail independently of one another. Indeed,
as we shall see in Chapter 7, Lukasiewicz’s infinite valued logic preserving degrees
of truth Ł≤∞, satisfies condition (?) and does not have its Leibniz filters explicitly
definable (see Proposition 7.60 and Proposition 7.61, respectively); on the other
hand, Positive Modal Logic PML, has its Leibniz filters explicitly definable and
does not satisfy property (?) (see Proposition 7.3.4 and Corollary 7.11, respectively).

Since the map F 7→ F ∗ is monotonic under explicit definability of the Leibniz
filters (Lemma 6.19), the proofs of [37, Proposition 13, Corollary 14] can be repli-
cated under this assumption. We do it in the general setting, without assuming the
language to be countable, something assumed in [37].

Proposition 6.22. Let S be a logic with Leibniz filters explicitly definable.
1. For every A, Fi∗SA is closed under intersections.
2. For every A, Fi∗SA is closed under unions of κ-directed families, where κ is

the cardinal of S.

Proof. 1. Let Γ(x) ⊆ FmL witness the assumption. Let {Fi : i ∈ I} ⊆ Fi∗SA be
a family of Leibniz filters of A. We know that

⋂
i∈I Fi ∈ FiSA. Moreover,⋂

i∈I
Fi =

⋂
i∈I

F ∗i =
⋂
i∈I
{a ∈ A : ΓA(a) ⊆ Fi}

= {a ∈ A : ΓA(a) ⊆
⋂
i∈I

Fi} =
(⋂
i∈I

Fi

)∗
,

using our hypothesis twice.
2. Let {Fi : i ∈ I} ⊆ Fi∗SA be a κ-directed family. First recall that

⋃
i∈I Fi

is an S-filter. Hence, it is necessarily the supremum
∨
i∈I Fi. To prove that

it is a Leibniz S-filter, notice that since the map F 7→ F ∗ is monotone under
the assumption of explicit definability of the Leibniz filters, and Fi ⊆

⋃
i∈I Fi, it

holds Fi = F ∗i ⊆ (
⋃
i∈I Fi)∗. Hence (

⋃
i∈I Fi)∗ =

⋃
i∈I Fi. Therefore,

⋃
i∈I Fi =∨

i∈I Fi ⊆ (
⋃
i∈I Fi)∗. The converse inclusion holds in general. �
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Theorem 6.23. Let S be a logic in a countable language and with its Leibniz filters
explicitly definable. For every A,

FiS+A = Fi∗SA.

Proof. Let κ be the cardinal of S. Consider the class of matrices

M = {〈A, F 〉 : A an algebra, F ∈ Fi∗SA}

as a class of first-order structures. The class M is closed under Hs and H−1
s , by

Propositions 2.14. Also, the family Fi∗SA is closed under intersections and κ-
directed families, by Propositions 6.22. It follows by [26, Theorem 3] that M is
closed under substructures and κ-reduced products. Finally, M contains all trivial
matrices. Since `M = `S+ , it follows by Czelakowski’s Theorem 0.34 that M =
Matr(S+). Thus, Fi∗SA = FiS+A, for every A. �

Let Γ(x) be a set of formulas in one variable x. We use the notation x ` Γ(x)
to refer collectively to the set of rules

x ` γ, with γ ∈ Γ(x).

Corollary 6.24. If S is a logic in a countable language with its Leibniz filters
explicitly definable by Γ(x) ⊆ FmL, then S+ is the extension of S by the additional
rules

x ` Γ(x),

Proof. If S has its Leibniz filters explicitly definable, then for every T ∈ T hS, T
is closed under the rules x ` Γ(x) if and only if T = T ∗. Since by Theorem 6.23,
T hS+ = T h∗S, the result follows. �

Not only is property (?) equivalent to S being protoalgebraic under the as-
sumption of explicit definability of Leibniz filters, by Proposition 6.21, but with
Theorem 6.23 at hand, it is also fairly easy to see that it is equivalent to S+ being
protoalgebraic, and even to S+ weakly algebraizable.

Corollary 6.25. Let S be a logic in a countable language with Leibniz filters ex-
plicitly definable. The following conditions are equivalent:
(i) S+ is protoalgebraic;
(ii) S is protoalgebraic;
(iii) S satisfies property (?);
(iv) S+ satisfies property (?);
(v) S+ is weakly algebraizable.

Proof. (i)⇒ (ii): Let A arbitrary and F,G ∈ FiSA such that F ⊆ G. It follows
by Lemma 6.19 that F ∗ ⊆ G∗. Moreover,

ΩA(F ) = ΩA(F ∗) ⊆ ΩA(G∗) = ΩA(G),

using Proposition 5.18 (twice) and the hypothesis. Thus, S is protoalgebraic.
(ii)⇒ (iii): This holds in general, by Proposition 3.1.
(iii)⇒ (iv): This holds in general, by Lemma 5.20.
(iv) ⇒ (v): By Corollary 5.12 and Theorem 6.23, respectively, Fi∗S+A = Fi∗SA =
FiS+A, for every A. So, the Leibniz operator ΩA : FiS+A→ ConAlg∗(S+)A is an
order-isomorphism, for every A. This implies that S+ is weakly algebraizable.
(v)⇒ (i): This holds in general. �
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We end up this section with a result putting together explicit and equational
definability.

Proposition 6.26. If S has its Leibniz filters both explicit and equationally defin-
able, then for every A ∈ Alg(S) and every F ∈ FiSA, F ∗ = F Su

S .

Proof. We know by Lemma 6.19 that for every A and every F,G ∈ FiSA such
that F ⊆ G, it holds F ∗ ⊆ G∗. So, it follows by Corollary 6.13 that for every
A ∈ Alg(S) and every F ∈ FiSA, F Su

S =
⋂
G∈(FiSA)F G

∗ = F ∗. �

Corollary 6.27. If S has its Leibniz filters both explicit and equationally definable,
then for every A ∈ Alg(S), Fi∗SA = FiSu

S A.

Proof. The inclusion FiSu
S A ⊆ Fi∗SA always holds. Let F ∈ FiSu

S A. Then
F = F Su

S . Therefore, by last proposition, F = F Su
S = F ∗. Hence F is a Leibniz

S-filter. �

Note that the corollary implies that if S has its Leibniz filters both explicitly
and equationally definable, then for every A and every F ∈ FiSA, F Su

S is a Suszko
S-filter. For recall, F Su

S is always a Leibniz filter, for every A and every F ∈ FiSA
(although in general, it need not be Suszko filter).

6.3. Leibniz filters logically definable

Finally, we consider yet another type of syntactical definability of Leibniz filters,
called logical definability, which as we will see is a weaker property than the explicit
definability of Leibniz filters. Still, it is enough to guarantee that the Leibniz S-
filters, where S is any logic whose Leibniz filters are logically definable, coincide
with the S+-filters, on arbitrary algebras (Theorem 6.32).

The original motivation behind the following definition is the paragraph after
[37, Definition 28], where the definability of Leibniz filters closed under a set of
logical rules in at most one variable is considered.

Definition 6.28. A logic S has its Leibniz filters logically definable, if there exists
a set of Hilbert-style rules H, such that, for every A and every F ∈ FiSA, F is
Leibniz if and only if F is closed under the rules in H.

Let us first check that explicit definability is indeed a stronger property than
logical definability.

Lemma 6.29. If S has its Leibniz filters explicitly definable by a set of formulas
Γ(x) ⊆ FmL, then S has its Leibniz filters logically definable by the set of rules
x ` Γ(x).

Proof. Assume S has its Leibniz filters explicitly definable by a set of formulas
Γ(x) ⊆ FmL. Let A arbitrary and F ∈ FiSA. If F is a Leibniz filter of A, then
F = F ∗ = {a ∈ F : ΓA(a) ⊆ F}. Clearly then, F is closed under the set of rules
x ` Γ(x). Conversely, if F is closed under the set of rules x `S Γ(x), then for every
a ∈ F , ΓA(a) ⊆ F . So, under the hypothesis, F ⊆ F ∗. Therefore, F is a Leibniz
filter of A. �

The converse is false. That is, logical definability of Leibniz filters does not
imply explicit definability of Leibniz filters. A counter-example will appear in
Section 7.4.
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Similarly to the case of equational and explicit definability of Leibniz filters,
logical definability of Leibniz filters on the class Alg∗(S) suffices to extended the
property to arbitrary algebras.

Proposition 6.30. Let S be a logic. Then S has its Leibniz filters logically definable
if and only if if there exists a set of Hilbert-style rules H, such that, for every
A ∈ Alg∗(S) and every F ∈ FiSA, F is Leibniz if and only if F is closed under
the rules in H.

Proof. Necessity is trivial. As to sufficiency, let A arbitrary and F ∈ FiSA.
The matrices 〈A, F 〉 and 〈A/ΩA(F ), F/ΩA(F )〉 induce the same logic, by Propo-
sition 0.33. Hence, they satisfy the same Hilbert-style rules. In particular, F is
closed under the rules in H if and only F/ΩA(F ) is closed under the rules in H.
Moreover, F is a Leibniz filter of A if and only if F/ΩA(F ) is a Leibniz filter of
A/ΩA(F ), by Corollary 1.39. Altogether, F is a Leibniz filter of A if and only if
F/ΩA(F ) is a Leibniz filter of A/ΩA(F ) if and only if (using the assumption here)
F/ΩA(F ) is closed under the rules in H if and only if F is closed under the rules
in H. �

Next, we wish to find analogous results to Theorem 6.23 and Corollary 6.24,
this time stated with logical definability of Leibniz filters as hypothesis.

Proposition 6.31. Let S be a logic with Leibniz filters logically definable by a set
of Hilbert-style rules, all of which of cardinality < κ.

1. For every A, Fi∗SA is closed under intersections.
2. For every A, Fi∗SA is closed under unions of κ-directed families.

Proof. 1. Let {Fi : i ∈ I} ⊆ Fi∗SA be a family of Leibniz filters of A. We
know that

⋂
i∈I Fi ∈ FiSA. Let 〈Γ, ϕ〉 ∈ H, where H is a set of Hilbert-style rules

witnessing the hypothesis. Let h ∈ Hom(Fm,A) such that h(Γ) ⊆
⋂
i∈I Fi. Since⋂

i∈I Fi ⊆ Fi and Fi is a Leibniz filter, for every i ∈ I, it follows by hypothesis that
h(ϕ) ∈ Fi, for every i ∈ I. Thus, h(ϕ) ∈

⋂
i∈I Fi. We conclude that

⋂
i∈I Fi is

closed under the rules in H. It follows again by hypothesis that
⋂
i∈I Fi is a Leibniz

filter of A.
2. Let {Fi : i ∈ I} ⊆ Fi∗SA be a κ-directed family of Leibniz filters of A. Recall
that

⋃
i∈I Fi is an S-filter (see page 15). To prove that it is a Leibniz S-filter, let

〈Γ, ϕ〉 ∈ H, where H is a set of Hilbert-style rules witnessing the hypothesis. Let
h ∈ Hom(Fm,A) such that h(Γ) ⊆

⋃
i∈I Fi. Then, for each γ ∈ Γ, there exists

jγ ∈ I such that h(γ) ⊆ Fjγ . Since |Γ| < κ and {Fi : i ∈ I} is a κ-directed family,
there exists j ∈ I such that Fjγ ⊆ Fj , for every γ ∈ Γ. Hence, h(Γ) ⊆ Fj . Since Fj
is a Leibniz filter of A, it follows by hypothesis that h(ϕ) ∈ Fj . Necessarily then,
h(ϕ) ∈

⋃
i∈I Fi. We conclude that

⋃
i∈I Fi is closed under the rules in H. It follows

by hypothesis that
⋃
i∈I Fi is a Leibniz filter of A. �

Here arrived, we can mimic the proof of Theorem 6.23, and obtain:

Theorem 6.32. Let S be a logic in a countable language with Leibniz filters logically
definable by a set of Hilbert-style rules. For every A,

FiS+A = Fi∗SA.

We are left to prove an analogous result to Corollary 6.24 for logical definability
of Leibniz filters.
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Corollary 6.33. If S is a logic in a countable language with its Leibniz filters
logically definable by a set of Hilbert-style rules H, then S+ is the extension of S
by the additional rules in H.

Proof. Let S ′ denote the extension of S by the rules in H. On the one hand, S+

extends S and moreover every S+-filter of an arbitrary algebra A is closed under
the rules in H, because FiS+A = Fi∗SA by Theorem 6.32; hence, S ′ ≤ S+. On
the other hand, since S ′ extends S, it holds FiS′A ⊆ FiSA, for every A; since
moreover every S ′-filter is closed under the rules in H, it follows by our hypothesis
that FiS′A ⊆ Fi∗SA ⊆ FiS+A, for every A; therefore, S+ ≤ S ′. �

Notice that Theorem 6.32 generalizes Theorem 6.23 and Corollary 6.33 gener-
alizes Corollary 6.24, in light of Lemma 6.29.





CHAPTER 7

Examples of non-protoalgebraic logics

In this chapter, we study several examples of non-protoalgebraic and non-truth-
equational logics. For each logic considered, we wish to find its strong version, and
characterize its Leibniz and Suszko filters. We shall also apply the definability
results of Chapter 6 to each example. Sometimes the strong version will turn out
to be a well known logic in the literature, while in some cases, at least as far as we
know, a logic not previously considered. In the latter situation, we will classify the
new logic within the Leibniz hierarchy.

A word on notation. In the following, whenever dealing with Suszko filters, we
shall drop the subscript of the underlying logic, as we will always be referring to
Suszko filters over the original logic S and not over its strong version S+. Actually,
since all strong versions covered here will turn out to be truth-equational, there is no
risk of misunderstanding, as every S+-filter is a Suszko S+-filter, by Theorem 2.30.

7.1. Positive Modal Logic

Positive modal Logic, hereby denoted by PML, is the negation-free (or posi-
tive) fragment of the local consequence of the least normal modal logic K, which
corresponds to the local consequence of the class of all Kripke frames, named wK
in [37] (while the global consequence of the class of all Kripke frames is denoted by
sK). For information on PML we address the reader to [28, 50].

Consider the modal language L′ = {∧,∨,→,¬,2,3,>,⊥}, where we assume
the logics wK and sK to be formalized. Consider also the positive fragment of L′,
given by L = {∧,∨,2,3,>,⊥}. It is well-known that the logic wK is equivalential,
witnessed by the set of congruence formulas {2n(p ↔ q) : n ∈ ω}, and that sK
is algebraizable, witnessed by the set of congruence formulas {p ↔ q} and the
set of defining equations {x ≈ >}. Its equivalent algebraic semantics is the class
of (normal) modal algebras NMA. Since the logic wK is protoalgebraic, the pair
wK and sK falls into the scope of [37]. It turns out that (wK)+ = sK and that
Fi∗wKA = FisKA, for every A ∈ NMA. Furthermore, the sK-filters coincide with
the open lattice filters on (normal) modal algebras, i.e., the lattice filters closed
under the interpretation of 2 (see [37, 13ff.], under the notation Kw and Ks).

Our study of the first non-protoalgebraic example PML will follow closely the
study undertaken in [37] of wK and its strong version sK. The intuitive candidates
for both the strong version of PML and the Leibniz PML-filters will be the ones
expected. First, let us introduce the class of algebras which will play the rôle of
normal modal algebras when we restrict ourselves to the positive fragment of wK.

Definition 7.1. An algebra A = 〈A,∧A,∨A,2A,3A, 1, 0〉 is a positive modal
algebra, if 〈A,∧A,∨A, 1, 0〉 is a bounded distributive lattice and 2A,3A are two
unary modal operations satisfying, for every a, b ∈ A:

117
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1. 2A(a ∧A b) = 2Aa ∧A 2Ab; 2. 3A(a ∨A b) = 3Aa ∨A 3Ab;
3. 2Aa ∧A 3Ab ≤ 3A(a ∧A b); 4. 2A(a ∨A b) ≤ 2Aa ∨A 3Ab;
5. 2A1 = 1; 6. 3A0 = 0.

The class of all positive modal algebras will be denoted by PMA. The set of
lattice filters of a positive modal algebra A will be denoted by FiltA. A lattice
filter F of a positive modal algebra A is open if it is closed under 2A. The set of
open lattice filters of A will be denoted by Filt2A.

Notice that distributive lattices, and in particular Boolean algebras, can be
expanded as positive modal algebras. Indeed, given a distributive lattice B we can
define two unary modal operations 2B : B → B and 3B : B → B both as the
identity map on B. The algebra we obtain trivially satisfies all the conditions in
Definition 7.1.

Let us start by collecting some known facts about the logic PML, which can
all be found in [50].

Theorem 7.2.
1. PML is not protoalgebraic.
2. PML is fully selfextensional.
3. PML = S≤PMA.
4. For every A ∈ PMA, FiltA = FiPMLA.
5. Alg∗(PML) ( Alg(PML) = PMA.

In particular, given A ∈ PMA, it follows by 4 above that {1} is the least
PML-filter of A, and hence it is necessarily a Leibniz and Suszko S-filter of A.

Since PML is a semilattice-based logic with theorems, we know in advance
several facts about both PML and PML+.

Proposition 7.3.
1. PML+ is assertional, and PML+ = S>Alg∗(PML) = S>Alg(PML) = S>PMA.
2. For every algebra A, FiPML+A = Fi∗PMLA.
3. PML has its Leibniz filters equationally definable by τ (x) = {x ≈ >}.
4. PML does not satisfy (?).

Proof. Theorem 7.2.3 implies that PML is semilattice-based, hence 1 and 2 follow
by Corollary 6.11. 3 follows by Proposition 6.5. Finally, 4 follows by Lemma 5.17
and Theorem 7.2.5. �

Our next goal is to find an algebraic characterization of the Leibniz PML-filters
on positive modal algebras.

Proposition 7.4. Let A ∈ PMA. Every Leibniz PML-filter of A is an open lattice
filter.

Proof. Let A ∈ PMA. Since PML has its Leibniz filters equationally definable
by τ (x) = {x ≈ >}, if F ∈ Fi∗PMLA, then F = {a ∈ A : 〈a, 1〉 ∈ ΩA(F )}. Let
us see that F is closed under 2A. If a ∈ F , then 〈a, 1〉 ∈ ΩA(F ), and therefore
〈2Aa,2A1〉 ∈ ΩA(F ). Now, since 2A1 = 1 ∈ F , it follows that 2Aa ∈ F . �

We could try to show directly that every open lattice filter is a Leibniz filter
but we will follow a different, quite informative, path. We will show that every
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open lattice filter on a positive modal algebra is also a Suszko filter. Therefore
it will follow that the Leibniz and Suszko PML-filters coincide on positive modal
algebras and that these are precisely the open lattice filters.

Lemma 7.5. Let A ∈ PMA and F ∈ Filt2A. For every a, b ∈ F ,

〈a, b〉 ∈ ∼
ΩA
PML(F ).

Proof. Let F ∈ Filt2A. Since, in particular, it is a lattice filter, F ∈ FiPMLA.
Let a, b ∈ F . Let ϕ(x, z) ∈ FmL and c ∈ A arbitrary. We claim that

ϕA(a, c) ∈ F ′ ⇔ ϕA(b, c) ∈ F ′, (19)

for every F ′ ∈ (FiPMLA)F . The proof goes by induction on ϕ ∈ FmL.
� ϕ(x, z) = x ∈ Var: Let F ′ ∈ (FiPMLA)F . We have ϕA(a, c) = a and
ϕA(b, c) = b. Since both a, b ∈ F ⊆ F ′ by assumption, (19) holds.

� ϕ(x, z) = >: Let F ′ ∈ (FiPMLA)F . We have ϕA(a, c) = 1 and ϕA(b, c) = 1.
Since 1 ∈ F ′, (19) holds trivially.

� ϕ(x, z) = ⊥: Let F ′ ∈ (FiPMLA)F . We have ϕA(a, c) = 0 and ϕA(b, c) = 0.
Since 0 /∈ F ′, (19) holds vacuously.

� ϕ(x, z) = ψ(x, z) ∧ ξ(x, z): The inductive hypothesis tells us that (19) holds
for ψ and ξ. Let F ′ ∈ (FiPMLA)F . Assume ϕA(a, c) ∈ F ′. Since ϕA(a, c) =
ψA(a, c) ∧A ξA(a, c) ≤ ψA(a, c), ξ(a, c), and F ′ is upwards-closed, it follows
that ψA(a, c) ∈ F ′ and ξA(a, c) ∈ F ′. It follows by the inductive hypothesis
that ψA(b, c) ∈ F ′ and ξA(b, c) ∈ F ′. Since F ′ is closed under meets, it
follows that ϕA(b, c) = ψA(b, c) ∧A ξA(b, c) ∈ F ′. Similarly, one proves that
ϕA(b, c) ∈ F ′ implies ϕA(a, c) ∈ F ′.

� ϕ(x, z) = ψ(x, z)∨ξ(x, z): The inductive hypothesis tells us that (19) holds for
ψ and ξ. Let F ′ ∈ (FiPMLA)F . Since PMA is a distributive lattice, it follows
as a consequence of the Prime Filter Theorem 0.4, that every lattice filter of
A is the intersection of the prime lattice filters containing it. In particular,
F ′ =

⋂
{P ∈ PrFiltA : F ′ ⊆ P}. Clearly then, ϕA(a, c) ∈ F ′ if and only

if ϕA(a, c) ∈ P , for every P ∈ (PrFiltA)F ′ , if and only if ψA(a, c) ∈ P or
ξA(a, c) ∈ P , for every P ∈ (PrFiltA)F ′ , if and only if ψA(b, c) ∈ P or
ξA(b, c) ∈ P (using the inductive hypothesis, since F ⊆ F ′ ⊆ P ), for every
P ∈ (PrFiltA)F ′ , if and only if ϕA(b, c) ∈ P , for every P ∈ (PrFiltA)F ′ , if
and only if ϕA(b, c) ∈ F ′.

� ϕ(x, z) = 2ψ(x, z): The inductive hypothesis tells us that (19) holds for ψ.
Let F ′ ∈ (FiPMLA)F . Assume ϕA(a, c) ∈ F ′. Consider

2−1(F ′) = {d ∈ A : 2Ad ∈ F ′}.

Claim. 2−1(F ′) is a lattice filter extending F : Since 2A1 = 1, it holds
1 ∈ 2−1(F ′). Let d, e ∈ 2−1(F ′). Then, 2Ad ∈ F ′ and 2Ae ∈ F ′. Since F ′
is closed under meets, it follows that 2Ad∧A2Ae ∈ F ′. But, 2Ad∧A2Ae =
2A(d∧A e), because A ∈ PMA. So, d∧A e ∈ 2−1(F ′). Now, let d ∈ 2−1(F ′)
and d ≤ e. Then 2Ad ≤ 2Ae, because A ∈ PMA. Since 2Ad ∈ F ′ and F ′
is upwards-closed, it follows that 2Ae ∈ F ′. So, e ∈ 2−1(F ′). Finally, let
d ∈ F . Since F is open, it follows that 2Ad ∈ F . Since F ⊆ F ′, it follows
that 2Ad ∈ F ′. So, d ∈ 2−1(F ′). Thus, F ⊆ 2−1(F ′).
Now, notice that ψA(a, c) ∈ 2−1(F ′), because ϕA(a, c) = 2AψA(a, c) ∈ F ′.
Since2−1(F ′) ∈ (FiSA)F by the Claim, it follows by the inductive hypothesis
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that ψA(b, c) ∈ 2−1(F ′). That is, ϕA(b, c) = 2AψA(b, c) ∈ F ′. Similarly one
proves that ϕA(b, c) ∈ F ′ implies ϕA(a, c) ∈ F ′.

� ϕ(x, z) = 3ψ(x, z): The inductive hypothesis tells us that (19) holds for
ψ. Let F ′ ∈ (FiPMLA)F . Assume ϕA(a, c) ∈ F ′. Suppose, towards a
contradiction, that ϕA(b, c) /∈ F ′. We claim that

ψA(b, c) /∈ FgAS (F,ψA(a, c)).

For if not, let d ∈ F such that d∧AψA(a, c) ≤ ψA(b, c). Notice that 2d ∈ F ⊆
F ′, because F is open. Also, 3A(ψA(a, c)) = ϕA(a, c) ∈ F ′, by assumption.
So, 2Ad ∧A 3A

(
ψA(a, c)

)
∈ F ′, because F ′ is closed under meets. Hence,

2Ad ∧A 3A
(
ψA(a, c)

)
≤ 3A

(
d ∧A ψA(a, c)

)
≤ 3AψA(b, c),

using the fact thatA ∈ PMA and the monotonicity of 3. Since F ′ is upwards-
closed, it follows that ϕA(b, c) = 3AψA(b, c) ∈ F ′, which contradicts our as-
sumption. But then, FgAPML

(
F,ψA(a, c)

)
is lattice filter extending F which

contains ψA(a, c) but does not contain ψA(b, c). This contradicts our induc-
tive hypothesis.

From (19) and Corollary 0.30 it follows that 〈a, b〉 ∈ ∼
ΩA
PML(F ). �

Proposition 7.6. Let A ∈ PMA. Every open lattice filter of A is a Suszko PML-
filter.

Proof. Let A ∈ PMA and F ∈ Filt2A. Let a ∈ F . Since also 1 ∈ F , it follows
by Lemma 7.5 that 〈1, a〉 ∈ ∼

ΩA
PML(F ). Now, since ∼

ΩA
PML(F ) ⊆ ΩA(F Su), and

moreover 1 ∈ F Su (bear in mind that F Su ∈ FiPMLA = FiltA), it follows that
a ∈ F Su. So, F ⊆ F Su. Thus, F is a Suszko filter of A. �

Theorem 7.7. Let A ∈ PMA. The Leibniz and Suszko PML-filters of A coincide
with the open lattice filters of A. That is,

Fi∗PMLA = FiSu
PMLA = Filt2A.

Proof. Just notice that FiSu
PMLA ⊆ Fi∗PMLA ⊆ Filt2A ⊆ FiSu

PMLA, using
Propositions 7.4 and 7.6. �

We next address the explicit definability of the Leibniz PML-filters. Recall that
in general, given an arbitrary logic S, an algebra A, and an S-filter F ∈ FiSA, F Su

S
is a Leibniz filter of A. But in general, F Su

S needs not be a Suszko filter of A, as
witnessed by Example 2.23. However, for the logic PML, it follows by Theorem 7.7
that:

Lemma 7.8. Let A ∈ PMA. For every F ∈ FiPMLA, F Su is a Suszko filter of A.

Let us abbreviate 2A(2A(. . .2Aa) . . .), where the operation 2A appears n
times, with n ∈ N, simply by 2na. Next, it is easy to check that:

Lemma 7.9. Let A ∈ PMA. For every F ∈ FiPMLA, the set

F2 = {a ∈ A : 2na ∈ F , for every n ∈ N}

is the largest open filter included in F .
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Proof. Clearly, 1 ∈ F2, since 2A1 = 1 ∈ F . Now, let a, b ∈ F2. Then, 2na ∈ F
and 2n ∈ F , for every n ∈ N. But,

2n(a ∧ b) = 2na ∧2nb,

because A ∈ PMA. Since F is closed under meets, it follows that 2n(a ∧ b) ∈ F ,
for every n ∈ N. Hence, a ∧ b ∈ F2. Next, let a ∈ F2 and let b ∈ A such that
a ≤ b. Then, 2na ∈ F , for every n ∈ N. Since a ≤ b and A ∈ PMA, it follows that
2na ≤ 2nb, for every n ∈ N. Since F is upwards-closed, it follows that 2nb ∈ F ,
for every n ∈ N. So, b ∈ F2. So far we have seen that F2 is a lattice filter. To
see that F2 is open, let a ∈ F2. Then, 2na ∈ F , for every n ∈ N. Clearly then,
2n(2a) ∈ F , for every n ∈ N. So, 2Aa ∈ F2. To see that F2 extends F , let a ∈ F .
Taking n = 0, it is immediate that a ∈ F2. Finally, to prove the maximality
condition, let F ′ ⊆ A be an open filter below F and let a ∈ F ′. Since F ′ is open,
it follows that 2na ∈ F ′ ⊆ F , for every n ∈ N. Thus, a ∈ F2. �

Proposition 7.10. Let A ∈ PMA. For every F ∈ FiPMLA,

F ∗ = F Su = F2.

Proof. Let A ∈ PMA and F ∈ FiPMLA. On the one hand, since F Su is a Suszko
PML-filter of A, by Lemma 7.8, it follows by Lemma 2.25 that F Su is the largest
Suszko PML-filter below F . On the other hand, F2 is the largest open lattice filter
below F , by Lemma 7.9. It follows by Theorem 7.7 that F Su = F2. As to F ∗, it is
also an open filter below F and moreover F Su ⊆ F ∗. Therefore, F ∗ = F2. �

Corollary 7.11. The logic PML has its Leibniz filters explicitly definable by the
set of formulas Γ(x) = {2nx : n ∈ N}.

Proof. Since Alg∗(PML) ⊆ PMA, by Theorem 7.2.5, the result follows from
Proposition 7.10 and Lemma 6.18. �

Hence, PML has its Leibniz filters both explicitly and equationally definable.
This being the case, notice that the first equality in Proposition 7.10 agrees with
Proposition 6.26.

Let us fix the Necessitation rule:

(N): x ` 2x .

Since we have seen in Corollary 7.11 that PML has its Leibniz filters explicitly
definable by Γ(x) = {2nx : n ∈ N}, it easily follows by Corollary 6.24 that:

Theorem 7.12. The logic PML+ is the inferential extension of PML by the rule
(N).

We finish our study of PML by showing it lies outside the classes of logics in
Figure 1 (so far, we only know that PML is not protoalgebraic, by Theorem 7.2.1),
and by completing its classification inside the Frege hierarchy (so far, we know that
PML is fully selfextensional, by Theorem 7.2.2). To this end, we explore in further
detail an example of a positive modal algebra taken from [50, p. 438].
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1 = >A •

a •

b •

0 = ⊥A •

F ∈ FiPMLA θ = ΩA(F ) blocks1of θ

A = {0, a, b, 1} A×A {0, a, b, 1}

{1} θ1 {1} {0, a, b}

{1, a} idA {0} {a} {b} {1}

{1, a, b} θ2 {0} {1, a, b}

Figure 3 & Table 1. The 4-element chain, its PML-filters, and
their Leibniz congruences.

Example 7.13. Consider the 4-element chain A = {0, a, b, 1}, ordered by 0 < b <

a < 1, and the algebra A = {A,∧A,∨A,2A,3A, 1, 0}, where the meet and join
operations are defined as the infimum and supremum of this order, respectively,
and the two modal-like operations are defined by:

2Ax =
{
x, if x ∈ {0, 1}
b, if x ∈ {a, b}

3Ax =
{
x, if x ∈ {0, 1}
a, if x ∈ {a, b}

It is routine to check that A is indeed a positive modal algebra. As a consequence,
FiPMLA = FiltA. The Leibniz operator on these filters is described in Table 1.

Proposition 7.14. PML is neither truth-equational nor Fregean.

Proof. Having in mind Theorem 7.7, FiSu
PMLA = Filt2A =

{
{1}, {1, a, b}, A

}
(

FiltA = FiPMLA. Hence, it follows by Theorem 2.30 that PML is not truth-
equational. Finally, suppose towards an absurd, that PML is Fregean. Since more-
over it has theorems, it follows by [4, Corollary 11] that PML is truth-equational,
which we have just seen to be false. �

An interesting consequence is that the logic wK is not Fregean, for Fregeanity
is preserved by fragments, and we have just seen that that PML is not Fregean.

As for the strong version PML+, we prove that it is neither protoalgebraic nor
selfextensional. Moreover, the class of PML+-algebras is strictly included in the
class of PML-algebras.

Proposition 7.15. Alg(PML+) ( PMA.

Proof. On the one hand, since PML ≤ PML+, Alg(PML+) ⊆ Alg(PML) =
PMA. On the other hand, consider A ∈ PMA as given in the Example 7.13. No-
tice that FiPML+A = Fi∗SA = Filt2A =

{
{1}, {1, a, b}, A

}
, by Theorem 7.7.

Now, from Table 1 it follows that ∼
ΩA
PML+(A) = A × A, ∼

ΩA
PML+

(
{1, a, b}

)
=

ΩA
(
{1, a, b}

)
∩ ΩA(A) = θ2 6= idA, and finally ∼

ΩA
PML+

(
{1}
)

= ΩA
(
{1}
)
∩

ΩA
(
{1, a, b}

)
∩ ΩA(A) = θ1 ∩ θ2 6= idA. Indeed, 〈a, b〉 ∈ θ1 ∩ θ2. Therefore,

A /∈ AlgSu(PML+) = Alg(PML+). �

We are therefore in the presence of a logic S such that Alg(S+) ( Alg(S).
Indeed, Alg(PML+) ( PMA = Alg(PML). Furthermore, it must also be the case
that Alg∗(PML+) ( Alg∗(PML), for otherwise Alg(PML) = IPSAlg∗(PML) =

1A block of θ is an equivalence class under θ.
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IPSAlg∗(PML+) = Alg(PML+). This situation contrasts with the protoalgebraic
scenario, where in general, for every protoalgebraic logic S, Alg(S) = Alg∗(S) =
Alg∗(S+) = Alg(S+).

Proposition 7.16. PML+ is not protoalgebraic.

Proof. This follows from Corollary 6.25, since PML has its Leibniz filters explic-
itly definable, by Corollary 7.11, but as we have observed already, PML does not
satisfy property (?). �

Example 7.17. Consider the 3-element chain B = {0, a, 1}, ordered by 0 < a < 1,
and the algebraB = {B,∧B,∨B,2B,3B, 1, 0}, where the meet and join operations
are defined as the infimum and supremum of this order, respectively, and the two
modal-like operations are defined by:

2Ax =
{
x, if x = 1
0, if x ∈ {0, a}

3Ax =
{
x, if x = 0
1, if x ∈ {a, 1}

It is routine to check that B is indeed a positive modal algebra.

Proposition 7.18. PML+ is not selfextensional.

Proof. Recall that PML+ = S>PMA. On the one hand, x a`PML+ x∧2x, because
for every A ∈ Alg(PML+) ⊆ PMA and every h : Fm→ A, h(x) = 1 if and only if
h(x ∧2x) = 1. On the other hand, we claim that 3x a6 `PML+ 3(x ∧2x). Indeed,
considerB ∈ PMA, as given in Example 7.17. Let h : Fm→ B such that h(x) = a.
Then, h(3x) = 3Bh(x) = 3Ba = 1, but h

(
3(x∧2x)

)
= 3B(a∧B2Ba) = 3B0 =

0. Thus, Λ(PML+) /∈ ConFm. �

As a final remark on the logic PML+, we record here that PML+ is the
positive modal fragment of sK, a situation similar to that of PML and wK. The
proof of this fact is outside the scope of the present thesis, and should appear in
[3].

7.2. Belnap’s logic

Our next example is Belnap’s four-valued logic, widely known in the literature
after the work [8]. For a study of Belnap’s logic from an AAL perspective, see [30].
Recall that a logic without theorems has as strong version the almost inconsistent
logic. So, in order to use the results of [30] in a meaningful way, we shall add a
constant term to the language there considered, thus forcing Belnap’s logic to have
theorems, and only affecting the results by minor changes (namely, by disregarding
the empty set as a B-filter). That is, we shall be working within the language
L = 〈∧,∨,¬,>,⊥〉. We will also use the abbreviation ϕ→ ψ for ¬ϕ ∨ ψ.

Definition 7.19. A De Morgan algebra is an algebra A = 〈A,∧A,∨A,¬A, 0, 1〉
such that:

1. The reduct 〈A,∧A,∨A, 1, 0〉 is a bounded distributive lattice;
2. The De Morgan laws hold, that is, ¬A(a∨Ab) = ¬Aa∧A¬Ab and ¬A(a∧Ab) =
¬Aa ∨A ¬Ab, for every a, b ∈ A;

3. The unary operation ¬A is idempotent, that is, ¬A¬Aa = a for every a ∈ A.
The class of all De Morgan algebras will be denoted by DMA.
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A reference for De Morgan algebras is [7, Chapter XI]. On every De Morgan
algebra A, we define the binary operation →A by setting a →A b := ¬Aa ∨A b.
Given A ∈ DMA, we shall denote by FiltA the set of all lattice filters of A, and
by PrFiltA the set of all prime lattice filters of A. A lattice filter F ∈ FiltA is
implicative, if for every a, b ∈ A such that a, a →A b ∈ F , it holds b ∈ F . The set
of all implicative lattice filters of A ∈ DMA will be denoted by Filt→A. It is easily
seen that {1} is the least (implicative) lattice filter of any A ∈ DMA.

We next compile some basic properties that hold in all De Morgan algebras,
and which we shall make use of, sometimes without any explicit reference.

Lemma 7.20. Let A ∈ DMA. For every a, b ∈ A,

1. 1→A a = a;
2. ¬Aa = a→A 0;
3. If a ≤ b, then ¬Ab ≤ ¬Aa;
4. (a ∧A b)→A c = a→A (b→A c).

The class DMA is a variety. This variety is generated by the four-element De
Morgan algebra, which shall be denoted by M4. It has universe M4 = {0, a, b, 1},
and the lattice operations and the negation operation defined as depicted in Fig-
ure 4.

1 = ¬M40•

¬M4a = a • • b = ¬M4b

¬M41 = 0 •

Figure 4. The lattice M4.

Definition 7.21. Belnap’s logic B is the semilattice-based logic S≤DMA.

Let us first collect some known facts about the logic B. To this end, we exhibit
an auxiliary example of a De Morgan algebra taken from [30] (but adding > to the
signature there considered).

Example 7.22. Consider the 6-element De Morgan lattice M6, with universe
M6 = {0, a, b, c, d, 1}, sometimes called “the crystal lattice”, and whose structure is
described in Figure 5. By direct inspection of the table it is clear that the Leibniz
B-filters of M6 are {1} , {1, c} and M6. Now, ΩA({1}) = θ1 and ΩA({1, c}) = θ2,
but θ1 and θ2 are not comparable. Thus, the Leibniz operator is not order preserv-
ing on the Leibniz filters of this algebra. Moreover, it is easy to see that the Suszko
B-filters of M6 are here {1} and M6. Thus, this example also shows that not every
Leibniz filter is a Suszko filter; the converse implication does indeed hold, as seen
in Lemma 2.21.
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¬0 = 1 = >A •

¬d = c •

¬a = a • • b = ¬b

¬c = d •

¬1 = 0 •

F ∈ FiB(M6) θ = ΩM6(F ) blocks of θ

M6 M6 ×M6 M6

{1}
θ1

{1} {0}
{1, a, b, c, d} {a, b, c, d}

{1, c}
θ2

{1, c}
{1, c, a} {a} {b}

{1, c, b} {d, 0}

Figure 5 & Table 2. The algebra M6, its B-filters, and their
Leibniz congruences.

Theorem 7.23.
1. B is fully selfextensional.
2. B is not protoalgebraic.
3. B is not truth-equational.
4. B is not Fregean.
5. S≤M4

= S≤DMA .
6. For every A ∈ DMA, FiBA = FiltA.
7. Alg∗(B) ( Alg(B) = DMA.

Proof. 1. Since B is semilattice-based, it follows by Theorem 0.46. 2. In Ex-
ample 7.22, the two comparable B-filters of M6, {1} and {1, c}, are such that
ΩA({1}) 6⊆ ΩA({1, c}). 3. As seen in Example 7.22, not every B-filter of M6 is a
Suszko filter; therefore, B is not-truth-equational, by Theorem 2.30. 3. Suppose,
towards an absurd, that B is Fregean. Since moreover it has theorems, it follows by
[4, Corollary 11] that B is truth-equational, which we have just seen to be false. 5.
Proved in [30, Proposition 2.5]. 6–7. Since B is semillatice-based, both 6 and the
equality in 7 follow by the general theory seen in the preliminaries (see page 27).
The strict inclusion of 7 is proved in [30, p. 16]. �

Some consequences of Theorem 7.23 and general facts of the theory developed
so far are:

Proposition 7.24.
1. B+ is assertional, and B+ = S>Alg∗(B) = S>Alg(B) = S>DMA .
2. For every algebra A, FiB+A = Fi∗BA.
3. B has its Leibniz filters equationally definable by τ (x) = {x ≈ >}.
4. B does not satisfy (?).

Proof. By definition B is semilattice-based, hence by Corollary 6.11 it follows 1
and 2. By Proposition 6.5, it follows 3. Finally, using Lemma 5.17 and Theo-
rem 7.23.7, it follows 4. �

We aim at finding an algebraic characterization of the Leibniz B-filters on De
Morgan algebras. To this end, let us recall the characterization of the Leibniz
operator on De Morgan algebras provided in [30, Proposition 3.13]. For every
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A ∈ DMA, every F ∈ FiBA, and every a, b ∈ A,

〈a, b〉 ∈ ΩA(F ) iff ∀c ∈ A, a ∨A c ∈ F ⇔ b ∨A c ∈ F

¬Aa ∨A c ∈ F ⇔ ¬Ab ∨A c ∈ F. (20)

Bear in mind that adding a constant to the underlying language does not affect
congruences in general, and therefore (20) is still valid in our setting.

Theorem 7.25. Let A ∈ DMA. The Leibniz B-filters of A coincide with the
implicative lattice filters of A. That is,

Fi∗BA = Filt→A.

Proof. Let F ∈ Fi∗BA. Then F = {a ∈ A : 〈a, 1〉 ∈ ΩA(F )} because {x ≈ >}
defines the Leibniz filters. Assume that a, a →A b ∈ F . Then 〈a, 1〉, 〈a →A
b, 1〉 ∈ ΩA(F ). Therefore, 〈a →A b, 1 →A b〉 ∈ ΩA(F ). Since 1 →A b = b,
〈a→A b, b〉 ∈ ΩA(F ). Since a→A b ∈ F , it follows that b ∈ F .

Conversely, let F ∈ Filt→A. Since B has its Leibniz filters equationally defin-
able by {x ≈ >} it will be enough to prove that F = {a ∈ A : 〈a, 1〉 ∈ ΩA(F )}.
By compatibility of ΩA(F ) and the fact that 1 ∈ F we have that {a ∈ A : 〈a, 1〉 ∈
ΩA(F )} ⊆ F . Conversely, let a ∈ F . To prove that 〈a, 1〉 ∈ ΩA(F ), by (20), we
must prove that, for every c ∈ A, it holds

a ∨A c ∈ F ⇔ 1 ∨A c ∈ F (a)

and
¬Aa ∨A c ∈ F ⇔ ¬A1 ∨A c ∈ F. (b)

Now, (a) always holds, since on the one hand a ≤ a ∨A c and F is upwards-closed,
and on the other hand 1 ∨A c = 1 ∈ F . As to (b), by definition of →A and since
¬A1 = 0, it amounts to

a→A c ∈ F ⇔ c ∈ F.
Now, if c ∈ F , then a →A c = ¬Aa ∨A c ∈ F , because F is upwards-closed. If
a →A c ∈ F , then since a ∈ F and F is implicative, it follows that c ∈ F . Thus,
indeed 〈a, 1〉 ∈ ΩA(F ). �

As for the B-Suszko filters on De Morgan algebras, given the general theory of
Chapter 6, we immediately get:

Corollary 7.26. Let A ∈ DMA. For every F ∈ FiBA,

F Su =
⋂

G∈(FiBA)F
G∗.

As a consequence, a B-filter F of A is a Suszko B-filter if and only if F ⊆ G∗, for
every G ∈ (FiBA)F .

We now turn our attention to the explicit and logical definability of the Leibniz
B-filters. Belnap’s logic does not have its Leibniz filters explicitly definable by any
set of formulas Γ(x) ⊆ FmL. In order to see it, we use Proposition 6.27. Since B
has its Leibniz filters equationally definable, it suffices to exhibit A ∈ DMA such
that Fi∗BA 6= FiSu

B A. Take the 6-element De Morgan lattice M6, as described in
Example 7.22. As mentioned there, the Suszko filters of M6 do not coincide with
the Leibniz ones. Therefore, and in contrast with the case of PML, Belnap’s logic
does not have its Leibniz filters explicitly definable.
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Proposition 7.27. The logic B does not have its Leibniz filters explicitly definable.

Consequently, we cannot use Corollary 6.24 in order to find an axiomatization
for B+. Nevertheless, since B has its Leibniz B-filters logically definable, as we next
show, we will still be able to find one. To this end, let us fix the rule Modus Ponens:

(MP): x, y → x ` y .

Proposition 7.28. The logic B has its Leibniz filters logically definable by the rule
Modus Ponens.

Proof. By Theorems 7.23.6 and 7.25, for every A ∈ Alg∗(B) ⊆ DMA and every
F ∈ FiBA, F is a Leibniz B-filter of A if and only if F is an implicative lattice
filter of A if and only if F is closed under Modus Ponens. Hence, the result follows
from Proposition 6.30. �

Corollary 7.29. The logic B+ is the inferential extension of B by the rule Modus
Ponens.

Proof. The result follows by Corollary 6.33, since B has its Leibniz filters logically
definable by Modus Ponens, by Proposition 7.28. �

We now wish to characterize the map F 7→ F ∗, givenA ∈ DMA and F ∈ FiBA.
To this end, we introduce a generalization of the transformation Φ considered in
[30, pp. 16,19], which in turn is a generalization of the so called “Birula-Rasiowa
transformation” in [53, Definição 7.2, p. 15].

Definition 7.30. Let A ∈ DMA. We define

Φ(F ) := {a ∈ A : ¬Aa /∈ F},

for every F ⊆ A. We also define

Ψ(F ) := {a ∈ A : ∀b ∈ A if a→A b ∈ F , then b ∈ F},

for every F ⊆ A.

The transformation Ψ can be seen as a generalization of Φ, because ¬Aa =
a →A 0 and 0 /∈ F . In fact, for every proper lattice filter F of a A ∈ DMA,
Ψ(F ) ⊆ Φ(F ). But the inclusion may be strict. Consider again the De Morgan
algebra M6 depicted in Example 7.22. Take F := {1, c}. It is easy to see that
Φ(F ) = {1, a, b, c}, because ¬Aa = a /∈ F , ¬Ab = b /∈ F , ¬Ac = d /∈ F , and
¬A1 = 0 /∈ F . On the other hand, b /∈ F but a →A b = ¬Aa ∨A b = c ∈ F .
So, a /∈ Ψ(F ). Similarly, b /∈ Ψ(F ). Indeed, Ψ(F ) = {1, c} ( {1, a, b, c} = Φ(F ).
Interestingly enough, both transformations coincide over prime lattice filters.

Lemma 7.31. Let A ∈ DMA. For every P ∈ PrFiltA,

Φ(P ) = Ψ(P ).

Proof. Let a ∈ Ψ(P ). Since 0 /∈ P (because P is proper), ¬Aa = a →A 0 /∈ P .
So, a ∈ Φ(P ). Conversely, let a ∈ Φ(P ). So, ¬Aa /∈ P . Let a →A c ∈ P . That
is, ¬Aa ∨A c ∈ P . Since P is prime and ¬Aa /∈ P , it follows that c ∈ P . Hence,
a ∈ Ψ(P ). �

The next result sheds some light on why we are here considering the transfor-
mation Ψ rather than the original Φ.
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Proposition 7.32. Let A ∈ DMA. If F ∈ FiltA, then Ψ(F ) ∈ FiltA.

Proof. 1 ∈ Ψ(F ), because 1→A b = ¬A1∨A b = 0∨A b = b, for every b ∈ A. Let
a ∈ Ψ(F ) and b ∈ A such that a ≤ b. Then, ¬Ab ≤ ¬Aa, by Lemma 7.20.3. Let
c ∈ A such that b→A c ∈ F . Notice that b→A c = ¬Ab∨Bc ≤ ¬Aa∨Bc = a→A c.
Since F is upwards-closed, it follows that a →A c ∈ F . Since a ∈ Ψ(F ), it follows
that b ∈ F . Next, let a, b ∈ Ψ(F ). Let c /∈ F . Then, b →A c /∈ F , because
b ∈ Ψ(F ). Then, a →A (b →A c) /∈ F , because a ∈ Ψ(F ). But, (a ∧A b) →A c =
a→A (b→A c), by Lemma 7.20.4. So, (a ∧A b)→A c /∈ F . Thus, a ∧A b ∈ F . �

We are now ready to provide a characterization of the operation that turns a
lattice filter F of a De Morgan algebra into its associated Leibniz filter F ∗.

Proposition 7.33. Let A ∈ DMA. For every F ∈ FiBA,

F ∗ = Ψ(F ) ∩ F.

Proof. We first check that ΩA(F ) is compatible with Ψ(F ). Let 〈a, b〉 ∈ ΩA(F )
and let a ∈ Ψ(F ). Let c ∈ A such that c /∈ F . We have 〈a→A c, b→A c〉 ∈ ΩA(F ),
because ΩA(F ) ∈ ConA. Since a →A c /∈ F , because a ∈ Ψ(F ), it follows by
compatibility that b →A c /∈ F . That is, b ∈ Ψ(F ). Thus, ΩA(F ) is compatible
with Ψ(F ). That is, ΩA(F ) ⊆ ΩA

(
Ψ(F )

)
. So Ψ(F ) ∈ JF K∗, having in mind that

Ψ(F ) ∈ FiBA, by Proposition 7.32 and Theorem 7.23.6. Therefore, F ∗ ⊆ Ψ(F ).
Also, in general, F ∗ ⊆ F . Hence, F ∗ ⊆ Ψ(F ) ∩ F .

Conversely, let a ∈ Ψ(F )∩F . We claim that 〈a, 1〉 ∈ ΩA(F ). Since a ∈ F and
F is upwards-closed, it trivially holds

∀c ∈ A a ∨ c ∈ F ⇔ 1 ∨A c = 1 ∈ F.

Moreover, since a ∈ Ψ(F ) and c ≤ a→A c, it holds

∀c ∈ A a→A c ∈ F ⇔ c ∈ F.

That is,
∀c ∈ A ¬Aa ∨A c ∈ F ⇔ ¬A1 ∨A c ∈ F.

It follows by (20) that 〈a, 1〉 ∈ ΩA(F ). But ΩA(F ) ⊆ ΩA(F ∗). Since 1 ∈ F ∗, it
follows by compatibility that a ∈ F ∗. �

We finish our study of Belnap’s logic by proving that B+ is neither protoalge-
braic nor selfextensional. First, we show that B+ and B have the same algebraic
counterpart.

Proposition 7.34. Alg(B+) = DMA = Alg(B).

Proof. Since B ≤ B+, it is clear that Alg(B+) ⊆ Alg(B) = DMA. As for the
converse inclusion, we observe that every subdirectly irreducible De Morgan algebra
— there are only three, namely, M4, 3 and 2 [7, XI.2, Theorem 6] — belongs to
Alg∗(B+). Indeed, since {1} is always an implicative lattice filter (see page 124),
and the three algebras are simple, 〈M4, {1}〉, 〈3, {1}〉, 〈2, {1}〉 ∈ Mod∗(B+). It
follows by Birkhoff’s subdirect representation theorem (see Theorem 0.14 and the
comments after it) that DMA = IPS

(
{M4,3,2}

)
⊆ IPS

(
Alg∗(B+)

)
= Alg(B+). �

Corollary 7.35. The logic B+ is not protoalgebraic.
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Proof. Suppose, towards an absurd, that B+ is protoalgebraic. Then, Alg∗(B+) =
Alg(B+) = DMA, using Proposition 7.34. But, Alg∗(B+) ⊆ Alg∗(B), because
B ≤ B+. It follows that DMA = Alg∗(B+) ⊆ Alg∗(B) ⊆ Alg(B) = DMA. This
contradicts the fact that Alg∗(B) ( Alg(B) in Theorem 7.23.7. �

Corollary 7.36. The logic B+ is not selfextensional.

Proof. Suppose, towards an absurd, that B+ is selfextensional. Then, since B+

has a conjunction, it follows by Theorem 0.46 that B+ is semilattice-based. Then,
it is semilattice-based of Alg(B) = DMA, using Proposition 7.34. Consequently,
B+ = B≤DMA = B, and we reach an absurd (for instance, B+ is truth-equational,
while B is not). �

7.3. Subintuitionistic logics

Subintuitionistic logics are logics in the language of intuitionistic logic that
have Intuitionistic Propositional Logic as an extension. In this section, we shall
be working in the language L = 〈∧,∨,→,>,⊥〉, and also make use of two non-
primitive unary operators defined by ¬ϕ := ϕ → ⊥ and 2ϕ := > → ϕ, for
every ϕ ∈ FmL. Subintuitionistic logics usually enjoy a relational semantics given
by classes of Kripke models where the implication → is interpreted as the strict
implication in modal logic. That is,

ϕ→subint. ψ = 2(ϕ→modal ψ).

Such approach to subintuitionistic logics is, for example, the one undertaken in
[19] and [16]. Following the previous examples however, we choose to approach
subintuitionistic logics by semantically defining them as the semilattice-based logic
of some variety having as subvariety the class of Heyting algebras. To this end, we
start by introducing the class of weakly Heyting algebras [20, Definition 3.1].

Definition 7.37. A weakly Heyting algebra is an algebraA = 〈A,∧A,∨A,→A, 1, 0〉
such that 〈A,∧A,∨A, 1, 0〉 is a bounded distributive lattice and →A is a binary
connective satisfying:

1. (a→A b) ∧A (a→A c) = a→A (b ∧A c);
2. (a→A c) ∧A (b→A c) = (a ∨A b)→A c;
3. (a→A b) ∧A (b→A c) ≤ a→A c;
4. a→A a = 1.

The class of all weakly Heyting algebras will be denoted by WH. As usual,
for any weakly Heyting algebra A, we denote by FiltA the set of lattice filters of
A and by Filt2A the set of lattice filters of A closed under the operation 2A,
given by 2Aa := 1 →A a; this filters will be called open. We shall abbreviate
2A(2A(. . .2Aa) . . .), where the operation 2A appears n times, with n ∈ N, simply
by 2na. We next collect some basic properties valid in any weakly Heyting algebra.

Lemma 7.38. Let A ∈WH. For every a, b, c,∈ A,
1. If a ≤ b, then a→A b = 1;
2. If a ≤ b, then 2Aa ≤ 2Ab.

We will consider the following equations:
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(eq-N): x ∧2x ≈ x (x ≤ 2x);
(eq-MP): x ∧ (x→ y) ∧ y ≈ x ∧ (x→ y)

(
x ∧ (x→ y) ≤ y

)
;

(eq-RT): (x→ y) ∧2(x→ y) ≈ x→ y
(
x→ y ≤ 2(x→ y)

)
.

We shall denote by WH(N), WH(MP), and WH(RT), the subvarieties of WH ax-
iomatized by the equations defining WH plus the equation (eq-N), (eq-MP), and
(eq-RT), respectively. For the sake of completeness, we can also consider the sub-
varieties of WH axiomatized by the equations defining WH plus any combination
of two of the above equations. However, we will not consider the subvarieties
WH(RT,MP) and WH(N,MP) because they induce BP-algebraizable logics. A detailed
study of all possible combinations can be found in [16]. The subvariety axiomatized
by the equations defining WH plus the equations (MP) and (N) is the variety HA
of all Heyting algebras. These varieties are related as follows [20, Fig. 1]:

•WH

WH(RT) • •WH(MP)

WH(N) • •WH(RT,MP)

• HA

Figure 6. Some subvarieties of the variety of Heyting algebras.

Going upwards in the diagram the lines depict strict inclusions of the classes of
algebras. The semillatice-based logic of WH, S≤WH, is sometimes denoted by wKσ
(for instance, in [19]), and is called the strict implicational fragment of wK. The
logic wKσ is a paradigmatic example in our new proposal for a strong version of
a sentential logic, since it had been already observed in [38, Example 49] that the
pair of logics composed of wKσ and its extension by the Necessitation rule (N), say
sKσ, share several properties which resemble the well behaved pair wK and sK.
Nevertheless, wKσ and sKσ do not constitute a Leibniz-linked pair, as observed
in the cited example. However, as we shall see in Theorem 7.40, (wKσ)+ = sKσ.
Therefore, our new approach towards a strong version of a (non-protoalgebraic)
logic encompasses pairs of logics which were already recognised to be somehow
strongly related, but whose relation failed to be formally captured under a general
theory in AAL.

There are many subintuitionistic logics studied in the literature. For references,
we address the reader to [16, 19] and the papers there cited. We shall be interested
in studying the semilattice-based logics of WH, WH(N), WH(MP), and WH(RT) (hereby
denoted by S≤K , for appropriate K), as well as the {x ≈ >}-assertional logics of the
same classes of algebras (hereby denoted by S>K , for appropriate K). These logics
stand in relation according to the following diagram, which is obtained from [16,
Theorem 2.55], having in mind [16, Definition 4.5].
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• IPC

• S≤WH(N)
= S>WH(N)

= VPL

S>WH(MP)
• • S>WH(RT)

S≤WH(MP)
• • S1

WH S≤WH(RT)
•

S≤WH •

Figure 7. Relations between the subintuitionistic logics to be studied.

Going upwards in the diagram the lines depict strict extensions of the logics.
The logic IPC denotes of course Intuitionistic Propositional Logic, while the logic
VPL denotes Visser’s Propositional Logic (sometimes also called Basic Proposi-
tional Logic, and denoted by BPL) [58]. Let us collect some facts about the logics
depicted above, all of which proved in [16, 19].

Theorem 7.39.
1. None of the logics S≤WH, S>WH, S

≤
WH(RT)

, S>WH(RT)
, and S≤WH(N)

= S>WH(N)
is

protoalgebraic; the logic S≤WH(MP)
is equivalential; the logic S>WH(MP)

is alge-
braizable;

2. None of the logics S≤WH, S
≤
WH(RT)

, and S≤WH(MP)
is Fregean; the logic S≤WH(N)

is
Fregean.

3. FiS≤K A = FiltA, with K ∈ {WH,WH(N),WH(MP),WH(RT)} and A ∈ Alg(S≤K );
4. FiS>K A = Filt2A, with K ∈ {WH,WH(N),WH(MP),WH(RT)} andA ∈ Alg(S≤K );
5. Alg(S>K ) = Alg(S≤K ) = K, with K ∈ {WH(N),WH(MP)};
6. Alg(S>K ) ( Alg(S≤K ) = K, with K ∈ {WH,WH(RT)};
7. Alg∗(S≤K ) ( Alg(S≤K ), with K ∈ {WH,WH(N),WH(RT)}.

We also known that all the logics S≤WH, S
≤
WH(RT)

, S≤WH(MP)
, and S≤WH(N)

are fully
selfextensional, by Theorem 0.47. Moreover, Alg∗(S≤WH(MP)

) = Alg(S≤WH(MP)
), since

the logic S≤WH(MP)
is protoalgebraic. As a consequence, the logic S≤WH(MP)

satisfies
property (?). On the contrary, a consequence of item 6 above is that none of the
logics S≤WH, S

≤
WH(N)

, and S≤WH(RT)
satisfy property (?).

With the information of Theorem 7.39 at hand, we can already establish that
S>K is the strong version of the logic S≤K , for K ∈ {WH,WH(N),WH(MP),WH(RT)}.
Indeed, for each such K, Alg(S≤K ) = K and since S≤K is a semilattice-based logic, it
follows immediately by Corollary 6.11 that S>K is the strong version of S≤K .

Theorem 7.40. The logic S>K is the strong version of S≤K .

Once again, we are in the presence of a logic S such that Alg(S+) ( Alg(S).
Indeed, [16, Theorem 4.41.1] tells us that Alg

(
(S≤WH)+) = Alg(S1

WH) ( WH =
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Alg(S≤WH). The same remarks are true for the logic S≤WH(RT)
, also by the cited

result.
In the following, let K ∈ {WH,WH(N),WH(MP),WH(RT)}. We now wish to char-

acterize the Leibniz and Suszko S≤K -filters on S≤K -algebras. To start with, we know
that S≤K has its Leibniz filters equationally definable by τ (x) = {x ≈ >}, by Propo-
sition 6.5, for it is a semilattice-based logic.

Proposition 7.41. Let A ∈ K. Every Leibniz S≤K -filter F of A is an open lattice
filter of A.

Proof. Let A ∈ K and F ∈ Fi∗
S≤K
A. Since the Leibniz filters of S≤K are equa-

tionally definable by {x ≈ >}, we have F = {a ∈ A : 〈a, 1〉 ∈ ΩA(F )}. Let
a ∈ F . Then 〈a, 1〉 ∈ ΩA(F ). Therefore 〈2Aa,2A1〉 ∈ ΩA(F ). Since 2A1 = 1,
because A ∈ K ⊆WH, we have 〈2Aa, 1〉 ∈ ΩA(F ). It follows by compatibility that
2Aa ∈ F . �

Lemma 7.42. Let A ∈ K and F ∈ Filt2A. For every a, b ∈ F ,

〈a, b〉 ∈ ∼
ΩA
S≤K

(F ).

Proof. Let A ∈ WH and F ∈ Filt2A. Since, in particular, F is a lattice filter, it
holds F ∈ FiS≤K A. Let a, b ∈ F . Let ϕ(x, z) ∈ FmL and c ∈ A arbitrary. We claim
that

ϕA(a, c) ∈ F ′ ⇔ ϕA(b, c) ∈ F ′, (21)

for every F ′ ∈ (FiS≤K A)F . The proof goes by induction on ϕ ∈ FmL.

� ϕ(x, z) = x ∈ Var: Let F ′ ∈ (FiS≤K A)F . We have ϕA(a, c) = a and ϕA(b, c) =
b. Since both a, b ∈ F ⊆ F ′ by assumption, (21) holds.

� ϕ(x, z) = >: Let F ′ ∈ (FiS≤K A)F . We have ϕA(a, c) = 1 and ϕA(b, c) = 1.
Since 1 ∈ F ′, (21) holds trivially.

� ϕ(x, z) = ⊥: Let F ′ ∈ (FiS≤K A)F . We have ϕA(a, c) = 0 and ϕA(b, c) = 0.
Since 0 /∈ F ′, (21) holds vacuously.

� ϕ(x, z) = ψ(x, z) ∧ ξ(x, z): The inductive hypothesis tell us that (21) holds
for ψ and ξ. Let F ′ ∈ (FiS≤K A)F . Assume ϕA(a, c) ∈ F ′. Since ϕA(a, c) =
ψA(a, c) ∧A ξA(a, c) ≤ ψA(a, c), ξ(a, c), and F ′ is upwards-closed, it follows
that ψA(a, c) ∈ F ′ and ξA(a, c) ∈ F ′. It follows by the inductive hypothesis
that ψA(b, c) ∈ F ′ and ξA(b, c) ∈ F ′. Since F ′ is closed under meets, it
follows that ϕA(b, c) = ψA(b, c) ∧A ξA(b, c) ∈ F ′. Similarly, one proves that
ϕA(b, c) ∈ F ′ implies ϕA(a, c) ∈ F ′.

� ϕ(x, z) = ψ(x, z) ∨ ξ(x, z): The inductive hypothesis tell us that (21) holds
for ψ and ξ. Let F ′ ∈ (FiS≤K A)F . Since K is a distributive lattice, it follows
as a consequence of the Prime Filter Theorem 0.4, that every lattice filter of
A is the intersection of the prime lattice filters containing it. In particular,
F ′ =

⋂
{P ∈ PrFiltA : F ′ ⊆ P}. Clearly then, ϕA(a, c) ∈ F ′ if and only

if ϕA(a, c) ∈ P , for every P ∈ (PrFiltA)F ′ , if and only if ψA(a, c) ∈ P or
ξA(a, c) ∈ P , for every P ∈ (PrFiltA)F ′ , if and only if ψA(b, c) ∈ P or
ξA(b, c) ∈ P (using the inductive hypothesis, since F ⊆ F ′ ⊆ P ), for every
P ∈ (PrFiltA)F ′ , if and only if ϕA(b, c) ∈ P , for every P ∈ (PrFiltA)F ′ , if
and only if ϕA(b, c) ∈ F ′.
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� ϕ(x, z) = ψ(x, z) → ξ(x, z): The inductive hypothesis tell us that (21) holds
for ψ and ξ. Let F ′ ∈ (FiS≤K A)F . Assume ϕA(a, c) ∈ F ′. Fix d := ψA(a, c).
Consider the set

H = {e ∈ A : d→A a ∈ F ′}.
Claim. H is a lattice filter extending F : First, 1 ∈ H, because d→A d = 1 ∈
F ′, since A ∈ K ⊆WH. Next, let e, f ∈ H. Notice that

d→A (e ∧A f) = (d→A e) ∧A (d→A f) ∈ F ′,

since A ∈ K ⊆ WH and F ′ is closed under meets. Hence, H is closed under
meets. Now, let e ∈ H and f ∈ A such that e ≤ f . Then, d →A e ≤
d →A f , because A ∈ K ⊆ WH. Since F ′ is upwards-closed, it follows that
d →A f ∈ F ′. Hence, H is upwards-closed. Finally, let e ∈ F . Then,
2Ae = 1 →A e ∈ F ⊆ F ′, using the hypothesis (F open). Moreover, since
d ≤ 1, it holds 1 →A e ≤ d →A a, because A ∈ K ⊆ WH. Since F ′ is
upwards-closed, it follows that e ∈ H. Thus, F ⊆ H.
Now, since ϕA(a, c) = ψA(a, c) →A ξA(a, c) ∈ F ′, we have ξA(a, c) ∈ H. It
follows by the inductive hypothesis that ξA(b, c) ∈ H. That is,

ψA(a, c)→A ξA(b, c) ∈ F ′. (i)

This time, fix d := ψA(b, c), and consider the set

G = {e ∈ A : d→A e ∈ F ′}

Similarly, one proves that G is a lattice filter extending F . Moreover, d →
d = 1 ∈ F ′. So, d = ψA(b, c) ∈ G. It follows by the inductive hypothesis that
ψA(a, c) ∈ G. That is,

ψA(b, c)→A ψA(a, c) ∈ F ′. (ii)

But,
(x→ y) ∧ (y → z) ≤ (x→ z)

holds in every A ∈ K ⊆WH. Thus, it follows by (i) and (ii), together with F ′
being closed under meets and upwards-closed, that ϕA(b, c) = ψA(b, c) →A
ξA(b, c) ∈ F ′. Similarly one proves that ϕA(b, c) ∈ F ′ implies ϕA(a, c) ∈ F ′.

From (21) and Corollary 0.30 it follows that 〈a, b〉 ∈ ∼
ΩA
S≤K

(F ). �

Proposition 7.43. Let A ∈ K. Every open filter of A is a Suszko S≤K -filter of A.

Proof. Let A ∈ WH and F ∈ Filt2A. Let a ∈ F . Since also 1 ∈ F , it follows
by Lemma 7.42 that 〈1, a〉 ∈ ∼

ΩA
S≤K

(F ). Since ∼
ΩA
S≤K

(F ) ⊆ ΩA(F Su) and moreover
1 ∈ F Su (bear in mind that F Su ∈ FiS≤K A = FiltA), it follows that a ∈ F Su. So,
F ⊆ F Su. Thus, F is a Suszko filter of A. �

Theorem 7.44. Let A ∈ K. The Leibniz and Suszko S≤K -filters of A coincide with
the open lattice filters of A. That is,

Fi∗S≤K
A = FiSu

S≤K
A = Filt2A.

Proof. Just notice that FiSu
S≤K
A ⊆ Fi∗

S≤K
A ⊆ Filt2A ⊆ FiSu

S≤K
A. �

We are now able to see that apart from Visser’s logic, none of the subintuition-
istic logics covered is truth-equational.
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Theorem 7.45. None of the logics S≤WH, S
≤
WH(RT)

and S≤WH(MP)
is truth-equational.

The logic VPL is truth-equational.

Proof. Let K ∈ {WH,WH(RT),WH(MP)}. Suppose, towards an absurd, that S≤K is
truth-equational. Then, S≤K = (S≤K )+ = S>K , by Theorems 5.5.4 and 7.40. Since the
inclusions in Figure 7 are strict, we reach an absurd. We are left to prove that VPL
is truth-equational. Since for every A ∈ Alg(VPL) ⊆ WH, FiVPLA = Filt2A =
FiSu
VPLA, by Theorems 7.39.4 and 7.44, the result follows from Theorem 2.30. �

As a consequence:

Corollary 7.46. None of the logics S≤WH, S
≤
WH(RT)

, and S≤WH(MP)
is Fregean. The

logic VPL is fully Fregean.

Proof. Let K ∈ {WH,WH(RT),WH(MP)}. Suppose towards an absurd, that S≤K is
Fregean. Since moreover it has theorems, it follows by [4, Corollary 11] that S≤K is
truth-equational, which we have just seen to be false. As for Visser’s logic, we have
seen it already to be both fully selfextensional and Fregean. Since moreover it has
theorems, it follows by [4, Theorem 24] that it is fully Fregean. �

In the following, let K ∈ {WH,WH(N),WH(RT),WH(MP)}. Having found the
strong version of S≤K and characterized its Leibniz and Suszko S≤K -filters, we now
turn our attention to the explicit definability of Leibniz S≤K -filters. Recall that in
general, given an arbitrary logic S, an algebra A, and F ∈ FiSA, F Su is always a
Leibniz filter of A. So, it follows by Theorem 7.44 that:

Lemma 7.47. Let A ∈ K. For every F ∈ FiS≤K A, F Su is a Suszko filter of A.

Moreover,

Lemma 7.48. Let A ∈ K. For every F ∈ FiS≤K A, the set

F2 = {a ∈ A : 2na ∈ F , for every n ∈ N}

is the largest open filter included in F .

Proof. Clearly, 1 ∈ F2, since 2A1 = 1→A 1 = 1 ∈ F . Now, let a, b ∈ F2. Then,
2na ∈ F and 2nb ∈ F , for every n ∈ N. Now, by induction on n ∈ N, one proves
that

2n(a ∧A b) = 2na ∧A 2nb ,

using the fact that a →A (b ∧A c) = (a →A b) ∧A (a →A c), since A ∈ K ⊆ WH.
We show the case n = 2 to give an idea of the arguments used in the induction
proof.

22a ∧A 22b =
(
1→A (1→A a)

)
∧A

(
1→A (1→A b)

)
= 1→A

(
(1→A a) ∧A (1→A b)

)
= 1→A

(
1→A (a ∧A b)

)
= 22(a ∧A b) .

Since F is closed under meets, it follows that 2n(a ∧A b) ∈ F , for every n ∈ N.
Hence, a ∧A b ∈ F2. Next, let a ∈ F2 and let b ∈ A such that a ≤ b. Then,
2na ∈ F , for every n ∈ N. Since a ≤ b and A ∈ K ⊆ WH, it easily follows by
Lemma 7.38.4 that 2na ≤ 2nb, for every n ∈ N. Since F is upwards-closed, it
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follows that 2nb ∈ F , for every n ∈ N. So, b ∈ F2. To see that F2 is open, let
a ∈ F2. Then, 2na ∈ F , for every n ∈ N. Clearly then, 2n(2a) ∈ F , for every
n ∈ N. So, 2Aa ∈ F2. To see that F2 extends F , let a ∈ F . Taking n = 0, it is
immediate that a ∈ F2. Finally, to prove the maximality condition, let F ′ ⊆ A be
an open filter below F and let a ∈ F ′. Since it is open, it follows that 2na ∈ F , for
every n ∈ N. Thus, a ∈ F2. �

Proposition 7.49. Let A ∈ K. For every F ∈ FiS≤K A,

F ∗ = F Su = {a ∈ A : 2na ∈ F , for every n ∈ N}

Proof. We know by Lemma 2.25 that if F Su is a Suszko filter, then it is the largest
one below F . And this is indeed the case for S≤K and algebras in K, by Lemma 7.47.
Since open filters coincide with Suszko filters on weakly Heyting algebras and F2

is the largest open filter below F , the result follows. As to F ∗, it is also an open
filter below F and moreover F Su ⊆ F ∗. �

Corollary 7.50. The logic S≤K has its Leibniz filters explicitly definable by the set
of formulas Γ(x) = {2nx : n ∈ N}.

Proof. Since Alg∗(S≤K ) ⊆ K, the result follows from Lemma 6.18. �

Let us fix the Necessitation rule:
(N): x ` 2x .

Another consequence of the general theory of Chapter 6, particularly of Corol-
lary 6.24, is the following:

Corollary 7.51. The logic S>K is the inferential extension of S≤K by the rule (N).

But this comes with no surprise, as it had already been established in [16,
Lemma 2.35]. We finish our study of subintuitionistic logics, by proving that none
of the strong versions studied, save Visser’s logic, is selfextensional.

Proposition 7.52. None of the logics S>WH, S>WH(RT)
, and S>WH(MP)

is selfexten-
sional.

Proof. Let K ∈ {WH,WH(RT),WH(MP)}. Suppose, towards an absurd, that S>K
is selfextensional. Then, since S>K has a conjunction, it follows by Theorem 0.46
that S>K is semilattice-based. Now, we have two cases. In case Alg(S>K ) = Alg(S≤K )
(that is, if K = WH(MP)), then FiS≤K A = FiltA, for every A ∈ Alg(S≤K ) = Alg(S>K ).
Consequently, S>K = S≤K , and we reach an absurd, as the inclusions in Figure 7
are strict. In case Alg

(
(S≤K )+) ( Alg(S≤K ) (that is, if K = WH or K = WH(RT)),

it follows by Theorem 0.47 that Alg(S>K ) is a variety; but this contradicts [16,
Teorema 4.41.2], which tell us that Alg(S>K ) is not even a quasivariety. �

7.4. Semilattice-based logic of CIRL

In this section we study the semilattice-based logic S≤CIRL of the variety of com-
mutative integral residuated lattices (the class CIRL will be formally introduced in
Definition 7.53), together with S1

CIRL, the {x ≈ 1}-assertional logic of that same
class, under the light of the general results established in Chapters 5 and 6. In
particular, we aim at characterizing the Leibniz and Suszko S≤CIRL-filters, as well as
finding the strong version (S≤CIRL)+. For a thorough study of the logic S≤CIRL, see
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[17]. Moreover, particular examples of multi-valued logics, such as Hájek’s Basic
Logic BL, Lukasiewicz’s infinite valued logic Ł∞, Product Logic Π, and Gödel’s
Logic GL2, are axiomatic extensions3 of the logic S1

CIRL. At the end of the section
we explain how to obtain similar results for these particular logics.

The underlying language throughout this section will be L = 〈∧,∨,→,�, 1〉.
Our starting point is the definition of commutative residuated lattice.

Definition 7.53. An algebra A = 〈A,∧A,∨A,→A,�A, 1A〉 is a commutative
residuated lattice if:

1. 〈A,∧A,∨A〉 is a lattice;
2. 〈A,�A, 1A〉 is a commutative monoid4;
3. →A is the residuum of �A, that is, for every a, b ∈ A, a �A c ≤ b iff c ≤
a→A b, where ≤A is the lattice order.

A commutative residuated lattice is integral, if it satisfies additionally:
4. 1A is the top element of A of ≤A.

The class of all (respectively, integral) commutative residuated lattices will be de-
noted by CRL (respectively, CIRL)5.

The class of (commutative integral) residuated lattices is a variety; an equa-
tional axiomatization can be found in [43, Theorem 2.7]. Given A ∈ CRL, we
shall denote by FiltA the set of the lattice filters of A and by Filt→A the subset
of implicative lattice filters, i.e., the set of all lattice filters F ∈ FiltA such that
whenever a, a→A b ∈ F , then b ∈ F .

We next compile some useful properties known to hold on the algebras in CRL
(see for example, [43, Lemma 2.6]6), all of which we will make use of at some point
along the exposition.

Lemma 7.54. Let A ∈ CRL. For every a, b, c ∈ A,
1. a�A (a→A b) ≤ b;
2. a→ (b→ c) = (a�A b)→A c;
3. a ≤ (a→A b)→A b;
4. a ≤ (b→A (a�A b));
5. If a ≤ b, then b→A c ≤ a→A c;
6. If a ≤ b, then c→A a ≤ c→A a;
7. If a ≤ b, then a�A c ≤ b�A c;
8. (a→A b) ∧A (a→A c) ≤ a→A (b ∧A c);

2All these logics are BP-algebraizable having as equivalent algebraic semantics a subvariety
of CIRL.

3In rigor, are axiomatic extensions of the expansion of the logic S1
CIRL by the constant 0.

4A monoid is an algebra 〈A, ◦, e〉, where ◦ is a binary operation on A which is associative
and with a (left and right) identity e.

5We follow the notation of [43, p. 96]. The class of algebras having as defining conditions
those of CRL, but considered over the language L = 〈∧,∨,→,�, 1, 0〉, is denoted in the literature
by FLe. Similarly, the class of algebras having as defining conditions those of CRL and satisfying
moreover that 0 is the bottom element of A, also considered over the language L = 〈∧,∨,→
,�, 1, 0〉, is denoted in the literature by FLew. See [43, Table 3.1, p. 188]. In general, residuated
lattices are the 0-free reducts of FL-algebras.

6In [43, Lemma 2.6] the residuated lattices are not assumed to be commutative, and therefore
the properties of Lemma 7.54 are stated with the left and right division operations, denoted by \
and / respectively, which in our setting both collapse into the operation →.
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9. (a→A c) ∧A (b→A c) ≤ (a ∨A b)→A c;
10. a→A b ≤ (b→A c)→A (a→A c);
11. a→A b ≤ (c→A a)→A (c→A b);
12. (a→A b)�A (b→A c) ≤ (a→A c).

We usually refer to property (5) as suffixing; and to property (6) as prefixing.
Also, since the operation �A is commutative, property (7) can be applied on the
left as well.

Lemma 7.55. Let A ∈ CRL. A lattice filter F ∈ FiltA is implicative if and only
if it is closed under the operation �A.

Proof. Assume that F is an implicative lattice filter. Let a, b ∈ F . Notice that
a ≤ b →A (a �A b), by Lemma 7.54.4. Since a ∈ F and F is upwards-closed, it
follows that b →A (a �A b) ∈ F . Since b ∈ F and F is implicative, it follows that
a �A b ∈ F . Conversely, assume that F is closed under the operation �A. Let
a, a →A b ∈ F . It follows by assumption that a �A (a →A b) ∈ F . Moreover,
a�A (a→A b) ≤ b, by Lemma 7.54.1. Hence, since F is upwards-closed, b ∈ F . �

Notice that none of the properties stated in Lemma 7.54 (neither the respective
proofs, for what matters) make reference to the constant 1. Notice also that, given
A ∈ CIRL, 1A plays two important rôles simultaneously: it is the multiplicative
constant of the operation �A, and it is also the top element w.r.t. the order induced
by ∧A. Either considered separately, or taken together, these two conditions allow
us to prove some more useful properties.

Lemma 7.56. Let A ∈ CRL. For every a, b, c ∈ A,
1. a ≤ b iff 1A ≤ a→A b;
2. 1A →A a = a;
3. 1A ≤ a→A a.

In addition, if A ∈ CIRL,
4. a�A b ≤ a ∧A b.

We are interested in the semilattice-based logic S≤CIRL and in the {x ≈ 1}-
assertional logic S1

CIRL. In the literature, these logics are known under the terminol-
ogy of “preserving degrees of truth” and “preserving truth”, respectively. The main
reference for logics preserving degrees of truth from varieties of commutative inte-
gral residuated lattices is [17]; the particular case of Lukasiewicz’s logic preserving
degrees of truth can be found in [35].

Theorem 7.57.
1. S≤CIRL is not protoalgebraic.
2. S≤CIRL is not truth-equational.
3. S≤CIRL is not Fregean.
4. S1

CIRL is BP-algebraizable, witnessed by the set of congruence formulas
ρ(x, y) = {x ↔ y} and the set of defining equations τ (x) = {x ≈ 1}; its
equivalent algebraic semantics is CIRL.

5. For every A ∈ CIRL, FiS≤CIRL
A = FiltA.

6. For every A ∈ CIRL, FiS1
CIRL
A = Filt→A.

7. Alg∗(S≤CIRL) = Alg(S≤CIRL) = Alg∗(S1
CIRL) = Alg(S1

CIRL) = CIRL.



138 CHAPTER 7. EXAMPLES OF NON-PROTOALGEBRAIC LOGICS

Proof. 1. It is well-known that every extension of a protoalgebraic logic is still
protoalgebraic. Moreover, Ł≤∞ is not protoalgebraic, and S≤CIRL ≤ Ł≤∞. 2. It is
not difficult to see that that every extension of a truth-equational logic is still
truth-equational (if S ≤ S ′, then every S ′-filter is an S-filter, and these last are
equationally definable by assumption). Again, it is known that Ł≤∞ is not truth-
equational. 3. Suppose, towards an absurd, that S≤CIRL is Fregean. Since moreover
it has theorems, it follows by [4, Corollary 11] that S≤CIRL is truth-equational, which
we have just seen to be false. 4.–7. [17, p. 1036, p. 1040 and Propositions
2.9,3.1,3.4]. �

For the first time in our examples, the strong version happens to be a fairly
well studied logic in the literature, whose properties allow us to spot it right away
as the strong version we are after. Indeed, it follows immediately by Corollary 6.11
that:

Theorem 7.58. The logic S1
CIRL is the strong version of S≤CIRL.

Furthermore, for arbitrary A, Fi(S≤CIRL)+A = Fi∗
S≤CIRL

A, again by Corollary 6.11.
Therefore, without any further effort, we get:

Theorem 7.59. Let A ∈ CIRL. The Leibniz S≤CIRL-filters of A coincide with the
implicative lattice filters of A. That is,

Fi∗S≤CIRL
A = Filt→A.

Another result which follows almost effortless, given the properties known about
S1

CIRL, is the following:

Proposition 7.60. The logic S≤CIRL satisfies (?).

Proof. Since S1
CIRL is algebraizable, the Leibniz operator

ΩA : FiS1
CIRL
A→ ConAlg∗(S1

CIRL)A

is an order-isomorphism, for every A. But, Alg∗(S1
CIRL) = CIRL = Alg∗(S≤CIRL)

and FiS1
CIRL
A = Filt→A = Fi∗

S≤CIRL
A, for every A ∈ CIRL, by Theorems 7.57 and

7.59. �

An important consequence is:

Proposition 7.61. The logic S≤CIRL does not have its Leibniz filters explicitly de-
finable.

Proof. It follows by Propositions 7.60 and 6.21, having in mind that S≤CIRL is not
protoalgebraic. �

Although S≤CIRL does not have its Leibniz filters explicitly definable, it does have
its Leibniz filters logically definable.

Proposition 7.62. The logic S≤CIRL has its Leibniz filters logically definable by the
rule Modus Ponens.

Proof. Just notice that, in light of Theorem 7.59, for every A ∈ Alg∗(S≤CIRL) and
every F ∈ FiS≤CIRL

A, F is a Leibniz S≤CIRL-filter of A if and only if F is an implicative
lattice filter if and only if is closed under Modus Ponens. Hence, the result follows
from Proposition 6.30. �
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Consequently [17, Corollary 2.11],

Corollary 7.63. The logic S1
CIRL is the inferential extension of S≤CIRL by the rule

Modus Ponens.

Proof. The result follows by Corollary 6.33, since S≤CIRL has its Leibniz filters
logically definable by Modus Ponens, by Proposition 7.62. �

Moreover, since S≤CIRL is semilattice-based, it follows by Proposition 6.5 that:

Proposition 7.64. The logic S≤CIRL has its Leibniz filters equationally definable by
τ (x) = {x ≈ >}.

Notice that the same result follows by Proposition 6.6, because (S≤CIRL)+ =
S1

CIRL is truth-equational and moreover Alg(S≤CIRL) = Alg(S1
CIRL).

Applying one more time the results of Chapter 6, we obtain:

Corollary 7.65. Let A ∈ CIRL. For every F ∈ FiS≤CIRL
A,

ΩA(F ) = ΩA(F ∗) and ∼
ΩA
S≤CIRL

(F ) = ΩA(F Su).

Moreover,
F Su =

⋂
G∈(Fi

S≤CIRL
A)F

G∗.

As a consequence, F is a Suszko S≤CIRL-filter of A if and only if F ⊆ G∗, for every
G ∈ (FiS≤CIRL

A)F .

Finally, and similarly to Belnap’s logic, we will give a characterization of the
operation that turns a S≤CIRL-filter F into its associated Leibniz S≤CIRL-filter F ∗, for
commutative integral residuated lattices, inspired once again by the Birula-Rasiowa
transformation.

Definition 7.66. Let A ∈ CIRL. For every F ∈ FiltA, define

Ψ(F ) := {a ∈ A : ∀b ∈ A if a→A b ∈ F , then b ∈ F}.

Proposition 7.67. Let A ∈ CIRL. If F ∈ FiltA, then Ψ(F ) ∈ Filt→A.

Proof. First note that 1 ∈ Ψ(F ), because 1 →A b = b, by Lemma 7.56.2, for
every b ∈ A. Let a ∈ Ψ(F ) and b ∈ A such that a ≤ b. Then, a →A b = 1 ∈ F ,
by Lemma 7.56.1. Since a ∈ Ψ(F ), it follows that b ∈ F . Next, let a, b ∈ Ψ(F ).
We claim that a �A b ∈ Ψ(F ). Let c /∈ F . Then, b →A c /∈ F , because b ∈ Ψ(F ).
Then, a→A (b→A c) /∈ F , because a ∈ Ψ(F ). But,

(a�A b)→A c = a→A (b→A c),

by Lemma 7.54.2. So, (a�A b)→A c /∈ F . Thus, a�A b ∈ Ψ(F ). Since a�A b ≤
a ∧A b, by Lemma 7.56.4, and we have seen already Ψ(F ) to be upwards-closed,
it follows that a ∧A b ∈ F . Finally, let a, a →A b ∈ Ψ(F ). Since Ψ(F ) ⊆ F ,
a→A b ∈ F . Since a ∈ Ψ(F ), b ∈ F . �

Proposition 7.68. Let A ∈ CIRL. For every F ∈ FiS≤CIRL
A,

ΩA(F ) = ΩA
(
Ψ(F )

)
.
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Proof. We claim that ΩA(F ) is compatible with Ψ(F ). Let 〈a, b〉 ∈ ΩA(F ) and
a ∈ Ψ(F ). Let c ∈ A such that b →A c ∈ F . Then, 〈a →A c, b →A c〉 ∈ ΩA(F ).
Since b →A c ∈ F , it follows that a →A c ∈ F . Since a ∈ Ψ(F ), it follows that
c ∈ F . So, b ∈ Ψ(F ). Thus, ΩA(F ) ⊆ ΩA

(
Ψ(F )

)
.

Conversely, we claim that ΩA
(
Ψ(F )

)
is compatible with F . Let 〈a, b〉 ∈

ΩA
(
Ψ(F )

)
and let a ∈ F . Then, 〈a →A b, b →A b〉 ∈ ΩA

(
Ψ(F )

)
. Since

b →A b = 1 ∈ Ψ(F ), it follows that a →A b ∈ Ψ(F ). Also, a ≤ (a →A b) →A b,
by Lemma 7.54.3. So, (a →A b) →A b ∈ F , because F is upwards-closed. Since
a→A b ∈ Ψ(F ), it follows that b ∈ F . Thus, ΩA

(
Ψ(F )

)
⊆ ΩA(F ). �

Corollary 7.69. Let A ∈ CIRL. For every F ∈ FiS≤CIRL
A,

F ∗ = Ψ(F ).

Proof. On the one hand, since ΩA(F ) ⊆ ΩA
(
Ψ(F )

)
, we have Ψ(F ) ∈ JF K∗, and

hence F ∗ ⊆ Ψ(F ). On the other hand, since ΩA
(
Ψ(F )

)
⊆ ΩA(F ) ⊆ ΩA(F ∗), we

have F ∗ ∈ JΨ(F )K∗, and hence Ψ(F )∗ ⊆ F ∗. But Ψ(F ) = Ψ(F )∗, because Ψ(F ) is
an implicative lattice filter of A, by Proposition 7.67, and the Leibniz S≤CIRL-filters
of A coincide with the implicative lattice filters of A, by Theorem 7.59. �

We finish our study of the logic S≤CIRL by proving that its strong version is not
selfextensional (this result is not new however, it follows from [17, Theorem 4.12]).

Proposition 7.70. The logic S1
CIRL is not selfextensional.

Proof. Suppose, towards an absurd, that S1
CIRL is selfextensional. Then, since

S1
CIRL has a conjunction, it follows by Theorem 0.46 that S1

CIRL is semilattice-based.
Then, it is semilattice-based of Alg(S1

CIRL) = CIRL, using Theorem 7.57.7. Con-
sequently, S1

CIRL = S≤CIRL, and we reach an absurd (for instance, S1
CIRL is truth-

equational, while S≤CIRL is not). �

As final remarks, we explain how the results of the present section apply to
some particular semilattice-based logics of subvarieties of commutative integral
residuated lattices, whose strong versions turn out be well-known multi-valued
logics. In the following, let L′ be the expansion of L by the constant 0, i.e.,
L′ = 〈∧,∨,→,�, 1, 0〉. Let us also define the unary operation ¬Aa := a →A 0,
for every L′-algebra A and every a ∈ A.

Hájek’s basic logic BL
A BL-algebra is an L′-algebra A = 〈A,∧A,∨A,→A,�A, 1, 0〉, where

1. The reduct 〈∧,∨,→,�, 1〉 belongs to CIRL;
2. a ∧A b = a�A (a→A b), for every a, b ∈ A;
3. (a→A b) ∨A (b→A a) = 1, for every a, b ∈ A.

Let us denote the semilattice-based logic of the class of all BL-algebras by BL≤.
The {x ≈ 1}-assertional logic of BL is usually known as Hájek’s basic logic BL. It
is known that BL is BP-algebraizable witnessed by the set of equivalence formulas
ρ(x, y) = {x ↔ y} and the set of defining equations τ (x) = {x ≈ >}, and that
Ł≤∞ is an extension of BL≤. From this latter fact follows 1 and 2 below, reasoning
similarly as in Theorem 7.57.1 and 2. Also, since BL≤ is a semilattice-based logic
with theorems, items 3 and 4 below follow by Corollary 6.11.

1. BL≤ is not protoalgebraic.
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2. BL≤ is not truth-equational.
3. (BL≤)+ = BL;
4. FiBLA = Fi∗BL≤A, for every BL-algebra A.

Lukasiewicz infinite valued logic L∞
An MV-algebra is an L′-algebra A = 〈A,∧A,∨A,→A,�A, 1, 0〉, where

1. A is a BL-algebra;
2. ¬A¬Aa = a, for every a ∈ A.

Let us denote the class of all MV-algebras algebras by MV. The semilattice-based
logic of MV is usually known as the Lukasiewicz’s infinite valued logic preserving
degrees of truth Ł≤∞ [35], while the {x ≈ 1}-assertional logic of MV is the famous
Lukasiewicz’s infinite valued logic Ł∞. It is known that Ł≤∞ is not protoalgebraic
[35, Theorem 3.11], and that Ł∞ is BP-algebraizable witnessed by the set of equiva-
lence formulas ρ(x, y) = {x↔ y} and the set of defining equations τ (x) = {x ≈ >}
[35, Theorem 2.1]. Again, since L≤∞ is a semilattice-based logic with theorems,
items 2 and 3 below follow by Corollary 6.11.

1. Ł≤∞ is not truth-equational.
2. (Ł≤∞)+ = Ł∞;
3. FiŁ∞A = Fi∗

Ł≤∞
A, for every A ∈ MV.

That L≤∞ is not truth-equational follows from the proof of [35, Theorem 3.10], where
an MV-algebra is exhibited such that the Leibniz operator is not injective over its
L≤∞-filters. So, in fact, truth is not even implicitly definable in Mod∗(L≤∞).

Product Logic Π
A product algebra is an L′-algebra A = 〈A,∧A,∨A,→A,�A, 1, 0〉, where

1. A is a BL-algebra;
2. ¬A¬Ac ≤

(
(a�A c)→A (b�A c)

)
→A (a→A b), for every a, b, c ∈ A;

3. a ∧A ¬Aa = 0, for every a ∈ A.
Let us denote the semilattice-based logic of the class of all product algebras by
Π≤. The {x ≈ 1}-assertional logic of the class of all product algebras is usually
known as the Product Logic Π. It is known that Π≤ is not protoalgebraic [17,
Example B.3], while Π is BP-algebraizable witnessed by the set of equivalence
formulas ρ(x, y) = {x ↔ y} and the set of defining equations τ (x) = {x ≈ >}.
Again, since Π≤ is a semilattice-based logic with theorems, items 2 and 3 below
follow by Corollary 6.11.

1. Π≤ is not truth-equational.
2. (Π≤)+ = Π;
3. FiΠA = Fi∗Π≤A, for every product algebra A.

To see 1, we reason as follows: suppose, towards an absurd, that Π≤ is truth-
equational; then, it coincides with its own strong version, by Proposition 5.5.4;
hence, by 2 above, Π≤ = Π; as a consequence Π≤ is protoalgebraic; we reach an
absurd.

Gödel’s Logic GL
A Gödel algebra is an L′-algebra A = 〈A,∧A,∨A,→A,�A, 1, 0〉, where

1. A is a BL-algebra;
2. a�A a = a, for every a ∈ A.
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Let us denote the semilattice-based logic of the class of all product algebras by
GL≤. The {x ≈ 1}-assertional logic of the class of all Gödel algebras is usually
known as the Gödel Logic’s GL. It is known that GL is BP-algebraizable witnessed
by the set of equivalence formulas ρ(x, y) = {x ↔ y} and the set of defining
equations τ (x) = {x ≈ >}. But in this case, the operations ∧A and �A coincide,
and therefore Gödel algebras form a subvariety of generalized Heyting algebras [17,
p. 1046]. It follows by [17, Theorem 4.12] that GL≤ = GL. So, having in mind
Corollary 6.11, GL≤ coincides with its own strong version.

7.5. An intermediate logic between the semilattice-based logic of CRL
and the {x ∧ 1 ≈ 1}-assertional logic of CRL

We now wish to generalize the results of the previous section by considering
commutative residuated lattices not necessarily integral. The motivation is to cap-
ture some more examples of substructural logics covered in the literature — most
notably, the Classical and Intuitionistic Linear Logics without exponentials — as
the strong versions of two new (at least to our knowledge) non-protoalgebraic logics.

The semilattice-based logic of CRL, S≤CRL, does not have theorems, because there
are commutative residuated lattices which are not integral (recall that a semilattice-
based logic S≤K has theorems if and only if the semilattice reducts in K have a
term-definable maximum element). Consequently, the strong version (S≤CRL)+ is
the almost inconsistent logic. This being the case, and for the first time so far, we
shall work with an extension of the semilattice-based logic under consideration, one
which has as theorems a distinguished set of formulas whose interpretation in the
associated semilattice reducts is algebraically meaningful. The underlying language
in the present section will (still) be L = 〈∧,∨,→, �, 1〉.

Recall that the logic S≤CRL is induced by the class of matrices {〈A, [a)〉 : A ∈
CRL, a ∈ A} and therefore also by the class of matrices {〈A, F 〉 : A ∈ CRL, F ∈
FiltA}. The substructural logic usually associated with CRL is the logic induced
by the class of matrices {〈A, [1A)〉 : A ∈ CRL}, where [1A) is the up-set of 1A;
in other words, it is the τ -assertional logic of the class of algebras CRL, where
τ (x) := {x ∧ 1 ≈ 1}. According to the notation on page 17, such logic is denoted
by S

(
CRL, {x ∧ 1 ≈ 1}

)
; for ease of notation however, we shall denote it by SτCRL.

So, the consequence relation `SτCRL
is defined by

Γ `SτCRL
ϕ iff ∀A ∈ CRL ∀h ∈ Hom(FmL,A)

if ∀γ ∈ Γ 1A ≤ h(γ), then 1A ≤ h(ϕ),

for every Γ ⊆ FmL and every ϕ ∈ FmL. We next collect some (known) facts about
the logic SτCRL. These results can be found in [49, Chapter 6] (stated explicitly for
the {x ∧ 1 ≈ 1}-assertional logic of CRL), but also follow from [43, Section 2.6]
(stated more generally for the {x ∧ 1 ≈ 1}-assertional logic of the variety FL of
FL-algebras).

Theorem 7.71.
1. SτCRL is BP-algebraizable, witnessed by the set of congruence formulas ρ(x, y) =
{x↔ y} and the set of defining equations τ (x) = {x ∧ 1 ≈ 1}; its equivalent
algebraic semantics is CRL.

2. For every A ∈ CRL, FiSτCRL
A = {F ∈ Filt→A : 1A ∈ F}.

3. Alg∗(SτCRL) = Alg(SτCRL) = CRL.
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For the sake of simplicity, from this point on we shall refrain from distinguishing
notationally the L-term 1 and its interpretation 1A, whenever the context is clear.

We are interested in finding a logic as close as possible to the semilattice-based
logic of CRL and whose strong version happens to be the logic SτCRL. Since it must
have the same theorems as SτCRL, the natural candidate is the least logic in between
S≤CRL and SτCRL with the same theorems as the latter. The logic with these properties
is defined by the class of matrices

{〈A, F 〉 : A ∈ CRL, F ∈ FiltA, 1 ∈ F},

as we will show in Proposition 7.73. We denote the consequence relation induced
by the class of matrices above by S4CRL. Before going any further note that this
consequence relation is finitary because the class of matrices above is first-order
definable and hence closed under ultraproducts. Moreover, since for everyA ∈ CRL,
{a ∈ A : 1A ≤ a} is a lattice filter that contains {1A}, it follows by the definitions
involved that S≤CRL ≤ S

4
CRL ≤ SτCRL.

Let us first determine the class of S4CRL-algebras.

Proposition 7.72. CRL = Alg∗(S4CRL) = Alg(S4CRL).

Proof. Just notice that, since S≤CRL ≤ S
4
CRL ≤ SτCRL,

CRL = Alg∗(SτCRL) ⊆ Alg∗(S4CRL) ⊆ Alg(S4CRL) ⊆ Alg(S≤CRL) = CRL,

using Theorem 7.71.3, and the fact that S≤CRL is, by definition, the semilattice-based
logic of CRL. �

Proposition 7.73. The logic S4CRL is the least logic in between S≤CRL and SτCRL with
the same theorems that SτCRL.

Proof. Let us first show that the theorems of SτCRL and S4CRL are the same. Since
S4CRL ≤ SτCRL, it is clear that if ∅ `S4

CRL
ϕ, then ∅ `SτCRL

ϕ. Conversely, assume
∅ `SτCRL

ϕ. Let A ∈ CRL and F ∈ FiltA such that 1 ⊆ F . It follows by assumption
that 1 ≤ h(ϕ). Since 1 ∈ F and F is upwards-closed, it follows that h(ϕ) ∈ F .
Thus, ∅ `S4

CRL
ϕ.

Assume now that S is a logic such that S≤CRL ≤ S ≤ SτCRL and with the same
theorems that SτCRL. Then, CRL = Alg(SτCRL) ⊆ Alg(S) ⊆ Alg(S≤CRL) = CRL, using
Theorem 7.71.3 and the fact that S≤CRL is semilattice-based of CRL. Thus, for every
A ∈ CRL, every S-filter of A is an S≤CRL-filter of A, and therefore it is a lattice
filter of A. Moreover, since 1 is a theorem of SτCRL, 1A belongs to every S-filter
of A. Therefore {〈A, F 〉 : A ∈ Alg∗(S), F ∈ FiSA} ⊆ {〈A, F 〉 : A ∈ CRL, F ∈
FiltA, 1A ∈ F}. This implies that S4CRL ≤ S. �

The consequence relation S4CRL has a useful and enlightening characterization.

Proposition 7.74. For every Γ ⊆ FmL and every ϕ ∈ FmL
Γ `S4

CRL
ϕ iff ∀A ∈ CRL ∀a ∈ A ∀h ∈ Hom(FmL,A)

if ∀γ ∈ Γ 1 ∧A a ≤ h(γ), then 1 ∧A a ≤ h(ϕ).

Proof. Let us temporarily denote by � the consequence relation defined by the
condition on the right hand side of the ‘iff’. Note that � is the consequence relation
induced by the class of matrices {〈A, [1 ∧A a)〉 : A ∈ CRL, a ∈ A}. This class is
easily seen to be first-order definable. Therefore it is closed under ultraproducts,
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and this implies that the induced consequence relation is finitary. Moreover, since
this class is included in {〈A, F 〉 : A ∈ CRL, F ∈ FiltA, 1 ∈ F}, then S4CRL ≤ �.

Conversely, suppose that Γ � ϕ. Let A ∈ CRL and F a lattice filter of A such
that 1 ∈ F . Let h ∈ Hom(FmL,A) be such that h(Γ) ⊆ F . Now since � is finitary,
let Γ′ ⊆ Γ be a finite set such that Γ′ � ϕ. Then h(Γ) ⊆ F . Since F is a lattice
filter there is a ∈ F such that a ≤ h(γ) for every γ ∈ Γ′. Therefore, 1 ∧A a ≤ h(γ)
for every γ ∈ Γ′. Thus, 1 ∧A a ≤ h(ϕ). Since 1 ∈ F , we have h(ϕ) ∈ F . It follows
that Γ′ `S4

CRL
ϕ. Therefore Γ `S4

CRL
ϕ. �

Let us now see that the logic S4CRL falls outside the classes of logics in Figure 1.

Theorem 7.75.
1. S4CRL is not protoalgebraic.
2. S4CRL is not truth-equational.

Proof. Notice that S4CRL ≤ S
≤
CIRL, because CIRL ⊆ CRL, and every lattice filter F ∈

FiltA, with A ∈ CIRL, is necessarily such that 1 ∈ F . Now, we know that S≤CIRL is
neither protoalgebraic nor truth-equational, by Theorem 7.57.1 and 2, respectively.

�

Unlike in the integral case, we have now left the semilattice-based setting, and
we can no longer apply the general results of Chapter 5 concerning this family of log-
ics. So, our strategy to find the strong version of S4CRL will be different. For the logics
PML and B, we first characterized the Leibniz filters in order to find its respec-
tive strong version. For the subintuitionistic logics and the logic S≤CIRL it followed
straightforwardly by Corollary 6.11. This time we will use Proposition 5.9, using
as candidate for the strong version the logic SτCRL. We know already that SτCRL is
truth-equational, for it is algebraizable. We also know that Alg(S4CRL) = Alg(SτCRL).
It remains to be checked that the least S4CRL and the least SτCRL-filter coincide for
every A ∈ Alg(SτCRL) = CRL. This is what we do next, by first characterizing the
S4CRL-filters of the algebras in CRL.

Proposition 7.76. For every A ∈ CRL, the S4CRL-filters coincide with the lattice
filters of A containing 1. That is,

FiS4
CRL
A = {F ∈ FiltA : 1 ∈ F}.

Proof. Let A ∈ CRL and F ∈ FiS4
CRL
A. Notice that using the definition of S4CRL

it easily follows that

∅ `S4
CRL

1, x, y `S4
CRL

x ∧ y, x ∧ y `S4
CRL

x, y.

This implies that F ∈ FiltA and 1 ∈ F . From the definition of S4CRL it follows
immediately that if F ∈ FiltA is such that 1 ∈ F , then F ∈ FiS4

CRL
A. �

Hence, for every A ∈ CRL, the least S4CRL-filter on A is [1), which is exactly
the least SτCRL-filter on A. We are now able to apply Proposition 5.9:

Theorem 7.77. The logic SτCRL is the strong version of S4CRL.

Having in mind that SτCRL is algebraizable and thus truth-equational, it readily
follows from Proposition 5.14 that:
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Theorem 7.78. Let A ∈ CRL. The Leibniz S4CRL-filters of A coincide with the
implicative lattice filters of A containing 1. That is,

Fi∗S4
CRL
A = {F ∈ Filt→A : 1 ∈ F}.

Although not semilattice-based, S4CRL still has its Leibniz filters equationally
definable. For we know that SτCRL is truth-equational witnessed by the set of defining
equations τ (x) = {x ∧ 1 ≈ 1} and moreover Alg(S4CRL) = CRL = Alg(SτCRL). Hence,
it follows by Proposition 6.6 that:

Proposition 7.79. The logic S4CRL has its Leibniz filters equationally definable by
τ (x) = {x ∧ 1 ≈ 1}.

Furthermore, the fact that SτCRL is algebraizable also allows us to prove:

Proposition 7.80. The logic S4CRL satisfies (?).

Proof. Since SτCRL is algebraizable, ΩA : FiSτCRL
A → ConAlg∗(SτCRL)A is an order-

isomorphism, for every A. But, Alg∗(SτCRL) = CRL = Alg∗(S4CRL) and FiSτCRL
A =

{F ∈ Filt→A : 1 ∈ F} = Fi∗
S4

CRL
A, for A ∈ CRL, by Theorems 7.75 and 7.78,

respectively. �

We can therefore apply the general theory of Chapter 6 and obtain:

Corollary 7.81. Let A ∈ CRL. For every F ∈ FiS4
CRL
A,

ΩA(F ) = ΩA(F ∗) and ∼
ΩA
S4

CRL
(F ) = ΩA(F Su).

Moreover,
F Su =

⋂
G∈(Fi

S4CRL
A)F

G∗.

As a consequence, F is a Suszko S4CRL-filter of A if and only if F ⊆ G∗, for every
G ∈ (FiS4

CRL
A)F .

Another interesting consequence is the following:

Proposition 7.82. The logic S4CRL does not have its Leibniz filters explicitly defin-
able.

Proof. It follows by Propositions 7.80 and 6.21, having in mind that S4CRL is not
protoalgebraic. �

Just like the integral case, although S4CRL does not have its Leibniz filters ex-
plicitly definable, it does have its Leibniz filters logically definable. Indeed, given
Theorem 7.78, it easily follows that S4CRL has its Leibniz filters logically definable
by the rule Modus Ponens.

Proposition 7.83. The logic S4CRL has its Leibniz filters logically definable by the
rule Modus Ponens.

Proof. Just notice that, in light of Theorem 7.78, for everyA ∈ Alg∗(S4CRL) = CRL
and every F ∈ FiS4

CRL
A, F is a Leibniz S4CRL-filter of A if and only if F is an

implicative lattice filter if and only if is closed under Modus Ponens. Hence, the
result follows from Proposition 6.30. �
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Consequently,

Corollary 7.84. The logic SτCRL is the inferential extension of S4CRL by the rule
Modus Ponens.

Proof. The result follows by Corollary 6.33, since S4CRL has its Leibniz filters
logically definable by the rule Modus Ponens, by Proposition 7.83. �

Our final goal is to find a characterization of F ∗ using again some Birula-
Rasiowa style transformation, as we did for the integral case. The natural candidate
for the transformation Ψ is now:

Definition 7.85. Let A ∈ CRL. For every F ∈ FiltA, define

Ψ(F ) := {a ∈ A : ∀b ∈ A if (a ∧A 1)→A b ∈ F , then b ∈ F}.

Proposition 7.86. Let A ∈ CRL. For every F ∈ FiltA, Ψ(F ) ∈ Filt→A and
1 ∈ Ψ(F ).

Proof. First of all, 1 ∈ Ψ(F ), because (1 ∧A 1) →A b = 1 →A b = b, using
Lemma 7.56.2. Next, let a ∈ Ψ(F ) and b ∈ A such that a ≤ b. Let c ∈ A be such
that (b∧A1)→A c ∈ F . Since a∧A1 ≤ b∧A1, we have (b∧A1)→A c ≤ (a∧A1)→A
c, by suffixing. Since F is upwards-closed, it follows that (a∧A 1)→A c ∈ F . Since
a ∈ Ψ(F ), it follows that c ∈ F . Hence, b ∈ Ψ(F ). This shows that Ψ(F ) is
an up-set. To prove that it is closed under meets, let a, b ∈ Ψ(F ). Suppose that
c /∈ F . Then, (b ∧A 1) →A c /∈ F , because b ∈ Ψ(F ), and therefore (a ∧A 1) →(
(b ∧A 1)→A c

)
/∈ F , because a ∈ Ψ(F ). Thus,

(
(a ∧A 1)�A (b ∧A 1)

)
→A c /∈ F ,

by Lemma 7.54.2. Now, notice that (a∧A 1)�A (b∧A 1) ≤ (a∧A 1)�A 1 = a∧A 1
and similarly that (a ∧A 1) �A (b ∧A 1) ≤ b ∧A 1, by Lemma 7.54.7. Therefore,
(a∧A 1)�A (b∧A 1) ≤ (a∧A 1)∧A (b∧A 1) = (a∧A b)∧A 1. So,

(
(a∧A b)∧A 1

)
→A

c ≤
(
(a ∧A 1) �A (b ∧A 1)

)
→A c, by suffixing. Since F is upwards-closed, it

follows that
(
(a ∧A b) ∧A 1

)
→A c /∈ F . Thus, a ∧A b ∈ Ψ(F ). Finally we

prove that Ψ(F ) is implicative. To this end, and given Lemma 7.55, it is enough
to prove that Ψ(F ) is closed under �A. Let a, b ∈ Ψ(F ). Let c /∈ F . Then,
(b ∧A 1) →A c /∈ F , because b ∈ Ψ(F ). Then, (a ∧A 1) →

(
(b ∧A 1) →A c

)
/∈ F ,

because a ∈ Ψ(F ). Hence,
(
(a ∧A 1) �A (b ∧A 1)

)
→A c /∈ F , by Lemma 7.54.2.

Now, notice that (a ∧A 1) �A (b ∧A 1) ≤ a �A b and (a ∧A 1) �A (b ∧A 1) ≤
1�A 1 = 1, by Lemma 7.54.7. So, (a∧A 1)�A (b∧A 1) ≤ 1∧A (a�A b). Therefore,(
1 ∧A (a�A b)

)
→A c ≤

(
(a ∧A 1)�A (b ∧A 1)

)
→A c, by suffixing. Since F is an

up-set and
(
(a ∧A b) ∧A 1

)
→A c /∈ F , we have

(
1 ∧A (a�A b)

)
→A c /∈ F . Thus,

a�A b ∈ Ψ(F ). �

Proposition 7.87. Let A ∈ CRL. For every F ∈ FiS4
CRL
A,

ΩA(F ) = ΩA
(
Ψ(F )

)
.

Proof. We claim that ΩA(F ) is compatible with Ψ(F ). Let 〈a, b〉 ∈ ΩA(F ) and
a ∈ Ψ(F ). Then, 〈(a ∧A 1)→A b, (b ∧A 1)→A b〉 ∈ ΩA(F ). Since

1 ≤ b→A b ≤ (b ∧A 1)→A b,

by Lemma 7.56.3 and suffixing, respectively, and F is upwards-closed, it follows
that (b ∧A 1) →A b ∈ F . By compatibility, we have (a ∧A 1) →A b ∈ F . Since
a ∈ Ψ(F ), it follows that b ∈ F . Thus, ΩA(F ) ⊆ ΩA

(
Ψ(F )

)
.
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Conversely, we claim that ΩA
(
Ψ(F )

)
is compatible with F . Let 〈a, b〉 ∈

ΩA
(
Ψ(F )

)
and let a ∈ F . Then, 〈a→A b, b→A b〉 ∈ ΩA

(
Ψ(F )

)
. Since 1 ≤ b→A

b, and 1 ∈ Ψ(F ), and Ψ(F ) is upwards-closed, it follows that b→A b ∈ Ψ(F ). Then,
by compatibility, a →A b ∈ Ψ(F ). Now, a ≤ (a →A b) →A b, by Lemma 7.54.3.
Since a ∈ F and F is upwards-closed, it follows that (a →A b) →A b ∈ F . Also,
since (a→A b) ∧A 1 ≤ a→A b, it follows by suffixing that

(a→A b)→A b ≤ ((a→A b) ∧A 1)→A b.

Therefore, ((a→A b) ∧A 1)→A b ∈ F . Since, as we have seen, a→A b ∈ Ψ(F ), it
follows that b ∈ F . Thus, ΩA

(
Ψ(F )

)
⊆ ΩA(F ). �

Corollary 7.88. Let A ∈ CRL. For every F ∈ FiS4
CRL
A,

F ∗ = Ψ(F ).

Proof. On the one hand, since ΩA(F ) ⊆ ΩA
(
Ψ(F )

)
, we have Ψ(F ) ∈ JF K∗, and

hence F ∗ ⊆ Ψ(F ). On the other hand, since ΩA
(
Ψ(F )

)
⊆ ΩA(F ) ⊆ ΩA(F ∗),

we have F ∗ ∈ JΨ(F )K∗, and hence Ψ(F )∗ ⊆ F ∗. But Ψ(F ) = Ψ(F )∗, because
we have seen that Ψ(F ) is an implicative lattice filter of A containing {1}, by
Proposition 7.86, and the Leibniz S4CRL-filters of A are precisely these filters, by
Theorem 7.78. �

We finish our study by showing that neither S4CRL nor SτCRL belong to any of
the classes of the Frege hierarchy. This contrasts with the previous example, where
the semilattice-based logic S4CIRL is of course fully selfextensional. The two proofs
are very similar, but both are necessary, as selfextensionality is not preserved by
extensions, and therefore we cannot use a contra-positive argument here.

Proposition 7.89. The logic S4CRL is not selfextensional.

Proof. Suppose, towards an absurd, that S4CRL is selfextensional. Then, since S4CRL
has a conjunction, it follows by Theorem 0.46 that S≤CRL is semilattice-based. Then,
it is semilattice-based of Alg(S4CRL) = CRL, using Proposition 7.72. Consequently,
SτCRL = S≤CRL, and we reach an absurd (for instance, S4CRL has theorems, while S≤CRL
has not). �

Proposition 7.90. The logic SτCRL is not selfextensional.

Proof. Suppose, towards an absurd, that SτCRL is selfextensional. Then, since SτCRL
has a conjunction, it follows by Theorem 0.46 that SτCRL is semilattice-based. Then,
it is semilattice-based of Alg(SτCRL) = CRL, using Theorem 7.71.3. Consequently,
SτCRL = S≤CRL, and we reach an absurd (for instance, SτCRL has theorems, while S≤CRL
has not). �

As a final remark, we explain how to apply the results of the present section to
Classical and Intuitionistic Linear Logic without exponentials, hereby denoted by
CLL and ILL, respectively. The underlying language for linear logic without expo-
nentials is L′ = 〈∧,∨,→,�, 1, 0,>,⊥〉, that is, the expansion of L by the constants
0,>,⊥. An IL-algebra7 is an algebra A = 〈A,∧A,∨A,→A,�A, 1A, 0A,>A,⊥A〉,
where

1. The reduct 〈A,∧A,∨A,→A,�A, 1A〉 belongs to CRL;

7Following the terminology of [57, Definition 8.2, p. 71].
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2. ⊥A is the bottom element of A, that is, for every a ∈ A, ⊥A ≤ a;
3. >A is the top element of A, that is, for every a ∈ A, a ≤ >A.

Let us denote by IL the class of all IL-algebras. Consider once again the equational
transformer τ (x) = {x ∧ 1 ≈ 1}. Define SτIL as the logic induced by the class
of matrices {〈A, τA〉 : A ∈ IL}. Then, ILL = SτIL and moreover ILL is BP-
algebraizable witnessed by the set of congruence formulas ρ(x, y) = {x ↔ y} and
the set of defining equations τ (x) [49, Section 6.3]. Now, define the logic S4IL as
the logic induced by the class of matrices {〈A, F 〉 : A ∈ IL, F ∈ FiltA, τA ⊆ F}.
Under similar proofs to those undertaken in the present section, one shows that:

1. S4IL is not protoalgebraic, nor truth-equational, nor selfextensional.
2. (S4IL )+ = ILL;
3. ILL is the inferential extension of S4IL by the rule Modus Ponens;
4. FiILLA = Fi∗

S4
IL
A, for every A ∈ IL.

The classical case is carried out similarly, with the help of a non-primitive
binary connective ¬, defined by ¬ϕ := ϕ → 0. A CL-algebra is an algebra A =
〈A,∧A,∨A,→A,�A, 1A, 0A,>A,⊥A〉, where

1. A ∈ IL;
2. ¬A¬Aa = a, for every a ∈ A.

Let us denote by CL the class of all CL-algebras. Define SτIL as the logic induced by
the class of matrices {〈A, τA〉 : A ∈ CL}. Then, CLL = SτCL and moreover CLL
is BP-algebraizable witnessed by the set of congruence formulas ρ(x, y) and the
set of defining equations τ (x), both given as above [49, Section 6.4]. Now, define
the logic S4CL as the logic induced by the class of matrices {〈A, F 〉 : A ∈ CL, F ∈
FiltA, τA ⊆ F}. Under similar proofs to those undertaken in the present section,
one shows that:

1. S4CL is not protoalgebraic, nor truth-equational, nor selfextensional.
2. (S4CL)+ = CLL;
3. CLL is the inferential extension of S4CL by the rule Modus Ponens;
4. FiCLLA = Fi∗

S4
CL
A, for every A ∈ CL.

7.6. An intermediate logic between the semilattice-based logic of CRLr
and the {x ∧ (x→ x) ≈ x→ x}-assertional logic of CRLr

We finish our examples of non-protoalgebraic logics with yet another general-
ization of the previous section, namely that obtained by dropping the existence of
the multiplicative constant on Definition 7.53.

Throughout the present section, we shall be working within the language L =
〈∧,∨,→,�〉. Let us start by introducing the class of residuated lattices without
multiplicative constant which we shall be interested in.

Definition 7.91. An algebra A = 〈A,∧A,∨A,→A,�A〉 is a commutative residu-
ated lattice without multiplicative constant, if:

1. 〈A,∧A,∨A〉 is a lattice;
2. 〈A,�A〉 is a commutative semigroup8;
3. →A is the residuum of �A, that is, for every a, b ∈ A, a �A c ≤ b iff c ≤
a→A b.

8A semigroup is an algebra 〈A, ◦〉, where ◦ is a binary operation on A which is associative.
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A commutative residuated lattice without multiplicative constant is relevant, if:
4. for every a, b, c ∈ A,

(
(a→A a) ∧A (b→A b)

)
→A c ≤ c9.

The class of all relevant commutative residuated lattices without multiplicative
constant will be denoted by CRLr.

So, when compared with Definition 7.53, we are here relaxing condition 2, de-
manding only the presence of a commutative semigroup, rather than a commutative
monoid. In other words, we drop the existence of the multiplicative constant 1, not
only from the language but by allowing the semigroup not to have a unit.

Notice that the reducts of the algebras in CRL to the language L are algebras
in CRLr. Indeed, let A ∈ CRL and consider its L-reduct, say A �L. It is clear
that A�L satisfies conditions 1–3 of Definition 7.91. As to condition 4, since by
Lemma 7.56.3, 1 ≤ d→A d, for every d ∈ A, it follows by that

1 = 1 ∧A 1 ≤ (a→A a) ∧A (b→A b),

for every a, b ∈ A, and therefore by suffixing(
(a→A a) ∧A (b→A b)

)
→A c ≤ 1→A c = c,

for every a, b, c ∈ A. So, A�L is indeed a relevant commutative residuated lattice
without multiplicative constant. Thus, CRL�L= {A�L: A ∈ CRL} ⊆ CRLr. This
fact motivates the notation chosen for CRLr, despite the fact that, in rigor, these
algebras are not commutative residuated lattices according to Definition 7.53.

It is important to realize that all the conditions stated in Lemma 7.54 still hold
in CRLr, as none of them relies on the multiplicative constant of the underlying
residuated lattice. We shall make use of these properties throughout the present
section, although they are formally stated for algebras in CRL. We next state some
more useful inequalities which hold in all relevant commutative residuated lattices
without multiplicative constant.
Lemma 7.92. Let A ∈ CRLr. For every a, b, c ∈ A,

1. (a→A a)→A b ≤ b;
2. (a→A a)→A (a→A a) ≤ (a→A a);
3. (a→A a)�A (a→A a) ≤ (a→A a);
4. if for every i = 1, . . . , n, with n ∈ N, ai →A ai ≤ ai, then∧A

i=1,...,n ai →A
∧A
i=1,...,n ai ≤

∧A
i=1,...,n ai.

Proof. 1. Take b = a in the relevance condition of Definition 7.91. 2. Take
b = a →A a in 1. 3. It holds (a →A a) ≤ (a →A a) →A (a →A a), by
Lemma 7.54.10, taking a = b = c. Hence, it follows by residuation that (a →A
a)�A (a→A a) ≤ (a→A a). 4. The proof goes by induction on n ∈ N. The basis
case follows immediately from the assumption a1 →A a1 ≤ a1. Now, assume that
the stated property holds for n > 1. Let a1, . . . , an+1 ∈ A such that ai →A ai ≤ ai,
for every i = 1, . . . , n+ 1. It follows by the inductive hypothesis that∧

i=1,...,n

Aai →A
∧

i=1,...,n

Aai ≤
∧

i=1,...,n

Aai.

9This condition appears in [5, pp. 275,321], but it is its algebraic treatment in [41] for the
Relevance Logic R that lays the groundwork for the results of this section. It also appears in
[42, p. 373], where in fact a first study of SτCRL seen as a strong version is carried out, and the
semilattice-based logic S≤CRL is proposed as “weak version” of SτCRL. For the sake of completeness,
the condition also appears explicitly in [1, p. 22].



150 CHAPTER 7. EXAMPLES OF NON-PROTOALGEBRAIC LOGICS

Hence, ( ∧
i=1,...,n

Aai →A
∧

i=1,...,n

Aai

)
∧A an+1 ≤

∧
i=1,...,n

Aai ∧A an+1 =
∧

i=1,...,n+1

Aai.

Now, since an+1 →A an+1 ≤ an+1, it follows that( ∧
i=1,...,n

Aai →A
∧

i=1,...,n

Aai

)
∧A (an+1 →A an+1) ≤

∧
i=1,...,n+1

Aai.

Finally, by suffixing and using the relevance condition, we have∧
i=1,...,n+1

Aai →A
∧

i=1,...,n+1

Aai

≤
[( ∧

i=1,...,n

Aai →A
∧

i=1,...,n

Aai

)
∧A (an+1 →A an+1)

]
→A

∧
i=1,...,n+1

Aai

≤
∧

i=1,...,n+1

Aai.

�

Once again, the semilattice-based logic of CRLr, S≤CRLr, does not have theorems.
Consequently, its strong version is the almost inconsistent logic. Recall that S≤CRLr
is induced by the class of matrices {〈A, [a)〉 : A ∈ CRLr, a ∈ A} and therefore also
by the class of matrices {〈A, F 〉 : A ∈ CRLr, F ∈ FiltA}.

The fragment of intuitionistic linear logic associated with the class CRLr is the
τ -assertional logic of CRLr, with τ (x) :=

{
x ∧ (x → x) ≈ x → x

}
. Following the

notation introduced on page 17, such logic is denoted by S
(
CRLr,

{
x ∧ (x → x) ≈

x→ x
})

; once again for ease of notation, we shall denote it by SτCRLr. By definition,
SτCRLr is the logic induced by the class of matrices {〈A, τA〉 : A ∈ CRLr}, where
(recall the notation introduced on page 16)

τA := {a ∈ A : A � τ (x)JaK} = {a ∈ A : a→A a ≤ a}.

In other words, its consequence relation `SτCRLr
is defined by

Γ `SτCRLr
ϕ iff ∀A ∈ CRLr ∀h ∈ Hom(FmL,A)

if ∀γ ∈ Γ h(γ) ∈ τA, then h(ϕ) ∈ τA,

or equivalently,

Γ `SτCRLr
ϕ iff ∀A ∈ CRLr ∀h ∈ Hom(FmL,A)

if ∀γ ∈ Γ h(γ)→A h(γ) ≤ h(γ), then h(ϕ)→A h(ϕ) ≤ h(ϕ),

for every Γ ⊆ FmL and every ϕ ∈ FmL. It is clear that τA is now playing the rôle
of the up-set [1) in the non-integral case, or if one prefers, the rôle of the singleton
{1} in the integral case. We next collect some (not-so-known) properties about
the logic SτCRLr in Theorem 7.98. These results can be found in [49, Section 6.5],
but given the fact that this is an unpublished reference, and therefore may be of
difficult access to the reader, we exhibit the proofs. To this end, we first prove some
auxiliary lemmas regarding the distinguished set τA, with A ∈ CRLr, which in any
case are very insightful.

Lemma 7.93. For every A ∈ CRLr, τA is an implicative lattice filter of A.
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Proof. First of all, τA is non-empty, because for every c ∈ A, c →A c ∈ τA
by Lemma 7.92.2. To see that τA is an up-set, let a ∈ τA and b ∈ A such that
a ≤ b. So, a →A a ≤ a ≤ b. It follows by suffixing and Lemma 7.92.1 that
b →A b ≤ (a →A a) →A b ≤ b. Thus, b ∈ τA. Next, we prove that τA is
closed under meets. Let a, b ∈ τA. So, a →A a ≤ a and b →A b ≤ b. It follows
by Proposition 7.92.4 that (a ∧A b) →A (a ∧A b) ≤ a ∧A b. So, a ∧A b ∈ τA.
We are left to see that τA is implicative. Let a, b such that a →A a ≤ a and
(a→A b)→A (a→A b) ≤ a→A b. It holds,

(a→A b)→A (a→A b) =
((
a→A b

)
�A a

)
→A b

by Lemma 7.54.2. But,(
a→A b

)
�A a = a�A

(
a→A b

)
≤ b,

by Lemma 7.54.1. So,

b→A b ≤
((
a→A b

)
�A a

)
→A b,

by suffixing. So, using the second assumption,

b→A b ≤ (a→A b)→A (a→A b) ≤ a→A b.

But, since a→A a ≤ a by the first assumption,

a→A b ≤
(
a→A a

)
→A b ≤ b,

by suffixing and Lemma 7.92.1, respectively. Altogether,

b→A b ≤ a→A b ≤ b.

Hence, τA is implicative. �

Lemma 7.94. For every A ∈ CRLr,

τA = FiltA
(
{a→A a : a ∈ A}

)
.

Proof. On the one hand, for every a ∈ A, a→A a ∈ τA by Lemma 7.92.2. Since
moreover τA is a lattice filter of A by Lemma 7.93, the inclusion FiltA

(
{a→A a :

a ∈ A}
)
⊆ τA follows. On the other hand, let b ∈ FiltA

(
{a →A a : a ∈ A}

)
. So,

there exist a1, . . . , an ∈ A such that (a1 →A a1) ∧A . . . ∧A (an →A an) ≤ b. Now,
since ai →A ai ∈ τA, for every i = 1, . . . , n, and moreover τA is both closed under
meets and an up-set by Lemma 7.93, it follows that b ∈ τA. �

Lemma 7.95. For every A ∈ CRLr and every a, b ∈ A,

a ≤ b ⇔ a→A b ∈ τA.

Proof. Suppose a ≤ b. Then, a →A a ≤ a →A b by suffixing. Since a →A
a ∈ τA and τA is upwards-closed, by Lemma 7.94, it follows that a →A b ∈
τA. Conversely, suppose a →A b ∈ τA. Having Lemma 7.94 in mind, there
exist a1, . . . , an ∈ A such that

∧A
i=1,...,n(ai →A ai) ≤ a →A b. Since for every

i = 1, . . . , n, it holds (ai →A ai) →A (ai →A ai) ≤ ai →A ai, by Lemma 7.92.2,
it follows by Lemma 7.92.4 that

∧A
i=1,...,n(ai →A ai) →A

∧A
i=1,...,n(ai →A ai) ≤∧A

i=1,...,n(ai →A ai). So,
∧A
i=1,...,n(ai →A ai) →A

∧A
i=1,...,n(ai →A ai) ≤ a →A b.

It follows by suffixing, Lemma 7.54.3 and Lemma 7.92.1 that

a ≤ (a→A b)→A b ≤
( ∧
i=1,...,n

A(ai →A ai)→A
∧

i=1,...,n

A(ai →A ai)
)
→A b ≤ b.
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�

Also, notice that the proof of Lemma 7.55 is done exclusively using properties
of Lemma 7.54. Hence, it still holds for algebras in CRLr.

Lemma 7.96. Let A ∈ CRLr. A lattice filter F ∈ FiltA is implicative if and only
if it is closed under the operation �A.

Lemma 7.97. Let A ∈ CRLr. For every F ∈ Filt→A such that τA ⊆ F ,

∀a, b ∈ A 〈a, b〉 ∈ ΩA(F ) iff a↔A b ∈ F.

Proof. Define R ⊆ A×A by

∀a, b ∈ A 〈a, b〉 ∈ R iff a↔A b ∈ F.

We prove that R is the largest congruence on A compatible with F .
� Reflexive: Since a↔A a = (a→A a) ∧A (a→A a) = a→A a ∈ τA ⊆ F .
� Symmetric: This should be clear, given the definition of ↔.
� Transitive: Let a, b, c ∈ A such that a ↔A b ∈ F and b ↔A c ∈ F . Since F is
upwards-closed, it follows that a→A b ∈ F and b→A c ∈ F . Since

a→A b ≤ (b→A c)→A (a→A c),

by Lemma 7.54.10, and moreover F is upwards-closed and implicative, it follows
that a→A c ∈ F . Similarly, c→A a ∈ F . So, a↔A c ∈ F .
� Compatible with ∧: Let a, b ∈ A such that a1 ↔A b1 ∈ F and a2 ↔A b2 ∈ F .
Since F is upwards-closed, it follows that a1 →A b1 ∈ F and a2 →A b2 ∈ F . Now,
by suffixing,

a1 →A b1 ≤ (a1 ∧A a2)→A b1,

and
a2 →A b2 ≤ (a1 ∧A a2)→A b2.

Moreover,(
(a1 ∧A a2)→A b1

)
∧A

(
(a1 ∧A a2)→A b2

)
≤ (a1 ∧A a2)→A (b1 ∧A b2),

by Lemma 7.54.8. Since F is closed under meets and upwards-closed, it follows
that (a1 ∧A a2)→A (b1 ∧A b2) ∈ F . Similarly, (b1 ∧A b2)→A (a1 ∧A a2) ∈ F . So,
(a1 ∧A a2)↔A (b1 ∧A b2) ∈ F .
� Compatible with ∨: Let a, b ∈ A such that a1 ↔A b1 ∈ F and a2 ↔A b2 ∈ F .
Since F is upwards-closed, it follows that a1 →A b1 ∈ F and a2 →A b2 ∈ F . Now,

a1 →A b1 ≤ a1 →A (b1 ∨A b2),

and
a2 →A b2 ≤ a2 →A (b1 ∨A b2),

by Lemma 7.54.6. Moreover,(
a1 →A (b1 ∨A b2)

)
∧A

(
a2 →A (b1 ∨A b2)

)
≤ (a1 ∨A a2)→A (b1 ∨A b2),

by Lemma 7.54.9. Since F is closed under meets and upwards-closed, it follows
that (a1 ∨A a2)→A (b1 ∨A b2) ∈ F . Similarly, (b1 ∨A b2)→A (a1 ∨A a2) ∈ F . So,
(a1 ∧A a2)↔A (b1 ∧A b2) ∈ F .
� Compatible with →: Let a, b ∈ A such that a1 ↔A b1 ∈ F and a2 ↔A b2 ∈ F .
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Since F is upwards-closed, it follows that a1 →A b1 ∈ F and a2 →A b2 ∈ F . On
the one hand,

b1 →A a1 ≤ (a1 →A a2)→A (b1 →A a2),

by Lemma 7.54.10. On the other hand,

a2 →A b2 ≤ (b1 →A a2)→A (b1 →A b2),

this time by Lemma 7.54.11. Since F is upwards-closed, both (a1 →A a2) →A
(b1 →A a2) ∈ F and (b1 →A a2)→A (b1 →A b2) ∈ F . Moreover,[

(a1 →A a2)→A (b1 →A a2)
]
�A

[
(b1 →A a2)→A (b1 →A b2)

]
≤ (a1 →A a2)→A (b1 →A b2), (22)

by Lemma 7.54.12. Now, since F is closed under �A (by Lemma 7.96, because F
is implicative), it follows that[

(a1 →A a2)→A (b1 →A a2)
]
�A

[
(b1 →A a2)→A (b1 →A b2)

]
∈ F.

Since F is upwards-closed, it follows by (22) that (a1 →A a2)→A (b1 →A b2) ∈ F .
Similarly, (b1 →A b2)→A (a1 →A a2) ∈ F . So, (a1 →A a2)↔A (b1 →A b2) ∈ F .
compatible with �: Let a, b ∈ A such that a1 ↔A b1 ∈ F and a2 ↔A b2 ∈ F . Since
F is upwards-closed, it follows that a1 →A b1 ∈ F and a2 →A b2 ∈ F . We claim
that

(a1 →A b1)�A (a2 →A b2) ≤ (a1 �A a2)→A (b1 �A b2). (23)

By residuation (right-to-left), this amounts to

a1 �A a2 �A
(
(a1 →A b1)�A (a2 →A b2)

)
≤ b1 �A b2.

But indeed,

a1 �A a2 �A
(
(a1 →A b1)�A (a2 →A b2)

)
=

(
a1 �A (a1 →A b1)

)
�A

(
a2 �A (a2 →A b2)

)
≤ b1 �A b2.

Since F is closed under �A (by Lemma 7.96, because F is implicative), it follows
that (a1 →A b1)�A (a2 →A b2) ∈ F . Since F is upwards-closed, it follows by (23)
that (a1 �A a2)→A (b1 �A b2) ∈ F . Similarly, (b1 �A b2)→A (a1 �A a2) ∈ F . So,
(a1 �A a2)↔A (b1 �A b2) ∈ F .
� Compatible with F : Let a, b ∈ A such that a ↔A b ∈ F and a ∈ F . Since F is
upwards-closed, it follows that a→A b ∈ F . Since F is implicative, it follows that
b ∈ F .
� Largest compatible with F : Let θ ∈ ConA compatible with F . Let 〈a, b〉 ∈ θ. Since
θ ∈ ConA, it follows that 〈a↔A b, b↔A b〉 ∈ θ. But, b↔A b = b→A b ∈ τA ⊆ F .
Since θ is compatible with F , it follows that a↔A b ∈ F . �

Theorem 7.98.
1. Alg∗(SτCRLr) = Alg(SτCRLr) = CRLr.
2. For every A ∈ CRLr, FiSτCRLr

A = {F ∈ Filt→A : τA ⊆ F}.
3. SτCRLr is BP-algebraizable, witnessed by the set of congruence formulas
ρ(x, y) = {x ↔ y} and the set of defining equations τ (x) =

{
x ∧ (x →

x) ≈ x→ x
}
; its equivalent algebraic semantics is CRLr.
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Proof. 1. Since for every A ∈ CRLr, τA ∈ FiltA, by Lemma 7.93, and the
logic S≤CRLr is induced by the class of matrices {〈A, F 〉 : A ∈ CRLr, F ∈ FiltA},
it is clear by definition of SτCRLr that S≤CRLr ≤ SτCRLr, and therefore Alg(SτCRLr) ⊆
Alg(S≤CRLr) = CRLr (recall that, given a semilattice logic S≤K , it holds Alg(S≤K ) =
V(K)). Conversely, let A ∈ CRLr. Notice that the matrix 〈A, τA〉 is reduced.
Indeed, given Lemmas 7.93, 7.95, and 7.97, we have

〈a, b〉 ∈ ΩA(τA) iff a↔A b ∈ τA iff a = b,

for every a, b ∈ A. Now, clearly by definition of SτCRLr, τA ∈ FiSτCRLr
A. So,

CRLr ⊆ Alg∗(SτCRLr) ⊆ Alg(SτCRLr).
2. Since for every A ∈ CRLr, τA ∈ Filt→A, by Lemma 7.93, and moreover
{a→A a : a ∈ A} ⊆ τA, by Lemma 7.94, it is clear by definition of SτCRLr that

∅ `SτCRLr
x→ x, x, y `SτCRLr

x ∧ y, x ∧ y `SτCRLr
x, y, x, x→ y `SτCRLr

y.

This implies that every SτCRLr-filter of A ∈ CRLr is non-empty, closed under meets,
upwards-closed and implicative. Hence, FiSτCRLr

A ⊆ {F ∈ Filt→A : τA ⊆ F}.
Conversely, let A ∈ CRLr and F ∈ Filt→A such that τA ⊆ F . Consider the
algebra B = A/ΩA(F ). Let π : A→ B be the canonical map.

Claim. τB = πF : Let b ∈ πF . So, there exists a ∈ F such that b = π(a). Let
us see that (

a ∧A (a→A a)
)
↔A (a→A a) ∈ F.

On the one hand, since (a →A a) ∧A a ≤ a →A a, it follows by Lemma 7.95
that

(
(a →A a) ∧A a

)
→A (a →A a) ∈ τA ⊆ F . On the other hand, since

a�A (a→A a) ≤ a, by Lemma 7.54.1, it follows by residuation that a ≤ (a→A
a) →A a. Since a ∈ F and F is upwards-closed, it follows that (a →A a) →A
a ∈ F . Now, (

(a→A a)→A (a→A a)
)
∧A

(
(a→A a)→A a

)
≤ (a→A a)→A

(
(a→A a) ∧A a

)
,

by Lemma 7.54.8. Since both (a →A a) →A (a →A a) ∈ τA ⊆ F and
(a→A a)→A a ∈ F and F is closed under meets and upwards-closed, it follows
that (a→A a)→A

(
(a→A a) ∧A a

)
∈ F . Hence indeed,(

a ∧A (a→A a)
)
↔A (a→A a) ∈ F.

It follows by Lemma 7.97 that

〈a ∧A (a→A a), a→A a〉 ∈ ΩA(F ).

So, π
(
a ∧A (a→A a)

)
= π(a→A a). That is, π(a→A a) ≤ π(a). So,

b→B b = π(a)→B π(a) = π(a→A a) ≤ π(a) = b.

Thus, b ∈ τB.
Conversely, let b ∈ τB. Since π is surjective, there exists a ∈ A such that

b = π(a). Since, b→B b ≤ b, it holds

π
(
(a→A a) ∧A a

)
=
(
π(a)→B π(a)

)
∧B π(a)

= (b→B b) ∧A b = b→B b = π(a→A a).
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So,
〈
(a →A a) ∧A a, a →A a

〉
∈ ΩA(F ). Since a →A a ∈ τA ⊆ F , it follows

by compatibility that (a→A a)∧A a ∈ F . Since F is upwards-closed, it follows
that a ∈ F . Hence, b = π(a) ∈ πF .

Finally, since Kerπ = ΩA(F ) is compatible with F , it follows that

F = π−1πF = π−1(τB).

But, τB ∈ FiSτCRLr
B. Thus, F ∈ FiSτCRLr

A, by Lemma 0.24.1.
3. Fix ρ(x, y) := {x ↔ y} and τ (x) :=

{
x ∧ (x → x) ≈ x → x

}
. By definition,

SτCRLr is the τ -assertional logic of CRLr. So, condition (ALG1) on page 24 holds
taking K = CRLr. We claim that condition (ALG3) holds as well for CRLr, that
is, x ≈ y

�

�eq
CRLr τ (ρ(x, y)). Assume A ∈ CRLr and let h : Fm → A such that

h(x) = h(y) = a. On the one hand, h
[
(x ↔ y) ∧

(
(x ↔ y) → (x ↔ y)

)]
= (a ↔A

a) ∧
(
(a ↔A a) →A (a ↔A a)

)
= (a ↔A a) →A (a ↔A a), using Lemma 7.92.2.

On the other hand, h
(
(x ↔ y) → (x ↔ y)

)
= (a ↔A a) →A (a ↔A a). Hence,

CRLr � τ (ρ(x, y)). Conversely, assume A ∈ CRLr and let h : Fm → A such
that h

[
(x ↔ y) ∧

(
(x ↔ y) → (x ↔ y)

)]
= h

(
(x ↔ y) → (x ↔ y)

)
. Since

h
(
(x ↔ y) → (x ↔ y)

)
= h(x ↔ y) →A h(x ↔ y) ∈ τA and τA is upwards-

closed, it follows that h(x↔ y) ∈ τA. So, both h(x)→A h(y) ∈ τA and h(y)→A
h(x) ∈ τA. It now follows by Lemma 7.95 that h(x) ≤ h(y) and h(y) ≤ h(x). So,
h(x) = h(y). Thus, CRLr � x ≈ y. We conclude that (ALG3) holds for CRLr, as
claimed. Therefore, SτCRLr is finitely algebraizable witnessed by ρ and τ . Finally,
as we had seen already that SτCRLr is finitary, it is in fact BP-algebraizable. The
last statement follows by 1. �

We now turn our attention to a logic not previously considered in the literature,
at least to our knowledge. Following the previous example, we consider the least
logic in between S≤CRLr and SτCRLr with the same theorems as SτCRLr. The logic with
these properties is defined by the class of matrices{

〈A, F 〉 : A ∈ CRLr, F ∈ FiltA, τA ⊆ F
}
,

as we will show in Proposition 7.100. We denote the consequence relation induced
by the class of matrices above by S4CRLr. Once again, this consequence relation is
finitary because the class of matrices above is first-order definable and hence closed
under ultraproducts. Moreover, since for everyA ∈ CRLr, τA is a lattice filter ofA,
by Lemma 7.93, it follows from the definitions involved that S≤CRLr ≤ S

4
CRLr ≤ SτCRLr.

Having defined both SτCRL and S4CRL, it is worth mentioning that the these
logics are expansions of the logics SτCRLr and S

4
CRLr (by a constant 1), respectively.

Indeed, recall that CRL �L ⊆ CRLr, and notice that furthermore, given a lattice
filter F ∈ FiltA such that 1 ∈ F , with A ∈ CRL, it is necessarily the case that
τ (A) ⊆ F , because 1 ≤ a→A a, for every a ∈ A, by Lemma 7.56.3.

Let us now determine the class of S4CRLr-algebras.

Proposition 7.99. CRLr = Alg(S4CRLr) = Alg∗(S4CRLr).

Proof. Just notice that, since S≤CRLr ≤ S
4
CRLr ≤ SτCRLr,

CRLr = Alg∗(SτCRLr) ⊆ Alg∗(S4CRLr) ⊆ Alg(S4CRLr) ⊆ Alg(S≤CRLr) = CRLr,

using Theorem 7.98.1, and the fact that S≤CRLr is, by definition, the semilattice-based
logic of CRLr. �
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Proposition 7.100. The logic S4CRLr is the least logic in between S≤CRLr and SτCRLr
with the same theorems that SτCRLr.

Proof. Let us first show that the theorems of SτCRLr and S
4
CRLr are the same. Since

S4CRLr ≤ SτCRLr, it is clear that if ∅ `S4
CRLr

ϕ, then ∅ `SτCRLr
ϕ. Conversely, assume

∅ `SτCRLr
ϕ. Let A ∈ CRLr, F ∈ FiltA such that τA ⊆ F and h : Fm → A. It

follows by assumption that h(ϕ) ∈ τA. Clearly then, h(ϕ) ∈ F . Thus, ∅ `S4
CRLr

ϕ.
Assume now that S is a logic such that S≤CRLr ≤ S ≤ SτCRLr and with the same

theorems that SτCRLr. Then, CRLr = Alg(SτCRLr) ⊆ Alg(S) ⊆ Alg(S≤CRLr) = CRLr.
Thus for every A ∈ CRLr, every S-filter of A is a S≤CRLr-filter and therefore, since
it is non-empty, it is a lattice filter of A. Moreover, since all formulas of the form
x → x are theorems of SτCRLr, and having Lemma 7.94 in mind, τA is included in
every S-filter of A. Therefore,

{
〈A, F 〉 : A ∈ Alg(S), F ∈ FiSA

}
⊆
{
〈A, F 〉 : A ∈

CRLr, F ∈ FiltA, τA ⊆ F
}
. This implies that S4CRLr ≤ S. �

Once again, let us see that the logic S4CRLr falls outside the classes of logics in
Figure 1.

Theorem 7.101.
1. S4CRLr is not protoalgebraic.
2. S4CRLr is not truth-equational.

Proof. The logic S4CRL is an expansion of S4CRLr. Now, both protoalgebraicity and
truth-equationality are preserved through expansions. And we know that S4CRL is
neither protoalgebraic nor truth-equational, by Theorem 7.75.1 and 2, respectively.

�

In order to find the strong version of the logic SτCRLr, we follow the same strategy
as we did for the non-integral case. That is, we first prove that Alg(SτCRLr) =
Alg(S4CRLr), and that moreover for any S4CRLr-algebra, the least SτCRLr-filter and the
least S4CRLr coincide. To this end, we next characterize the S4CRLr filters of algebras
in CRLr.

Proposition 7.102. Let A ∈ CRLr. The S4CRLr-filters of A coincide with the lattice
filters of A containing τA. That is,

FiS4
CRLr
A = {F ∈ FiltA : τA ⊆ F}.

Proof. On the one hand, using the definition of S4CRLr and Lemma 7.94, it easily
follows that

∅ `S4
CRLr

x→ x, x, y `S4
CRLr

x ∧ y, x ∧ y `S4
CRLr

x, y.

So, given A ∈ CRLr and F ∈ FiS4
CRLr
A, it must hold F ∈ FiltA and τA ⊆ F . On

the other hand, from the definition of S4CRL it follows immediately that if F ∈ FiltA
is such that τA ⊆ F , then F ∈ FiS4

CRL
A. �

Here arrived, and unlike the logic S4CRL, it is not immediate to see that the least
S4CRLr-filter of an algebra in CRLr coincides with its least SτCRLr-filter. Of course, the
natural candidate is τA. To see that it fulfils our requirements, notice that it is
an implicative lattice filter of A ∈ CRLr, by Lemma 7.93, and that moreover, the
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S4CRLr-filters of any A ∈ CRLr are precisely those lattice filters which contain τA,
by Proposition 7.102. Therefore, for every A ∈ CRLr,⋂

FiS4
CRLr
A =

⋂
FiSτCRLr

A = τA.

We are now able to apply Proposition 5.9:

Theorem 7.103. The logic SτCRLr is the strong version of S4CRLr.

It readily follows by Proposition 5.14 that:

Theorem 7.104. Let A ∈ CRLr. The Leibniz S4CRLr-filters of A coincide with the
implicative lattice filters of A which contain τA. That is,

Fi∗S4
CRLr
A = {F ∈ Filt→A : τA ⊆ F}.

Once again, although not semilattice-based, S4CRLr still has its Leibniz filters
equationally definable. For we know that SτCRLr is truth-equational, and moreover
Alg(S4CRLr) = CRLr = Alg(SτCRLr). Hence, it follows by Proposition 6.6 that:

Proposition 7.105. The logic S4CRLr has its Leibniz filters equationally definable
by τ (x) =

{
x ∧ (x→ x) ≈ x→ x

}
.

Furthermore, the fact that SτCRLr is algebraizable gives us:

Proposition 7.106. The logic S4CRLr satisfies (?).

Proof. Since SτCRLr is algebraizable, Ω
A : FiSτCRLr

A→ ConAlg∗(SτCRLr)A is an order-
isomorphism, for every A. But, Alg∗(SτCRLr) = CRLr = Alg∗(S4CRLr) and FiSτCRLr

A =
{F ∈ Filt→A : τA ⊆ F} = Fi∗

S4
CRLr
A, for every A ∈ CRLr, by Theorem 7.98,

Proposition 7.99 and Theorem 7.104. �

We can therefore apply the results of Chapter 6 and get:

Corollary 7.107. Let A ∈ CRLr. For every F ∈ FiS4
CRLr
A,

ΩA(F ) = ΩA(F ∗) and ∼
ΩA
S4

CRLr
(F ) = ΩA(F Su).

Moreover,
F Su =

⋂
G∈(Fi

S4CRLr
A)F

G∗.

As a consequence, F is a Suszko S4CRLr-filter of A if and only if F ⊆ G∗, for every
(FiS4

CRLr
A)F .

Just like the non-integral case, the logic S4CRLr fails to satisfy the explicit defin-
ability of its Leibniz filters.

Proposition 7.108. The logic S4CRLr does not have its Leibniz filters explicitly
definable.

Proof. It follows by Propositions 7.106 and 6.21, having in mind that S4CRLr is not
protoalgebraic. �

Nevertheless, S4CRLr does admit the logical definability of its Leibniz filters.

Proposition 7.109. The logic S4CRL has its Leibniz filters logically definable by the
rule Modus Ponens.
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Proof. Just notice that, in light of Theorem 7.104, for every A ∈ Alg∗(S4CRLr) and
every F ∈ FiS4

CRLr
A, F is a Leibniz S4CRLr-filter of A if and only if F is an implicative

lattice filter if and only if is closed under Modus Ponens. Hence, the result follows
from Proposition 6.30. �

Consequently,

Corollary 7.110. The logic SτCRLr is the inferential extension of S4CRLr by the rule
Modus Ponens.

Proof. The result follows by Corollary 6.33, since S4CRLr has its Leibniz filters
logically definable by the rule Modus Ponens, by Proposition 7.109. �

We now wish to find a Birula-Rasiowa style characterization of F ∗. Not sur-
prisingly, the set τA is also reflected in the definition of the transformation Ψ.

Definition 7.111. Let A ∈ CRLr. For every F ∈ FiltA such that τA ⊆ F , define

Ψ(F ) :=
{
a ∈ A : ∀b ∈ A ∀c ∈ τA if (a ∧A c)→A b ∈ F , then b ∈ F

}
.

Proposition 7.112. Let A ∈ CRLr. For every F ∈ FiltA such that τA ⊆ F ,
Ψ(F ) is an implicative lattice filter of A and such that τA ⊆ Ψ(F ).

Proof. First, let a ∈ Ψ(F ) and b ∈ A such that a ≤ b. Let c ∈ τA and d ∈ A
such that (b ∧A c)→A d ∈ F . Notice that a ∧A c ≤ b ∧A c. Hence, by suffixing, it
follows that

(b ∧A c)→A d ≤ (a ∧A c)→A d.

Since F is upwards-closed, it follows that (a ∧A c) →A d ∈ F . Since a ∈ Ψ(F ), it
follows that d ∈ F . Hence, b ∈ Ψ(F ).

Now, let a, b ∈ Ψ(F ). Let d ∈ A such that d /∈ F . Let c ∈ τA. Then,[
b ∧A

(
(a →A a) ∧A (c →A c)

)]
→A d /∈ F , because b ∈ Ψ(F ) and (a →A

a) ∧A (c→A c) ∈ τA. Then,
[
a ∧A

(
(b→A b) ∧A (c→A c)

)]
→A

[(
b ∧A

(
(a→A

a)∧A (c→A c)
))
→A d

]
/∈ F , because a ∈ Ψ(F ) and (b→A b)∧A (c→A c) ∈ τA.

That is,[[
a ∧A

(
(b→A b) ∧A (c→A c)

)]
�A

[
b ∧A

(
(a→A a) ∧A (c→A c)

)]]
→A d /∈ F,

by Lemma 7.54.2. Now,[
a ∧A

(
(b→A b) ∧A (c→A c)

)]
�A

[
b ∧A

(
(a→A a) ∧A (c→A c)

)]
≤ a�A (a→A a)
≤ a.

using Lemma 7.54.7 twice and 1, respectively. Similarly,[
a ∧A

(
(b→A b) ∧A (c→A c)

)]
�A

[
b ∧A

(
(a→A a) ∧A (c→A c)

)]
≤ (b→A b)�A b
≤ b.
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Finally, [
a ∧A

(
(b→A b) ∧A (c→A c)

)]
�A

[
b ∧A

(
(a→A a) ∧A (c→A c)

)]
≤ (c→A c)�A (c→A c)

≤ (c→A c)
≤ c,

using Lemma 7.54.7 twice, Lemma 7.92.3, and the fact that c ∈ τA, respectively.
So, by definition of infimum,[
a∧A

(
(b→A b)∧A (c→A c)

)]
�A

[
b∧A

(
(a→A a)∧A (c→A c)

)]
≤ (a∧A b)∧A c.

So, by suffixing,(
(a ∧A b) ∧A c

)
→A d

≤
[[
a ∧A

(
(b→A b) ∧A (c→A c)

)]
�A

[
b ∧A

(
(a→A a) ∧A (c→A c)

)]]
→A d.

Since F is upwards-closed, it follows that
(
(a ∧A b) ∧A c

)
→A d /∈ F , for every

c ∈ τA. Thus, a ∧A b ∈ Ψ(F ).
Next, let a, b ∈ Ψ(F ). Let d ∈ A such that d /∈ F . Let c ∈ τA. Then,(

b ∧A (c →A c)
)
→A d /∈ F , because b ∈ Ψ(F ). Then,

(
a ∧A (c →A c)

)
→A[(

b ∧A (c→A c)
)
→A d

]
/∈ F , because a ∈ Ψ(F ). That is,[(

a ∧A (c→A c)
)
�A

(
b ∧A (c→A c)

)]
→A d /∈ F,

by Lemma 7.54.2. Now,(
a ∧A (c→A c)

)
�A

(
b ∧A (c→A c)

)
≤ a�A b,

using Lemma 7.54.7 twice. Moreover,(
a ∧A (c→A c)

)
�A

(
b ∧A (c→A c)

)
≤ (c→A c)�A (c→A c) ≤ c→A c ≤ c,

using Lemma 7.54.7 twice again, Lemma 7.92.3, and the fact that c ∈ τA, respec-
tively. So, by definition of infimum,(

a ∧A c
)
�A

(
b ∧A c

)
≤ (a�A b) ∧A c.

So, by suffixing,(
(a�A b) ∧A c

)
→A d ≤

[(
a ∧A c

)
�A

(
b ∧A c

)]
→A d /∈ F.

Since F is upwards-closed, it follows that
(
(a �A b) ∧A c

)
→A d /∈ F , for every

c ∈ A. Thus, a�A b ∈ Ψ(F ).
So far, we have proved that Ψ(F ) is an implicative lattice filter of A. We

are left to prove that it contains τA. Let a ∈ τA. Let b ∈ A and c ∈ τA
such that

(
a ∧A c

)
→A b ∈ F . Since a →A a ≤ a and c →A c ≤ c, it holds

(a →A a) ∧A (c →A c) ≤ a ∧A c. It follows by suffixing that (a ∧A c) →A
b ≤

(
(a →A a) ∧A (c →A c)

)
→A b. Since F is upwards-closed, it follows that(

(a →A a) ∧A (c →A c)
)
→A b ∈ F . But

(
(a →A a) ∧A (c →A c)

)
→A b ≤ b, by

the relevance condition. Again, since F is upwards-closed, it follows that b ∈ F .
Hence, a ∈ Ψ(F ). Thus, τA ⊆ Ψ(F ). �

Proposition 7.113. Let A ∈ CRLr. For every F ∈ FiS4
CRLr
A,

ΩA(F ) = ΩA
(
Ψ(F )

)
.
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Proof. We claim that ΩA(F ) is compatible with Ψ(F ). Let 〈a, b〉 ∈ ΩA(F ) and
a ∈ Ψ(F ). Let c ∈ τA. It holds,

〈(
a ∧A (c →A c)

)
→A b,

(
b ∧A (c →A c)

)
→A

b
〉
∈ ΩA(F ). Moreover, by suffixing,

b→A b ≤
(
b ∧A (c→A c)

)
→A b.

Since b →A b ∈ τA ⊆ F and F is upwards-closed, it follows that
(
b ∧A (c →A

c)
)
→A b ∈ F . It follows by compatibility that

(
a ∧A (c→A c)

)
→A b ∈ F . Since

a ∈ Ψ(F ), it follows that b ∈ F . Thus, ΩA(F ) ⊆ ΩA
(
Ψ(F )

)
.

Conversely, we claim that ΩA
(
Ψ(F )

)
is compatible with F . Let 〈a, b〉 ∈

ΩA
(
Ψ(F )

)
and let a ∈ F . Then, 〈a →A b, b →A b〉 ∈ ΩA

(
Ψ(F )

)
. Since

b →A b ∈ τA ⊆ Ψ(F ), it follows by compatibility that a →A b ∈ Ψ(F ). Now,
a ≤ (a →A b) →A b, by Lemma 7.54.3. Since a ∈ F and F is upwards-closed, it
follows that (a →A b) →A b ∈ F . Let c ∈ τA. Since (a →A b) ∧A c ≤ a →A b, it
follows by suffixing that

(a→A b)→A b ≤
(
(a→A b) ∧A c

)
→A b.

So,
(
(a→A b)∧A c

)
→A b ∈ F . Since a→A b ∈ Ψ(F ), it follows that b ∈ F . Thus,

ΩA
(
Ψ(F )

)
⊆ ΩA(F ). �

Corollary 7.114. Let A ∈ CRLr. For every F ∈ FiS4
CRLr
A,

F ∗ = Ψ(F ).

Proof. On the one hand, since ΩA(F ) ⊆ ΩA
(
Ψ(F )

)
, we have Ψ(F ) ∈ JF K∗, and

hence F ∗ ⊆ Ψ(F ). On the other hand, since ΩA
(
Ψ(F )

)
⊆ ΩA(F ) ⊆ ΩA(F ∗),

we have F ∗ ∈ JΨ(F )K∗, and hence Ψ(F )∗ ⊆ F ∗. But Ψ(F ) = Ψ(F )∗, because
we have seen that Ψ(F ) is an implicative lattice filter of A containing τA, by
Proposition 7.112, and the Leibniz S4CRLr-filters of A are precisely these filters, by
Theorem 7.104. �

We finish our study by showing that neither S4CRLr nor SτCRLr belong to any of
the classes of the Frege hierarchy.

Proposition 7.115. The logic S4CRLr is not selfextensional.

Proof. Suppose, towards an absurd, that S4CRLr is selfextensional. Then, since
S4CRLr has a conjunction, it follows by Theorem 0.46 that S≤CRLr is semilattice-based.
Then, it is semilattice-based of Alg(S4CRLr) = CRLr, using Proposition 7.99. Conse-
quently, SτCRLr = S≤CRLr, and we reach an absurd (for instance, S4CIRL has theorems,
while S≤CRLr has not). �

Proposition 7.116. The logic SτCRLr is not selfextensional.

Proof. Suppose, towards an absurd, that SτCRLr is selfextensional. Then, since
SτCRLr has a conjunction, it follows by Theorem 0.46 that SτCRLr is semilattice-based.
Then, it is semilattice-based of Alg(SτCRLr) = CRLr, using Theorem 7.98.1. Conse-
quently, SτCRLr = S≤CRLr, and we reach an absurd (for instance, SτCRLr has theorems,
while S≤CRLr has not). �

As final remarks, we make a few comments on how the results of the present
section relate to the system R of Relevance Logic. Consider the class of L−algebras
in CRLr which satisfy moreover the additional condition:

1. �A is square increasing, that is, for every a ∈ A, a ≤ a�A a.
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Let us denote such class by CRLrsq. All the auxiliary results we have proved con-
cerning the set τA, with A ∈ CRLrsq, are still valid. In particular, the logic SτCRLrsq

induced by the class of matrices {〈A, τA〉 : A ∈ CRLrsq} is BP-algebraizable wit-
nessed by the set of equivalence formulas ρ(x, y) = {x↔ y} and the set of defining
equations τ (x) =

{
x ∧ (x→ x) ≈ x→ x

}
. Given A ∈ CRLrsq, the SτCRLrsq

-filters of
A are the implicative lattice filters containing τA. Also, let S4CRLrsq

be the logic in-
duced by the class of matrices

{
〈A, F 〉 : A ∈ CRLrsq, F ∈ FiltA, τA ⊆ F

}
. Given

A ∈ CRLrsq, the S4CRLrsq
-filters of A are the lattice filters containing τA. Now, it

can be proved that, for every A ∈ CRLrsq and every a, b ∈ A, a ∧A b ≤ a�A b. As
a consequence, and having in mind Lemma 7.96, every lattice filter of A ∈ CRLrsq
is implicative. Consequently, SτCRLrsq

= S4CRLrsq
.

Consider the language L′ = 〈∧,∨,→,�, 0〉, that is, the expansion of L by the
constant 0. Consider moreover the unary operation ¬Aa := a →A 0, for every L′-
algebra A and a ∈ A. An R-algebra is an L′-algebra A = 〈A,∧A,∨A,→A,�A, 0〉,
where

1. The reduct 〈A,∧A,∨A,→A,�A〉 belongs to CRLrsq;
2. ¬A¬Aa ≤ a, for every a ∈ A.

Let us denote the class of all R-algebras by R. All the auxiliary results we have
proved concerning the set τA, restricted to A ∈ R, can be found in [42]. In
particular, R is the logic induced by the class of matrices {〈A, τA〉 : A ∈ R}. It is
well-known that R is BP-algebraizable witnessed by the set of equivalence formulas
ρ(x, y) = {x↔ y} and the set of defining equations τ (x) =

{
x∧ (x→ x) ≈ x→ x

}
[11, Theorem 5.8]. Now, define the logic R4 as the logic induced by the class of
matrices

{
〈A, F 〉 : A ∈ R, F ∈ FiltA, τA ⊆ F

}
. By the same considerations as

above, we have R4 = R.





Conclusions

In this dissertation we have aimed at extending the traditional AAL tools to
non-protoalgebraic logics. The two main concepts investigated to this end were the
Suszko operator [24] and the Leibniz filters [37]. Each of these concepts motivated
a broader and independent study that eventually culminated in the two parts of
the present dissertation. Part I builts and develops an abstract framework which
intends to unify under a common treatment the study of the Leibniz, Suszko, and
Frege operators in AAL. Part II generalizes the theory of the strong version of
protoalgebraic logics, started in [37], to arbitrary sentential logics.

The abstract notion which ecompasses the Leibniz, Suszko, and Frege, operators
is that of S-operator (Definition 1.1). Its origin roots back to [24, p. 199], under
the name of “mapping compatible with S-filters”. In the quest of finding general
properties common to the three paradigmatic AAL S-operators, we have introduced
the new notion of coherence (Definition 1.28), a weaker property than commuting
with inverse images by surjective homomorphisms. Under the assumption of coher-
ence of a family of S-operators, we established a General Correspondence Theorem
(Theorem 1.38), which generalizes several known correspondence theorems in AAL,
namely Blok and Pigozzi’s well-known Correspondence Theorem for protoalgebraic
logics [10, Theorem 2.4], Czelakowski’s less known Correspondence Theorem [24,
Proposition 2.3] for arbitrary logics, and also the first strengthening obtained for
protoalgebraic logics by Font and Jansana [37, Corollary 9.1].

A family of S-operators ∇ has associated to it the notions of ∇-class and ∇-
filter. We propose as new notion of Leibniz filter precisely that of Ω-filter (see
page 48). Our new definition of Leibniz filter coincides with the previous one
for protoalgebraic logics ([37, Definition 1]), and furthermore it is applicable to
arbitrary sentential logics. This fact pathed the way to generalize several known
results for protoalgebraic logics, to arbitrary sentential logics. For instance, given
any sentential logic S, the Leibniz S-filters are precisely the least elements of the
full g-models of S (Proposition 2.9; compare with [36, Proposition 3.6]). The notion
of ∼
ΩS -filter was also thoroughly investigated. The Suszko S-filters turn out to be

the least elements of the full g-models of S which are moreover up-sets. In fact,
given an arbitrary algebra A and F ∈ FiSA, F is a Suszko filter of A if and
only if (FiSA)F is a full g-model of S (Theorem 2.29). Suszko filters revealed to
be deeply connected with the class of truth-equational logics, introduced in [55].
Indeed, a logic S is truth-equational if and only if every S-filter is a Suszko filter
(Theorem 2.30). Furthermore, with the notion of Suszko filter at hand, a new
Isomorphism Theorem for protoalgebraic logics was proved (Theorem 3.8), very
much in the same spirit of the famous one for algebraizable logics ([11, Theorem
3.7]; see [48, Theorem 5.2] for the non-finitary case) and for weakly algebraizable
logics ([25, Theorem 4.8]).

163
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Following the characterization of truth-equational logics in terms of the Suszko
operator given in [55], new characterizations in terms of the Suszko operator
for other classes of logics belonging to the Leibniz hierarchy were proved (The-
orems 3.13 and 3.16). To mention just one, a logic is protoalgebraic if and only if
the Suszko operator commutes with inverse images by surjective homomorphisms
(Theorem 3.12).

Some new contributions to the study of truth-equational logics were also put
forward, specially concerning the behaviour of Suszko operator inside this class of
logics. These results are collected in Chapter 4. In particular, we have established
that a logic is truth-equational if and ony if the Suszko operator ∼

ΩA
S is a structural

representation, for every A (Theorem 4.13). The same condition imposed only over
the formulas algebra Fm turns out to characterize truth definability in the class
LModSu(S) (Theorem 4.21), a problem left open in [55].

Chapter 5 was devoted to developing a general theory of the strong version
S+ of a sentential logic S. We payed special attention to the interplay between
the Leibniz S-filters and the S+-filters, namely by investigating several conditions
upon which these two families of S-filters coincide. Some of these conditions force
moreover the classes of S-algebras and S+-algebras to coincide. For as it turns out,
the class Alg(S+) may be strictly contained in the class Alg(S). This situation con-
trasts with the protoalgebraic scenario, where in general, for every protoalgebraic
logic S, Alg(S) = Alg∗(S) = Alg∗(S+) = Alg(S+).

In Chapter 6 we considered three definability criteria for the Leibniz S-filters
— equational, explicit, and logical. The first one is a new criterion, while the
latter two are generalizations to arbitrary sentential logics of the respective notions
introduced for protoalgebraic logics in [37]. Table 3 summarizes the situation for
the examples covered in Chapter 7.

Definability of Leibniz filters

Equational Explicit Logical

PML Yes Yes Yes

B Yes No Yes

S≤WH = wKσ Yes Yes Yes

S≤WH(RT)
Yes Yes Yes

S≤WH(N)
= VPL Yes Yes Yes

S≤WH(MP)
Yes Yes Yes

S≤CIRL Yes No Yes

S4CRL Yes No Yes

S4CRLr Yes No Yes
Table 3. Leibniz filters’ definability criteria of the logics covered
in Chapter 7

In Chapter 7 we applied the general results of Chapters 5 and 6 to a wealth of
non-protoalgebraic logics covered in the literature. Namely, Positive Modal Logic
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[28], Belnap’s logic [8], some subintuitionistic logics studied in [16], logics preserv-
ing degrees of truth w.r.t. varieties of integral commutative residuated lattices [17],
as well as two logics not previously considered (at least to our knowledge), which
are intermediate logics between the semilattice-based logics and the algebraizable
logics usually associated with the class of commutative residuated lattices and com-
mutative residuated lattices without multiplicative constant, respectively. For each
particular logic S, we have characterized its Leibniz and Suszko S-filters, as well as
determined its strong version S+. Both S and S+ were classified inside the Leibniz
and Frege hierarchies. We summarize the situation in Tables 4 and 5.

Leibniz hierarchy Frege hierarchy

Proto. Truth-eq. Fregean Self. Fully Self. Fully Freg.

PML No No No Yes Yes No

B No No No Yes Yes No

wKσ No No No Yes Yes No

S≤WH(RT)
No No No Yes Yes No

VPL No Yes Yes Yes Yes Yes

S≤WH(MP)
Yes No No Yes Yes No

S≤CIRL No No No Yes Yes No

S4CRL No No No No No No

S4CRLr No No No No No No
Table 4. Classification of the logics covered in Chapter 7 inside
the Leibniz and Frege hierarchies.

Leibniz hierarchy Frege hierarchy

Proto. Truth-eq. BP-algebraizable Selfextensional

PML+ No Yes No No

B+ No Yes No No

wKσ+ No Yes No No

S>WH(RT)
No Yes No No

VPL No Yes Yes Yes

S>WH(MP)
Yes Yes Yes No

S1
CIRL Yes Yes Yes No

SτCRL Yes Yes Yes No

SτCRLr Yes Yes Yes No
Table 5. Classification of the strong versions of the logics covered
in Chapter 7 inside the Leibniz and Frege hierarchies.
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It should come with no surprise that the vast majority of the logics studied
is neither protoalgebraic nor truth-equational. In fact, these two conditions were
a priori requesites for their study in the first place. Also, observe that the logics
S4CRL and S4CRLr fall outside both hierarchies. Interestingly enough, all the strong
versions studied turned out to be truth-equational (altough this is not a general
fact, as observed on page 122). It is worth adding that the strong versions which
are not protoalgebraic (namely, PML+, B+, wKσ+, and S1

WH(RT)
) constitute new

examples of “strictly” truth-equational logics. As for the Frege hierarchy, appart
from Visser’s logic, all the strong versions studied fall outside the Frege hierarchy.
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