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ABSTRACT 

The main objective of this thesis is to characterize hydrological processes in a Mediterranean 

mountain catchment, by combining distributed hydrological measurements and environmental 

tracers in order to improve the understanding of catchment hydrological function. 

During the period 2009-2013 hydrological data were collected from the Vallcebre Research 

Catchments, monitored since 1996 by the Surface Hydrology and Erosion group of the IDAEA-

CSIC. Data include, in addition to rainfall and discharge measurements, distributed hydrological 

measurements and environmental tracers (both geochemical and isotope ones) at different 

time scales (seasonal to event scale). 

With this information, this study first investigates the spatial and temporal variability of the 

depth to water table during rainfall-runoff events. The results show that the depth to water 

table did not rise uniformly throughout the catchment during rainfall-runoff events. The 

spatial variability of depth to water table was mainly controlled by location characteristics, 

especially the piezometer distance from the stream, which influenced the distribution of 

wetness conditions within the catchment. The wetness conditions in turn affected the timing of 

the water table response, as well as the magnitude of the streamflow response. Spatio-

temporal water table variability during floods varied, depending on the catchment’s 

antecedent wetness conditions. Under dry conditions, higher spatio-temporal variability of the 

depth to water table and slower groundwater response were observed during the entire event. 

In dry conditions, runoff was generated essentially by groundwater contribution in near-stream 

locations. In contrast, during intermediate conditions and especially during wet conditions, the 

spatio-temporal variability of the depth to water table throughout the flood event was lower 

and response times were shorter, generating a larger hydrological response.   

Dissolved organic carbon (DOC) concentration dynamics in different hydrological 

compartments were also analysed (rainfall, soil water, groundwater and stream water) at 

different time scales (seasonal to event scale). The results show some seasonality in rainwater 

and soil water DOC concentrations, while no clear seasonality was found in stream water and 

groundwater, where DOC dynamics were strongly related to discharge and water table 

variations. During storm events, DOC concentrations increased systematically in stream water. 

In addition, for storm events with several discharge peaks, the slope of the discharge/DOC 

concentration relationship was higher for the first peak. The increase in stream water DOC 

concentration during floods suggested a relevant contribution of soil water, as well as the 

existence of stream water DOC sources near or in the stream bed. The rather similar dynamics 

of stream water DOC concentration in all floods contrasted with the diversity of hydrological 
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processes observed. This raises the question of the origin of the rapid DOC increase found and 

the validity of the use of DOC as a tracer. 

Finally, water mean transit time (MTT) was calculated in different hydrological 

compartments of the catchment, using stable isotopes (δ18O and δ2H) and tritium. The use of 

δ18O signal variations in rainfall and in the sampled hydrological compartments showed some 

limitations on water age calculation in the catchment studied: it only indicated that MTT was 

greater than two years. The use of a new methodology (TEPMGLUE) to calculate MTT using 

tritium allowed consideration of different sources of uncertainty in water age determination, 

as well as evaluation of the benefit of using samples of different ages and of differing 

analytical quality. The results showed similar MTT calculations, whether including only the 

water samples taken in the 1990s or using all samples (1996-1998 and 2013). However, when 

calculating MTT with only high analytical quality samples taken in 2013, two different MTTs 

were obtained. The MTT results showed that, in the Vallcebre catchments, well water was the 

youngest, followed by stream and spring water. The study also showed the relevance of the 

rainfall tritium input function to MTT calculations. Finally, results showed that topography did 

not affect MTT spatial distribution, whereas geological settings did.  

The results of this thesis provide additional information about how the hydrology of the 

Vallcebre Research Catchments functions. They also suggest some interesting future research 

lines. 
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RESUM 

L'objectiu de la tesi doctoral és millorar la caracterització dels processos hidrològics de les 

conques mediterrànies de muntanya utilitzant mesures hidrològiques distribuïdes i traçadors 

ambientals, amb la finalitat de comprendre'n el funcionament hidrològic.  

Durant el període 2009-2013 es van recollir dades hidrològiques de les conques 

d'investigació de Vallcebre, monitoritzades des de 1996 pel grup d’Hidrologia Superficial i 

Erosió del IDAEA-CSIC. Les dades inclouen, a més a més de registres de precipitacions i cabal, 

mesures hidrològiques distribuïdes i de dades de traçadors ambientals (geoquímics i isotòpics) a 

diferents escales temporals (estacional i d'esdeveniment). 

A partir d’aquesta informació s'ha analitzat, en primer lloc, la dinàmica espaciotemporal del 

nivell freàtic durant els episodis de pluja. Els resultats mostren que, durant aquests episodis, el 

nivell freàtic no reacciona de manera homogènia a tota la conca. La variabilitat espaial del 

nivell freàtic està molt afectada per les característiques de la localització de cada piezòmetre, 

especialment la distància al torrent, que té un paper essencial en la distribució de les condicions 

d'humitat de la conca. Aquestes condicions d'humitat, a la vegada, afecten al temps de 

resposta del nivell freàtic i a la magnitud de la resposta hidrològica. Segons les condicions 

d'humitat de la conca, la variabilitat espaciotemporal del nivell freàtic durant esdeveniments és 

diferent. En condicions seques, la variabilitat espaciotemporal del nivell freàtic és alta al llarg 

de tot l'esdeveniment. L'escolament es genera principalment per la contribució de les àrees que 

estan a prop del torrent. En canvi, en condicions de transició i especialment en condicions 

d'humitat, la variabilitat espaciotemporal del nivell freàtic és menor i respon de forma més 

ràpida, i produeix una resposta hidrològica major a escala de conca.  

Tot seguit, s'ha analitzat la dinàmica de la concentració de carboni orgànic dissolt (DOC) en 

diferents compartiments hidrològics (aigua de pluja, aigua del sòl, aigua subterrània i aigua del 

torrent) i a diferents escales temporals (estacional i d'esdeveniment). Els resultats mostren una 

variació estacional de la concentració de DOC a l'aigua de pluja i a la del sòl; però no s'aprecia 

aquesta estacionalitat a l'aigua subterrània i a la del torrent, a causa de que la concentració de 

DOC als dos compartiments està relacionada amb la dinàmica del nivell freàtic i la del cabal. A 

escala d’esdeveniment s'observa un augment sistemàtic de la concentració de DOC al torrent. A 

més a més, en els esdeveniments de diversos pics de cabal el pendent de la relació 

cabal/concentració de DOC sempre és major al primer pic. Aquest augment de la concentració 

de DOC al cabal durant els esdeveniments suggereix una contribució rellevant de l’aigua del 

sòl, però també l'existència de fonts de DOC pròximes al torrent o del mateix llit del torrent. 

D'altra banda, la relativa semblança de la dinàmica del DOC en el torrent durant esdeveniments 
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de diferent magnitud i amb processos hidrològics contrastats molt diferents, planteja la qüestió 

de l'origen de l'augment de DOC i el seu possible ús com a traçador.  

Per últim, s'ha realitzat el càlcul del temps mitjà de trànsit (MTT) de l'aigua als diferents 

compartiments hidrològics de la conca utilitzant, primer, els isòtops estables (δ18O i δ2H), i 

segon, el triti. L'ús de la variació del senyal isotòpic del δ18O a l'aigua de pluja i a diferents 

compartiments d'aigua mostrejats presenta limitacions a la conca d'estudi; únicament permet 

demostrar que el MTT de les aigües és major de dos anys. L'ús d'una nova metodologia 

(TEPMGLUE) per calcular el MTT, utilitzant el triti, permet considerar diferents fonts d'incertesa 

i avaluar l'ús de mostres d'edats diferents i de diferent precisió analítica. Els resultats revelen 

que s'obtenen valors de MTT similars, tant utilitzant mostres dels anys noranta, com totes les 

mostres disponibles (1996-1998 i 2013). En canvi, quan únicament es calcula el MTT utilitzant les 

mostres del 2013 s'obtenen dos valors de MTT molt diferents. Els resultats de l’estudi també 

mostren que a les conques de Vallcebre l'aigua més jove és la dels pous, seguida de l'aigua del 

torrents i la de les fonts. L'estudi també demostra el paper rellevant de la funció d'entrada de 

triti amb la pluja per calcular el MTT. Per últim, els resultats suggereixen que la topografia no 

afecta la distribució espaial del MTT de la conca, però sí la geologia. 

Tots els resultats d'aquesta tesi aporten informació addicional sobre el funcionament 

hidrològic de les conques de Vallcebre, i a més a més  suggereixen noves línies d'investigació. 
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RESUMEN 

El objetivo de esta tesis doctoral es mejorar la caracterización de los procesos hidrológicos 

de las cuencas Mediterráneas de montaña, utilizando mediciones hidrológicas distribuidas y 

trazadores ambientales, con la finalidad de comprender mejor su funcionamiento hidrológico. 

Durante el período 2009-2013 se recogieron datos hidrológicos de las cuencas de 

investigación de Vallcebre, monitorizadas desde 1996 por el grupo de Hidrología Superficial y 

Erosión del IDAEA-CSIC. Los datos incluyen, además del registro de precipitaciones y caudales, 

mediciones hidrológicas distribuidas y datos de trazadores ambientales (geoquímicos e 

isotópicos) a diferentes escalas temporales (estacional y de crecida). 

Con esta información, se ha analizado en primer lugar la dinámica espacio-temporal del 

nivel freático durante las crecidas. Los resultados muestran que durante las crecidas el nivel 

freático no reacciona de forma homogénea en toda la cuenca. La variabilidad espacial del nivel 

freático está muy afectada por las características de la localización de cada piezómetro, 

especialmente la distancia al cauce que tiene un papel esencial en la distribución de las 

condiciones de humedad de la cuenca. Estas condiciones de humedad, a su vez, afectan al 

tiempo de respuesta del nivel freático y a la magnitud de la respuesta hidrológica. Según las 

condiciones de humedad de la cuenca la variabilidad espacio-temporal del nivel freático 

durante la crecida es diferente. En condiciones secas la variabilidad espacio-temporal del nivel 

freático es alta a lo largo de toda la crecida. En estas condiciones, la escorrentía se genera 

principalmente por la contribución de las áreas próximas al cauce. En cambio, en condiciones de 

transición y especialmente en condiciones húmedas, la variabilidad espacio-temporal del nivel 

freático es menor y su respuesta es mas rápida, produciendo una mayor respuesta hidrológica  

en la cuenca. 

Seguidamente, se ha analizado la dinámica de la concentración del carbono orgánico 

disuelto (DOC) en diferentes compartimentos (agua de lluvia, agua del suelo, agua subterránea 

y agua del cauce) a diferentes escalas temporales (estacional y de crecida). Los resultados 

indican una variación estacional de la concentración de DOC en el agua de lluvia y en la del 

suelo. Sin embargo, no se aprecia esta estacionalidad en el agua subterránea y en la del cauce, 

debido a que la concentración de DOC en estos compartimentos está relacionada con la 

dinámica del nivel freático y del caudal. Durante las crecidas se observa un aumento sistemático 

de la concentración de DOC en el cauce. Además en las crecidas con varios picos de caudal el 

pendiente de la relación caudal/concentración de DOC es siempre mayor en el primer pico. El 

aumento de la concentración de DOC en el cauce durante las crecidas sugiere una contribución 

relevante del agua del suelo, pero también la existencia de fuentes de DOC próximas al cauce o 

en el mismo lecho. La relativa similitud de la dinámica del DOC en el cauce durante eventos de 
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distinta magnitud y con procesos hidrológicos contrastados muy distintos, plantea la cuestión 

del origen del aumento de DOC y su posible utilización como trazador.  

Por último, se ha realizado el cálculo del tiempo medio de transito (MTT) del agua, en 

diferentes compartimentos hidrológicos de la cuenca utilizando, primero, isótopos estables 

(δ18O y δ2H), y después el tritio. El uso de la variación de la señal isotópica del δ18O en el agua de 

lluvia y en los diferentes compartimentos de agua muestreados muestra sus limitaciones en la 

cuenca de estudio; solo permite demostrar que el MTT es mayor de dos años. El uso de una 

nueva metodología (TEPMGLUE) para calcular el MTT usando el tritio, permite considerar 

diferentes fuentes de incertidumbre y evaluar el uso de muestras de edades diferentes y con 

distinta precisión analítica. Los resultados revelan que se obtienen valores de MTT similares, 

tanto utilizando muestras de los años noventa, como todas las muestras disponibles (1996-1998 

y 2013). Sin embargo, cuando se calcula el MTT utilizando solo muestras del 2013 se obtienen 

dos valores de MTT muy distintos. Los resultados de MTT muestran que en las cuencas de 

Vallcebre el agua es más jóven en los pozos, seguida del agua de los cauces y la de las fuentes. 

El estudio también demuestra el papel relevante de la función de entrada de tritio en la lluvia 

para el cálculo del MTT. Por último, los resultados sugieren que la topografía no afecta la 

distribución espacial del MTT en la cuenca, pero sí la geología.  

Todos los resultados de esta tesis aportan información adicional sobre el funcionamiento 

hidrológico de las cuencas de Vallcebre, además sugieren nuevas líneas de investigación. 
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1 INTRODUCTION 

This section includes a general overview of hydrological studies at the catchment scale, with 

special emphasis on Mediterranean catchments. The overview focuses on the use of 

hydrometric approaches and environmental tracers for understanding factors and processes 

that control catchment hydrological response and runoff generation. 

As water is a scarce and essential resource for life, its sustainable management is of crucial 

importance. For this reason, water is of significant scientific interest in itself. In addition, 

knowledge of the hydrological pathways by which water moves through the catchment is 

important for our hydrological, geochemical and ecological understanding.  

The volume of water that arrives and flows in a stream comes from either direct 

precipitation on the flowpath or surface, subsurface and groundwater flow. Musy and Higy 

(2010) define (i) runoff or overland flow as the flow over the surface of the ground occurring 

after a storm, (ii) subsurface flow as the water that moves in the top layers of the soil that have 

been partially or totally saturated and (iii) groundwater flow as the water that infiltrates and 

then finds its way into the groundwater. Hydrologists also usually differentiate between soil 

water (unsaturated zone) from soil surface down to the upper limit of the water table and 

groundwater (saturated zone) (Custodio and Llamas, 2001).  

The characterization of dominant runoff processes is not an easy task, especially when such 

processes occur below the soil surface. In consequence, while surface runoff processes, such as 

infiltration or saturation excess overland flow, have often been well identified, processes 

occurring below the surface are still not properly understood (Beven, 1989). 

Several factors condition catchment hydrology, such as: i) the catchment’s characteristics 

(e.g. topography, geology, soil type, vegetation type, land use, catchment size, etc.); ii) 

atmospheric forcing and climate; and iii) the antecedent hydrological conditions of the 

catchment.  

1.1 Combining hydrometric data and environmental tracers 

Hydrological studies at the catchment scale seek to identify and understand processes and 

factors affecting runoff generation, among other questions.  

In recent decades, geochemical and isotopic methods have been combined with classic 

hydrometric approaches to identify the processes and factors governing catchment hydrology 

(see Hooper, 2001; Lischeid, 2008; Klaus and McDonnell, 2013). These combinations have 

proved a reliable tool for understanding hydrological mechanisms. They explain, among other 

things: how and where is water stored in a catchment? for how long? how is water mixed 
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between the different hydrological compartments? how does subsurface water distribution 

vary spatially and temporally? and how and when is runoff generated?  

The use of hydrometric data  

Hydrological studies are mainly based on hydrometric data, which usually include rainfall 

and discharge. However, as many hydrological processes occur below the soil surface, rainfall 

and discharge data do not sufficiently explain the processes and factors controlling runoff 

generation (Beven, 1991). For this reason, some pioneering studies began to monitor 

piezometric data measured at a few locations, in addition to discharge measurements (Hursh 

and Brater, 1941). The later incorporation of soil water content measurements, in hydrological 

studies at the catchment scale, demonstrated the important role of these variables in 

controlling catchment scale processes (e.g. Sklash and Farvolden, 1976; Myrabø, 1997; Bárdossy 

and Lehmann, 1998).  

The improvement and affordability of sensors, as well as better data logging and storage 

technologies, have made it easier to record hydrological data continuously and at different 

locations, providing a high amount of hydrometric information at different time scales from 

catchments worldwide. A clear example is the use of large sets of probes to monitor variables 

with high spatio-temporal variability, such as piezometric level or soil water content (e.g. 

Anderson and Burt, 1977; Myrabø, 1997; Western and Blöschl, 1999; Freer et al., 2002; Seibert 

et al., 2003).  

The use of environmental tracers  

Environmental tracers such as geochemical tracers or isotopes have been widely used in 

catchment hydrology (see Kendal and McDonnell, 1998; Hooper, 2001; Lischeid, 2008; 

Leibundgut et al., 2009 and references therein). On the one hand, they have proved a reliable 

tool for investigating runoff generation during storm events, by providing information on the 

spatial origin of water and on the contribution of different water sources. On the other hand, 

tracers have helped to calculate water’s mean transit time (MTT), i.e. the time water spends 

travelling subsurface through a catchment to the stream network (see a review in McGuire and 

McDonnell, 2006).  

The spatial origin of water, during rainfall-runoff events, can be studied by means of 

geochemical tracers when different hydrological compartments have different geochemical 

characteristics (Kirchner, 2003; Lischeid, 2008). For instance, the concentrations of dissolved 

organic carbon (DOC) can be used to identify the contribution of water compartments with a 

high organic matter content (e.g. Ladouche et al., 2001; Carey and Quinton, 2005; Morel et al., 

2009).  

Conversely, water isotopes (δ2H and δ18O) allow calculation of the relative contributions 

within the hydrograph of rainfall (sometimes referred to as new or event water) and of water 
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stored in the catchment before the onset of a hydrological event (sometimes referred to as old 

water or pre-event water) (Burns et al., 2001; Klaus and McDonnell, 2013). Isotopes have several 

advantages over geochemical tracers, as they can only be altered by mixing with isotopically 

different waters (Sklash et al., 1976) and there is no potential interaction between minerals and 

interstitial water, such as there is for geochemical tracers (Kennedy et al., 1986; Buttle, 1994). 

Water’s MTT is usually assessed by several tracers: δ18O (DeWalle et al., 1997), radioisotopes 

(Maloszewski and Zuber, 1982; Stewart and Fahey, 2010) or by a combination of tracers (Dincer 

et al., 1970; Uhlenbrook et al., 2002; Green et al., 2014; McCallum et al., 2014). δ18O is more 

suitable for dating waters younger than 4-5 years, while tritium is generally used to calculate 

water ages up to 100 years, because its decay covers several half-lives (McGuire and McDonnell, 

2006; Stewart et al., 2007; Stewart et al., 2010). 

Numerous studies have combined multiple tracers to identify the processes and factors 

governing catchment hydrology (e.g. Uhlenbrook et al., 2002; McGlynn and McDonnell, 2003b; 

Joerin et al., 2005). In addition, recently, other tracers or water properties have been used for 

hydrological purposes. For example, diatoms have been used to quantify the spatial sources of 

runoff (Pfister et al., 2009; Martinez-Carreras et al., 2015) or thermal imagery techniques 

(Pfister et al., 2010; Schuetz and Weiler, 2011) have been used to detect groundwater inflows 

to the stream and water mixing areas. 

1.2 The hydrology of Mediterranean catchments 

Most of the hydrological studies of the last 50 years have examined humid and temperate 

regions. Mediterranean regions, which are the context of this study, have received less 

attention, despite the Mediterranean being one of the most vulnerable regions of Europe in 

terms of water resources, due to its sensitivity to Global Change (European Environment 

Agency, 2012).  

Mediterranean climate regions, which lie between 30º and 45º latitude, are located around 

the Mediterranean itself and in coastal areas of California, South America, South Africa and 

South and Western Australia. Mediterranean climate is characterized by strong intra and 

interannual precipitation variability (Woodward, 2009) and by strong climatic seasonality, with 

drought periods. For these reasons, Mediterranean regions are characterized by unevenly 

distributed water resources that mainly depend on runoff generated in mountain areas. 

Therefore, the study of the hydrology of Mediterranean mountain areas is especially important 

as a strategic aspect of water resource management (Viviroli et al., 2007) and may help 

anticipate hydrological consequences of global change. García-Ruiz et al. (2011) analysed 

future climate change scenarios in Mediterranean regions and stressed the need to improve 

water management, water pricing and water recycling policies, in order to ensure water supply. 
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Table 1.1 gives a non-exhaustive inventory of hydrological studies of Mediterranean 

research catchments. These studies are classified according to the methodology used 

(hydrometric, geochemical and isotopic).  

Table 1.1 Hydrological studies in Mediterranean research catchments. The studies are classified 
according to the methodology used. The studies carried out at the Vallcebre research 
catchments are not included. 

Data Catchment Location Reference 

Hydrometric TM9 Catalonia. Spain Àvila, 1987 
 - Victoria. Australia Burch et al., 1987 
 Wights Perth. Australia Ruprecht and Schofield, 1989 
 Rimbaud Var. France Lavabre et al.,1993 
 Réal Collobrier Var. France Gaillard et al., 1995 
 Maurets Var. France Taha et al., 1997; Grésillon and 

Taha, 1998 
 Roujan Languedoc-

Roussillon. France 
Linde et al., 2007 

 San Salvador, 
Arnás and 
Araguás 

Aragón. Spain Lana-Renault et al., 2007, 2014; 
García-Ruíz et al., 2008; Serrano 
Muela, 2013 

 Guadalperalón Extremadura. Spain Ceballos and Schnabel, 1998; 
Schnabel and Mateos 
Rodríguez, 2000 

Geochemical Rimbaud Var. France Travi et al., 1994 
 Maurets Var. France Marc et al., 1995 
 Roujan Hérault. France Ribolzi et al., 2000 
 Riera Major Catalonia. Spain Butturini and Sabater, 2000 
 Mont-Lozère Cevennes. France Marc et al., 2001 
 Mokelumne Sierra Nevada. 

California 
Holloway and Dahlgren, 2001 

 Fuirosos Catalonia. Spain Bernal et al., 2002, 2005; 
Vázquez et al., 2007 

 Can Vila, Riera 
Major and 
Fuirosos 

Catalonia. Spain Butturini et al., 2006, 2008 

 Hérault Hérault. France Petelet-Giraud and Negrel, 2007 
 Draix  Alpes de Haute 

Provence, France  
Crass et al., 2007 

 La Tordera Catalonia. Spain Von Schiller et al., 2008 

Isotopic Cannone Corsica. France Loÿe-Pilot, 1990 
 Montseny, 

Prades 
Catalonia. Spain Neal et al., 1992 

 La Sapine, Les 
Cloutasses and 
La Latte 

Lozère. France  Durand et al., 1993 

 Rimbaud Var. France Travi et al., 1994 
 Maurets Var. France Marc et al., 1995 
 Mont-Lozère Cevennes. France Marc et al., 2001 
 Draix  Alpes de Haute 

Provence, France 
Crass et al., 2007 
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1.3 The Vallcebre Research Catchment 

The Vallcebre Research Catchments, where this study has been conducted, is located at the 

headwaters of the Llobregat River, on the southern margin of the Pyrenees, NE Spain (42°12’ N, 

1°49’ E). This research area, managed by the Surface Hydrology and Erosion group (IDAEA-

CSIC), was selected in the late eighties to analyse the hydrological consequences of land 

abandonment and the sediment yield from badland areas (Latron et al., 2010a).  

The research area consists of two catchment clusters: Cal Rodó and Cal Parisa. The main 

cluster (Cal Rodó, 4.17 km2) was sub-divided into three sub-catchments: Can Vila (0.56 km2), Ca 

l’Isard (1.32 km2) and Santa Magdalena (0.53 km2) (Fig. 1.1).  

This study focuses mainly on the Can Vila catchment, whose characteristics (i.e. topography, 

geology, land use, soil type, vegetation type, etc.) are described in the methodology of each 

chapter of the thesis. 

 

Fig. 1.1 Map of the Cal Rodó catchment and of the Can Vila, Ca l’Isard and Santa Magdalena 
sub-catchments. Only the monitoring design used in the present study (July 2009 to July 2013) is 
shown. Land uses were digitized from a high-resolution orthophoto (ICC, 2012); and the stream 
network is taken from Latron (2003). 
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Fig. 1.2 Pictures of the types of landscapes found in the Vallcebre Research Catchments. Source: 
M.Roig-Planasdemunt 

A complete overview of the general hydrological findings in the Vallcebre research area can 

be found in Llorens and Gallart (1992), Llorens et al. (1992, 2010a), Gallart et al. (1994, 1997, 

2002, 2005a, 2010, 2014), Latron (2003), Latron et al. (2003, 2008, 2009, 2010a, 2010b, 2014), 

Latron and Gallart (2007, 2008) and García-Estringana et al. (2012).  

In addition, more specific studies, though not directly discussed here, have been performed 

in the research area, such as: investigations of sediment dynamics and transport (Gallart et al., 

1998, 2005b, 2014; Regüés and Gallart, 2004; Regüés et al., 1995, 2000; Llorens, 1997; Soler et 

al., 2007, 2008), hydrological modelling (Anderton et al., 2002a and b; Gallart et al., 2007, 2008; 

Martínez-Carreras et al., 2007; Ruiz-Pérez et al., 2015) and ecohydrology (Llorens et al., 1997, 
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2003, 2010a, 2010b, 2011, 2013, 2014; Poyatos et al., 2005, 2008; Muzylo et al., 2012a and b; 

Molina et al., 2014). 

These studies, conducted over the last 25 years, have contributed to improving the 

understanding of hydrological processes in the research area, and shed light on the hydrology 

of Mediterranean catchments.  

More specifically, and directly related with the subjects of the present paper, Latron and 

Gallart (2007, 2008) and Latron et al. (2008) included information on the depth to water table 

to explain runoff generation processes in Can Vila catchment. However, in these papers the 

spatial variability of the depth to water table was not analysed. Likewise, Herrmann et al. 

(1999) used environmental tracers (δ18O and tritium) to calculate MTT in the Vallcebre 

catchments, but the uncertainty of MTT calculation was not considered. 

1.4  Objectives of the study 

Within this framework, and following the research lines of the Surface Hydrology and 

Erosion group of the Institute of Environmental Assessment and Water Research (IDAEA)-

Spanish National Research Council (CSIC), the main objective of this thesis is the 

characterization of hydrological processes in a Mediterranean mountain catchment by 

combining distributed hydrological measurements and environmental tracers.  

To achieve this target, the thesis is divided into three objectives:  

 To investigate the spatio-temporal dynamics of depth to water table during storm 

events.  

 To analyse dissolved organic carbon (DOC) concentration dynamics in different 

water compartments (rainfall, soil water, groundwater and stream water) through 

the year and during storm events. 

 To calculate water mean transit time (MTT) in different water compartments 

(stream, springs and wells).  

The thesis aims to contribute to the clarification of the following questions: 

Does the depth to water table vary temporally and spatially during storm events? Is the 

depth to water table affected by catchment location characteristics? Do antecedent wetness 

conditions affect shallow groundwater dynamics and streamflow response? 

Does DOC in rainfall, soil water, groundwater and stream water follow any pattern during 

the year? Are the DOC dynamics during storm events similar throughout the year? Is DOC a 

useful tracer of water origin in the Vallcebre research catchments? 

How old is the water in the streams, springs and wells of the Cal Rodó catchment?  Does 

water MTT vary spatially in the catchment? What results are obtained when applying an 
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uncertainty analysis of MTT calculations, using tritium and different sampling designs? Are 

these results similar to those obtained by Herrmann et al. (1999)?  

1.5  Thesis structure 

The thesis consists of five chapters, including the Introduction (Chapter One) and 

Conclusions (Chapter Five). 

Chapter Two studies the spatio-temporal dynamics of depth to water table during storm 

events in the Can Vila catchment. It examines the effect of location characteristics on the 

spatial and temporal distribution of depth to water table. The roles of antecedent wetness 

conditions in water table response and streamflow response are also analysed. 

Chapter Three focuses on the study of the seasonal and storm dynamics of dissolved organic 

carbon (DOC) at the Can Vila catchment. This chapter characterizes DOC dynamics in the 

different hydrological compartments and analyses the factors affecting them. DOC dynamics 

during storm events and the factors that control DOC’s delivery to the stream are also 

evaluated.  

Chapter Four calculates water mean transit time in the streams, springs and wells of the Cal 

Rodó catchment by using stable isotopes and tritium. It includes a complete uncertainty analysis 

of MTT calculations, using tritium and different sampling designs. The results are compared 

with the results obtained by Herrmann et al. (1999) and MTT spatial variability is examined. 
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2 SPATIAL AND TEMPORAL VARIABILITY OF DEPTH TO WATER TABLE DURING 

RAINFALL-RUNOFF EVENTS 

2.1 Introduction 

Groundwater dynamics are key to control of streamflow dynamics and runoff generation 

processes. Therefore, the study of shallow groundwater dynamics, and their controlling factors, 

is essential to the understanding of the hydrological functioning of a catchment. The 

improvement and affordability of sensors have made it much easier to record data on depth to 

water table continuously at different locations. Recent studies based on distributed water table 

measurements have demonstrated that depth to water table does not respond homogeneously 

to rainfall in humid regions (e.g. Haugt and van Meerveld, 2011; Rodhe and Seibert, 2011). 

Most studies observed a marked spatial-temporal variability of water table dynamics, related to 

location characteristics such as bedrock topography (e.g. Freer et al., 2002; Van Meerveld et al., 

2015), soil properties (Bachmair and Weiler, 2012), distance to the stream (Seibert et al., 2003; 

Kuraś et al., 2008; McMillan and Srinivasan, 2015) and former agricultural activities that 

changed local topography and soil properties (Lana Renault et al., 2014). In recent studies, the 

topography wetness index (Beven and Kirkby, 1979) and the distance to the stream have 

proved good predictors of water table dynamics. Jordan (1994) and Rinderer et al. (2016) 

observed that the depth to water table was close to the soil surface in areas of the catchment 

with high values on the topographic wetness index. Other studies showed that areas with 

persistent water table and fast water table responses were the areas near the stream channel 

(Peters et al., 2003; Detty and McGuire, 2010). In fact, at locations at similar distances from the 

stream, water table levels correlate closely (Seibert et al., 2003). 

Different antecedent wetness conditions also affect water table responses (Bachmair et al., 

2012). For example, Penna et al. (2014) observed that, the shallower the depth to water table, 

the faster and more extended the groundwater response. Penna et al. (2011) also observed that 

during small storms in dry antecedent conditions the low amount of stormflow was mainly 

produced by contributions from riparian zones, whereas during wet antecedent conditions, the 

hillslope contribution was dominant. 

Finally, since the spatio-temporal variability of the water table depth has a strong influence 

on streamflow dynamics, the relationship between streamflow and water table responses has 

been studied in a great number of catchments worldwide (e.g. Myrabø, 1997; Seibert et al., 

2003; Kuraś et al., 2008; Latron and Gallart, 2008). Results show that, in general, piezometers 

close to the stream have the strongest correlation with discharge (Haugt and van Meerveld, 

2011) and that different correlations depend on location (Kendall et al., 1999) or on catchment 
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wetness conditions (Lana-Renault et al., 2007). Seasonal differences in the relationship between 

runoff response and water table dynamics are also often found (e.g. Bachmair et al., 2012).  

Despite the number of studies of the spatio-temporal variability of the depth to water table 

on the small catchment scale, relatively few studies have focused specifically on the variability 

of the groundwater response during rainfall-runoff events. Based on observations at 90 wells, 

Bachmair et al. (2012) found that the wells activated during events varied between events. 

Penna et al. (2014) analysed the relationship between the mean water table depth and the 

standard deviation during rainfall-runoff events, in order to study spatial variability. More 

recently, Rinderer et al. (2016) investigated the topographic controls and the effects of rainfall 

and wetness antecedent conditions on the water table timing response during rainfall-runoff 

events. 

Most of these investigations were carried out in humid temperate catchments (with mean 

annual precipitation usually above 1,000 mm y-1). Water table dynamics have received less 

attention in Mediterranean regions, which is the context of this study. In the south of France, 

Gaillard et al. (1995) combined water table and soil water potential with soil water content 

data to study the runoff generation processes. Grésillon and Taha (1998) found close 

correlation between stream flow and piezometric levels near the stream. Taha et al. (1997) 

tested a hydrological model using water table measurements. Also in the south of France, Linde 

et al. (2007) calculated the spatial variations of water table by using self-potential and 

piezometric data. In the Spanish Pyrenees, Lana-Renault et al. (2007) studied the streamflow 

and water table response of several rainfall-runoff events. More recently, Lana-Renault et al. 

(2014) investigated in greater detail the spatio-temporal fluctuations of the water table by 

measuring at five locations in the same catchment. 

In the Vallcebre research catchments, water table data from one location have been used to 

test hydrological models (Gallart et al., 2007) and to investigate runoff generation processes 

(Latron and Gallart, 2008). However, as only a couple of sites were monitored in these studies, 

the spatial variability of the depth to water table could not be examined. The aim of this study 

is to make use of the distributed water table information available in the Vallcebre research 

catchments since 2009 to investigate the spatial and temporal distribution of depth to water 

table during rainfall-runoff events in a Mediterranean mountain area. Therefore, its objectives 

were: (a) to examine the effect of location characteristics on the spatial and temporal 

distribution of depth to water table; (b) to examine the effect of shallow groundwater 

dynamics on streamflow; and (c) to analyse the role of antecedent wetness conditions on 

shallow groundwater dynamics during rainfall-runoff events. 
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2.2 Methods 

2.2.1 Study site 

All the data presented in this study were collected from the Can Vila research catchment 

(0.56 km2), located in the Vallcebre research area (Latron et al., 2010a) at the headwaters of the 

Llobregat River, on the southern margin of the Pyrenees, northeast Spain (42°12’N, 1°49’E). The 

Vallcebre research area, managed by the Surface Hydrology and Erosion group (IDAEA-CSIC), 

was selected in early 1990 to analyse the hydrological consequences of land abandonment and 

the hydrological and sediment yield behaviour of badlands areas.  

In the Can Vila catchment (Fig. 2.1), elevations range from 1,458 to 1,115 m above sea level, 

and slope gradients are moderate, with a mean value of 25.6% (Latron and Gallart, 2007). The 

topographic wetness index ranges from 6.1 to 10.2 (Beven and Kirkby, 1979). Soils that have 

developed over red clayey smectite-rich mudrocks are predominantly of silt-loam texture. 

Topsoil is rich in organic matter (on average 4.1% from 0 to 55 cm below the ground surface) 

and well-structured, with high infiltration capacity, although hydraulic conductivity decreases 

rapidly with depth (Rubio et al., 2008). Before and during the 19th century most of the hill-

slopes of the catchment were deforested and terraced for agricultural purposes. They were 

abandoned during the second half of the 20th century. As a consequence of terracing, soil 

thickness ranges from less than 50 cm in the inner part of the terraces to more than 2 or 3 m in 

their outer part (Latron et al., 2008). Another consequence of the terracing was the 

modification of the natural stream network, with the construction of artificial drainage ditches 

in the upper part of the catchment. Following land abandonment, spontaneous forestation by 

Pinus sylvestris has occurred (Poyatos et al., 2003) and forest now covers 34% of the catchment. 

The remainder of the catchment is widely covered by pasture and meadows. The main channel 

is 1 to 2 m wide and is not very deeply incised. No riparian zone is observed in the catchment. 

Climate is humid Mediterranean, with a marked water deficit in summer. The mean annual 

rainfall (1988–2013) is 880 ± 200 mm, with a mean of 90 rainy days per year (Latron et al., 

2014). Snowfall accounts for less than 5% in volume. The rainiest seasons are autumn and 

spring. Winter is the season with the least rainfall. In summer, convective storms may provide 

significant rainfall input. Mean annual temperature at 1,260 m a.s.l. is 9.1ºC and mean annual 

potential evapotranspiration is 823 ± 26 mm (Latron et al., 2010a).  

The combined dynamic of rainfall and evapotranspiration favours the succession of wet and 

dry or very dry periods during the year (Latron and Gallart, 2007). Dry and very dry periods 

occur in winter and summer, respectively, whereas wet periods correspond to spring and late 

autumn. Over the period 1995–2013, mean annual runoff in the Can Vila catchment was 302 ± 

191 mm, representing 34% of rainfall (Latron et al., in prep.). The stream shows marked 

seasonality and often dries up in summer for several weeks. 
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2.2.2 Hydrometric monitoring 

Rainfall in the Can Vila catchment is recorded every 5 min by means of three 0.2 mm 

tipping-bucket rain gauges (Casella Cel), located 1 m above the ground (Fig. 2.1). A standard 

meteorological station is located in the upper part of the catchment.  

At the Can Vila gauging station, streamflow is measured by means of a 90º V-notch weir 

with a water pressure sensor (6542C-C, Unidata) connected to a datalogger (DT50, Datataker). 

Mean water level values (measured every 10 seconds) are recorded every 5 min and converted to 

discharge values with an established stage-discharge rating curve calibrated with manual 

discharge measurements (Latron and Gallart, 2008). 

Water table data are collected from 13 piezometers distributed all over the catchment. 

Except for ZCV08 for an abandoned well, all piezometers were hand-augered as far down into the 

soil as possible to insert 55 mm–diameter PVC tubes. As a result, the piezometers have different 

depths (ranging from -1,300 to -4,220 mm) (Table 2.1). The piezometers were sealed for the top 

0.5 m to prevent entrance of surface waters, with open access below. Water table level is 

continuously recorded every 10 min in each piezometer (Fig. 2.1) by means of a water pressure 

sensor (10m MiniDiver, Schlumberger Water Services), with compensation made for barometric 

pressure variations. The pressure sensors were calibrated by taking manual measurements of 

water table depth directly from the piezometers, at the time data were collected. Water table 

depth level is described as millimetres (mm) from soil surface.  

 

Fig. 2.1 Map of the Can Vila catchment, showing the monitoring design. 
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2.2.3 Characteristics of piezometer locations 

The metrics for each piezometer were obtained from the 5 m resolution digital elevation 

model (DEM) of the catchment, provided by the Institut Cartogràfic de Catalunya. The 

piezometers’ distance from the stream was calculated as the Euclidean distance to the nearest 

perennial stream channel. The Topographic Wetness Index (TWI) (Beven and Kirkby, 1979) was 

calculated by the open source software SAGA-GIS. All the piezometers were located in areas of 

similar soil properties and similar land–cover. Table 2.1 shows each piezometer’s location. 

Table 2.1 Characteristics of piezometer locations. 

Location Depth 
Elevation 

a.s.l 

Elevation 
above the 

stream 

Distance 
from the 
stream 

TWI 

 (mm) (m) (m) (m)  
ZCV08 -4,220 1,267 21 135 8.2 
ZCV10 -1,917 1,279 14 36 6.2 
ZCV11 -1,936 1,283 9 63 8.1 
ZCV12 -1,524 1,272 8 61 8.2 
ZCV16 -2,137 1,190 1 49 7.9 
ZCV17 -2,389 1,199 0 16 8.8 
ZCV27 -1,300 1,178 9 26 10.2 
ZCV31 -2,215 1,163 11 35 8.1 
ZCV32 -2,306 1,184 11 62 7.0 
ZCV33 -2,422 1,174 19 128 7.1 
ZCV34 -2,383 1,165 10 50 8.5 
ZCV35 -2,062 1,138 8 36 6.1 
ZCV36 -1,613 1,141 7 31 7.4 

   a.s.l: above sea level 

2.2.4 Analysis of rainfall-runoff events 

The analysis of water table and discharge response to storm rainfall was based on rainfall-

runoff events occurring between July 2009 and July 2013. To identify these events, storm-

runoff depth and coefficient were derived for each selected significant rainfall-runoff event, 

using the classic “constant slope” hydrograph separation method of Hewlett and Hibbert 

(1967) with a modified slope value of 1.83 L s-1 km-2 day-1 (see Latron et al., 2008). During the 

study period 36 rainfall-runoff events were recorded, but only 19 were analysed in this study. 

These were the events with between 10 and 80 mm rainfall and with a resulting peak of 

specific discharge higher than 20.0 L s-1 km-2. For each rainfall-runoff event, several variables were 

derived from the hyetograph and hydrograph. These were rainfall depth, maximum rainfall 

intensity in 30 min and 5 min (Imax), runoff depth, storm runoff coefficient (Cs) and pre-event specific 

discharge (Qb). 

To analyse the differing characteristics of the water table response, two phases were 

considered during each storm flow event.  
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First, the time to response (tresponse) was defined as the time lag between the start of rainfall 

and the largest change between two successive water table level measurements, as in Rinderer 

et al. (2016). Water table responses with no rise (i.e. when the water table was already at the 

soil surface) were considered as tresponse = 0. The water table at the start of the rainfall event was 

defined as the pre-event depth to water table (WTi).  

After the water table response, the water table rises to a maximum. The time to peak (tpeak) 

is the time between the start of the rainfall and the time at which the water table had risen to 

95% of its maximum. As in Rinderer et al. (2016), the 95% value was used because it is more 

robust than the absolute water table peak. For example, on some occasions the water table 

may first rise quickly and then continue to rise at a much slower rate. Water table increase 

(WTincrease) is defined as the difference between water table at tresponse and at tpeak.   

To contrast the water table response and the stream response, the time between peaks (tpeak-

peak) is defined as the time lag between the time of peak discharge at the catchment outlet and 

the time at which the water table had risen to 95% of its maximum, as in Haught and van 

Meerveld (2011). Thus, a positive lag time means that discharge peaks earlier than the water 

table peak and vice versa.  

All the variables were determined with a template in Excel. The median, 25% and 75% 

quartiles were calculated for all the variables. Piezometer readings greater than 0 (i.e. water 

table observed at the piezometer) were available in 95.5% of all 13 piezometers in the 19 

events analysed in this study. The remaining 4.5% with 0 measurements (i.e. dry piezometer) 

were excluded from calculations. 

The Shapiro test was applied. Then the non-parametric Spearman rank correlation 

coefficient (rs) between the different characteristics was determined. The correlation was 

considered significant when p < 0.01 and p < 0.05. The software R (version 3.2.0) was used for 

the statistical analysis of the data.  

2.3 Results 

2.3.1 Locations and water table response characteristics 

Fig. 2.2 shows the characteristics of each piezometer location (distance to the stream and 

TWI), as well as the median and quartiles of the water table depth at the start of the event 

(WTi) and of the variables characterizing the water table response (WTincrease, tresponse, tpeak, tpeak-peak). 

Locations are ranked according to the median value of WTi. Results show that for seven 

locations WTi was usually close to the surface. In other locations WTi was deeper, with median 

values between -200 mm and -1,900 mm, and had greater variability (Fig. 2.2(a)). 

Median WTincrease ranged from 0 to 816 mm, with greater variability for major water table 

increases. Logically, the locations where WTi was usually close to the surface had the smallest 
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water table increase. In general, there was an inverse relationship between WTi and WTincrease, 

except for locations ZCV32 and ZCV33, which, despite having the lowest median WTi values, did not 

have the highest WTincrease values (Fig. 2.2(b)). 

For all 13 piezometers, median tresponse ranged from 0.0 to 6.6 h. The variability of tresponse was 

also high at each location, as shown by the quartiles range. For WTincrease, a general inverse 

relationship between WTi and tresponse was visible, except for locations ZCV32 and ZCV33  (Fig. 2.2(c). 

The tpeak ranged between 0.0 and 18.8 h. Median tpeak increased overall as WTi decreased and was 

more variable for locations where WTi was not close to the surface (locations ZCV34 to ZCV33 in Fig. 

2.2(d)). Piezometer ZCV32 showed the greatest variability in terms of its tpeak, with an interquartile 

range between 6.7 and 35.3 h. 

The median tpeak-peak value was positive at five locations (i.e. discharge peaks earlier than the 

water table peak), equal to zero at location ZCV11 and negative at seven locations (Fig. 2.2(e)). 

Except for location ZCV34, negative tpeak-peak values were always very low (i.e. close to 0) with small 

tpeak-peak interquartile ranges.  

2.3.2 Relationship between water table response and location characteristics 

Table 2.2 shows the correlations between location characteristics (elevation above the 

stream, distance from the stream and TWI) and the median pre-event depth to the water table 

WTi. 

WTi was correlated (rs = -0.47, p > 0.05) with the piezometer distance from the stream (Table 

2.2). In near-stream locations (i.e. fewer than 40 m from the stream) WTi was close to the 

surface. While for locations further away than 40 m, WTi was often much deeper and showed a 

higher degree of variability (i.e. larger quartiles) (Fig. 2.3(a)). However, at some locations (Zcv11, 

Zcv12), WTi was close to the surface in spite of the greater distance from the stream (around       

60 m). 

In contrast, the elevation above the stream showed much lower correlation with WTi (Table 

2.2). Piezometers located at similar elevations above the stream (i.e. 0–1 m above the stream or 

around 10 m above the stream) showed very different WTi levels (Fig. 2.3(c)).  

The Topographic Wetness Index (TWI) also showed lower correlation with WTi (Table 2.2). 

For similar TWI values, the median WTi varied widely. For example, WTi from 0 to -1,500 mm 

corresponded to similar values TWI of around eight (Fig. 2.3(b)). These results suggested that 

the distance from the stream and the height of the piezometer above the stream were more 

important than the TWI in defining the pre-event depth to water table.  
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Fig. 2.2 Median and quartiles (25% and 75%) of (a) pre-event depth to water table, (b) water 
table increase, (c) response time, (d) time to peak, (e) time lag between water table peak and 
discharge peak at each piezometer location for the 19 observed rainfall-runoff events, (f) 
distance from the stream and (g) Topographic Wetness Index at each piezometer location. 
(Piezometers are ranked according to their WTi value). 
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Table 2.2 Spearman rank correlation coefficient between location characteristics (elevation 
above the stream, distance from the stream and Topographic Wetness Index (TWI)) and the 
median pre-event depth to water table (WTi). 

 
Elevation above 

the stream 
Distance from the 

stream 
TWI WTi 

Elevation above 
the stream 

 0.57* -0.20 -0.39 

Distance from the 
stream 

  -0.22 -0.47 

TWI    0.33 

WTi     

     Significance:**p < 0.01; *p < 0.05 

 

 
Fig. 2.3 Relationship between the median pre-event depth to water table at each piezometer 
location and (a) the distance from the stream, (b) the Topographic Wetness Index and (c) the 
elevation above the stream. Black dots are the median values and bars correspond to quartiles 
(25% and 75%). Significance:**p < 0.01; *p < 0.05; ns p > 0.05. 

Table 2.3 shows the correlations between the median pre-event depth to water table (WTi) 

and variables characterizing the water table response (median water table increase (WTincrease), 

median response time (tresponse), median time to peak (tpeak) and median time lag between water 

table peak and discharge peak (tpeak-peak)) at each piezometer location. The median WTi 

significantly negatively correlated with the median WTincrease (rs = -0.94, p < 0.01) and with the 

median tresponse (rs = -0.77, p < 0.01) and tpeak (rs = -0.86, p < 0.01). A negative non-significant 

correlation existed with median tpeak-peak. This means that, the deeper the water table (lower 

WTi), the higher the WTincrease and the slower the water table response, increasing the response 

time and the time to peak.  

The relationship between WTi and tresponse in Fig. 2.4(a) shows that at locations with the water 

table close to the surface, the median tresponse was short (generally under two hours), whereas for 

other locations median tresponse was between two and six hours. The relationship between WTi 

and tpeak was also clear (Fig. 2.4(b)) with tpeak values lower than 6 h at locations with the water 

table close to the surface and between 12 and 19 h for the other locations. Fig. 2.4(c) shows 
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that the median tpeak-peak was relatively small except for locations with deeper WTi, which were 

also more variable (greater interquartile ranges). 

 

Table 2.3 Spearman rank correlation coefficient between depths to water table variables (i.e. 
median pre-event depth to water table (WTi), median water table increase (WTincrease)) and 
timing variables (i.e. median time response (tresponse), median time to peak (tpeak) and median time 
lag between water table peak and discharge peak (tpeak-peak)) at each piezometer location. 

 WTi WTincrease tresponse tpeak tpeak-peak 

WTi  -0.94** -0.77** -0.86** -0.52 

WTincrease   0.85** 0.85** 0.47 

tresponse    0.87** 0.28 

tpeak     0.49 

tpeak-peak      

            Significance: **p < 0.01; *p < 0.05 

 

 
Fig. 2.4 Relationship between the median pre-event depth to water table at each piezometer 
location and (a) response time, (b) time to peak and (c) time lag between water table peak and 
discharge peak. Black dots are the median values and bars correspond to quartiles (25% and 
75%). Significance:**p < 0.01; *p < 0.05; ns p > 0.05. 

2.3.3 Water table response characteristics during rainfall-runoff events 

The 19 rainfall-runoff events cover a wide range of magnitude, with rainfall depths from 11 

to 80 mm and maximum rainfall intensities from 1 to 64 mm h-1. They occurred under several 

hydrological conditions, as reflected by the wide range of pre-event discharges (Qb) (0.1 and 

41.8 L s-1 km-2) and of median pre-event depth to water table (-849 to -69 mm). As a result, 

runoff responses of the 19 events were highly variable, with specific peak discharges ranging 

from 46.5 to 5,511.0 L s-1 km-2 and storm runoff coefficient (CS) between 2.8% and 53.5%. 
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Fig. 2.5 gives an overview of the great variability of observed runoff responses, depending 

on the pre-event discharge as well as on rainfall depth and intensity. The lowest runoff 

responses corresponded to low rainfall depths or to low pre-event discharges. Largest runoff 

responses could be observed for pre-event discharges higher than 15 L s-1 km-2 in response to 

large or intense rainfall events. 

 

Fig. 2.5 Characteristics of the 19 rainfall-runoff events analysed. Pre-event discharge (Qb) is 
shown on the x-axis; and rainfall on the y-axis. Dot size is proportional to the storm runoff 
coefficient (Cs) and the grey scale indicates rainfall intensity. Numbers refer to events analysed 
in Fig. 2.8. 

Fig. 2.6 shows the ranked Cs of the 19 rainfall-runoff events analysed, and the WTi and Qb. In 

addition, Fig. 2.6 shows four variables (WTincrease, tresponse, tpeak and tpeak-peak) characterizing the 

median (i.e. considering all piezometers) water table response during each rainfall-runoff 

event. There was significant correlation between Qb and WTi (rs = 0.75, p < 0.01, Fig. 2.7(a) and 

Table 2.4). Cs correlated significantly with WTi (rs = 0.63, p < 0.01, Fig. 2.7(b) and Table 2.4) but 

not with Qb. Finally, Cs correlated negatively with WTincrease (rs = -0.54, p < 0.05, Fig. 2.7 (c) and 

Table 2.4). These results suggest that the higher the water table was before a rainfall event, the 

greater the Cs was in response to a given rainfall. On the contrary, no correlation was found 

between Cs and the time variables (tresponse, tpeak and tpeak-peak, see Fig. 2.6 and Table 2.4), showing 

(see Table 2.3) that these variables were much more closely related to the position of the water 

table before rainfall than to the magnitude of the runoff response. 
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Fig. 2.6 (a) Pre-event discharge (Qb) and (b) storm runoff coefficient (Cs) of the 19 rainfall-runoff 
events analysed. Median and quartiles (25% and 75%) of (c) pre-event depth to water table, (d) 
water table increase, (e) response time, (f) time to peak and (g) time lag between water table 
peak and discharge peak for each rainfall-runoff event at all piezometer locations. Rainfall-
runoff events are ranked according to their storm runoff coefficient (Cs) value. 
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Table 2.4 Spearman rank correlation coefficient between the median pre-event depth to water 
table (WTi), variables characterizing the water table response (median water table increase 
(WTincrease), median response time (tresponse), median time to peak (tpeak) and median time lag 
between water table peak and discharge peak (tpeak-peak)) and rainfall-runoff event characteristics 
(pre-event discharge (Qb) and storm runoff coefficient (Cs)). 

 Cs WTi WTincrease tresponse tpeak tpeak-peak 

Qb 0.40 0.75** 0.82**  - 0.66**  -0.60**  0.35 

Cs  0.63** -0.54* -0.22 -0.95 0.19 

         Significance: **p<0.01; *p < 0.05 

 

 

Fig. 2.7 Relationship between the pre-event depth to water table and (a) pre-event discharge 
and (b) storm runoff coefficient. (c) Relationship between water table increase and storm 
runoff coefficient. Black dots are the median values and bars correspond to quartiles (25% and 
75%). Significance:**p < 0.01; *p < 0.05; ns p > 0.05. 

2.3.4 Analysis of continuous water table dynamics during floods 

To investigate further water table dynamics during floods, three floods that occurred under 

different antecedent wetness conditions were compared (Fig. 2.8). The three floods were 

characterized by similar rainfall amounts (39.1 to 48.8 mm) and precipitation intensities (3.5 to 

8.0 mm h-1), but by different antecedent wetness conditions, as shown by their different pre-

event discharges (Qb = 0.1, 10.7 and 26.4 L s-1 km-2, respectively). 

2.3.4.1 Water table dynamics during floods 

The 19 January 2013 flood occurred during the dry winter season. Because of the dry 

antecedent conditions, the runoff response to the 39.6 mm rainfall was limited (Fig. 2.8(a)), as 

shown by the small Cs (7.5%). Median WTi was -422 mm before the rainfall and saturation was 

not observed at any piezometer. Piezometers varied greatly for water table response: some 

reacted quickly to rainfall, some showed a delayed response and some had no response (Fig. 

2.8(b)). Similar water table dynamics were observed for the six floods with low Qb (floods one 

to six in Table 2.5 and Appendix B). Mean values of the median tresponse, and tpeak for these floods 

were 7.3 and 18.4 h, respectively. However, there was some variability in the timing of the 
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water table response, as in the case of the 23 July 2013 event, where the high rainfall intensity 

(Imax30 = 64 mm h-1) yielded very small tresponse and tpeak values despite the low Qb value. 

The 3 March 2010 flood corresponded to intermediate antecedent conditions (Qb = 10.7 L s-1 

km-2). The runoff response to the 39.1 mm rainfall was moderate (Cs = 17.4%) (Fig. 2.8(a)). 

Median WTi was -169 mm and saturation was observed in one piezometer before the event. All 

piezometers reacted to the rainfall, but their responses were more or less delayed depending 

on the depth of the water table before the event (Fig. 2.8(b)). The observed water table 

dynamics during the six floods with intermediate antecedent conditions (floods 7 to 12 in Table 

2.5 and Appendix B) were comparable. In this case, water table responses were quicker and 

mean values of the median tresponse and tpeak for these floods were 2.7 and 5.3 h, respectively. 

Again, high rainfall intensity (as for the 19 July 2010 event with Imax5 = 84.0 mm h-1) yielded 

smaller tresponse and tpeak values. 

Finally, the 18 May 2013 flood occurred under wet conditions (Qb = 26.4 L s-1 km-2) and was 

characterized by a larger Cs (36.5%) (Fig. 2.8(a)). Median WTi was -83 mm and saturation had 

been reached in three piezometers prior to the rainfall. All piezometers reacted quickly to the 

rainfall, but the dynamics of the response were different depending on the depth of the water 

table before the event (Fig. 2.8(b)). Quick water table reactions were observed almost 

systematically at all piezometers for floods in wet conditions (floods 13 to 19 in Table 2.5 and 

Appendix B); resulting mean values of the median tresponse and tpeak for these floods were 1.9 and 

3.3 h, respectively. In this case, the variability observed in the timing of the water table 

response was also clearly related to the initial position of the water table, with higher tresponse 

and tpeak values for lower values of WTi (i.e. deeper pre-event depth to water table). 

2.3.4.2 Relation between the mean depth to the water table and its standard deviation 

The mean depth to water table (20 minutes time step) was plotted against its corresponding 

standard deviation in order to characterize the variability of the water responses throughout 

the flood (Fig. 2.8(c)). At the start of the 19 January 2013 flood (dry antecedent conditions) the 

mean depth of the water table was -1,434 ± 754 mm. Both the mean depth to the water table 

and its standard deviation increased after the start of the rainfall. This increase lasted until the 

discharge peak, showing the great variability of the water table responses, with some 

piezometers reacting quickly to rainfall and others showing no response. After the discharge 

peak, the mean depth to the water table continued to increase slightly (due to the delayed 

response observed in some piezometers), but its standard deviation decreased, revealing a 

decrease in the spatial variability of the water table in the catchment, as it got wetter. Similar 

patterns of relationship between the mean depth to water table and its standard deviation 

were observed for all six floods with low Qb. In some cases, however, the standard deviation of 

the depth to water table decreased shortly before the discharge peak was reached. Considering 
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all floods with low Qb, the mean value of the depth to water table was -728 ± 798 mm, and the 

mean value of the depth to water table at the time of peak discharge was -677 ± 832 mm. 

At the start of the 3 May 2010 flood (intermediate antecedent conditions) the mean depth 

of the water table was -866 ± 868 mm. After a very short period of increase in both the mean 

depth to the water table and its standard deviation following the start of the rainfall, the 

standard deviation of the water table decreased markedly. This decrease, combined with an 

increase in the mean depth to the water table continued long after the discharge peak, 

illustrating the reduction of the spatial variability of the water table in the catchment as all 

piezometers get wetter during the flood. Around one day after the discharge peak, the mean 

depth to the water table started to decrease slowly in most piezometers. This decrease in the 

mean depth to the water table was associated with a new rise in the standard deviation of the 

water table, which illustrates the re-increase of the spatial variability of the water table in the 

catchment during the recession period. Observed patterns between the mean depth to water 

table and its standard deviation were very similar for all six floods with intermediate Qb, even if 

the mean value of the depth to water table during the flood varied between -912 and -308 

mm. For all floods with intermediate Qb, the mean value of the depth to water table was -554 ± 

655 mm, and the mean value of the depth to water table at the time of peak discharge was      

-476 ± 693 mm. 

Finally, at the start of the 18 May 2013 flood (wet antecedent conditions), the mean depth 

of the water table was -547 ± 666 mm. Both the mean depth to the water table and its 

standard deviation decreased shortly after the start of the rainfall. This decrease continued 

after the discharge peak, illustrating the reduction of the spatial variability of the water table 

in the catchment. After the discharge peak, the mean depth to the water table started to 

decrease. During the recession period, this decrease in the mean depth to the water table was 

associated with a rise in the standard deviation of the water table, which shows the increase in 

the spatial variability of the water table in the catchment. Similar patterns of relationship 

between the mean depth to water table and its standard deviation were observed for all seven 

floods with high Qb and mean values of the depth to water table during the flood between        

-688 and -301 mm. Considering all floods with high Qb, the mean value of the depth to water 

table was -456 ± 569 mm; and the mean value of the depth to water table at the time of peak 

discharge was -450 ± 617 mm. 

Independently of the value of Qb, the hysteresis of the relationship between the mean 

depth to the water table and its standard deviation was always anticlockwise, except for one 

flood (19 July 2010). Why this flood should show a clockwise relationship is not clear, but may 

be because of its extreme rainfall intensity (Imax5 = 84 mm h-1). 
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2.3.4.3 Discharge and mean depth to water table relationship 

During the 19 March 2013 flood (dry antecedent conditions),  an increase in the mean depth 

to water table of around 600 mm was observed before any rise in the discharge (Fig. 2.8(d)). In 

this case, the discharge increase was limited (42.8 L s-1 km-2) and a small increase in the water 

table occurred during the recession period. The relationship between discharge and mean 

water table depth dynamics was similar for all six floods with low Qb, with anticlockwise 

relationships and increases of mean depth to water table between 600 and 1,000 mm before 

any discharge increase (ranging from 42.8 to 1,914.8 L s-1 km-2). Mean value of the median tpeak-peak 

for these floods was -2.3 h (Table 2.5), being positive (i.e. peak discharge before median depth 

to water table peak) on only one occasion: for the 10 October 2010 flood that has the lowest 

value of median WTi. 

During the 3 May 2010 flood (intermediate antecedent conditions), the relationship 

between discharge and mean depth to water table was similar to the one observed for drier 

conditions. The only difference was that the increase in the mean depth to water table before 

a significant rise of the discharge was only around 200 mm (Fig. 2.8(d)). A similar relationship 

between discharge and mean water table depth dynamics was observed for all six floods with 

intermediate Qb, with increases in mean depth to water table between 200 and 400 mm before 

any discharge increase. In all cases but one, observed relationships were anticlockwise and the 

mean value of the median tpeak-peak for these floods was -0.5 h (Table 2.5), being equal to zero (i.e. 

peak discharge simultaneous to the median depth to water table peak) on two occasions. 

Finally, the relationship between discharge and mean depth to water table during the 18 

May 2013 flood (wet antecedent conditions) showed that there was an increase in the mean 

depth to water table of around 100 mm before the rise of the discharge (232.0 L s-1 km-2) (Fig. 

2.8(d)). A small increase in the water table occurred during the recession period, too. The 

relationship between discharge and mean water table depth dynamics was similar for all seven 

floods with high Qb, with anticlockwise relationships and limited increases in mean depth to 

water table before any discharge increase. Mean value of the median tpeak-peak for these floods 

was 0.1 h (Table 2.5), being equal to zero on three occasions. 
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Fig. 2.8 (a) Rainfall and discharge and (b) depth to water table at the 13 piezometer locations, 
observed during three floods with different antecedent wetness conditions. (c) Relationship 
between the mean depth to water table and its standard deviation (red dots correspond to the 
time of peak discharge). (d) Relationship between the mean depth to water table and 
discharge (one hour time step). 
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2.4 Discussion 

At the Can Vila catchment, the piezometric response was highly variable in space and time 

during rainfall-runoff events. Even nearby locations sometimes showed distinct behaviour in 

terms of magnitude and timing. These results are consistent with those in other recent studies 

(Haught and van Meerveld, 2011; Bachmair et al., 2012; Penna et al., 2014). 

2.4.1 Influence of location characteristics on depth to water table spatial variability 

As noted, in recent papers (Penna et al., 2011; McMillan and Srinivasan, 2015), the study of 

the role of catchment characteristics is important if shallow water table spatial variability and 

dynamics are to be understood. In this study, however, none of the location characteristics 

(piezometer distance from the stream, TWI and elevation above the stream) correlated 

significantly with the pre-event depth to water table (WTi). Despite this, the distance from the 

stream and the elevation above the stream (both significantly related (Table 2.2)) still have an 

influence on WTi, with deeper water table levels observed at locations farther from and higher 

than the stream (Fig. 2.3). In contrast, as also observed by Detty and McGuire (2010) and 

McMillan and Srinivasan (2015), near-stream locations have the most persistent water table.  

Despite being far from the stream channel (Fig. 2.1), locations ZCV11 and ZCV12 were usually 

saturated, with the water table usually less than -107 mm deep. An explanation for this 

particular behaviour is that these two locations, each in the central part of a terrace, are in fact 

placed close to the original course of the stream (i.e. the original stream position before the 

terrace construction). Currently, since the abandonment of agricultural practices in about 1960, 

the lack of maintenance of these artificial stream networks favours a gradual return of flow to 

its original path that promotes more frequent saturation of these two locations.  

The Topographic Wetness Index controls the spatial distribution of water table at the 

catchment scale, as stated by many authors for wet environments (Jordan, 1994; Kendall et al., 

1999; Rinderer et al., 2014; Rinderer, 2016). In the Arnás Mediterranean catchment, Lana-

Renault et al. (2007) also found a strong linear correlation between TWI and the percentage of 

time that each piezometer was saturated. In this study no simple relationship was found 

between the TWI and the median pre-event depth to water table at each piezometer location 

(Fig. 2.3). This result is similar to those obtained by Detty and McGuire (2010) for landform 

groups of wells or individual well transects. A possible reason that makes it difficult to 

highlight a direct relationship between TWI and WTi may be that the effect of topography is 

masked by other local characteristics of the piezometer locations, such as, in this study, the 

terraced topography that could influence local saturation patterns. These difficulties to 

generalizing findings about the effect of catchment characteristics on the distribution of 

wetness conditions have been discussed recently by Rinderer et al. (2016), who also expressed 

the difficulty of extrapolating results from one catchment to another. 
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2.4.2 Influence of location characteristics on water table response 

Differences were observed in the groundwater response between piezometers located near 

and far from the stream, as also described in other hydrological studies (Seibert et al., 2003; 

Tromp-van Meerveld and McDonnell, 2006 b; Kuraś et al., 2008). In near-stream locations the 

WTi was shallower and the water table reacted faster to rainfall, as shown by values of tresponse 

and tpeak (Fig. 2.4(a) and (b)). As Peters et al. (2003) argue, this rapid response may be partly 

attributed to the infiltration of streamflow generated on low permeable areas through the 

channel bottom, but may also result from groundwater contribution in downslope areas. In 

contrast, when WTi was deeper in locations far from the stream, tresponse and tpeak were greater, 

partly because larger water table increases were observed (Fig. 2.2), as also shown by Peters et 

al. (2003). Furthermore, as also seen in other catchments (Daniels et al., 2008; Lana-Renault et 

al., 2014; Penna et al., 2014), at deeper WTi the lag time between  discharge peak and water 

table peak (tpeak-peak) was different at each piezometer, with longer and more variable lag time 

values (Fig. 2.4(c)). In corroboration of Haught and van Meerveld (2011), this result suggested 

that the locations far from the stream, characterized by deeper WTi, reached peak later than 

discharge (positive lag time) and near-stream locations. The positive lag times in piezometers 

far from the stream imply that these locations were not main contributors to peak streamflow.  

In a wet catchment in Switzerland, Rinderer et al. (2016) observed that topography exerts 

great control over groundwater response timing. In the Can Vila catchment, no such role for 

groundwater response timing was found, possibly because of the effect of the terraced 

topography on the saturation patterns within the catchment, as shown by Latron et al. (2008). 

2.4.3 Water table response during rainfall-runoff events 

The analysis of the water table response during rainfall-runoff suggested that pre-event 

depth to water table had an important role in runoff production. The runoff response was 

higher when pre-event depth to water table was close to the surface. These observations are 

consistent with previous studies in humid areas (Evans et al., 1999; Seibert et al., 2003; Daniels 

et al., 2008; Bachmair et al., 2012) and Mediterranean catchments (Lana-Renault et al., 2007; 

Latron et al., 2008). 

The effect of the pre-event depth to water table on runoff production probably masked any 

influence of the water table timing variables. Indeed, no apparent relationships between 

runoff coefficient and timing variables were observed in the Can Vila catchment. This absence 

of relationships between the magnitude of the response and its temporal dynamic may be 

explained by both the effect of the temporal distribution of the rainfall (which may differ 

between events) on timing variables and the difficulty of defining clear timing variables for 

piezometers at saturation prior to the rainfall-runoff event.  
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Rainfall characteristics (amount and intensity) did not correlate with WTincrease or with the 

temporal variables characterizing the water table response (tresponse, tpeak, tpeak-peak). These 

observations are consistent with those reported in other hydrological studies (Tromp-van 

Meerveld and McDonnell, 2006b; Bachmair et al., 2012; Penna et al., 2014), showing that 

antecedent wetness conditions often weigh more in water table and runoff responses than the 

characteristics of the rainfall events. 

2.4.4 Influence of antecedent wetness conditions 

The analysis of the spatio-temporal variability in the water table response during rainfall-

runoff events showed three different types of response in the Can Vila catchment, according to 

antecedent wetness conditions. This conclusion supports previous observations in small 

catchments (Lana-Renault et al., 2007; Penna et al., 2014), where the piezometric responses for 

floods that occurred during dry and wet conditions clearly differed. 

2.4.4.1 Water table response in dry conditions 

Under dry conditions, when pre-event discharge was low and the water table was deep, rainfall 

events generated only small runoff responses, as previously observed by Latron et al. (2008). A 

wide variability of water table responses was observed among piezometers, as in Bachmair et 

al. (2012), on the hillslope scale. Some piezometers did not show any response, whereas others 

responded quickly to rainfall, increasing the spatio-temporal variability. Similar results were 

observed in summer dry conditions in a Mediterranean catchment (Lana-Renault et al., 2007) 

and for intermediate conditions in an Alpine catchment (Penna et al., 2014). For summer 

conditions, McMillan and Srinivasan (2015) also reported a spatial disconnection between the 

water table and stream channel. In the Can Vila catchment, the spatial variability of the water 

table during dry conditions is mostly controlled by distance from the stream. Piezometers 

located far from the stream channel responded later than the stream discharge (i.e. 

anticlockwise loop) and also reached their maximum after the peak discharge (positive tpeak-peak 

value). Apparently, as also observed by several authors (Kendall et al., 1999; Peters et al., 2003; 

Haught and van Meerveld, 2011), the water table at these locations did not contribute to 

streamflow or only contributed during the recession. On the contrary, piezometers closer to the 

stream showed negative tpeak-peak values as well as clockwise hysteresis in the relationship 

between discharge and depth to water table. This shows that, during dry conditions, near-

stream locations are probably the only relevant areas contributing to streamflow, whether by 

direct groundwater contribution or by promoting surface runoff to the stream once the water 

table reaches the ground surface. 
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2.4.4.2  Water table response in intermediate conditions 

Intermediate conditions between dry and wet periods are common in Mediterranean areas 

(Gaillard et al., 1995; Grésillon and Taha, 1998; Latron et al., 2008). During intermediate 

antecedent conditions, storm runoff coefficients were moderate and the median pre-event 

depth to water table and discharge values were higher than under dry conditions. During 

intermediate conditions all piezometers responded to the rainfall, but with different timings, in 

line with the pre-event water table depth. In other catchments the spatial variability of the 

water table was reported to increase during intermediate conditions (Lana-Renault et al., 

2007). In this study, however, the spatio-temporal variability of the water table throughout the 

rainfall-runoff event was lower than under dry conditions. In addition, the initial variability of 

the water table responses observed during intermediate conditions decreased rapidly during 

the flood, as most piezometers got wetter. This decrease in spatial variability during the flood 

is consistent with observations made by Penna et al. (2014), who reported that the spatial 

variability of depth to water table was higher during the rising limb than during the recession. 

The relationship between discharge and depth to water table at each piezometer location 

was the same as under dry conditions, but tpeak-peak values were lower (median values usually less 

than 1 h). Indeed, during intermediate conditions the water table response within the 

catchment followed broadly similar patterns as in dry conditions, with the piezometers located 

far from the stream channel responding later than the stream discharge and reaching their 

maximum after the peak discharge. However, water table contribution in all piezometers was 

faster than during dry conditions. 

2.4.4.3  Water table response in wet conditions 

In wet conditions, when pre-event discharge and water table were high, large runoff 

responses were observed in the catchment. With some piezometers already saturated at the 

start of the rainfall event and some relatively close to saturation, a quick reaction of the water 

table was observed almost systematically. Small values of the time variables (tresponse, tpeak and tpeak-

peak) were observed, as well as low spatial variability of water table dynamics during the flood.  

In wet conditions, the water table in piezometers located close to the stream reached its 

maximum at the same time as the stream discharge. As also observed in the “winter mode” by 

McMillan and Srinivasan (2015), water table responses all over the catchment were more 

connected to the stream channel under wet conditions. However, in piezometers located far 

from the stream, the relationship between discharge and depth to water table was still 

anticlockwise, showing that the water table responded later than the stream discharge. tpeak-peak 

values in locations far from the stream remained positive, but were much smaller than for dry 

or intermediate conditions. 
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These results show that in the Can Vila catchment there are still some differences, during 

wet conditions, in the timing and dynamics of the water table response, depending on the 

locations. This heterogeneity of the piezometric response is similar to that described for other 

Mediterranean catchments (Lana-Renault et al., 2007), but is clearly higher than in other 

catchments where more homogeneous dynamics were observed during wet conditions (e.g. 

Penna et al., 2014). 

2.5 Conclusions 

This study analyses the spatio-temporal variability of shallow groundwater dynamics during 

rainfall-runoff events, including hydrological variables (rainfall, discharge, depth to water 

table, etc.) and the catchment’s specific characteristics. The investigation took place at the Can 

Vila Mediterranean catchment, where depth to water table was measured at 13 piezometers 

during 19 rainfall-runoff events. 

The data showed that depth to water table did not rise uniformly throughout the 

catchment. The spatial variability was controlled by piezometer location characteristics, 

especially the piezometer’s distance from the stream, which has an effect on the distribution of 

wetness conditions within the catchment. This, in turn, affects the timing of the water table 

response. 

The results also demonstrated that pre-event depth to water table and rainfall event 

characteristics affected runoff production. The investigation of depth to water table and 

discharge dynamics during rainfall-runoff events in different antecedent wetness conditions 

showed that in dry conditions the spatio-temporal variability of the depth to water table was 

high throughout the event, decreasing only when the catchment gets progressively wetter. In 

dry conditions, the storm runoff was generated essentially by the contribution of shallow 

groundwater located near the stream channel. During intermediate conditions, lower spatio-

temporal variability of water table throughout the flood event was observed and all 

piezometers responded to rainfall but with different timing. However, in general, catchment 

water table dynamics were not so different from those observed in dry conditions, even if 

response times were shorter. During wet conditions, the water table pre-event was closer to 

the soil surface, which gave more homogenous groundwater responses. Rainfall-runoff events 

were characterized by larger runoff responses, with the water table in piezometers located 

near the stream channel reaching its maximum at the same time as the stream discharge. 

These results contribute to improving our understanding of the hydrological functioning of 

the Vallcebre Mediterranean catchments. They detail further shallow water table dynamics and 

the role of antecedent wetness conditions on the runoff response to rainfall events. Despite 

monitoring improvements since earlier studies, further work is still required, especially to 

evaluate subsurface connectivity during the whole year by means of deeper piezometers. 
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3 SEASONAL AND STORMFLOW DYNAMICS OF DISSOLVED ORGANIC CARBON 

3.1  Introduction 

In hydrological studies, dissolved organic carbon (DOC) is increasingly considered an 

important stream water constituent of organic origin. It is scavenged by precipitation, enriched 

during throughfall and leached from organic matter, contained in soils or stored in the channel 

bed (Meyer and Tate, 1983; Baron et al., 1991). It is often affected by hydrological and 

biochemical processes operating within the catchment. For this reason, the study of DOC 

dynamics in different pools and at different time scales has been used in the last three decades 

to characterize water origin and flow components, with the objective of improving our 

understanding of catchment hydrological functioning (Mulholland and Hill, 1997; Kendall et 

al., 1999; McGlynn and McDonnell, 2003; Morel et al., 2009). 

On the annual scale, DOC concentration in rainwater may show some seasonality (Pan et al., 

2010; Verstraeten et al., 2014). However, rainfall or throughfall are not the main sources of 

DOC in soil solution (Verstraeten et al., 2014); and seasonality observed in soil water DOC 

concentration is indeed associated with the time sequence of different processes, both 

biochemical and hydrological ones, acting in soils. Higher concentrations are observed during 

the growing season, while lower concentrations follow DOC losses due to water fluxes during 

the wet period (Meyer and Tate, 1983; McDowell and Wood, 1984; Buckingham et al., 2008; 

Verstraeten et al., 2014). The decrease in DOC concentration with depth in the soil profile, as 

organic matter content decreases, implies low DOC concentration in groundwater (Boyer et al., 

1997; Aubert et al., 2013). Besides, no clear seasonality is observed in deep soil water and 

groundwater DOC concentrations (Neal et al., 2005; Clark et al., 2008). Finally, even though 

DOC concentration in stream water has been studied mainly during storm events, several 

studies also showed some seasonality of stream water DOC concentration during the year 

(Evansa et al., 1996; Bernal et al., 2002; Neal et al., 2005; Dawson et al., 2011). 

On the storm event scale, the vast majority of studies, in catchments under different 

climates, reported an increase in stream water DOC concentration with increasing discharge 

during rainstorm or snowmelt events. This general behaviour leads to a positive correlation 

between stream water DOC concentration and discharge and implies that the main export of 

DOC occurs during storm events (Meyer and Tate, 1983; Soulsby, 1995; Hinton et al., 1997; 

Butturini and Sabater, 2000; Carey, 2003; Neal et al., 2005; Stutter et al., 2012).  

The increase in DOC concentration with increasing discharge is generally explained by DOC 

being flushed from the shallow soil horizons by rising water tables or by infiltrating rainfall 

(Meyer and Tate, 1983; McDowell and Likens, 1988; Hinton et al., 1998). McGlynn and 

McDonnell (2003) pointed out that in upland catchments, prior soil moisture conditions and the 
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degree of connection between runoff contributing areas and the stream may influence this 

increase in DOC concentration observed at the catchment outlet. The correlation between DOC 

concentration and discharge has therefore led some authors to use DOC as a tracer to identify 

the contribution of water from organic soil layers during storm events (Ladouche et al., 2001; 

Carey and Quinton, 2005; Morel et al., 2009). However, the flushing of organic matter stored in 

the streambed has also been identified as an alternative source of DOC in stream water 

(Mulholland and Hill, 1997; Meyer et al., 1998; Bernal et al., 2002), somehow questioning the 

use of DOC as a usefull tracer of water origin.  

In the last 30 years, most studies of stream water DOC dynamics, both during storm events 

and throughout the year, have been carried out in humid (Hinton et al., 1997; Inamdar et al., 

2004; Neal et al., 2005; Morel et al., 2009; Dawson et al., 2011), alpine (Baron et al., 1991; Boyer 

et al., 1997) and polar regions (Peterson et al., 1986; Ivarsson and Jansson, 1994; Hudon et al., 

1996; Carey, 2003). However, as Llorens et al. (2011) comment, Mediterranean catchments have 

received less attention. 

Regions with Mediterranean climate are characterized by strong intra- and inter-annual 

precipitation variability and a marked seasonality of the evaporative demand, which define the 

seasonality of this climate, characterized by a drier period during the year. As a consequence, 

Mediterranean catchments often share hydrological processes of both wet and dry 

environments (Gallart et al., 2002), which makes it harder to understand their hydrological and 

biogeochemical behaviour through the year (Latron et al., 2009, 2010a; Llorens et al., 2011). 

Concentrations of DOC in, and export from Mediterranean pristine catchments fall into the 

low range of those measured worldwide (Alvarez-Cobelas et al., 2012). For example, Von 

Schiller et al. (2008) reported mean stream DOC concentrations of 1 ± 0.37 mg L-1 in five pristine 

catchments, located in northeastern Spain. However, different DOC dynamics have been 

observed in some Mediterranean catchments located very close to one another. The increase in 

stream water DOC concentration with increasing discharge described in the La Riera Major 

catchment (Butturini and Sabater, 2000) was less clear in the nearby Fuirosos catchment except 

for large events, suggesting for this catchment a change in the water pathways under wet 

conditions (Bernal et al., 2002). However, for both these catchments a clear increase in stream 

DOC concentration during the wetting-up period was reported, due to the leaching of organic 

matter accumulated on the streambed and the stream bank during the drought period 

(Butturini and Sabater, 2000; Bernal et al., 2002; Vázquez et al., 2007). This process, more 

specific of seasonal streams, probably contributes to increasing the diversity of DOC-discharge 

responses observed during storm events in Mediterranean catchments (Butturini et al., 2008). 

This study, performed in the Can Vila research catchment (northeast Spain), focused on the 

analysis of DOC concentration dynamics in different water compartments (rainfall, soil water, 

groundwater and stream water) through the year and during storm events. The specific 
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objectives were (a) to characterize DOC dynamics in rainfall, soil water, groundwater and 

stream water during the year; (b) to analyse DOC dynamics during storm events to assess 

possible differences in the hydrological functioning of the catchment during the year; and (c) 

to discuss the validity of the use of DOC as a tracer to identify water sources during rainfall–

runoff events in Mediterranean catchments. 

3.2  Methods 

3.2.1 Study site 

This study was performed in the Can Vila research catchment, located in the Vallcebre 

research area (Latron et al., 2010a) at the headwaters of the Llobregat River, on the southern 

margin of the Pyrenees, northeast Spain (42°12′N, 1°49′E). The Vallcebre research area, 

managed by the Surface Hydrology and Erosion group (IDAEA-CSIC), was selected in early 1990 

for the analysis of the hydrological consequences of land abandonment and the hydrological 

and sediment yield behaviour of badlands areas. A complete overview of the general 

hydrological findings can be found in Latron et al. (2009, 2010a, 2010b), Llorens et al. (2010a) and 

Gallart et al. (2010). 

The Can Vila catchment (Fig. 3.1) has an area of 0.56 km2. Elevations range from 1,458 to 

1,115 m a.s.l. at the outlet, and slope gradients are moderate, with a mean value of 25.6% 

(Latron and Gallart, 2007). The soils that have developed over red clayey smectite-rich mudrocks 

are predominantly of silt-loam texture. Topsoils are rich in organic matter (on average 4.1% 

from 0 to 55 cm below the ground surface) and well structured, with high infiltration capacity, 

although hydraulic conductivity decreases rapidly with depth (Rubio et al., 2008). Before and 

during the 19th century most of the hill slopes of the catchment were deforested and terraced 

for agricultural purposes. They were abandoned during the second half of the 20th century. As 

a consequence of terracing, soil thickness ranges from less than 50 cm in the inner part of the 

terraces to more than 2 or 3 m in their outer part (Latron et al., 2008). Following land 

abandonment, spontaneous forestation by Pinus sylvestris has occurred (Poyatos et al., 2003) 

and forest now covers 34% of the catchment. The remainder of the catchment is widely 

covered by pasture and meadows. The main channel is a first order channel of 1 to 2 m wide 

and is not very deeply incised. The stream bed is a riffle-pool sequence, the materials being 

mostly formed by coarse alluvium partly cemented by lime coatings. Mobile sediments are 

mostly fine sands and silt. No riparian zone is observed in the catchment. 

Climate is humid Mediterranean, with a marked water deficit in summer. The mean annual 

rainfall is 862 ± 206 mm, with a mean of 90 rainy days per year (Latron et al., 2009). Snowfalls 

account for less than 5% in volume. The rainiest seasons are autumn and spring. Winter is the 

season with the least precipitation. In summer, convective storms may provide significant 
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precipitation input. Mean annual temperature at 1,260 m a.s.l. is 9.1ºC and mean annual 

potential evapotranspiration is 823 ± 26 mm (Latron et al., 2010a).  

The combined dynamic of rainfall and evapotranspiration favours the succession of wet and 

dry or very dry periods during the year (Latron and Gallart 2007, 2008). Dry and very dry 

periods occur in winter and summer, respectively, whereas wet periods correspond to spring 

and late autumn. Over the period 1995–2013, mean annual runoff in the Can Vila catchment 

was 302 ± 191 mm, representing 34% of rainfall (Latron et al., in prep.). Streamflow shows 

marked seasonality and often dries in summer for several weeks. 

3.2.2  Hydrometric monitoring 

Rainfall in the Can Vila catchment is recorded every 5 min by means of three 0.2 mm 

tipping-bucket raingauges (Casella Cel), located 1 m above the ground (Fig. 3.1). A standard 

meteorological station is located in the upper part of the catchment.  

At the Can Vila gauging station, streamflow is measured by means of a 90º V-notch weir 

with a water pressure sensor (6542C-C, Unidata) connected to a datalogger (DT50, Datataker). 

Mean water level values (measured every 10 seconds) are recorded every 5 min and converted to 

discharge values with an established stage-discharge rating curve calibrated with manual 

discharge measurements (Latron and Gallart 2008). 

Water table data used in this study were collected in two piezometers, ZCV08 (–422 cm deep) 

and ZCV35 (–206 cm deep) (Fig. 3.1). The water table level was recorded every 10 min by means of a 

water pressure sensor (10m MiniDiver, Schlumberger Water Services), adjusted with barometric 

pressure variations. Pressure sensors were calibrated by taking manual measurements of water 

table depth at the piezometers at the same time as data collection.  

Soil water content data used in this study were obtained from a set of three automatic 30-

cm-long time-domain reflectometry (TDR) probes (CS616, Campbell), inserted vertically from 0 

to 90 cm depth (Fig. 3.1). The TDR probes were connected to a datalogger (DT500, Datataker) 

that recorded mean frequency values every 5 min. Frequencies were subsequently converted to 

soil water content values, using, for each probe, linear regression between frequency and soil 

water content obtained from weekly manual TDR measurements (Tektronix 1502-C cable 

tester) at the same depth intervals. 

Soil temperature was measured (Termistor 107, Campbell) every 5 min at  20 cm depth close 

to the TDR profile. 
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3.2.3 DOC water sampling and laboratory analyses 

Rainwater was sampled automatically, at 5 mm rainfall intervals, using an open collector (34 

cm diameter) connected to an automatic water sampler (24 500-mL bottles, ISCO 2900). The 

rainfall sampling site is located at the outlet of the catchment (Fig.3.1). To eliminate the effect 

of the possible washing of the open collector at the beginning of rainfall, the first sample of 

rainfall events was discarded. The last rainfall sample was also excluded when less than 1 mm 

was collected. 

Stream water was sampled at the gauging station with two automatic water samplers (24 

1000-mL bottles, ISCO 2700). Both samplers were triggered by the datalogger (DT50, 

Datataker). One sampler took samples at variable time intervals (depending on water level 

changes), once a predetermined water level threshold, defining flood conditions, was reached. 

The other sampler took a daily sample at 00:00 h. Water samples were collected just after a 

rainfall–runoff event. In the absence of flood, only a weekly sample from the automatic 

sampler was kept. 

In addition to rainfall–runoff automatic sampling, spatially distributed water samples were 

taken every two weeks, in order to characterize the seasonality of DOC sources. Soil water was 

sampled at two locations in the catchment (LCV01 and LCV02, see Fig. 1), with a battery of suction 

cup lysimeters installed between 50 and 90 cm depth. The soil water sample at each location 

was a mix of the water collected at different depths. Groundwater was sampled at locations 

ZCV08 (422 cm deep) and ZCV35 (208 cm), at maximum piezometers depth, using a manual peristaltic 

pump. Finally, stream water was sampled manually (grab sample) at the gauging station.  

During the study period, 958 samples were collected and analysed. This total corresponds to 

187 rainwater, 92 soil water, 102 groundwater and 577 stream water samples. Of the stream 

water samples, 228 corresponded to flood conditions. 

All samples were collected in 120 ml opaque muffled glass bottles and filtered in the 

laboratory through a 0.45-µm membrane filter (Millipore). Subsamples were then acidified with 

HCl (2 N) and stored at 4ºC in cleaned and muffled glass bottles. DOC analyses were performed 

within one week. 

The DOC concentration value was the average of three measurements for each sample, 

using a Total Organic Carbon Analyzer (TOC-VCSH/CSN, Shimadzu). The detection limit 

measured was 0.06 mg L-1, following the method of Rubinson and Rubinson (2000). 
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Fig. 3.1 Map of the Can Vila catchment, showing locations of the main instruments and of the 
sampling sites. 

3.2.4 Data analyses 

The study reported here, investigating both seasonal and event scale dynamics, is based on 

hydrometric and DOC data covering a 27-month period from May 2011 to July 2013. During this 

period, 11 significant rainfall–runoff events (i.e. with a peak discharge higher than 20.0 L s-1  

km-2) were recorded and sampled. At the event scale, storm runoff depth was derived for each 

selected significant rainfall–runoff event, using the classic “constant slope” hydrograph 

separation method of Hewlett and Hibbert (1967) with a modified slope value of 1.83 L s-1 km-2 

d-1 (see Latron et al., 2008). For each rainfall–runoff event, several variables were finally derived 

from the hyetograph and hydrograph. These were rainfall depth, storm runoff coefficient, pre-

event (at the start of the event) and peak flow specific discharges. At the event scale, the slope 

of the linear relationship between stream water DOC concentrations and specific discharges (at 

the time the samples were taken) was also determined. Soil water content, water table depth 

and stream water DOC concentration at the start and at the peak of the event were identified. 

As DOC concentrations and dynamics throughout the year are likely to be influenced by 

temperature, biological activity and the hydrological conditions of the catchment, the data of 

the whole study period were grouped into four different periods, as in Bernal et al., (2005): a 

dormant period (December–March), a vegetative period (April–July), a dry period (August) and 

a wetting-up period (September–November). The correlation between variables was assessed 

by the Pearson correlation coefficient; the correlation was considered statistically significant if 

p < 0.05.  
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3.3  Results 

3.3.1 DOC dynamics throughout the year 

3.3.1.1  DOC dynamics in rainfall, soil water, groundwater and stream water 

During the 27-month study period (May 2011 to July 2013), 41 rainfall events were sampled 

at 5-mm rainfall intervals. Events sampled ranged from 5.6 to 74.8 mm (median value: 24.2 

mm), most of which occurred during the vegetative period (23 events). Eleven (11) rainfall 

events were sampled during the wetting-up period and seven during the dormant period. All 

events taken together gave a mean (± standard error) DOC concentration in rainwater of 1.1 ± 

0.06 mg L-1. The DOC concentration in rainwater followed a seasonal dynamic each year (Fig. 

3.2), with higher DOC concentrations during the vegetative period (1.3 ± 0.08 mg L-1). During 

the dormant period, the average DOC concentration was 0.5 mg L-1 lower than the mean value 

of the vegetative period (Table 3.1). The variability of DOC in rainwater during rainfall events 

was similar in all periods, with an average standard error of the mean close to 0.1 mg L-1. 

Taking into account all rainfall events, no relationship between the mean DOC concentration in 

rainwater and rainfall depth or intensity (in 30 min) was found. The same result was obtained 

after grouping the rainfall events in periods. 

 
Fig. 3.2 Temporal dynamic of DOC concentration in rainwater during the study period (May 
2011 to July 2013). White dots correspond to the concentrations of 5mm rainfall increment 
samples. Black dots correspond to the mean concentration of a rainfall event. The solid line is a 
running average. The colour scale on the x axis represents the dormant period, vegetative 
period, dry period and wetting-up period (see text). 
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From May 2011 to July 2013, mean DOC concentration in soil water was 6.5 ± 0.31 mg L-1 at 

LCV01 and 16.7 ± 1.42 mg L-1 at LCV02. Despite the difference in the absolute values between the 

two sites, significant linear regression (r2 = 0.53, p < 0.01) and a similar temporal evolution of 

soil water DOC concentration at both locations were observed. The seasonal dynamics of soil 

water DOC concentrations at LCV01 are shown in Fig. 3.3(b). The dynamics followed a sinusoidal 

trend (r2 = 0.39, p < 0.01), with higher DOC concentrations during the vegetative, dry and 

wetting-up periods and lower concentrations during the dormant period (Table 3.1). This 

dynamic was similar to the soil temperature dynamic and inverse to the dynamic observed in 

soil water content. Thus, higher DOC concentrations occurred under dry soil conditions, when 

soil temperature was high (Fig. 3.3(a)). At LCV01, soil water DOC concentration correlated 

positively with soil temperature (r2 = 0.36, p < 0.01) and correlated negatively, though slightly, 

with soil water content (r2 = 0.16, p < 0.01). These relationships were not so clearly observable 

at LCV02, partly because of the fewer samples collected. 

Mean DOC concentration in groundwater was 2.9 ± 0.19 mg L-1 at ZCV08 and 5.6 ± 0.4 mg L-1 at 

ZCV35. The DOC concentration absolute values and dynamics were different between the two 

sites. No clear seasonal dynamic of DOC concentration was observed (Table 3.1) and some of 

the lowest values of DOC concentrations were observed in all periods. At ZCV08 (but not at ZCV35), 

groundwater DOC concentrations were strongly related to the dynamics of the water table and 

both variables correlated positively (r2 = 0.37, p < 0.01), with an increase in DOC concentrations 

when the water table level rises (Fig. 3.3(c)). DOC concentrations down to 1.0 mg L-1 were 

measured when the water table was at its lowest (-3,500 mm), whereas they reached 6 or 7 mg 

L-1 when the water table was close to the surface. 

The mean DOC concentration in stream water during the study period was 2.7 ± 0.05 mg L-1 

at the catchment outlet. Considering only low flow conditions (specific discharge lower than 20 L 

s-1 km-2), the mean DOC concentration in stream water was 2.1 ± 0.03 mgl-1; whereas for flood 

conditions (discharge higher than 20 L s-1 km-2), it was 3.5 ± 0.09 mg L-1. The DOC concentration 

in stream water increased markedly during storms, up to values of 6 to 10 mg L-1 for larger 

flood peaks. Consequently, there was no apparent seasonality in stream water DOC 

concentration (Table 3.1). Changes in DOC concentrations appeared to be more influenced by 

stream discharge dynamics than by biological activity (Fig. 3(d)). For low flow conditions, DOC 

concentrations showed few variations and there was no seasonality in DOC concentration here, 

either. While there was a positive significant correlation between DOC concentration and 

discharge during flood conditions (r2 = 0.47, p < 0.01, Fig. 3.4), for low flows a weak positive 

correlation was observed (r2 = 0.08, p < 0.01). 
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Fig. 3.3 Temporal dynamic (May 2011 to July 2013) of (a) soil temperature, (b) soil water 
content and DOC concentration in soil water (LCV01), (c) depth to water table and DOC 
concentration in groundwater (ZCV08) and (d) daily mean discharge at the outlet and DOC 
concentration in stream water. White dots correspond to samples DOC concentrations and 
black solid lines to running averages (three values). Numbers refer to floods sampled (see Table 
3.2). The colour scale on the x axis represents the dormant period, vegetative period, dry period 
and wetting-up period (see text). 
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Fig. 3.4 Relationship between discharge measured at the outlet of the catchment and the DOC 
concentration in stream water. Two different dynamics are observable below and above a 
threshold of 20 L s-1 km-2, roughly defining flood conditions. 

3.3.1.2 Relationship between DOC concentrations in soil water, groundwater and stream 

water 

As indicated in 3.3.1.1, there was a statistically significant linear relationship between soil 

water DOC concentrations measured fortnightly at the two sampling sites. However, no 

significant linear relationship existed between DOC concentrations measured at the 

piezometers, ZCV08 and ZCV35. 

On comparing the different water compartments at all sampling sites (using samples taken 

fortnightly), no significant linear relationships between soil water DOC concentrations and 

groundwater or stream water concentrations were found. On the contrary, a positive and 

statistically significant linear relationship between DOC concentration in groundwater and in 

stream water was found. This relationship was somewhat stronger for piezometer ZCV08 (r2 = 

0.42, p < 0.01, Fig. 3.5(a)) than for Zcv35 (r
2 = 0.13, p < 0.01). The relationship between the depth 

to the water table (ZCV08) and the specific discharge (outlet of the catchment) at the time the 

samples were taken followed a semi-logarithmic trend (Fig. 3.5(b)). 
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Fig. 3.5 (a) Relationship between DOC concentration in groundwater (ZCV08) and stream water. 
(b) Relationship between mean daily values of depth to water table (ZCV08) and discharge 
measured at the outlet of the catchment. White dots correspond to days when groundwater 
and stream were sampled for DOC. 

3.3.2 DOC dynamics in the stream during rainfall–runoff events 

Over the study period, all 11 rainfall–runoff events with peak discharge higher than 20 L s-1 

km-2 were sampled (Fig. 3.3(d) and Appendix C). The sampled events (Table 3.2) cover a wide 

range of magnitude, with peak discharges ranging from 46.5 to more than 2400 L s-1 km-2 and 

runoff coefficients between 7.5 and 53.5%. Sampled events also covered a range of prior 

wetness conditions; with some occurring in dry conditions (19 January 2013) and some 

occurring in wet or very wet conditions (29 May 2012). Three floods occurred in the dormant 

period, six in the vegetative period and two in the wetting-up period. 

Taking all floods together, a significant positive correlation existed between the increase in 

DOC concentration during the flood and the increase in discharge (r2 = 0.49, p < 0.05). However, 

when taking the three larger events separately (with peak flow values four times higher than 

the rest of the floods), this correlation was no longer apparent (r2 = 0.03, p > 0.05). Data from 

the 11 floods also revealed that the magnitude of the flood correlated significantly with prior 

wetness conditions. Indeed, a significant positive relationship existed between the storm runoff 

coefficient and the soil water content (r2 = 0.47, p < 0.05) or the depth to the water table at the 

beginning of the flood (ZCV08 r
2 = 0.48, p < 0.05; ZCV35 r

2 = 0.43, p < 0.05). However, the change in 

stream water DOC concentrations was not clearly related to prior wetness conditions, and no 

significant linear relationship was found between the increase in DOC concentration during the 

flood and the soil water content (r2 = 0.13 p > 0.1) or the depth to the water table at the 

beginning of the flood (ZCV08 r
2 = 0.02, p > 0.1; ZCV35 r

2 = 0.01 p > 0.1). 
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Further, significant positive correlation was found between the increase in DOC 

concentration during the flood and the initial (before the flood) DOC concentration in soil 

water at LCV01 (r
2 = 0.43, p < 0.05). However, it was not possible to confirm this finding for LCV02 

due to the lack of data. The increase in DOC concentration during the flood was also related to 

the initial DOC concentration in groundwater at ZCV35, even if the correlation was not significant 

(r2 = 0.39, p > 0.05). No correlation was found with initial DOC concentrations at ZCV08 (r
2 = 0.06, p 

> 0.05).  

During all floods, stream water DOC concentration followed the discharge pattern, 

increasing steadily during the hydrograph’s rising limb, reaching the maximum concentration 

around peak flow and decreasing gradually during the recession (Fig. 3.6(a)). As a consequence 

of this dynamic, a mostly linear positive relationship between stream water DOC concentration 

and discharge existed for all events. The DOC concentration-discharge relationship showed 

some hysteresis (Fig. 3.6(b)), with higher values of DOC concentrations more frequent during 

the rising limb of the hydrograph than during the falling limb (i.e. positive hysteresis). Negative 

hysteresis was seen only during the three larger events (in terms of peak flow), characterized by 

an extremely rapid discharge increase (up to 650 L s-1 km-2 in 5 min). 

Floods with two main discharge peaks (five events) showed that the slope of the 

relationship decreased from the first to the second peak (Fig. 3.6(b)). This indicated that, for a 

given value of discharge, stream water DOC concentration was always lower during the second 

discharge peak than during the first one. However, hysteresis observed at both peaks remained 

similar. 

 
Fig. 3.6 (a) Discharge and DOC concentration in stream water during the two flood peaks of the 
30 April 2012 event. (b) Relationship between discharge and DOC concentration in stream 
water throughout the event. (b) is the slope of the linear regression between discharge and 
DOC concentration. 
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The slopes of the DOC concentration–discharge relationship for all events (and all peaks) are 

shown in Table 3.2. Excluding the three larger events (with much lower slope values most 

probably related to the extremely rapid discharge increase), slope values ranged from 0.001 to 

0.058 (first peak) and from 0.010 to 0.020 (second peak). The slopes of the DOC concentration–

discharge relationship were similar during the dormant and vegetative periods (both for the 

first and second peaks) and lower for the first peak during the wetting-up period (Fig. 3.7). 

 
Fig. 3.7 Relationship between discharge and DOC concentration in stream water during 
dormant, vegetative and wetting-up periods. All data for the first and second peaks of floods 
observed during each of the periods were adjusted. (b is the slope of the linear regression 
between discharge and DOC concentration). 

To investigate further the dynamics of DOC concentration during floods and to infer the 

possible causes of these dynamics, three floods that occurred in dormant, vegetative and 

wetting-up periods were compared (Fig. 3.8). The three floods were characterized by large 

rainfall amounts (68.8 to 88.0 mm) but by different prior wetness conditions, as shown by their 

different initial discharges (0.9 to 9.3 L s-1 km-2). 

The three floods presented a double peak with similar peak flow values (256 to 279 L s-1km-2) 

during the second peak. The dynamics of stream water DOC concentration during the three 

floods were comparable, following the discharge pattern and decreasing gradually during the 

recession (Fig. 3.8(a)). However, the DOC concentration-discharge relationship was different for 

the three floods during the first flood peak (Fig. 3.8(b)), with slopes of the relationship 

between 0.019 and 0.037. On the contrary, during the second peak (i.e. peak flow), the slopes 

of the DOC concentration–discharge relationship were much more similar (0.010 to 0.014). In all 

cases (first and second peaks) the DOC concentration–discharge relationship showed little 

positive hysteresis. 

The dynamics of soil water content during the three floods showed a rapid response, 

regardless of the initial soil water content value. During the flood, soils were close to saturation 

in the vegetative and wetting-up periods, but not during the dormant period (Fig. 3.8(c)). The 

water table at ZCV35 showed a quick response during floods and reached temporary (wetting-up 
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period) or permanent (dormant and vegetative periods) saturation. The water table at ZCV08 

showed a smooth delayed response during the three floods (i.e. limited response coinciding 

with the first flood peak, then reaching a maximum during the second flood peak), even if its 

magnitude was different for the three floods (Fig. 3.8(c)). In consequence, saturation at ZCV08 

was only reached for the flood in the dormant period, whereas minimum water table depth 

was –283 and –666 mm for the floods in the vegetative and wetting-up periods, respectively. 

The stream water DOC concentration–water table depth (ZCV08) relationship showed for all 

floods (and all peak flows) positive hysteresis, indicating that the increase in DOC 

concentrations in the stream always preceded the rise of the water table at ZCV08 (Fig. 3.8(d)). No 

real differences were observed in this relationship between the different floods, even if the 

magnitude of the stream water DOC concentration increase differed between floods or in a 

single flood, between the first and the second peak flow. An opposite dynamic occurred in the 

stream water DOC concentration–soil water content relationship. For all floods (and all peak 

flows), negative hysteresis (i.e. soil water content increase always preceding the increase in 

DOC concentration in the stream) was observed (Fig. 3.8(e)). Again, this dynamic was common 

to all floods, regardless of the period considered and of the magnitude of the stream water 

DOC concentration increase. 

Therefore, the results given in Fig. 3.8 imply a broadly similar dynamic of stream water DOC 

concentration during similar floods occurring in dormant, vegetative and wetting-up periods. 

Only the magnitude of the stream water DOC concentration increase during the first flood 

peak was found to be somewhat different. These results suggest that seasonality may not play 

a relevant role in stream water DOC concentration dynamics during rainfall–runoff events. 

3.4 Discussion 

3.4.1 Seasonal patterns of DOC 

In the Can Vila catchment, as observed elsewhere (Meyer and Tate, 1983; Hinton et al., 

1998; Michalzik et al., 2001; Neal et al., 2005; Morel et al., 2009), the concentration of DOC in 

rainfall was lower than in soil water, groundwater or stream water (Table 3.1). In this study, the 

mean annual DOC concentration in rainfall measured was 1.1 ± 0.06 mg L-1, which was in the 

low range of mean DOC concentrations in precipitation observed in different European 

regions, where mean values were always lower than 2.5 mg L-1 (Morel et al., 2009; Verstraeten 

et al., 2014). Rainfall water DOC concentration showed, moreover, some seasonality, with 

higher values measured during the growing season (April-July) due to the increase in biological 

activity, as described by other authors (Pan et al., 2010; Verstraeten et al., 2014). 
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Fig. 3.8 a) Discharge and DOC concentration in stream water during three floods observed 
during dormant, vegetative and wetting-up periods. (b) Relationship between discharge and 
DOC concentration in stream water during the event. (c) Soil water content (SWC at 0–90 cm 
depth) and depth to the water table (piezometers ZCV08 and ZCV35) during the event. (d) 
Relationship between the depth to the water table at ZCV08 and DOC concentration in stream 
water during the event. (e) Relationship between the soil water content (0–90 cm) and DOC 
concentration in stream water during the event. In (b), (d) and (e), arrows indicate the 
directions of the hysteresis for each flood peak. 
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The low DOC concentrations normally observed in rainfall have, therefore, a limited 

influence on soil water DOC concentrations (Verstraeten et al., 2014). In the study catchment, 

DOC concentrations were higher in soil water than in the other water compartments, in line 

with results generally reported (Meyer and Tate, 1983; Carey 2003; McGlynn and McDonnell, 

2003; Inamdar et al., 2004; Morel et al., 2009). The mean concentrations observed at the two 

sampling locations (6.5 ± 0.31 mg L-1 at LCV01 and 16.7 ± 1.42 mg L-1 at LCV02) are in the order of 

magnitude reported in several review studies in temperate areas (Buckingham et al., 2008; Wu 

et al., 2010; Camino-Serrano et al., 2014). These reviews do not include Mediterranean areas, 

but as the Can Vila catchment is a humid Mediterranean mountain area 1,100 m a.s.l., sharing 

characteristics of temperate environments during some periods of the year, it makes sense to 

compare Can Vila catchment DOC concentrations with those of temperate areas. Seasonal 

changes were observed in soil water DOC concentration. As in other studies (Meyer and Tate, 

1983; McDowell and Wood, 1984; Buckingham et al., 2008; Verstraeten et al., 2014), the highest 

DOC concentrations were observed during the vegetative period till the end of wetting-up, i.e. 

the whole growing season (Fig. 3.3(b)). This DOC temporal variation reflects the succession of 

biochemical processes controlling DOC concentration in soils (Lambert et al., 2013), which are in 

turn affected by soil temperature (McDowell and Wood, 1984). Indeed, soil water DOC 

concentration and soil temperature had similar seasonal dynamics in the Can Vila catchment, 

with a positive statistically significant relationship between them (Fig. 3.3(a) and (b)). This 

effect of temperature on soil water DOC concentration has been described in several field and 

laboratory studies (Christ and David, 1996; Michalzik et al., 2001; Wu et al., 2010). 

The mean groundwater DOC concentrations measured in ZCV35 (5.6 ± 0.4 mg L-1) and ZCV08 (2.9 

± 0.19 mg L-1) were slightly higher than concentrations observed in several Mediterranean and 

Temperate catchments (Butturini and Sabater, 2000; Neal et al., 2005; Vázquez et al., 2007; 

Aubert et al., 2013). The highest concentrations observed at ZCV35 may be explained by that, as it 

is a shallow piezometer (208 cm deep), its DOC concentrations are similar to those usually found 

in soil water. At ZCV08 DOC concentration showed some stratification with depth, with lower 

concentrations, closer to the values described in the literature (Neal et al., 2005; Vázquez et al., 

2007; Aubert et al., 2013), when the water table level was deeper than 350 cm, as shown in Fig. 

3.3(c), and explained by DOC retention within mineral soil horizons by sorption (Kalbitz et al., 

2000). Additionally, the absence of seasonal variability in groundwater DOC concentration may 

be explained by the low effect of temperature and of biochemical activity at this depth, as 

observed in other catchments (Neal et al., 2005). 

The mean stream water DOC concentration measured at Can Vila (2.7 ± 0.05 mg L-1) was 

comparable to the values reported in Mediterranean and Temperate catchments (Butturini and 

Sabater, 2000; Bernal et al., 2002; Neal et al., 2005; Dawson et al., 2008). In the study 

catchment, DOC concentrations were higher during stormflow periods than during low flows, 

as observed in other streams (Meyer and Tate, 1983; Hinton et al., 1997; Bernal et al., 2005). 
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During storm events, DOC increased in the stream, probably due to the contribution of DOC–

rich soil water, whereas during low flow periods DOC concentration in stream water was similar 

to the concentrations observed in groundwater (Table 3.1), suggesting that this was the main 

stream water source during low flows, especially during the dry period, as described by Schiff et 

al. (1997).  

In the Can Vila catchment, as in other Mediterranean intermittent streams (Butturini and 

Sabater, 2000), it was not possible to identify the stream water DOC seasonality usually 

observed in catchments with low hydrological variability (Evansa et al., 1996; Neal et al., 2005; 

Dawson et al., 2011). This was probably related to the strong variability of the hydrological 

regime, characteristic of Mediterranean catchments, which masks possible seasonal variations 

of stream water DOC concentrations. The absence of seasonality in stream water DOC 

concentrations may also be explained by the positive relationship observed between DOC 

concentrations in stream water and in groundwater (Fig. 3.5), where no seasonality was 

observed, either.  

3.4.2 DOC dynamics in stream water during rainfall–runoff events 

During rainfall–runoff events, DOC concentration in Can Vila stream water rapidly increased 

with increasing discharge, leading to a positive relationship between stream water DOC 

concentration and discharge (Fig. 3.4). This relationship is consistent with patterns observed in 

both humid (Meyer and Tate, 1983; Hinton et al., 1997; Morel et al., 2009) and Mediterranean 

(Butturini and Sabater, 2000) catchments. The positive relationship between DOC concentration 

and discharge was less apparent during base flow conditions as observed in other catchments 

(Singh et al., 2014).  

The little positive hysteresis observed in this relationship (except for the largest events) is 

also consistent with responses described in a set of Mediterranean catchments (Butturini et al., 

2006). 

For rainfall–runoff events with several peaks, the observed decrease of the slope of the DOC 

concentration-discharge relationship from the first peak to the following peaks (Fig. 3.6) and 

the rapid decrease in DOC concentration during the falling limb show that the DOC 

contribution was mainly flushed at the beginning of the event (during the first peak). 

In the Can Vila catchment, the increase in stream water DOC concentration during floods 

suggests a relevant contribution of soil water (with higher DOC concentration), with storm 

water flowing through the upper organic soil layers, as suggested by several authors (Bishop et 

al., 2004; Laudon et al., 2011; McDowell and Likens, 1988; McGlynn and McDonnell, 2003). The 

rapid increase of DOC concentration in stream water in the Can Vila catchment always followed 

soil water content increase, but preceded the significant rise of the water table (Fig. 3.8(d) and 

(e)), reinforcing the idea of the relevant role of soil water. In fact, even if the absence of a 
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distinct riparian zone in the catchment, the combination of a higher hydraulic conductivity of 

the upper soils (Rubio et al., 2008) and a high DOC concentration in soil water (Table 3.1) can 

explain the rapid increase of DOC concentration in streamflow as described elsewhere (Bishop 

et al., 2004; Laudon et al., 2011). 

Moreover, the synchronism found between DOC and the discharge peak could also indicates 

the possibility of stream water DOC sources near or in the stream bed during rainfall events, as 

suggested by several authors (Hinton et al., 1998; Butturini and Sabater, 2000; Bernal et al., 

2002). The rapid DOC increase could correspond partly to the removal along the first flood 

peak of organic matter accumulated in the stream bed. In Mediterranean catchments, 

characterized by a succession of wet and dry periods during the year (Latron et al., 2009), 

several authors (Bernal et al., 2005; Vazquez et al., 2007; Von Schiller et al., 2015) indicated that 

the leaching of particulated organic matter accumulated in the streambed, specially following 

a dry period, can lead to a pulse of DOC in stream water. Indeed, the accumulation of 

particulated organic matter in these Mediterranean streambeds was estimated being 10 times 

greater after a dry spell, than during a wet year, with no flow interruption (Acuña et al., 2004). 

In Can Vila catchment, the DOC dynamics in response to similar discharge events seem 

invariant through seasons (Fig. 3.8). Furthermore, DOC dynamics during floods were not related 

to prior wetness conditions, as already shown by Bernal et al. (2002) in another Mediterranean 

catchment. The non–changing behaviour of DOC dynamics during floods contrasts with the 

diversity of hydrological responses in the 11 floods included in this study. As shown in Table 3.2, 

peak discharges ranged from 47 to more than 2,417 L s-1 km-2 and runoff coefficients were 

between 7.5 and 53.5%. In addition, prior discharge, rainfall depth and rainfall intensity also 

differed greatly between sampled events. This changing and non–linear hydrological behaviour of 

the Can Vila catchment, described in Latron and Gallart (2007, 2008) and Latron et al. (2008), 

results mainly from the succession of dry and wet periods and the characteristic occurrence of 

wetting-up transitions between the two. The succession of these different periods increases the 

complexity of the rainfall–runoff relationship by triggering a different combination of hydrological 

processes, which depend on catchment wetness conditions.  

The fact that rather similar dynamics of stream water DOC concentration were observed in 

all floods sampled in this study is apparently in contradiction with the observed to explain 

whether the systematic DOC concentration increase observed during floods results from various 

hydrological contributions (DOC–enriched surface runoff, soil water subsurface flow, etc.). This, 

in turn, would confirm that different combinations of dominant hydrological processes might 

lead to similar DOC dynamics during a flood; and that DOC sources and water flow paths 

cannot be easily inferred from catchment outflow concentrations alone, as shown by McGlynn 

and McDonnell (2003). For these reasons, more information is needed to use DOC as tracer to 

identify water sources during rainfall events in this mediterranean catchment. A better 
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understanding of DOC sources, and especially of the DOC transfer in the soil–stream continuum 

(Bishop et al., 2004), combined with the hydrological process–based knowledgement of the 

catchment, is necessary before using DOC as an environmental tracer for runoff processes 

identification. 

3.5 Conclusions 

This study provides detailed information on dissolved organic carbon (DOC) dynamics in a 

seasonal Mediterranean catchment. The data obtained on DOC concentrations in the different 

hydrological compartments, and at different temporal scales, give some insights into the 

factors that control DOC delivery to the stream.  

The Can Vila catchment had some seasonality in rainwater and soil water DOC 

concentrations, which was related to biological activity. However, no clear seasonality was 

observed in stream water and groundwater, where DOC dynamics were closely related to 

discharge and water table variations.  

During storm events, stream water DOC concentration followed the discharge pattern 

closely. However, in storm events with several discharge peaks a flushing of DOC during the 

first discharge peak and, in consequence, a reduction in DOC concentration at the following 

peaks were found. The increased stream water DOC concentration during floods suggests a 

relevant contribution of soil water, but also the existence of stream water DOC sources near or 

on the stream bed.  

The similar stream water DOC dynamics during all the floods considered in this study clearly 

contrast with the diversity of their prior conditions (soil water content, rainfall 

characteristics…), as well as with the diversity of their magnitude (peak flow, storm-flow 

coefficient…). This contrast raises the question of the origin of the rapid DOC increase observed 

and confirms that water flow paths cannot be easily inferred from catchment outflow 

concentrations alone. The sampling of all water compartments during the flood (not only 

stream water) and the simultaneous use of other environmental tracers, especially isotopes, 

appear two interesting lines for future research, in order to advance in the identification of 

spatial and temporal sources of catchment runoff.  
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4 MEAN TRANSIT TIME ESTIMATION USING STABLE ISOTOPES AND TRITIUM  

4.1 Introduction  

Mean transit time (MTT),or water age, is the time water spends travelling within the 

subsurface through a catchment to the stream network (see a review in McGuire and 

McDonnell, 2006). The MTT reflects the catchment’s ability to retain and release water, which is 

a useful descriptor of its hydrological functioning. MTT have been estimated in a wide range of 

catchments worldwide using different tracers as Oxygen-18 (e.g. DeWalle et al., 1997), 

radioisotopes (e.g. Maloszewski and Zuber, 1982; Stewart and Fahey, 2010) or a combination of 

tracers (e.g. Dinçer et al., 1970; Uhlenbrook et al., 2002; Green et al., 2014; McCallum et al., 

2014). Recently, the affordable acquisition of high-frequency tracer data (e.g. Birkel et al., 

2012), long-term data (e.g. Tetzlaff et al., 2007) and high analysis precision (e.g. Morgenstern 

and Taylor, 2009) have helped to increase the number of MTT studies.  

Oxygen-18 (δ18O) and Deuterium (δ2H) have been used typically, as natural tracers, to 

identify water sources during storm events (see a review in Klaus and McDonnell, 2013) and to 

estimate water MTT (see a review in McGuire and McDonnell, 2006). Water MTT have been 

estimated from the amplitude of the isotopes seasonal variations in precipitation and 

subsurface waters (e.g. DeWalle et al., 1997; Soulsby et al., 2000; McGuire et al., 2002; Rodgers 

et al., 2005; Viville et al., 2006; Mueller et al., 2013). These variations are mainly controlled by 

the fractionation that occurs during evaporation and condensation processes (Epstein and 

Mayeda, 1953). In some catchments stable isotopes seasonal variations have been clearly 

observed, suggesting shallow stream water sources subject to fractionation, especially in 

summer (Durand et al., 1993). However, the isotope seasonal amplitude in subsurface water 

(and stream water) is damped compared to the one of the precipitation input (e.g. O’Driscoll et 

al., 2005; Birkel et al., 2011; Kirchner, 2015). As a result, stable isotopes are more suitable for 

dating waters younger than 4-5 years. For older waters, the amplitude of the output signal 

becomes narrow providing unreliable water ages (McGuire and McDonnell, 2006; Stewart et al., 

2007; Stewart et al., 2010; Kirchner et al., 2015). 

Tritium isotope (3H) is a radioisotope that allows the estimation of water MTT in a 

catchment since this isotope is deposited with rain. Cosmogenic sources produce small tritium 

concentration in the atmosphere. However tritium concentration was augmented by nuclear 

weapons testing in the 1950s and 60s, mainly in the North hemisphere (NH). Since then the NH 

atmospheric concentration has tended to return close to natural concentrations, except in some 

regions with important nuclear industry (Rozanski et al., 1991). Despite that tritium decays 

(12.32 years), tritium concentration due to nuclear weapons still remains in older groundwater 



Chapter 4 

56 

systems in the NH (Michel el al., 2015), causing ambiguity in current MTT estimations. In the 

Southern hemisphere (SH) tritium dating is more straightforward (e.g. McGlynn et al., 2003; 

Stewart and Fahey, 2010; Stewart et al., 2010) and the smaller tritium concentration in the 

atmosphere impulses the development of high precision tritium measurements (Morgenstern 

and Taylor, 2009). Tritium concentrations distribution in the atmosphere changes depending on 

the latitude, altitude and the influence of the maritime moisture (Rozanski et al., 1991). For 

instance, coastal locations have lower tritium content because it is diluted by the influence of 

maritime moisture. Tritium have been commonly used to calculate water ages up to 100 years, 

because its decay covers several half-lives (McGuire and McDonnell, 2006; Stewart et al., 2007, 

Stewart et al., 2010). 

The MTT is usually calculated using a lumped-parameter model (LPM) that relates the tracer 

input and output concentrations. MTT estimations depend on an input tracer function and a 

flow model, which describes the tracer transport through hydrological systems (Maloszewski 

and Zuber, 1982). The models assume the flow pattern to be in steady state. Therefore, 

currently the studies calculate the mean transit time at baseflow conditions (McGuire and 

McDonnell, 2006). The input tracer function represents the tracer that enters the system. It 

depends on: tracer concentration, precipitation volume and proportion of precipitation that 

reached the hydrological system.  

In the literature, the lumped-parameter model most commonly used is the exponential-

piston flow model (EPM) which combines a portion of an exponential flow model (EM) and a 

piston flow model (PFM) (Maloszewski and Zuber, 1982). The piston flow model assumes that 

all flow paths have the same transit time and there is no dispersion, then the tracer 

concentration only changes by radioactive decay. The exponential flow model considers that 

there is an exponential distribution of transit times (Maloszewski and Zuber, 1982). Then EPM 

model describes a system with an exponential distribution of transit times, but delayed in time 

because a proportion of the model is a piston flow model (McGuire and McDonnell, 2006). 

Other models used are the dispersion model (e.g. Maloszewski and Zuber, 1982; Uhlenbrook et 

al., 2002) that  considers the dispersion of tracers throughout the system and the probabilistic 

gamma model  (e.g. Soulsby et al., 2010; Hrachowitz et al., 2010; Hrachowitz  et al., 2011; Birkel 

et al., 2012). 

The identification of the most appropriate model type for each catchment and the optimal 

model parameters can be difficult (e.g. Mueller et al., 2013) as the structure of the hydrological 

system is rarely observable. Additionally, other issues complicate the water MTT estimation and 

increase the uncertainty of the water age modeling. The most common issues are related to the 

usually short length of the input data records, the lack of tracer input concentration data, the 

uncertainty of the recharge function, the analytical measurement errors, or the sampling 

frequency (McGuire and McDonnell, 2006). There have been different attempts to solve the 
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issue of short input data records using water stable isotopes. Some studies extended artificially 

the stable isotopes input data (e.g. Uhlenbrook et al., 2002; McGuire et al., 2005; Viville et al., 

2006) others used stable isotopes sine-wave regression models (e.g. McGuire et al., 2002; 

Rodgers et al., 2005). To face the lack of tracer input concentration data, studies use data from 

nearby stations which has long-term records. For instance, Herrmann et al. (1999) used tritium 

data from  IAEA (International Atomic Energy Agency) network stations. 

Even if authors are generally aware of the uncertainty associated with water age modeling, 

derived from the issues mentioned above (e.g. McGuire and McDonnell, 2006; Jódar et al., 

2014), only few studies have explicitly considered the uncertainty, with the exception of the 

works of Soulsby et al. (2010) and Timbe et al. (2014) who used a Monte Carlo methodology to 

constraint model parameters. Mueller et al. (2013) also considered the uncertainty generated 

by the input tracer function (precipitation volume, recharge, stable isotopes signals). However, 

considering at the same time, the uncertainty associated to model parameters and to input 

rainfall and output samples (analytical errors) still remains a challenge in current water age 

modeling studies.  

Finally, there is also interest about the influence of catchment characteristics (e.g. 

topography, geology, soil type, basin size…) on water age spatial distribution. Some authors 

found that water age could be affected by the topography and the storage capacity of the 

ground (soil and bedrock) (e.g. Rodgers et al., 2005; McGuire et al., 2005; Soulsby et al., 2006; 

Morgernstern et al., 2014). In contrast, McGlynn et al. (2003) and Mueller et al. (2013) did not 

observe any effect of basin size or vegetation cover on water age distribution. 

This study, performed in the Vallcebre research catchments (NE Spain), focuses on water 

mean transit time estimation in different water compartments: stream, springs and wells. The 

specific objectives of this work are: (a) to estimate water MTT using stable isotopes; (b) to 

perform a complete uncertainty analysis of MTT estimation using tritium and different sample 

designs; (c) to compare present and former (Herrmann et al., 1999) water MTT estimation in the 

same catchment; (d) to understand spatial water MTT variability. 

4.2 Methods 

4.2.1 Study area 

This study has been carried out in the Vallcebre research area at the headwaters of the 

Llobregat River, 90 km from the sea, on the southern margin of the Pyrenees, NE Spain (42°12’ 

N, 1°49’ E). The Vallcebre research area, managed by the Surface Hydrology and Erosion group 

(IDAEA-CSIC), was selected in early 1990 to analyse the hydrological processes of Mediterranean 

mountain areas, the consequences of land abandonment on the hydrological response, as well 

as the sediment dynamics and transport of eroded areas.   
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The Cal Rodó catchment (4.17 km2), where this study was carried out, includes the Can Vila 

(0.56 km2) and Ca l’Isard (1.32 km2) sub-catchments (Fig. 4.1).  

In the Cal Rodó catchment, mean altitude is 1,300 m above sea level and the slope gradients 

is between 10% and 40% (mean value 28%) and have mostly north-east orientation. The soils 

have developed over the bedrock formed by red lutites with some sandstone, gypsum and 

limestone. Under this layer a limestone bed, from the Palaeocene, outcrops in the southern 

part of the catchment. Most of the hill-slopes of the catchment were deforested and terraced 

for agricultural purposes in the past and abandoned during the second half of the 20th 

century. As a consequence of terracing, soil thickness ranges from less than 50 cm in the inner 

part of the terraces to more than 2 or 3 m in their outer part (Latron et al., 2008). Following 

land abandonment, spontaneous forestation by Pinus sylvestris has occurred (Poyatos et al., 

2003) and pine forest patches represented, in 2003, about 60% of the Cal Rodó catchment 

(34% of the Can Vila catchment). The remainder of the catchment is widely covered by pastures 

and meadows. The main streams are 1 to 3 m wide and are not very deeply incised. No riparian 

zone is observed in the catchment. 

Climate is humid Mediterranean, with a marked water deficit in summer. The mean annual 

rainfall is 862 ± 206 mm, with a mean of 90 rainy days per year (Latron et al., 2009). Winds are 

pronominally from south-west direction. Snowfalls account for less than 5% of total annual 

rainfall. The rainiest seasons are autumn and spring. Winter is the season with the least rainfall. 

In summer, convective storms may provide significant precipitation inputs. Mean annual 

temperature at 1,260 m a.s.l. is 9.1ºC and mean annual potential evapotranspiration is 823 ± 26 

mm (Latron et al., 2010a). 

The combined dynamic of rainfall and evapotranspiration favours the succession of wet 

(late autumn and spring) and dry periods (winter and summer) during the year (Latron and 

Gallart, 2007; 2008).  

4.2.2 Location characteristics 

The metrics for each sampled location were obtained from the 5 m resolution digital 

elevation model (DEM) of the catchment, provided by the Institut Cartogràfic de Catalunya. 

The Topographic Wetness Index (TWI) (Beven and Kirkby, 1979) and the slope were calculated 

using the open source software SAGA-GIS. 

4.2.3 Hydrological data 

Rainfall series for the period 1953-2013 was calculated correlating the following data: (a) 

Data from the Spanish Meteorological Agency (AEMET) station located at Berga (664 m a.s.l), 

11.5 km away from the catchment for the period 1953-1982, (b) data from an AEMET 
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pluviometric station located at Vallcebre (1,121 m a.s.l.) for the period 1982-1989, and (c) data 

measured at the Vallcebre research catchments during the period 1988-2013. 

In the same way, temperature series was calculated correlating: (a) Data from La Molina 

station (1,704 m a.s.l), located at 17.3 km from the study area, during the period 1953-2002 and 

(b) data measured at the Vallcebre research catchments during the period 1989-2013. The 

Potential Evapotranspiration (PET) was calculated using the Thornthwaite (1948) equation from 

the temperature series.  

During the 1953-2013 periods, the mean annual rainfall of the synthetic series was 907 mm 

and the potential evapotranspiration was 712 mm. 

Streamflow was measured at the Can Vila (CV) gauging station (Fig. 4.1), by means of a 90º 

V-notch weir with a water pressure sensor (6542C-C, Unidata) connected to a datalogger (DT50, 

Datataker). Mean water level values (measured every 10 seconds) were recorded every 5 minutes 

and converted to discharge values with an established stage-discharge rating curve calibrated 

with manual discharge measurements (Latron and Gallart, 2008).  

4.2.4 Water sampling 

 
Fig. 4.1 Map of the Cal Rodó catchment and subcatchments (Can Vila and Ca l’Isard) showing 
the geological characteristics, the stream network, the monitoring design, and the sampling 
locations (springs, streams and wells). 
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4.2.4.1 Stable isotopes 

Water for stable isotopes (δ18O and δ2H) analysis was sampled from one spring (Sp12 on Fig. 

4.1), one well (Gw18) and in rainfall and stream water at the outlet of the Can Vila sub-

catchment from May 2011 to July 2013.  

Rainwater was sampled automatically, at 5 mm rainfall intervals, using an open collector 

(340 mm diameter) connected to an automatic water sampler (24 500-mL bottles, ISCO 2,900). 

With all samples collected during the week, a weighted weekly sample was prepared in the 

laboratory.   

Stream water was sampled daily at Can Vila gauging station using an automatic water 

sampler (24 1000-mL bottles, ISCO 2,700) triggered by the datalogger (DT50, Datataker). Stream 

water was also sampled manually (grab sample) at the gauging station, every two weeks. A 

weekly sample was analysed. 

Water in spring Sp12 and well Gw18 was sampled every two weeks, manually (grab sample) 

and using a manual peristaltic pumps respectively.  

Samples were collected in 3 ml glass directly from the sampled compartments (stream water, 

spring water and well water) or from the bottles of the automatic samplers (rainfall and stream 

waters). These vials were filled to avoid air bubbles and sealed with plastic paraffin film to 

avoid evaporation, and stored at 3-4ºC before analysis. Samples were filtered through a 0.45-

µm membrane filter. δ2H and δ18O ratios were measured with, a Picarro L2120-i analyzer, by 

Serveis Científico-Tècnics of the Universitat de Lleida (Spain). Measurement precisions are 0.30-

0.53 for δ2H and 0.08-0.12 for δ18O. When samples contained organic compounds a post-

processing correction was applied (Martínez-Gómez et al., 2015).  

4.2.4.2 Tritium 

Four water samples for Tritium (3H) determination were collected on September 3th 2013 

from: two streams (Cal Rodó (St1) and Can Vila (St4) gauging stations), a permanent spring 

(Sp12) and in a well (Gw18).  

Previous samples for tritium determination were collected in 1990s from these four 

locations by Herrmann et al. (1999). These authors also collected samples for tritium analysis in 

other 17 locations in the Cal Rodó catchment (springs, wells and streams) (see Fig. 4.1, 

Appendix D. Table 2, for a list of all sampling dates and locations).  

 All the samples were collected during selected baseflow conditions to avoid dispersion of 

ages related to the influence of recent rainfall-runoff events (Stewart et al., 2012). All samples 

were collected in 1 L plastic bottles hermetically sealed against atmosphere interaction. 

The samples collected in 2013 were analysed at the Water Dating Laboratory of GNS Science 

(New Zealand) with an ultra-low background Quantalus liquid scintillation counter 
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(Morgenstern and Taylor, 2009) and were previously electrolytically enriched in tritium by a 

factor of 90. The results were referred to the radioactive half-life of tritium of 12.32 years, and 

using the calibration of standard water SRM4926C (1.100462 ± 0.366% at 3 September 1998, 

Morgenstern and Taylor, 2009). Measurement error (1σ) on samples is about ± 0.09 tritium units 

(TU). For the Herrmann et al. (1999) samples the measurement error (1σ) ranged between 0.5 

and 1.5 TU. 

4.2.5  MTT estimation using oxygen-18 and deuterium 

The MTT was estimated in one stream (St4), a spring (Sp12) and a well (Gw18) using oxygen-

18 and deuterium. The water age estimation was performed as follows: 

4.2.5.1  Input function 

In order to use stable isotopes for MTT estimation, the rainfall input function should be 

known for a period of at least some years. However, in the Can Vila catchment rainfall samples 

for isotopes determinations were collected only during 27 months. Therefore we estimated an 

eight years long rainfall isotopic series by using four times the available 27 months series. In the 

synthetic eight years series, the observed rainfall stable isotopes seasonality and the mean 

isotope signal were maintained identical as in the original 27 months long series. 

As the rainfall input in a catchment is affected by surface runoff and evaporation loss, 

leading to a lower recharge (R), the equation of Bergmann et al. (1986) was used to weight 

isotopic ratios using weekly measurements:   α   ∑ α
     (1) 

where δw and δi are the weighted and measured δ18O or δ2H values respectively. αi and Pi are 

respectively the groundwater recharge parameter and the rainfall amount in the ith week. N is 

the number of measurements and δgw is the δ18O or δ2H mean groundwater value (taken as the 

mean of the measured isotope concentration at each sampled location) (Bergmann et al., 

1986). As αi Pi can be substituted by Ri (recharge) and (Σ αi Pi)/N by Rmean (mean recharge) (see for 

details: Stewart et al., 2007), recharge (Ri) was calculated subtracting the weekly PET from the 

weekly rainfall.  

4.2.5.2 Model 

Water mean transit time (MTT) was calculated using the lumped-parameter approach. The 

flow pattern was assumed to be on stationary state (baseflow conditions) (Maloszewski and 

Zuber, 1982). The transport of the tracer through the catchment can be expressed 

mathematically by the convolution integral relating the output and input tracer 
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concentrations. From a known input tracer (rainfall) and the measured output tracer (streams, 

springs and wells), water MTT can be solved by: C  t  C  t τ g τ exp λτ dτ   (2) 

Cin and Cout are the input and output tracer contents, t is the calendar time, τ is the lag time 

between input and output tracer concentrations, g(τ) is the transit time distribution function. λ 

is the decay constant of the tracer. For stable isotopes λ = 0.  

The lumped-parameter model used to calculate the mean transit time was the exponential-

piston flow model (EPM) which combines the exponential and the piston-flow models 

(Maloszewski and Zuber, 1982). The response function was given by: 

g(τ) = 0                                  for  τ < τm(1-f) (3) 

g(τ) = ƒ exp ƒ ƒ 1    for τ  τm(1-f) (4) 

where τm is the water MTT, and f the ratio of the exponential model versus the total (when f 

= 1 the model is totally exponential and  when f = 0 is totally piston flow).  

4.2.5.3 Model optimisation 

Using δ18O or δ2H to estimate water MTT, the best fit between calculated and observed 

stable isotopes signal was obtained by optimisation (Excel solver) of the two model parameters: 

f and MTT. Least-squares were used to obtain the optimal fit to the measured data.  

 
∑

      (5) 

where  and  is the simulated and measured data and  is the number of samples.  

4.2.6  MTT estimation using tritium 

4.2.6.1 Input function 

As no tritium measurements of rainfall were available in the Cal Rodó catchment, other 

stations of the IAEA (International Atomic Energy Agency) network located “near” Vallcebre 

were considered. After some trials, the monthly measurements of Vienna (located at 203 m 

a.s.l.) were selected due to the long period of records compared to other stations. Therefore, in 

a first step, the data of the rainfall tritium concentration and the associated analytical error (i.e. 

standard error) in the Cal Rodó catchment were estimated by combining monthly records from 

Vienna IAEA station (International Atomic Energy Agency), from period 1961-2009, with those 

of 2010-2013 from Vienna ANIP (Austrian Network of Isotopes in Rainfall) station. For the 

period 1953-1960, when Vienna’s data were not available, this information was obtained from 

Ottawa IAEA station, which had a good correlation with 1961-2013 Vienna’s data. Data are 

presented as Tritium Units (TU). In a second step, Vienna’s rainfall tritium concentration and 
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the analytical error measurements were scaled by a factor obtained by a multiple regressions 

between rainfall tritium measurements versus latitude and altitude at twelve IAEA stations 

(Barcelona, Genova, Girona, Grenoble, Guttannen, Madrid, Marseille, Penhas Douradas, 

Santander, Thonon-les-bains, Vienna and Zaragoza). The resulting regression was significant (p 

< 0.01) and a factor of 0.82 ± 0.17 (Gallart et al., in review) was obtained to simulate monthly 

rainfall tritium concentrations for the Cal Rodó catchment.  

The annual mean tritium concentrations in recharge (Cin) were determined from monthly 

tritium rainfall concentration as described in Stewart et al. (2007) using the equation:  ∑ / ∑      (6) 

Where Ci and Ri are the adjusted Vienna tritium concentrations in rainfall and the recharge 

amounts for the ith month, respectively. For each month with a negative recharge (i.e. no 

infiltration), the tritium concentration of the rainfall data was corrected. Equation 6 was 

applied to both rainfall tritium concentration and to the analytical error measurements. 

 

Fig. 4.2 Temporal sequences of monthly rainfall tritium concentration, monthly rainfall tritium 
concentration after applying the scaled factor of 0.82 and the yearly input function after 
applying the scaled factor and the recharge equation.  

4.2.6.2  Modelling 

MTT was estimated at 21 catchment locations (streams, springs and wells) were tritium was 

sampled (Fig. 4.1). MTT estimation was assessed by using the convolution integral (equation 2, 

where λ = ln2/T1/2. T1/2 was the half-life of tritium) into a framework of uncertainty analysis 

described in Gallart et al. (in review). This framework named TEPMGLUE (Tritium Exponential 

Piston Model GLUE), is based on the Generalized Likelihood Uncertainty Estimation (GLUE) 

methodology, proposed by Beven and Binley (1992, 2014).  

The TEPMGLUE uses Monte Carlo parameters exploration and provides a set of acceptable 

simulated models (behavioural), instead of an optimal result. Additionally, the TEPMGLUE was 

adapted to cope with some uncertainty issues of MTT estimation process (see McGuire and 

McDonnell, 2006). These uncertainties are related to the analytical error associated with the 
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rainfall tritium determinations, the analytical error associated with the water tritium samples 

determinations (streams, springs and wells) and the error associated with the model parameters 

(f and MTT).  

The uncertainty analysis was performed as follows (see details in Gallart et al., in review):  

First, considering the tritium value (and the associated error) of the rainfall data and of the 

water samples, a set of replicated annual tritium input (rainfall) sequences and water tritium 

samples were obtained from Monte Carlo iterations, using the respective normal distribution 

generators. All the generated replicate series were used as TEPMGLUE input data. 

Then using replicated tritium input, a pair of MTT and f parameter values was searched. The 

search was in a range of 0.05-1.00 for f and 1-35 years for MTT. The EPM model was run and the 

simulated tritium concentrations obtained were evaluated against the water tritium samples 

replicates. The evaluation of the fit was made using an efficiency measure.  

The efficiency was measured with the Nash-Sutcliffe (1970) criterion. The inconvenience of 

this efficiency measure is that it cannot be applied when using one single tritium sample for 

validation, and that it gives flawed negative values when the variance of observations is small. 

Therefore, the efficiency measure used in a case of using one single sample was:  

    E 1 MSE ,      (7) 

Where MSEs is the mean squared error of the simulated model tritium concentration respect 

to the replicated values, var0 is the variance of the tritium samples, w is the conventional factor 

and var  is the mean analytical variance of the tritium samples. The w factor value was set to 

2.332. This value means that, in the case of uncertainty being caused only by the precision of 

the tritium determinations in water samples, about 98% of trial values would be within the 

acceptability range (see in Gallart et al., in review.)  

If the simulated model was rejected (E ≤ 0), a new parameter pair (f and MTT) was 

generated and the procedure was repeated with the same data replicates. Only when an 

acceptable pair of parameters was found (E > 0) or when 10,000 sub-iterations were 

unsuccessful, a new set of replicated observations were sought in a next full iteration. In total, 

up to 50,000 full iterations were performed in each exercise. 

After using TEPMGLUE, thousands of behavioural simulation models with a correspondent 

MTT, f and efficiency value were obtained. The likelihood measure for every pair of MTT and f 

values was calculated as its rescaled efficiency E (between zero and one), by dividing it by the 

total sum of efficiencies. 

Thereafter, results were ordered by MTTs values and the likelihoods were cumulated, to 

obtain the likelihood weighted cumulative density function (lwcdf) (Fig. 4.3). Q-Q plots were 

performed to test if the distribution functions obtained were normally distributed or not. 
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When lwcdf showed bimodal shapes, two normal distributions were mixed to simulate this 

bimodal distribution (Gallart et al., in review). Using an optimisation procedure (Excel solver) 

the optimal proportions and the normal distribution parameters of each normal (weighted 

mean and standard deviation) were obtained minimizing differences.  

Along with the likelihood weighted cumulative density functions, the weighted mean, 

weighted standard deviation (σ) and the confidence interval (0.05 and 0.95) of the distribution 

were calculated. The percentage of discarded model simulations was also quantified.  

 
Fig. 4.3(a) Likelihood weighted cumulative density function for two normal distributions and 
(b) a bimodal distributions. 

The statistical significance of the differences between pairs of lwcdf was investigated by 

performing a randomisation test (Gallart et al., in review). The differences were considered 

significant when P < 0.05, and marginally significant when 0.05 < P < 0.1. 

4.3 Results 

4.3.1 Temporal variation of δ2H and δ18O 

In the Can Vila catchment the weekly mean and standard deviation of δ18O and δ2H signals 

in rainfall were -7.0 ± 3.3 ‰ and -42.8 ± 26.7 ‰, respectively (see Table 1, Appendix D). There 

was a significant linear correlation between air temperature and δ18O (r2 = 0.63, p < 0.05) or δ2H 

signals (r2 = 0.55, p < 0.05) showing that δ18O and δ2H annual variations (Fig. 4.4(a)) reflected 

the effect of condensation and evaporation processes during the year. In summer, when air 

temperature was higher, δ18O signal in rainfall was less depleted (-4.4 ± 1.8 ‰) than in winter   

(-9.7 ± 3.5 ‰). In contrast to rainfall, no clear seasonal variations were observed in the stream, 

spring and groundwater (well) (Fig. 4.4 and Table 1, Appendix D). Along the study period, 

mean δ18O signal in stream water was -7.2 ‰, similar to that observed in spring water and in 

the well (-7.5 ‰ and -7.0 ‰ respectively), in all cases with slight variations (from ± 0.2 ‰ to 

0.5‰).  
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The Can Vila Local Meteoric Water Line (LMWL) (equation 8), calculated from the weekly 

rainfall samples, is: 

δ2H = 7.96 δ18O + 13.37 ‰                 (r2 = 0.96; n = 65) (8) 

Stream water, spring water and groundwater isotope ratios were located on the LMWL, 

suggesting that they all were affected by similar isotopic fractionation. The stable isotopes 

signal in stream water ranged from -7.7 ‰ to -5.9 ‰ (δ18O) and from -47.3 ‰ to -37.1 ‰ (δ2H). In 

spring water ranges were from -8.2 ‰ to -6.8 ‰ (δδ18O) and -50.9 ‰ to -41.2 ‰ (δ2H) and in 

groundwater from -7.9 ‰ to -5.4 ‰ (δ18O) and -53.2 ‰ to -27.5 ‰ (δ2H) (Fig. 4.5). 

 
Fig. 4.4 Temporal dynamics of δ18O and δ2H signal in (a) rainfall, stream (b)water (St4), (c) spring 
water (Sp12) and (d) groundwater (Gw18) during the study period (May 2011 to July 2013) at 
baseflow conditions. Black dots correspond to δ18O while grey dots correspond to δ2H. Note the 
change of Y scale between rainfall graph and the other graphs. 
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Fig. 4.5 Relationship between δ18O and δ2H signal in stream water (St4), spring water (Sp12) and 
groundwater (Gw18) throughout the study period (see Fig. 4.1 for sampling locations). The 
solid line plots the Local Meteoric Water Line (LMWL) obtained from rainfall samples (weekly 
data) whereas the dashed one the Global Meteoric Water Line (GMWL). 

4.3.2 Estimation of mean residence time using stable isotopes 

Results of the estimation of Mean Transit Time (MTT), in stream water, spring water and 

groundwater, using δ18O and the Exponential Piston Model (EPM) with the f parameter ranging 

between 0.6 and 1, indicated that any of the calculated output tracer content (Cout) fitted 

optimality on the measured δ18O values. When MTT was longer than two years, despite the 

different f values applied, smaller and constant standard deviations (< 0.4 ‰) were observed, 

making difficult to find an optimal fit. Fig. 4.6 shows the goodness-of fit when using the two 

extreme f values (0.6 and 1). Results indicate that sampled waters were definitely older than 

two years, but that their “exact” age remains totally uncertain.  

 
Fig. 4.6 δ18O goodness-of fit (standard deviation) obtained with the Exponential Piston Model 
for different f and MTT for (a) stream water, (b) spring water and (c) groundwater. 



Chapter 4 

68 

4.3.3  Estimation of mean transit time using tritium  

4.3.3.1  Mean transit time estimation considering different combinations of samples 

At four catchment locations (St1, St4, Sp12 and Gw18) tritium was sampled in the 1990s 

(1996-1998) and 2013. The MTT at these locations was estimated using the TEPMGLUE 

methodology (Gallart et al., in review). At each location, MTT estimations were performed 

successively using the following samples/combination of samples: (i) all the samples (1990s and 

2013 samples), (ii) only the 1990s samples and (iii) only the 2013 sample.  
 

i)  Estimation of MTT considering all the samples. 

Using all tritium samples, results showed that the weighted mean of MTT ranged between 

4.6 years in groundwater (Gw18) and 7.7 years in the stream water (St4), with similar weighted 

standard deviation of about three years and large confidence intervals in all locations (Table 

4.1 and Fig. 4.7(b)). In addition, the percentage of discarded simulations in all cases was 

relatively low (<1%), which shows the good efficiency of the TEPMGLUE methodology. 

Table 4.1 Results of MTT estimation using the EPM model and considering all the tritium 
samples. CI = confidence interval. σ = Standard deviation. 

Location Nº of 
samples 

Weighted 
mean of 

MTT 

Weighted 

σ 
0.05 CI 0.95 CI Discarded 

simulations  

  (years) (years) (years) (years) (%) 

St1 6 7.0 3.0 2.5 12.5 0.1 
St4 6 7.7 3.3 2.6 13.9 0.1 

Sp12 6 7.4 3.2 2.5 13.5 0.0 
Gw18 6 4.6 3.1 0.9 11.7 0.0 

 

The likelihood weighted cumulative density functions lwcdf observed at each location is 

shown in Fig. 4.7(a).  

Fig. 4.8 shows the normal Q-Q plots of observed and expected distributions of MTT at the 

four locations. All the likelihood weighted cumulative density functions lwcdf (white dots), 

with the exception of the extreme values, fit close to the expected normal distribution (line), 

showing that the lwcdf were not far from being approximately normal distributed. In 

groundwater (Gw18) the lwcdf was more distant from a normal distribution.  
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Fig. 4.7 (a) Likelihood weighted cumulative density function (lwcdf) for the four studied 
locations, considering all the tritium samples (1990s and 2013). (b) Weighted mean and [0.05-
0.95] confidence intervals of estimated MTT for the same locations. 

 

Fig. 4.8 Normal Q-Q plots comparing the observed MTT distribution and the expected normal 
distribution in St1 (a), St4 (b), Sp 12 (c) and Gw18 (d). 

ii)  Estimation of MTT considering only the 1990s samples. 

Fig.4.9 shows the lwcdf distributions when using only the 1990s samples (1996-1998). The Q-

Q plot analysis demonstrated that they were not far from normality. Again, differences in MTT 

were not significant (p > 0.1) between stream water (St1 and St4) and spring water (Sp12). No 

significant differences were also observed with groundwater (Gw18). When the lwcdf obtained 
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using all samples (section i) was compared to the lwcdf obtained using only the 1990s samples 

(this section), no statistically significant differences were observed (p > 0.1). For instance, in 

stream (St1) the weighted mean water age was 6.8 years when using all tritium samples, and 

7.0 years using only the 1990s samples (Table 4.1 and Table 4.3). These comparisons indicated 

that adding the 2013 samples, despite their high analytical precision, did not provide relevant 

information for MTT estimation. 

 

Fig. 4.9 (a) Likelihood weighted cumulative density function, (lwcdf) for the four studied 
locations, obtained considering only the 1990s samples (five samples). (b) Weighted mean and 
[0.05-0.95] confidence intervals of the estimated MTT for the same studied locations. 

iii)  Estimation of MTT considering only the 2013 samples. 

When estimating water age using only the 2013 samples, all the observed lwcdf presented 

bimodal distributions, instead of the normal distributions observed with the other 

combinations of samples (Fig. 4.10(a)). These bimodal shapes indicated that there were two 

different solutions of MTT estimation; that could be decomposed into two normal distributions. 

In groundwater (Gw18) the two possible weighted mean of MTTs differed by 21.4 years, while 

at the other locations the difference was approximately of 11 years (Table 4.2). At each 

location, the confidence interval (5%) of the younger solution (i.e. first normal distribution) 

was smaller than the confidence interval of the older solution (i.e. second normal distribution) 

(Fig. 4.10(b)). 

When both normal distributions (first and second) were compared (randomisation test), it 

was observed that at locations St1, St4 and Sp12 both normal distributions did not differed 

significantly in term of water MTT (p = 0.20, p = 0.18, p = 0.19, respectively for the sites). 

Contrarily, groundwater MTTs (Gw18) were marginally significantly different (0.05 < p < 0.1). 

Besides, at the four locations there were not statistically significant differences (p > 0.1) 

between the first normal distributions and the lwcdf obtained in the previous estimations 

(sections i and ii). For instance, at location Sp12 the difference between the first normal 

distribution and the lwcdf obtained using the five older samples (section ii) was not significant 
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(p = 0.48). In contrast, at location St4, Sp12 and Gw18 the second normal distributions and the 

lwcdf obtained in the previous sampling designs (sections i and ii) differed marginally.  

Table 4.2 Results of MTT estimation using the EPM model and considering only the 2013 
samples. CI = confidence interval. σ = Standard deviation. 

Location Solution Weighted 
mean of 

MTT 

Weighted 
σ 

0.05 CI 0.95 CI Discarded 
simulations 

  (years) (years) (years) (years) (%) 

St1 

Younger 7.8 1.4 5.4 10.2 0.0 
Older 18.8 6.9 7.4 30.1 0.0 

St4  

Younger 8.2 1.8 5.2 11.2 0.0 
Older 19.8 6.1 9.7 29.2 0.0 

Sp12  
Younger 8.7 1.6 6.1 11.3 0.0 

Older 19.1 6.1 9.0 29.2 0.0 

Gw18 
Younger 4.9 0.8 3.5 6.2 0.0 

Older 26.2 4.2 19.3 33.1 0.0 

 

 

Fig. 4.10 (a) Likelihood weighted cumulative density function (lwcdf) for the four studied 
locations, obtained considering only the 2013 samples. (b) Weighted mean and [0.05-0.95] 
confidence intervals of the MTT two possible solutions (see text) for the same studied locations. 

Fig. 4.11 shows the temporal series (1960-2015) of the tritium input function and tritium 

water samples, as well as the results of two behavioural models obtained from the former 

analysis (section iii) using the groundwater samples (Gw18) (Table 4.2). Whereas, the model 

simulation that yield the younger solution (MTT = 4.9 years and f = 0.66) fitted the six tritium 

samples, the other model simulation (MTT = 26.2 years and f = 0.63) only fitted the 2013 tritium 

sample. Similar results were observed using samples from the other catchment locations 

(Appendix D.).  
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Fig. 4.11 MTT estimated in thethree springs, twelve streams and six wells of Cal Rodó 
catchment. The black dots are the weighted MTT and [0.05-0.95] confidence intervals estimated 
in the present study. The white dots and black squares are the MTT estimated by Herrmann et 
al., (1999) using the EM model and the dispersion model, respectively. 

4.3.3.2 Comparison with the results obtained by Herrmann et al., (1999). 

From 1996 to 1998, samples for tritium determination were collected in three springs, 

twelve streams and six wells (a total of 21 locations) of the Cal Rodó catchment. From these 

samples, MTTs were estimated, using the exponential and the dispersion models, by Herrmann 

et al. (1999) (Table 2, Appendix D.). Tritium determinations of Herrmann et al. (1999) have been 

used in the current study to obtain a new estimation of MTT applying TEPMGLUE. 

Fig. 4.12 shows the MTT estimated using both approximations. Black squares and white 

circles correspond MTT estimations by Herrmann et al. (1999), whereas the present study results 

are shown as weighted MTT and 0.05 and 0.95 confidence intervals. The weighted means MTT 

obtained in the present study were always approximately three years younger than those 

obtained by Herrmann et al. (1999). However, there was a statistically significant linear relation 

between current and former MTT estimations, considering either the exponential model or the 

dispersion model (Fig. 4.13). 
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Fig. 4.12 MTT estimated in the three springs, twelve streams and six wells of Cal Rodó 
catchment. The black dots are the weighted MTT and [0.05-0.95] confidence intervals estimated 
in the present study. The white dots and black squares are MTTs estimated by Herrmann et al. 
(1999) using the EM model and the dispersion model, respectively. 

 

Fig. 4.13 Comparison between the weighted mean of MTTs estimated in this study, using the 
EPM, and those in Herrmann et al. (1999) using  (a) the Dispersion model and (b) the 
Exponential model. 

4.3.3.3 Spatial MTT variations in the Cal Rodó catchment. 

The weighted mean of MTTs calculated at the 21 locations of Cal Rodó catchment, using 

only the 1990s samples and the TEPMGLUE methodology, ranged between 4.7 and 13.1 years 

(Table 4.3 and Fig. 4.14). On average, springs had the oldest waters (9.0 ± 3.0 years), followed 

by streams (7.7 ± 3.3 years) and wells (5.8 ± 3.5 years). The `lwcdf´ distribution of MTT at all 

locations were not far from being normally distributed. In addition, the percentage of 

discarded simulations in all cases was lower than 2.0%, which means that only 1,000 of 50,000 

simulations were discarded. 
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Table 4.3 Results of MTT estimation using the EPM model and considering only the 1990s 
samples. CI = confidence interval. σ = Standard deviation. 

Location Nº of 
samples 

Weighted 

Mean of 
MTT 

Weighted 
σ 

0.05 CI 0.95 CI Discarded 
simulations  

  (years) (years) (years) (years) (%) 

Sp5 5 7.4 3.3 2.3 13.5 0.1 
Sp6 5 12.2 2.2 9.0 16.1 0.0 
Sp12 5 7.3 3.4 2.3 13.6 0.0 
St1 5 6.8 3.3 1.6 12.9 0.0 
St2 5 11.2 2.5 7.7 15.6 0.5 
St3 5 7.1 3.5 1.7 13.5 0.2 
St4 5 7.7 3.5 2.3 14.2 0.2 
St8 4 9.0 3.2 2.8 14.0 0.5 

St10 3 13.1 2.5 9.3 16.9 0.0 
St11 2 6.6 3.6 0.7 12.8 0.1 
St16 2 5.4 3.7 1.3 13.5 0.6 
St17 5 6.8 3.4 1.0 12.6 2.0 
St21 2 5.3 3.6 0.5 12.1 1.6 
St22 5 6.9 3.4 1.9 13.2 0.0 
St23 5 6.8 3.4 2.0 13.5 0.1 
Gw7 5 4.7 3.7 0.5 12.6 0.0 
Gw9 5 9.6 2.8 4.9 14.5 0.0 

Gw13 5 5.0 3.7 0.4 12.1 0.9 
Gw14 5 5.2 3.5 1.0 12.5 0.0 
Gw15 2 5.0 3.6 0.4 12.1 0.0 
Gw18 5 5.1 3.6 0.8 12.5 0.0 

 

The results of the randomisation test applied to the lwcdf of the stream locations (Table 4.4, 

Fig. 4.14), indicate that results corresponding to stream locations St2 and St10 were 

significantly different from the other locations, showing much higher MTT values (Fig. 4.12). 

Any of the other stream locations could be considered as representative of the stream water 

age within the catchment, because they were not significantly different between them. 

Considering springs, Table 4.5 indicated that spring Sp6 lwcdf was different from the two 

others (p < 0.05). Finally, there were not statistically significant differences in lwcdf between 

wells, excluding well Gw9 that was different of all the others (except of well Gw15) (Table 4.6). 
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Table 4.6 Probability of being different between pairs of `lwcdf´ of the shallow groundwater 
sampling locations using the randomisation test. 

Location Gw7 Gw9 Gw13 Gw14 Gw15 Gw18 

Gw7   0.05* 0.47 0.42 0.45 0.45 

Gw9   0.06* 0.05* 0.11  0.05* 

Gw13    0.46 0.48 0.48 

Gw14     0.49 0.47 

Gw15      0.49 

Gw18       

Significance: **p < 0.05; *0.05 < p < 0.1 
 

When analysing the possible effect of topographic characteristics on water MTT, no 

correlation was observed between the weighted mean of MTTs and the Topographic Wetness 

Index (TWI) nor with the slope at each location (Fig. 4.14). However, locations St2 and St10, 

with much higher MTTs values than other stream locations, corresponded to the lowest TWI 

among stream locations. In addition, location Gw9, with a higher MTT value than other well 

locations corresponded to the steepest slope among well locations.  

 
Fig. 4.14 (a) Relationship between MTTs and the Topographic Wetness Index of the 21 locations 
(springs, streams and wells). (b) Relationship between MTTs and the slope. Dots are the 
weighted mean MTT and bar the [0.05-0.95] confidence intervals. 

Finally, Fig. 4.15 shows the spatial variability of water MTTs in Cal Rodó catchment. Overall, 

waters sampled in the western part of the Cal Rodó catchment (i.e. Can Vila and Ca l’Isard sub-

catchments) were younger (brighter blue symbols in Fig. 4.15) than in the eastern part of the 

catchment. For instance, average MTT in groundwater and stream locations from both sub-

catchments were 5.0 years and 6.4 years, respectively, whereas in the eastern part of the Cal 

Rodó catchment average MTT was 6.1 years in groundwater and 8.4 years in streams. The 

average MTT of Can Vila’s spring was also 2.5 years younger than the springs of the eastern 

part.  
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4.4 Discussion 

4.4.1 Temporal variation of stable isotopes 

In the Can Vila catchment, as observed elsewhere (e.g. DeWalle et al, 1997; Soulsby et al., 

2000), δ18O and δ2H signal in precipitation exhibited strong seasonal variations. As described in 

the literature these variations are controlled by temperature (Ingraham, 1998). Following the 

temperature dynamics the precipitation isotope signal tended to be more enriched during 

summer, as described in other Mediterranean catchments (e.g. Vallejos et al., 1997; Ayalon et 

al., 1998; Lambs et al., 2013). The LMWL calculated in the present study was close to the GMWL 

and to the LMWL calculated in Southwest of France (Lambs et al., 2013) and in Barcelona 

(Vandenschrich et al., 2002).  

These variations of isotopic signal in precipitation are damped when water reaches the soil. 

Therefore the isotopic signal of water in the spring, the well and the stream at baseflow 

conditions did not exhibit clear seasonality, as observed in several studies (e.g. Neal et al., 1992; 

O’Driscoll et al., 2005; Birkel et al., 2011, 2012; Lambs et al., 2013). Beside, stream water, spring 

water and groundwater isotope ratios ranges were close (Fig. 4.5), suggesting a similar 

fractionation in each compartment as well as direct hydrological connection between them.   

4.4.2 Estimation of mean residence time using stable isotopes 

The uncertainty observed in the determination of the mean transit time (MTT) in the Can 

Vila catchment is due to several different issues as suggested elsewhere by McGuire and 

McDonnell, (2006).  

One reason could be the complete loss of isotope signal variations in the sampled waters, 

which is often observed when using δ18O and δ2H for water age modelling (e.g. McGuire et al., 

2005; Timbe et al., 2014; Kirchner, 2015). Another issue could be the short input data record 

length used in this study (27 months). The input data was extended, producing synthetic eight 

years series, like in other studies (e.g. Uhlenbrook et al., 2002; McGuire et al., 2005; Viville et al., 

2006). Viville et al. (2006), despite having the same issues, modified the input function model 

and calculated that in the Strengbach catchment (northern France) the water age was of 3.2 

years for springs. In the present study, a critical issue is related to the low variations in the 

isotopic signal of the spring, well and stream waters. Small signal variations allows determining 

minimum ages, but apparently in Can Vila water was more than two years old. Therefore, the 

results obtained hinder the suitability of using δ18O and δ2H for MTT estimation in the Can Vila 

catchment, as also observed in other studies (e.g. Stewart et al., 2007). In this context, the use 

of other tracers (i.e. tritium) is clearly needed to improve the MTT estimation. 
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4.4.3 Estimation of mean transit time using tritium  

Tritium was used to calculate the Cal Rodó catchment MTTs. In this study, in addition to 

samples collected in 2013, the availability of samples collected in the 1990s by Herrmann et al. 

(1999) as well as the development of the TEPMGLUE (Tritium Exponential Piston Model GLUE) 

methodology by Gallart et al. (in review), allowed to analyse the effect of using different sets 

of samples on MTT estimation. 

In contrast to Gallart et al. (in review), where model parameters were searched within a 

large range, some objectivity was added in this study when establishing a smaller range for 

model parameters (0.05-1.00 for f and 1-35 years for MTT). This smaller range was based on the 

parameters search, the reliability of the results obtained, Gallart et al. (in review) trials, and the 

knowledge of the catchment hydrological functioning. Despite that, approximately normal 

likelihood weighted cumulative density functions were obtained, at the four sampled locations, 

when using all tritium samples (section i) or only the 1990s (1996-1998) samples (section ii). 

Additionally, no significant differences were observed when comparing results of the MTT 

using all samples or only the 1990s samples. This indicates that tritium content in 1990s samples 

was enough to calculate MTT, despite the analytical standard error measurement error of ± 

about 0.8 TU. It also indicates that 2013 samples did not provide additional information, 

despite their high analytical precision. In fact, as in Gallart et al. (in review), when estimating 

MTT using only 2013 samples (section iii) two possible solutions (young and old solution) were 

obtained. When contrasting the younger solution with the previous sampling designs (section i 

and ii) similar results were obtained, indicating that the younger solution was the most reliable 

(Fig. 4.11) and that the older solution could be discarded thanks to the availability of the 1990s 

samples.   

The relevance of the 1990s samples for MTT estimations in the Can Vila catchment is clear if 

compared to the results obtained recently in Luxemburg and Oregon. In this study, three 

possible water age solutions were also obtained when estimating MTT using a single 

measurement in 2015 (Stewart and Morgenstern, 2016), but the absence of older samples could 

not allow the choice of a more reliable solution. However, in a next  future, when rainfall 

atmospheric tritium input will be stable and the quality of the analytical precisions in different 

laboratories improve, water age estimation in the Northern Hemisphere using recent samples 

may become possible, as done nowadays in the Southern Hemisphere (e.g. Morgenstern et al., 

2010, 2015; Stewart and Fahey, 2010).  

4.4.4  Choice of the input function and of the methodology 

The 1990s tritium samples (1996-1988) were used by Herrmann et al. (1999) and in the 

present study to calculate MTT. Herrmann et al. (1999) used the tritium input function of 

Barcelona and exponential and dispersion models. In the present study, the tritium input 
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function of Vienna was used (it was scaled and a recharge equation was applied) and the 

TEPMGLUE methodology (Gallart et al., in review) was applied, providing a set of acceptable 

MTTs results. Despite the methodological differences, a significant linear relationship existed 

between the results obtained in the two studies, even if  the weighted MTTs calculated in the 

present study were three years younger (Fig. 4.12) than those of Herrmann et al. (1999). The 

difference could be mainly attributed to the choice of the tritium input function that is a 

relevant issue in MTT studies (McGuire and McDonnell, 2006). This suggested that an 

alternative tritium function would provide a shift in the MTT but well correlated with the 

original ones.  

4.4.5 Water ages distribution in the Cal Rodó catchment 

The comparison of the calculated water ages obtained with tritium in the Cal Rodó 

catchment with other MTTs results in different headwater catchment worldwide (Stewart et al., 

2010, Table 4.2), showed that MTT for springs, streams and wells were inside the ranges 

described in the literature.  

The topography and the storage capacity of soils and bedrock have been found, by several 

authors, as factors influencing the water MTT spatial distribution (e.g. Rodgers et al., 2005; 

McGuire et al., 2005; Soulsby et al., 2006; Soulsby and Tetzlaff, 2008; Morgernstern et al., 2014). 

In this study no effect of topography (Topographic Wetness Index and slope) was observed, 

while it was possible to relate geologic features of Cal Rodó catchment with the different MTTs 

calculated. Apparently, the geologic features exert some control in Cal Rodó catchment, 

resulting in shorter MTT in wells, followed by the streams and the springs as observed formerly 

by Herrmann et al. (1999).  

The MTT results suggested that younger water ages were calculated in wells that, in the Cal 

Rodó catchment, are generally fed by shallow free aquifers developing above an impervious 

red lutites layer. In the western part of the catchment, where there is a steep limestone outcrop 

and a less permeable layer (red lutites), water was found to be younger (Fig. 4.15). In this part 

of the catchment, the water sampled at the outlet of the Can Vila sub-catchment had a MTT 

very close to that of the main permanent spring (Sp12), presumably fed by a semiconfined 

aquifer. Whereas in the Ca l’Isard catchment the water sampled at the outlet had a similar MTT 

than upstream locations. Contrarily, in the eastern part of the Cal Rodó catchment, the 

structural arrangement (strip of limestones deposited in layers) probably retained water for a 

longer time period, as evidenced by MTT values in springs (Sp6), streams (St8 and St10) or wells 

(Gw9). Contributions from the western and eastern part of the Cal Rodó catchment mixed 

(locations St2, St3 and St4) close to the outlet (St1) where the MTT value was more similar to 

those from the western part of the catchment that is known to provide most of the flow during 

low flow conditions (Latron et al., 2008).  
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4.5 Conclusions 

Water age was calculated from weekly variations in δ18O and δ2H, and from tritium 

concentrations in streams, springs and wells of the Vallcebre Research Catchments. 

Results obtained using δ18O and δ2H signal variations in surface and subsurface waters 

evidenced some limitations on water age estimation in these Mediterranean catchments. In the 

Can Vila catchment these limitations were mainly related to the small variations in the isotopic 

signal of the spring, well and stream water isotopic signal. Results obtained could only 

demonstrate that water was more than two years old at all sampled locations.  

Results obtained using tritium and the TEPMGLUE methodology allowed consideration of 

various sources of uncertainty in water age determination and of the benefit of using samples 

of differing ages and analytical quality (1996-1998 and 2013 samples). Using the TEPMGLUE 

methodology considering only the samples taken in the 1990s, yielded similar results as when 

using all samples (1996-1998 and 2013 samples). Adding the 2013 samples did not, therefore, 

significantly modify the estimation of the MTT. However, when including only high-quality 

analytical samples taken in 2013, bimodal solutions for MTT were obtained with the TEPMGLUE 

approach, showing in each case two possible solutions (younge and older) for water age. The 

older solution could be discarded thanks to the availability of the 1990s samples. 

The contrast between the results obtained in this study and those of Herrmann et al. (1999) 

mainly derived from different methodologies for determining the tritium input function 

(rainfall), showing its relevance on the MTT estimations. Despite this, results of both studies 

were highly correlated, and showed that in the Vallcebre catchments, wells water was younger, 

followed by streams and springs.  

MTTs results obtained in the Cal Rodó catchment (using 1990s samples) showed that 

topography did not affect water MTT spatial distribution. The general geological settings of 

the catchment seemed to affect more clearly this distribution in relation with the ability of the 

catchment to retain or release water. In the eastern part of the catchment, older MTT were 

calculated, probably related to the presence of a strip of limestones deposited in layers, which 

could retain water for a longer period than in the western part of the catchment. The results 

also suggested the existence of shallow open aquifers feeding the catchments wells with MTT 

around five years. Streams and springs MTT in the catchment were older than in wells, with 

ages around seven and nine years respectively.  
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5 GENERAL CONCLUSIONS 

Since detailed discussions of the results obtained at the Vallcebre Mediterranean 

catchments and the conclusions drawn from these are included in each chapter, only a general 

synthesis of the results, leading to the following outcomes, is given here: 

Chapter Two: 

 During rainfall-runoff events the depth to water table did not rise uniformly throughout 

the catchment, due to the effect of local characteristics of the piezometer locations. This, 

in turn, affects the distribution of wetness conditions and, therefore, the shallow 

groundwater response.  

 Runoff production was affected by the pre-event depth to water table and the rainfall 

event’s characteristics. 

 Three types of shallow groundwater responses were observed, depending on antecedent 

wetness conditions. The results showed more heterogeneous and variable depth to 

water table response under dry conditions, followed by intermediate and wet 

conditions.  

 The calculation of the timing variable between water table and discharge responses and 

the analysis of the relationship between the two (i.e. the hysteretic loop) provided 

relevant information for understanding the role of shallow groundwater contribution 

during rainfall-runoff events. 

Chapter Three: 

 Some seasonality in rainwater and soil water dissolved organic carbon (DOC) 

concentrations was observed, which could be related to biological activity. However, 

there was no clear seasonality in stream water and groundwater, where DOC dynamics 

were closely related to discharge and water table variations.  

 For rainfall-runoff events with several peaks, the slope of the discharge/DOC 

concentration relationship was higher at the first peak, suggesting that the DOC 

contribution was mainly flushed during the first peak. 

 The increase of DOC concentration in stream water during the events suggested a 

relevant contribution of soil water, but also the existence of stream water DOC sources 

near or in the stream bed. 

 Despite the diversity observed in antecedent wetness conditions and in storm event 

magnitude, stream water DOC dynamics were broadly similar throughout all floods. This 



Chapter 5 

84 

result casts doubt on the origin of the rapid DOC increase and questions the validity of 

DOC as a tracer to identify water sources during storm events. 

Chapter Four: 

 The small variations in δ18O and δ2H signals observed in surface and subsurface waters 

impose some limitations on water age calculation in the catchment studied. Using stable 

isotopes, results only indicated that, in the Can Vila catchment, water was more than 

two years old. 

 The TEPMGLUE methodology, developed in parallel to this study for mean transit time 

(MTT) calculation using tritium (Gallart et al., in review), permitted evaluation of various 

sources of uncertainty in water age determination and of the benefit of using samples of 

differing ages and analytical quality.  

 MTT calculation using tritium results was similar when considering only the water 

samples taken in the nineties and when using all samples (1996-1998 and 2013). Adding 

the 2013 samples did not, therefore, modify the MTT values obtained. However, when 

including only high-quality analytical samples taken in 2013, two possible solutions 

(young and older) were obtained for MTT calculation. In this study, the older solution 

could be discarded thanks to the availability of the 1990s samples. 

 MTT calculation in 21 catchment locations within Cal Rodó (using the 1990s water 

samples) showed that springs (9.0 ± 3.0 years) had the oldest water, followed by streams 

(7.7 ± 3.3 years) and wells (5.8 ± 3.5 years). 

 Topography did not affect MTT spatial distribution at the Cal Rodó catchment, whereas 

the geological settings seemed to reflect the ability of the catchment to retain or release 

water. 

 The contrast between the results obtained in this study and those of Herrmann et al. 

(1999) showed the relevance of the rainfall tritium input function to MTT calculation. 

 

To follow on from the results of this thesis, these future research lines in the Vallcebre Research 

Catchments could be of interest:  

 To investigate the subsurface connectivity of the water table within the catchment 

during non-stormflow periods. However, this would require monitoring deeper 

piezometers at most of the existing locations, in order to follow the water table 

dynamics throughout the year (i.e. also during drier conditions). 

 To provide insight into the catchment response by complementing current monitoring 

and sampling with automatic sampling of groundwater and soil water during storm 

conditions.  
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 To use stable isotopes to calculate the relative contribution of new and old water during 

rainfall-runoff events. The first results for this (Latron et al., personal communication) 

show that the contributions are variable, depending on catchment wetness 

characteristics and, especially, rainfall characteristics. 

 To study the seasonal and event-scale variations of other solutes in order to evaluate 

their validity for use as tracers.  

 To sample and analyse tritium content, in order to evaluate the perspectives for the 

future put forward by Gallart et al. (in review).  
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LIST OF ACRONYMS 

a.s.l  above sea level

Cs storm runoff coefficient

DOC dissolved organic carbon

GMWL Global Meteoric Water Line

IAEA  International Atomic Energy Agency

ICC Institut Cartogràfic de Catalunya

Imax maximum rainfall intensity

LMWL Local Meteoric Water Line

lwcdf likelihood weighted cumulative density function

MTT mean transit time

Qb pre-event specific discharge

rs Spearman rank correlation coefficient

TEPMGLUE Tritium Exponential Piston Model GLUE

tpeak time between the start of the rainfall and the time at which 

water table had risen to 95% of its maximum 

tpeak-peak time lag between the time of peak discharge at the catchment 

outlet and the time at which water table had risen to 95% of its 

maximum 

tresponse time lag between the start of rainfall and the largest change 

between two successive water table level measurements 

TWI topographic wetness index

WTi pre-event depth to water table

WTincrease difference between water table at tresponse and at tpeak

 

 

 

 

 



 

 

 



 

107 

APPENDIX A.  PHOTOGRAPHIC SUPPORTING INFORMATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



APPENDIX A.  PHOTOGRAPHIC SUPPORTING INFORMATION 

109 

 

Fig. 1 (a) Can Vila gauging station. (b) Rainfall recorder and rainfall automatic sampler. (c) Soil 
water sampling with a suction lysimeter. (d) Spring Sp12. (e) Shallow groundwater sampling 
with a manual peristaltic pump (ZCV35). (f) Piezometer with  water pressure sensor. Source: 
M.Roig-Planasdemunt. 
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Fig. 2 (a) Conductimeter, 250 ml polyethylene bottles, 120 ml glass bottle and 3 ml glass vials 
used to manual sampling. (b) The two automatic samplers of stream water of Can Vila gauging 
station. (c) Filtration and aliquot preparation in the IDAEA-CSIC laboratory. (d) Total Organic 
Carbon Analyzer (TOC-VCSH/CSN, Shimadzu) of IDAEA-CSIC. (e) The tritium electrolysis system 
of the Water Dating Laboratory of GNS Science (New Zealand). (f) δ2H and δ18O analyzer 
(Picarro L2120-i) of Serveis Científico-Tècnics of the Universitat de Lleida (Spain) (f). Source: (a), 
(b), (c), (d), (e) M.Roig-Planasdemunt; (f) M.Oromí. 
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Fig.1 (a) Rainfall and discharge and (b) depth to water table in the 13 piezometer locations, 
observed during three floods with similar antecedent wetness conditions. (c) Relationship 
between the mean depth to water table and its standard deviation (red dot correspond to the 
time of peak discharge). (d) Relationship between the mean depth to water table and 
discharge (one hour time step). 
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Fig. 2 (a) Rainfall and discharge and (b) depth to water table in the 13 piezometer locations, 
observed during three floods with similar antecedent wetness conditions. (c) Relationship 
between the mean depth to water table and its standard deviation (red dot correspond to the 
time of peak discharge). (d) Relationship between the mean depth to water table and 
discharge (one hour time step). 
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Fig. 3 (a) Rainfall and discharge and (b) depth to water table in the 13 piezometer locations, 
observed during three floods with similar antecedent wetness conditions. (c) Relationship 
between the mean depth to water table and its standard deviation (red dot correspond to the 
time of peak discharge). (d) Relationship between the mean depth to water table and 
discharge (one hour time step). 
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Fig. 4 (a) Rainfall and discharge and (b) depth to water table in the 13 piezometer locations, 
observed during three floods with similar antecedent wetness conditions. (c) Relationship 
between the mean depth to water table and its standard deviation (red dot correspond to the 
time of peak discharge). (d) Relationship between the mean depth to water table and 
discharge (one hour time step). 
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Fig. 5 (a) Rainfall and discharge and (b) depth to water table in the 13 piezometer locations, 
observed during three floods with similar antecedent wetness conditions. (c) Relationship 
between the mean depth to water table and its standard deviation (red dot correspond to the 
time of peak discharge). (d) Relationship between the mean depth to water table and 
discharge (one hour time step). 
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Fig. 6 (a) Rainfall and discharge and (b) depth to water table in the 13 piezometer locations, 
observed during a flood. (c) Relationship between the mean depth to water table and its 
standard deviation (red dot correspond to the time of peak discharge). (d) Relationship 
between the mean depth to water table and discharge (one hour time step). 
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Fig.1 (a) Discharge and DOC concentration in stream water during three floods (19 January 
2013, 22 March 2012 and 30 April 2012). (b) Relationship between discharge and DOC 
concentration in stream water during the event. (c) Soil water content (SWC at 0-90cm depth) 
and depth to the water table (piezometers ZCV08 and ZCV35) during the event. (d) Relationship 
between the depth to the water table at ZCV08 and DOC concentration in stream water during 
the event. (e) Relationship between the soil water content (0-90cm) and DOC concentration in 
stream water during the event. In (b), (d) and (e), arrows indicate the directions of the 
hysteresis for each flood peak. 
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Fig. 2 (a) Discharge and DOC concentration in stream water during three floods (23 July 2013, 
14 May 2011 and 29 May 2012). (b) Relationship between discharge and DOC concentration in 
stream water during the event. Soil water content (SWC at 0-90cm depth) and depth to the 
water table (piezometers ZCV08 and ZCV35) during the event (c). (d)Relationship between the depth 
to the water table at ZCV08 and DOC concentration in stream water during the event. 
(e)Relationship between the soil water content (0-90cm) and DOC concentration in stream 
water during the event. In (b), (d) and (e), arrows indicate the directions of the hysteresis for 
each flood peak. Note the lack of SWC data in flood 14 May 2011. 
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Fig.3. (a) Discharge and DOC concentration in stream water during two floods (15 November 
2011 and 29 April 2013). (b) Relationship between discharge and DOC concentration in stream 
water during the event. (c) Soil water content (SWC at 0-90cm depth) and depth to the water 
table (piezometers ZCV08 and ZCV35) during the event. (d) Relationship between the depth to the 
water table at ZCV08 and DOC concentration in stream water during the event. (e) Relationship 
between the soil water content (0-90cm) and DOC concentration in stream water during the 
event. In (b), (d) and (e), arrows indicate the directions of the hysteresis for each flood peak.
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Fig.1 Temporal series (1960-2015) of tritium input in rainfall and of the two model simulations 
using the stream water samples (St1). Black dots with the error bars show the tritium values in 
the samples.  

 
Fig. 2 Temporal series (1960-2015) of tritium input in rainfall and of the two model simulations 
using the stream water samples (St4). Black dots with the error bars show the tritium values in 
the samples.  

 
Fig. 3 Temporal series (1960-2015) of tritium input in rainfall and of the two model simulations 
using the spring water samples (Sp12). Black dots with the error bars show the tritium values in 
the samples. 
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