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SUMMARY

The brain is a complex multi-scale dynamical system, made ofmore than 1011 nerve cells,

theneurons, which are connected by 1015 chemical and electrical synaptic connections, and

many moreneuroglial cellsrecently discovered to provide support and protection for neurons.

Neurons themselves are multidimensional nonlinear systems able to exhibit various dynam-

ical activities and processes happening at different temporal and spatial scales, from local

microcircuits to brain-wide networks. The correct operation of the brain requires a carefully

orchestrated activity across these scales, which includesthe establishment of synchronized

behavior within and among multiple neuronal populations, from which different spatiotem-

poral patterns transiently arise. As a matter of fact, information processing underlying brain

cognitive functions such as action, perception and cognition relies on the coordinated inter-

action between large groups of interconnected neurons distributed within and across different

specialized brain areas. In this Thesis we study a diverse range of collective dynamical phe-

nomena in brain networks that reveal exquisite coordination, by means of different models

of cortical neuronal networks. We explore how neurons are dynamically and transiently en-

gaged in functional assemblies, resulting in a periodic synchronization of neuronal spiking

(neuronal oscillations) in a brain area or between distant brain areas (long-range oscillatory

synchronization), and the consequences forinformationprocessing. Synchronous oscillations

are usually observed to be coherent in space, meaning that the temporal progression of activ-

ity has identical phase across recording sites. However, out-of-phase synchronous oscillations

also exist, and occasionally they give rise to complex spatiotemporal patterns of activity in the

form of traveling waves. Therefore, we investigate as well how neurons engage intraveling

wavepatterns through self-organizing dynamics.

In Part I we introduce the different spatiotemporal phenomena motivating our studies

(Chapter1) and the computational models used in this work (Chapter2).

In Part II we present the main results of this study. In Chapter3 we study temporally-

coordinated patterns in the thalamus, a key brain structurein the processing of sensory infor-

mation. During the sleep and awake states, this brain area ischaracterized by the presence

of two distinct dynamical regimes: in the sleep state the activity is dominated byspindle os-
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cillations (7− 15 Hz) that is weakly affected by external stimuli, while in the awake state

the activity is primarily driven by external stimuli. We have developed a simple and compu-

tationally efficient model of the thalamus that exhibits twodynamical regimes with different

information-processing capabilities, and study the transition between them. Our results reveal

a range of connectivity conditions under which the thalamicnetwork composed by different

type of neurons displays the two aforementioned dynamical regimes, such as spindle-like os-

cillations in the alpha range. Overall, our model gives a novel and clear description of the role

that the two different types of neurons, thalamocortical and reticular thalamic cells, and their

connectivity, play in the dynamical regimes observed in thethalamus, and in the transition

between them.

In Chapter4 we study other temporal regimes such as neuronal oscillations in the gamma

range, and in particular how temporally synchronized patterns of oscillatory gamma activity

between neuronal populations could provide preferential communication channels. In fact,

synchronization between neuronal populations plays an important role in information trans-

mission between brain areas. In particular, collective oscillations emerging from the synchro-

nized activity of thousands of neurons can increase the functional connectivity between neural

assemblies by coherently coordinating their phases and controlling information flow among

connected regions. This mechanism allows the brain’s connectivity topology to be flexibly

reconfigured in response to changing task demands. This synchrony of neuronal activity can

take place within a cortical patch or between different cortical regions. While short-range

interactions between neurons involve just a few milliseconds, communication through long-

range projections between different regions could take up to tens of milliseconds. How these

heterogeneous transmission delays affect communication between neuronal populations is not

well known. To address this question, we study the dynamics of two bidirectionally delayed-

coupled neuronal populations using conductance-based spiking models, examining how differ-

ent synaptic delays give rise to in-phase/anti-phase transitions at particular frequencies within

the gamma range, and how this behavior is related to the phasecoherence between the two

populations at different frequencies. We use spectral analysis and information theory to quan-

tify the information exchanged between the two networks. The results confirm that zero-lag

synchronization maximizes information transmission, although out-of-phase synchronization

allows for efficient communication provided the coupling delay, the phase lag between the

populations, and the frequency of the oscillations are properly matched.

As these results show, the brain self-organizes in different spatiotemporal highly organized

patterns across not only temporal, but also spatial scales.How the brain reaches this required

level of coordination is not well known yet. A full understanding depends on our knowledge

of large-scale brain organization. It is known that the mammalian brain operates in multiple
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spatial scales simultaneously, ranging from the microscopic scale of single neurons through

the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These lev-

els of description are associated with distinct temporal scales, ranging from milliseconds in

the case of neurons to tens of seconds in the case of brain areas. In Chapter5 we examine

theoretically how these spatial and temporal scales interact in the functioning brain, by con-

sidering the coupled behavior of two mesoscopic neural masses that communicate with each

other through a microscopic neuronal network. We use the synchronization between the two

neural mass models as a tool to probe the interaction betweenthe mesoscopic scales of those

neural populations and the microscopic scale of the mediating neuronal network. Our results

show that the neuronal network, which operates at a fast temporal scale, is indeed sufficient

to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a

slower scale. We also establish how this synchronization depends on the topological properties

of the microscopic neuronal network, on its size and on its oscillation frequency.

When synchronized neuronal oscillations exhibit a consistent phase pattern across record-

ing sites (e.g. a continuous progression of phase at each location), complex spatiotemporal

phenomena arise in the form of brain waves. Chapter6 focuses on the mathematical proper-

ties of traveling waves, emerging from a one-dimensional network of inhibitory neurons with

asymmetric synaptic coupling. Our results show that these networks behave as excitable me-

dia that exhibit anomalous dispersion, and therefore have counter-intuitive wave-propagation

properties. In particular, when neurons at the head of the chain are periodically forced trav-

eling waves emerge, with the wavefronts moving from the tailto the head of the chain, in

a direction opposite to that of the synaptic connectivity. To mathematically explore this dy-

namics, we first develop a continuum model with topology similar to the HH model to study

the existence of these backward waves. Secondly we investigate the generality of this phe-

nomenon across different systems by studying an integrate-and-fire continuum approximation

that is analytically tractable, and derive a self-consistency condition for the existence of trav-

eling waves which allows the calculation of the dispersion curve. The analysis of the latter

model reveals how wave-propagation depends on a variety of neuronal properties.

Finally, in Part III we summarize the results of this Thesis and discuss future perspectives.
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Part I

Introduction



CHAPTER 1

FROM SINGLE NEURON DYNAMICS TO NEURAL COLLECTIVE

PHENOMENA

1.1 Organized activity of neuronal ensembles

In order to accomplish a cognitive task, the brain requires aspatiotemporal organization of

different brain areas. Cognitive tasks are not carried out bysingle neurons, but they result

from the dynamical transient coordination of neuronal discharges between different neurons,

which are engaged in specializedfunctional assembliesand contribute to highly-coordinated

collective patterns at multiple spatial and temporal scales. In what follows we review the main

features of the dynamics of single neurons, and the mechanisms and consequences of their

coordination.

1.1.1 Neurons and neuronal assemblies

Neurons are the basic data-processing units of the brain. They encode, transmit, and integrate

signals originating inside or outside the nervous system. Signals between neurons occur via

synapses. The transmission of information is due to changesin the electrical potential of the

neurons with respect to the extracellular space. One neuronreceives inputs from other neu-

rons through intercellular contacts calledsynapses, causing a transient change in its resting

membrane potential, calledpostsynaptic potential(PSP). This transient change is due to the

flux of different ions between the intracellular and extracellular spaces through of ion channels

present in the membrane. The opening and closing of these ionchannels depends on the mem-

brane voltage and on the neurotransmitters released by the presynaptic neuron, which bind

to receptors on the cell’s membrane and hyperpolarize or depolarize the cell, through what is

known as an inhibitory or an excitatory PSP respectively (Figure1.1A). If the PSP reaches a

certain threshold, the neuron produces an action potential(spike), which is characterized by a
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certain amplitude and duration (Figure1.1B). Spikes are essential units of information trans-

mission at the interneuronal level (Izhikevich, 2006; Kandel et al., 2000). Information can be

encoded by the spiking activity frequency or firing rate (commonly named rate coding) or by

the precise timing of the discharges of action potentials (temporal coding).

Fig. 1.1Action potential and synapses.(A) Diagram of a synapse. The axon terminal is
at the end of the axonal branch (top left of the figure). It has synaptic vesicles containing
neurotransmitters, which are released when an action potential arrives from the presynaptic
neuron. The neurotransmitter molecules cross the synapticcleft and bind to receptors on the
dendritic spine in the postsynaptic neuron. (B) Action potential recorded intracellularly from
a cultured rat neocortical pyramidal cell. FromDayan and Abbott(2005).

The brain is made of more than 1011 neurons which are connected by 1015 chemical and

electrical synaptic connections. Neurons are anatomically interconnected to form functionally

specialized neural assemblies. Neural assemblies are distributed local networks of neurons

transiently synchronized by reciprocal dynamic connections (Buzsáki and Draguhn, 2004; Lli-

nas et al., 1998; Shadlen and Movshon, 1999; Varela, 1995). The large density of local short-

range connections in the brain subserves the development oflocal functional populations, and

a small percentage of long-range connections reduces the minimal path length between any

two neurons (see Figure1.2). This pattern of structural connectivity can foster a selective bias

of the communication within local and global networks. Spatiotemporal dynamic coordina-

tion of these neuronal ensembles is the core of neural communication, because it can provide

flexible neural communication pathways.
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Functionally, temporally organized patterns such asneuronal oscillations, which will be

introduced in Section1.1.2, could be a signature of the collective activity of large groups

of cells (Buzsáki and Draguhn, 2004; Buzsáki and Wang, 2012) and play an important role

for cortical processes that control the flow of information in the brain (Fries, 2005; Salinas

and Sejnowski, 2001). Furthermore spatiotemporal collective phenomena such as large-scale

synchronization of neuronal oscillations (Varela et al., 2001) or wave propagation (Lubenov

and Siapas, 2009) arising from neuronal ensembles could provide a mechanismfor neural

communication, and contribute to the accomplishment of a specific task (Schnitzler and Gross,

2005). These phenomena will be presented in Section1.1.3.

Fig. 1.2Schematic representation of transient distributed neuralassemblies.Distributed
neural assemblies in different brain areas are connected bylong-range dynamic connections.
FromVarela et al.(2001).

1.1.2 Temporal coordination of neuronal oscillations

A prominent property of neural ensembles is the tendency to engage in oscillatory dynamics.

Hans Berger (Berger, 1929) observed this activity in the form of brain rhythms from recorded

electrical potentials on the scalp of healthy subjects, andcategorized this electroencephalo-

graphic (EEG) activity in different frequency bands: delta(0−3 Hz), theta (4−7 Hz), alpha

(8−12 Hz), beta (13−30 Hz) and gamma (30−200 Hz).

In general, neuronal oscillations arise collectively fromthe temporal coordinated activity

of anatomically connected circuits. They lead to periodic variations in the recordings of neu-

ral activity such as local field potential (LFP), a population measure (spatial average across

many neurons, see AppendixA.1) that highlights temporally correlated activity within a lo-

cal population. At the network level, these oscillatory patterns are commonly attributable to
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either spike-to-spike synchrony, where neurons spike regularly and synchronize due to chem-

ical/electrical synapses, or sparse synchronization, where neurons spike irregularly, possibly

with different frequencies, but a collective rhythmicity emerges at the population level (syn-

chronous irregular state) (Brunel and Hakim, 2008; Wang, 2010a). The frequency and the

emergence of these oscillations depend on cellular pacemaker mechanisms and neuronal net-

work properties: a smaller recruitment of cells leads to higher frequencies (e.g. gamma band),

while lower frequencies originate from larger neuronal populations (Bibbig et al., 2007). Neu-

ronal oscillations have been found in several brain areas, including the cortex, the thalamus

and the hippocampus. The range of frequencies of these oscillatory patterns are associated

with distinct cognitive processes and behavioral tasks (Salinas and Sejnowski, 2001; Ward,

2003) (see Table1.1). The functional role of these oscillations has remained obscure for sev-

eral years, but recent experimental and theoretical results indicate that neural oscillations can

subserve cognitive processes (such as sensory representation, attentional selection) and might

subserve dynamic gating and routing of information (Buzsáki and Draguhn, 2004; Salinas and

Sejnowski, 2001; Schyns et al., 2011; Singer, 1999). In this Thesis we will focus on different

Theta Alpha Beta Gamma
(4−7 Hz) (8−12 Hz) (13−30 Hz) (30−200 Hz)

Anatomical origin Hippocampus,
prefrontal cor-
tex, sensory
cortex

Thalamus,
Hippocam-
pus, reticular
formation,
sensory cor-
tex, motor
cortex

All cortical
structures,
subthalamic
nucleus, hip-
pocampus,
basal ganglia,
olfactory bulb

All brain struc-
tures, retina,
olfactory bulb

Functions Memory,
synaptic
plasticity, top-
down control,
long-range
synchroniza-
tion

Inhibition,
attention, con-
sciousness,
top-down
control,
long-range
synchroniza-
tion

Sensory gat-
ing, attention,
perception,
motor control,
long-range
synchroniza-
tion

Perception, at-
tention, mem-
ory, conscious-
ness, synaptic
plasticity, mo-
tor control

Table 1.1 Neural oscillations in cortical networks. Adapted from Uhlhaas et al.(2009).

patterns of oscillatory activity at different frequencies(e.g. gamma band in the cortex) and

associated with different cognitive states and functions (e.g. activity in the thalamus during

sleep). Perhaps one of the most studied rhythms is the thalamic spindle oscillation, present

in all mammals during sleep or anesthesia. This is a rhythmicoscillation at 7−15 Hz orig-
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inated in the thalamus during slow-wave sleep. The generation of this rhythm is due to the

temporal interaction and coordination of thalamocorticalrelay (TC) cells, which are mutually

connected with thalamic reticular (RE) neurons.

In Section1.2we will emphasize the functional role of the thalamus, focusing on diverse

dynamical activities during different cognitive states, specifically during sleep and wakeful-

ness. In particular, we will describe the mechanisms responsible for the generation of spindle

oscillations during slow-wave sleep and how changes in dynamical organization patterns in the

thalamus subserve a switch from sleep to the awake state, resulting in different information-

processing capabilities. By reviewing new interesting results about the functional role of the

thalamus, we will motivate our work in Chapter3 aimed at shedding light on the different dy-

namical regimes that allow the thalamus to be not only a simple relay station, but interestingly

a gate for information transmission towards the cortex and back.

1.1.3 Spatiotemporal coordination: large-scale synchrony and wave prop-

agation

Neuronal oscillations emerge at many different spatial scales: they can arise from synchroniza-

tion between individual neurons, larger assemblies of neurons, cortical areas, or even between

hemispheres (global brain synchronization). Transient synchronization of neuronal discharges

has been proposed as a possible mechanism to dynamically bind widely distributed sets of neu-

rons into functionally coherent ensembles that represent the neural correlates of a cognitive

content or a motor program (binding-by-synchronizationhypothesis) (Singer, 1999). Beyond

that, long-range synchronization has been proposed as a general mechanism for selectively

routing the flow of information between brain areas.

In particular, gamma-band synchronization has been suggested as a mechanism to spatio-

temporally coordinate the transmission of information between brain areas (communication

through coherencehypothesis ofFries, 2005). In Section1.3we will introduce how synchro-

nization of gamma oscillations can subserve neural communication. We will review the possi-

ble synchronization mechanisms in a large group of neurons and between distant populations

even in presence of large synaptic delays, in particular focusing on gamma-band synchroniza-

tion between coupled neural populations. This will be introductory and will offer the chance

to motivate our study in Chapter4.

Brain activity reveals exquisite coordination across not only temporal, but also spatial

scales: from local microcircuits to brain-wide networks. Therefore synchronization, as a mech-

anism of large-scale integration, requires the study of different spatial and temporal scales si-

multaneously. We will deal briefly with this issue in Section1.4, exploring the new advances
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in the simultaneous multi-scale study of collective brain phenomena, that is preliminary to our

work in Chapter5.

Experimental tools such as voltage-sensitive dye (VSD) imaging (Shoham et al., 1999)

and multielectrode arrays (MEAs) (Maynard et al., 1997) routinely allow nowadays measure-

ments of large-scale spatio-temporally coherent population dynamics, revealing the existence

of propagating waves in the visual, somatosensory, auditory and motor cortices under different

cognitive conditions bothin vitro (Buonomano, 2003; Pinto et al., 2005) andin vivo (Jancke

et al., 2004; Lubenov and Siapas, 2009; Nauhaus et al., 2009; Watt et al., 2009). Propagating

waves reveal a large-scale spatiotemporal coordination inthe activity of neuronal ensembles

at different spatial and temporal scales. In Section1.5 we will briefly review experimental

evidences of propagation activity in different brain areas, and focus on the possible functional

role of propagating waves in the awake brain, that is propaedeutic to the study that will be

presented in Chapter6.
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1.2 Temporally organized patterns in the thalamus: spindle

oscillations

The thalamus is located near the center of the brain and it is made of two major components:

the dorsal thalamus, composed of several thalamic nuclei and containing the gluatammatergic

thalamocortical relay (TC) neurons that project to the neocortex, and the ventral thalamus,

mainly composed by the reticular nucleus and containing GABAergic reticular thalamic (RE)

neurons that inhibit TC neurons in the dorsal thalamus (Sherman, 2006). The thalamus is

identified as a relay station between subcortical and cortical areas: sensory inputs from visual,

auditory and somato-sensory receptors reach the cortex through TC neurons in specific regions

of the thalamus, which project onto the corresponding areasin the primary sensory cortex.

Along with these forward projections, there are feedback fibers from cortical layer 6 to the

corresponding thalamic nucleus (see Figure1.3) (Destexhe and Sejnowski, 2003). These

large-scale thalamocortical interactions produce different rhythms in the thalamus according

to the different cognitive states. One of the most studied rhythms are the spindle oscillations.

Spindle oscillations are rhythmic oscillations at 7−15 Hz resulting from the coordinated

temporal activity of neurons within the thalamus during slow-wave sleep. They originate in the

thalamus and not from its connections with the cortex (Adrian, 1941; Bishop, 1936; Bremer,

1938; Morison and Bassett, 1945; Steriade and Deschenes, 1984; von Krosigk et al., 1993a),

although their triggering and large-scale synchrony couldrely on the cooperation with the

cerebral cortex through the above-mentioned thalamocortical interactions (Destexhe, 2014).

The generation of this rhythm is due to the rebound-burstingproperties of the TC cells, which

are mutually connected with the RE neurons. Spindles can be originated in TC cells with a

burst of spikes, which can elicit PSPs that activate RE cells.In turn RE cells produce bursts at

the spindle frequency, entraining TC cells to follow this oscillation and feeding back to the RE

cells in order to sustain this rhythmicity. Therefore spindle generation is due to an interplay

between TC and RE cells (Andersen and Eccles, 1962; Destexhe et al., 1993; Destexhe and

Sejnowski, 2003; McCormick, 1992).

1.2.1 Thalamic dynamical regimes: bursting vs tonic

This oscillatory dynamical regime at the spindle frequencyis defined asburstingbecause of

the form of the response of thalamic relay cells to incoming inputs, and depends on the status

of the corresponding intrinsic voltage-dependent membrane conductance (Sherman, 2001).

This regime mainly dominates during slow-wave sleep, drowsiness and certain pathological

conditions. On the other hand, during normal waking behavior, thalamic relay cells present
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Fig. 1.3Structural connectivity of thalamocortical system.Map of thalamocortical interac-
tions between the thalamus and the cerebral cortex. The cortex receives its primary source of
sensory input from the thalamus via thalamic afferents to the cortex, and the cortex projects
back to the thalamus. This reciprocal interaction between thalamus and cortex could alter
the cortical representation of sensory activity in time. Excitatory TC cells receive sensory in-
puts directly from subcortical areas, project mainly to pyramidal neurons and to interneurons
of the corresponding sensory cortical area, and make excitatory synapses with RE neurons.
RE neurons make collaterals with TC neurons. Along with feedforward thalamocortical pro-
jections, pyramidal neurons from the cortical area feed back to thalamic neurons. Adapted
from Destexhe and Sejnowski(2003).
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a different dynamical mode known astonic. The two different dynamic modes, bursting and

tonic, reflect the status of the voltage-dependent, intrinsic membrane conductance of TC cells

and affect how TC neurons respond to incoming sensory inputs, with important effects on the

process of relaying information to the cortex (Sherman, 2001).

During tonic firing, the spikes of a TC neuron are directly linked to an excitatory postsy-

naptic potentials (EPSP) in that cell, in such a way that larger EPSPs could elicit higher spiking

rates. In a bursting regime there is no direct relation between an EPSP and an action potential,

thus larger EPSPs do not generate higher firing rates. The quality of the information differs

between modes (Sherman, 2001). The analysis of Sherman summarized in Figure1.4suggests

that (i) the neural response profile to a sinusoidal input is more sinusoidal during tonic than

during bursting mode (Figure1.4C,D), and this reflects better linear summation (Figure1.4E);

(ii) spontaneous activity is higher during tonic firing (Figure 1.4A,B), which contributes to

maintain linearity by minimizing rectification of the response (Sherman, 2001). Therefore the

spontaneous activity represents the noise against which the visual response has to be detected.

Figure1.4suggests that the signal-to-noise ratio or detectability is higher during bursting than

during tonic regime. This has been confirmed directly by appropriate detectability measures

in Figure1.4F.

The understanding of how thalamic neurons are engaged in these dynamical modes de-

pending on the cognitive states, and how these dynamics influences the information process-

ing from thalamus to cortex and vice versa, could help elucidate what is the real functional

role of the thalamus, which is still quite obscure.

1.2.2 Functional role of the thalamus

During the last decades, the idea of a thalamus as a simply relay to the cortex has been strongly

debated. For instance, the discovery that feedback cortical projections represent the majority

of afferent modulatory inputs on the thalamus led scientists to think that the thalamus plays

a stronger role in the transmission of information to the cortex. In other words, the thalamus

does not limit its activity to faithfully transmit information to the cortex, but it might play an

active role in thalamocortical communication, acting as a dynamic control of the information

that is passing through the thalamus. In that perspective, it might dynamically alter the infor-

mation relayed in a manner that reflects various behavioral states such as attention and drowsi-

ness, corresponding to different temporal organized patterns and dynamical regimes (Sherman

and Guillery, 2002).

Moreover, the appearance of new technologies for the measurement and manipulation of

intracellular activity sheds light on the functional role of thalamus in the processing of in-

formation. In this direction,Reinhold et al.(2015) performed exquisite experimental studies
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Fig. 1.4 Tonic and bursting responses of relay TC neurons to visual stimulation from
the LGN in the cat brain. Tonic and bursting responses to visual stimulation of thalamic
relay (TC) neurons from the lateral geniculate nucleus (LGN)of a cat (recordedin vitro).
(A-D) Average response histograms of responses, recorded intracellularly, of one cell to four-
cycles of drifting sinusoidal grating (C,D) and during spontaneous activity (A,B). Current was
injected through the recording electrode to bias membrane potential towards depolarization
(65 mV), which produces tonic firing (A,C), or towards increasing hyperpolarization (75 mV),
producing burst firing (B,D). (E) Response linearity and (F) signal detectability during tonic
and burst firing. Each point in the scatter plots reflects datafrom one relay cell of the cat’s
LGN recordedin vivo during visual stimulation. The dashed line in each plot has aslope of
1. To obtain a measure of linearity, responses to sine wave gratings were Fourier-analyzed
and a linearity index was computed. The larger this index, the more linear the response. Note
that every single cell shows more linearity during tonic firing. For detectability, values were
determined by receiver operating characteristic (ROC) analysis. FromSherman(2001).
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and obtained very interesting results about the role of the thalamus in clocking the recurrent

cortical dynamics. They found that the sensory-evoked activity in visual cortex upon the ap-

pearance of a stimulus does not simply reflect a self-sustaining activity due to intracortical

recurrent circuits (with the important contribution of cortical inhibition), but it is entrained

and amplified by the direct thalamocortical communication pathway. In particular they de-

signed an optogenetic method able to silence, with millisecond precision, the cortical circuits

and the direct thalamic input, and identified what are the relative contributions of the intra-

cortical circuits versus the thalamic afferents on the sensory-evoked cortical activity. These

experiments have been carried out in awake and under anesthesia conditions (Reinhold et al.,

2015). First, they silenced the cortex (Figure1.5A), and found that during the first 40 ms the

thalamic excitation is dominant, after what the contribution of the cortical recurrent circuits

grows progressively, and after 250 ms, cortical recurrent circuits amplify the thalamic input

by more than a factor of 3 (Figure1.5C) (Reinhold et al., 2015). Second, they silenced the

thalamic afferents once the visual cortical response is enhanced (Figure1.5B) to study the

timescale of intra-cortical self-sustaining activity when the thalamic input is removed. By

silencing the thalamus without visual stimulation, intracortical self-sustaining dynamics lasts

up to hundreds of milliseconds. Upon sensory stimulation, if the thalamus is silenced, cortical

response decays with a time constant of 10 ms, which corresponds to the integration time win-

dow of a single cortical neuron and is more than two orders of magnitude faster than when the

thalamus is on (Figure1.5D). Silencing the thalamus reduces the visual cortical responses and

the spontaneous cortical activity of the awake primary visual cortex, meaning that the thala-

mus temporally constraints cortical responses and drives cortical spontaneous activity (Alonso

and Swadlow, 2015). The fast sensory-evoked recurrent intracortical activity (without direct

thalamic input) could be due to cortical inhibition, which is proposed to regulate the dynamics

of recurrent circuits (Constantinople and Bruno, 2011; Sanchez-Vives and McCormick, 2000;

Timofeev et al., 2000). Thus, intracortical inhibition enforces the fast decay time of cortical

recurrent networks and allows them to follow the fast temporal frequencies of thalamic inputs

during the awake state (Alonso and Swadlow, 2015).

Additionally it is known that by passing from anesthesia anddrowsiness to awake and alert

state there is an increased spiking activity in the thalamus. Given that thalamocortical synapses

exhibit depression (Gil et al., 1997), higher firing rates in alert subjects lead to chronic de-

pression at the thalamocortical synapses (Alonso and Swadlow, 2015; Castro-Alamancos and

Oldford, 2002). According to the results of Reinhold et al., this activity-dependent depression

of thalamocortical synapses could explain the lack of response of the cortex to high temporal

frequencies in the anesthetized brain (Figure1.5E). Indeed, self-sustained activity under anes-

thesia or with absence of sensory stimulation is prolonged for several tens of milliseconds.
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Fig. 1.5Contribution to sensory-evoked cortical activity: cortex versus thalamus.(A,B)
Optogenetic tool developed byReinhold et al.(2015) to silence the thalamus by activating
inhibitory reticular neurons (A) and to silence the cortical neurons in layer 4 by activating
cortical inhibition (B). (C) By optogenetically silencing thevisual cortex in mice,Reinhold
et al. (2015) recorded the response of layer-4 neurons to a visual stimulus. They found that
the thalamus mainly contributes to the total excitatory response during the first 40 ms (τ50).
(D) By optogenetically silencing the thalamus, the corticalresponse rapidly decays with a
characteristic time of 10 ms, corresponding to the integration time of a single cortical neuron.
(E) Due to the fast decay dynamics, the cortex is able to follow high-frequency stimulation
(transmitted by the thalamus when the animal is awake). When the animal undergoes anes-
thesia, the high-frequency transmission is not possible due to weaker thalamic responses and
thalamocortical synaptic depression. Panels (A,B) adaptedfrom Reinhold et al.(2015), panels
(C,D,E) adapted fromAlonso and Swadlow(2015).
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These results shed light on the possible functional role of the thalamus, which cannot be a

simple relay station in every cognitive state, but it transiently and functionally switches from a

dynamical mode to another, to gate and elaborate the flow of information according to the spe-

cific cognitive state. These results could also call for the design of new experimental studies

to understand the effective modulatory role of corticothalamic feedback on the thalamus.

The results discussed above show that understanding how thedifferent types of thalamic

neurons are engaged in different temporal motifs, and how they switch from one mode to the

other depending on the cognitive state, could give crucial insights on the dynamical role of the

thalamus in transmitting information to the cortex. Guidedby this need, in Chapter3 we will

address the general question of how the thalamus changes itsdynamical behavior (which is

associated with different information-processing regimes, corresponding broadly to wakeful-

ness and sleep) as a function of both its internal state and external inputs. In particular, we will

show that a simple yet biologically realistic model of the thalamus can exhibit two dynamical

regimes with different information processing capabilities, and study the transition between

them. Furthermore we will investigate how the network architecture of the thalamus influences

the occurrence of these two regimes, and how the transition between them is controlled.
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1.3 Synchronization of neuronal oscillations

As the spindle oscillations in the thalamus, neuronal oscillations in general are a signature

of the temporal coordination of neuronal discharges of a large group of neurons. They are

associated with different cognitive functions and brain areas according to their frequency and

intrinsic properties. Understanding how and when oscillations arise at the population level and

give rise to oscillatory synchronized patterns at large scale might provide interesting insights

on how the brain reaches the required level of spatiotemporal coordination between brain re-

gions that seems to be essential for the accomplishment of cognitive tasks. Functionally a

challenging hypothesis is that synchronization of neuronal oscillations at different spatiotem-

poral scales is a possible candidate for neural communication (Fries, 2005; Schnitzler and

Gross, 2005).

Neuronal synchronization is different from other widely studied natural synchronization

phenomena because (i) the brain is a complex nonlinear system, (ii) neurons themselves are

nonlinear multidimensional systems displaying a range of dynamics in various spatiotemporal

scales and finally (iii) neurons are connected by means of synapses, which are dynamical ele-

ments that influence the process of synchronization (Rabinovich et al., 2012). Local neuronal

synchronization results from a temporally precise coordination of neurons in a certain popula-

tion, while long-range oscillatory synchronization stemsfrom a spatiotemporal coordination

of neural activities of distant populations. Oscillation-based synchrony is considered the most

energy-efficient physical mechanism for temporal coordination (Buzsáki and Draguhn, 2004;

Mirollo and Strogatz, 1990).

The establishment of local and long-range synchronizationrelies on the topology of com-

plex neuronal networks. In cortical networks, the topologyof the connectivity recalls some

properties of the small-world networks characterized by areas densely connected more than

others with no singular center working as coordinator whereall information converges. These

local circuits are supplemented by a smaller percentage of long-range connections (with re-

spect to the local ones) (Braitenberg and Schüz, 1998), and this drastically reduces the synap-

tic connections between distant neuronal assemblies (Buzsáki et al., 2004). It is thus natural to

ask how the different computations taking places simultaneously in spatially segregated areas,

e.g. underlying different features of an object, are coordinated to give rise to a unified percep-

tion (Uhlhaas et al., 2009). A solution could lie in the emerging synchronized behavior of the

involved areas. Despite the smaller number of long-range connections, the synchronization of

local and distant areas might be accomplished by oscillators due to the low energy costs in-

volved in coherent neuronal oscillations, which provide temporal opportunities for preferential

communication pathways, by tuning the fluctuations of the membrane voltage of neurons par-
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ticipating in the collective oscillatory dynamics (Buzsáki and Draguhn, 2004; Fries, 2005). In

this Section we will mainly concentrate on synchronizationand phase locking as coordinating

mechanisms based on the temporal patterning of neuronal activity.

1.3.1 Local mechanisms of zero-lag synchronization

Several experiments have shown that neuronal circuits can synchronize either at zero time lag

or with a time lag much smaller than the conduction delay (near zero phase) (Roelfsema et al.,

1997). We focus mostly on the first mechanism, known as zero-lag synchronization. Given

the complexity of the phenomenon, several mechanisms have been proposed to be responsible

for sustaining synchrony at different scales and differentcerebral structures.

A first mechanism supporting a zero-lag synchronization scenario in cortical neuronal net-

works is entrainment via a common drive from a single source.The source could be located in

another cortical area, or in a sub-cortical area like the thalamus (Steriade et al., 1993). Locally,

intrinsic oscillating cells or pacemaker cells could entrain the network activity at a specific

frequency. An example are the chattering cells likely involved in the generation of stimulus-

driven gamma oscillations (Gray and McCormick, 1996). This entrainment influences the

rhythm and the synchronization among the target cells. Although the mechanism is quite sim-

ple, the synchronization can be dynamic and depends on the strength of the entrainment, on

the internal coupling and on the intrinsic properties of theneurons (Uhlhaas et al., 2009).

A second mechanism compatible with the generation of zero-phase synchrony is based on

local network effects. A single neuron cannot entrain the network, but the interaction between

neurons in the network can give rise to emerging synchronousoscillations with small phase-

lag. This mechanism is different from entrainment, becauseemerging patterns are a feature

of the interactions between neurons. Network effects responsible for this synchronization

are for instance recurrent inhibition, mutual excitation,mutual inhibition and gap junction

coupling (Kopell et al., 2000b; Ritz and Sejnowski, 1997; Van Vreeswijk et al., 1994).

Furthermore in complex heterogeneous networks with non-instantaneous coupling, the re-

current inhibition between excitatory and inhibitory balanced sub-networks plays a crucial

role in inducing zero-phase synchronization (Kopell et al., 2000b; Van Vreeswijk et al., 1994).

In this synchronization via recurrent inhibition, neuronal networks can synchronize their ac-

tivity at zero lags without necessarily altering the average firing rate of the neurons (Buia and

Tiesinga, 2006; Tiesinga and Sejnowski, 2004). The same is not true for instantaneous ex-

citatory coupling, which seems to favor desynchronizationrather than synchronization for a

broad class of models and parameter regimes (Kopell et al., 2000b; Ritz and Sejnowski, 1997).

Electrical gap junctions are often neglected in many computational models, however they are

important for generating oscillatory synchronized activity. A proof was provided by experi-



1.3 Synchronization of neuronal oscillations 17

mental studies where chemical coupling is blocked and thus oscillatory activity is entrained

by gap junctions (Buzsáki and Draguhn, 2004).

These mechanisms cannot be adopted to explain zero-phase synchrony findings between

distant brain regions, e.g. between areas located in different hemispheres where synaptic

delays are not negligible (Singer, 1999; Varela et al., 2001) and are due to conduction times,

synaptic delays and electrotonic propagation. By way of example, the aforementioned zero-

lag synchronization induced by recurrent inhibition, withor without gap junctions, is only

plausible for networks dominated by local neuronal coupling (Uhlhaas et al., 2009). A unique

mechanism to explain local and global zero-lag synchronization has not been found yet.

1.3.2 Zero-lag synchronization of distant coupled populations

A network topology that can exhibit zero-lag synchronization of distant populations of neu-

rons is made of two dynamical elements bidirectionally coupled with a central mediator, which

redistributes symmetrically identical information to theouter two (Fischer et al., 2006) (Fig-

ure1.6). In this configuration, zero-lag synchrony is preserved even when the fibers connect-

ing the networks have a diversity of conduction delays (Vicente et al., 2008). The mediator

role could be played for instance by the thalamus, given its simple topology of bidirectional

and radial connectivity to the neo-cortex as a mechanism to support distributed cortical pro-

cessing (Jones, 2002; Sherman and Guillery, 2002). In this scheme, thalamic nuclei have the

cortex as the input and the output at the same time, and could play an important role for the me-

diation of zero phase solutions, enhancing cortical coherence (Shipp, 2003b). This long-range

oscillatory activity could be extended to different motifswhose senders populations share the

relay network (hub) (Sporns et al., 2007). Therefore, provided that there is a constant tempo-

ral latency between the relay and the outer populations, which is true between thalamic nuclei

and any area in the mammalian cortex (Salami et al., 2003), self-organized lag-free synchro-

nization can emerge in all three networks (Figure1.6B-E). Thus, dynamical relaying-based

synchronization might induce and sustain the establishment of long range neuronal synchrony,

with the relay being the thalamus or other cortical areas through corticothalamic or purely

cortico-cortical connections, respectively. In what follows we concentrate on synchronization

between neuronal populations oscillating in the gamma range and possible consequences for

neural communication, because gamma-band synchronization might subserve various cogni-

tive functions.
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Fig. 1.6Dynamics of three neuronal populations interacting through dynamical relaying.
Topology of three large-scale networks of excitatory and inhibitory neurons receiving external
poissonian excitatory input interacting through dynamical relaying. Axonal delays are set
to 12 ms. (A) Raster plot of the activity of each neuron of population 1 (neurons 1–100),
population 2 (neurons 101–200) and population 3 (neurons 201–300). The top 20 neurons
of each subpopulation (plotted in gray) are inhibitory, andthe rest are excitatory (black). (B)
Firing histogram of each subpopulation of 100 randomly selected neurons (black, red, and blue
colors code for populations 1, 2, and 3, respectively). (C) Average cross-correlation between
population 1 and 2. (D) Average cross-correlation between population 2 and 3. (E) Average
cross correlation between the outer populations 1 and 3. Thesize of histogram bins is set to 2
ms. FromVicente et al.(2008).
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1.3.3 Gamma-band synchronization

Numerous experimental and computational findings have described activated neuronal groups

engaging in rhythmic synchronization in the gamma-frequency band (broadly 30−100 Hz).

These studies have been performed in many brain areas, including the visual cortex (Eckhorn

et al., 1988; Engel et al., 1991; Gray et al., 1989), the auditory cortex (Brosch et al., 2002; Ed-

wards et al., 2005), the somatosensory cortex (Bauer et al., 2006), the motor cortex (Brown

et al., 1998; Schoffelen et al., 2005), the retina and lateral geniculate nucleus of anesthetized

cats (Neuenschwander and Singer, 1996), and the hippocampus of awake behaving rats (Bra-

gin et al., 1995). Moreover gamma-band synchronization has been observed across different

species, including cats, monkeys, rats and mice (Bragin et al., 1995; Csicsvari et al., 2003;

Montgomery and Buzsáki, 2007; Montgomery et al., 2008), in different invertebrates (Stopfer

et al., 1997; Wehr and Laurent, 1996), and in the visual cortex of human subjects (Fries et al.,

2007, 2008). This mechanism has been associated with cognitive functions such as attention,

arousal, object recognition and top-down modulation of sensory processes (Engel et al., 2001;

Singer, 1999).

Pioneering studies mainly focused on testing the proposal that gamma-band synchroniza-

tion subserves perceptual binding, known as thebinding-by-synchronization hypothesis. This

hypothesis states that neurons forming a functional assembly are bound together by synchro-

nization of their action potentials. Emerging oscillations then allow activated neuronal groups

in distant cortical regions with sparse interconnections to become temporally linked, and sub-

sequently activate unique sets of downstream assemblies (Eckhorn et al., 1988; Gray et al.,

1989; Singer, 1999; Singer and Gray, 1995).

New experimental observations have extended the concept ofgamma-band synchroniza-

tion beyond being exclusively a mechanism for binding (Schnitzler and Gross, 2005). The

time span required to bring together transient cell assemblies (Harris et al., 2003) approxi-

mately matches the gamma cycle, and the induced oscillationis long enough to allow for an

elementary cognitive act (Engel et al., 2001; Llinas and Ribary, 1993; Varela et al., 2001).

1.3.4 Communication through coherence between coupled gamma oscil-

lating populations

When the neurons in a target group are synchronized in the gamma-frequency band, they are

under the dominant influence of gamma-rhythmic inhibitory inputs (Hasenstaub et al., 2005).

Consequentially, synaptic excitatory inputs are more efficient if they impinge on the network

out of phase and vice versa. The implication of this statement is that rhythmic local inhibitory

synchronization leads to periodic modulation of excitatory input gain (Fries, 2009). The input
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gain is modulated cyclically with short windows (around 12 ms, corresponding to half the

gamma period), and affects the average gain of rhythmic excitatory input across multiple cy-

cles. The average gain across cycles is determined by the precision and phase of the synchro-

nization between rhythmic input and rhythmic gain. Therefore, synchronization provides a

more consistent phase relation between the rhythms than lack of synchronization, and the input

gain can be maximized or minimized according to this phase relation (Figure1.7A,B). There-

fore interactions among rhythmically active neuronal groups could depend on neuronal syn-

chronization. This is behind the hypothesis calledcommunication through coherence(Fries,

2005) (Figure1.7). This hypothesis establishes that if two neuronal populations oscillate with

a constant phase difference, then an effective transmission of information is possible provided

that spikes sent by one population reach the other one at its peak of excitability.

However, temporal coordination between spatially separated populations (connected by

long-range axon collaterals) might be destabilized by the presence of conduction delays (Er-

mentrout and Kopell, 1998). If the conduction delays are of the order of 4−8 ms, reciprocally

coupled oscillators in the two hemispheres might still synchronize at zero-phase. However,

given that conduction delays can take up to several tens of milliseconds, how does the brain

reaches the required level of coordination in order to establish efficient communication chan-

nels between different brain areas?

In Chapter4 we will address the general question of how communication isestablished be-

tween physically separate brain areas, using neuronal oscillations as information carriers. In

particular, we will examine whether and how effective communication between cortical areas

arises even when the time taken by neuronal signals to go fromone area to another is compa-

rable to, or larger than, the typical time scales of the underlying neuronal networks. To do so,

we used a biophysically realistic computational model of two synaptically coupled neuronal

populations working in the gamma regime. Our model reproduces quantitative features of

experimental observations of communication through coherence (Bosman et al., 2012; Wom-

elsdorf et al., 2007), and provides a mechanism to explain why the experimental observation

of this strategy of information transmission is so pervasive.



1.3 Synchronization of neuronal oscillations 21

Fig. 1.7 Communication through coherence hypothesis.(A) Two presynaptic neuronal
groups in a lower visual area send two inputs (an apple and a pear) to a postsynaptic neuronal
group in a higher visual area. In each neuronal group, excitation (red) triggers inhibition
(blue), which inhibits the local network. When inhibition wears off, excitation starts again
along the gamma cycle. The gamma rhythm of the presynaptic group representing the apple
reaches the postsynaptic group in antiphase, and is therefore able to engage it. Thereby, the
apple-representing presynaptic group can optimally transmit its representation. On the other
hand the pear-representing presynaptic group cannot transmit its representation (Fries, 2005).
(B) Illustrative plot of network excitation and inhibition combined into network excitability.
Red vertical lines indicate excitatory neuron spiking and blue vertical lines inhibitory neuron
spiking. FromFries(2005).
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1.4 Synchronization as a mechanism of large-scale integra-

tion

The mammalian brain is composed of a myriad of coupled neurons that interact dynamically

and exhibit various dynamical activities and processes happening at different timescales, in-

cluding sub-milliseconds (gating of ionic channels), milliseconds (action potentials), seconds

(flow of slow ionic currents), minutes (synaptic conductances variation), days (growth and

development of new synaptic connections) and decades (death of neurons). The same applies

with respect to space. In fact neuronal dynamical processescover a wide range of spatial

scales, from micrometers (molecular and biochemical processes within neurons), to millime-

ters (synaptic interaction in local neuronal ensembles) and centimeters (interaction between

different areas of the brain). Owing to a complex functionalhierarchy between cell groups, the

brain is able to process multiple sensory inputs efficientlyand simultaneously and produce co-

herent output in the form of actions and thoughts. Thereforeinformation processing relies on

the coordinated interaction between large groups of interconnected neurons distributed within

and across different specialized brain areas (Bressler and Kelso, 2001; Jirsa, 2004; McIntosh,

2000). How does the brain coordinate all the perceptions, thoughts and actions that result

from neural processes happening at different temporal scales and distributed across the brain?

What are the neural mechanisms that select and coordinate this distributed neural activity to

accomplish a certain cognitive task? This is the large-scale integration problem (Varela et al.,

2001).

1.4.1 Local and large-scale integration

In the brain, the emergence of a neural assembly (see Section1.1) underlies the operation

of each cognitive act. These functional neuronal ensembleshave a transient existence that

spans the time necessary to accomplish a cognitive act (which can be as short as a fraction

of a second), but their existence is long enough to allow the activity to propagate through-

out the assembly, propagation that requires cycles of reciprocal spike exchanges with delays

of transmission up to tens of milliseconds. Therefore the relevant variable to describe these

neural assemblies is the dynamic nature of the links betweenthem, rather than the individual

activity of single component. In fact each neuronal integration mechanism is based on the lo-

cal interaction between the participating networks (Damasio, 1990; Mesulam, 1990). While

some authors thought that, due to the hierarchical organization of the brain, the associative

areas between motor and sensory regions allow for integration, the hypothesis most widely

accepted nowadays is that networks with their respective interactions provide the basis for in-
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tegration (Damasio, 1990; Mesulam, 1990). Between the various modes of mutual interaction,

one of the most experimentally studied is integration through phase synchronization (Varela

et al., 2001).

Phase synchrony is a basic mechanism for brain integration,and direct evidence is pro-

vided by the visual binding hypothesis (see Section1.1.3). This hypothesis states that differ-

ent features of a visual object, which are processed separately in specific visual areas, bind

together to give a unified percept through the synchronization of local discharges of cell as-

semblies (Roskies, 1999). Therefore, visual binding refers tolocal integration of neuronal

properties at the level of neighboring cortical areas, specialized in the same modality. In

contrast,Varela et al.(2001) proposed that synchronization of neural assemblies is a process

spanning multiple spatial and temporal scales in the nervous system (see Figure1.8), and not

just a local mechanism.

Local integration takes place over a local network of the size order of≈ 1 cm (Figure1.8A)

by making direct reciprocal connections (in the same cortical area) with conduction delays of

typically 4−6 ms (Girard et al., 2001). In contrast, large-scale synchronization involves neural

assemblies that are located in distant parts of the brain, even in different hemispheres (> 1 cm)

(Figure1.8B). Consequently signal transmission along indirect connections (usually named

feedforward or feedback, connecting different brain regions) could take up to several tens of

milliseconds due to conduction delays (Phillips and Singer, 1997; Varela et al., 2001).

1.4.2 Evidence for large-scale synchronization

In the last years several experiments have been designed to illustrate the existence of large-

scale oscillatory synchronization and test its potential functional role, as one of the mecha-

nisms that might implement coordinated communication across different neural subsystems

(Bressler et al., 1993; Roelfsema et al., 1997; Schnitzler and Gross, 2005; Varela, 1995), go-

ing beyond the binding hypothesis. Three main observationssupport the functional relevance

of large-scale oscillatory synchronization: (i) the fact that beta oscillations are functionally

involved in long-range synchronization (Baudry et al., 2001; Kopell et al., 2000b; Tallon-

Baudry et al., 2004), (ii) the importance of the spatiotemporal balance of synchronization and

desynchronization (Friston, 2000; Hanslmayr et al., 2016; Rodriguez et al., 1999), and (iii) the

discovery that synchronization patterns are directly related to behavior (Fell et al., 2001; Fries

et al., 2002b; Tallon-Baudry et al., 2004).

Significant evidence for large-scale synchronization has been provided by experiments

with EEG and MEG, among others. A significant experiment conducted byRodriguez et al.

(1999) provides direct support for long-range synchrony and represents one of the first sig-

natures of the functional significance of long-distance synchronization in human brain activ-
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Fig. 1.8Neural synchrony as a multi-scale phenomenon.Synchronization of neural assem-
blies is a process spanning multiple spatial and temporal scales in the nervous system. (A)
Local scale. In a small region or a local network three different levels of analysis can be
considered: (a) Synchronization between single cells under specific stimulus as measured by
cross-correlogram. (b) Local field potentials from recording electrodes (separated maximum
7 mm). The traces represent fast oscillations synchronization episodes. (c) Transient synchro-
nized patterns within a population of neurons measured intracranially. Populations are most
transiently synchronized in the gamma range after the appearance of a stimulus. (d) Activity
from recording electrodes on the surface: synchronous patches appear as spatial summation of
cortical responses that account for the increase in the gamma range. (B) Large scale. Patches
of local synchrony in distant brain areas can synchronize during the accomplishment of a cog-
nitive task. Black lines identify electrodes that are synchronized during a stimulus recognition
task. FromVarela et al.(2001).
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ity. The authors recorded electrical brain activity from subjects who had to discern among

ambiguous visual stimuli perceived either as faces (Figure1.9A) or as meaningless shapes

(Figure1.9B). Figures1.9C and 1.9D show two induced gamma-activity peaks, with the sec-

ond likely involved in post-perceptual processes. The two peaks correspond to the moment

of perception of the face itself and to the ensuing motor response. It does seems there is not

too much difference in the power spectrum between the perception and no perception cases.

On the other hand phase synchrony analysis, that quantifies effective synchrony between the

activities recorded in different electrodes (Figure1.9E), shows that during the perception con-

dition, there is an increase in phase synchrony soon after the stimulus (around 230 ms), which

is temporally correlated with the increase in power spectrum in Figure1.9C. Given that there

is no evident pattern in the case of no perception, it is reasonable to think that this sharp

increase of phase synchrony at the power spectrum peak is functionally relevant in the percep-

tion itself. There is another peak of phase synchrony around645 ms associated with the motor

response in both conditions, because the subject was asked to respond to the two stimuli. The

transition between these two cognitive states, i.e. face perception and motor response, is char-

acterized by a sharp decrease in phase coherence, or desynchronization, probably driven by an

active uncoupling of the underlying neural ensembles. The authors also mapped the areas of

long-distance synchronization, verifying that they effectively correspond to regions devoted to

visual perception and motor task according to previous experiments. This result supports as

well the idea that long-distance phase synchronization anddesynchronization play an essential

role in large-scale cognitive integration (Bressler et al., 1993; Roelfsema et al., 1997; Varela,

1995; Von Stein et al., 2000), and not just in local visual-feature binding. There are other

results (Perez-Orive et al., 2002; Salmelin and Kujala, 2006) supporting the functional role of

oscillatory synchrony in perception.

If large-scale synchrony subserves normal brain functioning, then synchrony disruption

should be the cause of abnormal functionalities (Varela et al., 2001). Important advances in

the study of neurological disorders provide further relevance to oscillatory synchronization

and its involvement in cognitive functions. In fact many experimental studies showed a sharp

correlation between abnormalities in neural synchronization and cognitive dysfunctions. Evi-

dences are related to brain disorders, such as schizophrenia (Friston, 1999; Phillips and Silver-

stein, 2003; Schnitzler and Gross, 2005), epilepsy (Penfield and Jasper, 1954), autism (Huss-

man, 2001; Rubenstein and Merzenich, 2003), Alzheimer’s disease (Montez et al., 2009; Pons

et al., 2010; Stam et al., 2007), and Parkinson’s disease (Levy et al., 2000; Limousin et al.,

1995; Lyons and Pahwa, 2008; Schnitzler and Gross, 2005) (see table 1 ofUhlhaas and Singer,

2006). These findings reveal that disorders of these diseases arerelated to local and long-range

synchronization, and concurrently the cognitive functions that are impaired in these diseases
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Fig. 1.9Functional role of long-range neural oscillatory synchronization. (A,B) Examples
of Mooneyfaces, high-contrast pictures of a human face. These pictures look like a human
face when seen upright (A) but have no clear meaning when inverted (B). (C,D) Time-resolved
power spectral density after the appearance of the two different stimuli: (A) as perception and
(B) as no-perception. The color plots focus on the gamma rangeand exhibit two periods of
increased gamma power emission between 20− 60 Hz. A first power peak is recorded at
230 ms after stimulus onset. The power emission in the perception (P) condition is higher
than in the no-perception (NP) condition. (E) Phase synchrony for the P and NP conditions.
NP synchrony remains stable until 700 ms. Phase synchrony for the P condition increases at
230 ms (P< 0 : 05), decreases sharply at 500 ms (P= 0.005), and ends with a second increase.
Adapted fromRodriguez et al.(1999).

have all been associated with neural synchronization. These experimental results support the

hypothesis that abnormal synchrony is one of the causes of cognitive dysfunction, and conse-

quently that temporal and spatial coordination of distributed neuronal activity through precise

synchronization plays an important role in normal brain functions.
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1.4.3 Multi-scale approach

An answer to the large-scale integration problem has not been found yet, because a full theo-

retical description of the normal and pathological functioning of the brain is still missing. Its

study is usually partitioned into different research fieldsdevoted to distinct brain structures

(such as the thalamus, amygdala, hippocampus, etc.), cortical functional areas (motor, visual,

auditory cortex, etc.) or particular microscopic circuits, from the level of cortical columns

down to single-neuron responses. Moreover, studies of the global activity of the brain usually

focus for convenience on specific cognitive or motor tasks, in order to compare them with a

control state such as spontaneous activity at rest.

Further the advent of neuroimaging methods has led to the study of functional localization,

focusing on a one-to-one mapping between regions of the brain and physiological processes.

Using these approaches, neuroscientists have been workingto link brain dynamics to behav-

ior by correlating increases or decreases of some measure ofbrain activity with the cognitive

status of a human subject undergoing a certain task. Under the assumptions that the cogni-

tive processes can be localized in specific regions of the brain (functional localization) and at

the same time can be measured by the average increase in activity levels, the complexity of

these cognitive processes is reduced to two dimensions: their location in space and their acti-

vation state. But can these two dimensions fully characterize cognitive processes? The typical

scale of functional localization (of the order of a few cubiccentimeters) is large compared to

the amount of neurons that possess similar physiological, neurochemical, morphological and

structural properties contained in each MRI voxel. Moreover, it is doubted that a one-to-one

mapping exists between cognition and brain regions (Price and Friston, 2005). In fact, given

the diversity and flexibility of the various cognitive processes, some of them may activate

the same region and inversely, the activation of different brain regions may reflect the same

cognitive process. These evidences may be an indication of the physically separated but func-

tionally linked networks that underlie neurocognitive function (Bullmore and Sporns, 2009;

Cohen, 2011; Varela et al., 2001). As mentioned above, in the brain there are different spatial

scales which differ by several orders of magnitude, from single neurons at the microscopic

level to cortical columns at the mesoscopic and macroscopiclevels. It is not clear what is

the appropriate spatial for the study of functional localization or if several neurocognitive pro-

cesses can be localized at different scales. It is plausiblethat some brain dynamics might be

relevant at certain scales and not at others. Therefore, functional localization has been a useful

approach to understand the theories and experiments of cognitive neuroscience. However it

has some limitations. There is evidence that the brain uses multiple dimensions for informa-

tion processing, in addition to activation and space. Another dimension, time, may be equally

important, or even more important than space in terms of the neurocomputational mecha-
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nisms (Cohen, 2011), namely for coding, processing and information transmission. There are

several observations that emphasize the rich landscape of temporal dynamics:

• First, the information can be transmitted in the precise timing of activities within and

across physically separated areas of the brain. In this case, information can be lost by

averaging over larger periods of time.

• Second, time provides a rich source of complex multi-dimensional data where informa-

tion can be represented and processed. This large amount of information embedded

in the temporal patterns of neuronal activity comes in part because the electrophysio-

logical activity in the brain is strongly oscillatory. As introduced in Section1.3, neu-

ronal oscillations represent periodic modulation of the excitability of populations of

neurons (Tiesinga et al., 2008; Wang, 2010a). They occur in multiple temporal and spa-

tial scales in the form of ultra-slow oscillations with a periodicity of tens of seconds in

the cortex during deep sleep (Steriade, 2006) or ultra-fast oscillations with a periodicity

of a few milliseconds in patches of somatosensory cortex (Curio, 2000). In fact differ-

ent frequency bands are functionally related to a diversityof cognitive processes (Traub

et al., 2004; Varela et al., 2001). Activities at a certain frequency can be performed

independently or in parallel with activities at other frequencies, therefore it is natural to

think of the wide band of frequencies in which information can be processed. In this

context, several functionally distinct neural networks can spatially coexist and be disso-

ciated according to their frequency band or spatiotemporalpatterns (Cohen, 2011), thus

constituting a mechanism supporting flexible signal routing (multiplexinghypothesis,

seeAkam and Kullmann, 2010). At the same time, space can increase the potential for

information processing: interactions can occur through physically separated networks

on different frequency bands, and between power and phase.

• Third, the timeframes of neuronal processes are linked to those of the cognitive and

behavioral processes. Simply, a fast neural process implies a rapid cognitive process.

On the contrary, the spatial organization of neuronal processes is arbitrarily linked to

cognitive processes. There are no implications for the corresponding (location of) be-

havior if a neural process takes place in one region or another, except if the physical

location constrains the temporal dynamics (Cohen, 2011). Therefore time can be highly

informative about cognitive behaviorally relevant mechanisms.

By way of example, in the auditory world, time is a key variablein the processing of

information, spanning from microseconds up to tens of seconds. In contrast with the visual

system, where the retina is like the screen of the exterior world, spatial information is not
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embedded in the information captured by the ears. Thus the organization in the auditory

system is based on frequencies and not space, and spatial information has to be computed

in the brain by comparing time and intensity differences of the sound that reaches the ears,

somehow representing the spatial information through a computational process (Klug and

Albrecht, 2015). In fact a sound reaches the ears with different time or intensity depending on

the location of its source: it will arrive earlier and louderto the ear closer to the source than

the other. There are two different neural pathways devoted to the computation of time and

intensity in the auditory system, but both require high-precision timing of the order of tens of

microseconds (Grothe, 2003). This is why the lower auditory system is highly specialized in

detecting and processing this information at temporal scales that are smaller than the width of

a single action potential (Taschenberger et al., 2002).

Cross-frequency coupling

Cross-frequency coupling is a significant mechanism that could underlie time-embedded in-

formation. This phenomenon refers to a relationship between activities occurring in different

frequency bands for instance when the power of gamma cycles (30−80 Hz) varies according

to the phase of theta (4−8 Hz). Cross-frequency coupling could be used to encode the informa-

tion if the lower frequency oscillations coordinate the activity of sub-populations of neurons

that oscillate at higher frequencies. This phenomenon is seen as a neural mechanism for in-

formation processing (Jensen and Colgin, 2007), where spatially overlapping but functionally

heterogeneous neural networks can be activated and coordinated in a rapid timescale. Standard

localization- and hemodynamic-based methods such as fMRI with a low temporal resolution

cannot monitor these brain dynamics, but this information can be extracted non-invasively in

humans using EEG and MEG. This is an example of the importanceto use methods with high

temporal resolution to highlight brain dynamics that go beyond what one can study human

through fMRI or time-domain averaged ERP.

Furthermore, in addition to frequency-based mechanisms such as cross-frequency cou-

pling occurring in the same spatial region, information mayalso be contained in the temporal

relationship of brain activity over the space. Indeed inter-regional oscillatory synchronization

(see Section1.4.2) may underlie information transfer and co-processing (Womelsdorf et al.,

2007). For instance, given that changes in phase synchronization could emerge without any

changes in power, information can be embedded in the temporal relationship between areas.

Although some measurements of phase synchronization are non-directional (namely do not

reveal the direction in which the oscillations are traveling), the temporal precision of EEGs

can lead to an estimate of the activity flow, and therefore to arelevant information that is not

localized to either region alone (Granger, 1969).
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Temporal information is thus embedded in the rich frameworkof the neural electrophys-

iological dynamics, and much of this information may be lostif only an analysis of spatial

dimensions is performed. Examining the temporal dynamics of brain electrical activity, along

with the spatial-based approaches, represents an important next step in the development of

theoretical and empirical human neuroscience.

Novel methods to bridge scales

The switch from the modular (reductionist) approach to the large-scale network paradigm is

nowadays being supported as well by the advent of new advanced methodologies. Current

methodologies overcome several limitations in the study ofdifferent spatial scales simulta-

neously such as the identification of which areas are interacting and communicating without

an exhaustive mapping or the computationally and statistically high-demanding analysis of

recordings from many channels. New approaches aim at mapping behaviors and cognitive

variables into physiology by sampling and monitoring the brain activity at each relevant scale

(see Figure1.10). Lewis et al.(2015a), for instance, are carrying on an ambitious project

with the help of different recordings methods: with electrocorticography they map specific

regions involved in a cognitive task (Figure1.10A), with dense surface recordings with higher

resolution they further map the areas involved in the task thus localizing specific neuronal

populations (Figure1.10B), then with the implantation of laminar arrays in specific points in

the cortical area they record the activity of interacting neuronal groups at a certain distance

(Figure1.10C) and finally with penetrating arrays they operate dense mapping of local popu-

lations to monitor targeted local circuits (Figure1.10D). These approaches, along with similar

new technologies, will enable to relate single cells with local populations in terms of their

activity, areal dynamics and inter-areal communication across brain-wide networks.

From the computational point of view different mathematical models have been devel-

oped to account for the activity at each scale, from single neurons to the mesoscopic level

of neuronal ensembles. Recently, large-scale models of the brain have received special atten-

tion. So far, global brain activity has been modeled by dividing the brain into discrete volume

elements, or voxels, and coupling them according to statistical correlations and structural in-

formation (Deco et al., 2013; Pons et al., 2010; Sotero et al., 2007). Both the Human Brain

Project and the Brain Activity Map project propose integrated views to bridge the gap between

the behavior of single neurons and the functions of the full brain (Alivisatos et al., 2012), but

this quest is still in its infancy. In Chapter5, we will propose an alternative approach to ex-

plore scale interaction, by considering a system formed by two neural masses (mesoscopic

description of neuronal activity) that are coupled exclusively via an intermediate population

described by a spiking NN model (microscopic description).In that way, we use synchroniza-
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Fig. 1.10Multi-scale approach for recording of brain activity. (A) Using electrocorticog-
raphy (ECoG) allows mapping of distributed areas involved ina cognitive task. Identified
regions can then be targeted for higher-resolution recording. Green dots represent sites on an
ECoG array and colored areas represent regions participating in a functional network, iden-
tified by ECoG. (B) Refined high resolution ECoG mapping of specificareas of interests en-
gaged in the cognitive task. Dense mapping of these areas allow to target neuronal groups
that cooperate across long distances or share selectivity.(C) Targeted ensemble recording
across laminar circuits from identified coupled populations. Laminar arrays can be inserted
at specific points in the cortical area that correspond to interacting populations (Lewis et al.,
2015a). (D) Dense mapping of interacting populations through laminar arrays to analyze the
propagation of information through local and distributed circuits. FromLewis et al.(2015a).

tion as a tool to probe the interaction between the two scalesof description and determine

which are the microscopic features that modulate the mesocopic activity.
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1.5 Propagation of neuronal oscillations

The introduction of voltage-sensitive dyes (VSD)1 (Shoham et al., 1999), of multielectrode

array (MEA)2 (Maynard et al., 1997) and other optical imaging techniques offers the opportu-

nity to explore spatiotemporal structure of activity in mesoscopic regions in the neocortex and

other brain areas. Many results provided evidence of the tendency of neuronal populations

to self-organize in spatiotemporal patterns that resembletraveling waves. In fact stimulus-

evoked propagating waves have been observed in several sensory cortices of anesthetized an-

imals (Ahmed et al., 2008; Gao et al., 2012; Grinvald et al., 1994; Han et al., 2008; Huang

et al., 2004; Stroh et al., 2013). In awake conditions, MEA recordings have reported the ex-

istence of traveling high-frequency gamma- and beta-band oscillations propagating across the

primary visual cortex (Gabriel and Eckhorn, 2003), the motor cortex (Rubino et al., 2006)

of the monkey under both spontaneous and evoked conditions,and fast wave propagation in

the auditory cortex of the awake cat (Witte et al., 2007). Moreover, VSD imaging studies

have revealed propagating waves spanning large parts of thecerebral cortex in freely moving

mice (Ferezou et al., 2006).

The existence of traveling waves in the brain has been highlydebated in recent years.

However the advent of technologies with better signal-to-noise ratio and new methodological

approaches (Muller et al., 2014) allows to carry out data analysis on the single-trial level,

because trial-to-trial variability may in fact preclude specific measurements due to average

effects. These innovative tests confirm that traveling waves occur systematically in the awake,

behaving animals and are consistent across trials and thus the wave propagation is a general

phenomena in the large-scale dynamics of the neocortex and other brain areas (Lubenov and

Siapas, 2009; Muller and Destexhe, 2012; Muller et al., 2014).

In what follows we briefly introduce some mechanisms behind the propagation of neuronal

oscillations and discuss the potential benefits for the brain to develop these coordinated pat-

terns of activity. Then we briefly review the main experimental results focusing on cerebellar

1 Voltage-sensitive dyes (VSD) are organic molecules which change their optical properties in response to
a change in membrane potential. They have been widely used (i) in combination with fast cameras to monitor
membrane potential in processes of individual neurons in localized brain regions and (ii) to follow population
changes in membrane potential over large regions of the brain and the heart. Differently from other optical
techniques, voltage-sensitive dyes are optical measurements that relate directly to electrical activity, because
dyes change their absorption or emission spectra in a mannerdepending upon membrane potential (Frostig et al.,
2009).

2Microelectrode arrays (MEA) are devices with fixed geometryarrangements of microelectrodes for the pur-
pose of multisite, parallel electrophysiological recording. They essentially serve as neural interfaces that connect
neurons to electronic circuitry. There are two general classes of MEAs: implantable MEAs, usedin vivo, and
non-implantable MEAs, usedin vitro (Spira and Hai, 2013).
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and hippocampal waves, which provide important insights for our work that will be presented

in Chapter6.

1.5.1 Mechanisms of traveling waves and computational role

Many theoretical studies on networks of neuronal oscillators demonstrated the existence of

traveling oscillatory waves in networks with spatially restricted connectivity (Bressloff and

Coombes, 1998; Bressloff, 2000, 2001; Ermentrout and Kleinfeld, 2001; Osan and Ermen-

trout, 2002). There are different mechanisms underlying the generation of traveling electrical

waves (Ermentrout and Kleinfeld, 2001). The simplest one requires a single neuronal oscilla-

tor, e.g. a pacemaker. This oscillator excites progressively neighboring cortical regions with

increasing synaptic delays (see Figure1.11A). In the case of hippocampal traveling waves,

this role could be played by the medial septum, which is considered the main pacemaker of

theta oscillations. Another case is waves generated by a single neuronal oscillator whose out-

put propagates unidirectionally in chain-like configuration or in consecutive connected groups

of neurons (see Figure1.11B). The third mechanism is due to a gradient of natural frequen-

cies in a network of weakly coupled oscillators. This mechanism does not rely on a single

pacemaker but instead on the stabilization of phase differences between all the rhythms intrin-

sically originated in each single neuronal oscillator (seeFigure1.11C). By way of example,

neurons in the entorhinal cortex have intrinsically oscillating membranes with natural frequen-

cies in the theta range, which progressively decrease in thedorsoventral direction (Giocomo

et al., 2007), providing opportunities for intrinsic traveling waves.In the same way, neurons

in CA1 exhibit resonances at theta frequencies (Leung and Yu, 1998), which decreases along

the septo-temporal axis as well.

With the development of theoretical models and the design ofprecise and systematic ex-

periments revealing traveling wave patterns, neuroscientists started to investigate the possible

role of neuronal waves and their implications in information processing. In Section1.1.3we

discussed about the functional significance of synchronousneuronal oscillations, because os-

cillating membrane potentials could offer windows of opportunity for neurons to spike, thus

modulating the sensitivity of neurons to incoming dynamical inputs. A potential benefit is that

the spiking output of a neuron is tuned according to the peak of depolarized oscillation phase.

In contrast, waves originated from propagation in networkswith local short-range connections

might subserve different processes. First, the emergence of traveling waves allows that only

a part of sensory field is made unresponsive during each period of the oscillation cycle, in

contrast with the periodic windows of opportunity for spiking (namely when inhibition is low)

in the presence of synchronous oscillations. The second potential role derives from the find-

ing that neurons are most sensitive to changes in their inputthat occur one-half period before
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Fig. 1.11Illustrative plots of different one-dimensional configurations supporting travel-
ing waves.Open circles stand for excitable but not necessarily oscillatory neurons or neuronal
tissue, while circles with∼ represent local oscillators with frequencyν . (A) A single oscilla-
tor drives neighboring neurons or neuronal groups through increasing time delays ofτD, thus
generating a fictitious wave pattern. (B) Wave patterns take place from the transmission of
periodic signals along a chain of cortical neurons. Here thedelay between neurons is fτD. (C)
Wave propagation relies on stabilization of phase differences among neuronal oscillators in a
network with nearest neighbor coupling. FromErmentrout and Kleinfeld(2001).

firing an action potential. Indeed in this perspective traveling waves might allow sensory areas

to work asbar code scanner, where only a fraction of the total sensory input is scanned at

each instance (Ermentrout and Kleinfeld, 2001). Furthermore, based on the idea that cortical

regions are mapped according to their respective sensory field, traveling waves may serve to

label perceived features in the stimulus stream with a unique phase. It is still not clear if the

switch from traveling waves to synchronous purely oscillations due to the sensory stimulation

is computationally relevant, however some findings reveal that it might serve to gate synap-

tic plasticity (Feldman, 2000; Markram et al., 1997). In the last decades, next to theoretical

studies, the introduction and development of multichannelrecording techniques and imaging

techniques make the spatiotemporal structure of travelingwaves in cortical regions a prime

subject of study.
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1.5.2 Propagating waves: experimental findings

In vitro experiments

Many in vitro studies have reported propagating activity by the application of electrical stim-

ulation to cortical areas or to thalamocortical afferents (Buonomano, 2003; Pinto et al., 2005)

or stimulated by local application of glutamate (Sanchez-Vives and McCormick, 2000). These

stimuli, although different from the ones induced by the sensory stimulation deliveredin vivo,

induce strong EPSPs on these neuronal cortical networks which are in a quiescent state, and

synchronously drive many neurons close to the firing threshold, thus eliciting propagation of

activity through the network (Muller and Destexhe, 2012). Interestingly, recent findings sug-

gest a critical role for the infragranular layers in contributing to the horizontal spread of this

activity across the cortex (Wester and Contreras, 2012). Furthermore VSD and MEA studies

in vitro provided first approximations of the speed of horizontal propagation of neuronal popu-

lations across the cortex (Fukuda et al., 1998), confirming other estimations made by studiesin

vivo(Jancke et al., 2004; Nauhaus et al., 2009), although some differences have been identified

in anesthetized rats and slice preparations (seeMuller and Destexhe(2012) for a review).

The wave-like propagation of neuronal activity has been observed in in vitro studies in

slices of the visual thalamus of ferrets (Kim et al., 1995). Spontaneous spindle waves (see

Section1.2) have been recorded in slices of the LGN. These spindle oscillations (i) initiate at

one side of the slice and propagate in the ventro-dorsal axis(von Krosigk et al., 1993b), (ii) are

generated in control conditions (while under specific pharmacological conditions slow waves

have been observed), and (iii) present different speeds of propagation (see Figure1.12). Inter-

estingly, while spatiotemporal wave-like organization inthe cortex is mainly due to the excita-

tory connections between pyramidal neurons, in thalamic slices these patterns arise from the

mutual interaction of excitatory TC and inhibitory RE neurons (Muller and Destexhe, 2012).

In vivo experiments

Multichannel recordings under anesthesia have reported many examples of large, low-frequency

spreading depolarization in the visual cortex of the rat (Han et al., 2008; Xu et al., 2007),

cat (Nauhaus et al., 2012) and macaque (Grinvald et al., 1994) that spreads across the cortical

areas. The spreading depolarization takes place where visual stimuli activate peaks of activity

with a center of mass that remains stationary during the response and the level of activation

decreases with increasing distances (Muller and Destexhe, 2012). However, the wave propaga-

tion of activity, differently from the spreading depolarization, refers to oscillations propagating

through the network. Large, low-frequency propagating waves of activity spreading through

the entire cortical area under anesthesia have been observed in several studies, and the results
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Fig. 1.12Propagating waves in thalamic slices.(A) Illustrative plot of propagation of spin-
dle waves in multisite extracellular recordings in ferret thalamic slices (left) and spontaneous
spindle waves along the ventral-dorsal axis of the slice (right). (B) Refined high resolution
ECoG mapping of specific areas of interests engaged in the cognitive task. Dense mapping
of these areas allow to target neuronal groups that cooperate across long distances or share
selectivity. Adapted fromKim et al. (1995).

strongly depend on the specific anesthetic used during the analysis (Ferezou et al., 2006; Han

et al., 2008; Reimer et al., 2010).

VSD recordings in awake monkeys have suggested that spreading depolarization is an

emerging feature in the cortical response of awake animals,confirming the results obtained

in anesthetized animals (Ayzenshtat et al., 2010; Slovin et al., 2002). However, the results of

these first studies in the awake monkey were based on trial-averaged data and, given the well-

known sensitivity of propagating wavesin vivo to trial averaging, it is possible that waves on

the single-trial level were attenuated by the averaging procedure (Muller et al., 2014; Xu et al.,
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2007). Thanks to the advent of new techniques in VSDI denoising (with an improved signal-to-

noise ratio), Muller and co-authors applied a new method to single-trial voltage-sensitive dye

imaging data in order to clearly detect spontaneous propagating waves and stimulus-evoked

propagating events. Their results showed that in response to a visual stimulus, propagating

waves systematically emerge in several visual areas (Muller et al., 2014). At the same time,

propagating waves of activity have been observed in MEA recordings of the awake cat audi-

tory cortex (Witte et al., 2007), and in the spontaneous background activity of the awake state

in MEA recordings of the monkey primary visual cortex (Nauhaus et al., 2012). In contrast

to the low-frequency propagating waves observed during anesthesia (Sanchez-Vives and Mc-

Cormick, 2000), traveling high-frequency oscillations have been detected in MEA recordings

of the primary visual cortex (Gabriel and Eckhorn, 2003) and in motor cortex of the awake

monkey (Rubino et al., 2006) and human (Takahashi et al., 2011). In what follows we present

two significant examples of wave patterns whose peculiar properties will be explored with

spiking models in Chapter6.

1.5.3 Cerebellar waves in early development

In several CNS regions, including the visual system, the hippocampus and the spinal cord,

spontaneous traveling waves of activity in early development are critical for establishing the

accurate synaptic connectivity of mature circuits (Feller, 1999; Katz and Shatz, 1996). Watt

et al. (2009) have first reported the existence of wave-like activity in the developing cerebel-

lum using two-photon laser scanning microscopy to guide patch-clamp recordings in slices

of transgenic mice. Purkinje cells, a class of GABAergic neurons in the cerebellum, pro-

vide the output of the cerebellar cortex and project to the deep nuclei of cerebellum (DCN),

where they form GABergic synapses. Watt and co-authors foundthat the asymmetric projec-

tion structure of Purkinje-Purkinje synapses is behind themechanism of waves propagation

in the developing (not adult) cerebellum (Figure1.13A). From these studies it emerges that

Purkinje-Purkinje connections can enhance synchronization of Purkinje cells, with the phase

of entrainment depending on the driving force at GABAergic synapses (Watt et al., 2009), with

consequential effect on the direction of the wave propagation with respect to the direction of

connectivity.

To characterize their experimental results, they built a simple model of integrate-and-fire

neurons where cells were connected in a chain-like manner according to the directional asym-

metry. Specifically, each neuron was connected with the neighboring 5 neurons asymmetri-

cally (Figure1.13B) and two reversal potential values were studied corresponding to depolar-

izing and hyperpolarizing synapses respectively. That model with that specific structural con-

nectivity supported the spontaneous propagation of waves of activity: in particular depending
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on the type of synapses (if excitatory or inhibitory) it changes the neuron in the chain leading

all the other neurons, indeed providing two distinct propagation’s direction (Figures1.13C,D).

Propagating waves have been characterized by calculating spatial wavelength and speed propa-

gation (Figures1.13E-G). Functionally, these cerebellar waves in the early development could

contribute to the formation of functional maps and local subnetworks (Watt et al., 2009).

1.5.4 Hippocampal theta oscillations

Theta oscillations 4−10 Hz are typical in hippocampal LFPs of mammals and humans (Arnolds

et al., 1980; Green and Arduini, 1954; Vanderwolf, 1969; Winson, 1972), emerging during

wakefulness under specific conditions and invariably present during REM sleep. From ex-

perimental studies in rats, it turns out that theta oscillations are associated with voluntary

movement and active exploration (O’Keefe and Nadel, 1978). Furthermore theta oscillations

clock hippocampal activity during awake behavior and REM sleep, and this is essential for

the temporal coding of spatial information by place cells, according to the mechanism of theta

phase precession3 (Lubenov and Siapas, 2009).

A few years ago, it was common belief that theta oscillationsare synchronized within each

layer across the anatomical extent of the hippocampus (Buzsáki, 2002). According to this view,

theta oscillations were a global clock, and the anatomical extent of the hippocampus was syn-

chronized with zero delay or figuratively speaking contained in a single time zone (Lubenov

and Siapas, 2009). However, exquisite experiments byLubenov and Siapas(2009) revealed

that in freely behaving rats theta hippocampal oscillations in areaCA1 are actually traveling

waves that roughly propagate along the septo-temporal axisof the hippocampus, and conse-

quently these wave patterns modulate the firing activity ofCA1 pyramidal cells. These impor-

tant results showed that theta oscillations pattern hippocampal activity not only in time but

also across anatomical space (Figure1.14). The presence of traveling waves indicates that the

instantaneous output of the hippocampus is topographically organized and represents a seg-

ment, and not a point of physical space, as the mapping of timeon Earth in a progression of

local time zones (Lubenov and Siapas, 2009).

3 Theta phase precession. Mechanism by which hippocampal neurons fire during a specific phase of the
oscillation cycle (theta range), whereby the relative phase of discharge generation varies in a context-dependent
way. The encoding of information about the amplitude of the stimulus into the phase values of the discharges
response has been proposed in the hippocampus to explain thephenomenon of theta-phase precession (O’Keefe
and Recce, 1993): pyramidal neurons also calledplace fieldsfire preferentially when the animal moves through
the corresponding place field of firing pyramidal neurons andthey phase-lock to the theta rhythm. As the ani-
mal moves and proceeds in that place field, neurons fire earlier and earlier along the theta cycle. It is a quite
well explained phenomenon due to the interaction between excitatory drive on pyramidal neurons and rhythmic
inhibition in the theta range imposed by inhibitory neuronsto whole network (O’Keefe, 1976). The functional
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Fig. 1.13Propagating waves in a network of Purkinje cells.(A) Image of the anatomical
distribution of Purkinje cell axon collaterals in case of a lobule from a P9 mouse (left) and an
image of the region indicated by the blue square (right) withtwo axon collaterals highlighted
with blue arrows. (B) Illustrative plot of the Purkinje cell axon collateral network model. The
connectivity is regular and asymmetric. (C) Raster plot from the network model showing ac-
tion potentials of Purkinje cells (points) versus time. Thepresence of depolarizing synapses
gives rise to waves propagating from the apex to the base of the folium (black arrow). (D) Hy-
perpolarizing synapses generate activity waves travelingin the opposite direction with respect
to the depolarizing synapses. (E-G) Two-dimensional Fourier transformation corresponding
to the angular spectrum of the raster plots when the synapse is off (E), depolarizing (F) or hy-
perpolarizing (G) (Watt et al., 2009). The peaks of Figures (F-G) correspond to the traveling
waves features. Adapted fromWatt et al.(2009).
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Fig. 1.14Theta traveling waves and waves distribution parameters.(A) Consecutive snap-
shots of theta oscillations across the recording grid places in stratum oriens ofCA1. Colors
correspond to the phase of the theta wave at each grid location according with the circular
color map on the right, and arrows stand for the direction of the propagation; (B) instanta-
neous properties of the waves shown in A: amplitude (dashed gray line), frequency (solid gray
line), speed (dashed black line) and direction (solid blackline) of wave propagation; (C) wave
propagation direction; (D) wave propagation speed; (E) spatial wavelength. Different colors
correspond to different animals and the number to the medianfor each animal. FromLubenov
and Siapas(2009).

The understanding of the mechanisms of wave propagation in the hippocampus and other

brain regions could elucidate the global properties of information representation and the di-

rection and nature of the flow and process of information. It is also interesting to determine

whether anatomical asymmetries in axonal projections found in brain regions can also sup-

port waves and the extent to which waves documented experimentally in other brain areas are

linked to possible asymmetries in axonal projections (as cerebellar waves). In Chapter6, start-

ing from experimental findings ofLubenov and Siapas(2009) and in collaboration with them,

we will first propose a biophysically plausible spiking model to reproduce traveling waves,

and secondly investigate the mechanisms generating this wave-like behavior and study the

topological determinants by means of a continnum approximation model that is analytically

tractable.

importance of theta phase precession is given by the fact that firing temporal sequence of pyramidal neurons
gives insights on the position and trajectory of the animal and information recorded about the past.
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The next Chapter provides an introductory overview of computational models at the mi-

croscale, e.g. modified integrate-and-fire and conductance-based models, and at the mesoscale,

e.g. neural mass models, that will be used to obtain the main important results in Part II.



CHAPTER 2

COMPUTATIONAL MODELS

In order to understand the basic principles of brain function it is essential to consider the differ-

ent scales involved (from single neurons to behavior) via the study and exploration of different

computational models able to capture with a certain degree of approximation a variety of spa-

tiotemporal phenomena. At the microscale, theHodgkin–Huxley(HH) model (Hodgkin and

Huxley, 1952) and related conductance-based models were developed to describe in a quite

detailed electrophysiological framework the spiking properties (action potentials) of an indi-

vidual neuron embedded in a larger network. Simpler models like leaky integrate-and-fire

(LIF) (Lapicque, 1907; Stein, 1967; Tuckwell, 2005) and theIzhikevich(Izhikevich, 2004)

models have been widely exploited because they are able to reproduce some spiking proper-

ties of neurons under certain regimes, while being analytically tractable and computationally

efficient in comparison with conductance-based models.

Another set of models, namedneural mass(NM) models (Coombes, 2010; David and

Friston, 2003; Grimbert and Faugeras, 2006b; Jansen and Rit, 1995), avoid the single-neuron

perspective and consider instead the averaged behavior of the neuronal population. This meso-

scopic description is more phenomenological than the single-neuron models, in the sense that

it represents directly the collective behavior of the network, without singling out individual

cells. NM models provide a direct link from neural activity to EEG and fMRI data (Bojak

et al., 2010) by unifying data from different imaging techniques. In fact based on the NM

model, several studies have been carried out at the scale of awhole cortical column by study-

ing the interaction of several NMs using bifurcation theory(Coombes, 2010), and the scale of

the whole brain using a realistic distribution of neural masses and their short- and long-range

connectivity (Pons et al., 2010; Sotero et al., 2007).

These mesoscopic models revealed to be successful in generating alpha oscillations con-

sistent with those found in the human EEG spectrum. In this direction a successful study

of Liley and colleagues proposed a mesoscopic model where cortical activity is locally de-
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scribed by the mean membrane potentials of populations of excitatory and inhibitory neurons

interacting with each other (Liley et al., 2002). Modeling approaches based on NMs have

been extended (Moran et al., 2013; Rennie et al., 2000; Wright and Liley, 1996) as well to

explore several neurobiological processes (Jedynak et al., 2015; Malagarriga et al., 2015) such

as anesthesia (Steyn-Ross et al., 1999) and epilepsy (Breakspear et al., 2006) among others.

This Chapter briefly introduces different models that have been explored in this Thesis, and

is structured as follows. In the first Section, microscopic models are introduced. In particular

LIF models are briefly described and an extension of them, theadaptive exponential integrate-

and-fire(aEIF) model will be introduced. That model will be used in Chapter3, where we will

address the dynamical properties of collective temporal phenomena in the thalamus. The more

electrophysiologically detailed HH model will be explained next, since it is the mathematical

framework where synchronization and communication between delayed-coupled populations

has been studied (Chapter 4). A network with HH neurons with structural connectivity in-

spired by hippocampal experiments will be used to study spatio-temporal wave-like patterns

in populations of neurons (Chapter6). In the last Section, a brief description of NMs will be

provided, since in Chapter5 we will study the interaction of populations described at different

scales, namely at the level of single neurons (HH model) and cortical columns (NM model).

2.1 Microscopic models

2.1.1 Integrate-and-fire models (IF)

A simple model that faithfully reproduces the main neurocomputational properties of neurons

is the so-called integrate-and-fire model (IF). It is often referred to as a spiking model, although

it lacks any spike generation mechanism. It combines linearfiltering of input currents with a

strict voltage threshold: once the voltage of the neuron goes above that threshold the neuron

is considered to generate a spike. The model produces all-or-none spikes, because the shape

of the spikes is not simulated and all spikes have the same temporal duration and size.

The LIF model (Izhikevich, 2006; Lapicque, 1907; Stein, 1967; Tuckwell, 2005) repro-

duces the subthreshold behavior of a neuron having ohmic leakage current, and other voltage-

gated currents that are deactivated at rest. The dynamical evolution is described by the differ-

ential equation:

Cm
dV
dt

= I −gL(V −EL), (2.1)

whereCm is the capacitive current,V(t) is the voltage variable and−gL(V−EL) represents the

ohmic leakage current. In particulargL is the leak membrane conductance andEL is the Nerst

equilibrium potential of the leakage current, i.e. is the value of the membrane potential where
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all inward and outward currents balance each other and the net current flux is zero. When

the membrane voltageV reaches the threshold valueEthresh, the neuron produces an action

potential, andV is reset automatically toVr . When the current input is excitatory (I > 0),

it depolarizes the neuron, whilst whenI < 0 the input is inhibitory and hyperpolarizes the

membrane voltage. Further mathematical analysis and comments on this model can be found

in Izhikevich(2006).

This model is very simple, computationally efficient but at the same time it has obvious

limitations. Ermentrout(1996) andLatham et al.(2000) proposed an extension to a quadratic

IF andFourcaud-Trocmé et al.(2003) to an exponential IF model to replace the strict threshold

with a smooth spike initiation zone. Additionally, the original IF was enriched by a second

variable to take into consideration subthreshold resonances or adaptation (Izhikevich et al.,

2003; Richardson et al., 2003).

An extended model that takes into consideration these different additions of original IF

model was developed byBrette and Gerstner(2005) and is called adaptive exponential integrate-

and-fire model (aEIF). We introduce this model because it hasbeen used in Chapter3 to ex-

plore spindle oscillations mechanisms in the lateral geniculate nucleus (LGN).

2.1.2 Adaptive exponential integrate-and-fire models (aEIF)

As said above, this model is an evolution of a two-variable IFmodel proposed byIzhikevich

(2004), and it is enriched by an exponential non-linearity aroundthe spike threshold, as in

the exponential IF model ofFourcaud-Trocmé et al.(2003). The combination of these two

models leads to the aEIF formulated byBrette and Gerstner(2005). A detailed analysis of

the dynamics of this system can be found inTouboul and Brette(2008). In this model, the

equations describing the evolution of membrane voltage of neurons are:

Cm
dV
dt

=−gL(V −EL)+gL∆exp

(

V −Ethresh

∆

)

−w+ I (2.2)

dw
dt

=
1
τw

[a(V −EL)−w], (2.3)

if V ≥ Ethresh,







V =Vr

w= w+b.
(2.4)

The Equation (2.2) describes the evolution of the membrane voltage: the capacitive current

through the membrane equals the sum of the ionic currents, the adaptation currentw and the

input currentI . The ionic currents are the ohmic leak current defined by the resting leak con-
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ductancegL and the resting voltage potentialEL, and the exponential term which reproduces

theNa+− current that is responsible for the generation of spikes. With this term we assume

that the activation ofNa+−channels is instantaneous (thus neglecting their activation), with

∆ denoting the steepness of the exponential approach to threshold, andEthresh representing

the threshold potential. The membrane time constant isτm =Cm/gL. The Equation (2.3) de-

scribes the dynamics of the adaptation variablew, with a time constantτw. The parameter

a quantifies the conductance that mediates subthreshold adaptation. WhenV is pushed over

the threshold, the exponential term provides a positive feedback and a spike is emitted. The

voltage is then instantaneously reset toVr , and the adaptation variablew is increased a valueb,

which accounts for spike-triggering adaptation and regulates the strength of adaptation itself

(Equation (2.4)). After the spike, the neuron cannot spike again during a refractory periodτre f

(imposed manually in the model).

When the input currentI applied to the neuron at rest reaches a critical value, the resting

state is destabilized, leading to repetitive spiking for large regions of parameter space (Laden-

bauer et al., 2012). For a complete analysis of different firing patterns achievable with the aEIF

model and phase plane analysis seeNaud et al.(2008). Figure2.1shows a variety of spiking

patterns that can be achieved by tuninga andb. The simplest firing pattern is thetonic firing, a

regular discharge of action potentials without adaptationobtained fora= b= 0 (Figure2.1A).

However, many neurons present a certain level of spike-frequency adaptation (SFA), meaning

that the inter-spike interval (ISI) grows during a sustained stimulus (adaptationfiring pattern,

Figure2.1B). With the aEIF model, an increase ofa or b leads to SFA, characterized by a

gradual increase in the ISI until a steady-state spike frequency is reached.Initial bursting

refers to events when groups of spikes are emitted at a frequency considerably greater than

the steady-state frequency (Figure2.1C). Finally, this model is able to reproduce therebound

burstingcapabilities of thalamic neurons (regular bursting, Figure2.1D), namely their ability

to trigger high-frequency bursts of action potentials (300Hz) in response to hyperpolarization.

The aEIF model will be used in Chapter3 to study dynamical properties of thalamic spindle

oscillations.

2.1.3 Hodgkin-Huxley-type conductance-based models (HH)

A more physiologically detailed model than the IF model is the Hodgkin-Huxley model ini-

tially developed for the squid’s giant axon (Hodgkin and Huxley, 1952). Hodgkin and Huxley

performed a series of experiments on that axon (1000 times thicker than a typical mammalian

axon) and they were able to find the time and voltage dependence of the sodium and potassium

conductances. Their equations faithfully reproduced the generation of action potential. Differ-

ently from IF models, in HH conductance-based models each variable and parameter have a
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Fig. 2.1Firing patterns produced by an adaptive exponential integrate-and-fire model.
Firing patterns of adaptive exponential integrate-and-fire model during a step current stimula-
tion: (A) tonic spiking, (B) adaptation, (C) initial burst, (D) regular bursting. These different
regimes are achieved by tuning the parametera that regulates the dynamics of adaptation
and parameterb, which regulates the strength of adaptation. Parameters values can be found
in Naud et al.(2008).

well-defined biophysical meaning, that have been measured experimentally. The drawback is

that these parameters are usually measured in different neurons, then averaged and fine-tuned

and therefore measurements might be not accurate for specific case. They also require a larger

computational effort. However they still provide a higher level of detail from the physiological

point of view.

In the light of their model, Hodgkin and Huxley proposed an equivalent representation of

the membrane potential as an electrical circuit (Figure2.2), in which the total current passing

through the membrane potential is given by the sum of ionic currents (Iionic) and the capacitive

current accounting for the storage of charges in the inner and outer surfaces of the membrane:

I = Iionic(t)+Cm
dV
dt

. (2.5)

Hence, voltage changes reflect the storage and release of ionic changes on the two surfaces

of the neuronal membrane. Equation (2.5) is a nonlinear differential equation describing the

membrane voltage.Iionic represents the sum of sodium and potassium conductance currents

plus a leak current with a constant resistance primarily carried by chloride ions. Each of

these currents,INa, IK and IL (Figure 2.2), represents the behavior of a large population of

microscopic ionic currents of the same type, and is modeled following Ohm’s law:Ii = gi(Vm−
Ei) wherei is the ionic species andEi is the equilibrium potential, as in the IF model. The ionic
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Fig. 2.2Electrical circuit representing the membrane potential dynamics of HH neurons.
The capacitor represents the dielectric properties of the membrane, and the other branches
containing the resistors represent its conductive properties. The arrows designate variable
conductances due to the opening and closing of ionic channels. The batteries represent the
electrochemical forces caused by the different ionic concentrations inside and outside the cell
body. FromNelson and Rinzel(1998).

conductancesgi vary due to the opening and closing of the ion channels, whichare regulated

by gates. Each gate can be in one of two possible states, permissive or non-permissive, with

a probability that depends on the membrane potential. Considering the large number of ion

channels of a ionic speciesi, we can introduce a probabilitypi for the fraction of gates of

that population that are in the permissive state, with 1− pi being the fraction of gates in the

non-permissive state. When all the gates of speciesi are in the permissive state,pi = 1 and the

channel ofi is open. The transition between these two states is governedby a linear first-order

differential equation:
dpi

dt
= αi(V)(1− pi)−βi(V)pi (2.6)

whereαi andβi are voltage-dependent rate constants for the non-permissive-to-permissive and

permissive-to-non-permissive transitions, respectively. Hodgkin and Huxley considered three

different kinds of gates,m, n andh:

GNa = gNap3
mph ≡ gNam

3h (2.7)

GK = gK p4
n ≡ gKn4 (2.8)

in which the powers ofm, n andh are obtained by adjusting the functions to the experimental

data. In summary, the dynamics of the membrane voltage is given by:

Cm
dVm

dt
=−gNam

3h(Vm−ENa)−gkn
4(Vm−Ek)−gL(Vm−EL)+ I , (2.9)
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where the constantsgNa, gK, andgL are the maximal conductances of the sodium, potassium,

and leakage channels, respectively, andENa, EK, andEL stand for the corresponding reversal

potentials. Other variables have the same meaning as in the IF model presented in the Sec-

tion 2.1.1. According to the HH formulation, the voltage-gated ion channels are described by

the following set of differential equations

dm
dt

= αm(V)(1−m)−βm(V)m, (2.10)

dh
dt

= αh(V)(1−h)−βh(V)h,

dn
dt

= αh(V)(1−n)−βn(V)n,

where the gating variablesm(t), h(t) andn(t) represent the activation and inactivation of the

sodium channels, and the activation of the potassium channels, respectively. The voltage-

dependent transition rates are:

αm(V) =
0.1(V +40)

1−exp(−(V +40)/10)
, (2.11)

βm(V) = 4exp(−(V +65)/18),

αh(V) = 0.07exp(−(V +65)/20),

βh(V) = [1+exp(−(V +35)/10)]−1 ,

αn(V) =
(V +55)/10

1−exp(−0.1(V +55))
,

βn(V) = 0.125exp(−(V +65)/80).

These equations have to be solved numerically, due to the nonlinear relationship between

the conductances and the voltage. The time course of the generation of an action potential is

represented in the illustrative plot of Figure2.3. Others models use this formalism to describe a

larger variety of ionic conductances, and are all referred to as conductance-based models. The

HH model will be used in Chapter4 to study the oscillatory activity of neuronal populations.

2.2 Modeling synapses

The equations representing the membrane potentials of two neurons can be coupled in a way

that mimics synaptic communication between them. Synapsesare highly specialized struc-

tures that enable neurons to exchange signals with other neurons, or to send signals to non-

neural cells such as muscle fibres. Presynaptic signals are emitted via release of neurotransmit-
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Fig. 2.3Typical time course of an action potential in the HH model. Illustrative plots of
time courses of the (A) membrane voltageV, (B) gating variablesh(t),n(t),m(t), (C) conduc-
tancesgNa(t),gK(t), (D) related currentsINa(t), IK(t) and resultingIL(t) and (E) the applied
currentI(t). Strong depolarizing inputs (panel E) increase activationvariablesm andn and
decreases inactivation variableh (panel B). Sinceτm(V) is relatively small (not shown), the
variablem is relatively fast (panel B). Consequentially fast activation of Na+ conductance
(panel C) drivesV towardENa (panel A) with favored depolarization and activation ofgNa.
This loop leads to the upstroke ofV (panel A). WhileV gets closer toENa, h ⇒ 0 causes
inactivation ofNa+ current andn ⇒ 1 causes slow activation of outwardK+ current (panel
D), thus V moves towardVr . After the action potential, the recovery of variablesn andh is
slow (panel B), because their voltage-sensitive time constants are relatively large. In particular,
outwardK+ current is still activated (because of largen) after the action potential (panel D),
thereforeV moves towardEK, below the resting potential (afterhyperpolarization). Since the
Na+ current is still inactivated due toh being small (panels B and D), the HH neuron cannot
spike during a temporal window, namedabsolute refractory period(τre f ); asINa is deinacti-
vated, the HH system is able to generate a new action potential if a strong current is applied
(relative refractory period). Adapted fromIzhikevich(2006).
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ters from the presynaptic neuron, which binds to receptors at the postsynaptic neuron. The type

of transmitter released by a neuron determines the action onthe postsynaptic neuron. This can

be either excitatory (e.g. glutamate, acetylcholine) or inhibitory (e.g. GABA, glycine). There-

fore a synaptic input to a dendrite can be excitatory or inhibitory, meaning that the triggered

electrical signal is a transient increase (excitatory postsynaptic potential, EPSP) or decrease

(inhibitory postsynaptic potential, IPSP) of the membranepotential of the postsynaptic den-

drite. All the synapses made by a neuron onto others are of thesame type, either excitatory

or inhibitory, so it is straightforward to divide neurons into those that are excitatory and those

that are inhibitory. The current generated by a receptor channel can be described using Ohm’s

law in a conductance-based formalism:

Isyn(t) = gsyn(t)(V(t)−Esyn), (2.12)

whereV is the membrane potential,gsyn is the synaptic conductance andEsyn is the reversal

potential of the synapse, in agreement with the definitions above. If Esyn is negative, the

synapse is depolarizing, hence excitatory (Esyn= 0 mV for glutamate receptors). If positive,

it is hyperpolarizing, hence inhibitory. For positive values ofEsyn the synapse is depolarizing

or excitatory (Esyn=−70 mV for GABA receptors).

Deterministic models of synaptic dynamics give a description of the averaged behavior of

the system. For instance, the basic model for a receptor has aclosed and an open state and the

average state can be described by a rate equation:

dσ
dt

= αT(t)(1−σ)−βσ , (2.13)

whereσ(t) is the number of open receptors relative to the total number of receptors (bounded

between[0,1]), T(t) is the time-varying neurotransmitter concentration,α is the rate of open-

ing andβ the rate of closing. The synaptic conductance can be expressed asgsyn(t)= gmaxσ(t),

wheregmax is the peak conductance. IfT(t) is considered to be a Dirac delta functionδ (t− t j)

occurring at every presynaptic spike timet j , a solution forσ(t) is obtained (Destexhe and

Rudolph, 2004):

σ(t) = α ∑
j

∣

∣1−σ(t j)
∣

∣exp(−β (t − t j)), (2.14)

where the rise ofσ(t) is instantaneous and its amplitude depends on the concentration of

closing receptors at that time, 1−σ(t j) (Figure2.4A). This solution implements a saturation,

because the rise ofσ at t j due to the delta-pulse release of neurotransmitters depends on the

state ofσ at that time, then decaying att > t j .
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A more realistic option is to consider thatT occurs as a pulse (Destexhe et al., 1994b),

such that|T|= Tmax for t0 < t < t1. Solving Equations (2.13) we obtain:

σ(t − t0) = σinf +(σ(t0)−σinf)exp(−β (t − t j)) (2.15)

where

σinf =
αTmax

αTmax+β
(2.16)

and

τsigma=
1

αTmax+β
(2.17)

for a general initial conditionσ(t0). After the pulset > t1, when|T|= 0:

σ(t − t0) = σ(t1)exp(−β (t − t1)) for t > t1. (2.18)

A simple model for postsynaptic conductance changes is the alpha function (Rall, 1967):

σ(t) = ∑
j

t − t j

tpeak
exp

(

−t − t j − tpeak

tpeak

)

(2.19)

which reaches its maximum att − t j = tpeak. The parametertpeakspecifies the duration of the

response, and can be used to distinguish for instance between fast and slow transmission, but

it is not possible to define independently the rise and decay time (Figure2.4B). Instead we

can use a sum of two exponentials, which allows for the independent definition of the rise and

decay dynamics(Figure2.4C):

σ(t) = f ∑
j

(

exp

(

− t − t j

τdecay

)

−exp

(

−t − t j

τrise

))

. (2.20)

Hereσ reaches its maximum attpeak= t j +
τdecayτrise

τdecay−τrise
ln(

τdecay
τrise

). f normalizesσ to take values

between 0 and 1:

f =
1

exp
(

− tpeak−t j
τdecay

)

−exp
(

− tpeak−t j
τrise

) . (2.21)

The neuron sums the excitatory and inhibitory inputs arriving from different sites of the den-

dritic arbor, and an action potential can be generated if theintegration of all the inputs brings

the membrane potential above threshold. Whether or not the summation of several postsynap-

tic potentials results in an action potential depends on thebalance of excitation and inhibition.
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Additionally the activation of a synapse is delayed a certain time after the presynaptic spike is

fired, and this depends on the transmission delays of neuronal signals through axons and den-

drites. Note that the conductancegmax is not constant in reality, but varies according to the type

of synaptic coupling and on the location of synapses. In factGABAergic terminals outnumber

non-GABAergic terminals at the soma, while the opposite is true at the dendrites (Benson and

Cohen, 1996). Given that synapses located at the dendrites trigger an inward current that trav-

els through the dendrite to the soma, the postsynaptic potential elicited locally at the dendrite

spreads passively into the soma reducing its amplitude. Therefore single inhibitory postsynap-

tic potentials are stronger than single excitatory potentials, and this accounts for an essential

balance between excitation and inhibition.

A B C 

Fig. 2.4Waveforms for synaptic conductances.(A) exponential decay, Equation (2.14), (B)
alpha function, Equation (2.19), (C) dual exponential, Equation (2.20). From Sterratt et al.
(2011).

Differently from the chemical synapses introduced above, electrical synapses or gap junc-

tions are to date probably still under-appreciated becausethey have been only directly seen

between inhibitory neurons in the neocortex (Gibson et al., 1999). These synapses are very

fast transmission channels leading to synchronization of membrane voltages of larger popula-

tions of neurons (Velazquez and Carlen, 2000). Electrical junctions are permanently active, do

not need an activation threshold and do not distinguish between pre- and postsynaptic neurons.

In Part II for each Chapter, we will describe the neuronal networks built starting from its

individual components, represented by single-neuron equations introduced above, where the

signal transmission between neurons is made by means of chemical synapses modeled with

bi-exponential alpha functions (Equation (2.20)). We move now to phenomenological models

at the mesoscopic scale.
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2.3 Mesoscopic models

2.3.1 Neural mass models

Mountcastle(1957) discovered a columnar organization in the cortex by movingan electrode

perpendicularly to the cortex surface, which revealed neurons with similar electrical activities

grouped locally across the cortex. He first showed the existence of columns 300− 500 µm

wide in the cortex which he namedcortical columns. The most well known neural mass model

aimed at modeling cortical columns is that ofJansen and Rit(1995) based on the original work

of Da Silva et al.(1974). Jansen and Rit(1995) developed a biologically inspired mathematical

framework to simulate spontaneous electrical activities of neuronal assemblies as observed

in EEG, with a particular interest for alpha activity. But these lumped parameter models

are also capable to produce evoked potentials, i.e. EEG activities observed after a sensory

stimulation (Jansen et al., 1993) and more complex rhythms ranging from delta to gamma

seen in EEG and MEG recordings (Coombes, 2010; David and Friston, 2003).

Jansen’s model characterizes the dynamics of a cortical column by using a mean field

approximation, describing the average activity of three cortical populations; excitatory and

inhibitory neurons and pyramidal cells. All three populations form a feedback circuit (Fig-

ure 2.5A). The main pyramidal population excites both interneuronal populations in a feed-

forward manner, and the excitatory (inhibitory) interneurons feed back in an excitatory (in-

hibitory) manner into the pyramidal population. The dynamical evolution of these three pop-

ulations is introduced considering two different transformations. Each population transforms

the total average density of action potentials reaching their afferent synapses from different ori-

gins,∑m pm(t), into an average postsynaptic excitatory or inhibitory membrane potentialyi(t)

(see Figure2.5B). This transformation can be introduced in the model using the differential

operator

L(yi(t);aNM) =
d2yi(t)

dt2
+2aNM

dyi(t)
dt

+a2
NMyi(t) = AaNM

[

∑
m

pm(t)

]

, (2.22)

and correspondinglyL(yi(t);b) for the inhibitory integration of the average density of action

potentials, withbNM andB substitutingaNM andA above.A andB are related with the maxi-

mum heights of the excitatory and inhibitory postsynaptic potentials (EPSP and IPSP, respec-

tively), whereasaNM andbNM represent the inverse of the membrane time constants and the

dendritic delays (see Figure2.5B). Explicitly, the equivalent impulse responses resultingfrom
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the second order differential linear transformation (2.22) are given by:

he(t) =

{

AaNMte−aNMt if t ≥ 0

0 if t ≤ 0

in the excitatory case and

hi(t) =

{

BbNMte−bNMt if t ≥ 0

0 if t ≤ 0

in the inhibitory case.

The second dynamical transformation in the model is the conversion of the net average

membrane potential into an average density of spikes (see Figure2.5B). This conversion is

done at the somas of the neurons that form the population, andis described mathematically by

a sigmoidal function

S(m(t)) =
2e0

1+er(ν0−m(t))
. (2.23)

Heree0 determines the maximum firing rate of the neural population,ν0 sets the net PSP for

which a 50% firing rate is achieved,r is the steepness of the sigmoidal transformation, and

m(t) corresponds to the net PSP input into the population being considered. The average den-

sity of action potentials produced by the presynaptic population acting upon the postsynaptic

population,pi(t), turns out to be proportional toS(m(t)), where the proportionality constant

weights the contact between the populations, and gives the range of efficiency of the synaptic

interaction. Combining Equations (2.22)-(2.23) we obtain the complete model for the NMs:

ẏ0(t) = y3(t)

ẏ1(t) = y4(t)

ẏ2(t) = y5(t)

ẏ3(t) = AaNMS[y1(t)−y2(t)]−2aNMy3(t)−a2
NMy0(t)

ẏ4(t) = AaNM(pe(t)+C2S[C1y0(t)])−2aNMy4(t)−a2
NMy1(t)

ẏ5(t) = BbNM(pi(t)+C4S[C3y0(t)])−2bNMy5(t)−b2
NMy2(t),

(2.24)

wherey0(t) is the excitatory postsynaptic potential (EPSP) produced by the pyramidal popula-

tion on the interneuron populations, andy1(t) is the EPSP acting upon the pyramidal popula-

tion and arriving from (i) the excitatory interneurons, (ii) other areas of the brain. Finally,y2(t)

is the IPSP acting upon the pyramidal population and arriving from the inhibitory interneurons.

The intra-columnar connectivity constants values are defined in terms ofCi, with i = 1, . . . ,4.

We use the values given inJansen and Rit(1995), but we refer the reader to Chapter5 for fur-
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A 

B 

Fig. 2.5 Illustrative scheme of a neural mass model of a cortical column. (A) A popu-
lation of pyramidal neurons interacting with two populations of interneurons, one excitatory
(left branch) and the other inhibitory (right branch). (B) Flowchart representation of opera-
tions performed inside a column. The boxes labeledhe andhi represent the effect of synapses
between populations, which is modeled mathematically as a second order differential linear
transformation from the average firing rate of the presynaptic population to the membrane po-
tential of the postsynaptic one. The boxes labeledSigmrepresent the nonlinear transformation
of the membrane potential of a population into an output firing rate. The constantsCi account
for the strength of the synaptic connections between populations. Adapted fromGrimbert and
Faugeras(2006a).
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ther details about the parameters, where we will propose a multi-scale approach made of NM

and HH models simultaneously. We use and explore these computational approaches at differ-

ent scales to characterize a diversity of spatio-temporal phenomena, which will be described

in Part II.



Part II

Results



CHAPTER 3

TRANSITION BETWEEN FUNCTIONAL REGIMES IN AN

INTEGRATE-AND-FIRE NETWORK MODEL OF THE THALAMUS

The thalamus is a key brain structure in the processing of sensory information. Transient

temporal coordination of distributed neuronal activity ofthalamic cells through precise syn-

chronization allows this structure to dynamically processinformation, in a way that it reflects

different behavioral states. This Chapter addresses the general question of how the thalamus

changes its dynamical behavior (which is associated with different information-processing

regimes, corresponding broadly to wakefulness and sleep) as a function of both its internal

state and external inputs. To that end we implement a simple yet biologically realistic neu-

ronal network model of adaptive exponential integrate-and-fire neurons, which exhibits two

dynamical regimes with different information processing capabilities. The model includes

two prominent types of thalamic neurons, namely thalamocortical relay cells (TC) and reticu-

lar neurons (RE). We investigate how the network architecture of the thalamus influences the

occurrence of these two regimes, and how the transition between them is controlled.

In Section3.1, we introduce the main dynamical properties of thalamic neurons depending

on the behavioral state. Next we present in Section3.2 the neuronal network model adopted

for the analysis. In Section3.3we build our network progressively. In Section3.3.1, we show

how our aEIF neurons reproduce the two activity modes of TC and RE neurons: the standard

depolarizing regime (Jahnsen and Llinás, 1984) and the rebound from hyperpolarization (Ha-

lassa et al., 2014). In Section3.3.2 and 3.3.3 we investigate how spindle oscillations are

generated through the TC-RE interaction as a function of theircoupling and of the presence

of external inputs, and how heterogeneity can be tamed by theinteraction of different TC-RE

loops. The analysis extends up to full networks in the presence of cortical inputs impinging

on the reticular neurons from the periphery and the corticalareas (Section3.3.4). Finally, in

Section3.4, we summarize the main results of this study. These results are reported inBarardi

et al.(2016) (under revision).
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3.1 Dynamical properties of the thalamus

The thalamus is often identified as a relay station between subcortical and cortical areas, since

all sensory pathways of the nervous system pass through it before reaching the cortex. Indeed,

sensory inputs from visual, auditory and somato-sensory receptors reach the cortex through

synapses on thalamocortical relay neurons in a specific region of the thalamus, which in turn

projects into the corresponding area in the primary cortex.It is thus reasonable to think that

thalamus does not limit its activity to faithfully transmitting information to the cortex, but it

might play a role in gating and modulating the flow of information towards the cortex (Crick,

1984; Reinhold et al., 2015; Sherman and Guillery, 2002), i.e. in selecting which external infor-

mation is supposed to reach the cortex and when. In particular, this view is coherent with the

important role found to be played by the thalamus in the sleep/arousal/wake processes (Dang-

Vu et al., 2008; Llinás and Paré, 1991; Steriade et al., 1993), and attention (Guillery et al.,

1998; McAlonan et al., 2008; Wimmer et al., 2015).

The main kind of excitatory neurons in the thalamus are the above-mentioned TC neurons.

In vitro studies (Jahnsen and Llinás, 1984; Llinás and Jahnsen, 1982) have revealed that these

neurons can operate in different firing modes depending on their voltage level. Near the resting

membrane potential, TC neurons can produce trains of spikeswith frequency proportional to

the amplitude of the injected current, due to voltage-dependent currents that generate action

potentials (Destexhe and Sejnowski, 2003). This is usually calledtonic mode. Alternatively,

when TC neurons are hyperpolarized they can operate in abursting mode, characterized by

high-frequency bursts of action potentials (300 Hz) in response to hyperpolarization.

During slow-wave sleep, TC neurons display strong spindle oscillations (7−15 Hz) inde-

pendently from external stimuli (Andersen and Eccles, 1962; Destexhe and Sejnowski, 2003).

In contrast, in the awake state TC neurons are known to vary their activity according to inputs

coming from the associated receptor layers, and to affect inturn the activity of the associated

primary sensory cortex. For instance, TC neurons belongingto the lateral geniculate nucleus

(LGN) and the ventral posterior nucleus (VPN) are modulatedby the retina (Butts et al., 2007)

and by the tactile afferents (Land et al., 1995), respectively, and modulate in turn the activity of

primary visual and somatosensory cortical areas (Gilbert and Wiesel, 1992; Pais-Vieira et al.,

2015; Reinhold et al., 2015). TC neurons are also key components of the above-mentioned

gating role of the thalamus, contributing to the selection of salient information during selective

attention (Wimmer et al., 2015).

As suggested by Crick in his seminal paper (Crick, 1984), the role of modulating the

efficacy of sensory transmission of TC neurons is mainly played by the neurons of the reticular

nucleus of the thalamus (RE neurons). In particular, the activation of RE neurons can strongly
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hyperpolarize TC neurons, which consequently undergo inhibitory rebounds that give rise

to an endogenous oscillatory activity (Halassa et al., 2014). Specifically, spindles can be

originated by TC bursts eliciting firing activity in RE cells.In turn RE bursts hyperpolarize

TC cells, which consequently stop firing. When RE cells, lacking excitatory drive, stop firing

too, the rebound of TC cells from hyperpolarization causes them to emit a burst of spikes

and the cycle starts again. The overall process takes about 100 ms and generates rhythmic

spindle oscillations. Therefore spindle generation is dueto an interplay between TC and RE

cells (Destexhe et al., 1993; McCormick, 1992). Coherently with this fact, manipulating the

activity of RE neurons was found to have behavioral consequences in attention tasks (Lewis

et al., 2015b; Wimmer et al., 2015).

During the awake state, TC cells undergo a transition and alternate this bursting mode

with a tonic mode. As mentioned above, both modes are typicalof TC neurons, and they

could provide different frameworks for information processing, since during the bursting mode

action potentials in the TC cell are not linked directly to EPSPs in that cell, whereas the

opposite is true in the tonic mode. Therefore we expect that the bursting mode transmits

information less efficiently than the tonic mode, in which anincrease in the extra-thalamic

inputs on TC neurons leads to a direct increase in the response of TC neurons (Sherman and

Guillery, 2002). How the thalamus exhibits the functional transition between the two regimes

is not clear. In fact, a coherent view accounting for both TC and RE interactions and the

resulting functional behavior of the thalamic network is still missing, due in particular to the

relative paucity of simultaneous neurophysiological recordings of the two neuron typesin

vivo. In this context, the role of modeling becomes very relevant, due to its capacity to suggest

candidate mechanisms for the generation of the observed behavior. Modeling of thalamic

networks has been pursued for more than 20 years (Destexhe et al., 1994a; Golomb et al.,

1996), during which network models have been developed that capture a wealth of thalamic

phenomena (Muller and Destexhe, 2012). However, almost all studies to date have adopted

neuron models at least as complex as the Hodgkin-Huxley model (Destexhe et al., 1994a;

Willis et al., 2015), probably due to the aforementioned role of rebound currents. We are

aware of one attempt to model realistically thalamic interactions with integrate-and-fire (IF)

neurons (Destexhe, 2009). Other relevant work on this topic has been done by Smith and

colleagues (see e.g.Huertas et al. 2005, based on an earlier model ofSmith et al. 2001) and

also byCoombes(2003), whose work is based on a firing rate reduction of IF networkswith

slow T-type calcium currents in RE and TC cell networks.

In this Chapter we focus on a single property of the thalamic network as a whole, namely

its above-mentioned ability to switch between two dynamical regimes that display different ex-

ternal input sensitivity. We also study the role played in this phenomenon by the network archi-
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tecture (connectivity and synaptic strength), ranging from loops of two neurons to the effect of

sensory and cortical input on the whole thalamic network. Tothat end we develop a thalamus

TC-RE network model based on a particularly simple spiking neuron model, namely a differ-

ent suited version of the adaptive exponential integrate-and-fire (aEIF) neuron model (Brette

and Gerstner, 2005) for each neuron type (see Section2.1.2). The choice of this neuron model

allowed us to focus on a restricted number of parameters, specifically those related to physio-

logical quantities influencing the rebound-driven oscillations and the tonic state (Touboul and

Brette, 2008). Moreover, our aEIF thalamic model will be particularly suited to be interfaced

with cortical column LIF models (e.g.Potjans and Diesmann, 2014) to model accurately the

whole thalamocortical loop (see Perspectives section7.5).

3.2 Network model of adaptive exponential

integrate-and-fire neurons

We build the thalamic network based on the single-neuron adaptive exponential integrate-and-

fire (aEIF) model (Brette and Gerstner, 2005), described in Section2.1.2. The network is made

of TC and RE cells, endowed with intrinsic properties and topographic connectivity specific

to the thalamus (Destexhe, 2009). Here we consider a network of 500 neurons, half of which

are TC neurons and the other half being RE neurons. Given that thalamic interneurons do not

contribute to the development of internal dynamics such as oscillations, they are neglected. Ax-

onal projections within the thalamic circuitry are local but sparse. The excitatory projections

from TC to RE have a connection probability of 1%, while RE to TC inhibitory projections

are more dense, with a connection probability of 4%. The samedensity is assumed from in-

hibitory connections between RE cells. The structural connectivity is built starting from a ring

network and then randomly rewiring with probabilityRP. This process allows us to control

the clustering coefficient, which quantifies the connectedness or local connectivity of the net-

work (in terms of the probability that two nodes that are connected to a common node are also

connected between them). According to the Watts and Strogatz algorithmWatts and Strogatz

(1998), a pure regular network can be turned into a small-world network, in which few edges

separate any two nodes, by rewiring the connections. A rewiring probability equal to 0 im-

plies a regular network with large clustering (provided thecoupling extends beyond nearest

neighbors), whereas a rewiring probability equal to 1 implies a completely random network

with small clustering. The network model is constructed based on the Equations (2.2)-(2.3) of
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the aEIF, which we reproduce here for clarity:

Cm
dVi

dt
=−gL(Vi −EL)+gL∆i exp

(

V −VTi

∆i

)

−wi −∑
j

gi j (Vi −E j) (3.1)

dwi

dt
=

1
twi

[ai(Vi −EL)−wi ], (3.2)

if V ≥ Ethresh,







Vi =Vr

wi = wi +b,
(3.3)

where the first equation describes the evolution of the membrane voltageVi of neuroni and

Cm = 1 nF is the capacitance. The ionic currents are the ohmic leakcurrent defined by the

resting leak conductancegL = 0.05µS and the resting voltage potentialEL =−60 mV, and the

exponential term that reproduces theNa+− current responsible for the generation of spikes.∆
denotes the steepness of the exponential approach to threshold, taken equal to∆= 2.5 mV, and

VT =−50 mV is the threshold potential. The membrane time constantis τm=Cm/gL. WhenV

is pushed over the threshold, the exponential term providesa positive feedback and a spike is

emitted, at which point the voltage is instantaneously reset toVr =−60 mV and the adaptation

variablew is increased a valueb. After the spike, the neuron cannot spike again during a

refractory period (2.5 ms). The second equation describes the dynamics of the adaptation

variablew, with time constantτw = 600 ms. The parametera (in µS) quantifies a conductance

that mediates subthreshold adaptation, while the increment b (in nA) at each spike takes

into account spike-triggering adaptation (it regulates the strength of adaptation). In order to

reproduce the peculiar properties of TC and RE when operatingin bursting mode, we adopt

specific values ofa andb. With a= 0.4 µS,b= 0.02 µA, neurons display bursting activity in

response to both depolarizing and hyperpolarizing stimulitypical of RE neurons. In contrast,

with a= 0.2 µS,b= 0.0 µA, neurons display responses with moderate adaptation and strong

rebound bursts, like TC neurons. RE and TC neurons can displaydifferent regimes (beyond

bursting and tonic, fast spiking, regular spiking) by tuning the parametersa andb (Izhikevich,

2004; Ladenbauer et al., 2012; Naud et al., 2008). In both cases, sincea/gL > τm/τw we are

in the parameter regime in which rebound firing is possible, as demonstrated byTouboul and

Brette(2008).

The term∑ j gi j (Vi −E j) accounts for the synaptic current coming from the neighboring

neurons impinging on a neuronal cell, wheregi j is the conductance of the synapse from neuron

j to neuroni (which can be zero), andE j is the reversal potential of the synapse (E j = 0 mV

for excitatory synapses and−80 mV for inhibitory synapses). Synaptic conductances are
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described by:

gi j (t) =
ĝsyn

τdecay− τrise

[

e
−t−t j
τdecay−e

−t−t j
τrise

]

, (3.4)

whereτdecayandτrise are the decay and rise synaptic time, respectively, and ˆgsyn is constant

and depends on the type of synapses and network (see Table3.1). Once the presynaptic cell

fires, gi j exponentially increases up to a certain value, after which it decays exponentially

with a fixed time constant (5 ms for excitation and 10 ms for inhibition). Different synaptic

strengths are considered (see Table3.2), depending on the network type. If different values

are considered, they are indicated in the captions of each figure. Note that the conductance

values use here are higher than the ones observed experimentally. This is done to compensate

for the unrealistically low amount of incoming inputs, due to the fact that we are consider-

ing small networks. This synaptic strength rescaling is a common practice in computational

neuroscience (Destexhe, 2009). Synaptic delays are equal to 1 ms.

AMPA τrise AMPA τdecay GABA τrise GABA τdecay

Network 2 neurons 0.4 ms 5 ms 0.4 ms 20ms
Network 4 neurons 0.4 ms 5 ms 0.4 ms µ = 20ms, σ = 5 ms

Network 500 neurons 0.4 ms 5 ms 0.4 ms 10ms

Table 3.1 Values of temporal rise and decay constants for RE and TC.

gRE→TC gTC→RE gRE→RE gext→TC gCX→RE

Network 2 neurons 200−800µS 10−60 µS 200−800µS 1µS 1µS
Network 4 neurons 550µS 32µS 20µS 1µS 1µS

Network 500 neurons 300µS 200µS 300µS 5µS 1µS

Table 3.2 Values of synaptic strengths for a network of 500 neurons.

To initiate activity, during the first 50 ms a number of randomly-chosen neurons are stim-

ulated by an incoming current (with synaptic strength g= 40 µS), representing an heteroge-

neous Poisson train of excitatory presynaptic potential with an instantaneous event rateλ (t)
that varies following an Ornstein-Uhlenbeck process:

dλ
dt

=−λ (t)+σ(t)

√

2
τ

η(t) (3.5)

whereσ(t) is the standard deviation of the noise and is set to 0.6 spikes/s.τ is set to 16 ms,

leading to a power spectrum for theλ time series that is approximately flat up to a cut-off

frequencyf = 1
2πτ = 9.9 Hz. η(t) is a Gaussian white noise of mean zero and intensity unity.

The only source of noise is the random connectivity. In simulations in which we take into
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account external sensory inputs, after 5 s of self-sustained activity we inject for 10 s homo-

geneous Poisson processes with rate comprised between 10 and 150 spikes/s. In simulations

in which we did not take into account external input after 50 ms, and thus the activity states

described here are self-sustained.

3.3 Dynamics of the aEIF network with increasing size

The presence of two different dynamical regimes in the thalamus has been known for decades (Liv-

ingstone and Hubel, 1981; Steriade and McCarley, 2005; Steriade et al., 1993). This behavior

can be linked to a specific property of the two main kinds of neurons in the thalamus, described

above, glutamatergic thalamocortical relay (TC) neurons and GABAergic thalamic reticular

(RE) neurons. Both types of neurons can fire either as a result ofdepolarizing driving or as a

rebound due to hyperpolarizing driving. In what follows we show how the aEIF model defined

above reproduces the two types of responses for both kinds ofneurons (Figure3.1). We inves-

tigate how and when the connectivity between the neurons displaying these properties induces

a regime dominated by spindle oscillations, or responding to stimuli in a tonic-like mode. The

analysis starts from two-neuron loops and extends up to fullnetworks receiving input from the

periphery and the cortical areas.

3.3.1 Dynamics of single neurons

The first step towards reproducing the two dynamical regimesof the thalamus described above,

and the transition between them, is to choose a single-neuron model able to capture the pecu-

liar properties of thalamic neurons, and in particular the firing induced by hyperpolarization-

driven rebound. To that end we select a properly tuned adaptive exponential integrate-and-fire

(aEIF) spiking neuron model (Brette and Gerstner, 2005; Fourcaud-Trocmé et al., 2003; Izhike-

vich, 2004) (see Section3.2) for each of the two thalamic neuron types considered. By tuning

the key parameters of the aEIF model it is possible to adjust the dynamics and the strength

of adaptation (parametersa andb in Equations (3.2)-(3.3), respectively) to reproduce the in-

trinsic dynamical modes typical of thalamic neurons. Fora = 0.4 µS andb = 0.02 nA, the

RE aEIF neuron models (RE neuron from now on) exhibits regular firing activity in response

to depolarizing stimuli (Figures3.1A,B), while they display bursting activity in response to

hyperpolarizing stimuli (Figure3.1C,D), consistently with experimental findings (Contreras

et al., 1993; Domich et al., 1986; Steriade, 2003). In particular, in response to a depolariz-

ing stimulus (Figure3.1A), RE neurons display firing activity with a certain degree ofspike-

frequency adaptation that saturates before the end of the stimulus and stops neuronal firing.
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For large enough applied currents, the response extends forthe whole duration of the stimulus

(Figure3.1B). In response to a hyperpolarizing stimulus (Figures3.1C,D), and due to the rela-

tively large value ofa, the neuron exhibits rebound bursting activity, also with spike-frequency

adaptation, for the same spike threshold used in the depolarizing case.

TC neurons generally show a more robust bursting activity and a negligible level of spike-

frequency adaptation (Llinás and Jahnsen, 1982) (see (Destexhe and Sejnowski, 2003) for

a review). This is achieved in the model by imposing a larger value of a = 0.2 µS and

b = 0 nA, thus making the adaptation strength negligible. In particular, in response to a

depolarizing stimulus the TC neurons produce patterns of firing activity (Figure3.1E) with

negligible spike-frequency adaptation (Figure3.1F) (leading thereby to high firing activity

for all the duration of the stimulus). In contrast, a hyperpolarizing stimulus leads to rebound

bursting (Figure3.1G) and moderate spike-frequency adaptation (larger than inRE neurons)

(Figure3.1H). In the case of depolarizing stimuli, characterized by negligible adaptation and

regular firing activity, TC neurons exhibit an effective increase of activity (Figure3.1F) accord-

ing to the increasing external input and compatibly with therefractory period, where neuron is

not allowed to fire. Therefore the firing activity increases proportionally with larger external

sensory inputs. This is consistent with the linear input-output relation in the tonic mode (Fig-

ure3.1E,F), in contrast with the bursting mode where there is no direct link between the EPSP

and spike generation, which thus corresponds to a nonlinearinput-output relation (Sherman,

2001). Relevant works have been recently done showing that burstsmay also be important in

the encoding of sensory information (Elijah et al., 2015; Samengo et al., 2013).

Overall these results show that the aEIF models properly capture the two firing modes

(depolarizing-driven and hyperpolarization-driven) forboth TC and RE neurons. In the fol-

lowing we show the transition between the two modes for TC neurons due to external inputs,

and how recurrent activity drives a transition at the network level from stimulus-insensitive to

stimulus-sensitive behavior.

3.3.2 Two-neuron loops

Before moving to large, structured networks we carefully analyze the properties of the mutual

interaction between TC and RE neurons. Specifically, we studydifferent simple two-neuron

loops formed by TC-RE and RE-RE neurons, and examine how self-sustained oscillatory pat-

terns originated in these networks are modulated by synaptic strengths regulating the internal

recurrent activity. We also study the effect of GABA temporal decay dynamics on the fre-

quency of oscillation, and the input-driven oscillatory pattern of a TC-RE loop. This analysis

is informative towards the building of a full network. We first build a minimal model of two

bidirectionally coupled neurons, a RE neuron and a TC neuron (Figure3.2A). Activating this
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Fig. 3.1Dynamical properties of single RE and TC neurons as a functionof input current.
(A) Depolarization activity of a RE neuron. Membrane voltage(top) and adaptation variable
(middle) of a RE neuron in response to a depolarizing current (bottom). (B) Corresponding
post-stimulus time histograms for increasing depolarizing currents. (C) Hyperpolarization-
rebound activity of a RE neuron and (D) corresponding post-stimulus time histograms for
increasing hyperpolarizing currents. Parametersa and b, representing respectively the dy-
namics and the strength of adaptation (see Equations (3.2)-(3.3)) of RE neurons are defined
in this way: a = 0.4 µS andb = 0.02 nA. (E) Depolarization activity of a TC neuron and
(F) corresponding post-stimulus time histograms for increasing depolarizing currents. (G)
Hyperpolarization-rebound activity of a TC neuron and (H) corresponding post-stimulus time
histograms for increasing hyperpolarizing currents. The valuesa andb are 0.2 µS and 0 nA.
The current intensity in (A,C,E,G) is 1000 mA, while it variesbetween 1000 mA and 5000 mA
in panels (B,D,F,H).VT =−50 mV is the threshold potential for both types of neurons.
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RE-TC loop for 50 ms leads to oscillations that persist stablyafter the stimulus termination

(Figure3.2B). These oscillations are due to the rebound bursting properties of the TC relay

cell, which is mutually connected with the RE neuron: the TC neuron provides depolarizing

input to the RE neuron, which displays bursting activity thatgenerates strong hyperpolariza-

tion, followed by rebound firing activity in TC neurons. Consequently, in this configuration

the RE neuron fires in response to depolarizing currents, while the TC neuron fires only in

response to hyperpolarizing inputs.

Next we investigate how these oscillatory patterns vary as afunction of the synaptic

strengthgTC→RE, keepinggRE→TC constant at a reference value of 550µS. By increasing

gTC→RE, both the TC and RE neurons oscillate with higher frequency, as can be seen from the

decrease of the inter-spike interval (ISI) in Figure3.2C (bottom). Stronger synaptic strengths

enhance the firing activity of the RE neuron, which fires in advance along the oscillation cycle

and thus leads the TC neuron to spike at an earlier phase. The net effect is an increase in the

oscillation frequency. The RE neuron (Figure3.2C, top) displays bursting activity in response

to depolarizing input above a threshold value ofgTC→RE= 29µS. It oscillates at around 11 Hz

(inter-burst ISI≈ 90 ms) with two spikes per burst with an intra-burst ISI≈ 5 ms. By increas-

ing the synaptic strengthgTC→RE, the neuron passes a second thresholdgTC→RE = 40 µS and

presents three spikes per burst (three ISIs are present), eventually entering a regime in which

the ISI approaches the intrinsic refractory period of the neuron (2.5 ms).

Subsequently we perform the complementary analysis by fixing gTC→RE to 32µS (which

leads to two-spike bursting in the preceding analysis) and varyinggRE→TC. Figure3.2D shows

that asgRE→TC is increased, the TC neuron oscillates with a gradually increasing frequency

that stabilizes around 10.5 Hz (Figure3.2D, bottom), while the RE neuron displays burst-

ing activity with the same inter-burst ISI as the TC neuron and an intra-burst ISI of≈ 3 ms

(two-spikes-per-second scenario of previous analysis) (Figure3.2D, top). Note that the brief

hyperpolarization induced in the TC cell by the firing of a single RE cell is able to trigger only

one rebound spike, and consequently the number of spikes/burst in the RE cell remains con-

stant. This is consistent with the results reported byDestexhe and Sejnowski(2003), where

spindle activity required at least a four-neuron network (see next Section).

Next we explore the dynamics of a purely GABAergic reticularRE-RE loop (Figure3.2E)

as a function of the synaptic strengthgRE→RE. As Figure3.2F shows, the RE neurons present

a sustained strong and adapting bursting activity (corresponding to a wide range of intra-burst

ISI) and for increasing values of the synaptic strength, theinter-burst ISI decreases. Impor-

tantly, unlike in previous studies, here the decreasing inter-burst ISI does not entail an increase

in oscillation frequency, since in this case bursts last much longer (with more than 10 spikes

per burst). This result shows that RE-RE synapses strengthen the rebound bursting properties
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Fig. 3.2Dynamical properties of two-neuron loops. (A) Scheme of a two-neuron TC-RE
loop. (B) Membrane voltage traces of the TC and RE neurons generated by this minimal
TC-RE loop. (C) Interspike interval (ISI) distribution of the TC-RE loop as a function of
the synaptic strengthgTC→RE. The value ofgRE→TC is appropriately set to 550µS in order
to support self-sustained activity, whilegTC→RE varies between 10µS and 60µS. RE and
TC ISI distributions are shown in the top and bottom plots, respectively. (D) ISI distribution
of a TC-RE loop as a function of the synaptic strengthgRE→TC. The value ofgTC→RE is
chosen equal to 32µS to reproduce the two-spike bursting dynamical regime of panel B while
gRE→TC varies between 200µS and 800µS. RE and TC ISI distributions are shown in the
top and bottom plots, respectively. (E) Scheme of a minimal purely reticular RE-RE loop. (F)
ISI distribution of this loop as a function of the synaptic strengthgRE→RE. gRE→RE varies
between 200µS and 800µS. (G) Scheme of an input-driven two-neuron TC-RE loop. (H)
ISI distribution of this loop as a function of external sensory input strength. RE and TC ISI
distributions are shown in the top and bottom plots, respectively. The synaptic strengths are
respectively:gRE→TC = 550µS,gTC→RE = 32 µS andgEXT→TC = 1 µS.
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and can be expected to enhance the bursting activity in a larger network. In the simple TC-RE

loop motif, the oscillation frequency can be tuned by the GABA decay time constant. For in-

stance, by varyingτdecayfrom 5 to 35 ms in the minimal model of Figure3.2D, the frequency

of the two neurons oscillates between∼ 25 and 6 Hz (Figure3.3). This leads to corresponding

changes in the ISI distributions (Figures3.4- 3.5), without qualitative variations with respect

to the behavior shown in Figure3.2. The key role played by the GABA decay time constant

in modulating the frequency of spindle oscillations is qualitatively similar to the way it af-

fects gamma-range oscillation frequencies in LIF networkswhere rebound oscillations are not

present (Brunel and Wang, 2003).
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Fig. 3.3Effect of the GABA decay time on the two-neuron TC-RE loop.Interspike Interval
(ISI) distribution of a TC-RE loop as a function of the GABA decay timeτdecayfor RE (A) and
TC (B) neurons.τdecayvaries between 5 and 40 ms. The synaptic strengths are respectively:
gRE→TC = 550µS,gTC→RE = 32 µS.

After investigating the properties of stand-alone RE-TC loops, we move to analyze an

input-driven loop in which the TC neuron receives an external sensory input modeled as a

Poisson distribution with increasing amplitude (Figure3.2G). We only consider inputs to TC,

mimicking the sensory stimuli coming from the retina or the peripheral nervous system. We set

reference values ofgTC→RE= 32µS ,gRE→TC= 550µS and GABAτdecay= 20ms, for which

the spontaneous activity (in the absence of external input)takes the form of low-frequency

bursting with two spikes per burst. The value of GABAτdecay is lower in the full population

model. When we increase the external input rate (Figure3.2H) the ISI distribution is signifi-

cantly different from the one observed in the absence of external stimulus (Figure3.2D): both

neurons show a strong variation in the bursting frequency due to the external stimulus, and

the ISI displays a large variance due to the introduction of noise. On the other hand, and con-
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Fig. 3.4Effect of the synaptic strength on the two-neuron TC-RE loop.Interspike Interval
(ISI) distribution of a TC-RE loop as a function of the synapticstrength for RE (A,C) and TC
(B,D) neurons. As in Figure3.2C, in A and B the value ofgRE→TC is appropriately set to
550 µS in order to support self-sustained activity, whilegTC→RE varies between 10µS and
60 µS. In C and D, the value ofgTC→RE is chosen equal to 40µS to reproduce the two-spike
bursting dynamical regime, whilegRE→TC varies between 200µS and 800µS. GABA decay
τdecayis set equal to 10 ms in the two cases.

sistently with Figure3.2D, the RE neuron is in bursting mode for all values of external input,

with the ISI approaching the refractory period.

3.3.3 Four-neuron motifs

As a last step before moving to the full network, we investigate several four-neuron motifs,

made of two RE and two TC neurons, to understand what are the structural connectivity fea-

tures more suitable to explain large oscillatory synchronization phenomena, namely spindle

oscillations, in the bursting regime, even in presence of heterogeneity between neurons that

leads to different oscillation frequencies. Previous workhas shown (Destexhe, 2009) that aEIF

models are able to reproduce this self-sustained oscillatory behavior in the form of periodic

bursting, and that the minimal circuit reproducing the phenomenon is a circuit of two TC and

two RE neurons fully connected with each other, with the exception of TC-TC connections,

which are not present in the thalamus (Izhikevich and Edelman, 2008). As in the case of the

two-neuron loop, bursting is mainly due to the rebound bursting properties of TC cells and RE

(Figure3.6F) (Destexhe and Sejnowski, 2003), and the oscillation frequency depends on the

GABA temporal decay constant.
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Fig. 3.5Effect of the synaptic strengths on the two-neuron RE-RE motif. Interspike inter-
val (ISI) distribution of a minimal purely reticular RE-RE motif as a function of the synaptic
strengthgRE→RE for three different values of the GABA decay time: (A) 5 ms, (B)10 ms, (C)
20 ms.gRE→RE varies between 300µS and 800µS.

Since the oscillation frequency might vary slightly between loops, we checked the con-

ditions for the onset of coherent oscillations. In particular, we studied different couplings

between pairs of two-neuron TC-RE loops (which are equivalentto two bidirectionally cou-

pled oscillators) with different intrinsic oscillation frequencies, and analyzed which coupling

configuration leads more readily to oscillatory spindle patterns by examining the power spec-

trum of TC neurons and the phase coherence between them. Figure3.6shows the schemes of

the different circuits explored depending on the coupling links being considered: TC-RE con-

nections (Figure3.6A), RE-TC connections (Figure3.6B), RE-RE connections (Figure3.6C)

and all three types of connections (Figure3.6D). For each circuit, we calculate the power spec-

tral density and phase coherence between the two loops (see SectionsA.2- A.3 in Appendix
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A) by using the activity of TC neurons. The phase coherence iscalculated by averaging 50

trials each with a different GABAτdecaydrawn from a Gaussian distribution with mean 20 ms

and standard deviation 5 ms, which leads to variability in the frequencies of the two TC-RE

loops being coupled.

A 

C 

B 

D 

A B C D
0

5

10

15

Motifs

F
re

qu
en

cy
 o

f M
ax

 P
S

D

Frequency max PSD

A B C D
0

0.2

0.4

0.6

0.8

1

Motifs

P
ha

se
 C

oh
 a

t M
ax

 P
S

D
 F

re
q

Phase Coherence

 

 
Motifs: A,B,C,D

NO coupled loops

E F

Fig. 3.6Four-neuron motifs in the form of coupled pairs of TC-RE loops. The two TC-RE
oscillators are bidirectionally coupled through (A) TC-RE connections, (B) RE-TC connec-
tions, (C) RE-RE connections, and (D) all three connections. (E) Frequency of the power
spectral peak and (F) phase coherence at that frequency for the four different motifs. The
power spectral density and phase coherence were averaged across 50 trials for random values
of the GABA decay time (see text). GABA rise time and AMPA riseand decay times are
set constant (see Section3.2). When the corresponding connections exist in the motifs, the
synaptic strengths are respectively:gRE→TC = 550 µS, gTC→RE = 32 µS, andgRE→RE =
20 µS.

Figure3.6E shows the frequency at which the power spectrum of the TC neuron activity

has its maximum, and Figure3.6F the corresponding phase coherence at that frequency. The

horizontal dashed red lines represent the corresponding values in the case of uncoupled loops.

In the uncoupled case, the oscillation frequency is≈ 10.4Hz and the loops are weakly synchro-

nized (the phase coherence being≈ 0.12). The two TC-RE oscillators strongly synchronize

with a zero-lag phase (corresponding time lag is≈ 0, not shown) with respect to the uncou-

pled case, while the loops are poorly zero-lag synchronizedwhen only RE-RE connections
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are present. Therefore this result supports the idea that spindle generation is mainly due to

an interplay between TC and RE cells (Destexhe et al., 1993; McCormick, 1992), which is

enhanced by RE-RE connections.

3.3.4 Full thalamic network

We finally extend the size of the network to 500 neurons to capture the dynamics of a complex

thalamic structure. Following experimental indications (FitzGibbon et al., 1995; Kim et al.,

1997; Minderhoud, 1971), we consider that each RE projects four connections to TC neurons

and to RE neurons themselves, while TC neurons have only on average one connection with

RE neurons only. Starting from these numbers we considered two network configurations,

in order to investigate how the spindle oscillations are affected by network architecture. The

first configuration was a purely random one (Fig.3.7A) with rewiring probabilityRP= 1 (see

Methods), while the second favored RE-RE clustering with rewiring probabilityRP= 0.25

(Fig. 3.7B).

We find that in the random network (Figure3.7A), temporally irregular bursting is domi-

nant (Figure3.7C). On the other hand, in the presence of RE-RE clustering (Figure 3.7B) the

network shows quite regular and synchronized spindle oscillations at 8 Hz (Figure3.7D). In

order to characterize and quantify the bursting regular state (or spindle rhythm) and distinguish

it from irregular tonic activity, we study the inter-burst interval distribution (in particular the

probability of a peak of ISI distribution above 50 ms) as a function of the rewiring probability

RPof the architecture (see Section3.2). Our results, shown in Figure3.7E, reveal that fully

regular networks (RP= 0, each neuron projects regularly to a fixed number of adjacent neu-

rons) cannot support regular bursting activity and are often almost silent (with a firing rate of

around 0.4 spikes/s, results not shown). At the other extreme, fully random networks (RP= 1)

show sustained activity with temporally irregular bursting of TC and RE neurons. Between

these two conditions, there is an optimum rewiring probability (RP∼ 0.25) showing a rela-

tively large ISI peak corresponding to frequency∼ 8.5 Hz. The fraction of neurons displaying

a large inter-burst ISI peak decreases substantially for increasing rewiring probability, namely

when going towards fully random networks. Intuitively, given that connections between tha-

lamic circuits are local but sparse (FitzGibbon et al., 1995; Kim et al., 1997; Minderhoud,

1971), excitatory synapses are very sparse and they are more effective when they impinge on

small clusters of RE-RE neurons, enhancing and modulating theoscillatory spindle rhythm.

Given the results obtained above, we decide to study a network with the critical degree of

clustering (RP= 0.25), and simulate constant external sensory input of different intensities

impinging on TC neurons. We test if by increasing the external input on these neurons the

network shows a transition from bursting to tonic mode, which could be associated with the
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Fig. 3.7Spindle activity generated by a full network of TC-RE neuronsdepending on
RE-RE clustering. (A) Connectivity matrix of a random TC-RE network. The presynaptic
neurons are represented in the x axis and the postsynaptic neurons in the y axis. The network
is made of 500 neurons, of which the first 250 are RE neurons and the remaining ones are TC
neurons. (B) Connectivity matrix in the presence of RE-RE clustering (rewiring probability
RP= 0.25) (C) Membrane voltage dynamics of a couple of arbitrarily chosen TC and RE
neurons in the case of random network. (D) Membrane voltage dynamics of a couple of
arbitrarily chosen TC and RE neurons in the presence of clustering: evidence of typical spindle
oscillations. (E) ISI distribution (color-coded) as a function of the rewiring probability for RE
(left) and TC (right) neurons. The synaptic strengths are respectively: gRE→TC = 300 µS,
gTC→RE = 200µS andgRE→RE = 300µS.
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switch from sleep to awake state (Livingstone and Hubel, 1981; Steriade and McCarley, 2005;

Steriade et al., 1993). Given the nonlinear relation between input and output in the bursting

mode (Sherman, 2001), we expect to see a change in the firing rate trend of TC neurons

(the neurons that project to the cortex) only when the network goes from bursting to tonic,

through which the firing rate should increase with the input.Figure3.8A shows the firing

rate of TC (red) and RE (blue) neurons for increasing externalsensory input on TC neurons.

The case of inputS= 0 spikes/s corresponds to the self-sustained condition discussed above.

By increasing the input amplitude, the network displays a transition in the firing rate of TC

neurons at aroundS= 50 spikes/s, after which the response of the thalamus increases sub-

linearly with the external input. We interpret this as an indication of the switch from a purely

bursting mode to a temporally irregular state. Note that thedriver of this transition is the

response of the recurrent activity to the external sensory input, since we do not change the

intrinsic parameters of the model.

In order to explore this scenario further, we calculate the ISI distribution of RE and TC

neurons by averaging over 100 trials for each different stimulus S. The RE neurons are the

most insensitive to increasing external input, as can be seen in Figure3.8B. On the other

hand the fraction of TC neurons displaying a large inter-burst ISI decreased as the stimulus

intensity surpasses a critical value (going from region S1 to region S2 in Figure3.8A), and a

corresponding increase of the intra-burst ISI peak approaching the refractory period (2.5 ms).

We classify this as a further signature of a transition between a bursting mode and an irregular

firing regime.

Next we calculate the information about the stimuli carriedby the firing rates of the TC

and RE neurons in the two different regimes. To that end we use the mutual information (see

SectionA.4 in Appendix A), which quantifies the reduction of the uncertainty in predicting

the applied stimulus given a single observation of the triggered response. Here we estimate the

mutual informationI(FR,S) between the set of stimuliSgiven by the external Poisson inputs

with different rates and the responseFR, firing rate. Given that we were interested in how the

specific neurons encode and carry information, in this case we have selected as response the

average firing rateFR over the whole stimulation. We have considered as stimuli different

inputs with increasing amplitude (from 0 to 150 spikes/s) impinging on TC neurons. This

measure allows us to evaluate how well the firing rater of both type of neurons (namely TCs

and REs) encodes the stimuluss.

Figure3.8C comparesI(S1;FR) andI(S2;FR) between the firing rates of TC (red) and RE

(blue) neurons and the set of stimuliS1 andS2, whereS1 ranges between 0 and 50 spikes/s,

while S2 varies from 60 to 150 spikes/s, corresponding to the two dynamical regimes of Fig-

ure 3.8A. The figure clearly shows that in the bursting mode both the REand TC neurons
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Fig. 3.8Bursting and tonic modes displayed by a TC-RE network with RE-REclustering
as a function of external input on TC neurons. (A) Firing rate of TC (red) and RE (blue)
neurons as a function of external driving input impinging onTC neurons. (B,C) ISI distri-
bution as a function of external driving input on TC neurons of RE (B) and TC (C) neurons.
(D) Mutual Information between the set of increasing external stimulus (0-150 spikes/s) and
the neural response given by the firing rate of TC and RE neurons. Different external sensory
inputs are considered for the two regimes, following panel A: 0-50 spikes/s for the bursting
mode and 60-150 spikes/s for the tonic mode. The white dashedline in the bar plots refers
to significance threshold (p< 0.05, bootstrap test). The measures are averaged over 100 tri-
als for each external stimulus. (E,F) Adaptation variablew of RE (E) and TC (F) neurons
(color coded) as a function of the external input on TC neurons, averaged across 100 trials for
each external stimulus. (G) Number of positivew values (depolarizing events) and negative
w values (rebound events) of TC neurons. The synaptic strengths are respectively:gRE→TC =
300µS,gTC→RE = 200µS andgRE→RE = 300µS.
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carry a lower information (0.13 bit, p < 0.05: bootstrap test), in comparison with the infor-

mation encoded by TC neurons during the tonic mode (≈ 0.7 bit, p < 0.05: bootstrap test).

RE neurons during the tonic mode do not encode significant information, in fact their firing

rate decreases with respect to the bursting regime and afterthat remains constant for all inputs.

These results show that the information about the stimulus that the thalamus carries (and is

then potentially able to convey to the cortex) is much higherin the tonic mode, since in that

regime spontaneous activity is enhanced and this contributes to keeping an almost linear rela-

tion between input and output and thus to minimizing rectification of the response (Sherman,

2001).

In order to further interpret this transition, we examine the nature of each TC and RE

spike by checking the sign of the adaptation variablew at the spiking time of each neuron. A

positive value ofw indicates that neuron fires via a depolarizing input (see Figure3.1), while if

negative we classify it is as a rebound spike. Figure3.8E shows that RE neurons spike mostly

due to a rebound in response to hyperpolarizing inputs (coming only from internal RE-RE

clustered connections) for all the range of sensory input over TC neurons. TC neurons, in

turn, also fire mainly in response to incoming hyperpolarizing currents (in this case coming

from RE neurons) during the burst mode (Figure3.8F), and after the transition from bursting

to tonic mode a fraction of the spikes occur in response to depolarizing external inputs. Thus

the transition occurring at aroundS= 50 spikes/s, shown in Figure3.8A, underlies a shift in

the spiking mechanism profile. This is confirmed in Figure3.8G, which shows a quantitative

estimation of the effective number of excitatory-driven spikes (blue) and inhibitory-rebound

spikes (red) as the external input increases.

So far we have considered a thalamic network receiving an external sensory input imping-

ing on TC neurons. We complete the picture including also a corticothalamic input (Destexhe,

2000) projecting to RE neurons. Figure3.9A shows that the transition dynamics is not altered

by the addition of a constant input from the cortex, which results only on an increase of the

firing rate for both kind of neurons. The appearance and the increase of depolarization spikes

occur for similar levels of inputs (Figure3.9B). The amount of information carried by RE and

TC neurons in the two different regimes is relatively unaltered (Figure3.9C,D), supporting the

hypothesis that the information carried by projecting neurons during the tonic mode is higher

than in the bursting mode. Interestingly, by increasing theamplitude of the cortical input on

RE (from 1000 to 2000 spikes/s), the information encoded by TCneurons is increased for the

tonic mode (from 0.6 to 0.66 bits,p< 0.05, bootstrap test) (Figure3.9D).

This result highlights the role of the intrinsic rebound bursting properties of TC neurons,

which are essential in the generation of the spindle rhythm.They could also reinforce the role

of corticothalamic feedback in information processing, for instance by recruiting TC neurons
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Fig. 3.9Bursting and tonic modes displayed by the TC-RE network with RE-RE cluster-
ing as a function of external input on TC neurons for different corticothalamic inputs.
(A) Firing rate of TC (red) and RE (blue) neurons as a function of the external driving in-
put impinging on TC neurons for different corticothalamic input amplitudes. (B) Number of
positive (depolarizing, red) and negative (rebound, blue)w values of TC spikes for different
corticothalamic inputs. Thew values are averaged across 100 trials for each external stimulus.
(C,D) Mutual Information carried by the firing rate of TC (red)and RE (blue) neurons with
a cortico-thalamic input of (C) 1000 spikes/s and (D) 2000 spikes/s. I is calculated between
the set of increasing sensory stimuli (10−150 spikes/s) and the neural response given by the
firing rate. The white dashed lines in the bars refer to the significance threshold (p < 0.05,
bootstrap test). Measures are averaged over 100 trials for each external stimulus. The synaptic
strengths are respectively:gRE→TC = 300µS,gTC→RE = 200µS andgRE→RE = 300µS.
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through inhibition and thus modulating TC firing rate (Destexhe, 2000). To support the im-

portance of rebound bursting properties of TC neurons, we plot in Figure3.10the firing rate

of TC and RE neurons, the ISI distribution and thew distribution at a fixed rate of external

sensory input on TC neurons (150 spikes/s), for different levels of cortical input.

Fig. 3.10Influence of corticothalamic input on a full TC-RE network. (A) Firing rate, (B)
ISI distribution, and (C) distribution of the adaptation variable w of RE and TC neurons as
a function of corticothalamic input. The external sensory input it set to 150 spikes/s. The
synaptic strengths are respectively:gRE→TC = 300 µS, gTC→RE = 200 µS andgRE→RE =
300µS. Bars colors in panels (A) and (B) coincide with the lines colors in the other panels.

3.4 Conclusion

In this Chapter we have presented an adaptive exponential integrate-and-fire (aEIF) network

model that is able to reproduce the spindle oscillations andthe transition between a stimulus-

insensitive and a stimulus-sensitive state of the thalamus. In agreement with experimental

observations based on direct optogenetic stimulation (Halassa et al., 2014), spindle oscillations

are generated in our model by RE activation leading to TC bursts as rebound from inhibition.

Our results suggest that (i) a critical value of RE-RE clustering favors the presence of large-

scale spindle oscillations, (ii) for external stimuli below a given threshold the network is in

a purely rebound-bursting state insensitive to external stimuli, while (iii) when this threshold
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is crossed there is a non-zero contribution of the spikes dueto depolarization, and this makes

the TC neurons (and not the RE neurons) of the network sensitive to the stimulus intensity

coherently with experimental observation. These conclusions hold in the presence of cortical

inputs impinging on the reticular neurons.

A recent computational paper (Willis et al., 2015) investigated the role of TC-RE interac-

tions from a perspective complementary to the one discussedin this Chapter, using a Hodgkin-

Huxley model much more detailed than the aEIF adopted here, and limiting the investigation

only to minimal loops such as those we described in Section3.3.2 and 3.3.3 (Figure 3.2).

Notwithstanding the higher realism of their model, the functional properties at the single-

neuron level are similar to those described here (compare our Figure 3.1 with Figure 1 of

their paper). Moreover,Willis et al. (2015) highlighted the fact that open-loops between TC

and RE neurons might play a functional role in the thalamus, and indeed in our full network

(Figure3.7 and following) both open and closed TC-RE loops are taken into account. In a

recent paper (Lewis et al., 2015b), Brown and collaborators stimulated optogenetically RE

neurons, simultaneously recording from them. They found that the majority of those neurons

(10/17) decreased significantly their firing rate, and only a minority of them (4/17) displayed

a significant increase. At the same time they found that the activity of the TC neurons was in-

hibited, with functional consequences on the cortex. The interpretation of the authors was that

a small increase in RE activity was sufficient to inhibit TC activity. Our model offers a simpler

explanation: since most TC neurons fire due to hyperpolarization rebound, a decrease in RE

activity can be associated to a decrease in TC firing (see Figure 3.9). Indeed, stimulating RE

neurons has been shown to alter the temporal structure of TC neuron firing, without changing

their average firing rate (Halassa et al., 2014).

Our model reproduces qualitative features of experimentalobservations, and provides a

mechanism to explain the factors that contribute to the gating role of the thalamus in the pro-

cessing of sensory information toward the cortex. A future model will include the cortex (see

Perspectives section7.5), thus it will be possible to explore the role of thalamocortical circuits

in the switch between the two dynamical modes that account for different behavioral states

and transmission of information dynamics. These thalamocortical circuits are made of bidi-

rectional excitatory projections between thalamus and cortex and inhibitory interactions given

by collaterals of ascending and descending fibers to GABAergic neurons (RE neurons). The

latter inhibitory circuits are essential to explain large-scale synchronization of thalamocortical

oscillations. To this regard, in the next Chapter, we will study how two neuronal populations,

which are bidirectionally coupled through long-range excitatory projections and oscillate in

the gamma range due to internal inhibitory circuits, engagein large scale oscillatory synchro-
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nization, thus providing a system by which information can be transmitted efficiently even at

long distances.



CHAPTER 4

PHASE-COHERENCE TRANSITIONS AND COMMUNICATION IN

THE GAMMA BAND BETWEEN DELAY-COUPLED NEURONAL POP-

ULATIONS

Spatiotemporal coordination of functional neural assemblies could subserve information pro-

cessing. In the previous Chapter we have described the mechanisms responsible for the gen-

eration of thalamic spindle oscillations during slow-wavesleep, revealing that the temporal

coordination between TC and RE neurons is essential, and how changes in dynamical orga-

nization patterns in the thalamus underlie a switch from sleep to the awake state, resulting

in different information-processing capabilities. This Chapter addresses the general question

of how communication is established between physically separate brain areas, using neuronal

oscillations as information carriers. In particular, we examine whether and how effective com-

munication between cortical areas arises even when the timetaken by neuronal signals to go

from one area to another is comparable, or larger than, the typical time scales of the under-

lying neuronal networks. To do so, we use a biophysically realistic computational model of

two synaptically coupled neuronal populations working in acollective gamma regime. The

Chapter is structured as follows. In Section4.1we focus on the importance of the spatiotem-

poral coordination of the activities of coupled neuronal populations (modeled as described in

Section4.2) as introduced in Section1.3, and in particular we describe the dynamics of popu-

lations of HH neurons oscillating in the gamma range involved in this coupling (Section4.3).

Then we report how these two populations can synchronize with instantaneous coupling (Sec-

tion 4.4) and in presence of large axonal delays (Section4.5) by means of phase coherence

measures. In Section4.6 we use information theory to quantify the information exchanged

between the two networks for different transmission delaysand external inputs. Finally in

Section4.7 we summarize the main achievements of this study. These results have been re-

ported inBarardi et al.(2014b).
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4.1 Oscillatory-based coordination of coupled neuronal

populations

In Section1.3 we emphasized that brain function emerges from the collective dynamics of

coupled neurons, the structural connectivity among which enables correlations between their

firing activities. As a result of these correlations, effective neuronal networks function collec-

tively on a mesoscopic scale, comprising thousands of coupled neurons that operate together,

giving rise to emergent behavior. In awake animals, this collective dynamics takes the form

of recurrent series of high and low network activity, corresponding with repetitive epochs of

increased excitation over inhibition followed by boosts ofinhibition. This leads to the appear-

ance of rhythmicity at certain frequency bands. As introduced in Section1.3.3, oscillations

in the gamma-band (30 Hz−90 Hz) are observed in several cortical areas in relation with

cognitive tasks (Buzsáki and Wang, 2012).

Synchronized oscillations can increase the functional connectivity between neural assem-

blies by coherently coordinating their firing dynamics. This hypothesis, known as commu-

nication through coherence (CTC), was proposed (Fries, 2005) as a mechanism by which

gamma-band synchronization could regulate routing of information between brain areas (see

Section1.3.4). Since neuronal oscillations are associated with the dynamics of the excitatory-

inhibitory balance, they represent periodic modulations of the excitability of neurons, which

are more likely to spike within specific time windows (i.e. when inhibition is low). If two

neuronal populations oscillate with a constant phase difference, then an effective transmission

of information between the two groups of neurons is achievedprovided the spikes sent by

a population reach systematically the other population at the peaks of excitability. In that

way, modulation of the relative phases of the emerging rhythms might dynamically generate

functional cell assemblies (Fries et al., 2002a, 2008; Womelsdorf et al., 2006).

A key requirement of the CTC mechanism is the existence of a constant phase difference

between the two neuronal networks that reliably allows their binding, favoring communication.

This coordination can be expected to arise from the synapticcoupling between the neurons of

the two populations. But this coupling is not instantaneous,since propagation times between

different cortical regions can reach up to several tens of milliseconds (Ringo et al., 1994).

Previous CTC studies have mainly concentrated on describingthe dependence of the coher-

ence on the phase lag between the neuronal populations (Buehlmann and Deco, 2010; Fries,

2005; Womelsdorf et al., 2006), without examining systematically the relationship between

the actual coupling delay and the phase lag at which the coherence is maximal. In fact, cou-

pled nonlinear oscillators are known to adjust their phasesupon frequency locking, leading

under certain conditions to either in-phase (zero phase lag) or anti-phase synchronization (π-
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phase lag) (Pikovsky et al., 2003). Anti-phase patterns in cortical networks, for instance,have

been widely studied (Li and Zhou, 2011). Zero-lag synchronization, in turn, has been experi-

mentally observed between gamma oscillations emerging from separated brain areas (Castelo-

Branco et al., 1998; Engel et al., 1991; Frien et al., 1994; Gross et al., 2004; Roelfsema et al.,

1997). The conditions leading to zero-lag synchronization in neuronal oscillations are however

somewhat stringent, requiring non-trivial spiking dynamics (Traub et al., 1996) or complex

network architectures (Bibbig et al., 2002; Vicente et al., 2008). In particular, zero-lag syn-

chronization between two cortical areas has been shown to bepossible even with long axonal

delays (Vicente et al., 2008; Viriyopase et al., 2012), provided the two areas interact through

a third oscillator (Fischer et al., 2006), which could correspond to the thalamus (Gollo et al.,

2010; Theyel et al., 2010) (see Section1.3.2).

But in contrast with most nonlinear oscillators, neuronal populations are highly complex,

since they contain a very large number of degrees of freedom (corresponding to the individ-

ual neurons), their oscillations are a pure collective phenomenon (the individual neurons in

the population do not oscillate), and they operate in a broadfrequency range. Additionally,

neuronal populations are connected by a large number of axons, and inhomogeneities in the

properties of those axons affect differentially the propagation speed of action potentials and

lead to a wide spectrum of axonal delays rather than a uniformdistribution (Aboitiz et al.,

1992). It thus becomes necessary to study systematically (i) theconditions under which two

such complex oscillators synchronize (i.e. lock their frequencies), (ii) what is the resulting

phase difference between them, how does this phase difference relate with the coupling delay

(and with the frequency band being considered), and (iii) how is the efficiency of the commu-

nication between the two cortical areas affected by the delayed coupling.

As mentioned above, within the CTC scenario effective communication arises when spikes

from the emitting neuronal population reach the receiver population during the windows of

maximum excitability. For this to happen two conditions have to be met: (1) the two cou-

pled oscillators should be frequency locked, and (2) the transmission delay, the oscillation

frequency, and the phase difference between the two oscillations should match. In particular,

if the networks and the inter-connectivity are symmetric the second condition should hold in

the two directions of spike propagation. The time delay (or rather, the distribution of time

delays) is fixed as given by the anatomical connectivity. Therefore, it is the frequency of the

oscillation spectrum what determines the particular phaselag that meets the matching condi-

tion. We investigate whether this condition only occurs at specific rhythms, or if it holds at

all frequencies. To do so, we implement a conductance-basednetwork model based on the

single-neuron HH model described in Section2.1.3(Barardi et al., 2014b).
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4.2 Network model of Hodgkin-Huxley conductance-based

neurons

We consider two populations of 2000 neurons, 80% of which areexcitatory while the remain-

ing 20% are inhibitory (Soriano et al., 2008). Each neuron connects on average with 200 other

cells through only chemical synapses. The structural connectivity is built according with the

Watts-Strogatz small-world algorithm (Watts and Strogatz, 1998). The rewiring probability

rp is set to 0.5, so that the connectivity shows a certain degree of clustering, which favors

the connections between neighboring neurons (see the definition of clustering coefficient in

AppendixA.5). Coupling between the two networks is mediated by 60% of the neurons of

one population making random long-range excitatory projections with 10% of the neurons

belonging to the other population. Here we assume that the connectivity within a network is

2-fold the connectivity across networks, neglecting heterogeneity across neurons. Moreover,

in order to obtain a certain amount of phase coherence between the two networks, we consider

that the majority of excitatory neurons project onto the other network. A stronger (weaker)

coupling will lead to unrealistically higher (lower) phasecoherence values (Womelsdorf et al.,

2007). We introduce a synaptic transmission delay within and among the networks, assuming

that internal delays (taken from a gamma distribution whosescale and shape parameters are

fixed to 1) are smaller than the inter-area delays. The axonaldelays, termedτaxo, stand for the

time between the generation of a spike in a presynaptic neuron from one network and the elic-

itation of a postsynaptic potential in the other network. These delays are taken from a gamma

distribution whose mean and variance increase with increasing τaxo. We choose the scale pa-

rameter of the distribution equal to unity, so that the shapeparameter equalsτaxo. In this way

the coefficient of variation (CV) decreases for increasing mean as 1/
√

mean. In our analysis

we systematically varyτaxo between 0 ms and 30 ms. Both inhibitory and excitatory neurons

were modeled as HH neurons. The dynamics of the membrane voltage of the single neuron are

given by Equation (2.9) introduced in Chapter2.1.3. The equation of the membrane potential

of i-th neuron embedded in a neuronal network has the following form:

C
dVi

dt
=−gNam

3h(Vi(t)−ENa)−gkn
4(Vi(t)−Ek)+−gL(Vi(t)−EL)+ I i

tot(t), (4.1)

whereC = 0.25 nF (0.50 nF) is the membrane capacitance for inhibitory (excitatory) neu-

rons, the constantsgNa = 12.5 µS, gK = 4.74 µS, andgL = 0.025 µS are the maximal con-

ductances of the sodium, potassium, and leakage channels, respectively, andENa = 40 mV,

EK = −80 mV, andEL = −65 mV stand for the corresponding reversal potentials. The equa-

tions describing the voltage-gated ion channels have been introduced in Section2.1.3. In
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Equation (4.1), Ii,tot is the total synaptic input current and is given by the sum of all the synap-

tic inputs entering the i-th neuron:

Ii,tot(t) = ∑
Ni,AMPArec

Ii,AMPArec(t)+ ∑
Ni,GABA

Ii,GABA(t)+ I i
AMPAext(t), (4.2)

the value ofNi,AMPArec (respectivelyNi,GABA) being the set of excitatory (respectively in-

hibitory) neurons projecting into the i-th neuron, andIi,AMPArec(t), Ii,GABA(t), Ii,AMPAext(t) the

different synaptic inputs entering the i-th neuron from: recurrent AMPA, GABA, and external

AMPA synapses respectively. These synaptic input currentsIsyndepend also on the membrane

potential and are defined as (see Section2.2):

Isyn(t) = gsynssyn(t)(V(t)−Esyn), (4.3)

wheregsynandVsynare the conductance and the reversal potential of the synapse, respectively.

For positive values ofEsyn the synapse is depolarizing or excitatory (Esyn= 0 mV for gluta-

mate receptors), otherwise it is hyperpolarizing or inhibitory (Esyn= −70 mV for GABA re-

ceptors). The reference values of reversal potentials and synaptic conductances are displayed

in Table4.2. The values of the parametersgsyn in Equation (4.3) are tuned in order to obtain a

balance between excitation and inhibition and to maintain the postsynaptic potential (PSP) am-

plitudes within physiological ranges. All parameters values can be found as well inGutfreund

et al.(1995).

The functionssyn(t) describes the time course of the synaptic currents; it depends both on

the synapse type and on the kind of neuron receiving the input. Every time a presynaptic spike

occurred at timet∗, ssyn(t) of the postsynaptic neuron is incremented by an amount described

by a delayed difference of exponentials (Brunel and Wang, 2003) (see Section2.2):

∆ssyn(t) =
τm

τdecay− τrise

[

exp

(

−t − τaxo− t∗

τdecay

)

−exp

(

−t − τaxo− t∗

τrise

)]

, (4.4)

whereτdecayandτrise are the decay and rise synaptic time, respectively, andτaxo is the latency,

drawn from a Gamma distribution and defined above. Their values are shown in Table4.1.

Synaptic time constants ( ms) τrise τdecay

AMPA 0.5 ms 2 ms
GABA 2 ms 5 ms

Table 4.1 Synaptic time constants.

In the Equation (4.2), IAMPAext represents an heterogeneous Poisson train of excitatory

presynaptic potentials with a mean event rate that varies following an Ornstein-Uhlenbeck
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Synaptic conductancesgsyn( nS)
GABA on inhibitory 325 nS
GABA on excitatory 360 nS

AMPArecurrent on inhibitory 4.2 nS
AMPArecurrent on excitatory 4.2 nS
AMPAexternal on inhibitory 4.2 nS
AMPAexternal on excitatory 5.5 nS

Synaptic reversal potentialEsyn( mV)
EGABA −70 mV
EAMPA 0 mV

Table 4.2 Synaptic conductances and synaptic reversal potentials.

process (defined as well in Section3.2). This incoming external current mimics the direct

input from any other area external to the network consideredhere. The instantaneous rate,

λ (t), of the external excitatory train of spikes is generated according to an Ornstein-Uhlenbeck

process, as considered inMazzoni et al.(2008):

dλ
dt

=−λ (t)+σ(t)

√

2
τ

η(t) (4.5)

whereσ(t) is the standard deviation of the noisy process and is set to 0.6 spikes/s.τ is set to

16 ms, leading to a power spectrum for theλ time series that is flat up to a cut-off frequency

f = 1
2πτ = 9.9 Hz. η(t) is a Gaussian white noise. The model has been integrated using

the Heun algorithm (Toral and Colet, 2014), with a time step of 0.05 ms. All simulations

represent 2 seconds of activity. The connectivity, initialconditions and noise realization were

varied from trial to trial. Further details can be found inBarardi et al.(2014b).

4.3 Dynamics of populations of HH neurons

With the model described in the previous Section we represent mathematically two recipro-

cally connected identical neuronal populations, and studyhow the heterogeneous axonal de-

lays between the populations affect their synchronization. We characterize the collective dy-

namics of these populations by means of averaging measures such as the local field potential

(LFP) and the multi-unit activity (MUA) (see AppendixA.1). In this Section we focus on the

dynamical properties of only one neuronal population.

We consider an isolated population of 2000 neurons, of which80% are excitatory and

20% are inhibitory. Each neuron forms on average 200 random connections within the net-

work, and all pairs of coupled neurons exhibit a certain timedelay, taken from a gamma

distribution whose scale and shape parameters are both equal to unity. All neurons receive an
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external Poisson-distributed spike train whose instantaneous firing rate follows an Ornstein-

Uhlenbeck process with a mean value set to 7300 spikes/s. Excitatory and inhibitory synaptic

currents are balanced by compensating the higher number of excitatory neurons (80% of the

whole network) with fast spiking by the inhibitory neurons and with strong inhibitory synaptic

conductances.

As a consequence, the neurons remain excitable but spent most of their time with a mem-

brane voltage that fluctuates under the firing threshold, occasionally crossing it (Markram

et al., 2004). Despite the fact that the neurons fire sparsely and irregularly (see Figure4.1A),

a rhythmicity emerges when considering the dynamics of multiple action potentials elicited

by thousands of neurons (Brunel and Wang, 2003). Therefore this network of HH neurons

exhibits well-known features of cortical dynamics, namelythe coexistence of irregular firing

at the single-neuron level with collective rhythmicity at the population level, arising from

the synaptic recurrent connections between the excitatoryand inhibitory neurons (Brunel and

Wang, 2003). These oscillations represent the transient synchronized activity of neuronal as-

semblies, and can be revealed by population measures such asthe LFP (Figure4.1B) and

the MUA (Figure4.1C). Lower frequency bands contain a strong component arisingfrom

the noisy Poissonian distribution of interspike intervals(ISI), which affect the synaptic ac-

tivation and do not reflect the intrinsic dynamics of the network. On the contrary, higher

frequency bands of small amplitude reflect the fast dynamicsof the action potentials, also

affecting the synapse activation time course. The collective oscillatory dynamics exhibits a

prominent gamma rhythm (Figure4.1D), whose period is mainly determined by the decay

time constant of inhibition (Brunel and Wang, 2003; Geisler et al., 2005; Sancristóbal et al.,

2013). The gamma rhythm emerges from the periodic changes of the balanced synaptic cur-

rent, which leads to periodic modulation of the distance to threshold.

Another way of understanding the emergent gamma oscillations is by looking at the cou-

pling between the MUA and the LFP. Since the LFP mainly captures the synaptic currents

impinging on the pyramidal neurons (see AppendixA), it is a measure of the excitability of

the network. Hence, at those intervals in which inhibition is low (i.e. the inhibitory synap-

tic current fades away), the probability of firing is high. Due to the recurrent connections

between the excitatory and inhibitory neurons, both the initiation and termination of the pop-

ulation bursts occur with a certain periodicity. Here this oscillatory pattern is around∼45 Hz

due to the inhibitory decay time constants (Galarreta and Hestrin, 2002). The LFP and MUA

are mutually locked to this frequency (Figure4.2A), and the spikes occur with higher proba-

bility close to the troughs of the LFP (i.e. the minimum of inhibition, Figure4.2B) (Barardi

et al., 2014b).
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Fig. 4.1Collective oscillations of a population of 2000 neurons.(A) Raster plot of 2000
neurons (in red the excitatory and in black the inhibitory neurons) for a 1500-ms interval. (B)
LFP time trace in a 1500-ms interval for an external mean rateof 7300 spikes/s. (C) MUA
signal calculated counting the number of spikes of the neural population per unit time. (D)
LFP power spectrum calculated using the Welch method averaged over 200 trials. The gray
horizontal bar delimits the gamma peak band (30 Hz−52 Hz). FromBarardi et al.(2014b).

4.4 In-phase synchronization of collective oscillations under

instantaneous coupling

We next consider two bidirectionally coupled neuronal networks of the type described above.

Connections between the two areas are excitatory: 60% of the excitatory neurons of each net-

work project randomly to 10% of the neurons belonging to the other pool. Although these

parameter values cannot be generalized to any two separate brain areas, for which the specific

connectivity might determine their interaction, it is known that the probability of connection

decays with distance (Boucsein et al., 2011; Kaiser et al., 2009; van Pelt and van Ooyen, 2013).

Here we assume that the connectivity within a network is 2-fold the connectivity across net-

works, neglecting heterogeneity across neurons. Moreover, in order to obtain a certain amount

of phase coherence between the two networks, we consider that the majority of excitatory neu-

rons project onto the other network. A stronger (weaker) coupling will lead to unrealistically
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Fig. 4.2Phase locking between LFP and MUA of a network.(A) LFP-MUA phase coher-
ence for a single population. (B) Angle histogram of the phasedifference between the LFP
and MUA. The measures are averaged over 200 trials. FromBarardi et al.(2014b).

higher (lower) phase coherence values (Womelsdorf et al., 2007). We introduce time delays in

the coupling between networks, assuming that the inter-areal delays are larger than the intra-

areal delays due to long-range connections. We also consider that the inter-areal delays are

distributed heterogeneously across the system (Aboitiz et al., 1992), following a gamma distri-

bution whose mean and variance increase systematically with the mean delay (Vicente et al.,

2008). This accounts for the variability of transmission delaysthrough axons with heteroge-

neous properties (see Section4.2for the definition of the gamma distribution parameters). The

mean inter-areal delay shown in the figures, hereafter termed τaxo, accounts for the latency be-

tween the generation of a spike in a presynaptic neuron from one network and the elicitation

of a postsynaptic potential in the other network.

When coupled, the LFP power spectra of the two networks show the same gamma profile

as in the absence of coupling (Figure4.3), while the corresponding time series exhibit a sub-

stantial degree of correlation (Figure4.4A inset). We next ask whether the broad spectrum

of these neuronal oscillations allows for partial phase coherence to arise in specific frequency

regions. Our phase coherence measure, described in the Appendix A.3, quantifies between

0 and 1 the reliability of the phase difference∆φ between pairs of oscillations, at a given

frequency. Figure4.4B shows the phase coherence between the LFPs of the two populations

for instantaneous coupling (τaxo= 0 ms). According to the regions of statistical significance

observed experimentally (Womelsdorf et al., 2007), we considered phase coherence values

above 0.08, which mainly occurs within the gamma band around the peakof the LFP power

spectrum (horizontal gray bar in Figure4.4B). This threshold corresponds to around four times
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the average phase coherence of the uncoupled case (see Appendix A.3 and black dashed line

in Figure4.3B).
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Fig. 4.3Phase coherence of the uncoupled neuronal populations.(A) Power spectral den-
sity of the two isolated neuronal populations of HH neurons.(B) Phase coherence between
LFPs of the two neuronal populations. The measures are averaged over 200 trials. In order to
consider the frequency bias in the phase coherence we computed this measure in the absence
of coupling. Due to the finite number of trials considered, the phase coherence is not per-
fectly zero. Panel B shows random fluctuations with no specific bias for any given frequency.
The threshold of phase coherence chosen (namely 0.08) corresponds to around four times the
average phase coherence of the uncoupled case.

We also compute the time lagτlag between the two signals (i.e. the time shift separat-

ing two equal phases of the coupled LFPs arising from each population) for all frequencies

(Figure4.4C), still in the caseτaxo= 0 ms. This time lag is only meaningful for significant

phase coherence values that lead to a consistent∆φ across trials (red crosses in Figure4.4B).

The figure shows that for frequencies at which the phase coherence is significant, the LFP

gamma rhythms of the two populations oscillate in phase (τlag ≈ 0), i.e. the two LFPs are

synchronized at zero lag. The error bars in Figure4.4B,C represent the standard deviation

across trials of phase coherence andτlag respectively, and are only shown for the region of

significant phase coherence, since outside that region the phase distribution is very broad due

to the variability across trials. Even within the significant region the standard deviation ofτlag

can be seen to decrease with increasing values of phase coherence, which confirms the inverse

relation between phase coherence and the broadness of the phase distribution (Barardi et al.,

2014b).
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Fig. 4.4 Collective oscillations of two coupled bidirectionally neural populations. The
inter-areal axonal delayτaxo between the two neuronal pools is zero. (A) LFP time trace of the
two populations in a 1000-ms interval, for an external mean rate of 7300 spikes/s. The inset
shows the averaged time correlation of 200 LFP pairs. (B) Phase coherence between the LFPs
of the two networks for varying frequency. The measure is averaged over 200 trials. The black
dashed line represents the threshold (0.08) above which thephase coherence is considered
significant (in red). (C) Time shift between the LFP oscillations of the networks for varying
frequency. Red crosses show the time shifts corresponding tothe frequencies at which the
phase coherence is above threshold. The time shift is calculated asτlag = ∆φ/2π fmax, where
∆φ is the phase difference at the frequencyfmax of maximum phase coherence. The gray
bar delimits the gamma peak band (30 Hz−52 Hz). The measure is averaged over 200 trials.
FromBarardi et al.(2014b).

4.5 Phase-coherence transitions for increasing coupling de-

lay

The fact that the two populations synchronize at zero lag when the coupling delay is zero is

to be expected, and we now ask what happens in the presence of time delays. Figure4.5

shows the phase coherence spectrum between the LFP oscillations for three different values
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of τaxo. While the phase coherence is again significant only around the gamma band (Fig-

ures4.5A,C,E), the time traces look very different for small and large delays, with mostly

in-phase dynamics for small delays (Figure4.5B), whereas the populations are mostly in anti-

phase for large delays (Figure4.5F). For intermediate delays, interestingly, two coherence

peaks appear (Figure4.5C), and the corresponding time series exhibit both in-phase and anti-

phase episodes (Figure4.5D). These results indicate that in-phase dynamics seems to persist

for non-zero coupling delays, eventually transitioning toan anti-phase regime with smaller,

although still significant, phase coherence. Both types of dynamics seem to coexist for in-

termediate delays. In order to verify these conclusions, weextend the analysis to a range of
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Fig. 4.5Phase coherence of two coupled bidirectionally neural populations for three dif-
ferent values of the inter-areal axonal delaysτaxo. Phase coherence spectrum and corre-
sponding representative time series forτaxo= 3 ms (A,B), 9 ms (C,D), and 17 ms (E,F). The
inter-areal delays follow a gamma distribution with a mean equal to corresponding inter-areal
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band (30 Hz−52 Hz). The phase coherence measure is averaged over 200 trials. FromBarardi
et al.(2014b).
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axonal delays, from 0 ms to 30 ms, calculating the phase shiftfor the frequencies correspond-

ing to both the peak of the power and the phase coherence spectra, termedfmax. Figure4.6A

shows the value of the frequency at which the power spectrum is maximum,Fγ , as a function

of the coupling delayτaxo. Note that varyingτaxo does not change the frequency peak of the

LFP power spectrum, which remains around 45 Hz for all coupling delays. We add a gray

bar delimiting the maximum power spectrum range within the gamma band corresponding to

the extent of this local peak, highlighting the fact that theLFP gamma rhythm expands over a

range of frequencies between approximately 30−52 Hz.

On the other hand,τaxo clearly affects the frequencyfmax at which phase coherence is

maximal, as shown by Figure4.6B. In particular, fmax exhibits a discontinuous jump around

a coupling delay∼ 9 ms, where two peaks of phase coherence coexist (consistentwith the

result shown in Figure4.5C). The phase coherence values themselves are shown in color code

in Figure4.6C for different frequencies (vertical axis) and for varyingτaxo (horizontal axis).

We superimpose in that plot the line shown in panel A, which marks the maximum of the LFP

power spectrum (black dashed line) within the gamma range,Fγ , as well as the whole extent

of the peak (vertical gray bar). The local peaks of phase coherence fmax (black lines) corre-

sponding to panel B are also superimposed to Figure4.6C. Forτaxo= 0 ms (as in Figure4.4)

the peak of phase coherence almost coincides with the peak ofpower spectrum. For increas-

ing τaxo, below 9 ms, only the coherence peak at the lower frequency issignificant, whereas

between 10 ms and 22 ms only the coherence peak at the faster frequency is above threshold.

The transition between these two regimes involves a coexistence of the local coherence peaks.

We also observe that in both branches the frequency at which phase coherence is maximum

fmax decreases with the axonal delay, becoming clearly smaller than the gamma frequency

peakFγ (dashed black line in Figure4.6C). Makingτaxo greater than 22 ms, which approxi-

mately matches the period of the power spectrum peakTγ (1/Fγ ≈ 22 ms), a new branch of

phase coherence appears, thus leading again to coexistenceof the two regimes. This emerging

pattern is shown in Figure4.6C for large inter-areal axonal delays and it is not marked in Fig-

ure4.6B because the phase coherence is under the threshold. Hence,asτaxo exceedsTγ , the

scenario of relative phases is repeated but now with cycle skipping.

According to Figure4.6C, maximum values of phase coherencefmax appear at different

frequencies for eachτaxo. Significant values of phase coherence at a certain frequency can

occur provided that there is a certain amount of spikes beingsimultaneously and reliably sent

between the two networks. Since, by construction, the two neuronal pools are identical, the

information flow can only be symmetrically transmitted for an in-phase,∆φ = 0, and/or an

anti-phase,∆φ = π, relationship between the two LFPs. Therefore, for anyτaxo we can obtain

the correspondingfmax that satisfies 2πτaxofmax= 0 or π. From this expression we can thus
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Fig. 4.6Phase coherence and time shift behavior in the case of bidirectional symmetric
coupling for increasing inter-areal axonal delaysτaxo. (A) FrequencyFγ (black arrow) at
which the power spectrum is maximum and extent of the gamma peak (gray bar) (results for
only one population are shown, since they are the same for both populations). (B) Frequencies
at which the phase coherence exhibits local maxima,fmax. (C) Phase coherence, in color
code, as a function of frequency (y-axis) and of the inter-areal axonal delayτaxo (x-axis). (D)
Time shift τlag at the peak frequencyFγ of the power spectrum. (E) Time shiftτlag at fmax,
the frequencies labeled in (B). The red line corresponds to 1/(2 fmax). The labels in panels
B and E correspond to panels of Figure4.5. (F) Time shiftτlag, in color code, as a function
of frequency (y-axis) and of the inter-areal axonal delayτaxo (x-axis). The solid black lines
in panels C and F showfmax (as in panel B) and the dashed black line represents the power
spectrum maximum within the gamma range shown in panel A. In plots A, B, and C the total
extent of the gamma peak is displayed as a vertical gray bar. In plot D, the arrows point at the
gamma period and half of it,Tγ being 1/Fγ . The measures are averaged over 1000 trials for
eachτaxo. FromBarardi et al.(2014b).
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expect that a largerτaxo leads to a smallerfmax, and that the anti-phase configuration is given

by τaxo equal to half the period corresponding tofmax (not to be mistaken withTγ /2, half the

gamma period and equal to 11 ms).

To verify the aforementioned remarks we next calculate the time shift τlag between the

two coupled LFPs as∆φ
2π f . Figure4.6D shows that, at the peak of the LFP power spectrum

(here f = Fγ ), τlag is zero for low (0 ms≤ τaxo ≤ 5 ms) and large delays (17 ms≤ τaxo ≤
26 ms). On the other hand, for intermediate (6 ms≤ τaxo≤ 16 ms) and large delays (τaxo≥
27 ms)τlag corresponds to half the period of the gamma rhythm (Tγ/2= 1/(2Fγ)≈ 11 ms). As

mentioned before (see Figure4.2), at frequencyFγ the MUA and the LFP in each population

are frequency locked. Therefore, for any axonal delay, the presynaptic spikes arrive within

the troughs of the postsynaptic LFP. We can interpret these sharp transitions from in-phase

to anti-phase oscillations, appearing with a periodicity given byTγ , as the way by which the

system keeps the symmetry for anyτaxo.

Since the maximum of phase coherencefmax does not coincide withFγ , we also obtain

τlag along the peaks of phase coherence. Figure4.6E confirms that only two patterns arise: in-

phase and anti-phase, which can simultaneously occur in theregion between 9 ms and 10 ms.

The lowest frequency branch corresponds toτlag ≈ 0 ms, and thus to zero-lag synchronization.

On the other hand, the highest frequency branch correspondsto aτlag value that matches half

the period of the corresponding frequency, i.e. 1/(2fmax) (labeled by a red line in the plot), and

thus corresponds to anti-phase synchronization.

The full values of the time shift for all frequencies are shown in color code in Figure4.6F.

The region of zero-lag synchronization disappears as the delay increases, giving way to a

region of anti-phase synchronization. Due to the oscillatory dynamics, forτaxo greater thanTγ ,

frequencies close to the gamma peak are again compatible with an in-phase pattern. However,

it is important to note that phase coherence is strongly decreased as the cycle is repeated again

(τaxo ≥ Tγ ), probably due to loss of temporal self-coherence of the oscillations themselves.

Thus, provided that the LFP-LFP phase coherence is significant, an effective coupling exists

at which the two populations oscillate with a constant phasedifference, which depends on the

frequency and on the axonal delay. In particular, only two possible phase shifts are allowed,

namely zero-lag (τlag ≈ 0 ms) and an anti-phase (τlag ≈ 1/(2 f )) synchronization.

Figure4.6C shows that the frequency at which maximum phase coherence occurs, fmax,

might not correspond to the predominant gamma rhythm atFγ ∼45 Hz, although it is close

to it and within the extent of the gamma peak (gray vertical bar). Thus, the phase coherence

is bounded by the region in which spikes are still phase locked to the LFP (Figure4.2). The

separation betweenfmax andFγ is clear whenτaxo varies between 0 and Tγ/2. Phase coher-

ence is achieved at slower rhythms that still reliably carrythe action potentials. Hence, the
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spikes elicited by each population systematically reach the other one at its excitability win-

dows. Moreover, a lowerfmax implies larger excitability windows and allows the networks to

be synchronized in phase. For largerτaxo, corresponding slower frequencies lying outside the

gamma peak do not efficiently transmit spikes, due to the bounded region in which MUA is

locked to the LFP. Therefore, at largeτaxo the system moves towards an anti-phase configura-

tion, where the time lag matches and compensates for the inter-areal axonal delay.

Note that the phase coherence patterns shown in Figure4.6C are affected by the inter-

areal delay variability. Ifτaxo is fixed to a constant value (instead of being drawn from gamma

distribution), the region of coexistence between the in-phase and anti-phase coherence patterns

increases, and for delays approaching the oscillation period Tγ the new peak emerging atFγ

(detectable in Figure4.6C and corresponding to in-phase dynamics in Figure4.6E) becomes

significant. This is shown in Figure4.7, which displays the phase coherence for constant

τaxo = 20 ms (green line), in comparison with the caseτaxo = 0 ms (blue line) and the one

with τaxo drawn from a gamma distribution with mean 20 ms (red line) (Barardi et al., 2014b).

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C
oh

er
en

ce
 [a

.u
.]

Frequency [Hz]

LFP−LFP Coherence

 

 

τ
axo

 = 0 ms

τ
axo

 = 20 ms

τ
axo

 20 ms

from gamma dist

Fig. 4.7Phase coherence for constant inter-areal delay.Phase coherence between the two
LFP oscillations in the bidirectional coupling configuration whenτaxo = 0 ms (blue line),
τaxo = 20 ms (green line) andτaxo is taken from a gamma distribution of mean 20 ms (red
line). FromBarardi et al.(2014b).



4.6 From phase coherence to communication 98

4.6 From phase coherence to communication

4.6.1 In-phase and anti-phase coherence transitions under external stim-

ulation

The LFP oscillations studied so far are complex rhythms thatconvey a wide range of frequen-

cies with a predominant component in the gamma range. We haveseen before that the axonal

delayτaxo determines the relative dynamics of the coupled neuronal pools, which fall in ei-

ther an in-phase or an anti-phase pattern. The phase relationship set by the two LFP signals

is proposed to regulate the effectiveness of communication(Fries, 2005). In other words, a

stable phase difference∆φ determines the response of a neuronal population to inputs per-

turbing directly another area. Therefore, depending on thephase difference∆φ between two

coherent LFPs, the response of the unperturbed population will replicate to a certain extent the

response of the other population to the perturbation. We next study how, in the two different

synchronization scenarios described above, inter-areal axonal delays affect information trans-

mission during temporal windows, in which the phase difference and the frequency cannot

be independent of each other. Note here the difference between phase coherence and effec-

tive communication. Rigorously speaking, communication occurs whenever spikes from one

population arrive to the other one, and this is guaranteed provided that there is some coupling

across networks. In contrast, effective communication refers to a more specific situation in

which information about the stimulus is being carried by thecoupled populations.

We can obtain a good proxy for communication by quantifying the response of a neuronal

population (the receiver) to a perturbation that affects indirectly its dynamics via a second pop-

ulation coupled to it (the emitter), and which receives directly the perturbation. The success in

communication can be observed in the transient amplification of the neuronal oscillations of

the receiver (Sancristóbal et al., 2014). The perturbation simulates different stimulus features,

and consists of increases in the mean firing rate of the background synaptic activity imping-

ing on a subpopulation of the emitter. We then examine, at different inter-areal axonal delays

τaxo, how well the LFP and MUA power spectra of the receiver conveyinformation about the

external stimulus being applied to the emitter.

Since the connectivity within and between the two neuronal networks exhibits a certain

degree of clustering (AppendixA.5), exciting a subpopulation of adjacent excitatory neurons

from an area in the emitter population triggers a response ina well-defined subpopulation of

neighboring neurons in the receiving population. We choosea set of different input intensities,

S= 8300,8800,9300,9800,10300,10800,11300 spikes/s, affecting 400 long-range excitatory

neurons from the emitter population during a 2-second time window. As a consequence of
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this perturbation, the amplitude of the LFP power spectrum increases with the strength of the

perturbation (Figures4.8A,B with τaxo≈ 9 ms), without altering the position of the gamma fre-

quency peak (Figure4.9A), consistent with the results were reported inMazzoni et al.(2008).
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Fig. 4.8 Effect of external stimulation for increasing coupling delay. (A) LFP
power spectrum of the directly stimulated population for different external rates
(8300,8800,9300,9800,10300,10800,11300 spikes/s). (B) LFP power spectrum of the sec-
ond population. The mean inter-delay between the pools is≈ 3 ms. The measures are averaged
over 200 trials. FromBarardi et al.(2014b).

Perturbing one of the populations breaks the symmetry of thesystem, since now the firing

activity of the emitter is enhanced with respect to the receiver. As shown by the maps of

phase coherence plotted in Figure4.10, an increase of the external firing rate boosts phase

coherence between the two LFPs. Moreover, the two frequencybands where phase coherence

is significant merge into a single region at larger values ofSconcentrating closer to the gamma

frequency peakFγ ∼ 45 Hz. The correspondingτlag values are shown in Figure4.11 (note

the different ranges of the axes, which now concentrate on the significant values of phase

coherence to better observe the transition to the out-of-phase regime).

At the gamma frequency peakFγ the system undergoes a transition from in-phase to anti-

phase dynamics asτaxo increases. Smallτaxo lead to time shiftsτlag ∼ 0 of the emitter’s

LFP relative to the receiver’s LFP (Figure4.11A,B) and thus, the two signals oscillate ap-

proximately in phase. However, the route to the anti-phase configuration changes asS is

strengthened. In particular higherS levels trigger smoother transitions and a narrower anti-

phase regime. Figure4.9B showsτlag values tracked at the gamma frequency peakFγ = 45 Hz.

Here, largerSvalues lead to a leader-laggard configuration in which the emitter LFP precedes

the receiver LFP by a time lag that equals the axonal delay (see dashed black lines). Fig-

ures4.14A,B, 4.14C,D and4.14E,F show the phase coherence and time shift forτaxo= 3, 9,
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Fig. 4.9 Time shift behavior at the peak of power spectrum for increasing inter-
areal axonal delays for different extra inputs. Effect of the external input per-
turbation on the coupled neuronal populations for increasing stimulus strengthsS =
8300,8800,9300,9800,10300,10800,11300 spikes/s. (A) Frequency of the power spectrum
peak. (B) Time shift corresponding to spectral peak frequency. The dashed lines show the
ideal cases for whichτlag = τaxo and its anti-phase equivalent. FromBarardi et al.(2014b).

and 17 ms, respectively (the same delays as Figure4.5), for the whole range of frequencies.

The dependence of the phase coherence onτaxo for differentSvalues is shown in Figure4.10A-

D, corresponding to a shift from a symmetric to an effectively asymmetric coupling. As the

extra perturbation is applied only to one of the populations, the effective coupling approaches

an unidirectional connectivity, although the structural links are not changed. This can be fur-

ther explained by carrying on the same analysis in a structurally unidirectional scenario, in

which only one population projects onto neurons from the other network. Figure4.13A shows

that increasing the delayτaxo of the unidirectional transmission, the networks keep the phase

difference constant at approximately the same frequency close to the power spectrum peak

frequency. This represents a leader-laggard configurationand is similar to what happens in

Figure4.10D, where an over-excited subpopulation is driving the coupling between the two

networks, still bidirectional but strongly asymmetric. The decrease of phase coherence with

axonal delay is due to the variability in delay times: fixingτaxo to a constant value of 20 ms

leads to maximal phase coherence values comparable to the case of no delay (Figure4.14A).

Figure4.13B shows that for increasing inter-areal axonal delaysτaxo, the time shift between

the two synchronized networks (at frequencies corresponding to the significant phase coher-

ence of Figure4.13A) increases as long asτaxo is smaller than half the period of LFP oscil-
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Fig. 4.10Phase coherence in the case of bidirectional asymmetric coupling for increasing
extra inputs. Phase coherence between LFPs of the two networks, in color code, as a function
of frequency (y-axis) and of the inter-areal axonal delayτaxo (x-axis) for different stimuli: (A)
8300, (B) 9300, (C) 10300, (D) 11300 spikes/s. The measures areaveraged over 200 trials for
eachτaxo and stimulus. FromBarardi et al.(2014b).

lation (1/ fmax) and then approaches zero, thus leading again to a transition from in-phase to

anti-phase synchronization at frequencies close to that ofthe power spectrum peakFγ .

4.6.2 Information transmission between coherent delay-coupled neuronal

populations

Phase coherence can influence the transmission of information between neuronal populations.

As mentioned in the Introduction, the CTC hypothesis (Fries, 2005) suggests that phase re-

lations between coupled areas modulate the response of a receiver area to presynaptic input

coming from an emitter area. In order to maximize this response, the axonal delayτaxo, the fre-
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Fig. 4.11Time shift in the case of bidirectional asymmetric couplingfor increasing extra
inputs. Effective time shift in milliseconds between LFPs of the twonetworks, in color code,
as a function of frequency (y-axis) and of the inter-areal axonal delayτaxo (x-axis) for different
stimuli: (A) 8300, (B) 9300, (C) 10300, (D) 11300 spikes/s. Themeasures are averaged over
200 trials for eachτaxo and stimulus. FromBarardi et al.(2014b).

quency f of the oscillations and the phase difference∆φ should verify∆φ = 2πτaxof . When

this relationship holds, spikes fired in the emitting population at a specific phase of the sig-

nal (for instance at the troughs of the LFP, which correspondto the maxima of excitability)

arrive at the receiving area at the same phase (and thus at thesame excitability maximum),

triggering a maximal response in the receiving area. On the contrary, if ∆φ does not fulfill

the relationship given above (or if it randomly varies), effective communication will not be

achieved (Sancristóbal et al., 2014). This condition is relevant at the frequencies at which the

MUA and the LFP are phase locked (Figure4.2). Otherwise, the troughs of the LFP do not

correspond to intervals of maximum firing within the same population, and the peaks of MUA

do not occur reliably with the same periodicity as the LFP.
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Fig. 4.12Effect of external stimulation for increasing coupling delay. Phase coherence be-
tween the two LFPs for different external rates and effective time delay between the two pairs
of LFP oscillations at frequencies where the phase coherence is significant for different ex-
ternal rates (8300,8800,9300,9800,10300,10800,11300 spikes/s) with the mean inter-delay
between the pools≈ 3 ms (A,B),≈ 9 ms (C,D) and≈ 17 ms (E,F). The measures are averaged
over 200 trials.

In order to quantify the efficiency of communication, we compute the mutual informa-

tion I(R f ,S) between the set of stimuliSand the responseR f as follows (defined in the Ap-

pendixA.4). The broadband LFP signal reproduces the variations in neural population activity

over a wide range of time scales (Buzsáki et al., 2012). Thus LFPs signals are useful to qual-

itatively characterize mechanisms of information processing, because it is possible through

them to verify if there are privileged time scales for information processing. We can think that

information is spread over all frequencies, or that each frequency contributes separately to the

information representation. Given that we were interestedin how the collective dynamics of

the population carries information, we quantify the neuralresponseR f as the power of either

the LFP or the MUA at frequencyf , and we have considered as stimuli different external firing

rates impinging on one of the two populations. This measure allows us to evaluate how well

the powerR f of either the LFP or MUA encodes the stimulus at a certain frequency f . This

definition of information does not require any assumption about the stimulus features being

encoded by the neural signals (Belitski et al., 2008; de Ruyter van Steveninck et al., 1997).

I(R f ,S) quantifies the reduction of the uncertainty in predicting the applied stimulus given a

single observation of the triggered response, and is measured in units of bits (1 bit means a re-

duction of uncertainty of a factor of two). Several experiments have been done with this tool to

characterize information transmission in the primary visual cortex of macaques in response to
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Fig. 4.13Phase coherence and time shift in the case of unidirectionalcoupling. (a) Phase
coherence, in color code, as a function of frequency (y-axis) and of the inter-areal axonal delay
τaxo (x-axis) in the case of unidirectional coupling from the emitter to the receiver. (b) Time
shift τlag, in color code, as a function of frequency (y-axis) and of theinter-areal axonal delay
τaxo (x-axis) in the case of unidirectional coupling from the emitter to the receiver. The mea-
sures are averaged over 1000 trials consistently with the symmetric coupling. FromBarardi
et al.(2014b).

a naturalistic stimulus (Belitski et al., 2008). Several other studies have been performed using

the LFP power spectrum as a measure of mutual information, showing the usefulness of this

approach both experimentally and computationally (Mazzoni et al., 2008). The advantages

of this approach are described in detail inQuian Quiroga and Panzeri(2009) andInce et al.

(2010). To facilitate the sampling of response probabilities, the space of power values at each

frequency was binned into 6 equipopulated bins (Belitski et al., 2008). We have used seven

different firing rates of the external Poisson-distributedinput, for a timeT = 2 s. To compute

I(R f ,S), we run extensive simulations to properly estimate the conditional probabilities used

in mutual information measures. The techniques adopted in order to reduce the bias error of

the estimation of conditional probability due to the finite number of samples are explained in

the AppendixA.5.

Figure4.15shows that the mutual information is non-negligible only within the gamma

range (p < 0.05; bootstrap test), in a narrow region around the peak of thepower spectrum

Fγ . This is consistent with the fact that the emitter encodes the different stimulus strengths in

the gamma band, i.e. other regions of the LFP power spectrum are not affected (Figure4.14-

4.8A,C,E). Therefore, information transmission occurs withinthe gamma peak. Moreover,
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Fig. 4.14 Phase coherence for constant inter-areal delay. (A) Phase coherence be-
tween the two LFP oscillations in the unidirectional coupling configuration whenτaxo =
0 ms (black line),τaxo = 20 ms (blue line) andτaxo is taken from a gamma distribu-
tion of mean 20 ms (red line). (B) Mutual information between the set of stimuliS=
8300,8800,9300,9800,10300,10800,11300 spikes/s and the neural response given by the
LFP in the same unidirectional coupling configuration. (C) Phase coherence and (D) mu-
tual information in the bidirectional coupling configuration. Phase coherence measures are
averaged over 1000 trials. Mutual information measures areaveraged over 5 sets of 200 trials
for each stimulus. FromBarardi et al.(2014b).

functional interactions between coupled neuronal populations can be maximized if their phase

difference is close to zero, i.e. for short axonal delays.

While I(R f ,S) is lower when computed for the LFP power spectrum (Figure4.15A) than

for the MUA power spectrum (Figure4.15B), it decreases monotonically in both cases for

increasing axonal delays. This behavior contrasts with theone shown in Figure4.6C, in which

the maximum phase coherence in the absence of stimulus occurs at varying frequenciesfmax
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Fig. 4.15 Mutual information carried by LFP and MUA power spec-
trum of the receiver. Mutual information between the set of stimuliS =
8300,8800,9300,9800,10300,10800,11300 spikes/s and the neural response given by
the LFP (A) and MUA (B) power spectra for increasing coupling delaysτaxo. The gray arrow
in the color scale refers to significance threshold (p< 0.05, bootstrap test). The measures are
averaged over 200 trials for eachτaxo and stimulus. FromBarardi et al.(2014b).

for different τaxo. Moreover, fmax lies outside the significant mutual information spectrum.

However, at large enoughS the phase coherence pattern (Figure4.10D) closely resembles the

mutual information dependency withτaxo (Figure4.15), since herefmax= Fγ .

Mutual information encoded in the power spectrum is boundedto the frequencies at which

spikes are maximally frequency locked (Figure4.2). Although this measure does not take into

account the phase difference between the two LFP signals, their dynamics clearly rely on their

relative time lag. Therefore, significant phase coherence is needed in order to reliably connect

in time the excitability time windows of both networks, but it is not sufficient to achieve a

maximal response of the receiver. In order to meet this second requirement, the frequency

at which phase coherence is obtained needs to carry a precisetiming of the action potentials,

otherwise the presynaptic current will not elicit a postsynaptic response. Even the emitter

population can only encode the stimulus strength as variations in the amplitude of the gamma

frequency peak, since it is atFγ that changes in the LFP represent synchronized alterationsin

the MUA.

A symmetric coupling scenario allows for two emerging stable regimes, in-phase∆φlag= 0

and anti-phase∆φ = π, while in an asymmetric regime the most excitable network leads

the dynamics (τlag = τaxo). Therefore, in the presence of axonal delays, the latter case is
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not compatible with the in-phase/anti-phase condition. The symmetry breaking allows for

τlag to follow τaxo, increasing phase coherence at the gamma rhythm and thus thereceiver’s

response. In summary, efficient communication needs a sufficient locking between the spikes

being transmitted and the LFP, the carrier of this information. This is maximized at the gamma

frequency peakFγ , here∼ 45 Hz, at which changes in the power spectrum due to external

stimuli become particularly evident. The coupling axonal delay τaxo modulates the level of

phase coherence within all the gamma range, and strong driving of one of the populations

precisely favors the∼45 Hz frequency channel. As observed above, the variabilityof axonal

delay affects the regions where the phase coherence maximumis significant.

Figures4.16A,B show the LFP and MUA mutual information in the unidirectional case.

As in the case of bidirectional coupling, the flow of information occurs atFγ , where the MUA

and LFP are frequency locked and the emitter encodes the stimulus strength. Specially, mutual

information is higher at smallτaxo, when the networks are synchronized in phase. In the

unidirectional configuration the mutual information showsa strong dependence onτaxo, as in

the case of phase coherence discussed above. This is due again to the variability of axonal

delays. For a fixed time delay, the mutual information in the unidirectional coupling case

does not show a substantial decrease for increasingτaxo (Figure 4.14B). The bidirectional

configuration also exhibits a less significant decrease of the mutual information maximum

for constant increasingτaxo (Figure4.14D). This is consistent with the phase coherence peak

corresponding to in-phase dynamics that persists for increasing constant delay (Figure4.14C).

Our results show that phase coherence cannot be taken as a precursor of information trans-

mission. Phase coherence can be achieved in a broad range of frequencies around the gamma

peakFγ (Figure4.10). Therefore, the spikes impinging on each network are able to bound the

two populations in a constant phase relationship, constrained by the symmetry of the effective

coupling. However, in order to communicate, presynaptic spikes must trigger a postsynaptic

response. This requires that the presynaptic action potentials are synchronized in time to facil-

itate the integration of the synaptic currents. Hence, changes in the LFP and MUA amplitude

occur precisely atFγ and mutual information does the same (Figure4.15). Stimulus that are

able to modify the response of a population within a wider frequency range (i.e. not frequency

specific) could possibly alter the situation here described(Barardi et al., 2014b).

4.7 Conclusion

Here we have examined how heterogeneous inter-areal synaptic delay influences the coupling

between the collective dynamics of two neuronal populations. To that end, we first use pop-
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Fig. 4.16Mutual information in the case of unidirectional coupling. Mutual information
between the set of stimuliS and the LFP (A) and MUA (B) power spectra for increasing
coupling delaysτaxo when the coupling is unidirectional from the emitter to the receiver. Note
the different colorbar scales in the two cases. The gray arrow in the color scale refers to
significance threshold (p < 0.05, bootstrap test). The measures are averaged over 200 trials
for eachτaxo and stimulus. FromBarardi et al.(2014b).

ulation measures such as the local field potential and the multi-unit activity, by analogy with

experimental studies, to capture the collective oscillatory dynamics of individual neuronal

populations. In the presence of excitatory coupling, the LFP and MUA activities of two iden-

tical delayed neuronal networks oscillate in the gamma range, with a significant broad peak

between 30 and 52 Hz, which does not depend on the axonal delayτaxo. The emergence of

this gamma peak in the isolated populations is due to the recurrence between excitatory and

inhibitory synaptic activity, as revealed by the phase locking between the LFP and MUA sig-

nals (Figure4.2). In contrast with the power spectrum, phase coherence is strongly affected by

the axonal delays between the populations (Figure4.6). We see that in-phase and anti-phase

patterns occur at various frequencies for different rangesof τaxo in a purely symmetrical con-

nectivity (in contrast with the unidirectional case of Figure 4.13), with high values of phase

coherence occurring at frequencies below the gamma frequency peakFγ (Figure4.6). We use

spectral analysis and information theory to quantify the information exchanged between the

two networks (Figure4.15) in relation with in-phase and anti-phase coherence patterns. In

particular, for different transmission delays between thetwo coupled populations, we analyze

how the local field potential and multi-unit activity calculated from one population convey

information in response to a set of external inputs applied to the other population.
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Our results reveal the following features:

• the two populations exhibit consistent phase coherence for a wide range of coupling

delays, undergoing a transition from in-phase (zero-lag) to anti-phase collective oscilla-

tions as the delay increases;

• in the transition region, the in-phase and anti-phase dynamics coexist:

• when one of the populations is synaptically stimulated, the stimulus is transmitted to the

second population in both in-phase and anti-phase regimes,depending on the coupling

delay. This ensures an effective communication for an unusually large range of delays.

The phase coherence pattern shown in Figure4.6C corresponds to a pure symmetrical con-

nectivity, in which both the structural and functional coupling are equal in both directions (in

contrast with the unidirectional case of Figure4.13). The reciprocity between the feedback

and feedforward pathways across cortical areas is not an unrealistic assumption (Siegel et al.,

2000), although the specificity of such synapses might differ in each direction in order to ac-

count for the different effects of the top-down and bottom-up projections. Here we show that

increasing axonal delaysτaxo lead to either an in-phase or anti-phase synchronization with a

vanishing maximal phase coherence at frequenciesfmax below Fγ although lying within the

gamma peak. Hence, inbasal conditions, there is always a certain reliable phase relationship,

providedτaxo is small, relative to the periodTγ .

The interesting point raised by the communication through coherence hypothesis (Fries,

2005), is whether phase coherence can forecast efficient communication between two popula-

tions in the presence of a stimulus. According to the modulatory role of the top-down pathway,

attention can determine which visual cues we are aware of (Bosman et al., 2012; Desimone

and Duncan, 1995). In principle two situations can arise: either a stimulus catches our atten-

tion (such as an unexpected noise or object) or we are being attentive to an expected stimulus

(such as waiting the traffic light to turn green). In the first situation the communication outline

between a primary cortical area and the associative areas isdriven by the stimulus, while in

the second case it is due to the internal cognitive state. Thefiring activity in visual areas has

been shown to significantly increase even in the attentive state prior to the stimulus presenta-

tion (Kastner et al., 1999). Hence our results, in which we progressively increase thefiring rate

impinging on one population, could be viewed as arising fromthe alteration of the underlying

attentional state.

The experimental study ofBosman et al.(2012) shows that a neuronal cell assembly in

V4 is phase coherent with an area in V1 that responds to a selected stimulus, while it is not

with a V1 area that is not driven by the input. Here we do not model a competitive scenario
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between two networks. Instead we focus on the mechanisms by which two neural pools can

modulate their communication when they are simultaneouslyoscillating in the gamma band.

We quantify the efficiency of communication between the two neuronal networks as the ability

of a population to encode information of an input which perturbs directly another coupled

population. Mutual information measures between either the LFP or MUA power spectrum

and the set of applied stimuliS show that significant values concentrate around the gamma

frequency peak (≈ 45 Hz). Mutual information decreases for long inter-areal axonal delays,

and is slightly lower when the neural response is characterized by the LFP power spectrum

than by the MUA power spectrum.

Despite the fact that the LFP reflects the afferent and local synaptic currents within a given

neuronal network, and that the MUA only captures the action potentials within this network,

these two signals are closely related. As mentioned above, the gamma LFP rhythm reflects

the dynamics of the excitatory balance. Increases in inhibition silence the spiking activity

and therefore the MUA signal, although the GABAergic current is enhanced. Decreases in

inhibition boost the spiking activity and therefore the MUAsignal, although the GABAergic

current is reduced. The peak at 45 Hz in the LFP-MUA phase coherence (Figure4.2) reveals

this phase locking between the two signals.

The arrival of each set of presynaptic spikes perturbs the postsynaptic LFP and might or

might not elicit a postsynaptic suprathreshold response (captured by the postsynaptic MUA)

depending on the mean distance to the excitatory threshold of the populations. Bursts of activ-

ity occur at each pool with a periodicity that fluctuates within the gamma band and are locked

to the troughs of the LFP at this frequency. According to the CTC hypothesis, maximum

communication requires that spikes from each population reach the peaks of excitability of

the target area simultaneously in both coupling directions. Thus, efficient communication is

restricted to the gamma peak, as revealed by the mutual information (Figure4.15) and prefer-

entially at relatively smallτaxo. This condition is only met for in-phase or anti-phase synchro-

nization of the gamma rhythm: small axonal delaysτaxo are able to tie two LFP troughs only at

zero-lag synchronization, while largerτaxo require anti-phase synchronization. In principle, as

τaxo increases zero-lag synchronization could again mediate communication by skipping one

cycle. However, due to loss of phase consistence, mutual information decays with increasing

τaxo.

Here we have shown that phase coherence emerges spontaneously due to the excitatory

coupling between areas without the need of further constrains (Figure4.6C). Higher stimu-

lation of a particular population (the emitter), which enhances the LFP power spectrum am-

plitude of the gamma peak, increases the range of phase coherence to larger axonal delays

(Figure4.10D). The delay determines the phase shift between the two signals, with the emit-
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ter leading the oscillations. According toBosman et al.(2012), phase coherence is revealing

communication in the sense of spike propagation, which in our case extends to frequencies

within the gamma peak. However,efficient communicationin the sense of the information

encoding in the postsynaptic response, is restricted to a narrower band (Figure4.15) that max-

imizes spike synchronization. Adopting a spectrum of delays with increasing variability for

increasing values ofτaxo, instead of an (unrealistic) constant delay, affects quantitatively the

results of phase coherence and mutual information but does not produce any strong qualitative

change in the findings of the paper. However the effect of variability cannot be ignored, given

the dispersion of axonal delays observed in experimental studies (Aboitiz et al., 1992). Fig-

ure 4.17shows a schematic diagram of the two oscillatory LFPs filtered around the gamma

frequency peak (1/Fγ = Tγ = 22 ms) with the bursts of spikes locked at their troughs in agree-

ment with Figure4.2. For a delayed coupling, zero-lag synchronization does notlead to a

symmetric configuration demanding that the two oscillations are reciprocally influenced at

the same phase. Therefore the system rapidly shifts toward an anti-phase synchronization at

which τaxo roughly equals half of the period of the LFP (Figure4.17B). Importantly, when

the symmetry of the system is broken (for instance by perturbing just one of the populations),

the possible stable solutions are no longer the in-phase or the anti-phase regime. In this case,

phase coherence can be achieved through a leader-laggard configuration in which the time lag

equals the inter-axonal delay. Without the symmetry constraint, this situation is achieved at

the gamma frequency peak, for which the spikes of each population are preferentially locked

to the LFP and changes in their power spectrum are maximized.

In conclusion, our results show that effective communication can be reached even in the

presence of relatively large delays between the populations, which self-organize in either in-

phase or anti-phase synchronized states. In those states the transmission delays, phase differ-

ence, and oscillation frequency match to allow for communication at a wide range of coupling

between brain areas (Barardi et al., 2014b). Furthermore our study has shown the dichotomy

between phase coherence and communication. Whereas phase coherence arises due to LFP

phase perturbations through the propagated spikes, communication is caused here by an in-

crease in the firing response. The first occurs at different frequencies for everyτaxo in order to

conserve the functional connectivity. The second requiresthe spikes to be tightly locked to the

LFP and at a faster frequencyFgammato enable spike integration, and hence a signal response

that can be synaptically propagated.

In this Chapter we have used a microscopic model to describe the synchronization between

two distant neuronal populations. Modeling the synchronization dynamics of multiple brain

regions from a purely microscopic scale is computationallyunfeasible. Currently, as in this

Chapter, this is accomplished by modeling the two neuronal populations (or more) while repre-
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Fig. 4.17Carriers of information and signals. Diagram of two oscillatory LFPs filtered
around the power spectrum peak (≈45 Hz), with a short spike train locked at their troughs for
different τaxo: (A) τaxo = 3 ms, representing zero-lag synchronization and (B)τaxo = 9 ms,
representing anti-phase synchronization. FromBarardi et al.(2014b).

senting the activity of the rest of the brain by a background noisy activity, but this approach is

not useful when the neuronal population of interest feeds back into those other brain regions,

thereby modifying the background activity that acts upon the population itself. Thus, a hy-

brid description of the brain that encompasses multiple scales is an appealing concept. In that

scenario, it would only be necessary to represent microscopically those neuronal populations

involved in a particular task, and which are monitored with single-cell resolution. The rest

of the brain, while modulating the activity of the population of interest, would not necessar-

ily need to be represented with microscopic detail. In the next Chapter we will consider one

way of facing this situation, based on coupling bidirectionally microscopic and mesoscopic

descriptions of neuronal populations and then we use synchronization in order to probe the

interaction between the two scales.



CHAPTER 5

PROBING SCALE INTERACTION IN BRAIN DYNAMICS

THROUGH SYNCHRONIZATION

Brain dynamics is usually described by theoretical models that involve one of three separate

scales: either the microscopic scale of neuronal networks,the mesoscopic scale of cortical

columns, or the macroscopic level of coupled neural-mass models. In the previous Chap-

ter, we have focused on possible synchronization mechanisms between distant populations

described at the level of neuronal networks, focusing in particular on gamma-band synchro-

nization. However, brain activity is based on the coordination across temporal and spatial

scales, and synchronization, as a mechanism of large-scaleintegration, could be a measure of

the interaction of multiple scales.

In this Chapter we intend to bridge these scales by building a model that contains different

levels of description, and exploring the effect of one of thescales on the other. In particular,

we incorporate a neuronal population within a system of coupled cortical columns, and study

the joint influence between the different dynamical regimesexhibited by the cortical columns

and the cortical oscillatory regime displayed by the neuronal network. Specifically, we con-

sider the coupled behavior of two mesoscopic neural masses that communicate with each other

through a microscopic neuronal network. We use synchronization as a tool to probe the inter-

action between the two scales of description and we also examine which characteristics of

the neuronal network connectivity allow the efficient cross-talk between dynamical scales, i.e.

to determine which are the microscopic features that modulate the mesocopic activity. The

Chapter is organized as follows. In Section5.1 we introduce our study and the large-scale

integration problem, and in Section5.2 we describe the dynamical model with the coupling

between the neural masses and the neural network used in thisstudy. Evidence of scales in-

teraction through synchronization as a function of topological properties of neural network is

presented in Section5.3 and discussed in Section5.4. These results are reported inBarardi

et al.(2014a).
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5.1 Towards a multi-scale approach

The mammalian brain is composed of a myriad of coupled neurons that interact dynamically.

It possesses a rich topological structure and exhibits complex dynamics, operating as a noisy,

nonlinear, and highly dimensional system. Neuronal activity evolves at temporal scales rang-

ing from a few milliseconds to tens of seconds, and emerges from neuronal assemblies that

extend from micrometers to several centimeters. Consequently, the study of the brain is usu-

ally partitioned into different research fields devoted to distinct brain structures, cortical func-

tional areas or particular microscopic circuits, from the level of cortical columns down to

single-neuron responses. Moreover, studies of the global activity of the brain usually focus

for convenience on specific cognitive or motor tasks, in order to compare them with a control

state such as the resting one (see Section1.4.3).

The various aforementioned approaches deal with differentscales of description, from the

macroscopic to the microscopic level. Accordingly, different computational models have been

developed to account for the activity at each scale (see Chapter 2). We have seen that single

neurons, for instance, can be characterized by detailed biophysical models that consider ion-

channel dynamics, as initially proposed by Hodgkin and Huxley (HH) (Dayan and Abbott,

2005; Koch and Segev, 1988), or by more abstract models of neural excitation such as the

integrate-and-fire (IF) model (Brunel and Van Rossum, 2007; Gerstner and Kistler, 2002).

The set of equations associated to these models (introducedin the Section2.1) representing

each neuron’s membrane potential can be coupled in a way thatmimics the synaptic junction

(see Section2.2). Thus, given a connectivity matrix, one can ideally build any neuronal net-

work in silico from its individual constituents, and thereby move towardsthe mesoscopic level

of neuronal assemblies. This allows the brain to be traditionally investigated in a reduction-

ist way, using different simplified levels of description. We have adopted these microscopic

approaches to explain spindle patterns in the LGN of the thalamus in Chapter3 and to char-

acterize the dynamical properties of the gamma synchronization between coupled neuronal

populations in Chapter4.

Another set of models, named neural mass (NM) models (David and Friston, 2003; Grim-

bert and Faugeras, 2006b; Jansen and Rit, 1995; Spiegler et al., 2011), avoid the single-neuron

perspective and consider instead the averaged behavior of the neuronal population (see Sec-

tion 2.3.1). This mesoscopic description is more phenomenological than the single-neuron

models, in the sense that it represents directly the collective behavior of the network, without

singling out individual cells. Moreover, single neurons operate at time scales faster than neural

mass models. The former exhibit action potentials that lastabout 1 ms, while the coordinated

activity of neuronal tissue, which emerges from the synchronization of multiple spikes, oper-
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ates on time scales up to tens of seconds. Within a neuronal population all temporal scales

work simultaneously, and the relative relevance of the different scales might change depending

on the biological process. For instance, spike-timing precision is key to synaptic plasticity, and

therefore to the formation of functional cell assemblies (Ahissar et al., 1992; Singer and Gray,

1995). On the other hand, as seen in Section1.4.3, the frequency of collective oscillations is

relevant for the synchronization of distant areas, and thusfor their effective interaction within

specific information-processing tasks (Fries, 2005; Sancristóbal et al., 2014).

Recently, large-scale models of the brain have received special attention. So far, global

brain activity has been modeled by dividing the brain into discrete volume elements, or vox-

els, and coupling them according to statistical correlations and structural information

(Alivisatos et al., 2012; Deco et al., 2013; Pons et al., 2010; Sotero et al., 2007). While new the-

oretical studies have attempted to connect the microscopic(neuronal network) and mesoscopic

(neural mass) descriptions of brain tissue, by directly applying mean-field approaches to de-

rive the latter from the former (Faugeras et al., 2008; Rodrigues et al., 2010), these strategies

are fraught with limitations and hard-to-justify assumptions. Here we propose an alternative

approach to explore scale interaction, by considering a system formed by two neural masses

that are coupled exclusively via an intermediate population described by a spiking neuronal

network model (Barardi et al., 2014a).

5.2 Dynamical model

As mentioned above, our model combines two different levelsof description (Figure5.1).

The neural mass description evolves at a slow scale and represents the average dynamical

evolution of a set of three different neural populations (pyramidal, excitatory interneurons

and inhibitory interneurons) (Jansen and Rit, 1995) (see Section2.3). The fast scale, on the

other hand, is represented by a conductance-based neural network formed by excitatory and

inhibitory neurons. In this case, the time course of every neuron’s transmembrane potential

is given by the dynamics of voltage-dependent ion channels (see Section2.1.3). We merge

these two levels of description in a simple dynamical structure, shown in Figure5.1, in which

two neural mass models (NMs) are coupled with a subpopulation of neurons belonging to the

neuronal network (NN).

The two NMs are set to oscillate in two different well-definedfrequencies, corresponding

to two slightly different brain rhythms. The NN also displays a collective oscillatory dynam-

ics with a different frequency. Here we investigate how boththe inter-scale coupling strength

and the features of the NN contribute to the cross-talk between the three systems. The NN

is composed of 4000 HH neurons (80% excitatory and 20% inhibitory). Each neuron forms
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Fig. 5.1Diagram representing the coupling between different scale-based models.Two
groups of neuronal populations, described by neural mass models (NMs), are coupled with
a neuronal network (NN). The NMs represent the average dynamics of three coupled neural
populations: pyramidal (P), excitatory interneurons (EI), and inhibitory interneurons (II). The
NN consists of a set of 4000 excitatory and inhibitory interconnected neurons. Only a subset
of neurons of the NN is coupled with the NMs. The coupling strength between the NMs and
the NN is given by the three parameters,γ1, γ2 andγ3. γ1 quantifies the coupling from the
pyramidal population of the NMs to the NN subpopulation.γ2 andγ3 represent the intensity
of the excitatory and inhibitory couplings, respectively,from the NN subpopulation to the
NMs’ pyramidal population. FromBarardi et al.(2014a).

400 chemical synaptic connections on average with other neurons of the network. The dy-

namics of the transmembrane potential of the soma of each neuron is described by the set of

conductance-based differential equations introduced in Section2.1.3(Equations (2.9)-(2.11))

and the voltage dynamics is described by:

C
dVi

dt
=−gNam

3h(Vi(t)−ENa)−gkn
4(Vi(t)−Ek)+−gL(Vi(t)−EL)+ Ii,tot(t) (5.1)

where the variables and the parameters have been defined in Section 4.2, but here all neurons

receive an additional train of excitatory presynaptic potentials explicitly modeled by the NMs

to whom the NN is connected, which contributes to the external current termIi,AMPAextof Ii,tot:

Ii,tot(t) = ∑
Ni,AMPArec

Ii,AMPArec(t)+ ∑
Ni,GABA

Ii,GABA(t)+ Ii,AMPAext(t). (5.2)

Those spikes follow an heterogeneous Poisson process with amean event rate, which varies

following an Ornstein-Uhlenbeck process (see Section4.2, Equation (4.5)). This NN model

is able to reproduce the well-known synchronous irregular regime (Brunel, 2000), in which

recurrent activity leads collective oscillations at the population level while single neurons fire

irregularly. The emergent rhythmicity is achieved by a balance between the excitatory and
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inhibitory synaptic currents and can be explained by periodic changes of the excitability in the

network, i.e. periodic modulation of the distance to threshold. Despite the fact that excitatory

neurons are dominant in the network, the stronger synaptic inhibitory conductances and the

higher firing rate of the inhibitory neurons allows the system to reach a balance between

excitation and inhibition. In order to obtain collective oscillations in the alpha (gamma) band,

we set the decay synaptic time to beτdecay= 15ms(5 ms) (see Section4.1).

The description of the mesoscopic neuronal ensemble is based on a model proposed by

Jansen and coauthors (Jansen and Rit, 1995) and presented in Section2.3.1. This model

characterizes the dynamics of a cortical column by using a mean field approximation. After

some mathematical derivations (described in Section2.3.1), the set of equations is:

ẏ0(t) = y3(t)

ẏ1(t) = y4(t)

ẏ2(t) = y5(t)

ẏ3(t) = AaNMS[y1(t)−y2(t)]−2aNMy3(t)−a2
NMy0(t)

ẏ4(t) = AaNM(pe(t)+C2S[C1y0(t)])−2aNMy4(t)−a2
NMy1(t)

ẏ5(t) = BbNM(pi(t)+C4S[C3y0(t)])−2bNMy5(t)−b2
NMy2(t),

(5.3)

wherey0(t) is the EPSP produced by the pyramidal population on the interneurons population,

andy1(t) is the EPSP acting upon the pyramidal population and arriving from (i) the excitatory

interneurons, (ii) other areas of the brain and, differently from Section2.3.1, (iii) the neural

network (see Equation (5.6) below). Finally,y2(t), is the IPSP acting upon the pyramidal

population and arriving from the inhibitory interneurons and, again, the neural network (see

Equation (5.7) below). The intra-columnar connectivity constants values are defined in terms

of Ci, with i = 1, . . . ,4. We use the values given inJansen and Rit(1995).

5.2.1 Inter-scale coupling terms

The effect of the mass models upon the neural network also contributes to theIi,AMPAext term

of the NN (see Equation (5.2)), together with the external excitatory Poissonian trainof spikes.

Hence, each neuron of the NN receives a train of excitatory spikes whose mean firing rate,FR,

is given by:

FR(t) = EFR(t)+kγ1S(y1(t)−y2(t)), (5.4)

whereS(y1(t)−y2(t)) translates the postsynaptic potential of the pyramidal population of the

NM that affects that particular neuron (or both NMs if that isthe case) into a spiking rate.γ1

andk control the strength of this coupling. Hereγ1 = 200, whilek will be a varying parameter.
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EFR(t) corresponds to aforementioned Poissonian train of spikes:

EFR(t) = 〈EFR〉+λOU(t), (5.5)

with 〈EFR〉 being the mean external firing rate andλOU(t) an Ornstein-Uhlenbeck process

(see Equation (4.5)) representing the fluctuations around the mean. We set〈EFR〉= 8.5 KHz.

The neuronal network acts upon the NM models throughpe(t) andpi(t) (see Equations (5.3)):

pe(t) = 〈p〉+kγ2MUA(t) (5.6)

pi(t) = kγ3MUA(t), (5.7)

whereMUA(t) is the multiunit activity coming from the neural network, i.e. the sum of spikes

over the subset of neurons coupled to the NMs, calculated within a sliding window of length

1 ms (see AppendixA.1). 〈p〉 is a constant input coming from other areas of the brain distinct

from those considered explicitly in our model (〈p〉 = 0.160 KHz for both NMs).γ2, γ3 and

k are scaling factors that take into account the synaptic efficiency. Here,γ2 = 25 andγ3 = 3.

Note that we assume that NN neurons affect only the pyramidalpopulation in the NM. This is

in accordance with the Jansen-Rit’s model of two coupled NMs (Jansen and Rit, 1995), which

considers that only pyramidal cells receive excitatory input from the other column (Barardi

et al., 2014a).

5.3 Probing scales interaction

The effective interaction between neuronal ensembles described at different scales can be stud-

ied by coupling mesoscopic and microscopic models. As mentioned in the first section, meso-

scopic models are best exemplified by NM descriptions, whichare derived phenomenologi-

cally from experimental studies, and characterize the average population activity by means

of a mean field approximation. In particular, NMs describe the neuronal activity happening

at slow time scales, such as synaptic potentials arising from the synchronized firing of thou-

sands of neurons. On the other hand, models of single neuronsreproduce the time course

of the electric currents crossing the neuronal membrane, and thus account for the individual

action potentials and the postsynaptic response of each cell composing the network. In order

to preserve the precision of the spiking times, these modelsinvolve fast time scales. Certainly,

networks built from spiking-neuron models can also providemeasures of the population activ-

ity by averaging across neurons. Thus, patterns of collective activity can be observed in the

synaptic current, evoked by the summation of multiple spikes on the target neurons.
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To analyze the evolution of the model introduced in the previous Section we consider two

different dynamical variables corresponding to each of thetwo scales. The NM model activity

is given byy(t) = y1(t)− y2(t), wherey1(t) is the EPSP andy2(t) the IPSP acting upon the

pyramidal population (see Equation (5.3) above). The NN activity is quantified in terms of the

LFP as defined in AppendixA.1. Both types of models operate in an oscillatory regime. The

NM model is an intrinsic oscillator whose frequency can be varied by changing the parameters

B andbNM (see blue and green lines in Figures5.2A,B). On the other hand, the oscillations of

the neuronal network are an emergent property of the system,reflecting the variability of the

individual postsynaptic potentials (i.e. the microscopicevents). Hence, its frequency is less

well-defined (see red line in Figures5.2A,B and power spectra in Figures5.3C,D below).
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Fig. 5.2Collective dynamics of the coupled system.(A) Time traces of the net postsynaptic
potentialy(t) = y1(t)−y2(t) of both NMs working at different frequencies: at 4.5 Hz within
the theta band (blue), and at 11 Hz within the alpha band (green). The local field potential, LFP,
of the NN (red) oscillates in the gamma range around 45 Hz. Thethree neural ensembles are
uncoupled. (B) Time traces of the postsynaptic potentials ofboth NM models and local field
potential of the NN when the system is coupled (k= 1). Averaged maximum cross covariance
(C) and frequency mismatch (D) between the postsynaptic potential time traces of the NMs
for increasing inter-scale coupling strengthk. FromBarardi et al.(2014a).

Our aim here is to find fingerprints of an effective interaction of scales. To do so we study

how the two NM models, one oscillating in the theta band and the other in the alpha band, syn-

chronize their dynamics when the coupling is mediated by theneuronal network (Figure5.1).
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The interaction mechanism is bidirectional. This architecture was used byVicente et al.(2008)

andGollo et al.(2010) to demonstrate the emergence of zero-lag synchronizationmediated

by dynamical relaying between neuronal network populations. In our case, the output of each

NM is converted into a firing rate (see Equation (5.4) above) impinging on a subpopulation

of 2000 neurons within the neuronal network. In turn, the firing rate of these selected neu-

rons contributes to both the excitatory and inhibitory postsynaptic potential densities that act

upon the pyramidal populations of the NMs. We also examine the effect of varying several

properties of the subpopulation of neurons of the NN, including its number, involved in the

coupling, in order to explore the effect of the structural properties of that network on the scale

interaction efficiency.

The effect of the coupling intensityk on the dynamics of the interacting populations is

shown in Figure5.2. When the NMs are uncoupled, they oscillate in different dynamical

regimes that evolve at different frequencies, around 4.5 Hzand 11 Hz respectively. One NM os-

cillates in a spike-like fashion, while the other one oscillates more harmonically (Figure5.2A,

compare the blue and green lines). The neuronal network, in turn, exhibits collective oscilla-

tions within the gamma range, around 45 Hz. The dynamical evolution for the coupled case,

at k= 1, is shown in Figure5.2B. In this case, the dynamical regimes of the NMs are similar,

and they become frequency locked. We scank in order to track the transition to the frequency

locked regime as coupling increases. Figure5.2C shows the increase in the maximum cross

covariance between the net postsynaptic potentials of the two NMs models, averaged over

20 trials, when increasingk. When the NMs operate at different regimes they hardly synchro-

nize but, for sufficiently highk, they increase their synchronization with increasingk. The

averaged frequency mismatch decreases sharply atk ≈ 0.6 (see Figure5.2D). According to

these results, frequency locking for the two NMs is achievedthrough a neuronal network that

oscillates naturally at a much faster scale.

We further characterize the effect of the interaction through the power spectrum of the time

traces. As can be expected, the power spectrum of the mass models in isolation (Figure5.3A)

shows a clear peak at their natural frequencies (4.5 Hz and 11Hz), while the LFP shows a

strong peak around 45 Hz (Figure5.3C) that exceeds the non-zero contribution of the slower

frequencies∼4 Hz. We see that increasing coupling leads to a frequency locking regime

between the NMs, which is reflected in their spectral behavior. For instance, atk= 1 the power

spectra of the two NMs overlap, with a dominant peak around 4 Hz (Figure5.3B). The local

gamma peak of the neuronal network is preserved (Figure5.3D), although the major change

in amplitude occurs at smaller rhythms, around the frequency of the NMs. This increase

in the NN power at the alpha band is due to the emergence of phase locking between this

population and the outer NMs, as shown in Figure5.3E. This phase locking results in a sizable
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cross-correlation between the activities of the microscopic and mesoscopic populations for

intermediate values of the sizeN of the NN subpopulation coupling the two NMs, as depicted

in Figure5.3F (the difference between cross-correlations with NM1 and NM2 for smallN is

due to the different intrinsic dynamics of the two mesoscopic populations). The effect ofN

is studied in more detail below. The slower time scale of the NMs cannot follow the faster

dynamics of the NN and average out the gamma rhythm, resulting in a frequency shift towards

the slower rhythm, which is also enhanced in the neuronal network.
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Fig. 5.3Effect of coupling on the power spectra of the three neuronal populations. (A)
Power spectra of the net postsynaptic potentialy(t) of the NMs in isolation. Primary peaks
are tagged with vertical dashed lines at∼4.5 Hz and∼11 Hz. (B) Power spectra of the net
postsynaptic potentialy(t) of the NMs when coupled (k= 1) through a subpopulation of 2000
neurons within the NN. The common primary peak is tagged witha vertical dashed line at
∼ 4 Hz. (C) Power spectrum of the LFP of the neuronal network in isolation. (D) Power
spectrum of the LFP when the subpopulation of the neuronal network is coupled (k= 1) to the
NM models. Spectral densities are averaged over 20 trials. (E) Time traces of the MUA signal
of the neuronal network (blue, left axis) and the voltage of neural mass 1 (green, right axis).
The MUA is calculated using a sliding window of length 50 ms. (F) Correlation between the
MUA and voltage signals shown in panel E as a function of the number of neurons from the
central NN involved in the communication between the two NMs. FromBarardi et al.(2014a).

Since the output of the neuronal network arises from the spiking activity of thousands

of neurons, the interaction across models is mainly driven by the average dynamics of the

population. Although the modeled LFP evolves in a faster time scale, NM models filter out
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rapid fluctuations. Therefore, the NMs mainly respond to changes of the mean input coming

from the neuronal network modulated byk.

The input contribution into the NMs coming from the NN dynamics increases the average

excitatory and inhibitory input signal into the pyramidal population (denoted bype and pi,

respectively, in Equations (5.6)-(5.7) above). Since increasing the constant input to a NM can

lead to changes in the dynamical regime (and thus the frequency) of the oscillator (Grimbert

and Faugeras, 2006b), one could argue that the role of the neuronal network dynamics is un-

necessary to mediate the synchronization transition observed. However, simulations in which

the terms given in Equations (5.6)-(5.7) are replaced by the temporal average of the coupling

contributions indicate that the NMs are unable to synchronize their phases in these conditions

(Figures5.4A,B). This result shows that the NN dynamics is a key ingredient to achieve not

only frequency locking but also phase locking between the two NMs.
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Fig. 5.4 Coupling of NMs through dynamically evolving NN vs constant input. Phase
consistence of different trials of PSPs of the NMs (the two colors correspond to the two NMs)
when the coupling is mediated by a variable MUA (coming from the NN) (A) and when MUA
is replaced by its temporal average (B). In the latter case NMsare unable to synchronize their
phases.

In order to take advantage of the microscopic description ofthe NN we also vary two main

features of its architecture: its clustering (see definition in AppendixA.5) (Figures5.5A,B)

and the size of the area involved in the coupling, determinedby the number of neurons pro-

jecting onto the NMs (Figure5.6). Figure5.5A,B outlines the dependence of the maximum

cross covariance and the frequency mismatch between the twoNMs on the coupling strength
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k for different rp values. Note that the caserp = 1 corresponds to the results shown in Fig-

ures5.2C,D. Networks with higher clustering (rp = 0.2) are less efficient in synchronizing the

oscillatory output of the NMs. In this case, larger couplingstrengthsk are needed, with respect

to a random network (rp = 1), to reach the frequency locking regime. Thus, the topology of

the NN affects the synchronization between the neural ensembles. Random networks have

small path lengths at the expense of low clustering, and thusthe average transmission time

of the action potentials across the population is decreased. In this situation, synchronization

arises for smaller coupling strengths. The result for a regular network,rp = 0 (which is not a

realistic situation in the brain because the NN dynamics is lost), is also included.
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Fig. 5.5Influence of the topological and dynamical properties of theneuronal network on
the interaction between the NMs.Maximum cross covariance (A) and frequency mismatch
(B) between the NM average postsynaptic potentials for increasing rewiring probabilitiesrp of
the neuronal network. Maximum cross covariance (C) and frequency mismatch (D) between
the NM average postsynaptic potentials when the neuronal network works in the alpha regime,
compared with the gamma case (rp = 1). FromBarardi et al.(2014a).

Besides topology, the intrinsic dynamics of the neuronal network also has an impact on

the synchronization of NMs. In our NN model we can slow down the frequency peak of the

LFP by increasing the decay time constantτdecayof the inhibitory synapses, without altering

the firing rate of the population. If the peak of the NN power spectrum is shifted towards the
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alpha band, closer to where the NMs oscillate, the maximum cross covariance is reduced and

the frequency mismatch is increased for a givenk value (Figures5.5C and5.5D, respectively).

Thus, even though the NN is operating closer in frequency to the NMs, and its individual

neurons fire at the same rate as when the network operates in the gamma band (resulting in

a similar MUA activity, result not shown), the NMs are more difficult to synchronize. In

the NN, the action potentials are transiently synchronizedand paced according to the time

course of inhibition, leading to a recurrent behavior that causes the global oscillatory dynamics.

Faster rhythms, like gamma, correspond to a better precise timing of the firing, i.e. the action

potentials of multiple neurons are tightly bounded in time,which seems to be key for the

synchronization of the NMs.

Finally, and as mentioned above, we also study how the synchronization of the NMs is

affected by the sizeN of the subpopulation of neurons that mediate the coupling between them.

In the results presented so far, this subpopulation was formed byN = 2000 neurons, randomly

chosen from the whole population of 4000 neurons of the NN. WescanN between 1 and 4000

neurons, the latter case corresponding to all neurons in theNN contributing to the firing rate

impinging on the NMs and receiving their input. Figures5.6A,B show the maximum cross

covariance and the frequency mismatch for increasing coupling k at varying subpopulation

sizes. The interaction between the NMs decreases asN decreases, and synchronization is

only significant forN > 1000. N directly affects the strength of the coupling between the

NN and the NMs, since this parameter determines the average MUA, i.e. the number of

spikes elicited within the subpopulation. Hence, given a coupling strengthk that enables an

efficient interaction of the models, larger values ofN lead to a lower frequency mismatch

(Figures5.6C,D).

It is important to note that, although the size of the NN is kept constant, increasingN boosts

the coupling term, spreading the input from the NM across a larger population of neurons

within the NN. Figure5.6E shows the LFP power spectrum for increasing values ofN for

k = 0.9. Similarly to the transition from Figure5.3C (network in isolation) to Figure5.3D

(k= 1 for N = 2000), the major changes produced by the coupling occur at small frequencies,

where the synchronization scale is centered, while the gamma rhythm interacts directly with

the slower dynamics of the NMs. DecreasingN dramatically affects the dynamics of the

coupling, which only takes into account the activity of thissubpopulation. For sizes below

N ∼ 1000 the interaction is carried out by the low firing and highly noisy activity of small

numbers of neurons, which are unable to synchronize large ensembles (Barardi et al., 2014a).
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Fig. 5.6Dynamics of coupled NMs.Maximum cross covariance (A) and frequency mismatch
(B) between the NM average postsynaptic potentials as a function of coupling strengthk,
for various values of the sizeN of the subpopulation of the neuronal network that mediates
the coupling. (C,D) Same quantities as a function ofN for various values of the inter-scale
coupling strengthk. (E) Spectral power density of the LFP of the whole NN, when the NMs
are connected with NN subpopulations of various sizes (k= 0.9). All results are averaged over
20 trials. FromBarardi et al.(2014a).

5.4 Conclusion

In this Chapter we have focused on how the microscopic and macroscopic scales coexist in a

system-wide description of the brain. Due to the computational unfeasibility of modeling the

dynamics of the full brain from a purely microscopic scale, we envision the need of including

both scales in a hybrid description of the brain. In this scenario, one would need to represent

at the level of neuronal networks only those neuronal populations involved in a particular task

(for instance a certain region of the visual cortex in the case of situations involving visual

stimulation), and which are monitored with single-cell resolution. The rest of the brain, while

modulating the activity of the population of interest, would not require being represented with

microscopic detail (and it would be impractical to do so). Currently this is accomplished

by substituting the activity of the rest of the brain by a backgroundnoisyactivity, but this

approach is not useful when the neuronal population of interest feeds back into the external

brain regions, thereby modifying the background activity acting upon the population itself.
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One way of facing this situation is by coupling bidirectionally microscopic and mesoscopic

descriptions of neuronal populations, as is considered in this work. Both types of descriptions

have been carefully studied in the past (in particular both the fine-grained activity of neuronal

networks and the simplifications inherent in neural mass models have been well characterized),

and here we intend to make these two well-known descriptionsinteract. In particular, we use

synchronization in order to probe the interaction between the two scales. Our reason for

employing specifically a scheme in which two mesoscopic populations are coupled through a

third microscopic network is that the behavior that can be expected from two coupled neural

mass models is well known, and can be used as a reference for the coordinated behavior

emerging from our hybrid scenario.

Furthermore our results do not imply that two NM oscillatorscan only synchronize through

the mediation of a neuronal network. In fact if all three neuronal populations were described

by NNs (or by NMs, for that matter) synchronization will alsoarise (see for instanceVicente

et al. (2008) andGollo et al. (2010) for the case of three coupled NNs leading to zero-lag

synchronization). Neither do we claim that two brain oscillators can only synchronize through

the mediation of a third one (see for instanceDavid and Friston(2003) for an example of

synchronization between two coupled NMs). The results showthat two mesoscopic brain os-

cillators can synchronize even when they are coupled only through a mediating population

that is described by a microscopic model. In that sense, we use synchronization as a tool to

probe the interaction between different spatial scales of neuronal populations. Previous ef-

forts have been devoted to analyzing this interaction by performing a direct comparison of

the behaviors of the microscopic and mesoscopic models.Faugeras et al.(2008), for in-

stance, derived the equations of evolution of NMs from the dynamics of a network of neurons

described by a voltage-based model, by performing an involved mean field analysis of the net-

work, an approach that would be very challenging to apply to spiking neuron models. In order

to perform such a multi-scale mapping,Rodrigues et al.(2010) had to apply strong assump-

tions that included high correlation between the neurons inthe microscopic populations and

low-amplitude input currents. Here we have attempted to circumvent the complexity of those

approaches by using a more phenomenological strategy, whose goal is to test whether micro-

scopic and mesoscopic descriptions of neuronal populations communicate with one another

by using synchronization as a proxy of effective communication.

Even when the neuronal network operates in a fast dynamical collective regime in the

gamma range, a sufficiently large subpopulation of neurons within that network is able to

mediate the communication and subsequent synchronizationbetween two NMs that are de-

scribed mesoscopically and operate at much lower frequencies (Figure5.3). Frequency and

phase locking arise even when the two NMs operate at very different frequencies (in the theta
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and alpha bands) and with very different dynamical features(spike-like dynamics in one case

and quasi-harmonic dynamics in the other). Structural clustering within the neuronal network

diminishes the ability of the microscopic neuronal population to induce synchronization (Fig-

ure 5.5). The size of the subpopulation of neurons that directly coupled the two NMs must

also be large enough to allow the intrinsically irregular neurons to reach a sufficiently strong

collective regime through which the two neural masses can communicate (Figure5.6).

Two main features indicate the nontrivial contribution of the microscopic neuronal network

in mediating the synchronization between the mesoscopic models. First, the two mesoscopic

populations lock not only in frequency, but also in phase, when they interact with a dynami-

cally evolving neuronal network. If the role of the network is played by an increased constant

input to the neural masses equal to the average activity of the neuronal network, phase locking

disappears (Figure5.4). Second, if the neuronal network is made to operate in a slower collec-

tive regime (e.g. in the alpha band) the synchronization between the NMs is decreased (while

being still significant), even though the three oscillatorsare now closer in frequency.

The synchronization between the NMs is mediated by the locking between the NMs and

the NN, which leads to an increase in the alpha-band activityof the NN, as reflected in Fig-

ure5.3. The fact that synchronization is maintained even when the NN is operating in the alpha

band (Figures5.5C,D) indicates that the intrinsic NN dynamics does not interfere noticeably

in the communication between the NM populations. Furthermore, the fact that synchroniza-

tion improves slightly when the NN is operating in gamma (as shown also in Figures5.5C,D)

shows that fast and slow scales interact to a certain extent in order to drive the synchronization.

We interpret this to be due to an increase in the precise timing of the firing that is associated

with a faster neuronal rhythm. The results reported here point towards an alternative way to

probe the interaction of scales in the activity of the brain,by using synchronization between

neuronal populations as a way of testing the structural and functional conditions under which

scale interaction occurs (Barardi et al., 2014a).

So far, we have broadly studied spatiotemporal patterns of activity arising from the coordi-

nated activity of many neurons. Neuronal oscillations, omnipresent in the brain, reveal a cer-

tain synchrony if measured at multiple sites with intracranial electrodes or with EEG (Buzsáki

and Draguhn, 2004). The temporal progression of activity behind this neuronal synchrony

exhibits approximately identical phase across different recordings sites (Zanos et al., 2015).

However, out-of-phase activity exists and could give rise to complex spatiotemporal patterns

such as traveling waves. In the next Chapter, we mathematically investigate the emergence of

traveling waves across different neuronal systems.



CHAPTER 6

WAVE PROPAGATION IN INHIBITION-DOMINATED NEURONAL

CHAINS

The correct operation of the brain relies on a careful spatiotemporal coordination of selective

neural populations which self-organize in different collective patterns at various scales. In the

previous chapters we have described the synchronization ofneuronal oscillations within and

between populations located at distant brain areas using different modeling approaches. Neu-

ronal collective oscillations are a ubiquitous property ofneural activity and reveal a certain

consistence in space (in the form of the same phase across recording sites). However, out-of-

phase synchronous oscillations also exist, in the form of complex spatiotemporal patterns such

as propagating waves. These waves, from macroscopic scalesspanning multiple cortical areas

to microscopic scales involving single neurons, constitute another important signature of neu-

ronal collective dynamics likely to subserve network-level computations among brain areas.

Localized neural activity either remains spatially confined in time or propagates as a wave

among neural assemblies that are spatially separated but engaged in the same computation

or behavioral state. In what follows we study the propagation of traveling waves in a one-

dimensional network of inhibitory neurons with asymmetricsynaptic coupling. We first show

the phenomenon of wave propagation arising from a network ofHodgkin-Huxley neurons in

a chain of inhibitory neurons with asymmetric connections.This has opened interesting ques-

tions that need to be addressed from a mathematical point of view. Therefore, we provide a

continuum model with topology similar to the HH model to explain several counterintuitive

properties of these traveling waves. Then we investigate how general this wave-propagation is

by considering various parameters that characterize neuronal interactions such as the balance

of external excitation and recurrent inhibition, the axonal delays, the synaptic temporal time

constants and the structural connectivity. To do so, we moveto the analysis of a continuum

approximation of the IF model that allows the calculation ofthe dispersion curve relating the

velocity and wavelength of these waves, and study how the dispersion relation, and thus the
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wave dynamics, depend on different parameters. In this way we aim at providing analyti-

cally important insights on the necessary and sufficient conditions that support the wave-like

behavior in such a system.

The structure of this Chapter is as follows. In Section6.1we discuss the phenomenon of

traveling waves in the brain, following Section1.5. We first present, using a Hodgkin-Huxley

model, how inhibitory neurons, asymmetrically connected along a chain, organize themselves

in propagating waves under specific conditions (Section6.2). After this phenomenological

analysis, we proceed with an analytical explanation of the observed pattern. We begin in Sec-

tion 6.3 by introducing a continuum model with topology similar to the HH model based on

a one-dimensional chain of inhibitory neurons with asymmetric coupling and then turn to a

integrate-and-fire continuum model (Section6.4) that provides an understanding of numerical

results and of the necessary conditions under which a systemcan exhibit waves propagation.

Conclusions about our work are presented in Section6.5. This work is developed in collabo-

ration with prof. Evgueniy V. Lubenov, who led the project and prof. Athanassios G. Siapas

(Caltech).

6.1 Wave propagation

A number of experimental studies have revealed the propagation of traveling bursts of activ-

ity in slices of excitable neural tissue spanning from the retina to the neocortex (Destexhe

et al., 1996a; Golomb and Amitai, 1997; Golomb et al., 1996; Kim et al., 1995; Traub et al.,

1993). Traveling waves constitute a highly coordinated activity of neurons which fire rhyth-

mically, with the oscillation phase varying as a function oftime and space (Ermentrout and

Kleinfeld, 2001). Such wave propagation phenomena are enabled by spatial confinement of

connections between neurons. In fact within a certain brainarea, the probability of a synaptic

connection to exist between a pair of neurons decreases withtheir physical distance sepa-

ration (Gilbert, 1993; Sik et al., 1995; Stepanyants et al., 2008). In that situation, spiking

activity spreads from a group of neurons to its neighbors andonto the rest of the network as a

propagating wave (Wang, 2010b). Neuronal wave propagation has been observed on multiple

spatial scales. In fact as we have discussed in Section1.5.2, traveling waves have been found

in a diversity of studies (reviewed inErmentrout and Kleinfeld, 2001andWu et al., 2008),

including MEG gamma oscillations (Llinas and Ribary, 1993; Ribary et al., 1991), EEG slow

sleep oscillations (Massimini et al., 2007), evoked responses in the cortex (Arieli et al., 1995;

Freeman and Barrie, 2000; Prechtl et al., 1997), waves in developing cerebellar cortex (Watt

et al., 2009) and hippocampal theta oscillations in rats (Lubenov and Siapas, 2009) and hu-

mans (Zhang and Jacobs, 2015). In a recent study,Lubenov and Siapas(2009) observed
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traveling waves during theta oscillations propagating along the septotemporal axis of the CA1

region of the hippocampus, with phase velocityν ≈ 80–100 mm/s and spatial wavelengthλ ≈
10–15 mm. Given that the length of the septotemporal axis of CA1 is L ≈10 mm, the total

phase difference is L/λ , between 1.3π and 2π radians, i.e., two-thirds to a full theta cycle.

Interestingly, in all existing studies, the total phase shift is often≈ π/2, always less than 2π
radians (i.e., the spatial extent of the wave is less than onewavelength). Thus, the observed

pattern of variation in peak amplitude is less than the full oscillation cycle, regardless of oscil-

lation frequency (e.g., theta or gamma), the physical size of the neural system, or the species

examined (see Table 1 inErmentrout and Kleinfeld, 2001).

Neural field models have been successfully applied to model adiversity of brain spatiotem-

poral wave patterns, and one of the main issues when modelingneural fields is the connectiv-

ity among neurons (Bressloff et al., 2003; Coombes and Laing, 2011). Many theoretical and

modeling works based on neural field theory have focused on the study of traveling waves un-

der variations in neural connectivity, concentrating mainly on symmetric connectivity among

neurons (Coombes, 2005; Coombes et al., 2003; Ermentrout, 1998b). In contrast, less atten-

tion has been given to the emergence of propagating waves when the neural connectivity is

asymmetric (Bressloff and Wilkerson, 2015; Horikawa, 2014; Woodman and Jirsa, 2013). A

typical mechanism for generating traveling pulses in an excitatory network is to include for

instance spike frequency adaptation (SFA) (Coombes and Owen, 2005; Pinto and Ermentrout,

2001) or synaptic depression (Kilpatrick and Bressloff, 2010a,b), which suppress the trailing

edge of the wave. One of the motivations for considering excitatory neural fields is that trav-

eling pulses are observed inin vitro cortical slices that have been disinhibited. By way of

example,Bressloff and Wilkerson(2015) used a one-dimensional scalar neural field with an

asymmetric weight distribution to analyze the effects of extrinsic noise on traveling pulses in

a neural field model of direction selectivity. Instead of SFAor synaptic depression, they con-

sidered a mechanism based on asymmetric excitatory synaptic connections and showed that

such a network architecture supports freely propagating pulses.

Computational models of synaptically generated waves have also been developed, in which

neural tissue is treated as a one-dimensional continuum (Destexhe et al., 1996b; Golomb et al.,

1996; Traub et al., 1993). From these studies, it follows that wave propagation in cortical

and hippocampal slices only occurs if the synaptic strengthof neuronal interactions exceeds

some threshold, and provided above threshold the velocity is approximately linear in the cou-

pling (Golomb and Amitai, 1997). How wave properties depend on the synaptic and intrinsic

cellular properties of the neurons and on the topology of thenetwork is an interesting question.

This is difficult to extract from detailed computational models. In this Chapter we perform a

qualitative analysis of the phenomenon using a conductance-based model, and we provide a
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continuum approximation of the analytically tractable IF model to derive some conclusions

on the conditions leading to wave propagation.

In this study, we focus on exploring the emergence of traveling waves in a chain of only

inhibitory neurons with asymmetric couplings. To do so we use first a spiking neural network

model, specifically the conductance-based model (see Section 2.1.3), to show how a chain of

inhibitory neurons supports traveling waves. Our results demonstrate that these networks be-

have as excitable media that exhibit anomalous dispersion,and therefore have counterintuitive

wave-propagation properties. In particular, when neuronsat the head of the chain are periodi-

cally forced, traveling waves emerge with wavefronts moving from the tail to the head of the

chain, in a direction opposite to that of synaptic connectivity. We develop a continuum model

with topology similar to the HH model that can be solved analytically (based onKistler and

van Hemmen, 1998) to demonstrate the existence of backward waves. This studyprovides an

analytic explanation of some properties of wave propagation exhibited by the system in spe-

cific conditions, and speculate on why long wavelengths are not allowed under the conditions

adopted in this configuration. We ask if wave patterns arise in a different system, e.g. with a

varying degree of asymmetry in the direction of connectivity, in presence of synaptic axonal

delays and different synaptic conditions, thus if our results can be extended to different config-

urations. However, it is very challenging to systematically proceed with a sensitivity analysis

starting from a detailed physiological model.

Ermentrout(1998a) showed that a simple integrate-and-fire (IF) model (Section 2.1.1) of

a neuron captures much of the process underlying an excitation wave in cortical slices. In

fact, he demonstrated that the velocity of a wave in the case of strong synaptic coupling is

essentially independent of the ionic details of cell membranes, depending mainly on the inte-

gration rise time from the resting potential to threshold. Thus, inspired byBressloff(2000),

we propose an integrate-and-fire continuum approximation to study systematically the prop-

erties of these waves in a framework commonly used in this kind of studies. We derive a

self-consistency condition for the existence of travelingwaves, from which we calculate a

dispersion relation as a function of the phase velocity and spatial wavelength, and use it to in-

vestigate how wave-propagation depends on various parameters that characterize the neuronal

system. Specifically, we explore how the shape of the dispersion relation varies by introduc-

ing axonal delays in the signals transmission between neurons, by varying the GABA temporal

decay time constant, by modulating the level of excitation and inhibition in the networks by

means of synaptic strengths, and finally by altering the degree of asymmetry in the network.
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6.2 Phenomenological analysis

As mentioned above, we focus on the dynamical propagation ofneuronal waves across one-

dimensional chain of inhibitory HH neurons with asymmetricconnections. By periodically

forcing a small subset of neurons at the head of the chain, we demonstrate that this system

can support the propagation of wave patterns, provided thatsome conditions are met. We

then characterize this behavior by calculating the dispersion relation that relates the entrained

angular frequency to the wavenumber of the propagating waves. After this phenomenological

analysis, we provide mathematical insights on how this phenomenon, which arises here under

strong assumptions, can be extended to different dynamicalsystems with different properties.

6.2.1 Computational model

We model a chain of inhibitory Hodgkin-Huxley (HH) neurons using a conductance-based

formalism. Neurons are arranged along a one-dimensional chain ofN = 1000 inhibitory cells.

Initially we assume that all neurons project asymmetrically to one-side of the 1-d chain in

a regular way, namely each neuroni makes synaptic connections with neighboring neurons

j ranging from j = i + 1 to j = i + γ along the chain, whereγ is the window connectivity,

initially set to γ = 50 neurons (see scheme in Figure6.1). In this first study only chemical

synapses are considered and synaptic delays are not taken inconsideration. In Section6.3

we will consider a network with a different level of asymmetry in the connectivity and in-

troduce increasing synaptic delays. One mechanism that allows this system to generate and

sustain wave-like behavior consists on driving some neurons at the bottom of the chain with

an external source, while keeping constant in time the external current over all the remaining

neurons of the chain. In particular, a certain number of neurons at the bottom of the chain are

periodically driven with a constant external current during a periodTf = TON+TOFF. This

current takes the voltage of the neuron above the firing threshold, thus enabling the generation

of the action potential, provided that its refractory window has expired.TON andTOFF repre-

sent the interval where the neuron is forced to spike and where it is shut down, respectively.

This perturbation starts at the bottom of the chain and propagates in time across the size of

the network, provided different parameters are properly tuned: e.g. the forcing period, the

number of perturbed neurons at the bottom, the synaptic strengths and the temporal constants

of postsynaptic potentials. Note that these parameters arefunctions of each other, e.g. the

number of perturbed neurons at the bottom is tuned accordingly to the synaptic strengths and

the forcing period. Therefore under certain conditions, the network presented here exhibits

wave-like patterns that will be described in the next Sections.
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γ 

Fig. 6.1 Illustrative plot of chain of inhibitory neurons asymmetri cally connected.
Scheme of the network with asymmetric connectivity. Each neuron project to itsγ = 50
neighbors along the chain ofN = 1000 neurons. A subset of 45 neurons at the bottom of the
chain is periodically driven with a forcing periodTf = TON+TOFF.

All neurons are modeled according to the Hodgkin and Huxley (HH) model described in

Chapter4, where the evolution of the membrane voltage and voltage-gated ion channels is

described by Equations (2.9)-(2.11) introduced in Chapter2. In this analysis, the membrane

capacitance of inhibitory neurons is set toC = 0.125 nF, the maximal conductances of the

sodium, potassium and leakage channels are respectivelygNa = 12.5 µS, gK = 4.74 µS, and

gL = 0.025 µS and the reversal potentialsENa = 40 mV, EK = −80 mV, andEL = −65 mV

respectively. The time course of the synaptic currents between neurons is given by the alpha

function introduced in Equation (4.4) in Chapter3, which depends on the GABA riseτrise and

decayτdecay temporal constants and on the synaptic strengths defined in Tables6.1 and6.2,

respectively. Differentτdecayvalues will be explored in Section6.3. The model is integrated

using the Heun algorithm (Toral and Colet, 2014), with a time step of 0.05 ms.

Synaptic time constants ( ms) τrise τdecay

AMPA 0.5 ms 2 ms
GABA 2 ms 15 ms

Table 6.1 Synaptic time constants.
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Synaptic conductancesgsyn( nS)
GABA on inhibitory (qc) 240 nS

AMPAexternal on inhibitory (Qc) 3.2 nS

Synaptic reversal potentialEsyn( mV)
EGABA −70 mV
EAMPA 0 mV

Table 6.2 Synaptic conductances and synaptic reversal potentials.

6.2.2 Backward wave propagation

Our results reveal that one-dimensional chains of inhibitory neurons with asymmetric connec-

tions exhibit wave-like behavior. If a subset of neurons at the bottom of the chain is periodi-

cally driven with a given driving periodTf , traveling waves emerge with wavefronts moving

from the tail to the head of the chain, in a directionoppositeto that of synaptic connectivity

(see Figure6.3). The characteristics of these traveling waves depend on the connectivity win-

dow γ and theforcing period Tf that determines the duration of the active band (Figure6.3A).

If the chain is not properly driven at the bottom, namelyTON is not large enough to allow

perturbations to propagate, andTOFF is not large enough to allow neurons to recover from

inhibition, the system settles into an horizontal attractor, with horizontal stripes spaced every

γ neurons (Figure6.2).
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Fig. 6.2Firing dynamical patterns of the chain at its horizontal attractor. The chain is
composed of 1000 inhibitory neurons and each cell is connected with the neighboringγ = 50
neurons. The network is driven with a driving periodTf = 60 ms. TON is not properly set
thus the network settles into its natural horizontal attractor, taking the form of constant stripes
of active neurons spaced at the connectivity windowγ. TOFF is not large enough to make
the postsynaptic partner recover from inhibition and fire during that time interval. So, if not
properly driven at the bottom, the system can not exhibit traveling wave patterns.
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In order to obtain this wave-like behavior, the synaptic strengths need to be tuned to have

an appropriate balance between external excitation and recurrent inhibition, so the network

can foster wave propagation. In Section6.3 we will study how the excitation over inhibition

ratio affects wave dynamics. To this aim, we define two additional parametersQ andq, that

represent the magnitude of the persistent excitatory conductance and inhibitory synaptic con-

ductance respectively, asQ = Qc ∗ 10 andq = qc/8, whereQc andqc are the basal values

of the model defined in the Table6.2. In Figure6.4, wave patterns with decreasing spatial

wavelength for increasing values ofTOFF are presented. These results are robust across differ-

ent models such as current-based and conductance-based integrate-and-fire models under the

same conditions (results not shown).
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Fig. 6.3Zoom of propagation of backward waves in inhibition-dominated chains. Prop-
agation of backward -with respect to the direction of connectivity- waves with inhibition-
dominated chains using a Hodgkin-Huxley neuron model. Hereit is shown the zoom of back-
ward waves in case ofTON = 2 msandTOFF = 90 ms for neurons in the range (A) 0−200,
whereTON andTOFF are depicted and in the range (B) 500−600, the spatial wavelengthλ
and the wave periodT are drawn.

The spatial wavelengthλ and the periodT of the wave cycle, depicted in Figure6.3B,

determine the phase velocity of the wave, is defined asν = λ/T, which represents the speed

at which the phase of the wave at any frequency propagates in space. It is equivalently defined

as ν = ω/k, whereω is the angular frequency of the wave andk is the wavenumber. In

contrast, the group velocity is equal tovg = dω/dk, and represents the velocity of propagation

of the wave envelope. The dependence of the angular frequency ω on the wavenumberk is

known as the dispersion relationω = Ω(k). Figure6.5A shows the dispersion relation as

f = θ(m), where f is the frequency andm is the ratio between the size of the chainN and the
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Fig. 6.4 Propagation of backward waves in inhibition-dominated chains. Propagation
of backward waves -with respect to the direction of connectivity- with inhibition-dominated
chains using a Hodgkin-Huxley neuron model. Each neuron projects to itsγ = 50 neighbors
along a chain ofN = 1000 neurons. A subset of neurons at the bottom of the chain isperiod-
ically driven with a forcing periodTf = TON+TOFF. In this plotTON is equal to 2 ms, while
TOFF is equal to (A) 35 ms, (B) 55 ms, (C) 85 ms and (D) 200 ms. For each panel the wave
frequencyf and the spatial wavelengthλ are calculated, from which the dispersion relation is
derived (Figure6.5).

spatial wavelengthλ (m= N/λ ). Thereforem indicates the spatial wavelength as a factor of

the network size. The dispersion relation of Figure6.5 is derived from the computation of the

wave frequencyf andλ indicated in the corresponding wave patterns of Figure6.4.

Novel experimental methods based on high-density multielectrode arrays have revealed

the existence, in certain situations, of traveling waves ofneuronal activity characterized by a

long spatial wavelength of the order of the size of the network. In a recent paper,Lubenov

and Siapas(2009) reported on this type of neuronal wave propagation throughthe hippocam-

pus of mammals. Figure6.5A suggests that under specific conditions this system can exhibit

waves with long spatial wavelengths of the order of the size of the network (smallm values

correspond to long spatial wavelengths in Figure6.5A). Figure 6.5B shows the raster plot

corresponding to aTf defined byTON = ms andTOFF = 22 ms, for whichf ≃ 41.6 Hz and

m=0.8 (red point in Figure6.5A). However, the conditions accounting for long spatial wave-

lengths need to be further explored. To that end, instead of using high values of the external

current (enough to bring the neurons above threshold, namedfrom now onnoiselessregime),

we introduce an heterogeneous Poisson train of excitatory presynaptic potentials with a mean

event rate that varies following an Ornstein-Uhlenbeck process (defined in Section3.2) im-
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Fig. 6.5Dispersion relation of waves arising from a chain of inhibitory HH neurons re-
ceiving an excitatory input. (A) Dispersion relation of inhibition-dominated chain of HH
neurons. 45 neurons at the bottom are periodically driven with constantTON =2 ms and
varying TOFF. (B) Raster plot of traveling waves corresponding to a specificTf , defined by
TON =2 ms andTOFF =22 ms.

pinging on all the neurons (except the ones at the bottom, which are periodically driven with

a constant current). Under this condition, the system (green plot in Figure6.6A) cannot sus-

tain propagation at frequencies higher thanf ≈ 24 Hz, and the smallest spatial wavelength

corresponds to a fraction 7.7 of the sizeN of the network, meaning thatλ is approximately

130 neurons. Figure6.6A shows the dispersion relation of the noiseless (blue, the same as in

Figure6.5A) and noisy (green) cases. Furthermore, for increasing values of the GABA decay

time constantτdecay, the frequency of wave propagation decreases. Figure6.6B shows that

for large values ofτdecaythe system cannot sustain the propagation of waves with longspatial

wavelengths (the smallestm values are obtained with the smallest GABAτdecay). For GABA

τdecay=25 ms,m= 3.9 corresponds tof ≈ 15 Hz (Figure6.6B). Notice that the frequency of

the collective synchronous oscillation decreases with increasingτdecay, and this will be matter

of study in Section6.3. In summary, Figure6.6shows that inhibition slow-down hinders long

wavelengths. Systems where neurons have a limited memory capacity to integrate incoming

inputs can still exhibit waves with long spatial wavelength, because in that way the effect of

the noise or the slower GABAτdecay is greatly reduced (results not shown). However this

analysis needs a further exploration that necessarily has to include all the parameters involved

in the generation of these patterns.
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Fig. 6.6Numerical results of a chain of inhibitory HH neurons receiving an excitatory
input under different conditions (A) Dispersion relation of inhibitory-dominated chain of
HH neurons without noise (blue) and in presence of noise (green). GABA τdecay is equal
to 15ms. (B) Dispersion relation of inhibitory-dominated chain of HH neurons for different
GABA τdecay. GABA τdecay is equal to 15ms (blue) and 25ms (purple). In both plots, 45
neurons at the bottom are periodically driven with constantTON = 2ms andTOFF varying.

We next ask to what extent these backward wave dynamics can begeneralized, and which

are the necessary and sufficient conditions for the phenomenon to occur. To this aim, we

first develop a continuum approximation of the HH model presented above.We derive a self-

consistency condition for the existence of traveling waves, from which the dispersion relation

between velocity and wavelength can be calculated.

6.3 Continuum model approximation starting from Hodgkin-

Huxley model

We base our investigation on the continuum approximation developed byKistler and van Hem-

men(1998), and aim at applying their approach to our network topology: one-dimensional

chain with regular asymmetric connections. This approximation follows the HH model intro-

duced in the previous Section, and allows us to explore the backward propagation phenomenon

from an analytical point of view. In their work,Kistler and van Hemmen(1998) considered a

two-dimensional lattice of spiking neurons with local interactions, focusing not on the mean

firing rate of the neurons, but on the single firing events whenan action potential is released.

They were interested in studying patterns including all active neurons, namely all neurons that

are currently firing an action potential. With that model, they found a diversity of patterns of
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collective excitation in the form of traveling pulses and waves, and calculated the dispersion

relation.

Starting from Equation (7) ofKistler and van Hemmen(1998), in our continuum approxi-

mation we define the local fieldV(x, t) as the membrane potential at locationx and timet, and

assume that a spikeS(x, t) is triggered if the local field crosses the spiking thresholdϑ from

below. The expression for the local field in a one-dimensional asymmetric network is:

V(x, t) = Qext+
∫ ∞

−∞
dx′J(x−x′)

∫ ∞

0
dt′ ε(t ′)S(x′, t − t ′) (6.1)

whereQext represents the magnitude of the external excitation, sinceall internal connections

in our network are inhibitory. The chain topology with postsynaptic connections going only

in the positivex-direction is captured by the synaptic strength function

J(x) =−qΘ(x)Θ(γ −x), (6.2)

whereq is the magnitude of inhibitory connections,Θ(x) the Heaviside function (0 forx< 0

and 1 forx ≥ 0) andγ the window connectivity. For the response kernelε(t) we use the

postsynaptic alpha function from the full spiking model

ε(t) =
1

τdecay− τrise

(

e
− t

τdecay−e
− t

τrise

)

Θ(t) (6.3)

with τdecayandτrise being respectively the GABA decay and rise temporal constants defined

in Table6.1. The analysis of a collective phenomenon employs a corresponding ansatzS(x, t)

for the spike activity. For equidistant waves traveling in the positivex-direction (direction of

connectivity) we assume

S(x, t) =
∞

∑
n=−∞

δ
(

x
ν
− t −n

λ
ν

)

, (6.4)

whereν > 0 is the wave phase velocity andλ > 0 is the spatial wavelength. Our first objec-

tive is to integrate the local field equation for the forward propagating waves with the kernel

response, and after some mathematical steps (detailed in AppendixB), we obtain:

V fw(x, t) = Qext−q
∞

∑
n=n0

(

τdecay

τdecay− τrise
e
− νt+nλ

ντdecay

(

e
− x̄

ντdecay−e
− x−γ

ντdecay

)

−

− τrise

τdecay− τrise
e
− νt+nλ

ντrise

(

e
− x̄

ντrise −e
− x−γ

ντrise

)

)

, (6.5)
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wheren0 andx̄ are given by

n0 =
⌈x−νt − γ

λ

⌉

,

x̄ = min(x,νt +nλ ).

In order to evaluate the sum, we split it into two parts: forn0 ≤ n≤ n1 and forn> n1 and thus

x̄ = νt +nλ and x̄ = x respectively in the two sums. After some calculations, we obtain the

local field equation

V fw(x, t) = Qext−q

{

n̄− τdecay

τdecay− τrise

(

1−e
− n̄λ

ντdecay

1−e
− λ

ντdecay

)

e
− νt+n0λ−x+γ

ντdecay

+
τrise

τdecay− τrise

(

1−e
− n̄λ

ντrise

1−e
− λ

ντrise

)

e
− νt+n0λ−x+γ

ντrise

+
τdecay

τdecay− τrise

(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

e
− νt+(n1+1)λ−x

ντdecay

− τrise

τdecay− τrise

(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

e
− νt+(n1+1)λ−x

ντrise

}

(6.6)

where

n0 =
⌈x−νt − γ

λ

⌉

,

n1 = min
{⌊x−νt

λ

⌋

,
⌈x−νt

λ

⌉

−1
}

,

n̄ = n1−n0+1.

To evaluate the solutions we also need to calculate the time derivative of the local fieldV fw(x, t)

∂V fw(x, t)
∂ t

=
q

τdecay− τrise

{

−
(

1−e
− n̄λ

ντdecay

1−e
− λ

ντdecay

)

e
− νt+n0λ−x+γ

ντdecay

+

(

1−e
− n̄λ

ντrise

1−e
− λ

ντrise

)

e
− νt+n0λ−x+γ

ντrise

+

(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

e
− νt+(n1+1)λ−x

ντdecay

−
(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

e
− νt+(n1+1)λ−x

ντrise

}

. (6.7)
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The proposed ansatz is a valid solution only if there are values ofλ andν that satisfy the

self-consistency conditions

V fw(νt +nλ , t) = ϑ and
∂V fw

∂ t

∣

∣

∣

∣

∣

x=νt+nλ

> 0, ∀n∈ Z. (6.8)

If we set a fixed thresholdϑ , synaptic inhibitionq, and external excitationQext, the above

self-consistency condition yields a dispersion relation.We first consider the case whenλ is

larger thanγ, i.e. γ/λ < 1. Settingx= νt +nλ and substituting we obtain

n0 =
⌈νt +nλ −νt − γ

λ

⌉

=
⌈

n− γ
λ

⌉

= n,

n1 = min
{⌊νt +nλ −νt

λ

⌋

,
⌈νt +nλ −νt

λ

⌉

−1
}

= n−1,

n̄ = n1−n0+1= n−1−n+1= 0.

Because ¯n= 0, the first three terms in the local field Equation (6.6) drop out and we obtain the

following self-consistency relation betweenλ andν

Qext−ϑ
q

=
τdecay

τdecay− τrise

(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

− τrise

τdecay− τrise

(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

. (6.9)

By replacingλ = 2π/k andν = ω/k, we find the dispersion relation for the forward traveling

waves which is shown in Figure6.7. Actually we prefer to express the dispersion relation

shown in that plot in terms of the normalized wavenumberM′ = γ/λ and the temporal fre-

quencyF = ν/λ :

Qext−ϑ
q

=
τdecay

τdecay− τrise

(

1−e
− M′

Fτdecay

1−e
− 1

Fτdecay

)

− τrise

τdecay− τrise

(

1−e
− M′

Fτrise

1−e
− 1

Fτrise

)

. (6.10)

However, we need to evaluate the condition that the local fieldV fw reaches the threshold from

below, meaning that the temporal derivative of the local field ∂V fw(x,t)
∂ t is positive. Evaluating

Equation (6.7) with the above values forn0 andn1 we obtain

∂V fw

∂ t

∣

∣

∣

∣

∣

x=νt+nλ

=
q

τdecay− τrise

{(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

−
(

1−e
− γ

ντrise

1−e
− λ

ντrise

)}

. (6.11)

It turns out that the above derivative is non-positive for all values ofλ andν (Figure6.8).

Hence the chain cannot sustain forward traveling waves.
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Fig. 6.7Dispersion relation for forward waves. Dispersion relation derived from the self-
consistency condition (6.8) for forward propagating waves as a function of the normalized
wavenumberM′ = γ/λ and the temporal frequencyF = ν/λ for different ratio ofQext−ϑ

q .

Now we turn to study the backward propagation. To this aim, wecannot simply substitute

a negative value forν in the expressions for the forward traveling case, because the derivation

explicitly relies on the sign ofν when evaluating the integration and summation limits. There-

fore, we propose a similar derivation with a spiking patternfor equidistant waves traveling in

the negativex-direction (opposite to the direction of connectivity):

S(x, t) =
∞

∑
n=−∞

δ
(

x
ν
+ t −n

λ
ν

)

, (6.12)

where againν > 0 is the wave phase velocity (in this case in the negativex-direction), andλ >

0 is the spatial wavelength. The local field equationVbw(x, t) for the backward propagating

waves after integrating the kernel response is:

Vbw(x, t) = Qext−q
nmax

∑
n=−∞

(

τdecay

τdecay− τrise
e
− νt−nλ

ντdecay

(

e
− x

ντdecay−e
− x

ντdecay

)

−

− τrise

τdecay− τrise
e
− νt−nλ

ντrise

(

e
− x

ντrise −e
− x

ντrise

)

)

, (6.13)
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Fig. 6.8Local field temporal derivative for forward waves. Plot of local field temporal
derivative as a function of the temporal frequency and the normalized wavenumber for forward
propagating waves is non-positive for all values ofλ andν , meaning that the local fieldV fw

does not reach the threshold from below as it should be, thus demonstrating that the chain
cannot sustain forward traveling waves.

wherenmax andx are given by

nmax = min
{⌊x+νt

λ

⌋

,
⌈x+νt

λ

⌉

−1
}

,

x = max(x− γ,nλ −νt).
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At the same way, in order to evaluate the sum we break it into two parts: forn< n2 and for

n2 ≤ n≤ nmax, thusx= x−γ andx= nλ −νt, respectively. We obtain the local field equation

Vbw(x, t) = Qext−q

{

n̄− τdecay

τdecay− τrise

(

1−e
− n̄λ

ντdecay

1−e
− λ

ντdecay

)

e
− νt−nmaxλ+x

ντdecay

+
τrise

τdecay− τrise

(

1−e
− n̄λ

ντrise

1−e
− λ

ντrise

)

e
− νt−nmaxλ+x

ντrise

+
τdecay

τdecay− τrise

(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

e
− νt−(n2−1)λ+x−γ

ντdecay

− τrise

τdecay− τrise

(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

e
− νt−(n2−1)λ+x−γ

ντrise

}

, (6.14)

where

n2 = max
{⌈x+νt − γ

λ

⌉

,
⌊x+νt − γ

λ

⌋

+1
}

,

nmax = min
{⌊x+νt

λ

⌋

,
⌈x+νt

λ

⌉

−1
}

,

n̄ = nmax−n2+1.

The time derivative of the local field∂Vbw(x,t)
∂ t is

∂Vbw(x, t)
∂ t

=
q

τdecay− τrise

{

−
(

1−e
− n̄λ

ντdecay

1−e
− λ

ντdecay

)

e
− νt−nmaxλ+x

ντdecay +

(

1−e
− n̄λ

ντrise

1−e
− λ

ντrise

)

e
− νt−nmaxλ+x

ντrise

+

(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

e
− νt−(n2−1)λ+x−γ

ντdecay

−
(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

e
− νt−(n2−1)λ+x−γ

ντrise

}

. (6.15)

Now we turn to the self-consistency conditions for backwardtraveling waves, and we first

consider the case when the spatial wavelength is larger thanthe connectivity window, i.e.
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γ/λ < 1. Settingx=−νt +nλ and substituting we obtain

n2 = max
{⌈−νt +nλ +νt − γ

λ

⌉

,
⌊−νt +nλ +νt − γ

λ

⌋

+1
}

= max
{⌈

n− γ
λ

⌉

,
⌊

n− γ
λ

⌋

+1
}

= n,

nmax = min
{⌊−νt +nλ +νt

λ

⌋

,
⌈−νt +nλ +νt

λ

⌉

−1
}

= min
{⌊

n
⌋

,
⌈

n
⌉

−1
}

= n−1,

n̄ = nmax−n2+1= n−1−n+1= 0.

Because ¯n= 0 the first three terms in the local field Equation (6.14) drop out, and we obtain

the following self-consistency relation betweenλ andν :

Qext−ϑ
q

=
τdecay

τdecay− τrise

(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

e
− λ−γ

ντdecay− τrise

τdecay− τrise

(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

e
− λ−γ

ντrise .

(6.16)

Next, we check that the local field gets close to the thresholdfrom below, i.e. that the temporal

derivative of the local field is positive.

∂Vbw

∂ t

∣

∣

∣

∣

∣

x=−νt+nλ

=
q

τdecay− τrise

{(

1−e
− γ

ντdecay

1−e
− λ

ντdecay

)

e
− λ−γ

ντdecay−
(

1−e
− γ

ντrise

1−e
− λ

ντrise

)

e
− λ−γ

ντrise

}

.

(6.17)

The above derivative is non-negative everywhere and strictly positive for most values ofλ
andν (Figure6.9). Hence, unlike forward waves, the chain can sustain backward traveling

waves. This result confirms the phenomenological findings wehave presented in Section6.2.

The dispersion relation for backward traveling waves in terms of the normalized wavenumber

M′ = γ/λ and the temporal frequencyF = ν/λ is:

Qext−ϑ
q

=
τdecay

τdecay− τrise

(

1−e
− M′

Fτdecay

1−e
− 1

Fτdecay

)

e
− 1−M′

Fτdecay− τrise

τdecay− τrise

(

1−e
− M′

Fτrise

1−e
− 1

Fτrise

)

e
− 1−M′

Fτrise .

(6.18)

This dispersion relation is plotted in Figure6.10and has a number of noteworthy properties.

First, asF → 0, M′ → 1 and henceλ → γ for all parameter values. This corresponds to

the equilibrium state of the non-driven chain where the spatial wavelength is equal to the

connectivity window. Second, asF → ∞, M′ approaches a non-zero value that is parameter

dependent. This means that there is a limit to the longest wavelength that a particular network

can exhibit. Specifically, the closer(Qext−ϑ)/q is to 0, the longer the maximal wavelength
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Fig. 6.9Local field temporal derivative for backward waves. Plot of local field temporal
derivative as a function of the temporal frequency and the normalized wavenumber for back-
ward propagating waves is non-negative everywhere and strictly positive for most values ofλ
andν , meaning that the local fieldV fw can reach the threshold from below, thus demonstrating
that the chain can sustain backward traveling waves.

that the chain can sustain. This captures the observation that there seems to be a parameter-

specific limit to the longest wavelength possible for a givenset of excitation and inhibition

values.

The study of the propagation of traveling waves in the long-wavelength limit requires fur-

ther development. In what follows, we propose an analytically tractable continuum integrate-

and-fire approximation to investigate how wave-propagation depends on various parameters

that characterize neuronal interactions such as synaptic and axonal delays, the time course of

postsynaptic potentials, and the degree of asymmetry in thetopology.

6.4 Integrate-and-fire model continuum approximation

In this Section we refer to the analysis carried out byBressloff(2000), where he introduced

a continuum model of cortical tissue based on a one-dimensional network of IF neurons with

symmetric excitatory connections, with individual neurons operating in the excitable regime.

An IF neuron fires a spike whenever its membrane potential reaches the thresholdϑ , and imme-



6.4 Integrate-and-fire model continuum approximation 147

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.4
0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8
0.8

0.9

0.9

0.
9

M

F

Dispersion Relation (backward waves)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Fig. 6.10Dispersion relation for backward waves.Dispersion relation derived from the self-
consistency condition (6.16) for backward propagating waves as a function of the normalized
wavenumberM′ = γ/λ and the temporal frequencyF = ν/λ for different ratio ofQext−ϑ

q .

diately after firing the membrane potential is reset to some resting level (Keener et al., 1981).

Each neuron is assumed to receive a constant external biasI0 such that, if synaptically isolated,

the neuron oscillates (periodically fires and resets) whenI0 > ϑ (oscillatory regime) and is

quiescent (in the absence of additional stimulation) whenI0 < ϑ (excitable regime) (Bressloff,

2000). Our objective is to apply that approach to one-dimensional networks with asymmetric

inhibitory connections, with individual neurons operating in the oscillatory regime (I0 > ϑ ). It

is also worth stressing that IF models that neglect refractoriness will lead to poor predictions

of wave speed (for periodic waves) at small periods and this is explored inJames et al.(2003),

where authors model an absolute refractory time-scale by clamping the system at reset.

As in the continuum approximation of the previous Section,V(x, t) is the membrane po-

tential of neuron at locationx∈R at timet. WheneverV(x, t) reaches the firing thresholdϑ a

spike is generatedTm = t, and the membrane potential is reset toV(x, t+) = ζ . The evolution

equation for the membrane potential is

∂V(x, t)
∂ t

= I0−
V(x, t)

τm
+ I(x, t), (6.19)
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whereI(x, t) is the total synaptic input at positionx and timet, andτm represents the membrane

time constant. FollowingBressloff(2000), we setτm = 1 andϑ = 1 for convenience, so one

unit of time represents approximately one membrane time constant, i.e. 10 ms. The synaptic

current is given by

I(x, t) = g
∫ ∞

−∞

∫ ∞

0
W(x−x′)J(t ′)E(x′, t − t ′)dt′dx′, (6.20)

with g andW(x− x′) being the (scalar) synaptic coupling parameter and the absolute weight

of synaptic connection fromx′ to x, respectively. As in the HH continuum approximation, we

express a chain topology with postsynaptic connections going only in the positivex-direction

over a window of lengthγ by means of the synaptic weight function

W(x) = γ−1Θ(x)Θ(γ −x), (6.21)

whereΘ is the Heaviside function. Notice thatW(x) is normalized to integrate to 1, so that the

sign and strength of synaptic coupling are determined by theparameterg. For the response

kernel we can use the postsynaptic alpha function from the full spiking model

J(t) =
1

τdecay− τrise

(

e
− t

τdecay−e
− t

τrise

)

Θ(t), (6.22)

with τdecayandτrise being the GABA temporal time decay and rise, respectively. The output

spike train of neuron at positionx is expressed as a sum of delta functions centered at the spike

timesTm(x):

E(x, t) =
∞

∑
m=−∞

δ (t −Tm(x)). (6.23)

The spike train ansatz corresponding to equidistant waves traveling in the positivex-direction

(direction of connectivity) is

E(x, t) =
∞

∑
m=−∞

δ (t − (kx+m)T) = ∑
m∈Z

δ (t −c−1x−mT), (6.24)

whereT is the wave period,f = T−1 is the wave frequency,k is the wavenumber,λ = k−1 is

the spatial wavelength,ν = (kT)−1 = λ f is the wave phase velocity, andTm(x) =mT+kxT=

mT+ θ(x)T are the spike times. In the last expressionθ(x) = kx is the firing phase of the

neuron atx. We focus on the interval(0, t) and assume that the neuron atx has not fired in this



6.4 Integrate-and-fire model continuum approximation 149

interval. We can integrate Equation (6.19) over this interval to obtain

V(x, t) =V(x,0)e−t +(1−e−t)I0+
∫ t

0
e−(t−t ′)I(x, t ′)dt′. (6.25)

Then we consider the above expression under the traveling wave ansatz, and assume that the

neuron atx = 0 has just fired at time 0, i.e.V(x,0) = ζ . Since all neurons are firing with

periodT, it then follows thatV(x,T) = ϑ = 1. Letting t = T in Equation (6.25) above and

substituting we obtain

1= ζe−T +(1−e−T)I0+e−T
∫ T

0
et ′I(x, t ′)dt′. (6.26)

To evaluate the integral above we first look at the synaptic current I(x, t) in the presence of

traveling waves. Substituting the spike train expression (Equation (6.24)) into the synaptic

current definition (Equation (6.20))

I(x, t) = g
∫ ∞

−∞

∫ ∞

0
W(x−x′)J(t ′) ∑

m∈Z
δ (t − t ′− (kx′+m)T)dt′dx′

= g
∫ ∞

−∞
W(x−x′) ∑

m∈Z

∫ ∞

0
J(t ′)δ (t − t ′− (kx′+m)T)dt′dx′

= g
∫ ∞

−∞
W(x−x′) ∑

m∈Z
J(t − (kx′+m)T)dx′. (6.27)

Notice that the last expression above relies on the fact thatJ(t) = 0 for t < 0, so that the lower

limit of the integral overt ′ can be set to−∞. There is no loss of generality in considering

x= 0, so the integral in Equation (6.26) becomes

e−T
∫ T

0
et I(0, t)dt = e−T

∫ T

0
etg
∫ ∞

−∞
W(−x′) ∑

m∈Z
J(t − (kx′+m)T)dx′dt

= g
∫ ∞

−∞
W(−x′)e−T

∫ T

0
et ∑

m∈Z
J(t − (kx′+m)T)dtdx′

= g
∫ ∞

−∞
W(x)e−T

∫ T

0
et ∑

m∈Z
J(t − (m−kx)T)dtdx

= g
∫ ∞

−∞
W(x)KT(kx)dx, (6.28)

where the functionKT(θ) is defined as

KT(θ) = e−T
∫ T

0
et ∑

m∈Z
J(t − (m−θ)T)dt. (6.29)
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KT(θ) expresses the contribution of an infinite periodic spike train with periodT and phase

offsetθT to the membrane potential at timeT following leaky integration. These contributions

are spatially integrated after scaling by the synaptic weight functionW(x) and the coupling

parameterg. Equation (6.29) corresponds to Equation (2.6) inBressloff (2000), where the

integrand isJ(t+(m−θ)T) instead ofJ(t− (m−θ)T) as above. The expression inBressloff

(2000) relies on the assumption of a symmetric synaptic weight function W(x) = W(−x),

and does not hold under the asymmetric case. After substituting Equation (6.28) into Equa-

tion (6.26) and re-arranging we obtain Equation (2.5) inBressloff(2000):

1−e−Tζ = (1−e−T)I0+g
∫ ∞

−∞
W(x)KT(kx)dx. (6.30)

The above expression generates a dispersion relation between f = T−1 andk, but the integral

still needs to be evaluated. To do so, we first notice thatKT(θ) is a real-valued periodic

function of the phaseθ with period 1, and hence can be expanded as a Fourier series

KT(θ) =
∞

∑
n=−∞

cnej2πnθ , (6.31)

where the Fourier coefficientscn are defined as

cn =
∫ 1

0
KT(θ)e− j2πnθ dθ . (6.32)

Substituting Equation (6.29) above we get

cn =
∫ 1

0
e−T

∫ T

0
et ∑

m∈Z
J(t − (m−θ)T)e− j2πnθ dtdθ

= e−T
∫ T

0
et
∫ 1

0
∑

m∈Z
J(θT + t −mT)e− j2πnθ dθdt

=
e−T

T

∫ T

0
et ∑

m∈Z

∫ T

0
J(θ ′+ t −mT)e− j 2πn

T θ ′
dθ ′dt

=
e−T

T

∫ T

0
et
∫ ∞

−∞
J(θ ′+ t)e− j 2πn

T θ ′
dθ ′dt

=
e−T

T

∫ T

0
et ejωt J̃( jω)dt=

e−T

T
J̃( jω)

∫ T

0
e(1+ jω)t dt

=
e−T

T
J̃( jω)

1+ jω
(e(1+ jω)T −1) =

ejωT −e−T

T
J̃( jω)

1+ jω

=
1−e−T

T
J̃( jω)

1+ jω

∣

∣

∣

∣

∣

ω= 2πn
T

, (6.33)
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whereJ̃( jω) is the Fourier transform ofJ(t)

J̃( jω) =
∫ ∞

−∞
J(t)e− jωt dt, (6.34)

J(t) =
1

2π

∫ ∞

−∞
J̃( jω)ejωt dω. (6.35)

Now we can evaluate the total contribution of synaptic inputs to the membrane potential

Vs(k,T), which corresponds to the integral in Equations (6.28)-(6.30)

Vs(k,T) = e−T
∫ T

0
et I(0, t)dt

= g
∫ ∞

−∞
W(x)KT(kx)dx

= g
∫ ∞

−∞
W(x)

∞

∑
n=−∞

cnej2πnkxdx

= g
∞

∑
n=−∞

cn

∫ ∞

−∞
W(x)ej2πnkxdx

= g
∞

∑
n=−∞

cnW̃(− jω ′)

∣

∣

∣

∣

∣

ω ′=2πnk

= g
1−e−T

T

∞

∑
n=−∞

J̃( jω)

1+ jω
W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

. (6.36)

Several things are worth noting here. First,Vs(k,T) is a real-valued function and its sign is

determined by the sign ofg. This follows from the fact that bothW(x) andKT(θ) are real

non-negative functions. Second,Vs(k,T) is expressed as an infinite sum of complex quantities

as bothJ̃( jω) andW̃( jω) are complex. The sum yields a real value because of the conjugate

symmetriesJ̃( jω) = J̃∗(− jω) andW̃( jω) = W̃∗(− jω), which hold because both functions

are defined as Fourier transforms of real-valued functionsJ(t) andW(x). This in fact allows

for an alternative expression for Equation (6.36) emphasizing thatVs(k,T) =Re{Vs(k,T)} is

real:

Vs(k,T) = g
1−e−T

T

(

J̃(0)W̃(0)+2
∞

∑
n=1

Re

{

J̃( jω)W̃(− jωkT)
1+ jω

}∣

∣

∣

∣

∣

ω= 2πn
T

)

. (6.37)

If J(t) andW(x) are both defined to integrate to 1, thenJ̃(0) = W̃(0) = 1. Furthermore, if the

synaptic weight function is symmetric,W(x) =W(−x), as inBressloff(2000), then its Fourier

transform is real and even,̃W( jω) = W̃(− jω) =Re{W̃(− jω)}. So Equation (6.37) can be
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rewritten as

Vs(k,T) = g
1−e−T

T

(

1+2
∞

∑
n=1

Re

{

J̃( jω)

1+ jω

}

W̃( jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

)

, (6.38)

corresponding to the conditions considered in Equation (2.11) of Bressloff (2000). Finally,

to evaluate the infinite sum in practice, we truncated tonmax terms according to the spectral

content ofJ̃( jω) andW̃( jω). After the derivation of an expression forVs(k,T), it is useful to

collect the remaining terms in Equation (6.30) and define

Vr(T) = 1−e−Tζ − (1−e−T)I0. (6.39)

With this definition the dispersion relation can be thought of as the solution toVs(k,T) =Vr(T)

or as the 0 level set ofF(k,T) = Vs(k,T)−Vr(T). Notice however that the above condition

only guarantees thatV(0, t) reaches threshold att = T, consistent with the traveling wave

ansatz. It does not guarantee thatV(0, t) does not also reach threshold at an earlier pointt < T,

which would be inconsistent with the traveling wave ansatz.This condition is termedre-

excitation, and is considered in Section 2.3 byBressloff(2000). There is another pathological

condition, which is inconsistent with the traveling wave solution, namely the possibility that

V(0, t) reaches threshold atT, but from above, instead of from below, i.e.V(0,T−) > 1. We

therefore require that solutions(k,T) meet both self-consistency conditions below to be part

of the dispersion relation, as we have imposed in the previous Section:

F(k,T) =Vs(k,T)−Vr(T) = 0 and
∂V(0, t)

∂ t

∣

∣

∣

∣

∣

t=nT

> 0, ∀n∈ Z. (6.40)

In order to compute the derivative we start with the membranepotential (Equation (6.25))

under the traveling wave ansatz and assume the neuron atx= 0 has fired at timet = 0

V(0, t) = ζe−t +(1−e−t)I0+e−t
∫ t

0
et ′I(x, t ′)dt′

= ζe−t +(1−e−t)I0+Vs(k,T, t)

= 1−Vr(t)+Vs(k,T, t), (6.41)
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whereVs(k,T, t) is the total contribution of synaptic inputs to the membranepotential at time

t after firing, given traveling waves with wavenumberk and periodT

Vs(k,T, t) = e−t
∫ t

0
et ′I(x, t ′)dt′

=
g
T

∞

∑
n=−∞

(ejωt −e−t)
J̃( jω)

1+ jω
W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

. (6.42)

The above expression generalizes the earlier definition in Equation (6.36), so thatVs(k,T) =

Vs(k,T,T), and the derivation is very similar. The derivative is then

∂V(0, t)
∂ t

= (I0−ζ )e−t +
∂Vs(k,T, t)

∂ t

= (I0−ζ )e−t +
g
T

∞

∑
n=−∞

( jωejωt +e−t)
J̃( jω)

1+ jω
W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

. (6.43)

Evaluating the derivative att = T gives

∂V(0, t)
∂ t

∣

∣

∣

∣

∣

t=T

= (I0−ζ )e−T +
g
T

∞

∑
n=−∞

( jω +e−T)
J̃( jω)

1+ jω
W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

= (I0−ζ )e−T +
g
T

∞

∑
n=−∞

J̃( jω)W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

− g
T
(1−e−T)

∞

∑
n=−∞

J̃( jω)

1+ jω
W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

= (I0−ζ )e−T + I(0,T)−Vs(k,T). (6.44)

In the above we have usedI(0,T) simply as a symbol to denote

I(0,T) =
g
T

∞

∑
n=−∞

J̃( jω)W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

(6.45)

but the above expression correctly represents the synapticinput received by neuronx = 0 at

timeT. Now, if the first self-consistency condition is met, thenVs(k,T) =Vr(T) and substitut-

ing in Equation (6.44) and rearranging we obtain

∂V(0, t)
∂ t

∣

∣

∣

∣

∣

t=T

= I(0,T)−1+ I0. (6.46)
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Given that the first self-consistency condition requiresV(0,T) = 1, we could have written the

above expression directly from the evolution Equation (6.19), but this would not have yielded

an expression forI(0,T). However, a general expression forI(x, t) can in fact be derived

independently of the above. In particular, recognizing that under the traveling wave ansatz,

I(x, t) is periodic with periodT and following a derivation similar to that in Equation (6.36),

we can show that

I(x,T) =
g
T

∞

∑
n=−∞

ejω(t−kTx)J̃( jω)W̃(− jωkT)

∣

∣

∣

∣

∣

ω= 2πn
T

, (6.47)

which of course reduces to the expression in Equation (6.45) for I(0,T). Independently of the

approach, the final result is the same. The second self-consistency condition on the derivative

of V(0,T) reduces to

I(0,T)> 1− I0. (6.48)

We now consider several choices for the response kernel,J(t), and the synaptic weight function

W(x). The single time constant response kernel and its associated Fourier transform are given

by

J1(t) =
1

τ2
decay

(t −ξ )e
− t−ξ

τdecay Θ(t −ξ ), (6.49)

J̃1( jω) =
e− jωξ

(1+ τdecayjω)2 , (6.50)

whereξ represents the axonal conduction delays. The corresponding equations for a response

kernel with different rise and decay time constants are

J2(t) =
1

τdecay− τrise

(

e
− t−ξ

τdecay−e
− t−ξ

τrise

)

Θ(t −ξ ), (6.51)

J̃2( jω) =
e− jωξ

(1+ τdecayjω)(1+ τrise jω)
. (6.52)

The finite support equal weight synaptic function is given by

W1(x) = γ−1 Θ(
γ
2
+x−χ)Θ(

γ
2
−x+χ), (6.53)

W̃1( jω) = e− jωχ sin(ωγ
2 )

ωγ
2

= e− jωχsinc(
ωγ
2
), (6.54)

where the parameterχ controls the degree and direction of the asymmetry in the synaptic

connections. For example,χ = γ/2 corresponds to the chain topology in Equation (6.21). For
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a synaptic weight function with infinite support and exponential decay we consider

W2(x) =
1

2σx
e−

|x−χ|
σx , (6.55)

W̃2( jω) =
e− jωχ

1+(σxω)2 . (6.56)

For the purposes of concreteness, we consider the chain topology with asymmetric in-

hibitory connections and response kernelJ(t) = J2(t) with both rise and decay time constants.

The chain topology requires thatW(x) = W1(x), χ = γ/2, and we setγ = 50. Figure6.11

shows the dispersion relation obtained as the zero level curve of F(k,T) = Vs(k,T)−Vr(T).

Notice that the level curves exist for both positive and negative values ofk, implying that

both forward and backward propagation satisfy the first self-consistency condition. However,

only the solid black portion, corresponding to backward propagation, satisfies the second self-

consistency condition. Hence, only backward waves are allowed under this choice of topology

and parameters.

We now focus on the analysis of networks with purely inhibitory coupling and conse-

quently setg< 0. Since all synaptic interactions are inhibitory, how muchexternal excitation

I0 must neurons receive in order to exhibit collective behavior, and how does the balance be-

tween the inhibitory couplingg and external excitationI0 affect this behavior? Notice thatg

controls the sign and magnitude of bothVs(k,T) and I(0,T), so it is useful to express them

asVs(k,T) = gV̄s(k,T) andI(0,T) = gĪ(0,T), where the bar denotes non-negative quantities.

Using this notation the self-consistency conditions become

V̄s(k,T) =
Vr(T)

g
and Ī(0,T)>

1− I0
g

= α (6.57)

and the left hand sides of both equations are positive. Sinceg< 0 it then follows thatVr(T)

must also be negative for a solution to exist. Since the afterspike reset potential must be lower

than the firing threshold,ζ < 1 and soVr(T)≥ (1−e−T)(1− I0)≥ (1− I0). In the excitable

regimeI0 < 1 and then clearlyVr(T)≥ 0, so no solutions to the first self-consistency condition

exist. Therefore, only the oscillatory regime,I0 > 1, is consistent with traveling waves under

inhibitory coupling,g < 0. SinceĪ(0,T) does not depend on eitherg or I0, the second self-

consistency condition in Equation (6.57) is purely determined by the ratio of excitation above

threshold to inhibitionα = (1− I0)/g= |I0−1|/|g|. Similarly, V̄s(k,T) does not depend on

eitherg or I0 and the first self-consistency condition can be expressed as

V̄s(k,T) =
1− I0

g
+

I0−ζ
g

e−T = α − I0−ζ
|g| e−T . (6.58)
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Fig. 6.11Dispersion relation derived from IF continuum approximati on. Curves show
solution branches that meet the first self-consistency condition. Only the solid black portion
meets the second self-consistency condition as well. Insets showV(0, t) over the interval
[0,T] for the choices of spatial and temporal frequencies indicated by the labeled points on the
dispersion curve. In all examplesV(0,0) = ζ andV(0,T) = 1, however in C and D,V(0, t)
crosses threshold (dotted line) at an earlier point as well.HenceV is decreasing atT and does
not meet the second self-consistency condition. Notice also thatk < 0 for the solid curve, so
that only backward waves are allowed. The parameters are as follow: W(x) = W1(x),J(t) =
J2(t),g=−1, I0 = 1.1,ζ = 0,τm = 10,τrise = 1,τdecay= 20,γ = 50,χ = 25,ξ = 0.

For largeT, the above can be approximated asV̄s(k,T) = α, so the dispersion relation is also

approximately determined byα. This is illustrated in Figure6.12. Consider the value of the

dispersion relation at|k|γ = 1. It is easy to see that under this choice ofk,W̃( jω) = 0 ∀ω 6= 0

and is 1 otherwise. Consequently,V̄s(k,T) = (1−e−T)/T ≈ 1/T ≈ α. The analysis above

shows that the shape of the dispersion relation is primarilygoverned by the ratio of excitation

to inhibition α and is less sensitive to the absolute magnitude ofg or I0.
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Fig. 6.12Dispersion relations under different ratios of excitationto inhibition. Solid lines
correspond tōVs(k,T) = α and dotted lines tōI(0,T) = α. The values ofα are indicated on
the contour lines. Solid lines are approximations to the dispersion relations and hold best for
small temporal frequencies. Only the portions of the dispersion relations that lie below the
corresponding dotted contour lines meet the second self-consistency condition. This is the
case for most curves in the left half-plane (k < 0) and not true for most curves in the right
half-plane (k> 0). However, the true dispersion relation for anyα lies below the correspond-
ing V̄s(k,T) = α contour, as indicated by the black line forα = 0.3. Here a portion of the
dispersion relation for positivek> 0.8 also meets the second self-consistency condition.

Next we turn our attention to how the level of asymmetry in thesynaptic connections

affects the shape of the dispersion relation. To do so, we fixα = 0.1 and systematically vary

the offsetχ in the synaptic weight functionW1(x). The results are illustrated in Figure6.13and

show that significant directionality in the connectivity isrequired for the network to exhibit

backward traveling waves. In particular,χ > 0.4γ before we recover the dispersion relation

corresponding to the forward chain topology,χ = 0.5γ.
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Fig. 6.13Dispersion relations under different levels of connectionasymmetry. Same pa-
rameters as in Figure6.11, but the asymmetry ratioχ/γ is varied from 0 to 0.5 as indicated
above the panels. Here 0 corresponds to symmetric connections and 0.5 to forward connec-
tions only. Notice that significant directionality in the connectivity is required for the network
to exhibit backward traveling waves.

We can also systematically vary the axonal conduction delay, ξ , in the spike response

kernelJ2(t). The results are illustrated in Figure6.14 and show that with progressively in-

creasing delays, long wavelength solutions for forward-propagating waves become possible.

Finally, we vary the decay time constant,τdecay, of the spike response kernelJ2(t). The re-

sults are illustrated in Figure6.15and show that the frequency of the collective synchronous

oscillation decreases with increasing synaptic decay timeconstant.

6.5 Conclusion

Starting from experimental findings (Lubenov and Siapas, 2009), our purpose has been to

model traveling wave patterns using a biophysically plausible model, and to investigate the

mechanisms generating this wave-like behavior. We have first explored phenomenologically

the wave dynamics arising from a inhibitory chain of HH neurons with asymmetric connec-

tions. Our results show that if a set of neurons at the head of the chain is periodically forced,

traveling waves propagate in a direction opposite to that ofsynaptic connectivity. In order
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Fig. 6.14Dispersion relations under different axonal delays.Same parameters as in Fig-
ure6.11, but the axonal delayξ is varied from 0 to 10 ms as indicated above the panels. Notice
that with increasing delays long wavelength solutions for positivek become possible.

to shed light on the mechanisms and properties underlying these wave patterns, we have pro-

vided a continuum approximation with a topology similar to HH model to verify the existence

of backward waves under our assumptions. In fact our analysis demonstrates that such a spe-

cific chain-like system, with purely inhibitory asymmetricconnections and periodic driving at

the bottom, can exhibit only backward waves and forward waves are not admitted. Further-

more the analysis of the wave dispersion relation predicts that there is a limit to the longest

wavelength that the network can display. This analytical study reinforces the numerical results

obtained with the spiking HH model:

• in the limit of zero driving frequency (the non-driven state) the spatial wavelength con-

verges to the connectivity window. This is exactly what we see in the spiking model

with the equilibrium state taking the form of constant stripes of active neurons spaced

at the connectivity window (Figure6.2);

• for each set of parameter values there is a limit to the longest wavelength that the chain

can sustain, even if this requires a further investigation.In fact, the dispersion relation

does not guarantee that the system will exhibit the corresponding patterns, therefore the

next step should be the calculation of regions of stability in the space of solutions.
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Fig. 6.15Dispersion relations under different synaptic decay.Same parameters as in Fig-
ure6.11, but the synaptic decay time constantτm is varied from 10 to 60 ms as indicated above
the panels. Notice that the frequency of the synchronous oscillation at k = 0 decreases with
increasing decay time constant.

Next we have investigated the robustness of these patterns by varying the previous assump-

tions. This parameter analysis is carried out with a simplermodel. Specifically we have de-

veloped an IF continuum approximation for our chain of asymmetrically connected inhibitory

neurons, which is analytically tractable and at the same time it is able to capture the most

relevant properties of the waves. We have derived with this model the dispersion relation as

a function of various parameters of the system, thus exploring the sufficient and necessary

conditions yielding traveling waves. Our results show that(i) the dispersion relation is pri-

marily affected by the ratio of excitation over inhibition,rather than the magnitude of external

excitation or recurrent inhibition separately (Figure6.12), (ii) forward waves with long spatial

wavelength can arise in presence of increasing delays (Figure6.14), (iii) the wave frequency is

a function of the GABA decay temporal constant (Figure6.15) and finally that (iv) backward

traveling waves can be generated in networks with a significant degree of asymmetry in the

neuronal connectivity (Figure6.13). This analytical methodology captures the results that we

obtained with the spike response model, and provides further insights on the relevance of a

variety of network properties that underlies the wave propagation.



Part III

Conclusions



CHAPTER 7

CONCLUSIONS

The brain is a complex multi-scale dynamical system that displays population oscillations,

whose properties vary in time and space according to the behavioral state. Instances of this

highly coordinated oscillatory dynamics, such as periodicsynchronization of neuronal spiking

at different scales or spatial propagation of neuronal oscillations, may have a computational

role in high-level processes and subserve many cognitive functions. In this Thesis we have

explored a variety of spatiotemporal phenomena arising from the collective cooperation of

neurons in different brain areas, by means of computationalmodels at microscopic and meso-

scopic scales. We have studied rhythmic coordination between thalamic cells in different brain

states and its potential role in thalamocortical communication process. We have also examined

gamma-band synchronization across different areas and howneuronal assemblies engaged in

this oscillatory activity can efficiently communicate by means of microscopic models. Further-

more we have proposed a large-scale model to study how processes taking place at different

scales interact in the multi-scale brain by means of synchronization measures. Finally we have

mathematically explored emerging patterns of propagationof neuronal oscillations based on

experimental observations in the hippocampus of rats. All these different complex phenomena

are characterized by a collective cooperation between single cells and brain regions that lead

to highly spatiotemporal patterns at different scales. In what follows we will summarize the

main results of Part II and provide future perspectives.
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7.1 Transition between functional regimes in an integrate-

and-fire network model of the thalamus

In Chapter3 we have explored two clearly distinct dynamical regimes with different function-

alities that characterize thalamic activity. During slow-wave sleep the thalamus is dominated

by internal activity and is hardly sensitive to external stimuli (bursting mode). This activity

is characterized by spindle oscillations, namely rhythmicoscillations at 7− 14 Hz. In con-

trast, in the awake state the thalamus modulates its activity according to the stimuli coming

from the periphery (firing mode). Our network model includesglutamatergic thalamocortical

(TC) relay neurons and GABAergic reticular (RE) neurons described by adaptive exponen-

tial integrate-and-fire models (aEIF), in which spikes are induced by either depolarization or

hyperpolarization rebound. Our results have shown that TC-REloops generate spindle-like

oscillations. The generation of this rhythm during slow-wave sleep is due to the rebound

bursting properties of TC cells, which are mutually connected with RE neurons thus giving

rise to highly temporal coordinated patterns. Our results have demonstrated that clustering in

the RE-RE connections allows the model to exhibit coexistenceof the two regimes introduced

above: one dominated by oscillations and insensitive to external stimuli (like sleep) and one

insensitive to them (like wake). We have observed that the transition between the two regimes

occurs when the external excitatory input on TC neurons (mimicking sensory stimulation) is

large enough to cause a significant fraction of these neuronsto switch from hyperpolarization-

rebound-driven firing to depolarization-driven firing. In fact if the external stimulus is below a

given threshold, the network is in a purely rebound-bursting state insensitive to external stim-

uli, while when this threshold is crossed there is a non-zerocontribution of the spikes due to

depolarization, and this makes the TC neurons (and not the RE neurons) sensitive to the stim-

ulus intensity, in agreement with experimental observations (Halassa et al., 2014). Our aEIF

network model provides a computationally efficient description of the dynamical features of

the thalamus while preserving the properties of the individual neurons.

Choosing a simple model for the single neurons allowed us to focus on capturing the net-

work effects. This choice also opens a number of interestingperspectives: due to their relative

simplicity, IF models can be tackled analytically (Barbieri et al., 2014; Brunel, 2000), and

facilitate the search for basic canonical computations (Schwartz, 2015). Finally, most primary

sensory cortex network models are built on IF neurons (Battaglia and Hansel, 2011; Potjans

and Diesmann, 2014), and hence aEIF neurons seem a more coherent choice to buildmodels

of corticothalamic interactions (Muller and Destexhe, 2012). In our model, the switch from

inhibitory-rebound-driven activity to depolarization-driven firing is proposed to represent a

switch from sleep to awake state (Dang-Vu et al., 2008). The information analysis depicted in
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Figures3.9-3.10has shown the separation between a stimulus-independent state (sleep) and

a stimulus-sensitive state (wakefulness). We have not directly dealt with the role of thalamus,

and in particular of RE neuronal activity, in attention, to which a wealth of works have been de-

voted (McAlonan et al., 2008; Wimmer et al., 2015) after the seminal intuition ofCrick (1984).

To compare our model results with these experimental observations we should (1) contrast dif-

ferent states inside the awake regime, and (2) take into account the temporal structure of the

TC spike trains rather than their rate alone. This will be certainly feasible on the ground of

the results presented in Chapter3. We have emphasized that our model is based on single-

neuron models that are much simpler than those used previously. Although this has a number

of advantages, as discussed above, some features of thalamic behavior that are captured by

more detailed models are not reproduced by our model. For instance, our spindle oscillations

constitute a stable state, both in small and large TC-RE networks, and do not reproduce the

wax-and-wane dynamics that has been observed experimentally (Bal and McCormick, 1996),

and which has been reproduced by more detailed models that take explicitly into account the

dynamics of hyperpolarization-activated cation currents(Bazhenov et al., 1999). On the other

hand, our results pave the way for the development of efficient models of the transmission of

sensory information from periphery to cortex.

The work presented in Chapter3 has taken into account only stable external inputs from

the periphery to TC neurons or from the cortex to RE neurons. Preliminary analysis suggested

that an accurate description of thalamocortical inputs andcorticothalamic feedbacks required

a separate study. In the future this network will be integrated in a full corticothalamic model in

order to investigate the role of the thalamus in the thalamocortical information system, because

it still remains unclear. The thalamus cannot be exclusively classified as machine-like relay,

because in that case sensory information from the peripherywould be faithfully transmitted

to the neocortex. Instead it has been shown that the thalamuscan dynamically process infor-

mation in a way that it reflects different behavioral states such as attention, consciousness and

drowsiness. Furthermore recent morphological evidences demonstrated that the major source

of excitatory synapses impinging on the thalamus is represented by feedback cortical projec-

tions (Destexhe, 2000; Erişir et al., 1997; Liu and Jones, 1999), thus there is a good reason to

think that thalamus plays a role in gating and modulating theflow of information towards the

cortex (Sherman and Guillery, 2002). Many experiments in the intact brain have revealed that

thalamic oscillations are entrained by the cortex, appointing to the cortico-thalamic feedback

an important role in coordinating widespread, coherent andsynchronized oscillations (Des-

texhe, 2000). Reinhold et al.(2015) found that the sensory-evoked activity in the visual

cortex upon the appearance of a stimulus does not simply reflect a self-sustaining activity due

to intracortical recurrent circuits, but it is entrained and amplified by the direct thalamocortical
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communication pathway. Future studies will be devoted to understand the effect of corticotha-

lamic feedback on thalamic circuits as well as investigating whether the role of the thalamus

is simply to relay information to the cortex and/or to process and modulate it according to

different attentional states.

Another interesting continuation of this work would be to contribute to the open challenge

of modeling the LFP of the thalamus (Einevoll et al., 2013). Mazzoni et al.(2015) recently

showed that an integrate-and-fire model like the one presented in Chapter3 can be combined

with morphological data and transmembrane current simulation (Lindén et al., 2013) to cap-

ture the LFP dynamics in a patch of cortex. Since morphological data are available for the

thalamus, a similar procedure can be applied to our network,and would hopefully shed light

on the way extracellular signals and neural activity are linked in this area, thus enhancing the

possibility of experimental validations of the thalamic models. The potential applications of

this work include the study of the consequences of deep brainstimulation (DBS)1. Thalamic

DBS has been shown to contribute to the symptom mitigation of avariety of neural diseases

including Parkinson (Tasker, 1998) and Tourette’s syndrome (Servello et al., 2008). However,

the precise mechanisms of this mitigation are not completely clear, nor is the procedure to

design specific trains of stimulations suited for differentpatients/conditions. Neural models

are already exploited to test DBS patterns (McIntyre et al., 2004). We think that a simple yet

efficient model like the one presented in Chapter3 can valuably contribute to this field.

1 Deep brain stimulation. DBS stands for the implantation of electrodes within certain areas of your brain to
produce electrical impulses that regulate abnormal impulses. The amount of stimulation in DBS is controlled by
a pacemaker-like device placed under the skin in the upper chest, and a wire that travels under the skin connects
this device to the electrodes in the brain. DBS is nowadays used to treat a number of neurological conditions, such
as tremor, Parkinson’s disease, epilepsy, Tourette’s syndrome, chronic pain and obsessive compulsive disorder.
It is also experimentally used for the treatment of depression, stroke recovery, addiction and dementia.
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7.2 Phase-coherence transitions and communication in the

gamma band between delay-coupled neuronal popula-

tions

Synchronization of collective neuronal oscillations has been suggested to mediate communica-

tion between brain areas, with the global oscillations acting asinformation carriers, on which

signals encoding specific stimuli or brain states are superimposed. But neuronal signals travel

at finite speeds across the brain, thus leading to a wide rangeof delays in the coupling between

neuronal populations. In Chapter4 we have approached this question in the case of two delay-

coupled neuronal populations exhibiting collective oscillations in the gamma range by means

of conductance-based HH neurons. We have characterized theglobal activity of the neuronal

populations by means of averaging measures such as LFP and MUA (see AppendixA.1). In

the presence of excitatory coupling, the LFP and MUA activities of two identical delayed

neuronal networks oscillate in the gamma range due to the recurrence between excitatory and

inhibitory synaptic activity. We have used these measures to quantify phase coherence be-

tween the oscillatory activity of the two delay-coupled populations at varying mean axonal

delays. The two populations exhibit consistent phase coherence for a wide range of coupling

delays, undergoing a transition from in-phase (zero-lag) to anti-phase collective oscillations as

the delay increases. In the transition region, the in-phaseand anti-phase dynamics coexist (see

Figure4.6). We next used information theory to quantify the response of one population (the

receiver) to a varying external input impinging originallyon the other population (the emitter).

For different transmission delays between the two coupled populations, we have analyzed how

the LFP and MUA calculated from one population convey information in response to a set of

external inputs applied to the other population. Our results have shown that effective commu-

nication can be reached even in the presence of relatively large delays between the populations,

which self-organize in either in-phase or anti-phase synchronized states.

Our results reinforce the perspective that inter-region coherence of oscillatory networks

activity can modulate functional connectivity among anatomically connected regions (Fries,

2005; Salinas and Sejnowski, 2001; Varela et al., 2001), thus subserving an important role in

cognition by allowing the function of brain networks to be dynamically reconfigured in re-

sponse to different task demands (Akam and Kullmann, 2012). Within this context, the CTC

hypothesis (Fries, 2005) proposed that selective communication can be achieved by coherence

between firing rate modulation in a sending region and gain modulation in a receiving region;

hence a sending group of neurons will have the highest impacton a receiving group, if its in-

puts consistently arrive when gain is high. In that case, information could be efficiently gated
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by modulating the coherence between populations.Fries(2005) proposed that unidirectional

communication is due to rhythmic entrainment with an inter-areal delay and, in this case, the

conduction delay is directly translated for a given frequency into a relative nonzero phase (de-

layed coherence). Our results have confirmed that unidirectional couplings, either structural

or functional, lead to a leader-laggard configuration with an out-of-phase synchronization de-

termined by the axonal delay (Figure4.13). Differently from the unidirectional case, CTC

stated that bidirectional inter-areal communication neurons participating in a communication

link were synchronized at zero phase both within and betweenareas (see Figure 3 ofFries,

2005).

What happens in the presence of interaxonal delays? In its original form, the CTC hy-

pothesis assumed that inter-areal conduction delays were small relative to the respective cycle

lengths. Thereby two communicating areas, oscillating at zero phase, send output at the same

time in the oscillation cycle, and their mutual inputs arrive shortly afterward, still within the

excitatory phase of the same cycle. A given cycle length, i.e. oscillation frequency, can in this

scheme only subserve communication up to a certain conduction delay. This led to the predic-

tion that longer delays, observed between more distant brain areas, result in communication

through coherence at lower frequencies (Bastos et al., 2015b). While this has sometimes been

assumed to be the case (Von Stein and Sarnthein, 2000), it has recently been shown that neu-

ronal groups in widely separated areas, even over very largecortico-cortical distances, can be

coherent in the gamma band, i.e., at a relatively high frequency (Bastos et al., 2015a; Bosman

et al., 2012; Fries, 2015; Gregoriou et al., 2009; Grothe et al., 2012)

In Section1.3.2we have revised some modeling studies on how neuronal groupsengage in

zero-phase synchrony in presence of variable conduction delays.Vicente et al.(2008) showed

that two neuronal groups, if they were both bidirectionallyconnected to a third population,

could display oscillatory coherence at zero phase (Vicente et al., 2008). This could be plau-

sible because this motif is often observed in anatomical networks involving cortical (Markov

et al., 2012) or sub-cortical sources (Shipp, 2003a). In Chapter4 we have studied two neu-

ronal populations coupled synaptically with non-negligible delays. Our modeling results have

shown that the populations organize their joint collectivedynamics in patterns of in-phase or

anti-phase synchronization, depending on the delay. As onecan expect, the two populations

oscillating in the gamma range synchronize at zero lag when the coupling delay is zero or very

small (Figure6.6). For increasing delays instead, the networks try to synchronize at lower

frequencies (as suggested byFries, 2005), and eventually transition to an anti-phase regime

with smaller, although still significant, phase coherence (for delays up to tens of milliseconds).

Both types of dynamics seem to coexist for intermediate delays. This allows communication

to be reached effectively even in the presence of relativelylarge delays between the popula-
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tions. In those cases the transmission delay, phase difference, and oscillation frequency match

to allow for communication at a wide range of coupling delaysbetween brain areas (Barardi

et al., 2014b). Our modeling results thus demonstrate the biophysical plausibility of zero-

phase synchronization despite relatively long conductiondelays provided that the coupling is

symmetric, i.e. the two synchronized local circuits shouldbe similar e.g. in their local or-

ganization and activity level, their conduction delays to the respective other circuit, and the

strength of their feed-forward inhibition (Bastos et al., 2015b).

In accordance with our results in Chapter4, and contrarily to the original CTC hypothesis,

recent studies found that interareal gamma-band synchronization can entail a non-zero phase

lag (Bastos et al., 2015b). Due to these new experimental observations, it became clear that

even though the areas are bidirectionally coupled, this gamma-band coherence does not oc-

cur at zero phase, but with a systematic delay, i.e., with a directedness (Bastos et al., 2015b;

Bosman et al., 2012; Zandvakili and Kohn, 2015). Fries(2015) formulated a new version of

CTC proposing that bidirectional cortical communication isrealized separately for the two di-

rections by unidirectional CTC mechanisms entailing delaysin both directions (Bastos et al.,

2015b; Fries, 2015). In that context he suggested that entrainment with delay is the general

mechanism that sets up phase relations subserving CTC, both for unidirectional communica-

tion and for bidirectional communication.

Akam and Kullmann(2012) have also proposed a mathematical implementation of CTC,

assuming a sinusoidal oscillation and a linear relation between phase and excitability. Their

analysis showed that presynaptic groups, which are incoherent to the postsynaptic group,

might still have a substantial impact. In other words, CTC mechanisms are possible, but only

if some constraints on the structure of oscillatory activity are imposed (Akam and Kullmann,

2012). In fact, the accuracy of information transmission in presence of distractors depends on

the structure and strength of oscillatory activity across aset of inputs. Akam and Kullmann

(2012) demonstrated that to achieve a high signal to noise ratio the oscillatory modulation of

the target signal must be strong, and distracting inputs must be distinguished from the target

by frequency, phase or amplitude of oscillation. If these requirements are not fulfilled, the ac-

curacy of information transmission is reduced (Akam and Kullmann, 2012). Given that such

oscillatory activity spans several orders of magnitude in frequency (Section1.1.2), and that

in several brain regions the phase of firing is actively modulated relative to a single coher-

ent oscillation (O’Keefe and Recce, 1993), the brain can indeed exploit phase and frequency

separation to minimize interference between oscillatory signals (multiplexing mechanism pro-

posed byAkam and Kullmann, 2010). The new formulation of the CTC hypothesis (Fries,

2015) requires that excitability be modulated by rhythmic synchronization in a way that is nei-
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ther sinusoidal nor linear, in agreement with mathematicalmodels entailing spiking excitatory

and inhibitory neurons (Börgers and Kopell, 2008; Cannon et al., 2014; Gielen et al., 2010).

While there is substantial experimental support of the CTC hypothesis (Cardin et al., 2009;

Schoffelen et al., 2011; Siegle et al., 2014; van Elswijk et al., 2010), some studies posed chal-

lenges to the original CTC formulation that motivated the newview (Fries, 2015), and which

need to be further explored. Now there is increasing experimental evidence that different

visual areas are gamma-band synchronized with a non-zero phase lag. Therefore non-zero

phase synchronization likely has a key role in the establishment of communication links, and

this needs to be further explored. In conclusion, how the brain reaches the required level of

coordination in presence of large delays is unclear yet. Here we have proposed a solution that

is consistent with the original CTC formulation and with new experimental results. It will be

important to experimentally test if two distant neuronal populations engage in gamma synchro-

nized patterns in presence of large delays, eventually transitioning from in-phase to anti-phase

dynamics to subserve efficient and selective information transmission. It would be interest-

ing to study if it is possible to experimentally manipulate neuronal synchronization, while

leaving other aspects of neuronal activity unchanged, and thereby show effects on neuronal

communication.
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7.3 Probing scale interaction in brain dynamics through syn-

chronization

The preceding Thesis chapters were devoted to develop different microscopic models of cor-

tical neuronal networks to explore a diverse range of collective dynamical phenomena: tem-

porally organized patterns arising from the coordination of TC and RE neurons in the thala-

mus, and different information processing functionalities through thalamocortical pathways

and gamma-band synchronization between neuronal networksthat could subserve as a mech-

anism for selectively routing the flow of information. Usingdifferent simplified levels of

description has been, and still is, very fruitful in unveiling the mechanisms that lay at the basis

of the observed neural tissue behavior (Fourcaud-Trocmé et al., 2003; Goldbach et al., 2008;

Kopell et al., 2000a; Sancristóbal et al., 2013). However the brain is a multi-scale dynamical

system. In fact the mammalian brain operates in multiple spatial scales simultaneously, from

the microscale to cortical regions. These levels of description are associated with distinct tem-

poral scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of

brain areas.

In Chapter5 we have examined theoretically how spatial and temporal scales interact in

the functioning brain, by considering the coupled behaviorof two mesoscopic neural mass

models (NMs) that communicate with each other through a microscopic neuronal network

(NN) (Figure5.1). We have used the synchronization between the two NM modelsin order

to probe the interaction between the mesoscopic scales of those neural populations and the

microscopic scale of the mediating NN. The two NM oscillators were taken to operate in a

low-frequency regime with different peak frequencies (in the theta and alpha bands) and with

very different dynamical features (spike-like dynamics inone case and quasi-harmonic dynam-

ics in the other). The microscopic neuronal population, in turn, was described by a network

of several thousand excitatory and inhibitory spiking neurons operating in a synchronous ir-

regular regime, in which the individual neurons fire very sparsely but collectively give rise to

a well-defined rhythm in the gamma range (as in the neuronal network studied in Chapter4).

Our results have shown that this NN, which operates at a fast temporal scale, is indeed suffi-

cient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically

at a slower scale. Therefore frequency and phase locking arise even when the two NMs oper-

ate at very different frequencies and with very different dynamical features (Figure5.3). We

have also established how this synchronization depends on the topological properties of the

microscopic NN, on its size and on its oscillation frequency. In particular, structural cluster-

ing within the neuronal network reduces the ability of the microscopic neuronal population to

induce synchronization (Figure5.5), and the size of the subpopulation of neurons that directly
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coupled the two NMs must also be large enough to allow the intrinsically irregular neurons to

reach a sufficiently strong collective regime through whichthe two neural masses can commu-

nicate (Figure5.6).

In general, analyzing this scale interaction by comparing the behaviors of the microscopic

and mesoscopic models is a very complicated task. In 2009, for instance,Faugeras et al.(2008)

derived the equations of evolution of NMs from the dynamics of a NN described by a voltage-

based model, through a Herculean mean field analysis of the network, an approach that as

the authors themselves mention in the concluding paragraphof their paper, would be very

ambitious to apply to spiking neuronal models. One year later, Rodrigues et al.(2010) per-

formed such a multi-scale mapping under strong assumptions(in some cases hard to justify

biologically) that included high correlation between the neurons in the microscopic popula-

tions and low-amplitude input currents. In our work, we haveattempted to circumvent the

complexity of those approaches by using a more phenomenological strategy, whose goal is to

test whether microscopic and mesoscopic descriptions of neuronal populations communicate

with one another by using synchronization as a proxy of effective communication. On this

regard, Figure5.3E,F shows that the MUA exhibited by the NN is phase-locked to the voltage

of the NM model when synchronization between the two NMs arises. This indicates that the

neuronal network is actively involved in the communicationof information between the two

mesoscopic models. We have also quantified the efficiency of this effect as the number of NN

neurons involved in the communication between the NMs changes.

Modeling the dynamics of the full brain from a purely microscopic scale is computational

unfeasible. Thus a hybrid description of the brain that encompasses multiple scales is an ap-

pealing concept. In that scenario, it would only be necessary to represent microscopically

those neuronal populations involved in a particular task, and which are monitored with single-

cell resolution. The rest of the brain, while modulating theactivity of the population of interest,

would not necessarily require being represented with microscopic detail. Currently this is ac-

complished by representing the activity of the rest of the brain by a background noisy activity,

but this approach is not useful when the neuronal populationof interest feeds back into those

other brain regions, thereby modifying the background activity that acts upon the population

itself. In Chapter5we have considered one way of facing this situation, based oncoupling bidi-

rectionally microscopic and mesoscopic descriptions of neuronal populations and using syn-

chronization to probe the interaction between the two scales. We have employed that scheme

in which two mesoscopic populations are coupled through a third microscopic network, since

the behavior that can be expected from two coupled NM models is well known (David and

Friston, 2003; Jansen and Rit, 1995), and can be used as a reference to interpret the coordi-

nated behavior emerging from our hybrid scenario.
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However, if one is interested in a level of detail that can only be reflected by NNs and

not by NMMs, then the appropriate level of description throughout has to be adopted. In other

words, it would be also interesting to test whether microscopic and mesoscopic descriptions of

neuronal populations communicate, by means of a model whereboth levels of representation

coexist. So far, global brain activity has been modeled by dividing the brain into discrete vol-

ume elements, or voxels, and coupling them according to statistical correlations and structural

information (Alivisatos et al., 2012; Deco et al., 2013; Pons et al., 2010; Sotero et al., 2007).

Recently, large-scale models of the brain have received special attention. Both the Human

Brain Project and the Brain Activity Map project propose integrated views to bridge the gap

between the behavior of single neurons and the functions of the full brain (Alivisatos et al.,

2012), but this quest is still in its infancy.
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7.4 Wave propagation in inhibition-dominated neuronal

chains

In Chapter6 we have analyzed the behavior of one-dimensional chains of inhibitory neurons

with asymmetric connections. We have shown that such chain-like networks exhibit backward

propagating waves with respect to the direction of synapticconnectivity if neurons at the

bottom are periodically forced. These numerical results show that in the absence of noise and

for small GABA decay times, wave patterns with long spatial wavelength can arise within

the network. Importantly, however, the long wavelength regime, which is a hallmark of many

neuronal tissues, cannot be readily achieved and is very sensitive to network parameters and

noise. To explore and understand our numerical results we have first developed a continuum

model approximation with a topology similar to the HH model,deriving a self-consistence

condition for the existence of these backward traveling waves and calculating the dispersion

relation that fully characterizes the main properties of the wave patterns. This mathematical

analysis predicts that there is a limit to the longest wavelength that the network can display

depending on different conditions. Moreover the shape of the dispersion relation qualitatively

agrees with the numerical results.

The results discussed above strongly depend on the assumptions made at the beginning

of the analysis regarding the topology of the network and other synaptic properties. In order

to study systematically which are the necessary and sufficient conditions for the generation

of these patterns, or in other words to investigate the robustness of these results across differ-

ent systems, we propose an integrate-and-fire continuum approximation based on a network

with asymmetric inhibitory connections, with individual neurons operating in the oscillatory

regime. We have tested self-consistency conditions to verify the existence of backward and

forward waves and derived the dispersion relation. Specifically, we have constructed families

of dispersion relations as parameters are varied, including level of asymmetry, delay, strength

of coupling and GABA decay time constant. Our results have shown that the wave pattern

generation is primarily affected by coupling strengths, interms of the magnitude of the ex-

ternal excitation in relation with that of recurrent inhibition, as well as from the degree of

asymmetry in the structural connectivity. Furthermore. the presence of large axonal delays

could underlie the generation of forward waves with long spatial wavelength. Finally, as our

numerical results have predicted, an increase of the GABA decay time constant corresponds

to a decrease of the wave frequency that the system can support. Our results are informative

regarding the mechanisms underlying the generation and propagation of wave patterns.
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7.5 Perspectives

In this Thesis we have studied different spatiotemporal patterns arising from the coordinated

activity of populations of neurons. This high level of organization is an ubiquitous property of

brain activity, and involves different spatial and temporal scales simultaneously. Our results

provide the basis for further research work.

We have learned that the coordinated response of TC and RE neurons to an external input

on top of a well-defined anatomical structure (the thalamus)accounts for the different informa-

tion transmission modes that underlie distinct dynamical regimes, corresponding to the sleep

and awake states( (Barardi et al., 2016), under revision). Future studies will be devoted to

understand the effect of corticothalamic feedback on thalamic circuits, as well as investigating

whether the role of the thalamus is simply to relay information to the cortex and/or to process

and modulate it according to different attentional states.To do so the thalamic network model

in Chapter3 will be integrated in a full corticothalamic model comprising a primary visual

cortex network. The next step will be to take into account (i)the layered structure of the cor-

tex and (ii) areas of the thalamus and the cortex associated to different sensory receptive fields

and their interactions.

We have also shown that the synchronization of neuronal oscillations between several

regions could subserve different brain functions such as long-range communication. Our

studies have revealed a possible role of the delay in the collective behavior of neuronal sys-

tems (Barardi et al., 2014b). Since the impact of a neuronal network to downstream neurons

increases when spikes are synchronous, networks with delayed connections can serve as gate-

keeper layers mediating the firing transfer to other regions. This mechanism can provide

flexible functional channels of communication by regulating the opening and closing of path-

ways between cortical layers on demand (Esfahani et al., 2016). It would be necessary to test

experimentally our theoretical predictions in that respect. In particular, together with the lab

of Dr. Mavi Sanchez-Vives we are planning to analyze the LFP activity recorded simultane-

ously in different layers of the primary visual cortex (V1M)and the lateral geniculate nucleus

(LGN) of the thalamus in a ketamine-medetomidine anesthetized rat.

We have also asked which are the mechanisms behind out-of-phase synchronized neu-

ronal oscillations that propagate across different brain areas. For instance, the hippocampal

theta oscillation is a key brain signal that underlies various aspects of cognition and behavior,

including memory and spatial navigation. Recent studies reveal that theta oscillations are ac-

tually waves traveling continuously along the septal-temporal axis. Therefore, the existence

of phase variations across the hippocampus indicates that neurons at different positions simul-

taneously represent information about events at differenttimes (Lubenov and Siapas, 2009).
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In collaboration with the authors who first revealed the wave-like organization of theta os-

cillations (Lubenov and Siapas) we have developed mathematical models to study how this

phenomenon depends on the topological structure of the network and synaptic delays in the

connections between neurons. In such models, these spatialsynchronization patterns are gov-

erned by the strength and topology of the coupling as well as by the presence of axonal delays.

We will continue our work on traveling waves in different directions. On the one hand, we will

study the dispersion relation of a inhibitory-dominated ring-topology with periodic boundary

conditions and check that mathematical results hold in integrate-and-fire simulations. We ex-

pect that the dispersion relation is quantized by the network sizeN. On the other hand, we

will study how the chain of inhibitory neurons behaves in presence of excitatory neurons. We

expect that the backward waves described in this Thesis can act as a dynamic backbone that

modulates the activity of the excitatory neurons of the network. With our theoretical analysis,

our goal has been to address the design of future experimentsto test the direction of connec-

tivity in the hippocampus, the type of connections, and the role of inhibitory neurons versus

excitatory ones.

A complete appreciation of the rich dynamics that engage local and distributed neural

groups requires a transition from the focus on either isolated cells or isolated areas to a fo-

cus on the coordination between local populations, and on the integration of distributed func-

tional networks. In this Thesis we propose a first step towards this direction, by developing

a hybrid description of the brain that encompasses multiplescales through different descrip-

tions (Barardi et al., 2014a). The need to bridge spatial scales is due to the intricate structure

of neural activity patterns at multiple levels of spatial resolution. Therefore efforts need to

be done to bridge the different spatial scales used in isolation in order to explore how inter-

actions at different scales are coordinated by cognitive demands and determine behavior and

sensory processing (Lewis et al., 2015a). This goal will require the increase of computational

efficiency and the development of high-density multichannel amplifiers and new recording

technologies that could shed light on how local functional populations integrate extrinsic and

intrinsic signals, giving rise to distributed patterns of coherent activity (Varela et al., 2001).
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APPENDIX A

METHODS

A.1 Local field potential and multi-unit activity

We quantify the activity of the network in two different ways. We calculate the multi-unit

activity (MUA) as the total number of spikes per unit time in the population, and the local

field potential (LFP) as the sum of the absolute values of the excitatory and inhibitory synaptic

currents acting upon the excitatory neurons, averaged overthis population (Mazzoni et al.,

2008):

LFP= Re〈|IAMPA|+ |IGABA|〉 , (A.1)

where〈...〉 denotes the average over all excitatory neurons. The termIAMPA accounts for both

the external excitatory heterogeneous Poisson spike trainand the recurrent excitatory synaptic

current due to the network, whileIGABA corresponds to the recurrent inhibitory synaptic cur-

rent. Re represents the resistance of a typical electrode used for extracellular measurements,

here chosen to be 1MΩ.

A.2 Spectral analysis

We compute the power spectral density of the LFP using the Welch method: the signal is split

up into Nseg point segments (TableA.1) with 50% overlap. The overlapping segments are

windowed with a Hamming window. The modified periodogram is calculated by computing

the discrete Fourier Transform, and then computing the square magnitude of the result. The

periodograms are then averaged to obtain the PSD estimate, which reduces the variance of

the individual power measurements. The code has been implemented in MATLAB. Spectral

quantities are averaged overnsp trials (TableA.1).

In Chapter5 we computed the power spectral density (PSD) of the LFPs and of the post-

synaptic potentials (PSPs) of the pyramidal population of the NMs. The frequency mismatch
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between the PSP of the two neural mass models was calculated as the inverse of the difference

between the periods of the mass models, averaging over trials. The periods correspond to

the temporal distance between two maxima of the auto-correlation function. Each trial corre-

sponds to a different set of random initial conditions, NN architecture and realization of the

Ornstein-Uhlenbeck process.

A.3 Phase coherence

Phase coherence is calculated in the way introduced byWomelsdorf et al.(2007):
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wherex andy denote the two signals, andSxy( f ,n) is the cross-spectrum between them. Since

in each trial the cross spectral density is normalized by itsamplitude, each term of the sum is

a unit-length vector representation of the phase relation∆φ( f ,n). In other words,∆φ( f ,n) =

φy−φx is the phase lag between the two signals at frequencyf in the data segmentn. Hence

Cxy( f ) quantifies how broad is the distribution of∆φ( f ,n) within the 2π-cycle. Averaging

∆φ( f ,n) across allN data segments provides a mean angle∆φ( f ). In Chapter4 ∆φ( f ) is

converted into a time shift, termedτlag, dividing by the corresponding frequencyτ( f ) = ∆φ( f )
2π f .

This quantity measures the time separation between an LFP maximum in one population and

the following maximum belonging to the other population. Phase coherence is considered

significant for values above 0.08. Phase coherence is averaged overnpc trials (TableA.1).

Nseg nsp npc

Chapter 3 32768 50 50
Chapter 4 256 200 1000
Chapter 5 500 20 -

Table A.1Nseg is the number of discrete Fourier transform points.nsp andnpc are the number
of trials used to calculate averaged spectral quantities and phase coherence, respectively.

A.4 Mutual information

An important mathematical tool to quantify information transmission in noisy systems is pro-

vided by information theory. We consider a case study in which the system is presented with

Ns stimuli s1,s2, ...sN, and the corresponding neural responses is recorded and quantified in a
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given post-stimulus time-window. The way in which the neural response is estimated depends

on the experimental questions being addressed (Magri et al., 2009).

We compute the information between the stimulusSand the general responser as follows:

I(R,S) =
Ns

∑
s=1

P(s)∑
r

P(r |s) log2
P(r |s)
P(r)

, (A.3)

whereP(s) is the probability of presenting the stimuluss (equal to the inverse of the total

number of different stimuli),P(r) is the probability of observing the response powerr across

all trials in response to any stimulus, andP(r |s) is the probability of observing the response

r in response to a single stimuluss. In generalI(R,S) quantifies the reduction of uncertainty

about the stimulus that can be gained from observing a single-trial neural response, and we

measured it in units of bits (1 bit means a reduction of uncertainty of a factor of two) (Ince

et al., 2010).

An important issue to be solved regarding the calculation ofthe theoretical mutual infor-

mation is that it requires knowledge of the full stimulus-response probability distributions, and

obviously these probabilities are calculated from a finite number of stimulus-response trials.

This leads to the so-called limited sampling bias, which corresponds to a systematic error in

the estimate of information. We used the method described byPanzeri and Treves(1996) to

estimate the bias of the information quantity and then we checked for the residual bias by

applying abootstrap procedurein which mutual information is calculated when the stimuli

and responses are paired at random. If the information quantity is not zero (it should be in

the case of non-finite samples), this is an indication of bias, and the bootstrap estimate of this

error should be removed from the mutual information. After applying these procedures, the

information quantity estimation could be defined as significant. Several toolboxes provide

different bias-correction techniques, which allow accurate estimates of information theoretic

quantities from realistically collectable amounts of data(Magri et al., 2009; Victor, 2006). In

order to accomplish those tasks, we used the Information Breakdown Toolbox (ibTB), a MAT-

LAB toolbox implementing several information estimates and bias corrections. It does this

via a novel algorithm to minimize the number of operations required during the direct entropy

estimation, which results in extremely high speed of computation. It contains a number of

algorithms which have been thoroughly tested and exemplified not only on spike train data but

also on data from analogue brain signals such as LFPs and EEGs(Magri et al., 2009).
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A.5 Clustering coefficient

In graph theory, networks composed of nodes and edges can be characterized by their clus-

tering coefficient, which quantifies theconnectednessor local connectivity of the network

(i.e. the probability that two nodes that are connected to a given node, are also connected

between them). According to the Watts and Strogatz algorithm (Watts and Strogatz, 1998), a

pure regular network can be turned into a small-world network, in which few edges separate

any two nodes, by rewiring the connections. A rewiring probability parameter,rp, determines

the probability of replacing an existing edge by another onechosen randomly. Therefore, a

rewiring probability equal to 0 implies a regular network whereas a rewiring probability equal

to 1 implies a completely random network.



APPENDIX B

CONTINUUM MODEL APPROXIMATION STARTING FROM

HODGKIN-HUXLEY MODEL

In Section6.3 we propose a continuum approximation model with a topology similar to HH

model. Starting from the definition of the local fieldV(x, t) (Equation (6.1)), we derive the

equations for forward propagating and backward propagating waves by integrating the local

field with the corresponding kernel (Equation (6.3)).

B.1 Local fieldV fw(x, t) for forward waves

The integration of the local field Equation (6.1) for the forward propagating waves is:

V fw(x, t) = Qext−q
∫ x

x−γ
dx′
∫ ∞

0
dt′ ε(t ′)

∞

∑
n=−∞

δ (x′−ν(t − t ′)−nλ )

= Qext−q
∫ x

x−γ
dx′

∞

∑
n=−∞

∫ ∞

0
dt′ ε(t ′)δ

(

νt ′− (νt +nλ −x′)
)

= Qext−
q
ν

∫ x

x−γ
dx′

∞

∑
n=−∞

∫ ∞

0
dt′′ ε(

t ′′

ν
)δ
(

t ′′− (νt +nλ −x′)
)

= Qext−
q
ν

∞

∑
n=−∞

∫ x

x−γ
dx′ ε(

νt +nλ −x′

ν
)Θ(νt +nλ −x′)

= Qext−
q
ν

∞

∑
n=n0

∫ x̄

x−γ
dx′ ε(

νt +nλ −x′

ν
) (B.1)

where the sum and integration limit adjustments are given by

n0 =
⌈x−νt − γ

λ

⌉

x̄ = min(x,νt +nλ ).



B.1 Forward waves 182

After integrating the response kernel we obtain

V fw(x, t) = Qext−q
∞

∑
n=n0

(

τdecay

τdecay− τrise
e
− νt+nλ

ντdecay

(

e
− x̄

ντdecay−e
− x−γ

ντdecay

)

−

− τrise

τdecay− τrise
e
− νt+nλ

ντrise

(

e
− x̄

ντrise −e
− x−γ

ντrise

)

)

, (B.2)

wheren0 andx̄ are given by

n0 =
⌈x−νt − γ

λ

⌉

,

x̄ = min(x,νt +nλ ).
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B.2 Local fieldV fw(x, t) for backward waves

The integration of the local field Equation (6.1) for the backward propagating waves is:

Vbw(x, t) = Qext−q
∫ x

x−γ
dx′
∫ ∞

0
dt′ ε(t ′)

∞

∑
n=−∞

δ (x′+ν(t − t ′)−nλ )

= Qext−q
∫ x

x−γ
dx′

∞

∑
n=−∞

∫ −∞

0
−dt′′

ν
ε(−t ′′

ν
)δ
(

t ′′− (−νt +nλ −x′)
)

= Qext−
q
ν

∫ x

x−γ
dx′

∞

∑
n=−∞

∫ 0

−∞
dt′′ ε(−t ′′

ν
)δ
(

t ′′− (−νt +nλ −x′)
)

= Qext−
q
ν

∞

∑
n=−∞

∫ x

x−γ
dx′ ε(

νt −nλ +x′

ν
)Θ(νt −nλ +x′)

= Qext−
q
ν

nmax

∑
n=−∞

∫ x

x
dx′ ε(

νt −nλ +x′

ν
), (B.3)

where the sum and integration limit adjustments are given by

nmax = min
{⌊x+νt

λ

⌋

,
⌈x+νt

λ

⌉

−1
}

x = max(x− γ,nλ −νt)

Notice that if(x+νt)/λ is an integer the value ofnmax is decremented by one. This is because

in this casex = x and so the corresponding integral is zero (the lower and upper limits of

integration coincide). After integrating the response kernel we obtain

Vbw(x, t) = Qext−q
nmax

∑
n=−∞

(

τdecay

τdecay− τrise
e
− νt−nλ

ντdecay

(

e
− x

ντdecay−e
− x

ντdecay

)

−

− τrise

τdecay− τrise
e
− νt−nλ

ντrise

(

e
− x

ντrise −e
− x

ντrise

)

)

, (B.4)

wherenmax andx are given by

nmax = min
{⌊x+νt

λ

⌋

,
⌈x+νt

λ

⌉

−1
}

,

x = max(x− γ,nλ −νt).
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GLOSSARY

Parameters

γ Window of connectivity

λ Traveling wave spatial wavelength [mm]

ν Traveling wave phase velocity [mm/s]

τm Membrane time constant [ms]

ϑ Spike threshold [mV]

ζ Reset value of membrane potential after firing [mV]

I0 Constant external input [nA]

α Rate of receptor opening [1/(mM·s)]

β Rate of receptor closing [1/s]

∆ Steepness of the exponential approach to threshold [mV]

ν0 Net PSP for which a 50% firing rate is achieved in the neural mass model [mV]

Tω Angular frequency [rads/s]

σ Number of open receptors relative to the total number of receptors

τw Time constant of adaptation [ms]

τaxo Latency between the generation of a spike in a presynaptic neuron from one network

and the elicitation of a postsynaptic potential in the othernetwork [ms]

τdecay Decay synaptic time [ms]

τlag Time shift corresponding to a given phase difference [ms]
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τre f Absolute refractory period [ms]

τrise Rise synaptic time [ms]

ε(t) Response kernel (postsynaptic potential) [mV]

A Maximum height of excitatory postsynaptic potential [mV]

a Conductance that mediates subthreshold adaptation [µS]

aNM Inverse of the membrane time constant in the neural mass model [Hz]

B Maximum height of inhibitory postsynaptic potential [mV]

b Spike-triggering adaptation strength [nA]

bNM Dendritic delay [ms]

Cm Membrane capacitive current [nF]

Ci Intra-columnar connectivity constant

EK Nerst equilibrium potential of the potassium current [mV]

EL Nerst equilibrium potential of the leakage current [mV]

ENa Nerst equilibrium potential of the sodium current [mV]

e0 Maximum firing rate of the neural population

Esyn Nerst equilibrium potential of the synapse [mV]

Ethresh Voltage threshold value [mV]

T Traveling wave temporal frequency [Hz]

Fγ Frequency of maximum power spectrum [Hz]

fmax Frequency of maximum phase coherence [Hz]

g Scalar synaptic coupling parameter

gK Maximal conductance of potassium [µS]

gL Leak membrane conductance [µS]

gNa Maximal conductance of sodium [µS]
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gmax Conductance peak [µS]

gsyn Synaptic conductance [µS]

I Current [nA]

Iionic Ionic currents [nA]

IK Potassium current [nA]

IL Leak current [nA]

INa Sodium current [nA]

Isyn Synaptic current [nA]

k Wavenumber, traveling wave spatial frequency [1/mm]

m Net PSP input into a population [mV]

N Number of neurons in the network

pm Average density of action potentials produced by the presynaptic population acting

upon the postsynaptic population [mV]

q Magnitude of inhibitory connections

Qext Magnitude of external excitation

r Steepness of the sigmoidal transformation

rp Rewiring probability for network architecture

T Wave period [ms]

T(t) Time-varying neurotransmitter concentration

Tγ Period of maximum power spectrum [ms]

tpeak Duration of the response [ms]

Vr Voltage reset value [mV]

Variables

I(x, t) Total synaptic input into neuron at positionx and timet
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J(t) Shape of postsynaptic potential (response kernel)

J(x) Strength of postsynaptic connection at distancex

S(x, t) Spiking (at given time and location)

Tm(x) mth spike time of neuron atx

V(x, t) Local field (membrane potential at given time and location) [mV]

W(x−x′) Absolute weight of synaptic connection fromx′ to x

h Inactivation variable of sodium channels

m Activation variable of sodium channels

n Activation variable of potassium channels

t Time [ms]

V Voltage [mV]

w Adaptation [nA]

yi Average postsynaptic excitatory or inhibitory membrane potential [mV]

Acronyms / Abbreviations

aEIF Adaptive exponential integrate-and-fire

CTC Communication through coherence

CV Coefficient of variation

DBS Deep brain stimulation

ECoG Electrocorticography

EEG Electroencephalography

EPSP Excitatory postsynaptic potential

ERP Event-related potential

f MRI Functional magnetic resonance imaging

FR Mean firing rate



Glossary 193

HH Hodgkin-Huxley

IF integrate-and-fire

IPSCs Inhibitory postsynaptic currents

IPSP Inhibitory postsynaptic potential

ISI Inter-spike interval

LFP Local Field Potential

LGN Lateral geniculate nucleus

LIF Leaky integrate-and-fire

MEAs Multielectrode arrays

MEG Magnetoencephalography

MRI Magnetic resonance imaging

MUA Multi-unit activity

NM Neural Mass

NN Neural network of HH neurons

PSP Postsynaptic potential

RE Reticular thalamic cells

ROC Receiver operating characteristic

SFA Spike-frequency adaptation

TC Thalamocortical relay cells

VPN Ventral posterior nucleus

VSD Voltage-sensitive dye

VSDI Voltage-sensitive dye imaging
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