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SUMMARY

The brain is a complex multi-scale dynamical system, madaare than 18 nerve cells,
the neurons which are connected by ¥dchemical and electrical synaptic connections, and
many moreneuroglial cellsrecently discovered to provide support and protection éurans.
Neurons themselves are multidimensional nonlinear systanie to exhibit various dynam-
ical activities and processes happening at different teadnd spatial scales, from local
microcircuits to brain-wide networks. The correct operatof the brain requires a carefully
orchestrated activity across these scales, which incltiiegstablishment of synchronized
behavior within and among multiple neuronal populatiomenf which different spatiotem-
poral patterns transiently arise. As a matter of fact, imfation processing underlying brain
cognitive functions such as action, perception and cagmitelies on the coordinated inter-
action between large groups of interconnected neuronstditgd within and across different
specialized brain areas. In this Thesis we study a diversgeraf collective dynamical phe-
nomena in brain networks that reveal exquisite coordinatity means of different models
of cortical neuronal networks. We explore how neurons areadyically and transiently en-
gaged in functional assemblies, resulting in a periodichyonization of neuronal spiking
(neuronal oscillationyin a brain area or between distant brain ardasg-range oscillatory
synchronizatiop and the consequences foformationprocessing. Synchronous oscillations
are usually observed to be coherent in space, meaning thé&trtiporal progression of activ-
ity has identical phase across recording sites. Howevég®Bphase synchronous oscillations
also exist, and occasionally they give rise to complex spatiporal patterns of activity in the
form of traveling waves. Therefore, we investigate as weW meurons engage tnaveling
wavepatterns through self-organizing dynamics.

In Part | we introduce the different spatiotemporal pheneaeotivating our studies
(Chapterl) and the computational models used in this work (Chapter

In Part Il we present the main results of this study. In Chaptere study temporally-
coordinated patterns in the thalamus, a key brain struatuiee processing of sensory infor-
mation. During the sleep and awake states, this brain arelaaiscterized by the presence
of two distinct dynamical regimes: in the sleep state theviicis dominated byspindle os-



viii

cillations (7 — 15 Hz) that is weakly affected by external stimuli, while heetawake state
the activity is primarily driven by external stimuli. We hadeveloped a simple and compu-
tationally efficient model of the thalamus that exhibits tdymamical regimes with different
information-processing capabilities, and study the itanmsbetween them. Our results reveal
a range of connectivity conditions under which the thalangtwork composed by different
type of neurons displays the two aforementioned dynamegihres, such as spindle-like os-
cillations in the alpha range. Overall, our model gives aghand clear description of the role
that the two different types of neurons, thalamocortical eeticular thalamic cells, and their
connectivity, play in the dynamical regimes observed inttiredamus, and in the transition
between them.

In Chapterd we study other temporal regimes such as neuronal osciigtiothe gamma
range, and in particular how temporally synchronized past®f oscillatory gamma activity
between neuronal populations could provide preferentatraunication channels. In fact,
synchronization between neuronal populations plays amitapt role in information trans-
mission between brain areas. In particular, collectivellesions emerging from the synchro-
nized activity of thousands of neurons can increase thdifurad connectivity between neural
assemblies by coherently coordinating their phases antlatlomg information flow among
connected regions. This mechanism allows the brain’s adivity topology to be flexibly
reconfigured in response to changing task demands. Thisisymcof neuronal activity can
take place within a cortical patch or between differenticattregions. While short-range
interactions between neurons involve just a few millisetsyrcommunication through long-
range projections between different regions could takeoupris of milliseconds. How these
heterogeneous transmission delays affect communicagittvelen neuronal populations is not
well known. To address this question, we study the dynanfitw® bidirectionally delayed-
coupled neuronal populations using conductance-baskithgpnodels, examining how differ-
ent synaptic delays give rise to in-phase/anti-phaseitrans at particular frequencies within
the gamma range, and how this behavior is related to the pludsrence between the two
populations at different frequencies. We use spectralaisaand information theory to quan-
tify the information exchanged between the two networkse fdsults confirm that zero-lag
synchronization maximizes information transmissiorh@ligh out-of-phase synchronization
allows for efficient communication provided the couplindage the phase lag between the
populations, and the frequency of the oscillations are grgpnatched.

As these results show, the brain self-organizes in diffespatiotemporal highly organized
patterns across not only temporal, but also spatial scHles.the brain reaches this required
level of coordination is not well known yet. A full understing depends on our knowledge
of large-scale brain organization. It is known that the maaiiam brain operates in multiple



spatial scales simultaneously, ranging from the microscegale of single neurons through
the mesoscopic scale of cortical columns, to the macrossmaile of brain areas. These lev-
els of description are associated with distinct temporales; ranging from milliseconds in
the case of neurons to tens of seconds in the case of brais dre€haptel5 we examine
theoretically how these spatial and temporal scales iatémathe functioning brain, by con-
sidering the coupled behavior of two mesoscopic neural esagat communicate with each
other through a microscopic neuronal network. We use thelspnization between the two
neural mass models as a tool to probe the interaction bettheemesoscopic scales of those
neural populations and the microscopic scale of the medjateuronal network. Our results
show that the neuronal network, which operates at a fastdeahpcale, is indeed sufficient
to mediate coupling between the two mesoscopic oscillatngch evolve dynamically at a
slower scale. We also establish how this synchronizatipexés on the topological properties
of the microscopic neuronal network, on its size and on itdlasion frequency.

When synchronized neuronal oscillations exhibit a consigibase pattern across record-
ing sites (e.g. a continuous progression of phase at eaetiday, complex spatiotemporal
phenomena arise in the form of brain waves. Cha@ticuses on the mathematical proper-
ties of traveling waves, emerging from a one-dimensionalagk of inhibitory neurons with
asymmetric synaptic coupling. Our results show that thesearks behave as excitable me-
dia that exhibit anomalous dispersion, and therefore hauater-intuitive wave-propagation
properties. In particular, when neurons at the head of tlancdre periodically forced trav-
eling waves emerge, with the wavefronts moving from thettaithe head of the chain, in
a direction opposite to that of the synaptic connectivitg. mMathematically explore this dy-
namics, we first develop a continuum model with topology Ento the HH model to study
the existence of these backward waves. Secondly we inedéstige generality of this phe-
nomenon across different systems by studying an integrradefire continuum approximation
that is analytically tractable, and derive a self-consisyecondition for the existence of trav-
eling waves which allows the calculation of the dispersiarve. The analysis of the latter
model reveals how wave-propagation depends on a varietgwbnal properties.

Finally, in Part Ill we summarize the results of this Thesid aiscuss future perspectives.
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CHAPTER 1

FROM SINGLE NEURON DYNAMICS TO NEURAL COLLECTIVE
PHENOMENA

1.1 Organized activity of neuronal ensembles

In order to accomplish a cognitive task, the brain requirepatiotemporal organization of
different brain areas. Cognitive tasks are not carried ousibgle neurons, but they result
from the dynamical transient coordination of neuronal ldgsges between different neurons,
which are engaged in specializ&thctional assemblieand contribute to highly-coordinated
collective patterns at multiple spatial and temporal scdlewhat follows we review the main
features of the dynamics of single neurons, and the meaharasd consequences of their
coordination.

1.1.1 Neurons and neuronal assemblies

Neurons are the basic data-processing units of the braey &hcode, transmit, and integrate
signals originating inside or outside the nervous systeignes between neurons occur via
synapses. The transmission of information is due to chaimgtee electrical potential of the
neurons with respect to the extracellular space. One naeamives inputs from other neu-
rons through intercellular contacts callsghapsescausing a transient change in its resting
membrane potential, callgubstsynaptic potentigPSP). This transient change is due to the
flux of different ions between the intracellular and exttedar spaces through of ion channels
present in the membrane. The opening and closing of thesghemmels depends on the mem-
brane voltage and on the neurotransmitters released byrésgnaptic neuron, which bind
to receptors on the cell's membrane and hyperpolarize asldape the cell, through what is
known as an inhibitory or an excitatory PSP respectivelgFe1.1A). If the PSP reaches a
certain threshold, the neuron produces an action potéspiade, which is characterized by a
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certain amplitude and duration (Figut€elB). Spikes are essential units of information trans-
mission at the interneuronal levétkikevich 2006 Kandel et al.2000. Information can be
encoded by the spiking activity frequency or firing rate (coomly named rate coding) or by
the precise timing of the discharges of action potentiaisiftoral coding).
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Fig. 1.1 Action potential and synapses.(A) Diagram of a synapse. The axon terminal is
at the end of the axonal branch (top left of the figure). It hasptic vesicles containing
neurotransmitters, which are released when an action faitanrives from the presynaptic
neuron. The neurotransmitter molecules cross the synélpficand bind to receptors on the
dendritic spine in the postsynaptic neuron. (B) Action poggémecorded intracellularly from
a cultured rat neocortical pyramidal cell. Frdvayan and Abbot(2005.

The brain is made of more than4eurons which are connected by'@hemical and
electrical synaptic connections. Neurons are anatorgigakrconnected to form functionally
specialized neural assemblies. Neural assemblies aréudistl local networks of neurons
transiently synchronized by reciprocal dynamic connesti@uzséki and Draguhr2004 Lli-
nas et al.1998 Shadlen and MovshQii999 Varelg 1995. The large density of local short-
range connections in the brain subserves the developmétadffunctional populations, and
a small percentage of long-range connections reduces thienalipath length between any
two neurons (see Figute?). This pattern of structural connectivity can foster a si@le bias
of the communication within local and global networks. $mamporal dynamic coordina-
tion of these neuronal ensembles is the core of neural conaation, because it can provide
flexible neural communication pathways.
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Functionally, temporally organized patterns suchasronal oscillationswhich will be
introduced in Sectiori.1.2 could be a signature of the collective activity of large up®
of cells Buzsaki and Draguhr2004 Buzsaki and Wang2012 and play an important role
for cortical processes that control the flow of informationthe brain Fries 2005 Salinas
and Sejnowski2001). Furthermore spatiotemporal collective phenomena sadarge-scale
synchronization of neuronal oscillationgafela et al. 2001) or wave propagationLibenov
and Siapas2009 arising from neuronal ensembles could provide a mechafismeural
communication, and contribute to the accomplishment okaifip task Schnitzler and Gross
20095. These phenomena will be presented in Sectidn3

Fig. 1.2Schematic representation of transient distributed neuralassemblies Distributed
neural assemblies in different brain areas are connectéohnigyrange dynamic connections.
FromVarela et al(2001).

1.1.2 Temporal coordination of neuronal oscillations

A prominent property of neural ensembles is the tendencygage in oscillatory dynamics.
Hans BergerBerger 1929 observed this activity in the form of brain rhythms from ceded
electrical potentials on the scalp of healthy subjects, @tdgorized this electroencephalo-
graphic (EEG) activity in different frequency bands: d€lia- 3 Hz), theta (4- 7 Hz), alpha
(8—12 Hz), beta (13- 30 Hz) and gamma (36 200 Hz).

In general, neuronal oscillations arise collectively frim temporal coordinated activity
of anatomically connected circuits. They lead to periodigations in the recordings of neu-
ral activity such as local field potential (LFP), a populatimeasure (spatial average across
many neurons, see Appendixl) that highlights temporally correlated activity within @ |
cal population. At the network level, these oscillatorytpats are commonly attributable to
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either spike-to-spike synchrony, where neurons spikelagiguand synchronize due to chem-
ical/electrical synapses, or sparse synchronizationyevheurons spike irregularly, possibly
with different frequencies, but a collective rhythmicitsnerges at the population level (syn-
chronous irregular state)Bfunel and Hakim2008 Wang 20103. The frequency and the
emergence of these oscillations depend on cellular pacammadchanisms and neuronal net-
work properties: a smaller recruitment of cells leads tdargrequencies (e.g. gamma band),
while lower frequencies originate from larger neuronalydapions Bibbig et al, 2007). Neu-
ronal oscillations have been found in several brain areadyding the cortex, the thalamus
and the hippocampus. The range of frequencies of thesdabsgyl patterns are associated
with distinct cognitive processes and behavioral taSaifas and Sejnowsk2001 Ward
2003 (see Tabldl.1l). The functional role of these oscillations has remainestale for sev-
eral years, but recent experimental and theoretical esudicate that neural oscillations can
subserve cognitive processes (such as sensory représeadtentional selection) and might
subserve dynamic gating and routing of informatiBuzsaki and Draguhr2004 Salinas and
Sejnowskj 2001 Schyns et a).201% Singer 1999. In this Thesis we will focus on different

Theta Alpha Beta Gamma
(4—7H2z) (8— 12 Hz) (13-30Hz) (30—200 Hz)

Anatomical origin Hippocampus, Thalamus, Al cortical All brain struc-
prefrontal cor- Hippocam- structures, tures, retina,
tex, sensory pus, reticular subthalamic olfactory bulb
cortex formation, nucleus, hip-

sensory  cor- pocampus,
tex, motor basal ganglia,

cortex olfactory bulb
Functions Memory, Inhibition, Sensory gat- Perception, at-

synaptic attention, con- ing, attention, tention, mem-
plasticity, top- sciousness, perception,  ory, conscious-
down control, top-down motor control, ness, synaptic
long-range control, long-range plasticity, mo-
synchroniza- long-range synchroniza- tor control
tion synchroniza- tion

tion

Table 1.1 Neural oscillations in cortical networks. Adaptem Uhlhaas et al(2009.

patterns of oscillatory activity at different frequenciesg. gamma band in the cortex) and
associated with different cognitive states and functiang.( activity in the thalamus during
sleep). Perhaps one of the most studied rhythms is the ti@akpimdle oscillation present
in all mammals during sleep or anesthesia. This is a rhytlosadlation at 7— 15 Hz orig-
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inated in the thalamus during slow-wave sleep. The gemerati this rhythm is due to the
temporal interaction and coordination of thalamocortretdy (TC) cells, which are mutually
connected with thalamic reticular (RE) neurons.

In Sectionl.2we will emphasize the functional role of the thalamus, facg®n diverse
dynamical activities during different cognitive statepesifically during sleep and wakeful-
ness. In particular, we will describe the mechanisms resiptenfor the generation of spindle
oscillations during slow-wave sleep and how changes inalyoel organization patterns in the
thalamus subserve a switch from sleep to the awake statdtimgsin different information-
processing capabilities. By reviewing new interesting ltssabout the functional role of the
thalamus, we will motivate our work in Chaptéaimed at shedding light on the different dy-
namical regimes that allow the thalamus to be not only a ®mgihy station, but interestingly
a gate for information transmission towards the cortex aukb

1.1.3 Spatiotemporal coordination: large-scale synchrony and wave prop-
agation

Neuronal oscillations emerge at many different spatidkescahey can arise from synchroniza-
tion between individual neurons, larger assemblies ofereyrcortical areas, or even between
hemispheres (global brain synchronization). Transiemtisyonization of neuronal discharges
has been proposed as a possible mechanism to dynamicallwhiely distributed sets of neu-
rons into functionally coherent ensembles that represenneural correlates of a cognitive
content or a motor progranbifiding-by-synchronizatiohypothesis) $inger 1999. Beyond
that, long-range synchronization has been proposed asaajenechanism for selectively
routing the flow of information between brain areas.

In particular, gamma-band synchronization has been stgmj@s a mechanism to spatio-
temporally coordinate the transmission of informatiorwstn brain areascémmunication
through coherenclypothesis ofries 2005. In Sectionl.3we will introduce how synchro-
nization of gamma oscillations can subserve neural comeoation. We will review the possi-
ble synchronization mechanisms in a large group of neurndsatween distant populations
even in presence of large synaptic delays, in particulardimg on gamma-band synchroniza-
tion between coupled neural populations. This will be idtrctory and will offer the chance
to motivate our study in Chaptdr

Brain activity reveals exquisite coordination across ndiy damporal, but also spatial
scales: from local microcircuits to brain-wide network$efefore synchronization, as a mech-
anism of large-scale integration, requires the study dédsht spatial and temporal scales si-
multaneously. We will deal briefly with this issue in Sectibd, exploring the new advances
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in the simultaneous multi-scale study of collective brawempomena, that is preliminary to our
work in Chaptelb.

Experimental tools such as voltage-sensitive dye (VSD)ging (Shoham et al.1999
and multielectrode arrays (MEAsM@aynard et al.1997) routinely allow nowadays measure-
ments of large-scale spatio-temporally coherent pomratynamics, revealing the existence
of propagating waves in the visual, somatosensory, aydod motor cortices under different
cognitive conditions botim vitro (Buonomang2003 Pinto et al, 2005 andin vivo (Jancke
et al, 2004 Lubenov and Siapa2009 Nauhaus et al2009 Watt et al, 2009. Propagating
waves reveal a large-scale spatiotemporal coordinatidheractivity of neuronal ensembles
at different spatial and temporal scales. In Sectidhwe will briefly review experimental
evidences of propagation activity in different brain areasl focus on the possible functional
role of propagating waves in the awake brain, that is propaici to the study that will be
presented in Chapté
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1.2 Temporally organized patterns in the thalamus: spindle
oscillations

The thalamus is located near the center of the brain and iatenof two major components:
the dorsal thalamus, composed of several thalamic nuatecantaining the gluatammatergic
thalamocortical relay (TC) neurons that project to the neego and the ventral thalamus,
mainly composed by the reticular nucleus and containing &&mBic reticular thalamic (RE)
neurons that inhibit TC neurons in the dorsal thalanfisefman2006§. The thalamus is
identified as a relay station between subcortical and @ieas: sensory inputs from visual,
auditory and somato-sensory receptors reach the cortexghfT C neurons in specific regions
of the thalamus, which project onto the corresponding arealse primary sensory cortex.
Along with these forward projections, there are feedbackréldrom cortical layer 6 to the
corresponding thalamic nucleus (see Figird (Destexhe and Sejnowsk2003. These
large-scale thalamocortical interactions produce dffiérhythms in the thalamus according
to the different cognitive states. One of the most studigthrins are the spindle oscillations.

Spindle oscillations are rhythmic oscillations at 15 Hz resulting from the coordinated
temporal activity of neurons within the thalamus duringisslwave sleep. They originate in the
thalamus and not from its connections with the cort&dr{an, 1941, Bishop 1936 Bremer
1938 Morison and Bassetl945 Steriade and Deschend®984 von Krosigk et al. 19933,
although their triggering and large-scale synchrony caalg on the cooperation with the
cerebral cortex through the above-mentioned thalamaadrinteractions Destexhe2014).
The generation of this rhythm is due to the rebound-burginogerties of the TC cells, which
are mutually connected with the RE neurons. Spindles canigmated in TC cells with a
burst of spikes, which can elicit PSPs that activate RE cllgirn RE cells produce bursts at
the spindle frequency, entraining TC cells to follow thisitdation and feeding back to the RE
cells in order to sustain this rhythmicity. Therefore sjgngeneration is due to an interplay
between TC and RE cellsAfidersen and Eccle4962 Destexhe et al1993 Destexhe and
Sejnowskj 2003 McCormick 1992).

1.2.1 Thalamic dynamical regimes: bursting vs tonic

This oscillatory dynamical regime at the spindle frequeiscglefined adurstingbecause of
the form of the response of thalamic relay cells to incomimmuis, and depends on the status
of the corresponding intrinsic voltage-dependent menmmm@nductanceSherman 2007).
This regime mainly dominates during slow-wave sleep, dinogss and certain pathological
conditions. On the other hand, during normal waking behav@lamic relay cells present
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Cerebral Cortex

Thalamus

Fig. 1.3Structural connectivity of thalamocortical system. Map of thalamocortical interac-

tions between the thalamus and the cerebral cortex. Thexcateives its primary source of
sensory input from the thalamus via thalamic afferents éodbrtex, and the cortex projects
back to the thalamus. This reciprocal interaction betwéatamus and cortex could alter
the cortical representation of sensory activity in timeciiatory TC cells receive sensory in-
puts directly from subcortical areas, project mainly togmgrdal neurons and to interneurons
of the corresponding sensory cortical area, and make éxgitaynapses with RE neurons.
RE neurons make collaterals with TC neurons. Along with feedérd thalamocortical pro-

jections, pyramidal neurons from the cortical area feek iadhalamic neurons. Adapted
from Destexhe and Sejnowsi2003.
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a different dynamical mode known &nic. The two different dynamic modes, bursting and
tonic, reflect the status of the voltage-dependent, intrime&mbrane conductance of TC cells
and affect how TC neurons respond to incoming sensory inpitis important effects on the
process of relaying information to the corte&Sherman2001).

During tonic firing, the spikes of a TC neuron are directhkéd to an excitatory postsy-
naptic potentials (EPSP) in that cell, in such a way thagleE? SPs could elicit higher spiking
rates. In a bursting regime there is no direct relation betwan EPSP and an action potential,
thus larger EPSPs do not generate higher firing rates. THeygokthe information differs
between modessherman2001). The analysis of Sherman summarized in Figlidessuggests
that (i) the neural response profile to a sinusoidal inputasersinusoidal during tonic than
during bursting mode (Figure4C,D), and this reflects better linear summation (FigueE);

(i) spontaneous activity is higher during tonic firing (brg 1.4A,B), which contributes to
maintain linearity by minimizing rectification of the respe Sherman2001). Therefore the
spontaneous activity represents the noise against whichishal response has to be detected.
Figurel.4suggests that the signal-to-noise ratio or detectabdityigher during bursting than
during tonic regime. This has been confirmed directly by appate detectability measures
in Figurel.4F.

The understanding of how thalamic neurons are engaged $e ttignamical modes de-
pending on the cognitive states, and how these dynamic&idés the information process-
ing from thalamus to cortex and vice versa, could help ehteidvhat is the real functional
role of the thalamus, which is still quite obscure.

1.2.2 Functional role of the thalamus

During the last decades, the idea of a thalamus as a simplyteethe cortex has been strongly
debated. For instance, the discovery that feedback cbptiogections represent the majority
of afferent modulatory inputs on the thalamus led scientistthink that the thalamus plays
a stronger role in the transmission of information to theearIn other words, the thalamus
does not limit its activity to faithfully transmit informetn to the cortex, but it might play an
active role in thalamocortical communication, acting ayaanic control of the information
that is passing through the thalamus. In that perspectimeight dynamically alter the infor-
mation relayed in a manner that reflects various behavitatdssuch as attention and drowsi-
ness, corresponding to different temporal organized peti@nd dynamical regimeSiterman
and Guillery 2002.

Moreover, the appearance of new technologies for the measnt and manipulation of
intracellular activity sheds light on the functional rolétbalamus in the processing of in-
formation. In this directionReinhold et al(2015 performed exquisite experimental studies
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Fig. 1.4 Tonic and bursting responses of relay TC neurons to visual stulation from
the LGN in the cat brain. Tonic and bursting responses to visual stimulation of thada
relay (TC) neurons from the lateral geniculate nucleus (LGN& cat (recordedn vitro).
(A-D) Average response histograms of responses, recontiectellularly, of one cell to four-
cycles of drifting sinusoidal grating (C,D) and during spor@ous activity (A,B). Current was
injected through the recording electrode to bias membranengial towards depolarization
(65 mV), which produces tonic firing (A,C), or towards incregshyperpolarization (75 mV),
producing burst firing (B,D). (E) Response linearity and (lghai detectability during tonic
and burst firing. Each point in the scatter plots reflects dfata one relay cell of the cat’s
LGN recordedn vivo during visual stimulation. The dashed line in each plot hakbpe of
1. To obtain a measure of linearity, responses to sine waatings were Fourier-analyzed
and a linearity index was computed. The larger this indexntiore linear the response. Note
that every single cell shows more linearity during tonionfixi For detectability, values were
determined by receiver operating characteristic (ROC)yamal FromSherman(2007).
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and obtained very interesting results about the role oftth&atus in clocking the recurrent
cortical dynamics. They found that the sensory-evokedisgin visual cortex upon the ap-
pearance of a stimulus does not simply reflect a self-sustpictivity due to intracortical
recurrent circuits (with the important contribution of toal inhibition), but it is entrained
and amplified by the direct thalamocortical communicatiathgray. In particular they de-
signed an optogenetic method able to silence, with miliselgrecision, the cortical circuits
and the direct thalamic input, and identified what are thatined contributions of the intra-
cortical circuits versus the thalamic afferents on the sgnsvoked cortical activity. These
experiments have been carried out in awake and under asestimaditions Reinhold et al.
2015. First, they silenced the cortex (FigutebA), and found that during the first 40 ms the
thalamic excitation is dominant, after what the contribatof the cortical recurrent circuits
grows progressively, and after 250 ms, cortical recurréntits amplify the thalamic input
by more than a factor of 3 (Figure5C) (Reinhold et al.2015. Second, they silenced the
thalamic afferents once the visual cortical response iswecdd (Figurel.5B) to study the
timescale of intra-cortical self-sustaining activity whthe thalamic input is removed. By
silencing the thalamus without visual stimulation, intetical self-sustaining dynamics lasts
up to hundreds of milliseconds. Upon sensory stimulatiothg thalamus is silenced, cortical
response decays with a time constant of 10 ms, which comelsto the integration time win-
dow of a single cortical neuron and is more than two ordersagmitude faster than when the
thalamus is on (Figurg.5D). Silencing the thalamus reduces the visual corticalaesps and
the spontaneous cortical activity of the awake primary aiswortex, meaning that the thala-
mus temporally constraints cortical responses and drivggal spontaneous activitA{onso
and Swadlow?2015. The fast sensory-evoked recurrent intracortical agtifwithout direct
thalamic input) could be due to cortical inhibition, whichgroposed to regulate the dynamics
of recurrent circuits Constantinople and Brung2011; Sanchez-Vives and McCormicR00Q
Timofeev et al. 2000. Thus, intracortical inhibition enforces the fast decayet of cortical
recurrent networks and allows them to follow the fast terapfsequencies of thalamic inputs
during the awake staté\[onso and Swadlow2015.

Additionally it is known that by passing from anesthesia drmvsiness to awake and alert
state there is an increased spiking activity in the thalar@igen that thalamocortical synapses
exhibit depressionQil et al., 1997, higher firing rates in alert subjects lead to chronic de-
pression at the thalamocortical synaps&eiiso and Swadlon2015 Castro-Alamancos and
Oldford, 2002. According to the results of Reinhold et al., this activitgpendent depression
of thalamocortical synapses could explain the lack of raspmf the cortex to high temporal
frequencies in the anesthetized brain (Figli®E). Indeed, self-sustained activity under anes-
thesia or with absence of sensory stimulation is prolongedséveral tens of milliseconds.
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Fig. 1.5Contribution to sensory-evoked cortical activity: cortex versus thalamus.(A,B)
Optogenetic tool developed byeinhold et al(2015 to silence the thalamus by activating
inhibitory reticular neurons (A) and to silence the cortinaurons in layer 4 by activating
cortical inhibition (B). (C) By optogenetically silencing tivesual cortex in miceReinhold

et al. (2015 recorded the response of layer-4 neurons to a visual stenurhey found that
the thalamus mainly contributes to the total excitatoryoese during the first 40 mssp).
(D) By optogenetically silencing the thalamus, the cortiegponse rapidly decays with a
characteristic time of 10 ms, corresponding to the intégmatme of a single cortical neuron.
(E) Due to the fast decay dynamics, the cortex is able toviohah-frequency stimulation
(transmitted by the thalamus when the animal is awake). Wheratimal undergoes anes-
thesia, the high-frequency transmission is not possibétdweaker thalamic responses and
thalamocortical synaptic depression. Panels (A,B) addppetdReinhold et al(2015, panels
(C,D,E) adapted fromlonso and Swadlow2015.
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These results shed light on the possible functional rolehefthalamus, which cannot be a
simple relay station in every cognitive state, but it tranfly and functionally switches from a
dynamical mode to another, to gate and elaborate the flowfamation according to the spe-
cific cognitive state. These results could also call for thsigh of new experimental studies
to understand the effective modulatory role of corticatinait feedback on the thalamus.

The results discussed above show that understanding hoshftereent types of thalamic
neurons are engaged in different temporal motifs, and hey $fvitch from one mode to the
other depending on the cognitive state, could give crungghts on the dynamical role of the
thalamus in transmitting information to the cortex. Guidgthis need, in Chapte&dwe will
address the general question of how the thalamus changagnigsnical behavior (which is
associated with different information-processing reginerresponding broadly to wakeful-
ness and sleep) as a function of both its internal state aedet inputs. In particular, we will
show that a simple yet biologically realistic model of thaldmus can exhibit two dynamical
regimes with different information processing capalabti and study the transition between
them. Furthermore we will investigate how the network aetiure of the thalamus influences
the occurrence of these two regimes, and how the transigbme®n them is controlled.
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1.3 Synchronization of neuronal oscillations

As the spindle oscillations in the thalamus, neuronal @®hs in general are a signature
of the temporal coordination of neuronal discharges of gelgroup of neurons. They are
associated with different cognitive functions and brawaaraccording to their frequency and
intrinsic properties. Understanding how and when osailfes arise at the population level and
give rise to oscillatory synchronized patterns at largdesgaght provide interesting insights
on how the brain reaches the required level of spatiotenhgomdination between brain re-
gions that seems to be essential for the accomplishmentgfitoee tasks. Functionally a
challenging hypothesis is that synchronization of neurogeillations at different spatiotem-
poral scales is a possible candidate for neural commuartdfiries 2005 Schnitzler and
Gross 2005.

Neuronal synchronization is different from other widelydied natural synchronization
phenomena because (i) the brain is a complex nonlinearrsysii¢ neurons themselves are
nonlinear multidimensional systems displaying a rangeyatdhics in various spatiotemporal
scales and finally (iii) neurons are connected by means @fpsgs, which are dynamical ele-
ments that influence the process of synchronizatitab{novich et al.2012. Local neuronal
synchronization results from a temporally precise coatiam of neurons in a certain popula-
tion, while long-range oscillatory synchronization stefmmsn a spatiotemporal coordination
of neural activities of distant populations. Oscillatibased synchrony is considered the most
energy-efficient physical mechanism for temporal coortitima (Buzséki and Draguhr2004
Mirollo and Strogatz1990.

The establishment of local and long-range synchronizattias on the topology of com-
plex neuronal networks. In cortical networks, the topolafyhe connectivity recalls some
properties of the small-world networks characterized ®aardensely connected more than
others with no singular center working as coordinator wiadireformation converges. These
local circuits are supplemented by a smaller percentagengf-tange connections (with re-
spect to the local ones(aitenberg and Schii2998, and this drastically reduces the synap-
tic connections between distant neuronal assemtiiezgaki et al.2004). It is thus natural to
ask how the different computations taking places simuttasly in spatially segregated areas,
e.g. underlying different features of an object, are cowtlid to give rise to a unified percep-
tion (Uhlhaas et a).2009. A solution could lie in the emerging synchronized behawvitthe
involved areas. Despite the smaller number of long-rangeections, the synchronization of
local and distant areas might be accomplished by osciflatae to the low energy costs in-
volved in coherent neuronal oscillations, which provideperal opportunities for preferential
communication pathways, by tuning the fluctuations of thenfm@ne voltage of neurons par-
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ticipating in the collective oscillatory dynamicBi{zsaki and Draguhr2004 Fries 2005. In
this Section we will mainly concentrate on synchronizatioil phase locking as coordinating
mechanisms based on the temporal patterning of neuromatyact

1.3.1 Local mechanisms of zero-lag synchronization

Several experiments have shown that neuronal circuitsygarhsonize either at zero time lag
or with a time lag much smaller than the conduction delayr(meeo phase)Roelfsema et a|.
1997. We focus mostly on the first mechanism, known as zero-laghaynization. Given
the complexity of the phenomenon, several mechanisms lerefiroposed to be responsible
for sustaining synchrony at different scales and diffecemébral structures.

A first mechanism supporting a zero-lag synchronizatiomaie in cortical neuronal net-
works is entrainment via a common drive from a single soufbe. source could be located in
another cortical area, or in a sub-cortical area like thiathas Gteriade et al1993. Locally,
intrinsic oscillating cells or pacemaker cells could eimrne network activity at a specific
frequency. An example are the chattering cells likely imedl in the generation of stimulus-
driven gamma oscillationsGray and McCormick1996. This entrainment influences the
rhythm and the synchronization among the target cells.cdltjin the mechanism is quite sim-
ple, the synchronization can be dynamic and depends onréreg#h of the entrainment, on
the internal coupling and on the intrinsic properties ofrteerons Uhlhaas et aJ.2009.

A second mechanism compatible with the generation of zees® synchrony is based on
local network effects. A single neuron cannot entrain thevoek, but the interaction between
neurons in the network can give rise to emerging synchroneaglations with small phase-
lag. This mechanism is different from entrainment, becamerging patterns are a feature
of the interactions between neurons. Network effects nesipte for this synchronization
are for instance recurrent inhibition, mutual excitatiomjtual inhibition and gap junction
coupling Kopell et al, 2000h Ritz and Sejnowskil997 Van Vreeswijk et al.1994).

Furthermore in complex heterogeneous networks with netairtaneous coupling, the re-
current inhibition between excitatory and inhibitory batad sub-networks plays a crucial
role in inducing zero-phase synchronizatigopell et al, 2000 Van Vreeswijk et al.1994).

In this synchronization via recurrent inhibition, neurbnatworks can synchronize their ac-
tivity at zero lags without necessarily altering the averfigng rate of the neuron8(ia and
Tiesinga 2006 Tiesinga and SejnowskR004. The same is not true for instantaneous ex-
citatory coupling, which seems to favor desynchronizatether than synchronization for a
broad class of models and parameter regirkepéll et al, 2000h Ritz and Sejnowskil997).
Electrical gap junctions are often neglected in many cortparial models, however they are
important for generating oscillatory synchronized atjiviA proof was provided by experi-
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mental studies where chemical coupling is blocked and tisaglatory activity is entrained
by gap junctionsBuzsaki and Draguhr2004).

These mechanisms cannot be adopted to explain zero-phad®aeyy findings between
distant brain regions, e.g. between areas located in diftenemispheres where synaptic
delays are not negligibleéS{nger 1999 Varela et al.2001) and are due to conduction times,
synaptic delays and electrotonic propagation. By way of e@tanthe aforementioned zero-
lag synchronization induced by recurrent inhibition, withwithout gap junctions, is only
plausible for networks dominated by local neuronal coup(ldhlhaas et aJ.2009. A unique
mechanism to explain local and global zero-lag synchrdiozdas not been found yet.

1.3.2 Zero-lag synchronization of distant coupled populations

A network topology that can exhibit zero-lag synchroniaatof distant populations of neu-
rons is made of two dynamical elements bidirectionally dedpvith a central mediator, which
redistributes symmetrically identical information to theter two Eischer et al.2006 (Fig-
urel1.6). In this configuration, zero-lag synchrony is preserveehewhen the fibers connect-
ing the networks have a diversity of conduction delayiednte et al. 2008. The mediator
role could be played for instance by the thalamus, giveninmtpke topology of bidirectional
and radial connectivity to the neo-cortex as a mechanisnuppart distributed cortical pro-
cessing Jones2002 Sherman and Guillery2002. In this scheme, thalamic nuclei have the
cortex as the input and the output at the same time, and ctayidp important role for the me-
diation of zero phase solutions, enhancing cortical cateé&hipp 2003h. This long-range
oscillatory activity could be extended to different motifeose senders populations share the
relay network fub) (Sporns et a).2007). Therefore, provided that there is a constant tempo-
ral latency between the relay and the outer populations;twikitrue between thalamic nuclei
and any area in the mammalian cort&afami et al.2003, self-organized lag-free synchro-
nization can emerge in all three networks (FigréB-E). Thus, dynamical relaying-based
synchronization might induce and sustain the establishofdang range neuronal synchrony,
with the relay being the thalamus or other cortical areasutin corticothalamic or purely
cortico-cortical connections, respectively. In whatdals we concentrate on synchronization
between neuronal populations oscillating in the gammaeamyl possible consequences for
neural communication, because gamma-band synchromzaight subserve various cogni-
tive functions.
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Fig. 1.6Dynamics of three neuronal populations interacting throudh dynamical relaying.
Topology of three large-scale networks of excitatory arliitory neurons receiving external
poissonian excitatory input interacting through dynamredaying. Axonal delays are set
to 12 ms. (A) Raster plot of the activity of each neuron of pagiaoh 1 (neurons 1-100),
population 2 (neurons 101-200) and population 3 (neurods-ZW0). The top 20 neurons
of each subpopulation (plotted in gray) are inhibitory, #melrest are excitatory (black). (B)
Firing histogram of each subpopulation of 100 randomlycekneurons (black, red, and blue
colors code for populations 1, 2, and 3, respectively). (JrAge cross-correlation between
population 1 and 2. (D) Average cross-correlation betwesgufation 2 and 3. (E) Average
cross correlation between the outer populations 1 and 3sikleeof histogram bins is set to 2
ms. FromVicente et al(2008.
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1.3.3 Gamma-band synchronization

Numerous experimental and computational findings haveritbestactivated neuronal groups
engaging in rhythmic synchronization in the gamma-fregydmand (broadly 36- 100 Hz).
These studies have been performed in many brain areasginglthe visual cortexBckhorn
et al, 1988 Engel et al. 1991, Gray et al, 1989, the auditory cortexgrosch et al.2002 Ed-
wards et al.2005, the somatosensory corteRquer et al.2006, the motor cortex Brown

et al, 1998 Schoffelen et a).2005, the retina and lateral geniculate nucleus of anesttktize
cats (Neuenschwander and Sing&896, and the hippocampus of awake behaving rBtsi{
gin et al, 1995. Moreover gamma-band synchronization has been obsecredsadifferent
species, including cats, monkeys, rats and mi&gin et al, 1995 Csicsvari et al.2003
Montgomery and Buzsak2007 Montgomery et al.2008), in different invertebratesStopfer
et al, 1997 Wehr and Laurentl996, and in the visual cortex of human subjedtsi¢s et al.
2007, 2008. This mechanism has been associated with cognitive fomesuch as attention,
arousal, object recognition and top-down modulation ossenprocessesEfigel et al. 2007,
Singer 1999.

Pioneering studies mainly focused on testing the propbsdlgamma-band synchroniza-
tion subserves perceptual binding, known asktimeling-by-synchronization hypothesighis
hypothesis states that neurons forming a functional asyesnd bound together by synchro-
nization of their action potentials. Emerging oscillasdhen allow activated neuronal groups
in distant cortical regions with sparse interconnectiansécome temporally linked, and sub-
sequently activate unique sets of downstream assemilEd¢rn et al. 1988 Gray et al,
1989 Singer 1999 Singer and Grayl995.

New experimental observations have extended the concegaroma-band synchroniza-
tion beyond being exclusively a mechanism for bindiggH{nitzler and Gros2005. The
time span required to bring together transient cell assesibfHarris et al, 2003 approxi-
mately matches the gamma cycle, and the induced oscilletitmmg enough to allow for an
elementary cognitive acEfigel et al. 2001, Llinas and Ribary1993 Varela et al.2001).

1.3.4 Communication through coherence between coupled gamma oscil-
lating populations

When the neurons in a target group are synchronized in the gaimeguency band, they are
under the dominant influence of gamma-rhythmic inhibitoyguts Hasenstaub et ak005.
Consequentially, synaptic excitatory inputs are more efficif they impinge on the network
out of phase and vice versa. The implication of this staténsehat rhythmic local inhibitory
synchronization leads to periodic modulation of excitgiaput gain Eries 2009. The input
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gain is modulated cyclically with short windows (around 12, morresponding to half the
gamma period), and affects the average gain of rhythmidabecy input across multiple cy-
cles. The average gain across cycles is determined by tbisjoreand phase of the synchro-
nization between rhythmic input and rhythmic gain. Therefeynchronization provides a
more consistent phase relation between the rhythms thiiotaynchronization, and the input
gain can be maximized or minimized according to this phalsgioa (Figurel.7A,B). There-
fore interactions among rhythmically active neuronal goeould depend on neuronal syn-
chronization. This is behind the hypothesis calb@nmunication through coherendéries
2009 (Figurel.?). This hypothesis establishes that if two neuronal popratoscillate with

a constant phase difference, then an effective transmisdimformation is possible provided
that spikes sent by one population reach the other one atails @f excitability.

However, temporal coordination between spatially sepdragbpulations (connected by
long-range axon collaterals) might be destabilized by tiesgnce of conduction delaysr¢
mentrout and KopellL998. If the conduction delays are of the order of 8 ms, reciprocally
coupled oscillators in the two hemispheres might still $ypaize at zero-phase. However,
given that conduction delays can take up to several tens lb$@tionds, how does the brain
reaches the required level of coordination in order to distalefficient communication chan-
nels between different brain areas?

In Chaptert we will address the general question of how communicati@siablished be-
tween physically separate brain areas, using neurondlatsris as information carriers. In
particular, we will examine whether and how effective conmioation between cortical areas
arises even when the time taken by neuronal signals to godrmrarea to another is compa-
rable to, or larger than, the typical time scales of the ulgdey neuronal networks. To do so,
we used a biophysically realistic computational model af synaptically coupled neuronal
populations working in the gamma regime. Our model repredwuguantitative features of
experimental observations of communication through caiex Bosman et a).2012 Wom-
elsdorf et al. 2007, and provides a mechanism to explain why the experimeibse¢ivation
of this strategy of information transmission is so pervasiv
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Fig. 1.7 Communication through coherence hypothesis.(A) Two presynaptic neuronal
groups in a lower visual area send two inputs (an apple and@ fzea postsynaptic neuronal
group in a higher visual area. In each neuronal group, eaitgred) triggers inhibition
(blue), which inhibits the local network. When inhibition ars off, excitation starts again
along the gamma cycle. The gamma rhythm of the presynaptigpgrepresenting the apple
reaches the postsynaptic group in antiphase, and is tmerafde to engage it. Thereby, the
apple-representing presynaptic group can optimally traings representation. On the other
hand the pear-representing presynaptic group cannontraits representationHies 2005.
(B) lllustrative plot of network excitation and inhibitiorombined into network excitability.
Red vertical lines indicate excitatory neuron spiking angeblertical lines inhibitory neuron
spiking. FromFries(2005.
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1.4 Synchronization as a mechanism of large-scale integra-
tion

The mammalian brain is composed of a myriad of coupled nesutfzat interact dynamically
and exhibit various dynamical activities and processepéipg at different timescales, in-
cluding sub-milliseconds (gating of ionic channels), imé@tonds (action potentials), seconds
(flow of slow ionic currents), minutes (synaptic conduceswariation), days (growth and
development of new synaptic connections) and decadedh(déaturons). The same applies
with respect to space. In fact neuronal dynamical processesr a wide range of spatial
scales, from micrometers (molecular and biochemical mse® within neurons), to millime-
ters (synaptic interaction in local neuronal ensembled) @ntimeters (interaction between
different areas of the brain). Owing to a complex functidnalarchy between cell groups, the
brain is able to process multiple sensory inputs efficieatlgt simultaneously and produce co-
herent output in the form of actions and thoughts. Therafdfeermation processing relies on
the coordinated interaction between large groups of interected neurons distributed within
and across different specialized brain ardx®$sler and Kels®001 Jirsg 2004 Mcintosh
2000. How does the brain coordinate all the perceptions, thtsughd actions that result
from neural processes happening at different tempora¢seaid distributed across the brain?
What are the neural mechanisms that select and coordinatdighiibuted neural activity to
accomplish a certain cognitive task? This is the largeesicdégration problem\arela et al,
200D).

1.4.1 Local and large-scale integration

In the brain, the emergence of a neural assembly (see Sekctipnnderlies the operation
of each cognitive act. These functional neuronal ensentidge a transient existence that
spans the time necessary to accomplish a cognitive act liwdain be as short as a fraction
of a second), but their existence is long enough to allow ity to propagate through-
out the assembly, propagation that requires cycles of recap spike exchanges with delays
of transmission up to tens of milliseconds. Therefore thevent variable to describe these
neural assemblies is the dynamic nature of the links betwesn, rather than the individual
activity of single component. In fact each neuronal integramechanism is based on the lo-
cal interaction between the participating network3aihasio 1990 Mesulam 1990. While
some authors thought that, due to the hierarchical orghnizaf the brain, the associative
areas between motor and sensory regions allow for integratine hypothesis most widely
accepted nowadays is that networks with their respectiegantions provide the basis for in-
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tegration Damasigo 1990 Mesulam 1990. Between the various modes of mutual interaction,
one of the most experimentally studied is integration tgirophase synchronizatiovdrela
et al, 2001).

Phase synchrony is a basic mechanism for brain integragiot,direct evidence is pro-
vided by the visual binding hypothesis (see Secfidh3. This hypothesis states that differ-
ent features of a visual object, which are processed sepaiatspecific visual areas, bind
together to give a unified percept through the synchrominadi local discharges of cell as-
semblies Roskies 1999. Therefore, visual binding refers tocal integration of neuronal
properties at the level of neighboring cortical areas, igpieed in the same modality. In
contrastVarela et al(2007) proposed that synchronization of neural assemblies i®eegs
spanning multiple spatial and temporal scales in the nerggstem (see Figuke8), and not
just a local mechanism.

Local integration takes place over a local network of the sidler of~ 1 cm (Figurel.8A)
by making direct reciprocal connections (in the same calricea) with conduction delays of
typically 4— 6 ms Girard et al, 200]). In contrast, large-scale synchronization involves akur
assemblies that are located in distant parts of the bragm iemdifferent hemispheres-(1 cm)
(Figure 1.8B). Consequently signal transmission along indirect conoest(usually named
feedforward or feedback, connecting different brain rag)acould take up to several tens of
milliseconds due to conduction delayh{llips and Singerl997 Varela et al.2007).

1.4.2 Evidence for large-scale synchronization

In the last years several experiments have been designédsimate the existence of large-
scale oscillatory synchronization and test its potentialctional role, as one of the mecha-
nisms that might implement coordinated communication sthfferent neural subsystems
(Bressler et a).1993 Roelfsema et al1997 Schnitzler and Gros2005 Varela 1995, go-
ing beyond the binding hypothesis. Three main observasapgort the functional relevance
of large-scale oscillatory synchronization: (i) the fdeatt beta oscillations are functionally
involved in long-range synchronizationBgudry et al. 2001, Kopell et al, 2000k Tallon-
Baudry et al.2004), (ii) the importance of the spatiotemporal balance of yanization and
desynchronizatiorHriston 200Q Hanslmayr et a).2016 Rodriguez et a).1999, and (iii) the
discovery that synchronization patterns are directlyteelao behaviorKell et al, 2001, Fries
et al, 2002k Tallon-Baudry et a].2004).

Significant evidence for large-scale synchronization heenbprovided by experiments
with EEG and MEG, among others. A significant experiment cated byRodriguez et al.
(1999 provides direct support for long-range synchrony andasgnts one of the first sig-
natures of the functional significance of long-distancechyanization in human brain activ-
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Fig. 1.8Neural synchrony as a multi-scale phenomenorSynchronization of neural assem-
blies is a process spanning multiple spatial and tempoedésadn the nervous system. (A)
Local scale. In a small region or a local network three déférlevels of analysis can be
considered: (a) Synchronization between single cells wsplecific stimulus as measured by
cross-correlogram. (b) Local field potentials from recogdelectrodes (separated maximum
7 mm). The traces represent fast oscillations synchranizapisodes. (c) Transient synchro-
nized patterns within a population of neurons measureddrdnially. Populations are most
transiently synchronized in the gamma range after the appea of a stimulus. (d) Activity
from recording electrodes on the surface: synchronousipatappear as spatial summation of
cortical responses that account for the increase in the garange. (B) Large scale. Patches
of local synchrony in distant brain areas can synchronizenguhe accomplishment of a cog-
nitive task. Black lines identify electrodes that are syndmed during a stimulus recognition
task. Fromvarela et al(2001).
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ity. The authors recorded electrical brain activity fronbgets who had to discern among
ambiguous visual stimuli perceived either as faces (Figu®d) or as meaningless shapes
(Figure1.9B). Figuresl.9C and 1.9D show two induced gamma-activity peaks, with the sec-
ond likely involved in post-perceptual processes. The teaks correspond to the moment
of perception of the face itself and to the ensuing motoraasp. It does seems there is not
too much difference in the power spectrum between the pgorepnd no perception cases.
On the other hand phase synchrony analysis, that quantifextiee synchrony between the
activities recorded in different electrodes (Figdt€E), shows that during the perception con-
dition, there is an increase in phase synchrony soon attestiimulus (around 230 ms), which
is temporally correlated with the increase in power spectiu Figurel.9C. Given that there

is no evident pattern in the case of no perception, it is neasie to think that this sharp
increase of phase synchrony at the power spectrum peakadgdoally relevant in the percep-
tion itself. There is another peak of phase synchrony aré4idns associated with the motor
response in both conditions, because the subject was askesiiond to the two stimuli. The
transition between these two cognitive states, i.e. facegpéion and motor response, is char-
acterized by a sharp decrease in phase coherence, or desyization, probably driven by an
active uncoupling of the underlying neural ensembles. Thkas also mapped the areas of
long-distance synchronization, verifying that they efifezly correspond to regions devoted to
visual perception and motor task according to previous mexgats. This result supports as
well the idea that long-distance phase synchronizatiordasginchronization play an essential
role in large-scale cognitive integratioBressler et a).1993 Roelfsema et al1997, Varelg
1995 Von Stein et al. 2000, and not just in local visual-feature binding. There areeot
results Perez-Orive et al2002 Salmelin and Kujala2006 supporting the functional role of
oscillatory synchrony in perception.

If large-scale synchrony subserves normal brain funatignthen synchrony disruption
should be the cause of abnormal functionalitiéaréla et al. 2001). Important advances in
the study of neurological disorders provide further refmeto oscillatory synchronization
and its involvement in cognitive functions. In fact many ekmental studies showed a sharp
correlation between abnormalities in neural synchroioradnd cognitive dysfunctions. Evi-
dences are related to brain disorders, such as schizophffemston 1999 Phillips and Silver-
stein 2003 Schnitzler and Gros2009, epilepsy Penfield and Jaspet954), autism Huss-
man 2001 Rubenstein and MerzenicR003, Alzheimer’s diseaséMontez et al.2009 Pons
et al, 201Q Stam et al.2007), and Parkinson’s diseaskely et al, 200Q Limousin et al,
1995 Lyons and Pahw&008 Schnitzler and Gros2005 (see table 1 ofJhlhaas and Singer
2006. These findings reveal that disorders of these diseaseslated to local and long-range
synchronization, and concurrently the cognitive funcsidimat are impaired in these diseases
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Fig. 1.9Functional role of long-range neural oscillatory synchronzation. (A,B) Examples
of Mooneyfaces, high-contrast pictures of a human face. These pi&took like a human
face when seen upright (A) but have no clear meaning whemtew¢B). (C,D) Time-resolved
power spectral density after the appearance of the twordiftestimuli: (A) as perception and
(B) as no-perception. The color plots focus on the gamma rande=xhibit two periods of
increased gamma power emission between-B0 Hz. A first power peak is recorded at
230 ms after stimulus onset. The power emission in the pgorefP) condition is higher
than in the no-perception (NP) condition. (E) Phase synughfor the P and NP conditions.
NP synchrony remains stable until 700 ms. Phase synchrartihdd® condition increases at
230 ms P < 0:05), decreases sharply at 500 fas<0.005), and ends with a second increase.
Adapted fromRodriguez et al(1999.

have all been associated with neural synchronization. & Bgperimental results support the
hypothesis that abnormal synchrony is one of the causesgoiitoee dysfunction, and conse-
guently that temporal and spatial coordination of distielolneuronal activity through precise
synchronization plays an important role in normal brainctions.
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1.4.3 Multi-scale approach

An answer to the large-scale integration problem has nat bmend yet, because a full theo-
retical description of the normal and pathological funeiing of the brain is still missing. Its
study is usually partitioned into different research fielidsoted to distinct brain structures
(such as the thalamus, amygdala, hippocampus, etc.)¢cadiiinctional areas (motor, visual,
auditory cortex, etc.) or particular microscopic circuit®m the level of cortical columns
down to single-neuron responses. Moreover, studies ofltimbactivity of the brain usually
focus for convenience on specific cognitive or motor taskgrder to compare them with a
control state such as spontaneous activity at rest.

Further the advent of neuroimaging methods has led to tloy stifunctional localization,
focusing on a one-to-one mapping between regions of tha larad physiological processes.
Using these approaches, neuroscientists have been wddklimdg brain dynamics to behav-
ior by correlating increases or decreases of some measbraiofactivity with the cognitive
status of a human subject undergoing a certain task. Undeagbumptions that the cogni-
tive processes can be localized in specific regions of thiea Kianctional localization) and at
the same time can be measured by the average increase itydetrels, the complexity of
these cognitive processes is reduced to two dimensions:Idation in space and their acti-
vation state. But can these two dimensions fully characeagnitive processes? The typical
scale of functional localization (of the order of a few cubentimeters) is large compared to
the amount of neurons that possess similar physiologiealrathemical, morphological and
structural properties contained in each MRI voxel. Morepites doubted that a one-to-one
mapping exists between cognition and brain regidtrecé and Friston2005. In fact, given
the diversity and flexibility of the various cognitive pr@ses, some of them may activate
the same region and inversely, the activation of differgairbregions may reflect the same
cognitive process. These evidences may be an indicatidregdhysically separated but func-
tionally linked networks that underlie neurocognitive ¢tion (Bullmore and Sporn2009
Cohen 2011 Varela et al.200]1). As mentioned above, in the brain there are different apati
scales which differ by several orders of magnitude, fronglsimeurons at the microscopic
level to cortical columns at the mesoscopic and macrosdepeéls. It is not clear what is
the appropriate spatial for the study of functional locatiian or if several neurocognitive pro-
cesses can be localized at different scales. It is plausiBkesome brain dynamics might be
relevant at certain scales and not at others. Thereforetiftural localization has been a useful
approach to understand the theories and experiments oftivegmeuroscience. However it
has some limitations. There is evidence that the brain usdpte dimensions for informa-
tion processing, in addition to activation and space. Aaotiimension, time, may be equally
important, or even more important than space in terms of gweatomputational mecha-
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nisms Cohen 2011), namely for coding, processing and information transiorssThere are
several observations that emphasize the rich landscapenpioral dynamics:

* First, the information can be transmitted in the preciggrtg of activities within and
across physically separated areas of the brain. In this oa#fsemation can be lost by
averaging over larger periods of time.

» Second, time provides a rich source of complex multi-disi@mal data where informa-
tion can be represented and processed. This large amountoomation embedded
in the temporal patterns of neuronal activity comes in paddose the electrophysio-
logical activity in the brain is strongly oscillatory. Astmduced in Sectiod.3 neu-
ronal oscillations represent periodic modulation of theitbility of populations of
neurons (iesinga et al.2008 Wang 20109. They occur in multiple temporal and spa-
tial scales in the form of ultra-slow oscillations with a joelicity of tens of seconds in
the cortex during deep sleeBtériade2006 or ultra-fast oscillations with a periodicity
of a few milliseconds in patches of somatosensory coi@xip, 2000. In fact differ-
ent frequency bands are functionally related to a diverdityognitive processedaub
et al, 2004 Varela et al. 200]). Activities at a certain frequency can be performed
independently or in parallel with activities at other fregeies, therefore it is natural to
think of the wide band of frequencies in which informatiomdaze processed. In this
context, several functionally distinct neural networka spatially coexist and be disso-
ciated according to their frequency band or spatiotempuatierns Cohen 2011), thus
constituting a mechanism supporting flexible signal raptimultiplexinghypothesis,
seeAkam and Kullmann2010. At the same time, space can increase the potential for
information processing: interactions can occur througyspially separated networks
on different frequency bands, and between power and phase.

 Third, the timeframes of neuronal processes are linkedhdse of the cognitive and
behavioral processes. Simply, a fast neural process impli@pid cognitive process.
On the contrary, the spatial organization of neuronal @ses is arbitrarily linked to
cognitive processes. There are no implications for theesponding (location of) be-
havior if a neural process takes place in one region or anogixeept if the physical
location constrains the temporal dynami€®ten 2011). Therefore time can be highly
informative about cognitive behaviorally relevant medkars.

By way of example, in the auditory world, time is a key variabiethe processing of
information, spanning from microseconds up to tens of sésomn contrast with the visual
system, where the retina is like the screen of the exteriatdygpatial information is not
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embedded in the information captured by the ears. Thus th&naration in the auditory
system is based on frequencies and not space, and spatiahatfon has to be computed
in the brain by comparing time and intensity differencesha sound that reaches the ears,
somehow representing the spatial information through apemational processk{ug and
Albrecht 2015. In fact a sound reaches the ears with different time onsitg depending on
the location of its source: it will arrive earlier and louderthe ear closer to the source than
the other. There are two different neural pathways devaidgtié computation of time and
intensity in the auditory system, but both require highesi®n timing of the order of tens of
microsecondsGrothe 2003. This is why the lower auditory system is highly specialize
detecting and processing this information at temporakscidiat are smaller than the width of
a single action potentialfaschenberger et aR002).

Cross-frequency coupling

Cross-frequency coupling is a significant mechanism thaldconderlie time-embedded in-
formation. This phenomenon refers to a relationship betveexivities occurring in different
frequency bands for instance when the power of gamma cy8es 80 Hz) varies according
to the phase of theta (48 Hz). Cross-frequency coupling could be used to encode tbania-
tion if the lower frequency oscillations coordinate thenatt of sub-populations of neurons
that oscillate at higher frequencies. This phenomenones ss a neural mechanism for in-
formation processinglénsen and Colgj”2007), where spatially overlapping but functionally
heterogeneous neural networks can be activated and catedim a rapid timescale. Standard
localization- and hemodynamic-based methods such as fMtRIaviow temporal resolution
cannot monitor these brain dynamics, but this informatian lse extracted non-invasively in
humans using EEG and MEG. This is an example of the importemgse methods with high
temporal resolution to highlight brain dynamics that godrey what one can study human
through fMRI or time-domain averaged ERP.

Furthermore, in addition to frequency-based mechanisrob as cross-frequency cou-
pling occurring in the same spatial region, information o be contained in the temporal
relationship of brain activity over the space. Indeed wnégrional oscillatory synchronization
(see Sectioi.4.2 may underlie information transfer and co-processivgorfelsdorf et al.
2007). For instance, given that changes in phase synchronizatiald emerge without any
changes in power, information can be embedded in the tempaationship between areas.
Although some measurements of phase synchronization arelinectional (namely do not
reveal the direction in which the oscillations are travg)inthe temporal precision of EEGs
can lead to an estimate of the activity flow, and thereforerel@ant information that is not
localized to either region alon&¢angey 1969.
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Temporal information is thus embedded in the rich framewadrthe neural electrophys-
iological dynamics, and much of this information may be ldginly an analysis of spatial
dimensions is performed. Examining the temporal dynanmiitsain electrical activity, along
with the spatial-based approaches, represents an imporanhstep in the development of
theoretical and empirical human neuroscience.

Novel methods to bridge scales

The switch from the modular (reductionist) approach to Hrge-scale network paradigm is
nowadays being supported as well by the advent of new addamethodologies. Current
methodologies overcome several limitations in the studgifiérent spatial scales simulta-
neously such as the identification of which areas are intiagaend communicating without
an exhaustive mapping or the computationally and stagibfidiigh-demanding analysis of
recordings from many channels. New approaches aim at mgyigghaviors and cognitive
variables into physiology by sampling and monitoring thaibbiactivity at each relevant scale
(see Figurel.10. Lewis et al.(20153, for instance, are carrying on an ambitious project
with the help of different recordings methods: with electrdicography they map specific
regions involved in a cognitive task (Figutel0A), with dense surface recordings with higher
resolution they further map the areas involved in the tasis fbcalizing specific neuronal
populations (Figurd..1(), then with the implantation of laminar arrays in specificr® in
the cortical area they record the activity of interactingimo@mal groups at a certain distance
(Figure1.10C) and finally with penetrating arrays they operate dense mgpd local popu-
lations to monitor targeted local circuits (Figurel(D). These approaches, along with similar
new technologies, will enable to relate single cells witbalopopulations in terms of their
activity, areal dynamics and inter-areal communicaticiss brain-wide networks.

From the computational point of view different mathemdticendels have been devel-
oped to account for the activity at each scale, from singleores to the mesoscopic level
of neuronal ensembles. Recently, large-scale models ofrtie bave received special atten-
tion. So far, global brain activity has been modeled by dngdhe brain into discrete volume
elements, or voxels, and coupling them according to si@distorrelations and structural in-
formation Oeco et al. 2013 Pons et al.201Q Sotero et al.2007). Both the Human Brain
Project and the Brain Activity Map project propose integdateews to bridge the gap between
the behavior of single neurons and the functions of the f@dirb(Alivisatos et al, 2012, but
this quest is still in its infancy. In Chapt& we will propose an alternative approach to ex-
plore scale interaction, by considering a system formedamy rieural masses (mesoscopic
description of neuronal activity) that are coupled exasleli via an intermediate population
described by a spiking NN model (microscopic descriptidmthat way, we use synchroniza-
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Fig. 1.10Multi-scale approach for recording of brain activity. (A) Using electrocorticog-
raphy (ECoG) allows mapping of distributed areas involvea ioognitive task. Identified
regions can then be targeted for higher-resolution rengrdreen dots represent sites on an
ECoG array and colored areas represent regions partiajpiatia functional network, iden-
tified by ECoG. (B) Refined high resolution ECoG mapping of speeifeas of interests en-
gaged in the cognitive task. Dense mapping of these areas #il target neuronal groups
that cooperate across long distances or share selecti@y.Targeted ensemble recording
across laminar circuits from identified coupled populatiohaminar arrays can be inserted
at specific points in the cortical area that correspond teratting populations_ewis et al,
20153. (D) Dense mapping of interacting populations throughitemarrays to analyze the
propagation of information through local and distribut@dwits. FromLewis et al.(20153.

tion as a tool to probe the interaction between the two saafle®scription and determine
which are the microscopic features that modulate the mesoeativity.
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1.5 Propagation of neuronal oscillations

The introduction of voltage-sensitive dyes (VSDYShoham et a).1999, of multielectrode
array (MEA)? (Maynard et al.1997 and other optical imaging techniques offers the opportu-
nity to explore spatiotemporal structure of activity in mgsopic regions in the neocortex and
other brain areas. Many results provided evidence of theetecy of neuronal populations
to self-organize in spatiotemporal patterns that resernrblesling waves. In fact stimulus-
evoked propagating waves have been observed in severalrg&ustices of anesthetized an-
imals (Ahmed et al. 2008 Gao et al. 2012 Grinvald et al, 1994 Han et al, 2008 Huang

et al, 2004 Stroh et al.2013. In awake conditions, MEA recordings have reported the ex-
istence of traveling high-frequency gamma- and beta-bandlations propagating across the
primary visual cortex Gabriel and Eckhorn2003, the motor cortex Rubino et al. 2006

of the monkey under both spontaneous and evoked conditmasfast wave propagation in
the auditory cortex of the awake catitte et al, 2007). Moreover, VSD imaging studies
have revealed propagating waves spanning large parts ottiebral cortex in freely moving
mice (Ferezou et al2006.

The existence of traveling waves in the brain has been highabated in recent years.
However the advent of technologies with better signalds@ ratio and new methodological
approachesMuller et al, 2014 allows to carry out data analysis on the single-trial level
because trial-to-trial variability may in fact precludeesgic measurements due to average
effects. These innovative tests confirm that traveling waneeur systematically in the awake,
behaving animals and are consistent across trials andhlBusdve propagation is a general
phenomena in the large-scale dynamics of the neocortexthed lorain areasLubenov and
Siapas2009 Muller and Destexhe2012 Muller et al, 2014).

In what follows we briefly introduce some mechanisms behaedaropagation of neuronal
oscillations and discuss the potential benefits for thenbi@idevelop these coordinated pat-
terns of activity. Then we briefly review the main experinamesults focusing on cerebellar

1 \oltage-sensitive dyes (VSD) are organic molecules whiténge their optical properties in response to
a change in membrane potential. They have been widely usedqombination with fast cameras to monitor
membrane potential in processes of individual neuronsdaliped brain regions and (ii) to follow population
changes in membrane potential over large regions of the lavadl the heart. Differently from other optical
techniques, voltage-sensitive dyes are optical measuntsntieat relate directly to electrical activity, because
dyes change their absorption or emission spectra in a maepending upon membrane potentkdstig et al,
2009.

2Microelectrode arrays (MEA) are devices with fixed geometmnangements of microelectrodes for the pur-
pose of multisite, parallel electrophysiological recagli They essentially serve as neural interfaces that connec
neurons to electronic circuitry. There are two generalsgdasof MEAs: implantable MEAs, uséd vivo, and
non-implantable MEAs, used vitro (Spira and Hgi2013.
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and hippocampal waves, which provide important insight®to work that will be presented
in Chapter6.

1.5.1 Mechanisms of traveling waves and computational role

Many theoretical studies on networks of neuronal oscitlattemonstrated the existence of
traveling oscillatory waves in networks with spatially treted connectivity Bressloff and
Coombes 1998 Bressloff 2000 200% Ermentrout and Kleinfeld200L Osan and Ermen-
trout, 2002. There are different mechanisms underlying the generatidraveling electrical
waves Ermentrout and Kleinfeld2001). The simplest one requires a single neuronal oscilla-
tor, e.g. a pacemaker. This oscillator excites progrelssiveighboring cortical regions with
increasing synaptic delays (see Figdr&1A). In the case of hippocampal traveling waves,
this role could be played by the medial septum, which is a®reid the main pacemaker of
theta oscillations. Another case is waves generated bygéesireuronal oscillator whose out-
put propagates unidirectionally in chain-like configupator in consecutive connected groups
of neurons (see Figure.11B). The third mechanism is due to a gradient of natural frequen
cies in a network of weakly coupled oscillators. This med$randoes not rely on a single
pacemaker but instead on the stabilization of phase difta®between all the rhythms intrin-
sically originated in each single neuronal oscillator (Begure1.11C). By way of example,
neurons in the entorhinal cortex have intrinsically oatitlg membranes with natural frequen-
cies in the theta range, which progressively decrease iddhsventral directionGiocomo

et al, 2007, providing opportunities for intrinsic traveling wavels the same way, neurons
in CAl exhibit resonances at theta frequenclesufig and Yu1998, which decreases along
the septo-temporal axis as well.

With the development of theoretical models and the desigmedise and systematic ex-
periments revealing traveling wave patterns, neurossisratarted to investigate the possible
role of neuronal waves and their implications in informatrocessing. In Sectioh.1.3we
discussed about the functional significance of synchroneusonal oscillations, because os-
cillating membrane potentials could offer windows of ogpaity for neurons to spike, thus
modulating the sensitivity of neurons to incoming dynarhigputs. A potential benefit is that
the spiking output of a neuron is tuned according to the péalepolarized oscillation phase.
In contrast, waves originated from propagation in netwavrkb local short-range connections
might subserve different processes. First, the emergencaveling waves allows that only
a part of sensory field is made unresponsive during eachgefithe oscillation cycle, in
contrast with the periodic windows of opportunity for spigi(namely when inhibition is low)
in the presence of synchronous oscillations. The secorghpal role derives from the find-
ing that neurons are most sensitive to changes in their imaiitoccur one-half period before
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Fig. 1.11lllustrative plots of different one-dimensional configurations supporting travel-
ing waves.Open circles stand for excitable but not necessarily @toity neurons or neuronal
tissue, while circles with- represent local oscillators with frequeney (A) A single oscilla-
tor drives neighboring neurons or neuronal groups throngteasing time delays ap, thus
generating a fictitious wave pattern. (B) Wave patterns ta&eepfrom the transmission of
periodic signals along a chain of cortical neurons. Hereal#lay between neurons igi. (C)
Wave propagation relies on stabilization of phase diffeesramong neuronal oscillators in a
network with nearest neighbor coupling. Frémentrout and Kleinfeld2001).

firing an action potential. Indeed in this perspective thagewaves might allow sensory areas
to work asbar code scannermwhere only a fraction of the total sensory input is scanrted a
each instancermentrout and Kleinfeld2001). Furthermore, based on the idea that cortical
regions are mapped according to their respective sensddly tiaveling waves may serve to
label perceived features in the stimulus stream with a wnguase. It is still not clear if the
switch from traveling waves to synchronous purely osddlag due to the sensory stimulation
is computationally relevant, however some findings revieal it might serve to gate synap-
tic plasticity Feldman 200Q Markram et al. 1997). In the last decades, next to theoretical
studies, the introduction and development of multichaneebrding techniques and imaging
techniques make the spatiotemporal structure of traveliages in cortical regions a prime
subject of study.
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1.5.2 Propagating waves: experimental findings

In vitro experiments

Many in vitro studies have reported propagating activity by the applinatf electrical stim-
ulation to cortical areas or to thalamocortical affereBsdnomang2003 Pinto et al, 2005

or stimulated by local application of glutamagapchez-Vives and McCormicR000. These
stimuli, although different from the ones induced by thessen stimulation delivereah vivo,
induce strong EPSPs on these neuronal cortical networkshvere in a quiescent state, and
synchronously drive many neurons close to the firing thrieshibus eliciting propagation of
activity through the networkMuller and Destexhe2012). Interestingly, recent findings sug-
gest a critical role for the infragranular layers in contitibhg to the horizontal spread of this
activity across the cortexNester and Contrera2012. Furthermore VSD and MEA studies
in vitro provided first approximations of the speed of horizontapaigation of neuronal popu-
lations across the cortekigkuda et al.1998, confirming other estimations made by studies
vivo (Jancke et a|2004 Nauhaus et al2009, although some differences have been identified
in anesthetized rats and slice preparations kéeker and Destexh€2012 for a review).

The wave-like propagation of neuronal activity has beereplel inin vitro studies in
slices of the visual thalamus of ferretsih et al, 1995. Spontaneous spindle waves (see
Sectionl.2) have been recorded in slices of the LGN. These spindlelasaoiis (i) initiate at
one side of the slice and propagate in the ventro-dorsalexsKrosigk et al.1993h, (ii) are
generated in control conditions (while under specific ptarohogical conditions slow waves
have been observed), and (iii) present different speedsopigation (see Figurk12. Inter-
estingly, while spatiotemporal wave-like organizatiorttie cortex is mainly due to the excita-
tory connections between pyramidal neurons, in thalanteslthese patterns arise from the
mutual interaction of excitatory TC and inhibitory RE newsdMuller and Destexhe2012).

In vivo experiments

Multichannel recordings under anesthesia have reporteg mxamples of large, low-frequency
spreading depolarization in the visual cortex of the Har{ et al, 2008 Xu et al, 2007,
cat (Nauhaus et 812012 and macaqueQGrinvald et al, 1994 that spreads across the cortical
areas. The spreading depolarization takes place wheral @souli activate peaks of activity
with a center of mass that remains stationary during theorespand the level of activation
decreases with increasing distanddsi{er and Destexhe2012. However, the wave propaga-
tion of activity, differently from the spreading depolation, refers to oscillations propagating
through the network. Large, low-frequency propagatingesaef activity spreading through
the entire cortical area under anesthesia have been obdsarseveral studies, and the results
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Fig. 1.12Propagating waves in thalamic slices(A) lllustrative plot of propagation of spin-
dle waves in multisite extracellular recordings in fertelamic slices (left) and spontaneous
spindle waves along the ventral-dorsal axis of the sliagh{)i (B) Refined high resolution
ECoG mapping of specific areas of interests engaged in thatoegiask. Dense mapping
of these areas allow to target neuronal groups that coaparabss long distances or share
selectivity. Adapted fronKKim et al. (1995.

strongly depend on the specific anesthetic used during tigsas Ferezou et al2006 Han
et al, 2008 Reimer et al.2010.

VSD recordings in awake monkeys have suggested that spredeépolarization is an
emerging feature in the cortical response of awake anircalsfirming the results obtained
in anesthetized animalgyzenshtat et al.201Q Slovin et al, 2002. However, the results of
these first studies in the awake monkey were based on teakged data and, given the well-
known sensitivity of propagating wavasvivo to trial averaging, it is possible that waves on
the single-trial level were attenuated by the averagingguiare Muller et al, 2014 Xu et al,
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2007). Thanks to the advent of new techniques in VSDI denoisirith(&n improved signal-to-
noise ratio), Muller and co-authors applied a new methodngle-trial voltage-sensitive dye
imaging data in order to clearly detect spontaneous prdpagaaves and stimulus-evoked
propagating events. Their results showed that in respanaevisual stimulus, propagating
waves systematically emerge in several visual arbaglér et al, 2014). At the same time,
propagating waves of activity have been observed in MEAndings of the awake cat audi-
tory cortex Witte et al, 2007), and in the spontaneous background activity of the awailte st
in MEA recordings of the monkey primary visual cortétguhaus et al2012. In contrast
to the low-frequency propagating waves observed duringthesia $anchez-Vives and Mc-
Cormick 2000, traveling high-frequency oscillations have been de@at MEA recordings
of the primary visual cortexGabriel and Eckhorn2003 and in motor cortex of the awake
monkey Rubino et al.200§ and humanTakahashi et al2017). In what follows we present
two significant examples of wave patterns whose peculiapgntes will be explored with
spiking models in Chaptes.

1.5.3 Cerebellar waves in early development

In several CNS regions, including the visual system, the dtpmpus and the spinal cord,
spontaneous traveling waves of activity in early developinage critical for establishing the
accurate synaptic connectivity of mature circuitel{er, 1999 Katz and Shatz1996. Watt

et al. (2009 have first reported the existence of wave-like activitytia tleveloping cerebel-
lum using two-photon laser scanning microscopy to guidetpatamp recordings in slices
of transgenic mice. Purkinje cells, a class of GABAergicnoas in the cerebellum, pro-
vide the output of the cerebellar cortex and project to thepdauclei of cerebellum (DCN),
where they form GABergic synapses. Watt and co-authors ftheitcthe asymmetric projec-
tion structure of Purkinje-Purkinje synapses is behindrttezhanism of waves propagation
in the developing (not adult) cerebellum (Figurd 3A). From these studies it emerges that
Purkinje-Purkinje connections can enhance synchrooizatf Purkinje cells, with the phase
of entrainment depending on the driving force at GABAergieapses\(att et al, 2009, with
consequential effect on the direction of the wave propagatiith respect to the direction of
connectivity.

To characterize their experimental results, they builinapée model of integrate-and-fire
neurons where cells were connected in a chain-like manmeraiag to the directional asym-
metry. Specifically, each neuron was connected with thehteigng 5 neurons asymmetri-
cally (Figurel.138) and two reversal potential values were studied correspgrid depolar-
izing and hyperpolarizing synapses respectively. Thatehauth that specific structural con-
nectivity supported the spontaneous propagation of walvastwity: in particular depending
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on the type of synapses (if excitatory or inhibitory) it cgas the neuron in the chain leading
all the other neurons, indeed providing two distinct pragam’s direction (Figure$.13C,D).
Propagating waves have been characterized by calculgtaigbwavelength and speed propa-
gation (Figured..13E-G). Functionally, these cerebellar waves in the earlgbtiggment could
contribute to the formation of functional maps and localrsettivorks WWatt et al, 2009.

1.5.4 Hippocampal theta oscillations

Theta oscillations 4 10 Hz are typical in hippocampal LFPs of mammals and humanso{ds
et al, 1980 Green and Arduinil954 Vanderwolf 1969 Winson 1972, emerging during
wakefulness under specific conditions and invariably predering REM sleep. From ex-
perimental studies in rats, it turns out that theta osailfet are associated with voluntary
movement and active exploratio®'Keefe and Nadel1978. Furthermore theta oscillations
clock hippocampal activity during awake behavior and REMegleand this is essential for
the temporal coding of spatial information by place celtsaading to the mechanism of theta
phase precessioh(Lubenov and Siapag009.

A few years ago, it was common belief that theta oscillatimssynchronized within each
layer across the anatomical extent of the hippocamiBuzgakj 2002. According to this view,
theta oscillations were a global clock, and the anatomidare: of the hippocampus was syn-
chronized with zero delay or figuratively speaking contdiirea single time zonelL{tbenov
and Siapas2009. However, exquisite experiments hybenov and Siapa@009 revealed
that in freely behaving rats theta hippocampal oscillaionareaCAL are actually traveling
waves that roughly propagate along the septo-temporaladtise hippocampus, and conse-
quently these wave patterns modulate the firing activitg¢ At pyramidal cells. These impor-
tant results showed that theta oscillations pattern higpgal activity not only in time but
also across anatomical space (Figlr®)). The presence of traveling waves indicates that the
instantaneous output of the hippocampus is topographicadjanized and represents a seg-
ment, and not a point of physical space, as the mapping ofdimigarth in a progression of
local time zonesl(ubenov and Siapa2009.

3 Theta phase precessionMechanism by which hippocampal neurons fire during a spepifase of the
oscillation cycle (theta range), whereby the relative phatdischarge generation varies in a context-dependent
way. The encoding of information about the amplitude of ttieglus into the phase values of the discharges
response has been proposed in the hippocampus to explahénemenon of theta-phase precess®@iKéefe
and Reccel993: pyramidal neurons also callgdiace fielddire preferentially when the animal moves through
the corresponding place field of firing pyramidal neurons ey phase-lock to the theta rhythm. As the ani-
mal moves and proceeds in that place field, neurons fire earie earlier along the theta cycle. It is a quite
well explained phenomenon due to the interaction betweeitagary drive on pyramidal neurons and rhythmic
inhibition in the theta range imposed by inhibitory neuremsvhole network Q’'Keefe, 1976. The functional
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Fig. 1.13Propagating waves in a network of Purkinje cells.(A) Image of the anatomical
distribution of Purkinje cell axon collaterals in case obadle from a P9 mouse (left) and an
image of the region indicated by the blue square (right) with axon collaterals highlighted
with blue arrows. (B) Illustrative plot of the Purkinje celt@n collateral network model. The
connectivity is regular and asymmetric. (C) Raster plot fromnetwork model showing ac-
tion potentials of Purkinje cells (points) versus time. Tmesence of depolarizing synapses
gives rise to waves propagating from the apex to the baseedbtium (black arrow). (D) Hy-
perpolarizing synapses generate activity waves travatitige opposite direction with respect
to the depolarizing synapses. (E-G) Two-dimensional eouransformation corresponding
to the angular spectrum of the raster plots when the synaps€(E), depolarizing (F) or hy-
perpolarizing (G) \(\att et al, 2009. The peaks of Figures (F-G) correspond to the traveling
waves features. Adapted froviatt et al.(2009.



1.5 Propagation of neuronal oscillations 40

A
n ! [ ] rm | : o 1' ‘,I 1. 1. ql 1. 1' 1[ 1 i 1 £ 1
:;: ; ; L A :,E‘ :,E:,n.l @.g.n
:‘E: He—Hi——1 ;': C I I I - T I I TR T TP
T i.!,: T I oA
Iml ]l 1- "N nn nn mn '.. m ' n n IE
SN R e AL
-II ]I 1. :I | M | [N 8 [ N} ‘il .:l JI Il‘
B C D
200 ~790° o T ¢
150 / \ i\ p
sl 3 \ Y ‘
0 S~ __—degrees \\\ _90° ///V ‘ -
T o0oms 0 200 400 0 20 40
mm s mm

Fig. 1.14Theta traveling waves and waves distribution parameters(A) Consecutive snap-
shots of theta oscillations across the recording grid glacestratum oriens o€ALl. Colors
correspond to the phase of the theta wave at each grid lacaticording with the circular
color map on the right, and arrows stand for the directionhef propagation; (B) instanta-
neous properties of the waves shown in A: amplitude (dashedlige), frequency (solid gray
line), speed (dashed black line) and direction (solid blak of wave propagation; (C) wave
propagation direction; (D) wave propagation speed; (E)isbaavelength. Different colors
correspond to different animals and the number to the mddraaach animal. Frorhubenov
and Siapa$2009.

The understanding of the mechanisms of wave propagatidreihippocampus and other
brain regions could elucidate the global properties of imiation representation and the di-
rection and nature of the flow and process of informations Hlgo interesting to determine
whether anatomical asymmetries in axonal projections daarbrain regions can also sup-
port waves and the extent to which waves documented expetiathein other brain areas are
linked to possible asymmetries in axonal projections (ashmdlar waves). In Chaptéy start-
ing from experimental findings dfubenov and Siapa2009 and in collaboration with them,
we will first propose a biophysically plausible spiking mbtte reproduce traveling waves,
and secondly investigate the mechanisms generating this-ike behavior and study the
topological determinants by means of a continnum appratxeimanodel that is analytically
tractable.

importance of theta phase precession is given by the fatfiithey temporal sequence of pyramidal neurons
gives insights on the position and trajectory of the aninmal imformation recorded about the past.
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The next Chapter provides an introductory overview of coratommal models at the mi-
croscale, e.g. modified integrate-and-fire and conducthased models, and at the mesoscale,
e.g. neural mass models, that will be used to obtain the m@oitant results in Part Il.



CHAPTER 2

COMPUTATIONAL MODELS

In order to understand the basic principles of brain fumctties essential to consider the differ-
ent scales involved (from single neurons to behavior) westindy and exploration of different
computational models able to capture with a certain degrapmroximation a variety of spa-
tiotemporal phenomena. At the microscale, Hedgkin—Huxley(HH) model Hodgkin and
Huxley, 1952 and related conductance-based models were developeddalein a quite
detailed electrophysiological framework the spiking mdjes (action potentials) of an indi-
vidual neuron embedded in a larger network. Simpler modkésiéaky integrate-and-fire
(LIF) (Lapicque 1907 Stein 1967 Tuckwell, 2005 and thelzhikevich(lzhikevich 2004
models have been widely exploited because they are abl@todece some spiking proper-
ties of neurons under certain regimes, while being analyidractable and computationally
efficient in comparison with conductance-based models.

Another set of models, nametkural masgNM) models Coombes201Q David and
Friston 2003 Grimbert and Faugera006h Jansen and Rit.995, avoid the single-neuron
perspective and consider instead the averaged behavioe oEuronal population. This meso-
scopic description is more phenomenological than the singiron models, in the sense that
it represents directly the collective behavior of the netyaevithout singling out individual
cells. NM models provide a direct link from neural activity EEG and fMRI dataBojak
et al, 2010 by unifying data from different imaging techniques. Intfd@ased on the NM
model, several studies have been carried out at the scaleloble cortical column by study-
ing the interaction of several NMs using bifurcation the(@pombes2010, and the scale of
the whole brain using a realistic distribution of neural sessand their short- and long-range
connectivity Pons et al.201Q Sotero et al.2007).

These mesoscopic models revealed to be successful in ¢ageapha oscillations con-
sistent with those found in the human EEG spectrum. In thisctibn a successful study
of Liley and colleagues proposed a mesoscopic model wheteaoactivity is locally de-
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scribed by the mean membrane potentials of populationsafat@ry and inhibitory neurons
interacting with each othel{ley et al, 2002. Modeling approaches based on NMs have
been extendedoran et al, 2013 Rennie et aJ.200Q Wright and Liley, 1996 as well to
explore several neurobiological processkxlfynak et a]2015 Malagarriga et a).2015 such
as anesthesi&(eyn-Ross et al1999 and epilepsyBreakspear et 312006 among others.
This Chapter briefly introduces different models that haventexplored in this Thesis, and
is structured as follows. In the first Section, microscopadels are introduced. In particular
LIF models are briefly described and an extension of themadagtive exponential integrate-
and-fire(aEIF) model will be introduced. That model will be used in Gtea3, where we will
address the dynamical properties of collective temporahpmena in the thalamus. The more
electrophysiologically detailed HH model will be explaiheext, since it is the mathematical
framework where synchronization and communication betwsayed-coupled populations
has been studied (Chapter 4). A network with HH neurons witinciiral connectivity in-
spired by hippocampal experiments will be used to studyici@mporal wave-like patterns
in populations of neurons (Chapt). In the last Section, a brief description of NMs will be
provided, since in Chapt&we will study the interaction of populations described #edent
scales, namely at the level of single neurons (HH model) aniical columns (NM model).

2.1 Microscopic models

2.1.1 Integrate-and-fire models (IF)

A simple model that faithfully reproduces the main neuropatational properties of neurons
is the so-called integrate-and-fire model (IF). It is ofteferred to as a spiking model, although
it lacks any spike generation mechanism. It combines lifigaring of input currents with a
strict voltage threshold: once the voltage of the neurors gdmve that threshold the neuron
is considered to generate a spike. The model produces-atiog spikes, because the shape
of the spikes is not simulated and all spikes have the samgainduration and size.

The LIF model [zhikevich 2006 Lapicque 1907 Stein 1967 Tuckwell, 2005 repro-
duces the subthreshold behavior of a neuron having ohnadgacurrent, and other voltage-
gated currents that are deactivated at rest. The dynanvichit®n is described by the differ-

ential equation:
dv
Cma =l-o.(V—-E), (2.1)
whereCp, is the capacitive curren,(t) is the voltage variable andg (V — E, ) represents the
ohmic leakage current. In particulgr is the leak membrane conductance &pds the Nerst

equilibrium potential of the leakage current, i.e. is thiigaof the membrane potential where
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all inward and outward currents balance each other and theuneent flux is zero. When
the membrane voltagé reaches the threshold vallig, s, the neuron produces an action
potential, andV is reset automatically t&;. When the current input is excitatory £ 0),

it depolarizes the neuron, whilst whén< O the input is inhibitory and hyperpolarizes the
membrane voltage. Further mathematical analysis and comsmoe this model can be found
in 1zhikevich (2006.

This model is very simple, computationally efficient but la¢ same time it has obvious
limitations. Ermentrouf{1996 andLatham et al(2000 proposed an extension to a quadratic
IF andFourcaud-Trocmé et g2003 to an exponential IF model to replace the strict threshold
with a smooth spike initiation zone. Additionally, the arigl IF was enriched by a second
variable to take into consideration subthreshold resogmioc adaptation 1Zhikevich et al,
2003 Richardson et al2003.

An extended model that takes into consideration theserdiffeadditions of original IF
model was developed [Brette and Gerstn€2005 and is called adaptive exponential integrate-
and-fire model (aEIF). We introduce this model because ite@sn used in Chapt&rto ex-
plore spindle oscillations mechanisms in the lateral gdate nucleus (LGN).

2.1.2 Adaptive exponential integrate-and-fire models (aEIF)

As said above, this model is an evolution of a two-variableniédel proposed bizhikevich
(2009, and it is enriched by an exponential non-linearity arotimel spike threshold, as in
the exponential IF model dfourcaud-Trocmé et a{2003. The combination of these two
models leads to the aEIF formulated Byette and GerstngR005. A detailed analysis of
the dynamics of this system can be foundTouboul and Brett¢2008. In this model, the
equations describing the evolution of membrane voltagesafons are:

dv V-—E
Cor gy = 0LV —EL) +gLAeXD<$1) — W (2.2)
dw 1
5= Ev[a(V—EL)—W], (2.3)
. V=V
if V > Ethresh (2.4)
w=w-+bh.

The Equation2.2) describes the evolution of the membrane voltage: the @amacurrent
through the membrane equals the sum of the ionic currer@sadhptation current and the
input currenti. The ionic currents are the ohmic leak current defined bydbkgng leak con-
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ductanceg,. and the resting voltage potential, and the exponential term which reproduces
the Na" — current that is responsible for the generation of spikesh \ttis term we assume
that the activation oNa" —channels is instantaneous (thus neglecting their aativgtivith

A denoting the steepness of the exponential approach tohtiidesandE;nesh representing
the threshold potential. The membrane time constanis Cy,/g.. The EquationZ.3) de-
scribes the dynamics of the adaptation variabjevith a time constant,,. The parameter
a quantifies the conductance that mediates subthresholdadidep WhenV is pushed over
the threshold, the exponential term provides a positivdldaek and a spike is emitted. The
voltage is then instantaneously resettpand the adaptation variableis increased a valug
which accounts for spike-triggering adaptation and reiggl#éhe strength of adaptation itself
(Equation R.4)). After the spike, the neuron cannot spike again duringraceory periodr;e
(imposed manually in the model).

When the input currentapplied to the neuron at rest reaches a critical value, ttege
state is destabilized, leading to repetitive spiking fogéaregions of parameter spat@afen-
bauer et a].2012. For a complete analysis of different firing patterns acdiide with the aEIF
model and phase plane analysis Bleid et al(2008. Figure2.1shows a variety of spiking
patterns that can be achieved by tunergndb. The simplest firing pattern is thenic firing, a
regular discharge of action potentials without adaptadiotained fora = b = 0 (Figure2.1A).
However, many neurons present a certain level of spikes&rrqy adaptation (SFA), meaning
that the inter-spike interval (1SI) grows during a sustdisémulus &daptationfiring pattern,
Figure 2.1B). With the aEIF model, an increase afor b leads to SFA, characterized by a
gradual increase in the ISI until a steady-state spike #aqu is reachedInitial bursting
refers to events when groups of spikes are emitted at a fnregjuonsiderably greater than
the steady-state frequency (Fig@dC). Finally, this model is able to reproduce ttedound
burstingcapabilities of thalamic neuroneefular bursting Figure2.1D), namely their ability
to trigger high-frequency bursts of action potentials (BX) in response to hyperpolarization.
The aEIF model will be used in Chaptéto study dynamical properties of thalamic spindle
oscillations.

2.1.3 Hodgkin-Huxley-type conductance-based models (HH)

A more physiologically detailed model than the IF model is Hodgkin-Huxley model ini-
tially developed for the squid’s giant axod@dgkin and Huxley1952. Hodgkin and Huxley
performed a series of experiments on that axon (1000 timelssththan a typical mammalian
axon) and they were able to find the time and voltage depeedsribe sodium and potassium
conductances. Their equations faithfully reproduced #reegation of action potential. Differ-
ently from IF models, in HH conductance-based models eachhia and parameter have a
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Fig. 2.1Firing patterns produced by an adaptive exponential integate-and-fire model.
Firing patterns of adaptive exponential integrate-anelfiiodel during a step current stimula-
tion: (A) tonic spiking, (B) adaptation, (C) initial burst, Y{Pegular bursting. These different
regimes are achieved by tuning the parametdnat regulates the dynamics of adaptation
and parameten, which regulates the strength of adaptation. Parametéuss/aan be found
in Naud et al(2008.

well-defined biophysical meaning, that have been measw@erienentally. The drawback is
that these parameters are usually measured in differendbmgLthen averaged and fine-tuned
and therefore measurements might be not accurate for spez#fe. They also require a larger
computational effort. However they still provide a higherél of detail from the physiological
point of view.

In the light of their model, Hodgkin and Huxley proposed anieglent representation of
the membrane potential as an electrical circuit (Figu&, in which the total current passing
through the membrane potential is given by the sum of ionitettis (jonic) and the capacitive
current accounting for the storage of charges in the innéoarter surfaces of the membrane:

dv

I = lionic(t) +Cma. (2.5)

Hence, voltage changes reflect the storage and releaseiotimenges on the two surfaces
of the neuronal membrane. Equatidhg) is a nonlinear differential equation describing the
membrane voltagelionic represents the sum of sodium and potassium conductan@ntsurr
plus a leak current with a constant resistance primarilyi@arby chloride ions. Each of
these currentsna, Ik and I (Figure 2.2), represents the behavior of a large population of
microscopic ionic currents of the same type, and is modelalding Ohm’s law:l; = gi (Vin—

Ei) wherei is the ionic species arff is the equilibrium potential, as in the IF model. The ionic
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Fig. 2.2Electrical circuit representing the membrane potential dyramics of HH neurons.
The capacitor represents the dielectric properties of taembmane, and the other branches
containing the resistors represent its conductive prasertThe arrows designate variable
conductances due to the opening and closing of ionic chanfigie batteries represent the
electrochemical forces caused by the different ionic cotreions inside and outside the cell
body. FromNelson and Rinzg]1998.

conductanceg; vary due to the opening and closing of the ion channels, waiehregulated
by gates. Each gate can be in one of two possible states, gs&vendr non-permissive, with
a probability that depends on the membrane potential. Cenisglthe large number of ion
channels of a ionic specieswe can introduce a probability; for the fraction of gates of
that population that are in the permissive state, withd being the fraction of gates in the
non-permissive state. When all the gates of spe@esin the permissive statg,= 1 and the
channel of is open. The transition between these two states is govénnadinear first-order
differential equation:

OB V) p) - V)P (2.6)

whereqa; andf; are voltage-dependent rate constants for the non-peugissipermissive and
permissive-to-non-permissive transitions, respectivdbdgkin and Huxley considered three
different kinds of gatesn, n andh:

Gna = ONaPoPh = ONamh (2.7)
Gk = Ok pp = gkn* (2.8)

in which the powers o, n andh are obtained by adjusting the functions to the experimental
data. In summary, the dynamics of the membrane voltage &ndiy:

dVin

Cmat

= —ONaM°h(Vin — Ena) — GkN*(Vin — Ex) — GC(Vin— EL) +1, (2.9)
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where the constantia, Ok, andgp are the maximal conductances of the sodium, potassium,
and leakage channels, respectively, &\d, Ex, andE, stand for the corresponding reversal
potentials. Other variables have the same meaning as irFth@tlel presented in the Sec-
tion 2.1.1 According to the HH formulation, the voltage-gated ionmh@ls are described by
the following set of differential equations

dm
dm _
= V)L~ h)~ By(V)h

= an(V)(1-1) ~ V)i,

(V) (1~ M) — B(V )M, (2.10)

where the gating variables(t), h(t) andn(t) represent the activation and inactivation of the
sodium channels, and the activation of the potassium chgnrespectively. The voltage-
dependent transition rates are:

B 0.1(V +40)

~ 1—exp(—(V +40)/10)’

Bm(V) = 4exp—(V +65)/18),

an(V) = 0.07 exg—(V +65)/20),

Bn(V) = [L+exp(—(V +35)/10)] 7,
B (V +55)/10

(V) = 1—exp(—0.1(V +55))’

Ba(V) = 0.125exg—(V + 65)/80).

am(V) (2.11)

Q
<

These equations have to be solved numerically, due to thienean relationship between
the conductances and the voltage. The time course of theagemeof an action potential is
represented in the illustrative plot of Figu2e3. Others models use this formalism to describe a
larger variety of ionic conductances, and are all referoembtconductance-based models. The
HH model will be used in Chapterto study the oscillatory activity of neuronal populations.

2.2 Modeling synapses

The equations representing the membrane potentials of éwmons can be coupled in a way
that mimics synaptic communication between them. Synagsesighly specialized struc-
tures that enable neurons to exchange signals with otheéomguor to send signals to non-
neural cells such as muscle fibres. Presynaptic signalsrateed via release of neurotransmit-
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Fig. 2.3 Typical time course of an action potential in the HH model lllustrative plots of
time courses of the (A) membrane voltage(B) gating variable(t),n(t), m(t), (C) conduc-
tancesga(t), gk (t), (D) related currentsya(t), Ik (t) and resulting, (t) and (E) the applied
currentl (t). Strong depolarizing inputs (panel E) increase activatiamablesm andn and
decreases inactivation varialligpanel B). Sincern(V) is relatively small (not shown), the
variablem is relatively fast (panel B). Consequentially fast activatiaf Na* conductance
(panel C) drives/ toward Ena (panel A) with favored depolarization and activationggfs.
This loop leads to the upstroke of (panel A). WhileV gets closer tden,, h = 0 causes
inactivation ofNa* current anch = 1 causes slow activation of outwakd" current (panel
D), thus V moves towardl;. After the action potential, the recovery of variableandh is
slow (panel B), because their voltage-sensitive time costae relatively large. In particular,
outwardK™ current is still activated (because of langeafter the action potential (panel D),
thereforev moves towardEyk, below the resting potentiahfternyperpolarization Since the
Na' current is still inactivated due tobeing small (panels B and D), the HH neuron cannot
spike during a temporal window, namatsolute refractory periodtes); aslna is deinacti-
vated, the HH system is able to generate a new action padtérdiatrong current is applied
(relative refractory periodl Adapted fromizhikevich(2006.



2.2 Modeling synapses 50

ters from the presynaptic neuron, which binds to receptdhgegostsynaptic neuron. The type
of transmitter released by a neuron determines the actidineopostsynaptic neuron. This can
be either excitatory (e.g. glutamate, acetylcholine) biditory (e.g. GABA, glycine). There-
fore a synaptic input to a dendrite can be excitatory or imbiif, meaning that the triggered
electrical signal is a transient increase (excitatory posptic potential, EPSP) or decrease
(inhibitory postsynaptic potential, IPSP) of the membrané&ential of the postsynaptic den-
drite. All the synapses made by a neuron onto others are cfaime type, either excitatory
or inhibitory, so it is straightforward to divide neurongarthose that are excitatory and those
that are inhibitory. The current generated by a receptonimblecan be described using Ohm’s
law in a conductance-based formalism:

Isyn(t) = Jsyn(t) (V (t) — Esyn), (2.12)

whereV is the membrane potentiasyn is the synaptic conductance ahgly, is the reversal
potential of the synapse, in agreement with the definitidmeve. If Esy, is negative, the
synapse is depolarizing, hence excitatdfy,f= 0 mV for glutamate receptors). If positive,
it is hyperpolarizing, hence inhibitory. For positive vefuofEsy, the synapse is depolarizing
or excitatory Esyn= —70 mV for GABA receptors).

Deterministic models of synaptic dynamics give a desaiptf the averaged behavior of
the system. For instance, the basic model for a receptor tlased and an open state and the
average state can be described by a rate equation:

%—? =aT(t)(1—o0)- Lo, (2.13)
whereo (t) is the number of open receptors relative to the total numberoaeptors (bounded
between0, 1]), T(t) is the time-varying neurotransmitter concentratiaris the rate of open-
ing andp the rate of closing. The synaptic conductance can be exgt@sgsyn(t) = gmaxo (t),
wheregmaxis the peak conductance.Tft) is considered to be a Dirac delta functid(t —t;)
occurring at every presynaptic spike tirfje a solution fora(t) is obtained Destexhe and
Rudolph 2004):

a(t):aZ|1—a(tj)\exp(—[3(t—tj)), (2.14)
]

where the rise ob(t) is instantaneous and its amplitude depends on the contienticf
closing receptors at that time-1o(tj) (Figure2.4A). This solution implements a saturation,
because the rise af att; due to the delta-pulse release of neurotransmitters depmmthe
state ofo at that time, then decaying &> t;.
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A more realistic option is to consider th@itoccurs as a pulsebgstexhe et al.1994h),
such thatT| = Tmaxfor tog < t < t3. Solving Equations3.13 we obtain:

0 (t —to) = Oint + (0 (to) — Tint) €XP(—B(t —1;)) (2.15)
where T
a Imax
Opnf= ——— 2.16
inf aTmax+B ( )
and
Togma= —— (2.17)
sigma aTmax+B .

for a general initial conditiow (tp). After the pulsd > t;, when|T| = O:
o(t—tg) =o(ty)exp(—B(t—ty)) fort > ty. (2.18)

A simple model for postsynaptic conductance changes islp@adunction Rall, 1967):

o)=Y -y exp(—t_tj—_tpeak) (2.19)

] tpeak tpeak

which reaches its maximum &t-tj = tpea The parametelyeq« Specifies the duration of the
response, and can be used to distinguish for instance befastand slow transmission, but
it is not possible to define independently the rise and deicag (Figure2.4B). Instead we
can use a sum of two exponentials, which allows for the inddest definition of the rise and
decay dynamics(Figur2.4C):

ot)="fy <exp(— id_tjy> —exp(—tr__tj)> . (2.20)
] eca rise

Hereo reaches its maximum &leax=tj + fdecayfrise |n(rdecay). f normalizeso to take values

Tdecay— Trise Trise
between 0 and 1: 1
f— . (2.21)
tpeak—tj tpeak—tj
eXp(— pTdecayj> N eXp<_ pTrise l)

The neuron sums the excitatory and inhibitory inputs amgvirom different sites of the den-
dritic arbor, and an action potential can be generated ifrttegration of all the inputs brings

the membrane potential above threshold. Whether or not thenstion of several postsynap-
tic potentials results in an action potential depends orb#t@nce of excitation and inhibition.
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Additionally the activation of a synapse is delayed a certiane after the presynaptic spike is
fired, and this depends on the transmission delays of nelsmmeals through axons and den-
drites. Note that the conductangigaxis not constant in reality, but varies according to the type
of synaptic coupling and on the location of synapses. InG&&BAergic terminals outnumber
non-GABAergic terminals at the soma, while the oppositeus at the dendriteBenson and
Cohen 1996. Given that synapses located at the dendrites triggenaarchcurrent that trav-
els through the dendrite to the soma, the postsynaptic pateticited locally at the dendrite
spreads passively into the soma reducing its amplitudereftre single inhibitory postsynap-
tic potentials are stronger than single excitatory po&sitiand this accounts for an essential
balance between excitation and inhibition.
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Fig. 2.4Waveforms for synaptic conductances(A) exponential decay, Equatio.(L4), (B)
alpha function, Equation2(19, (C) dual exponential, Equatior2.0. From Sterratt et al.
(2011).

Differently from the chemical synapses introduced abolegtacal synapses or gap junc-
tions are to date probably still under-appreciated becthesehave been only directly seen
between inhibitory neurons in the neocort€lfson et al. 1999. These synapses are very
fast transmission channels leading to synchronizationeyhbrane voltages of larger popula-
tions of neurons\elazquez and Carle@000. Electrical junctions are permanently active, do
not need an activation threshold and do not distinguish &etvpre- and postsynaptic neurons.

In Part Il for each Chapter, we will describe the neuronal weks built starting from its
individual components, represented by single-neurontengintroduced above, where the
signal transmission between neurons is made by means ofichiesynapses modeled with
bi-exponential alpha functions (EquatidhZ0). We move now to phenomenological models
at the mesoscopic scale.
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2.3 Mesoscopic models

2.3.1 Neural mass models

Mountcastlg1957) discovered a columnar organization in the cortex by moainglectrode

perpendicularly to the cortex surface, which revealed oresiwvith similar electrical activities
grouped locally across the cortex. He first showed the engst@f columns 306 500 um
wide in the cortex which he namedrtical columns The most well known neural mass model
aimed at modeling cortical columns is thatlainsen and R{i.999 based on the original work
of Da Silva et al(1974). Jansen and R{L995 developed a biologically inspired mathematical
framework to simulate spontaneous electrical activititaeauronal assemblies as observed
in EEG, with a particular interest for alpha activity. But sleelumped parameter models
are also capable to produce evoked potentials, i.e. EE@itagiobserved after a sensory
stimulation Jansen et gl.1993 and more complex rhythms ranging from delta to gamma
seen in EEG and MEG recordingSdombes201Q David and Friston2003.

Jansen’s model characterizes the dynamics of a corticahuolby using a mean field
approximation, describing the average activity of thredical populations; excitatory and
inhibitory neurons and pyramidal cells. All three popuwat form a feedback circuit (Fig-
ure 2.5A). The main pyramidal population excites both interneatgoopulations in a feed-
forward manner, and the excitatory (inhibitory) interr@s feed back in an excitatory (in-
hibitory) manner into the pyramidal population. The dyneahevolution of these three pop-
ulations is introduced considering two different transfations. Each population transforms
the total average density of action potentials reachinig &fierent synapses from different ori-
gins, y mPpm(t), into an average postsynaptic excitatory or inhibitory rhegme potentiay; (t)
(see Figure2.5B). This transformation can be introduced in the model usiegdifferential
operator

2y
L(yi(t);anm) = d (;/tlgt) +23N|v|dy(;—§t) +admyi(t) = Aauwm {z pm(t)} , (2.22)

and correspondingliz(y;(t); b) for the inhibitory integration of the average density ofiaat
potentials, withbyy andB substitutingay andA above.A andB are related with the maxi-
mum heights of the excitatory and inhibitory postsynaptiteptials (EPSP and IPSP, respec-
tively), whereasayy andbywm represent the inverse of the membrane time constants and the
dendritic delays (see Figu&5B). Explicitly, the equivalent impulse responses resulfhogn
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the second order differential linear transformati@r2@ are given by:

Aaymte @t jft >0
he(t):{ anmte | >
0 ift<oO

in the excitatory case and

Bhyute Pt jf t >0
hi(t):{ M o=
0 ift<o

in the inhibitory case.

The second dynamical transformation in the model is the @mnon of the net average
membrane potential into an average density of spikes (sped2.58). This conversion is
done at the somas of the neurons that form the populationsatescribed mathematically by

a sigmoidal function
2ep

Sim(t)) = 14 e Vo mu)”
Hereey determines the maximum firing rate of the neural populatigrsets the net PSP for
which a 50% firing rate is achieved,is the steepness of the sigmoidal transformation, and
m(t) corresponds to the net PSP input into the population beingidered. The average den-
sity of action potentials produced by the presynaptic pafpoh acting upon the postsynaptic
population,p;(t), turns out to be proportional t8(m(t)), where the proportionality constant
weights the contact between the populations, and givesatigerof efficiency of the synaptic
interaction. Combining Equation2.22-(2.23 we obtain the complete model for the NMs:

(2.23)

Yo(t) = ys(t)

ya(t) = ya(t)

y2(t) = ys(t)

§5(t) = AanSya(t) — yo(t)] — 2anmiya(t) — &y¥olt (224
ya(t) = Aanm(Pe(t) +CoS[Ciyo(t)]) — 2anmya(t) — adyya(t)

ys(t) = Bbum(pi(t) +CaSCayo(t)]) — 2bnmys(t) — bR uy2(t),

whereyp(t) is the excitatory postsynaptic potential (EPSP) produgetthé pyramidal popula-
tion on the interneuron populations, apdt) is the EPSP acting upon the pyramidal popula-
tion and arriving from (i) the excitatory interneurons) ¢ither areas of the brain. Finally(t)

is the IPSP acting upon the pyramidal population and agifiom the inhibitory interneurons.
The intra-columnar connectivity constants values are ddfin terms ofC;, withi =1,...,4.
We use the values given dansen and R{tL995, but we refer the reader to Chaptefor fur-
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Fig. 2.51llustrative scheme of a neural mass model of a cortical colon. (A) A popu-
lation of pyramidal neurons interacting with two populasoof interneurons, one excitatory
(left branch) and the other inhibitory (right branch). (BpWwchart representation of opera-
tions performed inside a column. The boxes labéledndh; represent the effect of synapses
between populations, which is modeled mathematically sscarsl order differential linear
transformation from the average firing rate of the presyingapulation to the membrane po-
tential of the postsynaptic one. The boxes lab&gpnrepresent the nonlinear transformation
of the membrane potential of a population into an outputdirate. The constan@ account
for the strength of the synaptic connections between ptipuga Adapted fronGGrimbert and
Faugera$20063.
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ther details about the parameters, where we will proposel&-gswale approach made of NM
and HH models simultaneously. We use and explore these datignal approaches at differ-
ent scales to characterize a diversity of spatio-tempdrahpmena, which will be described
in Part Il.
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CHAPTER 3

TRANSITION BETWEEN FUNCTIONAL REGIMES IN AN
INTEGRATE-AND-FIRE NETWORK MODEL OF THE THALAMUS

The thalamus is a key brain structure in the processing adagninformation. Transient
temporal coordination of distributed neuronal activitytbélamic cells through precise syn-
chronization allows this structure to dynamically procedésrmation, in a way that it reflects
different behavioral states. This Chapter addresses therglequestion of how the thalamus
changes its dynamical behavior (which is associated wiffierént information-processing
regimes, corresponding broadly to wakefulness and sleep)fanction of both its internal
state and external inputs. To that end we implement a simgtidiplogically realistic neu-
ronal network model of adaptive exponential integrate-fwredneurons, which exhibits two
dynamical regimes with different information processirapabilities. The model includes
two prominent types of thalamic neurons, namely thalamamirelay cells (TC) and reticu-
lar neurons (RE). We investigate how the network architectdithe thalamus influences the
occurrence of these two regimes, and how the transitiondertihem is controlled.

In Section3.1, we introduce the main dynamical properties of thalamicoesidepending
on the behavioral state. Next we present in SecB@the neuronal network model adopted
for the analysis. In Sectio®.3we build our network progressively. In Secti8r8.1, we show
how our aEIF neurons reproduce the two activity modes of TeCRIE neurons: the standard
depolarizing regimeJahnsen and LIina4984) and the rebound from hyperpolarizatida-
lassa et a).2014). In Section3.3.2and 3.3.3 we investigate how spindle oscillations are
generated through the TC-RE interaction as a function of twipling and of the presence
of external inputs, and how heterogeneity can be tamed binteection of different TC-RE
loops. The analysis extends up to full networks in the preseri cortical inputs impinging
on the reticular neurons from the periphery and the corticads (SectioB.3.4. Finally, in
Section3.4, we summarize the main results of this study. These res@tseported irBarardi
et al.(2016 (under revision).
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3.1 Dynamical properties of the thalamus

The thalamus is often identified as a relay station betwelkaoaatical and cortical areas, since
all sensory pathways of the nervous system pass througfoitbeeaching the cortex. Indeed,
sensory inputs from visual, auditory and somato-sensagpters reach the cortex through
synapses on thalamocortical relay neurons in a specifiomegfithe thalamus, which in turn
projects into the corresponding area in the primary corteis thus reasonable to think that
thalamus does not limit its activity to faithfully transmiity information to the cortex, but it
might play a role in gating and modulating the flow of informattowards the cortexrick,
1984 Reinhold et al.2015 Sherman and Guillery2002), i.e. in selecting which external infor-
mation is supposed to reach the cortex and when. In pamtjchla view is coherent with the
important role found to be played by the thalamus in the s@epsal/wake processd3gng-
Vu et al, 2008 Llinds and Par€1991 Steriade et al.1993, and attentionGuillery et al,
1998 McAlonan et al, 2008 Wimmer et al, 2015.

The main kind of excitatory neurons in the thalamus are tloe@fmentioned TC neurons.
In vitro studies Jahnsen and LIinag984 Llinas and Jahnsen982 have revealed that these
neurons can operate in different firing modes depending&nvbltage level. Near the resting
membrane potential, TC neurons can produce trains of spikbsrequency proportional to
the amplitude of the injected current, due to voltage-ddpahcurrents that generate action
potentials Destexhe and Sejnowsk003. This is usually calledonic mode Alternatively,
when TC neurons are hyperpolarized they can operatebursting modecharacterized by
high-frequency bursts of action potentials (300 Hz) in cese to hyperpolarization.

During slow-wave sleep, TC neurons display strong spindtgllations (7— 15 Hz) inde-
pendently from external stimulAfhdersen and Eccle$962 Destexhe and Sejnowsk003.
In contrast, in the awake state TC neurons are known to vaiydltivity according to inputs
coming from the associated receptor layers, and to affdcirimthe activity of the associated
primary sensory cortex. For instance, TC neurons belonigirtige lateral geniculate nucleus
(LGN) and the ventral posterior nucleus (VPN) are modulatethe retina Butts et al, 2007)
and by the tactile afferentk&nd et al, 1995, respectively, and modulate in turn the activity of
primary visual and somatosensory cortical aréaithert and Wiesel1992 Pais-Vieira et al.
2015 Reinhold et al.2015. TC neurons are also key components of the above-mentioned
gating role of the thalamus, contributing to the selectibsatient information during selective
attention Wimmer et al, 2015.

As suggested by Crick in his seminal pap@ri¢k, 1984, the role of modulating the
efficacy of sensory transmission of TC neurons is mainlygiyy the neurons of the reticular
nucleus of the thalamus (RE neurons). In particular, theaobn of RE neurons can strongly
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hyperpolarize TC neurons, which consequently undergditdry rebounds that give rise
to an endogenous oscillatory activitidlassa et al.2014. Specifically, spindles can be
originated by TC bursts eliciting firing activity in RE cell$n turn RE bursts hyperpolarize
TC cells, which consequently stop firing. When RE cells, laglercitatory drive, stop firing
too, the rebound of TC cells from hyperpolarization causesnt to emit a burst of spikes
and the cycle starts again. The overall process takes alB@umm% and generates rhythmic
spindle oscillations. Therefore spindle generation is tduan interplay between TC and RE
cells Destexhe et al1993 McCormick 1992. Coherently with this fact, manipulating the
activity of RE neurons was found to have behavioral consetpgem attention taskd.éwis

et al, 2015h Wimmer et al, 2015.

During the awake state, TC cells undergo a transition aretredte this bursting mode
with a tonic mode. As mentioned above, both modes are typicdlC neurons, and they
could provide different frameworks for information prosegy, since during the bursting mode
action potentials in the TC cell are not linked directly to3# in that cell, whereas the
opposite is true in the tonic mode. Therefore we expect thatbursting mode transmits
information less efficiently than the tonic mode, in whichiaarease in the extra-thalamic
inputs on TC neurons leads to a direct increase in the respafiBC neurons§herman and
Guillery, 2002. How the thalamus exhibits the functional transition begw the two regimes
is not clear. In fact, a coherent view accounting for both T &E interactions and the
resulting functional behavior of the thalamic network i stissing, due in particular to the
relative paucity of simultaneous neurophysiological rdoggs of the two neuron typeas
vivo. In this context, the role of modeling becomes very relevan to its capacity to suggest
candidate mechanisms for the generation of the observeavizeh Modeling of thalamic
networks has been pursued for more than 20 ydaestexhe et al.1994a Golomb et al.
1996, during which network models have been developed thaucagt wealth of thalamic
phenomenaNuller and Destexhe2012. However, almost all studies to date have adopted
neuron models at least as complex as the Hodgkin-Huxley h{@@kstexhe et gl.1994a
Willis et al,, 2019, probably due to the aforementioned role of rebound ctsrelVe are
aware of one attempt to model realistically thalamic int&oas with integrate-and-fire (IF)
neurons Destexhe 2009. Other relevant work on this topic has been done by Smith and
colleagues (see e.pluertas et al. 20Q%ased on an earlier model 8mith et al. 200Land
also byCoombeq2003, whose work is based on a firing rate reduction of IF netwavkl
slow T-type calcium currents in RE and TC cell networks.

In this Chapter we focus on a single property of the thalamie/oek as a whole, namely
its above-mentioned ability to switch between two dynaimegimes that display different ex-
ternal input sensitivity. We also study the role played is fhenomenon by the network archi-
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tecture (connectivity and synaptic strength), rangingiftoops of two neurons to the effect of
sensory and cortical input on the whole thalamic networkthed end we develop a thalamus
TC-RE network model based on a particularly simple spikingoeunodel, namely a differ-
ent suited version of the adaptive exponential integratefae (aEIF) neuron modeBfette
and Gerstner2005 for each neuron type (see Sect@d.2. The choice of this neuron model
allowed us to focus on a restricted number of parametersjfggadly those related to physio-
logical quantities influencing the rebound-driven ostitlas and the tonic stat&guboul and
Brette 2008. Moreover, our aEIF thalamic model will be particularlyited to be interfaced
with cortical column LIF models (e.d@otjans and Diesman@014 to model accurately the
whole thalamocortical loop (see Perspectives sedtibn

3.2 Network model of adaptive exponential
integrate-and-fire neurons

We build the thalamic network based on the single-neuroptaagaexponential integrate-and-
fire (aEIF) modelBrette and Gerstne2005, described in Sectio®.1.2 The network is made
of TC and RE cells, endowed with intrinsic properties and ggpphic connectivity specific
to the thalamusiestexhe2009. Here we consider a network of 500 neurons, half of which
are TC neurons and the other half being RE neurons. Givenhalkanbic interneurons do not
contribute to the development of internal dynamics suctsaslations, they are neglected. Ax-
onal projections within the thalamic circuitry are locaklsparse. The excitatory projections
from TC to RE have a connection probability of 1%, while RE to T@ibitory projections
are more dense, with a connection probability of 4%. The sdemsity is assumed from in-
hibitory connections between RE cells. The structural cotivigy is built starting from a ring
network and then randomly rewiring with probabil®P. This process allows us to control
the clustering coefficient, which quantifies the conneatsdror local connectivity of the net-
work (in terms of the probability that two nodes that are @wiad to a common node are also
connected between them). According to the Watts and Sz@dgorithmWatts and Strogatz
(1998, a pure regular network can be turned into a small-worlevogk, in which few edges
separate any two nodes, by rewiring the connections. A negvjprobability equal to 0 im-
plies a regular network with large clustering (provided tloeipling extends beyond nearest
neighbors), whereas a rewiring probability equal to 1 iepla completely random network
with small clustering. The network model is constructedgolaen the Equation2(2)-(2.3) of
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the aEIF, which we reproduce here for clarity:

dvi — VT
Cmd_tl = —gL(Vi—EL)+ oy exp( A ) —Wi — ;gaj (Vi —Ej) 3.1)
dwi 1
H—t_Wi[aI(\/I_EL)_WI]? (3.2)
. Vi=V;
if V > Ethresh (3.3)
Wi =W +b,

where the first equation describes the evolution of the manewoltage/; of neuroni and
Cm = 1 nF is the capacitance. The ionic currents are the ohmicdaaient defined by the
resting leak conductangg = 0.05 uS and the resting voltage potential = —60 mV, and the
exponential term that reproduces thhia” — current responsible for the generation of spikis.
denotes the steepness of the exponential approach todhdetstken equal td = 2.5 mV, and
Vr = —50 mV is the threshold potential. The membrane time con&apt= Cn/g.. WhenV

is pushed over the threshold, the exponential term proadessitive feedback and a spike is
emitted, at which point the voltage is instantaneouslytresé = —60 mV and the adaptation
variablew is increased a valub. After the spike, the neuron cannot spike again during a
refractory period (5 ms). The second equation describes the dynamics of theadidap
variablew, with time constant,, = 600 ms. The parametar(in uS) quantifies a conductance
that mediates subthreshold adaptation, while the increindm nA) at each spike takes
into account spike-triggering adaptation (it regulates gtrength of adaptation). In order to
reproduce the peculiar properties of TC and RE when operatibgrsting mode, we adopt
specific values od andb. Witha= 0.4 uS,b = 0.02 uA, neurons display bursting activity in
response to both depolarizing and hyperpolarizing stitypical of RE neurons. In contrast,
with a=0.2 uS,b= 0.0 uA, neurons display responses with moderate adaptationteomtys
rebound bursts, like TC neurons. RE and TC neurons can disigfayent regimes (beyond
bursting and tonic, fast spiking, regular spiking) by tunthe parametergandb (Izhikevich
2004 Ladenbauer et gl2012 Naud et al.2008. In both cases, sina/g. > T/Tw We are
in the parameter regime in which rebound firing is possildejeamonstrated byouboul and
Brette(2008.

The termy ; gij (Vi — Ej) accounts for the synaptic current coming from the neigtmgpri
neurons impinging on a neuronal cell, wheygis the conductance of the synapse from neuron
j to neuroni (which can be zero), anl; is the reversal potential of the synap&g £ 0 mV
for excitatory synapses and80 mV for inhibitory synapses). Synaptic conductances are
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described by:

@ -t —t—t
gj(t) = — [e_e] (3.4)
Tdecay— Trise
whereTgecayand Trise are the decay and rise synaptic time, respectively,pds constant
and depends on the type of synapses and network (see 3dpléOnce the presynaptic cell
fires, gij exponentially increases up to a certain value, after whiakecays exponentially
with a fixed time constant (5 ms for excitation and 10 ms foibitton). Different synaptic
strengths are considered (see Tah®, depending on the network type. If different values
are considered, they are indicated in the captions of eaahefigNote that the conductance
values use here are higher than the ones observed expaliypehhis is done to compensate
for the unrealistically low amount of incoming inputs, dwethe fact that we are consider-
ing small networks. This synaptic strength rescaling ismmon practice in computational
neurosciencelfestexhe2009. Synaptic delays are equal to 1 ms.

AMPA Trise AMPA Tgecay GABA Trise GABA Tgecay
Network 2 neurons ams 5ms 0.4ms 20ms
Network 4 neurons ams 5ms 0.4ms Uu=20ms o=5ms
Network 500 neurons .Aams 5ms 0.4ms 10ms

Table 3.1 Values of temporal rise and decay constants for RE @n

JrE=TC gTCcHRE JRE=RE Oext>TC  UCX—RE
Network 2 neurons  2080800uS 10-60uS 200-800uS 1us 1us
Network 4 neurons 550S 32us 20uS 1us 1us
Network 500 neurons 300S 200us 300usS 5uS 1us

Table 3.2 Values of synaptic strengths for a network of 5Q0-owes.

To initiate activity, during the first 50 ms a number of randpithosen neurons are stim-
ulated by an incoming current (with synaptic strength 40 uS), representing an heteroge-
neous Poisson train of excitatory presynaptic potentigh &n instantaneous event rété)
that varies following an Ornstein-Uhlenbeck process:

‘3_’: — —A(t) + a(t)\/gn (t) (35)

wherea(t) is the standard deviation of the noise and is set@ospikes/s.t is set to 16 ms,
leading to a power spectrum for tietime series that is approximately flat up to a cut-off
frequencyf = % = 9.9 Hz. n(t) is a Gaussian white noise of mean zero and intensity unity.
The only source of noise is the random connectivity. In satiahs in which we take into
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account external sensory inputs, after 5 s of self-susdaagivity we inject for 10 s homo-
geneous Poisson processes with rate comprised betweerd IiGarspikes/s. In simulations
in which we did not take into account external input after 5§ and thus the activity states
described here are self-sustained.

3.3 Dynamics of the aEIF network with increasing size

The presence of two different dynamical regimes in the thakhas been known for decades/{
ingstone and Hubel 981 Steriade and McCarlep005 Steriade et al1993. This behavior
can be linked to a specific property of the two main kinds ofroes in the thalamus, described
above, glutamatergic thalamocortical relay (TC) neurords @ABAergic thalamic reticular
(RE) neurons. Both types of neurons can fire either as a resdépdlarizing driving or as a
rebound due to hyperpolarizing driving. In what follows vie& how the aEIF model defined
above reproduces the two types of responses for both kingsurbns (Figur&.1). We inves-
tigate how and when the connectivity between the neurompagigg these properties induces
a regime dominated by spindle oscillations, or respondirgiitnuli in a tonic-like mode. The
analysis starts from two-neuron loops and extends up teé&iWorks receiving input from the
periphery and the cortical areas.

3.3.1 Dynamics of single neurons

The first step towards reproducing the two dynamical regiohése thalamus described above,
and the transition between them, is to choose a single-neuoalel able to capture the pecu-
liar properties of thalamic neurons, and in particular thediinduced by hyperpolarization-
driven rebound. To that end we select a properly tuned agaexiponential integrate-and-fire
(aEIF) spiking neuron modeBfette and Gerstng2005 Fourcaud-Trocmé et aR003 Izhike-
vich, 2004 (see SectioR.2) for each of the two thalamic neuron types considered. Byngini
the key parameters of the aEIF model it is possible to adhestdinamics and the strength
of adaptation (parametessandb in Equations 8.2)-(3.3), respectively) to reproduce the in-
trinsic dynamical modes typical of thalamic neurons. &et 0.4 uS andb = 0.02 nA, the
RE aEIF neuron models (RE neuron from now on) exhibits reguiagfactivity in response
to depolarizing stimuli (Figure8.1A,B), while they display bursting activity in response to
hyperpolarizing stimuli (Figur&.1C,D), consistently with experimental finding€dntreras
et al, 1993 Domich et al, 1986 Steriade 2003. In particular, in response to a depolariz-
ing stimulus (Figure8.1A), RE neurons display firing activity with a certain degreespike-
frequency adaptation that saturates before the end of itnellss and stops neuronal firing.
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For large enough applied currents, the response extentisefarhole duration of the stimulus
(Figure3.1B). In response to a hyperpolarizing stimulus (Figu3eC,D), and due to the rela-
tively large value of, the neuron exhibits rebound bursting activity, also wjilks-frequency
adaptation, for the same spike threshold used in the depalgcase.

TC neurons generally show a more robust bursting activithanegligible level of spike-
frequency adaptatiorL{inas and Jahnserl982 (see Destexhe and Sejnowsk2003 for
a review). This is achieved in the model by imposing a largduer ofa = 0.2 uS and
b = 0 nA, thus making the adaptation strength negligible. Irtipalar, in response to a
depolarizing stimulus the TC neurons produce patterns ioffiactivity (Figure3.1E) with
negligible spike-frequency adaptation (Figl8dF) (leading thereby to high firing activity
for all the duration of the stimulus). In contrast, a hypéapiaing stimulus leads to rebound
bursting (Figure3.1G) and moderate spike-frequency adaptation (larger th&Eimeurons)
(Figure3.1H). In the case of depolarizing stimuli, characterized bgligéole adaptation and
regular firing activity, TC neurons exhibit an effectiveliaase of activity (Figur8.1F) accord-
ing to the increasing external input and compatibly withrésfeactory period, where neuron is
not allowed to fire. Therefore the firing activity increasesgortionally with larger external
sensory inputs. This is consistent with the linear inpupatrelation in the tonic mode (Fig-
ure3.1E,F), in contrast with the bursting mode where there is neatliink between the EPSP
and spike generation, which thus corresponds to a nonlinpat-output relation $herman
2001)). Relevant works have been recently done showing that bonaysalso be important in
the encoding of sensory informatioEl{jah et al, 2015 Samengo et 312013.

Overall these results show that the aEIF models properlyucaghe two firing modes
(depolarizing-driven and hyperpolarization-driven) bmth TC and RE neurons. In the fol-
lowing we show the transition between the two modes for TG o due to external inputs,
and how recurrent activity drives a transition at the nekievel from stimulus-insensitive to
stimulus-sensitive behavior.

3.3.2 Two-neuron loops

Before moving to large, structured networks we carefullygrethe properties of the mutual
interaction between TC and RE neurons. Specifically, we stliffisrent simple two-neuron
loops formed by TC-RE and RE-RE neurons, and examine how seHtsad oscillatory pat-
terns originated in these networks are modulated by symapgngths regulating the internal
recurrent activity. We also study the effect of GABA tempatacay dynamics on the fre-
guency of oscillation, and the input-driven oscillatorytpen of a TC-RE loop. This analysis
is informative towards the building of a full network. We fitsuild a minimal model of two
bidirectionally coupled neurons, a RE neuron and a TC nelfimufe3.2A). Activating this
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Fig. 3.1Dynamical properties of single RE and TC neurons as a functioof input current.
(A) Depolarization activity of a RE neuron. Membrane voltdtm) and adaptation variable
(middle) of a RE neuron in response to a depolarizing curteottgm). (B) Corresponding
post-stimulus time histograms for increasing depolagzinrrents. (C) Hyperpolarization-
rebound activity of a RE neuron and (D) corresponding pasitsus time histograms for
increasing hyperpolarizing currents. Parameteend b, representing respectively the dy-
namics and the strength of adaptation (see Equati®@y-(3.3) of RE neurons are defined
in this way: a= 0.4 uS andb = 0.02 nA. (E) Depolarization activity of a TC neuron and
(F) corresponding post-stimulus time histograms for iasieg depolarizing currents. (G)
Hyperpolarization-rebound activity of a TC neuron and (Biresponding post-stimulus time
histograms for increasing hyperpolarizing currents. Taleesa andb are 02 uS and 0 nA.
The current intensity in (A,C,E,G) is 1000 mA, while it vartestween 1000 mA and 5000 mA
in panels (B,D,F,H)Vt = —50 mV is the threshold potential for both types of neurons.
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RE-TC loop for 50 ms leads to oscillations that persist stalfiigr the stimulus termination
(Figure 3.2B). These oscillations are due to the rebound bursting ptiegenf the TC relay
cell, which is mutually connected with the RE neuron: the T@roa provides depolarizing
input to the RE neuron, which displays bursting activity thaberates strong hyperpolariza-
tion, followed by rebound firing activity in TC neurons. Coggently, in this configuration
the RE neuron fires in response to depolarizing currents,ewthé TC neuron fires only in
response to hyperpolarizing inputs.

Next we investigate how these oscillatory patterns vary dsnation of the synaptic
strengthgrc .re, keepinggre_.tc constant at a reference value of 5a8. By increasing
orc—Re, both the TC and RE neurons oscillate with higher frequerscgaa be seen from the
decrease of the inter-spike interval (ISI) in Fig@&&C (bottom). Stronger synaptic strengths
enhance the firing activity of the RE neuron, which fires in adesalong the oscillation cycle
and thus leads the TC neuron to spike at an earlier phase. éftedfact is an increase in the
oscillation frequency. The RE neuron (Figu@C, top) displays bursting activity in response
to depolarizing input above a threshold valugpg .re = 29 uS. It oscillates at around 11 Hz
(inter-burst ISI~ 90 ms) with two spikes per burst with an intra-burst 466 ms. By increas-
ing the synaptic strengitirc_.re, the neuron passes a second thresbhetd,re = 40 uS and
presents three spikes per burst (three ISIs are preseatjiually entering a regime in which
the ISI approaches the intrinsic refractory period of theroe (25 ms).

Subsequently we perform the complementary analysis bydfigiz ke to 32 uS (which
leads to two-spike bursting in the preceding analysis) anginggre_.1c. Figure3.2D shows
that asgre_.7c Is increased, the TC neuron oscillates with a graduallyeiasing frequency
that stabilizes around 10.5 Hz (FiguBe2D, bottom), while the RE neuron displays burst-
ing activity with the same inter-burst ISI as the TC neurod an intra-burst ISI otz 3 ms
(two-spikes-per-second scenario of previous analysiglu(e 3.2D, top). Note that the brief
hyperpolarization induced in the TC cell by the firing of agdenRE cell is able to trigger only
one rebound spike, and consequently the number of spikesibuhe RE cell remains con-
stant. This is consistent with the results reported@gtexhe and Sejnowsik003, where
spindle activity required at least a four-neuron netwode(sext Section).

Next we explore the dynamics of a purely GABAergic reticlkii-RE loop (Figure3.2E)
as a function of the synaptic stren@be_.re. As Figure3.2F shows, the RE neurons present
a sustained strong and adapting bursting activity (cooedimg to a wide range of intra-burst
ISI) and for increasing values of the synaptic strength,iher-burst I1SI decreases. Impor-
tantly, unlike in previous studies, here the decreasirgyibtirst ISI does not entail an increase
in oscillation frequency, since in this case bursts lastimoager (with more than 10 spikes
per burst). This result shows that RE-RE synapses strendtkaelbound bursting properties
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Fig. 3.2Dynamical properties of two-neuron loops. (A) Scheme of a two-neuron TC-RE
loop. (B) Membrane voltage traces of the TC and RE neurons gtteby this minimal
TC-RE loop. (C) Interspike interval (1SI) distribution of theCTIRE loop as a function of
the synaptic strengtgrc_.re. The value ofgre_,7c IS appropriately set to 550S in order
to support self-sustained activity, whitgc_,re varies between 1S and 60uS. RE and
TC ISl distributions are shown in the top and bottom plotspestively. (D) ISI distribution
of a TC-RE loop as a function of the synaptic strengfig ,7c. The value ofgrc_re is
chosen equal to 3@S to reproduce the two-spike bursting dynamical regime népB while
Ore_,Tc varies between 200S and 800uS. RE and TC ISI distributions are shown in the
top and bottom plots, respectively. (E) Scheme of a minimatly reticular RE-RE loop. (F)
ISI distribution of this loop as a function of the synapticestythgre .re. GreE_RE Varies
between 20QuS and 800uS. (G) Scheme of an input-driven two-neuron TC-RE loop. (H)
ISI distribution of this loop as a function of external serysmput strength. RE and TC ISl
distributions are shown in the top and bottom plots, respalgt The synaptic strengths are

respectivelygre stc = 550 US, grc»re = 32 US andgext1c = 1 US.
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and can be expected to enhance the bursting activity in arllagwork. In the simple TC-RE
loop motif, the oscillation frequency can be tuned by the @Adecay time constant. For in-
stance, by varying@gecayfrom 5 to 35 ms in the minimal model of FiguB2D, the frequency
of the two neurons oscillates betweer?25 and 6 Hz (Figur8.3). This leads to corresponding
changes in the ISI distributions (Figurggt 3.5), without qualitative variations with respect
to the behavior shown in Figu@2 The key role played by the GABA decay time constant
in modulating the frequency of spindle oscillations is dasively similar to the way it af-
fects gamma-range oscillation frequencies in LIF netwarkere rebound oscillations are not
present Brunel and Wang2003.
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Fig. 3.3Effect of the GABA decay time on the two-neuron TC-RE loop.Interspike Interval
(ISI) distribution of a TC-RE loop as a function of the GABA dgctame Tgecayfor RE (A) and
TC (B) neurons.Tyecayvaries between 5 and 40 ms. The synaptic strengths are tshec

OrRe—TC = 550 US, grcsRE = 32 US.

After investigating the properties of stand-alone RE-TCpkowe move to analyze an
input-driven loop in which the TC neuron receives an exteseasory input modeled as a
Poisson distribution with increasing amplitude (Fig@r2G). We only consider inputs to TC,
mimicking the sensory stimuli coming from the retina or tlegipheral nervous system. We set
reference values @frc ,re = 32 US ,gresTc = 550uS and GABATyecay= 20ms, for which
the spontaneous activity (in the absence of external inpkys the form of low-frequency
bursting with two spikes per burst. The value of GAB#ecayis lower in the full population
model. When we increase the external input rate (Fi@u2el) the ISI distribution is signifi-
cantly different from the one observed in the absence ofeatstimulus (Figure.2D): both
neurons show a strong variation in the bursting frequen@ytduhe external stimulus, and
the ISI displays a large variance due to the introductionaiger On the other hand, and con-



3.3 Dynamics of the aEIF network with increasing size 70

RE TC
A : : B
60 _ ! 60 _—
— | I —_—
£ 40 ! ! £ 40
— | | —
2 2 ! ! 2 2
I
10 20 40 50 60 % 20 40 50 60
@TC->RE 3&TC—>RE
D RE D TC
60 60
) )
E. 40 £ 40
2 20 2 20
0 0
200 400 600 800 200 400 600 800
gPF—>T(\. gPF—)TC

Fig. 3.4Effect of the synaptic strength on the two-neuron TC-RE loop.Interspike Interval
(IS) distribution of a TC-RE loop as a function of the synasticength for RE (A,C) and TC
(B,D) neurons. As in Figur8.2C, in A and B the value ofre_.1c IS appropriately set to
550 uS in order to support self-sustained activity, while-_.re varies between 1S and
60 uS. In C and D, the value afrc_,re is chosen equal to 40S to reproduce the two-spike
bursting dynamical regime, whilgre_.tc varies between 20QS and 80QuS. GABA decay
TdecaylS Set equal to 10 ms in the two cases.

sistently with Figure3.2D, the RE neuron is in bursting mode for all values of externpli,
with the ISI approaching the refractory period.

3.3.3 Four-neuron motifs

As a last step before moving to the full network, we invesggseveral four-neuron motifs,
made of two RE and two TC neurons, to understand what are thet@tal connectivity fea-
tures more suitable to explain large oscillatory synclration phenomena, namely spindle
oscillations, in the bursting regime, even in presence térogeneity between neurons that
leads to different oscillation frequencies. Previous waak shownDestexhe2009 that aEIF
models are able to reproduce this self-sustained oseilddehavior in the form of periodic
bursting, and that the minimal circuit reproducing the pimaenon is a circuit of two TC and
two RE neurons fully connected with each other, with the etioapf TC-TC connections,
which are not present in the thalamushikevich and Edelmar2008. As in the case of the
two-neuron loop, bursting is mainly due to the rebound lnggtroperties of TC cells and RE
(Figure3.6F) (Destexhe and Sejnowsk003, and the oscillation frequency depends on the
GABA temporal decay constant.
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Fig. 3.5Effect of the synaptic strengths on the two-neuron RE-RE motif Interspike inter-
val (ISI) distribution of a minimal purely reticular RE-RE nifodis a function of the synaptic
strengthgre_,re for three different values of the GABA decay time: (A) 5 ms, (B)ms, (C)

20 ms.gre_.RE Varies between 300S and 80QuS.

Since the oscillation frequency might vary slightly betwdeops, we checked the con-
ditions for the onset of coherent oscillations. In partcuwe studied different couplings
between pairs of two-neuron TC-RE loops (which are equivdkemnio bidirectionally cou-
pled oscillators) with different intrinsic oscillationdgquencies, and analyzed which coupling
configuration leads more readily to oscillatory spindlegrais by examining the power spec-
trum of TC neurons and the phase coherence between themeBigshows the schemes of
the different circuits explored depending on the couplingd being considered: TC-RE con-
nections (Figur&.6A), RE-TC connections (Figurg.eB), RE-RE connections (Figui®6eC)
and all three types of connections (Fig@téD). For each circuit, we calculate the power spec-
tral density and phase coherence between the two loops éatiersA.2- A.3 in Appendix
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A) by using the activity of TC neurons. The phase coherencalisulated by averaging 50
trials each with a different GABAgecaydrawn from a Gaussian distribution with mean 20 ms
and standard deviation 5 ms, which leads to variability @ fiequencies of the two TC-RE
loops being coupled.
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Fig. 3.6Four-neuron motifs in the form of coupled pairs of TC-RE loops The two TC-RE
oscillators are bidirectionally coupled through (A) TC-REhnections, (B) RE-TC connec-
tions, (C) RE-RE connections, and (D) all three connectiong. F(Equency of the power
spectral peak and (F) phase coherence at that frequencliddour different motifs. The
power spectral density and phase coherence were averagsg &0 trials for random values
of the GABA decay time (see text). GABA rise time and AMPA reed decay times are
set constant (see Secti@2). When the corresponding connections exist in the motifs, th
synaptic strengths are respectivelyze .tc = 550 uS, grcre = 32 uUS, andgre_.Rre =

20 uS.

Figure3.6E shows the frequency at which the power spectrum of the T@oneactivity
has its maximum, and Figu6F the corresponding phase coherence at that frequency. The
horizontal dashed red lines represent the correspondingva the case of uncoupled loops.
In the uncoupled case, the oscillation frequency H0.4Hz and the loops are weakly synchro-
nized (the phase coherence beiwad.12). The two TC-RE oscillators strongly synchronize
with a zero-lag phase (corresponding time lagzi®, not shown) with respect to the uncou-
pled case, while the loops are poorly zero-lag synchronizieein only RE-RE connections
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are present. Therefore this result supports the idea thadlspgeneration is mainly due to
an interplay between TC and RE celBgstexhe et al.1993 McCormick 1992, which is
enhanced by RE-RE connections.

3.3.4 Full thalamic network

We finally extend the size of the network to 500 neurons towaghe dynamics of a complex
thalamic structure. Following experimental indicatioR#4Gibbon et al. 1995 Kim et al.,
1997 Minderhoud 1971), we consider that each RE projects four connections to T@omsu
and to RE neurons themselves, while TC neurons have only oage@ne connection with
RE neurons only. Starting from these numbers we considerechatwork configurations,
in order to investigate how the spindle oscillations are##d by network architecture. The
first configuration was a purely random one (RgZA) with rewiring probabilityRP= 1 (see
Methods), while the second favored RE-RE clustering with riexgiprobability RP= 0.25
(Fig. 3.7B).

We find that in the random network (FigugerA), temporally irregular bursting is domi-
nant (Figure3.7C). On the other hand, in the presence of RE-RE clustering (ER)JB) the
network shows quite regular and synchronized spindlelasiocihs at 8 Hz (Figur&.7D). In
order to characterize and quantify the bursting regulae ¢ta spindle rhythm) and distinguish
it from irregular tonic activity, we study the inter-bursitérval distribution (in particular the
probability of a peak of ISI distribution above 50 ms) as action of the rewiring probability
RP of the architecture (see Secti@®). Our results, shown in Figur@ 7E, reveal that fully
regular networksRRP = 0, each neuron projects regularly to a fixed number of adjaceun
rons) cannot support regular bursting activity and arenoélenost silent (with a firing rate of
around 0.4 spikes/s, results not shown). At the other exdréufly random networksRP= 1)
show sustained activity with temporally irregular burgtiof TC and RE neurons. Between
these two conditions, there is an optimum rewiring probighfRP ~ 0.25) showing a rela-
tively large ISI peak corresponding to frequeney.5 Hz. The fraction of neurons displaying
a large inter-burst ISI peak decreases substantially tweasing rewiring probability, namely
when going towards fully random networks. Intuitively, givthat connections between tha-
lamic circuits are local but sparseFi(zGibbon et al. 1995 Kim et al,, 1997 Minderhoud
1971), excitatory synapses are very sparse and they are moriwdferhen they impinge on
small clusters of RE-RE neurons, enhancing and modulatinggtiéatory spindle rhythm.

Given the results obtained above, we decide to study a nletwitin the critical degree of
clustering RP = 0.25), and simulate constant external sensory input of diffemtensities
impinging on TC neurons. We test if by increasing the extieimaut on these neurons the
network shows a transition from bursting to tonic mode, \Wwlgould be associated with the
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Fig. 3.7 Spindle activity generated by a full network of TC-RE neuronsdepending on
RE-RE clustering. (A) Connectivity matrix of a random TC-RE network. The presyi@ap
neurons are represented in the x axis and the postsynaptionein the y axis. The network
is made of 500 neurons, of which the first 250 are RE neuronsheniéimaining ones are TC
neurons. (B) Connectivity matrix in the presence of RE-RE chuggerewiring probability
RP = 0.25) (C) Membrane voltage dynamics of a couple of arbitrariipsen TC and RE
neurons in the case of random network. (D) Membrane voltagmmics of a couple of
arbitrarily chosen TC and RE neurons in the presence of clogteevidence of typical spindle
oscillations. (E) ISl distribution (color-coded) as a ftino of the rewiring probability for RE
(left) and TC (right) neurons. The synaptic strengths aspeetively: gre_.tc = 300 uS,

grcRre = 200 S andgre-;re = 300 S.



3.3 Dynamics of the aEIF network with increasing size 75

switch from sleep to awake state\ingstone and Hubell981; Steriade and McCarleg005
Steriade et al.1993. Given the nonlinear relation between input and outpuhatiursting
mode Sherman2001), we expect to see a change in the firing rate trend of TC nsuron
(the neurons that project to the cortex) only when the nétvgares from bursting to tonic,
through which the firing rate should increase with the inpeilgure 3.8A shows the firing
rate of TC (red) and RE (blue) neurons for increasing exteseasory input on TC neurons.
The case of inpus = 0 spikes/s corresponds to the self-sustained conditiarusised above.
By increasing the input amplitude, the network displays aditeon in the firing rate of TC
neurons at aroun& = 50 spikes/s, after which the response of the thalamus isesesub-
linearly with the external input. We interpret this as anigadion of the switch from a purely
bursting mode to a temporally irregular state. Note thatdtieer of this transition is the
response of the recurrent activity to the external sensgytj since we do not change the
intrinsic parameters of the model.

In order to explore this scenario further, we calculate tledistribution of RE and TC
neurons by averaging over 100 trials for each different @S, The RE neurons are the
most insensitive to increasing external input, as can ba se&igure3.8B. On the other
hand the fraction of TC neurons displaying a large inteisbi8| decreased as the stimulus
intensity surpasses a critical value (going from regiondtiegion S2 in Figur&.8A), and a
corresponding increase of the intra-burst ISI peak apiogahe refractory period (8 ms).
We classify this as a further signature of a transition betwa bursting mode and an irregular
firing regime.

Next we calculate the information about the stimuli cardgdthe firing rates of the TC
and RE neurons in the two different regimes. To that end wehesenutual information (see
SectionA.4 in Appendix A), which quantifies the reduction of the uncimtiain predicting
the applied stimulus given a single observation of the &igd response. Here we estimate the
mutual information (FR,S) between the set of stimuBigiven by the external Poisson inputs
with different rates and the resporfSR, firing rate. Given that we were interested in how the
specific neurons encode and carry information, in this caséave selected as response the
average firing rat&R over the whole stimulation. We have considered as stiméferint
inputs with increasing amplitude (from 0 to 150 spikes/spimging on TC neurons. This
measure allows us to evaluate how well the firing raté both type of neurons (namely TCs
and REs) encodes the stimukus

Figure3.8C compare$(Sl;FR) andl (2;FR) between the firing rates of TC (red) and RE
(blue) neurons and the set of stim@li andS2, whereSl ranges between 0 and 50 spikes/s,
while 2 varies from 60 to 150 spikes/s, corresponding to the twanyoal regimes of Fig-
ure 3.8A. The figure clearly shows that in the bursting mode both thealR& TC neurons
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Fig. 3.8Bursting and tonic modes displayed by a TC-RE network with RE-REclustering

as a function of external input on TC neurons. (A) Firing rate of TC (red) and RE (blue)
neurons as a function of external driving input impinging @ neurons. (B,C) ISI distri-
bution as a function of external driving input on TC neuroh&& (B) and TC (C) neurons.
(D) Mutual Information between the set of increasing exaéstimulus (0-150 spikes/s) and
the neural response given by the firing rate of TC and RE neuifferent external sensory
inputs are considered for the two regimes, following panedA0 spikes/s for the bursting
mode and 60-150 spikes/s for the tonic mode. The white dalsiedh the bar plots refers
to significance thresholdp(< 0.05, bootstrap test). The measures are averaged over 100 tri-
als for each external stimulus. (E,F) Adaptation variablef RE (E) and TC (F) neurons
(color coded) as a function of the external input on TC nesirameraged across 100 trials for
each external stimulus. (G) Number of positivevalues (depolarizing events) and negative
w values (rebound events) of TC neurons. The synaptic stisrage respectivel\gre .tc =
300 uS,grcre = 200 uS andgre_,re = 300 uS.
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carry a lower information (@3 bit, p < 0.05: bootstrap test), in comparison with the infor-
mation encoded by TC neurons during the tonic modd.(7 bit, p < 0.05: bootstrap test).
RE neurons during the tonic mode do not encode significantrivdtion, in fact their firing
rate decreases with respect to the bursting regime andladteremains constant for all inputs.
These results show that the information about the stimidasthe thalamus carries (and is
then potentially able to convey to the cortex) is much highahe tonic mode, since in that
regime spontaneous activity is enhanced and this congstiotkeeping an almost linear rela-
tion between input and output and thus to minimizing rectfan of the response&sherman
200D).

In order to further interpret this transition, we examine trature of each TC and RE
spike by checking the sign of the adaptation variabkt the spiking time of each neuron. A
positive value ofv indicates that neuron fires via a depolarizing input (sear€ig.1), while if
negative we classify it is as a rebound spike. FigliBE shows that RE neurons spike mostly
due to a rebound in response to hyperpolarizing inputs (egraonly from internal RE-RE
clustered connections) for all the range of sensory inpet G neurons. TC neurons, in
turn, also fire mainly in response to incoming hyperpolagzcurrents (in this case coming
from RE neurons) during the burst mode (Fig8r8F), and after the transition from bursting
to tonic mode a fraction of the spikes occur in response toldeiging external inputs. Thus
the transition occurring at arour®k= 50 spikes/s, shown in Figu8A, underlies a shift in
the spiking mechanism profile. This is confirmed in Fig8r&G, which shows a quantitative
estimation of the effective number of excitatory-drivenksg (blue) and inhibitory-rebound
spikes (red) as the external input increases.

So far we have considered a thalamic network receiving asreak sensory input imping-
ing on TC neurons. We complete the picture including alsoracmthalamic input Destexhe
2000 projecting to RE neurons. FiguB9A shows that the transition dynamics is not altered
by the addition of a constant input from the cortex, whichuhessonly on an increase of the
firing rate for both kind of neurons. The appearance and ttrease of depolarization spikes
occur for similar levels of inputs (Figu@9B). The amount of information carried by RE and
TC neurons in the two different regimes is relatively unate(Figure3.9C,D), supporting the
hypothesis that the information carried by projecting wasrduring the tonic mode is higher
than in the bursting mode. Interestingly, by increasingaimplitude of the cortical input on
RE (from 1000 to 2000 spikes/s), the information encoded by@@ons is increased for the
tonic mode (from @6 to 0.66 bits,p < 0.05, bootstrap test) (Figu@ D).

This result highlights the role of the intrinsic rebound dtirg properties of TC neurons,
which are essential in the generation of the spindle rhythiney could also reinforce the role
of corticothalamic feedback in information processing,ifstance by recruiting TC neurons
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through inhibition and thus modulating TC firing rategstexhe2000. To support the im-
portance of rebound bursting properties of TC neurons, weiplFigure3.10the firing rate
of TC and RE neurons, the ISI distribution and thelistribution at a fixed rate of external
sensory input on TC neurons (150 spikes/s), for differargl&eof cortical input.
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Fig. 3.10Influence of corticothalamic input on a full TC-RE network. (A) Firing rate, (B)
ISI distribution, and (C) distribution of the adaptation iedte w of RE and TC neurons as
a function of corticothalamic input. The external sensaomuit it set to 150 spikes/s. The

synaptic strengths are respectivebe .tc = 300 uS, grc_.re = 200 uS andgre_.re =
300 uS. Bars colors in panels (A) and (B) coincide with the lines olo the other panels.

3.4 Conclusion

In this Chapter we have presented an adaptive exponentgrate-and-fire (aEIF) network
model that is able to reproduce the spindle oscillationsthadransition between a stimulus-
insensitive and a stimulus-sensitive state of the thalantmsagreement with experimental
observations based on direct optogenetic stimulatiaigssa et 812014, spindle oscillations
are generated in our model by RE activation leading to TC bastrebound from inhibition.
Our results suggest that (i) a critical value of RE-RE clustefavors the presence of large-
scale spindle oscillations, (ii) for external stimuli b&l@ given threshold the network is in
a purely rebound-bursting state insensitive to extermalt, while (iii) when this threshold
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is crossed there is a non-zero contribution of the spikedadepolarization, and this makes
the TC neurons (and not the RE neurons) of the network semsdithe stimulus intensity
coherently with experimental observation. These conchsshold in the presence of cortical
inputs impinging on the reticular neurons.

A recent computational papeidllis et al., 2015 investigated the role of TC-RE interac-
tions from a perspective complementary to the one discuedbdd Chapter, using a Hodgkin-
Huxley model much more detailed than the aEIF adopted hatklimiting the investigation
only to minimal loops such as those we described in Se@®i8r2 and 3.3.3 (Figure 3.2).
Notwithstanding the higher realism of their model, the fimtal properties at the single-
neuron level are similar to those described here (compard-igure 3.1 with Figure 1 of
their paper). MoreoveiVillis et al. (2015 highlighted the fact that open-loops between TC
and RE neurons might play a functional role in the thalamud,iadeed in our full network
(Figure 3.7 and following) both open and closed TC-RE loops are taken iotownt. In a
recent paperlewis et al, 20150, Brown and collaborators stimulated optogenetically RE
neurons, simultaneously recording from them. They fouiad tine majority of those neurons
(10/17) decreased significantly their firing rate, and only a mitg@f them (4/17) displayed
a significant increase. At the same time they found that theityoof the TC neurons was in-
hibited, with functional consequences on the cortex. Therjgmetation of the authors was that
a small increase in RE activity was sufficient to inhibit TChatt. Our model offers a simpler
explanation: since most TC neurons fire due to hyperpolésizaebound, a decrease in RE
activity can be associated to a decrease in TC firing (seed89). Indeed, stimulating RE
neurons has been shown to alter the temporal structure oetifn firing, without changing
their average firing rateHalassa et al2014).

Our model reproduces qualitative features of experimestiakrvations, and provides a
mechanism to explain the factors that contribute to thengatle of the thalamus in the pro-
cessing of sensory information toward the cortex. A futugasel will include the cortex (see
Perspectives sectiohb), thus it will be possible to explore the role of thalamoaattcircuits
in the switch between the two dynamical modes that accoundifferent behavioral states
and transmission of information dynamics. These thalamimed circuits are made of bidi-
rectional excitatory projections between thalamus anteg@nd inhibitory interactions given
by collaterals of ascending and descending fibers to GABAe&rgurons (RE neurons). The
latter inhibitory circuits are essential to explain lagpale synchronization of thalamocortical
oscillations. To this regard, in the next Chapter, we wildstthow two neuronal populations,
which are bidirectionally coupled through long-range &doiry projections and oscillate in
the gamma range due to internal inhibitory circuits, engadarge scale oscillatory synchro-
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nization, thus providing a system by which information carnttansmitted efficiently even at
long distances.



CHAPTER 4

PHASE-COHERENCE TRANSITIONS AND COMMUNICATION IN
THE GAMMA BAND BETWEEN DELAY-COUPLED NEURONAL POP
ULATIONS

Spatiotemporal coordination of functional neural asséslitould subserve information pro-
cessing. In the previous Chapter we have described the msaieresponsible for the gen-
eration of thalamic spindle oscillations during slow-waleep, revealing that the temporal
coordination between TC and RE neurons is essential, and hanges in dynamical orga-
nization patterns in the thalamus underlie a switch fronesi® the awake state, resulting
in different information-processing capabilities. Thisapker addresses the general question
of how communication is established between physicallassp brain areas, using neuronal
oscillations as information carriers. In particular, weuexne whether and how effective com-
munication between cortical areas arises even when thetéike® by neuronal signals to go
from one area to another is comparable, or larger than, fhealytime scales of the under-
lying neuronal networks. To do so, we use a biophysicalljyisga computational model of
two synaptically coupled neuronal populations working iocdlective gamma regime. The
Chapter is structured as follows. In Sectibidi we focus on the importance of the spatiotem-
poral coordination of the activities of coupled neurongbplations (modeled as described in
Sectiord.2) as introduced in Sectioh.3 and in particular we describe the dynamics of popu-
lations of HH neurons oscillating in the gamma range invdlirethis coupling (Sectiod.3).
Then we report how these two populations can synchronizeingtantaneous coupling (Sec-
tion 4.4) and in presence of large axonal delays (Sectid) by means of phase coherence
measures. In Sectiof6 we use information theory to quantify the information exofped
between the two networks for different transmission dekayd external inputs. Finally in
Section4.7 we summarize the main achievements of this study. Theségdmye been re-
ported inBarardi et al(20140.
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4.1 Oscillatory-based coordination of coupled neuronal
populations

In Sectionl1.3 we emphasized that brain function emerges from the colleatynamics of
coupled neurons, the structural connectivity among whigdbées correlations between their
firing activities. As a result of these correlations, effezheuronal networks function collec-
tively on a mesoscopic scale, comprising thousands of edupturons that operate together,
giving rise to emergent behavior. In awake animals, thigectol’e dynamics takes the form
of recurrent series of high and low network activity, copasding with repetitive epochs of
increased excitation over inhibition followed by boostsrdfibition. This leads to the appear-
ance of rhythmicity at certain frequency bands. As intratlm Sectionl.3.3 oscillations

in the gamma-band (30 HA0 Hz) are observed in several cortical areas in relatioh wit
cognitive tasksBuzséki and Wang2012).

Synchronized oscillations can increase the functionaheotivity between neural assem-
blies by coherently coordinating their firing dynamics. §hiypothesis, known as commu-
nication through coherence (CTC), was propodede§ 2005 as a mechanism by which
gamma-band synchronization could regulate routing ofrmfdion between brain areas (see
Sectionl.3.4. Since neuronal oscillations are associated with the myecgof the excitatory-
inhibitory balance, they represent periodic modulatiohthe excitability of neurons, which
are more likely to spike within specific time windows (i.e. @vhinhibition is low). If two
neuronal populations oscillate with a constant phaseréifiee, then an effective transmission
of information between the two groups of neurons is achiguedided the spikes sent by
a population reach systematically the other populatiorhatpeaks of excitability. In that
way, modulation of the relative phases of the emerging rhgtimight dynamically generate
functional cell assemblies-(ies et al.2002a 2008 Womelsdorf et al.2006.

A key requirement of the CTC mechanism is the existence of ataohphase difference
between the two neuronal networks that reliably allowsrtbieiding, favoring communication.
This coordination can be expected to arise from the synaptipling between the neurons of
the two populations. But this coupling is not instantanesus;e propagation times between
different cortical regions can reach up to several tens dliseconds Ringo et al, 1994).
Previous CTC studies have mainly concentrated on descrthmglependence of the coher-
ence on the phase lag between the neuronal populatiBnsh{mann and De¢c@201Q Fries
2005 Womelsdorf et al.2006, without examining systematically the relationship betw
the actual coupling delay and the phase lag at which the eaberis maximal. In fact, cou-
pled nonlinear oscillators are known to adjust their phageEm frequency locking, leading
under certain conditions to either in-phase (zero phageolagnti-phase synchronizatiomn<
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phase lag) Rikovsky et al.2003. Anti-phase patterns in cortical networks, for instariaeje
been widely studied Lj and Zhoy 2011). Zero-lag synchronization, in turn, has been experi-
mentally observed between gamma oscillations emergimg $eparated brain areasgstelo-
Branco et al.1998 Engel et al. 1991, Frien et al, 1994 Gross et al.2004 Roelfsema et a|.
1997). The conditions leading to zero-lag synchronization iaroeal oscillations are however
somewhat stringent, requiring non-trivial spiking dynasi(Traub et al. 1996 or complex
network architecturesB(bbig et al, 2002 Vicente et al.2008. In particular, zero-lag syn-
chronization between two cortical areas has been shown possble even with long axonal
delays Vicente et al. 2008 Viriyopase et al.2012, provided the two areas interact through
a third oscillator Fischer et al.2006, which could correspond to the thalam@o(lo et al,
201Q Theyel et al.2010 (see Sectiod.3.2.

But in contrast with most nonlinear oscillators, neurongdydations are highly complex,
since they contain a very large number of degrees of freedomegsponding to the individ-
ual neurons), their oscillations are a pure collective pheenon (the individual neurons in
the population do not oscillate), and they operate in a bftegliency range. Additionally,
neuronal populations are connected by a large number ofsacamrd inhomogeneities in the
properties of those axons affect differentially the pragiamn speed of action potentials and
lead to a wide spectrum of axonal delays rather than a unitistnibution @Aboitiz et al,
1992. It thus becomes necessary to study systematically (ir¢melitions under which two
such complex oscillators synchronize (i.e. lock their frexacies), (i) what is the resulting
phase difference between them, how does this phase difieretate with the coupling delay
(and with the frequency band being considered), and (iny Isothe efficiency of the commu-
nication between the two cortical areas affected by theygelaoupling.

As mentioned above, within the CTC scenario effective conination arises when spikes
from the emitting neuronal population reach the receivgrutettion during the windows of
maximum excitability. For this to happen two conditions &édw be met: (1) the two cou-
pled oscillators should be frequency locked, and (2) thestrassion delay, the oscillation
frequency, and the phase difference between the two dsmiltashould match. In particular,
if the networks and the inter-connectivity are symmetrie slecond condition should hold in
the two directions of spike propagation. The time delay @ther, the distribution of time
delays) is fixed as given by the anatomical connectivity. réfuge, it is the frequency of the
oscillation spectrum what determines the particular phage¢hat meets the matching condi-
tion. We investigate whether this condition only occursgacific rhythms, or if it holds at
all frequencies. To do so, we implement a conductance-baswadrk model based on the
single-neuron HH model described in Sectibt.3(Barardi et al.2014Hh.
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4.2 Network model of Hodgkin-Huxley conductance-based
neurons

We consider two populations of 2000 neurons, 80% of whicleaogatory while the remain-
ing 20% are inhibitory $oriano et a.2008. Each neuron connects on average with 200 other
cells through only chemical synapses. The structural odtivily is built according with the
Watts-Strogatz small-world algorithnWatts and StrogaiZ1998. The rewiring probability
rp is set to 05, so that the connectivity shows a certain degree of clugtewhich favors
the connections between neighboring neurons (see thetaefioif clustering coefficient in
AppendixA.5). Coupling between the two networks is mediated by 60% of #@aons of
one population making random long-range excitatory ptaas with 10% of the neurons
belonging to the other population. Here we assume that theestivity within a network is
2-fold the connectivity across networks, neglecting hegeneity across neurons. Moreover,
in order to obtain a certain amount of phase coherence betiiedwo networks, we consider
that the majority of excitatory neurons project onto theeothetwork. A stronger (weaker)
coupling will lead to unrealistically higher (lower) phasgherence value$\(omelsdorf et al.
2007). We introduce a synaptic transmission delay within andragrtbe networks, assuming
that internal delays (taken from a gamma distribution wrexssde and shape parameters are
fixed to 1) are smaller than the inter-area delays. The axaeials, termedaxo, stand for the
time between the generation of a spike in a presynaptic ndusa one network and the elic-
itation of a postsynaptic potential in the other networke3édelays are taken from a gamma
distribution whose mean and variance increase with inargagy,. We choose the scale pa-
rameter of the distribution equal to unity, so that the shagmameter equalgyo. In this way
the coefficient of variation (CV) decreases for increasingmas ¥ /mean. In our analysis
we systematically varyayxo between 0 ms and 30 ms. Both inhibitory and excitatory neurons
were modeled as HH neurons. The dynamics of the membrarssyeadt the single neuron are
given by EquationZ.9) introduced in Chapte2.1.3 The equation of the membrane potential
of i-th neuron embedded in a neuronal network has the foligiorm:

dM

Cat T —gnaPh(Vi(t) — Ena) — Gkn*(Vi(t) — Ex) + —aL (Vi(t) — EL) + (1),  (4.1)

whereC = 0.25 nF (050 nF) is the membrane capacitance for inhibitory (exaitgtoeu-
rons, the constantgy, = 12.5 uS, gk = 4.74 uS, andg,. = 0.025 uS are the maximal con-
ductances of the sodium, potassium, and leakage chanasigatively, andn, = 40 mV,
Ex = —80 mV, andE. = —65 mV stand for the corresponding reversal potentials. Thae
tions describing the voltage-gated ion channels have b&eoduced in Sectio2.1.3 In
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Equation 4.1), | 1ot is the total synaptic input current and is given by the sumildha synap-
tic inputs entering the i-th neuron:

li tot(t) = Z li AmPAredt) + Z li.caBa(t) + Lhvpaexi®), (4.2)

Ni AMPArec Ni caBa

the value ofN; amparec (respectivelyN; cags) being the set of excitatory (respectively in-
hibitory) neurons projecting into the i-th neuron, dngviparedt), li.caBa(t), li AmMpaex(t) the
different synaptic inputs entering the i-th neuron frontcugent AMPA, GABA, and external
AMPA synapses respectively. These synaptic input curigptdepend also on the membrane
potential and are defined as (see SecAd@)x

lsyn(t) = GsyrSsyn(t) (V () — Esyn), (4.3)

wheregsyn andVsyn are the conductance and the reversal potential of the sgnegspectively.
For positive values oEsyn the synapse is depolarizing or excitatoBgy, = 0 mV for gluta-
mate receptors), otherwise it is hyperpolarizing or infoityi (Esyn= —70 mV for GABA re-
ceptors). The reference values of reversal potentials amajsic conductances are displayed
in Table4.2 The values of the parametaggin Equation 4.3) are tuned in order to obtain a
balance between excitation and inhibition and to maintaepostsynaptic potential (PSP) am-
plitudes within physiological ranges. All parameters eslean be found as well @utfreund

et al.(1995.

The functionssyn(t) describes the time course of the synaptic currents; it dipbath on
the synapse type and on the kind of neuron receiving the.iffugry time a presynaptic spike
occurred at time*, ssyn(t) of the postsynaptic neuron is incremented by an amount itbestcr
by a delayed difference of exponentiaBrgnel and Wang?2003 (see Sectior2.2):

Tm t— Taxo—t* t — Taxo—t*
o) 1 [ T} Lt
yrlt) Tdecay— Trise P Tdecay P Trise (4-4)

whereTgecayandTyise are the decay and rise synaptic time, respectively,rapgds the latency,
drawn from a Gamma distribution and defined above. Theiregalre shown in Tabke. 1

Synaptic time constants ( ms) Trise Tdecay
AMPA 05ms 2ms
GABA 2ms 5ms

Table 4.1 Synaptic time constants.

In the Equation 4.2), Iampaext represents an heterogeneous Poisson train of excitatory
presynaptic potentials with a mean event rate that varidewimg an Ornstein-Uhlenbeck
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Synaptic conductancegyr( nS)

GABA on inhibitory 325nS

GABA on excitatory 360 nS
AMPAecurrent ON inhibitory 42 nS
AMPAecurrent ON €Xxcitatory 2 nS
AMPAgyterna 0N inhibitory 42 nS
AMPAgyternal ON €Xcitatory % nS

Synaptic reversal potenti&sy mV)

EcaBa —70 mV

Eampa 0mv

Table 4.2 Synaptic conductances and synaptic reversatiadte

process (defined as well in Secti@?). This incoming external current mimics the direct
input from any other area external to the network considéezg. The instantaneous rate,
A (t), of the external excitatory train of spikes is generate@sding to an Ornstein-Uhlenbeck

process, as consideredMeazzoni et al(2008:

% =—A(t)+ 0('[)\/?7 (t) (4.5)

whereo (t) is the standard deviation of the noisy process and is sebtefkes/s1 is set to

16 ms, leading to a power spectrum for théime series that is flat up to a cut-off frequency
f= % = 9.9 Hz. n(t) is a Gaussian white noise. The model has been integrated usin
the Heun algorithmToral and Colet2014), with a time step of M5 ms. All simulations
represent 2 seconds of activity. The connectivity, initiahditions and noise realization were
varied from trial to trial. Further details can be foundBarardi et al(2014H.

4.3 Dynamics of populations of HH neurons

With the model described in the previous Section we reptesathematically two recipro-
cally connected identical neuronal populations, and shaly the heterogeneous axonal de-
lays between the populations affect their synchronizat\e characterize the collective dy-
namics of these populations by means of averaging measuwbsas the local field potential
(LFP) and the multi-unit activity (MUA) (see Appendi.1). In this Section we focus on the
dynamical properties of only one neuronal population.

We consider an isolated population of 2000 neurons, of wBia¥ are excitatory and
20% are inhibitory. Each neuron forms on average 200 randmmaextions within the net-
work, and all pairs of coupled neurons exhibit a certain tueday, taken from a gamma
distribution whose scale and shape parameters are bothtequaty. All neurons receive an
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external Poisson-distributed spike train whose instadas firing rate follows an Ornstein-
Uhlenbeck process with a mean value set to 7300 spikes/#akxg and inhibitory synaptic
currents are balanced by compensating the higher numbexci&®ry neurons (80% of the
whole network) with fast spiking by the inhibitory neuromsdawith strong inhibitory synaptic
conductances.

As a consequence, the neurons remain excitable but spenofrtbgir time with a mem-
brane voltage that fluctuates under the firing thresholdasiooally crossing itNlarkram
et al, 2004). Despite the fact that the neurons fire sparsely and ireglyulsee Figurel.1A),

a rhythmicity emerges when considering the dynamics of iplalaction potentials elicited
by thousands of neuron8iunel and Wang2003. Therefore this network of HH neurons
exhibits well-known features of cortical dynamics, namislg coexistence of irregular firing
at the single-neuron level with collective rhythmicity &etpopulation level, arising from
the synaptic recurrent connections between the excitatoayinhibitory neuronsBrunel and
Wang 2003. These oscillations represent the transient synchrdrazévity of neuronal as-
semblies, and can be revealed by population measures suble &&P (Figure4.1B) and
the MUA (Figure4.1C). Lower frequency bands contain a strong component arfsorg
the noisy Poissonian distribution of interspike interv@disl), which affect the synaptic ac-
tivation and do not reflect the intrinsic dynamics of the ratwv On the contrary, higher
frequency bands of small amplitude reflect the fast dynamidbe action potentials, also
affecting the synapse activation time course. The colleabscillatory dynamics exhibits a
prominent gamma rhythm (Figu#e 1D), whose period is mainly determined by the decay
time constant of inhibitionBrunel and Wang2003 Geisler et al.2005 Sancristébal et al.
2013. The gamma rhythm emerges from the periodic changes ofdlated synaptic cur-
rent, which leads to periodic modulation of the distancéteghold.

Another way of understanding the emergent gamma oscifigti® by looking at the cou-
pling between the MUA and the LFP. Since the LFP mainly castuhe synaptic currents
impinging on the pyramidal neurons (see Appendlix it is a measure of the excitability of
the network. Hence, at those intervals in which inhibitisdaw (i.e. the inhibitory synap-
tic current fades away), the probability of firing is high. ©to the recurrent connections
between the excitatory and inhibitory neurons, both thigaition and termination of the pop-
ulation bursts occur with a certain periodicity. Here thesitdatory pattern is around 45 Hz
due to the inhibitory decay time constan@alarreta and Hestrjr2002. The LFP and MUA
are mutually locked to this frequency (Figute?A), and the spikes occur with higher proba-
bility close to the troughs of the LFP (i.e. the minimum ofilnition, Figure4.2B) (Barardi
et al, 2014b.
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Fig. 4.1 Collective oscillations of a population of 2000 neurons(A) Raster plot of 2000

neurons (in red the excitatory and in black the inhibitorynoas) for a 1500-ms interval. (B)
LFP time trace in a 1500-ms interval for an external mean e&#300 spikes/s. (C) MUA

signal calculated counting the number of spikes of the ngaopulation per unit time. (D)

LFP power spectrum calculated using the Welch method agdrager 200 trials. The gray
horizontal bar delimits the gamma peak band (36-B2 Hz). FromBarardi et al(20141.

4.4 In-phase synchronization of collective oscillations under
instantaneous coupling

We next consider two bidirectionally coupled neuronal reets of the type described above.
Connections between the two areas are excitatory: 60% okth&try neurons of each net-
work project randomly to 10% of the neurons belonging to ttieeopool. Although these
parameter values cannot be generalized to any two sepagétedoeas, for which the specific
connectivity might determine their interaction, it is knowhat the probability of connection
decays with distancdBpucsein et aJ.2011; Kaiser et al.2009 van Pelt and van Ooye8013.
Here we assume that the connectivity within a network isl@-fbe connectivity across net-
works, neglecting heterogeneity across neurons. Morgmverder to obtain a certain amount
of phase coherence between the two networks, we considehéhaajority of excitatory neu-
rons project onto the other network. A stronger (weakerptiog will lead to unrealistically
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Fig. 4.2Phase locking between LFP and MUA of a network.(A) LFP-MUA phase coher-
ence for a single population. (B) Angle histogram of the pldifference between the LFP
and MUA. The measures are averaged over 200 trials. Barardi et al(20148.

higher (lower) phase coherence valud®(elsdorf et al.2007). We introduce time delays in
the coupling between networks, assuming that the intexlaledays are larger than the intra-
areal delays due to long-range connections. We also carsidethe inter-areal delays are
distributed heterogeneously across the systsinoifiz et al, 1992, following a gamma distri-
bution whose mean and variance increase systematicaltytihgt mean delayicente et al.
2008. This accounts for the variability of transmission del#yough axons with heteroge-
neous properties (see Sectwfor the definition of the gamma distribution parameters)e Th
mean inter-areal delay shown in the figures, hereafter myg, accounts for the latency be-
tween the generation of a spike in a presynaptic neuron froenn@twork and the elicitation
of a postsynaptic potential in the other network.

When coupled, the LFP power spectra of the two networks shewsdaime gamma profile
as in the absence of coupling (Figute), while the corresponding time series exhibit a sub-
stantial degree of correlation (FigudedA inset). We next ask whether the broad spectrum
of these neuronal oscillations allows for partial phasescehce to arise in specific frequency
regions. Our phase coherence measure, described in thendigpe 3, quantifies between
0 and 1 the reliability of the phase differeng between pairs of oscillations, at a given
frequency. Figure.4B shows the phase coherence between the LFPs of the two fiopsla
for instantaneous coupling4xo = 0 ms). According to the regions of statistical significance
observed experimentally\omelsdorf et al.2007), we considered phase coherence values
above 008, which mainly occurs within the gamma band around the pé#ke LFP power
spectrum (horizontal gray bar in Figu4edB). This threshold corresponds to around four times
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the average phase coherence of the uncoupled case (seeddpfehand black dashed line
in Figure4.3B).
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Fig. 4.3Phase coherence of the uncoupled neuronal population§A) Power spectral den-
sity of the two isolated neuronal populations of HH neurof®) Phase coherence between
LFPs of the two neuronal populations. The measures aregegi@er 200 trials. In order to
consider the frequency bias in the phase coherence we ceththis measure in the absence
of coupling. Due to the finite number of trials considered phase coherence is not per-
fectly zero. Panel B shows random fluctuations with no spebifis for any given frequency.
The threshold of phase coherence chosen (nam@8) @orresponds to around four times the
average phase coherence of the uncoupled case.

We also compute the time lagyg between the two signals (i.e. the time shift separat-
ing two equal phases of the coupled LFPs arising from eachilptpn) for all frequencies
(Figure4.4C), still in the caseraxo = 0 ms. This time lag is only meaningful for significant
phase coherence values that lead to a consiAigmtcross trials (red crosses in Figur&B).
The figure shows that for frequencies at which the phase eaberis significant, the LFP
gamma rhythms of the two populations oscillate in phagsg & 0), i.e. the two LFPs are
synchronized at zero lag. The error bars in FigdB,C represent the standard deviation
across trials of phase coherence ang respectively, and are only shown for the region of
significant phase coherence, since outside that regiont@sepdistribution is very broad due
to the variability across trials. Even within the signifitaegion the standard deviation nfq
can be seen to decrease with increasing values of phasesoccbewhich confirms the inverse
relation between phase coherence and the broadness ofake gistributionBarardi et al.
2014h.
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Fig. 4.4 Collective oscillations of two coupled bidirectionally neiral populations. The
inter-areal axonal delassy, between the two neuronal pools is zero. (A) LFP time tracbef t
two populations in a 1000-ms interval, for an external mesda of 7300 spikes/s. The inset
shows the averaged time correlation of 200 LFP pairs. (B) @balserence between the LFPs
of the two networks for varying frequency. The measure isayed over 200 trials. The black
dashed line represents the threshold (0.08) above whicpltase coherence is considered
significant (in red). (C) Time shift between the LFP oscitdat of the networks for varying
frequency. Red crosses show the time shifts corresponditigetérequencies at which the
phase coherence is above threshold. The time shift is edérliBsT|,g = A@/21fmax Where
A@ is the phase difference at the frequenfgyax of maximum phase coherence. The gray
bar delimits the gamma peak band (30+562 Hz). The measure is averaged over 200 trials.
FromBarardi et al(2014H.

4.5 Phase-coherence transitions for increasing coupling de-
lay

The fact that the two populations synchronize at zero lagnvthe coupling delay is zero is
to be expected, and we now ask what happens in the presenteeoti¢lays. Figurel.5
shows the phase coherence spectrum between the LFP asiedlé&dr three different values
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of Taxo. While the phase coherence is again significant only arouadydmma band (Fig-
ures4.5A,C,E), the time traces look very different for small and Eelays, with mostly
in-phase dynamics for small delays (Figyr&B), whereas the populations are mostly in anti-
phase for large delays (Figuke5F). For intermediate delays, interestingly, two coherence
peaks appear (Figu#esC), and the corresponding time series exhibit both in-phadeaati-
phase episodes (Figu#esD). These results indicate that in-phase dynamics seemer$tsp

for non-zero coupling delays, eventually transitioningatoanti-phase regime with smaller,
although still significant, phase coherence. Both types ofadyics seem to coexist for in-
termediate delays. In order to verify these conclusionsextend the analysis to a range of
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Fig. 4.5Phase coherence of two coupled bidirectionally neural pogations for three dif-
ferent values of the inter-areal axonal delaysraxo. Phase coherence spectrum and corre-
sponding representative time series fg, = 3 ms (A,B), 9 ms (C,D), and 17 ms (E,F). The
inter-areal delays follow a gamma distribution with a meguad to corresponding inter-areal
axonal delayraxo. The gray bars on the x-axes of plots A, C, and E delimit the garpeak
band (30 Hz52 Hz). The phase coherence measure is averaged over 280Rr@amBarardi

et al.(2014b.
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axonal delays, from 0 ms to 30 ms, calculating the phasefshifthe frequencies correspond-
ing to both the peak of the power and the phase coherencaapecmedfax. Figure4.6A
shows the value of the frequency at which the power spectsumaximumf, as a function

of the coupling delayaxo. Note that varyingraxo does not change the frequency peak of the
LFP power spectrum, which remains around 45 Hz for all cogptielays. We add a gray
bar delimiting the maximum power spectrum range within taemga band corresponding to
the extent of this local peak, highlighting the fact that itffd> gamma rhythm expands over a
range of frequencies between approximately-E2 Hz.

On the other handray, Clearly affects the frequencimax at which phase coherence is
maximal, as shown by Figu#6B. In particular, fmax €xhibits a discontinuous jump around
a coupling delay~ 9 ms, where two peaks of phase coherence coexist (consusitdnthe
result shown in Figurd.5C). The phase coherence values themselves are shown in odkr ¢
in Figure4.6C for different frequencies (vertical axis) and for varyingo (horizontal axis).
We superimpose in that plot the line shown in panel A, whichkaighe maximum of the LFP
power spectrum (black dashed line) within the gamma raRgegs well as the whole extent
of the peak (vertical gray bar). The local peaks of phase remite fax (black lines) corre-
sponding to panel B are also superimposed to FiguB€. For 140 = 0 ms (as in Figurd.4)
the peak of phase coherence almost coincides with the pgadwadr spectrum. For increas-
iNg Taxo, below 9 ms, only the coherence peak at the lower frequensigisficant, whereas
between 10 ms and 22 ms only the coherence peak at the fasjaefrcy is above threshold.
The transition between these two regimes involves a canastof the local coherence peaks.
We also observe that in both branches the frequency at winakegpcoherence is maximum
fmax decreases with the axonal delay, becoming clearly smdibar the gamma frequency
peakF, (dashed black line in Figuré.6C). Making Taxo greater than 22 ms, which approxi-
mately matches the period of the power spectrum pggald/F, ~ 22 ms), a new branch of
phase coherence appears, thus leading again to coexistighegwo regimes. This emerging
pattern is shown in Figuré.6C for large inter-areal axonal delays and it is not markedign F
ure4.6B because the phase coherence is under the threshold. Hetgg, exceedsly, the
scenario of relative phases is repeated but now with cydppsig.

According to Figure4.6C, maximum values of phase cohererfggy appear at different
frequencies for eaclyy. Significant values of phase coherence at a certain fregueant
occur provided that there is a certain amount of spikes b&mgltaneously and reliably sent
between the two networks. Since, by construction, the twoorel pools are identical, the
information flow can only be symmetrically transmitted far ia-phase A@ = 0, and/or an
anti-phaselA@ = m, relationship between the two LFPs. Therefore, for aywe can obtain
the correspondindmax that satisfies BTaxofmax= 0 or . From this expression we can thus
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Fig. 4.6Phase coherence and time shift behavior in the case of bidiceonal symmetric
coupling for increasing inter-areal axonal delaysrtaxo. (A) FrequencyFy(black arrow) at
which the power spectrum is maximum and extent of the gamrak (gray bar) (results for
only one population are shown, since they are the same forduogiulations). (B) Frequencies
at which the phase coherence exhibits local maxifaax (C) Phase coherence, in color
code, as a function of frequency (y-axis) and of the inteabaxonal delayaxo (X-axis). (D)
Time shift 154 at the peak frequendy, of the power spectrum. (E) Time shifiyg at fmax

the frequencies labeled in (B). The red line corresponds/t@fkax). The labels in panels

B and E correspond to panels of Figuré. (F) Time shifttag, in color code, as a function

of frequency (y-axis) and of the inter-areal axonal deigy, (x-axis). The solid black lines

in panels C and F shovmax (as in panel B) and the dashed black line represents the power
spectrum maximum within the gamma range shown in panel Aldts &\, B, and C the total
extent of the gamma peak is displayed as a vertical gray bhgiot D, the arrows point at the
gamma period and half of i, being I/F,. The measures are averaged over 1000 trials for
eachrtay, FromBarardi et al(20140.
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expect that a larger,y, leads to a smallefyay and that the anti-phase configuration is given
by Taxo €qual to half the period correspondingfigax (not to be mistaken witf,/2, half the
gamma period and equal to 11 ms).

To verify the aforementioned remarks we next calculate itne shift 7,4 between the
two coupled LFPs a@%. Figure4.6D shows that, at the peak of the LFP power spectrum
(heref = Fy), Tjag is zero for low (0 ms< 1550 < 5 ms) and large delays (17 mS Taxo <
26 ms). On the other hand, for intermediate (6 M%ax0 < 16 ms) and large delay$#o >
27 ms)Tj5g corresponds to half the period of the gamma rhytipiZ = 1/(2F,) ~ 11 ms). As
mentioned before (see Figude?), at frequency, the MUA and the LFP in each population
are frequency locked. Therefore, for any axonal delay, tesymaptic spikes arrive within
the troughs of the postsynaptic LFP. We can interpret theaggransitions from in-phase
to anti-phase oscillations, appearing with a periodiciteg by Ty, as the way by which the
system keeps the symmetry for anye.

Since the maximum of phase cohererfggy does not coincide witlfr,, we also obtain
Tjag along the peaks of phase coherence. Figugg confirms that only two patterns arise: in-
phase and anti-phase, which can simultaneously occur irethen between 9 ms and 10 ms.
The lowest frequency branch correspondgig~ 0 ms, and thus to zero-lag synchronization.
On the other hand, the highest frequency branch corresgoras,g value that matches half
the period of the corresponding frequency, i.e. 1) (labeled by a red line in the plot), and
thus corresponds to anti-phase synchronization.

The full values of the time shift for all frequencies are shawcolor code in Figurd.6F.
The region of zero-lag synchronization disappears as thay decreases, giving way to a
region of anti-phase synchronization. Due to the oscifattynamics, forrayo greater tharfy,
frequencies close to the gamma peak are again compatilii@win-phase pattern. However,
it is important to note that phase coherence is stronglyedesad as the cycle is repeated again
(Taxo > Ty), probably due to loss of temporal self-coherence of théllasons themselves.
Thus, provided that the LFP-LFP phase coherence is signifiea effective coupling exists
at which the two populations oscillate with a constant pltaerence, which depends on the
frequency and on the axonal delay. In particular, only twestlle phase shifts are allowed,
namely zero-lagi(ag ~ 0 ms) and an anti-phasay ~ 1/(2f)) synchronization.

Figure4.6C shows that the frequency at which maximum phase coheraames) fmay,
might not correspond to the predominant gamma rhythifa, at45 Hz, although it is close
to it and within the extent of the gamma peak (gray vertica).b@hus, the phase coherence
is bounded by the region in which spikes are still phase ld¢kehe LFP (Figurel.2). The
separation betweefihax andFy is clear wherrayo varies between 0 and,J2. Phase coher-
ence is achieved at slower rhythms that still reliably cdley action potentials. Hence, the
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spikes elicited by each population systematically reaehdtmer one at its excitability win-
dows. Moreover, a lowefnaximplies larger excitability windows and allows the netwstk

be synchronized in phase. For largey,, corresponding slower frequencies lying outside the
gamma peak do not efficiently transmit spikes, due to the dedmegion in which MUA is
locked to the LFP. Therefore, at largg;, the system moves towards an anti-phase configura-
tion, where the time lag matches and compensates for thedargal axonal delay.

Note that the phase coherence patterns shown in Figyé( are affected by the inter-
areal delay variability. Ifraxo is fixed to a constant value (instead of being drawn from gamma
distribution), the region of coexistence between the iagghand anti-phase coherence patterns
increases, and for delays approaching the oscillatioro@ddii the new peak emerging &
(detectable in Figurd.6C and corresponding to in-phase dynamics in Figu6&) becomes
significant. This is shown in Figuré.7, which displays the phase coherence for constant
Taxo = 20 ms (green line), in comparison with the cagg, = 0 ms (blue line) and the one
with 7540 drawn from a gamma distribution with mean 20 ms (red lilggrardi et al.2014b).

LFP-LFP Coherence
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0.14F T
0.12F Taxo = 0ms ]
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1. 20ms
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0.08 from gamma dist
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0.02
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Fig. 4.7Phase coherence for constant inter-areal delay?hase coherence between the two
LFP oscillations in the bidirectional coupling configuoatiwhent,xo = 0 ms (blue line),
Taxo = 20 ms (green line) and,y, is taken from a gamma distribution of mean 20 ms (red
line). FromBarardi et al(2014h.
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4.6 From phase coherence to communication

4.6.1 In-phase and anti-phase coherence transitions under external st
ulation

The LFP oscillations studied so far are complex rhythmsdbatey a wide range of frequen-
cies with a predominant component in the gamma range. Wedwarebefore that the axonal
delay 1450 determines the relative dynamics of the coupled neuronalspavhich fall in ei-
ther an in-phase or an anti-phase pattern. The phase rshijposet by the two LFP signals
is proposed to regulate the effectiveness of communicgioes 2005. In other words, a
stable phase differena®p determines the response of a neuronal population to inparts p
turbing directly another area. Therefore, depending orpttese differencAg between two
coherent LFPs, the response of the unperturbed populatibreplicate to a certain extent the
response of the other population to the perturbation. We stexly how, in the two different
synchronization scenarios described above, inter-aremlad delays affect information trans-
mission during temporal windows, in which the phase diffieeeand the frequency cannot
be independent of each other. Note here the difference betpkase coherence and effec-
tive communication. Rigorously speaking, communicatioounos whenever spikes from one
population arrive to the other one, and this is guaranteedqged that there is some coupling
across networks. In contrast, effective communicatiorrsefo a more specific situation in
which information about the stimulus is being carried bydbapled populations.

We can obtain a good proxy for communication by quantifyimg tesponse of a neuronal
population (the receiver) to a perturbation that affeatiérectly its dynamics via a second pop-
ulation coupled to it (the emitter), and which receivesdisethe perturbation. The success in
communication can be observed in the transient amplificaifdhe neuronal oscillations of
the receiver $ancristébal et gl2014). The perturbation simulates different stimulus features
and consists of increases in the mean firing rate of the baakgrsynaptic activity imping-
ing on a subpopulation of the emitter. We then examine, & reift inter-areal axonal delays
Taxo,» NOW well the LFP and MUA power spectra of the receiver coriméyrmation about the
external stimulus being applied to the emitter.

Since the connectivity within and between the two neuromdlvorks exhibits a certain
degree of clustering (Appendi.5), exciting a subpopulation of adjacent excitatory neurons
from an area in the emitter population triggers a responseviell-defined subpopulation of
neighboring neurons in the receiving population. We cheoset of different input intensities,
S=83003880093009800103001080011300 spikes/s, affecting 400 long-range excitatory
neurons from the emitter population during a 2-second timmelaw. As a consequence of
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this perturbation, the amplitude of the LFP power spectnucngases with the strength of the
perturbation (Figured.8A,B with 1,40~ 9 ms), without altering the position of the gamma fre-
guency peak (Figuré.9A), consistent with the results were reportedMazzoni et al(2008.
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Fig. 4.8 Effect of external stimulation for increasing coupling delay. (A) LFP
power spectrum of the directly stimulated population forffedent external rates
(8300 880093009800 103001080011300 spikes/s). (B) LFP power spectrum of the sec-
ond population. The mean inter-delay between the poeisisns. The measures are averaged
over 200 trials. FronBarardi et al(20140.

Perturbing one of the populations breaks the symmetry ofyiseem, since now the firing
activity of the emitter is enhanced with respect to the resrei As shown by the maps of
phase coherence plotted in FigwtelQ an increase of the external firing rate boosts phase
coherence between the two LFPs. Moreover, the two frequiesicgls where phase coherence
is significant merge into a single region at larger valueSadncentrating closer to the gamma
frequency pealf, ~ 45 Hz. The corresponding,g values are shown in Figu 11 (note
the different ranges of the axes, which now concentrate ersifnificant values of phase
coherence to better observe the transition to the out-aé@legime).

At the gamma frequency pedl the system undergoes a transition from in-phase to anti-
phase dynamics amyo increases. Smaltayo lead to time shiftstiag ~ 0 of the emitter’s
LFP relative to the receiver’s LFP (FiguellA,B) and thus, the two signals oscillate ap-
proximately in phase. However, the route to the anti-phasdiguration changes &is
strengthened. In particular high&revels trigger smoother transitions and a narrower anti-
phase regime. Figuk 9B showst,g values tracked at the gamma frequency pgak 45 Hz.
Here, largeiSvalues lead to a leader-laggard configuration in which thiten.FP precedes
the receiver LFP by a time lag that equals the axonal delay dsshed black lines). Fig-
ures4.14A,B, 4.14C,D and4.14E,F show the phase coherence and time shifttfgs= 3, 9,



4.6 From phase coherence to communication 100

>

50 B

WHFFHF TR T FFFFFFFRFFFRRFRF RN, <€ F 20
i~y Y& =T -1
I 40 £ lag y axo
> * 8300 spikes/s = A T, =1
[8) £ 15 \ X lag axo
S = 8800 < \ y
= 30 - 9300 @ N
2 9800 S g
x * 10300 % 10 *i:i'*‘:“&, §
o 20 g xrmgg N ey
o 10800 a "3 N 1
I ¢ 11300 < -,t‘ wt T
B g /m e *
g 10 ® 5 8 N 3
n 2 /.’ *l': l~

¥ \
/ oF*
O s s s s s O%tg s s N * f%*t:i *
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Inter—area axonal delay [ms] Inter—area axonal delay [ms]

Fig. 4.9 Time shift behavior at the peak of power spectrum for increasng inter-
areal axonal delays for different extra inputs. Effect of the external input per-
turbation on the coupled neuronal populations for increasstimulus strengthsS =
8300 880093009800 103001080Q11300 spikes/s. (A) Frequency of the power spectrum
peak. (B) Time shift corresponding to spectral peak frequefid®ie dashed lines show the
ideal cases for whichy,g = Taxo and its anti-phase equivalent. Frddarardi et al(20140).

and 17 ms, respectively (the same delays as FigLBe for the whole range of frequencies.
The dependence of the phase coherencggyior differentSvalues is shown in Figuré. 10A-

D, corresponding to a shift from a symmetric to an effecyivedymmetric coupling. As the
extra perturbation is applied only to one of the populatjding effective coupling approaches
an unidirectional connectivity, although the structunak$ are not changed. This can be fur-
ther explained by carrying on the same analysis in a straltyunnidirectional scenario, in
which only one population projects onto neurons from theottetwork. Figureé.13A shows
that increasing the delamyo Of the unidirectional transmission, the networks keep thasp
difference constant at approximately the same frequermsedo the power spectrum peak
frequency. This represents a leader-laggard configuratiohis similar to what happens in
Figure4.1(, where an over-excited subpopulation is driving the cmgpbetween the two
networks, still bidirectional but strongly asymmetric. eTlecrease of phase coherence with
axonal delay is due to the variability in delay times: fixingo to a constant value of 20 ms
leads to maximal phase coherence values comparable toshetao delay (Figurd.14A).
Figure4.138 shows that for increasing inter-areal axonal delays, the time shift between
the two synchronized networks (at frequencies corresmgnidi the significant phase coher-
ence of Figuret.13A) increases as long asye is smaller than half the period of LFP oscil-
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Fig. 4.10Phase coherence in the case of bidirectional asymmetric cpling for increasing
extra inputs. Phase coherence between LFPs of the two networks, in caler; es a function
of frequency (y-axis) and of the inter-areal axonal daigy (x-axis) for different stimuli: (A)
8300, (B) 9300, (C) 10300, (D) 11300 spikes/s. The measures/araged over 200 trials for
eachrtaye and stimulus. FronBarardi et al(20148.

lation (1/ fmay) and then approaches zero, thus leading again to a tranfitim in-phase to
anti-phase synchronization at frequencies close to thidsgbower spectrum pedds.

4.6.2 Information transmission between coherent delay-coupled neuronal
populations

Phase coherence can influence the transmission of infamlaétween neuronal populations.
As mentioned in the Introduction, the CTC hypothesisds 2005 suggests that phase re-
lations between coupled areas modulate the response oéi@aearea to presynaptic input
coming from an emitter area. In order to maximize this respothe axonal delagy,, the fre-
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Fig. 4.11Time shift in the case of bidirectional asymmetric couplingfor increasing extra
inputs. Effective time shift in milliseconds between LFPs of the metworks, in color code,
as a function of frequency (y-axis) and of the inter-arealat delayraxo (X-axis) for different
stimuli: (A) 8300, (B) 9300, (C) 10300, (D) 11300 spikes/s. Tinreasures are averaged over
200 trials for eachtaxo and stimulus. FronBarardi et al(2014H.

qguencyf of the oscillations and the phase differerag should verifyA@p = 2mra40f. When
this relationship holds, spikes fired in the emitting pofiolaat a specific phase of the sig-
nal (for instance at the troughs of the LFP, which corresponithe maxima of excitability)
arrive at the receiving area at the same phase (and thus sathe excitability maximum),
triggering a maximal response in the receiving area. On tmérary, if Ap does not fulfill
the relationship given above (or if it randomly varies),eetive communication will not be
achieved $ancristobal et 812014). This condition is relevant at the frequencies at which the
MUA and the LFP are phase locked (Figur®). Otherwise, the troughs of the LFP do not
correspond to intervals of maximum firing within the sameydapon, and the peaks of MUA
do not occur reliably with the same periodicity as the LFP.
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Fig. 4.12Effect of external stimulation for increasing coupling delay. Phase coherence be-
tween the two LFPs for different external rates and effedime delay between the two pairs
of LFP oscillations at frequencies where the phase cohermnsignificant for different ex-
ternal rates (830@80Q 9300 9800 10300Q1080Q11300 spikes/s) with the mean inter-delay
between the pools: 3 ms (A,B),~ 9 ms (C,D) andx 17 ms (E,F). The measures are averaged
over 200 trials.

In order to quantify the efficiency of communication, we cartgpthe mutual informa-
tion I (R¢,S) between the set of stimuli and the respongR; as follows (defined in the Ap-
pendixA.4). The broadband LFP signal reproduces the variations irahpapulation activity
over a wide range of time scaleBuyzsaki et al.2012. Thus LFPs signals are useful to qual-
itatively characterize mechanisms of information procegsbecause it is possible through
them to verify if there are privileged time scales for inf@tmon processing. We can think that
information is spread over all frequencies, or that eactfeacy contributes separately to the
information representation. Given that we were interestdtbw the collective dynamics of
the population carries information, we quantify the neuveaponsdr s as the power of either
the LFP or the MUA at frequenciy, and we have considered as stimuli different external firing
rates impinging on one of the two populations. This measlioe/a us to evaluate how well
the powerR; of either the LFP or MUA encodes the stimulus at a certaineagy f. This
definition of information does not require any assumptiooulihe stimulus features being
encoded by the neural signaBg(itski et al, 2008 de Ruyter van Steveninck et al.997).
I(Rf,S) quantifies the reduction of the uncertainty in predicting &pplied stimulus given a
single observation of the triggered response, and is medsuunits of bits (1 bit means a re-
duction of uncertainty of a factor of two). Several expenitsehave been done with this tool to
characterize information transmission in the primary alswortex of macaques in response to
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Fig. 4.13Phase coherence and time shift in the case of unidirectionabupling. (a) Phase
coherence, in color code, as a function of frequency (y}axid of the inter-areal axonal delay
Taxo (X-axis) in the case of unidirectional coupling from the #erito the receiver. (b) Time
shift 754, in color code, as a function of frequency (y-axis) and ofititer-areal axonal delay
Taxo (X-axis) in the case of unidirectional coupling from the #arito the receiver. The mea-
sures are averaged over 1000 trials consistently with thersstric coupling. FronBarardi
et al.(2014b.

a naturalistic stimulusBelitski et al, 2008. Several other studies have been performed using
the LFP power spectrum as a measure of mutual informatiamwisly the usefulness of this
approach both experimentally and computationalhatzzoni et al. 2008. The advantages
of this approach are described in detailQuian Quiroga and Panzg2009 andInce et al.
(2010. To facilitate the sampling of response probabilities, $pace of power values at each
frequency was binned into 6 equipopulated biBslitski et al, 2008. We have used seven
different firing rates of the external Poisson-distribuigolt, for a timeT = 2 s. To compute

I (Rf,S), we run extensive simulations to properly estimate the itmmél probabilities used
in mutual information measures. The techniques adoptedderdo reduce the bias error of
the estimation of conditional probability due to the finitenmber of samples are explained in
the AppendixA.5.

Figure4.15shows that the mutual information is non-negligible onlghi the gamma
range 0 < 0.05; bootstrap test), in a narrow region around the peak optveer spectrum
Fy. This is consistent with the fact that the emitter encodeddifierent stimulus strengths in
the gamma band, i.e. other regions of the LFP power spectremai affected (Figurd.14
4.8A,C,E). Therefore, information transmission occurs witthe gamma peak. Moreover,
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Fig. 4.14 Phase coherence for constant inter-areal delay. (A) Phase coherence be-
tween the two LFP oscillations in the unidirectional coogliconfiguration whemaye =

0 ms (black line), Taxo = 20 ms (blue line) andraxo is taken from a gamma distribu-
tion of mean 20 ms (red line). (B) Mutual information betwede et of stimuliS =
8300880093009800103001080Q11300 spikes/s and the neural response given by the
LFP in the same unidirectional coupling configuration. (Ca$t coherence and (D) mu-
tual information in the bidirectional coupling configu@ti Phase coherence measures are
averaged over 1000 trials. Mutual information measuresiageaged over 5 sets of 200 trials
for each stimulus. FrorBarardi et al(2014h.

functional interactions between coupled neuronal popriatcan be maximized if their phase
difference is close to zero, i.e. for short axonal delays.

While | (R¢,S) is lower when computed for the LFP power spectrum (FiguléA) than
for the MUA power spectrum (Figuré.193B), it decreases monotonically in both cases for
increasing axonal delays. This behavior contrasts witlotfeeshown in Figurd.6C, in which
the maximum phase coherence in the absence of stimulussoatuarying frequencietyax
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Fig. 4.15 Mutual information carried by LFP and MUA power spec-
trum of the receiver. Mutual information between the set of stimuls =
8300880093009800103001080011300 spikes/s and the neural response given by
the LFP (A) and MUA (B) power spectra for increasing couplimdaystaxo. The gray arrow

in the color scale refers to significance threshqd(0.05, bootstrap test). The measures are
averaged over 200 trials for eatky, and stimulus. FronBarardi et al(2014h).

for different taxo. Moreover, fhax lies outside the significant mutual information spectrum.
However, at large enoudgbthe phase coherence pattern (FigrED) closely resembles the
mutual information dependency withy, (Figure4.15), since herefmax= Fy.

Mutual information encoded in the power spectrum is bourtdele frequencies at which
spikes are maximally frequency locked (Figdr@). Although this measure does not take into
account the phase difference between the two LFP signais dynamics clearly rely on their
relative time lag. Therefore, significant phase coheresmoeeded in order to reliably connect
in time the excitability time windows of both networks, btiis not sufficient to achieve a
maximal response of the receiver. In order to meet this skcequirement, the frequency
at which phase coherence is obtained needs to carry a ptewniag of the action potentials,
otherwise the presynaptic current will not elicit a postgytic response. Even the emitter
population can only encode the stimulus strength as vaniain the amplitude of the gamma
frequency peak, since it is & that changes in the LFP represent synchronized alterations
the MUA.

A symmetric coupling scenario allows for two emerging staielgimes, in-phaskg,g =0
and anti-phasé@ = 1, while in an asymmetric regime the most excitable netwodde
the dynamics {ag = Taxo). Therefore, in the presence of axonal delays, the lattse =
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not compatible with the in-phase/anti-phase condition.e $iimmetry breaking allows for
Tjag to follow Taxo, increasing phase coherence at the gamma rhythm and thusctkieer's
response. In summary, efficient communication needs a muffiocking between the spikes
being transmitted and the LFP, the carrier of this inforomatiThis is maximized at the gamma
frequency peake,, here~ 45 Hz, at which changes in the power spectrum due to external
stimuli become particularly evident. The coupling axonalag t4x, modulates the level of
phase coherence within all the gamma range, and stronghgrofi one of the populations
precisely favors the-45 Hz frequency channel. As observed above, the varialmfigxonal
delay affects the regions where the phase coherence maxismsignificant.

Figures4.16A,B show the LFP and MUA mutual information in the unidirectal case.
As in the case of bidirectional coupling, the flow of informeatoccurs af,, where the MUA
and LFP are frequency locked and the emitter encodes thelasrstrength. Specially, mutual
information is higher at smaltayxo, When the networks are synchronized in phase. In the
unidirectional configuration the mutual information shaavstrong dependence @go, as in
the case of phase coherence discussed above. This is duetagiae variability of axonal
delays. For a fixed time delay, the mutual information in timdirectional coupling case
does not show a substantial decrease for increasipg(Figure 4.14B). The bidirectional
configuration also exhibits a less significant decrease @tiatual information maximum
for constant increasinguxo (Figure4.14D). This is consistent with the phase coherence peak
corresponding to in-phase dynamics that persists for &stng constant delay (Figu#el4C).

Our results show that phase coherence cannot be taken asuagoreof information trans-
mission. Phase coherence can be achieved in a broad ranggwécies around the gamma
peakFy, (Figure4.10. Therefore, the spikes impinging on each network are ab®tind the
two populations in a constant phase relationship, com&ddby the symmetry of the effective
coupling. However, in order to communicate, presynaptikespmust trigger a postsynaptic
response. This requires that the presynaptic action pateare synchronized in time to facil-
itate the integration of the synaptic currents. Hence, gharmn the LFP and MUA amplitude
occur precisely aF, and mutual information does the same (Figdre5. Stimulus that are
able to modify the response of a population within a widegfiency range (i.e. not frequency
specific) could possibly alter the situation here descr{liztardi et al.20140).

4.7 Conclusion

Here we have examined how heterogeneous inter-areal syatdy influences the coupling
between the collective dynamics of two neuronal populatiofo that end, we first use pop-
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Fig. 4.16Mutual information in the case of unidirectional coupling. Mutual information
between the set of stimuf and the LFP (A) and MUA (B) power spectra for increasing
coupling delaygaxo When the coupling is unidirectional from the emitter to theaiver. Note

the different colorbar scales in the two cases. The graywamothe color scale refers to
significance thresholdp(< 0.05, bootstrap test). The measures are averaged over 230 tria
for eachtayo and stimulus. FronBarardi et al(2014h).

ulation measures such as the local field potential and th&-omit activity, by analogy with
experimental studies, to capture the collective oscillattlynamics of individual neuronal
populations. In the presence of excitatory coupling, th€ laiRd MUA activities of two iden-
tical delayed neuronal networks oscillate in the gammaeangth a significant broad peak
between 30 and 52 Hz, which does not depend on the axonal dglayThe emergence of
this gamma peak in the isolated populations is due to themewte between excitatory and
inhibitory synaptic activity, as revealed by the phase ioglbetween the LFP and MUA sig-
nals (Figured.2). In contrast with the power spectrum, phase coherenceisgy affected by
the axonal delays between the populations (Figué: We see that in-phase and anti-phase
patterns occur at various frequencies for different ramjagy, in a purely symmetrical con-
nectivity (in contrast with the unidirectional case of Figd.13, with high values of phase
coherence occurring at frequencies below the gamma fregumakF, (Figure4.6). We use
spectral analysis and information theory to quantify tHferimation exchanged between the
two networks (Figuret.19 in relation with in-phase and anti-phase coherence pettein
particular, for different transmission delays betweenti® coupled populations, we analyze
how the local field potential and multi-unit activity caletéd from one population convey
information in response to a set of external inputs appbeti¢ other population.
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Our results reveal the following features:

* the two populations exhibit consistent phase coherence fwide range of coupling
delays, undergoing a transition from in-phase (zero-lagti-phase collective oscilla-
tions as the delay increases;

* in the transition region, the in-phase and anti-phase mycgcoexist:

» when one of the populations is synaptically stimulated dfimulus is transmitted to the
second population in both in-phase and anti-phase regueggnding on the coupling
delay. This ensures an effective communication for an uallyslarge range of delays.

The phase coherence pattern shown in FiguB€ corresponds to a pure symmetrical con-
nectivity, in which both the structural and functional cbog are equal in both directions (in
contrast with the unidirectional case of Figwtd3. The reciprocity between the feedback
and feedforward pathways across cortical areas is not azalistic assumptiorSjegel et al.
2000, although the specificity of such synapses might differanredirection in order to ac-
count for the different effects of the top-down and bottompuojections. Here we show that
increasing axonal delaysyo lead to either an in-phase or anti-phase synchronizatidim avi
vanishing maximal phase coherence at frequentiggbelow F, although lying within the
gamma peak. Hence, bmasal conditionsthere is always a certain reliable phase relationship,
providedTaxo is small, relative to the period,.

The interesting point raised by the communication througthecence hypothesigiies
2005, is whether phase coherence can forecast efficient conuation between two popula-
tions in the presence of a stimulus. According to the modwable of the top-down pathway,
attention can determine which visual cues we are awar8adrfian et aJ.2012 Desimone
and Duncanl1995. In principle two situations can arise: either a stimulagcbes our atten-
tion (such as an unexpected noise or object) or we are beiegtiae to an expected stimulus
(such as waiting the traffic light to turn green). In the fiigiation the communication outline
between a primary cortical area and the associative arehs/eén by the stimulus, while in
the second case it is due to the internal cognitive state.fifihg activity in visual areas has
been shown to significantly increase even in the attentate girior to the stimulus presenta-
tion (Kastner et a.1999. Hence our results, in which we progressively increaséitimg rate
impinging on one population, could be viewed as arising ftbenalteration of the underlying
attentional state.

The experimental study dosman et al(2012 shows that a neuronal cell assembly in
V4 is phase coherent with an area in V1 that responds to atedlstimulus, while it is not
with a V1 area that is not driven by the input. Here we do not ed@dcompetitive scenario
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between two networks. Instead we focus on the mechanismaighvwwo neural pools can
modulate their communication when they are simultaneoostyilating in the gamma band.
We quantify the efficiency of communication between the twanonal networks as the ability

of a population to encode information of an input which pdasudirectly another coupled
population. Mutual information measures between eitherLthP or MUA power spectrum
and the set of applied stimu show that significant values concentrate around the gamma
frequency peak~ 45 Hz). Mutual information decreases for long inter-arealreal delays,
and is slightly lower when the neural response is charaaeérby the LFP power spectrum
than by the MUA power spectrum.

Despite the fact that the LFP reflects the afferent and lggastic currents within a given
neuronal network, and that the MUA only captures the actiotemqtials within this network,
these two signals are closely related. As mentioned abbeegamma LFP rhythm reflects
the dynamics of the excitatory balance. Increases in ihbibisilence the spiking activity
and therefore the MUA signal, although the GABAergic cutisrenhanced. Decreases in
inhibition boost the spiking activity and therefore the Mdignal, although the GABAergic
current is reduced. The peak at 45 Hz in the LFP-MUA phasereoice (Figuret.2) reveals
this phase locking between the two signals.

The arrival of each set of presynaptic spikes perturbs tis¢sgoaptic LFP and might or
might not elicit a postsynaptic suprathreshold responapt(cted by the postsynaptic MUA)
depending on the mean distance to the excitatory thresHdie gopulations. Bursts of activ-
ity occur at each pool with a periodicity that fluctuates witthe gamma band and are locked
to the troughs of the LFP at this frequency. According to theCQiypothesis, maximum
communication requires that spikes from each populatiacirghe peaks of excitability of
the target area simultaneously in both coupling directiorisus, efficient communication is
restricted to the gamma peak, as revealed by the mutuahiation (Figure4.15 and prefer-
entially at relatively smalfayo. This condition is only met for in-phase or anti-phase syaeh
nization of the gamma rhythm: small axonal delayg are able to tie two LFP troughs only at
zero-lag synchronization, while largeyo require anti-phase synchronization. In principle, as
Taxo INCreases zero-lag synchronization could again mediateramication by skipping one
cycle. However, due to loss of phase consistence, mutuainvgtion decays with increasing
Taxo-

Here we have shown that phase coherence emerges spontgréigiso the excitatory
coupling between areas without the need of further comstréitigure4.6C). Higher stimu-
lation of a particular population (the emitter), which enbes the LFP power spectrum am-
plitude of the gamma peak, increases the range of phaseerweeto larger axonal delays
(Figure4.1D). The delay determines the phase shift between the twalsigwith the emit-
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ter leading the oscillations. According Bosman et al(2012, phase coherence is revealing
communication in the sense of spike propagation, which incase extends to frequencies
within the gamma peak. Howevezfficient communicatiom the sense of the information
encoding in the postsynaptic response, is restricted torawer band (Figurd.15 that max-
imizes spike synchronization. Adopting a spectrum of dehaith increasing variability for
increasing values ofaxo, instead of an (unrealistic) constant delay, affects gtaiviely the
results of phase coherence and mutual information but datggraduce any strong qualitative
change in the findings of the paper. However the effect oty cannot be ignored, given
the dispersion of axonal delays observed in experimentdiest Aboitiz et al, 1992. Fig-
ure4.17 shows a schematic diagram of the two oscillatory LFPs fittere®und the gamma
frequency peak (IF, = T, = 22 ms) with the bursts of spikes locked at their troughs ireagr
ment with Figure4.2 For a delayed coupling, zero-lag synchronization doedesat to a
symmetric configuration demanding that the two oscillagiane reciprocally influenced at
the same phase. Therefore the system rapidly shifts towaesht-phase synchronization at
which 144, roughly equals half of the period of the LFP (Figuwtd7B). Importantly, when
the symmetry of the system is broken (for instance by peirtgrjust one of the populations),
the possible stable solutions are no longer the in-phadeeaartti-phase regime. In this case,
phase coherence can be achieved through a leader-laggdiglcation in which the time lag
equals the inter-axonal delay. Without the symmetry caisty this situation is achieved at
the gamma frequency peak, for which the spikes of each populare preferentially locked
to the LFP and changes in their power spectrum are maximized.

In conclusion, our results show that effective communarattan be reached even in the
presence of relatively large delays between the populgstiwhich self-organize in either in-
phase or anti-phase synchronized states. In those statéstismission delays, phase differ-
ence, and oscillation frequency match to allow for commaiidn at a wide range of coupling
between brain areaBérardi et al. 2014h. Furthermore our study has shown the dichotomy
between phase coherence and communication. Whereas plieseree arises due to LFP
phase perturbations through the propagated spikes, coroatiom is caused here by an in-
crease in the firing response. The first occurs at differenfufencies for everyayo in order to
conserve the functional connectivity. The second requitespikes to be tightly locked to the
LFP and at a faster frequen€yammato enable spike integration, and hence a signal response
that can be synaptically propagated.

In this Chapter we have used a microscopic model to descréx®ytichronization between
two distant neuronal populations. Modeling the synchratiin dynamics of multiple brain
regions from a purely microscopic scale is computationafifeasible. Currently, as in this
Chapter, this is accomplished by modeling the two neuronalifadions (or more) while repre-



4.7 Conclusion 112

Fig. 4.17 Carriers of information and signals. Diagram of two oscillatory LFPs filtered
around the power spectrum peak4b Hz), with a short spike train locked at their troughs for
different Taxo: (A) Taxo = 3 MS, representing zero-lag synchronization andtgg) = 9 ms,
representing anti-phase synchronization. FRemardi et al(2014h).

senting the activity of the rest of the brain by a backgrouoidyactivity, but this approach is

not useful when the neuronal population of interest feed& b#o those other brain regions,
thereby modifying the background activity that acts upom plopulation itself. Thus, a hy-

brid description of the brain that encompasses multipléesda an appealing concept. In that
scenario, it would only be necessary to represent micrasalhpthose neuronal populations
involved in a particular task, and which are monitored witigte-cell resolution. The rest

of the brain, while modulating the activity of the populatiof interest, would not necessar-
ily need to be represented with microscopic detail. In the @hapter we will consider one

way of facing this situation, based on coupling bidirecslby microscopic and mesoscopic
descriptions of neuronal populations and then we use sgniation in order to probe the

interaction between the two scales.



CHAPTER 5

PROBING SCALE INTERACTION IN BRAIN DYNAMICS
THROUGH SYNCHRONIZATION

Brain dynamics is usually described by theoretical modeds ithvolve one of three separate
scales: either the microscopic scale of neuronal netwdhiesmesoscopic scale of cortical
columns, or the macroscopic level of coupled neural-masdefso In the previous Chap-
ter, we have focused on possible synchronization mechanistween distant populations
described at the level of neuronal networks, focusing ini@aar on gamma-band synchro-
nization. However, brain activity is based on the coordoratcross temporal and spatial
scales, and synchronization, as a mechanism of large-stadgation, could be a measure of
the interaction of multiple scales.

In this Chapter we intend to bridge these scales by building@datthat contains different
levels of description, and exploring the effect of one of skkales on the other. In particular,
we incorporate a neuronal population within a system of tadiportical columns, and study
the joint influence between the different dynamical regimdsbited by the cortical columns
and the cortical oscillatory regime displayed by the nealoetwork. Specifically, we con-
sider the coupled behavior of two mesoscopic neural masaesammunicate with each other
through a microscopic neuronal network. We use synchréinizas a tool to probe the inter-
action between the two scales of description and we also ieeawhich characteristics of
the neuronal network connectivity allow the efficient crtel& between dynamical scales, i.e.
to determine which are the microscopic features that moelukee mesocopic activity. The
Chapter is organized as follows. In Sectidrl we introduce our study and the large-scale
integration problem, and in Sectidn2 we describe the dynamical model with the coupling
between the neural masses and the neural network used istukdis Evidence of scales in-
teraction through synchronization as a function of topmlalgproperties of neural network is
presented in Sectioh.3 and discussed in Sectidn4. These results are reportedBarardi
et al.(20143.
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5.1 Towards a multi-scale approach

The mammalian brain is composed of a myriad of coupled nesutfwett interact dynamically.
It possesses a rich topological structure and exhibits é®agynamics, operating as a noisy,
nonlinear, and highly dimensional system. Neuronal agtevolves at temporal scales rang-
ing from a few milliseconds to tens of seconds, and emerges freuronal assemblies that
extend from micrometers to several centimeters. Conselguérd study of the brain is usu-
ally partitioned into different research fields devoted istidct brain structures, cortical func-
tional areas or particular microscopic circuits, from teegel of cortical columns down to
single-neuron responses. Moreover, studies of the glatiadity of the brain usually focus
for convenience on specific cognitive or motor tasks, in otdeompare them with a control
state such as the resting one (see SedtidrB.

The various aforementioned approaches deal with diffeseaies of description, from the
macroscopic to the microscopic level. Accordingly, diéfiet computational models have been
developed to account for the activity at each scale (see €h2ptWe have seen that single
neurons, for instance, can be characterized by detailgzhpgical models that consider ion-
channel dynamics, as initially proposed by Hodgkin and duXHH) (Dayan and Abboft
2005 Koch and Segevi989, or by more abstract models of neural excitation such as the
integrate-and-fire (IF) model Bfunel and Van Rossun2007 Gerstner and Kistler2002.
The set of equations associated to these models (intrododbd Sectior?.1) representing
each neuron’s membrane potential can be coupled in a waynihats the synaptic junction
(see Sectiork.2). Thus, given a connectivity matrix, one can ideally buifty aeuronal net-
work in silico from its individual constituents, and thereby move towdh#smesoscopic level
of neuronal assemblies. This allows the brain to be trauhliy investigated in a reduction-
ist way, using different simplified levels of description.eWave adopted these microscopic
approaches to explain spindle patterns in the LGN of theathak in ChapteB and to char-
acterize the dynamical properties of the gamma synchrboizdetween coupled neuronal
populations in Chaptet.

Another set of models, named neural mass (NM) mod2ésid and Friston2003 Grim-
bert and Faugerag006h Jansen and RilL995 Spiegler et al.2011J), avoid the single-neuron
perspective and consider instead the averaged behavibe afduronal population (see Sec-
tion 2.3.1). This mesoscopic description is more phenomenologicai the single-neuron
models, in the sense that it represents directly the coaleebehavior of the network, without
singling out individual cells. Moreover, single neurongoaie at time scales faster than neural
mass models. The former exhibit action potentials thatdbsut 1 ms, while the coordinated
activity of neuronal tissue, which emerges from the syncization of multiple spikes, oper-
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ates on time scales up to tens of seconds. Within a neuropallgten all temporal scales
work simultaneously, and the relative relevance of theed#ifit scales might change depending
on the biological process. For instance, spike-timingigrec is key to synaptic plasticity, and
therefore to the formation of functional cell assembliédigsar et al.1992 Singer and Gray
1995. On the other hand, as seen in Sectlof.3 the frequency of collective oscillations is
relevant for the synchronization of distant areas, and finutheir effective interaction within
specific information-processing taskbries 2005 Sancristobal et 312014).

Recently, large-scale models of the brain have receivedapattention. So far, global
brain activity has been modeled by dividing the brain intecdete volume elements, or vox-
els, and coupling them according to statistical corretestiand structural information
(Alivisatos et al, 2012 Deco et al.2013 Pons et al.201Q Sotero et a].2007). While new the-
oretical studies have attempted to connect the micros¢opiconal network) and mesoscopic
(neural mass) descriptions of brain tissue, by directlyiyapg mean-field approaches to de-
rive the latter from the formemHaugeras et gl2008 Rodrigues et al.2010, these strategies
are fraught with limitations and hard-to-justify assurops. Here we propose an alternative
approach to explore scale interaction, by considering tesy$ormed by two neural masses
that are coupled exclusively via an intermediate poputatiescribed by a spiking neuronal
network model Barardi et al.20143.

5.2 Dynamical model

As mentioned above, our model combines two different leeéldescription (Figures.l).
The neural mass description evolves at a slow scale andserrethe average dynamical
evolution of a set of three different neural populationsr§oyidal, excitatory interneurons
and inhibitory interneurons)lansen and RitL995 (see Sectior2.3). The fast scale, on the
other hand, is represented by a conductance-based netwalrkdéormed by excitatory and
inhibitory neurons. In this case, the time course of everyro’s transmembrane potential
is given by the dynamics of voltage-dependent ion chanmsels Sectior2.1.3. We merge
these two levels of description in a simple dynamical stiestshown in Figuré.1, in which
two neural mass models (NMs) are coupled with a subpopulatimeurons belonging to the
neuronal network (NN).

The two NMs are set to oscillate in two different well-defirffegijuencies, corresponding
to two slightly different brain rhythms. The NN also dispsag collective oscillatory dynam-
ics with a different frequency. Here we investigate how kb#hinter-scale coupling strength
and the features of the NN contribute to the cross-talk betvibe three systems. The NN
is composed of 4000 HH neurons (80% excitatory and 20% itdn)i. Each neuron forms
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NM 1 NN NM 2

Fig. 5.1Diagram representing the coupling between different scakased models.Two
groups of neuronal populations, described by neural maselm@gNMs), are coupled with
a neuronal network (NN). The NMs represent the average dysaof three coupled neural
populations: pyramidal (P), excitatory interneurons (BRd inhibitory interneurons (ll). The
NN consists of a set of 4000 excitatory and inhibitory intencected neurons. Only a subset
of neurons of the NN is coupled with the NMs. The couplingrsgte between the NMs and
the NN is given by the three parameteys, \» andys. y1 quantifies the coupling from the
pyramidal population of the NMs to the NN subpopulatign.and y; represent the intensity
of the excitatory and inhibitory couplings, respectivdipgm the NN subpopulation to the
NMs’ pyramidal population. FrorBarardi et al(20143.

400 chemical synaptic connections on average with otheronswf the network. The dy-
namics of the transmembrane potential of the soma of eaadlomésidescribed by the set of
conductance-based differential equations introduceckati@2.1.3(Equations 2.9)-(2.11))
and the voltage dynamics is described by:

C% = —gnaM’h(Vi(t) — Ena) — gn* (Vi(t) — Bi) + —aL(Mi(t) — EL) +ligar(t)  (5.1)

where the variables and the parameters have been definedtiar8e2, but here all neurons
receive an additional train of excitatory presynaptic ptitds explicitly modeled by the NMs
to whom the NN is connected, which contributes to the exteunaient terml; avpaextOf i tot:

i) = 5 liavparedt) + 5 licasalt) +liavpaext). (5.2)

Ni AMPArec Ni.caBA

Those spikes follow an heterogeneous Poisson process wigaa event rate, which varies
following an Ornstein-Uhlenbeck process (see Sedli@ghEquation 4.5). This NN model
is able to reproduce the well-known synchronous irreguggime Brunel 2000, in which
recurrent activity leads collective oscillations at theplation level while single neurons fire
irregularly. The emergent rhythmicity is achieved by a ha&between the excitatory and
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inhibitory synaptic currents and can be explained by périodanges of the excitability in the

network, i.e. periodic modulation of the distance to thaghDespite the fact that excitatory
neurons are dominant in the network, the stronger synaphibtitory conductances and the
higher firing rate of the inhibitory neurons allows the syst® reach a balance between
excitation and inhibition. In order to obtain collectivecdktions in the alpha (gamma) band,
we set the decay synaptic time to hcay= 15ms(5 mg (see Sectiod. 1).

The description of the mesoscopic neuronal ensemble iglh@s@ model proposed by
Jansen and coauthordafisen and Ritl995 and presented in Sectidh3.1 This model
characterizes the dynamics of a cortical column by using amfield approximation. After
some mathematical derivations (described in Se@i8l), the set of equations is:

Yo(t) = ya(t)

ya(t) =ya(t)

Ya(t) = ys(t) (5.3)
y3(t) = AaumSlya(t) — ya(t)] — 2anmys(t) — aimyo(t)

ya(t) = Aanm(Pe(t) +CoS[Ciyo(t)]) — 2anmya(t) — agpya(t)

Y5(t) = Bbnm(pi(t) +CaS[Cayo(t)]) — 2onmys(t) — bRwya(t),

whereyy(t) is the EPSP produced by the pyramidal population on theriatepns population,
andy; (t) is the EPSP acting upon the pyramidal population and agifriom (i) the excitatory
interneurons, (ii) other areas of the brain and, diffesefrtbm Section2.3.1, (iii) the neural
network (see Equatiorb(6) below). Finally,y»(t), is the IPSP acting upon the pyramidal
population and arriving from the inhibitory interneurongdaagain, the neural network (see
Equation B.7) below). The intra-columnar connectivity constants valaee defined in terms
of G, withi=1,...,4. We use the values given dansen and R{{L995.

5.2.1 Inter-scale coupling terms

The effect of the mass models upon the neural network alswibotes to thd; ampaextterm
of the NN (see Equatiorb(?)), together with the external excitatory Poissonian tcdigpikes.
Hence, each neuron of the NN receives a train of excitatakgspvhose mean firing rateéR,
is given by:

FR(t) = EFR(t) + ky1S(ya(t) —ya(t)), (5.4)
whereS(y; (t) —y2(t)) translates the postsynaptic potential of the pyramidaufadjon of the

NM that affects that particular neuron (or both NMs if thathe case) into a spiking ratg;
andk control the strength of this coupling. Hepe= 200, whilek will be a varying parameter.
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EFR(t) corresponds to aforementioned Poissonian train of spikes:
EFR(t) = (EFR +Aou(t), (5.5)

with (EFR) being the mean external firing rate ahgy (t) an Ornstein-Uhlenbeck process
(see Equatior4.5)) representing the fluctuations around the mean. WéESeR) = 8.5 KHz.
The neuronal network acts upon the NM models thropgh) andpj(t) (see Equation$(3)):

pe(t) = (p)+kyMUA() (5.6)
pi(t) = kyMUA(), (5.7)

whereMUA(t) is the multiunit activity coming from the neural networlg.ithe sum of spikes
over the subset of neurons coupled to the NMs, calculateddmat sliding window of length
1 ms (see AppendiA.1). (p) is a constant input coming from other areas of the brainrdisti
from those considered explicitly in our modépf = 0.160 KHz for both NMs). y», y53 and
k are scaling factors that take into account the synapticiefity. Here,)» = 25 andy; = 3.
Note that we assume that NN neurons affect only the pyrampijalilation in the NM. This is
in accordance with the Jansen-Rit's model of two coupled NMsgen and RifL999, which
considers that only pyramidal cells receive excitatoryuinfpom the other columnBarardi
etal, 20143.

5.3 Probing scales interaction

The effective interaction between neuronal ensemblesitdeskcat different scales can be stud-
ied by coupling mesoscopic and microscopic models. As rapad in the first section, meso-
scopic models are best exemplified by NM descriptions, whiehderived phenomenologi-
cally from experimental studies, and characterize theamepopulation activity by means
of a mean field approximation. In particular, NMs describe tleuronal activity happening
at slow time scales, such as synaptic potentials arising fre synchronized firing of thou-
sands of neurons. On the other hand, models of single neuepnsduce the time course
of the electric currents crossing the neuronal membraregffars account for the individual
action potentials and the postsynaptic response of eatbareposing the network. In order
to preserve the precision of the spiking times, these modeddve fast time scales. Certainly,
networks built from spiking-neuron models can also provigeasures of the population activ-
ity by averaging across neurons. Thus, patterns of colleetctivity can be observed in the
synaptic current, evoked by the summation of multiple spike the target neurons.
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To analyze the evolution of the model introduced in the presiSection we consider two
different dynamical variables corresponding to each ofweescales. The NM model activity
is given byy(t) = y1(t) — y2(t), wherey;(t) is the EPSP angh(t) the IPSP acting upon the
pyramidal population (see Equatidn8) above). The NN activity is quantified in terms of the
LFP as defined in AppendiX.1. Both types of models operate in an oscillatory regime. The
NM model is an intrinsic oscillator whose frequency can b@egaby changing the parameters
B andbyv (see blue and green lines in FigutegA,B). On the other hand, the oscillations of
the neuronal network are an emergent property of the systdhacting the variability of the
individual postsynaptic potentials (i.e. the microscogients). Hence, its frequency is less
well-defined (see red line in Figurés2A,B and power spectra in Figur&s3C,D below).
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Fig. 5.2Collective dynamics of the coupled systen(A) Time traces of the net postsynaptic
potentialy(t) = y1(t) — y2(t) of both NMs working at different frequencies: at 4.5 Hz withi
the theta band (blue), and at 11 Hz within the alpha band (yr&ée local field potential, LFP,
of the NN (red) oscillates in the gamma range around 45 Hz.thie® neural ensembles are
uncoupled. (B) Time traces of the postsynaptic potentialsotti NM models and local field
potential of the NN when the system is coupl&d<1). Averaged maximum cross covariance
(C) and frequency mismatch (D) between the postsynaptimpatdime traces of the NMs
for increasing inter-scale coupling strenggthFromBarardi et al(20143.

Our aim here is to find fingerprints of an effective interactid scales. To do so we study
how the two NM models, one oscillating in the theta band aedther in the alpha band, syn-
chronize their dynamics when the coupling is mediated byntheonal network (Figurg.1).
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The interaction mechanism is bidirectional. This archiezwas used bYicente et al(2008
andGollo et al.(2010 to demonstrate the emergence of zero-lag synchronizateshated
by dynamical relaying between neuronal network population our case, the output of each
NM is converted into a firing rate (see Equatidn4) above) impinging on a subpopulation
of 2000 neurons within the neuronal network. In turn, thenfjrrate of these selected neu-
rons contributes to both the excitatory and inhibitory pgsaptic potential densities that act
upon the pyramidal populations of the NMs. We also examieeetifect of varying several
properties of the subpopulation of neurons of the NN, inicigdts number, involved in the
coupling, in order to explore the effect of the structuralpmrties of that network on the scale
interaction efficiency.

The effect of the coupling intensitiy on the dynamics of the interacting populations is
shown in Figure5.2 When the NMs are uncoupled, they oscillate in different dyical
regimes that evolve at different frequencies, around 4.&rdizl 1 Hz respectively. One NM os-
cillates in a spike-like fashion, while the other one ostds more harmonically (Figuge2A,
compare the blue and green lines). The neuronal networkyim exhibits collective oscilla-
tions within the gamma range, around 45 Hz. The dynamicdléeo for the coupled case,
atk=1, is shown in Figur®.2B. In this case, the dynamical regimes of the NMs are similar,
and they become frequency locked. We skamorder to track the transition to the frequency
locked regime as coupling increases. Figbr2C shows the increase in the maximum cross
covariance between the net postsynaptic potentials ofvibeNtMs models, averaged over
20 trials, when increasinig When the NMs operate at different regimes they hardly syschr
nize but, for sufficiently highk, they increase their synchronization with increaskngrhe
averaged frequency mismatch decreases sharp{y~ad.6 (see Figuré.2D). According to
these results, frequency locking for the two NMs is achiefedugh a neuronal network that
oscillates naturally at a much faster scale.

We further characterize the effect of the interaction tigtothe power spectrum of the time
traces. As can be expected, the power spectrum of the masdsmodsolation (Figuré.3A)
shows a clear peak at their natural frequencies (4.5 Hz andz),1while the LFP shows a
strong peak around 45 Hz (Figuse3C) that exceeds the non-zero contribution of the slower
frequencies~4 Hz. We see that increasing coupling leads to a frequendingaegime
between the NMs, which is reflected in their spectral behratdor instance, dt = 1 the power
spectra of the two NMs overlap, with a dominant peak arouna 4fiyure5.3B). The local
gamma peak of the neuronal network is preserved (Figug®), although the major change
in amplitude occurs at smaller rhythms, around the frequeriche NMs. This increase
in the NN power at the alpha band is due to the emergence otgdbeking between this
population and the outer NMs, as shown in Fighr@&. This phase locking results in a sizable
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cross-correlation between the activities of the microsc@md mesoscopic populations for
intermediate values of the siieof the NN subpopulation coupling the two NMs, as depicted
in Figure5.3F (the difference between cross-correlations with NM1 ati?Nor smallN is
due to the different intrinsic dynamics of the two mesoscqgmpulations). The effect df

is studied in more detail below. The slower time scale of tiMsNannot follow the faster
dynamics of the NN and average out the gamma rhythm, reguitia frequency shift towards
the slower rhythm, which is also enhanced in the neuronalorit
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Fig. 5.3Effect of coupling on the power spectra of the three neuronal ppulations. (A)
Power spectra of the net postsynaptic potentitll of the NMs in isolation. Primary peaks
are tagged with vertical dashed lines~a4.5 Hz and~11 Hz. (B) Power spectra of the net
postsynaptic potentigit) of the NMs when coupledk(= 1) through a subpopulation of 2000
neurons within the NN. The common primary peak is tagged witlertical dashed line at
~ 4 Hz. (C) Power spectrum of the LFP of the neuronal network atatton. (D) Power
spectrum of the LFP when the subpopulation of the neurortelark is coupledk = 1) to the
NM models. Spectral densities are averaged over 20 trig)sTifne traces of the MUA signal
of the neuronal network (blue, left axis) and the voltage edinal mass 1 (green, right axis).
The MUA is calculated using a sliding window of length 50 mB) Correlation between the
MUA and voltage signals shown in panel E as a function of thaler of neurons from the
central NN involved in the communication between the two NM®mBarardi et al(20149.

Since the output of the neuronal network arises from theispilctivity of thousands
of neurons, the interaction across models is mainly drivenhle average dynamics of the
population. Although the modeled LFP evolves in a fasteetsoale, NM models filter out
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rapid fluctuations. Therefore, the NMs mainly respond tonges of the mean input coming
from the neuronal network modulated ky

The input contribution into the NMs coming from the NN dynasiincreases the average
excitatory and inhibitory input signal into the pyramidapgulation (denoted bye and p;,
respectively, in Equation$(6)-(5.7) above). Since increasing the constant input to a NM can
lead to changes in the dynamical regime (and thus the freyyefthe oscillator Grimbert
and Faugera20068, one could argue that the role of the neuronal network dycsim un-
necessary to mediate the synchronization transition gedeHowever, simulations in which
the terms given in Equations.©)-(5.7) are replaced by the temporal average of the coupling
contributions indicate that the NMs are unable to synclz®itheir phases in these conditions
(Figuresb.4A,B). This result shows that the NN dynamics is a key ingredierachieve not
only frequency locking but also phase locking between theNVs.
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Fig. 5.4 Coupling of NMs through dynamically evolving NN vs constant hput. Phase
consistence of different trials of PSPs of the NMs (the twlorsocorrespond to the two NMs)
when the coupling is mediated by a variable MUA (coming frova NN) (A) and when MUA
is replaced by its temporal average (B). In the latter case Aifdsinable to synchronize their
phases.

In order to take advantage of the microscopic descriptich@NN we also vary two main
features of its architecture: its clustering (see definiiio AppendixA.5) (Figures5.5A,B)
and the size of the area involved in the coupling, determimethe number of neurons pro-
jecting onto the NMs (Figuré.6). Figure5.5A,B outlines the dependence of the maximum
cross covariance and the frequency mismatch between thEgon the coupling strength
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k for differentrp values. Note that the casg = 1 corresponds to the results shown in Fig-
ures5.2C,D. Networks with higher clustering{ = 0.2) are less efficient in synchronizing the
oscillatory output of the NMs. In this case, larger coupkstiggngthk are needed, with respect
to a random networkr = 1), to reach the frequency locking regime. Thus, the topolufg
the NN affects the synchronization between the neural ebssm Random networks have
small path lengths at the expense of low clustering, and tifreisverage transmission time
of the action potentials across the population is decredsetthis situation, synchronization
arises for smaller coupling strengths. The result for aleguetwork,r, = 0 (which is not a
realistic situation in the brain because the NN dynamicesg) ] is also included.
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Fig. 5.5Influence of the topological and dynamical properties of theneuronal network on

the interaction between the NMs.Maximum cross covariance (A) and frequency mismatch
(B) between the NM average postsynaptic potentials for asing rewiring probabilities, of

the neuronal network. Maximum cross covariance (C) and &equmismatch (D) between
the NM average postsynaptic potentials when the neuromabmle works in the alpha regime,

compared with the gamma casg & 1). FromBarardi et al(20144.

Besides topology, the intrinsic dynamics of the neuronalvogt also has an impact on
the synchronization of NMs. In our NN model we can slow dowa fitequency peak of the
LFP by increasing the decay time constafd:a,0f the inhibitory synapses, without altering
the firing rate of the population. If the peak of the NN powesapum is shifted towards the
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alpha band, closer to where the NMs oscillate, the maximwssccovariance is reduced and
the frequency mismaitch is increased for a gikealue (Figure$.5C and5.5D, respectively).
Thus, even though the NN is operating closer in frequenchéoNMs, and its individual
neurons fire at the same rate as when the network operates gathma band (resulting in
a similar MUA activity, result not shown), the NMs are mordfidult to synchronize. In
the NN, the action potentials are transiently synchroniaed paced according to the time
course of inhibition, leading to a recurrent behavior tlaatses the global oscillatory dynamics.
Faster rhythms, like gamma, correspond to a better praomseg of the firing, i.e. the action
potentials of multiple neurons are tightly bounded in timdaich seems to be key for the
synchronization of the NMs.

Finally, and as mentioned above, we also study how the sgndtation of the NMs is
affected by the sizhl of the subpopulation of neurons that mediate the couplimgdsen them.
In the results presented so far, this subpopulation wasddioyN = 2000 neurons, randomly
chosen from the whole population of 4000 neurons of the NNs&#&N between 1 and 4000
neurons, the latter case corresponding to all neurons iNbheontributing to the firing rate
impinging on the NMs and receiving their input. Figuie§A,B show the maximum cross
covariance and the frequency mismatch for increasing aogijl at varying subpopulation
sizes. The interaction between the NMs decreasds dscreases, and synchronization is
only significant forN > 1000. N directly affects the strength of the coupling between the
NN and the NMs, since this parameter determines the averdgd@, Me. the number of
spikes elicited within the subpopulation. Hence, given apting strengthk that enables an
efficient interaction of the models, larger valueshfead to a lower frequency mismatch
(Figures5.6C,D).

Itis important to note that, although the size of the NN isti@mstant, increasing boosts
the coupling term, spreading the input from the NM acrossrgelapopulation of neurons
within the NN. Figure5.6E shows the LFP power spectrum for increasing valuehll éor
k= 0.9. Similarly to the transition from Figurg.3C (network in isolation) to Figur&.3D
(k=1 for N = 2000), the major changes produced by the coupling occur alt f:aquencies,
where the synchronization scale is centered, while the ganmythm interacts directly with
the slower dynamics of the NMs. DecreasiNgdramatically affects the dynamics of the
coupling, which only takes into account the activity of teigopopulation. For sizes below
N ~ 1000 the interaction is carried out by the low firing and hyghbisy activity of small
numbers of neurons, which are unable to synchronize largeneblesBarardi et al.20143.
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Fig. 5.6Dynamics of coupled NMs.Maximum cross covariance (A) and frequency mismatch
(B) between the NM average postsynaptic potentials as aifumof coupling strengttk,

for various values of the sizd of the subpopulation of the neuronal network that mediates
the coupling. (C,D) Same quantities as a functiorNdfor various values of the inter-scale
coupling strengtlk. (E) Spectral power density of the LFP of the whole NN, whenMs

are connected with NN subpopulations of various sikes(.9). All results are averaged over
20 trials. FromBarardi et al(20143.

5.4 Conclusion

In this Chapter we have focused on how the microscopic andosegpic scales coexist in a
system-wide description of the brain. Due to the computatianfeasibility of modeling the
dynamics of the full brain from a purely microscopic scale,awnvision the need of including
both scales in a hybrid description of the brain. In this stien one would need to represent
at the level of neuronal networks only those neuronal pdjuula involved in a particular task
(for instance a certain region of the visual cortex in theecasituations involving visual
stimulation), and which are monitored with single-cellalegion. The rest of the brain, while
modulating the activity of the population of interest, wabulot require being represented with
microscopic detail (and it would be impractical to do so). 1€utly this is accomplished
by substituting the activity of the rest of the brain by a lgrckindnoisy activity, but this
approach is not useful when the neuronal population of éstefieeds back into the external
brain regions, thereby modifying the background activityiray upon the population itself.
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One way of facing this situation is by coupling bidirectitipanicroscopic and mesoscopic
descriptions of neuronal populations, as is considerelisniork. Both types of descriptions
have been carefully studied in the past (in particular bl¢hfine-grained activity of neuronal
networks and the simplifications inherent in neural massetsdtave been well characterized),
and here we intend to make these two well-known descripfitesact. In particular, we use
synchronization in order to probe the interaction betwdentvo scales. Our reason for
employing specifically a scheme in which two mesoscopic faijmns are coupled through a
third microscopic network is that the behavior that can bgeeted from two coupled neural
mass models is well known, and can be used as a referenceefa@otirdinated behavior
emerging from our hybrid scenario.

Furthermore our results do not imply that two NM oscillatcas only synchronize through
the mediation of a neuronal network. In fact if all three re#d populations were described
by NNs (or by NMs, for that matter) synchronization will alaose (see for instandécente
et al. (2008 and Gollo et al.(2010 for the case of three coupled NNs leading to zero-lag
synchronization). Neither do we claim that two brain ostdls can only synchronize through
the mediation of a third one (see for instarizgavid and Friston(2003 for an example of
synchronization between two coupled NMs). The results sthatvtwo mesoscopic brain os-
cillators can synchronize even when they are coupled ombyutfh a mediating population
that is described by a microscopic model. In that sense, wesyischronization as a tool to
probe the interaction between different spatial scaleseoianal populations. Previous ef-
forts have been devoted to analyzing this interaction byopeiing a direct comparison of
the behaviors of the microscopic and mesoscopic moddtaugeras et al2008, for in-
stance, derived the equations of evolution of NMs from theadyics of a network of neurons
described by a voltage-based model, by performing an iebhaean field analysis of the net-
work, an approach that would be very challenging to applytkisg neuron models. In order
to perform such a multi-scale mappirfgpdrigues et al(2010 had to apply strong assump-
tions that included high correlation between the neurorteénmicroscopic populations and
low-amplitude input currents. Here we have attempted wuanvent the complexity of those
approaches by using a more phenomenological strategy,endas is to test whether micro-
scopic and mesoscopic descriptions of neuronal populRttommunicate with one another
by using synchronization as a proxy of effective commumicat

Even when the neuronal network operates in a fast dynamatkctive regime in the
gamma range, a sufficiently large subpopulation of neuroitisirwthat network is able to
mediate the communication and subsequent synchronizaétween two NMs that are de-
scribed mesoscopically and operate at much lower freqasr{€iigure5.3). Frequency and
phase locking arise even when the two NMs operate at vemgrdift frequencies (in the theta
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and alpha bands) and with very different dynamical feat(spike-like dynamics in one case
and quasi-harmonic dynamics in the other). Structuraketusy within the neuronal network
diminishes the ability of the microscopic neuronal popolato induce synchronization (Fig-
ure5.5). The size of the subpopulation of neurons that directlypted the two NMs must
also be large enough to allow the intrinsically irregulauross to reach a sufficiently strong
collective regime through which the two neural masses camuanicate (Figur®.6).

Two main features indicate the nontrivial contributiontod tmicroscopic neuronal network
in mediating the synchronization between the mesoscoptetso First, the two mesoscopic
populations lock not only in frequency, but also in phaseemvthey interact with a dynami-
cally evolving neuronal network. If the role of the netwoskplayed by an increased constant
input to the neural masses equal to the average activityeaie¢lironal network, phase locking
disappears (Figurg.4). Second, if the neuronal network is made to operate in aesloollec-
tive regime (e.g. in the alpha band) the synchronizatiowbeh the NMs is decreased (while
being still significant), even though the three oscillats now closer in frequency.

The synchronization between the NMs is mediated by the hgckietween the NMs and
the NN, which leads to an increase in the alpha-band acwfithe NN, as reflected in Fig-
ure5.3 The fact that synchronization is maintained even when tiésperating in the alpha
band (Figure$.5C,D) indicates that the intrinsic NN dynamics does not irierfnoticeably
in the communication between the NM populations. Furtheemthe fact that synchroniza-
tion improves slightly when the NN is operating in gamma (@® also in Figure§.5C,D)
shows that fast and slow scales interact to a certain ext@mtler to drive the synchronization.
We interpret this to be due to an increase in the precise girafrthe firing that is associated
with a faster neuronal rhythm. The results reported heretgowards an alternative way to
probe the interaction of scales in the activity of the bréyusing synchronization between
neuronal populations as a way of testing the structural andtional conditions under which
scale interaction occur8érardi et al. 20143.

So far, we have broadly studied spatiotemporal patternstofity arising from the coordi-
nated activity of many neurons. Neuronal oscillations, qresent in the brain, reveal a cer-
tain synchrony if measured at multiple sites with intracahelectrodes or with EE@Guzsaki
and Draguhn2004). The temporal progression of activity behind this neut@yachrony
exhibits approximately identical phase across differecbrdings sitesZanos et al.2015.
However, out-of-phase activity exists and could give rsedmplex spatiotemporal patterns
such as traveling waves. In the next Chapter, we mathenlgtioaéstigate the emergence of
traveling waves across different neuronal systems.



CHAPTER 6

WAVE PROPAGATION IN INHIBITION-DOMINATED NEURONAL
CHAINS

The correct operation of the brain relies on a careful sgatiporal coordination of selective
neural populations which self-organize in different coliee patterns at various scales. In the
previous chapters we have described the synchronizatioewfnal oscillations within and
between populations located at distant brain areas usffegatit modeling approaches. Neu-
ronal collective oscillations are a ubiquitous propertynetiral activity and reveal a certain
consistence in space (in the form of the same phase acrasslirag sites). However, out-of-
phase synchronous oscillations also exist, in the form pfflex spatiotemporal patterns such
as propagating waves. These waves, from macroscopic sgaEesing multiple cortical areas
to microscopic scales involving single neurons, congiartother important signature of neu-
ronal collective dynamics likely to subserve network-lesemputations among brain areas.
Localized neural activity either remains spatially confine time or propagates as a wave
among neural assemblies that are spatially separated paged in the same computation
or behavioral state. In what follows we study the propagatbtraveling waves in a one-
dimensional network of inhibitory neurons with asymmesymaptic coupling. We first show
the phenomenon of wave propagation arising from a netwotaafgkin-Huxley neurons in

a chain of inhibitory neurons with asymmetric connectiofisis has opened interesting ques-
tions that need to be addressed from a mathematical poinewaf \ herefore, we provide a
continuum model with topology similar to the HH model to exipl several counterintuitive
properties of these traveling waves. Then we investigatedeneral this wave-propagation is
by considering various parameters that characterize naunateractions such as the balance
of external excitation and recurrent inhibition, the adahalays, the synaptic temporal time
constants and the structural connectivity. To do so, we niothe analysis of a continuum
approximation of the IF model that allows the calculatioritef dispersion curve relating the
velocity and wavelength of these waves, and study how theedifon relation, and thus the
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wave dynamics, depend on different parameters. In this wayaim at providing analyti-
cally important insights on the necessary and sufficientitmms that support the wave-like
behavior in such a system.

The structure of this Chapter is as follows. In Secttohwe discuss the phenomenon of
traveling waves in the brain, following Sectidrb. We first present, using a Hodgkin-Huxley
model, how inhibitory neurons, asymmetrically connected@a chain, organize themselves
in propagating waves under specific conditions (Sec8d@). After this phenomenological
analysis, we proceed with an analytical explanation of theeoved pattern. We begin in Sec-
tion 6.3 by introducing a continuum model with topology similar tetHH model based on
a one-dimensional chain of inhibitory neurons with asymioetoupling and then turn to a
integrate-and-fire continuum model (Sect@#) that provides an understanding of numerical
results and of the necessary conditions under which a syst@nexhibit waves propagation.
Conclusions about our work are presented in Sedién This work is developed in collabo-
ration with prof. Evgueniy V. Lubenov, who led the projectaorof. Athanassios G. Siapas
(Caltech).

6.1 Wave propagation

A number of experimental studies have revealed the projegat traveling bursts of activ-
ity in slices of excitable neural tissue spanning from th#neeto the neocortexiestexhe
et al, 1996a Golomb and Amitgi1997 Golomb et al. 1996 Kim et al, 1995 Traub et al.
1993. Traveling waves constitute a highly coordinated agtiwit neurons which fire rhyth-
mically, with the oscillation phase varying as a functiortiaie and spaceHrmentrout and
Kleinfeld, 2001). Such wave propagation phenomena are enabled by spatif@hement of
connections between neurons. In fact within a certain kaesa, the probability of a synaptic
connection to exist between a pair of neurons decreasestlath physical distance sepa-
ration (Gilbert, 1993 Sik et al, 1995 Stepanyants et al2008. In that situation, spiking
activity spreads from a group of neurons to its neighborsaaid the rest of the network as a
propagating waveMfang 2010h. Neuronal wave propagation has been observed on multiple
spatial scales. In fact as we have discussed in Sett®@g traveling waves have been found
in a diversity of studies (reviewed iBrmentrout and Kleinfeld2001andWu et al, 2008,
including MEG gamma oscillations.[jnas and Ribary1993 Ribary et al, 1991), EEG slow
sleep oscillationsMlassimini et al. 2007, evoked responses in the cortéxigeli et al., 1995
Freeman and Barrj@00Q Prechtl et al.1997), waves in developing cerebellar cortéi/dtt

et al, 2009 and hippocampal theta oscillations in ratsiljenov and Siapa2009 and hu-
mans Zhang and Jacob2015. In a recent studyi.ubenov and Siapa&009 observed
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traveling waves during theta oscillations propagatingnglthe septotemporal axis of the CA1
region of the hippocampus, with phase velocityy 80-100 mm/s and spatial wavelength-
10-15 mm. Given that the length of the septotemporal axis of GA. ~10 mm, the total
phase difference is B/, between 13T and 2t radians, i.e., two-thirds to a full theta cycle.
Interestingly, in all existing studies, the total phasdtdshioften~ 11/2, always less thanr2
radians (i.e., the spatial extent of the wave is less tharm@welength). Thus, the observed
pattern of variation in peak amplitude is less than the fsdlikation cycle, regardless of oscil-
lation frequency (e.g., theta or gamma), the physical sizeeoneural system, or the species
examined (see Table 1 Ermentrout and Kleinfelcd2001).

Neural field models have been successfully applied to modekasity of brain spatiotem-
poral wave patterns, and one of the main issues when modwedimgl fields is the connectiv-
ity among neuronsBressloff et al.2003 Coombes and Lain@011). Many theoretical and
modeling works based on neural field theory have focusedeattity of traveling waves un-
der variations in neural connectivity, concentrating aon symmetric connectivity among
neurons Coombes2005 Coombes et al2003 Ermentrout 1998h. In contrast, less atten-
tion has been given to the emergence of propagating waves thiseneural connectivity is
asymmetric Bressloff and Wilkerson2015 Horikawag 2014 Woodman and Jirs2013. A
typical mechanism for generating traveling pulses in antatary network is to include for
instance spike frequency adaptation (SF&p¢mbes and OweR005 Pinto and Ermentrout
2001 or synaptic depressiofK{lpatrick and Bressloff2010ab), which suppress the trailing
edge of the wave. One of the motivations for consideringtataiy neural fields is that trav-
eling pulses are observed im vitro cortical slices that have been disinhibited. By way of
example Bressloff and Wilkersorf2015 used a one-dimensional scalar neural field with an
asymmetric weight distribution to analyze the effects dfiagic noise on traveling pulses in
a neural field model of direction selectivity. Instead of SéiAsynaptic depression, they con-
sidered a mechanism based on asymmetric excitatory sgnaginections and showed that
such a network architecture supports freely propagatitgegu

Computational models of synaptically generated waves Hawdaen developed, in which
neural tissue is treated as a one-dimensional continidestéxhe et al1996h Golomb et al.
19946 Traub et al. 1993. From these studies, it follows that wave propagation irtical
and hippocampal slices only occurs if the synaptic streonfjteuronal interactions exceeds
some threshold, and provided above threshold the velacapproximately linear in the cou-
pling (Golomb and Amitgi1997). How wave properties depend on the synaptic and intrinsic
cellular properties of the neurons and on the topology ohttevork is an interesting question.
This is difficult to extract from detailed computational net&l In this Chapter we perform a
qualitative analysis of the phenomenon using a conducthased model, and we provide a
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continuum approximation of the analytically tractable 1l6del to derive some conclusions
on the conditions leading to wave propagation.

In this study, we focus on exploring the emergence of tragelvaves in a chain of only
inhibitory neurons with asymmetric couplings. To do so we fiist a spiking neural network
model, specifically the conductance-based model (seedde&tfi.3, to show how a chain of
inhibitory neurons supports traveling waves. Our resudisidnstrate that these networks be-
have as excitable media that exhibit anomalous disperamhtherefore have counterintuitive
wave-propagation properties. In particular, when neusatrise head of the chain are periodi-
cally forced, traveling waves emerge with wavefronts mgvmom the tail to the head of the
chain, in a direction opposite to that of synaptic connégtivWe develop a continuum model
with topology similar to the HH model that can be solved atedfly (based orKistler and
van Hemmen1998 to demonstrate the existence of backward waves. This stralydes an
analytic explanation of some properties of wave propagagihibited by the system in spe-
cific conditions, and speculate on why long wavelengths ataltowed under the conditions
adopted in this configuration. We ask if wave patterns arisedifferent system, e.g. with a
varying degree of asymmetry in the direction of connegtjiit presence of synaptic axonal
delays and different synaptic conditions, thus if our rsscéin be extended to different config-
urations. However, it is very challenging to systematicplioceed with a sensitivity analysis
starting from a detailed physiological model.

Ermentrout(19983 showed that a simple integrate-and-fire (IF) model (Se@id.1) of
a neuron captures much of the process underlying an excitatave in cortical slices. In
fact, he demonstrated that the velocity of a wave in the cas¢érang synaptic coupling is
essentially independent of the ionic details of cell membsa depending mainly on the inte-
gration rise time from the resting potential to thresholdhu3, inspired byBressloff(2000),
we propose an integrate-and-fire continuum approximabastudy systematically the prop-
erties of these waves in a framework commonly used in thid kihstudies. We derive a
self-consistency condition for the existence of travelmgves, from which we calculate a
dispersion relation as a function of the phase velocity gradial wavelength, and use it to in-
vestigate how wave-propagation depends on various pagasrtbat characterize the neuronal
system. Specifically, we explore how the shape of the digperelation varies by introduc-
ing axonal delays in the signals transmission between neuby varying the GABA temporal
decay time constant, by modulating the level of excitatiod mhibition in the networks by
means of synaptic strengths, and finally by altering theekegf asymmetry in the network.
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6.2 Phenomenological analysis

As mentioned above, we focus on the dynamical propagatioreofonal waves across one-
dimensional chain of inhibitory HH neurons with asymmetiannections. By periodically
forcing a small subset of neurons at the head of the chain,emgodstrate that this system
can support the propagation of wave patterns, providedsiiaie conditions are met. We
then characterize this behavior by calculating the dispen®lation that relates the entrained
angular frequency to the wavenumber of the propagating svéer this phenomenological
analysis, we provide mathematical insights on how this pheanon, which arises here under
strong assumptions, can be extended to different dynasysééms with different properties.

6.2.1 Computational model

We model a chain of inhibitory Hodgkin-Huxley (HH) neuronsing a conductance-based
formalism. Neurons are arranged along a one-dimensioaéh N = 1000 inhibitory cells.
Initially we assume that all neurons project asymmetrctdl one-side of the 1-d chain in
a regular way, namely each neurbmakes synaptic connections with neighboring neurons
j ranging fromj =i+1 to j =i+ y along the chain, wherg is the window connectivity,
initially set to y = 50 neurons (see scheme in Fig4). In this first study only chemical
synapses are considered and synaptic delays are not takensideration. In Sectiof.3
we will consider a network with a different level of asymnyein the connectivity and in-
troduce increasing synaptic delays. One mechanism tlavslhis system to generate and
sustain wave-like behavior consists on driving some neuatrihe bottom of the chain with
an external source, while keeping constant in time the eateurrent over all the remaining
neurons of the chain. In particular, a certain number of mesiat the bottom of the chain are
periodically driven with a constant external current dgranperiodTs = Ton + Torg. This
current takes the voltage of the neuron above the firing lmldsthus enabling the generation
of the action potential, provided that its refractory windbas expiredTon andTorg repre-
sent the interval where the neuron is forced to spike and evités shut down, respectively.
This perturbation starts at the bottom of the chain and maies in time across the size of
the network, provided different parameters are propenhetls e.g. the forcing period, the
number of perturbed neurons at the bottom, the synaptiogitie and the temporal constants
of postsynaptic potentials. Note that these parameterfuactions of each other, e.g. the
number of perturbed neurons at the bottom is tuned accdydioghe synaptic strengths and
the forcing period. Therefore under certain conditions, tletwork presented here exhibits
wave-like patterns that will be described in the next Sestio
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Chain of inhibitory neurons

TON TOFF

v

Periodic driving (T;) Asymmetric connectivity (with connectivity window y )

Fig. 6.1 lllustrative plot of chain of inhibitory neurons asymmetri cally connected.
Scheme of the network with asymmetric connectivity. Eachroe project to itsy = 50
neighbors along the chain df = 1000 neurons. A subset of 45 neurons at the bottom of the
chain is periodically driven with a forcing peridd = Ton + TorF.

All neurons are modeled according to the Hodgkin and Huxi)(model described in
Chapter4, where the evolution of the membrane voltage and voltagedg@n channels is
described by Equation2.0)-(2.11) introduced in Chapte2. In this analysis, the membrane
capacitance of inhibitory neurons is set@c= 0.125 nF, the maximal conductances of the
sodium, potassium and leakage channels are respeafivght 12.5 uS, gk = 4.74 uS, and
gL = 0.025 uS and the reversal potentidy ;s = 40 mV,Ex = —80 mV, andg. = —65 mV
respectively. The time course of the synaptic currents éetwneurons is given by the alpha
function introduced in Equatio(4) in Chapter3, which depends on the GABA risgse and
decaytgecaytemporal constants and on the synaptic strengths definedhles6.1 and6.2,
respectively. Differentyecayvalues will be explored in Sectioh 3. The model is integrated
using the Heun algorithmTpral and Colet2014), with a time step of M5 ms.

Synaptic time constants ( ms) Trise Tdecay
AMPA 05ms 2ms
GABA 2ms 15ms

Table 6.1 Synaptic time constants.
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Synaptic conductancegyr( nS)

GABA on inhibitory (Qc) 240 nS
AMPAgternar 0N inhibitory @Qc) 3.2nS
Synaptic reversal potentigky,( mV)
Ecasa —70 mV
Eampa 0mVv

Table 6.2 Synaptic conductances and synaptic reversatioadte

6.2.2 Backward wave propagation

Our results reveal that one-dimensional chains of inhipiteeurons with asymmetric connec-
tions exhibit wave-like behavior. If a subset of neuronshatthottom of the chain is periodi-
cally driven with a given driving period;, traveling waves emerge with wavefronts moving
from the tail to the head of the chain, in a directigppositeto that of synaptic connectivity
(see Figures.3). The characteristics of these traveling waves dependendhnectivity win-
dow y and theforcing period | that determines the duration of the active band (Figugg).

If the chain is not properly driven at the bottom, nam@hy is not large enough to allow
perturbations to propagate, afger is not large enough to allow neurons to recover from
inhibition, the system settles into an horizontal attrgotoeth horizontal stripes spaced every
y neurons (Figuré.2).

Tf =60 ms
1000 | [t
800} 5
2 600} ;i
o
5
2 400}
200
0 Il — L
0 500 1000 1500 2000
Time [ms]

Fig. 6.2Firing dynamical patterns of the chain at its horizontal attractor. The chain is
composed of 1000 inhibitory neurons and each cell is coedegtith the neighboring = 50
neurons. The network is driven with a driving peridgd = 60 ms. Toy iS not properly set
thus the network settles into its natural horizontal attra¢aking the form of constant stripes
of active neurons spaced at the connectivity windowTogr is not large enough to make
the postsynaptic partner recover from inhibition and firerythat time interval. So, if not
properly driven at the bottom, the system can not exhibieliag wave patterns.
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135
an appropriate balance between external excitation andrest inhibition, so the network

In order to obtain this wave-like behavior, the synaptiesgiths need to be tuned to have

can foster wave propagation. In Secti®3 we will study how the excitation over inhibition
ratio affects wave dynamics. To this aim, we define two addél parameter® andq, that
represent the magnitude of the persistent excitatory adadae and inhibitory synaptic con-

ductance respectively, &3 = Q¢ * 10 andq = q¢/8, whereQ; andq. are the basal values
of the model defined in the Tab&2 In Figure6.4, wave patterns with decreasing spatial

same conditions (results not shown).

wavelength for increasing values @rr are presented. These results are robust across differ-
ent models such as current-based and conductance-basgdtetand-fire models under the
A
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Fig. 6.3Zoom of propagation of backward waves in inhibition-dominated chains. Prop-

100 ms
agation of backward -with respect to the direction of cotimigg- waves with inhibition-
dominated chains using a Hodgkin-Huxley neuron model. iteseshown the zoom of back-

ward waves in case 0oy = 2 msand Topr = 90 msfor neurons in the range (A)-0 200,
whereTon and Topg are depicted and in the range (B) 50®00, the spatial wavelength
and the wave period are drawn.

The spatial wavelength and the periodl' of the wave cycle, depicted in Figufe3B,

determine the phase velocity of the wave, is defined asA /T, which represents the speed
at which the phase of the wave at any frequency propagategsaaeslt is equivalently defined
asv = w/k, wherew is the angular frequency of the wave akds the wavenumber. In

contrast, the group velocity is equalMg= dw/dk, and represents the velocity of propagation
of the wave envelope. The dependence of the angular freguermn the wavenumbek is
known as the dispersion relatian = Q(K)

Figure 6.5A shows the dispersion relation as
f = 6(m), wheref is the frequency anthis the ratio between the size of the chaimnd the
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Fig. 6.4 Propagation of backward waves in inhibition-dominated chans. Propagation
of backward waves -with respect to the direction of connégti with inhibition-dominated
chains using a Hodgkin-Huxley neuron model. Each neurojept®to itsy = 50 neighbors
along a chain oN = 1000 neurons. A subset of neurons at the bottom of the chaeried-
ically driven with a forcing periods = Ton + Torg. In this plotToy is equal to 2 ms, while
Torr Is equal to (A) 35 ms, (B) 55 ms, (C) 85 ms and (D) 200 ms. For eanblgghe wave
frequencyf and the spatial wavelengthare calculated, from which the dispersion relation is
derived (Figures.5).

spatial wavelengtih (m= N/A). Thereforemindicates the spatial wavelength as a factor of
the network size. The dispersion relation of Fig@rgis derived from the computation of the
wave frequencyf andA indicated in the corresponding wave patterns of Figude

Novel experimental methods based on high-density muttiedde arrays have revealed
the existence, in certain situations, of traveling waveseafronal activity characterized by a
long spatial wavelength of the order of the size of the netwdn a recent papet,ubenov
and Siapa$2009 reported on this type of neuronal wave propagation thrabghippocam-
pus of mammals. Figuré.5A suggests that under specific conditions this system caibiéxh
waves with long spatial wavelengths of the order of the sizth® network (smalin values
correspond to long spatial wavelengths in Fig6rBA). Figure 6.5B shows the raster plot
corresponding to d¢ defined byTon = ms andTorg = 22 ms, for whichf ~ 41.6 Hz and
m=0.8 (red point in Figur&.5A). However, the conditions accounting for long spatial erav
lengths need to be further explored. To that end, insteadiafjthigh values of the external
current (enough to bring the neurons above threshold, ndrmednow onnoiselessegime),
we introduce an heterogeneous Poisson train of excitategypaptic potentials with a mean
event rate that varies following an Ornstein-Uhlenbeckcpss (defined in Sectiodi2) im-
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Fig. 6.5Dispersion relation of waves arising from a chain of inhibibry HH neurons re-
ceiving an excitatory input. (A) Dispersion relation of inhibition-dominated chain oHH
neurons. 45 neurons at the bottom are periodically driveth wonstantToy =2 ms and
varying Torg. (B) Raster plot of traveling waves corresponding to a spetifiadefined by
Ton =2 ms andlpgg =22 ms.

pinging on all the neurons (except the ones at the bottongiwdiie periodically driven with

a constant current). Under this condition, the system (gpet in Figure6.6A) cannot sus-
tain propagation at frequencies higher thlar: 24 Hz, and the smallest spatial wavelength
corresponds to a fraction 7.7 of the si¥eof the network, meaning thakt is approximately
130 neurons. Figur6.6A shows the dispersion relation of the noiseless (blue, dingesas in
Figure6.5A) and noisy (green) cases. Furthermore, for increasingegabf the GABA decay
time constantryecay the frequency of wave propagation decreases. Fi§ufi@ shows that
for large values ofecaythe system cannot sustain the propagation of waves withdpagal
wavelengths (the smallestvalues are obtained with the smallest GABfycay. For GABA
Tdecay=25 ms,m= 3.9 corresponds té ~ 15 Hz (Figure6.6B). Notice that the frequency of
the collective synchronous oscillation decreases withe@singryecay and this will be matter
of study in Sectior6.3. In summary, Figuré.6 shows that inhibition slow-down hinders long
wavelengths. Systems where neurons have a limited mempagcity to integrate incoming
inputs can still exhibit waves with long spatial wavelendibcause in that way the effect of
the noise or the slower GABAgecayis greatly reduced (results not shown). However this
analysis needs a further exploration that necessarilydhaslude all the parameters involved
in the generation of these patterns.
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Fig. 6.6 Numerical results of a chain of inhibitory HH neurons receiving an excitatory
input under different conditions (A) Dispersion relation of inhibitory-dominated chain of
HH neurons without noise (blue) and in presence of noisee(@re GABA Tgecay iS equal

to 15ms. (B) Dispersion relation of inhibitory-dominatedashof HH neurons for different
GABA Tgecay GABA Tgecayis equal to 15ms (blue) and 25ms (purple). In both plots, 45
neurons at the bottom are periodically driven with consTgft= 2ms andlprf varying.

We next ask to what extent these backward wave dynamics cgerezalized, and which
are the necessary and sufficient conditions for the phenom@&noccur. To this aim, we
first develop a continuum approximation of the HH model pné=e& above.We derive a self-
consistency condition for the existence of traveling watt@sn which the dispersion relation
between velocity and wavelength can be calculated.

6.3 Continuum model approximation starting from Hodgkin-
Huxley model

We base our investigation on the continuum approximatioeld@ed byKistler and van Hem-
men (1998, and aim at applying their approach to our network topologiye-dimensional
chain with regular asymmetric connections. This approxionafollows the HH model intro-
duced in the previous Section, and allows us to explore tbkvizard propagation phenomenon
from an analytical point of view. In their worlkistler and van Hemme(998 considered a
two-dimensional lattice of spiking neurons with local irgetions, focusing not on the mean
firing rate of the neurons, but on the single firing events wéie@ction potential is released.
They were interested in studying patterns including ailvaateurons, namely all neurons that
are currently firing an action potential. With that modekythiound a diversity of patterns of
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collective excitation in the form of traveling pulses andves, and calculated the dispersion
relation.

Starting from Equation (7) dfistler and van Hemme(iL998, in our continuum approxi-
mation we define the local fieM(x,t) as the membrane potential at locatioand timet, and
assume that a spik&x,t) is triggered if the local field crosses the spiking threshdlffom
below. The expression for the local field in a one-dimendiasgmmetric network is:

V(xt) :Qext+/_0;dx’.](x—x’)/Ooodt’e(t’)S(x’,t—t/) (6.1)

whereQey; represents the magnitude of the external excitation, safigeternal connections
in our network are inhibitory. The chain topology with pgstaptic connections going only
in the positivex-direction is captured by the synaptic strength function

J(X) = —qO(x) ©(y —x), (6.2)

whereq is the magnitude of inhibitory connectior®(x) the Heaviside function (0 fox < 0
and 1 forx > 0) andy the window connectivity. For the response kereél) we use the
postsynaptic alpha function from the full spiking model
t
E(t) _ 1 (e Tdecay e_m> G)(t) (63)

Tdecay— Trise

with Tgecay@ndTyise being respectively the GABA decay and rise temporal cotstaefined
in Table6.1 The analysis of a collective phenomenon employs a correipg ansats(x,t)
for the spike activity. For equidistant waves travelinghee positivex-direction (direction of
connectivity) we assume

S(x,t) = i 5(§—t—n)‘), (6.4)

Nn=—o vV

wherev > 0 is the wave phase velocity and> 0 is the spatial wavelength. Our first objec-
tive is to integrate the local field equation for the forwardgagating waves with the kernel
response, and after some mathematical steps (detailedaenixB), we obtain:

fw - Tdeca —h o X — ot
V (X’ t) = Qext —q —y.e VTdecay (e Videcay _ @ VTdecay) _
nSho \ ldecay— Trise

Tri __vt+nA X Xy
. mse e Vlise (e Vlrise — @ VTrise) , (65)
Tdecay— Trise
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whereng andx are given by

X—Vvt—y
o = [T
X = min(x,vt+nA).

In order to evaluate the sum, we split it into two parts: g n < n; and forn > n; and thus
X = vt +nA andx = x respectively in the two sums. After some calculations, wiokthe
local field equation

nA

. A —X+y
. -l-deca 1 —e V'l'decay - vt+ng,
VW (xt) = Qex—0{N— Y —— |e  Videcay
Tdecay— Trise \ 1 _ e Videcay
1 s t4+ngh
Tri — e VTise _ VtingA —x+y
nse p e VTrise
Tdecay— Trise \ 1 _ o™ Viise
y
VT, vt+(np+1)A —x
Tdecay 1-e d;cay e_ "Téecay
Tdecay— Trise \ 1 _ o Vijecay
y
Tri 1—e Viise | _ Vir(n+tDA-x
— nse 3 e VTrise (66)
Tdecay— Trise \ 1 _ @ Virise
where
X—Vt—y
No ’V -‘ )
A
= w557
1 = -
B A ' A ’
n = n—np+1

To evaluate the solutions we also need to calculate the tarieadive of the local field/™ (x,t)

_
ovV(xt) q (1. e - 7Vt+vggg:y+v
_ . A
ot Tdecay— Trise 1—e Videcay
nA
1—e Viise _ VtngA—x+y
+ — e VTrise
1— e_ VTrise
y
1— e* VTdecay vt (ng+1)A—x
+ —_— e VTldecay
1— eﬁ VTldecay
y
1— e_ VTiise Vit (ng+1)A—x
e e Y 6.7)

1— e_ VTrise
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The proposed ansatz is a valid solution only if there areeslf A and v that satisfy the
self-consistency conditions

ovw

VW(vt+nAt)=9 and S >0, VneZ. (6.8)

X=vt+nA

If we set a fixed thresholé, synaptic inhibitiong, and external excitatioQey;, the above
self-consistency condition yields a dispersion relatigve first consider the case whanis
larger thany, i.e. y/A < 1. Settingx = vt + nA and substituting we obtain

o — F}H_M)\_Vt_q _ {n_)_)ﬂ _n,

n = min{{Vt-l_T_VtJ, {vt-l—r;‘)\—vt“ —1}:n—1,

n = n—-mnp+l=n-1-n+1=0.

Becausen = 0, the first three terms in the local field Equatiéng] drop out and we obtain the
following self-consistency relation betwegarandv

__v __v
Qext—9  Tdecay <1 —€ Vrdecay> _ Trise <1 —€ VT/’\ise ) . 6.9)

= . A :
q Tdecay— Trise \ 1 _ o™ Vigecay Tdecay— Trise \ 1 _ g™ Virise

By replacingA = 2rr/k andv = w/k, we find the dispersion relation for the forward traveling
waves which is shown in Figure.7. Actually we prefer to express the dispersion relation
shown in that plot in terms of the normalized wavenumigér= y/A and the temporal fre-

quencyF = v/A:

M M
Qext—9  Tdecay (1 —€ Frdecay> Trise (1 —€ Frrlise ) ‘ (6.10)

= - _
q Tdecay— Trise 1—e Fldecay Tdecay— Trise \ 1 _ @ Fiiise

However, we need to evaluate the condition that the local & reaches the threshold from
fw

below, meaning that the temporal derivative of the Iocadf@# is positive. Evaluating

Equation 6.7) with the above values fary andn; we obtain

. 4
1—e Y'decay 1—e Viise
= - q_T. S B —— (6.11)
X=vt+nA decay™ frise 1—e Y'decay 1—e Vhise

It turns out that the above derivative is non-positive fdrvalues ofA andv (Figure6.8).
Hence the chain cannot sustain forward traveling waves.

aviw
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Dispersion Relation (forward waves)
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Fig. 6.7 Dispersion relation for forward waves. Dispersion relation derived from the self-
consistency condition6(8) for forward propagating waves as a function of the nornealiz
wavenumbeM’ = y/A and the temporal frequené&y= v /A for different ratio of%.

Now we turn to study the backward propagation. To this aim¢amnot simply substitute
a negative value fov in the expressions for the forward traveling case, becdwesddrivation
explicitly relies on the sign of when evaluating the integration and summation limits. €her
fore, we propose a similar derivation with a spiking pattemequidistant waves traveling in
the negativex-direction (opposite to the direction of connectivity):

> X A
= —+t—n— A2
S(x,t) n:zm5<v+t nv), (6.12)
where agairv > 0 is the wave phase velocity (in this case in the negati@zection), and >

0 is the spatial wavelength. The local field equatitt(x,t) for the backward propagating
waves after integrating the kernel response is:

b Nmax Tdecay _vt-nA X X
\V/ W(X,t) — Qext_q — Y e VTdecay(e Videcay — @ VTdecay) _

n<=cw \ Tdecay— Trise

__vt—nA X X

Tri _ X _
_ nse e Vlise (e Vlrise — @ VTriSe>> , (613)

Tdecay— Trise
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Dispersion Surface Derivative (forward waves)

Fig. 6.8 Local field temporal derivative for forward waves. Plot of local field temporal
derivative as a function of the temporal frequency and thienatized wavenumber for forward
propagating waves is non-positive for all valuesioéndv, meaning that the local fieMd™
does not reach the threshold from below as it should be, teosodstrating that the chain

cannot sustain forward traveling waves.

wherenmaxandx are given by

e = X524, 5] 1),

X = maxX—y,nA —vt).
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At the same way, in order to evaluate the sum we break it intogarts: forn < n, and for
N2 < n < Npax thusx = x— y andx =nA — vt, respectively. We obtain the local field equation

nA

_ T4 1— eﬁ VTdecay _ vt—nNmax +x
VbW(X7t) = Qext— CI{ n— ecay < 2 e Videcay

Tdecay— Trise \ 1 _ o Vigecay

VTrise
) e

__m
Trise 1—e Viise | _ vi-nmad-+x
Tdecay— Trise \ 1 _ @ Viise

Videcay
A

. A
Tdecay 1—e Videcay e_w
1—e Videcay

Tdecay— Trise

y
T 1—e Viise | _ Vt=(mp-LA+x—y
— rse > e VTrise , (6.14)

: A
Tdecay— Trise \ 1 _ @ Virise

where
= maf (R, (S )
. X+V X+ Vv
v = minf X5 5] 1),

I‘T - nmax— n2 + 1

The time derivative of the local field"y*! is

___hA )
IVV(x,t) q 1—e Yecay| _vomadix (] @ Vise | _viommadix
’ — _ — e Videcay — e VTrise
ot Tdecay— Trise 1—e Videcay 1_e Viise

_ A
1—e Y'decay

y
1— ef VTrise _ vt (np—DA+x-y
-\ — e VTrise . (6 15)
1—e Viise

Now we turn to the self-consistency conditions for backwiaedeling waves, and we first
consider the case when the spatial wavelength is larger ttiwonnectivity window, i.e.

_ 4
1—@ Videcay \ _Vt=(m-LA+x—y
4+ —— |e Videcay
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y/A < 1. Settingx = —vt +nA and substituting we obtain

= ma -
- o= 1] o] +3} -

vt-l-n)\—l-th , {—vt-l-)l\‘l)\-i-vt“ _1}

vt+nA +vt—yw {—vt+n/\ +vt—yJ+1}
’ A

Nmax = {

-
- i o] 1} =02

N = Nmax—N2+1=n-1-n+1=0.

Becausen = 0 the first three terms in the local field Equatidhl4) drop out, and we obtain
the following self-consistency relation betwegrandv:

__Y y
— — Videcay _ Ay : —_@ Vi Ay
Qext 19 — Td ecay ( 1 e ) e VTdecay o Tl’lse ( 1 e rise ) e— m .

. ) : A
q Tdecay— Trise \ 1 _ o™ Vigecay Tdecay— Trise \ 1 _ ¢ Virise

(6.16)
Next, we check that the local field gets close to the threstofd below, i.e. that the temporal
derivative of the local field is positive.

v
q 1—e Videcay\| _ _A-v 1—e_ﬁﬁse Ay

— - 5 e Videcay __ — e Vlise ».

eVt Tdecay— Trise 1—e Videcay 1—e Viise
(6.17)
The above derivative is non-negative everywhere and Igtpetsitive for most values oh
andv (Figure6.9). Hence, unlike forward waves, the chain can sustain baakivaveling
waves. This result confirms the phenomenological findinghavwe presented in Secti@n2

The dispersion relation for backward traveling waves imtof the normalized wavenumber
M’ = y/A and the temporal frequenéy=v/A is:

oV bw
ot

M’ M’
_ _ @ Fldecay = : —_ e Fri 1-M’
Qext— 3 _ Tdecay (1 e > e Flaecay Trise (1 € :Se > e Flrise

1
q Tdecay— Trise 1—e Fldecay Tdecay— Trise \ 1 _ @ Fiiise

(6.18)
This dispersion relation is plotted in FiguéelOand has a number of noteworthy properties.
First, asF — 0, M’ — 1 and hence\ — y for all parameter values. This corresponds to
the equilibrium state of the non-driven chain where the iapatavelength is equal to the
connectivity window. Second, & — «, M’ approaches a non-zero value that is parameter
dependent. This means that there is a limit to the longesthaygth that a particular network
can exhibit. Specifically, the closéQex: — J)/q is to O, the longer the maximal wavelength
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Dispersion Surface Derivative (backward waves)
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Fig. 6.9Local field temporal derivative for backward waves. Plot of local field temporal
derivative as a function of the temporal frequency and thenatized wavenumber for back-
ward propagating waves is non-negative everywhere aradigpositive for most values of
andv, meaning that the local fieM™ can reach the threshold from below, thus demonstrating
that the chain can sustain backward traveling waves.

that the chain can sustain. This captures the observatairiltere seems to be a parameter-
specific limit to the longest wavelength possible for a gigem of excitation and inhibition
values.

The study of the propagation of traveling waves in the loray®length limit requires fur-
ther development. In what follows, we propose an analyidedctable continuum integrate-
and-fire approximation to investigate how wave-propagatiepends on various parameters
that characterize neuronal interactions such as synapfi@gonal delays, the time course of
postsynaptic potentials, and the degree of asymmetry itofhedogy.

6.4 Integrate-and-fire model continuum approximation

In this Section we refer to the analysis carried outBrgssloff(2000, where he introduced
a continuum model of cortical tissue based on a one-dimeabieetwork of IF neurons with
symmetric excitatory connections, with individual newsaperating in the excitable regime.
An IF neuron fires a spike whenever its membrane potentiahe=athe threshold, and imme-
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Dispersion Relation (backward waves)
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Fig. 6.10Dispersion relation for backward waves.Dispersion relation derived from the self-
consistency condition6(16) for backward propagating waves as a function of the nozadli
wavenumbeM’ = y/A and the temporal frequené&y= v /A for different ratio of%.

diately after firing the membrane potential is reset to soeséing level Keener et al.1981).
Each neuron is assumed to receive a constant externdplsiash that, if synaptically isolated,
the neuron oscillates (periodically fires and resets) wlgen 9 (oscillatory regime) and is
qguiescent (in the absence of additional stimulation) wigend (excitable regime)Eressloff
2000. Our objective is to apply that approach to one-dimendinatworks with asymmetric
inhibitory connections, with individual neurons operatin the oscillatory regimd{§ > ). It

is also worth stressing that IF models that neglect refractes will lead to poor predictions
of wave speed (for periodic waves) at small periods and shegplored inJames et a(2003),
where authors model an absolute refractory time-scaledyming the system at reset.

As in the continuum approximation of the previous Secth(x,t) is the membrane po-
tential of neuron at locatiorn e R at timet. WheneveW (x,t) reaches the firing threshoftl a
spike is generate®, = t, and the membrane potential is reseV{x,t ™) = {. The evolution
equation for the membrane potential is

oV (xt) ) ~V(xt)
ot %

+1(x,1), (6.19)
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wherel (x,t) is the total synaptic input at positiorand timet, andt,,, represents the membrane
time constant. Followin@ressloff(2000, we setr, = 1 andd = 1 for convenience, so one
unit of time represents approximately one membrane timsteon, i.e. 10 ms. The synaptic
current is given by

(X, t) = g/_z /OOOW(X—X’)J(t/) E(X,t —t')dtdx, (6.20)

with g andW(x — x') being the (scalar) synaptic coupling parameter and thelatesoeight

of synaptic connection fromd to x, respectively. As in the HH continuum approximation, we
express a chain topology with postsynaptic connectionsggonly in the positivex-direction
over a window of lengtly by means of the synaptic weight function

W(x) =y O(x) ©(y —x), (6.21)

whereQ is the Heaviside function. Notice thét(x) is normalized to integrate to 1, so that the
sign and strength of synaptic coupling are determined by#rametey. For the response
kernel we can use the postsynaptic alpha function from ttegiking model
1 _t
J(t) _ (e Tdecay _ @ Trise> @(t), (6.22)

Tdecay— Trise

with Tgecay@ndTrise being the GABA temporal time decay and rise, respectivehe dutput
spike train of neuron at positionis expressed as a sum of delta functions centered at the spike
timesTm(X):

]

Ex= 5 8(t—Tm(x). (6.23)

M=—0o0
The spike train ansatz corresponding to equidistant wagsling in the positivex-direction
(direction of connectivity) is

E(x,t) = % 8(t—(kx+m)T) =y 3(t—c x—mT), (6.24)

meZ

whereT is the wave periodf = T~1 is the wave frequency is the wavenumbep = k1 is
the spatial wavelengttv,= (kT)~1 = A f is the wave phase velocity, aiig(x) = mT+kxT =
mT -+ 6(X)T are the spike times. In the last expressi@x) = kx is the firing phase of the
neuron ak. We focus on the intervdD,t) and assume that the neurorxdtas not fired in this
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interval. We can integrate Equatio®.{9 over this interval to obtain
t !
V(xt) =V (x,0)e 4+ (1— e‘t)lo+/ e U (x t)dt. (6.25)
0

Then we consider the above expression under the traveling a@satz, and assume that the
neuron atx = 0 has just fired at time 0, i.eV(x,0) = {. Since all neurons are firing with
periodT, it then follows thatv(x,T) = 3 = 1. Lettingt =T in Equation 6.25 above and
substituting we obtain

;
1:ze—T+(1—e—T)|o+e—T/o &'l (xt')dt. (6.26)

To evaluate the integral above we first look at the synapticeatl (x,t) in the presence of
traveling waves. Substituting the spike train expressequation 6.24) into the synaptic
current definition (Equatiors(20)

) — g/_i/wW(x—x’u(t’) S 8(t—t' — (k¥ +m)T)dtdx

mez
- X) _t — (kX 4 m)T)dtdx
g Wix- s JARC (kX +m)T)
_ g/ W(x—x) 3 It~ (kX +m)T)dx. (6.27)
- MEZ

Notice that the last expression above relies on the factithat= O fort < 0, so that the lower
limit of the integral overt’ can be set to-«. There is no loss of generality in considering
x =0, so the integral in Equatio®(26) becomes

e /OTetI(O,t)dt _ T /OTetg/w W(-X) S J(t— (k¥ +m)T)dxdt
- MEZ

_ g/ZW(—%)e—T/Tet ZZJ(t—(k)(+m)T)dtd>(
— g/ / etngJt— (m—kx)T) dtdx

~— g / XK (kx)d (6.28)

where the functionky (60) is defined as

e)ze—T/oT ¢ 5, J(t-(m-oT)at (6.29)
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Kt (0) expresses the contribution of an infinite periodic spikentrath period T and phase
offsetOT to the membrane potential at tirfigfollowing leaky integration. These contributions
are spatially integrated after scaling by the synaptic wefgnctionW(x) and the coupling
parametelg. Equation 6.29 corresponds to Equation (2.6) Bressloff (2000, where the
integrand is)(t + (m—0)T) instead of)(t — (m— 0)T) as above. The expressionBnessloff
(2000 relies on the assumption of a symmetric synaptic weighttion W(x) = W(—Xx),
and does not hold under the asymmetric case. After sulisgtiquation 6.28 into Equa-
tion (6.26 and re-arranging we obtain Equation (2.5Bressloff(2000:

1—eT¢=(1-¢ I0+g/ X)Kr (kx)dx. (6.30)

The above expression generates a dispersion relation éxefive T 1 andk, but the integral
still needs to be evaluated. To do so, we first notice Hgt0) is a real-valued periodic
function of the phasé with period 1, and hence can be expanded as a Fourier series

00

Kr(6)= 5 cne®™?, (6.31)

nN=—co

where the Fourier coefficients are defined as
1 .
Cn— / Kt (6)e 12MPdg. (6.32)
0
Substituting Equationg(29 above we get
e = / —T/ et It — (m—6)T)e 12M dtdg
_ T/ et/ J(OT +t — mT)e 12M° gat
meZ

_ /é / 3O +t—mT)e 19 dg'dt

meZ

_ i/ et/ 30’ +t)e 1478 do/dt
T 0 —0o0

el (T . ... el .. T :
= T/ etejth(Jw)dt: TJ(JO))/ e(1+lw)tdt
0
_ e T J(Jw) (e(1+jw)T _1) _ erT _eiT J(Jw)
T 1+ jw T 1+ jw
1-e " J(jw)

, (6.33)

_ 2m
T

T 1+jw
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~

whereJ(jw) is the Fourier transform af{(t)
Jjw) = / Jt)e 19t (6.34)
1 [/ - i
= = ' Jat
It Zn/_mJ(Jw)e do. (6.35)

Now we can evaluate the total contribution of synaptic isptat the membrane potential
Vs(k, T), which corresponds to the integral in Equatio628-(6.30

.
Vo(k,T) = e—T/O e1(0,t)dt

= g/oo W (x)KT (kx)dx

= g/oo W(X) i cnel 2™y

=95 cn/ W (x)el 2k
n=—oo 0

— 0 aW(-jo)

Nn=—oo

w' =2rmk
1-e T 2 Jjw) .~
(j®) 5

— 6.36
T £Ll+jw ( )

(—jokT)

W=

Several things are worth noting here. FiNi(k, T) is a real-valued function and its sign is
determined by the sign . This follows from the fact that botW(x) andKy(6) are real
non-negative functions. Second(k, T) is expressed as an infinite sum of complex quantities
as bothi(jw) andW(jw) are complex. The sum yields a real value because of the catejug
symmetries](jw) = J*(—jw) andW(jw) = W*(—jw), which hold because both functions
are defined as Fourier transforms of real-valued functifhisandW (x). This in fact allows

for an alternative expression for Equatidh36 emphasizing thats(k, T) = Re{Vs(k, T)} is
real:

1—-e T

Vs(k,T) =g ) (6.37)

. ® J(jw)W(—jwkT)
((O)W(0)+2nzlme{ e } .

w=

If J(t) andW(x) are both defined to integrate to 1, th®) = W(0) = 1. Furthermore, if the
synaptic weight function is symmetrid/(x) = W(—Xx), as inBressloff(2000, then its Fourier
transform is real and eveW/(jw) = W(—jw) = Re{W(—jw)}. So Equation§.37) can be
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rewritten as

—T

Vs(k,T) =g ) (6.38)

_2m
W="=

(1+ 2n§1%e{ fg‘;’i} }v”v( j k)

corresponding to the conditions considered in Equatiohl(2of Bressloff (2000. Finally,
to evaluate the infinite sum in practice, we truncatedggy terms according to the spectral
content ofJ(jw) andW(jw). After the derivation of an expression fdg(k, T), it is useful to
collect the remaining terms in Equatiof.80 and define

Vi(T)=1-e "{—(1—e Nlp. (6.39)

With this definition the dispersion relation can be thoudfasthe solution t&¥s(k, T) =V;(T)

or as the O level set df (k, T) = Vs(k, T) —V;(T). Notice however that the above condition
only guarantees that(0,t) reaches threshold at= T, consistent with the traveling wave
ansatz. It does not guarantee t@0,t) does not also reach threshold at an earlier goinT,
which would be inconsistent with the traveling wave ansathis condition is termede-
excitation and is considered in Section 2.3 Byessloff(2000. There is another pathological
condition, which is inconsistent with the traveling wavdusion, namely the possibility that
V(0,t) reaches threshold at, but from above, instead of from below, i¥(0,T~) > 1. We
therefore require that solutiorik, T) meet both self-consistency conditions below to be part
of the dispersion relation, as we have imposed in the prev@action:

aV(0,t)

F(k,T)=Vs(k,T)—=V(T)=0 and ot

> 0, vne Z. (6.40)

t=nT
In order to compute the derivative we start with the membnaotential (Equation@.25)
under the traveling wave ansatz and assume the neusos @thas fired attimé=0
t /
V(0t) = get +(1—et)lo+et/ &'l (x,t')dt
0

= et4(1—eHlg+Vs(kT,1)
= 1-Vi(t) +Vs(k T 1), (6.41)
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whereVs(k, T,t) is the total contribution of synaptic inputs to the membrpotential at time
t after firing, given traveling waves with wavenumiseaind periodrl

t !/
Ve(kT.t) = e /O &'l (x, ')t

~

J(jw)

6.42
1+ jw ( )

= % S (@%-e) W(—jwkT)
n=—oco (=2

The above expression generalizes the earlier definitiorgimaion 6.36), so thatVs(k, T) =
Vs(k, T, T), and the derivation is very similar. The derivative is then

ov(O.t) ¢ OVs(k T,t)
S o B PRI [ ) I
= (lp—Q)e +Tn:z_°o(jwe +e )1+ij( jokT) w_zm. (6.43)
- T
Evaluating the derivative at= T gives
oV (0,1) T g r 3w g
- — = W(—jwkT
ot (lo—{q)e +Tn}m(1w+e )1+jw (—jwkT) .
t=T w=51
= (=0 T+2 5 J(jeW(—jwkT)
——00 wzz%m
g 1, = J(jw)
—=(1- —W(—jwkT
( )nzw1+1w ( ) .
W=
= (lo—Q)e " +1(0,T) —Vs(k, T). (6.44)
In the above we have usé, T) simply as a symbol to denote
|(0,T):1—9 S J(je)W(—jwkT) (6.45)
N=—o0 w:27T'm

but the above expression correctly represents the synaptit received by neurorn= 0 at
time T. Now, if the first self-consistency condition is met, thé(k, T) = V(T ) and substitut-
ing in Equation 6.44) and rearranging we obtain

AV (0,1)

o = 1(0,T)—1+1o. (6.46)

t=T
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Given that the first self-consistency condition requiv¢8, T) = 1, we could have written the
above expression directly from the evolution Equatiéri9, but this would not have yielded
an expression for(0,T). However, a general expression fidi,t) can in fact be derived
independently of the above. In particular, recognizing thader the traveling wave ansatz,
| (x,t) is periodic with periodl' and following a derivation similar to that in Equatio®.86),
we can show that

g & OKTY J(j )W (— jwkT) , (6.47)

W=

—||(Q

which of course reduces to the expression in Equatofg for | (0, T). Independently of the
approach, the final result is the same. The second selfstensy condition on the derivative
of V(0,T) reduces to

1(0,T)>1—lp. (6.48)

We now consider several choices for the response kelftg¢l and the synaptic weight function
W(x). The single time constant response kernel and its assddtataier transform are given

by

1 _
WO = (e (-0, (6.49)
~ . e*jwf

J(jw) = FEE (6.50)

whereé represents the axonal conduction delays. The corresppeduations for a response
kernel with different rise and decay time constants are
1 _t=¢& t— 5
Lt) = —(e Tdecay — @~ ) ot — &), (6.51)

Tdecay— Trise

~ . e*jwf
J = - —. 6.52
2(J) (1+ Tdecayl @) (1 + Trise] W) ( )

The finite support equal weight synaptic function is given by

Wi(x) — y_le(g+x—x) e(%’—x+x), (6.53)
wy
Wi(jow) = el X%_ej“’xsinc(%/), (6.54)

2

where the parametey controls the degree and direction of the asymmetry in theysyn
connections. For examplg,= y/2 corresponds to the chain topology in Equati6r2(). For
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a synaptic weight function with infinite support and exparamecay we consider

Wa(x) = Z_OXei ox, (6.55)
. —jwx
Wo(jw) = m~ (6.56)

For the purposes of concreteness, we consider the chaitotppwith asymmetric in-
hibitory connections and response kerdg) = Jo(t) with both rise and decay time constants.
The chain topology requires thef(x) = W;(x), x = y/2, and we sey = 50. Figure6.11
shows the dispersion relation obtained as the zero levekafrF (k, T) = Vs(k, T) =V, (T).
Notice that the level curves exist for both positive and tiggavalues ofk, implying that
both forward and backward propagation satisfy the firstsetfsistency condition. However,
only the solid black portion, corresponding to backwardoagation, satisfies the second self-
consistency condition. Hence, only backward waves argvatiaunder this choice of topology
and parameters.

We now focus on the analysis of networks with purely inhibjitgoupling and conse-
guently seg < 0. Since all synaptic interactions are inhibitory, how megkernal excitation
lo must neurons receive in order to exhibit collective behawdad how does the balance be-
tween the inhibitory coupling and external excitatiol, affect this behavior? Notice that
controls the sign and magnitude of batki{k, T) andl(0,T), so it is useful to express them
asVs(k, T) = gVs(k, T) andI (0, T) = gl (0, T), where the bar denotes non-negative quantities.
Using this notation the self-consistency conditions bezom
Vi (T) — 1-1p .

and 1(0,T) >

Vo(k, T) =
s(k, T) 9 g

(6.57)

and the left hand sides of both equations are positive. jnc® it then follows thaw, (T)
must also be negative for a solution to exist. Since the afide reset potential must be lower
than the firing threshold] < 1 and sov;(T) > (1—eT)(1—1lo) > (1—lp). In the excitable
regimelp < 1 and then clearly; (T) > 0, so no solutions to the first self-consistency condition
exist. Therefore, only the oscillatory regimg,> 1, is consistent with traveling waves under
inhibitory coupling,g < 0. Sincel_(O,T) does not depend on eithgror lg, the second self-
consistency condition in Equatiof.67) is purely determined by the ratio of excitation above
threshold to inhibitionar = (1—1¢)/g = |lo— 1|/|g|. Similarly, Vs(k,T) does not depend on
eitherg or | and the first self-consistency condition can be expressed as

1-1 lo— lo—
0,0 Ze‘T:or— 0 Ze‘T. (6.58)

Vo(k, T) =
s T) g el




6.4 Integrate-and-fire model continuum approximation 156

Dispersion Relation o = 0.10
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Fig. 6.11Dispersion relation derived from IF continuum approximation. Curves show
solution branches that meet the first self-consistencyitiond Only the solid black portion
meets the second self-consistency condition as well. $nsedwV (0,t) over the interval
[0, T] for the choices of spatial and temporal frequencies inditay the labeled points on the
dispersion curve. In all exampl&§0,0) = ¢ andV(0,T) = 1, however in C and Dy (0,t)
crosses threshold (dotted line) at an earlier point as \MelhceV is decreasing & and does
not meet the second self-consistency condition. Notioe thiatk < O for the solid curve, so
that only backward waves are allowed. The parameters a@lasf W (x) = Wi (x),J(t) =
B(t),g=—1,lo=11,{ = 0,Tm = 10, Trise = 1, Tgecay= 20,y = 50, X = 25,& = 0.

For largeT, the above can be approximated\_@&,T) = a, so the dispersion relation is also
approximately determined by. This is illustrated in Figuré.12 Consider the value of the
dispersion relation dk|y = 1. Itis easy to see that under this choic&dlN(jw) =0 VYw#0
and is 1 otherwise. Consequentiigk, T) = (1—e T)/T ~ 1/T ~ a. The analysis above
shows that the shape of the dispersion relation is primgolyerned by the ratio of excitation
to inhibition a and is less sensitive to the absolute magnitudgaflo.
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Fig. 6.12Dispersion relations under different ratios of excitationto inhibition. Solid lines
correspond td&/s(k, T) = o and dotted lines td(0, T) = a. The values ofx are indicated on
the contour lines. Solid lines are approximations to theelision relations and hold best for
small temporal frequencies. Only the portions of the disjoer relations that lie below the
corresponding dotted contour lines meet the second seHistency condition. This is the
case for most curves in the left half-plarle< 0) and not true for most curves in the right
half-plane k > 0). However, the true dispersion relation for amyies below the correspond-
ing Vs(k, T) = a contour, as indicated by the black line far= 0.3. Here a portion of the

dispersion relation for positivie> 0.8 also meets the second self-consistency condition.

Next we turn our attention to how the level of asymmetry in fiyeaptic connections
affects the shape of the dispersion relation. To do so, we fix0.1 and systematically vary
the offsety in the synaptic weight functiowj (x). The results are illustrated in Figusel3and
show that significant directionality in the connectivityresquired for the network to exhibit
backward traveling waves. In particulag,> 0.4y before we recover the dispersion relation
corresponding to the forward chain topology:= 0.5y.
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Fig. 6.13Dispersion relations under different levels of connectiorasymmetry. Same pa-
rameters as in Figuré.11, but the asymmetry ratig/y is varied from 0 to (b as indicated
above the panels. Here 0 corresponds to symmetric connedaiaod (6 to forward connec-
tions only. Notice that significant directionality in theroeectivity is required for the network
to exhibit backward traveling waves.

We can also systematically vary the axonal conduction ddlayn the spike response

kernelJ>(t). The results are illustrated in FiguBel4 and show that with progressively in-
creasing delays, long wavelength solutions for forwarmppgating waves become possible.
Finally, we vary the decay time constamgecay Of the spike response kerngi(t). The re-
sults are illustrated in Figuré.15and show that the frequency of the collective synchronous
oscillation decreases with increasing synaptic decay tiomstant.

6.5 Conclusion

Starting from experimental finding&i{benov and Siapa009, our purpose has been to
model traveling wave patterns using a biophysically plalesmodel, and to investigate the
mechanisms generating this wave-like behavior. We haviesiiigored phenomenologically
the wave dynamics arising from a inhibitory chain of HH nengavith asymmetric connec-
tions. Our results show that if a set of neurons at the healdeothain is periodically forced,
traveling waves propagate in a direction opposite to thagyofaptic connectivity. In order
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Fig. 6.14Dispersion relations under different axonal delays.Same parameters as in Fig-
ure6.11, but the axonal dela§ is varied from O to 10 ms as indicated above the panels. Notice
that with increasing delays long wavelength solutions fwsifive k become possible.

to shed light on the mechanisms and properties underlyiegetivave patterns, we have pro-
vided a continuum approximation with a topology similar tel Fhodel to verify the existence
of backward waves under our assumptions. In fact our arsafiginonstrates that such a spe-
cific chain-like system, with purely inhibitory asymmetdonnections and periodic driving at
the bottom, can exhibit only backward waves and forward ware not admitted. Further-
more the analysis of the wave dispersion relation predi@sthere is a limit to the longest
wavelength that the network can display. This analytiaadgteinforces the numerical results
obtained with the spiking HH model:

* in the limit of zero driving frequency (the non-driven stathe spatial wavelength con-
verges to the connectivity window. This is exactly what we sethe spiking model
with the equilibrium state taking the form of constant stsf active neurons spaced
at the connectivity window (Figuré.?2);

« for each set of parameter values there is a limit to the Ishgavelength that the chain
can sustain, even if this requires a further investigatiarfact, the dispersion relation
does not guarantee that the system will exhibit the cormedipg patterns, therefore the
next step should be the calculation of regions of stabifitthie space of solutions.
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Fig. 6.15Dispersion relations under different synaptic decay.Same parameters as in Fig-
ure6.11, but the synaptic decay time constagtis varied from 10 to 60 ms as indicated above
the panels. Notice that the frequency of the synchronoudiaigm at k = O decreases with
increasing decay time constant.

Next we have investigated the robustness of these pattgnwaaying the previous assump-
tions. This parameter analysis is carried out with a simpledel. Specifically we have de-
veloped an IF continuum approximation for our chain of asyetrivally connected inhibitory
neurons, which is analytically tractable and at the same finis able to capture the most
relevant properties of the waves. We have derived with tradehthe dispersion relation as
a function of various parameters of the system, thus expjattie sufficient and necessary
conditions yielding traveling waves. Our results show fttiathe dispersion relation is pri-
marily affected by the ratio of excitation over inhibitiaather than the magnitude of external
excitation or recurrent inhibition separately (Figéré2), (ii) forward waves with long spatial
wavelength can arise in presence of increasing delaysr@tgid), (iii) the wave frequency is
a function of the GABA decay temporal constant (Fig@rg5 and finally that (iv) backward
traveling waves can be generated in networks with a signifidagree of asymmetry in the
neuronal connectivity (Figuré.13. This analytical methodology captures the results that we
obtained with the spike response model, and provides fumisgghts on the relevance of a
variety of network properties that underlies the wave pgapian.
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CHAPTER o/

CONCLUSIONS

The brain is a complex multi-scale dynamical system thatldis population oscillations,
whose properties vary in time and space according to thevimrhhstate. Instances of this
highly coordinated oscillatory dynamics, such as periggiiechronization of neuronal spiking
at different scales or spatial propagation of neuronalllasicns, may have a computational
role in high-level processes and subserve many cognitinetions. In this Thesis we have
explored a variety of spatiotemporal phenomena arisingn ftioe collective cooperation of
neurons in different brain areas, by means of computatimaalels at microscopic and meso-
scopic scales. We have studied rhythmic coordination batlealamic cells in different brain
states and its potential role in thalamocortical commuigogrocess. We have also examined
gamma-band synchronization across different areas andhbavonal assemblies engaged in
this oscillatory activity can efficiently communicate by ams of microscopic models. Further-
more we have proposed a large-scale model to study how mexésking place at different
scales interact in the multi-scale brain by means of synthation measures. Finally we have
mathematically explored emerging patterns of propagaifameuronal oscillations based on
experimental observations in the hippocampus of rats.h&ké different complex phenomena
are characterized by a collective cooperation betweenesg®ils and brain regions that lead
to highly spatiotemporal patterns at different scales. hawfollows we will summarize the
main results of Part Il and provide future perspectives.
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7.1 Transition between functional regimes in an integrate-
and-fire network model of the thalamus

In Chapter3 we have explored two clearly distinct dynamical regimeswlitferent function-
alities that characterize thalamic activity. During slawave sleep the thalamus is dominated
by internal activity and is hardly sensitive to externairatli (bursting mode). This activity
is characterized by spindle oscillations, namely rhythoscillations at 7~ 14 Hz. In con-
trast, in the awake state the thalamus modulates its actietording to the stimuli coming
from the periphery (firing mode). Our network model inclugésamatergic thalamocortical
(TC) relay neurons and GABAergic reticular (RE) neurons dbedrby adaptive exponen-
tial integrate-and-fire models (aEIF), in which spikes aiduced by either depolarization or
hyperpolarization rebound. Our results have shown that TAeRgs generate spindle-like
oscillations. The generation of this rhythm during slowveasleep is due to the rebound
bursting properties of TC cells, which are mutually conedawvith RE neurons thus giving
rise to highly temporal coordinated patterns. Our reswdigtdemonstrated that clustering in
the RE-RE connections allows the model to exhibit coexistentee two regimes introduced
above: one dominated by oscillations and insensitive teragl stimuli (like sleep) and one
insensitive to them (like wake). We have observed that tesition between the two regimes
occurs when the external excitatory input on TC neurons (okiimg sensory stimulation) is
large enough to cause a significant fraction of these neuossitch from hyperpolarization-
rebound-driven firing to depolarization-driven firing. bt if the external stimulus is below a
given threshold, the network is in a purely rebound-bugssitate insensitive to external stim-
uli, while when this threshold is crossed there is a non-zerdribution of the spikes due to
depolarization, and this makes the TC neurons (and not theeREONS) sensitive to the stim-
ulus intensity, in agreement with experimental observatiplalassa et al2014). Our aEIF
network model provides a computationally efficient desaipof the dynamical features of
the thalamus while preserving the properties of the indialdheurons.

Choosing a simple model for the single neurons allowed usdosf@n capturing the net-
work effects. This choice also opens a number of interegt@rgpectives: due to their relative
simplicity, IF models can be tackled analyticalBdrbieri et al, 2014 Brunel 2000, and
facilitate the search for basic canonical computati@ch(vartz2015. Finally, most primary
sensory cortex network models are built on IF neur@ettaglia and HanseP011 Potjans
and Diesmany2014), and hence aEIF neurons seem a more coherent choice tantidlels
of corticothalamic interactiondMuller and Destexhe2012). In our model, the switch from
inhibitory-rebound-driven activity to depolarizatiomigen firing is proposed to represent a
switch from sleep to awake stat®gng-Vu et al.2008. The information analysis depicted in
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Figures3.9-3.10 has shown the separation between a stimulus-independdat(steep) and
a stimulus-sensitive state (wakefulness). We have notttiirdealt with the role of thalamus,
and in particular of RE neuronal activity, in attention, toig¥ha wealth of works have been de-
voted McAlonan et al, 2008 Wimmer et al, 2015 after the seminal intuition dErick (1984).
To compare our model results with these experimental oasens we should (1) contrast dif-
ferent states inside the awake regime, and (2) take intouattbe temporal structure of the
TC spike trains rather than their rate alone. This will beaialy feasible on the ground of
the results presented in Chap&rWe have emphasized that our model is based on single-
neuron models that are much simpler than those used préuiddghough this has a number
of advantages, as discussed above, some features of thdlahavior that are captured by
more detailed models are not reproduced by our model. Ftarins, our spindle oscillations
constitute a stable state, both in small and large TC-RE n&tyand do not reproduce the
wax-and-wane dynamics that has been observed experitygiigal and McCormick1996),
and which has been reproduced by more detailed models ¥mekgplicitly into account the
dynamics of hyperpolarization-activated cation curréBazhenov et al1999. On the other
hand, our results pave the way for the development of efficrerdels of the transmission of
sensory information from periphery to cortex.

The work presented in Chapt8thas taken into account only stable external inputs from
the periphery to TC neurons or from the cortex to RE neurordir@nary analysis suggested
that an accurate description of thalamocortical inputs@mtcothalamic feedbacks required
a separate study. In the future this network will be intezptaih a full corticothalamic model in
order to investigate the role of the thalamus in the thalanteal information system, because
it still remains unclear. The thalamus cannot be exclugietdssified as machine-like relay,
because in that case sensory information from the periplentd be faithfully transmitted
to the neocortex. Instead it has been shown that the thalaamudynamically process infor-
mation in a way that it reflects different behavioral stateshsas attention, consciousness and
drowsiness. Furthermore recent morphological evidenegsdstrated that the major source
of excitatory synapses impinging on the thalamus is repteseby feedback cortical projec-
tions Destexhe200Q Erisir et al, 1997 Liu and Jonesl1999, thus there is a good reason to
think that thalamus plays a role in gating and modulatingflihwe of information towards the
cortex Sherman and Guillery2002. Many experiments in the intact brain have revealed that
thalamic oscillations are entrained by the cortex, appugnio the cortico-thalamic feedback
an important role in coordinating widespread, coherentsmthronized oscillationDies-
texhe 2000. Reinhold et al.(2015 found that the sensory-evoked activity in the visual
cortex upon the appearance of a stimulus does not simplytefkelf-sustaining activity due
to intracortical recurrent circuits, but it is entrainedlamplified by the direct thalamocortical
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communication pathway. Future studies will be devoted teustand the effect of corticotha-
lamic feedback on thalamic circuits as well as investigptimether the role of the thalamus
is simply to relay information to the cortex and/or to prac@sd modulate it according to
different attentional states.

Another interesting continuation of this work would be totrdoute to the open challenge
of modeling the LFP of the thalamusEifevoll et al, 2013. Mazzoni et al.(2015 recently
showed that an integrate-and-fire model like the one predentChapteB can be combined
with morphological data and transmembrane current sinaundtindén et al, 2013 to cap-
ture the LFP dynamics in a patch of cortex. Since morpho@dgiata are available for the
thalamus, a similar procedure can be applied to our netvesrdét,would hopefully shed light
on the way extracellular signals and neural activity arkdhin this area, thus enhancing the
possibility of experimental validations of the thalamic aets. The potential applications of
this work include the study of the consequences of deep Btainulation (DBS)!. Thalamic
DBS has been shown to contribute to the symptom mitigationwafreety of neural diseases
including ParkinsonTasker 1998 and Tourette’s syndromé&eérvello et al.2008. However,
the precise mechanisms of this mitigation are not compleatkdar, nor is the procedure to
design specific trains of stimulations suited for differpatients/conditions. Neural models
are already exploited to test DBS patterhg[ntyre et al, 2004. We think that a simple yet
efficient model like the one presented in Cha@eean valuably contribute to this field.

1 Deep brain stimulation. DBS stands for the implantation of electrodes within dargaeas of your brain to
produce electrical impulses that regulate abnormal ingzul$he amount of stimulation in DBS is controlled by
a pacemaker-like device placed under the skin in the uppastcand a wire that travels under the skin connects
this device to the electrodes in the brain. DBS is nowadagd testreat a number of neurological conditions, such
as tremor, Parkinson’s disease, epilepsy, Tourette’'sreymel, chronic pain and obsessive compulsive disorder.
Itis also experimentally used for the treatment of depoegssitroke recovery, addiction and dementia.
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7.2 Phase-coherence transitions and communication in the
gamma band between delay-coupled neuronal popula-
tions

Synchronization of collective neuronal oscillations hasmsuggested to mediate communica-
tion between brain areas, with the global oscillationsracsisinformation carriers on which
signals encoding specific stimuli or brain states are sogersed. But neuronal signals travel
at finite speeds across the brain, thus leading to a wide &dgdays in the coupling between
neuronal populations. In Chaptéwe have approached this question in the case of two delay-
coupled neuronal populations exhibiting collective datibns in the gamma range by means
of conductance-based HH neurons. We have characterizeiaib@l activity of the neuronal
populations by means of averaging measures such as LFP aAd(8#d AppendipA.1). In
the presence of excitatory coupling, the LFP and MUA adésitof two identical delayed
neuronal networks oscillate in the gamma range due to thenestce between excitatory and
inhibitory synaptic activity. We have used these measweagutintify phase coherence be-
tween the oscillatory activity of the two delay-coupled plgions at varying mean axonal
delays. The two populations exhibit consistent phase eotoerfor a wide range of coupling
delays, undergoing a transition from in-phase (zero-lagnti-phase collective oscillations as
the delay increases. In the transition region, the in-phasleanti-phase dynamics coexist (see
Figure4.6). We next used information theory to quantify the resporisene population (the
receiver) to a varying external input impinging originatly the other population (the emitter).
For different transmission delays between the two couptgulifations, we have analyzed how
the LFP and MUA calculated from one population convey infation in response to a set of
external inputs applied to the other population. Our regudive shown that effective commu-
nication can be reached even in the presence of relativeglg tielays between the populations,
which self-organize in either in-phase or anti-phase ssorgbhed states.

Our results reinforce the perspective that inter-regiolmecence of oscillatory networks
activity can modulate functional connectivity among anat@lly connected regiond-ties
2005 Salinas and Sejnowsk2001; Varela et al. 2001), thus subserving an important role in
cognition by allowing the function of brain networks to bendynically reconfigured in re-
sponse to different task demandskéam and Kullmann2012. Within this context, the CTC
hypothesiskries 2005 proposed that selective communication can be achievediigrence
between firing rate modulation in a sending region and gaidutation in a receiving region;
hence a sending group of neurons will have the highest ingraetreceiving group, if its in-
puts consistently arrive when gain is high. In that casermftion could be efficiently gated
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by modulating the coherence between populatidases(2005 proposed that unidirectional
communication is due to rhythmic entrainment with an irgezal delay and, in this case, the
conduction delay is directly translated for a given freguyeinto a relative nonzero phase (de-
layed coherence). Our results have confirmed that unidresdt couplings, either structural
or functional, lead to a leader-laggard configuration withoat-of-phase synchronization de-
termined by the axonal delay (Figudeld. Differently from the unidirectional case, CTC
stated that bidirectional inter-areal communication pasrparticipating in a communication
link were synchronized at zero phase both within and betvegeas (see Figure 3 &iries
2005.

What happens in the presence of interaxonal delays? In g&atiform, the CTC hy-
pothesis assumed that inter-areal conduction delays weak elative to the respective cycle
lengths. Thereby two communicating areas, oscillatingeed phase, send output at the same
time in the oscillation cycle, and their mutual inputs agrshortly afterward, still within the
excitatory phase of the same cycle. A given cycle lengthpiseillation frequency, can in this
scheme only subserve communication up to a certain commfudélay. This led to the predic-
tion that longer delays, observed between more distant lar@as, result in communication
through coherence at lower frequenciBagtos et a).20150. While this has sometimes been
assumed to be the caséo( Stein and Sarnthei2000, it has recently been shown that neu-
ronal groups in widely separated areas, even over very angeo-cortical distances, can be
coherent in the gamma band, i.e., at a relatively high frequgBastos et a).2015a Bosman
et al, 2012 Fries 2015 Gregoriou et al.2009 Grothe et al.2012

In Sectionl.3.2we have revised some modeling studies on how neuronal gemgagye in
zero-phase synchrony in presence of variable conductilaysi&icente et al(2008 showed
that two neuronal groups, if they were both bidirectionalbnnected to a third population,
could display oscillatory coherence at zero phadednte et al. 2008. This could be plau-
sible because this motif is often observed in anatomicalowds involving cortical Markov
et al, 2012 or sub-cortical sourcesshipp 20033. In Chapter4 we have studied two neu-
ronal populations coupled synaptically with non-negligidelays. Our modeling results have
shown that the populations organize their joint collectiy@amics in patterns of in-phase or
anti-phase synchronization, depending on the delay. Axanexpect, the two populations
oscillating in the gamma range synchronize at zero lag wihecaoupling delay is zero or very
small (Figure6.6). For increasing delays instead, the networks try to syorabe at lower
frequencies (as suggested Byes 2005, and eventually transition to an anti-phase regime
with smaller, although still significant, phase cohererioedelays up to tens of milliseconds).
Both types of dynamics seem to coexist for intermediate deld@is allows communication
to be reached effectively even in the presence of relatilatye delays between the popula-
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tions. In those cases the transmission delay, phase diffeyand oscillation frequency match
to allow for communication at a wide range of coupling delbgsveen brain area8érardi
et al, 2014h. Our modeling results thus demonstrate the biophysicalgibility of zero-
phase synchronization despite relatively long condudielays provided that the coupling is
symmetric, i.e. the two synchronized local circuits shdoddsimilar e.g. in their local or-
ganization and activity level, their conduction delayshe tespective other circuit, and the
strength of their feed-forward inhibitiofB@stos et aJ.20158.

In accordance with our results in Chapfieand contrarily to the original CTC hypothesis,
recent studies found that interareal gamma-band syncatiomn can entail a non-zero phase
lag (Bastos et a).2015h. Due to these new experimental observations, it becanae ttat
even though the areas are bidirectionally coupled, thisngatband coherence does not oc-
cur at zero phase, but with a systematic delay, i.e., withrectBdnessHastos et aJ.2015h
Bosman et a).2012 Zandvakili and Kohn2015. Fries(2015 formulated a new version of
CTC proposing that bidirectional cortical communicationgalized separately for the two di-
rections by unidirectional CTC mechanisms entailing delaysoth directions Bastos et aJ.
2015h Fries 2015. In that context he suggested that entrainment with deddkieé general
mechanism that sets up phase relations subserving CTC, batiitbrectional communica-
tion and for bidirectional communication.

Akam and Kullmann(2012 have also proposed a mathematical implementation of CTC,
assuming a sinusoidal oscillation and a linear relatiomvben phase and excitability. Their
analysis showed that presynaptic groups, which are ineolhdo the postsynaptic group,
might still have a substantial impact. In other words, CTC Inagisms are possible, but only
if some constraints on the structure of oscillatory agtigte imposedAkam and Kullmann
2012. In fact, the accuracy of information transmission in prese of distractors depends on
the structure and strength of oscillatory activity acroseof inputs. Akam and Kullmann
(2012 demonstrated that to achieve a high signal to noise raéi@$gillatory modulation of
the target signal must be strong, and distracting inputd imislistinguished from the target
by frequency, phase or amplitude of oscillation. If thesgireements are not fulfilled, the ac-
curacy of information transmission is reducékém and Kullmann2012. Given that such
oscillatory activity spans several orders of magnituderagfiency (Sectiod.1.2, and that
in several brain regions the phase of firing is actively mathd relative to a single coher-
ent oscillation O’Keefe and Reccel 993, the brain can indeed exploit phase and frequency
separation to minimize interference between oscillataggas (multiplexing mechanism pro-
posed byAkam and Kullmann2010. The new formulation of the CTC hypothesiBrigs
2015 requires that excitability be modulated by rhythmic symoctization in a way that is nei-
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ther sinusoidal nor linear, in agreement with mathematmoadels entailing spiking excitatory
and inhibitory neuronsBorgers and Kopell2008 Cannon et a).2014 Gielen et al.2010.

While there is substantial experimental support of the CT®liygsis Cardin et al.2009
Schoffelen et a).2011% Siegle et al.2014 van Elswijk et al, 2010, some studies posed chal-
lenges to the original CTC formulation that motivated the mésw (Fries 2015, and which
need to be further explored. Now there is increasing expartal evidence that different
visual areas are gamma-band synchronized with a non-zexsepghg. Therefore non-zero
phase synchronization likely has a key role in the estatlesit of communication links, and
this needs to be further explored. In conclusion, how théanlmeaches the required level of
coordination in presence of large delays is unclear yete l&r have proposed a solution that
is consistent with the original CTC formulation and with negperimental results. It will be
important to experimentally test if two distant neurongbplations engage in gamma synchro-
nized patterns in presence of large delays, eventuallgitraning from in-phase to anti-phase
dynamics to subserve efficient and selective informatiangmission. It would be interest-
ing to study if it is possible to experimentally manipulateunonal synchronization, while
leaving other aspects of neuronal activity unchanged, beceby show effects on neuronal
communication.
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7.3 Probing scale interaction in brain dynamics through syn-
chronization

The preceding Thesis chapters were devoted to developattfenicroscopic models of cor-
tical neuronal networks to explore a diverse range of ctllealynamical phenomena: tem-
porally organized patterns arising from the coordinatibif©@ and RE neurons in the thala-
mus, and different information processing functionadittarough thalamocortical pathways
and gamma-band synchronization between neuronal netwheiksould subserve as a mech-
anism for selectively routing the flow of information. Usingferent simplified levels of
description has been, and still is, very fruitful in unvegithe mechanisms that lay at the basis
of the observed neural tissue behavieorcaud-Trocmé et aR003 Goldbach et a).2008
Kopell et al, 2000a Sancristobal et 812013. However the brain is a multi-scale dynamical
system. In fact the mammalian brain operates in multipléiaipscales simultaneously, from
the microscale to cortical regions. These levels of deBori@are associated with distinct tem-
poral scales, ranging from milliseconds in the case of n&uto tens of seconds in the case of
brain areas.

In Chapter5 we have examined theoretically how spatial and temporadéscateract in
the functioning brain, by considering the coupled behawiotwo mesoscopic neural mass
models (NMs) that communicate with each other through aes@mypic neuronal network
(NN) (Figure5.1). We have used the synchronization between the two NM modedsder
to probe the interaction between the mesoscopic scalesosé theural populations and the
microscopic scale of the mediating NN. The two NM oscillatarere taken to operate in a
low-frequency regime with different peak frequencies (ia theta and alpha bands) and with
very different dynamical features (spike-like dynamiceme case and quasi-harmonic dynam-
ics in the other). The microscopic neuronal populationuimt was described by a network
of several thousand excitatory and inhibitory spiking &sroperating in a synchronous ir-
regular regime, in which the individual neurons fire veryrspdy but collectively give rise to
a well-defined rhythm in the gamma range (as in the neurortalank studied in Chaptef).
Our results have shown that this NN, which operates at adagpdoral scale, is indeed suffi-
cient to mediate coupling between the two mesoscopic asmi, which evolve dynamically
at a slower scale. Therefore frequency and phase lockisg avien when the two NMs oper-
ate at very different frequencies and with very differenbayical features (Figurg.3). We
have also established how this synchronization dependbeeotopological properties of the
microscopic NN, on its size and on its oscillation frequenicyparticular, structural cluster-
ing within the neuronal network reduces the ability of the&mscopic neuronal population to
induce synchronization (Figut5), and the size of the subpopulation of neurons that directly
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coupled the two NMs must also be large enough to allow thesitally irregular neurons to
reach a sufficiently strong collective regime through whtodtwo neural masses can commu-
nicate (Figureb.6).

In general, analyzing this scale interaction by compaiegitehaviors of the microscopic
and mesoscopic models is a very complicated task. In 200MdtanceFaugeras et a{2008
derived the equations of evolution of NMs from the dynamica BN described by a voltage-
based model, through a Herculean mean field analysis of ttveorie an approach that as
the authors themselves mention in the concluding paragoépheir paper, would be very
ambitious to apply to spiking neuronal models. One year,|&edrigues et al(2010 per-
formed such a multi-scale mapping under strong assump(iorsome cases hard to justify
biologically) that included high correlation between theurons in the microscopic popula-
tions and low-amplitude input currents. In our work, we hatempted to circumvent the
complexity of those approaches by using a more phenomeicalagrategy, whose goal is to
test whether microscopic and mesoscopic descriptionswbnal populations communicate
with one another by using synchronization as a proxy of &ffeccommunication. On this
regard, Figuré.3E,F shows that the MUA exhibited by the NN is phase-lockedhéovoltage
of the NM model when synchronization between the two NMseaisT his indicates that the
neuronal network is actively involved in the communicatainnformation between the two
mesoscopic models. We have also quantified the efficiendyi®éffect as the number of NN
neurons involved in the communication between the NMs cesng

Modeling the dynamics of the full brain from a purely micropec scale is computational
unfeasible. Thus a hybrid description of the brain that emgasses multiple scales is an ap-
pealing concept. In that scenario, it would only be necesgarepresent microscopically
those neuronal populations involved in a particular taskl,\@hich are monitored with single-
cell resolution. The rest of the brain, while modulating éleévity of the population of interest,
would not necessarily require being represented with regwpic detail. Currently this is ac-
complished by representing the activity of the rest of tharbby a background noisy activity,
but this approach is not useful when the neuronal populationterest feeds back into those
other brain regions, thereby modifying the backgroundvagtthat acts upon the population
itself. In Chapteb we have considered one way of facing this situation, basedopling bidi-
rectionally microscopic and mesoscopic descriptions offoal populations and using syn-
chronization to probe the interaction between the two scale have employed that scheme
in which two mesoscopic populations are coupled througtird thicroscopic network, since
the behavior that can be expected from two coupled NM modeleeil known David and
Friston 2003 Jansen and Ritl995, and can be used as a reference to interpret the coordi-
nated behavior emerging from our hybrid scenario.
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However, if one is interested in a level of detail that canydmé reflected by NNs and
not by NMMs, then the appropriate level of description tigioout has to be adopted. In other
words, it would be also interesting to test whether micrpgcand mesoscopic descriptions of
neuronal populations communicate, by means of a model wialelevels of representation
coexist. So far, global brain activity has been modeled lidatig the brain into discrete vol-
ume elements, or voxels, and coupling them according tsstai correlations and structural
information @livisatos et al, 2012 Deco et al. 2013 Pons et al.201Q Sotero et a].2007).
Recently, large-scale models of the brain have receivedapstention. Both the Human
Brain Project and the Brain Activity Map project propose imggtgd views to bridge the gap
between the behavior of single neurons and the functionkeofull brain @Alivisatos et al,
2012, but this quest is still in its infancy.
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7.4 \Wave propagation in inhibition-dominated neuronal
chains

In Chapter6 we have analyzed the behavior of one-dimensional chainshabitory neurons
with asymmetric connections. We have shown that such dike@metworks exhibit backward
propagating waves with respect to the direction of synamienectivity if neurons at the
bottom are periodically forced. These numerical resultsistihat in the absence of noise and
for small GABA decay times, wave patterns with long spatiavelength can arise within
the network. Importantly, however, the long wavelengthmeg which is a hallmark of many
neuronal tissues, cannot be readily achieved and is vesjtsento network parameters and
noise. To explore and understand our numerical results we firat developed a continuum
model approximation with a topology similar to the HH mod#riving a self-consistence
condition for the existence of these backward travelingesaand calculating the dispersion
relation that fully characterizes the main properties ef Wave patterns. This mathematical
analysis predicts that there is a limit to the longest wawgtle that the network can display
depending on different conditions. Moreover the shape eflispersion relation qualitatively
agrees with the numerical results.

The results discussed above strongly depend on the assumsptiade at the beginning
of the analysis regarding the topology of the network an@ioglynaptic properties. In order
to study systematically which are the necessary and sufficenditions for the generation
of these patterns, or in other words to investigate the ttolegs of these results across differ-
ent systems, we propose an integrate-and-fire continuumodppation based on a network
with asymmetric inhibitory connections, with individuaturons operating in the oscillatory
regime. We have tested self-consistency conditions tdy#re existence of backward and
forward waves and derived the dispersion relation. Spadifyiove have constructed families
of dispersion relations as parameters are varied, inauigwvel of asymmetry, delay, strength
of coupling and GABA decay time constant. Our results hav@vshthat the wave pattern
generation is primarily affected by coupling strengthstarms of the magnitude of the ex-
ternal excitation in relation with that of recurrent intibn, as well as from the degree of
asymmetry in the structural connectivity. Furthermoree pinesence of large axonal delays
could underlie the generation of forward waves with longtigpavavelength. Finally, as our
numerical results have predicted, an increase of the GAB&ayléme constant corresponds
to a decrease of the wave frequency that the system can sugporresults are informative
regarding the mechanisms underlying the generation arnghgedion of wave patterns.
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7.5 Perspectives

In this Thesis we have studied different spatiotemporakpas arising from the coordinated
activity of populations of neurons. This high level of orgaation is an ubiquitous property of
brain activity, and involves different spatial and tempa@®@ales simultaneously. Our results
provide the basis for further research work.

We have learned that the coordinated response of TC and RBrreetar an external input
on top of a well-defined anatomical structure (the thalaraaspunts for the different informa-
tion transmission modes that underlie distinct dynamieglmes, corresponding to the sleep
and awake statesBéarardi et al. 2016, under revision). Future studies will be devoted to
understand the effect of corticothalamic feedback on thed&ircuits, as well as investigating
whether the role of the thalamus is simply to relay informiatio the cortex and/or to process
and modulate it according to different attentional statesdo so the thalamic network model
in Chapter3 will be integrated in a full corticothalamic model compnigia primary visual
cortex network. The next step will be to take into accounth@ layered structure of the cor-
tex and (ii) areas of the thalamus and the cortex associaifférent sensory receptive fields
and their interactions.

We have also shown that the synchronization of neuronallasons between several
regions could subserve different brain functions such ag-lange communication. Our
studies have revealed a possible role of the delay in theatole behavior of neuronal sys-
tems Barardi et al. 2014h. Since the impact of a neuronal network to downstream meuro
increases when spikes are synchronous, networks withetélzgnnections can serve as gate-
keeper layers mediating the firing transfer to other regiomkis mechanism can provide
flexible functional channels of communication by regulgtihe opening and closing of path-
ways between cortical layers on demabkdfahani et a).2016. It would be necessary to test
experimentally our theoretical predictions in that respét particular, together with the lab
of Dr. Mavi Sanchez-Vives we are planning to analyze the LE#viéy recorded simultane-
ously in different layers of the primary visual cortex (V1sh)d the lateral geniculate nucleus
(LGN) of the thalamus in a ketamine-medetomidine anestédtiat.

We have also asked which are the mechanisms behind outaskpsynchronized neu-
ronal oscillations that propagate across different bra@as For instance, the hippocampal
theta oscillation is a key brain signal that underlies uasiaspects of cognition and behavior,
including memory and spatial navigation. Recent studiesakthat theta oscillations are ac-
tually waves traveling continuously along the septal-terapaxis. Therefore, the existence
of phase variations across the hippocampus indicates ¢abns at different positions simul-
taneously represent information about events at diffeierdés (ubenov and Siapa2009.
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In collaboration with the authors who first revealed the wiike organization of theta os-
cillations (Lubenov and Siapas) we have developed matheahaodels to study how this
phenomenon depends on the topological structure of theonketand synaptic delays in the
connections between neurons. In such models, these spatiironization patterns are gov-
erned by the strength and topology of the coupling as welyabkdpresence of axonal delays.
We will continue our work on traveling waves in differentelitions. On the one hand, we will
study the dispersion relation of a inhibitory-dominatetyriopology with periodic boundary
conditions and check that mathematical results hold irgiatte-and-fire simulations. We ex-
pect that the dispersion relation is quantized by the nétwa@eN. On the other hand, we
will study how the chain of inhibitory neurons behaves ingemce of excitatory neurons. We
expect that the backward waves described in this Thesisadaasa dynamic backbone that
modulates the activity of the excitatory neurons of the wekwWith our theoretical analysis,
our goal has been to address the design of future experirteetdst the direction of connec-
tivity in the hippocampus, the type of connections, and tie of inhibitory neurons versus
excitatory ones.

A complete appreciation of the rich dynamics that engagallaad distributed neural
groups requires a transition from the focus on either isdlatells or isolated areas to a fo-
cus on the coordination between local populations, and emitiegration of distributed func-
tional networks. In this Thesis we propose a first step tow#nd direction, by developing
a hybrid description of the brain that encompasses multiptdes through different descrip-
tions Barardi et al.20143. The need to bridge spatial scales is due to the intricatetstre
of neural activity patterns at multiple levels of spatiadakition. Therefore efforts need to
be done to bridge the different spatial scales used in isolat order to explore how inter-
actions at different scales are coordinated by cognitiveadels and determine behavior and
sensory processing.éwis et al, 20153. This goal will require the increase of computational
efficiency and the development of high-density multichdrameplifiers and new recording
technologies that could shed light on how local functior@ydations integrate extrinsic and
intrinsic signals, giving rise to distributed patterns oherent activity Yarela et al. 2001).
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APPENDIXA

METHODS

A.1 Local field potential and multi-unit activity

We quantify the activity of the network in two different way$Ve calculate the multi-unit
activity (MUA) as the total number of spikes per unit time retpopulation, and the local
field potential (LFP) as the sum of the absolute values of tb@atory and inhibitory synaptic
currents acting upon the excitatory neurons, averaged tbi@population fazzoni et al,
2008:

LFP = Re([lampal + |lcaBA) , (A1)

where(...) denotes the average over all excitatory neurons. The ltgyigh accounts for both
the external excitatory heterogeneous Poisson spikedralrthe recurrent excitatory synaptic
current due to the network, whilgaga corresponds to the recurrent inhibitory synaptic cur-
rent. Re represents the resistance of a typical electrode used foedular measurements,
here chosen to beMQ.

A.2 Spectral analysis

We compute the power spectral density of the LFP using theMfakethod: the signal is split
up into Nseg point segments (Tabla.1) with 50% overlap. The overlapping segments are
windowed with a Hamming window. The modified periodogramakualated by computing
the discrete Fourier Transform, and then computing thersguagnitude of the result. The
periodograms are then averaged to obtain the PSD estimhieh weduces the variance of
the individual power measurements. The code has been ireptexhin MATLAB. Spectral
quantities are averaged ovey, trials (TableA.1).

In Chapter5 we computed the power spectral density (PSD) of the LFPs atite@ost-
synaptic potentials (PSPs) of the pyramidal populatiorhefNMs. The frequency mismatch
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between the PSP of the two neural mass models was calcukatlkd mverse of the difference
between the periods of the mass models, averaging oves.trighe periods correspond to
the temporal distance between two maxima of the auto-aiioel function. Each trial corre-
sponds to a different set of random initial conditions, NNhétlecture and realization of the
Ornstein-Uhlenbeck process.

A.3 Phase coherence
Phase coherence is calculated in the way introducéddayelsdorf et al(2007):

1 N sy(f,n)

=5 2bh A.2
Nn:l‘S(y(fynM (A2)

Cy(f) =

wherex andy denote the two signals, ai®)( f, n) is the cross-spectrum between them. Since
in each trial the cross spectral density is normalized bgntplitude, each term of the sum is
a unit-length vector representation of the phase reldlipff,n). In other wordsAg(f,n) =

@ — ¢ is the phase lag between the two signals at frequdrioythe data segmemt Hence
Cyy(f) quantifies how broad is the distribution aAfp(f,n) within the 2r-cycle. Averaging
Ag(f,n) across allN data segments provides a mean aryfg f). In Chapterd Ag(f) is
converted into a time shift, termaglg, dividing by the corresponding frequencyf ) = Az(ng)-
This quantity measures the time separation between an LK in one population and
the following maximum belonging to the other population.aBé coherence is considered

significant for values above@8. Phase coherence is averaged oyetrials (TableA.1).

Nseg Nsp  Npc
Chapter3 32768 50 50
Chapter4 256 200 1000
Chapter5 500 20 -
Table A.1Nsegis the number of discrete Fourier transform poimtg, andnpc are the number

of trials used to calculate averaged spectral quantitidgpaase coherence, respectively.

A.4 Mutual information

An important mathematical tool to quantify informationrsanission in noisy systems is pro-
vided by information theory. We consider a case study in tithe system is presented with
Ns stimuli s, 9, ...Sy, and the corresponding neural resposgerecorded and quantified in a
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given post-stimulus time-window. The way in which the néveaponse is estimated depends
on the experimental questions being addresba(i et al, 2009.
We compute the information between the stimuand the general responisas follows:

Ns
I(R.S)= 3 P 3 P(islog, PP(Er’?)’ (A.3)

whereP(s) is the probability of presenting the stimulsgequal to the inverse of the total
number of different stimuli)P(r) is the probability of observing the response powacross
all trials in response to any stimulus, aR¢f|s) is the probability of observing the response
r in response to a single stimulesin general (R, S) quantifies the reduction of uncertainty
about the stimulus that can be gained from observing a singleneural response, and we
measured it in units of bits (1 bit means a reduction of uadety of a factor of two) hce
etal, 2010.

An important issue to be solved regarding the calculatiotheftheoretical mutual infor-
mation is that it requires knowledge of the full stimulusgense probability distributions, and
obviously these probabilities are calculated from a finilenber of stimulus-response trials.
This leads to the so-called limited sampling bias, whichr&gponds to a systematic error in
the estimate of information. We used the method describedamgzeri and Treved 996 to
estimate the bias of the information quantity and then weclobe for the residual bias by
applying abootstrap procedurén which mutual information is calculated when the stimuli
and responses are paired at random. If the information gyasitnot zero (it should be in
the case of non-finite samples), this is an indication of,laasd the bootstrap estimate of this
error should be removed from the mutual information. Aftpplging these procedures, the
information quantity estimation could be defined as sigaiftc Several toolboxes provide
different bias-correction techniques, which allow acteiestimates of information theoretic
quantities from realistically collectable amounts of d@agri et al, 2009 Victor, 2006. In
order to accomplish those tasks, we used the InformationkBiozen Toolbox (ibTB), a MAT-
LAB toolbox implementing several information estimatesl dolas corrections. It does this
via a novel algorithm to minimize the number of operatiorguieed during the direct entropy
estimation, which results in extremely high speed of comjon. It contains a number of
algorithms which have been thoroughly tested and exengplif¢ only on spike train data but
also on data from analogue brain signals such as LFPs and @#4gsi et al, 2009.
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A.5 Clustering coefficient

In graph theory, networks composed of nodes and edges canabacterized by their clus-
tering coefficient, which quantifies th@nnectednessr local connectivity of the network
(i.e. the probability that two nodes that are connected tovangnode, are also connected
between them). According to the Watts and Strogatz algor{iivatts and Strogaj4998, a
pure regular network can be turned into a small-world netwior which few edges separate
any two nodes, by rewiring the connections. A rewiring ptulig parametery,, determines
the probability of replacing an existing edge by another cmesen randomly. Therefore, a
rewiring probability equal to O implies a regular networkevlas a rewiring probability equal
to 1 implies a completely random network.



APPENDIXB

CONTINUUM MODEL APPROXIMATION STARTING FROM
HODGKIN-HUXLEY MODEL

In Section6.3we propose a continuum approximation model with a topologylar to HH
model. Starting from the definition of the local fielt(x,t) (Equation 6.1)), we derive the
equations for forward propagating and backward propagatiaves by integrating the local
field with the corresponding kernel (EquatidhyJ)).

B.1 Local fieldvV™(x,t) for forward waves

The integration of the local field Equatio6.() for the forward propagating waves is:

00

V(1) = Qex— q/):ydx’ /Ow elt) 3 8¢ —vit-t)-m)

— Qext—q/xydx’ > /()oodl’s(t’)é(vt’—(vt+n)\—x’))

Nn=—oo

i /Owdf’e(%w(t"_ (Vt+m — X))

n

X
= Qext—g/ dx
) X—y

X RV
= Qext—g > dx’s(m)e(vwrn)\—x’)
V= Sx—y
© X vt+nA — ¥
— Qex— 2 > dx e(——) (B.1)
n=ng“’X—Y v

where the sum and integration limit adjustments are given by

v - [

min(x,vt+nA).

|
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After integrating the response kernel we obtain

fw 00 Tdecay _ vt+nA X Xy
V (X’ t) = Qext —q —.e VTdecay (e Videcay — @ VTdecay) _
nSho \ ldecay— Trise

Tri __vt+nA X Xy
. mse e Vlise (e Vlrise — @ VTrise) , (BZ)
Tdecay— Trise

whereng andx are given by
{X— vt — y"

A
X = min(X,vt+nA).

No
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B.2 Local fieldV™(x,t) for backward waves

The integration of the local field Equatio8.() for the backward propagating waves is:

VPYxt) = Qex—d ’ dx’/mdfe(t’) % (X +v(t—t)—n)
=y 0 N=—o0
—o00 dtll t// Y
—78(—7)6(t — (—vt+nA —X))

— q X d/ - 0 dt!/ t” 6 " A X/
= Qo [ ¢ Y [ dte(—) 8~ (vt )

X (o]
— Qea—q [ d¥ /
Qext—Q iy n:ZOO 0

v

= 03y [ axeEMAEX

= Qext Vnzz_m X_ydx’s( s )O(Vt —nA +X)

B q Mmax X vt —nA +x

= Qext—;n_z_oo/x dx’g(f)’ (B.3)

where the sum and integration limit adjustments are given by

e = min 5] [54] -3}

X = maxX—y,nA —vt)

Notice that if(x+ vt)/A is an integer the value oiyaxis decremented by one. This is because
in this casex = x and so the corresponding integral is zero (the lower and rulppés of
integration coincide). After integrating the responsenkéme obtain

b Nmax Tdecay _ vt-nA X __ X
V W(X,t) = Qext —q Z +e Videcay (e Videcay — @ ‘”decay) _
Tdecay— Trise

Nn=—oo

Trise __vt-nA X

- =" e Viise (eﬁ Virise — @ VTrise)) , (B4)

Tdecay— Trise

wherenmaxandx are given by

e = 5] 55 1)

X = maxX—y,nA —vt).
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GLOSSARY

Parameters

y Window of connectivity

A Traveling wave spatial wavelength [mm]

v Traveling wave phase velocity [mm/s]

Tm Membrane time constant [ms]

) Spike threshold [mV]

( Reset value of membrane potential after firing [mV]

lo Constant external input [nA]

a Rate of receptor opening [ImM- s)]

B Rate of receptor closing [1/s]

A Steepness of the exponential approach to threshold [mV]

Vo Net PSP for which a 50% firing rate is achieved in the neurakmasdel [mV]

Tw Angular frequency [rads/s]

o Number of open receptors relative to the total number ofprs

Tw Time constant of adaptation [ms]

Taxo Latency between the generation of a spike in a presynaptiondrom one network
and the elicitation of a postsynaptic potential in the otietivork [ms]

Tgecay Decay synaptic time [ms]

Tlag

Time shift corresponding to a given phase difference [ms]
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Tref Absolute refractory period [ms]

Trise Rise synaptic time [ms]

g(t) Response kernel (postsynaptic potential) [mV]

A Maximum height of excitatory postsynaptic potential [mV]

a Conductance that mediates subthreshold adaptatiSh [

anMm Inverse of the membrane time constant in the neural masslijidrie
B Maximum height of inhibitory postsynaptic potential [mV]

b Spike-triggering adaptation strength [nA]

bnm Dendritic delay [ms]

Cm Membrane capacitive current [nF]

G Intra-columnar connectivity constant

Ex Nerst equilibrium potential of the potassium current [mV]
EL Nerst equilibrium potential of the leakage current [mV]

Ena Nerst equilibrium potential of the sodium current [mV]
€ Maximum firing rate of the neural population

Esyn  Nerst equilibrium potential of the synapse [mV]
Eihresh  VOItage threshold value [mV]

T Traveling wave temporal frequency [Hz]

Fy Frequency of maximum power spectrum [Hz]

fmax  Frequency of maximum phase coherence [Hz]

g Scalar synaptic coupling parameter
OK Maximal conductance of potassium$]
oL Leak membrane conductangeg]

ONa Maximal conductance of sodiunuf]



Glossary 191

Omnax  Conductance pealufS]
Osyn Synaptic conductance:S]
I Current [nA]

lionic  lonic currents [nA]

Ik Potassium current [nA]
I Leak current [nA]

INa Sodium current [nA]

lsyn Synaptic current [nA]

k Wavenumber, traveling wave spatial frequency [1/mm]

m Net PSP input into a population [mV]

N Number of neurons in the network

Pm Average density of action potentials produced by the prasiio population acting

upon the postsynaptic population [mV]
q Magnitude of inhibitory connections

Qext Magnitude of external excitation

r Steepness of the sigmoidal transformation
p Rewiring probability for network architecture
T Wave period [ms]

T(t)  Time-varying neurotransmitter concentration
Ty Period of maximum power spectrum [ms]
toeak ~ Duration of the response [ms]

\ \oltage reset value [mV]

Variables

l(x,t) Total synaptic input into neuron at positigrand timet
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V(x,1)

Shape of postsynaptic potential (response kernel)
Strength of postsynaptic connection at distaxce
Spiking (at given time and location)

mi" spike time of neuron at

Local field (membrane potential at given time and locationy]

W(x—x) Absolute weight of synaptic connection frorhto x

h

m

w

Yi

Inactivation variable of sodium channels
Activation variable of sodium channels
Activation variable of potassium channels
Time [ms]

\oltage [mV]

Adaptation [nA]

Average postsynaptic excitatory or inhibitory membranteptal [mV]

Acronyms / Abbreviations

aElF

CTC

CVv

DBS

ECoG

EEG

EPSP

ERP

fMRI

FR

Adaptive exponential integrate-and-fire
Communication through coherence
Coefficient of variation
Deep brain stimulation
Electrocorticography
Electroencephalography

Excitatory postsynaptic potential
Event-related potential
Functional magnetic resonance imaging

Mean firing rate
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HH

IF

IPSCs

IPSP

ISI

LFP

LGN

LIF

MEAs

MEG

MRI

MUA

NM

NN

PSP

RE

ROC

SFA

TC

VPN

VSD

V SDI

Hodgkin-Huxley
integrate-and-fire
Inhibitory postsynaptic currents
Inhibitory postsynaptic potential
Inter-spike interval
Local Field Potential
Lateral geniculate nucleus
Leaky integrate-and-fire
Multielectrode arrays
Magnetoencephalography
Magnetic resonance imaging
Multi-unit activity
Neural Mass
Neural network of HH neurons
Postsynaptic potential
Reticular thalamic cells
Receiver operating characteristic
Spike-frequency adaptation
Thalamocortical relay cells
Ventral posterior nucleus
\oltage-sensitive dye

\oltage-sensitive dye imaging
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