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Abstract

Neuroscientific research in the last decades has revealed that on-
going brain activity exhibits highly structured spatio-temporal
patterns of neural activations. The fundamental core of this
endogenously generated correlation structure reflects, to a large
extent, the complex anatomical organization of the central ner-
vous system, whereas the variability of spontaneous brain activity
is determined by regional properties. These cellular and circuit
properties are in turn modulated either by external stimuli and
ongoing computations as well as by significant changes in local dy-
namics due to the internal system’s physiology, such as sleep, or
induced by external factors, such as injuries, diseases, hypnosis or
psychoactive substances. In this dissertation we will demonstrate
how manipulations of regional dynamics and of the topological
structure defined by anatomy determine changes in the emergent
large-scale correlation structure displayed by spontaneous brain
activity, and how this can be used to shed light on the intriguing
but still elusive relationship between structure and function.






Resumen

En las ultimas décadas, la investigacion neurocientifica ha reve-
lado que la actividad del cerebro exhibe patrones de activaciénes
neuronales altamente estructurados, tanto espacialmente como
temporalmente. FEl nicleo fundamental de esta estructura fun-
cional enddgena tende a reflejar la compleja organizacion del sis-
tema nervioso central, y que por otro lado, la variabilidad de la
actividad espontanea del cerebro es determinada por propriedades
regionales. Estas propriedades celulares y de circuito son mod-
uladas tanto por estimulacion externa o procesamento de infor-
macion que por cambios significativos en las dindmicas locales
debidos a la fisiologia del sistema, como en el caso del sueno, o
inducidos por factores externos, como danos, enfermedades, hip-
nosis o substancias psicoactivas. En la presente tesis se demon-
strard como manipulaciénes de las dindmicas locales y de la es-
tructura topoldgica definida por la anatomia determinan cambios
en la emergente estructura de las correlaciones entre distintas ar-
eas que caracteriza la actividad espontanea del cerebro, y como
esto puede informar sobre la interesante pero elusiva relacion en-
tre estructura y funcién.
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Men ought to know that from nothing

else but the brain come joys, delights,
laughter and sports, and sorrows, griefs,
despondency, and lamentations. And by
this, in an especial manner, we acquire
wisdom and knowledge, and see and hear
and know what are foul and what are fair,
what are bad and what are good, what are
sweet and what are unsavory. And by the
same organ we become mad and delirious,
and fears and terrors assail us. All these
things we endure from the brain when it is
not healthy. In these ways I am of the
opinion that brain exercises the greatest
power in the man.

Hippocrates (460-370 B.C.)

The Brain - is wider than the Sky
For - put them side by side

The one the other will contain
With ease - and You - beside

The Brain is deeper than the sea
For - hold them - Blue to Blue
The one the other will absorb
As Sponges - Buckets - do

The Brain is just the weight of God
For - Heft them - Pound for Pound
And they will differ - if they do

As Syllable from Sound.

Emily Dickinson (1830-1886)






Preface

“The most beautiful thing we can
experience is the mysterious. It is the
source of all true art and science.”

Albert Einstein

The brain has been repeatadly described as one of the most com-
plex object in the known universe. This opinion reflects our still
young knowledge about its organization and functions, and our
apparently intrinsic difficulty to intimately understand how this
physical object gives rise to ourselves. We now know what Hip-
pocrates already suggested more than two thousand years ago,
namely that the brain is the organ responsible for all what we
feel, do, and are: nonetheless, we still strive to find a satisfactory
explanation of how matter becomes thought.! We know so many
things about the brain, and still so few. This makes the brain not
only one of the most complex object in the universe, but also one
of the most mysterious, and thus most fascinating.

This dissertation will focus on just a small region of the vast un-
kown territories of the brain. However small, this region is indeed

IThis sentence paraphrases the title of a book written by Nobel laureate
Gerald Edelman together with neuroscientist Giulio Tononi, “A universe of
consciousness. How matter becomes imagination” (2000).

xx1
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capital, dealing with the intriguing interplay between anatomical
and functional structure, two fundamental aspects of this fasci-
nating object that is, ultimetely, us.

The First Chapter (1) introduces the phenomenon of sponta-
neous brain activity, consisting in intrinsically generated patterns
of neural activations present even during sleep, anesthesia and
in absence of overt experimental manipulation, and observed in
humans as well as in other animals. Understanding what sponta-
neous brain activity is, what causes it, and what is its function is
crucial if we ought to understand how the brain works: sponta-
neous brain activity never ceases until the death of the organism,
and it is responsible for around 20% of all body’s energy consump-
tion. In addition, as we will see, endogenous brain activations
are far from being random, but instead mirror an highly struc-
tured spatio-temporal organization. As such, one cannot have a
complete understanding of the brain without accounting for its
intrinsic ongoing activity.

Spontaneous brain activity never stops, but it does change, giving
rise to different behavioral states such as conscious wakefulness,
drowsiness, or sleep. Endogenous activity can in fact exhibit dif-
ferent dynamical regimes, consisting of more or less widespread
changes in the spatial and temporal organization of neural activ-
ity. Characterizing different states, and what drives the change
from one global state to another, is of enormous importance to
understand the functional role of the different shades of sponta-
neous activity. To this aim, in the Second Chapter (2) we will
explore how experimental manipulation of local brain dynamics
-through anesthesia- dramatically modulates the resulting func-
tional organization of ongoing brain activity at different spatial
and temporal scales.

As mentioned above, large-scale spontaneous activity cannot be
explained by simple stochastic fluctuations, but instead recapitu-
lates to a large extent the anatomical structure of the brain, which
in turn plays a fundamental role in determining function. The fol-
lowing part of this dissertation will thus be focused -by means of
simulations- on investigating how much of endogenous brain ac-
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tivity can be understood in terms of the underlying anatomical
constraints.

With this in mind, in the Third Chapter (3) we will first re-
view some of the most commonly used mathematical models of
mesoscopic brain activity, and will introduce the Hopf model, a
phenomenological model that we will later use in the following
chapter to approximate local brain dynamics and simulate large-
scale spontaneous activity.

The Fourth Chapter (4) is dedicated to the contribution of net-
work topology in weaving the fundamental structure of sponta-
neous brain activity. Topology is that branch of mathematics that
studies spaces whose fundamental properties do not change under
continuous deformations. Reporting a classic example, squares
and circles are different geometrical shapes that however belong
to the same topological class, as one can be obtained deform-
ing the other: in fact, both shapes are different instances of the
same fundamental topological structure, namely an object with
one hole. In the framework of network science -the approach that
we will adopt- topology refers to the geometric properties of net-
works (also called graphs). In this dissertation, the networks that
we will use will be those describing the anatomical connections
between different brain regions. In this chapter, we will first eval-
uate how networks with different structures (i.e. networks having
different topologies) determine different synchronization proper-
ties between their elements, and then we will introduce a novel
measure able to predict the expected synchronization between
different elements of the network just by using the information
about the topological structure of the network itself. Finally, we
will use this novel measure to estimate the average correlation
structure of empirical data, and compare the results with those
obtained using a dynamical model of mesoscopic activity.

We will finally discuss (General discussion, 5) the most impor-
tant results and findings, trying to put them in perspective and
elaborating on the relationship between structure and function
in determining the complex correlation patterns characterizing
spontaneous brain activity.
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PREFACE XXV

The study presented in Chapter 2 reproduces the below listed
publication, as indicated in the corresponding chapter:

“Gradual emergence of spontaneous correlated brain activity dur-
ing fading of general anesthesia in rats: evidences from fMRI and
local field potentials.” Bettinardi, R.G., Tort-Colet, N., Ruiz-
Mejias, M., Sanchez-Vives, M.V., & Deco, G. (2015). Neuroim-
age, 114, 185-198

Chapter 1 introduce two papers in preparation (see Figure 1.16
and Figure 1.21) listed below:

“Characterizing the reliability and the variability of resting-state
fMRI functional correlations: intrinsic and finite-sample variabil-
ity.” Pannunzi M., Hindriks R., Bettinardi R.G., Kuhn S, & Deco
G

“Cross-subject and empirical variability in human structural brain
connectivity: reliability of link weights.” Zamora-Lépez G., Bet-
tinardi R.G., Pannunzi M., & Deco G.

The work presented in Chapter 4 reflects two papers in prepa-
ration, listed below:

“Understanding how simple network topologies affects the corre-
lation of single pairs of nodes.” Bettinardi R.G., Zamora-Lopez
G., & Deco G.

“Expected covariation: an analytic approach to link topological
structure and the emergent organization of networks.” Bettinardi
R.G., Zamora-Lépez G., & Deco G.






Figure 1: One column of the Edwin Smith papyrus. This
papyrus, written in Egypt around the 7th century B.C., is the most
ancient document referring to the brain. It describes different surgical
practices, and summarize symptoms and diagnoses of two subjects
that suffered from brain injuries.






CHAPTER 1

Spontaneous Brain Activity

“The brain is a world consisting of a
number of unexplored continents and great
stretches of unknown territory”

Santiago Ramén y Cajal

1.1 Overview

The brain is always active. Even when someone is not actively
performing any kind of motor or cognitive task, is sleeping or even
anesthetized, brain activity never ceases: it just changes.

The continuous spontaneous activity of the brain has been ob-
served many times from the introduction of tecnhiques that al-
lowed to record the electrical activity of the brain, first developed
in 1875 by Richard Caton (Haas, 2003; Coenen et al., 2014).
The metabolyc consumption of the brain during wakeful rest
is remarkably similar to that measured during performance of
demanding tasks requiring active concentration (Sokoloff et al.,
1955; Buckner and Vincent, 2007) and tends to diminish dur-
ing sleep or anesthesia (Braun et al., 1997; Alkire et al., 1997).
Indeed, behaviorally different states mirror different dynamical
regimes of the underlying overall brain activity. These global
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states can either be physiological (as drowsiness, sleep and wake-
fulness), induced (through anesthesia, psychotropic agents, or re-
laxation) or pathological (vegetative state, coma, mood disorders,
delusional conditions). As in the case of task-specific activations,
during these states the brain reveals different patterns of activity
that, far from being explained just by random fluctuations, have
demonstrated to be robust and informative.

While the majority of studies in cognitive neuroscience had classi-
cally focused on the neural correlates of different task-related be-
haviors as movement, perception and higher cognitive operations
as language processing and problem-solving (Cabeza and Nyberg,
2000), interest in spontaneous (i.e. not overtly task-driven) brain
activations arose only recently during the last twenty years, af-
ter the finding that those brain areas which were found to be
co-activated during specific finger movements tended to exhibit
correlated activations also during rest (Biswal et al. 1995, see
Figure 1.1).

This finding was critical for the traditional subtractive method
routinely applied in functional neuroimaging studies (Ogawa et al.,
1990a), whose results relied on the comparison with a baseline ac-
tivity in order to infer task-induced activations. In fact, the im-
plicit assumptions underlying the use of the subtractive method
was the idea that ongoing spontaneous brain activity could be
considered, at least as a first approximation, as unstructured
noise. This assumption was motivated by the observation that,
at a much smaller scale, the precise pattern of action potentials
generated by individual neurons was not deterministic, but exhib-
ited some degree of stochasticity (Stein et al., 2005); this unpre-
dictability have been linked with the apparent stochastic nature
of the opening dynamics of ion channels on the neuron’s mem-
brane (Faisal et al., 2008; Yarom and Hounsgaard, 2011). Re-
cent findings are shedding light on the laws governing the emer-
gence of structured oscillations from an underlying background
stochasticity (Sancristbal et al., 2016), help bridging the appar-
ent discrepancy between observations at the microscopic and at
the mesoscopic scale.
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Figure 1.1: Spontaneous co-activations resemble task. The
first evidence that spontaneous brain co-activations resembled that
observed during task. (Left) fMRI activations in response to bilateral
finger movement. (Right) BOLD fluctuations obtained during rest.
Regions marked as (a,b,c) are those that showed statistical similarities
between the two conditions, whereas (d,e) those markedly present only
during rest. Figure from Biswal et al. 1995.

The observation that the spontaneous activity of the cerebral cor-
tex strikingly resembled that observed during a specific voluntary
task (Biswal et al., 1995) prompted interest in trying to under-
stand the details of the relationship between ongoing and evoked
activity, which was crucial to properly analyze and interpret find-
ings obtained during most of the experiments performed in neuro-
science. In a seminal paper, Arieli and colleagues (1996) demon-
strated that the inter-trial variability in evoked activations was
in fact due to the specific underlying dynamics of ongoing brain
activity; the authors showed that singe trials responses could be
predicted by a linear summation of the cortical ongoing activity
preceding the stimulus and the deterministic response (see Fig-
ure 1.2), suggesting that cortical ongoing activity must play an
important role and that proper neurophysiological investigation
of cognitive processes cannot neglect the modulation exerted by
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A Initial  Measured Predicted M-

state response

response

Figure 1.2: Ongoing fluctuations modulate evoked response’s
variability. Ongoing fluctuations can be used to predict evoked re-
sponse’s variability of cat visual cortex using optical imaging. Exam-
ples from three consecutive trials responses (rows 1,2,3) to the same
visual stimulus. The four columns show the activity measured at time
0, the measured response, the predicted one, and the difference be-
tween the measured response and the initial state (M-I), i.e. the net
effect produced by the stimulus. The color code corresponds to the
intensity of the signal. Figure adapted from Arieli et al. 1996.

spontaneous activity.

It became clear that these spontaneous dynamics couldn’t be con-
sidered just unstructured random fluctuations, as they exhibited
rich patterns of spatiotemporally organized activations (Gusnard
and Raichle, 2001; Beckmann et al., 2005) and deactivations (Ma-
zoyer et al., 2001; Shulman et al., 2004; Fransson, 2006), as illus-
trated in Figure 1.3.

The measurement of oxygen extraction fraction performed using
Positron Emission Tomography (PET) and of oxygenation of the
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Time (seconds)

Figure 1.3: Intrinsic fluctuations exhibit temporal structure.
Intrinsic temporal correlations between a seed region in the posterior
cingulate /precuneus (PCC), the intraparietal sulcus (IPS) and medial
prefrontal cortex (MPF). The PCC (yellow) is a region positively cor-
related with the MPF (orange) whereas negatively correlated with the
IPS (blue) during rest. Reproduced from Fox et al. (2005).

regional blood flow using fMRI performed during rest unveiled the
existence of a well defined subset of brain regions that systemat-
ically showed decreased activity during classical task-paradigms,
and that had been implicitly considered as non relevant to func-
tion in most of previous studies (Raichle et al., 2001; Gusnard
and Raichle, 2001); the authors of such discovery suggested that
the activity of those areas could be considered as a physiologi-
cal baseline of brain activity, that they baptized as default mode.
Further studies confirmed the presence of a specific and reliable
network of areas whose co-activations tended to decrease during
the majority of tasks but systematically increased their glucose
metabolysm (measured with PET) during passive rest (Greicius
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Figure 1.4: Task-independent decreases observed in fMRI.
Systematic task-independent decreases observed in functional imaging
experiments. (a) Task vs. Rest decrease obtained averaging PET scans
of 132 healthy subjects performing different type of tasks. (b) Areas
associated with increased glucose metabolism rate during rest in 22
healthy adults. Reproduced from Gusnard and Raichle (2001).
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et al. 2003 see also Raichle and Snyder 2007). This set of regions,
referred to as default-mode network (DMN) in most of the cor-
responding literature, comprised midline areas within the medial
prefrontal cortex, the precuneus and the posterior cingulate (see
Figure 1.4).

Since its discovery, many studies have focused on trying to elu-
cidate the elusive functional role of this network of areas, that
have been shown to be associated to a plethora of different self-
referential and relatively task-independent cognitive operations
(Fransson, 2005; Mason et al., 2007), and recent findings sug-
gested that regions of the DMN appear to be eminent targets
of powerful psychotropic substances such as psylocibin (Carhart-
Harris et al., 2012). Despite the current debate about the role of
this network, the fact that this peculiar pattern of activations is
systematically found in humans (Damoiseaux et al., 2006) as well
as in other mammals as monkeys (Vincent et al., 2007) and rats
(Lu et al., 2012; Bettinardi et al., 2015) (see Figure 1.5), argues
in favor of its likely relevant role.

The application of Independent Component Analysis (ICA) to
fMRI data obtained during rest has proven to be crucial to disen-
tangle the overall spontaneous activity of the brain into its likely
independent neural sources, revealing that the intrinsic dynamics
of the resting brain exhibit also other specific patterns of activa-
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Figure 1.5: Comparative view of the DMN. Comparison of the
Default-Mode Network (DMN) in rats, monkeys and humans. The
three panels shows those regions whose activity tends to increase dur-
ing rest and light sedation. Adapted from Lu et al. (2012).

tions that are different from those of the DMN and whose spatial
organization resemble in a non-trivial manner those of different
well-known task-positive functional networks (Beckmann et al.,
2005; Smith et al., 2009). These sets of regions, which showed
highly correlated activity during rest, have been called resting-
state networks (RSN, Figure 1.6).

RSNs are interesting for more than one reason: first of all, as we
said, their presence is consistently found both across species as
well as individuals (Fox et al., 2005; Biswal et al., 2010; Snyder
and Raichle, 2012; Choe et al., 2015); second, the different RSNs
usually found with ICA are not just spatially segregated, but also
temporally, as the activity of the different areas within a net-
work is characterized by positive temporal correlations whereas
the temporal correlation between the activity of areas pertain-
ing to different RSNs is lower or even negative (Fox et al., 2005);
third, the group of regions belonging to given RSNs tend to be ac-
tivated together also during tasks (Biswal et al., 1995; Beckmann
et al., 2005); finally, growing evidences suggest a link between
abnormal resting-state dynamics and several disorders such as
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Figure 1.6: ICA based Resting-State Networks (RSNs). The
hypothesized function of these networks are (a) primary vision, (b)
higher order visual processing, (c¢) hearing, (d) sensory-motor, (e)

self-referential focus, (f) salience processing, (g,h) executive control.
Adapted from Beckmann et al. (2005).

Schizophrenia (Whitfield-Gabrieli et al., 2009), Autism (Kennedy
and Courchesne, 2008), Alzheimer Disease (Damoiseaux et al.,
2012), Multiple Sclerosis (Faivre et al., 2012), Major Depres-
sion (Greicius et al., 2007), vegetative state (Cauda et al., 2009):
thus resting-state fMRI (rs-fMRI) could also serve, once properly
tested for specificity and sensitivity, as a useful diagnostic tool.

Despite the intriguing similarities observed between the spatial
distribution of intrinsic co-activations and task-evoked activity
(Smith et al., 2009), it is important to stress that even if a given
cognitive process may increase the activation of a certain brain
region, the activation of that brain region does not necessar-
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ily mirrors the occurrence of the cognitive or motor operation
(Biswal et al., 1995); this type of reverse inference should indeed
be avoided, as potentially misleading (Poldrack, 2006). In addi-
tion, findings that strikingly similar patterns of spontaneous co-
variations have been observed also during sleep (Horovitz et al.,
2009), anesthesia (Vincent et al., 2007; Greicius et al., 2008), and
seem to be conserved at least across mammals (Vincent et al.,
2007; Liang et al., 2011; Lu et al., 2012) suggest a likely primitive,
basal origin for these robust patterns of intrinsic fluctuations; in
Appendix A we will try to offer an overview of the possible origins
and functions subserved by spontaneous brain activity.

1.2 Measuring spontaneous activity

“It makes no sense to read a newspaper
with a microscope.”

Valentino Braitenberg

As many real systems, the brain is a fundamentally integrated
entity, a system whose individual elements are inherently inter-
dependent at different spatial and temporal scales, thus making
them behaving collectively as a whole. Nonetheless, it is possi-
ble to study both structural and functional brain organization at
different levels of observations (see Figure 1.7), adopting an ana-
lytic strategy at the very foundation of scientific approach (Marr,
2010; Churchland and Sejnowski, 1994).

The different level of observations can in fact be studied as rel-
atively self-contained sub-systems, allowing great insights on the
mechanisms underlying the emergence of the complex organiza-
tion and dynamical processes observed both at lower and higher
levels (Bertalanffy, 1968). It should be stressed that, even if those
explanatory principles underlying the behavior at the smaller
scales of a system are indeed necessary (and very likely sufficient)
to the emergence of all those properties exhibited at higher levels
of observation, the more far apart in space and time two distinct
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Figure 1.7: Structural levels of organization of the CNS. The
spatial scale at which the structural CNS organization can be described
spans over many orders of magnitude. Icons on the right represent dis-
tinct level of representation: (top) a subset of areas in visual cortex;
(middle) a network model of the connectivity between ganglion cells
and neurons in the visual cortex; (bottom) a chemical synapse. Re-
produced from Churchland and Sejnowski (1988).

levels of observations A and B are, the more difficult will be trying
to explain one as a function of the other; in fact, the complexity
of the function linking A and B (function that surely does exist) is
itself a function of all those nested functions describing the inter-
actions between the elements at all smaller scales. A very difficult
enterprise, but in principle not impossible. This also implies that
the closer two levels of observations are, the simpler will be to use
knowledge acquired from one of them to understand the other.

At present, there exist a plethora of different techniques used to
measure structural and functional properties of the central ner-
vous system (CNS), each of them able to sample specific spatio-
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Figure 1.8: Spatio-temporale scales of different techniques.
Each coloured perimeter represents the spatio-temporal domain of a
given method. Open regions correspond to measurement tecnhique,
whereas filled one to perturbational methodologies. FEG, electroen-
cephalography, MFEG, magnetoencephalography, PET, positron emis-
sion tomography, VSD, voltage-sensitive dye, TMS, transcranial mag-
netic stimulation, 2-DG, 2-deoxyglucose. Reproduced from Sejnowski
et al. (2014).

temporal scales, and the pace at which new techniques are devel-
oped is increasing (see Figure 1.8) due to significative technolog-
ical and computational advances (Sejnowski et al., 2014).

The spatial and temporal constraints intrinsic to each tecnhique
bound the domain of scientific questions that it can legitimately
try to answer; paraphrasing Logothethis (Logothetis, 2008): would
a given spatio-temporal resolution be enough to understand a
given brain function? How far can we stretch interpretations or
implications of findings obtained at a given spatio-temporal scale,
and measuring a given variable? In the following sections, we will
review some of the most relevant tecnhiques used to sample spon-
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Figure 1.9: Energetic demand of cortical activity. (a) Fractions
of total energy expenditure of human cortical pyramidal neurons, es-
timated -after proper scaling- from rat’s pyramidal neurons (Attwell
and Laughlin, 2001). (b,c) The number of synapses that code a signal
increases both the rate at which information is transmitted (bit rate),
and the energetic cost of each bit, given as the number of hydrolised
ATP molecules in blowfly photoreceptors. Panels adapted from Lennie
2003 (a) and Laughlin 2001 (b,c).

taneous brain activity, together with the main contributions they
made to our understanding of brain organization.

1.2.1 Energy consumption

The human brain represents around 2% of the total body mass,
and nonetheless its spontaneous activity consumes approximately
20% of all body’s energy (Shulman et al., 2004), mainly devoted at
sustaining ongoing neural signalling and cellular basal metabolism,
functions that both require high amounts of energy (Ames III
2000; Attwell and Laughlin 2001; Laughlin 2001; Lennie 2003,
see Figure 1.9).

In comparison, task-related modulation of brain metabolism are
rather small, accounting for <5% (Raichle and Mintun, 2006).
This observation implies that intrinsic activity appear to be much
more significant than task-evoked one, at least in terms of overall
brain energy expenditure (Raichle, 2006). One of the most promi-
nent methodologies to study whole brain metabolism is positron
emission topography (PET), which is based on the ability to de-
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tect the location in space where molecules of an injected radioac-
tive tracer spontaneously annihilate. Depending on the radio-
tracer used, PET is able to sample different properties of a tis-
sue. In neuroscience, distinct radiotracers can be used to quantify
oxygen consumption (oxygen-15), glucose metabolism (FDG), or
to detect the ligand site of different neurotransmitters. The spa-
tial resolution of PET is in the scale of millimeters, whereas its
temporal one crucially depends on the kinetics of the particular
radiotracer used (in particular its half-life), which makes PET
a rather “slow” methodology (minutes). Despite its low tempo-
ral resolution, PET has been showed to be able to capture re-
gional differences in brain metabolism associated with different
cognitive operations (Cabeza and Nyberg, 2000). Recently, the
spontaneous overall glucose metabolism have been directly asso-
ciated with the global state of consciousness: in fact the average
metabolic index (obtained from whole-brain FDG-PET) revealed
to be a fairly good predictor of the awareness level (as measured
with traditional clinical scales) observed at follow-up in patients
diagnosed with unresponsive wakefulness syndrome (Stender et al.
2016, see Figure 1.10).

This findings suggested the existence of a minimal amount of en-
ergy required by the brain to sustain conscious awareness, which
is in fact in accordance to previous evidences that proper neural
functioning is determined and constrained -not surprisingly- by
the amount of energy needed to ignite and sustain all the mech-
anisms underlying a given operation (Laughlin, 2001).

1.2.2 Hemodynamic fluctuations

At the present time, one of the most widely used methodology
for studying large-scale spontaneous activations in vivo is func-
tional magnetic resonance imaging (fMRI), which builds upon the
capacity of MRI of sampling changes in the magnetic properties
of different tissue following a perturbation of the magnetic field
around the brain, and extends it to quantify regional changes
in the concentration of oxygen delivered by blood: this particu-
lar contrast, possibly the most frequently used, lead to what is
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Figure 1.10: Global cortical metabolism accounts for the
level of awareness.  (Left) Individual FDG-PET examples.
UWS, unresponsive wakefulness syndrome; MCS, minimally conscious
state; EMCS, emergence from MCS. (Right) Global brain glucose
metabolism. The dashed line marks the optimal diagnostic cutoff be-
tween patients in UWS and MCS. Horizontal lines mark the group
averages. Metabolic values are indicated as a unitless index, with
average activity in the reference area (extracerebral tissue) set to 1.
Adapted from Stender et al. 2016.

referred to as the blood-oxygen-level-dependent (BOLD) signal
(Ogawa et al., 1990b). Differences in the relative change of the
BOLD signal can in fact be associated to differences in behavior,
and can be used to detect those portions of the brain associated
with different behaviors or general cognitive operations (see Fig-
ure 1.11).

The main advantage of this technique lies in its non-invasivity,
a relatively high spatial resolution (depending on the force of
the magnetic field and the acquisition sequence) and its abil-
ity to simultaneously measure the ongoing acivity of the entire
brain. Nonetheless, as any other hemodynamic-based methodol-
ogy, TMRI generates a surrogate signal, which is only indirectly
related with the underlying activity of large neural masses (Lo-
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Figure 1.11: Simple behaviors can affect BOLD fluctuations.
BOLD signal change is associated with corresponding changes in sim-
ple behaviors. (Left) BOLD time course (magenta) from V1 during a
simple task requiring subjects to open and close their eyes, whereas
the paradigm is shown in blue (note that the line corresponding to
the paradigm has been delayed to account for the hemodynamic re-
sponse). (Right) Subtraction of the two conditions allows to isolate
the region corresponding to the difference in BOLD signal intensity.
Adapted from Fox and Raichle 2007.

gothetis, 2008). As such, the ability of this method to unveil
the detailed mechanism underlying neural activations crucially
depends on extensive prior knowledge of the functioning and the
connectivity of the units forming large-scale interacting neural
populations, joint to very carefully planned experimental con-
ditions explicitly designed to discriminate between different al-
ternative explanations. In an influential review, Nikos K. Logo-
thetis pointed out several important limitations of fMRI, such
as the fact that it cannot distinguish between neuromodulation
and proper function-specific processing, between bottom-up and
top-down signalling, that it may confuse excitation and inhibition
and, ultimately, that the magnitude of the BOLD signal does not
accurately reflect differences between brain regions nor between
tasks within the same regions (Logothetis, 2008), except for very
simple paradigms (e.g. eyes open vs. eyes closed). Despite its
shortcomings, fMRI is a valuable tool to test hypotheses on the
large-scale spontaneous activity of the brain in vivo, and influen-
tial reviews (Logothetis et al., 2001; Viswanathan and Freeman,
2007) and recent findings (Magri et al., 2012) illustrated that
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increase in neural activity (as measured with EEG and LFP) is
indeed related to the amplitude and timing of BOLD fluctuations.

The classical procedure adopted to measure ongoing task-independent
activity using fMRI is that of asking subjects to lie still in the
scanner and try not to focus on any particular thoughts, either
fixating a cross on a screen or with eyes closed: this design is
often referred to as resting-state fMRI (rs-fMRI). This procedure
thus implies a definition of “rest” based on rather constant sen-
sory stimulation, motor output, and cognitive effort during the
awake state. Nonetheless, assuming that the above mentioned
condition lacks of any kind of external or internal modulation is
obviously not realistic, and in fact the intrinsically uncontrolled
nature of resting-state fMRI experiments has raised some concern,
as it could in fact mirror a wide range of contents and cognitive
states (Christoff et al., 2009; Richiardi et al., 2011; Hurlburt et al.,
2015).

Although purposeful mentation of the subjects may in fact con-
tribute to the measured BOLD fluctuations, it is indeed unlikely
that it represent their primary source: coherent activations be-
tween regions associated with specific behaviors have been ob-
served even in absence of that behaviors (Biswal et al., 1995; Fox
et al., 2005) and, as mentioned above, the overall pattern of ongo-
ing activations found in rs-fMRI can be observed across subjects
(Beckmann et al., 2005; Biswal et al., 2010), species (Liang et al.,
2011; Lu et al., 2012), and even global states, such as during sleep
(Horovitz et al., 2009) or anesthesia (Vincent et al., 2007).

In fact, according to recent findings that analyzed data from more
than a thousand subjects, the activity measured in resting-state
conditions appear to be characterized by a mixture of wakefulness
and sleep, with the probability for the subject to fall asleep in-
creasing with scan duration (Tagliazucchi and Laufs 2014, see Fig-
ure 1.12). Neglecting this observation could in fact undermine the
validity of the findings of classic rs-fMRI, as proper wakefulness
and sleep are characterized by distinct functional architectures
that are indeed differentiable using currently available classifiers,
based e.g. on support vector machines (Tagliazucchi et al., 2012).
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Figure 1.12: Probability to fall asleep increases with resting-
state scan duration. Total time spent in the different NREM sleep
stages (left) and wakefulness probability as a function of time (right).
An eye next to the fMRI center name indicates an experiment with
eyes open, an eye plus a cross indicates eyes open and fixation, and
N/A indicates lack of data. Adapted from Tagliazucchi and Laufs
2014.

As such, the “resting-state” condition should be viewed as an ar-
bitraty state mirroring potential differences in performance, task
and vigilance.

The low frequency oscillations (<0.1 Hz) sampled by fMRI are
vulnerable to possible confounds due to fluctuations in respira-
tion and cardiac rate (Birn et al., 2006; Shmuel and Leopold, 2008;
Murphy et al., 2013), that are typically regressed out jointly with
other artifacts, like those due to subject motion (Van Dijk et al.,
2012). Other methods used to remove physiological noise are that
of excluding signals from regions more likely to display physiolog-
ical artefacts, as for example those due to ventricles (Rombouts
et al., 2003), using ICA to isolate components possibly due to
non-neuronal sources (Beckmann et al., 2005), or regressing out
the signal that is common to all voxels, referred to as global sig-
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nal (Macey et al., 2004); note that it has been suggested that
this last procedure can introduce artifactual negative correlations
(Murphy et al., 2009). As such, it is important to acknowledge
that fMRI has its own kind of inverse problem that, contrary to
EEG and MEG, does not correspond to source localization, but
consists in the proper decomposition of the processes underlying
its generation and variation. In fact, a spontaneous increase (de-
crease) in the BOLD signal can never be unambigously attributed
to a specific neural process, since regulation of blood flow can be
determined by both genuinely neural as well as a number of other
physiological mechanisms (Leopold and Maier, 2012). In a recent
work, Glerean and colleagues pointed out that, according to the
literature, the frequency band that seems to be the less prone to
noise in human rs-fMRI is that between 0.04 and 0.07 Hz (Glerean
et al. 2012, see Figure 1.13). Despite its many caveats, a consid-
erable fraction of intrinsic BOLD signal variation appears to re-
flect genuine fluctuations of neuronal activations, characterized by
reproducible spatial topography (Beckmann et al., 2005; Biswal
et al., 2010) and coherent co-activations between regions showing
some degree of similarity, both in terms of their anatomical con-
nectivity pattern and of functionality (i.e. regions that are simi-
larly modulated by different tasks, see Figure 1.14), thus making
the study of BOLD spontaneous fluctuations especially relevant
to try to elucidate the complex relationship between anatomy and
functionality.

The vast majority of studies devoted to investigate coherent in-
trinsic fluctuations do so by computing the correlation of the
BOLD signal measured in distinct brain regions, traditionally re-
ferred to as functional connectivity (FC). This term, first used to
characterize the temporal coherence of trains of action potentials
(Gerstein and Perkel, 1969), has been adopted to describe the
correlation between spatially remote neurophysiological events,
expressed as a deviation from statistical independence, and in
principle independent from the particular measure or methodol-
ogy used (Friston et al., 1993; Horwitz et al., 2005). The fun-
damental assumption behind this concept is that if two regions
of the brain participate on the realization of a given operation (a
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Figure 1.13: Frequency bands sampled in rs-fMRI. (Left)
Power spectrum of oxygenation (A[HbO]), respiration and hearth
pulsation obtained simultaneously with fMRI. Blood oxygenation
was measured using near-infrared spectroscopy (NIRS). LFO, low-
frequency oscilations. Adapted from Tong and Frederick 2010. (Right)
Adapted from Glerean et al. 2012.
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Figure 1.14: Intrinsic activity recapitulates task and
anatomy. Coherent spontaneous BOLD fluctuations recapitulate ac-
tivations observed during task and the underlying anatomical connec-
tivity in the monkey. (a) BOLD correlations measured during anesthe-
sia. (b) Activations evoked by a saccadic movement task. (c) Density
of neurons labelled by retrograde tracer injections into right LIP. Re-
produced from Vincent et al. 2007.
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given “function”), then it is very likely that their activity will also
correlate. This assumption is certainly legitimate, nonetheless it
can also be misleading, as there is no guarantee of the contrary;
measuring a correlation between two regions does not necessarily
imply that this two regions are actually participating to the same
operation (the same “function”): they may be just receiving simi-
lar perturbation patterns, either of neural or of non-neural origin.
Furthermore, one cannote exclude that two regions contributing
to the same function will exhibit weak correlation, as their cou-
pling could be not captured by a simple linear measure. These
caveats may be especially relevant when analyzing the coherence
of intrinsic fluctuations, whose proper functional role is still not
clear.

Despite many studies have already confirmed the high inter-subject
similarity between the overall correlation structure found using
resting-state fMRI (see Section 1.1 above), and even its apparent
ability to correctly identify individuals (Finn et al., 2015) and
predict individual differences during performance (Tavor et al.,
2016), a systematic analysis of the reproducibility and of the re-
liability of spontaneous BOLD correlations and resting-state net-
works has been addressed by relatively few studies; one in partic-
ular (Choe et al., 2015), focused on quantifying the consistency
of functional networks, reported an high degree of stability at the
level of RSN spatial maps (see Figure 1.15).

Nonetheless, individual correlation coefficients measured between
different brain regions during rest are indeed only moderately reli-
able across subjects, as indicated by a mean intra-class coefficient
(ICC) of ~ 0.2 (Birn et al. 2013; Zuo and Xing 2014, Pannunzi
et al., in preparation, see Figure 1.16), indicating that the over-
all test-retest consistency of the spontaneous covariation between
individual pairs of regions is indeed rather low.

On the other hand, as we briefly reviewed, many studies have
repeatadly reported reproducible spatial patterns of intrinsic co-
activations. How is that possible for the two findings to co-exist?
How can hemodynamic spontaneous correlations be highly repro-
ducible (even across states and across species), and at the same
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Figure 1.15: Reproducibility of RSN spatial maps. Spatial
similarity of the RSN spatial maps to the corresponding group mean
map, measured using eta-squared (n?), a measure that can be used
to quantify the similarity between images (0 indicates no similarity,
whereas 1 indicates that they are identical). First, second and third
quartiles are represented within the violin plots as dotted lines. Note
that the seemingly counter-intuitive slightly larger mean similarity
observed across many subjects is explained by the fact that the 14
RSNs used in the study were indeed derived from group-ICA, and
as such it is by definition expected to observe large between-subjects
similarity. Reproduced from Choe et al. 2015.
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Figure 1.16: Reliability of resting-state correlations. We an-
alyzed the reliability of correlation coefficients obtained in a classic
resting-state fMRI study, finding that it is indeed rather low: this
reflects the fact that the variability found across sessions for a given
subject is very similar to the variability observed between different
subjects. (a) Mean Pearson correlation coefficient vs. intra-class co-
efficient (ICC). (b) Standard deviation of the correlation coefficient
vs. ICC. The white crosses in (a,b) mark the center of mass of the
two bivariate distributions. (c¢) ICC distributions. The triangle on
the right side of the panel indicates the mean ICC. Note that the re-
liability of the correlation between individual area pairs is practically
independent from both the mean and the variance of each correlation
coefficient. Adapted from Pannunzi et al., in preparation.

time so little reliable? There seem to be some sort of “scaling
problem”: in fact, the whole-brain functional maps (in the form
of resting-state networks as well as the overall correlation struc-
ture) have been shown to be very consistent (Biswal et al. 2010;
Choe et al. 2015, Pannunzi et al., in preparation), whereas the
correlation values between single area pairs are, on average, little
reliable (Birn et al. 2013; Zuo and Xing 2014, Pannunzi et al., in
preparation).

A plausible -and not very surprising- explanation for the former
observation can be that those consistent macroscopic functional
structures, usually analyzed on a group-level, largely mirror the
underlying anatomical organization -the basic plan- of the CNS
(see Section 1.2.4, below).
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On the other hand, it is possible that the poor reliability of the
correlation between individual area pairs could be determined by
the fact that the real pairwise covariation between brain areas is
not a static object, but rather it is a processes exhibiting complex
time-varying dynamics; such dynamic variability of BOLD intrin-
sic fluctuations would make estimates based on just a single (or
just a few) scan(s) not representative of the entire process, thus
dramatically affecting the reliability of the resulting correlations’
estimates. As a consequence, we are analyzing (Pannunzi et al,
in preparation) if the use of multiple scans could significantly in-
crease the reliability of the estimated pairwise correlations, above
and beyond estimates based on longer scans alone, as suggested
by other studies (Birn et al., 2013; Power et al., 2011). In fact, in-
creasing evidence suggests that the covariation between the intrin-
sic hemodynamics of different regions changes substantially over
a period of minutes (Vedel Jensen and Thorarinsdottir, 2007).
The time-varying fluctuations of BOLD pairwise correlations have
been observed also in animal studies (Majeed et al., 2009; Thomp-
son et al., 2013), and confirmed by comparing empirical sponta-
neous correlations with a stationary null model (Zalesky et al.,
2014). The standard method used to analyze the time-varying
pattern of spontaneous correlations is that of dividing the signal
in overlapping sliding windows, and then compute the correla-
tion between all brain regions within each sliding window (Allen
et al., 2012). This simple method demonstrated that spontaneous
BOLD fluctuations give rise to a repertoire of ever-changing sub-
networks of correlated activity, thus unveiling the rich dynamics
underlying intrinsic hemodynamic fluctuations (Hutchison et al.,
2013).
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1.2.3 Electrical and magnetic oscillations

It has been suggested that coherent activations of individual neu-
rons and transient synchronization of neural assemblies should
play a fundamental role in efficient information transmission (Fries,
2005; Womelsdorf et al., 2007), coordinating large-scale activity
(Varela et al., 2001), as well as perceptual and cognitive binding
(Singer, 1999; Engel et al., 2001); in addition, it is difficult to
challenge the idea that neuronal representations, computations
and higher-order cognitive processing should happen within the
millisecond-to-seconds range, thus making a temporal resolution
in this range of special interest. Tecnhiques such as electroen-
cephalography (EEG), magnetoencephalography (MEG), electro-
corticography (ECoG), local field potentials (LFPs) and voltage
sensitive dyes (VSD) are between those tecnhiques that best suit
this criterion. In addition, the non-invasivity of EEG and MEG
allows them to be used on human subjects.

Activity of cortical neural masses displays oscillations at several
frequancy bands, ranging from approximately 0.05 to 500 Hz and
preserved in all mammalian species studied to date (Buzsdki et al.
2013, Figure 1.17).

Several studies have suggested that, within a given neural assem-
bly, oscillations at neighboring frequencies tend to be associated
with different states (Klimesch, 1999; Kopell et al., 2000; Engel
and Singer, 2001). In addition, different rhythms can coexist (and
even interact) within the same neuronal network (Steriade, 2001;
Csicsvari et al., 2003). From a physical perspective, the '/, power
relationship typically observed between different frequency bands
indicates that lower frequency components display proportionally
larger amplitudes. This relationship also implies that any suffi-
cient perturbation of the mechanisms underlying the generation of
slower oscillations (e.g. changes in ions’ concentration, hormones,
neurotransmitters) can in principle cause a cascade of energy dis-
sipation at higher frequencies (Bak et al., 1987), thus ultimately
modulating fast-frequency activity (Sirota et al., 2003). In gen-
eral, the period of the oscillation is determined by the size of the
neuronal assembly engaged (Buzsdki and Draguhn, 2004): higher
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Figure 1.17: Overview of neural oscillations. (a) Power spec-
trum of hyppocampal EEG (note that the log-slope have been re-
moved). (b) Classic frequency bands (log-scale). (c) Log-log power
spectrum. (d) Illustrative examples of three types of oscillatory traces
(v, spindles, ripples) in humans, monkeys and mice. (e) LFP from rat
neocortex and filtered and rectified derivative traces from the rat’s hip-
pocampus, illustrating the emergence of “ripples”. (f) Spectrogram of
neocortical activity centered on hippocampal ripples. Note that ripple
activity is modulated by the sleep spindles (as revealed by the power in
the 10-18 Hz band), both events are modulated by the slow oscillation
(strong red band at 0-3 Hz), and all three oscillations are biased by
the phase of the ultraslow rhythm (approximately 0.1 Hz; asterisks).
(a-c) reproduced from Buzsaki and Draguhn 2004, (d-f) adapted from
Buzséki et al. 2013.
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frequencies are thus confined to small pools, whereas slower oscil-
lations mirror the recruitment of large networks (Steriade, 2001;
Csicsvari et al., 2003).

To date, many studies have analyzed in detail the relationships
between neuronal oscillations (measured either with EEG, ECoG,
MEG or LFPs) and intrinsic fluctuations of the BOLD signal.
In order to search for potential electrophysiological correlates of
BOLD fluctuations, one has first to identify corresponding neu-
ral processes that vary over the same time scale. One candidate
is given by slow (<4 Hz) cortical potentials (SCP, Birbaumer
et al. 1990; He and Raichle 2009), that can be measured either
from intracortical or surface electrodes. Other frequency compo-
nents are too fast to be directly compared with the much slower
hemodynamic fluctuations, but they indeed exhibit slow power
modulation, that can be captured and thus more meaningfully
compared with BOLD activity (Leopold and Maier, 2012): the re-
sulting time-varying signals are referred to as band-limited power
(BLP) fluctuations. In 2001, Logothetis and colleagues (Logo-
thetis et al., 2001) demostrated that BOLD signal changes posi-
tively correlated with fluctuations of the LFP signal around the
electrode; later, Shmuel and Leopold (Shmuel and Leopold, 2008)
simultaneosuly recorded BOLD and intra-cortical activity in the
visual cortex of anesthetized monkeys, confirming that BOLD
fluctuations correlated with BLP fluctuations in the ~ band. In-
terestingly, a study on healthy human subjects highlighted the
presence of positive correlation between the power of EEG os-
cillations at 17-23 Hz and the hemodynamic fluctuations within
areas belonging to the default-mode network (Laufs et al., 2003).
Finally, a large body of studies demonstrated that the power of
LFPs signal in the o and low v frequency bands conveys infor-
mation about the timing and the amplitude of the BOLD signal
(Kayser et al., 2004; Niessing et al., 2005; Schlvinck et al., 2010;
Pan et al., 2011; Magri et al., 2012).

In Liu et al. (2010), the authors demonstrated that the tempo-
ral correlation between intrinsic oscillations measured with MEG
during rest and during light sleep demonstrated slow (<0.1 Hz)
spontaneous power modulations that synchronized over distant
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Figure 1.18: Power envelope correlations Power envelope (BLP)
correlations between homologous sensory areas. (a) Illustration of
the time-varying power envelopes of two source locations. (b) BLP
correlations for different frequencies between homologous cortices. (c-
e) Spatial distribution of the BLP correlation between auditory (c),
somatosensory (d) and visual (e) cortices. White circles indicate the
reference site, whereas the cross the mirrored location in the other
hemisphere. Panels adapted from Hipp et al. 2012.

areas, in particular between homologous controlateral regions. In
a seminal paper, Hipp and colleagues (Hipp et al., 2012) used
the power envelopes of different narrow frequency bands obtained
from MEG to characterize the large-scale correlation structure of
spontaneous cortical activity in 43 healthy subjects (Figure 1.18).

In particular, the authors showed that the strongest correlations
between band-limited power envelopes were those between 8 to
32 Hz (« to 8 range). BLP correlations between regions residing
in the medial temporal lobes were strongest in the 6 range (4-6
Hz), whereas correlations between sensorimotor areas tended to
occur at higher frequencies (namely within low--, 32-45 Hz).
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1.2.4 Anatomical Connectivity

“To extend our understanding of neural
function to the most complex human
physiological and psychological activities, it
is essential that we first generate a clear
and accurate view of the structure of the
relevant centers, and of the human brain
itself, so that the basic plan - the overview
- can be grasped in the blink of an eye.”

Santiago Ramén y Cajal

The previous sections dealt with some of the most commonly used
methodologies adopted to study brain spontaneous activity and
co-activations. Nonetheless, it is well-known that intrinsic inter-
areal correlations, both locally and at a larger scale, appear to be
fundamentally shaped and sustained by the underlying anatomi-
cal structure determining the overall connectivity profiles of neu-
ral ensembles (see Appendix A). As such, we will review some of
the techniques used to capture the structural architecture of the
central nervous system (CNS), a fundamental step in order to
understand the emerging pattern of intrinsic co-activations dis-
cussed so far.

The importance of characterizing the connectivity among indivi-
dal neurons and neuronal populations have been at the center of
the work of eminent neuroanatomists, who made major contribu-
tions in our understanding of the tight link between anatomical
and functional organization of the CNS (Ramén y Cajal, 1909;
Swanson, 2012).

The classical methods used to track the neural fibers connect-
ing different neurons (called arons) usually involved highly inva-
sive tecnhiques such as chemical staining of individual cells with
horseradish peroxidase (van der Want et al., 1997). This tecn-
hiques are only suitable for use either on slices of tissue, or in
living animals that have next to be sacrificed, and are also very
time- and computation-demanding. One of the most extensive
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work was done on the macaque brain, leading to the creation
of a large-scale map of its connectivity (the CoCoMac database,
Stephan et al. 2001; Kétter 2004) Recent advances have brought
to the creation of tecnhiques with an unprecedented resolution,
such as CLARITY (Chung and Deisseroth, 2013; Chung et al.,
2013) or the saturated reconstruction (Kasthuri et al., 2015), that
however cannot be applied on living organisms (Figure 1.19).

The most common methods used to study anatomical connectiv-
ity n vivo build upon the capacity of MRI to record magnetic
properties of different molecules, and apply this ability to track
the bounded diffusion of water along the axons; as such it was pro-
posed as a method to track neural fibers (Conturo et al., 1999;
Bihan and Tima, 2015); nonetheless, the first implementation of
this method, called diffusion tensor imaging (DTI), performed
poorly in distinguishing complex wiring structures, leading to the
development of more advanced methods such as diffusion spec-
trum and diffusion weighted imaging (DST and DWI, respectively,
Wedeen et al. 2005; Fillard et al. 2011, see Figure 1.20).

Diffusion tractography is a powerful tool, but presents some in-
herent limitations, the main one being that all current tractogra-
phy methods tend to favor the shortest, straightest and simplest
path between any two reference voxels (Jones 2010, see also Fig-
ure 1.21). From this simple fact stem the majority of the issues
associated with fiber tracking, above all the consistent presence
of both false positive and false negative reconstructed stream-
lines; in fact, it has repeatadly demonstrated that, even if highly
reproducible, connectivity estimates obtained from tractography
are not anatomically accurate, and as such should be taken with
caution (Jones, 2010; Thomas et al., 2014; Jbabdi et al., 2015).

Another important issue related with this method lies in its in-
terpretation. In fact, the number associated with a given re-
constructed streamline does not correspond in any way with the
probability of the detected fiber to exist, and does not directly
mirror the real number of axons connecting two regions (Jones
et al., 2013); this implies that one should not interpret it as an
unambigous measure of connection strength.
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Figure 1.19: Tracking connectivity ex vivo. (a) Chemical stain-
ing (adapted from van der Want et al., 1997). (b) Directed coupling
matrix obtained from CoCoMac database. Connection are classified as
weak (1), medium (2) and strong (3). (¢) CLARITY applied on non-
sectioned mouse brain tissue (adapted from Chung et al 2013). (d)
Saturated reconstruction of two dendrites and their synaptic buttons
(adapted from Kasthuri et al. 2015).
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Figure 1.20: Diffusion Spectrum Imaging. Coronal cross section
of the fibers detected using DSI on a monkey brain. Each fiber is
coloured according to the orientation vector between its end-points.
Adapted from Schmahmann et al. 2007

Different studies have compared the performance of diffusion-
based imaging and invasive techniques based on injections of
retrograde tracers, showing that, despite a small positive rela-
tionship, diffusion tractography is indeed, in general, not very
accurate (van den Heuvel et al. 2015, see Figure 1.22).

Nonetheless, findings obtained from the comparison between DSI
and histological tract-tracing on monkeys (Schmahmann et al.,
2007) have definitively confirmed that diffusion tractography is
indeed able to truly detect important axonal association pathways
(see Figure 1.23). It is however worth to mention that these
observations are not in contrast with the known limitations cited
above: in fact, the 10 bundles of fibers correctly detected using
DSI all are made of a large number of axons and have a rather
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Figure 1.21: Tractography is affected by distance. We analyzed
the relationship between the length and the number of reconstructed
streamlines between 116 ROIs in 42 structural connectivity matrices
obtained from DWI on healthy subjects, and computed the preva-
lence, across scans, of each reconstructed streamline, corresponding
to the total number of scans in which it was detected (color coded in
the panel). The figure well illustrates the tendency of tractography
to favor shorter paths, as the number of reconstructed streamlines is
larger for short distances, that are also the streamlines more frequently
detected across scans. Remember that the number of reconstructed
streamlines does not necessarily reflect the existence of a real bundle of
axons (see text). It should be stressed that distance per se is not the
primary cause behind this relationship, but it is rather a proxy for the
inherent weakness of methods based on diffusion tractography in cop-
ing with paths that are not straight nor simple (Jones, 2010), features
whose probability tend indeed to increase with distance. Adapted
from Zamora-Lopez et al., in preparation.
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Figure 1.22: Comparison between tractography and tract-
tracing. (a) 39 Cortical regions of the macaque atlas. (b) Connec-
tivity matrix obtained from three datasets. DWI NOS, number of
reconstructed streamlines using diffusion weighted imaging. The mid-
dle and right matrices are obtained using invasive and anatomically
accurate tract-tracing methods. (c) Comparison of the three datasets.
Panels adapted from van den Heuvel et al. 2015.
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Figure 1.23: Tractography can detect important pathways.
Illustrations of the second subcomponent of the superior longitudinal
fasciculus (SLF II) of the rhesus monkey as determined with autora-
diography (A,B) and DSI (C,D). Reproduced from Schmahmann et al.
2007.

straight and very simple orientations, thus making them easier to
detect using diffusion tractography.

Indeed, it has been showed (van den Heuvel et al., 2009) that
diffusion tractography can in fact reconstruct wide bundles of
streamlines connecting areas belonging to different resting-state
networks, and that the reconstructed fibers corresponded to ex-
isting axonal pathways (see Figure 1.24).

These encouraging result suggest that in wvivo tractography can
in fact be informative of at least some of the most dense fibers
connecting even distant parts of the brain, and as such can thus
be used to capture parts of the anatomical backbone underlying
brain functionality.
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Figure 1.24: Reconstructed pathways underlying DMN. A
subset of wide bundles of fibers connect remote brain regions whose
spontaneous fluctuations tend to exhibit consistent temporal correla-
tions in humans: due to their coherent collective activations during
rest, and deactivations during many tasks, this set of areas have been
referred to as “default-mode network” (Raichle et al. 2001, see Sec-
tion 1.1 above). The corresponding anatomical fibers are the cingulum
(orange), the left and right superior frontal-occipital fasciculus (green
and yellow, respectively), and the genu of the corpus callosum (light
grey). The color code correspondd to the number of subjects (n=26)
in which the streamline was reconstructed after DTI. Adapted from
van den Heuvel et al. 2009.
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1.3 Brain Networks

“All the organs of an animal form a single
system, the parts of which hang together,
and act and react upone one another; and
no modifications can appear in one part
without bringing about corresponding
modifications in all the rest.”

George Cuvier (1789)

“I have never had reason, up to now, to
give up the concept which I have always
stressed, that nerve cells, instead of
working individually, act together, [...]
through whole bundles of fibres. [...]
However opposed it may seem to the
popular tendency to individualize the
elements, I cannot abandon the idea of a
unitary action of the nervous system,
without bothering if, by that, I approach
old conceptions.”

Camillo Golgi (Nobel lecture, 1906)

At the end of the 19th century, Camillo Golgi and Santiago Ramdn
y Cajal proposed two different interpretations about the basic or-
ganization of the nervous system: Cajal argued that individual
neurons should be its structural units, whereas Golgi believed in
what he called “reticular” organization, which stated that neu-
rons where all part of a single, continuous network. The so-called
“neuron doctrine” proposed by Cajal was endorsed and strength-
ened by Charles Sherrington, who suggested that individual neu-
rons were not only the structural units of the nervous system,
but also its functional ones (Sherrington, 1906). Later discoveries
(Porter et al., 1945) proved Cajal’s hypothesis right: neurons were
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indeed structurally separated units, as demonstrated by the exis-
tence of synaptic clefts (Palay, 1956). Nonetheless, after decades
of striking discoveries and technological advances, the idea that
individual neurons alone are alse the true, unique functional units
of the brain is being refined.

It is certainly true that single neurons integrate incoming stimuli
in very complex manners (Yuste, 2011), but on the other hand,
individual neurons disconnected from one another have no possi-
bility to perform complex functions such as proper pattern recog-
nition, pretty much as a single gut cell alone cannot account for
the whole digestive function. Furthermore, increasing evidences
are suggesting that the complete connectivity profile of individual
neurons are responsible for the actual function it exhibits (Song
et al., 2014), and that changes in such connectivity are associated
with changes in function (Newton and Sur, 2005; Majewska and
Sur, 2006; Cheetham et al., 2008; Barnes and Finnerty, 2010).
Single neurons are the structural building blocks of the nervous
system, whose functionality is however determined by distributed
processing carried by large ensembles of neurons (Hebb, 1949;
Churchland and Sejnowski, 1994; Buzsaki, 2010; Izquierdo and
Beer, 2013; Yuste, 2015).

As any other complex system, the brain can in fact legitimately
be considered a network of interconnected and interacting ele-
ments, referred to as nodes (or vertices). The nodes of the brain
web can either be individual neurons, larger populations or vast
regions of the CNS, depending on the focus of the analysis and on
the adopted techniques; the structural connections between these
elements can thus be single synapses as well as wide bundles of
axonal fibers (see Section 1.2.4 above), whereas the functional in-
teractions between the activity of the elements can be summarized
using any measure of pairwise co-variation (see Figure 1.25).

Over the last years, the analysis of brain structure and func-
tion as complex networks led to the emergence of a fertile new
field of study, usually referred to as “connectomic” (Bullmore and
Sporns, 2009; Hagmann et al., 2010; Sporns, 2014). It has been
observed that anatomical brain networks, analogously to other
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Figure 1.25: Analyzing brain networks. (a) Classic pipeline used
to analyze structural (left side) and functional (right side) brain net-
works from MRI. The information is in the end summarized in a ma-
trix, defining either the presence (or the “strength”) of anatomical con-
nections between a given pair of regions, or their correlation. The re-
sulting structural connectivity (SC) matrix is typically obtained from
diffusion tractography (after some preprocessing steps such as normal-
ization and symmetrization), whereas the so-called functional connec-
tivity (FC) matrix is computed from BOLD time series. Adapted from
Bullmore and Sporns 2009 and (Sporns, 2014). (b) Brain networks can
also be visualized using spring-embedded diagrams. The three circles
correspond to three different network modules. (c) Left: Analysis of
the high-order organization of the network (its topology) can reveal
the presence of segregated modules and integrative nodes, referred to
as hubs. Right: it has been proposed that optimal brain functioning
is achieved when balancing the levels of integration and segregation.
Panels (b,c) adapted from Deco and Kringelbach 2014.
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natural and artificial systems, tend to exhibit specific topolog-
ical properties thought to optimize network resiliency (i.e. re-
sistance after structural perturbations) and large-scale communi-
cation while minimizing the overall wiring length of the axonal
fibers; in addition, abnormal alterations of some of these topolog-
ical properties have been linked with neuropsychiatric disorders
(see Bullmore and Sporns 2012 for an extensive review).

As any other tool, graph measures have some limitations, some
of them due to the fundamental arbitrariness encounterd when
defining nodes and links in a network, other to the resolution of
experimental measurements, or even to the theoretical metrics it-
selves, which may by definition be imperfect or computationally
very expansive (Fornito et al., 2013; Sporns, 2014). Despite these
challenges, the graph theoretic approach has revealed to be an
extremely powerful framework to analyze and understand the in-
trinsic complexity of brain organization, and significant advances
of both graph theory and of the technologies for sampling brain
anatomical and functional organization promise to offer valuable
knowledge in the future. For the interested reader, we reviewed
some of the most important graph measures used to quantify
topological properties of brain structural and functional networks
in Appendix C.

In the last decades, great effort has been put to characterize the
relationship between brain structure and function (Honey et al.,
2009; Zhou et al., 2007; Zamora-Lépez et al., 2016), with the
aim of understanding the interplay and the relative contributions
that the topology of the anatomical network and the dynamics
governing neural activity exert on the complex correlation struc-
ture of intrinsic brain activity. In the next chapters, we will see
how modulating global dynamics -through the use of anesthetic
agents- and analyzing in detail the contribution of different net-
work topologies could lead to a better understanding of their rel-
ative impact in shaping the overall spontaneous brain activity
consistently observed in humans and other species.






CHAPTER

Modulating dynamics
through anesthesia

“There is no better high than discovery.”

E. O. Wilson

The organization of the central nervous system gives rise to a
variegated range of possible activity patterns, constrained by the
complex anatomical fabric and intimately moulded by the un-
derlying physiology. Different regimes of neural activity are the
physical substrate of the different behavioral and cognitive states
that organisms exhibit. These global states can reflect physiolog-
ical fluctuations triggered by the system’s response to changes in
the environment or by biological needs (such as conscious wake-
fulness or the different stages of sleep), or can result from non-
physiological, abnormal or pathological factors (for example anes-
thesia, confusional states, mood disorders, coma). In all cases,
changes in the overall activity regimes are determined by changes
in some aspects of cellular function, 7.e. in the microscopic or
local dynamics.

In the present chapter, we will analyze how experimental ma-
nipulation of local dynamics, achieved using an anesthetic agent,

41
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triggers significant changes in the arising functional structure,
and how the progressive vanishing of the anesthetic effect cor-
responds to a gradual restoration of the organized spontaneous
activity seen during the awake state. The chapter reproduces,
with minor modifications, a paper published by Bettinardi et al.
(2015).

2.1 Summary

Intrinsic brain activity is characterized by the presence of highly
structured networks of correlated fluctuations between different
regions of the brain. Such networks encompass different func-
tions, whose properties are known to be modulated by the ongoing
global brain state and are altered in several neurobiological disor-
ders. In the present study, we induced a deep state of anesthesia
in rats by means of a ketamine/medetomidine peritoneal injec-
tion, and analyzed the time course of the correlation between the
brain activity in different areas while anesthesia spontaneously
decreased over time. We compared results separately obtained
from fMRI and local field potentials (LFP) under the same anes-
thesia protocol, finding that while most profound phases of anes-
thesia can be described by overall sparse connectivity, stereotypi-
cal activity and poor functional integration, during lighter states
different frequency-specific functional networks emerge, endowing
the gradual restoration of structured large-scale activity seen dur-
ing rest. Noteworthy, our in vivo results show that those areas
belonging to the same functional network (the Default-Mode) ex-
hibited sustained correlated oscillations around 10 Hz throughout
the protocol, suggesting the presence of a specific functional back-
bone that is preserved even during deeper phases of anesthesia.
Finally, the overall pattern of results obtained from both imaging
and in vivo-recordings suggests that the progressive emergence
from deep anesthesia is reflected by a corresponding gradual in-
crease of organized correlated oscillations across the cortex.
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2.2 Introduction

The intrinsic complexity of brain organization allows the emer-
gence of a wide range of different activity regimes, referred to as
brain states. Ongoing brain activity during waking rest exhibits
spontaneous dynamics that are characterized by highly structured
patterns of correlated fluctuations known as Resting State Net-
works (RSN, Biswal et al. 1995; Greicius et al. 2003; Fox et al.
2005; Beckmann et al. 2005; Deco et al. 2011; Cabral et al. 2014a).
In recent years, a growing number of studies have indicated the
differences in spontaneous dynamics underlying different brain
states, as during sleep (Horovitz et al., 2008; Larson-Prior et al.,
2011), anesthesia (Kaisti et al., 2002; Boveroux et al., 2010), med-
itation (Brewer et al., 2011; Hasenkamp and Barsalou, 2012; Tang
et al., 2012), psychedelic states (Vollenweider and Kometer, 2010;
Carhart-Harris et al., 2012), and also at different states of brain
development (Fransson et al. 2007; 2009). Ongoing activity ob-
served during anesthesia and light sedation (Greicius et al., 2008;
Stamatakis et al., 2010) shows intriguing similarities with slow-
wave sleep (Horovitz et al., 2009). Moreover, it has been proposed
that many mechanisms underlying anesthesia-induced loss of con-
sciousness are also implicated in the fading of consciousness char-
acterizing the descent to sleep (Franks, 2008; Brown et al., 2010).
Many authors have investigated RSN in animals under general
anesthesia (Lu et al., 2007; Pawela et al., 2008; Hutchison et al.,
2010; Liu et al., 2011; Tu et al., 2011) and during wakefulness
(Zhang et al., 2010; Liang et al., 2011), revealing the existence of
intrinsic brain networks in primates (Mantini et al., 2011) and ro-
dents (Becerra et al., 2011; Lu et al., 2012). The results obtained
so far suggest that deeper stages of anesthesia tend to be char-
acterized by diminished functional connectivity (Lu et al., 2007;
Williams et al., 2010; Wang et al., 2011), and that the nature
of such decrease is related to the anesthetic agent used (Pawela
et al., 2008; Liu et al., 2011). Nonetheless, the modulation of
large-scale connectivity during the spontaneous fading from a
deep state of anesthesia to a lighter one is still unclear. Inves-
tigations of brain states have largely relied on the region-specific
metabolic demands related to neural activity, which is at the ba-
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sis of imaging techniques such as positron-emission tomography
(PET, Raichle 1983) and functional magnetic resonance imaging
(fMRI, Ogawa et al. 1992; Ogawa and Sung 2007), characterized
by high spatial accuracy but limited temporal resolution. The ap-
plication of high temporal resolution techniques such as electroen-
cephalography (EEG), magnetoencephalography (MEG), electro-
corticography (ECoG) and intracortical recordings such as local
field potentials (LFP) have been crucial to elucidate the finer tem-
poral structure of brain activity, revealing that different global
states are linked to specific rhythms in humans and animals (Ste-
riade et al., 1996; Buzsaki and Draguhn, 2004; Buzsaki, 2006). A
significant portion of brain structural architecture is phylogeneti-
cally conserved in vertebrates (Striedter, 2004), with fundamental
similarities among mammals (Hofman, 1989). This inter-species
similarity in anatomical connectivity gives rise to the emergence
of comparable patterns of organized activity, usually referred to
as functional networks (for a review see Park and Friston 2013).
The primary objective of this paper is to investigate how differ-
ent brain states consistently modulate network functionality in
the rat, both at the macroscopic (fMRI) and mesoscopic (LFP)
scale, and by beans of comparing the connectivity between areas
pertaining to the same or different network. Our results con-
firmed that different states of anesthesia are mirrored by broad
changes in the underlying functional organization that occurs at
different spatio-temporal levels, and that the state-related emer-
gence of large-scale functional networks is sustained by interareal
correlated oscillations at specific frequencies. Additionally, our
findings suggest the existence of a frequency-specific association
between correlated activity as measured with fMRI and LFP.

2.3 Materials and Methods

2.3.1 Animal preparation

Animals were deeply anesthetized by intraperitoneal injection of
ketamine (60 mg/kg) and medetomidine (0.5 mg/Kg). Brain ac-
tivity was recorded from the deepest phase of anesthesia up to
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partial recovery. Descent and full recovery were not recorded, as
they are experimentally demanding stages that often lead to ar-
tifacts. We excluded the possibility of recording full emergence
from anesthesia also because the animal was not chronically im-
planted. The animals were continuously monitored by control-
ling the respiratory pattern in imaging and the heart rate dur-
ing in vivo experiments. The animals were not paralyzed and
the hind paw reflexes were regularly tested during electrophys-
iological recordings (see below). Atropine (0.05mg/kg) was in-
jected subcutaneously to prevent secretions. Body temperature
was maintained at 37C using a water-circulating heating pump
(T/Pump, Gaymar, USA). Animal age, sex, weight and body
fat are factors known to modify the anesthesia metabolism, thus
animals were selected that exhibited similar characteristics (all
adult Wistar males, 293 43g). All the procedures were carried
out in compliance with the European Community Council Direc-
tive for the care and use of laboratory animals (86/609/ECC) and
with the Generalitat de Catalunyas authorization (DOGC 2450
7/8/1997, Comite tico de Experimentacin Animal, Universidad
de Barcelona).

2.3.2 fMRI recordings

MRI experiments were conducted on a 7.0 T BioSpec 70/30 hori-
zontal animal scanner (BrukerBioSpin, Ettlingen, Germany), equipped
with a 12 cm inner diameter actively shielded gradient system
(400 mT/m). The receiver coil was a phased-array surface coil
for the rat brain. Each anesthetized animal (n = 5) was placed
in the prone position in a Plexiglas holder with a nose cone for
administering a mixture of 30% 02 and 70% N2, and were fixed
using a tooth bar, ear bars and adhesive tape. The animals were
not paralyzed during the procedure. Tripilot scans were used to
ensure the accurate positioning of the animal’s head in the isocen-
ter of the magnet. Echo planar imaging (EPI) sequence started 40
minutes after anesthesia induction and was continuously acquired
over a period of around 2.3 hours with the following conditions:
echo time (TE) = 50ms, repetition time (TR) = 3 s, field of view
(FOV) = 25.6 x 25.6 x 7 mm, matrix size = 64 x 64 x 7 pixels,
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Figure 2.1: Experimental Protocol and recorded areas. (A)
Schematic representation of the experimental protocol used in fMRI
and LFP experiments (see Materials and Methods, 2.3). The red arrow
indicates the moment of anesthesia induction, whereas the recorded
intervals are highlighted in gray. Dark and light blue boxes indicate
the intervals used as representative of deep and light anesthesia, re-
spectively (see Identification of intervals corresponding to deeper and
lighter states of anesthesia). Overall (fMRI and LFP), deep intervals
were centered at 65.4 9.2 (mean SD) minutes, whereas light intervals
were centered at 171 17.7 minutes after induction, as indicated by
the dark and light blue dotted lines.(B) Examples of BOLD (Blood
Oxygen Level-Dependent, blue) and extracellular local field potential
(LFP, green) of the activity in medial prefrontal cortex (mPF). (C)
Regions of interest (ROIs) used for BOLD signal extraction in imaging
experiments.(D) Regions that were selected for LEP. MPF = medial
prefrontal cortex; CC = cingulate cortex; S2 = secundary somatosen-
sory cortex; Al = primary auditory cortex.
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resulting in a spatial resolution of 0.4 x 0.4 x 1 mm. Addition-
ally, for recording purposes a T2 weighted anatomical image was
acquired by using a RARE (Rapid Acquisition with Refocusing
Echoes) sequence and the following parameters: TE = 11 ms,
TR = 1.6 s, and same FOV, matrix size and spatial resolution as
above. We obtained 7 coronal slices 2 mm thick. The resulting
images were then treated in order to obtain the maximum number
of isolated brain areas. Consequently, a given number of regions
of interest (ROIs) were then obtained from each rat. Images were
not treated for motion correction, as they presented stable posi-
tioning and alignment along the entire experiment. The selection
of ROIs and corresponding spatial normalization was performed
by comparing MRI images with a rat-brain atlas (Paxinos and
Watson, 2004), taking into account the following criteria: first,
the selected areas had to contain at least four voxels per image,
but in no case could those in the limit of the area contain borders
of brain or cortex or confounding limits between areas; secondly,
the area had to be present in at least 80% of the voxels. The
reference slices were the ones presenting medial prefrontal cortex
area in the rostral side, the one presenting primary visual cor-
tex (V1) in the caudal side, and one central slice where the hip-
pocampal structures were identified. The intermediate slices were
treated taking these previous three as a reference and identifying
structures such as hippocampal formation, ventricles and corpus
callosum as well as different subcortical structures. These two
criteria limited the number of ROIs, which in every animal was
the maximum number of regions that satisfied these objectives.
Those criteria allowed the extraction of BOLD (Blood Oxygen
Level Dependent) signal from 14 ROIs from each hemisphere,
leading to a total of 28 ROIs in each of the 5 animals. The
extracted ROIs were the primary motor cortex (M1), primary
and secondary somatosensory cortices (S1, S2), primary and sec-
ondary visual cortices (V1, V2M), primary auditory cortex (A1),
medial prefrontal cortex (mPF), retrosplenial cortex (Rspl), cin-
gulate cortex (CC), thalamus (Thal), striatum (Str), amygdala
(Amy), hippocampus (Hipp) and hypothalamus (Hyp). ROIs and
average BOLD signals were extracted with homemade scripts im-
plemented in Matlab (Mathworks, Natick, MA, USA). In order to
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discard physiological ultra-slow fluctuations of the BOLD signal
(Yan et al., 2009), while maintaining those that had been previ-
ously shown to be relevant for sampling low-frequency rat brain
functional networks (Hutchison et al., 2010), we removed the best-
fitting linear trend from the BOLD traces and band-passed them
at 0.01-0.1 Hz. Obtained signals were then standardized.

2.3.3 In vivo LFP recordings

Lidocaine was administered at all pressure points and incisions
prior to surgery. Approximately 30 minutes after induction, while
the anesthesia was deepest, craniotomies were performed to record
from the left medial Prefrontal cortex (mPF, 3.2mm AP, 0.8mm
ML) and left and right cingulate cortex (CC, +1mm AP, +0.8mm
ML) in 10 rats, and to record from the left primary auditory cor-
tex (Al, -5.2mm AP, +6.5mm ML) and the left and right sec-
ondary somatosensory cortex (S2, -1.3mm AP, +5.6mm ML) in
6 animals. All coordinates are relative to bregma (following Pax-
inos and Watson 2006; see Figure 2.1). Extracellular slow-wave
recordings were obtained with tungsten electrodes of impedances
of 12 MQ (as in Ruiz-Mejias et al. 2011). Electrodes were placed
in infragranular layers (3mm deep in mPF, 2.4 mm in CC, 2.4 mm
in Al and 3.4 mm in S2). Recordings were amplified with a multi-
channel system (Multichannel Systems, Germany) and the signal
was digitized and acquired at 10 KHz with a CED acquisition
board and Spike2 software (Cambridge Electronic Design, UK).
Local field potentials of the selected cortical areas were simulta-
neously recorded in the anesthetized rat, using the same anesthe-
sia protocol as in imaging experiments. Extracellular recordings
started 49 + 9 (mean £+ SD) minutes after induction (depending
on the time needed for surgery) and continued until the animal
exhibited weak withdrawal reflex after hind paw pinch. Record-
ings before and after hind paw stimulation were discarded to avoid
artifacts, resulting in a total duration of LF'P recordings of 135 £
26 (mean £ SD) minutes. Obtained signals were down-sampled
offline to 333 Hz, and a notch filter was then applied in order to
remove 50 Hz electrical noise. At the end of the experiment the
animals were administered a lethal dose of sodium pentobarbital
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(800mg/kg).

2.3.4 fMRI data analysis

Preprocessed BOLD signal was divided in 90% overlapping slid-
ing windows of 10 minutes (corresponding to 200 sample points
each), each one shifting one minute in time with respect to the
previous one. Indeed, in all the plots where the x-axis repre-
sents the time course of a given measure, the labels on the x-axis
indicate the first minute of the 10-minutes sliding window used
to compute the corresponding measure, unless otherwise stated.
The use of sliding windows to evaluate time-varying changes in
brain activity and connectivity have been successfully reported
in some recent works, both on humans and on anesthetized an-
imals (Keilholz et al., 2012; Hutchison et al., 2013; Thompson
et al., 2013). BOLD signal variability over time of each indi-
vidual ROI was evaluated computing the variance of the prepro-
cessed time-series in each sliding window, whereupon the mean
BOLD variability was calculated as the mean variance of each
sliding window across all areas. The results were then averaged
across rats. According to Friston and colleagues (Friston et al.,
1993), functional connectivity (FC) was calculated using pairwise
Pearson’s correlation between each pair of areas of each sliding
window. Since the sampling distribution of the Pearson’s cor-
relation coefficients is known to be non-normal, the values were
converted to their corresponding Fisher’s z-scores in order to be
properly compared (Fisher, 1915). The mean correlation time
course was then computed averaging all the 378 traces (%)
obtained from all area pairs. Similarly, we calculated the distribu-
tion of the correlation coefficients (and its standard deviation) in
each sliding window. We then computed, for each sliding window,
the mean Kuramoto order parameter y, a measure that describes
the degree of overall network synchronization in a system of cou-
pled oscillators (Kuramoto 1975, see Supplemental Methods B).
This measure quantifies the uniformity of the phases across all
the nodes in the network at a given time, ranging from 0 for
a fully incoherent network state and 1 for a fully synchronized
one. In order to promote efficient information processing, the
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outputs of different and highly specialized computations have to
be coordinated and integrated into distributed but coherent neu-
ral activity. In the present work, we were interested in evaluating
if the ability of the brain to integrate information across distant
regions changed during the gradual fading of anesthetic effect.
We can define functional integration as the transient binding of
information across brain regions, a phenomenon that can be mea-
sured from the overall structure of correlations between areas in
a given temporal window. To this aim we applied, on the cor-
relation matrix obtained from each sliding window, a measure of
functional integration based on the size of the largest connected
component (see description below), thus obtaining a picture of
the time-varying changes in functional integration taking place
over the course of anesthesia. First, we binarized the Pearson’s
correlation matrix obtained from each 10-minute sliding window
by applying a threshold T ranging from 0 to 1 with subsequent
steps of 0.01 and following the criterion that if |r;;| < we set
0, and 1 otherwise. Thus for each sliding window we obtained
as many binarized adjacency matrices A;;(T") as the number of
applied thresholds. We then calculated the size of the largest
component of each A;;(T"). In this framework, a network com-
ponent is defined as a sub-network in which the edges of all its
are connected to each other by paths, but are not connected to
any additional vertex of the supergraph. The size of a network
component is given by the total number of its vertices. The size
of the (largest) component is thus a measure related to the (up-
per bound in the) amount of correlated activity that is integrated
within a set of connected vertices. In order to get a measure in-
dependent of the threshold, we then integrated that curve within
the range of the threshold between 0 and 1.

2.3.5 Deep and light anesthesia

Imaging measurements robustly indicated the presence of a con-
tinuous and non-monotonic progression over time from a stage
characterized by low BOLD variability and weakly correlated ac-
tivity to one marked by higher BOLD variability and stronger and
more heterogeneously correlated fluctuations. According to this
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pattern, we were able to take as representative of a deeper phase
of anesthesia the 15 sliding windows starting 60 minutes after
induction, whereas the last 15 windows were selected as represen-
tative of light anesthesia. The sliding windows used to calculate
the changes of a given measure over time all had same length
(10 minutes), which means that the intervals used to statistically
compare the two phases of anesthesia were 25 minutes each, i.e.
long enough to sample substantial and reliable differences between
brain states. In contrast to fMRI, during LFP experiments the
level of anesthesia could be more precisely assessed by checking
the absence of the withdrawal reflex tested with hind paw pinch
(see In vivo LFP recording). On average, LFP deep intervals
were centered at 61.8 + 10 (mean + SD) minutes after induction,
whereas the light ones spanned a larger range, 171.7 £ 22 minutes
(see Figure 2.1). Henceforth, we will refer to the above mentioned
intervals as deep and light anesthesia, respectively.

2.3.6 Coupled and uncoupled area pairs

We used the BOLD signal corresponding to the two anesthesia
intervals to compute stationary functional connectivity matrices
and the corresponding correlation distributions. Results were
then Fisher transformed (see Results 2.4). For further analysis
we focused only on the correlations between those pairs of areas
that simultaneously satisfied two constraints in all five rats: First,
r;; had to be significantly different from zero (with p < 0.05); sec-
ondly, such correlation had to have comparable values across rats,
i.e., the standard deviation (SD) of its average across all rats had
to be smaller than 1, which means a maximum standard error
(SE) of 0.4, being the usual SE value for biological phenomena
below this threshold. We referred to the obtain subset of area
pairs as Robust Coupled Nodes (RCNs). Area pairs that didn’t
show correlation significantly different from zero either in deep
and light intervals were considered “uncoupled”.



52 MODULATING DYNAMICS THROUGH ANESTHESIA

2.3.7 Detection of functional communities

We computed the community structure of RCNs sparse matrices
obtained from light anesthesia applying a version of Louvain’s
community-detection algorithm based on a modularity function
for weighted networks (Blondel et al., 2008; Gémez et al., 2009),
implemented in the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). Modularity @ is a cost function (see Supplemen-
tal Methods B) used to optimize community detection. It evalu-
ates the "goodness” of a partition by counting the total number
of edges falling within groups compared to the expected number
of edges that may fall within the groups in equivalent networks
whereby edges are placed at random (thus preserving the total
number of edges in each node). Modularity optimization leads to
graphs partitioned into densely intraconnected groups of nodes
(referred to as ”communities”), which are sparsely connected be-
tween them. Modularity can thus be considered a measure of
segregation. Louvain’s community detection method is stochas-
tic, and its results can vary from run to run. For this reason
we ran the method 10,000 times for each sparse RCN network,
and then defined the most probable community to which each
area pair belonged as the community to which it was most of-
ten assigned over the 10,000 repetitions. The community struc-
ture computed on individual rats’ light RCN matrices always re-
turned the same community partition, indicating inter-subject
consistency and confirming the reliability of the selected RCN.
We thus isolated two areas (mPF and CC) that, according to our
analysis, belonged to same functional community, and considered
them as an example of coupled regions, i.e. brain areas whose
activities are reliably connected as they take part to the the same
functional network. In order to capture the overall changes in
communities’ structure taking place during the gradual fading of
anesthesia from the individual to the group level, we first iterated
10,000 times the community detection algorithm on the full (28
x 28) FC matrix obtained from each sliding window of each an-
imal, and then computed the a posteriori probability that each
pair of ROIs had of belonging to the same community across all
iterations and all animals in each sliding window. We thus calcu-
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lated, for each one of the obtained probability matrices, the mean
a posteriori probability of belonging to the same community, in
order to obtain a rather simple summary of the overall changes in
the structural stability of different communities over the course of
anesthesia. After that, we measured functional segregation over
time computing the modularity index Q from the FC matrix ob-
tained from each sliding window, and then average results across
animals.

2.3.8 LFP data analysis

In order to evaluate the frequency-specific coupling between cou-
pled (mPF-CC) and uncoupled (A1-S2) regions in deep and light
anesthesia, we computed the correlation between the power en-
velopes of homologous band-limited signals obtained from two
different regions, to which we refer to as band-limited correla-
tions (BLCs). BLCs can be seen as an extension of the classical
Functional Connectivity (Friston et al., 1993) in the frequency
domain and can be used to quantify the degree of co-variation
between neuronal oscillations of two distant cortical regions at a
given frequency (Brookes et al., 2011; Hipp et al., 2012; Cabral
et al., 2014a). To this aim, the continuous down-sampled data was
bandpassed in 100 non-overlapping frequency bands (1 Hz width)
from 0 to 100 Hz. After having calculated the Hilbert envelopes
of the 100 signals obtained for each area and having applied a
squared-log transformation in order to ensure normality of the
estimates (as done in Hipp et al. 2012), we band-passed the result-
ing envelopes at the same resolution used in our previous imaging
experiments (0.01-0.1 Hz) and down-sampled them at 1 second to
account for the low-frequency components of the oscillations clas-
sically sampled in fMRI experiments. Then, for each animal we
computed the Pearson’s correlation coefficient between the result-
ing signals from each homologous frequency band between pairs
of areas and converted it into the corresponding Fisher’s z-score,
resulting in 100 correlation values for coupled and uncoupled ar-
eas (one per frequency band). We then computed the difference
between the BLCs of the two states (deep and light) for each 1 Hz-
width frequency band for coupled and uncoupled area pairs (see
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Supplemental Methods B). Subsequently, we divided the original
preprocessed LFP signal in 90% overlapping windows of 10 min-
utes, as previously done for fMRI data. We then calculated BLCs
in each sliding window. BLC time courses of the broader classical
frequency bands were calculated analogously after having band-
passed the preprocessed LFP signal according to the following
frequency ranges: slow waves (0.01-1 Hz), low ¢ (1-2 Hz), high ¢
(2-4 Hz), 6 (4-8 Hz), o (8-15 Hz), 5 (15-30 Hz), low ~ (30-50 Hz)
and high v (50-100 Hz).

2.3.9 Frequency shift to higher frequencies

During BLC analysis we observed the presence of two shifts to
higher frequencies in correlated oscillations during the gradual
transition from deep to light anesthesia, the first shift around 1
Hz and the second around 10 Hz (see Results 2.4). To investigate
this aspect, we computed the relative correlation in the two fre-
quency bands of interest (~1Hz and ~10 Hz) as the ratio between
the higher and the lower component of a given frequency-band-
of-interest over sliding windows for a given area pair (see Sup-
plemental Methods B). This procedure quantifies how much the
mean band-limited correlation in a given frequency range varies
in relation to another frequency range, thus making it possible
to measure their relative contributions in different intervals of
time. Values greater than 1 indicate predominance of the higher
frequency BLC component, whereas values smaller than one indi-
cate the opposite (1 indicates perfect balance). For each animal,
we calculated the relative correlation in deep and light intervals
for the transition from <1 Hz to 1-2 Hz and that from 8-10 Hz to
11-15 Hz in both coupled (n = 10) and uncoupled (n = 6) areas,
and then average across rats.
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2.4 Results

2.4.1 Correlation increases as anesthesia
fades away

We induced a state of deep anesthesia in rats and recorded brain
activity while the level of anesthesia gradually decreased (see Ma-
terials and Methods 2.3; protocol scheme in Figure 2.1). Our first
objective was to monitor BOLD signal changes over time that
might correspond to different levels of anesthesia. To this aim,
we first divided the continuous BOLD signals in 90% overlapping
windows of 10 minutes and then analyzed, for each window, its
variability for each region of interest (see Materials and Meth-
ods). Supplementary figure S1A illustrates the variance of the
BOLD signal of each single ROI, whereas the average across all
areas is depicted in Figure 2.2A. We observed a certain degree
of heterogeneity depending on the ROI, but we also observed an
overall increase in BOLD variability as the effect of anesthesia di-
minished in time. We then analyzed the time-varying changes of
BOLD pairwise correlations over the entire duration of the proto-
col (see Materials and Methods 2.3) and obtained, for each time
window, the value of the correlations between different regions
(referred to as Functional Connectivity (FC); Friston et al. 1993)
and their average across all area pairs. We observed the footprint
of a progressive modulation between different brain conditions,
being characterized by a first drop of the correlations (due to the
gradual descent toward deeper stages of anesthesia) followed by a
gradual increase toward the end of the recording (see Figure 2.2B
and B.1B in Supplementary Material). As not all regions seemed
to exhibit comparable correlation time courses, we also focused
on the changes in pairwise correlation between the BOLD signal
of each individual region and all other regions over sliding win-
dows. This procedure gave us insights on the different functional
connectivity pattern displayed by single cortical and subcortical
areas as the effects of anesthesia gradually fade out over time (see
examples of individual FC time courses of cortical and subcortical
ROIs in Figures B.2 and B.3 in Supplementary Material). A com-
plementary way to characterize the ongoing changes in FC across
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all brain areas is to focus on the variability in the distribution
of all correlation coefficients over time (Figure 2.2C and B.1C in
Supplementary Material). We observed a change in the distribu-
tion of correlations, marked by a gradual spread toward higher
positive values and a corresponding increase in its standard devi-
ation (SD) as the effects of anesthesia diminished over time. All
the obtained time-varying results showed a consistent tendency
to increase over time, suggesting the presence of a modulation in
the transition from deep towards light anesthesia. One plausible
explanation for such a pattern of observations was that the shape
of the underlying BOLD distribution changed over time according
to the level of anesthesia. To check for this possibility, we took as
representative four ROIs whose BOLD signals showed the high-
est correlation during the light period (mPF and CC, bilaterally)
and then compared the corresponding BOLD distributions ob-
tained from the two levels of anesthesia. The distribution of the
signal in the two periods had comparable shape, confirming the
possibility to rule-out a spurious origin of the observed pattern
of findings. We thus tested whether BOLD variance, pairwise
correlation and its standard deviation were significantly differ-
ent in the two intervals taken as representative of deep and light
anesthesia. The mean values of both levels demonstrated that
the light interval was characterized by higher values in all mea-
sures, being the pairwise correlation the most significant (BOLD
variance: p = 0.0466; pairwise correlation: p = 0.0088; standard
deviation of the correlation distribution: p = 0.0375, one-sided
paired t-tests, n = 5). These results confirmed that deep anes-
thesia largely reduces brain functional connectivity, which is in
turn gradually restored as the effect of anesthesia vanishes over
time. Another evidence of the presence of distinguishable brain
conditions was obtained measuring and comparing the degree of
overall network synchronization in the mentioned intervals. We
investigated this aspect by calculating the Kuramoto global or-
der parameter (see Materials and Methods 2.3), a measure that
has been widely applied in neuroscience to investigate synchro-
nization at different scales (Maistrenko et al., 2007; Cumin and
Unsworth, 2007; Cabral et al., 2011). Our results indicate that
intrinsic BOLD fluctuations transiently synchronize across many
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Figure 2.2: Fading of anesthesia associated with changes in
brain activity. (A) Time course of the mean BOLD variance across
all areas confirms that decreasing levels of anesthesia are mirrored by
increased BOLD variability. (B) Mean correlation over time computed
over all area pairs. (C) Standard deviation (SD) of the correlation dis-
tribution over time. (D) Mean global synchronization (Kuramoto or-
der parameter, ) over time. Not surprisingly, this metric resembles the
mean correlation across all areas, suggesting that the level of anesthe-
sia modulates the overall network’s ability to synchronize. (E) Func-
tional integration over time. (F) Change of modularity (Q) over time.
Modularity is a measure of functional segregation and, as expected,
follows an opposite behavior compared to functional integration (see
Materials and Methods and Discussion). Dark- and light-blue lines
superimposed over the time courses represent the intervals selected
for statistical comparison of the mean values between deep and light
anesthesia, respectively, and shaded areas indicate standard error of
the mean (SEM). Deep and light intervals were statistically different
for all measures ( * indicates p < 0.05, ** stays for p < 0.01 and ***
p < 0.001; see Results 2.4).

ROIs either in deeper and lighter phases of anesthesia, nonethe-
less the mean synchronization during light was significantly higher
than during deep anesthesia (with p = 0.0038, one-sided paired
t-test, n = 5; see Figure 2.2D).
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2.4.2 Functional integration and segregation

Our results show that both correlation and overall networks’ syn-
chronization are globally reduced in deeper state of anesthesia.
To further investigate the state-related changes in overall network
properties, we quantified also functional integration and segrega-
tion (by means of the modularity index @) across different levels
of anesthesia (see Materials and Methods 2.3). On one hand, we
found that the progression from deep to light anesthesia implied
a significant increase in functional integration, as shown when
comparing the mean values obtained from the two intervals (p
= 0.0067, one-sided paired t-test, n = 5; see Figure 2.2E); on
the other side, each relative increase (decrease) in functional in-
tegration over time was mirrored by a corresponding decrease (in-
crease) in modularity. In addition, mean modularity was found to
be significantly reduced in light anesthesia compared to deep (p
= 0.00097, one-sided paired t-test, n = 5; see Figure 2.2F). This
pattern of finding is not unexpected, as the two indexes address
complementary aspects of networks’ organization: indeed, func-
tional integration is related to the size of the largest connected
component, whereas modularity, being a measure that quantifies
network segregation, takes large values when a given graph can
be partitioned in many scattered communities, which thus tend
to be of relatively small size due to the finite size of the network.

2.4.3 Emergence of functional networks

FC matrices obtained from the two intervals showed distinct pat-
terns and correlations’ distributions, being the lighter period char-
acterized by the presence of higher correlations and suggesting the
emergence of structured patterns of brain activity (Figure 2.3A).
Statistical comparison confirmed that the average distribution of
correlation values in the two conditions was significantly different
(with asymptotic p = 7.5904-107'%, Kolmogorov-Smirnov test).
Due to the somewhat large variability among rats found in the
correlation matrices of the light intervals, we selected only those
area pairs that consistently showed robust correlations across sub-
jects (RCNs; see Materials and Methods 2.3). Collectively, the
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RCNs comprised less than 0.3% of all area pairs during deeper
phases of anesthesia, indicating that the activity of the vast ma-
jority of areas during this state is generally less correlated with
that of other areas, and less consistent across animals. Con-
versely, the number of RCNs showing consistent coupling between
rats during lighter anesthesia was around 10% (Figure 2.3B). The
connectivity pattern among RCNs obtained from light anesthe-
sia suggests that segregated networks of connected nodes emerge
as a consequence of the gradual fading of anesthetic effect. To
check for this possibility, we calculated whether the resulting
RCNs obtained during light anesthesia could actually be parti-
tioned into distinct functional modules by applying a well known
community-detection algorithm (see Materials and Methods 2.3).
Consequently, five robust groups of functionally connected clus-
ters of areas of different size were identified: The first RCN com-
munity comprised the first auditory and somatosensory areas (A1,
S1), secondary visual cortex (V2M) and the retrosplenial cortex
(Rspl); the second comprised primary visual (V1), medial pre-
frontal (mPF) and cingulate (CC) cortices; and the third was
composed by the primary motor (M1) and the secondary so-
matosensory (S2) cortices. The thalamus (Thal) and the stria-
tum (Str) appeared to form two distinct functional modules of
contralateral areas (Figure 3C). The application of the same al-
gorithm on the RCN found during deeper phases of anesthesia
returned no community structure. In addition, the time-varying
matrices of the pairwise a posteriori probability of pertaining to
the same functional community (see Materials and Methods 2.3
and Figure 2.4) clearly indicate that the transition from deep
to light anesthesia is marked by the gradual emergence of in-
creasingly stabler patterns of structured activity. In fact, during
deeper stages of anesthesia, the sets of community partitions that
is possible to obtain across repetitions of the community detec-
tion algorithm are much less reliable, from the individual to the
group level, than those obtained from light anesthesia. This in-
dicates that deeper stages of anesthesia are dominated by a less
structured pattern of co-activations than during lighter phases.
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Distribution of correlation coefficients
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Figure 2.3: Different brain states are mirrored by different
properties of the underlying functional networks. (A) Distri-
bution of the correlation coefficients and corresponding average FC
matrices obtained from deep and light intervals. The two distribu-
tions were statistically different ( *** indicates p < 0.001, see Re-
sults). Dark- and light-blue triangles indicate the means of the deep
and light distributions, respectively. (B) Average matrix of the Ro-
bust Coupled Nodes (RCNs; see Materials and Methods 2.3) obtained
from light anesthesia. The color-code quantifies the average correla-
tion coefficient of those area pairs that were classified as RCNs. Area
pairs that were not classified as RCNs are highlighted in light gray.
(C) Community structure of the light RCNs, where nodes of the same
colors indicate areas belonging to the same community (see Materials
and Methods 2.3). No community were detected in the deep anesthesia
interval. In panels B and C, nodes that were selected as representative
of coupled and uncoupled area pairs and used for further analysis are
highlighted in red and gray, respectively.
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Figure 2.4: Networks’ stability increases while anesthesia
fades out. (A) Matrices of the ROIs pairwise a posteriori proba-
bility of belonging to the same functional community obtained from
two sliding windows taken as representative of the deep (t = 68, left)
and light (t = 174, right) anesthesia intervals. (B) Mean a posteriori
probability of belonging to the same functional community over time.
Superimposed dark- and light- blue lines indicate the deep and light
anesthesia intervals, respectively. (C) Examples of the matrices of
pairwise a posteriori probability that were used to compute the mean
a posteriori probability depicted in panel B. During deeper phases of
anesthesia the obtained community partitions are more variable both
across iterations and animals, thus leading to sparser matrices and
lower mean probabilities. Nonetheless, as the effects of anesthesia
naturally decrease, BOLD fluctuations exhibit an increasing tendency
to gradually stabilize in structured time-varying patterns of large-scale
co-activations, as mirrored both by the increased mean probability of
belonging to the same community as well as by the increasing con-
sistency of the emerging communities. All a posteriori probabilities
obtained for each sliding window were computed using all 10,000 it-
erations of the community detection algorithm over all animals (see
Materials and Methods 2.3).
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2.4.4 FC between areas of the same networks

We next focused on the correlation time courses of two subsets
of area pairs: (1) those that were consistently and highly cor-
related across all rats (i.e., were previously identified as RCNis;
see above and Materials and Methods 2.3) during light anesthesia
and, according to our community analysis, belonged to the same
functional cluster (mPF and CC, henceforth referred to as cou-
pled areas); and (2) those that showed no significant correlation
(p > 0.05) across all rats in light and deep anesthesia (Al and
S2, referred to as “uncoupled” areas). It should be noted that
mPF and CC have recently been identified as part of the rat’s
Default Mode Network (DMN, Lu et al. 2012). We analyzed the
co-variation of the BOLD signals between the above mentioned
ROIs including both ipsilateral and contralateral areas in order to
control for possible differences in the co-activation pattern among
areas belonging to the same or to the contralateral hemisphere.
Comparisons of the mean correlation values obtained from deep
and light intervals confirmed that there was no statistical differ-
ence between the two groups when considering uncoupled areas
(A1-S2), whereas coupled ones (mPF-CC) showed a significant in-
crease in correlation in the evolution from deep to light anesthesia
(with p = 0.0117, one-sided paired t-test, n = 5, see Figure 2.6A).
In addition, it is worth to mention that FC, functional integration
and mean synchronization suggest clear associations between each
other (see Figure Figure B.4 in Supplementary Material). This is
not surprising when considering that, for example, some of them
are actually functions of other ones, or that can reflect a common
mechanism. Nonetheless, by definition each of these measures
quantifies different (even if related) properties, thus the fact that
they exhibit linear association does not necessarily imply that
they carry the same information.

2.4.5 Frequency-specific changes in neural
coupling

We thus selected the aforementioned coupled and uncoupled ar-
eas for further LFP recordings in order to determine the speci-
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ficity of oscillatory patterns connecting distinct area pairs dur-
ing the gradual fading of anesthesia. To that end we simulta-
neously recorded LFP from mPF, CC, Al and S2 while using
the same anesthesia protocol we had used in fMRI experiments.
Comparison of the power spectra between deep and light inter-
vals confirmed that ketamine-medetomidine anesthesia induced
a modulation in the oscillatory activity. This modulation was
characterized by a decrease in power at frequencies higher than
30 Hz in all areas and also by an increase in power in frequen-
cies around a in mPF and CC (p < 0.05, paired t-test, see Fig-
ure B.4 in Supplementary Material). We then computed BLCs
(see Materials and Methods 2.3) of the two different area pairs
obtained from deep and light intervals and statistically compared
the mean values within coupled (mPF-CC, n = 10) and uncoupled
(A1-S2, n = 6) areas. Whereas for uncoupled areas the BLCs be-
tween different states differed only slightly, coupled areas showed
a significant increase in BLCs during light anesthesia at differ-
ent frequencies (p < 0.05, one-sided paired t-test, n = 10, see
Figure 2.5A). This increase appeared selectively at 8-15 Hz and
in the 30-50 Hz range. In addition to this, the non-overlap of
the standard mean error intervals shows that coupled areas ex-
hibit higher correlations than uncoupled ones in both anesthesia
conditions continuously from 2 to 50 Hz (see Figure 2.5A). To
further investigate this fact, we compared the correlations’ dis-
tribution of coupled and uncoupled areas both during deep and
light anesthesia for the two above-mentioned frequency ranges
(8-15Hz and 30-50Hz), confirming that coupled areas showed sig-
nificantly greater correlations in both comparisons (all p<0.001,
Wilcoxon rank sum test , coupled n = 10, uncoupled n = 6).
The frequency-specific increase from deep to light anesthesia seen
in coupled areas became evident when the BLCs obtained dur-
ing deep anesthesia were subtracted from that obtained during
light anesthesia, as depicted in Figure 2.5B (see Materials and
Methods 2.3). These findings not only demonstrate that areas
belonging to the same functional network correlate at specific
frequencies more than areas that do not participate in the same
network even during deeper stages of anesthesia, but they also
indicate that coupled areas exhibit a clear net increase in cou-
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pling in these frequency ranges (8-15 Hz and 30-50 Hz) during
the progression to lighter states of anesthesia. Subsequently, in
order to analyze the evolution of neuronal coupling at different
frequencies over time, we divided the original preprocessed LFP
signal in sliding windows (as done for fMRI) and then computed
the BLC in each window (see Materials and Methods 2.3). The
resulting band-limited time courses confirmed that it is possible
to distinguish between coupled and uncoupled nodes even during
deeper phases of anesthesia, given that areas participating in the
same network showed stronger correlations at approximately 10
Hz (see Figure 2.5C).

2.4.6 Shifts to higher frequencies

The evolution to light anesthesia in coupled areas was marked
by a gradual shift toward higher frequencies of the correlation
peaks at approximately 1 Hz, and another around 10 Hz. This
fact prompted a more detailed investigation. We quantified these
possible state-related shifts to higher frequencies calculating the
relative correlation between higher and lower components of the
frequency ranges of interest (see Materials and Methods 2.3). Sta-
tistical comparison of the mean relative BLCs in deep and light
intervals showed that the shift from <1 Hz up to 2 Hz signifi-
cantly accounted for the progression from deep to light anesthesia
in both area pairs (coupled: p = 1.7288-107%, n = 10; uncoupled:
p = 5.335-107, n = 6; paired Wilcoxon signed rank test; see
Figure 2.5D top). On the other hand, the increase in relative
correlation from 8-10 to 11-15 Hz from deep to light anesthesia
was significant only in areas that belonged to the same functional
network (coupled: p = 4.4988-107'", n = 10; uncoupled: p =
0.8327, n = 6; paired Wilcoxon signed rank test; see Figure 2.5D
bottom). These findings suggest that the BLC shift from 8-10 to
11-15 Hz observed in the transition from deep to light anesthe-
sia could be specific to areas participating in common functional
networks.
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Figure 2.5: BLCs discriminate between network areas and
different brain states. (A) Average BLCs obtained from the two
sets of areas. Empty squares mark BLCs that exhibited significantly
higher values in light anesthesia compared to deep anesthesia within
coupled (red squares, n = 10) and within uncoupled (gray squares, n
= 6) area pairs (p<0.05; see Results 2.4). (B) Difference between 1
Hz-width BLCs obtained in light and deep anesthesia intervals was
calculated separately for coupled (red line, n = 10) and uncoupled
(gray line, n = 6) area pairs (see Materials and Methods 2.3). (C)
Average BLC time courses of the two pairs of areas (see Materials
and Methods 2.3). Coupled areas (top) exhibit sustained correlations
around 10 Hz that are preserved during all the recording session. These
average BLC time courses are shown just for visualization purposes, as
they resulted from individual recordings of slightly different length (see
Materials and Methods 2.3). Averages have been obtained aligning
each recording to its end point and equalizing it with respect to the
shortest one. This procedure does not allow to show the actual deep
interval that was used for statistical comparison for each recording (see
Figure 2.1A). For this reason, only the onset of the 15-minute light
interval is shown, being represented by a light-blue dashed line. (D)
Quantification of the BLCs peak shift in the transition from deep to
light anesthesia in coupled and uncoupled area pairs. Average relative
correlations (see Materials and Methods 2.3) were statistically different
in all cases except for the shift from 8-10 to 11-15 Hz in uncoupled
areas. *** indicates p < 0.001, whereas n.s. Stands for 'non significant’
(see Results 2.4).
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2.4.7 Similarity of f/MRI and LFP time
courses

The obtained BLC time courses (Figure 2.5C) indicated that the
progression to light anesthesia is characterized by an increase
in correlation that is specific for the above-mentioned frequency
ranges (8-15 Hz and 30-50 Hz), and can account for differences
between areas belonging to the same or to different functional
networks. Not surprisingly, statistical comparisons of the mean
correlations of the BLC time courses obtained from both periods
confirmed that only areas pertaining to the same functional net-
work exhibit significant increase in correlations in the 8-15 Hz («)
and 30-50 Hz (low ) bands during the transition from one state
to the other as compared to other frequency bands (a band: p =
0.0317; low v band: p = 0.0287; one-sided paired t-test, n = 10;
see Figure 2.6B). Qualitative comparison of the BLC over time
between all area pairs simultaneously recorded in LFP experi-
ments and the corresponding FC time courses obtained from the
same ROIs (mPF-CC and A1-S2) in imaging experiments outline
the possible existence of a relationship between brain correlated
fluctuations as measured with BOLD signal and coupled neural
oscillation, especially in the  range (see Figure 2.6 and Figure B.6
in the Supplementary Material).

2.5 Discussion

Neurons form relatively stable structural connections in the brain,
but at the same time they participate in functional networks
that change over time according to the brain state. Despite its
relevance, few studies have focused on the ongoing changes be-
tween different brain states (Martuzzi et al., 2010; Tang et al.,
2012; Lewis et al., 2012). To our knowledge, none has addressed
this question by comparing measurements obtained with imag-
ing techniques and intracortical recordings in order to investigate
their consistency. The aim of the present work was to identify how
the gradual evolution from deeper to lighter phases of anesthesia
modulates the connectivity patterns between different areas at
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Figure 2.6: BOLD correlations and BLCs of specific fre-
quency ranges exhibit comparable time courses. (A) Mean
BOLD correlation time courses obtained averaging the activity of only
those ROIs that were selected as being representative of areas that
belong to the same (coupled, red) or to different (uncoupled, gray)
functional networks (see Materials and Methods 2.3). (B) Examples
of average BLCs time courses for two different frequency ranges for
the two sets of area pairs (see Materials and Methods 2.3). Light-
blue, dashed lines in panels A and B indicate the onset of the light
interval, whereas * indicate significance (p<0.05) of the comparison
deep versus light and n.s. indicates ”not significant” (see Results 2.4).
Due to the different duration of individual LFP recordings, deep in-
tervals used for statistical comparisons are not shown in panels B (see
legend of Figure 2.5).

the macro- (fMRI) and the mesoscopic (LFP) levels, and to de-
termine whether such coupling motifs could distinguish between
areas belonging to the same or to distinct functional networks.
To that end, we compared results separately obtained with fMRI
and LFP using a common experimental protocol. Having deeply
anesthetized the animal, we recorded rat brain activity while the
level of anesthesia progressively decreased over time.

As expected, our findings indicated that the induction of a deep
state of anesthesia has dramatic effects on brain functionality. In-
deed, the most profound phase of anesthesia is characterized by
a significant reduction in the variability of intrinsic BOLD fluc-
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tuations and their overall low-frequency synchronization. These
phenomena can explain the observed weakening of long-range cor-
relations between different regions and the transient breakdown
of those differentiated networks that have previously been found
in rats during light anesthesia (Pawela et al., 2008) and waking
rest (Liang et al., 2011). Our findings are in agreement with the
proposal that the induction of anesthesia is related with a re-
duction in the repertoire of distinguishable brain states (Alkire
et al., 2008; Hudetz et al., 2014), as the decrease in variability of
both the BOLD signal and the correlation distribution leads the
system toward more uniform, stereotypical dynamics (Deco et al.,
2009a). Spontaneous brain activity has been suggested to exhibits
small-world network properties (Sporns and Zwi, 2004; Bassett
and Bullmore, 2006), where a large number of densely cluster-
ized local networks performing highly segregated computations
are linked together by a relatively small number of connections,
resulting in a complex structure of hierarchically nested networks
(Meunier et al., 2010; Sporns, 2013). This complex architecture
has been theoretically linked with efficient information processing
and propagation, enabling to rapidly integrate the outputs from
different specialized local networks (Watts and Strogatz, 1998; La-
tora and Marchiori, 2001). Our results suggest that during deeper
stages of anesthesia these functional connections between com-
munities get dramatically weakened. The resulting framework of
scattered local connectivity is thus mirrored by an increase in
functional segregation, and a corresponding reduction in integra-
tion. In this scenario, deep phases of anesthesia are characterized
by a massive destructuration of the complex large-scale pattern of
co-activations seen during light anesthesia (Keilholz et al., 2012;
Lu et al., 2012) and waking rest (Zhang et al., 2010; Liang et al.,
2011).

As the effect of anesthesia vanished, the coupling across distant
brain regions is gradually restored, leading to the progressive
flourishing of distinct functional networks, as was also indicated
by the corresponding rise in functional integration. Taken to-
gether, these results indicated that the gradual emergence from
anesthesia is marked by an increase in differentiated and struc-
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tured large-scale brain activity. Indeed, during fading of anes-
thesia, intrinsic activity of different subsets of areas start to clus-
ter, uncovering the presence of a non homogeneous correlation
structure which reveals itself as the animal approach the wake
state, and that likely reflects the progressive and dynamical emer-
gence of different functional networks. After induction of a deep
state of anesthesia, the precisely organized pattern of reliable co-
activations that have been found to characterize resting brain
activity undergo a dramatic reduction in their overall inter-areal
synchronization, which in turn lead to the partial fragmentation
of the large-scale brain networks into an highly variable mosaic of
smaller clusters of areas exhibiting transients of weakly correlated
activity.

It should be emphasized that even if small correlation coefficients
indicate weaker statistical dependence, it does not mean that the
vast anesthetic-induced net decrease in pairwise correlation would
simply result in pure random brain activations: deeper stages of
anesthesia seem to be rather described by a more volatile scenario
where small subsets of areas belonging to common networks show
reduced correlated fluctuations of the BOLD signal and present
decreased probability of exhibit collective correlated oscillations,
which in turn could explain the transitory breakdown of large-
scale functional networks. Our in vivo results support this view,
as they provide evidences for the preserved presence, even during
profound phases of anesthesia, of a functional backbone consist-
ing of highly correlated oscillations in the band that maintained
linked to each other areas that belong to the same network. Dur-
ing the progressive fading of anesthesia, the rather scattered frag-
ments of functional clusters seen during deeper stages exhibit a
tendency to bind themselves together in an increasingly stabler
fashion, giving rise to the gradual emergence of time-varying func-
tional networks. It is worth to mention that subcortical structures
exhibited a functional connectivity pattern that was very differ-
ent compared to that of cortical regions, both quantitatively and
qualitatively. In fact, subcortical areas displayed overall lower
correlations with other areas than cortical ones, together with
a less clear footprint of functional clusterization. Another note-



70 MODULATING DYNAMICS THROUGH ANESTHESIA

worthy feature is the temporal pattern of co-activations within
and between the amydgalas and the hypothalami, which exhib-
ited a peak during the deep phase and then decreased as the
effect of anesthesia gradually vanishes, whereas most of the cor-
tical areas (and to some extent the thalami) present increasing
functional connectivity over time. These observations, together
with recent results showing that local inactivations of wake-active
subcortical areas enhance general anesthesia (Leung et al., 2014)
suggest that cortical and subcortical structures seem to react to
anesthetic in a different fashion, being cortical regions the first
ones to recover from anesthetic-induced inactivations compared
to subcortical ones.

Interestingly, some of the regions that, on a group level, first
showed correlated patterns of BOLD fluctuations while decreas-
ing the level of anesthesia are in fact part of the rat’s DMN (Lu
et al., 2012), namely mPF, CC, A2, V2M and retrosplenial (Rspl)
cortex. Other areas were mainly primary cortices (M1, S1, V1),
followed by S2, the thalami and the striatum. The DMN, first
isolated in humans (Raichle et al., 2001), has been linked to func-
tions ranging from conceptual processing to self-referential func-
tions (Buckner and Carroll 2007,2008) and awareness (Horovitz
et al., 2009), and has been found to be abnormally connected in
neuropsychiatric disorders (Whitfield-Gabrieli and Ford, 2012).
Interestingly, the DMN has also been found in lightly anesthetized
humans (Greicius et al., 2008), chimpanzees (Rilling et al., 2007),
macaques (Vincent et al., 2007) and rodents (Lu et al., 2012;
Stafford et al., 2014), thus suggesting its evolutionary relevance
and persistence in different states, such as during light sedation
and the early stages of non-REM sleep (Sédmann et al., 2011).
Lu and colleagues (Lu et al., 2012) showed that the rat DMN is
divided into two modules: one parietal and the other temporo-
frontal. Notably, we found that the activity of mPF and CC, core
areas of the DMN’s temporo-frontal module, was tightly related,
whereas V2M and Rspl both participated in another module. Col-
lectively, these evidences indicated that the DMN is one of the
brain networks that first emerges in the transition from deep to
light anesthesia. Such a finding is not unexpected, given the vast
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anatomical connectivity between DMN regions and other cortical
and subcortical areas (Lu et al., 2012) that leads to the con-
vergence of incoming activity from many other different regions.
Indeed, in humans it has been found that the posterior part of
the DMN is one of the most connected areas of the brain (Hag-
mann et al., 2008). Therefore, it is conceivable that this anatom-
ical confluence of connections from distant areas, together with
the dense connectivity within the DMN, could produce amplifi-
cation in network synchronization, thus making the DMN one of
the first networks to emerge in the transition from a state of de-
creased activity, as exemplified by deep anesthesia. These results
are coherent with the finding that, in humans, the physiological,
induced or abnormal reductions in the level of conscious aware-
ness are linked with low metabolism in the precuneus and in the
posterior cingulate cortex (Laureys et al., 2004), which is struc-
turally homologous to the rat’s retrosplenial cortex (Lu et al.,
2012). Decoupling of the anterior and posterior components of
the DMN has been found to characterize the descent to slow-wave
sleep (Sdmann et al., 2011) as well as Propofol-induced anesthesia
(Boveroux et al., 2010), and decreased activity and connectivity
between these regions are also seen in states of unconstrained
cognition induced by psychedelic agents like psylocibin (Carhart-
Harris et al., 2012). Taken together, all these evidences suggest
that the overall integrity and coherency of DMN activity seems
to plays an important role in the modulation of either the state
and the content of consciousness.

Another noteworthy finding is that, in our data, the activity of
the left and right thalami started to be robustly correlated only
during the light phase of anesthesia (Figure 2.3C; see Results 2.4).
This subcortical structure is the principal gateway of sensory in-
formation flowing from the periphery to the cortex (Steriade et al.,
1993), and anesthesia-induced deactivations of the thalamus are
commonly found in imaging studies (Franks, 2008). Thus the
observation that the thalamic nuclei started to entrain in corre-
lated co-activations during light anesthesia could be interpreted
as a preliminary step for the gradual recovery from anesthesia-
induced non-responsiveness.
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Our results show that different regions exhibit different dynamics
in recovering from deep phases of anesthesia, thus leading to a
gradual patterns of increasing co-activations which likely end up
in the progressive reconfiguration of resting state networks; in-
deed, in the transition from deep to lighter states of anesthesia
we observed that the two principal cores of the rat’s DMN start to
show a strong and consistent pattern of within-core correlations,
but our analysis indicated that the collective activity of the two
main branches of the DMN seem to be still partially decoupled at
this stage of anesthesia, thus suggesting that full network recov-
ery from deep anesthesia fragmentation is a rather continuous but
slow process, and in fact we couldn’t observe full DMN recovery
in our imaging experiments.

On a mesoscopic scale, our LFP results indicate a specific con-
nectional footprint marking the transition from one state to the
other. In fact, we found that local neural coupling between re-
gions belonging to the same functional network seems to be pre-
served even during profound phases of anesthesia. In fact, these
areas maintain larger correlated oscillations up to 50 Hz, exhibit-
ing a peak in the a range. Areas belonging to different networks
did not show such a strong and consistent correlation peak. This
finding reveals the presence of a frequency-specific “functional
bridge” that is preserved even during deeper states of anesthe-
sia in areas belonging to the same functional network, and likely
endowed by a consistent underlying anatomical connectivity.

As the animal approaches lighter stages of anesthesia, the frequency-
coupling scenario became richer. Correlated oscillations in the «
band shift toward higher frequencies, up to 15 Hz. It should be
noted that recent MEG studies in resting humans have found
that the correlations between areas pertaining to the same net-
works exhibit a peak between 10 and 20 Hz (Brookes et al., 2011;
Pasquale et al., 2010; Hipp et al., 2012), and further computa-
tional evidence supports those results (Cabral et al., 2014b). More
specifically, correlations between DMN areas have been shown to
be mostly between 8 and 13 Hz in humans (Brookes et al., 2011).
Another feature related to the evolution toward light anesthesia
is the appearance of highly correlated oscillations in the low ~
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range (30-50 Hz), which is particularly strong between areas be-
longing to the same functional network. It has been proposed
that effective communication between neuronal ensembles is de-
pendent on their ability to oscillate synchronously (Singer, 1999;
Fries, 2005), and particularly the synchronization in the 7 range
is thought to serve as a core computational mechanism between
local cortical networks (Fries, 2009). One could thus speculate
that the significant drop of correlated ~ oscillations seen during
the most profound phases of anesthesia could mirror the cortex’
inability of performing finely integrated neural computations; this
phenomenon, together with the networks’ fragmentation charac-
terizing deep anesthesia, suggests some interesting similarities
with the breakdown of cortical effective connectivity seen dur-
ing NREM sleep (Massimini et al., 2005). Deep anesthesia and
NREM sleep both are states dominated by local instead of prop-
agating large-scale brain activity, and our results showed that
deep anesthesia is indeed characterized by a significant reduction
in functional integration. These evidences are in agreement with
the hypothesis that the apparent absence of consciousness seen
during deep anesthesia and NREM sleep could be linked with
weakened or interrupted brain’s ability to integrate information
(Alkire et al., 2008; Tononi and Massimini, 2008). We believe
that taken together, our findings could indicate that one of the
global effects of anesthesia is that of reducing the overall dynami-
cal complexity, as also suggested by findings indicating a decrease
in EEG signal complexity in deep anesthesia (Bruhn et al., 2000;
Zhang et al., 2001; Ferenets et al., 2007).

Finally, it should be noted that our imaging and in vivo re-
sults exhibited an interesting degree of qualitative consistency,
as both point towards an increase in correlated activity during
the progressive emergence from deep anesthesia. In particular,
LFP band-limited correlations in the o (8-15 Hz) and especially
in the low 7 (30-50 Hz) ranges showed the highest similarity to
the mean correlation time courses obtained from imaging exper-
iments (Figure 2.6 and Figure B.6 in Supplementary Material).
This observation is in accordance with the evidence that increases
in the BOLD signal reflect increases in neural activity (Logothetis
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et al., 2001; Viswanathan and Freeman, 2007), and that the power
of LFP in the mentioned frequencies conveys information about
the timing and the amplitude of the hemodynamic signal (Kayser
et al., 2004; Niessing et al., 2005; Schlvinck et al., 2010; Pan et al.,
2011; Magri et al., 2012). Future studies directly investigating the
relationship between correlated BOLD fluctuations and BLCs at
specific frequencies will be highly informative in shedding light
on the neurophysiological basis of BOLD functional connectivity.

2.6 Limitations

The present study has some intrinsic limitations, thus the in-
terpretation of reported results have to be done cautiously. We
induced a profound state of anesthesia using a mixture of ke-
tamine and medetomidine, a combination widely used to anes-
thetize animals. In fact, ketamine alone produces deep sedation
but not surgical anesthesia, which is achieved combining it with
medetomidine or xylazine, which supplements ketamine’s effect
with analgesic properties, muscle relaxation, and sedation. The
two drugs have different and specific neurophysiological mecha-
nisms and metabolic properties (ketamine is an NMDA antag-
onist, whereas medetomidine and xylazine are a-2 agonists, see
Brown et al. 2010, 2011), thus the state of anesthesia and the
recovery pattern they induce may not be generalized to those de-
termined by other anesthetic agents. It should also be noted that,
even though the animals had been treated under the same proce-
dure conditions, other variables cannot be controlled, such as the
stress of the animal at the moment of anesthesia induction, the
body-fat percentage or the metabolic rate of each animal. The
lack of control over these factors produces an individual variabil-
ity in the time course of the anesthesia across different subjects.
In addition to this, the lack of a direct assessment of the ongoing
anesthetic concentration at any given time imposed us to use a
post-hoc approach to find those protocol intervals that simultane-
ously showed significant differences in many measures across rats,
and that most likely represented different anesthetic depths. This
in turn ensured that the properties of the signals recorded from
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the two chosen intervals were actually different, but did not imply
that the activity recorded in the deep (light) interval represented
exactly the same anesthetic depth among animals. However, the
chosen intervals largely account for the individual pharmacokinet-
ics of the two drugs (Sinclair, 2003; Brown et al., 2011; Quibell
et al., 2011), and can thus be taken as representative of deeper
and lighter phases of anesthesia. Despite this limitations, and
given that fMRI and LFP weren’t recorded simultaneously from
the same animal and had slightly different durations, the overall
consistency of the present results firmly demonstrates the differ-
ential modulation of intrinsic brain activity induced by naturally
decreasing levels of anesthesia.

2.7 Conclusions

The progressive emergence from deep anesthesia is characterized
by an increase in correlated large-scale low-frequency fluctuations,
as well as by an enhancement in the local coupling of band-limited
oscillations between areas participating to the same functional
network. On the other hand, more profound phases of anesthe-
sia are marked by a decrease in differentiated activity. Progres-
sive fading of anesthesia is mirrored by the gradual flourishing
of highly organized spontaneous brain activity, being the default-
mode network one of the first networks to emerge. Nonetheless,
we observed that local frequency-specific connectivity between ar-
eas participating to the same functional networks is preserved also
during deeper phases of anesthesia, indicating a partial mainte-
nance of brain functional organization even during states of deep
sedation.

In this chapter, we analyzed in detailed the effects that modula-
tion of local dynamics exert on the arising large-scale connectivity
structure. In the next chapters, we will first review some of the
most common models of mesoscopic brain activity, and later in-
vestigate the influence of brain topology in sculpting the emergent
correlation structure.






CHAPTER 3

Modelling brain activity

“Occurrences in this domain are beyond
the reach of exact prediction because of the
variety of factors in operation, not because
of any lack of order in nature.”

Albert Einstein

“Essentially, all models are wrong, but
some are useful.”

George E. P. Box

3.1 Introduction

Our understanding of the world reflects our ability to describe
it. Nonetheless, it is important to acknowledge that the same
phenomenon can be described in several different ways. Prior to
the development of chemistry, our understanding of matter was
deeply contaminated by alchemy, based on esoteric concepts and
supertitious practices. The alchemic description of matter sat-
isfied many arbitrary and archaic beliefs, such as the existence
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of “feminine” or “masculine” properties intrinsic to matter; fur-
thermore, many alchemists explained the differences between el-
ements as due to inherent tautological characteristics such as the
“coldness” or the “dryness”. With alchemy, we had a description
of matter, but this description explained almost nothing: in fact,
we didn’t understand matter. The goodness of our descriptions
depends on how well they explain a phenomenon, i.e. how well
they capture the fundamental properties and laws governing the
phenomenon under investigation. The advent of the scientific rev-
olution lead to a progressive and ever-increasing awareness of the
importance of predictions as the fundamental tools to understand
any phenomenon, in that they could be used to test the accuracy
of our explanatory hypotheses about the world. One of the fun-
damental ways to test an hypothesis is through models, formal
representations of our hypotheses about some specific properties
of phenomena, which allows for generating -and testing- specific
predictions about them.

The study of the brain has ancient roots, but neuroscience is a
young discipline. In fact, hypotheses about the functions of the
brain date back to the ancient Egypt at least (see Figure 1 be-
fore the first chapter), but it is only with the introduction of
more advanced surgical procedures and tools such as the micro-
scope, electroencephalography and magnetic resonance imaging
that the study of the nervous system and its relationship with
behavior and thought progressively became a scientific discipline.
The rather recent application of mathematical modelling to un-
derstand the activity and the functions of individual neurons and
the nervous system led to significant advances in our understand-
ing of the brain at different scales (Mcculloch and Pitts, 1943;
Hodgkin and Huxley, 1952; Bienenstock et al., 1982). With the
advent of digital technology, it became possible to test the good-
ness of our hypotheses through the use of numerical simulations.
As mentioned in Section 1.2, it is possible to study the activity
of the brain at different levels, from the microscopic (synapses
or individual neurons) to the macroscopic (whole-brain) scale; it
means that also our models of the brain will focus on different
scales and different properties.
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Large-scale simulations relying on microscopic description of the
neurons have been shown to be possible in principle (Izhikevich
and Edelman, 2008). Nonetheless, the complexity of these mod-
els makes the interpretation of the underlying mechanisms very
difficult, and their microscopic description lead to very high com-
putational costs.

As such, in this chapter we will review some of the most used
mesoscopic models of large-scale brain activity, that have the ad-
vantages of significantly reduce the complexity of the parame-
ter space and, due to their spatial resolution, allow to explore
the goodness with which they approximate spontaneous brain ac-
tivity as measured with current neuroimaging techniques such
as functional magnetic resonance imaging (fMRI, Cabral et al.
2011; Deco et al. 2009b; Deco and Jirsa 2012; Ghosh et al. 2008;
Honey et al. 2009), magnetoencephalography (MEG, Cabral et al.
2014a; Nakagawa et al. 2014) and electroencephalography (EEG,
Hindriks et al. 2014).

Mesoscopic models describe the activity of large populations of
neurons, assuming that their collective behavior can be mod-
elled without the need of accounting for the individual activity of
single neurons (Breakspear and Jirsa, 2007). This is in agree-
ment with fundamental results from statistical physics, which
have demonstrated that the behavior of macroscopic systems can
also be described independently from their meso- or microscopic
constituents (Haken, 1975). The models we will review describe
each brain region as a node, and usually define the connectivity
between different brain regions using information derived either
from tract-tracing or diffusion tractography.

Most of the models that we will see are based on different as-
sumptions about the local dynamics characterizing different brain
areas, which is crucial to understand the elusive relationship be-
tween anatomical structure and the emergent activity pattern. At
the same time, each model has its own intrinsic limitations, that
have to be acknowledged when it comes to draw conclusions. A
spiking network model (see Section 3.5) can for example help us
identify the physiological mechanism underlying a given pattern
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of emergent activity, whereas a simple oscillator model as the Ku-
ramoto (see Section 3.6) can be used to study the synchroniza-
tion properties of a system with a much higher computational
efficiency but at the cost of sacrificing biophysical accuracy, as
this model explicitly abstract population behavior from under-
lying biological mechanisms governing the activity of individual
neurons.

3.2 Conductance-Based Models

One of the first large-scale descriptions of the interregional anatom-
ical connectivity of primate brain was obtained using tract-tracing

on the macaque cortex, leading to the CoCoMac database (Kotter,

2004). The information stored in the CoCoMac anatomical con-

nectivity was then used to study the large-scale dynamical cou-

pling between brain regions (Honey et al., 2007) using a biophysi-

cal neural-mass model proposed by Breakspear et al. (2003). The

same model was then adapted to simulate spontaneous brain ac-

tivity in the human (Honey et al., 2009) and the impact of lesions

in human brain (Alstott et al., 2009).

The model is an adaptation of the formulation proposed by Mor-
ris and Lecar (1981), which models the voltage-dependent sodium
(Na) and calcium (C'a) channels as well as the relaxation in potas-
sium (K) channels in the neurons, coupled by ligand-based ex-
citatory synaptic currents. In particular, the time evolution of
membrane potential of an excitatory pyramidal cell, V', was de-
fined as:

dV
C— =~ gCamCa<V - VCa) - gNamNa(V — VNa)

dt (3.1)
—gg WV = Vg) —g(V = V1),

where C' is the neural capacitance, gca, gna, 9gx are the conduc-
tances; Voo, Vna, Vi are the Nernst potentials; and me,, mya,
and W are the fraction of open ion channels of the Ca, Na, and K



3.2. CONDUCTANCE-BASED MODELS 81

ions, respectively. The passive conductance and voltage of leaky
ions are denoted as gy and V7.

For each ion, voltage-gates channels open when they exceed the
threshold T;,,. The fraction of open ion channels m;,, for a large
number of channels can be approximated as a sigmoid function
based on the thresholds following Gaussian distribution with the
variance d;,,:

V_ﬂon

Mion = 0.5(1 + tanh(T)),

(3.2)

The fraction of open potassium channels, W, was approximated
with an exponential decay function. Where ¢ is the temperature-
scaling factor, and 7 is the relaxation time constant:

dW B o(mg — W)
dt T ’

(3.3)

Similarly, the average firing rates of excitatory (Qy) and in-
hibitory (Qz) neurons were approximated over neural popula-
tions, assuming a Gaussian distribution with the variance ¢, where
Qvmaz and Q zmq: are the maximum firing rates of the excitatory
and inhibitory neurons, respectively:

V- Vr
Vv

Qv = 0.5Qvmaz (1 + tanh( ), (3.4)

J — 7
2 = 0.5Q zmas (1 + tanh( > . (3.5)
7Z

The firing of each cell population feeds back onto the ensemble,
thus raising or lowering the membrane potential accordingly.

The synaptic interactions between excitatory and inhibitory pop-
ulations were modeled as the mean firing rates propagated through
synaptic factors for a.. (excitatory-excitatory), ae; (excitatory-
inhibitory) and a;. (inhibitory-excitatory) synapses. The excitatory-
excitatory synapses were further modeled through the modula-
tion of Na channels by AMPA receptors and of C'a channels by
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NMDA receptors. The membrane potential of excitatory (V') and
inhibitory (Z) populations are computed as:

dV
E = - (gCa + TNMDAaeeQV)mCa(V - VCa)
— (gnamNa + aeeQv)(V — Vng) — gg W (V — Vi) (3.6)

- gL(V - VL) + aieZQZ + aneL%

dz
E = b(aiila + aeiVQv), (37)

where [; is the nonspecific noisy subcortical excitation with vari-
ance 0 and ryypa is the ratio between NMDA and AMPA recep-
tors.

Finally, to model an array of populations with long-range con-
nectivity between the same NMDA and AMPA receptor targets
on pyramidal neurons, the following equation describes the mean
membrane potential for pyramidal neurons of node n:

avr
dt

=— (gca + (1 = C)rympaae.Qy

+ Crympatee(Qv))mes(V" — Vea)

— g W (V" = Vi) = gu(V" — V2) (3:8)
— (gnamna + (1 = C)aceQy + Caee(Qv))

(V" = Va) + 0 ZQYy + aeels,

where () represents spatial averaging over cell assemblies, result-
ing in “mean-field” variables. C' weights the strength of long-
range excitatory couplings, so that, if C' > 0, interdependen-
cies and complex spontaneous activity patterns arise (Breakspear
et al., 2003). The model did not include delays and noise, and
its activity is purely generated from nonlinear instabilities due to
the complex connectivity and the chaotic dynamics of the neu-
ral massess. The model allows for neural interactions at multiple
time-scales, and reflects spontaneously arising “self-organizing”
activity patterns.
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3.3 FitzHugh-Nagumo Model

The brain is a physical object, and as such it is legitimate to think
that the time needed to travel along the axonal pathwasy will
likely be affected by their length. In fact, the non-homogeneous
anatomy of the brain not only determines the simple connectivity
between different regions, but also constraints the spatio-temporal
structure of the ongoing interactions. To the aim of investigat-
ing the effect of neural delays, Ghosh et al. (2008) modeled the
spontaneous activity of the macaque using the FitzHugh-Nagumo
model (FitzHugh, 1961; Nagumo et al., 1962), and introduced
delays as proportional to the euclidean distance between the cor-
responding brain regions. In this two-dimensional simplification
of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952), local
dynamics are goverened by the membrane potential u; and the re-
covery potential v; for each node 4, as described by the following
equations:

duéit) =l(u;,v;) — g é Cijuj(t — Aty;) + nu(t) (3.9)
dvcziw = h(uj, v;) + 1o(t) (3.10)

[, ve) = 7o + i — %?] (3.11)

o) =1 = ~fu; = -+ fu 12)

being g a global scaling parameter, C' the connectivity matrix, n
additive Gaussian noise, and o = 1.05, § = 0.2, v =1.0, 7 =1.25.
In absence of connecions, the system showed damped oscillations,
whereas structured fluctuations resembling the resting state net-
works arose for weak coupling values joint with realistic values
of propagation velocity (5-10 m/s). Interestingly, the so-defined
“spatio-temporal” connectivity of the network (i.e. the use of
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distance-based delays on top of the empirical anatomical connec-
tivity) produced slow band-limited power fluctuations at 10 Hz.
When the authors converted the simulated signal to a surrogate
BOLD signal using the Balloon-Windkessel model (Friston et al.,
2003), they observed the existence of correlated fluctuations sim-
ilar to those observed in resting subjects.

3.4 Wilson-Cowan Model

In 2009, Deco and colleagues (Deco et al., 2009b) studied the
effect of delays on the emergence of spontaneous correlated activ-
ity using both anatomical and functional data obtained from hu-
mans. To this aim, they modelled each local node using two pools
of coupled Wilson-Cowan units (Wilson and Cowan, 1972), rep-
resenting excitatory and inhibitory neurons. Wilson and Cowan
proposed that the average activity of a cortical region could be
approximated using a mean-field reduction, leading to the use of
just two coupled units, one for excitatory (E) and another for
inhibitory (I) neurons, whose dynamics evolve according to the
the following system of equations:

B diit) = —E(t) 4+ ®[I, + wgE(t) — I(1)] +0p(t)  (3.13)

dI(t)
dt

= —1I(t) + Pw;E(t)] + §;(t) (3.14)

T

Where 7, 77 and 0, 07 are the time constants and the additive
noise of excitatory and inhibitory pools, wg is the efficiency of the
excitatory recurrence, wy is the excitatory-inhibitory efficiency,
I, is the non-specific background activity and ® is a non-linear
sigmoid function that transforms the currents into firing rates as:

T 1- exp(—a(x — b))

d[z] (3.15)
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For the large-scale network, with N nodes, the Wilson-Cowan
modules were coupled according the connectivity matrix C, with
delays defined by the matrix D. The overall dynamics were then
simulated as:

dE;(t)

TE— = —Ei(t) + [l + g 2]: CiiBj(t — Dj;) — Li(t)] + 0p(t)
(3.16)
RO L ewal a0 @17)

The global coupling strength was denoted as g, and the recurrent
connectivity strengths were set to wg/g. The rest of the parame-
ters were defined as 7g = 1, 77 = 0.2, wg = 1.5, a = 0.1, b = 40,
and ¢ = 100.

Deco et al. (2009b) set the spontaneous background activity (1)
and the efficiency of recurrent connections (wg) at the edge of a
Hopf bifurcation and then investigated the role of global coupling,
time delays and noise level. They showed spontaneous gamma
(40 Hz) oscillations in the modules that were organized into two
competing functional networks. They also showed anti-correlated
networks fluctuating in a low-frequency band (0.1 Hz) consistent
with the empirical findings (Fox et al., 2005).

3.5 Spiking Neural Network Model

A more realistic description of local nodes was realized in 2012,
when Deco and Jirsa (Deco and Jirsa, 2012), following the semi-
nal work of Brunel and Wang (2001), modelled each node as leaky
integrate-and-fire neurons arranged in two pools, one excitatory
(characterized by AMPA and NMDA receptors) and the other in-
hibitory (characterized by GABA receptors). In this implementa-
tion, the strength of the input determine the system’s tendency to
exhibit stable patterns of firing activity, stationary states referred
to as attractors (Deco and Rolls 2006, 2008), wheras the level of



86 MODELLING BRAIN ACTIVITY

intrinsic of externally applied noise can perturb the stability of
those states, teherfore inducing spontaneous transitions between
different stable attractors. The spiking activity of each neuron is
governed by the dynamics of its membrane potential V' (¢), which
in turn are determined by a set of equations relating V() to the
leakage and synaptic activity I, as:

v

Cm dt

= (V) = Vi) = Ln())  (318)

with membrane capacitance C,,, leak conductance g,,, resting
potential Vi, and synaptic input current I, where

Isyn = Iampaext + Lanparec + INvpa + Igapa (3.19)
Nezt

Lantpaeat(t) = ganpaea(V () = Vi) Y siMPA< (1) (3.20)
j=1

dSAMPA,e:J:t (t) SAMPA,eact

= (®) +) ot —th) (3.21)
k

dt TAMPA

Ng
[AMPA,TEC(t) - gAMPA,rec(V(t) - VE) Z ij?MPAJeC(t) (322)
j=1

dSAMPA,rec(t) S?MPA,TGC(t)
= + ) 5t —t* 3.23
dt TAMPA g ( ]) ( )
gxupa(V(8) = Vi) {2
~ YNMDA — VE JNMDA
Inmpa(t) = T e P70 jzlesj (t) (3.24)
dsNMDA (¢ VMDA (4
bl ORI s O az;(t)(1— sFMPA1)) - (3.25)

dt TNMDA,decay
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dzNMDA(¢) w) MPA(t)
=— + ) ot —t 3.26
dt TNMDA,rise ; ( ]) ( )
Ny
Igapa(t) = gaapa(V(t) — V7) Z w;s§APA(t) (3.27)
j=1

dSGABA(t) B S]-GABA(t) N

= > ot —th) (3.28)

dt TGABA

with synaptic conductances g, excitatory and inhibitory reversal
potantials Vg and Vj, respectively, the Dirac delta function 9,
and synaptic weight parameter w; (determining the connection
strengths between and within neural populations). The gating
variables s; are the fractions of open ion channels of the neurons.
Connections between excitatory and inhibitory pools were set to
1, and recurrent self-excitation to wy=1.5. Synaptic parameters
were Vi = 0mV, Vi = -T0mV, Tappa = 2IS, TNMDA rise = 2MS,
TNMDA,decay = 100ms, TGABA — 10ms, o = 05kHZ, ﬁ = 0062,
v = 0.28. Once a neuron crosses V., a spike is transmitted to
connected neurons, and its membrane potential is reset to, and
maintained at Vs for refractory period 7,.y.

All neurons in the network received an external background input
from Ng,; = 800 external AMPA signaling excitatory neurons in-
jecting uncorrelated poisson-distributed spike trains, representing
the noisy fluctuations that are typically observed in vivo. Specif-
ically, for all neurons inside a given population p, the rate v?,, of
the resulting global spike train is described by:

p
Tn dve(g;;@) - _(Ule)zt(t) - 'UO) + oy \/2 QTn’er(t), (329)

where 7,, = 300ms, vy = 2.4kHz, o, is the standard deviation of
vP (1), and nP(t) is normalized Gaussian white noise. Negative
(t), that could arise due to the noise term, are recti-

values of v?,
fied to zero. After applying the mean-field reduction to the above
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spiking model (Deco et al., 2013), the activity can be described
as:

dt TS
H(z;) = ot b (3.31)

1 —exp(—d(axz; — b))’

€T; = QUJNSZ—FGJNZC”S] —f—[o,p (332)

J

where H(z;) and S; denote the population rate and the average
synaptic gating variable for each local cortical area, Cj; is the
anatomical connectivity matrix containing the link strengths be-
tween brain areas ¢ and j, and local excitatory recurrence w is
0.9. Parameter values for the inputoutput function are a = 270
(VnC), b = 108 (Hz), and d = 0.154 (s). The kinetic parameters
are v = 0.641,/1000. (The factor 1000 is for expressing everything
in ms), 7¢ = 100 (ms). The synaptic couplings are Jy = 0.2609
(nA) and the overall effective external input is Iy = 0.3 (nA). In
equation (3.30), v; is uncorrelated standard Gaussian noise and
the effective noise amplitude at each node is o = 0.001 (nA).

The mean-field approximation was evaluated for different initial
conditions, necessary step to confirm wheter neuronal populations
lies within the inactive or the active states, characterized by oscil-
lation ar 3 Hz or 10 Hz, respectively. The system was simulated
using different values of global coupling, each time counting the
total number of resulting attractors (i.e. the number of differ-
ent activity states). This procedure allowed for a characteriza-
tion of the so-called attractor landscape of cortical large-scale
activity, and suggested the existence of a critical value of global
coupling for which the system became unstable, i.e. dynamically
moved from one stable state to the other. Remarkably, this model
showed the greatest similarity with empirical data just before this
critical point, suggesting that brain activity seems to lie at the
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edge of the instability, region where it can exhibit different stable
states.

3.6 Kuramoto Model

Cabral et al. (2011) proposed a simplified model of the spon-
taneous regional interactions based on the Kuramoto formalism.
This formalism approximates the activity of interacting units con-
sidering them as coupled oscillators described by their phases
(Kuramoto, 1984). Given N regions, where the phase of the oscil-
lator i (i = 1,..., N) at time ¢ is denoted by ¢;, the time evolution
of the phases is defined by:

%zft) =wit&(t) g ; Cijsin(¢;(t — 7i;) — ¢i(t))  (3.33)

Here, wj; is the natural frequency of each oscillator, g is the global
coupling parameter, Cj; is the effective connectivity between nodes
i and j, and &; is uncorrelated Gaussian noise with zero mean
and standard deviation o. In their work, Cabral and colleagues
introduced also delays between different nodes ¢ and j, 7;;, using
conduction velocity and distance between two nodes.The natu-
ral frequencies of each region were set to oscillate in the gamma
frequency range (30-80 Hz), being drawn from a Gaussian distri-
bution with 60 Hz mean and f standard deviation. The authors
explored for different values of global coupling g and average delay
(1). The simulated neuronal activity was then transformed into a
BOLD signal using the Balloon-Windkessel model (Friston et al.,
2003), and computed the simulated functional connectivity be-
tween brain regions. The maximal similarity between simulated
and empirical functional connectivity corresponded to a point be-
tween fully synchronized and asynchronous regimes. The non-
linear interactions between oscillators generated non-stationary
correlation patterns.
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3.7 Hopf Normal Model

A novel formalism, adopted by Deco and colleagues (Deco and
Kringelbach, 2016), promises to reconcile noise-based approaches
with models based on oscillators. This formalism is based on the
normal form of a Hopf bifurcation (Freyer et al. 2011, 2012). In
the study of dynamical systems, bifurcation refers to the abrupt
change in the qualitative behavior of a system after trespassing
the critical value of one or more parameters; in particular, a Hopf
bifurcation occurs when a system characterized by a stable fixed
point loses its stability by exhibiting oscillations. As such, this
model allows transitions between asynchronous noise activity and
oscillations, thus making it a good candidate to reproduce empir-
ical data as observed either with EEG, MEG or fMRI. Within
this model, the temporal evolution of the activity z of node j is
given in the complex domain as:

]

e [ + iwj — |22|] + on;(t) (3.34)

zj = p;e¥ = x; +iy; (3.35)

Where w is the node’s intrinsic frequency of oscillation, « is the
local bifurcation parameter (local because the model allows the
possibility to assign a different value of a for each node in the
network) and 7 is additive Gaussian noise with standard deviation
o

This system above shows a supercritical bifurcation at a = 0.
Specifically, if «; is smaller than 0, then the local dynamic has
a stable fixed point at z; = 0, while for «; values larger than 0
there exists a stable limit-cycle oscillation of frequency f = w/27
. Whole-brain dynamics are described by the following coupled
equations:
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N
dz;
d_t] = [aj — ,1'? — yJQ].’L'] — W;Y; + gz Cz](xz - :Uj) + Unflij(t)
i=1
(3.36)
dy; S
d_tj = o — x? — yf.]yj — w;T; + gzcij<yi —y;) + omy;(t)
i=1
(3.37)

Where Cj; is the anatomical connectivity between nodes 7 and
j, g is the global coupling factor and the standard deviation of
gaussian noise is ¢ = 0.02. In this model the simulated activ-
ity corresponds to the BOLD signal of each node. The intrinsic
frequency of each node was estimated as the peak frequency in
the associated narrowband (i.e., 0.04 - 0.07 Hz) of the empirical
BOLD signals of each brain region (see Figure 3.1).

The authors showed that empirical and simulated FC matrices
showed higher correlation when the local bifurcations parameters
were set to critical point (a = 0, see Figure 3.1d), suggesting that
the spontaneous co-activitations of the brain likely derive from
an underlying activity characterized by noisy oscillations.

In the next chapter, we will use the Hopf model to explore how
simple topologies shape the correlation between given pair of
nodes in a network, and then we will apply this model to try
to reproduce empirical spontaneous brain correlations obtained
from resting-state fMRI.
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Figure 3.1: Overview of the Hopf model. (a) The whole-brain
model was based on DTT (left) between the 68 regions of the Desikan-
Kahilly parcellation (middle). The control parameters of the models
were tuned using the grand average FC derived from BOLD (right).
(b) Local neural masses were modelled using the normal form of a
Hopf bifurcation; (¢) depending on the bifurcation parameter alpha,
the local model generates signal of different types. (d) Average func-
tional connectivity (FC) matrix (left), correlation between empirical
and simulated FC matrix for different combinations of global coupling
g and the bifurcation parameter « (alpha) (middle), best-fitting sim-
ulated FC (right), obtained in the region marked by the white cross
in the middle panel of (c).



CHAPTER 4

How topology sculpts
interactions

“What I cannot create, I don’t understand”

Richard Feynman

“In science it is possible to learn the
greatest things by studying what seem to
be the smallest ones”

Marvin Minsky

4.1 Introduction

The brain is a complex system and as such, the dynamics of
its components cannot be fully understood without taking into
account the rich patterns of interactions into which they are in-
herently embedded into.

It is already well established that the relationships between all
elements of a system can be better understood when considering

93
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both the local dynamics and the organizational principles under-
lying them, in other words the local and global topological prop-
erties of the network describing those relationships (Zhou et al.,
2007; Newman et al., 2011; Zamora-Lopez et al., 2011; Deco et al.,
2013; Cabral et al., 2014a).

Many models can be (and have been - see Chapter 3) used to
explore the non-trivial relationship between local brain dynamics
and network structure, in order to explain the complex emergent
pattern of interactions and associations empirically observed be-
tween different brain regions.

In Chapter 2, we addressed how a gradual modulation of the lo-
cal dynamics (through anesthesia) could lead to a corresponding
change in the strength of the observed covariation pattern ex-
hibited by distant areas. In this chapter, we will try to close
the circle focusing on the contribution of the precise structure of
the relationships between individual brain regions (determined by
their underlying anatomical connectivity) in sculpting the whole
pattern of correlated activity they tend to show. How much of
the observed coupling can be understood just in terms of circum-
scribed local interactions, and how much of it is instead shaped
by the ongoing activity of the entire network?

To answer these questions, we will first use numerical simulations
to analyze how simple topological motifs determine the correla-
tion between different nodes, and then apply this knowledge to
properly quantify the contribution of topology in the correlation
patterns observed in empirical data.

4.2 Exploring simple topologies

The topologies that we will present in this section (see Figure 4.1
for a schematic overview) are just a small fraction of all possi-
ble “topological units” forming the building blocks of larger and
more complex networks; nonetheless, we believe that this network
motifs can be considered both representative of the most frequent
topological primitives found in real networks, and relevant to un-
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Figure 4.1: Simple network topologies. Examples of the five
topological primitives that will be analyzed in the present section. In
all cases, we will focus on quantifying the influence that variations of
these five motifs exert on the correlation between the activity of the
reference nodes (highlighted), while ignoring the interactions between
all other nodes.

derstand the emergence of local and diffuse whole-network inter-
actions.

The behavior displayed by the selected network models was esti-
mated using the Hopf model, in order to be able to more easily
translate, in a later section, the obtained insights to more complex
scenarios based on empirical data and modelled using the same
dynamical model. In fact, as already mentioned in Section 3.7,
the Hopf model is capable of reproducing in a rather accurate way
many features of real brain dynamical activity and co-activations
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(Deco and Kringelbach, 2016), making it a good candidate for
our purposes.

The Hopf model rely on the choice of two parameters, namely g,
the global scaling of the strength of all the links in the network,
and «, the parameter controlling the dynamical regime of each
node. Throughout the current chapter, both g and « will be set
to the values returning the best fit with empirical data. The bi-
furcation parameter o will be set to 0 (meaning that all nodes
lie at the bifurcation working point, see Section 3.7), and we will
thus optimize for g. In our case, the best-fitting global coupling
value corresponds to 1.262 (see Section 4.4 below). As mentioned
above, this optimization has been motivated by the desire of being
able to ease the interpretation of the following sections, aimed at
understanding the topological determinants underlying the cor-
relation pattern observed in empirical data. Different values of
g and « may of course determine quantitative differences in the
correlations exhibited by the topological primitives we will ana-
lyze; nonetheless, the general patterns of results should not vary
qualitatively (with the trivial exception of extreme values, unin-
teresting for our purposes). The set of connection weights we will
use in the following network models is analogous to that of the
normalized empirical structural connectivity matrix (SC), which
ranges from 0 to 0.2. The remaining simulation parameters were
also set accordingly to those later used for the following simula-
tions based on empirical data, namely the simulation length (%,
= 330000 points), integration step (dt = 0.01), standard deviation
of additive gaussian noise (0 = 0.02) and the intrinsic frequencies
of the nodes (w, that ranged from 0.04 to 0.07 Hz, according to
Glerean et al. 2012, see also Figure 1.13 in the first chapter).

Note that the intrinsic frequencies of the nodes were randomly
extracted for each simulation repetition, in order to control for
possible biases in the results due to specific differences in the
frequencies of the two reference nodes. Each parameter configu-
ration of each network model was simulated 100 times, and the
results averaged.
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4.2.1 Single pair of nodes

The first step is evaluating the simplest possible two-node topol-
ogy, that formed only by the two reference nodes and the direct
connection between them (in the network models that we will an-
alyze, self-connectivity of nodes will always be set to zero). To
obtain a more complete picture, we not only evaluated how the
strength of the direct connection between the reference nodes,
wy, determines the resulting correlation between their activity,
ro, but also how different values of the global coupling parameter
g modulated the relationship between the underlying structure
and the strength of the covariation it generates (note that this
will be the only case in which we varied g, as in all other cases it
will be set to 1.236, see Section 4.2 above). Results are depicted
in Figure 4.2.

In a simple framework like this it is possible to appreciate the
fundamental functional isomorphism existing between the global
coupling g and the strength of the links, wy. This is not surprising,
as the explicit role of the global coupling in the model we use
is that of scaling the values contained in the matrix defining the
connectivity structure of the network, and as such its influence on
the final correlation between pair of nodes is virtually analogous
to that of the links’ strength, thus eventually governed by the
dynamical model in use (the Hopf model in this case). Small
values of both generated relatively small linear increases in the
level of the correlation exhibited by the reference nodes, whereas
as far as wy increases (through g), the relationship deviates from
linearity, approaching saturation at increasing rates.



98 HOW TOPOLOGY SCULPTS INTERACTIONS

max

a Single pair of Nodes

gh@t, w,

Strong Link Weight

o0
Q=== Medium Link Weight
o—0

@]

Weak Link Weight

&
=
&

Reference Link Wei

Reference Nodes Correlation, o

Reference Nodes

0.5 1 15 2

Global Coupling, g

max

Global Coupling, g

Reference Nodes Correlation, Ty
Reference Nodes Correlation, "

2.5 3 0

1 1.5 ‘ 2 0.05 0.1 0.15
Global Coupling, g Reference Link Weight, w,

Figure 4.2: Single pair of nodes. The simplest network topology
we analyze is that formed by the two reference nodes and the direct
connection between them (if present). (a) Schematic representation
of three instances of the network model. (b) Parameters space of the
network topology under scrutiny. (c,d) Different representations of
the same parameter space, illustrating the substantial isomorphism
between global coupling and connection weight. The correlation be-
tween the reference nodes, 7y, is a function of the strength of their
connection, wg, being the global coupling g a scaling factor of wo;
the actual strength of the link between the reference nodes for any
combination of wg and g is in fact given by gwgy. Beyond a given con-
nection strength, the function saturates. In panels (b-d) the red line
corresponds to the value of g that best fitted the empirical correlation
matrix obtained using the empirical structural matrix (see section 4.4
below). This is the value of ¢g that we will use in the following network
topologies.
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4.2.2 Adding leaves

Understanding the factors behind changes in the correlation be-
tween the activity of single pairs of nodes is fundamental to under-
stand the behavior of any larger network, as it describes the sim-
plest possible interaction (with the exception of self-connections).
Nonetheless, this situation is also the less interesting: pure two-
nodes topologies are in fact virtually absent in nature, as nodes
tend to have more then one connected neighbor.

In this section, we will analyze how additional nodes, connected
with one and only one of the two reference nodes, modulate the
correlation displayed by the reference nodes, ry. In graph theory,
nodes connected with exactly one other node in the network are
called either leaves or hairs (Bang-Jensen and Gutin 2008, see
Figure 4.3 for a schematic representation). In the following, we
will adopt the former term.

We will summarize only two extreme cases, namely when only
one leaf is added, and when N = 50 leaves are added to the same
reference node. The range of values that any individual link w
in the network can have is [0, 0.2], as such the maximal total
weight W for 50 leaves is 10. As mentioned in the caption of
Figure 4.3, in the second scenario we varied the total strength of
the independent links W by setting that, for each combination of
wo and W that we analyzed, the strength of all the leaves was
identical, corresponding to w = " /y. A possible measure of the
influence that additional leaves exert on the level of correlation
between the reference nodes ry can be provided by computing the
difference between rg obtained when both the connection between
the reference nodes, wy, and those with the leaves, W, are present
(i.e. when wy > 0 and W > 0), and ry obtained when there are
no leaves at all (i.e. when wy > 0 and W = 0). It is legitimate
to believe that, if the reference nodes are not connected between
them (i.e. when wy = 0), their correlation will fluctuate around
zero in all cases, and thus will not be affected by adding extra
leaves. As such, we can denote the change in 7y due to the extra
link(s) weight(s) W as
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One leaf Leaves on one node

o—0 o—0

Symmetric branching Asymmetric branching
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Figure 4.3: Adding leaves. Examples of the four type of simple
branching analyzed. The simplest case is given by the presence of
only one leaf, connected with either one of the two reference nodes.
In the second case, we connected multiple leaves with either one of
the reference nodes, and none with the other. The other two scenar-
ios are when the number of leaves connected with the two reference
nodes is identical, and when there is an asymmetry in the number of
leaves connected to the two reference nodes. By definition, each leaf
is connected with one and only one other node, i.e. the degree of each
leaf is 1 (see Appendix C.2). In the present section, we will analyz
simple networks where each leaf is directly connected only with one
of the two reference nodes. No leaf is ever connected with both the
reference nodes, nor with another leaf. For each of these four cases,
the only parameters that we will manipulate are the weight of the ref-
erence nodes, wy, the total number of leaves, IV, and the weight of the
connection between the leaf and the reference node, w. To ease the
interpretation of the results, we set that, when N > 1, the weights of
all leaves are identical. The total weight of all leaves, W, thus corre-
sponds to W = wN. In every case, we are interested in the resulting
correlation 7o between the reference nodes (highlighted). Results ob-
tained from the four scenarios are qualitatively identical for identical
values of W, demonstrating the substantial additivity of the influence
of each individual leaf. For simplicity, in the following we will show
only two extreme examples: when only one leaf is added, and when
50 leaves are added to the same reference node.
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Figure 4.4: Effect of adding leaves to the reference nodes. (a)
Correlation between the reference nodes, rg, for different combinations
of wy and the weight of the unique added leaf, w. (b) Change in rg
due to the weight of the unique added leaf, w. (c) Correlation between
the reference nodes, rg, for different combinations of wy and the total
weight of the 50 added leaves, W. (d) Change in ro due to the total
weight of the 50 added leaves, W.

A = (ro| W >0) — (ro| W =0), (4.1)

which approximates the contribution of adding extra leaves in
determining the correlation between the reference nodes. Results
for the two cases are shown in Figure 4.4.

Interestingly, the effect of extra leaves on the covariation be-
tween the reference nodes is not as intuitive as one could have
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guessed. As expected, when the reference nodes are disconnected
(wo = 0) adding extra leaves have no effect on their correlation,
which remains null. Nonetheless, when the reference nodes are
connected (wy > 0) their correlation decreases until a given value
of W, beyond which it slowly raises up. The AEOV landscape (Fig-
ure 4.4d) shows that the maximal decrease in the correlation be-
tween the reference nodes seems to be achieved when wg =~ 0.06
and W ~ 0.2. Why 7y does not decrease monotonically with
the increasing strength of leaves weights? There are two possible
(not necessarily alternative) explanations: one is that the system,
based on the Hopf model, exhibits stochastic resonance, as sug-
gested by the presence of a clear global minimum; the other is
that the homogeneous increase in w has the effect of enhancing
the statistical dependence between the leaves, that are all indi-
rectly connected through the same reference node, a phenomenon
known as remote synchronization (Nicosia et al., 2013; Gambuzza
et al., 2013).
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4.2.3 Chains

The following scenario is given by simple chain structures, i.e.
networks of N nodes where N —2 nodes are connected with exactly
two other nodes, and the remaining 2 nodes (the two ends of the
chain) are connected with only one node. It follows that in a
chain of N nodes the total number of links is L = N — 1 (see
Fig.4.5a for a schematic representation of chain structures). In
graph theory and applied network science, chains are also referred
to as paths (Bang-Jensen and Gutin, 2008), term that we will use
interchangeably with chain throughout the current chapter.

In order to quantify the influence that chain structures have on
the correlation ry between the reference nodes (posed at the two
extremities of the path), the most relevant topological features
to manipulate are on one hand the total length of the chain, L,
corresponding to the the number of links separating the two refer-
ence nodes, and on the other hand the weights of all L links in the
path, each one denoted as w. Nonetheless, trying to systemati-
cally evaluate all possible combinations of w for different lengths
L is computationally expensive, and its relevance in determining
the correlation between the nodes at the two ends is likely small
compared to, for example, the mean weight of the whole path.
As such, as a first approximation and to reduce the complexity of
the model, we chose to assign equal weights w to all L links in the
chain, and then exploring for different values of both w and L.
According to the choice we made, namely that w; = w;, where
k # j, for all L links in a chain, the following relationship holds

L

Zw = w, (4.2)

k=1

(w) =

I

Where (w) denotes the mean weight of the links in the chain.
We thus simulated chains of varying length, L, and strength, w,
and computed the correlation between the reference nodes at the
two extremes of the chain, ry. Results are illustrated in Figure 4.5.
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Figure 4.5: Effect of chain length and strength. (a) Schematic
representation of chain topologies of varying length, L. We are inter-
ested in evaluating how the path length, L, and the mean weight of
all links in the path, (w), affect the correlation between the reference
nodes, 7. (b) Reference nodes correlation, rg, for different combina-
tions of chain length, L, and mean chain weight, (w). (c) Focus on
the relationship between L and rqy for different values of mean path
weight, (w). (d) Focus on the relationship between (w) and 7 for
different values of path length, L. In general, the correlation between
the two reference nodes is higher for shorter chains, whereas the mean
path strength appears to play a secundary modulatory role.



4.2. EXPLORING SIMPLE TOPOLOGIES 105

It is possible to appreciate that the length of the chain and its
mean strength differentially modulate the correlation of the ref-
erence nodes: as expected, for identical chain lengths, stronger
links’ weights always correspond to larger ro, whereas for identical
(w), the increase in the correlation between the reference nodes
is much larger for shorter chains. Nonetheless, the length of the
chain plays a dominant role, as even very strong chains have little
effect on ry if they are too long. This pattern of results demon-
strates that the size of the correlation between two nodes placed
at the extremities of a chain will approximately depend on the
inverse of the path length, only modulated by its mean strength.
This finding is is in accordance with both the formalization of the
notion of network efficiency, and the observation that many real
networks (as brain ones) tend to show small average path lengths
and small-world architectures (Watts and Strogatz 1998; Latora
and Marchiori 2001; Sporns et al. 2002; Sporns and Zwi 2004;
Bullmore and Sporns 2009, see Appendix C).



106 HOW TOPOLOGY SCULPTS INTERACTIONS

4.2.4 Path redundancy

Within a simple chain topology, the size of the correlation be-
tween the end nodes is mainly determined by the number of links
separating them, and modulated by the mean weight of the path.
Nonetheless, the number of paths connecting two nodes are usu-
ally more then one. To be precise, it is well known that the num-
ber of paths of length L between any pair of nodes in a network
is given exactly by the powers of the adjacency matrix defining
the non-zero links of that network, AL (Biggs 1993; Bang-Jensen
and Gutin 2008, see Appendix C.5); this implies that the theo-
retical total number of paths of any length between each pair of
nodes is indeed infinite. Nonetheless, the observations reported
in the previous section (4.2.3) demonstrate the decay of the influ-
ence exerted by long paths on the nodes at its ends and, as such,
it is legitimate to restrict our analysis to relatively short paths.
The inherent existence of multiple alternatives paths of different
length demonstrate that the connectivity between nodes always
tend to display some degree of path redundancy. We thus focused
on quantifing the effect of such redundancy on the correlation
ro between a given pair of reference nodes (see Figure 4.6 for a
schematic representation).

To this aim, we built chain networks with paths of different length,
L, and different mean chain weight (w) (as in Section 4.2.3), and
systematically evaluated how adding paths of the same length
(i.e. increasing path redundancy) influenced the correlation be-
tween the nodes at the two ends of the path. Results are shown
in Figure 4.7.

In accordance to the previous findings, the path length L seems
to play a major role in determining the correlation between the
reference nodes, as evident from the bottom-rightest panel in Fig-
ure 4.7: if the chain is too long, the correlation between the ref-
erence node will be low, independently on the strength of the
chain and its redundancy. The mean path weight (w) and path
redundancy though modulate r( iin similar manners, amplifying
it when the path is short enough.
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Figure 4.6: Redundant paths of different length. Examples of
the framework we used to analyze the joint effect of path redundancy
and path length in the correlation between the two reference nodes
(highlighted). On the horizontal axis are examples of chain topologies
of increasing path length, whereas in the vertical axis of increasing
path redundancy (from top to bottom). In the current section, we will
analyze also the effect that a third factor, namely the mean weight of
the links in each path, (w), exerts on the resulting ry. For simplicity,
different mean path weights are not shown in the present figure.
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Figure 4.7: Effect of Redundant paths. Selection of different
combinations of mean chain weight, path redundancy and chain length
in determining the correlation between the reference nodes, ¢ (rep-
resented using the color code). The panels summarize the most in-
formative regions of the three-dimensional space we explored. (First
column) Top: correlation between the reference nodes, r¢, as a function
of both chain length L and path redundancy (i.e. number of paths
of length L connecting the reference nodes), for mean chain weight
(w) = 0.05 (in fact, when (w) = 0, obviously ro = 0). Bottom: rg
when the mean chain weight is maximal, (w) = 0.2. (Second column)
Top: correlation between the reference nodes, ry, as a function of both
chain length L and mean chain weight, (w), when there is no redun-
dancy (i.e. there is only one path connecting the two reference nodes).
This situation corresponds to that displayed in Figure 4.5. Bottom:
ro when there are a total of 10 paths connecting the reference nodes
(which corresponds to the maximal path redundancy we analyzed).
(Third column) Top: correlation between the reference nodes, 7o, as
a function of both path redundancy and mean chain weight, (w), for
the shortest chain length, L = 2. Bottom: correlation between the
reference nodes for the maximal chain length analyzed, L = 20.
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4.2.5 Cycles

The last topological primitive we will analyze are cycles, that can
be obtained connecting the two ends of a chain. In a cycle (also
called ring or polygon, see Figure 4.8), every node’s degree equals
2, and the cycle perimeter P (i.e. the total number of links)
corresponds to the number of nodes N. Cycles and chains show
analogous synchronization properties, with the trivial exception,
in chains, of that between the nodes at the two extremities. In-
deed, chains can be seen as special cases of cycles where exactly
one link equals zero.

In the following, we will analyze how the correlation ry between
two adjacent nodes embedded in a cyclic network varies depend-
ing on the weight of their connection wy, the mean strength of
the chain, (w), and its length, L. The smallest possible cycles are
triangles, and the relevance of triangular motifs has been widely

o—xL o0 o-0O 00

Triangle Square Penthagon Polygon

Figure 4.8: Cyclic topologies. Four examples of cyclic graphs. In
this section, we will analyze how cycles of different perimeter P affect
the correlation ry between the reference nodes (highlighted), that will
be connected both by a direct link (the black line) and through a chain
of length L (in grey), whose length will thus correspond to N —1 (which
by definition corresponds to P—1). The parameters we will manipulate
will be the weight of the direct link between the reference nodes, wy,
the mean weight of the remaining links forming the chain, (w), and
the length of the chain, L. Following the same procedure than that
adopted for the analysis of chains (Section 4.2.3) and redundant paths
(Section 4.2.4), all the individual links in the chain will have identical
weight, w.
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studied both theoretically and in real networks (Milo et al., 2002;
Sporns and Kotter, 2004). As such, we will first focus on consid-
ering triangular networks (results summarized in Figure 4.9), and
then analyze cycles of increasing perimeter.

As expected, the correlation between the reference nodes embed-
ded in triangular topologies is mainly affected by the strength of
the direct link connecting them, whereas the effect of the other
two links is mainly that of facilitating the correlation between the
reference nodes. These findings corroborate observations showing
that two nodes that are not directly connected can synchronize
their activity by virtue of a third node acting as relay (Milo et al.,
2002; Arenas et al., 2008), which is the simplest case of remote
synchronization. Results for cycles of increasing perimeter are
summarized in Figure 4.10.

Not surprisingly, the effect of cyclic topologies is a product of
those observed for single pair (Section 4.2.1) and chain structures
(Section 4.2.3). Indeed, when wy = 0, the pattern recapitulates
that obtained for chain topologies (compare also with first col-
umn of Figure 4.9, corresponding to the shortest possible path
between two nodes). When the weight of the link between the
reference node is either wy = 0 or wy > 0, the facilitation in the
correlation between the reference nodes rq depends on the mean
chain weight (w), and inversely on its length L, where the latter
bounds the size of the influence that even strong paths can exert.

The results of the present section demonstrate the fundamental
role that topology plays in sculpting the correlation exhibited by a
given pair of nodes, and points to the crucial relevance exerted by
the path length. In fact, the minimum number of links separating
two nodes inherently constraints the strength of the co-variation
they can exhibit, regardless of their strength or redundancy.

In the following, we will employ the knowledge gained so far to
construct a novel measure of the strength of the covariation that
one can expect between any pair of nodes in a network, based
only on their global topological properties.
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Figure 4.9: Triangular networks. We systematically varied the
weight of links forming the three edges of the triangle in order to
evaluate how they affect the correlation between the reference nodes,
rg. The weights of the three edges are denoted as wp, w; and ws,
being wy the link connecting the reference nodes (highlighted in the
two schematic representations at the top of the figure). The panels
above represent the two most informative instances of the whole 3D
parameter space we analyzed, sufficient to understand the complete
relationships between wg, w; and ws in determining rg. Even if the
first case (first column) does not actually correspond to a cycle (in fact
it is the shortest chain, see Section 4.2.3), it is useful to understand the
general behavior of triangular motifs: in absence of a direct connection
between the reference nodes, rq is driven by the third node, whose in-
fluence increases as a function of the strength of the two existing links,
being maximal when w; = wo. The second column illustrates a proper
example of triangular topology, where it is possible to appreciate the
facilitating effect of ws.
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Figure 4.10: Effect of cycles. In order to evaluate the effect that
cycles of increasing perimeter exerts on the correlation ry between the
reference nodes (highlighted in the schematic representation in the top
row of the figure) we systematically varied the reference nodes weight,
wp, the length of the chain connecting them, L (in grey), and the mean
weight of the links forming the chain, (w). All links in the chain will
be assigned identical weight, and thus (w) = w. As for the case of
triangular motifs (see Figure 4.9), the panels represent the two most
informative examples of the whole 3D parameter space we analyzed,
sufficient to understand the complete relationships between wg, L and
(w) in determining the correlation between the reference nodes, r.
The first column represents the effect of a square topology, whereas
the second one that of a polygon of 20 edges. The length and strength
of the cycle affect ry in opposite ways: the stronger the chain, the
larger the facilitation in the correlation between the reference nodes
(bottom-left panel), which nonetheless dramatically decays when the
chain is very long (bottom-right panel).
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4.3 Expected covariation

In the previous section we analyzed how very simple network
architectures could affect the resulting pattern of correlations ob-
served between a given pair of nodes. Nonetheless, it is important
to remember that the network models presented above are noth-
ing more than highly schematic examples, useful to develop an
intuition of the covariations they can produce and sustain. To
some extent, these are amongst the simplest kind of interactions
one can expect in weighted, undirected networks having more
than two nodes. In fact, real networks are made of interweaved
assemblies of those (amongst others) “topological units”, which
together form intricate architectures and determine the emergence
of complex patterns of interactions. As such, understanding the
basic properties of such topological units can be highly informa-
tive when it comes to try to understand data obtained from real
networks.

According to the results so far, the length of the path connecting
two nodes, together with paths redundancy, seem to be two major
factors in determining the magnitude of their covariation. Recent
work in graph theory (Estrada and Hatano, 2008; Estrada et al.,
2012) resulted in determining an accurate measure of the total in-
fluence exerted by a given node over another node in the network
through all possible paths of all lengths, assigning more relevance
to shorter ones; this measure of pairwise communicability relies
on an exponential decay of the influence exerted by longer paths,
and can be seen as a generalization of the concept of distance (see
Appendix C.7 for a proper description of this measure, denoted as
C throughout the entire thesis). The information summarized by
this measure can thus be used to build an estimate of the strength
of the covariation that one could expect between two nodes by
taking into account the overall similarity of their communicability
profiles. To be more specific, if two nodes are connected in simi-
lar ways -both with respect to inputs and outputs- with all other
nodes in the network, through paths of any lengths (i.e. they
have similar communicability profiles), it is legitimate to expect
that their chances to display similar behaviors will be high; on
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the other hand, if the topology of the whole-network communica-
bility between two nodes is very diverse (i.e. they have distinct
communicability profiles), their expected coupling will likely be
weak.

We propose here a novel measure of the expected covariation be-
tween any pair of nodes in the network, based only on their topo-
logical similarity. This measure, that we denoted 7 (see Ap-
pendix C.8 for a complete description of this measure), compares
the similarity of the communicability profiles of different nodes,
and as such returns the whole-network topological similarity due
to all interweaved paths of any length between every pair of nodes:
this measure can thus be reasonably used as a first approxima-
tion of the magnitude of the average covariation they will likely
exhibit.

A quantification of the topological expected covariation T;; be-
tween node ¢ and node j can be obtained computing the the
cosine similarity between the entire ¢-th and j-th column vectors
(c; and c; respectively) of the communicability matrix C as

c- . c.
Ty= o (13)
" Teallel

it should be noted that the use of the cosine similarity is not the
only possible way to measure the topological expected covaria-
tion matrix 7, which can in fact be quantified using any other
measure of similarity between vectors, such as the Pearson corre-
lation coefficient, measures of distance or overlap, as well as more
complex derivations. The expected covariation 7 can in fact be
implemented in different ways, depending on the properties of
the network under study (binary, weighted, directed, undirected)
and on the particular purpose of the analysis. Being based on
the communicability matrix C, this particular formalization of
the expected covariation, 7, assumes a very simple diffusive pro-
cess (see Appendix C.8), and as such differences in this measure
are mainly determined by differences in the topological similar-
ity between the two nodes of interest. However, it is important
to stress that the original idea behind the concept of topological
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expected covariation is in no way bounded to a given formulation
of communicability: 7 can in fact be obtained from any measure
quantifying the influence that one node exerts over another node
through all paths of all lengths; furthermore, this measure can
in principle be applied on any type of system that can be rep-
resented as a graph, making the topological expected covariation
T an extremely powerful tool to characterize the whole-system
pairwise interactions.

In the following, we will use this measure to try to understand how
much of the complex pattern of spontaneous BOLD correlations
empirically observed during rest can be actually explained just by
the topology of the underlying anatomical structure, and compare
the results with a more complex model (the Hopf) which explicitly
introduces local node dynamics, in order to gain insight about the
contribution of both.

4.4 Understanding empirical data

As stated above, our goal here is to elucidate the contribution
that both topological and dynamical factors may have in de-
termining the overall correlation structure observed in canonical
resting-state studies. With this in mind, we will now use infor-
mation about the anatomical structure underlying cortical and
subcortical connectivity to obtain, through numerical and ana-
lytic procedures, an estimate of the overall pairwise covariation
between different brain regions, and then compared these results
with the average empirical correlation matrix (R®™) obtained
from resting-state fMRI scans of 25 healthy subjects. We will
numerically simulate the activity of 68 individual brain regions
applying to each of them the local dynamic described by the Hopf
model (reviewed in Section 3.7). The connectivity between the
68 regions of interest (ROIs) will be defined using the empirical
structural connectivity matrix (SC) obtained through DTI, and
we will thus compute the correlation matrix (R¥°P/) from the
simulated time series. We will use the same empirical SC ma-
trix also to analytically derive the expected covariation matrix
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T, that we will employ to quantify the main contribution of the
whole-network topology to the pattern of correlations observed in
empirical data. It is important to stress that in both cases, we
will explicitly interpret the number of reconstructed streamlines
between ROIs (stored, after normalization, in the empirical SC
matrix), as proportional to the strength of their interaction (note
that this interpretation of the structural connectivity matrix is
not necessarily correct, see e.g. Section 1.2.4). The empirical
structural connectome, the corresponding correlation matrix and
their relationship are depicted in Figure 4.11.

As briefly reviewed in Section 1.3, there exist many graph-measures
that can be computed from brain networks, each of them focused

on quantifying a particular aspect of their topological structure.

Nonetheless, the capacity of those metrics to effectively capture

the relationship between the underlying network and the type

of interactions that it can generate and sustain varies to a large

extent. As an example, we depict in Figure 4.12 the joint cluster-

ing coefficient and the weighted assortativity (see corresponding

paragraphs in Appendix C) of all nodes’ pairs.

Despite their conceptual simplicity, these two measures have been
proven to be highly informative of both global and local proper-
ties of brain networks (Bullmore and Sporns 2009; Rubinov and
Sporns 2010, see also Section 1.3). Indeed, it is possible to ap-
preciate that this measures are clearly able to reveal a structure
underlying the organization of overall anatomical connections; on
the other hand, the information carried by these metrics is not
sufficient to explain the observed pattern of correlations between
ROIs. In fact, as we have seen in a previous section (Section 4.2),
pairwise correlations are influenced by the overall path structure
between the nodes, something that the joint clustering coefficient
and the nodes’ assortativity are inherently unable to capture. As
such, motivated by the informative results obtained from the anal-
ysis of different topological motives, we will analyze the influence
that the extended path structure underlying the anatomical con-
nectivity exerts on the emerging pattern of correlations, and com-
pared that results with those obtained using the Hopf model, in
order to account for the differences that network topology alone
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Figure 4.11: Empirical structural and functional data. (a)
Structural connectivity matrix obtained from DTI; the size of the
dots corresponds to the weight of the connection. (b) Distribution of
structural weights. The insert shows the corresponding log-log distri-
bution. (c¢) Empirical correlation matrix, averaged over resting-state
scans of 25 subjects (each scan lasted 10 minutes). (d) Relationship
between structural weights and observed correlation coefficients. It is
possible to appreciate that the distribution of anatomical links derived
from DTI approximate a power-law, meaning that the number of links
that are associated with small weights is disproportianlly higher than
that of strong ones. In addition, the relationship between the direct
anatomical connections and the overall correlation structure is not a
simple one: strong anatomical links tend to correspond to high cor-
relation coefficients, but small ones are associated with both small or
large correlations. Empirical data kindly provided by Petra Ritter.
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Figure 4.12: Joint clustering coefficient and assortativity. (a)
Joint clustering coefficient and (b) its relationship with the empirical
correlations between all regions of interest. (c) Node pairs’ weighted
assortativity and (d) its relationship with the empirical correlations
between all regions of interest. The size of dots in both (b,d) corre-
sponds to the weight of the structural link between the corresponding
ROIs as determined by tractography. The weighted clustering coeffi-
cient is a local measure quantifying the intensity of triangular motifs
around a given node, and as such it can be considered as a measure of
local integration; the joint clustering coefficient is instead a pairwise
measure, obtained multiplying the individual clustering coefficients of
the nodes of interest. On the other hand, assortativity measures the
similarity of the first neighbors (i.e. nodes directly connected) of pairs
of nodes, than can be seen as a first rough approximation of their topo-
logical similarity; in more precise terms, the assortativity quantify the
similarity of the first layer of nodes around two given nodes.
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and local dynamics can display in determining the spontaneous
co-activations of different brain regions.

The Hopf model and the expected covariation matrix were both
optimized according to the global coupling parameter ¢g in order
to put the two models in the working regime that best explained
the empirical data (see Appendix C.8 for extensive motivations of
this optimization procedure). To this aim, we searched for that
value of g that returned the smallest Euclidean distance between
the values stored in R and both RH°P and T (which can in
fact be treated as a correlation matrix, see C.8). Results are
displayed in Figure 4.13, and 4.14.

Both the Hopf model and the expected interaction are able to ex-
plain the general structure of empirical correlations with a good
degree of accuracy. Indeed, the two models confirmed the exis-
tence of a relationship between the size of R”°Pf and T and the
strength of the anatomical link defined by the structural connec-
tivity matrix. This relationship closely resembled that displayed
by empirical data (compare panel (d) in Figure 4.11 with panels
(a,b) in Figure 4.14). It can be also noted that the errors made
by the Hopf model are slightly smaller than that obtained from
pure topological information (i.e. through 7), and that these er-
rors also seem to be preferentially localized to controlateral areas
(see caption of panels (d,h) in Figure 4.13). Despite the subtle
differences, the two models behave very similarly (see panel (c)
in Figure 4.14). Other than the inherent incompleteness of the
two models, it should be stated that some of the discrepancies be-
tween the modelled correlations and the empirical ones could be
in part due to intrinsic limitations of the method used to obtain
anatomical connectivity: in fact, it is well-known that DTI tend
to miss crossing fibers, as inter-hemispheric axons (Jones 2010;
Thomas et al. 2014, see also Section 1.2.4), and these weaknesses
could lead to accumulate errors.

The results obtained so far indicate that the general pattern of
correlations between brain regions observed in empirical data can
indeed be explained up to a good extent by explicitly taking into
account the information carried by the overall communicability
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Figure 4.13: Fit between models and empirical data. (a.e)
Global coupling ¢ vs. euclidean distance between R and R orf
and R and T, respectively. The marker corresponds to the value
of g that best fits empirical data. (b,f) Comparison of the empirical
correlation matrix R (lower triangles) with RH°Pf and T (upper
triangles) obtained at the best fitting g. (c,g) Scatter plots of empiri-
cal and simulated/analytic results. The size of the dots corresponds to
the weight of the corresponding links in the empirical structural ma-
trix. (d,h) Matrices of the errors between simulated/analytic results
and empirical correlation coefficients. In both cases, errors have been
computed as E = (§ — )2, where § corresponds to either the simu-
lated correlation coefficient 77°Pf or the expected covariation 7, and
x to the empirical correlation coefficient 7P, Homotopic controlat-
eral ROIs corresponds to the second diagonals, clearly visible in (d).
Compared to Ef°Pf ET is more homogeneously distributed across the
entire network. Nonetheless, globally both models show comparable
fits with empirical data.
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Figure 4.14: Comparison between numerical and analytic
results. (a) Relationship between simulated correlation coefficients
(RH°Pf) and weight of the structural connectome. (b) Relationship
between expected covariance (7T) and weight of the structural connec-
tome. (c) Comparison between RH°P/ and 7. The size of the dots
corresponds to the weight of the corresponding links in the empirical
structural matrix.

sustained by the topological structure of the underlying anatom-
ical connectivity. As such, it would be interesting to ask wheter
it is possible to quantify the actual contribution that the whole
network exerts on a given pair of nodes, and compare it with
that of smaller sub-networks into which that pair is embedded.
This would help us understand whether the observed correlation
between brain regions is mainly affected by local or by global
network effects.

A possible strategy to address this question is to evaluate how the
covariation between a pair of nodes changes as a function of the
local and the overall topology of the network into which they are
embedded. To this aim, we will first select two given nodes (that
we will call either reference nodes or reference pair) and their
connection, and evaluate (either numerically or analytically) their
pairwise correlation when disconnected from all the other nodes in
the network. This corresponds to the simplest two-nodes topol-
ogy (see Section 4.2.1). After that, we will add one link at a
time, accordingly to the empirical anatomical connectivity ma-
trix, untill all links are added. At each step, we will compute the
corresponding 7P/ and T of the two reference nodes selected at
the beginning of the procedure: this strategy would allow us to
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quantify how very simple and controlled changes could alter the
overall topological communicability around a given reference pair
as well as their correlation simulated using a dynamical model.
As mentioned above, we will use the empirical structural connec-
tivity matrix to select, at each step, the single link that will be
added to the previous sub-network, starting from the two refer-
ence nodes until all links are added, thus finally leading to the
complete empirical SC matrix. This corresponds to adding links
according to the “layer” they belong to with respect to a given
reference pair (see Figure 4.15 for a schematic representation of
the relative layer hierarchy).

The order of links to be added will be set as the following: the
first links to be added (one at a time) will be those connected with
at least one of the two reference nodes (i.e. those belonging to the
first layer), from the strongest to the weakest; than, those directly
connected to any of the first layer (i.e. the second layer’s nodes),
again from the strongest to the weakest. This procedure will be
repeated until all connected links are added (see Figure 4.16 for
an illustration of this procedure).

Obviously, this is not the only possible set of rules that can be
used to add links. Any particular procedure used to add single
links would by definition determine the sequence of links, and
thus the change in topology around a given reference pair. We
will use the one described above because our aim is to add nodes
that are progressively more “distant” from the reference nodes,
boths in terms of path length and in terms of exerted influence.

The time needed to perform each individual numerical simula-
tion using the Hopf model makes a complete exploration of all
steps for all possible area pairs intractable at the moment, so
we will focus on a small but representative subsets of reference
pairs. With this in mind, we will select 10 pairs of areas, each of
them representative of a different combination of anatomical link
weight and quality of the fitting between empirical and simulated
correlations; the latter criterion has the advantage of both reduc-
ing the probability to focus on just an unrepresentative subset of
“good” instances (i.e. avoiding “cherry-picking”) and, by virtue
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Figure 4.15: Relative network layers. Each node (and each pair)
is sorrounded by a different subset of nodes (and links). This subset
can be subdivided in layers, depending on the length of the path con-
necting them with the reference node(s). All the layers of a given node
(or pair) determine its extended connectivity profile, i.e. the connec-
tivity that it has with all other nodes in the network, both directly
and indirectly through paths (where each node and link is visited only
once per path, and the maximal path length is N — 1, being N the
number of nodes in the network). As such, each node (or pair) has an
associated extended connectivity profile, corresponding to the hierar-
chy of its sorrounding layers. Two nodes can have identical extended
connectivity profiles only if the connection between them (and with
themselves, if present) is discarded or identical. In the figure, nodes
are marked with different colors according to the layer they occupy
with respect to the reference nodes. Nodes in the first layer have di-
rect connections with at least one of the reference nodes (red), nodes
(or links) belonging to the second layer are directly connected to nodes
on the first layer (green), whereas the third layer is formed by nodes
(or links) that connect with nodes of the second layer. The strength of
the link is represented by the width of the line connecting two nodes.
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Figure 4.16: Adding link procedure. The figure represents the
first twelve steps of the adding procedure explained in the text, adopt-
ing the same network architecture used in Figure 4.15. The first step
(top-left) corresponds to the simplest topology, the one that considers
only the two reference nodes (highlighted), without taking into ac-
count all the other nodes in the network (in grey). Each next step is
achieved by adding just one link at a time with the corresponding node
(unless the node has been already added in a previous step), following
the rule that links belonging to inner layers are added first, from the
strongest to the weakest (in the figure, steps #2 to #9 correspond to
the links in the first layer, in red). When all the links belonging to a
given layer are added, links of the following layer are added, one at
a time, from the strongest to the weakest (steps #10 to #12, green,
in the figure). This procedure continues until all connected links are
added. In the present section, we will use this procedure to evalu-
ate how controlled changes in the underlying network topology could
affect the correlation between the reference nodes, approximated, at
each step, both numerically using the Hopf model and analytically
through the expected covariance 7. The use of two different meth-
ods (the Hopf model and the expected covariance) to approximate the
correlation between the seed nodes is motivated by the fact that in
the former case the model is based on both the underlying topology
and on local dynamics but gave no direct clue about their relative
contributions, whereas in the latter case virtually all the information
used to approximate the correlation between the seed nodes is based
on specific assumptions about the underlying whole-network topology
alone.



4.4. UNDERSTANDING EMPIRICAL DATA 125

.2 1B
0.9 09 "‘
oo @ A i S —

5 08 G, Yo E IRt G
2 L WA I | S— i
< 07 O b 37780 < 8l <
g S e b g g S
K A S ] 6
50 : s A s
4] - ¥ o - 53
£ o5 = ke
S S : CF 5]
o F [ o m/./«f-—/‘"f' S ——— .S
o 04 © 04" A N 3
L H 3 . i - — ]
o © ’ < @
S 03 S 03r% 3 2
€ . € . > D i
£ D £ " 3 -
902 . N 02 e 2

01 : | o1p S I 1

o LE L ol B - LE

. 0
o 02 0.4 06 08 1 0 100 200 300 400 500 600 700 800 900 1000
Empirical Correlation, R®™ Added Link #

Figure 4.17: Effect of varying topology. Adding individual links
affect the resulting correlation between selected pairs of ROIs. (a)
scatterplot of the empirical and simulated correlation obtained at the
best-fitting global coupling value using the original SC matrix, with
highlighted the values corresponding to the 10 selected reference pairs
[A-L]. (b) Plot of the simulated pairwise correlations of the 10 reference
pairs in (a), computed from networks of increasing size (see text for
a description of the link-wise adding procedure). Note that the panel
shows just up to the 1000t" added link, as the corresponding values of
rHorf do not change anymore after that. In both panels, the size of
the dots is proportional to the weight of the corresponding link in the
structural matrix, whereas the color indicates the corresponding value
of expected covariation (7, see colorbar).

of this, being able to gain insight on the possible sources behind
the discrepancies (similarities) between the empirical correlations
and those badly (well) predicted by each model. In all cases, nu-
merical and analytical results will be obtained fixing the global
coupling value g that gave best-fitting results using the complete

original SC matrix (see Figure 4.13). Results are illustrated in
Figure 4.17.

All the selected reference pairs converge to their final (simulated)
correlation value between the 500" and the 1000"" added link: the
following added links had practically no effect either on the sim-
ulated correlation or on the value of expected covariation. This
pattern is due to the adding procedure: we first added links with
stronger weights, clearly visible also from the varying size of the
dots forming the lines (see captions of Figure 4.17), and as such
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it is expected that the last ones to be added would be the weak-
est, and thus the less influent ones (see general results from the
analyzed network models in the previous part of the chapter, Sec-
tion 4.2). The same reason lies behind the sudden re-appearance
of strong links (with associated increase in simulated correlation
and expected covariance) around the 120" added link: here is
when links of the second layer start to be added. It is impressive to
note how tight is the relationship between the simulated correla-
tion and the expected covariation at each step: when added links
reduce the topological similarity, 7, between the reference nodes,
the corresponding simulated correlation , R/ also decreases,
and vice versa. This result strengthens the relationship between
the two models, and highlights the importance of topological or-
ganization in shaping the pattern of co-variation displayed by
different areas. Probably the most interesting observation is that
not all area pairs behave the same: the correlation between some
of them is mainly affected by the presence of a strong direct link
between them (e.g. A) or by their first neighbors (G,B); on the
other hand, that between other pairs is mainly determined by an
indirect connectivity sustained by diffuse collective interactions
(C-I), wheras the covariation between some other pairs (L,E) re-
mains unaffected (and non-existent, according to both numerical
and analytical results).

The present finding confirms that the correlation exhibited by
different pairs of nodes is crucially determined by the relative
topology sorrounding them, whereas local dynamics seem to play
a minor role, at least in this context; furthermore, it indicates
that the pairwise correlation between some nodes is largely de-
pendent on more diffuse, peripheral paths shared by both nodes
and causing remote synchronization, whereas the correlation be-
tween other area pairs is mainly sustained by direct or more local
connectivity. As such, is it possible to quantify the relative influ-
ence exerted by the network as a whole, and that mainly due to
a direct interaction between the two nodes of interest?

A first approximation to answer to this question can be obtained
by computing the difference, A, between the correlation of the
reference nodes obtained when they are disconnected from the
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whole network (corresponding to the step #1 in Figure 4.16) and
the correlation obtained with the complete network comprising of
all nodes and all links. A schematic representation of this measure
is given in panel (a) of Figure 4.18.

This measure has both the advantages of being very simple in its
implementation, and of requiring only two points per area pair
to be computed, thus dramatically reducing the time needed to
compute it for all area pairs when each instance has to be simu-
lated several times with models whose execution time is relatively
long, as the Hopf model. Furthermore, the interpretation of this
measure is also very simple: area pairs with small A would be less
affected from whole-network effects than pairs having a larger dif-
ference. We thus computed ARTP/ and AT for all area pairs.
The main results are shown in panel (b,c) of Figure 4.18.

The first observation is that, in general, area pairs with large in-
crease in A are those that have weak anatomical connection, as
it is possible to appreciate when comparing the two matrices in
panel (b), Figure 4.18, with the empirical anatomical connectivity
matrix, panel (a) in Figure 4.11. This finding is not surprising,
but at the same time not necessary, as there are area pairs that
have very small or absent anatomical connection and however are
almost unaffected by peripheral diffuse paths (see for example the
E" reference pair in Figure 4.17). In addition, the distributions
of both ARfr/ and AT suggest a possible bimodality, show-
ing that in general there seem to be two main type of sources of
covariation: one is determined by strong direct structural con-
nections (small or negative A), the other is instead sustained by
diffuse collective effects (large A); in the latter case, apparently
the two areas can be connected by either weak or stronger links.
This findings confirmed that one of the most important factor in
determining the strength of the correlation between two nodes is
indeed the presence of a strong structural link connecting them;
nonetheless, they also highlight the crucial relevance of indirect
influences and paths redundancy to understand the overall pat-
tern of covariations observed in empirical data.
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Figure 4.18: Quantification of whole-network contribution.
(a) Schematic representation of the logic behind A, exemplified on
the RT°Pf of three reference pairs characterized by different behav-
iors [A,H,L]. A4 show that whole-network influence has the effect of
decreasing the strength of the correlation that the two nodes of the ref-
erence pair would have displayed alone; The H'" reference pair shows a
big dependence on whole-network effects, as mirrored by the substan-
tial increase in Ay, whereas that of L is minimal. The whole-network
effect, Az, of a given reference pair is computed as Az = z! — z¢"4,
being z either the simulated correlation r7°Pf or the expected covari-
ation 7', obtained at the first (z!) and last (2°"¢) steps of the adding
link procedure. It should be noted that AT took only positive values,
whereas ARM°Pf displayed both positive and negative ones. (b) A ma-
trices obtained from R°P/ (top) and from T (bottom). Lighter color
corresponds to a larger whole-network dependence of the correspond-
ing seed nodes correlation. (c) Relationship between the simulated
correlation R7Pf computed from the full-network and its correspond-
ing ARHPT (top), and the expected covariance 7 computed from the
full-network and its corresponding A7 (bottom). In both panels, the
size of the dots is proportional to the weight of the corresponding
link in the anatomical connectivity matrix, whereas the color to the
corresponding empirical correlation. The diagonal cut in the two fig-
ures in panel (c) correspond to the upper bound of each Az, given by

marAx =1 — x1.
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4.5 Conclusions

In the present chapter, we analyzed the contribution that whole-
network topology exerts on the emerging overall correlation struc-
ture. The analysis of the correlation generated and sustained by
distinct topological units, the building blocks of larger networks,
helped us elucidating what are its main determinants, highlight-
ening the importance of short paths and redundancy.

This step was fundamental to conceive and construct a novel mea-
sure, that we called topological expected covariation, T, reflect-
ing the size of the pairwise covariation that one could expect just
by virtue of the similarity between the communicability profiles
of any pair of nodes in a network. This measure builds upon
the findings that shorter paths tend to drive larger covariations,
but that the final covariation between the activity of any pair
of nodes does not necessarily depends on just the shorter paths
between then, but have to be understood in terms of all the inter-
weaved paths crossing and interacting with each other, forming
the fundamental topological skeleton of any network. This in-
trinsic property generate a cascade of mutual interactions that,
despite their complexity, can be estimated analytically through
simple formalizations, thus making 7 a powerful tool to summa-
rize and understand the higher-order interactions emerging from
even simple topologies.

We finally applied this measure to empirical data, finding that
pure topological information can in fact predict the spontaneous
correlation structure observed during rest as good as a more
complex phenomenological model based on both the anatomical
connectivity and local nodes dyamics. Finally, we were able to
demonstrate that not all pairwise intrinsic correlations are driven
by the same factors: in fact, despite the larger correlations are,
as expected, mainly due to strong anatomical connections, other
brain areas tend to correlate due to more general network ef-
fects determining remote synchronization, and that could mirror
polysinaptic routes.

As always, any answer leads to new questions, and open new
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doors. For example, can we use the information obtained with
T to make some informed guesses about false positive and false
negative fibers detected (or not) using diffusion tractography? In
addition, it is likely that the information used to obtain 7 should
in principle be used to detect network modules, or to determine
the functional roles that different nodes play both on the global
network level and on local interactions. The expected topologi-
cal covariation can also be used to evaluate how different states
modulate the structure-function relationship, in terms of how far
the influence of different nodes spread through the network; this
can in principle be explored also using different models, but the
advantage of T is that it is explicitly based on clear assumptions
about the structure-function relationship, which in turn allows
both to test specific hypotheses, and to ease interpretations. Ul-
timately, another aspect that we will investigate is about the ca-
pacity of this measure to predict global and local responses to
network structural perturbations, which can in turn be extremely
useful both in clinical neuroscience as well as in other field of
applied network science.



CHAPTER 5

General discussion

“Apparently, the isomorphisms of laws rest
in our cognition on the one hand, and in
reality on the other.”

L. von Bertalanfty

“The ideal scientist thinks like a poet and
works like a bookkeeper.”

E. O. Wilson

What have we learned so far? After reviewing the state-of-the-art
findings and tecnhiques focused on the study of brain spontaneous
activity (see Chapter 1), we demonstrated how a transient ma-
nipulation of the regional dynamics, obtained through anesthesia,
massively alters the overall landscape of spontaneous activity (see
Chapter 2). Induction of a deep state of anesthesia not only de-
termines a global net decrease in the correlation between brain
areas (as measured with fMRI), but also the destructuration of
those large-scale networks classically found during light sedation
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and the awake state. In the anesthetic mixture used, medetomi-
dine acted primarily as an analgesic -whose concentration was in
fact maintained constant during all the recording-, whereas the
concentration of ketamine progressively decreased due the on-
going metabolism. The anesthetic effect of ketamine is mainly
(but not uniquely) due to its antagonistic binding to NMDA
receptors (Quibell et al., 2011), which interfers with their nor-
mal functionality. This in turn obstacles proper synaptic efficacy
and inter-neuronal coupling, thus decreasing the probabilities of
forming larger assemblies displaying sustained co-ordinated acti-
vations. On a macroscopic scale, this drives the entire system
toward more uniform and stereotypical dynamics, corresponding
to a dramatic reduction in functional complexity. The widespread
effects of anesthesia, despite affecting the integrity of the general
correlation structure, does not lead to pure stochastic activity:
in fact, local connectivity seems to be partially preserved, ex-
emplified by sustained power correlations in the a range between
areas belonging to the same functional network, and possibly mir-
roring the existence of strong underlying anatomical connectiv-
ity. The progressive fading of the anesthetic effect is associated
with the gradual restoration of synaptic function, reflected in in-
creased structured co-activations and leading to the progressive
re-appearance of intrinsic functional networks.

The findings of the second chapter, whose detailed analysis is to
date unique of its kind, illustrate the enormous effect that experi-
mental manipulations of the local dynamical properties alone can
exert on the behavior exhibited by the entire system. We thus
moved to the next question.

How much does the topology of the underlying anatomical con-
nections determine the spontaneously emergent correlation struc-
ture? To try to answer this question, we simulated brain spon-
taneous activity while manipulating its topology, and evaluat-
ing how much these changes affect the observed correlations. As
such, we first briefly reviewed different models of brain activity
(see Chapter 3), from biophysically realistic to phenomenologi-
cal ones, and introduced the Hopf model, that has been recently
shown to approximate the pattern of spontaneous correlations
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seen during rest (Deco and Kringelbach, 2016).

In the last chapter (Chapter 4), we used the Hopf model to eval-
uate the effect of network topology in shaping the emerging func-
tional structure. With this in mind, we started quantifying how
simple topologies affect the correlation between a given pair of
nodes embedded in that network, and we isolated a few, simple
factors determining the emerging correlations and able to gener-
ate non-trivial behaviors, such as remote synchronization. Our
results, in accordance with the previous literature, showed that
these factors are the strength of the connections, their number,
the distance between nodes and the presence of redundant paths,
being the relative importance of each one of them dependent on
the topology of the overall network to which they participate
(Watts and Strogatz, 1998; Barabsi and Albert, 1999; Gémez-
Gardenes et al., 2007; Arenas et al., 2008; Goni et al., 2014).
Recent work showed how the presence of multiple paths of vary-
ing length -referred to as path ensembles- increases brain network
resiliency (Avena-Koenigsberger et al., 2016), thus demonstrating
the crucial importance of path redundancy. In the fourth chapter,
we moved forward and used the information gained from these toy
networks to build a simple function that links topological infor-
mation (derived from the underlying structure of the network)
to the emergent correlation structure. We denoted this function
of the expected covariation based on topology as T, and used it
to predict, with good accuracy, the average correlation structure
observed in empirical resting-state data. This function quantifies
the similarity between the complete topological profiles of any
pair of nodes, incorporating all the interweaved paths existing
between them, and has revealed itself to be a very good indicator
of the arising average co-variation, hence its name. Indeed, this
novel function can be used to approximate the total “influence”
that any node in the network exerts on any other node through all
possible paths of any length, thus offering a clear understanding of
the extraordinarily strong bond between structure and function.
We finally applied this novel analytical measure, together with
numerical simulations obtained using the Hopf model, to assess
how small changes in the topological structure around given nodes
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affect their covariation, discovering that the pairwise activity of
different brain regions is determined by either local interactions,
or driven by diffuse whole-network effects.

It is important to remember that both the Hopf model and the
expected covariation make use of the topological information car-
ried by the anatomical connectivity matrix, whereas only the Hopf
model explicitly introduces non-trivial local dynamics. The topo-
logical covariation, even if conceptually based on the approxima-
tion a simple decay process (through the use of the communi-
cability matrix C, Estrada and Hatano 2008), cannot be consid-
ered a dynamical model, and does not generate simulated signals.
Therefore, the finding that, in general, both models appear to ex-
plain empirical data equally well, suggests that the average cor-
relations computed across subjects seem to be mainly driven by
the underlying brain topology. Nonetheless, as mentioned in the
end of Section 1.2.2, the correlation between distinct area pairs is
not a static object, but exhibits time-varying fluctuations, whose
mechanism can only be captured through the use of dynamical
models.

Altogether, our findings demonstrate that both local dynamics
and network topology shape ongoing brain activity, but what is
their precise relationship? It is indeed very tight. Interpreting
Aristotles’ views, medieval philosopher Tommaso d’Aquino (1225-
1274) wrote that “the container shapes the content” (quidquid
recipitur ad modum recipientis recipitur). More recent works
(Strogatz, 2001; Wang, 2002; Boccaletti et al., 2006; Newman
et al., 2011) together with the results presented in this disserta-
tion, suggest that even if structure is indeed a major determinant,
the information it provides alone is not sufficient to fully explain
the particular behavioral state that a system display in a spe-
cific moment; putting it simply: the normal transition from sleep
to wake is not triggered nor explained by structural changes. In
fact, the geometrical properties of a system bound the space of the
possible emergent activity patterns that it could sustain, whereas
the dynamical local properties of its elements determine the ac-
tual region of this space in which the system lies. Global state
chages, such as the transition from deep to light anesthesia, or
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from NREM sleep to the awake state, can thus be viewed as sys-
tem excursions to different regions of this space, driven by changes
in the local dynamics; global state transitions can also be due to
changes in the topological properties of the underlying network,
that will shrink or expand the space of possible behaviors that the
system can display, as for example after a stroke or, on the other
hand, during normal development and learning: in either case the
system has undergone structural -thus, topological- changes with
respect to its previous state.

As mentioned above, our analysis of how much anatomical topol-
ogy sculpts the emerging correlation structure of ongoing brain
activity led us to develop an original function, 7, that quanti-
fies the similarity of the whole-network communicability profiles
between any pair of nodes in a graph (see Section 4.3 and Ap-
pendix C.8). By definition, this measure is based on the struc-
ture defining the graph, and expresses the affinity between the
complete patterns of structural interactions that two elements of
the system have with all the rest of the network in which they
are embedded. What is remarkable is that this simple measure
of structural similarity has revealed itself to be a very good ap-
proximation of the average correlation structure displayed by the
analyzed empirical data, as good as a more complex dynamical
model. During the next months, we will further investigate in
deeper detail this very interesting aspect, and try to analytically
explicit the relationship between 7 and the average correlation,
(R). If proven true, this would imply that knowledge about the
topological structure of a network should in principle be enough
to predict its average correlation structure.

To save a few lines for speculations, this would also be in accor-
dance with the classical observation that, in biology, structure
largely determines function, as exemplified by RNA or proteins
(Monod, 1974). If we consider structure as the entire pattern of
direct bonds between all the elements of a system, it does not
seem unreasonable to believe that this tight link we repeatedly
observe between structure and function should mirror some kind
of logical necessity, a simple but fundamental universal principle
underlying any emergent property. In fact, could we even think
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of a case in which the emerging function of an object is entirely
independent of its structure?



PART I

Appendix
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APPENDIX A

Notes on the origins of
spontaneous brain activity

“Everything is what it is because it got
that way.”

D’Arcy Wentworth Thompson

As we repeatadly advised, one should be careful when trying
to interpret the spatio-temporally organized fluctuations sponta-
neously emerging during rest (see Chapter 1), especially with re-
spect to their putative function. Do intrinsic activity as measured
at different spatial and temporal scales reflect different functions?
And if it is the case, what functions? Is it possible that certain fre-
quencies do reflect genuine neuronal computations, whereas other
mirror more widespread systemic processes (either neuronal or
not)? To understand the functional role of the ongoing modu-
lation of intrinsic brain activity it is vital to study its origins.
What are the endogenous physiological processes driving sponta-
neous activity? Following a reductionsit approach, it is legitimate
to search for the origin of spontaneous fluctuations observed in
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ongoing activity in the properties of both single neurons and neu-
ronal circuitry.

Soon after the seminal work of Hubel and Wiesel (Hubel and
Wiesel, 1959), it was shown that neighboring neurons having sim-
ilar receptive fields tend also to exhibit spontaneous correlated
activity, whereas neighbors with complementary receptive fields
don’t (Arnett, 1978). The presence of an organized functional ar-
chitecture was observed also in a computer compartmental model
of the CA3 region of the hippocampus, where the emergent ry-
thmic activity was produced and sustained by intrisic cellular
properties and the connectivity and strength of excitatory and
inhibitory synapses (Traub et al., 1989). Observation of sponta-
neous depolarizations of subthreshold membrane potential (Steri-
ade et al., 1996) and the presence of alternating activity due to in-
trinsic membrane properties (Wilson and Kawaguchi, 1996) were
followed by experimental and computational evidences demon-
strating that neural assemblies are able to synchronize their sub-
threshold activity, leading to fixed shared states that allow for
rapid collective state transitions (Makarenko and Llinds, 1998).
With the aim to understand the generation of spontaneous low
frequency (<1 Hz) oscillations observed during sleep, Timofeev
and colleagues (Timofeev et al., 2000) simultaneously recorded,
in the anesthetized cat, the ongoing activity both from neurons
in small deafferented cortical slabs and from adjacent intact sites
outside the isolated region, finding that slow oscillations where
preserved only in the latter; however, isolated slabs exhibited
short periods of activity separated by long silent periods. In-
terestingly, the authors found that enlarging the isolated region
increased the probability of initiating large-scale activity within
the deafferented slab, in accordance with computer models and
supporting the hypothesis that intrinsic currents could amplify
incoming signals, more frequent in larger networks. Similarly, Co-
hen et al. (2008) showed the emergence of spontaneous network
activity in hyppocampal neurons grown in cultures. The size of
the neural assembly was a major determinant of its collective
properties: large networks became rather unsensitive to the firing
activity of a single neuron, and as such spontaneous synchronous
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Figure A.1: Up and Down states observed in the anes-
thetized mouse. (Left) Single-unit recording, LFP trace and spec-
trogram showing the alternation between fast activity (“Up”) and si-
lence (“Down”) in prefrontal cortex. (Right) Power spectra of pre-
frontal and visual cortex after separation of “Up” and “Down” periods.
Panels adapted from Ruiz-Mejias et al. 2011.

bursting could be triggered only by at least several local sub-
threshold synaptic events. On contrary, small networks did not
displayed spontaneous bursting, but experimental manipulation
of the activity of a single neuron could indeed produce a network
discharge. Furter studies demonstrated that the slow alternation
(<1 Hz) between periods of activity and silence (referred to as
“Up” and “Down” states, respectively. see Figure A.1) observed
in vivo on the cortex both during sleep and under anesthesia
(Ruiz-Mejias et al., 2011) is in fact generated through recurrent
excitation, and modulated by inhibitory networks (Sanchez-Vives
and McCormick, 2000; Compte et al., 2003).

Multineuronal recordings often reveal the presence of synchro-
nized spontaneous spiking activity in different neurons. Through
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Figure A.2: Spike correlations in spontaneous and evoked
activity. (Top) Raster plots of three different groups of neurons and
(Bottom) corresponding cross-correlograms. Panels on the left rep-
resent correlated spike timing observed during spontaneous activity,
whereas panels on the right that measured during the presentation
of an olfactory stimulus. Homotopic ipsilateral neurons are monosy-
naptically connected, homotopic contralateral are not connected but
receive input from the same population of neurons, whereas neurons
belonging to different functional pools (heterotopic) do not connect
directly with each other. Panels adapted from Kazama and Wilson
2009.

genetical labelling of olfactory neurons of the Drosophila antennal
lobe, Kazama and Wilson (2009) demonstrated that both direct
anatomical connectivity and incoming projections from a com-
mon source determined the correlation strength of their ongoing
spiking activity: as such, some neurons exhibited spontaneous
correlated activity, while others don’t. Interestingly, the actual
presence of a stimulus increased the correlations between those
neurons that previously exhibited spontaneous coupling, but not
those of spontaneously uncoupled ones, highlightening the tight
relationship between anatomical connectivity and functionality
(see Figure A.2).

Anatomical connectivity in fact plays a crucial role on intrinsic ac-
tivity, as demonstrated by the finding that regions linked by long-
range monosynaptic connections exhibited correlated hemisphere-
wide patterns of spontaneous and sensory-evoked depolarization
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Figure A.3: Axonal projections and spontaneous cortical cor-
relations. (Left) First column: axonal projection maps (pixel inten-
sity is logarithmically scaled). Second column: seed-pixel correlations
obtained from VSD imaging. Third column: spatial colocalization
of axonal projection and seed-correlation maps. Blue and white stars
correspond to the site of the tracer injection and the pixel used as seed,
respectively. (Right) Matrix of the similarity between VSD correla-
tions and axonal projection maps for nine cortical regions. * <0.05,
x*% <0.01 one-way ANOVA. Panels adapted from Mohajerani et al.
2013.

(Mohajerani et al. 2013, see Figure A.3): the authors suggested
that the intracortical monosynaptic connectome can thus shape
the flow of spontaneous cortical activity.

Recent evidences, to date uniques of their kind (Richiardi et al.,
2015), showed that the spatial organization of brain tissues ex-
pressing similar pools of genes resembled that of four RSN rather
well characterized in the imaging literature (Figure A.4).

Despite the high complexity of the whole procedure, which has
to be aknowledge in cautiously interpeting the results, the au-
thors found that tissues of brain samples obtained from regions
that have been associated with the same functional network ex-
hibited higher genetic correlation than samples obtained from re-
gions assigned to distinc networks. After having obtained a con-
sensus list of 136 genes responsible for the relationship between
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Figure A.4: Genetic contribution to anatomical and sponta-
neous connectivity. (a) The four functional networks used to com-
pare with genetic data. (b) Human brain tissue samples assigned to
their corresponding functional networks. Coloured circles are samples
assigned to the four networks used in the analysis, open circles those
assigned to other networks, dots corresponds to samples left unas-
signed. Only four networks were used in the analysis, as the other
nine did not have enough samples each to make statistically meaning-
ful claims. Samples were assigned to a certain network both depending
on their spatial location and due to the transcriptional similarity of
the tissues sampled. The subdivision of all samples in the presented
groups (13 in total, one per functional network) was that returning
the highest within-group transcriptional similarity (significance was
assessed randomly reshuffling the sample-to-network assignment). (c)
Ipsilateral axonal connectivity matrix derived from the Allen Mouse
Brain Connectivity Atlas. (d) Transcriptional similarity (genetic cor-
relation). Panels adapted from Richiardi et al. 2015.
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gene co-expression and functional networks, the authors demon-
strated that common polymorphisms (i.e. variants of the same
gene) in the consesus genes were related to the individual vari-
ability of the strength of functional networks measured on 259
subjects. The authors then extracted from the consesus list 57
mouse orthologs (i.e. genes whose function is the same in different
species), and then computed the transcriptional similarity of this
subset of genes in 38 brain samples obtained (ipsilaterally) from
the mouse brain. This procedure allowed Richiardi and colleagues
to show how the resulting overall genetic correlation matrix be-
tween the selected brain samples matched with the information
about anatomical connectivity between the corresponding regions
and derived from retrograde tracers. The similarity between the
two maps suggests that brain regions expressing similar genes also
tend to be anatomically connected through monosynaptic path-
ways. When analyzing the ontology (i.e. the function(s) of the
protein a gene codes for) of the genes in the consensus list, the
authors found that their principal functions were related to molec-
ular mechanisms of ions transport and cellular components. The
remarkable observations made by this study shed light on some of
the putative mechanisms behind the generation of the highly or-
ganized pattern of intrinsic fluctuations systematically observed
in humans and other animals, and suggest the existence of a gen-
eral “assortativity principle” based on the similarity between the
membrane properties of neurons and guiding their anatomical
connectivity to form functional networks.

Spontaneous fluctuations are not only exhibited by the mature
CNS, but growing evidences underline the fundamental implica-
tions of spontaneous activity in scaffolding the proper functional
architecture of the developing brain. In fact, ongoing spontaneous
neuronal activity has been observed in many parts of the develop-
ing nervous system. Of special relevance are the high excitability
of developing networks with recurrent connectivity and the pres-
ence of transient depressions induced by activity (O’Donovan,
1999). Intrinsic rhythmic activity of developing networks plays
in fact an important role in the organization of mature circuitry.
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In 2004, Yvert and colleagues (2004) demonstrated that during
the development of the mouse spinal cord, spontaneous activity
became progressively more complex (i.e. exhibiting an increasing
repertoire of ryhthms) as the embryo grows. The long and dif-
fuse spontaneous events characterizing early stages of the spinal
cord development get substituted by more irregular and localized
ryhthms, until the originally fully synchronized network progres-
sively segregates into more locally specialized sub-networks, an
exemplary feature of topological complexity (Zamora-Lopez et
al., under review). This propagating waves observed during early
stages of development tend to be generated by the spontaneous
activity of multiple neuronal populations which are widely dis-
tributed across the entire CNS, although the spinal cord seems to
play a predominant role at this stage (Momose-Sato et al., 2007).
In rat, intrinsic activity of neurons in the early auditory system
is triggered by supporting cells that spontaneously release ATP,
which in turn depolarize nearby neurons increasing the probabil-
ity of localized bursts of activity between neighbors, thought to
be responsible for the maintenance and refinement of tonotopic
maps (Tritsch et al., 2007). In a recent study, Ahrens and col-
leagues (2013) genetically modified zebrafish larvae to express an
indicator of calcium activity, and recorded the spontaneous ac-
tivity of the entire organism using ligh-sheet microscopy, which
allowed to record more than 80% of all neurons at single cell reso-
lution (Figure A.5). The authors were able to identify two neural
populations exhibiting correlated spontaneous activity, thus re-
vealing the progressive differentiation of neural activity during
development.

The evidences reviewed so far suggest that spontaneous brain ac-
tivations are an inherent feature of brain functioning, mirroring
both the intrinsic properties of individual neurons and their con-
nectivity. Furthermore, they seem to be functionally relevant,
associated to very fundamental principles of brain development
and organization. It has indeed been shown that intrinsic neu-
ral activity during development lies at the basis of network for-
mation and homeostasis (Katz and Shatz, 1996; Turrigiano and
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Figure A.5: Spontaneous activity in the zebrafish larva. Cor-
relations and spontaneous activity patterns across brain regions of the
zebrafish larva. (a) Whole-brain calcium imaging of neuronal activity
at cellular resolution. (b) Manual segmentation of brain regions. (c)
Fluorescence (AF/F) traces in each brain area of (b). (d) Correlation
matrices of brain area activity for three fish (Brains A, B and C). (e)
Average correlation coefficients (R) of six fish. Adapted from Ahrens
et al. 2013.

Nelson, 2004; Sur and Rubenstein, 2005), and that spontaneous
activity is able to modulate dendritic spines number and struc-
tures, pretty much as evoked activity does (Trachtenberg et al.,
2002; Sur and Rubenstein, 2005). In addition, experimental evi-
dences demonstrated that a lack os spontaneous activity tend to
lead to a progressive decrease in the number of dendritic spines
connecting neurons, which in turn determine the triggering of
apoptotic processes ending with neuronal death (Fishbein and
Segal, 2007). Coordinated intrinsic activations may thus be (at
least in part) related to the establishment and the maintainance
of synaptic connectivity, crucial to sustain proper functionality
of the individual neurons and, as such, of the entire organism.
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Being so fundamental, it is thus to expect that these principles
should be conserved across species, with rather small differences
between phylogenetically closed species. It is also not surprising
that such spontaneous activations are not completely suppressed
in different states such as sleep or anesthesia, but simply modu-
lated. It is thus legitimate to think that substantial deviations
from the highly conserved core of spontaneous co-activations, trig-
gered by many possible factors, could be associated with (or even
lead to) a diverse range of pathological conditions, that have in
fact been linked with abnormal resting-state properties (Greicius
et al., 2007; Kennedy and Courchesne, 2008; Whitfield-Gabrieli
et al., 2009). On the other hand, it is reasonable to think that
physiological variability should also be present on top of an over-
all preserved functional skeleton, and that slight changes in that
may be associated with normal individual differences.



APPENDIX

Supplementary Materials

This chapter reproduces the Supplementary Materials of the pub-
lished paper Bettinardi et al. (2015), presented in chapter 2.
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Figure B.1: fMRI: Gradual changes in signal variability and
FC as anesthesia naturally fades out. (A) BOLD variance over
time in each area. All areas has been sorted depending on their mean
value across time. (B) Correlation time course of each link (i.e., each
pair of areas) under different levels of anesthesia. Links has been
sorted depending on their mean value across time. Pearson’s linear
correlations were converted to the corresponding Fisher’s z-score (see
Materials and Methods 2.3). (C) Distribution of all correlation co-
efficients over time. First phases of anesthesia are characterized by
more symmetrical distributions centered around low correlation val-
ues, whereas while the effect of anesthesia progressively decreases, the
percentage of links showing higher correlations raises.
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Figure B.2: Individual FC time courses of a subset of cortical
ROIs. Each panel depicts the functional connectivity time course of
a given cortical area with all other areas, computed from 90% over-
lapping sliding windows of 10 minutes. The horizontal bars on the
right of each panel represent the mean pairwise correlation between
the ROI and all other areas calculated across all the recording, and
emphasize which are the preferred subset of regions that exhibit the
highest correlations with a given area over all protocol time. A first
feature that is possible to appreciate is that contralateral ROIs show
increased correlation as the effect of anesthesia gradually vanishes over
time, being its value among the highest ones, where not the highest
itself. In addition, these analysis strongly suggest the presence of an
underlying correlation structure, which become clearer as anesthetic
effects gradually fades out over time. Indeed, cortical regions exhibit
the tendency to cluster preferentially with different subsets of other
regions, as exemplified by mPF and CC, which seem to take part to
the same functional cluster (top panels), and by Al with S1 and V2M
(bottom-left panels) and by S2 with primary sensory (S1) and motor
(M1) cortices (bottom-right panels).
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Figure B.3: Individual FC time courses of a subset of sub-
cortical areas. Each panel depicts the functional connectivity time
course of a given subcortical area with all other areas, computed from
90% overlapping sliding windows of 10 minutes. The horizontal bars
on the right of each panel represent the mean pairwise correlation be-
tween the ROI and all other areas calculated across all the recording,
and emphasize which are the preferred subset of regions that exhibit
the highest correlations with a given area over all protocol time. Sub-
cortical areas tend to show overall lower correlations with other areas
than cortical ones. Interesting is the temporal pattern of coactivations
within and between the amydgalas and the hypothalami (top-right
and bottom-right panels), which (after a first increase during deeper
stages of aneshesia) is decreasing, whereas most of cortical areas (see
Figure B.2) and to some extent the thalami (top-left panels) exhibit
increasing functional connectivity over time.
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Figure B.4: Scatterplots of variables measuring different as-
pects of functional dynamics. (A) Three dimensional scatter-
plot of the FC, functional integration and mean synchronization time
courses. It is possible to see that, as expected, the three variables are
highly correlated. Pairwise correlation between FC and functional in-
tegration is 0.9596, that between FC and mean synchronization 0.8069
whereas between functional integration and mean synchronization is
0.8009. (B) The relationship between Modularity ¢ with the three
measures plotted in panel A confirms that this metric conveys comple-
mentary information with respect to the others. Pairwise correlation
between Modularity and FC is in fact - 0.9775. (C) Correlation be-
tween Modularity and funcional integration is 0.9370. (D) Correlation
between Modularity and mean synchronization is 0.8182.
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Figure B.5: Ketamine/medetomidine modulation of the
power spectra in deep and light intervals. Empty rhombuses in-
dicate individual frequencies whose power were significantly different
in the two intervals recorded in in vivo experiments (p<0.05, paired
t-test). It is possible to appreciate that during deep anesthesia the
power of oscillations tend to be somehow reduced over all the spec-
trum above 25-30 Hz in all four recorded areas, whereas power in the
a range ( 10 Hz) is increased for DMN areas (mPF and CC). It should
be noted that, compared to Al and S2, mPF and CC presented a more
prominent peak at around 10 Hz both in deep and light anesthesia.
Shaded areas represent the standard error of the mean.
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Figure B.6: BLC time courses of all area pairs simultaneously
recorded in LFP experiments and BOLD FC time courses of
the corresponding ROIs. (A) Average band-limited correlations
(BLC) over time. Note that individual LFP recordings were slightly
different in duration (see Figure 1A). Indeed, the present panels where
plotted just for visualization purposes, as it was not possible to high-
light an unique “deep” interval. In fact, before averaging the BLC
were aligned to the end point and then equalized with respect to the
shortest one. For this reason, only the interval corresponding to light
anesthesia is marked, starting in correspondence of the dashed light-
blue line and until the end of the recording (see Materials and Meth-
ods 2.3). (B) Correlation time courses of the corresponding pairs of
ROIs obtained from separate fMRI scans. Dark- and light-blue lines
superimposed over the time courses in panels B represent deep and
light intervals , respectively. Interpretations of the possible relation-
ship between BLC and FC time courses are not straightforward. In
fact, imaging and in vivo experiments were not simultaneous, made
use of different rats and had different durations, factors that imposed
methodological limitations in performing a direct and reliable mea-
surement of their association. Nonetheless, it is possible to qualita-
tively appreciate a number of features, both within and between the
two different recording techniques. First, BLCs tend to exhibit a rel-
ative increase during the light interval at around 30-50 Hz (low-7)
in virtually all cases, the magnitude of this increase being the factor
that apparently distinguished between mPF-CC and the other pairs
of areas. Second, they also showed a rather persistent presence of cor-
related oscillations around 10 Hz («) and another at around 70 Hz
(mid-v), both of which seemingly independent to the anesthetic state;
It is worth to note that the size of the correlation peak in the o band
is much bigger in mPF-CC (and CC-S2) compared to other area pairs.
In contrast, in imaging results the only difference is between the corre-
lation time course of mPF-CC (which increased in time) and the other
ones (which maintained stable values). Taken together, these findings
seem to suggest a possible relationship between brain correlated ac-
tivity measured from BOLD signal and coupled neural oscillation in
the ~ range.
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B.1 Estimation of BOLD global
synchronization

To compute the Kuramoto order parameter y, we first extracted
the BOLD signal of each ROI corresponding to each 10 minutes
sliding window (each one corresponding to 7" = 200 sample points)
for all rats and computed the Hilbert envelope of the bandpassed
(0.04-0.07 Hz, Glerean et al. 2012) signal. The time-varying over-
all network synchronization within each sliding window was cal-
culated as

N
1 "
x(t) =l >0 (B.1)
i=1

where t = (1,2,...,T) and ¢;(t) is the phase of the oscillation of
each i-esim area at time ¢, being N the total number of areas.

B.2 Detection of functional
communities and modularity

In mathematical terms, being ¢; the community to which node
1 is assigned, @) is defined using the weighted adjacency matrix
Wi;, representing the strength of the edge between nodes i and j
(but set to 0 if no links exists between the two), as

1 W;W;
Q=55 DO (wi— Sy )9ci ) (B.2)

where 6(c;, ¢;) is the Kronecker delta function, which takes 1 if
nodes i and j are in the same community and 0 otherwise, the
strengths w; = > w;; , and the total strength W = > w; =

>0 Wiy
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B.3 LFP data analysis

The difference between the BLCs of the two states (deep and
light) was computed separately for each 1 Hz-width frequency
band (f) for coupled and uncoupled area pairs ij, as

Arp7ij(f) = [rrignt(f) = rDeep(f)lij (B.3)

B.4 Quantification of the frequency
shift

The relative correlation used to quantify the BLC frequency shift
to higher frequencies was calculated as

relrip(s) = :—fz(s) (B.4)

where s = (1,2, ...,.5) are the sliding windows, ry is the mean cor-
relation of the higher component (e.g., 11-15 Hz), and r;, that of
the lower one (e.g. 8-11 Hz). Each relative correlation coefficient
we obtained was then converted to the corresponding Fisher’s
Z-Score.






APPENDIX

Measuring graph properties

“Classical science in its diverse disciplines,
be it chemistry, biology, psychology or the
social sciences, tried to isolate the elements
of the observed universe - chemical
compounds and enzymes, cells, elementary
sensations, freely competing individuals,
what not — expecting that, by putting
them together again, conceptually or
experimentally, the whole or system - cell,
mind, society - would result and be
intelligible. Now we have learned that for
an understanding not only the elements but
their interrelations as well are required.”

L. von Bertalanffy

Real world’s entities are never isolated from one another, but in-
stead are characterized by the relationships they have with other
entities (Bertalanffy, 1968), giving rise to systems of varying com-
plexity. Some of the properties of these systems can be summa-
rized in terms of the pattern of relations between their elements,
and the resulting “maps” are referred to networks. Examples
can be as simple as a map of the underground, or as complex as
the dynamical interactions between all the metabolites in an or-
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ganism. Many of the resulting networks can be represented and
analyzed as graphs, mathematical objects consisting of a set V
of Ny vertices (also called nodes) and a set E of Ng edges (also
called links) connecting the vertices (Biggs 1993; Bang-Jensen
and Gutin 2008, see Figure C.1 for an example of this procedure
of progressive abstraction).

The resulting graphs are typically organized in matrices, where
each column (row) represents a given node, and the elements in
the matrix correspond to the link between the corresponding in-
dividual nodes. Depending on the kind of system under investiga-
tion, the links between nodes can be associated with real numbers
or can be either 1 if the connection is present, and 0 otherwise;
in the former case, the corresponding matrix is referred to as
weighted matriz, W, whereas in the latter case the correspond-
ing binary matrix is called adjacency matriz, A (see Figure C.2).
Graphs can also be directed if the connection between nodes ¢
and j is different from that between j and ¢, whereas in undi-
rected graphs the connectivity between the nodes is symmetrical.

Below we will make a non exaustive list of some of the most com-
mon measures used to quantify topological properties of graphs,
together with less common ones that we used in the main body
of the present dissertation.

C.1 Graph Density

The fraction of existing edges, Ng, over all possible ones, Ng,
quantifies the density D of a graph.

D=_%
Ng

(C.1)

The maximum number of edges in a directed graph is given by

N% = Ny (Ny—1), whereas in undirected graphs is N'% = 1 /5 Ny ( Ny —

1). See Figure C.3.
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Figure C.1: Graph representation. The figure illustrates the pro-
cess of progressive abstraction leading to a graph representation. (a)
Real human brain viewed from below. (b) Anatomical table of the
same view of the brain, as drawn from Belgian anatomist Andreas
Vesalius in his De humani corporis fabrica (1543). (c) Some regions
of the brain are highlighted. This “parcellation” of the system un-
der examination in distinct parts (called either nodes or wvertices) is
the first step to create a graph. (d) Graph representation. Different
regions of the brain, the nodes, are connected between them accord-
ing to anatomical connections. Note that the graph depicted in panel
(d) does not necessarily correspond to a realistic representation of
the anatomical connectivity between the highlighted regions, but have
been used only as an illustrative example of the process of progressive
abstraction behind the representation of a system as a graph.
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Figure C.2: Weighted and adjaency matrices. (Left) Graph rep-
resentation of anatomical brain connections. Adapted from Kringel-
bach et al. 2015. (Middle) The same graph in a weighted matrix form.
The values of each element of the matrix correspond, in this case, to
the number of reconstructed streamlines between regions as obtained
with diffusion tractography (see Section 1.2.4). (Right) Adjacency
matrix. Orange indicates when connection between two brain regions
is present (1), white that no streamline was reconstructed between the
two areas (0). In this case, both networks are undirected, as connec-
tivity is symmetrical.

0.045 0.1 0.4

Graph density

Figure C.3: Graph density. The total number of possible edges in
a undirected graph with 12 vertices is 66. The three examples have 3,
7, and 28 existing edges each.
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C.2 Degree and Strength

In undirected networks, the degree k; of the node ¢ corresponds
to the number of other nodes it is connected with, and as such is
a measure that does not take into account the weight of the con-
nections. On the other hand, the weighted degree (the strength)
k" of a node is the sum of the weights of all its connections.

k’i = Z aij

JENY

wo__
ki = E wij,

JENY

(C.2)

where a;; is the corresponding element of the adjacency matrix
A, a binary matrix storing the presence (1) or absence (0) of a
connection between all pair of nodes, and w;; is the weight of the
corresponding connection in the weighted matrix . In directed
graphs, it is possible to compute these measures for both incom-
ing and outcoming connections, referred to in-degree(strength)
and out-degree(strength), respectively. Together with graph den-
sity, strength and degree distributions have important influence in
determining (or bounding) more complex topological properties
and network measures (Bang-Jensen and Gutin, 2008; Rubinov
and Sporns, 2010).

C.3 Measures of Assortativity

Assortativity is a general concept referring to the coupling of ele-
ments with similar properties. In graph theory, assortativity can
be measured in several ways. One of these is given by the match-
ing index, M I, a measure that quantifies the similarity of the first-
neighbors of two different vertices v and v’. The first-neighbors
of a given node, I'(v) is the subset of nodes directly connected
to that node, I'(v) = {j : 4;, = 1}. As such, MI(v,v’) can be
considered as a measure of topological similarity that take into
account only the local neighborhood space of v and v’, computed
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as the ratio between their shared first-neighbors, |I'(v) N T'(v')],
with respect to the set of other distinct nodes they connect with,
P(v) UT()]:

MI(v,v') = Pw)NI)] Zivjvzl ApiAy
| C) UL k(o) + k() = Y0, AvAy;’

(C.3)

where k(v) and k(v") are the degree of v and v', respectively.
M1I(v,v") = 0if the two nodes have no common neighbors, whereas
MI(v,v") =1 if their neighbors are identical. The classic match-
ing index defined above is based on the adjacency matrix, and
as such cannot be measured on weighted networks unless they
are binarized. A similar measure that is applicable on weighted
networks is assortativity, S(v,v’), that can be quantified as the
correlation between the entire sets of weights defining the edges
connected with two different nodes, v and v/, and stored as col-
umn (or row) vectors in the weighted matrix W. S(v,v") =
cor(w(v),w(v')) is the measure used in the main body of the
thesis (see Figure 4.12), and conceptually can be considered as a
weighted matching index.

C.4 Clustering coefficient

The clustering coefficient is based on the observation that, in com-
plex networks, nodes tend to cluster in densely connected groups,
behavior that can be described with a metaphor describing so-
cial relationships: “the friends of my friends are also my friends”
(Holland and Leinhardt, 1971; Watts and Strogatz, 1998). In for-
mal terms, the clustering coefficient of a given node is given as
the fraction of existing edges between its neighbors, with respect
to all possible edges between them (see Figure C.4).

This measure thus quantifies how densely the i-th vertex clusters
with the neighboring nodes, which is reflected by the fraction of
triangles of which i is part of (i.e. the fraction of triangles formed
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a b c
Reference node 6 possible links 4 existing links
has 4 neighbors between neighbors between neighbors

Figure C.4: Local clustering coefficient. Schematic represen-
tation of how to compute the local clustering coefficient of a given
reference node, v (highlighted in yellow). (a) Original network, with
connection between reference node v and its 4 neighbors highlighted
in black. (b) All possible edges (6) between the neighbors of v are
highlighted in blue. (c) In red, the 4 existing connections between
the neighbors of v. The local clustering coefficient on node v thus
corresponds to C, = 4/6 = 0.67.

by the i-th node and other two connected neighbors of 7). The
number of triangles around a given node ¢ is given by

1
Vi=3 Z QijQinjh, (C.4)

j,h€Ny

where a;;, a;,, and a;j, are the corresponding elements of the adja-
cency matrix A (see Figure C.2). This measure can be extended
to weighted networks, replacing a;;, a;n, and a;, for the corre-
sponding weights w;;, w;,, and wj: in that case, V; will represent
the “intensity” of triangles around the i-th node. Formally, the
clustering coefficient of node 7 is defined as

2V,

Ci = ki(k; — 1)

(C.5)
where k; is the degree of the node (see Section C.2) and k;(k; — 1)

is the number of all possible edges between the neighbors of 7.
Another measure is the joint clustering coefficient, defined as
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The joint clustering is high if both nodes have large clustering
coefficients, and low otherwise. Nonetheless, it is important to
highlight that this measure does not account for possible overlap
between the triangles around the two nodes (i.e. if two nodes
share neighboring triangles), and as such it cannot be used as
a measure of the integration between the two nodes, that can
exhibit high JC' but share no neighbor at all.

C.5 Path length

The path between two nodes is defined as the number of links
separating them, and as such can be considered a simple measure
of the influence that one node exerts over another. The number
of paths of length [ between nodes i and j corresponds to the [-th
power of the adjacency matrix Aéj of the network (Bang-Jensen
and Gutin, 2008), and as such the total number of paths of any
length between any pair of nodes in the network is given by

P=1+A+ A+ A%+ =) A (C.7)
=0

meaning that the total number of paths of any length is in fact
infinite. Nonetheless, as the strength of the influence of one node
over another is indeed inversely related with the length of the
path (Huberman and Adamic, 2004; Ashton et al., 2005; Trusina
et al., 2005), typical applications of path length usually take into
account only relatively short paths, or focuses on measures such
as the shortest path connecting two nodes. The shortest path
length L, ,» between two vertices v and v', is the minimum number
of links interposed between them (see Figure C.5), whereas the
characteristic path length (L) of a network is the average over the
shortest paths across all pair of vertices in the network (in fact it
is also referred to as average path length).
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Figure C.5: Shortest path. Schematic representation of the short-
est path between different pairs of nodes (highlighted in yellow). (a)
Shortest path is 1. (b) Shortest path is 2. (c) Shortest path is 4. Note
that there can be more than one shortest path, as highlighted in blue.

The inverse of the shortest path between two nodes has been pro-
posed (Latora and Marchiori, 2001) as a measure of efficiency of
information transfer, a measure that can be computed for both
individual pairs of nodes (resulting in what is called local effi-
ciency) or using the average shortest path length, resulting in
what is referred to global efficiency, an unique scalar used to sum-
marize the overall integration capacity of the network. Nonethe-
less, this measure does not provide any more information than
path length, but has been proven to be numerically useful for dis-
connected graphs, as in these situations the efficiency would be
zero, whereas (L) = oo (Achard and Bullmore, 2007).

C.6 Small-Worldness

In an influential paper, Watts and Strogatz (1998) noted that
many real-world systems are neither completely regular nor com-
pletely random, but rather exhibit some intermediate topological
architecture. In particular, they noted that these systems tend
to show high local connectivity, meaning that the probability of
nodes to be connected decayed with distance, but and the same
time they have few long-range connections. This kind of architec-
ture, considered to be optimal in terms of whole-network infor-
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mation transfer (Latora and Marchiori, 2001), has been referred
to as “small-world” (see Figure C.6).

The two authors of this observation thus proposed a measure to
quantify how “small-world” a given network is. This measure is
just a simple ratio between the average clustering coefficient and
the average path length of a network (both normalized for random
network having the same degree distribution of the original one).

o C/C’rand

SW B L/L’/‘and

(C.8)

The more SW exceeds 1, the more the network is considered to
be small-world. It is believed that, in principle, brain networks
should at least exhibit some degree of small-worldness, as this
kind of architecture should mirror the co-existence of segregated
modules that nonetheless interact with each other (Sporns and
Zwi, 2004; Sporns and Honey, 2006; Bassett and Bullmore, 2006).
Nonetheless, it has been noted that how much “small-world” a
brain is crucially depends on the level of observation (Hilgetag
and Goulas, 2015), as recent experimental evidences suggest that,
at the cellular level, the cortex is densely connected in a manner
that is incompatible with a small-world topology (Markov et al.,
2013).

C.7 Communicability

The classic measure of path length (Appendix C.5) ignores the
number of possible alternative paths existing between any pair of
nodes. In fact, information flow does not follow a unique path,
but rather spreads along several ones, each of different length
and strength. This kind of information is exploited by a met-
ric called communicability, a generalization of path length that
accounts for the influence along all paths of any length between
two nodes (Estrada and Hatano, 2008). As such, the communi-
cability accounts for the possibility of a “peripheral” spreading of
communications through multiple paths of different lengths.
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Figure C.6: Small-world topology. Top: Examples of three dif-
ferent networks obtained rewiring each link with a given probability
p, but maintain the same number of links as in the regular lattice
(Top-Left). Bottom: Average clustering coefficient, C, and average
path length, L (each normalized using an appropriate random net-
work) for different values of rewiring probability. According to Watts
and Strogatz 1998, small-world architectures correspond to large aver-
age clustering and low average path length. Adapted from Watts and
Strogatz 1998
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Shorter paths are linked to more effective communications be-
tween nodes (Huberman and Adamic, 2004; Ashton et al., 2005;
Trusina et al., 2005; Zamora-Lépez et al., 2016), which motivated
the use of a “penalty” for longer paths in the form of a decay of
their influence. With this in mind, Estrada and Hatano (2008)
introduced a measure of communicability based on the assump-
tion that shorter paths contributes more than longer ones through
the form of an exponential decay, and showed that in this case
the communicability matrix C corresponds, by definition, to the
exponential of the matrix A.

OOAZ A2 A3 "
C:;W:1+A+E+§+---=e (C.9)
=0

The communicability matric C can be obtained both from adja-
cency (A) or from weighted matrix W, making this measure an
excellent and versatile candidate to quantify the influence, accu-
mulated over all possible paths of any length, exerted by a given
node over any other node in the network, where longer paths will
contribute less than shorter ones. From a physical perspective,
this measure is analogous to a diffusion process characterized by
a nonlinear decay for longer paths (Zamora-Lépez et al., 2016).
Its use in this context is justified by the above cited theoretical
findings and the results from network models presented in Sec-
tion 4.2; furthermore, due to the intrinsic stochasticity of synaptic
activity and the complex interactions between excitatory and in-
hibitory neurons, it is legitimate to assume that the net influence
that a given neuron (or a population) have on the activity of an-
other neuron (population) is inversely related with the minimal
number of synaptic connections separating the two, which can be
considered their “synaptic” distance.

C.8 Expected covariation

Using the information about the influence that a given node ex-
erts on any other node through any path (through the use of the
measure of communicability described above in Appendix C.7),
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it is possible to derive an analytical measure that quantifies the
strength of the covariation that one can expect in the activity
between any pair of nodes in a network. The i-th column c; of
the communicability matrix C represents the overall relative topo-
logical influence that the i-th node receives -through all paths of
any length- from the rest of the network in which it is embedded.
With this in mind, it is legitimate to assume that, if two nodes
have similar topological profiles (i.e. they receive similar influ-
ences from all other nodes in the network), their activities will
strongly co-vary. We can thus define the expected covariation T;;
between two nodes ¢ and j as the similarity between the corre-
sponding vectors c¢; and c¢;. Here we will use the cosine similarity
between the vectors, even if any measures of similarity between
vectors can be used. In this case, we defined T;; as

T =S (C.10)
il lle;

This original measure of expected covariation is based on the
similarity of the complete topological profiles between any pair
of nodes (in fact it shares the same logic behind assortativity
measures, see Appendix C.3), and is in principle applicable to
any type of network from which the communicability matrix C
can be obtained. It ranges from -1 to 1, and its interpretation
is analogous to that of a classic Pearson’s correlation coefficient
r. In fact, due to the well-known relationship between the cosine
between two vectors and r, if the vectors in C are centered by sub-
tracting their vector mean, then the expected covariation matrix
T is equivalent to a correlation matrix. in addition, the fact that
T is obtained analytically, makes it very easy and versatile to use,
avoiding possibly long and computationally expansive numerical
simulations. Finally, the effects that other specific topological
properties of the network (such as its degree distribution, the ex-
istence of modules, the type of graph and so on) exert on the
arising correlation structure should in principle be all implicitly
captured and resumed in 7.

The above mentioned properties makes 7 a powerful candidate
when it comes to evaluate the major contribution of network
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topology on the emerging pattern of covariations displayed by in-
dividual elements of the system, and independently quantified (on
a distinct dataset putatively sharing the same connectivity ma-
trix) using measures of pairwise relationship such as the Pearson
correlation coefficient. The hypothesized relationship between
the topological expected covariation and the average correlation
structure of network activity, namely that 7 = (R), can in prin-
ciple be tested in different ways. For example, assuming that
the matrix A (or W) is a good representation of the real struc-
tural network, then the more instances (“samples”) R; are used
to compute (R), the better 7 should approximate (R), provided
that each R; share the same A (W).

The topological covariation 7 quantifies the extent of the simi-
larity of the communicability profiles between pairs of nodes, and
provides a good approximation of the overall average correlation
structure that a given network can sustain. As such, we are mak-
ing the explicit assumption that covariation (in a given direction)
of the topological profiles somehow corresponds to covariation (in
the same direction) of the dynamical profiles. Nonetheless, it is
important to stress that (i) this assumption, even if legitimate,
does not correspond to an absolute necessity, and (ii) the same
caveats of both the covariance and the correlation hold when in-
terpreting results from this measure of expected covariation: these
measures only quantify the extent to which two random variables
change together, but give no clue on the causal relationship be-
tween them.

In real world, different systems are usually characterized by dis-
tinct local dynamics, determined by different parameters (which
may be unknown); this can dramatically change the strength of
the dependence on the underlying topology, e.g. making even
longer paths potentially relevant (as in the case of information
spreading in social networks). In neuroscience, a seminal exam-
ple of the fundamental effects that endogenous modulation of lo-
cal dynamics have on changing the dependence of the system on
the underlying connectivity is the observation that, compared to
the awake state, the spreading of neural activity across the cor-
tex (measured with EEG) following a perturbation (via TMS)
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is significantly reduced during sleep, resulting in a rapid spatial
fading of the evoked activity around the perturbed locus (Mas-
simini et al., 2005). As such, it can be preferable to find the
working regime of T that best fits the empirical data, e.g. by
multiplying the communicability matrix C by a global coupling
factor g prior to computing 7 (i.e C = e94), and optimize it in
order to control for the particular strength of the dependence on
the network structure. This optimization procedure allows to ob-
tain meaningful insights, as about the extent to which the system
of interest can be understood mainly in terms of the topology
of the relationship between its parts; or it may inform, through
comparing the best-fitting g obtained from different states, about
specific dynamical changes in the relationship between structure
and function, or about the overall quality and reliability of the
network used to obtain 7 (or about some of its individual links
or elements); or it can be used to make precise predictions of
the whole-network changes in pairwise relationships following any
type of structural or dynamical perturbations.






Bibliography

Achard, S. and Bullmore, E. (2007). Efficiency and cost of
economical brain functional networks. PLoS Comput Biol,
3(2):el7. 167

Ahrens, M. B., Orger, M. B., Robson, D. N.; Li, J. M., and
Keller, P. J. (2013). Whole-brain functional imaging at cel-
lular resolution using light-sheet microscopy. Nature Methods,
10(5):413-420. 146, 147

Alkire, M. T., Hudetz, A. G., and Tononi, G. (2008). Conscious-
ness and Anesthesia. Science, 322(5903):876-880. 68, 73

Alkire, M. T. M., Haier, R. J. P., Shah, N. K. M., and Ander-
son, C. T. M. (1997). Positron Emission Tomography Study
of Regional Cerebral Metabolism in Humans during Isoflurane
Anesthesia. The Journal of the American Society of Anesthe-
siologists, 86(3):549-557. 1

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele,
T., and Calhoun, V. D. (2012). Tracking Whole-Brain Connec-
tivity Dynamics in the Resting State. Cerebral Cortex, page
bhs352. 23

Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., and
Sporns, O. (2009). Modeling the Impact of Lesions in the Hu-
man Brain. PLOS Comput Biol, 5(6):e1000408. 80

Ames III, A. (2000). CNS energy metabolism as related to func-
tion. Brain Research Reviews, 34(12):42-68. 12

175



176 BIBLIOGRAPHY

Arenas, A., Daz-Guilera, A., Kurths, J., Moreno, Y., and Zhou,
C. (2008). Synchronization in complex networks. Physics Re-
ports, 469(3):93-153. 110, 133

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dy-
namics of Ongoing Activity: Explanation of the Large Vari-
ability in Evoked Cortical Responses. Science, 273(5283):1868—
1871. 3, 4

Arnett, D. W. (1978). Statistical dependence between neighbor-
ing retinal ganglion cells in goldfish. FExperimental Brain Re-
search, 32(1):49-53. 140

Ashton, D. J., Jarrett, T. C., and Johnson, N. F. (2005). Ef-
fect of Congestion Costs on Shortest Paths Through Complex
Networks. Physical Review Letters, 94(5):058701. 166, 170

Attwell, D. and Laughlin, S. B. (2001). An Energy Budget for
Signaling in the Grey Matter of the Brain. Journal of Cerebral
Blood Flow & Metabolism, 21(10):1133-1145. 12

Avena-Koenigsberger, A., Misi¢, B., Hawkins, R. X., Griffa, A.,
Hagmann, P., Goni, J., and Sporns, O. (2016). Path ensembles
and a tradeoff between communication efficiency and resilience

in the human connectome. Brain Structure and Function, pages
1-16. 133

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized
criticality: An explanation of the 1/ \textit{f} noise. Physical
Review Letters, 59(4):381-384. 24

Bang-Jensen, J. and Gutin, G. Z. (2008). Digraphs: Theory,
Algorithms and Applications. Springer. 99, 103, 106, 160, 163,
166

Barabsi, A.-L. and Albert, R. (1999). Emergence of Scaling in
Random Networks. Science, 286(5439):509-512. 133

Barnes, S. J. and Finnerty, G. T. (2010). Sensory Experience and
Cortical Rewiring. The Neuroscientist, 16(2):186-198. 37

Bassett, D. S. and Bullmore, E. (2006). Small-World Brain Net-
works. The Neuroscientist, 12(6):512-523. 68, 168

Becerra, L., Pendse, G., Chang, P.-C., Bishop, J., and Borsook,
D. (2011). Robust Reproducible Resting State Networks in the
Awake Rodent Brain. PLOS ONE, 6(10):e25701. 43



BIBLIOGRAPHY 177

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M.
(2005). Investigations into resting-state connectivity using in-
dependent component analysis. Philosophical Transactions of
the Royal Society B: Biological Sciences, 360(1457):1001-1013.
4,7,8,16, 17, 18, 43

Bertalanffy, L. v. (1968). General System Theory: Foundations,
Development, Applications. G. Braziller. 9, 159

Bettinardi, R. G., Tort-Colet, N., Ruiz-Mejias, M., Sanchez-
Vives, M. V., and Deco, G. (2015). Gradual emergence of
spontaneous correlated brain activity during fading of general
anesthesia in rats: Evidences from fMRI and local field poten-

tials. NeuroImage, 114:185-198. 6, 42, 149

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982).
Theory for the development of neuron selectivity: orientation

specificity and binocular interaction in visual cortex. The Jour-
nal of Neuroscience, 2(1):32-48. 78

Biggs, N. (1993). Algebraic Graph Theory. Cambridge University
Press. 106, 160

Bihan, D. L. and lima, M. (2015). Diffusion Magnetic Resonance
Imaging: What Water Tells Us about Biological Tissues. PLOS
Biol, 13(7):1002203. 29

Birbaumer, N., Elbert, T., Canavan, A. G., and Rockstroh, B.
(1990). Slow potentials of the cerebral cortex and behavior.
Physiological Reviews, 70(1):1-41. 26

Birn, R. M., Diamond, J. B., Smith, M. A., and Bandettini,
P. A. (2006). Separating respiratory-variation-related fluctua-
tions from neuronal-activity-related fluctuations in fMRI. Neu-
rolmage, 31(4):1536-1548. 17

Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B.,
Kirk, G. R., Nair, V. A., Meyerand, M. E., and Prabhakaran,
V. (2013). The effect of scan length on the reliability of resting-
state fMRI connectivity estimates. Neurolmage, 83:550-558.
20, 22, 23

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S.
(1995). Functional connectivity in the motor cortex of resting
human brain using echo-planar mri. Magnetic Resonance in



178 BIBLIOGRAPHY

Medicine, 34(4):537-541. 2, 3,7, 9, 16, 43

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C.,
Smith, S. M., Beckmann, C. F., Adelstein, J. S., Buckner,
R. L., Colcombe, S., Dogonowski, A.-M., Ernst, M., Fair, D.,
Hampson, M., Hoptman, M. J., Hyde, J. S., Kiviniemi, V. J.,
Kotter, R., Li, S.-J., Lin, C.-P., Lowe, M. J., Mackay, C., Mad-
den, D. J., Madsen, K. H., Margulies, D. S., Mayberg, H. S.,
McMahon, K., Monk, C. S., Mostofsky, S. H., Nagel, B. J.,
Pekar, J. J., Peltier, S. J., Petersen, S. E., Riedl, V., Rom-
bouts, S. A. R. B., Rypma, B., Schlaggar, B. L., Schmidt, S.,
Seidler, R. D., Siegle, G. J., Sorg, C., Teng, G.-J., Veijola, J.,
Villringer, A., Walter, M., Wang, L., Weng, X.-C., Whitfield-
Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y.-F.,
Zhang, H.-Y., Castellanos, F. X., and Milham, M. P. (2010).
Toward discovery science of human brain function. Proceedings
of the National Academy of Sciences, 107(10):4734-4739. 7, 16,
18, 22

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. (2008). Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Fxperi-
ment, 2008(10):P10008. 52

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang,
D. U. (2006). Complex networks: Structure and dynamics.
Physics Reports, 424(45):175-308. 134

Boveroux, P., Vanhaudenhuyse, A., Bruno, M.-A., Noirhomme,
Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A.,
Schnakers, C., Phillips, C., Brichant, J.-F., Bonhomme, V.,
Maquet, P., Greicius, M. D., Laureys, S., and Boly, M.
(2010). Breakdown of within- and between-network Resting
State Functional Magnetic Resonance Imaging Connectivity
during Propofol-induced Loss of Consciousness:. Anesthesiol-
ogy, 113(5):1038-1053. 43, 71

Braun, A. R., Balkin, T. J., Wesenten, N. J., Carson, R. E.,
Varga, M., Baldwin, P., Selbie, S., Belenky, G., and Herscov-
itch, P. (1997). Regional cerebral blood flow throughout the
sleep-wake cycle. An H2(15)O PET study. Brain, 120(7):1173~
1197. 1



BIBLIOGRAPHY 179

Breakspear, M. and Jirsa, V. K. (2007). Neuronal Dynamics and
Brain Connectivity. In Jirsa, V. K. and McIntosh, A. R., ed-
itors, Handbook of Brain Connectivity, Understanding Com-

plex Systems, pages 3-64. Springer Berlin Heidelberg. DOI:
10.1007/978-3-540-71512-2_1. 79

Breakspear, M., Terry, J. R., and Friston, K. J. (2003). Modula-
tion of excitatory synaptic coupling facilitates synchronization
and complex dynamics in a biophysical model of neuronal dy-

namics. Network: Computation in Neural Systems, 14(4):703—
732. 80, 82

Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y.-Y., We-
ber, J., and Kober, H. (2011). Meditation experience is asso-
ciated with differences in default mode network activity and

connectivity. Proceedings of the National Academy of Sciences,
108(50):20254-20259. 43

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R.,
Stephenson, M. C., Barnes, G. R., Smith, S. M., and Morris,
P. G. (2011). Investigating the electrophysiological basis of rest-
ing state networks using magnetoencephalography. Proceedings
of the National Academy of Sciences, 108(40):16783-16788. 53,
72

Brown, E. N.; Lydic, R., and Schiff, N. D. (2010). General Anes-
thesia, Sleep, and Coma. New England Journal of Medicine,
363(27):2638-2650. 43, 74

Brown, E. N.; Purdon, P. L., and Van Dort, C. J. (2011). General
Anesthesia and Altered States of Arousal: A Systems Neuro-
science Analysis. Annual Review of Neuroscience, 34:601-628.
74,75

Bruhn, J., Rpcke, H., and Hoeft, A. (2000). Approximate Entropy
as an Electroencephalographic Measure of Anesthetic Drug Ef-
fect during Desflurane Anesthesia:. Anesthesiology, 92(3):715—
726. 73

Brunel, N. and Wang, X.-J. (2001). Effects of Neuromodula-
tion in a Cortical Network Model of Object Working Memory

Dominated by Recurrent Inhibition. Journal of Computational
Neuroscience, 11(1):63-85. 85



180 BIBLIOGRAPHY

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L.
(2008). The Brain’s Default Network. Annals of the New York
Academy of Sciences, 1124(1):1-38. 70

Buckner, R. L. and Carroll, D. C. (2007). Self-projection and the
brain. Trends in Cognitive Sciences, 11(2):49-57. 70

Buckner, R. L. and Vincent, J. L. (2007). Unrest at rest: Default
activity and spontaneous network correlations. Neurolmage,
37(4):1091-1096. 1

Bullmore, E. and Sporns, O. (2009). Complex brain networks:

graph theoretical analysis of structural and functional systems.
Nature Reviews Neuroscience, 10(3):186-198. 37, 38, 105, 116

Bullmore, E. and Sporns, O. (2012). The economy of brain net-
work organization. Nature Reviews Neuroscience, 13(5):336—
349. 39

Buzsaki, G. (2006). Rhythms of the Brain. Oxford University
Press. 44

Buzsdki, G. (2010). Neural Syntax: Cell Assemblies, Synapsem-
bles, and Readers. Neuron, 68(3):362-385. 37

Buzsaki, G. and Draguhn, A. (2004). Neuronal Oscillations in
Cortical Networks. Science, 304(5679):1926-1929. 24, 25, 44

Buzsdki, G., Logothetis, N., and Singer, W. (2013). Scaling Brain
Size, Keeping Timing: Evolutionary Preservation of Brain
Rhythms. Neuron, 80(3):751-764. 24, 25

Cabeza, R. and Nyberg, L. (2000). Imaging Cognition II: An
Empirical Review of 275 PET and fMRI Studies. Journal of
Cognitive Neuroscience, 12(1):1-47. 2, 13

Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of
local network oscillations in resting-state functional connectiv-
ity. Neurolmage, 57(1):130-139. 56, 79, 89

Cabral, J., Kringelbach, M. L., and Deco, G. (2014a). Exploring
the network dynamics underlying brain activity during rest.
Progress in Neurobiology, 114:102-131. 43, 53, 79, 94

Cabral, J., Luckhoo, H., Woolrich, M., Joensson, M., Mohseni,
H., Baker, A., Kringelbach, M. L., and Deco, G. (2014b). Ex-
ploring mechanisms of spontaneous functional connectivity in
MEG: How delayed network interactions lead to structured am-



BIBLIOGRAPHY 181

plitude envelopes of band-pass filtered oscillations. Neurolm-
age, 90:423-435. 72

Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M.,
Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Mal-
izia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, A.,
Wise, R. G., and Nutt, D. J. (2012). Neural correlates of the
psychedelic state as determined by fMRI studies with psilocy-
bin. Proceedings of the National Academy of Sciences of the
United States of America, 109(6):2138-2143. 6, 43, 71

Cauda, F., Micon, B. M., Sacco, K., Duca, S., D’Agata, F., Gem-
iniani, G., and Canavero, S. (2009). Disrupted intrinsic func-
tional connectivity in the vegetative state. Journal of Neurol-
ogy, Neurosurgery, and Psychiatry, 80(4):429-431. 8

Cheetham, C. E. J., Hammond, M. S. L., McFarlane, R., and
Finnerty, G. T. (2008). Altered Sensory Experience Induces

Targeted Rewiring of Local Excitatory Connections in Mature
Neocortex. The Journal of Neuroscience, 28(37):9249-9260. 37

Choe, A. S., Jones, C. K., Joel, S. E., Muschelli, J., Belegu,
V., Caffo, B. S., Lindquist, M. A., Zijl, C. M., and Pekar,
J. J. (2015). Reproducibility and Temporal Structure in Weekly
Resting-State fMRI over a Period of 3.5 Years:e0140134. PLoS
One, 10(10). 7, 20, 21, 22

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., and
Schooler, J. W. (2009). Experience sampling during fMRI re-
veals default network and executive system contributions to

mind wandering. Proceedings of the National Academy of Sci-
ences, 106(21):8719-8724. 16

Chung, K. and Deisseroth, K. (2013). CLARITY for mapping the
nervous system. Nature Methods, 10(6):508-513. 29

Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S., An-
dalman, A. S., Davidson, T. J., Mirzabekov, J. J., Zalocusky,
K. A., Mattis, J., Denisin, A. K., Pak, S., Bernstein, H., Ra-
makrishnan, C., Grosenick, L., Gradinaru, V., and Deisseroth,

K. (2013). Structural and molecular interrogation of intact bi-
ological systems. Nature, 497(7449):332-337. 29

Churchland, P. S. and Sejnowski, T. J. (1988). Perspectives on



182 BIBLIOGRAPHY

cognitive neuroscience. Science, 242(4879):741-745. 10

Churchland, P. S. and Sejnowski, T. J. (1994). The Computational
Brain. MIT Press. 9, 37

Coenen, A., Fine, E., and Zayachkivska, O. (2014). Adolf Beck:
A Forgotten Pioneer in Electroencephalography. Journal of the
History of the Neurosciences, 23(3):276-286. 1

Cohen, E., Ivenshitz, M., Amor-Baroukh, V., Greenberger, V.,
and Segal, M. (2008). Determinants of spontaneous activity in
networks of cultured hippocampus. Brain Research, 1235:21—
30. 140

Compte, A., Sanchez-Vives, M. V., McCormick, D. A., and Wang,
X.-J. (2003). Cellular and Network Mechanisms of Slow Oscil-
latory Activity (&lt;1 Hz) and Wave Propagations in a Cortical
Network Model. Journal of Neurophysiology, 89(5):2707-2725.
141

Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder,
A. Z., Shimony, J. S., McKinstry, R. C., Burton, H., and
Raichle, M. E. (1999). Tracking neuronal fiber pathways in

the living human brain. Proceedings of the National Academy
of Sciences, 96(18):10422-10427. 29
Csicsvari, J., Jamieson, B., Wise, K. D., and Buzsédki, G. (2003).

Mechanisms of Gamma Oscillations in the Hippocampus of the
Behaving Rat. Neuron, 37(2):311-322. 24, 26

Cumin, D. and Unsworth, C. P. (2007). Generalising the Ku-
ramoto model for the study of neuronal synchronisation in the
brain. Physica D: Nonlinear Phenomena, 226(2):181-196. 56

Damoiseaux, J. S., Rombouts, S. a. R. B., Barkhof, F., Scheltens,
P., Stam, C. J., Smith, S. M., and Beckmann, C. F. (2006).
Consistent resting-state networks across healthy subjects. Pro-
ceedings of the National Academy of Sciences, 103(37):13848—
13853. 6

Damoiseaux, J. S., Seeley, W. W., Zhou, J., Shirer, W. R., Cop-
pola, G., Karydas, A., Rosen, H. J., Miller, B. L., Kramer,
J. H., and Greicius, M. D. (2012). Gender Modulates the APOE
4 Effect in Healthy Older Adults: Convergent Evidence from
Functional Brain Connectivity and Spinal Fluid Tau Levels.



BIBLIOGRAPHY 183

The Journal of Neuroscience, 32(24):8254-8262. 8

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and Kotter, R.
(2009a). Key role of coupling, delay, and noise in resting brain
fluctuations. Proceedings of the National Academy of Sciences,
106(25):10302-10307. 68

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and Kotter, R.
(2009b). Key role of coupling, delay, and noise in resting brain
fluctuations. Proceedings of the National Academy of Sciences,
106(25):10302-10307. 79, 84, 85

Deco, G. and Jirsa, V. K. (2012). Ongoing Cortical Activity at
Rest: Criticality, Multistability, and Ghost Attractors. The
Journal of Neuroscience, 32(10):3366-3375. 79, 85

Deco, G., Jirsa, V. K., and McIntosh, A. R. (2011). Emerging
concepts for the dynamical organization of resting-state activity
in the brain. Nature Reviews Neuroscience, 12(1):43-56. 43

Deco, G., Jirsa, V. K., and McIntosh, A. R. (2013). Resting
brains never rest: computational insights into potential cogni-
tive architectures. Trends in Neurosciences, 36(5):268-274. 88,
94

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and
Friston, K. (2008). The Dynamic Brain: From Spiking Neurons
to Neural Masses and Cortical Fields. PLOS Comput Biol,
4(8):¢1000092. 85

Deco, G. and Kringelbach, M. (2014). Great Expectations: Using
Whole-Brain Computational Connectomics for Understanding
Neuropsychiatric Disorders. Neuron, 84(5):892-905. 38

Deco, G. and Kringelbach, M. L. (2016). Metastability and Co-
herence: Extending the Communication through Coherence
Hypothesis Using A Whole-Brain Computational Perspective.
Trends in Neurosciences, 39(3):125-135. 90, 96, 133

Deco, G. and Rolls, E. T. (2006). Decision-making and Weber’s
law: a neurophysiological model. European Journal of Neuro-
science, 24(3):901-916. 85

Engel, A. K., Fries, P., and Singer, W. (2001). Dynamic pre-
dictions: Oscillations and synchrony in topdown processing.
Nature Reviews Neuroscience, 2(10):704-716. 24



184 BIBLIOGRAPHY

Engel, A. K. and Singer, W. (2001). Temporal binding and the
neural correlates of sensory awareness. Trends in Cognitive
Sciences, 5(1):16-25. 24

Estrada, E. and Hatano, N. (2008). Communicability in complex
networks. Physical Review E, 77(3):036111. 113, 134, 168, 170

Estrada, E., Hatano, N., and Benzi, M. (2012). The physics
of communicability in complex networks. Physics Reports,
514(3):89-119. 113

Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. (2008). Noise
in the nervous system. Nature Reviews Neuroscience, 9(4):292—
303. 2

Faivre, A., Rico, A., Zaaraoui, W., Crespy, L., Reuter, F.,
Wybrecht, D., Soulier, E., Malikova, I., Confort-Gouny, S.,
Cozzone, P. J., Pelletier, J., Ranjeva, J.-P., and Audoin, B.
(2012). Assessing brain connectivity at rest is clinically rel-
evant in early multiple sclerosis. Multiple Sclerosis Journal,
18(9):1251-1258. 8

Ferenets, R., Vanluchene, A., Lipping, T., Heyse, B., and Struys,
M. M. R. F. (2007). Behavior of Entropy/Complexity Mea-
sures of the Electroencephalogram during Propofol-induced Se-
dation: Dose-dependent Effects of Remifentanil. Anesthesiol-
ogy, 106(4):696-706. 73

Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B.,
Malcolm, J., Ramirez-Manzanares, A., Reisert, M., Sakaie, K.,
Tensaouti, F., Yo, T., Mangin, J.-F., and Poupon, C. (2011).
Quantitative evaluation of 10 tractography algorithms on a re-
alistic diffusion MR phantom. Neurolmage, 56(1):220-234. 29

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J.,
Chun, M. M., Papademetris, X., and Constable, R. T. (2015).
Functional connectome fingerprinting: identifying individuals
using patterns of brain connectivity. Nature Neuroscience,
18(11):1664-1671. 20

Fishbein, I. and Segal, M. (2007). Miniature synaptic currents

become neurotoxic to chronically silenced neurons. Cerebral
Corterx, 17(6):1292-1306. 147

Fisher, R. A. (1915). Frequency Distribution of the Values of the



BIBLIOGRAPHY 185

Correlation Coefficient in Samples from an Indefinitely Large
Population. Biometrika, 10(4):507-521. 49

FitzHugh, R. (1961). Impulses and Physiological States in The-
oretical Models of Nerve Membrane. Biophysical Journal,
1(6):445-466. 83

Fornito, A., Zalesky, A., and Breakspear, M. (2013). Graph anal-

ysis of the human connectome: Promise, progress, and pitfalls.
NeuroImage, 80:426-444. 39

Fox, M. D. and Raichle, M. E. (2007). Spontaneous fluctuations
in brain activity observed with functional magnetic resonance
imaging. Nature Reviews Neuroscience, 8(9):700-711. 15

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Essen,
D. C. V., and Raichle, M. E. (2005). The human brain is
intrinsically organized into dynamic, anticorrelated functional
networks. Proceedings of the National Academy of Sciences of
the United States of America, 102(27):9673-9678. 5, 7, 16, 43,
85

Franks, N. P. (2008). General anaesthesia: from molecular targets
to neuronal pathways of sleep and arousal. Nature Reviews
Neuroscience, 9(5):370-386. 43, 71

Fransson, P. (2005). Spontaneous low-frequency BOLD signal
fluctuations: An fMRI investigation of the resting-state default
mode of brain function hypothesis. Human Brain Mapping,
26(1):15-29. 6

Fransson, P. (2006). How default is the default mode of brain
function?: Further evidence from intrinsic BOLD signal fluctu-
ations. Neuropsychologia, 44(14):2836-2845. 4

Fransson, P., Skild, B., Engstrm, M., Hallberg, B., Mosskin, M.,
den, U., Lagercrantz, H., and Blennow, M. (2009). Spontaneous
Brain Activity in the Newborn Brain During Natural SleepAn
fMRI Study in Infants Born at Full Term. Pediatric Research,
66(3):301-305. 43

Fransson, P., Skild, B., Horsch, S., Nordell, A., Blennow, M.,
Lagercrantz, H., and den, U. (2007). Resting-state networks

in the infant brain. Proceedings of the National Academy of
Sciences, 104(39):15531-15536. 43



186 BIBLIOGRAPHY

Freyer, F., Roberts, J. A., Becker, R., Robinson, P. A., Ritter,
P., and Breakspear, M. (2011). Biophysical Mechanisms of
Multistability in Resting-State Cortical Rhythms. The Journal
of Neuroscience, 31(17):6353-6361. 90

Freyer, F., Roberts, J. A., Ritter, P., and Breakspear, M. (2012).
A Canonical Model of Multistability and Scale-Invariance in
Biological Systems. PLOS Comput Biol, 8(8):€1002634. 90

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal

communication through neuronal coherence. Trends in Cogni-
tive Sciences, 9(10):474-480. 24, 73
Fries, P. (2009). Neuronal Gamma-Band Synchronization as a

Fundamental Process in Cortical Computation. Annual Review
of Neuroscience, 32(1):209-224. 73

Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. J.
(1993). Functional Connectivity: The Principal-Component
Analysis of Large (PET) Data Sets. Journal of Cerebral Blood
Flow & Metabolism, 13(1):5-14. 18, 49, 53, 55

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic
causal modelling. NeuroImage, 19(4):1273-1302. 84, 89

Gambuzza, L. V., Cardillo, A., Fiasconaro, A., Fortuna, L.,
Gomez-Gardenes, J., and Frasca, M. (2013). Analysis of re-

mote synchronization in complex networks. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 23(4):043103. 102

Gerstein, G. L. and Perkel, D. H. (1969). Simultaneously
Recorded Trains of Action Potentials: Analysis and Functional
Interpretation. Science, 164(3881):828-830. 18

Ghosh, A., Rho, Y., McIntosh, A. R., Kotter, R., and Jirsa,
V. K. (2008). Noise during Rest Enables the Exploration
of the Brain’s Dynamic Repertoire. PLOS Comput Biol,
4(10):¢1000196. 79, 83

Glerean, E., Salmi, J., Lahnakoski, J. M., Jskelinen, I. P.; and
Sams, M. (2012). Functional Magnetic Resonance Imaging
Phase Synchronization as a Measure of Dynamic Functional
Connectivity. Brain Connectivity, 2(2):91-101. 18, 19, 96, 156

Goémez, S., Jensen, P.; and Arenas, A. (2009). Analysis of commu-
nity structure in networks of correlated data. Physical Review



BIBLIOGRAPHY 187

E, 80(1):016114. 52

Goémez-Gardenes, J., Moreno, Y., and Arenas, A. (2007). Paths
to Synchronization on Complex Networks. Physical Review Let-
ters, 98(3):034101. 133

Goni, J., Heuvel, M. P. v. d., Avena-Koenigsberger, A., Men-
dizabal, N. V. d., Betzel, R. F., Griffa, A., Hagmann, P.,
Corominas-Murtra, B., Thiran, J.-P., and Sporns, O. (2014).
Resting-brain functional connectivity predicted by analytic
measures of network communication. Proceedings of the Na-

tional Academy of Sciences, 111(2):833-838. 133

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solva-
son, H. B., Kenna, H., Reiss, A. L., and Schatzberg, A. F.
(2007). Resting-State Functional Connectivity in Major De-
pression: Abnormally Increased Contributions from Subgen-
ual Cingulate Cortex and Thalamus. Biological Psychiatry,
62(5):429-437. 8, 148

Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionp, V.,
Alahuhta, S., Reiss, A. L., and Menon, V. (2008). Persistent
default-mode network connectivity during light sedation. Hu-
man Brain Mapping, 29(7):839-847. 9, 43, 70

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003).
Functional connectivity in the resting brain: A network analysis
of the default mode hypothesis. Proceedings of the National
Academy of Sciences, 100(1):253-258. 5, 43

Gusnard, D. A. and Raichle, M. E. (2001). Searching for a base-
line: Functional imaging and the resting human brain. Nature
Reviews Neuroscience, 2(10):685-694. 4, 5, 6

Haas, L. F. (2003). Hans Berger (18731941), Richard Caton
(18421926), and electroencephalography. Journal of Neurology,
Neurosurgery € Psychiatry, 74(1):9-9. 1

Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S.,
Ellen Grant, P., Wedeen, V., Meuli, R., Thiran, J.-P., Honey,
C. J., and Sporns, O. (2010). MR connectomics: Principles and
challenges. Journal of Neuroscience Methods, 194(1):34-45. 37

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey,
C. J.,, Wedeen, V. J., and Sporns, O. (2008). Mapping



188 BIBLIOGRAPHY

the Structural Core of Human Cerebral Cortex. PLOS Biol,
6(7):e159. 71

Haken, H. (1975). Cooperative phenomena in systems far from
thermal equilibrium and in nonphysical systems. Reviews of
Modern Physics, 47(1):67. 79

Hasenkamp, W. and Barsalou, L. W. (2012). Effects of medita-
tion experience on functional connectivity of distributed brain
networks. Frontiers in Human Neuroscience, 6:38. 43

He, B. J. and Raichle, M. E. (2009). The fMRI signal, slow corti-
cal potential and consciousness. Trends in Cognitive Sciences,
13(7):302-309. 26

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsy-
chological Theory. Psychology Press. 37

Hilgetag, C. C. and Goulas, A. (2015). Is the brain really a small-
world network?  Brain Structure and Function, 221(4):2361-
2366. 168

Hindriks, R., van Putten, M. J. A. M., and Deco, G. (2014). Intra-
cortical propagation of EEG alpha oscillations. Neurolmage,

103:444-453. 79

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., and Engel,
A. K. (2012). Large-scale cortical correlation structure of spon-
taneous oscillatory activity. Nature Neuroscience, 15(6):884—
890. 27, 53, 72

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative descrip-
tion of membrane current and its application to conduction and
excitation in nerve. The Journal of Physiology, 117(4):500-544.
78, 83

Hofman, M. A. (1989). On the evolution and geometry of the
brain in mammals. Progress in neurobiology, 32(2):137-158. 44

Holland, P. W. and Leinhardt, S. (1971). Transitivity in struc-
tural models of small groups. Comparative Group Studies,
2(2):107-124. 164

Honey, C. J., Kotter, R., Breakspear, M., and Sporns, O. (2007).
Network structure of cerebral cortex shapes functional con-

nectivity on multiple time scales. Proceedings of the National
Academy of Sciences, 104(24):10240-10245. 80



BIBLIOGRAPHY 189

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran,
J. P, Meuli, R., and Hagmann, P. (2009). Predicting hu-
man resting-state functional connectivity from structural con-
nectivity. Proceedings of the National Academy of Sciences,
106(6):2035-2040. 39, 79, 80

Horovitz, S. G., Braun, A. R., Carr, W. S., Picchioni, D., Balkin,
T. J., Fukunaga, M., and Duyn, J. H. (2009). Decoupling of the
brain’s default mode network during deep sleep. Proceedings of
the National Academy of Sciences, 106(27):11376-11381. 9, 16,
43, 70

Horovitz, S. G., Fukunaga, M., de Zwart, J. A., van Gelderen,
P., Fulton, S. C., Balkin, T. J., and Duyn, J. H. (2008). Low
frequency BOLD fluctuations during resting wakefulness and
light sleep: A simultaneous EEG-fMRI study. Human Brain
Mapping, 29(6):671-682. 43

Horwitz, B., Warner, B., Fitzer, J., Tagamets, M.-A., Husain,
F. T., and Long, T. W. (2005). Investigating the neural basis
for functional and effective connectivity. Application to fMRI.
Philosophical Transactions of the Royal Society of London B:
Biological Sciences, 360(1457):1093-1108. 18

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single
neurones in the cat’s striate cortex. The Journal of Physiology,
148(3):574-591. 140

Huberman, B. A. and Adamic, L. A. (2004). Information Dynam-
ics in the Networked World. In Ben-Naim, E., Frauenfelder, H.,
and Toroczkai, Z., editors, Complex Networks, number 650 in
Lecture Notes in Physics, pages 371-398. Springer Berlin Hei-
delberg. DOI: 10.1007/978-3-540-44485-5_17. 166, 170

Hudetz, A. G., Liu, X., and Pillay, S. (2014). Dynamic Reper-
toire of Intrinsic Brain States Is Reduced in Propofol-Induced
Unconsciousness. Brain Connectivity, 5(1):10-22. 68

Hurlburt, R. T., Alderson-Day, B., Fernyhough, C., and Khn,
S. (2015). What goes on in the resting-state? A qualitative
glimpse into resting-state experience in the scanner. Frontiers
in Psychology, 6. 16

Hutchison, R. M., Mirsattari, S. M., Jones, C. K., Gati, J. S., and



190 BIBLIOGRAPHY

Leung, L. S. (2010). Functional Networks in the Anesthetized
Rat Brain Revealed by Independent Component Analysis of
Resting-State fMRI. Journal of Neurophysiology, 103(6):3398—
3406. 43, 48

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A,
Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H.,
Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keil-
holz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns,
O., Walter, M., and Chang, C. (2013). Dynamic functional con-
nectivity: Promise, issues, and interpretations. Neurolmage,
80:360-378. 23, 49

Izhikevich, E. M. and Edelman, G. M. (2008). Large-scale model
of mammalian thalamocortical systems. Proceedings of the Na-
tional Academy of Sciences, 105(9):3593-3598. 79

Izquierdo, E. J. and Beer, R. D. (2013). Connecting a Connectome
to Behavior: An Ensemble of Neuroanatomical Models of C.
elegans Klinotaxis. PLOS Comput Biol, 9(2):e1002890. 37

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C.,
and Behrens, T. E. (2015). Measuring macroscopic brain con-
nections in vivo. Nature Neuroscience, 18(11):1546-1555. 29

Jones, D. K. (2010). Challenges and limitations of quantifying
brain connectivity in vivo with diffusion MRI. Imaging in
Medicine, 2(3):341-355. 29, 32, 119

Jones, D. K., Knsche, T. R., and Turner, R. (2013). White matter
integrity, fiber count, and other fallacies: The do’s and don’ts
of diffusion MRI. Neurolmage, 73:239-254. 29

Kaisti, K. K., Metshonkala, L., Ters, M., Oikonen, V., Aalto,
S., Jskelinen, S., Hinkka, S., and Scheinin, H. (2002). Effects
of Surgical Levels of Propofol and Sevoflurane Anesthesia on
Cerebral Blood Flow in Healthy Subjects Studied with Positron
Emission Tomography. The Journal of the American Society
of Anesthesiologists, 96(6):1358-1370. 43

Kasthuri, N., Hayworth, K., Berger, D., Schalek, R., Conchello,
J., Knowles-Barley, S., Lee, D., Vzquez-Reina, A., Kaynig, V.,
Jones, T., Roberts, M., Morgan, J., Tapia, J., Seung, H. S.,
Roncal, W., Vogelstein, J., Burns, R., Sussman, D., Priebe, C.,



BIBLIOGRAPHY 191

Pfister, H., and Lichtman, J. (2015). Saturated Reconstruction
of a Volume of Neocortex. Cell, 162(3):648-661. 29, 30

Katz, L. C. and Shatz, C. J. (1996). Synaptic Activity and the
Construction of Cortical Circuits. Science, 274(5290):1133~
1138. 146

Kayser, C., Kim, M., Ugurbil, K., Kim, D.-S.; and Knig, P.
(2004). A Comparison of Hemodynamic and Neural Responses
in Cat Visual Cortex Using Complex Stimuli. Cerebral Cortex,
14(8):881-891. 26, 74

Kazama, H. and Wilson, R. 1. (2009). Origins of correlated ac-
tivity in an olfactory circuit. Nature Neuroscience, 12(9):1136—
1144. 142

Keilholz, S. D., Magnuson, M. E., Pan, W.-J., Willis, M., and
Thompson, G. J. (2012). Dynamic Properties of Functional
Connectivity in the Rodent. Brain Connectivity, 3(1):31-40.
49, 68

Kennedy, D. P. and Courchesne, E. (2008). The intrinsic func-
tional organization of the brain is altered in autism. Neurolm-
age, 39(4):1877-1885. 8, 148

Klimesch, W. (1999). EEG alpha and theta oscillations reflect
cognitive and memory performance: a review and analysis.

Brain Research Reviews, 29(23):169-195. 24

Kopell, N., Ermentrout, G. B., Whittington, M. A., and Traub,
R. D. (2000). Gamma rhythms and beta rhythms have dif-
ferent synchronization properties. Proceedings of the National
Academy of Sciences, 97(4):1867-1872. 24

Kotter, R. (2004). Online retrieval, processing, and visualiza-
tion of primate connectivity data from the CoCoMac Database.
Neuroinformatics, 2(2):127-144. 29, 80

Kringelbach, M. L., McIntosh, A. R., Ritter, P., Jirsa, V. K., and
Deco, G. (2015). The Rediscovery of Slowness: Exploring the
Timing of Cognition. Trends in Cognitive Sciences, 19(10):616—
628. 162

Kuramoto, Y. (1975). Self-entrainment of a population of coupled
non-linear oscillators. In Araki, P. H., editor, International
Symposium on Mathematical Problems in Theoretical Physics,



192 BIBLIOGRAPHY

number 39 in Lecture Notes in Physics, pages 420-422. Springer
Berlin Heidelberg. DOI: 10.1007/BFb0013365. 49

Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Tur-
bulence, volume 19 of Springer Series in Synergetics. Springer
Berlin Heidelberg, Berlin, Heidelberg. 89

Larson-Prior, L. J., Power, J. D., Vincent, J. L., Nolan, T. S.,
Coalson, R. S., Zempel, J., Snyder, A. Z., Schlaggar, B. L.,
Raichle, M. E., and Petersen, S. E. (2011). Modulation of the
brain’s functional network architecture in the transition from
wake to sleep. Progress in brain research, 193. 43

Latora, V. and Marchiori, M. (2001). Efficient Behavior of Small-
World Networks. Physical Review Letters, 87(19):198701. 68,
105, 167, 168

Laufs, H., Krakow, K., Sterzer, P., Eger, E., Beyerle, A., Salek-
Haddadi, A., and Kleinschmidt, A. (2003). Electroencephalo-
graphic signatures of attentional and cognitive default modes

in spontaneous brain activity fluctuations at rest. Proceedings
of the National Academy of Sciences, 100(19):11053-11058. 26

Laughlin, S. B. (2001). Energy as a constraint on the coding and
processing of sensory information. Current Opinion in Neuro-
biology, 11(4):475-480. 12, 13

Laureys, S., Owen, A. M., and Schiff, N. D. (2004). Brain function
in coma, vegetative state, and related disorders. The Lancet
Neurology, 3(9):537-546. 71

Lennie, P. (2003). The Cost of Cortical Computation. Current
Biology, 13(6):493-497. 12

Leopold, D. A. and Maier, A. (2012). Ongoing physiological pro-
cesses in the cerebral cortex. Neurolmage, 62(4):2190-2200. 18,
26

Leung, L. S., Luo, T., Ma, J., and Herrick, I. (2014). Brain areas
that influence general anesthesia. Progress in Neurobiology,
122:24-44. 70

Lewis, L. D., Weiner, V. S., Mukamel, E. A., Donoghue, J. A.,
Eskandar, E. N., Madsen, J. R., Anderson, W. S., Hochberg,
L. R., Cash, S. S., Brown, E. N.; and Purdon, P. L. (2012).
Rapid fragmentation of neuronal networks at the onset of



BIBLIOGRAPHY 193

propofol-induced unconsciousness. Proceedings of the National
Academy of Sciences, 109(49):E3377-E3386. 66

Liang, Z., King, J., and Zhang, N. (2011). Uncovering Intrinsic
Connectional Architecture of Functional Networks in Awake
Rat Brain. The Journal of Neuroscience, 31(10):3776-3783. 9,
16, 43, 68

Liu, X., Zhu, X.-H., Zhang, Y., and Chen, W. (2011). Neural
Origin of Spontaneous Hemodynamic Fluctuations in Rats un-
der BurstSuppression Anesthesia Condition. Cerebral Cortex,
21(2):374-384. 43

Liu, Z., Fukunaga, M., de Zwart, J. A., and Duyn, J. H.
(2010). Large-scale spontaneous fluctuations and correlations

in brain electrical activity observed with magnetoencephalog-
raphy. Neurolmage, 51(1):102-111. 26

Logothetis, N. K. (2008). What we can do and what we cannot
do with fMRI. Nature, 453(7197):869-878. 11, 14, 15

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oelter-
mann, A. (2001). Neurophysiological investigation of the basis
of the fMRI signal. Nature, 412(6843):150-157. 15, 26, 73

Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., and Yang, Y.
(2012). Rat brains also have a default mode network. Proceed-
ings of the National Academy of Sciences, 109(10):3979-3984.
6, 7,9, 16, 43, 62, 68, 70, 71

Lu, H., Zuo, Y., Gu, H., Waltz, J. A., Zhan, W., Scholl, C. A.,
Rea, W., Yang, Y., and Stein, E. A. (2007). Synchronized
delta oscillations correlate with the resting-state functional
MRI signal. Proceedings of the National Academy of Sciences,
104(46):18265-18269. 43

Macey, P. M., Macey, K. E., Kumar, R., and Harper, R. M.
(2004). A method for removal of global effects from fMRI time
series. Neurolmage, 22(1):360-366. 18

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., and Logo-
thetis, N. K. (2012). The Amplitude and Timing of the BOLD
Signal Reflects the Relationship between Local Field Potential

Power at Different Frequencies. The Journal of Neuroscience,
32(4):1395-1407. 15, 26, 74



194 BIBLIOGRAPHY

Maistrenko, Y. L., Lysyansky, B., Hauptmann, C., Burylko, O.,
and Tass, P. A. (2007). Multistability in the Kuramoto model
with synaptic plasticity. Physical Review E, 75(6):066207. 56

Majeed, W., Magnuson, M., and Keilholz, S. D. (2009). Spa-
tiotemporal dynamics of low frequency fluctuations in BOLD
fMRI of the rat. Journal of Magnetic Resonance Imaging,
30(2):384-393. 23

Majewska, A. K. and Sur, M. (2006). Plasticity and speci-
ficity of cortical processing networks. Trends in Neurosciences,
29(6):323-329. 37

Makarenko, V. and Llinds, R. (1998). Experimentally determined
chaotic phase synchronization in a neuronal system. Proceed-
ings of the National Academy of Sciences, 95(26):15747-15752.
140

Mantini, D., Gerits, A., Nelissen, K., Durand, J.-B., Joly, O., Si-
mone, L., Sawamura, H., Wardak, C., Orban, G. A., Buckner,
R. L., and Vanduffel, W. (2011). Default Mode of Brain Func-
tion in Monkeys. The Journal of Neuroscience, 31(36):12954—
12962. 43

Markov, N. T., Ercsey-Ravasz, M., Essen, D. C. V., Knoblauch,
K., Toroczkai, Z., and Kennedy, H. (2013). Corti-
cal High-Density Counterstream Architectures. Science,
342(6158):1238406. 168

Marr, D. (2010). Vision: A Computational Investigation Into the

Human Representation and Processing of Visual Information.
London. 9

Martuzzi, R., Ramani, R., Qiu, M., Rajeevan, N., and Consta-
ble, R. T. (2010). Functional connectivity and alterations in
baseline brain state in humans. Neurolmage, 49(1):823-834.
66

Mason, M. F., Norton, M. L., Horn, J. D. V., Wegner, D. M.,
Grafton, S. T., and Macrae, C. N. (2007). Wandering Minds:
The Default Network and Stimulus-Independent Thought. Sci-
ence, 315(5810):393-395. 6

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H.,
and Tononi, G. (2005). Breakdown of Cortical Effective Con-



BIBLIOGRAPHY 195

nectivity During Sleep. Science, 309(5744):2228-2232. 73, 173
Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houd,
O., Crivello, F., Joliot, M., Petit, L., and Tzourio-Mazoyer, N.
(2001). Cortical networks for working memory and executive

functions sustain the conscious resting state in man. Brain
Research Bulletin, 54(3):287-298. 4

Mcculloch, W. and Pitts, W. (1943). A logical calculus of the
ideas immanent in nervous activity. Bulletin of Mathematical
Biophysics, 5. 78

Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modu-
lar and hierarchically modular organization of brain networks.
Frontiers in Neuroscience, 4:200. 68

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D.,
and Alon, U. (2002). Network Motifs: Simple Building Blocks
of Complex Networks. Science, 298(5594):824-827. 110

Mohajerani, M. H., Chan, A. W., Mohsenvand, M., LeDue, J.,
Liu, R., McVea, D. A., Boyd, J. D., Wang, Y. T., Reimers, M.,
and Murphy, T. H. (2013). Spontaneous cortical activity al-

ternates between motifs defined by regional axonal projections.
Nature Neuroscience, 16(10):1426-1435. 143

Momose-Sato, Y., Sato, K., and Kinoshita, M. (2007). Sponta-
neous depolarization waves of multiple origins in the embryonic
rat CNS. FEuropean Journal of Neuroscience, 25(4):929-944.
146

Monod, J. (1974). On Chance and Necessity. In Ayala, F. J. and
Dobzhansky, T., editors, Studies in the Philosophy of Biology,
pages 357-375. Macmillan Education UK. DOI: 10.1007/978-
1-349-01892-5_20. 135

Morris, C. and Lecar, H. (1981). Voltage oscillations in the bar-

nacle giant muscle fiber. Biophysical Journal, 35(1):193-213.
80

Murphy, K., Birn, R. M., and Bandettini, P. A. (2013). Resting-
state fMRI confounds and cleanup. Neurolmage, 80:349-359.
17

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and
Bandettini, P. A. (2009). The impact of global signal regres-



196 BIBLIOGRAPHY

sion on resting state correlations: Are anti-correlated networks

introduced? Neurolmage, 44(3):893-905. 18

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An Active
Pulse Transmission Line Simulating Nerve Axon. Proceedings

of the IRE, 50(10):2061-2070. 83

Nakagawa, T. T., Woolrich, M., Luckhoo, H., Joensson, M.,
Mohseni, H., Kringelbach, M. L., Jirsa, V., and Deco, G.
(2014). How delays matter in an oscillatory whole-brain

spiking-neuron network model for MEG alpha-rhythms at rest.
Neurolmage, 87:383-394. 79

Newman, M., Barabsi, A.-L., and Watts, D. J. (2011). The Struc-
ture and Dynamics of Networks. Princeton University Press.
94, 134

Newton, J. R. and Sur, M. (2005). Rewiring Cortex: Functional
Plasticity of the Auditory Cortex during Development. In Syka,
J. and Merzenich, M. M., editors, Plasticity and Signal Repre-
sentation in the Auditory System, pages 127-137. Springer US.
DOI: 10.1007/0-387-23181-1_11. 37

Nicosia, V., Valencia, M., Chavez, M., Daz-Guilera, A., and La-
tora, V. (2013). Remote Synchronization Reveals Network
Symmetries and Functional Modules. Physical Review Letters,
110(17):174102. 102

Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W.,
and Galuske, R. A. W. (2005). Hemodynamic Signals Corre-

late Tightly with Synchronized Gamma Oscillations. Science,
309(5736):948-951. 26, 74

O’Donovan, M. J. (1999). The origin of spontaneous activity in
developing networks of the vertebrate nervous system. Current
Opinion in Neurobiology, 9(1):94-104. 145

Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990a).
Brain magnetic resonance imaging with contrast dependent on
blood oxygenation. Proceedings of the National Academy of
Sciences, 87(24):9868-9872. 2

Ogawa, S., Lee, T.-M., Nayak, A. S., and Glynn, P. (1990b).
Oxygenation-sensitive contrast in magnetic resonance image of
rodent brain at high magnetic fields. Magnetic Resonance in



BIBLIOGRAPHY 197

Medicine, 14(1):68-78. 14
Ogawa, S. and Sung, Y.-W. (2007). Functional magnetic reso-
nance imaging. Scholarpedia, 2(10):3105. 44

Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim,
S. G., Merkle, H., and Ugurbil, K. (1992). Intrinsic signal
changes accompanying sensory stimulation: functional brain
mapping with magnetic resonance imaging. Proceedings of the
National Academy of Sciences, 89(13):5951-5955. 44

Palay, L. (1956). Synapses in the central nervous system. 37

Pan, W.-J., Thompson, G., Magnuson, M., Majeed, W., Jaeger,
D., and Keilholz, S. (2011). Broadband Local Field Poten-
tials Correlate with Spontaneous Fluctuations in Functional
Magnetic Resonance Imaging Signals in the Rat Somatosen-
sory Cortex Under Isoflurane Anesthesia. Brain Connectivity,
1(2):119-131. 26, 74

Park, H.-J. and Friston, K. (2013). Structural and Functional

Brain Networks: From Connections to Cognition. Science,
342(6158):1238411. 44

Pasquale, F. d., Penna, S. D., Snyder, A. Z., Lewis, C., Mantini,
D., Marzetti, L., Belardinelli, P., Ciancetta, L., Pizzella, V.,
Romani, G. L., and Corbetta, M. (2010). Temporal dynamics

of spontaneous MEG activity in brain networks. Proceedings of
the National Academy of Sciences, 107(13):6040-6045. 72

Pawela, C. P., Biswal, B. B., Cho, Y. R., Kao, D. S., Li, R.,
Jones, S. R., Schulte, M. L., Matloub, H. S., Hudetz, A. G.,
and Hyde, J. S. (2008). Resting-state functional connectivity
of the rat brain. Magnetic Resonance in Medicine, 59(5):1021—
1029. 43, 68

Paxinos, G. and Watson, C. (2006). The Rat Brain in Stereotazic
Coordinates: Hard Cover Edition. Academic Press. 48

Poldrack, R. A. (2006). Can cognitive processes be inferred from
neuroimaging data? Trends in Cognitive Sciences, 10(2):59-63.
9

Porter, K. R., Claude, A., and Fullam, E. F. (1945). A study of
tissue culture cells by electron microscopy: Methods and pre-
liminary observations. The Journal of experimental medicine,



198 BIBLIOGRAPHY

81(3):233 246. 36

Power, J., Cohen, A., Nelson, S., Wig, G., Barnes, K., Church,
J., Vogel, A., Laumann, T., Miezin, F., Schlaggar, B., and
Petersen, S. (2011). Functional Network Organization of the
Human Brain. Neuron, 72(4):665-678. 23

Quibell, R., Prommer, E. E., Mihalyo, M., Twycross, R., and
Wilcock, A. (2011). Ketamine*. Journal of Pain and Symptom
Management, 41(3):640-649. 75, 132

Raichle, M. E. (1983). Positron emission tomography. Annual
Review of Neuroscience, 6:249-267. 44

Raichle, M. E. (2006). The Brain’s Dark Energy. Science,
314(5803):1249-1250. 12

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J.,
Gusnard, D. A., and Shulman, G. L. (2001). A default mode
of brain function. Proceedings of the National Academy of Sci-
ences of the United States of America, 98(2):676-682. 5, 35,
70

Raichle, M. E. and Mintun, M. A. (2006). Brain Work and Brain
Imaging. Annual Review of Neuroscience, 29(1):449-476. 12

Raichle, M. E. and Snyder, A. Z. (2007). A default mode of brain
function: A brief history of an evolving idea. Neurolmage,
37(4):1083-1090. 6

Ramén y Cajal, S. (1909). Histologie du systme nerveux de
l’homme € des vertbrs. Paris : Maloine. 28

Richiardi, J., Altmann, A., Milazzo, A.-C., Chang, C.,
Chakravarty, M. M., Banaschewski, T., Barker, G. J., Bokde,
A. L., Bromberg, U., Biichel, C., et al. (2015). Correlated gene

expression supports synchronous activity in brain networks.
Science, 348(6240):1241-1244. 143, 144

Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., and
Van De Ville, D. (2011). Decoding brain states from fMRI
connectivity graphs. Neurolmage, 56(2):616-626. 16

Rilling, J. K., Barks, S. K., Parr, L. A., Preuss, T. M., Faber,
T. L., Pagnoni, G., Bremner, J. D., and Votaw, J. R. (2007).
A comparison of resting-state brain activity in humans and
chimpanzees. Proceedings of the National Academy of Sciences,



BIBLIOGRAPHY 199

104(43):17146-17151. 70

Rombouts, S. A. R. B., Stam, C. J., Kuijer, J. P. A., Scheltens,
P., and Barkhof, F. (2003). Identifying confounds to increase
specificity during a no task condition: Evidence for hippocam-
pal connectivity using fMRI. NeuroImage, 20(2):1236-1245. 17

Rubinov, M. and Sporns, O. (2010). Complex network measures

of brain connectivity: Uses and interpretations. Neurolmage,
52(3):1059-1069. 52, 116, 163

Ruiz-Mejias, M., Ciria-Suarez, L., Mattia, M., and Sanchez-Vives,
M. V. (2011). Slow and fast rhythms generated in the cerebral

cortex of the anesthetized mouse. Journal of Neurophysiology,
106(6):2910-2921. 48, 141

Samann, P. G., Wehrle, R., Hoehn, D., Spoormaker, V. I., Peters,
H., Tully, C., Holsboer, F., and Czisch, M. (2011). Development
of the Brain’s Default Mode Network from Wakefulness to Slow
Wave Sleep. Cerebral Cortex, page bhq295. 70, 71

Sanchez-Vives, M. V. and McCormick, D. A. (2000). Cellular and
network mechanisms of rhythmic recurrent activity in neocor-
tex. Nature Neuroscience, 3(10):1027-1034. 141

Sancristbal, B., Rebollo, B., Boada, P., Sanchez-Vives, M. V.,
and Garcia-Ojalvo, J. (2016). Collective stochastic coherence
in recurrent neuronal networks. Nature Physics, advance online
publication. 2

Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’ Arceuil,
H. E., Crespigny, A. J. d., and Wedeen, V. J. (2007). As-
sociation fibre pathways of the brain: parallel observations
from diffusion spectrum imaging and autoradiography. Brain,
130(3):630-653. 31, 34

Schlvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., and
Leopold, D. A. (2010). Neural basis of global resting-state
fMRI activity. Proceedings of the National Academy of Sci-
ences, 107(22):10238-10243. 26, 74

Sejnowski, T. J., Churchland, P. S.; and Movshon, J. A. (2014).
Putting big data to good use in neuroscience. Nature neuro-
science, 17(11):1440-1441. 11

Sherrington, C. S. (1906). Observations on the scratch-reflex in



200 BIBLIOGRAPHY

the spinal dog. The Journal of Physiology, 34(1-2):1-50. 36
Shmuel, A. and Leopold, D. A. (2008). Neuronal correlates of

spontaneous fluctuations in fMRI signals in monkey visual cor-
tex: Implications for functional connectivity at rest. Human
Brain Mapping, 29(7):751-761. 17, 26

Shulman, R. G., Rothman, D. L., Behar, K. L., and Hyder, F.
(2004). Energetic basis of brain activity: implications for neu-
roimaging. Trends in Neurosciences, 27(8):489-495. 4, 12

Sinclair, M. D. (2003). A review of the physiological effects of 2-
agonists related to the clinical use of medetomidine in small an-
imal practice. The Canadian Veterinary Journal, 44(11):885—
897. 75

Singer, W. (1999). Neuronal Synchrony: A Versatile Code for the
Definition of Relations? Neuron, 24(1):49-65. 24, 73

Sirota, A., Csicsvari, J., Buhl, D.; and Buzséki, G. (2003). Com-
munication between neocortex and hippocampus during sleep

in rodents. Proceedings of the National Academy of Sciences,
100(4):2065-2069. 24

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M.,
Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird,
A. R., and Beckmann, C. F. (2009). Correspondence of the
brain’s functional architecture during activation and rest. Pro-
ceedings of the National Academy of Sciences, 106(31):13040—
13045. 7, 8

Snyder, A. Z. and Raichle, M. E. (2012). A brief history of the
resting state: The Washington University perspective. Neu-
rolmage, 62(2):902-910. 7

Sokoloff, L., Mangold, R., Wechsler, R. L., Kennedy, C., and Kety,
S.S. (1955). THE EFFECT OF MENTAL ARITHMETIC ON
CEREBRAL CIRCULATION AND METABOLISM 1. Journal
of Clinical Investigation, 34(7 Pt 1):1101-1108. 1

Song, H. F., Kennedy, H., and Wang, X.-J. (2014). Spatial embed-
ding of structural similarity in the cerebral cortex. Proceedings
of the National Academy of Sciences, 111(46):16580-16585. 37

Sporns, O. (2013). Network attributes for segregation and inte-
gration in the human brain. Current Opinion in Neurobiology,



BIBLIOGRAPHY 201

23(2):162-171. 68

Sporns, O. (2014). Contributions and challenges for network mod-
els in cognitive neuroscience. Nature Neuroscience, 17(5):652—

660. 37, 38, 39

Sporns, O. and Honey, C. J. (2006). Small worlds inside big
brains.  Proceedings of the National Academy of Sciences,
103(51):19219-19220. 168

Sporns, O. and Kétter, R. (2004). Motifs in Brain Networks.
PLOS Biol, 2(11):¢369. 110

Sporns, O., Tononi, G., and Edelman, G. (2002). Theoretical
neuroanatomy and the connectivity of the cerebral cortex. Be-
havioural Brain Research, 135(1-2):69-74. 105

Sporns, O. and Zwi, J. (2004). The small world of the cerebral
cortex. NeuroInformatics, 2(2):145-162. 68, 105, 168

Stafford, J. M., Jarrett, B. R., Miranda-Dominguez, O., Mills,
B. D., Cain, N., Mihalas, S., Lahvis, G. P., Lattal, K. M.,
Mitchell, S. H., David, S. V., Fryer, J. D., Nigg, J. T., and
Fair, D. A. (2014). Large-scale topology and the default mode

network in the mouse connectome. Proceedings of the National
Academy of Sciences, 111(52):18745-18750. 70

Stamatakis, E. A.,; Adapa, R. M., Absalom, A. R., and Menon,
D. K. (2010). Changes in Resting Neural Connectivity during
Propofol Sedation. PLOS ONE, 5(12):e14224. 43

Stein, R. B., Gossen, E. R., and Jones, K. E. (2005). Neuronal
variability: noise or part of the signal? Nature Reviews Neuro-
science, 6(5):389-397. 2

Stender, J., Mortensen, K., Thibaut, A., Darkner, S., Laureys, S.,
Gjedde, A., and Kupers, R. (2016). The Minimal Energetic Re-
quirement of Sustained Awareness after Brain Injury. Current
Biology, 26(11):1494-1499. 13, 14

Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G. A. P. C,
Young, M. P., and Koétter, R. (2001). Advanced database
methodology for the Collation of Connectivity data on the
Macaque brain (CoCoMac). Philosophical Transactions of the
Royal Society B: Biological Sciences, 356(1412):1159-1186. 29

Steriade, M. (2001). Impact of Network Activities on Neuronal



202 BIBLIOGRAPHY

Properties in Corticothalamic Systems. Journal of Neurophys-
iology, 86(1):1-39. 24, 26

Steriade, M., Amzica, F., and Contreras, D. (1996). Synchroniza-
tion of fast (30-40 Hz) spontaneous cortical rhythms during
brain activation. The Journal of Neuroscience, 16(1):392-417.
44, 140

Steriade, M., McCormick, D. A., and Sejnowski, T. J. (1993).
Thalamocortical oscillations in the sleeping and aroused brain.
Science, 262(5134):679-685. 71

Striedter, G. F. (2004). Principles of Brain Fvolution. Sinauer
Associates, Sunderland, Mass, 1 edition edition. 44

Strogatz, S. H. (2001). Exploring complex networks. Nature,
410(6825):268-276. 134

Sur, M. and Rubenstein, J. L. R. (2005). Patterning and Plastic-
ity of the Cerebral Cortex. Science, 310(5749):805-810. 147

Swanson, L. W. (2012). Brain Architecture: Understanding the
Basic Plan. OUP USA. 28

Tagliazucchi, E. and Laufs, H. (2014). Decoding Wakefulness
Levels from Typical fMRI Resting-State Data Reveals Reliable
Drifts between Wakefulness and Sleep. Neuron, 82(3):695-708.
16, 17

Tagliazucchi, E., von Wegner, F., Morzelewski, A., Borisov, S.,
Jahnke, K., and Laufs, H. (2012). Automatic sleep staging us-

ing fMRI functional connectivity data. Neurolmage, 63(1):63—
72. 16
Tang, Y.-Y., Rothbart, M. K., and Posner, M. 1. (2012). Neu-

ral correlates of establishing, maintaining, and switching brain
states. Trends in Cognitive Sciences, 16(6):330-337. 43, 66

Tavor, 1., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E.,
and Jbabdi, S. (2016). Task-free MRI predicts individual dif-
ferences in brain activity during task performance. Science,
352(6282):216-220. 20

Thomas, C., Ye, F. Q., Irfanoglu, M. O., Modi, P., Saleem, K. S.,
Leopold, D. A.; and Pierpaoli, C. (2014). Anatomical accuracy
of brain connections derived from diffusion MRI tractography
is inherently limited. Proceedings of the National Academy of



BIBLIOGRAPHY 203

Sciences, 111(46):16574-16579. 29, 119

Thompson, G. J., Merritt, M. D., Pan, W.-J., Magnuson, M. E.,
Grooms, J. K., Jaeger, D., and Keilholz, S. D. (2013). Neural
correlates of time-varying functional connectivity in the rat.
Neurolmage, 83:826-836. 23, 49

Timofeev, 1., Grenier, F., Bazhenov, M., Sejnowski, T. J., and
Steriade, M. (2000). Origin of Slow Cortical Oscillations in
Deafferented Cortical Slabs. Cerebral Cortex, 10(12):1185-
1199. 140

Tong, Y. and Frederick, B. d. (2010). Time lag dependent mul-
timodal processing of concurrent fMRI and near-infrared spec-
troscopy (NIRS) data suggests a global circulatory origin for
low-frequency oscillation signals in human brain. Neurolmage,
53(2):553-564. 19

Tononi, G. and Massimini, M. (2008). Why Does Consciousness
Fade in Early Sleep? Annals of the New York Academy of
Sciences, 1129(1):330-334. 73

Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes,
J. R., Welker, E., and Svoboda, K. (2002). Long-term in vivo
imaging of experience-dependent synaptic plasticity in adult
cortex. Nature, 420(6917):788-794. 147

Traub, R. D.; Miles, R., and Wong, R. K. (1989). Model of the
origin of rhythmic population oscillations in the hippocampal
slice. Science, 243(4896):1319-1325. 140

Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., and Bergles,
D. E. (2007). The origin of spontancous activity in the devel-
oping auditory system. Nature, 450(7166):50-55. 146

Trusina, A., Rosvall, M., and Sneppen, K. (2005). Commu-
nication Boundaries in Networks. Physical Review Letters,
94(23):238701. 166, 170

Tu, Y., Yu, T., Fu, X.-Y., Xie, P., Lu, S., Huang, X.-Q., and
Gong, Q.-Y. (2011). Altered Thalamocortical Functional Con-
nectivity by Propofol Anesthesia in Rats. Pharmacology, 88(5-
6):322-326. 43

Turrigiano, G. G. and Nelson, S. B. (2004). Homeostatic plastic-
ity in the developing nervous system. Nature Reviews Neuro-



204 BIBLIOGRAPHY

science, 5(2):97-107. 146

van den Heuvel, M. P., de Reus, M. A., Feldman Barrett, L.,
Scholtens, L. H., Coopmans, F. M. T., Schmidt, R., Preuss,
T. M., Rilling, J. K., and Li, L. (2015). Comparison of dif-
fusion tractography and tract-tracing measures of connectivity
strength in rhesus macaque connectome. Human Brain Map-
ping, 36(8):3064-3075. 31, 33

van den Heuvel, M. P., Mandl, R. C.; Kahn, R. S., and Hul-
shoff Pol, H. E. (2009). Functionally linked resting-state net-
works reflect the underlying structural connectivity architec-
ture of the human brain. Human Brain Mapping, 30(10):3127—
3141. 34, 35

van der Want, J. J. L., Klooster, J., Nunes Cardozo, B., de Weerd,
H., and Liem, R. S. B. (1997). Tract-tracing in the nervous sys-
tem of vertebrates using horseradish peroxidase and its conju-
gates: tracers, chromogens and stabilization for light and elec-
tron microscopy. Brain Research Protocols, 1(3):269-279. 28

Van Dijk, K. R. A., Sabuncu, M. R., and Buckner, R. L. (2012).

The influence of head motion on intrinsic functional connectiv-
ity MRI. NeuroImage, 59(1):431-438. 17

Varela, F., Lachaux, J.-P., Rodriguez, E., and Martinerie, J.
(2001). The brainweb: Phase synchronization and large-scale
integration. Nature Reviews Neuroscience, 2(4):229-239. 24

Vedel Jensen, E. B. and Thorarinsdottir, T. L. (2007). A Spatio-
Temporal Model for Functional Magnetic Resonance Imaging
Data with a View to Resting State Networks. Scandinavian
Journal of Statistics, 34(3):587-614. 23

Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker,
J. T., Van Essen, D. C., Zempel, J. M., Snyder, L. H., Corbetta,
M., and Raichle, M. E. (2007). Intrinsic functional architecture
in the anaesthetized monkey brain. Nature, 447(7140):83-86.
6, 9, 16, 19, 70

Viswanathan, A. and Freeman, R. D. (2007). Neurometabolic

coupling in cerebral cortex reflects synaptic more than spiking
activity. Nature Neuroscience, 10(10):1308-1312. 15, 74

Vollenweider, F. X. and Kometer, M. (2010). The neurobiology



BIBLIOGRAPHY 205

of psychedelic drugs: implications for the treatment of mood
disorders. Nature Reviews Neuroscience, 11(9):642-651. 43

Wang, K., van Meer, M. P., van der Marel, K., van der Toorn, A.,
Xu, L., Liu, Y., Viergever, M. A., Jiang, T., and Dijkhuizen,
R. M. (2011). Temporal scaling properties and spatial syn-
chronization of spontaneous blood oxygenation level-dependent
(BOLD) signal fluctuations in rat sensorimotor network at dif-
ferent levels of isoflurane anesthesia. NMR in Biomedicine,
24(1):61-67. 43

Wang, X. F. (2002). Complex networks: topology, dynamics
and synchronization. International Journal of Bifurcation and
Chaos, 12(05):885-916. 134

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of
small-world networks. Nature, 393(6684):440-442. 68, 105, 133,
164, 167, 169

Wedeen, V. J., Hagmann, P., Tseng, W.-Y. L., Reese, T. G., and
Weisskoff, R. M. (2005). Mapping complex tissue architecture

with diffusion spectrum magnetic resonance imaging. Magnetic
Resonance in Medicine, 54(6):1377-1386. 29

Whitfield-Gabrieli, S. and Ford, J. M. (2012). Default Mode Net-
work Activity and Connectivity in Psychopathology. Annual
Review of Clinical Psychology, 8(1):49-76. 70

Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang,
M. T., Faraone, S. V., McCarley, R. W., Shenton, M. E., Green,
A. L., Nieto-Castanon, A., LaViolette, P., Wojcik, J., Gabrieli,
J. D. E., and Seidman, L. J. (2009). Hyperactivity and hy-
perconnectivity of the default network in schizophrenia and in

first-degree relatives of persons with schizophrenia. Proceedings
of the National Academy of Sciences, 106(4):1279-1284. 8, 148

Williams, K. A., Magnuson, M., Majeed, W., LaConte, S. M.,
Peltier, S. J., Hu, X., and Keilholz, S. D. (2010). Compari-
son of -chloralose, medetomidine and isoflurane anesthesia for
functional connectivity mapping in the rat. Magnetic Reso-
nance Imaging, 28(7):995-1003. 43

Wilson, C. J. and Kawaguchi, Y. (1996). The origins of two-
state spontaneous membrane potential fluctuations of neostri-



206 BIBLIOGRAPHY

atal spiny neurons. The Journal of Neuroscience, 16(7):2397—
2410. 140

Wilson, H. R. and Cowan, J. D. (1972). Excitatory and Inhibitory
Interactions in Localized Populations of Model Neurons. Bio-
physical Journal, 12(1):1-24. 84

Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W.,
Desimone, R., Engel, A. K., and Fries, P. (2007). Modulation
of Neuronal Interactions Through Neuronal Synchronization.
Science, 316(5831):1609-1612. 24

Yan, L., Zhuo, Y., Ye, Y., Xie, S. X., An, J., Aguirre, G. K., and
Wang, J. (2009). Physiological origin of low-frequency drift
in blood oxygen level dependent (BOLD) functional magnetic
resonance imaging (fMRI). Magnetic Resonance in Medicine,
61(4):819-827. 48

Yarom, Y. and Hounsgaard, J. (2011). Voltage Fluctuations in
Neurons: Signal or Noise? Physiological Reviews, 91(3):917—
929. 2

Yuste, R. (2011). Dendritic Spines and Distributed Circuits. Neu-
ron, 71(5):772-781. 37

Yuste, R. (2015). From the neuron doctrine to neural networks.
Nature Reviews Neuroscience, 16(8):487-497. 37

Yvert, B., Branchereau, P., and Meyrand, P. (2004). Multi-
ple Spontaneous Rhythmic Activity Patterns Generated by
the Embryonic Mouse Spinal Cord Occur Within a Specific

Developmental Time Window. Journal of Neurophysiology,
91(5):2101-2109. 146

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., and Breakspear,
M. (2014). Time-resolved resting-state brain networks. Pro-
ceedings of the National Academy of Sciences, 111(28):10341—
10346. 23

Zamora-Lopez, G., Chen, Y., Deco, G., Kringelbach, M. L.,
and Zhou, C. (2016). Functional complexity emerging from
anatomical constraints in the brain: the significance of network
modularity and rich-clubs. arXiv:1602.07625 [q-bio]. arXiv:
1602.07625. 39, 170

Zamora-Lépez, G., Zhou, C., and Kurths, J. (2011). Exploring



BIBLIOGRAPHY 207

brain function from anatomical connectivity. Frontiers in Neu-
roscience, 5:83. 94

Zhang, N., Rane, P., Huang, W., Liang, Z., Kennedy, D., Frazier,
J. A, and King, J. (2010). Mapping resting-state brain net-
works in conscious animals. Journal of Neuroscience Methods,
189(2):186-196. 43, 68

Zhang, X. S., Roy, R. J., and Jensen, E. W. (2001). EEG com-
plexity as a measure of depth of anesthesia for patients. IEEFE
Transactions on Biomedical Engineering, 48(12):1424-1433. 73

Zhou, C., Zemanov, L., Zamora-Lépez, G., Hilgetag, C. C., and
Kurths, J. (2007). Structurefunction relationship in complex
brain networks expressed by hierarchical synchronization. New
Journal of Physics, 9(6):178. 39, 94

Zuo, X.-N. and Xing, X.-X. (2014). Test-retest reliabilities of
resting-state FMRI measurements in human brain functional

connectomics: A systems neuroscience perspective. Neuro-
science & Biobehavioral Reviews, 45:100-118. 20, 22



	List of Figures
	Preface
	Spontaneous Brain Activity
	Overview
	Measuring spontaneous activity
	Energy consumption
	Hemodynamic fluctuations
	Electrical and magnetic oscillations
	Anatomical Connectivity

	Brain Networks

	Modulating dynamics through anesthesia
	Summary
	Introduction
	Materials and Methods
	Animal preparation
	fMRI recordings
	In vivo LFP recordings
	fMRI data analysis
	Deep and light anesthesia
	Coupled and uncoupled area pairs
	Detection of functional communities
	LFP data analysis
	Frequency shift to higher frequencies

	Results
	Correlation increases as anesthesia fades away
	Functional integration and segregation
	Emergence of functional networks
	FC between areas of the same networks
	Frequency-specific changes in neural coupling
	Shifts to higher frequencies
	Similarity of fMRI and LFP time courses

	Discussion
	Limitations
	Conclusions

	Modelling brain activity
	Introduction
	Conductance-Based Models
	FitzHugh-Nagumo Model
	Wilson-Cowan Model
	Spiking Neural Network Model
	Kuramoto Model
	Hopf Normal Model

	How topology sculpts interactions
	Introduction
	Exploring simple topologies
	Single pair of nodes
	Adding leaves
	Chains
	Path redundancy
	Cycles

	Expected covariation
	Understanding empirical data
	Conclusions

	General discussion
	Appendix
	Notes on the origins of spontaneous brain activity
	Supplementary Materials
	Estimation of BOLD global synchronization
	Detection of functional communities and modularity
	LFP data analysis
	Quantification of the frequency shift

	Measuring graph properties
	Graph Density
	Degree and Strength
	Measures of Assortativity
	Clustering coefficient
	Path length
	Small-Worldness
	Communicability
	Expected covariation

	Bibliography


