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Abstract

Complex systems science addresses the study of systems composed of many in-
teracting units, and whose collective (macroscopic) behavior does not only de-

pend on the individual (microscopic) behaviors of these constituent units, but also
on the interplay and connections between them. While the study of these emer-
gent collective properties of complex systems is broadly interdisciplinary, with
important contributions from different scientific communities, statistical physics
has provided a rich set of fundamental concepts and methods, originally devel-
oped to explain the macroscopic properties of physical systems in terms of the
microscopic interaction rules among their constituent particles. Significant de-
velopments in the study of complex networks have also allowed to deal with the
non-trivial topologies characterizing the structure of interactions in real social
and economic systems, as opposed to the regular lattices typical in condensed
matter physics.

The main purpose of this thesis is to contribute to the understanding of how
complex collective behaviors emerge in social and economic systems. To this end,
we use a combination of mathematical analysis and computational simulations
along the lines of the agent- or individual-based modeling paradigm, i.e., we
propose models in which the individual units (agents) and their interactions are
explicitly taken into account, and whose design is simple enough to allow for a
deep understanding of the mechanisms of emergence while being elaborate enough
to display complex collective behaviors. In particular, we focus on three main
topics: opinion dynamics, herding behavior in financial markets, and language
competition.

Opinion dynamics models focus on the processes of opinion formation within a
society consisting of an ensemble of interacting individuals with diverse opinions.
One of the main problems addressed by these models is whether these processes
of opinion formation will eventually lead to the emergence of a consensus within
the society, with a vast majority of the agents adopting the same opinion, or to
the fragmentation of its constituent individuals into different opinion groups. We
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are interested here in situations where the particular issue under consideration
allows for opinions to vary continuously, for example, from “completely against”
to “in complete agreement”, and thus opinions are modeled as real variables. In
particular, we focus on a model consisting of two mechanisms or rules for the
evolution of the agents’ opinions: a mechanism of social influence, by which two
interacting agents reach a compromise at the midpoint opinion, and a mechanism
of homophily, by which two agents do only interact if their opinion difference is less
than a given threshold value. In this context, we study the influence of the initial
distribution of opinions in the asymptotic solution of the model. A modification
of this model accounting for random changes of opinion is also studied.

Financial time series are characterized by a number of stylized facts or non-
Gaussian statistical regularities found across a wide range of markets, assets and
time periods, such as volatility clustering or fat-tailed distributions of returns.
A growing number of contributions based on heterogeneous interacting agents
have interpreted these stylized facts as the macroscopic outcome of the diversity
among the economic actors, and the interplay and connections between them. In
particular, we focus here on a stochastic model of information transmission in
financial markets based on a competition between pairwise copying interactions
between market agents (herding behavior) and random changes of state (idiosyn-
cratic behavior). On the one hand, we develop a generalization of this herding
model accounting for the arrival of information from external sources, and study
the influence of this incoming information on the market. On the other hand,
we study a network-embedded version of the herding model and focus on the
influence of the underlying topology of interactions on the asymptotic behavior
of the system.

Language competition models address the dynamics of language use in multi-
lingual social systems due to social interactions. The main goal of these models
is to distinguish between the interaction mechanisms that lead to the coexistence
of different languages and those leading to the extinction of all but one of them.
While traditionally conceptualized as a property of the speaker, it has been re-
cently proposed that the use of a language can be more clearly described as a
feature of the relationship between two speakers —a link state— than as an at-
tribute of the speakers themselves —a node state—. Inspired by this link-state
perspective, we first develop a coevolving model that couples a majority rule dy-
namics of link states with the evolution of the network topology due to random
rewiring of links in a local minority. Finally, we develop a model where the cou-
pled dynamics of language use, as a property of the links between speakers, and
language preference, as a property of the speakers themselves, are considered in
a fixed network topology.
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Resumen

La ciencia de los sistemas complejos se ocupa del estudio de sistemas com-
puestos por muchos elementos en interacción, y cuyo comportamiento colec-

tivo (macoscópico) no solo depende de los comportamientos individuales (mi-
croscópicos) de estos elementos constituyentes, sino también de las interacciones
y conexiones entre ellos. Aunque el estudio de estas propiedades colectivas y
emergentes de los sistemas complejos supone un esfuerzo mayoritariamente inter-
disciplinar, con importantes contribuciones desde diferentes comunidades cientí-
ficas, la física estadística ha venido proporcionando un conjunto de conceptos y
métodos fundamentales, originalmente desarrollados para ofrecer una explicación
de las propiedades macroscópicas de los sistemas físicos en términos de las re-
glas de interacción microscópicas entre sus partículas constituyentes. Desarrollos
significativos en el estudio de redes complejas han sido también fundamentales
para el tratamiento de las topologías no triviales que caracterizan la estructura
de interacciones en los sistemas sociales y económicos, al contrario de las redes
regulares habituales en la física de la materia condensada.

El propósito principal de esta tesis es el de contribuir a la comprensión del
modo en el que comportamientos colectivos complejos emergen en sistemas so-
ciales y económicos. Para ello, hacemos uso de una combinación de análisis
matemático y simulaciones computacionales en la línea del paradigma de mod-
elado basado en agentes o individuos. De esta manera, proponemos modelos
en los que aparecen representados explicitamente tanto los elementos individ-
uales (agentes) como las interacciones entre ellos, y cuyo diseño es lo suficiente-
mente simple como para permitir una comprensión profunda de los mecanismos
de emergencia pero también lo suficientemente elaborado como para dar lugar
a comportamientos colectivos complejos. En particular, nos centramos en tres
temas principales: dinámica de opiniones, comportamiento gregario en mercados
financieros y competición lingüística.

Los modelos de dinámica de opiniones se centran en los procesos de formación
de opiniones en el seno de una sociedad compuesta por un conjunto de individuos
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en interacción y con opiniones diversas. Uno de los principales problemas abor-
dados por estos modelos es el de determinar si estos procesos de formación de
opiniones llevan a la emergencia de una situación de consenso en la sociedad cor-
respondiente, con una clara mayoría de agentes adoptando la misma opinión, o si,
por el contrario, llevan a la segregación de los individuos en diferentes grupos de
opinión. Nos interesamos aquí por situaciones en las que el asunto que se discute
permite la existencia de un contínuo de opiniones, desde el “desacuerdo abso-
luto” hasta el “acuerdo total”, y por tanto las opiniones pueden ser modeladas
como variables reales. En particular, nos centramos en un modelo consistente en
dos mecanismos o reglas para la evolución de las opiniones de los agentes: un
mecanismo de influencia social, por el cual dos agentes interaccionantes llegan a
un compromiso en el punto medio entre sus opiniones, y un mecanismo de ho-
mofilia, por el cual dos agentes interaccionan únicamente si la diferencia entre
sus opiniones es inferior a un cierto umbral. En este contexto, estudiamos la
influencia de la distribución inicial de opiniones en la solución asintótica del mod-
elo. Además, estudiamos también una modificación de este modelo para tener en
cuenta cambios de opinión aleatorios.

Las series temporales financieras están caracterizadas por una serie de hechos
estilizados o regularidades estadísticas no gaussianas observadas en un amplio
rango de mercados, activos y períodos temporales, como el agrupamiento de la
volatilidad o las distribuciones de retornos con colas pesadas. Un número creciente
de contribuciones basadas en agentes heterogéneos en interacción han venido a
ofrecer una interpretación de estos hechos estilizados como el resultado emergente
de la diversidad entre actores económicos y de las interacciones y conexiones entre
ellos. En particular, nos centramos aquí en un modelo estocástico de transmisión
de información en mercados financieros basado en una competición entre inter-
acciones de copia a pares entre agentes de mercado (comportamiento gregario) y
cambios de estado aleatorios (comportamiento idiosincrático). Por un lado, de-
sarrollamos una generalización de este modelo de comportamiento gregario para
tener en cuenta la llegada de información desde fuentes externas y estudiamos la
influencia de esta información entrante en el mercado. Por otro lado, estudiamos
una versión en red del modelo de comportamiento gregario y nos centramos en
la influencia de la topología de interacciones subyacente en el comportamiento
asintótico del sistema.

Los modelos de competición lingüística abordan la dinámica del uso de lenguas
en sistemas sociales multilingües debida a interacciones sociales. El principal ob-
jetivo de estos modelos es el de diferenciar entre aquellos mecanismos de interac-
ción que llevan a la coexistencia de diferentes lenguas y aquellos que llevan a la
extinción de todas menos una de ellas. Aunque tradicionalmente se ha conceptu-
alizado como una propiedad del hablante, recientemente se ha propuesto que el
uso de una lengua puede ser más claramente descrito como una propiedad de la
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relación entre dos hablantes —un estado del enlace— que como una propiedad
de los hablantes mismos —un estado del nodo—. Inspirados por esta perspectiva
de estados de los enlaces, desarrollamos primero un modelo de coevolución que
acopla una dinámica de estados en los enlaces basada en una regla de mayoría con
la evolución de la topología de la red debida al re-enlace aleatorio de enlaces en
una minoría local. Finalmente, desarrollamos un modelo en el que las dinámicas
acopladas de uso de la lengua, como propiedad de los enlaces entre hablantes, y
preferencia lingüística, como propiedad de los hablantes mismos, son consideradas
en una topología de red fija.
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Resum1

La ciència dels sistemes complexos s’ocupa de l’estudi de sistemes compostos per
molts elements en interacció, i el comportament col·lectiu (macoscòpic) no

només depèn dels comportaments individuals (microscòpics) d’aquests elements
constituents, sinó també de les interaccions i connexions entre ells . Encara que
l’estudi d’aquestes propietats col·lectives i emergents dels sistemes complexos
suposa un esforç majoritàriament interdisciplinar, amb importants contribucions
des de diferents comunitats científiques, la física estadística ha vingut proporcio-
nant un conjunt de conceptes i mètodes fonamentals, originalment desenvolupats
per oferir una explicació de les propietats macroscòpiques dels sistemes físics en
termes de les regles d’interacció microscòpiques entre les seves partícules con-
stituents. Desenvolupaments significatius en l’estudi de xarxes complexes han
estat també fonamentals per al tractament de les topologies no trivials que carac-
teritzen l’estructura d’interaccions en els sistemes socials i econòmics, al contrari
de les xarxes regulars habituals en la física de la matèria condensada.

El propòsit principal d’aquesta tesi és el de contribuir a la comprensió de
la manera en què comportaments col·lectius complexos emergeixen en sistemes
socials i econòmics. Per això, fem ús d’una combinació d’anàlisi matemàtica i
simulacions computacionals en la línia del paradigma de modelat basat en agents
o individus. D’aquesta manera, proposem models en els quals apareixen repre-
sentats explícitament tant els elements individuals (agents) com les interaccions
entre ells, i el disseny és prou simple com per permetre una comprensió profunda
dels mecanismes d’emergència però també prou elaborat com per donar lloc a
comportaments col·lectius complexos. En particular, ens centrem en tres temes
principals: dinàmica d’opinions, comportament gregari en mercats financers i
competició lingüística.

Els models de dinàmica d’opinions se centren en els processos de formació
d’opinions en el si d’una societat composta per un conjunt d’individus en inter-
acció i amb opinions diverses. Un dels principals problemes abordats per aquests

1Aquest resum ha estat traduït automàticament per GoogleTM
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models és el de determinar si aquests processos de formació d’opinions porten
a l’emergència d’una situació de consens en la societat corresponent, amb una
clara majoria d’agents adoptant la mateixa opinió, o si, pel contrari, porten a
la segregació dels individus en diferents grups d’opinió. Ens interessem aquí per
situacions en què l’assumpte que es discuteix permet l’existència d’un continu
d’opinions, des del “desacord absolut” fins a l’“acord total”, i per tant les opin-
ions poden ser modelades com a variables reals . En particular, ens centrem
en un model que consisteix en dos mecanismes o regles per a l’evolució de les
opinions dels agents: un mecanisme d’influència social, pel qual dos agents in-
teraccionantes arriben a un compromís en el punt mig entre les seves opinions,
i un mecanisme de homofilia, pel qual dos agents interaccionen únicament si la
diferència entre els seus opinions és inferior a un cert llindar. En aquest context,
estudiem la influència de la distribució inicial d’opinions en la solució asimptòtica
del model. A més, estudiem també una modificació d’aquest model per tenir en
compte canvis d’opinió aleatoris.

Les sèries temporals financeres estan caracteritzades per una sèrie de fets es-
tilitzats o regularitats estadístiques no gaussianes observades en un ampli rang
de mercats, actius i períodes temporals, com l’agrupament de la volatilitat o les
distribucions de retorns amb cues pesades. Un nombre creixent de contribucions
basades en agents heterogenis en interacció han vingut a oferir una interpretació
d’aquests fets estilitzats com el resultat emergent de la diversitat entre actors
econòmics i de les interaccions i connexions entre ells. En particular, ens centrem
aquí en un model estocàstic de transmissió d’informació en mercats financers
basat en una competició entre interaccions de còpia a parells entre agents de
mercat (comportament gregari) i canvis d’estat aleatoris (comportament idios-
incràtic). D’una banda, vam desenvolupar una generalització d’aquest model de
comportament gregari per tenir en compte l’arribada d’informació des de fonts ex-
ternes i estudiem la influència d’aquesta informació entrant en el mercat. D’altra
banda, vam estudiar una versió en xarxa del model de comportament gregari i
ens centrem en la influència de la topologia d’interaccions subjacent en el com-
portament asimptòtic del sistema.

Els models de competició lingüística aborden la dinàmica de l’ús de llengües en
sistemes socials multilingües deguda a interaccions socials. El principal objectiu
d’aquests models és el de diferenciar entre aquells mecanismes d’interacció que
porten a la coexistència de diferents llengües i aquells que porten a l’extinció
de totes menys una. Encara que tradicionalment s’ha conceptualitzat com una
propietat del parlant, recentment s’ha proposat que l’ús d’una llengua pot ser més
clarament descrit com una propietat de la relació entre dos parlants —un estat de
l’enllaç— que com una propietat de els parlants mateixos —un estat del node—.
Inspirats per aquesta perspectiva d’estats dels enllaços, desenvolupem primer un
model de coevolució que acobla una dinàmica d’estats en els enllaços basada en
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una regla de majoria amb l’evolució de la topologia de la xarxa deguda al re-enllaç
aleatori d’enllaços en una minoria local. Finalment, vam desenvolupar un model
en què les dinàmiques acoblades d’ús de la llengua, com a propietat dels enllaços
entre parlants, i preferència lingüística, com a propietat dels parlants mateixos,
són considerades en una topologia de xarxa fixa.
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CHAPTER 1
Introduction

One of the main goals of complex systems science is to understand the complex
behavior displayed by systems composed of many interacting units. In par-

ticular, the focus is on systems whose collective (macroscopic) behavior cannot be
directly derived from the individual (microscopic) behaviors of their constituent
units —the whole is more than the sum of its parts—. The collective behavior
of these systems is thus said to be an “emergent” phenomenon, dependent not
only on the individual units, but also on the interplay and connections between
them. Paradigmatic examples of emergent collective phenomena in complex sys-
tems are the phase transitions observed in many physical systems, the foraging
and nest-building behaviors typical of ant colonies, the flocking behavior of birds,
the dynamics of neural networks in the brain, traffic congestion phenomena, price
fluctuations in financial markets, and the emergence of institutions in social sys-
tems.

The study of complex systems is a broad and intrinsically interdisciplinary
field, attracting the attention of different scientific communities, from social sci-
ence and economy to physics, computer science and biology. In particular, a
rich toolbox of concepts and methods has been provided by statistical physics,
whose main purpose is largely coincident with that of complex systems science:
to explain the macroscopic properties of physical systems in terms of the micro-
scopic interaction rules among their constituent particles. As a consequence of
this overlap, there has been a growing interest by physicists in the modeling of
emergent phenomena in social (Castellano et al., 2009) and economic systems
(Chakraborti et al., 2011a,b). In parallel to this shift, the study of complex
networks, the skeleton of complex systems, has also received an increasing level
of attention (Boccaletti et al., 2006; Newman, 2010), allowing to deal with the
non-trivial topological features characterizing the structure of interactions in real
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social and economic systems (Watts and Strogatz, 1998; Barabási, 1999), as op-
posed to the regular lattices typical in condensed matter physics.

One of the most important conceptual frameworks for the study of emergent
collective properties in complex systems is agent- or individual-based modeling,
a collection of computational techniques in which the individual units (agents)
and their interactions are explicitly simulated (Epstein and Axtell, 1996; Axelrod,
2006; Newman, 2011). A key notion in this context is that simple behavioral rules
at the microscopic level can give rise to complex dynamics at the macroscopic
level. Thus, the goal is to design models which are simple enough to allow for a
deep understanding of the mechanisms of emergence while being elaborate enough
to display complex collective behaviors.

In this context, the main purpose of this thesis is to contribute to the un-
derstanding of how complex collective behaviors emerge in social and economic
systems. To this end, we study the macroscopic consequences of simple individual
behavioral mechanisms, by means of a combination of mathematical analysis and
computational simulation. In particular, we focus on three main topics: opinion
dynamics, herding behavior in financial markets, and language competition.

1.1

Opinion dynamics

Opinion dynamics models focus on the processes of opinion formation within
a society consisting of an ensemble of interacting individuals with diverse

opinions. Inspired by statistical mechanics and nonlinear physics, a wide variety
of models have been developed in order to deal with the different phenomena
observed in real societies (Castellano et al., 2009; Battiston et al., 2016): emer-
gence of fads, minority opinion survival and spreading, collective decision making,
emergence of extremism, and so forth. One of the main problems addressed by
some of these models is whether the opinion formation processes within a society
will eventually lead to the emergence of a consensus, with a vast majority of the
agents adopting the same opinion, or to the fragmentation of its constituent in-
dividuals into different opinion groups (Ben-Naim et al., 2003b; Pluchino et al.,
2005; Klimek et al., 2008).

In opinion dynamics, each agent is characterized by an opinion which is coded
as a dynamical variable from a certain space, evolving in accordance with some
rules. These behavioral laws codify a variety of internal and external factors
governing the evolution of an agent’s opinion, such as the social influence of its
acquaintances, the social pressure of a group or the influence of advertising and
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mass media. Regarding the opinion variable, models can be broadly classified
as discrete opinion models, where opinions can only adopt a finite set of values,
and continuous opinion models, where opinions are modeled as real numbers in a
finite interval and thus two interacting agents can always reach a compromise in
an intermediate opinion (Stauffer, 2005).

Discrete models have traditionally been predominant in the physics literature,
due to their correspondence with spin systems. They have been applied to analyze
situations where individuals are confronted with a limited number of options,
such as choosing among a few political parties in an election or between two
languages in a language competition situation (Abrams and Strogatz, 2003). On
the contrary, continuous models are applied when a single issue is considered
and opinions can vary continuously, for example, from “completely against” to
“in complete agreement”. Typical examples of continuous opinion issues are the
degree of agreement regarding the legalization of drugs or abortion, or predictions
about macroeconomic variables.

Two models of continuous opinion dynamics were introduced around 2000 and,
ever since, have received much attention (Fortunato et al., 2005; Lorenz, 2007a;
Török et al., 2013; Iñiguez et al., 2014): the model of Hegselmann and Krause
(Hegselmann and Krause, 2002), and that of Deffuant, Weisbuch et al. (Deffuant
et al., 2000; Weisbuch et al., 2002, 2003). The former was first introduced in a
mathematical context as a nonlinear version of older consensus models (Krause,
2000), while the latter was developed in the context of a European Union project
for the improvement of agri-environmental policies. Both models implement ba-
sically two mechanisms or rules for the evolution of the agents’ opinion variables.
On the one hand, there is a mechanism of social influence, by which two inter-
acting agents tend to bring their opinions closer and, eventually, they reach a
compromise at the midpoint opinion. On the other hand, both models take into
account a mechanism of homophily, in particular a bounded confidence rule, in
the sense that two agents do only interact if their opinion difference is less than
a given threshold value. In other words, an agent will only take into account the
opinions of other agents if they differ less than a bound of confidence ε from its
own current opinion, simply ignoring the rest of them.

The main difference between the model by Hegselmann and Krause and the
Deffuant, Weisbuch et al. model is the interaction regime. In the case of Deffuant,
Weisbuch et al., the interaction is assumed to be pairwise, i.e., agents meet in
random pairwise encounters after which they compromise or not. On the contrary,
in the model by Hegselmann-Krause interaction takes place in groups, as each
agent moves its own opinion to the average of the opinions of all the agents within
a bound of confidence, including its own current opinion.
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Contributions of this thesis

In this context, we focus on the Deffuant, Weisbuch et al. dynamics, which
leads to final states where either a perfect consensus has been achieved, or the

individuals split into a finite number of opinion clusters, depending on a param-
eter representing the confidence bound of the agents (Fortunato, 2004; Lorenz,
2007a,b). In particular, two different contributions are presented in Chapter 2.
On the one hand, we study the influence that the initial distribution of opinions
among the agents has upon the configuration of the final states. The fundamental
question that we try to answer is: can we, by imposing a given initial condition,
force the system to reach a consensus, or, equivalently, prevent a consensus and
force it to split in several opinion groups? As a result of this analysis, we prove
that the use of different initial distributions does not only have an effect in the
average final opinion, but also in the fact that a consensus is found or not for a
certain threshold level, i.e., that the consensus can be encouraged or prevented
by certain initial conditions. On the other hand, we also study the influence of
the initial conditions in the case of a Deffuant, Weisbuch et al. model modified to
account for an additional element of randomness in the form of a noise (Pineda
et al., 2009, 2011, 2013). This noisy term can be thought of as a certain kind
of “free will”, since the agents are given the opportunity to change their opinion
independently of their acquaintances. Concerning this noisy case, we find that,
even if the noise hides most of the importance of the initial distribution, the latter
has still some noticeable effects upon the final configuration.

1.2

Herding behavior and financial markets

The analysis of financial data has led to the characterization of some non-
Gaussian statistical regularities found in financial time series across a wide

range of markets, assets and time periods (Mandelbrot, 1963; Cont, 2001; Di Mat-
teo, 2007; Clementi et al., 2006). These robust empirical properties are known in
the economic literature as stylized facts. It has been found, for instance, that the
unconditional distribution of returns is characterized by a fat-tailed or leptokurtic
shape, i.e., it shows a higher concentration of probability in the center and in the
tails of the distribution as compared to the Gaussian (Mandelbrot, 1963), leading
to a higher probability of large returns. A second example is the intermittent be-
havior of the volatility, measured as absolute or squared returns. This property,
known as volatility clustering, implies a tendency for calm and turbulent market
periods to cluster together (De Vries, 1994). This temporal bursting behavior of
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the volatility leads to the existence of positive autocorrelations for absolute and
squared returns which decay only slowly as a function of the time lag (Ding et al.,
1993).

Two competing hypotheses have been proposed to explain the origin and ubiq-
uity of stylized facts in financial data. On the one hand, the traditional efficient
market hypothesis states that markets are efficient, in the sense that they cor-
rectly aggregate all available information, and therefore price changes (returns)
fully and instantaneously reflect any new information (Fama, 1970). Thus, ac-
cording to this hypothesis, any particular characteristic of the distribution of
returns is a direct consequence of the statistical properties of the news arrival
process. On the other hand, recent years have witnessed the development of an
alternative approach which might be called the interacting agent hypothesis1,
as coined by Alfarano et al. (2005). Indeed, a growing number of contributions
based on heterogeneous interacting agents (Kirman, 1992) have interpreted these
stylized facts as the macroscopic outcome of the diversity among the economic
actors, and the interplay and connections between them (Kirman, 1991, 1993;
Brock and Hommes, 1997; Lux and Marchesi, 1999; Cont and Bouchaud, 2000;
Thurner et al., 2012). Heterogeneity refers here to the agents’ different level of ac-
cess to available information or to their capability to choose from a set of various
market strategies or trading rules. Regarding their interplay, different interaction
mechanisms have been studied, whether direct or indirect, global or local. Thus,
according to this hypothesis, any statistical regularity found in financial time se-
ries is an emergent property endogenously produced by the internal dynamics of
the market.

Along the lines of earlier works (Lux, 2006; Alfarano and Milaković, 2009), we
can classify the different agent-based financial models into three broad categories.
The first one seeks inspiration in well-known critical systems from the statistical
physics literature, and it is able to reproduce non-Gaussian statistics by carefully
adjusting model parameters near criticality (Stauffer and Sornette, 1999; Cont
and Bouchaud, 2000; Bornholdt, 2001; Iori, 2002). The second group of models,
inspired by a seminal work by Brock and Hommes (1997), assumes that agents
interact globally through the price mechanism and public information about the
performance of strategies subject to noise (Hommes, 2006; Chang, 2007). These
models are able to reproduce some of the aforementioned stylized facts when
their signal-to-noise ratio is adjusted around unity. Finally, the third category is
composed by a series of stochastic models of information transmission (Kirman,
1991, 1993) whose main ingredient is their emphasis on the processes of social
interaction among agents, based on herding behavior or a tendency to follow the

1The “Workshop on the Economic Science with Heterogeneous Interacting Agents (WE-
HIA)”, organized annually since 2003 by the “Society for Economic Science with Interacting
Agents (ESHIA)”, and the “Econophysics Colloquium”, organized annually since 2005, are im-
portant expressions of this new school of thought.
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crowd (Lux and Marchesi, 1999; Eguíluz and Zimmermann, 2000; Alfarano et al.,
2005). These models endogenously give rise to some of the universal statistical
properties characterizing financial time series.

A paradigmatic example of this third category of agent-based financial mod-
els is the herding mechanism proposed by Kirman (1991, 1993), which is based
on a competition between pairwise copying interactions (herding behavior) and
random changes of state (idiosyncratic behavior). In its original, extensive for-
mulation, where the intensity of the interaction is proportional to the density
of agents in a given state, the main consequence of this competition is the ap-
pearance of a noise-induced, finite-size transition between two different behav-
ioral regimes —a mostly ordered regime dominated by pairwise interactions and
a mostly disordered regime dominated by noise (Kirman, 1993)—. In a subse-
quent, non-extensive reformulation of the model (Alfarano et al., 2005, 2008) in
terms of an interaction strength proportional to the absolute number of agents
in a given state, the transition is not anymore a finite-size effect. Interestingly,
the original, extensive formulation of the model is equivalent to a variant of the
voter model (Clifford and Sudbury, 1973; Holley and Liggett, 1975) accounting
for the effect of noise. This noisy variant of the voter model has been studied by,
at least, four mutually independent strands of research, largely unaware of each
other and belonging to different fields. Namely, percolation processes in strongly
correlated systems (Lebowitz and Saleur, 1986), heterogeneous catalytic chemical
reactions (Fichthorn et al., 1989; Considine et al., 1989), herding behavior in fi-
nancial markets (Kirman, 1993), and probability theory (Granovsky and Madras,
1995). While both the first and the last strands of literature are directly inspired
by the voter model, explicitly using terms such as “noisy voter model” or similar,
contributions in the contexts of catalytic reactions and financial markets do not
refer to the voter model, and use terms such as “catalytic reaction”, “herding” or
“Kirman model” instead. For coherence with these different strands of literature,
we will use hereafter either “noisy voter model”, “Kirman model”, or “herding
model” depending on the context, and we will explicitly state, in each case, if we
refer to the extensive or the non-extensive formulation.

Contributions of this thesis

If the efficient market approach neglected the importance of the interplay and
connections between different economic actors, agent-based finance literature

has traditionally overlooked the influence of external sources of information upon
markets, treating them as completely closed entities or subject to a constant
level of noise. The research of our first contribution, presented in Chapter 3,
is motivated by the observation that, even if markets are complex systems able
to endogenously give rise to non-Gaussian statistical properties, they are by no
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means closed entities, insensitive to the arrival of external information. Indeed,
the recent availability of tools and methods to retrieve and process large corpora
of news has allowed empirical financial research to start collecting evidence on
how markets react, for instance, to the publication of: news about companies,
economic indices, rumors related to the economy, forecasts and recommenda-
tions by analysts, news on world events, and financial information by mass media
(Hanousek et al., 2009; Kiymaz, 2001; Jegadeesh and Kim, 2006; Arin et al., 2008;
Alanyali et al., 2013). A more extensive survey of the literature on the influence
of external sources of information has been recently developed by Lillo et al.
(2015), while for a more detailed account of the debate about the endogenous
and exogenous components of market dynamics we refer to Johansen and Sor-
nette (2002) and Bouchaud (2010). Most of this literature addresses this question
from a purely empirical point of view. As a complement to the aforementioned
empirical works, the main purpose of the research presented in Chapter 3 is to
contribute to the theoretical assessment of the influence of an external source
of information upon an agent-based financial market characterized by the exis-
tence of a certain herding behavior. In particular, we develop a financial market
herding model along the lines of the works by Kirman (1991, 1993) and Alfarano
et al. (2008), i.e., with all-to-all interactions, but open to the arrival of external
information affecting the traders’ behavior (for other approaches, see Harras and
Sornette, 2011; Shapira et al., 2014; Golub et al., 2015; Rambaldi et al., 2015).
Finally, we introduce a real information input in this model and we compare
its output with real financial data. We show that a nonzero but weak intensity
or convincing power of the external source of information allows the model to
better reproduce the statistical properties of real data. Furthermore, our results
suggests the existence of different market regimes regarding the assimilation of
incoming information: amplification, precise assimilation and undervaluation of
incoming information.

In a second contribution, developed in Chapter 4, we focus on the influence of
the topology of the underlying social network of interactions upon the behavior
of stochastic, binary-state models, an example of which is the noisy voter model
or Kirman model. While most of these models were initially studied in regular
lattices, there has recently been a growing interest in more complex and hetero-
geneous topologies (Albert and Barabási, 2002; Newman and Park, 2003; Barrat
et al., 2008; Newman, 2010). An important result of these recent works has been
to show that, for a given model, the structure of the underlying network may
strongly influence the dynamics of the system and affect its critical behavior,
leading, for instance, to different critical values of the model parameters (Lam-
biotte, 2007; Gleeson, 2011; Vilone et al., 2012; Gleeson, 2013). This has been
shown to be the case, for example, for the critical temperature of the Ising model
(Dorogovtsev et al., 2002; Leone et al., 2002; Viana Lopes et al., 2004), for the
epidemic threshold in spreading phenomena (Boguñá et al., 2003; Durrett, 2010;
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Castellano and Pastor-Satorras, 2010; Parshani et al., 2010), for the mean return
and first-passage times in random walks (Masuda and Konno, 2004; Sood et al.,
2005), and for the critical number of cultural traits in the Axelrod model (Klemm
et al., 2003). Thus, the quantification of the effect of the underlying topology on
such systems and dynamics is, from a practical point of view, a matter of prime
importance. While the effect of different network topologies on the behavior of the
voter model has been well established (Suchecki et al., 2005a; Sood and Redner,
2005; Suchecki et al., 2005b; Vazquez and Eguíluz, 2008), the case of the noisy
voter model has received much less attention, most of the corresponding litera-
ture focusing only on regular lattices (Lebowitz and Saleur, 1986; Granovsky and
Madras, 1995) or on a fully-connected network (Kirman, 1993; Alfarano et al.,
2008). Finally, the use of a mean-field approach in some recent studies consider-
ing more complex topologies (Alfarano and Milaković, 2009; Alfarano et al., 2013;
Diakonova et al., 2015) did not allow to find any effect of the network properties
—apart from its size and mean degree— on the results of the model.

In this context, we propose in Chapter 4 an alternative analytical approach,
based on an annealed approximation for uncorrelated networks and inspired by a
recently introduced method to deal with heterogeneity in stochastic interacting
particle systems (Lafuerza and Toral, 2013). Moving beyond the usual mean-field
approximations (Vazquez et al., 2008; Alfarano and Milaković, 2009; Diakonova
et al., 2015), we approximate the network by a complementary, weighted, fully-
connected network whose weights are given by the probabilities of the corre-
sponding nodes being connected in uncorrelated networks of the configuration
ensemble (Newman, 2003; Boguñá et al., 2004; Bianconi, 2009; Sonnenschein and
Schimansky-Geier, 2012). Furthermore, we present a formulation of the problem
in terms of a master equation for the probability distribution of the individual
states of the nodes. In this way, we are able to find approximate analytical ex-
pressions for the critical point of the transition, for a local order parameter and
for the temporal correlations, finding that the degree heterogeneity —variance of
the underlying degree distribution— has a significant impact on all of these vari-
ables. Finally, we show how this influence opens the possibility of inferring the
degree heterogeneity of the underlying network by observing only the aggregate
behavior of the system as a whole, an issue of interest for systems where only
macroscopic, population level variables can be measured.
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1.3

Language competition

The study of language competition in processes of language contact addresses
the dynamics of language use in multilingual social systems due to social in-

teractions. It belongs to the general class of consensus problems, and its main
goal is to distinguish between the mechanisms that lead to the coexistence of
different languages and those leading to the extinction of all but one of them.
The focus of the field is on language shift in terms of users, rather than changes
in the language itself. As a consequence, language is conceptualized as a discrete
property of the speakers (Castelló et al., 2013). In recent years, a number of con-
tributions lying outside the realm of traditional sociolinguistics have addressed
the problem of language competition from alternative perspectives, using tools
and methods from statistical physics, nonlinear dynamics, and complex systems
science (Stauffer et al., 2006; Schulze and Stauffer, 2006; Loreto and Steels, 2007;
Schulze et al., 2008; Baronchelli et al., 2012; Patriarca et al., 2012; Mufwene,
2016). Much of this research stems from the seminal work by Abrams and Stro-
gatz (2003) about the dynamics of endangered languages. The models proposed
in this context focus on the analysis of simple mechanisms of social interaction
with the aim of determining their specific macroscopic consequences. The col-
lective behavior of the system is thus interpreted as the macroscopic outcome of
simple interaction rules between speakers. Some of these studies adopt a macro-
scopic, mean-field-based perspective (Abrams and Strogatz, 2003; Patriarca and
Leppänen, 2004; Mira and Paredes, 2005; Pinasco and Romanelli, 2006; Isern and
Fort, 2014), where only population densities are considered, while others develop
a microscopic, agent-based perspective (Castelló et al., 2006; Stauffer et al., 2007;
Vazquez et al., 2010; Caridi et al., 2013), where the social network of interactions
between individuals is explicitly taken into account.

The model proposed by Abrams and Strogatz (2003) considers a binary-state
society, where individuals can be either speakers of language A or speakers of
language B. The authors develop a macroscopic description of the system based
on nonlinear ordinary differential equations for the population densities of both
types of speakers. The corresponding microscopic, agent-based version of this
model was first studied by Stauffer et al. (2007). In particular, the probability
for a speaker to switch language is assumed to depend on the fraction of speakers
of the opposite language (global fraction in the macroscopic version, local fraction
in the microscopic one) and on two parameters: the relative social prestige of both
languages and the volatility of the speakers’ choices. The prestige is a symmetry
breaking parameter, favoring one or the other language because of the individual
and social advantages derived from its use. The volatility parameter determines
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the functional form of the switching probabilities, and it is related to the propen-
sity of the speakers to change their current language. In the case of two socially
equivalent languages (equal prestige) and for linear switching probabilities (neu-
tral volatility), the Abrams-Strogatz model becomes the voter model (Clifford and
Sudbury, 1973; Holley and Liggett, 1975; Suchecki et al., 2005a). By definition,
the Abrams-Strogatz model can only account for societal bilingualism, i.e., for
the coexistence of two different monolingual groups (Appel and Muysken, 2006).
Subsequent studies, on the contrary, have considered generalizations of the origi-
nal model accounting for the existence of bilingual individuals (Wang and Minett,
2005; Mira and Paredes, 2005; Castelló et al., 2006; Minett and Wang, 2008; Hein-
salu et al., 2014)2. In particular, the AB-model was proposed by Castelló et al.
(2006) based on the works of Wang and Minett (2005). It develops a modification
of the original, binary-state Abrams-Strogatz model to account for the case of two
non-excluding options by introducing a third, intermediate state (AB), represent-
ing the bilingual speakers. While the focus was initially placed on the case of two
socially equivalent languages and neutral volatility, later works have further ex-
plored the prestige-volatility parameter space (Vazquez et al., 2010). In general,
the AB agents have been found to play a relevant role in the interface dynamics of
the system, facilitating the extinction of one of the languages in networks without
mesoscale community structure, while allowing for long-lived coexistence of both
languages in networks with communities (Castelló et al., 2007; Toivonen et al.,
2009; Vazquez et al., 2010). Coexistence, however, is always a metastable state
based on the segregation of both languages, with bilingual speakers acting as a
bridge between the two groups.

A much more natural way of accounting for bilingual speakers is to consider
language as a property of the interactions between individuals. In fact, while
traditionally conceptualized as a property of the speaker in the above-mentioned
literature, the use of a language as a means of communication can be more clearly
described as a feature of the relationship between two speakers —a link state—
than as an attribute of the speakers themselves —a node state—. In this man-
ner, bilingualism is not anymore an ad-hoc intermediate state, but the natural
consequence of individuals using different languages in different interactions. Fur-
thermore, this approach allows for a more nuanced understanding of bilingualism:
speakers are not only characterized by being bilinguals or not, but by a certain
degree of bilingualism, depending on the share of conversations in each language.

The study of models and dynamics based on link states has received increasing
attention from areas of research other than language competition, such as social
balance theory, community detection and network controllability. Social balance

2Interestingly, an alternative modeling approach developed by Baggs and Freedman (1990,
1993) had already addressed the problem of individual bilingualism from a macroscopic, mean-
field perspective more than a decade before the introduction of the Abrams-Strogatz model.
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theory (Heider, 1946) is the first and most established precedent. Assuming that
each link or social relationship can be positive (friendship) or negative (enmity),
this theory proposes that there is a natural tendency to form balanced triads, de-
fined as those for which the product of the states of the three links is positive. The
question of whether a balanced global configuration is asymptotically reached for
different network topologies has been addressed by several recent studies (Antal
et al., 2005, 2006; Radicchi et al., 2007). Large scale data on link states associ-
ated with trust, friendship or enmity has recently become available from on-line
games and communities, providing an ideal framework to test the validity of this
theory and propose alternative interaction rules (Szell et al., 2010; Leskovec et al.,
2010a,b; Marvel et al., 2011). In the context of community detection, the defini-
tion of network communities as a partition of the links instead of the nodes has
allowed to account for overlapping communities (Traag and Bruggeman, 2009;
Evans and Lambiotte, 2009, 2010; Ahn et al., 2010; Liu et al., 2012): a node is
naturally assigned to several communities if it has links belonging to them. Fi-
nally, an approach based on a link-state dynamics has also proven to be useful in
the field of network controllability (Nepusz and Vicsek, 2012), where the aim is
to determine the conditions under which the dynamics of a network can be driven
from any initial state to any desired final state within finite time. In particular,
by introducing a dynamics of link states, one can identify the most influential
links for determining the global state of the network. While these models set a
precedent in the use of a link-state perspective, they are not suitable for modeling
the dynamics of competing languages: the two link states considered by social
balance theory are not equivalent, friendship and enmity playing rather differ-
ent roles; no dynamics of the link states has been considered in the context of
community detection; and only continuous link states have been considered in
network controllability problems.

More relevant in the context of language competition, a prototypical model of
link-state dynamics with binary, equivalent states has been recently introduced
by Fernández-Gracia et al. (2012). In particular, a majority rule for link states
is implemented, such that at each time step the state of a randomly chosen link
is updated to the state of the majority of its neighboring links, i.e., those shar-
ing a node with it (see Häggström, 2002; Castellano et al., 2005; Castellano and
Pastor-Satorras, 2006; Baek et al., 2012, for studies on the majority rule for node
states). The authors find a broad distribution of non-trivial asymptotic states
characterized by the coexistence of both languages, including both frozen and
dynamically trapped configurations. Interestingly, these non-trivial asymptotic
configurations are found to be significantly more likely than under the traditional
majority rule for node states in the same topologies. These results can be qualita-
tively understood in terms of the implicit topological difference between running
a given dynamics on the nodes and on the links of the same network. Indeed, one
can define a node-equivalent graph by mapping the links of the original network
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to nodes of a new one, known as line-graph (Rooij and Wilf, 1965; Krawczyk
et al., 2011), where nodes are connected if the corresponding links share a node
in the original network. Line-graphs are characterized by a higher connectivity
(Chartrand and Stewart, 1969) and a larger number of cliques (Mańka-Krasoń
et al., 2010), which results in more (and more complex) topological traps and,
therefore, in a wider range of possible disordered asymptotic configurations where
both languages can survive.

Contributions of this thesis

Inspired by the link-state perspective proposed by Fernández-Gracia et al.
(2012), we develop in Chapter 5 a coevolution model that couples the afore-

mentioned majority rule dynamics of link states with the evolution of the network
topology. The study of coevolving dynamics and network topologies has received
an increasing attention (Zimmermann et al., 2001, 2004; Gross and Blasius, 2008;
Herrera et al., 2011; Sayama et al., 2013), particularly in the context of social
systems and always from a node states perspective. In the most common coupling
scheme, node states are updated according to their neighbors’ states while links
between nodes are rewired taking into account the states of these nodes. This
coupled evolution generically leads to the existence of a fragmentation transi-
tion: for a certain relation between the time scales of both processes, the network
breaks into disconnected components.

While a large number of dynamics and rewiring rules have been studied (Zim-
mermann et al., 2001, 2004; Holme and Newman, 2006; Vazquez et al., 2007, 2008;
Mandrà et al., 2009; Demirel et al., 2014), all of them belong to the class of models
based on node states. The goal of our first contribution in this context is, thus, to
offer a prototype model for the study of coevolution from a link-state perspective.
In addition to the majority rule for link states studied by Fernández-Gracia et al.
(2012), according to which links adopt the state of the majority of their neigh-
boring links in the network, we define a rewiring mechanism inspired by the case
of competing languages. In particular, this mechanism captures the fact that,
when a speaker is uncomfortable with the language used on a given interaction,
she can either try to change that language or simply stop this interaction and
start a new one in her preferred language. Depending on the ratio between the
probability of a majority rule updating and that of a rewiring event, the system
evolves towards different absorbing configurations: either a one-component net-
work with all links in the same state —extinction of one of the languages— or a
network fragmented in two components with opposite states —survival of both
languages in completely segregated communities—. Therefore, we find that the
frozen and dynamically trapped coexistence configurations predominant in fixed
topologies (Fernández-Gracia et al., 2012) are not robust against the coevolution
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of the network: even a very small amount of rewiring is enough to slowly drive
the network to a situation where there are no contacts between links in different
state. In this way, the described dynamics leads always to the progressive disap-
pearance of the bilingual speakers, whether as a consequence of the extinction of
one of the languages or as a result of the complete segregation between users of
one or the other language. While for low rewiring rates and finite-size networks
there is a domain of bistability between fragmented and non-fragmented final
states, a finite-size scaling analysis indicates that fragmentation is the only pos-
sible scenario for large systems and any nonzero rate of rewiring. Thus, both the
fragmentation transition and the existence of a region of bistability are finite-size
effects.

In a second contribution, we turn our attention back to fixed topologies and
we focus on the fact that, while the use of a language can be clearly described as
a property of the interactions between speakers —link states—, there are certain
features intrinsic to these speakers —node states— which have a relevant influ-
ence on the language they choose for their communications. In particular, the
attitude of a speaker towards a given language —which determines her willingness
to use it— is affected by individual attributes such as her level of competence
in that language, her degree of cultural attachment and affinity with the social
group using that language, and the strength of her sense of identity or belonging
to that group. For simplicity, we consider that all individual properties affecting
language choice can be subsumed under the concept of “preference”. At the same
time, the evolution of the speakers’ individual preferences is, in turn, affected
by the languages used in their respective social neighborhoods. In this manner,
the problem of language competition can be studied from the point of view of
the intrinsically coupled evolution of language use and language preference. Ulti-
mately, this change of perspective can be regarded as a shift from a paradigm in
which language is considered only as a means of communication to one in which
its tight entanglement with culture and identity is also taken into account.

In order to address this intertwined dynamics of language use and language
preference, we develop in Chapter 6 a model of coevolution of node and link
states. As before, the use of two socially equivalent languages is represented
by a binary-state variable associated to the links. In addition, nodes are en-
dowed with a discrete real variable representing their level of preference for one
or the other language. The dynamics of link states results from the interplay
between, on the one hand, the tendency of speakers to reduce the cognitive ef-
fort or cost associated with switching between several languages (Meuter and
Allport, 1999; Jackson et al., 2001; Abutalebi and Green, 2007; Moritz-Gasser
and Duffau, 2009) and, on the other hand, their tendency to use their inter-
nally preferred language. Regarding the dynamics of node states, we assume that
speakers update their preference towards the language most commonly used in
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their respective social neighborhoods, i.e., the one most frequently used by their
neighbors to communicate between themselves. Note that we implicitly assume
that triangles represent actual group relationships, in which each speaker is aware
of the interaction between the other two. Thus, we are led to focus on network
topologies where triangles are abundant, a topic that has received a great deal
of attention throughout the last decade (Serrano and Boguñá, 2005; Newman,
2009; Bianconi et al., 2014). Interestingly, it has been recently shown that real
social networks are characterized by large clustering coefficients and, therefore,
contain a large proportion of triangles (Newman and Park, 2003; Dorogovtsev
and Mendes, 2003; Newman, 2010; Foster et al., 2011; Colomer-de Simón et al.,
2013). Triadic closure (Rapoport, 1953) —the principle that individuals tend to
make new acquaintances among friends of friends— has been found to be a suc-
cessful mechanism in reproducing these structural properties. While a number
of different implementations of the triadic closure mechanism have been studied
in different contexts (Holme and Kim, 2002; Davidsen et al., 2002; Solé et al.,
2002; Vázquez, 2003; Boguñá et al., 2004; Krapivsky and Redner, 2005; Jackson
and Rogers, 2007), we focus on a socially inspired network generation algorithm
proposed by Klimek and Thurner (2013), whose results have been validated with
data from a well-known massive multiplayer online game (Szell et al., 2010; Szell
and Thurner, 2010, 2012). Note, nonetheless, that in order to have a well-defined
evolution of speakers’ preferences, we introduce a small modification to the algo-
rithm so as to ensure that every node belongs to, at least, one triangle.

A broad range of possible asymptotic configurations is found as a result of
the coupled dynamics of node and link states described above. Each of these
asymptotic configurations belongs to one of these three classes: frozen extinction
of one of the languages, frozen coexistence of both languages or dynamically
trapped coexistence of both languages. Furthermore, metastable states with non-
trivial dynamics and very long survival times are frequently found. The situations
of coexistence are characterized by one of the languages becoming a minority but
persisting in the form of “ghetto-like” structures, where predominantly bilingual
speakers use it for the interactions among themselves —mostly triangular— but
switch to the majority language for communications with the rest of the system
—generally non-triangular—. A system size scaling shows, on the one hand, that
the probability of extinction of one of the languages vanishes exponentially for
increasing system sizes and, on the other hand, that the time scale of survival of
the non-trivial dynamical metastable states increases linearly with the size of the
system. Thus, non-trivial dynamical coexistence is the only possible outcome for
large enough systems.
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1.4

Outline

The contents of this thesis are divided in three parts, corresponding to the
three main topics addressed:

• The first part is devoted to opinion dynamics and it consists of Chapter 2,
where we study the influence of the initial distribution of opinions in a
model of continuous-opinions under bounded-confidence. A modification of
the model accounting for random changes of opinion is also studied (Carro
et al., 2013).

• The second part deals with a model of herding behavior in financial markets
and is divided in two chapters:

– In Chapter 3 we address the influence of an external source of infor-
mation upon the financial market model (Carro et al., 2015).

– In Chapter 4 we study a network-embedded version of the herding
model and focus on the influence of the underlying topology of inter-
actions on the asymptotic behavior of the system (Carro et al., 2016a).

• The third part of the thesis focuses on the dynamics of language competition
and consists of two chapters:

– In Chapter 5 we develop a coevolving model of language competition,
where language use is considered as a property of the links between
speakers. In particular, the time evolution of the system is based on
a majority rule for link states and random rewiring for links in a local
minority (Carro et al., 2014).

– In Chapter 6 we focus on the couple dynamics of language use, as a
property of the links between speakers, and language preference, as a
property of the speakers themselves (Carro et al., 2016b).

Finally, in Chapter 7, we offer some concluding remarks and point out some
possible future developments.
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CHAPTER 2
Continuous-opinion dynamics

under bounded confidence: the role
of noise and initial conditions

We study, in this chapter, the importance of the initial distribution of opinions
in determining the asymptotic configuration of a continuous-opinion model

under bounded confidence. In particular, we focus on the model developed by
Deffuant, Weisbuch et al. (Deffuant et al., 2000; Weisbuch et al., 2002). To this
end, we analyze, by means of numerical simulation of the time evolution of the
agents density, the effect of introducing a bias in the initial distribution towards
the extremes or the center of the opinion space, with a parameter which allows for
a continuous change between these two situations. In order to check the impact
of the symmetry of the initial distribution, this analysis is performed both in
a symmetric and in an asymmetric context. We find that, for a given value of
the confidence bound parameter, the initial condition has a strong importance
in determining the final state of the system, not only the position of the final
opinion groups being affected, but also the total number of these clusters, i.e.,
that the consensus can be encouraged or prevented by certain initial conditions.

Furthermore, we also consider the case of a modification of the Deffuant,
Weisbuch et al. model to take into account a certain element of randomness in the
form of a noise (Pineda et al., 2009, 2011, 2013). This noisy term can be thought
of as a certain kind of “free will”, since the agents are given the opportunity to
change their opinion independently of their acquaintances. As a consequence, the
importance of the initial condition is partially replaced by that of the statistical
distribution of the noise. Nevertheless, we still find evidence of the influence of
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the initial state upon the final configuration for a short range of the bound of
confidence parameter.

In Section 2.1 we present and in-depth description of the Deffuant, Weisbuch
et al. model, as well as a brief review of some results published in recent years
regarding this model. The extension of this original model to take into account
noisy perturbations in the opinions of the agents is addressed in Section 2.2. A
description of the different initial conditions tested is offered in Section 2.3, as well
as a description of the measures used to characterize these distributions and to
quantify the obtained results. We present also in this section the general features
of the simulations performed. Sections 2.4 and 2.5 are devoted to the presentation
of the results. In the first one we study the importance of the initial distribution
of opinions for the stationary result of the original Deffuant, Weisbuch et al.
model, while in the second one we analyze the case in which a noise is added to
the system. We draw, in Section 2.6, some general conclusions from the results
of this study.

2.1

The original, noiseless model

We review here the model developed by Deffuant et al. (2000) and Weisbuch
et al. (2002) in its original agent-based form, i.e., with its dynamics or

behavioral rules defined for a finite population of N agents. We present, as well,
a redefinition of the system as a density-based model, as introduced by Ben-Naim
et al. (2003a) and by Lorenz and Tonella (2005), where the dynamics is defined
for the density of agents in the opinion space. We use this second approach for
the computation of all the results presented in this chapter.

In order to define the original agent-based version of the model, we begin
by considering a group of N agents, where we denote by xi(t) the real number
representing the opinion that individual i has at time step t about a given topic.
Without loss of generality we take xi(t) ∈ [0, 1]. The behavioral rules defined for
the agents basically state that, at each time step, a pair of individuals, say i and
j, is randomly chosen. Then, if their opinions are close enough, that is, if they
satisfy |xi(t)− xj(t)| < ε, being ε the bound of confidence, they are respectively
adjusted as

xi(t+ 1) = xi(t) + µ [xj(t)− xi(t)] ,

xj(t+ 1) = xj(t) + µ [xi(t)− xj(t)] ,
(2.1)

remaining unchanged otherwise. The iteration of this dynamical rule leads the
system to a static final configuration which, depending on the parameters µ and
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ε, can be a state of full consensus or one of fragmentation, where the individuals
split in several opinion clusters of different sizes. This definition generates a
mean field model, since all the agents have the same probability to be chosen as
interaction partners.

The parameter µ, which is restricted to the interval (0, 1/2], can be thought
of as the “persuasibility” of the individuals, since it states how far an agent is
willing to change its opinion. It basically fixes the speed of convergence and, as a
consequence, it has some importance in determining the final number of clusters
(Laguna et al., 2004; Porfiri et al., 2007). In particular, for intermediate and
large values of µ, the speed of convergence becomes so fast in the extremes of
the opinion space that some small amount of agents are left around that region
with no possibility of communication with the rest of the individuals. These
agents are therefore unable to change and moderate their opinions, forming two
minority clusters of extremists. On the contrary, for small values of µ, i.e., for
slow convergence speeds, all the agents have the opportunity to meet and interact
with others, being influenced by them, and thus slowly converging to the major
clusters. Following most studies, and trying to avoid any further complexity,
we adopt from now on in this chapter the value µ = 1/2, meaning a perfect
compromise between interacting individuals.

In the context of the opinion space introduced above, the confidence parameter
is restricted to the interval ε ∈ [0, 1]. It is a measure of the receptiveness of the
agents, that is, their willingness or readiness to interact with other individuals
whose ideas are different from theirs. It states up to what point the ideas of
two individuals must be similar in order for them to be willing to interact with
each other. In a typical realization of the agent-based dynamics starting from
uniformly distributed random initial opinions, a consensus is obtained for large
values of the confidence parameter, ε ≥ 1/2, while a fragmentation into opinion
clusters separated by distances larger than ε can be observed for smaller values,
ε < 1/2, whether these clusters are large or small (Deffuant et al., 2000; Weisbuch
et al., 2002, 2003).

The first density-based approach to the Deffuant, Weisbuch et al. model,
developed by Ben-Naim et al. (2003a), basically involved changing the scope
from a finite number of agents to an idealized infinite number of individuals
which are distributed in the opinion interval as defined by a density function.
Therefore, the system is described in terms of a master equation for this density
function P (t, x)dx, defined as the fraction of agents that have opinions in the
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range [x, x+ dx] at time t,

∂

∂t
P (t, x) =

∫ 1

0
dx1

∫
|x1−x2|≤ε

dx2

[
P (t, x1)P (t, x2)

(
2δ
(
x− x1 + x2

2

)
︸ ︷︷ ︸
Fraction joining state x

−
(
δ(x− x1) + δ(x− x2)

)
︸ ︷︷ ︸

Fraction leaving state x

)]
,

(2.2)

where the persuasibility of the agents is taken as µ = 1/2. According to this
dynamical rule, the two first moments of the opinion distribution —the total mass
and the mean opinion—, are conserved. In particular, if we define the kth moment
as Mk(t) =

∫
dx xkP (t, x), then it can be easily found that Ṁ0 = 0 = Ṁ1. For

large values of the bound of confidence, ε ≥ 1/2, the stationary solution

Pst(x) = δ(x− x0) , (2.3)

where x0 is the mean opinion, is asymptotically found (t → ∞), that is, only
one opinion cluster is formed (Ben-Naim et al., 2003a). On the contrary, for low
values of the bound of confidence, ε < 1/2, it is numerically found that a finite
number of opinion groups are formed, leading to the stationary distribution

Pst(x) =
r∑
i=1

miδ(x− xi) , (2.4)

where r is the number of clusters, and xi, mi are, respectively, the position and
the mass of cluster i.

We follow here a slightly different approach, along the lines of the works by
Lorenz and Tonella (2005) and Lorenz (2007b, 2010), which involves a previous
discretization of the opinion space into a finite number of opinion classes. The
behavioral rules for the individuals are then translated to dynamical rules for the
density of agents in these resulting opinion classes. Concerning the discretiza-
tion, we divide the opinion space [0, 1] into n subintervals or opinion classes as[
0, 1

n

)
,
[ 1
n ,

2
n

)
, . . . ,

[
n−1
n , 1

]
, which are labeled as 1, . . . , n. The bound of confi-

dence ε is also naturally transformed into its opinion classes counterpart [nε],
where the square brackets [·] denote the integer part of a number. Therefore, the
state of the system can be represented by a vector p(t), where each component
pi(t) is the fraction of the total population which holds opinions in class i, and
the time evolution of the system can be written as a discrete Markov chain. The
density-based dynamics can then be defined as

p(t+ 1) = p(t)T [p(t)] , (2.5)
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where T [p(t)] is a transition matrix depending only on the current state of the
system p(t). In the case of the Deffuant, Weisbuch et al. model, this transition
matrix can be written as

Tij [p] =


πi2j−i−1

2 + πi2j−i +
πi2j−i+1

2 , if i 6= j ,

n∑
j 6=i,j=1

Tij [p] , if i = j ,

(2.6)

where

πim =


pm , if |i−m| ≤ [nε] ,

n∑
j 6=i,j=1

Tij [p] , otherwise.
(2.7)

This transition matrix states that the probability of an agent to change from
opinion i to opinion j depends only on the fractions of agents in the opinion
classes 2j − i− 1, 2j − i and 2j − i+ 1, and only if these classes are not farther
than [nε] from i. Indeed, these are the only opinion classes whose average with i
results in j. In the case of 2j− i−1 and 2j− i+1 it is only half of the agents who
switch to j, the other half switching to j− 1 and j+ 1 respectively. This discrete
time and discrete opinion approach has been shown to lead to the same results
as the previously presented continuous density-based model (Lorenz, 2007b).

In this context, the distribution of opinions at any point in time P (t, x) can
be directly and unequivocally determined from the initial distribution P (0, x),
avoiding the need for different realizations of the process. This is related to the
fact that this density-based approach corresponds to the limit of a very large num-
ber of agents, N → ∞, and thus to a case without finite-size fluctuations. As a
consequence, the differences between the agent and the density-based approaches
become larger the smaller the number of agents (Toral and Tessone, 2007). Some
examples of disagreement are commented below. Another interesting advantage
of the density-based approaches is that the conservation of the symmetry can be
directly observed, in the continuous case, in the master equation (2.2) and, in the
discrete case, in the definition of the transition matrix. This latter point implies
that, if the initial distribution of opinions is symmetric around the central point
x = 1/2, then we have ∀t that P (t, x) = P (t, 1− x).

In order to determine the attractive cluster patterns for each bound of confi-
dence and observe transitions of attractive patterns at critical values of ε, bifur-
cation diagrams are drawn. The asymptotic results of the model are shown in
these graphs, where the location of clusters in the opinion space is plotted versus
the continuum of values of the bound of confidence ε. Bifurcation refers here to
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the appearance, dominance or splitting of a given cluster. Sometimes it is useful,
when studying cluster patterns, to establish a difference between “major” opin-
ion clusters, containing a high fraction of the population, and “minor” opinion
clusters, containing a much smaller fraction. The bifurcation diagram for the Def-
fuant, Weisbuch et al. model with a uniform initial density in the opinion space is
shown in panel (b) of Fig. 2.4. A detailed analysis shows that there are in these
results four basic modes of bifurcation, which are repeated in descendant order of
the bound of confidence ε and in shorter and shorter ε-intervals (Ben-Naim et al.,
2003a). Let us describe, as an example, the first sequence. For ε ≥ 1/2 only one
big central cluster evolves, gathering the vast majority of the population. As the
bound of confidence decreases from ε = 1/2, we can notice the nucleation of two
minor clusters from the boundaries of the opinion space. Around ε ≈ 0.266 there
is a bifurcation of the central cluster into two major clusters. Further decreasing
ε, the central cluster has a rebirth as a minor cluster from ε ≈ 0.222, before
suddenly increasing its mass around ε ≈ 0.182, pushing the two major clusters
outwards.

A topic that has received much less attention in the relevant literature is
the dependence of the model on the initial conditions, that is, on the initial
distribution of opinions among the agents. As a first argument, we could notice
that the model, as has been presented, conserves the mass and the mean opinion
of the population, so the position of the final clusters depends on the mean of
the initial distribution. However, also different initial conditions with the same
mean opinion could give rise to different final configurations. In fact, it can be
shown theoretically and confirmed by simulation that any combination of delta-
functions is a steady state solution of the master equation describing the model,
provided these delta-peaks are separated by a distance larger than ε and they
conform to the mean opinion conservation (Lorenz, 2007b; Pineda et al., 2009).
In fact, as we show in Section 2.4, it is perfectly possible to force or prevent a
consensus by varying the initial distribution of opinions.

2.2

The modified, noisy model

Afinal configuration consisting of one or more delta functions means that all
the agents within one of these opinion groups would share exactly the same

opinion, which is clearly not very realistic. In order to avoid this perfect consensus
within each cluster, Pineda et al. (2009) presented an extension of the original
Deffuant, Weisbuch et al. model taking into account some additional randomness.
Thus, a noise is introduced into the dynamics as a certain kind of “free will”, which
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allows for the agents to change their opinion from time to time to a randomly
chosen value, independently of the opinions of other agents. Thus, the distribution
of the noise is uniform in the opinion space (see Mäs et al., 2010, for a more
complex, adaptive noise approach).

In this way, the dynamics is modified by allowing, at each time step, a ran-
domly chosen agent to follow the original Deffuant, Weisbuch et al. interaction
rule with probability (1 −m) or to choose at random a new opinion with prob-
ability m. This new parameter m is therefore a measure of the noise intensity.
As a result of this extension, there is a transition between an ordered and a dis-
ordered phase at a critical value of the noise intensity. In the disordered state,
corresponding to quite high noise rates, there is no cluster formation, as noise
is stronger than the nucleation processes; on the contrary, in the ordered state,
corresponding to lower noise rates, we can still clearly observe the formation of
clusters, even if they broaden with respect to the noiseless case. Another differ-
ence between the original and the noisy models is that the position of the clusters
in the latter case only vary at the bifurcation points, remaining constant between
them. These features are shown in panel b of Fig. 2.8, where the asymptotic
probability distribution Pst(x) is plotted as a function of the bound of confidence
ε for a small noise intensity, m = 0.01.

Starting from the master equation of the original Deffuant, Weisbuch et al.
model, Eq. (2.2), the dynamics of the noisy case can be derived as

∂

∂t
P (t, x) = (1−m)

∫ 1

0
dx1

∫
|x1−x2|≤ε

dx2

[
P (t, x1)P (t, x2)

(
2δ
(
x− x1 + x2

2

)

−
(
δ(x− x1) + δ(x− x2)

))]
+ m(Pa(x)− P (t, x)︸ ︷︷ ︸

Noise term

) ,

(2.8)
where Pa(x) is the probability distribution of the noise, which we assume to be
uniform in our case. It is clear from Eq. (2.8) that the net effect of the noise is
to move the current opinion distribution towards the noise distribution with a
velocity or intensity per time step m.

An interesting feature of this extension is that the average opinion of the sys-
tem is not anymore a constant, but tends to the average of the noise distribution,
regardless of the initial condition. Thus, the time evolution of the first moment
is

dM1

dt
= m[Ma

1 −M1] , (2.9)

where Ma
1 is the first moment of the distribution Pa(x). Note, nevertheless, that

even if the importance of the initial condition regarding the average opinion is

27



Chapter 2. Continuous-opinion dynamics under bounded
confidence: the role of noise and initial conditions

replaced by that of the noise distribution, the former has still some influence in
determining the bifurcation patterns, as we show in Section 2.5.

2.3

Initial conditions, measures and simulations

We present in this section the two sets of different initial conditions em-
ployed in our simulations, as well as the measure used to characterize and

differentiate between these distributions. Furthermore, we also present in this
section some measures developed in the literature for the analysis of the result-
ing final configurations. Finally, we also give some details about the simulations
performed.

Regarding the initial conditions, we explored two different functional forms
as initial distributions of opinions: a symmetric quadratic function and an asym-
metric piece-wise linear function. Concerning the quadratic functional form, we
chose the distribution to be symmetric around x = 1/2. Its general form would
then be P (0, x) = c+ b(x− 1/2)2 for x ∈ (0, 1). The normalization condition∫ 1

0 dxP (0, x) = 1 implies c = 1− b/12. This yields the final expression

P (0, x) = 1 + b

[(
x− 1

2

)2
− 1

12

]
. (2.10)

Furthermore, the positivity of this quadratic form requires that the parameter
b lies in the range b ∈ [−6, 12]. At b = 0 the quadratic function smoothly
changes from a concave (b < 0) to a convex (b > 0) shape. By construction, the
average value of this distribution is 〈x〉 = 1/2, and its variance σ2 = b/180 + 1/12.
If b = 0, the distribution is uniform in the interval (0, 1) and its variance is
σ2 = 1/12. In order to easily distinguish between convex and concave distributions,
we define the shifted variance S2 := σ2 − 1/12, or S2 = b/180 in this case. This new
measure is such that S2 > 0 corresponds to a convex distribution, S2 < 0 to a
concave distribution, and S2 = 0 to the uniform distribution. The minimum and
maximum possible values for S2, respecting the positivity of the distribution,
are −1/30 and 1/15, respectively.
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In order to test the effect of asymmetries we defined a piece-wise linear dis-
tribution with a “triangular” shape, given by

P (0, x) =


1 + a

(
3
10 − x

)
if x ≤ 3

4 ,

1 + 27
5 a
(
x− 5

6

)
if x > 3

4 ,
(2.11)

where the parameter a is restricted to the interval a ∈ [−10/9, 20/9] in order to
keep the function always positive. Again, the different terms have been tuned
so that the average value of the distribution is still 〈x〉 = 1/2. The variance
can be easily found to be σ2 = 3a/160 + 1/12. The shifted variance, which makes
the convexity/concavity of the distribution more evident, is thus S2 = 3a/160 in
this case. Its minimum and maximum values, regarding the positivity of the
distribution, are −1/48 and 1/24, respectively.

Both sets of distributions are exemplified in Fig. 2.1 for the maximum and
minimum values of the respective a and b intervals. It is evident in this figure
that the shifted variance S2 correctly distinguishes situations where a major-
ity of agents have initially opinions around the center of the opinion interval
(S2, a, b < 0) from other cases where a majority of agents have opinions towards
the extremes (S2, a, b > 0). The former corresponds to an initial condition which
would favor consensus while the latter corresponds to facilitating the splitting of
the population into, at least, two opinion groups.

Since we are interested on assessing the effect of the initial condition on the
final state of the system, we use some measures of consensus already introduced
in the literature to quantify this final distribution of opinions. In particular, we
use bifurcation diagrams as already described in Section 2.1. For the construction
of these diagrams, we need a precise definition of what a cluster is and what its
position in the opinion space is (Lorenz, 2007b). We define a cluster with a given
precision, in our case 10−3, as a set of adjacent opinion classes each of them with
a fraction of agents or mass larger than the precision threshold and surrounded
by neighboring classes with masses smaller than this precision. Regarding the
position in the opinion space or the opinion corresponding to a given cluster, we
approximate it by the average opinion of the agents within this group. In order
to quantify the degree of consensus within the population, the mass of the largest
cluster has been pointed out as an appropriate measure. We define the mass of
the largest cluster as the total fraction of agents within it (Lorenz, 2010).

As explained below, the introduction of a noise in the original Deffuant, Weis-
buch et al. model allows the system to undergo certain transitions between states
which are forbidden in the original model. One could argue that this effect is re-
lated to the fact that the asymptotic states reached with the original model are,
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Figure 2.1: Illustration of the symmetric and asymmetric sets of initial distributions
of opinions. S2 is the shifted variance of the distributions, defined as S2 = σ2 − 1/12,
where σ2 = 〈x2〉 − 〈x〉2 is the variance and the value 1/12 corresponds to the variance of
a uniform distribution in the interval [0, 1]

in fact, metastable states, and that the presence of noise allows the system to
exit from those states and reach a globally stable state. In order to characterize
their relative stability we defined a Lyapunov function for the Deffuant, Weisbuch
et al. model, that is, a positive-definite function which always decreases in time,
given the interaction rules of the model, and whose minimum is zero. Let us
write here only the definition of the Lyapunov function, while we leave its proof
for Appendix 2.A,

L[x] =
∑
i>j

(xi − xj)2 , (2.12)

where x(t) is a vector whose components are the opinions of the agents at time
t. In the absence of noise, only transitions from states with a given value of L to
those with a smaller (or equal) value would be permitted,

L[x(t+ 1)] ≤ L[x(t)] . (2.13)

For the numerical simulations, we used an algorithmic approach based on
a discrete density-based reformulation of the Deffuant, Weisbuch et al. model
along the lines of the works by Lorenz and Tonella (2005) and Lorenz (2007b).
In particular, we discretized the opinion space [0, 1] into 1001 opinion classes, an
odd number being the only option allowing for one-class central opinion clusters.
This one-class central opinion group in class 501 is quite important since, in
the symmetric case, it is the only class which can have a density greater than
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1/2. In order to study the bifurcation patterns, we run the algorithm for 100
evenly distributed values of the bound of confidence parameter, from ε = 0.1
to ε = 0.6. Furthermore, and with the purpose of analyzing the influence of
the initial condition, we performed the simulations for 100 different values of the
initial distribution parameters a and b, for each value of the bound of confidence.

Regarding the numerical results for the noisy extension of the model, we set
the intensity of the noise at m = 0.01, in order for the system to be in the
ordered state, as explained in above in Section 2.2 (see also Pineda et al., 2009).
The convergence time, that is, the number of time steps needed for the system to
reach a state where opinions have converged into opinion clusters separated by
more than a bound of confidence, is much longer in the noisy than in the noiseless
case. Therefore, the 1000 time steps we used for the original model were more
than enough in that case, while we decided to use 50000 for the noisy model in
order to ensure a good level of convergence.

2.4

The importance of the initial conditions in the
noiseless model

In the noiseless case, when m = 0, the asymptotic steady state distribution
Pst(x) = limt→∞ P (x, t) is basically a sum of delta-functions located at certain

points. As we are only interested in the fundamental changes caused by the
variation of the initial conditions, we have chosen a relatively high threshold level
for the detection of opinion groups, 10−3, in order not to detect the minority
clusters but only the major ones.

The mass of the largest cluster is shown in Figs. 2.2 and 2.3, respectively, for
the symmetric and the asymmetric initial condition sets. In these plots, the x-axis
represents the values of the bound of confidence ε, while the y-axis corresponds
to the shifted variance S2. Each point of this plane (ε, S2) is colored according to
the values of the mass of the largest cluster after stabilization. Parameter regions
with major consensus are therefore colored dark red, while light blue means two
equally distributed clusters. In order to give a more exhaustive idea about the
bifurcation patterns which give rise to the masses of the largest cluster shown in
these figures, we present in Figs. 2.4 and 2.5 the bifurcation diagrams for the four
cuts or horizontal lines marked in Figs. 2.2 and 2.3, respectively.

Note that some of the transition lines observed in Figs. 2.2 and 2.3 are sharp
and clear, while others appear to be more smooth and gradual changes. Let us
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Figure 2.2: Mass of the largest cluster for the set of symmetric initial opinion distribu-
tions (quadratic functions) obtained with the noiseless Deffuant, Weisbuch et al. model.
The values of the shifted variance marked by black horizontal lines (both dashed and
solid), are those for which cuts of the opinion distribution are shown in Fig. 2.4.

first focus on the symmetric case, shown in Fig. 2.2, where we observe an oblique
line of sudden transition between dark red and light blue, which can be shown
to mean (see Fig. 2.4 below) a bifurcation from one central major opinion cluster
to two smaller and symmetrical clusters. The smooth transition between light
and dark blue represents a gradual decrease of the mass of these symmetrical
clusters and the rebirth of the central one. In any case, the point we would
like to stress here is the fact that these transition lines or regions, their position
and smoothness, are highly dependent on the variance of the initial distribution
of opinions, something that is particularly evident for the sharp transition from
consensus to more than one opinion cluster.

Focusing now on the asymmetric initial condition case, we notice in Fig. 2.3
a rather different transition pattern. The main difference is the appearance of a
new color or state, turquoise blue (between green and blue), meaning a mass of
around 0.6 but corresponding to a state with two major opinion clusters, which
would be impossible in the previous and symmetrical case. This is due to the fact
that the initial distribution is not anymore symmetric around the central opinion
0.5, so a cluster can exist with a mass larger than 0.5 and not being located at the
center of the opinion space. Note that the black solid horizontal line is identical
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Figure 2.3: Mass of the largest cluster for the set of asymmetric initial distributions
of opinions (triangular functions) obtained with the noiseless Deffuant, Weisbuch et al.
model. The values of the shifted variance marked by black horizontal lines (both dashed
and solid), are those for which cuts of the opinion distribution are shown in Fig. 2.5.

in both figures, due to the fact that, when the shifted variance equals zero, both
initial conditions are equal and uniform.

Four examples of bifurcation diagrams are presented in Figs. 2.4 and 2.5 for
each set of initial conditions, corresponding to the cuts marked, respectively, in
Figs. 2.2 and 2.3. By comparing between these bifurcation diagrams and the
previous plots of the mass of the largest cluster, we can notice that some of the
opinion groups found are actually minority clusters. They are detected in the
bifurcation diagram but, being their mass just slightly larger than the precision
threshold 10−3, they have no relevant influence in the mass of the largest cluster.
The most clear examples of these minority groups are, on the one hand, the
two symmetric clusters appearing on the bifurcation diagram for S2 = −0.02 in
Fig. 2.4 from ε ≈ 0.3 to ε ≈ 0.2 and, on the other hand, the cluster appearing
just from the lower end of the opinion interval from ε ≈ 0.35 to ε ≈ 0.25 on the
bifurcation diagram for S2 = −0.02 in Fig. 2.5.

Both Fig. 2.4 and Fig. 2.5 serve as a confirmation of the strong importance of
the initial condition in determining the bifurcation patterns of the steady state
solution in the noiseless Deffuant, Weisbuch et al. model. In the symmetric
case, even though the pattern of bifurcations is rather similar in each and every
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Figure 2.4: Bifurcation diagrams for four different symmetric initial distributions of
opinions (quadratic functions) obtained with the noiseless Deffuant, Weisbuch et al.
model.

example, the points of the bound of confidence axis where the bifurcations do take
place smoothly increase with the variance of the initial distribution of opinions.
This change is particularly relevant for the first bifurcation, which takes place at
ε ≈ 0.270 in the uniform case, shown in plot (b), but moves from ε ≈ 0.180 in plot
(a) to ε ≈ 0.405 in plot (d). Regarding the case of asymmetric initial conditions
shown in Fig. 2.5, it is not only the bifurcation points, but also the general
bifurcation structure which is perturbed by a variation of the initial distribution
of opinions. In particular, we observe that the bifurcation patterns shown in plots
(a), (c) and (d) are clearly asymmetric and the first bifurcation point moves from
ε ≈ 0.245 to ε ≈ 0.420.

In order to check whether the particular shape of the initial condition function
has any important influence upon the bifurcation patterns of the model, we also
tested a symmetric initial distribution with the shape of a centered triangle,
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Figure 2.5: Bifurcation diagrams for four different asymmetric initial distributions of
opinions (triangular functions) obtained with the noiseless Deffuant, Weisbuch et al.
model.

thus different from the quadratic one. The results obtained being remarkably
similar to the case of the symmetric quadratic condition, we deduce that the
particular shape of the distribution does not play a major role regarding the final
asymptotic solution of the model. Therefore, we conclude that the two most
important variables for the characterization of the initial condition and its effects
upon the Deffuant, Weisbuch et al. model are the symmetry and the variance of
the distribution.
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2.5

The importance of the initial conditions in the
noisy model

If a noise of the type described in Section 2.2 is added to the original system,
that is, if m > 0, then the asymptotic solution of the model is not anymore a

collection of delta-functions, but a smooth distribution of opinions. Furthermore,
if this noise m is small enough for the system to be in the ordered state, then
the smooth steady state solutions are peaked around some specific values. In
particular, we set the noise intensity at m = 0.01. Although, as a consequence,
the definition of a cluster is not so obvious in this case as it is in the original
noiseless model, the cluster detection mechanism presented in Section 2.3 aims
to give correct results also in this noisy situation, and so we use it for the mass
of the largest cluster plots. However, with regard to the bifurcation diagrams,
and following Pineda et al. (2009), we decided to show here the whole probability
density distribution and not just the position of the major clusters.

The mass of the largest cluster is shown for the noisy model in Figs. 2.6
and 2.7 for the symmetric and asymmetric initial condition cases respectively.
It is interesting to notice, in a first and general view, that the range of mass
values taken by the largest cluster is slightly shorter in the noisy case than in the
noiseless results. This is mainly due to the fact that the agents no longer gather
in just a small number of opinion classes, but they are distributed all along
the opinion interval. Therefore, even if the distribution is peaked around some
popular opinion classes, a non-negligible fraction of the population is dispersed
among the rest of the opinion classes, not taking part in any major opinion cluster.
This effect is also clearly observed in Figs. 2.8 and 2.9, which show a logarithmic
color map of the density of agents in each opinion class for the four cuts marked,
respectively, in Figs. 2.6 and 2.7. These latter plots are, as already pointed out,
the equivalent of the bifurcation diagrams in Section 2.4.

As before, we can observe in the mass of the largest cluster plots of Figs. 2.6
and 2.7 some sharp as well as some smooth lines of transition. Comparing with
the noiseless case results in Figs. 2.2 and 2.3, we notice that the transition lines
are now mostly straight and vertical, unlike the oblique lines observed before.
This feature basically means that the initial conditions are, in this case, less
important in determining the final configuration of the system. However, we can
observe a smaller but still noticeable influence in the oblique transition line from
S2 = −0.02 to S2 = 0.02 in Fig. 2.6, and in the small change of the transition
line around S2 = 0.01 in Fig. 2.7.
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Figure 2.6: Mass of the largest cluster for the set of symmetric initial distributions
of opinions (quadratic functions) obtained with the noisy Deffuant, Weisbuch et al.
model, with a noise intensity m = 0.01. The values of the shifted variance marked by
black horizontal lines (both dashed and solid), are those for which cuts of the opinion
distribution are shown in Fig. 2.8.

By computing the value of the Lyapunov function in Eq. (2.12), we know
that the most stable situation —leading, in particular, to L = 0— is that where
all the agents share the same opinion, and thus there is only one cluster. This
is the most stable configuration, in the sense of the Lyapunov function defined
above, even if there is a certain small spread in the opinion of the group par-
ticipants. A configuration with two clusters corresponds to much higher values
of the Lyapunov function, but still it may constitute a metastable state when
the bound of confidence does not allow for interactions between the agents of
both groups. Therefore, when the system starts from an initial condition very
close to the two clusters final state, then it quickly evolves towards that final
configuration. However, when introducing a small noise in this last situation, the
system is able to overcome the barrier introduced by the bound of confidence and
undergo a transition to the globally stable state of one cluster. This is so for
large and intermediate values of the bound of confidence, namely for ε > 0.310.
On the contrary, for small values of this threshold, the time needed to arrive at
a consensus becomes so large relative to the noise rate that the system is not
able to leave the two clusters state. Regarding those initial conditions imposing
a certain consensus from the beginning, even if their initial state is already more
stable than a two cluster configuration, the presence of noise is able, for small
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Figure 2.7: Mass of the largest cluster for the set of asymmetric initial distributions
of opinions (triangular functions) obtained with the noisy Deffuant, Weisbuch et al.
model, with a noise intensity m = 0.01. The values of the shifted variance marked by
black horizontal lines (both dashed and solid), are those for which cuts of the opinion
distribution are shown in Fig. 2.9.

values of the bound of confidence, to take the system to the two opinion groups
state, which is the metastable state most easily reached from the noise opinion
distribution, uniform in our case. Jumps between the stable and the metastable
configurations have indeed been reported in the case of a uniform initial condition
for the noisy Deffuant, Weisbuch et al. model (Pineda et al., 2009, 2011).

Four examples of bifurcation diagrams are shown in Figs. 2.8 and 2.9, in
the form of probability density distributions, for each set of initial conditions.
Some clusters and bifurcation patterns that we can observe in these plots are
similar to the those in the bifurcation diagrams of the previous, noiseless case.
However, we notice two significant differences, apart from the fact that now we
have a smooth distribution of opinions in the final state and not anymore a
collection of delta-functions. On the one hand, the bifurcation points are now
very sharply defined, with no region of progressive transition from one state to
the next. On the other hand, the location of the maximum values of the density
does not significantly depend on the bound of confidence between bifurcation
points, unlike the position of clusters in the noiseless model. This is due to
the fact that the noisy perturbation allows the system to always reach the most
stable configuration permitted by the bound of confidence, which only changes
at the bifurcation points, when this confidence distance allows for more clusters
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to appear. On the contrary, the noiseless model freezes on stable configurations
even if they are not the most stable.

0.1 0.2 0.3 0.4 0.5
ε

0.0

0.2

0.4

0.6

0.8

1.0

x

(a) (S2 = −0.02)

0.1 0.2 0.3 0.4 0.5
ε

0.0

0.2

0.4

0.6

0.8

1.0

x

(b) (S2 = 0)

0.1 0.2 0.3 0.4 0.5
ε

0.0

0.2

0.4

0.6

0.8

1.0

x

(c) (S2 = 0.02)

0.1 0.2 0.3 0.4 0.5
ε

0.0

0.2

0.4

0.6

0.8

1.0

x

(d) (S2 = 0.04)

10−5

10−4

10−3

10−2

10−1

10−5

10−4

10−3

10−2

10−1

10−5

10−4

10−3

10−2

10−1

10−5

10−4

10−3

10−2

10−1

Figure 2.8: Bifurcation diagrams for four different symmetric initial distributions of
opinions (quadratic functions) obtained with the noisy Deffuant, Weisbuch et al. model,
with a noise intensity m = 0.01.

It is important to underline here the considerably long times needed for con-
vergence when the initial conditions strongly force a consensus, as it is the case
in panel (a) of both Figs. 2.8 and 2.9, where S2 = −0.02. The unclear and short
transitions that can be observed on the low ε part of these panels are, in fact,
a consequence of the system not having totally converged even after 50000 time
steps.

Unlike the results of the noiseless case, now the bifurcation patterns shown
have generally the same structure for all the initial distributions tested. Neverthe-
less, there is still a noticeable influence of the initial conditions, as the location of
the bifurcation points clearly changes among the different plots of the bifurcation
diagrams, confirming what was noted before about the mass of the largest cluster
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Figure 2.9: Bifurcation diagrams for four different asymmetric initial distributions of
opinions (triangular functions) obtained with the noisy Deffuant, Weisbuch et al. model,
with a noise intensity m = 0.01.

plots. Excluding the first and unconverged plot in panel (a), the first bifurcation
point, from consensus to two opinion clusters, moves from a minimum value of
ε ≈ 0.270 in the uniform initial condition plot in panel (b) to a maximum of
ε ≈ 0.315 in panel (d) for both the symmetric and the asymmetric cases.

Another interesting feature to notice in the bifurcation diagrams is the strong
difference between Fig. 2.9, in this section, and Fig. 2.5, in the previous one.
They both show the results of the model starting from an asymmetric initial
condition. However, only in the noiseless case the resulting bifurcation diagram
is asymmetric. The graph obtained with the noisy model for an asymmetric
initial distribution is, in fact, equal to the one obtained with a symmetric initial
condition. This is a case of symmetry restored by noise, and it is due to the fact
that the distribution of the noise we use is always symmetric and uniform. As
it was proved by Pineda et al. (2009) and shown in Section 2.2, the prevalent
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condition, regarding the moments of the final distribution, is the distribution
of the noise. Thus, the mean opinion value to be conserved and the general
bifurcation structure to be found is that corresponding to a uniform distribution.

Again, we checked that the particular shape of the initial distribution has no
major effect concerning the asymptotic solution of the model by simulating also a
symmetric initial distribution with the shape of a centered triangle, thus different
from the quadratic one. As in the noiseless case, we found that the results are
remarkably similar to the case of the symmetric quadratic condition. Thus, we
conclude, again, that the symmetry and the variance of the distribution are still
good parameters for the characterization of the initial condition and its effects
upon the noisy Deffuant, Weisbuch et al. model.

2.6

Concluding remarks

We have shown, by numerical simulation, that the asymptotic solution of
the original Deffuant, Weisbuch et al. model is highly dependent on the

initial condition. As a consequence, we have shown that it is indeed possible
to promote or prevent a consensus among a group of agents by just varying the
initial distribution of opinions in a case where the only dynamical mechanism is a
pairwise bounded confidence interaction rule. For instance, systems with an initial
distribution of opinions moderately polarized into two different opinion groups
will find it much more difficult to arrive at a consensus, even if the individuals
are willing to deal with very distant opinions. On the contrary, systems with
an initial distribution of opinions moderately consensual will very easily find
a globally shared opinion, regardless of how close-minded the agents are. In
particular, we have shown that the transition from consensus to more than one
opinion group can be moved in the range ε ∈ (0.135, 0.495) for the symmetric
set of initial conditions we used, while the range is ε ∈ (0.245, 0.425) for the
asymmetric initial distributions presented.

However, if the agents have the ability to choose a new random opinion from
time to time, then the possibility to initially prevent a consensus is totally re-
moved and that of forcing it is substantially reduced. We have shown, both
analytically and numerically, that the importance of the initial condition in de-
termining the asymptotic state of the system is mainly replaced by the distri-
bution of the noise. Nevertheless, there is still a slight but noticeable impact of
the initial condition upon the final or steady state, particularly for those initial
distributions showing a moderate consensus. Thus, we observe in the noisy sym-
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metric case that the transition from consensus to more than one opinion group
can be a sharp transition at ε ≈ 0.315 or a smooth transition taking place in the
range ε ∈ (0.235, 0.315) depending on the variance of the initial condition. In the
noisy asymmetric case, we observe a change in the location of this transition in
the much shorter range ε ∈ (0.295, 0.315).

Given the important differences observed in the noiseless model between the
mass of the biggest cluster plots of the symmetric and the asymmetric sets of
initial conditions, it is clear that the variance of the initial opinion distribution
is not the correct or not the only parameter to take into account. As it can
also be noticed in the related bifurcation diagrams, the variance is not enough to
determine if the system will end up in a consensus or not for a given bound of
confidence value. We notice that the symmetry of the initial condition does also
play an important role. Therefore, we would probably need to take into account
other parameters of the initial distribution as, for example, some higher moments.

Regarding the model with noise, the differences found in the bifurcation di-
agrams and the mass of the biggest cluster figures between both sets of initial
conditions are not as important as in the original model. In fact, the bifurcation
patterns observed in the mass of the biggest cluster figures show that the initial
condition is irrelevant in determining the final configuration if the variance is
strong enough, that is, if we sufficiently encourage the system to initially split
into two main opinion groups at the extremes. Nevertheless, for lower values of
the initial distribution variance, the final configuration of the system still depends
on this initial condition. In particular, the variance is again unable to precisely
determine the existence or not of a consensus, even though it gives a much better
prediction than in the noiseless case.
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APPENDICES
TO CHAPTER2

2.A

Lyapunov function for the Deffuant, Weisbuch et
al. model

In order to write a Lyapunov function for the Deffuant, Weisbuch et al. process,
we need to find a function L[x(t)], where x(t) is a vector whose components

are the agents’ opinions at time t, which satisfies

L[x(t)] ≥ 0 ∀t, (2.14)

L[x(t+ 1)] ≤ L[x(t)] ∀t, (2.15)

where Eq. (2.14) simply means that it is a positive-definite function and Eq. (2.15)
that it cannot increase with time.

Let us first write a positive-definite function and then prove that it is decreas-
ing in time for the model interaction rules. In particular, let us write a function
which only depends on the distances between the agents opinions as

L[x] =
∑
i>j

(xi − xj)2 , (2.16)

where we only sum over all terms which are different. Let us then focus on one
interaction, i.e., on the changes of the positions of only two agents in the opinion
space, say agents i1 and j1. Thus, we may divide the Lyapunov function into two
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terms, one dependent and the other independent of i1 and j1, and let us call the
independent part A for simplicity:

L[x(t)] = A+
∑

i 6=i1,j1

[xi1(t)− xi(t)]2 +
∑

i6=i1,j1

[xj1(t)− xi(t)]2

+ [xi1(t)− xj1(t)]2 .
(2.17)

Each sum contains N − 2 terms, being N the number of agents. Now we use
the new opinions xi1(t + 1) and xj1(t + 1) that agents i1 and j1 hold after the
interaction. It is important to notice that this interaction does only take place
in case the opinions of the agents are closer than the bound of confidence ε.
However, this does not affect our analysis, as we are only interested in effective
interactions, those which actually take place. The Lyapunov function after the
interaction is

L[x(t+ 1)] = A+
∑

i6=i1,j1

[xi1(t+ 1)− xi(t)]2 +
∑

i6=i1,j1

[xj1(t+ 1)− xi(t)]2

+ [xi1(t+ 1)− xj1(t+ 1)]2 .
(2.18)

Replacing the new values xi1(t + 1) and xj1(t + 1) as given by the application
of the rule Eq. (2.1) and subtracting, we get the variation of the Lyapunov as
∆L = L[x(t+ 1)]− L[x(t)] which, after some algebra, reads:

∆L = −2µ(1− µ)N [xi1(t)− xj1(t)]2 . (2.19)

In this manner, we see that the Lyapunov function L is strictly decreasing in
time when any interaction takes place, and it stays constant when no interaction
occurs.
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Herding behavior and
financial markets





CHAPTER 3
Markets, herding and response to

external information

We focus here on the influence of external sources of information upon fi-
nancial markets. In particular, we develop a stochastic agent-based market

model of a financial market along the lines of the works by Kirman (1991, 1993)
and Alfarano et al. (2008), but open to the arrival of external information in the
form of an dynamic signal affecting the traders’ behavior. This signal can be
interpreted as a time-varying advertising, public perception or rumor, in favor or
against one of two possible trading behaviors, thus breaking the symmetry of the
system and acting as a continuously varying exogenous shock. As an illustration
of information input, we use a well-known Indicator of Economic Sentiment pub-
lished in Germany by the Center for European Economic Research (ZEW). We
first analyze the effect of different intensities of the external information upon
the market, as well as compare the corresponding results with Germany’s leading
stock market index, the DAX, in order to find an appropriate value for this model
parameter. Once the intensity has been fixed, we study the market conditions for
the ensemble of traders to more accurately follow the information input signal,
finding an interesting resonance phenomenon, i.e., a maximum of the accuracy
of the market in reflecting the arrival of external information for an intermedi-
ate range of values of a market parameter related to the importance of random
behavior relative to herding among traders. This result suggests the existence
of different market regimes regarding the assimilation of incoming information:
amplification, precise assimilation and undervaluation of incoming information.

The original herding model is presented in Section 3.1, as well as a brief
description of its main results. In Section 3.2 we present the financial market
framework in which the herding mechanism is embedded. A general discussion
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about different types of external news affecting financial markets is presented in
Section 3.3, where we also develop a herding mechanism open to the arrival of
external information. In Section 3.4 we describe some details of the numerical
simulations used through the chapter. Sections 3.5 and 3.6 contain the main
results of the chapter. In the first we study the effect of varying the intensity
of the external information. The conditions for the system to better assimilate
the incoming information are addressed in the second. Finally, we draw some
conclusions in Section 3.7.

3.1

The original herding model

Inspired by a series of entomological experiments with ant colonies, Kirman
(1993) proposed a stochastic herding formalism to model the process of decision

making among financial agents. In the experiments with ants, entomologists
observed the emergence of asymmetric collective behaviors from an apparently
symmetric situation: when ants were faced with a choice between two identical
food sources, a majority of the population tended to exploit only one of them at
a given time, turning its foraging attention to the other source every once in a
while. In order to explain this behavior, Kirman developed a stochastic model
where the probability for an ant to change its foraging source results from a
combination of two mechanism. On the one hand, he postulated the existence of
a herding propensity among the ants, i.e., a tendency to follow the crowd, which
implies the existence of some kind of interaction among them with information
transmission. On the other hand, he also assumed the ants to randomly explore
their neighborhood looking for new food sources, so every one of them has an
autonomous switching tendency or idiosyncratic behavior, which plays the role
of a free will.

This simple herding model was reinterpreted by Kirman in terms of market
behavior, by simply replacing an ant’s binary choice between food sources by a
market agent’s choice between two different trading strategies. These different
strategies may be related to some particular rules for the formation of the agents’
expectations about the future evolution of prices, or result from differences in their
interpretation of present and past information. For instance, foreign exchange
market traders can adopt different tactics, such as a fundamentalist or a chartist
forecast of future exchange rate movements. A further example would be the
choice between an optimistic or a pessimistic tendency among the chartist traders.
In these examples, the herding model would be the decision making mechanism
among financial agents, who decide whether to buy or sell in a given situation,
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thus giving rise to market switches between a dominance of one or the other
strategy.

A series of subsequent papers (Lux and Marchesi, 1999; Alfarano et al., 2005,
2008; Alfarano and Milaković, 2009; Alfarano et al., 2013) has focused on explain-
ing some of the stylized facts observed in empirical data from financial markets
in terms of herding models of the Kirman type. However, there have been two
different implementations of the herding term in the literature. In his seminal
paper, Kirman (1993) proposed a herding probability that, for each agent, was
proportional to the fraction of agents in the opposite state. One of the main
drawbacks of this original formalization has been pointed out to be its lack of ro-
bustness with respect to an enlargement of the system size N , or N -dependence,
since an increasing number of participants in the market causes the stochasticity
to vanish and therefore the stylized facts to fade away. On the contrary, some
later authors (Alfarano et al., 2005, 2008; Alfarano and Milaković, 2009; Alfarano
et al., 2013) avoided this problem with an alternative modeling of the interaction
mechanism based on a herding probability that, for each agent, is proportional
to the absolute number of agents in the opposite state, thus allowing each indi-
vidual to interact with any other regardless of the system size. We will hereafter
adopt this second and more recent formalism. This approach has proven to be
successful in reproducing, for instance, the fat tails in the distribution of returns,
the volatility clustering, and the positive autocorrelation of absolute and squared
returns.

Let us now briefly review the formalization of the referred herding model —in
its non-extensive, N -independent formulation— and some analytical derivations
along the lines of previous works by Alfarano et al. (2008) and Kononovicius and
Gontis (2012), which will be useful for subsequent analyses. Let the market be
populated by a fixed number of traders N , and let n be the number of those agents
choosing one of the two possible strategies, while N − n choose the other one. For
the sake of clarity, we will hereafter refer to the case of optimistic vs. pessimistic
opinions about the future evolution of prices and, in particular, we will call the
first group of n agents optimistic and the second group ofN−n agents pessimistic.
In this manner, n ∈ 0, 1, ..., N defines the configuration or state of the system. Its
evolution is given by the two aforementioned terms: on the one hand there are
pairwise encounters of agents, after which one of them may copy the strategy of
the other, and on the other hand there are idiosyncratic random changes of state,
playing the role of a free will. An additional assumption of the model is the lack of
memory of the agents, so their probability of changing state does not depend on
the outcome of previous encounters, neither on previous idiosyncratic switches.
Therefore, the stochastic evolution of the system can be formalized as a Markov
process depending, at each time step, just on the probability to switch from the
present configuration of the system n to some other state n′ in a time interval ∆t,
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denoted by P (n′, t+∆t|n, t). However, if this time interval ∆t is taken to be small
enough, then the probability to observe multiple jumps is negligible and we can
restrict our analysis to n′ = n± 1. Furthermore, the probabilities would then be
related to the transition rates per unit time as P (n′, t+ ∆t|n, t) = π(n→ n′)∆t.
The transition rates for each individual i, π+

i = πi(pessimistic→ optimistic) and
π−i = πi(optimistic→ pessimistic), can be formally defined as

π+
i = a+ hn ,

π−i = a+ h (N − n) ,

where the parameters a and h stand for the idiosyncratic switch and the herding
intensity coefficients respectively. The rates for the whole system are, therefore,

π+(n) = π(n→ n+ 1) = (N − n) (a+ hn) ,

π−(n) = π(n→ n− 1) = n (a+ h (N − n)) .
(3.1)

There are two parameters in the model, a and h, but one of them can be used
as a rescaling of the time variable, so that there is only one relevant parameter,
such as ε = a/h.

For the sake of subsequent analytical derivations, it is useful to replace the
extensive variable n, in the range n ∈ [0, N ], by an intensive one which can be
treated as continuous for large system sizes N —note, however, that the limit
of an infinite number of agents is never the case in real social and economic
systems, where finite-size effects may play a role (Toral and Tessone, 2007)—. In
particular, we choose x = 2n/N − 1 as our intensive variable, giving an opinion
index in the range x ∈ [−1,+1]. We choose this range for our intensive variable,
as done by Alfarano et al. (2008), in order to ease the comparisons with the
external information signal which will be used later, also in the range [−1,+1].
Note that an opinion index x = 0 would imply a perfect balance of opinions,
while x = −1 and x = +1 would signal a full agreement on the pessimistic and
the optimistic opinions respectively. Note as well that the partial derivation with
respect to the new intensive variable becomes, in terms of the previous extensive
one, ∂/∂x = (N/2) ∂/∂n and therefore the relation between their probabilities is
P (x, t) = P (n, t)N/2.

By means of a systematic and consistent expansion in N , it has been shown
that the Markovian stochastic process defined above can be approximated by a
continuous diffusion process described by the Fokker-Planck equation (Alfarano
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et al., 2008),

∂P (x, t)
∂t

= ∂

∂x

[
− µ(x)P (x, t)

]
+ 1

2
∂2

∂x2

[
D(x)P (x, t)

]
= ∂

∂x

[
2axP (x, t)

]
+ 1

2
∂2

∂x2

[(
4a
N

+ 2h(1− x2)
)
P (x, t)

]
,

(3.2)

where µ(x) plays the role of a drift term and D(x) is the diffusion coefficient.
As an alternative way to analyze the dynamics of the model, it is possible to
derive a stochastic differential equation for the stochastic process x(t), known
as Langevin equation. Using the Fokker-Planck equation (3.2) and applying the
usual transformation rule (Van Kampen, 2007), within the Itô convention (Itô,
1951), we find the Langevin equation describing the process,

ẋ = µ(x) +
√
D(x) · ξ(t)

= −2ax+
√

4a
N

+ 2h(1− x2) · ξ(t) ,
(3.3)

where ξ(t) is a Gaussian white noise, i.e., a random variable with a zero mean
Gaussian distribution, 〈ξ(t)〉 = 0, and correlations 〈ξ(t)ξ(t′)〉 = δ(t− t′).

Let us first analyze the role played by the noise or diffusion term inside the
square root in Eq. (3.3), D(x) = 4a

N + 2h(1− x2). The first term, dependent on
a and inversely proportional to the system size N , is related to the “granularity”
of the system, and so it vanishes in the continuous limit N →∞. It basically
states that for any finite system there are always finite-size stochastic fluctuations
related to the fact that the agents have the ability to randomly change their choice.
The second term of the diffusion function is a multiplicative noise term, i.e., a
noise whose intensity depends on the state variable itself. Furthermore, it is the
only term dependent on the herding coefficient, so we will refer to it hereafter as
herding term. As this multiplicative noise is maximum for x = 0 and vanishes
for x = ±1, it is clear from Eq. (3.3) that it tends to move the system away from
the center and towards those extremes by making any random partial agreement
on one or the other possible opinions grow to a complete consensus.

Regarding the deterministic drift term, µ(x) = −2ax, it is evident by observ-
ing Eq. (3.3) that it has the role of driving the system back to a balanced position
at the center of the opinion index, x = 0. Therefore, we have a competition be-
tween two opposed driving forces. One of them is of a stochastic nature, it is
dominated by the herding term for large N and it tends to favor the formation
of a majority of traders sharing the same opinion about the future evolution of
prices. Whereas the other is of a deterministic nature, it is related to the idiosyn-
cratic switches and it tends to break these majorities and drive the system back
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to a balanced situation, where the traders are equally distributed between both
opinions. The magnitude of these two driving forces is related to their respective
parameters, a and h. Note that in the extreme case of pure herding, a = 0,
the consensus states x = ±1 become absorbing: once all the agents agree in the
use of a certain strategy, the system is frozen and there is no further evolution
[see Eq. (3.3)]. On the opposite, in the extreme case of pure random changes of
opinion, h = 0, the system would just be characterized by finite-size Gaussian
fluctuations around the mean opinion index 〈x〉 = 0.

For non-zero values of both the idiosyncratic and the herding parameters,
there is a competition between the two aforementioned driving forces and, de-
pending on their relative magnitude, one or the other behavior prevails: either
the tendency to form a large majority of agents sharing the same opinion or the
tendency to reverse any random majority to a balanced situation. Indeed, the
particular functional form of the noise in this herding model induces a transi-
tion in the dynamics of the system from a monostable to a bistable behavior
when increasing the value of h relative to that of a. This transition, as well as
the particular implications of mono and bistability, can be explained in terms
of the probability distribution Pst(x), steady state solution of the Fokker-Planck
equation (3.2), which can be written as

Pst(x) = Z−1
[

a

2Nh + (1− x2)
4

] a
h−1

. (3.4)

The normalization factor Z−1 is given by

Z−1 =
1
2
( 2ε
N + 1

)−ε√ 2ε
N + 1

B
[

1
2

(
1 +

√
2ε
N + 1

)
; ε, ε

]
−B

[
1
2

(
1−

√
2ε
N + 1

)
; ε, ε

] , (3.5)

where B[x; a, b] is the incomplete beta function, defined as

B[x; a, b] =
∫ x

0
ua−1(1− u)b−1du , (3.6)

and ε = a/h.

Observing the functional form of the steady state solution (3.4), one can notice
that the sign of the exponent will determine whether the probability distribution
is unimodal with a peak centered at x = 0 or bimodal with peaks at the extreme
values x = −1 and x = +1. Therefore, when the idiosyncratic switching a is
larger than the herding intensity h, we find a unimodal distribution, meaning
that, at any point in time, the most likely outcome of an observation is to find
the community of traders equally split between both options. On the contrary,
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when the herding h exceeds the idiosyncratic switching intensity a, a bimodal
distribution is found, meaning that, at any point in time, the most likely outcome
of a static observation is to find a large majority of agents choosing the same
option. Nevertheless, in different observations, the option chosen by the majority
may be different. Note as well that when a = h (ε = 1) the probability distribution
is uniform, meaning that any share of agents between the two options is equally
probable. Because of the ergodicity of the model, these probability distributions
can also be understood in terms of the fractional time spent by the system in
each state.

An alternative way to observe the transition between a monostable and a
bistable behavior and to explain it as a noise induced phenomenon consists in
introducing the effective potential (San Miguel and Toral, 2000): a function com-
bining the effects of both the deterministic driving force and the noise such that
its minima are attractive points of the dynamics. We can define the effective
potential Ueff(x) by assuming an exponential functional form for the stationary
probability distribution Pst(x),

Pst(x) ≡ C−1 exp
(
−Ueff(x)

D

)
, (3.7)

where D is an effective noise intensity that we take as D = h, and the constant
C−1 plays the role of a normalization factor. Note that, defined as such, the
minima of this effective potential function correspond to maxima of the stationary
state probability distribution. Let us directly write here the effective potential
for the Fokker-Planck equation (3.2), which takes into account the effect of the
multiplicative noise over the deterministic driving force related to the drift term
(see Appendix 3.A for a derivation),

Ueff(x) = (h− a) ln(1− x2) . (3.8)

The change of sign occurring in Eq. (3.8) for h = a marks the transition from a
one well to a double well potential when increasing h. The functional form of the
effective potential is shown in Fig. 3.1 for the three possible cases: a < h, a = h,
and a > h.

In the a < h case, it is worthy of remark the fact that, although both minima
of the effective potential at the extremes of the opinion index space are theo-
retically infinite wells, in fact, they are not absorbing states and so the system
will leave them with a probability proportional to a. This can be understood by
reexamining the Langevin equation (3.3), where we notice that precisely at the
extreme states x ± 1 the only term acting upon the system is the deterministic
force driving it towards the center of the opinion index. To sum up, in the a < h
case, the role of the herding (h) is to induce a bistable effective potential with
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Figure 3.1: Effective potential Ueff(x) for three different values of the idiosyncratic
switching tendency, a = 10−4, 10−3, 10−2. The rest of the parameter values are h =
10−3 and N = 200. Note that the values of a shown here correspond to the three main
cases a < h, a = h, and a > h.

two wells at the extremes of the opinion index, while that of the idiosyncratic
switching (a) is to allow for transitions between these two wells.

Two examples of stochastic realizations of this original herding model are
shown in Fig. 3.3 (two panels in the first row, labeled F = 0). The first exam-
ple, with an idiosyncratic switching coefficient smaller than the herding intensity
(a = 5 · 10−4, h = 10−3), corresponds to a bimodal probability distribution of
states. We can observe, in this panel, the tendency of the system to be tem-
porarily absorbed in the proximity of the consensus states with random switches
between them. Some of those switches are not successful and the system re-
turns to the previous consensus before reaching the opposite one. This type of
evolution corresponds to a market where traders strongly tend to agree on their
opinion about the future evolution of prices but this forecast agreement switches,
from time to time, from optimism to pessimism and vice versa. The case of a
unimodal probability distribution of states is displayed in the second panel, corre-
sponding to an idiosyncratic switching coefficient larger than the herding intensity
(a = 5 · 10−3, h = 10−3). Note that, as opposed to the previous example, the
opinion index spends most of the time in the central part of the opinion space,
between x = −0.5 and x = 0.5. This corresponds to a market where traders are
mostly guided by their own idiosyncratic drives, paying little attention to other
traders’ attitudes, and thus statistically tending to be equally divided among the
two possible opinions.
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3.2

The financial market framework

In order to model a financial market, we need to embed the stochastic herd-
ing formalism described above into an asset pricing framework. Different

implementations of the market have been proposed in the literature (Kirman,
1991; Kirman and Teyssière, 2002; Lux and Marchesi, 1999; Alfarano et al., 2005;
Kononovicius and Gontis, 2012), characterized by different degrees of complexity.
We will use here a very simple noise trader framework along the lines of previous
works by Alfarano et al. (2008). To this end, we need to define the different
types of agents acting in the market and relate them to the herding two-state
dynamics. In particular, the market is assumed to be populated by two kinds of
agents: fundamentalist and noise traders.

Fundamentalist traders assume the existence of a “fundamental” price of the
traded asset, towards which the actual market price tends to come back. There-
fore, they buy (sell) if the actual market price p is below (above) their perceived
fundamental value pf . Assuming that their reaction depends on the log relative
difference between the fundamental value and the current market price, instead
of absolute difference, the excess demand by the fundamentalist group is given
by

EDf = NfTf ln
(
pf
p

)
, (3.9)

where Nf is the number of fundamentalists in the market and Tf is their average
traded volume. The reaction to relative rather than absolute under- and overval-
uations not only seems more plausible, but also facilitates subsequent derivations.
In any case, the small observed daily changes of price (∼ 1%) assure that results
would not diverge much if absolute differences were to be used.

The agents of the second group, noise traders, react according to their par-
ticular forecast of the future evolution of prices, which can be optimistic or pes-
simistic. They are therefore divided into two subgroups: optimistic noise traders
expect the price of the traded asset to increase in the future and thus decide
to buy at the current market price, while pessimistic noise traders expect the
price to decrease and thus choose to sell. It is precisely here where the herding
model introduced in the previous section enters into the market framework: it
is the decision-making mechanism used by the noise traders to choose whether
they are optimistic or pessimistic regarding the future price of the traded asset.
In this manner, the excess demand by this group of agents becomes a direct con-
sequence of the dominance of optimism or pessimism among them, quantified by
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the opinion index x = 2n/N − 1 introduced above, and can be written as

EDc = NTcx , (3.10)

where N is the number of noise traders in the market and Tc their average traded
volume. Note that only the noise traders N are considered in the herding model
described in the previous section.

An equation for the evolution of price can be found by using the Walrasian as-
sumption that relative asset price changes are proportional to the excess demand
for the asset (Walras, 1954). Commonly referred to as Walrasian tâtonnement,
it has become the standard approach in the context of general equilibrium the-
ory (Samuelson, 1965). The dynamics of price adjustment can be expressed in
continuous-time as

1
βp

dp

dt
= NfTf ln

(
pf
p

)
+NTcx , (3.11)

with β representing a price adjustment speed. We further assume, without loss of
generality, an instantaneous market clearing (β →∞) and that the total volume
traded by both groups of agents is identical (NfTf = NTc). We find, in this
manner, an equilibrium price driven by both the fundamental value perceived by
the fundamentalists and the opinion index among the noise traders,

p(t) = pf exp (x(t)) , (3.12)

where we have also considered a fundamental value independent of time. This
approximation seems plausible in cases where movements of opinion among noise
traders occur on a much shorter time scale than changes in the fundamentals of
the traded asset, and we are interested in the short time scale behavior. Note that,
being the price given by a strictly increasing function of the opinion index among
the noise traders, following the majority (herding) is equivalent to following the
trends in the price.

For studying the non-stationary properties of returns and volatility, we define
the continuously compounded return over an arbitrary time window ∆t as the
logarithmic change of price,

R(t,∆t) = ln p(t+ ∆t)− ln p(t) = x(t+ ∆t)− x(t) , (3.13)

and we use absolute returns as a measure of the volatility, V (t,∆t) = |R(t,∆t)|.
For clarity, we will refer hereafter to the daily (∆t = 1 day) returns and volatility
as R(t) and V (t) respectively. Furthermore, for comparison with real data in the
following sections, we will use the normalized daily returns and volatility, defined
as

r(t) = R(t)− 〈R〉
σ(R) , v(t) = |r(t)| , (3.14)
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where 〈R〉 and σ(R) are, respectively, the mean and the standard deviation of
the time series of daily returns. Finally, the autocorrelation of the normalized
daily volatility will also be used for comparison with real data,

ACF(v) =

〈(
v(t)− 〈v〉

)(
v(t+ τ)− 〈v〉

)〉
σ(v)2 , (3.15)

where 〈·〉 denotes an average over time, σ(·) stands for the standard deviation,
and τ plays the role of a time lag.

The use of this asset pricing framework with the stochastic herding formalism
introduced in the previous section gives rise to a market model closed to any
external information. The implications of this market model are analyzed below
as a particular case of a more general market model open to the arrival of external
information (developed in the following section): the case of a zero influence
external signal.

3.3

The model with external information

The model described so far represents financial markets as completely closed
entities, being the price changes of a given asset determined only by the en-

dogenous evolution of the opinion index among noise traders [see Eq. (3.12)]. Even
if we allow for a time-dependent fundamental value pf , this would only account
for the instantaneous arrival of objective information regarding the fundamentals
of the asset itself. For instance, the information released in a company’s quar-
terly earnings report directly influences the fundamental value of its stock in the
market (Healy and Palepu, 2001). A further example is the instantaneous effect
of the devaluation of a given currency on its fundamental value in the exchange
market. However, we are not interested here in changes of the perceived funda-
mental value of an asset resulting from a rational analysis by the fundamentalist
traders, and giving rise to direct and linearly proportional movements of the
market price [see Eq. (3.12)]. On the contrary, we are interested in the arrival of
external information not necessarily related to the traded asset and giving rise to
trends of optimism or pessimism among the noise traders —note that, even when
dealing with objective information related to the fundamentals of an asset, its
disclosure may not only change the value perceived by fundamentalists, but also
trigger important speculative movements among noise traders—. Thus, we are
concerned with how external news can change the subjective perception or mood
of noise traders and generate fads: a prevalence of fear or confidence promoted
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from outside the market. Note that we focus our attention on a global and passive
reception of external information, rather than an individual and active search for
it, as studied by Preis et al. (2010, 2013), Moat et al. (2013) and Curme et al.
(2014). As examples of this kind of passively received external information we
can mention: the publication of news related to companies by specialized financial
media (Joulin et al., 2008; Alanyali et al., 2013; Lillo et al., 2015); the spread of
rumors related to the economy (Kiymaz, 2001); the updating of various economic
indices, such as those tracking the general performance of the economy (Hanousek
et al., 2009; Rangel, 2011); the disclosure of forecasts and recommendations by
different analysts (Jegadeesh and Kim, 2006); the announcement of world events,
such as terrorist attacks (Arin et al., 2008; Drakos, 2010); and, in general, the
molding of public opinion by mass media (Davis, 2006; Tetlock, 2007).

For the sake of illustration, we will use hereafter the Indicator of Economic
Sentiment developed by the Center for European Economic Research (ZEW)1 as
an example of external information input to the market. This indicator measures
the level of confidence that a group of up to 350 financial and economic analysts —
experts from the finance, research and economic departments as well as traders,
fund managers and investment consultants— has about the current economic
situation in Germany and its expected development for the next 6 months. The
survey is conducted every month and the corresponding index is constructed as
the difference between the percentage share of analysts who are optimistic and
the percentage share of analysts who are pessimistic about the development of
the economy. We nevertheless underline that the formalism that follows is general
and independent of the particular shape of the external information signal used.
The only relevant features of this information input having a significant effect on
the results are its strength and its frequency or rate of change.

In order to design a financial market model open to the arrival of external
information of the aforementioned type, the immediate question becomes how to
modify the transition rates (3.1) to take this external input into account. We are
here interested in the modification of the social processes of opinion formation
and propagation of information among the economic agents. So we are naturally
led to introduce the information input signal in the social term of the transition
rates, that is, in the herding coefficient h (for a different approach, see Harras
et al., 2012). Note that this choice leads to a direct linear dependence of the effect
of the external information upon a given agent on the number of agents with the
contrary opinion [see Eqs. (3.16) and (3.17)]. In particular, this effect completely
vanishes when there is no agent in the opposite state. In this manner, optimist
(pessimist) traders in a market with a clear consensus for optimism (pessimism)
will be less affected by external information in the opposite sense. Thus, we

1Accessible at http://www.zew.de/en/publikationen/
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modify the transition rates (3.1) as

π+(n, t) = π(n→ n+ 1, t) = (N − n) (a+ h+(t)n) ,

π−(n, t) = π(n→ n− 1, t) = n (a+ h−(t)(N − n)) ,
(3.16)

where the herding coefficients are now different in the two possible directions and
are both time-dependent functions given by

h+(t) = h0 + F

N
i(t) ,

h−(t) = h0 −
F

N
i(t) ,

(3.17)

with h0 playing the role of a constant or background herding coefficient, F acting
as the strength or intensity of the external information applied to the whole
system, and i(t) being the dynamic information itself. Note that we will refer
to a and h0 as parameters of the market and to F as a parameter of the input
signal. As the opinion index x, the information function i(t) takes values in the
range [−1, 1], being the negative and positive ones respectively associated with
pessimistic and optimistic news. The intensity can be understood as a measure of
the resources used by the external source in order to transmit the information and
persuade the agents. Note that this information input term is not proportional to
the total strength exerted on the system, but to the total strength per agent, F/N .
The rationale behind this particular functional form for the external input term is
basically a limited resources assumption: the resources spent in transmitting the
information and convincing the whole system are divided among its constituents,
so that if the system size N increases, the resources available for convincing each
of the agents decrease. The reason for adding and subtracting the external input
term, respectively in h+(t) and h−(t), is just so that positive (negative) values of
the information help transitions towards optimism (pessimism) while they hinder
transitions towards pessimism (optimism). In order to keep the transition rates
always positive, the intensity per agent must satisfy F/N ≤ h0.

Proceeding in a similar manner as for the original herding model in Section 3.1,
and applying the same approximations, we find the new Fokker-Planck equation,

∂P (x, t)
∂t

= ∂

∂x

[
− µ(x, t)P (x, t)

]
+ 1

2
∂2

∂x2

[
D(x)P (x, t)

]
= ∂

∂x

[(
2ax− F (1− x2)i(t)

)
P (x, t)

]
+ 1

2
∂2

∂x2

[(
4a
N

+ 2h0(1− x2)
)
P (x, t)

]
.

(3.18)
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Note that, compared to the previous Fokker-Planck equation (3.2), the herding
coefficient h has been replaced by its constant part h0 inside the diffusion coef-
ficient D(x). There is also a new time-dependent term inside the drift function
µ(x, t), which becomes itself dependent on time. Again, the conventional trans-
formation rule leads us, within the Itô form, to the Langevin equation describing
the process,

ẋ = µ(x, t) +
√
D(x) · ξ(t)

= −2ax+ F (1− x2)i(t) +
√

4a
N

+ 2h0(1− x2) · ξ(t) ,
(3.19)

where ξ(t) is, as before, a Gaussian white noise.

The constant part of the herding coefficient h0 plays exactly the same role as
the herding coefficient itself in the original herding model. The new term of the
drift function, on the contrary, changes fundamentally the general behavior of the
system. In particular, it will force the market to follow the external information
signal by favoring or opposing, depending on the sign of this signal, the tendency
towards x = 0 caused by the first drift term. In other words, the equilibrium point
of the drift function is no longer a constant at x = 0, but a function dependent on
time through i(t) and taking values around this central point. The new parameter
F , the strength of the information input, modulates the intensity of this effect.
Note also that the factor (1 − x2) inside the new drift term causes its effects to
vanish at the extremes of the opinion index space and its absolute value to be
maximal at its center for i(t) = ±1. Thus, the effect of the external information
upon the market vanishes for increasing consensus among the noise traders and
becomes strongest when the group is equally divided between the two possible
opinions. This behavior seems plausible from the perspective that groups with
consensus tend to be confident about their common decision and less prone to
pay attention to external sources of information than groups with a division of
opinions (Granovetter, 1978). Note as well that the new drift term vanishing at
the extremes of the opinion index space, it does not help the system to exit the
consensus states, and therefore some idiosyncratic behavior (a > 0) is still needed
in order to observe transitions between both full agreement states.

Concerning the competition between the deterministic and the stochastic
terms of Eq. (3.3), the inclusion of an external information input in Eq. (3.19) has
the general effect of counteracting or enhancing the deterministic driving force
depending on the sign of this information signal. For a deeper understanding of
the transition induced by the multiplicative noise upon the deterministic driving
force and the symmetry breaking role of the external information, let us write
the effective potential [see Eq. (3.7)] for the Fokker-Planck equation (3.18),

Ueff(x, t) = (h0 − a) ln(1− x2)− xF i(t) , (3.20)

60



3.4. Numerical methods

Again, we leave its derivation for Appendix 3.A. Note that the new term, related
with the information input signal, is linear in the opinion index variable x, and
thereby it breaks the symmetry (x↔ −x) of the potential for i(t) 6= 0.

The dependence of the effective potential on the information input signal is
illustrated in Fig. 3.2, where snapshots are presented for five different values of
the signal and for three values of the idiosyncratic parameter a. For values of a
below h0, allowing for the creation of a double well effective potential, the role
of the external information is to modify the depth of these wells, making one of
them relatively more attractive than the other. In this case, large majorities of
traders sharing the same opinion tend to emerge in the market, generally includ-
ing the whole of it, and the external information simply facilitates an optimistic
or pessimistic consensus depending on its sign. When a equals h0 the effective
potential becomes a linear function, and the role of the information input is to
vary its slope, thus creating a unique minimum at x = −1 or x = 1. Therefore,
in a market where every share of opinions is equally probable, the external infor-
mation facilitates again the creation of strong majorities, tending to include the
whole of the market. Values of a larger than h0 give rise to a monostable effective
potential, where the minimum is moved around the center of the opinion index
space by the influence of the information input. Thus, when traders tend to be
equally divided between the two possible opinions, the role of the external infor-
mation is to slightly break this symmetry, giving rise to weak majorities tending
to not include the whole of the market.

3.4

Numerical methods

In contrast with the methods presented in the previous literature (Alfarano et al.,
2005, 2008; Alfarano and Milaković, 2009; Kononovicius and Gontis, 2012), we

have used a Gillespie algorithm for the simulation of the model (Gillespie, 1977,
1992). A single realization of this algorithm represents a random walk with the
exact probability distribution of the master equation, therefore generating statis-
tically unbiased trajectories of the stochastic equation. Thereby, we generate an
unbiased sequence of times when the transitions of agents between the optimistic
and pessimistic states take place. For a stochastic system with time-dependent
transition rates π±(t) = π(n→ n± 1, t), and assuming that the last transition
took place at time t1, the cumulative probability of observing an event n→ n±1

61



Chapter 3. Markets, herding and response to external
information

−0.03

0.00

0.03

a
=
1
e
-0
4

(a
<

h
0
)

U
e
ff

(x
,t

)

i(t) = −1 i(t) = −0.5 i(t) = 0 i(t) = 0.5 i(t) = 1

−0.03

0.00

0.03

a
=
1
e
-0
3

(a
=

h
0
)

U
e
ff

(x
,t

)

−1 0 1

x

−0.03

0.00

0.03

a
=
1
e
-0
2

(a
>

h
0
)

U
e
ff

(x
,t

)

−1 0 1

x

−1 0 1

x

−1 0 1

x

−1 0 1

x

Effective Potential Function U
eff

(x, t)

Figure 3.2: Effective potential Ueff(x, t) for various values of the information input
signal i(t) and for three different values of the idiosyncratic switching tendency, a =
10−4, 10−3, 10−2. The rest of the parameter values are h0 = 10−3, F = 0.02, and
N = 200. Note that the values of a shown here correspond to the three main cases
a < h0, a = h0 and a > h0.

at time t±2 can be written as

F (t±2 | t1) = 1− e

−

t±2∫
t1

π±(t)dt

. (3.21)

We can equate this expression to a uniformly distributed random number u±
between 0 and 1 in order to find an equation for the time of the next event, t±2 ,

t±2∫
t1

π±(t)dt = − ln(1− u±) ≡ − ln(u±) , (3.22)

where we have used that u± and 1 − u± are statistically equivalent. By that
means, two different times are found: t+2 , corresponding to the transition rate
π+(t), and t−2 , related to the transition rate π−(t). The event actually taking
place is the one related to the shortest time.
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For the sake of solving Eq. (3.22), we assume that the information signal i(t)
[and thus the transition rates, see Eqs. (3.16) and (3.17)], stays constant between
every two releases of information. Moreover, we assume without loss of generality
that these announcements or news arrival instants are periodical in time. This is
particularly the case when dealing with the publication of some economic surveys
such as the ZEW Indicator of Economic Sentiment —the input signal we chose
for illustration—, which is released monthly. In order to both correctly introduce
the external information into the model and compare its results to real data from
stock markets, we need to set the relation between the time unit of the model
and the real time. For simplicity, we choose the time unit of the model to corre-
spond to a real day of trade. Again, this choice implies no loss of generality, since
the time scale of the model —that is, the velocity at which noise traders change
their position in the market— can also be varied by modifying the values of the
parameters a and h while keeping their relation constant. As a consequence, we
update the Indicator of Economic Sentiment every 20 time units of the model,
corresponding to the 20 trading days of each month (considering, for simplicity,
months of four weeks and weeks of five trading days). All simulations start from
a random distribution of optimistic/pessimistic opinions among noise traders and
evolve for 5280 time units, roughly corresponding to the trading days between
December of 1991 and November of 2013: the data period of the ZEW Indicator
of Economic Sentiment that we use. For comparison with real data we use the
daily variations of the German stock exchange index DAX during the same period
of time. Note that the monthly variations of these two datasets have a small but
positive cross-correlation, showing that there is no direct cause-effect relationship
between them, but rather that the ZEW Indicator of Economic Sentiment con-
stitutes a relevant input to be fed into the model presented above, whose agents
will then filter it in a non-trivial and non-linear way through their idiosyncratic
changes and their herding interactions.

3.5

Effect of the external information on the market

The particular modifications of the collective behavior of the market due to the
introduction of an external information signal depend on the specific values

of the model parameters. We devote this subsection to the analysis of the effect
produced by different input signal intensities on the typical simulated patterns
of three market variables: the opinion index among noise traders, the normalized
daily returns and their bursting behavior, and the autocorrelation function of the
daily volatility. For the two latter cases we offer as well a comparison with real
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financial data (DAX), allowing us to choose an appropriate value for the intensity
of the information signal.

Fig. 3.3 contains two sets of three panels illustrating the effect on the noise
traders opinion index of increasing the intensity of the incoming information from
the closed market case, F = 0, to its maximum allowed value, F = Nh0. The
three panels in the first column address the case of market parameters in the
bistable regime, a < h0, while the three panels in the second column deal with
market parameters in the monostable regime, a > h0. In the first case, a = 5·10−4

and h0 = 10−3, we observe that the application of an information input reinforces
the bistability of the distribution of states. By comparing the closed market case
(F = 0) with the market subject to a small information strength (F = 0.02),
we notice that the introduction of a small input intensity is able to modify the
behavior of the system by pushing the opinion index towards a fully optimistic or
pessimistic extreme. However, the market is not able to follow the mood changes
of the external signal: the opinion index may stay around an optimistic extreme
while the external information is rather pessimistic (see, for example, the negative
peak around t = 4000). In the maximum information strength case (F = 0.2),
we observe an even faster collapse of the opinion index around its extreme values,
but we notice now that the changes of mood of the external signal are generally
matched by large opinion movements of the market in the same direction.

The effect of increasing the intensity of the incoming information in the case
of market parameters (a, h0) in the monostable regime is shown in the second
column of Fig. 3.3, where a = 5 · 10−3 and h0 = 10−3. First, we notice that
the application of an information input can result in a bistable-like behavior,
as the one expected for a < h0 and F = 0, especially in the case of a large
input intensity (case F = 0.2). This is due to the introduction of the external
information term as part of the herding coefficient [see Eq. 3.17]. Interestingly,
we also notice that for a market with this level of idiosyncrasy even a small input
intensity (F = 0.02) is able to force the opinion index to follow the shape of the
external signal. Similarly to the bistable case (a < h0 column), a large input
strength (F = 0.2) compels the market to an amplification of the information
signal. Nonetheless, the higher level of idiosyncrasy allows now for the collapse of
the opinion index around the fully optimistic or pessimistic extremes to take place
as soon as the signal becomes, respectively, optimistic [i(t) > 0] or pessimistic
[i(t) < 0]. The convincing power of the external information source being so
strong, most of the noise traders are quickly persuaded to align their opinions
with the optimism or pessimism of the input signal.

The behavior of the normalized daily returns [see Eq. (3.14)] under differ-
ent input strengths and for various market parameters is depicted in Fig. 3.4,
where the returns of the German DAX index are also displayed in a first panel
for visual comparison. Observing the model results for market parameters in the
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Figure 3.3: Effect of the information intensity on the opinion index. Green points and
dashed green line: External information signal, ZEW Indicator of Economic Sentiment,
data from December 1991 to November 2013. Solid blue line: Time evolution of the
opinion index simulated for different values of the external information intensity F and
the idiosyncratic switching tendency a. The herding parameter and the system size are
fixed as h0 = 10−3 and N = 200.

bistable regime (first column, a = 5 · 10−4, h0 = 10−3), we notice that an evi-
dent effect of an increasing convincing power of the external information source
is the strengthening of the volatility clustering phenomenon, i.e., the clustering of
periods of large returns and periods of small returns. Even if some volatility clus-
tering is already present —endogenously produced— in the closed market case
(F = 0), this feature seems to be underrepresented for these market parameters
when compared to the DAX data. A clear enhancement of the clustering effect is
observed when a low intensity information signal is introduced (F = 0.02), bring-
ing the model results closer to the DAX data. A large input strength (F = 0.2),
however, results in an unrealistic amplification of the clustering: almost all the
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returns in the 22 years simulated are realized in less than ten short bursts, when
the information input changes sign and the whole market switches from optimism
to pessimism or vice versa. A similar but weaker influence of the external infor-
mation is found for a = 5 · 10−3 (second column), a value corresponding to the
monostable regime but in the same order of magnitude as h0. For a = 5 · 10−2

(third column), however, the effect of the input signal appears to be negligible
regardless of its strength. This can be understood bearing in mind that, being
the idiosyncratic switching tendency much larger than the herding propensity,
the dynamics is dominated by random changes of opinion of the traders, and
therefore the external information is irrelevant in the scale of days, the one used
for computing the returns.

The observation of the time series of the normalized daily returns (Fig. 3.4)
might lead to think that the parameters used are degenerate, i.e., that different
combinations of their values can lead to similar results, as it is the case for the
couples F = 0.02, a = 5 · 10−4 and F = 0.2, a = 5 · 10−3. However, this degener-
acy is only apparent, as it can be shown by simply analyzing other magnitudes,
for example: the autocorrelation function of the normalized daily volatility [see
Eq. (3.15)], measured as the absolute value of the normalized daily returns, illus-
trated in Fig. 3.5. The same input intensities and market parameters as in the
previous figure are studied, and the corresponding autocorrelation function for
the DAX normalized daily volatility is shown for comparison in every panel. If
we first focus on the examples for market parameters in the bistable regime (first
column, a = 5 · 10−4, h0 = 10−3), we find a highly significant autocorrelation of
absolute returns which only falls off slowly, in accordance with previous empirical
literature (Ding et al., 1993; Mandelbrot, 1997; Cont, 2001, 2005). However, in
the closed market case (F = 0) this decrease is extremely slow for large time
lags, where we still find a significant autocorrelation, as opposed to the DAX
data. The introduction of a small input strength signal (F = 0.02) is able to
modify this behavior, the autocorrelation for large time lags becoming negligible
or even slightly negative, as it is found for the DAX index. On the opposite,
when the strength of the input is increased up to its maximum value (F = 0.2),
the outcome of the model becomes strongly driven by the shape of the informa-
tion signal and, as a result, the autocorrelation function becomes as well a direct
consequence of this signal shape and very different from the DAX data. Thus,
the expected behavior of the autocorrelation of absolute returns for long time
lags is found for markets subject to a low intensity information entrance, while
it is not present for closed or completely driven markets. For a market with an
idiosyncratic tendency larger but in the same order of magnitude as the herding
propensity (second column, a = 5·10−3), we observe, on the one hand, a complete
lack of autocorrelation for both the closed market example (F = 0) and the case
of a small information influence (F = 0.02). On the other hand, the entrance of
an information signal with its maximum convincing power (F = 0.2) leads again
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Figure 3.4: Normalized daily returns r(t). First panel, red line: German DAX index
from December 1991 to November 2013, shown for comparison. Table of nine panels,
blue lines: Model results for three different input intensities of the external information
F and three values of the idiosyncratic switching tendency a. The rest of the parameters
are fixed as h0 = 10−3 and N = 200.

to an unrealistic behavior of the autocorrelation function, which becomes driven
by the shape of the incoming information signal. In the case of larger values of
the idiosyncratic switching tendency, and being the market dominated by ran-
dom opinion changes, we find no significant autocorrelation of absolute returns
regardless of the information strength applied.
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Figure 3.5: Autocorrelation function (ACF) of the normalized daily volatility v(t).
Black dots: Model results for three different input intensities of the external information
F and three values of the idiosyncratic switching tendency a. The rest of the parameters
are fixed as h0 = 10−3 and N = 200. Solid blue line: The corresponding ACF of the
German DAX index volatility is shown in each case for comparison. The DAX data
corresponds again to the period from December 1991 to November 2013.

Note that, with the small value of the information strength, F = 0.02, and
for some values of the market parameters, the model described here is able to
reproduce the main statistical features of the DAX index. On the one hand, the
model emulates the behavior of the DAX normalized daily returns (see Fig. 3.4),
giving rise to a comparable volatility clustering effect. On the other hand, the
model leads to a similar autocorrelation function of the normalized daily volatility
(see Fig. 3.5), reproducing both the slow decay of the DAX autocorrelation and
its zero and slightly negative values for very long time lags. Note that this last
feature, the long time lag behavior of the autocorrelation function, is not captured
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by the market model closed to external information. For completeness, we also
include the probability distributions of absolute normalized daily returns as a
supplementary figure in Appendix Probability distribution of absolute returns,
for the same parameter values used in Figs. 3.4 and 3.5: while their lack of
temporal structure hides any volatility clustering effect, these distributions seem
to support our choice of parameter value. In view of these results, we select the
small value of the external information intensity, F = 0.02, to be used in the rest
of the research presented hereafter.

3.6

Resonance phenomenon

We have analyzed above the effects caused by different information input
intensities on the market, finding that a small strength input (F = 0.02)

produces results consistent with real financial data. Let us now focus on this
case, keeping the external information intensity fixed as F = 0.02, and search for
the values of the model parameters for which the ensemble of agents follows more
accurately the shape of this signal. Thus, we are concerned here with the study
of the conditions under which the market best reflects the arrival of external
information. As mentioned above, although the discussed market model has in
principle three parameters (a, h0, and F ), one of them can be used as a rescaling
of the time variable, so that there are only two relevant parameters. Given that
the effective influence of the external information upon the system is determined
by the relative importance of the input strength F and the background herding
coefficient h0 [see Eqs. (3.16) and (3.17)], we choose to keep the latter fixed and
therefore use the idiosyncratic switching tendency a as our control parameter. In
particular, we choose the values h0 = 10−3, F = 0.02 and N = 200. The input
intensity per agent, F/N , is thus ten times smaller than the herding coefficient,
its maximum allowed value. We have also performed simulations with different
system sizes (N = 50 and N = 800), finding a generally equivalent behavior
which will be discussed below.

Let us start by considering the influence that varying the idiosyncratic switch-
ing tendency a has over the time series of the noise traders opinion index x,
illustrated in Fig. 3.6. Note that there is no maximum allowed value for this
parameter, as it was the case with the signal intensity F : its only constraint is
that it must be a > 0 so that the extremes of the opinion index space are not
absorbing states. Therefore, we simply choose a reasonable range which includes
the different behaviors described in the previous sections and observed in Fig. 3.2:
from a fully bimodal case (a � h0), with almost two deltas at the extremes of
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the probability distribution of states; up to a fully unimodal case (a� h0), with
an almost perfect Gaussian distribution of states.
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Figure 3.6: Effect of the idiosyncratic switching tendency on the opinion index. Green
points and dashed green line: External information signal, ZEW Indicator of Economic
Sentiment, data from December 1991 to November 2013. Solid blue line: Time evolution
of the opinion index simulated for different values of the idiosyncratic switching tendency
a and fixed values of the parameters h0 = 10−3, F = 0.02, and N = 200.

In the first of these cases (a = 0.5h0, panel a) the system is clearly unable to
follow the shape of the input signal and, in fact, the opinion index stays close to a
full agreement state for most of the time. This is due to the extremely low level of
idiosyncratic behavior relative to the herding tendency: noise traders tend to form
a large consensus group which cannot easily be convinced by the external source.
Even if a double well effective potential has been induced, the probability of
observing a transition between both wells, proportional to a, is too small to allow
for the group to leave the consensus states at a rate large enough for the market
to adapt to the updates of the external information. In the intermediate case
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(a = 5h0, panel b), when the idiosyncratic coefficient is slightly larger than the
herding tendency, we observe that the system easily follows the shape of the input
signal. This can be understood taking into account that intermediate values of a
larger than h0 give rise to a rather wide monostable effective potential where the
system can still be largely driven by the external signal. Thus, the market seems
to reflect rather precisely the arrival of external information. On the opposite, for
very large values of the idiosyncratic coefficient (a = 50h0, panel c) the system
is again unable to fit the shape of the input signal and the trajectories of the
opinion index seem rather noisy. As shown in Section 3.3, very large values of a
lead to narrow unimodal effective potentials with minima moving closely around
the center of the opinion index space. Thus, the external information input has
an almost negligible influence and the market seems to be unaware of it.

In this way, we note that different values of the idiosyncratic coefficient lead
to different levels of coincidence between the opinion index resulting from the
simulation of the model and the information signal used as an input. In or-
der to quantify this phenomenon —that is, in order to measure the quality of
the market response in following the external information driving— we use the
input-output correlation (IOC), defined as the maximum of the cross-correlation
function between the input signal i(t) and the system output x(t),

IOC =
maxτ

{〈(
i(t)− 〈i〉

)(
x(t+ τ)− 〈x〉

)〉}
σ(i)σ(x) , (3.23)

where 〈·〉 denotes an average over time, σ(·) stands for the standard deviation,
τ plays the role of a time lag, and maxτ{·} finds the maximum value of a τ -
dependent function (Collins et al., 1996). Note that IOC is a scalar measure
quantifying the maximum of the input-output cross-correlation function, which
depends on the time lag τ . A larger IOC is related with a better entrainment of
the market by the external information signal, corresponding its maximum value,
IOC = 1, to a perfect fit between the time series i(t) and x(t). Note that an
amplification of the input signal is understood here as a worse fit when compared
with a perfect input-output correspondence.

The results obtained for the input-output correlation are displayed in Fig. 3.7
for three different system sizes. The same general behavior is observed for all of
them: there is a maximum in the response of the system to the weak information
input as a function of the idiosyncratic switching parameter a. As said before,
this behavior is reminiscent of a well-known phenomenon generally labeled as
resonance (Benzi et al., 1981, 1982; Nicolis and Nicolis, 1981; Collins et al., 1995;
Gammaitoni et al., 1998). The particular mechanism described here can be clas-
sified as an aperiodic stochastic resonance (Collins et al., 1996; Heneghan et al.,
1996), since the maximum in the response of the system to the external aperiodic
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signal is related to the relative importance of the stochastic term as compared to
the deterministic one: the ratio between h0 and a, in our case.
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Figure 3.7: Input-output correlation IOC as a function of the idiosyncratic switching
tendency a. The correlation is computed according to Eq. (3.23). Parameter values are
h0 = 10−3, F = 0.02, and three different system sizes, N = 50, 200, 800. A measure
of the fraction of time spent by the system near the extremes of the opinion index
space,

√
〈x2〉, is also shown for the N = 200 case. Arrows point at the idiosyncrasy

levels whose opinion index time series are shown in Fig. 3.6, marked also by their
corresponding letter: a) a = 5 · 10−4, b) a = 5 · 10−3, c) a = 5 · 10−2

Within a financial market framework like the one presented in Section 3.2,
a maximum in the response of the system would simply mean that the market
optimally reproduces the level of optimism/pessimism contained in the incoming
information (see, for example, panel b of Fig. 3.6). These results suggest that
there is a certain range of idiosyncratic behavior intensity which largely improves
the entrainment of the market by the external information. Note that the par-
ticular values of the response maxima are quite large, all of them implying a
rather good fit of the information input. Note as well that these high levels of
entrainment occur for a fairly wide range of values of the control parameter a: the
input-output correlation stays above 0.7 for more than a decade (in particular,
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for h0 . a . 20h0, with h0 = 10−3). However, there are two regions for which the
system seems unable to follow the shape of the input signal: one for values of the
idiosyncratic parameter smaller than the herding coefficient, and the other one
for values much larger than the herding coefficient. In order to understand the
differences between these two low-entrainment regimes, we also show in Fig. 3.7
a measure of the fraction of time spent by the system near the extremes of the
opinion index space,

√
〈x2〉. By observing this measure, it becomes clear that in

the low-idiosyncrasy regime (a < h0) the market cannot follow the input signal
because the noise traders group amplifies the incoming information up to a com-
plete consensus (

√
〈x2〉 ' 1) and then this group finds it difficult to leave this

consensus and adapt to an updated information in the opposite sense (see also
panel a of Fig. 3.6). On the contrary, in the high-idiosyncrasy regime (a > 20h0)
the problem faced by the market when trying to assimilate the incoming infor-
mation is that, being the noise traders mostly guided by their own idiosyncratic
drives, they pay little attention to external sources or other traders’ attitudes,
thus statistically tending to be equally divided among the two possible opinions
(
√
〈x2〉 ' 0) (see also panel c of Fig. 3.6).

Bearing in mind that social and economic systems may have rather reduced
sizes, it becomes relevant to assess the importance of size effects (Toral and Tes-
sone, 2007). In our case, the input-output correlation curves for the three different
size examples in Fig. 3.7 collapse in the same curve for small values of a, while
they are clearly different for intermediate and large values. This behavior can be
understood in view of the functional form of the granularity term in the Langevin
equation (3.19), the only one dependent on N : directly proportional to the id-
iosyncratic coefficient a and inversely proportional to the system size N . For
small values of the control parameter a, the granularity term is also small and
the opinion index x stays most of the time around the consensus states. In the
intermediate a region, the granular N dependent term plays a relevant role in
taking the system out of the consensus states with a probability uncorrelated
with the shape of the input signal. Therefore, a large granularity term —small
number of agents N— leads to a worse coincidence of x with the input signal
and, thereby, to a smaller input-output correlation. Finally, for large values of
the control parameter a, the system does not even reach the extremes of the
opinion index space and the behavior is predominantly led by the first term of
the drift function and the noise effects produced by the granular term, because
of the large value of a appearing in both terms. Note as well that the relative
difference between the curves is smaller when comparing the N = 800 with the
N = 200 cases than when comparing this latter with the N = 50 example. This
is simply a consequence of the granularity term being inversely proportional to
the system size N , so for larger and larger N the results become more and more
similar.
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3.7

Concluding remarks

Our aim in this chapter was to advance towards a quantitative understanding
of the influence of an external source of information upon a financial mar-

ket characterized by a certain herding behavior. The stochastic formalism used
as a point of departure for our investigation incorporates individual behavioral
heterogeneity as well as a tendency for social interaction, in the tradition of Kir-
man’s seminal ant colony model. As opposed to the previous literature, which
considers only the particular case of a closed market, we take into account the
arrival of external information in the form of a time-dependent modification of
the transition rates defining the individual traders’ behavior.

A transition takes place in the original herding model from a monostable to
a bistable behavior when increasing the herding propensity of the agents with
respect to their idiosyncratic tendency. The monostable case can be understood
as a market where each of two possible strategies is used by approximately half of
the traders, while the bistable configuration corresponds to a market where there
is always a clear majority of traders using one of the strategies, even if the chosen
one can change over time. We have reinterpreted this noise-induced transition
in terms of the mono- or bistability of an effective potential. In this context,
we have demonstrated that the introduction of a dynamic external information
input produces a time-dependent modification of this effective potential, whose
symmetry is broken. We have used an Indicator of Economic Sentiment published
in Germany as an example of information input. Extensive simulations of this
market model open to the arrival of external information have shown that even a
small strength or convincing power of the external source may be enough for the
market to follow its information signals. On the contrary, strong intensities lead
to an amplification of the input signal: the convincing power of the external source
being so strong, most of the traders are quickly persuaded to align their strategies
in the sense of the input signal, giving rise to important market movements when
the direction of this external information changes. Moreover, we have compared
the results of this market model with Germany’s leading stock market index, the
DAX, showing that the introduction of a small strength information signal is able
to reproduce general statistical properties of real financial data. In particular, the
introduction of a low intensity signal allows the model to mimic: the volatility
clustering effect, the slow decay of the autocorrelation of the normalized daily
volatility for short time lags, and its zero and slightly negative values for long
time lags.
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Furthermore, we have studied the conditions for the market to show an optimal
response to the arrival of external news, i.e., for it to optimally reflect the level
of optimism/pessimism contained in the information input. The specific range of
values for which an optimal response is observed depends on the intensity and the
frequency or rate of change of the incoming information. In particular, we have
found a certain range of values of the idiosyncratic behavior relative to the herding
tendency among noise traders (h0 . a . 20h0) that optimizes their response as
a group to a weak information input. We have shown the similarities of this
phenomenon with an aperiodic stochastic resonance. As a result of this analysis,
we have identified three different market regimes regarding the assimilation of
incoming information:

1. Amplification of incoming information; any positive (negative) piece of news
leads to a rather stable optimistic (pessimistic) consensus and it takes a
long time for the market to adapt to updates of the sense of the external
information (values of the idiosyncratic switching tendency below the range
of the resonance, a < h0).

2. Precise assimilation of incoming information; the market optimally reflects
the arrival of external news (values of a within the range of the resonance,
h0 . a . 20h0).

3. Undervaluation of incoming information; the arrival of news has an almost
negligible influence and the market seems to be unaware of it (values of a
above the range of the resonance, a > 20h0).

A possible understanding of the origin of amplification in markets where traders
are easily influenced by their peers —markets dominated by collective herding
behavior— (regime 1) is that, once the external source of information is able
to convince a small number of traders, they quickly spread the information to
the rest of the market by influencing the decisions of other traders. On the
contrary, in markets where investors behave independently of each other using
their own expertise —markets dominated by idiosyncratic behavior— (regime 3),
even if the external source is able to convince some of them, the information is
not transmitted to the rest of the market: in order to convince the whole of the
market, the external source would need to individually persuade each and every
one of the traders. A precise assimilation of incoming information occurs when
there is a compromise between these two factors (regime 2), i.e., when there is
enough communication between traders and collective herding behavior to allow
for the spreading of the external information to most of the market but also
individual and independent behavior enough to prevent a full consensus in line
with the external source of information.
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APPENDICES
TO CHAPTER3

3.A

Effective potential derivation

We derive, in this appendix, the effective potential both for the original Kir-
man dynamics and the model with external information, presented respec-

tively in Eq. (3.8) and Eq. (3.20) in the main text of the chapter. Let us start by
restating here the definition of effective potential Ueff(x) given in Eq. (3.7),

Pst(x) ≡ C−1 exp
(
−Ueff(x)

D

)
, (3.24)

where Pst(x) is the stationary state probability distribution, D is an effective
noise intensity that we take as D = h, and the constant C−1 plays the role of
a normalization factor. Note that, defined as such, the minima of this effective
potential function will be attractive points of the dynamics, corresponding to
maxima of the stationary state probability distribution.

For the general Fokker-Planck equation

∂Pst(x, t)
∂t

= − ∂

∂x
[q(x)P (x, t)] + ∂2

∂x2

[
Dg(x)2P (x, t)

]
, (3.25)

the stationary distribution is found by assuming ∂Pst/∂t = 0 and solving the
resulting equation. By this means, a general effective potential (San Miguel and

77



Chapter 3. Markets, herding and response to external
information

Toral, 2000) can be written as

Ueff(x) = −
∫

q(x)
g(x)2 dx+D

∫
∂g(x)
∂x

1
g(x)dx , (3.26)

and, applying this definition to the Fokker-Planck equation (3.2) in the main
text, the particular effective potential for the Kirman dynamics is found to be

Ueff(x) = (h− a) ln(1− x2) . (3.27)

Note that this effective potential Ueff(x) is not to be confused with the determinis-
tic potential, which is always monostable and can be found by simply integrating
with respect to x the deterministic part of Eq. (3.3).

Even though in the case with an external time varying forcing it is not possible
to write a stationary state probability distribution, we assume that, at any point
in time, the decay of the system to a quasi-stationary state is faster than the
variation of the input signal, i.e., we assume conditions of slow driving. Therefore,
we keep the previous definition of the effective potential as an approximation to
this time-dependent case,

P (x, t) ≈ C−1 exp
(
−Ueff(x, t)

D

)
. (3.28)

Applying Eq. (3.26) to the Fokker-Planck equation (3.18) leads to the particular
functional form

Ueff(x, t) = (h0 − a) ln(1− x2)− xFi(t) (3.29)

for the model with arrival of external information.

3.B

Probability distribution of absolute returns

For completeness, we include in this appendix probability distributions of abso-
lute normalized daily returns, for the same parameter values used in Figs. 3.4

and 3.5. While the lack of any temporal structure hides any volatility clustering
effect, these distributions seem to support our choice of parameter value for the
external information intensity, F = 0.02.
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Figure 3.8: Probability distribution of the absolute value of the normalized daily
returns, P (|r|). First panel, red line: German DAX index from December 1991 to
November 2013, shown for comparison. Table of nine panels, blue lines: Model results
for three different input intensities of the external information F and three values of the
idiosyncratic switching tendency a. The rest of the parameters are fixed as h0 = 10−3

and N = 200.
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CHAPTER 4
The role of topology in stochastic,

binary-state models: an
application to herding behavior

Stochastic, binary-state models have been used to study the emergence of
collective phenomena in a wide variety of systems and fields. Examples

range from classical problems in statistical physics, such as equilibrium and non-
equilibrium phase transitions (Gunton et al., 1983; Marro and Dickman, 1999),
to biological and ecological questions, such as neural activity (Hopfield, 1982)
and species competition Clifford and Sudbury (1973); Crawley and May (1987),
or even to social and epidemiological topics, such as the spreading of diseases
in a population (Anderson et al., 1991; Pastor-Satorras and Vespignani, 2001;
Watts, 2002; Serrano and Boguñá, 2006; Castellano et al., 2009; Castellano and
Pastor-Satorras, 2012). In general, these systems are considered to be embedded
in a network structure, where the nodes are endowed with a binary-state variable
—spin up or down— and the links between nodes represent the interactions or
relations between them. While most of these models were initially studied in
regular lattices, there has recently been a growing interest in more complex and
heterogeneous topologies (Albert and Barabási, 2002; Newman and Park, 2003;
Barrat et al., 2008; Newman, 2010). These studies have shown that, for a given
model, the structure of the underlying network may strongly influence the dy-
namics of the system and affect its critical behavior, i.e., the critical values of
the model parameters might depend on certain structural characteristics of the
underlying topology (Dorogovtsev et al., 2002; Boguñá et al., 2003; Masuda and
Konno, 2004; Lambiotte, 2007; Gleeson, 2011; Vilone et al., 2012; Gleeson, 2013).
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Thus, the quantification of the effect of the underlying topology on such systems
and dynamics is, from a practical point of view, a matter of prime importance.

A paradigmatic example of this kind of models is the noisy voter model,
proposed by different authors in various contexts (Lebowitz and Saleur, 1986;
Fichthorn et al., 1989; Considine et al., 1989; Kirman, 1991, 1993; Granovsky
and Madras, 1995). As briefly explained in Chapters 1 and 3, for any finite sys-
tem, the behavior of this noisy variant of the voter model (Clifford and Sudbury,
1973; Holley and Liggett, 1975) is characterized by the competition between two
opposing mechanisms, related to two different types of noise. On the one hand,
the pairwise interaction mechanism is related to interfacial fluctuations (internal
noise) and tends to order the system, driving it towards a homogeneous con-
figuration —all spins in the same state, whether up or down—. Depending on
the dimension of the system, this mechanism leads to a coarsening process or
to a metastable partially ordered state, both of them perturbed by finite-size
fluctuations (one of which eventually drives the system to full order). In the ab-
sence of any other mechanism, as it is the case in the original voter model, the
homogeneous configurations become absorbing states of the dynamics (Al Ham-
mal et al., 2005). On the other hand, the random change mechanism is related
to thermal-like fluctuations (external noise) and tends to disorder the system,
pulling it from the homogeneous configurations. Therefore, this second mecha-
nism leads to the disappearance of the typical absorbing states of the voter model
and to the restoration of ergodicity (Granovsky and Madras, 1995). The main
consequence of this competition is the appearance of a noise-induced, finite-size
transition between two different behavioral regimes —a mostly ordered regime
dominated by pairwise interactions and a mostly disordered regime dominated
by noise (Kirman, 1993; Alfarano et al., 2008). While the effect of different net-
work topologies on the behavior of the voter model has been well established
(Suchecki et al., 2005a; Sood and Redner, 2005; Suchecki et al., 2005b; Vazquez
and Eguíluz, 2008), the case of the noisy voter model has received much less
attention, most of the corresponding literature focusing only on regular lattices
(Lebowitz and Saleur, 1986; Granovsky and Madras, 1995) or on a fully-connected
network (Kirman, 1993; Alfarano et al., 2008). Finally, the use of a mean-field
approach in some recent studies considering more complex topologies (Alfarano
and Milaković, 2009; Alfarano et al., 2013; Diakonova et al., 2015) did not allow to
find any effect of the network properties —apart from its size and mean degree—
on the results of the model.

We propose in this chapter a new analytical method to study stochastic,
binary-state models on complex networks. Moving beyond the usual mean-field
theories (Vazquez et al., 2008; Alfarano and Milaković, 2009; Diakonova et al.,
2015), this alternative approach is based on the introduction of an annealed ap-
proximation for uncorrelated networks, allowing to deal with the network struc-
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ture as parametric heterogeneity. As an illustration, we study the noisy voter
model. The proposed method is able to unfold the dependence of the model
not only on the mean degree (the mean-field prediction) but also on more com-
plex averages over the degree distribution. As opposed to previous mean-field
approaches, we find that the degree heterogeneity —variance of the underlying
degree distribution— has a strong influence on the location of the critical point,
on the local ordering of the system, and on the functional form of its temporal
correlations. Furthermore, we show how this latter point opens the possibil-
ity of inferring the degree heterogeneity of the underlying network by observing
only the aggregate behavior of the system as a whole, an issue of interest for
systems where only macroscopic, population level variables can be measured. Fi-
nally, these results are confirmed by numerical simulations on different types of
networks, allowing for a constant mean degree (k = 8) while leading to different
degree distributions. In particular, in order of increasing degree heterogeneity, we
focus on Erdös-Rényi random networks (Erdös and Rényi, 1960), Barabási-Albert
scale-free networks (Barabási, 1999) and dichotomous networks (Lambiotte, 2007)
(whose nodes are assigned one out of two possible degrees, in our case k1 = k/2
or k2 =

√
N).

4.1

Model definition

Consider a system composed of N nodes in a given network of interactions.
At any point in time, each node i is considered to be in one of two possible

states, and is therefore characterized by a binary variable si = {0, 1}. Moreover,
due to the network structure, each node i is also characterized by a certain set of
(nearest) neighbors, nn(i), and by its corresponding degree or number of those
neighbors, ki. The evolution of the state of each node, si, occurs stochastically
with probabilities that depend on the state of the updating node and on the states
of its neighbors. In particular, these probabilities consist of two terms: on the
one hand, there are random pairwise interactions between node i and one of its
neighbors j ∈ nn(i), after which i copies the state of j; and, on the other hand,
there are random changes of state, playing the role of a noise. The transition
rates for each node i can be written as

r+
i ≡ r (si = 0→ si = 1) = a+ h

ki

∑
j∈nn(i)

sj ,

r−i ≡ r (si = 1→ si = 0) = a+ h

ki

∑
j∈nn(i)

(1− sj) ,
(4.1)
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where the noise parameter a regulates the rate at which random changes of state
take place, and the interaction parameter h does so with the interaction-driven
changes of state. Defined in this way, the noisy voter model becomes the network-
embedded equivalent of the herding model introduce by Kirman (1993) in its orig-
inal, extensive formulation (Alfarano et al., 2008; Alfarano and Milaković, 2009).
Furthermore, note that, in the limit case of a = 0 and with an appropriate time
rescaling, we recover the transition rates of the original voter model (Suchecki
et al., 2005a,b).

As explained in Chapter 3, even if the model appears to have two parameters,
one of them can always be used as a rescaling of the time variable, so that there
is only one relevant parameter: the ratio between the two introduced coefficients,
a/h. Indeed, only one parameter is introduced in the previous literature in the
context of the noisy voter model (Lebowitz and Saleur, 1986; Granovsky and
Madras, 1995; Diakonova et al., 2015). On the contrary, prior works about herd-
ing behavior in financial markets usually keep both parameters (Kirman, 1993;
Alfarano et al., 2008; Alfarano and Milaković, 2009). For consistency with one
and the other strands of literature, we are going to consider both parameters ex-
plicitly in our analytical approach, while we keep the interaction parameter fixed
as h = 1 for our numerical results —allowing the noise parameter a to vary.

In order to characterize the global state of the system, we introduce the global
variable n, defined as the total number of nodes in state si = 1,

n =
N∑
i=1

si , (4.2)

and taking values n ∈ 0, 1, ..., N . Note that this variable does not take into ac-
count any aspect of the network structure.

It should be observed that, for a 6= 0, there are no absorbing states in the
model —the probability to move from one state to any other is strictly positive—
and therefore the Markov chain is said to be ergodic: in the steady state, averages
over time are equivalent to ensemble averages. In practice, the smaller a is, the
longer the time needed for both statistics to be actually equivalent. Thus, in the
limit case of a = 0 the time needed becomes infinite, and we recover the voter
model behavior: non-ergodicity with two absorbing states, at n = 0 and n = N .
Moreover, we are going to use the notation 〈x〉 for ensemble averages with random
initial conditions, while we leave f(k) for averages over the degree distribution,
i.e.,

f(k) = 1
N

N∑
i=1

f(ki) . (4.3)

Similarly, we will differentiate between the variance of a variable x over realiza-
tions, noted as σ2[x], and the variance of the degree distribution, labeled as σ2

k.
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Note, nonetheless, that for the numerical steady state values to be presented in
the following sections, averages are performed both over time and over an ensem-
ble of realizations with random initial conditions, assuming an initial transient of
N time units.

4.2

General formulation

As in Chapter 3, the stochastic evolution of the system can be formalized as a
Markov process. In particular, we can write a general master equation for

the N -node probability distribution P (s1, . . . , sN ) (see Appendix 4.A for further
details) and use it to derive general equations for the time evolution of the first-
order moments and the second-order cross-moments of the individual nodes’ state
variables si,

d〈si〉
dt

= 〈r+
i 〉 − 〈(r

+
i + r−i )si〉 , (4.4)

d〈sisj〉
dt

= 〈r+
i sj〉+ 〈r+

j si〉 − 〈qijsisj〉+ δij
[
〈sir−i 〉+ 〈(1− si)r+

i 〉
]
, (4.5)

where qij = r+
i + r−i + r+

j + r−j and δ stands for the Kronecker delta (see Ap-
pendices 4.B and 4.C for details). In general, if the transition rates depend on
the individual state variables si, these equations involve higher order moments
and they cannot be solved without a suitable approximation (Lafuerza and Toral,
2013). However, for the transition rates of the noisy voter model, due to their
particular functional form, both equations become independent of higher order
moments.

Regarding the first-order moments, introducing the transition rates (4.1) into
Eq. (4.4), we obtain

d〈si〉
dt

= a− (2a+ h)〈si〉+ h

ki

∑
m∈nn(i)

〈sm〉 , (4.6)

an equation directly solvable in the steady state, when the influence of the initial
conditions has completely vanished and thus 〈si〉st is independent of i. In this
way, we find, for the steady state average individual variables si and, by definition,
for the steady state average global variable n, respectively,

〈si〉st = 1
2 , 〈n〉st = N

2 , (4.7)
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the expected results given the symmetry of the system.

In the case of the second-order cross-moments, when we introduce the transi-
tion rates (4.1) into Eq. (4.5), we obtain

d〈sisj〉
dt

= a(〈si〉+ 〈sj〉)− 2(2a+ h) 〈sisj〉

+ h

ki

∑
m∈nn(i)

〈smsj〉+ h

kj

∑
m∈nn(j)

〈smsi〉

+ δij

a+ h〈si〉+ h

ki

∑
m∈nn(i)

〈sm〉 −
2h
ki

∑
m∈nn(i)

〈smsi〉

 ,
(4.8)

which, even if independent of higher order moments, cannot be solved in the
absence of an explicit knowledge of the network connections —the adjacency
matrix—. This is due to the presence of sums over neighbors

∑
m∈nn(i) where

the terms are not independent of the particular pair of nodes m, i. In order to
find the corresponding steady state solution, we introduce in the next section an
approximation of the network allowing us to write the previous equation in terms
of sums over the whole system.

4.3

Annealed approximation for uncorrelated
networks

Given a complex network with adjacency matrix Aij and degree sequence
{ki}, we can use an annealed graph approach (Vilone and Castellano, 2004;

Dorogovtsev et al., 2008; Guerra and Gómez-Gardeñes, 2010) to define a comple-
mentary, weighted, fully-connected network with a new adjacency matrix Ãij and
whose structural properties resemble those of the initial network (Sonnenschein
and Schimansky-Geier, 2012). In particular, we assume that the weights of this
new adjacency matrix are given by the probabilities of the corresponding nodes
being connected, that is, Ãij = pij , where pij is the probability of node i, with
degree ki, being connected to node j, with degree kj .

For uncorrelated networks of the configuration ensemble, i.e., random net-
works with a given degree sequence {ki} and with a structural cutoff at ki <

√
Nk,

we can approximate the probability of two nodes i, j being connected (Newman,
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2003; Boguñá et al., 2004; Sood et al., 2008; Bianconi, 2009) by

pij ≈
kikj

Nk
. (4.9)

In this way, we can approximate the sums over the neighbors of a given node i
as sums over the whole network,

∑
j∈nn(i)

fj =
N∑
j=1

Aijfj ≈
N∑
j=1

kikj

Nk
fj , (4.10)

where fj is a function which can depend on the characteristics of node j (kj
and/or sj). Note that this approximation preserves the initial degree sequence,
as it is obvious from

ki =
N∑
j=1

Ãij = ki
1
k

 1
N

N∑
j=1

kj

 , (4.11)

and, therefore, the total number of links is also conserved.

4.4

Noise-induced, finite-size transition

As shown in the previous literature about the Kirman model (Kirman, 1993;
Alfarano et al., 2008), in the fully-connected case, the system is characterized

by the existence of a finite-size transition between a bimodal and a unimodal
behavior, depending on the relative magnitude of the noise and the interaction
parameters. For a < h/N the steady state probability distribution of n is found
to be bimodal with maxima at the extremes or fully ordered configurations, n = 0
and n = N , meaning that, at any point in time, the most likely outcome of a
static observation is to find a large majority of nodes in the same state, whether
0 or 1, with different observations leading to different predominant options (see
Chapter 3 for an explanation in terms of an effective potential). On the contrary,
for a > h/N the distribution of n becomes unimodal with a peak at n = N/2,
meaning that, at any point in time, the most likely outcome of an observation
is to find the system equally split between both options. Given the ergodicity of
the model for a 6= 0, these probability distributions can also be understood in
terms of the fractional time spent by the system with each value of n. In this
manner, in the bimodal regime, stochastic realizations of the process will tend
to be temporarily absorbed in the proximity of the fully ordered configurations
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with random switches between them, while realizations in the unimodal regime
will spend most of the time with the system more or less equally divided among
the two possible individual states, 0 and 1. At the critical point marking the
transition between these two behaviors, ac = h/N , the distribution of n becomes
uniform, meaning that any share of nodes between the two options is equally
likely. Note that, in this extensive formulation of the model, the transition is
a finite-size effect, since the value of the critical point decreases for increasing
system size and vanishes in the thermodynamic limit (N →∞).

The existence of the referred transition when the system is embedded in a net-
work topology has also been reported in the literature both for the Kirman model
(Alfarano and Milaković, 2009; Alfarano et al., 2013) and in the context of the
noisy voter model (Diakonova et al., 2015). The above described phenomenology
can thus also be observed in different network topologies. As an example, we
show in Fig. 4.1 two realizations of the dynamics for a Barabási-Albert scale-free
network corresponding, respectively, to the bimodal [panel (a)] and the unimodal
regime [panel (b)]. A mean-field approach has been proposed in the literature
(Alfarano and Milaković, 2009; Diakonova et al., 2015), leading to an analyti-
cal solution for the critical point which does not depend on any property of the
network other than its size, ac = h/N , the transition still being a finite-size effect.

Both the analytical and numerical results to be presented here suggest, on
the contrary, that the critical point does depend on the network, while they
confirm the finite-size character of the transition. As a quantitative description
of the transition we are going to use the variance of n: bearing in mind that the
variance of a discrete uniform distribution between 0 and N is N(N + 2)/12, we
can identify the critical point of the transition as the relationship between the
model parameters which leads the steady state variance of n to take the value
σ2
st[n] = N(N + 2)/12. Although it is not necessarily the case, numerical results

confirm that the distributions obtained in this manner are indeed uniform.

Variance of n

Introducing the annealed approximation for uncorrelated networks into the
equation for the second-order cross-moments of the individual variables si,

Eq. (4.8), we can replace the sums over sets of neighbors by sums over the whole
system. If we then rewrite this equation in terms of the covariance matrix σij ,
defined as

σij = 〈sisj〉 − 〈si〉〈sj〉 , (4.12)

we can use the relation

σ2[n] = 〈n2〉 − 〈n〉2 =
∑
ij

〈sisj〉 −
∑
i

〈si〉
∑
j

〈sj〉 =
∑
ij

σij (4.13)
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Figure 4.1: Fraction of nodes in state 1 on a Barabási-Albert scale-free network. Single
realizations. The interaction parameter is fixed as h = 1, the system size as N = 2500
and the mean degree as k = 8.

to find an equation for the variance of n, by simply summing over i and j. Finally,
after some algebra (see Appendix 4.D for details), we find, in the steady state,

σ2
st[n] = N

4

1 +
2h
(

1− 1
N

)
4a+ h

+

(
N − 3 + 2

N

)(
h2

k

)(
k2

(4a+ h)Nk + 2hk

)
2a+

(
h2

k

)(
k2

(4a+ h)Nk + 2hk

)
 ,

(4.14)
under the necessary and sufficient condition that

∀i : ki <
(4a+ h)Nk

2h , (4.15)
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which is generally true and always true for h > 0 and k ≥ 2. Note that the only
approximation used in the derivation of Eq. (4.14) is the estimation of the adja-
cency matrix involved in the annealed approximation for uncorrelated networks.

The behavior of the variance σ2
st[n] as a function of the noise parameter a is

shown in Fig. 4.2 for the three types of networks studied. As we can observe,
despite a small but systematic overestimation for intermediate values of the noise
parameter —attributable only to the annealed approximation for uncorrelated
networks, the only one involved in its derivation—, the main features of the nu-
merical steady state variance are correctly captured by the analytical expression
in Eq. (4.14). In particular, both its dependence on a and the impact of the
underlying network structure are well described by our approach. On the con-
trary, the mean-field solution proposed in the previous literature (Alfarano and
Milaković, 2009), and included in Fig. 4.2 for comparison, fails to reproduce the
behavior of the variance of n for large a and is, by definition, unable to explain its
dependence on the network topology. It is, nonetheless, a good approximation for
the Erdös-Rényi random network and for values of the noise parameter a . 10−1.

Regarding the limiting behavior of the system when a→ 0 and when a→∞,
we can observe, for both the numerical and the analytical results presented in
Fig. 4.2, that the influence of the network on the steady state variance of n
vanishes in both limits, where we recover the expected behaviors. Notably, in the
limit of a→ 0 the variance tends to N2/4 for all networks, and we progressively
recover the voter model behavior; while in the limit of a→∞ the variance tends
to N/4 regardless of the topology, as it corresponds to a purely noisy system
composed by N independent units adopting, randomly, values 0 or 1 (equivalent,
as well, to a one dimensional random walk confined to the segment [0, N ]).

Concerning the impact of the network structure, we can observe in Fig. 4.2
that for any finite value of the noise parameter, 0 < a < ∞, a larger degree
heterogeneity of the underlying topology, measured as the variance of the corre-
sponding degree distribution, leads to a larger steady state variance of n. This
behavior is further confirmed by the results to be presented in the next subsec-
tion, where we show the steady state variance of n as a function of the variance
of the underlying degree distribution σ2

k, respectively, for two different values of
the noise parameter a. As we can observe, even if the numerical results are sys-
tematically overestimated, our analytical approach [Eq. (4.14)] is able to capture
the general features of this dependence and represents a significant improvement
from the mean-field prediction of no network impact.

In order to study the bimodal-unimodal transition by using the behavior of
the variance of n illustrated in Fig. 4.2, the variance value corresponding to a uni-
form distribution is included as a horizontal line, so that the critical a value for
each network can be easily identified at the corresponding intersection (marked
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Figure 4.2: Steady state variance of n as a function of the noise parameter a, for
three different types of networks: Erdös-Rényi random network, Barabási-Albert scale-
free network and dichotomous network. Symbols: Numerical results (averages over
20 networks, 10 realizations per network and 50000 time steps per realization). Solid
lines: Analytical results [see Eq. 4.14]. Dash-dotted lines: Analytical results for the
critical points [see Eq. 4.18]. Dashed line: Mean-field approximation (see Alfarano
and Milaković, 2009). The interaction parameter is fixed as h = 1, the system size as
N = 2500 and the mean degree as k = 8.

by vertical dashed lines). Note that values of the variance of n above (below)
the uniform distribution line correspond to the system being in the bimodal (uni-
modal) phase. A first observation is that the referred transition still occurs when
the noisy voter model is embedded in a network topology, thus confirming the
results reported in the previous literature (Alfarano and Milaković, 2009; Di-
akonova et al., 2015). However, as opposed to these previous studies, we can
observe in Fig. 4.2 a clear dependence of the critical point on the underlying
topology, an effect which seems to be correctly captured by our approach while
it goes completely unnoticed, by definition, from a mean-field perspective. The
particular features of this dependence will become clear by means of a first-order
approximation of the steady state variance σ2

st[n] with respect to the system size
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N , allowing us to characterize the asymptotic behavior of the system for both
small and large a as well as to find an explicit expression for the critical point ac.

Asymptotic behavior of the variance of n

Given that Eq. (4.14) does not allow for an intuitive analytical understanding
of the network influence on the steady state variance of n, nor does it allow

for an explicit analytical solution for the critical point ac, we develop here a first-
order approximation with respect to the system size N , which will also give a
relevant insight regarding the asymptotic behavior of the system for both small
and large a. In fact, the result of this approximation strongly depends on the
relationship between the system size N and the noise parameter a, and we are
thus led to consider two different approximation regimes.

In particular, when the noise parameter a is of order O(N−1) or smaller, then
the product aN is, at most, of order O(N0), and a first-order approximation of
Eq. (4.14) with respect to the system size N leads to

σ2
st[n] = N2

4

 h

(
σ2
k

k
2 + 1

)
2aN + h

(
σ2
k

k
2 + 1

)
+O(N3/2) , (4.16)

corresponding to the asymptotic behavior of the variance of n for small a and
large N . On the contrary, when a is of order O(N0) or larger, the product aN is,
at least, of order O(N), and the first-order approximation of Eq. (4.14) becomes

σ2
st[n] = N

4

1 + h

2a +
h2σ

2
k

k
2

2a(4a+ h)

+O(N1/2) , (4.17)

corresponding to the asymptotic behavior of the variance of n for large a and
large N (see Appendix 4.E for details).

For a more precise characterization of the ranges of validity of these two
asymptotic approximations with respect to the noise parameter a, we present
in Fig. 4.3 the variance of n as a function of a for the numerical results and
the three corresponding analytical expressions presented so far: the analytical
result in Eq. (4.14), the asymptotic expression for small a in Eq. (4.16) and
the asymptotic expression for large a in Eq. (4.17). Note the use a Barabási-
Albert scale-free network as an example. Furthermore, we also show in this
figure the crossover point a∗ between both approximations, that we define as the
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value of a that minimizes the distance between the logarithmic values of both
functions (4.17) and (4.16).
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Asymptotic approx. (small a)
Asymptotic approx. (large a)

Figure 4.3: Steady state variance of n as a function of the noise parameter a for
a Barabási-Albert scale-free network. Symbols: Numerical results (averages over 20
networks, 10 realizations per network and 50000 time steps per realization). Solid line:
Analytical results [see Eq. (4.14)]. Dotted line: asymptotic approximation for small a
[see Eq. (4.16)]. Dash-dotted line: asymptotic approximation for large a [see Eq. (4.17)].
Dashed line: Crossover point between both asymptotic approximations (a∗ = 0.014157).
The interaction parameter is fixed as h = 1, the system size as N = 2500 and the mean
degree as k = 8.

Noticing that, for both asymptotic approximations, the variance σ2
st[n] be-

comes an explicit function of the variance of the underlying degree distribution
σ2
k, we present in Fig. 4.4 a comparison between these analytical functional re-

lationships and the corresponding numerical results for two different values of
the noise parameter a. In particular, taking into account the ranges of validity
of the asymptotic approximations characterized above (see Fig. 4.3), we chose
values of the noise parameter respectively before [panel (a)] and after [panel (b)]
the crossover point a∗, and both of them in the region of a leading to significant
differences between network types (see Fig. 4.2).
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Figure 4.4: Steady state variance of n as a function of the variance of the degree
distribution σ2

k for two values of the noise parameter a. In order to keep all parameters
constant except the variance of the degree distribution, a different network type is
used for each point (in order of increasing σ2

k: Erdös-Rényi random network, Barabási-
Albert scale-free network and dichotomous network). Circles with error bars: Numerical
results (averages over 20 networks, 10 realizations per network and 50000 time steps per
realization). Solid line and squares: Analytical results [see Eq. (4.14)]. Dotted line:
asymptotic approximation for small a [see Eq. (4.16)]. Dash-dotted line: asymptotic
approximation for large a [see Eq. (4.17)]. Dashed line: Mean-field approximation (see
Alfarano and Milaković, 2009). The interaction parameter is fixed as h = 1, the system
size as N = 2500 and the mean degree as k = 8.
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As we can observe, each asymptotic approximation accurately fits the analyt-
ical result in Eq. (4.14) within its respective range of validity, while it becomes
clearly inaccurate out of this range. Therefore, we can use these approximations
instead of Eq. (4.14) to better understand the behavior of the system. In this way,
we can conclude that, regarding its impact on the results of the model, the most
relevant property of the underlying network is not its mean degree, but the vari-
ance of its degree distribution relative to the square of its mean degree, σ2

k/k
2, a

normalized measure of its degree heterogeneity. The results presented in Fig. 4.4
show that this analysis significantly outperforms the mean-field prediction of no
network impact, particularly for networks with large levels of degree heterogene-
ity. Note, nonetheless, that both asymptotic approximations are subject to the
same inaccuracies in reproducing the numerical results as the original analytical
expression, i.e., the inaccuracies caused by the annealed approximation for un-
correlated networks: a systematic overestimation of the numerical results and an
inability to explain the results for topologies with large structural correlations.

Critical point

As described above, the critical point of the bimodal-unimodal transition can be
defined as the relationship between the model parameters a and h leading

the steady state variance of n to take the value σ2
st[n] = N(N + 2)/12, which

corresponds to a uniform distribution between 0 and N . A numerical solution
for the critical point ac can thus be found by applying this definition to the
analytical expression for the variance of n given in Eq. (4.14). However, for
a fully analytical description of the critical point, we have to use one of the
asymptotic approximations presented above, algebraically solvable for ac. In
particular, bearing in mind that the value of the critical point of a fully-connected
system is of order O(N−1) and that the change due to the network structure
appears to be of order O(N0) (see Fig. 4.2), then we can expect the value of the
critical point to be still of order O(N−1) and we can therefore use the small a
asymptotic approximation in Eq. (4.16) to find

ac = h

N

(
σ2
k

k
2 + 1

)
+O(N−3/2) , (4.18)

to the first-order in N (see Appendix 4.F for details). Both this expression and
the mean-field approximation previously proposed in the literature (Alfarano and
Milaković, 2009; Diakonova et al., 2015) are contrasted with numerical results in
Fig. 4.5, where we present the values of the critical point ac for different types of
networks as a function of the variance of the corresponding degree distributions
σ2
k.
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Figure 4.5: Critical value of the noise parameter a as a function of the variance of
the degree distribution of the underlying network, σ2

k. In order to keep all parameters
constant except the variance of the degree distribution, a different network type is used
for each point (in order of increasing σ2

k: Erdös-Rényi random network, Barabási-Albert
scale-free network and dichotomous network). Symbols: Numerical results (averages
over 20 networks, 10 realizations per network and 50000 time steps per realization).
Solid line: Analytical results [see Eq. (4.18)]. Dashed line: Mean-field approximation
(see Alfarano and Milaković, 2009; Diakonova et al., 2015). The interaction parameter
is fixed as h = 1, the system size as N = 2500 and the mean degree as k = 8.

As before, we notice in Fig. 4.5 a systematic overestimation of the numerical
results by our analytical approach, whose origin lies, again, in the annealed ap-
proximation for uncorrelated networks. While both Eq. (4.18) and the mean-field
approximation are able to capture the finite-size character of the transition —the
fact that ac → 0 when N → ∞—, only our approach is able to reproduce the
influence of the underlying network structure on the critical point. In particular,
we observe a numerical behavior approximately consistent with a linear relation-
ship between the value of the critical point and the variance of the underlying
degree distribution, as predicted by Eq. (4.18). A quantitative assessment of the
significance of this dependence can be obtained by observing the shift between
the critical points corresponding to the Erdös-Rényi random network and the di-
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chotomous network, the latter being almost a factor of 3 larger than the former.
While the persistence of the bimodal-unimodal, finite-size transition in different
network topologies had already been reported (Alfarano and Milaković, 2009; Di-
akonova et al., 2015), to the best of our knowledge, no dependence of the critical
point on the characteristics of the underlying network has been documented so far
for the noisy voter model nor in the context of the Kirman model (see Lambiotte,
2007, for a similar effect in a different model).

4.5

Local order

We can characterize the local order of the system with an order parameter ρ
defined as the interface density or density of active links, that is, the fraction

of links connecting nodes in different states,

ρ =

1
2

N∑
i=1

Aij [si(1− sj) + (1− si)sj ]

1
2

N∑
i=1

Aij

, (4.19)

where Aij are the elements of the adjacency matrix. Larger values of ρ imply a
larger disorder, corresponding ρ = 1/2 to a random distribution of states, while
ρ = 0 corresponds to full order. Furthermore, note that, as opposed to n, the
order parameter does take into account the structure of connections between
nodes.

While it has not been studied before in the context of the Kirman model,
the interface density ρ is commonly used to describe the time evolution of the
voter model (Suchecki et al., 2005b). In the absence of noise, the voter model is
characterized by the existence of two absorbing states (n = 0 and n = N), both
of them corresponding to full order (ρ = 0). Therefore, the focus is on how the
system approaches these absorbing ordered states. In the presence of noise, on
the contrary, the system has no absorbing states, i.e., it is always active. Thus,
the focus is not anymore on how it reaches any final configuration, but rather on
characterizing its behavior once the influence of the initial condition has vanished,
that is, in the steady state. In the context of the noisy voter model, it has been
recently shown that, after a short initial transient, the average interface density
reaches a plateau at a certain value 〈ρ〉st, with 〈ρ〉st > 0 for any non-zero value
of the noise and 〈ρ〉st = 1/2 in the infinite noise limit (Diakonova et al., 2015).
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Moreover, a mean-field pair-approximation has been used to find an analytical
solution for 〈ρ〉st as a function of the level of noise and the mean degree of
the underlying network. This analytical solution has been shown to be a good
approximation for large values of the noise parameter, the small noise region not
having been considered.

Let us start the description of our results by emphasizing that individual
realizations of the interface density ρ remain always active for any non-zero value
of the noise, as it was also the case for the variable n (see Fig. 4.1). As an
example, we show in Fig. 4.6 two realizations of the dynamics for a Barabási-
Albert scale-free network corresponding, respectively, to the bimodal [panel (a)]
and the unimodal regime [panel (b)]. While in the first of them (a < ac) the
system fluctuates near full order, with sporadic excursions of different duration
and amplitude towards disorder; in the second (a > ac), the system fluctuates
around a high level of disorder, with some large excursions towards full order.

Introducing the annealed approximation for uncorrelated networks described
above into the definition of the order parameter given in Eq. (4.19), and focusing
on the steady state average value, we obtain

〈ρ〉st =
∑
ij

kikj

(Nk)2

(
〈si〉st + 〈sj〉st − 2〈sjsj〉st

)
. (4.20)

In this way, an explicit solution for the steady state average interface density
can be found by expressing it in terms of the analytical results presented so far,
namely, in terms of the variance σ2

st[n] (see Appendix 4.G for details),

〈ρ〉st = 1
2 −

2
(hN)2

[
(4a+ h)(2a+ h)(
1− 1

N

) (
1− 2

N

) (σ2[n]− N

4

)
−
(
a+ h

2
)(

1− 2
N

)hN] . (4.21)

This expression can be contrasted with numerical results in Fig. 4.7, where we
present the steady state average interface density 〈ρ〉st as a function of the noise
parameter a for different types of networks. The mean-field pair-approximation
result derived by Diakonova et al. (2015) is also included for comparison.

As we can observe in Fig. 4.7, our approach correctly captures the behavior
of the system for both small (a . 10−3) and very large values (a & 3) of the
noise parameter: both the asymptotic convergence towards 〈ρ〉st = 0 for small a
(voter model result for finite systems) and the convergence towards 〈ρ〉st = 1/2
for large a (full disorder) are well reproduced. On the contrary, our analytical ap-
proach fails to reproduce the numerical results for intermediate values of the noise
parameter (10−3 . a . 3). The origin of this discrepancy lies in the annealed
network approximation: when replacing the original network by a weighted fully-
connected topology, all track of local effects is lost —precisely those measured by
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Figure 4.6: Interface density on a Barabási-Albert scale-free network. Single realiza-
tions (the same realizations shown in Fig. 4.1). The interaction parameter is fixed as
h = 1, the system size as N = 2500 and the mean degree as k = 8.

the order parameter—. The fact that this discrepancy is only present for interme-
diate values of a can be explained, on the one hand, by the lack of locally ordered
structures in the fully disordered, large a regime and, on the other hand, by the
development of a global order —more and more independent of local effects—
for decreasing values of a. Thus, an accurate fit of the numerical results for any
value of a can only be expected for topologies where local effects are absent or
negligible. In Fig. 4.9, presented in Appendix 4.I, we show, for instance, that
our approximation successfully fits the results in a fully-connected network. The
good accuracy of the results presented above for the variance of n suggests that
the discrepancy between analytical and numerical results appears only when the
annealed network approximation is used to derive a relationship between 〈ρ〉st
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Erdös-Rényi analytical
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Figure 4.7: Steady state of the average interface density as a function of the noise pa-
rameter a in a linear-logarithmic scale and for three different types of networks: Erdös-
Rényi random network, Barabási-Albert scale-free network and dichotomous network.
Symbols: Numerical results (averages over 20 networks, 10 realizations per network
and 50000 time steps per realization). Solid lines: Analytical results [see Eq. (4.21)].
Dashed line: Mean-field pair-approximation (see Diakonova et al., 2015). The interac-
tion parameter is fixed as h = 1, the system size as N = 2500 and the mean degree as
k = 8.

and σ2
st[n], and not in the derivation of the latter, for which only global correla-

tions are relevant. Apart from the functional dependence of the interface density
on the noise parameter, our approach is also able to capture the influence of the
network, which becomes significant for a . 10−2. In particular, we find that a
larger variance of the degree distribution of the corresponding network leads to a
smaller interface density, i. e., to a higher level of order.

Even if the mean-field pair-approximation fits the numerical results remark-
ably well for large and intermediate values of the noise parameter (a & 10−2), it
is completely unable to reproduce the behavior of the system for small a, and it
fails to explain the influence of any network property other than the mean degree.
While the pair-approximation allows to capture the short-range order character-
istic of intermediate values of a, the assumptions implicit in the derivation of the
mean-field result (Vazquez et al., 2008) do not allow to reproduce the long-range
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order characteristic of the small a region. Note that the limiting case of a = 0
(voter model) is a singular point of the mean-field pair-approximation (Diakonova
et al., 2015), leading to the existence of two different solutions: a non-zero solu-
tion linked to the result displayed in Fig. 4.7 —correct in the infinite size limit—,
and a zero solution —correct for finite systems.

4.6

Inference of network properties from the
autocorrelation function

As explained above, from any initial condition, the system quickly reaches a
dynamic steady state, whose active character can be clearly observed in

Fig. 4.1. In order to characterize the dynamic nature of this steady state, let us
now focus on the steady state autocorrelation function of n, defined as

Kst[n](τ) = 〈n(t+ τ)n(t)〉st − 〈n〉2st , (4.22)

where τ plays the role of a time-lag. In the fully-connected case, it has been
shown in the previous literature (Alfarano et al., 2008) that the autocorrela-
tion decays exponentially, with an exponent proportional to the noise parameter,
Kst[n](τ) = σ2

st[n]e−2aτ . In the case of different network topologies, the mean-
field prediction is that no influence of the network is to be expected and, there-
fore, the same exponential decay as in the fully-connected case is to be found.
In contrast with this prediction, both the analytical and numerical results to
be presented here show that the network does have a significant impact on the
functional form of the steady state autocorrelation of n.

Introducing the annealed approximation for uncorrelated networks described
above into the equation for the time evolution of the first-order moments (4.6),
integrating it with carefully chosen initial conditions, and making use of the above
reported analytical results (see Appendix 4.H for details), we can find

Kst[n](τ) =
(
σ2
st[n]− S1

)
e−(2a+h)τ + S1e

−2aτ , (4.23)

where S1 is defined as

S1 = 2a+ h

h
(
1− 1

N

) (σ2
st[n]− N

4

)
. (4.24)

This expression can be contrasted with numerical results in Fig. 4.8, where we
present the autocorrelation function, normalized by the variance, for the two

101



Chapter 4. The role of topology in stochastic, binary-state
models: an application to herding behavior

extreme cases of a network with no degree heterogeneity (regular 2D lattice)
and a highly heterogeneous degree distribution (dichotomous network). Note the
logarithmic scale in the y-axis.
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Dichotomous numerical
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Figure 4.8: Autocorrelation function of n in log-linear scale for a dichotomous network
and a regular 2D lattice. Symbols: Numerical results (averages over 10 networks, 2
realizations per network and 200000 time steps per realization). Solid lines: Analytical
results [see Eq. (4.23)]. Parameter values are fixed as a = 0.01, h = 1, the system size
as N = 2500 and the mean degree as k = 8.

It is important to note that, in the case of no degree heterogeneity, the new
variable S1 becomes S1 = σ2

st[n]. This can be understood by applying, ∀i, ki = k
in the averages over the degree distribution in Eq. (4.14),

σ2
st[n] = N

4
(2a+ h)(
2a+ h

N

) , (4.25)

and introducing this result into the definition of S1, Eq. (4.24). Thus, for net-
works with no degree heterogeneity, the steady state autocorrelation function
behaves as in the fully-connected case, and as predicted by the mean-field ap-
proximation, Kst[n](τ) = σ2

st[n]e−2aτ . This single exponential decay is confirmed
by the numerical results presented in Fig. 4.8 for the regular 2D lattice.
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On the contrary, for networks with non-zero degree heterogeneity, in general,
S1 6= σ2

st[n], and thus the autocorrelation function consists of two different expo-
nential decay components [see Eq. (4.23)]. When h > 0, the exponential e−(2a+h)τ

decays faster than e−2aτ . Therefore, for long time-lags, we expect the normalized
autocorrelation function of any network to be parallel to e−2aτ in log-linear scale,
with a vertical shift proportional to its degree heterogeneity and due to the initial
deviation from the single exponential behavior. This description is confirmed by
the numerical results presented in Fig. 4.8 for the dichotomous network.

Neither Eq. (4.14) nor the asymptotic approximate expressions in Eqs. (4.16)
and (4.17) allow to infer, for a given system, the values of the two model parame-
ters, a and h, and the normalized variance of the underlying degree distribution,
σ2
k/k

2, by measuring only the steady state variance of n, σ2
st[n]. Thus, it is impos-

sible, by using only these relationships, to conclude if the fluctuations observed
in a given system have a contribution due to the degree heterogeneity of the
network, without a prior knowledge of the model parameters a and h. On the
contrary, the particular functional form of the autocorrelation function Kst[n](τ)
—with two exponential decay components whose exponents are different func-
tions of a and h— does allow for the values of a, h and σ2

k/k
2 to be inferred

from Eq. (4.23), in combination with Eq. (4.16) or Eq. (4.17), by measuring only
the temporal correlations of the aggregated variable n, and assuming we can also
know the system size N . Note that the use of Eq. (4.16) or Eq. (4.17) can be
determined by self-consistency, depending on the value obtained for a. As an
example, a simple fit of Eq. (4.23) to the numerical results presented in Fig. 4.8
for the dichotomous network leads, in combination with Eq. (4.16), to the fit-
ted parameter values a = 0.0099, h = 0.94 and σ2

k/k
2 = 2.539, remarkably close

to the actual values used for computing the numerical results, a = 0.01, h = 1
and σ2

k/k
2 = 2.625. In this way, we are able to infer some information about the

underlying network —its normalized level of degree heterogeneity— by studying
only the aggregate behavior of the system as a whole.

4.7

Concluding remarks

In this chapter, we have proposed a new analytical method to study stochastic,
binary-state models of interacting units on complex networks. Moving beyond

the usual mean-field theories (Vazquez et al., 2008; Alfarano and Milaković, 2009;
Diakonova et al., 2015), this alternative approach builds on a recent study con-
sidering heterogeneity in stochastic interacting particle systems (Lafuerza and
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Toral, 2013) and proposes an annealed approximation for uncorrelated networks
accounting for the network structure as parametric heterogeneity.

Using the noisy voter model as an example, we have been able to unfold the
dependence of the model not only on the mean degree of the underlying topology
(the mean-field prediction) but also on more complex averages over the degree
distribution. In particular, we have shown that the degree heterogeneity —i.e.,
the variance of the underlying degree distribution— has a substantial influence on
the location of the critical point of the noise-induced, finite-size transition char-
acterizing the model. This shift of the transition might have important practical
implications in real systems, since it suggests that different behavioral regimes
can be achieved by introducing changes in the underlying network of interactions.
Furthermore, we have studied the influence of the network on the local ordering
of the system, finding that a larger degree heterogeneity leads to a higher average
level of order in the steady state. Interestingly, we have also found the hetero-
geneity of the underlying degree distribution to play a relevant role in determining
the functional form of the temporal correlations of the system. Finally, we have
shown how this latter effect can be used to infer some information about the
underlying network —its normalized level of degree heterogeneity— by studying
only the aggregate behavior of the system as a whole, an issue of interest for
systems where macroscopic, population level variables are easier to measure than
their microscopic, individual level counterparts.

Numerical simulations on different types of networks have been used to val-
idate our analytical results, finding a remarkably good agreement for all the
properties studied except for the local order, for which a significant discrepancy
is found for intermediate levels of noise. The origin of this discrepancy has been
shown to lie in the annealed network approximation, whose validity is restricted
to global properties or situations where local effects are negligible. The generally
good agreement found is all the more remarkable considering that, while the un-
correlated network assumption is essential for the proposed analytical method,
we did not impose any particular structural constraint to avoid correlations in
the networks used for the numerical simulations (Boguñá et al., 2004; Catanzaro
et al., 2005).
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APPENDICES
TO CHAPTER4

4.A

Master equation

We derive here a general master equation for the N -node probability distri-
bution P (s1, . . . , sN ), where the individual node variables are binary and

take the values si = {0, 1}. Recalling that r+
i is the rate at which node i changes

its state from si = 0 to si = 1 and r−i the rate at which it does so in the opposite
direction, we can directly write differential equations for the probability of node
i to be in state si = 0 and for its probability to be in state si = 1, respectively,

dP (si = 0)
dt

= −r+
i P (si = 0) + r−i P (si = 1) ,

dP (si = 1)
dt

= −r−i P (si = 1) + r+
i P (si = 0) .

(4.26)

Introducing here the individual-node step operators E+1
i and E−1

i , whose effect
over an arbitrary function of the state of node i, f(si), is defined as

E+1
i

[
f(si = 0)

]
= f(si = 1) ,

E+1
i

[
f(si = 1)

]
= 0 ,

E−1
i

[
f(si = 0)

]
= 0 ,

E−1
i

[
f(si = 1)

]
= f(si = 0) ,

(4.27)
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we can rewrite Eqs. (4.26) as

dP (si = 0)
dt

= −r+
i P (si = 0) + r−i E

+1
i P (si = 0) ,

dP (si = 1)
dt

= −r−i P (si = 1) + r+
i E
−1
i P (si = 1) .

(4.28)

Multiplying these two equations, respectively, by (1− si) and si, we can gather
them in a single differential equation,

dP (si)
dt

=(1− si)
[
−r+

i P (si) + r−i E
+1
i P (si)

]
+ si

[
−r−i P (si) + r+

i E
−1
i P (si)

]
,

(4.29)

and noticing that (1− si) = E+1
i [si] and si = E+1

i [(1− si)], we can rearrange
terms as

dP (si)
dt

=
(
E+1
i − 1

) [
sir
−
i P (si)

]
+
(
E−1
i − 1

) [
(1− si)r+

i P (si)
]
. (4.30)

Finally, we find the master equation for the N -node probability distribution
P (s1, . . . , sN ) by simply adding up the contribution of every single node i ∈ [1, N ],

dP (s1, . . . , sN )
dt

=
N∑
i=1

(
E+1
i − 1

) [
sir
−
i P (s1, . . . , sN )

]

+
N∑
i=1

(
E−1
i − 1

) [
(1− si)r+

i P (s1, . . . , sN )
]
.

(4.31)

4.B

Equation for the time evolution of the first-order
moments

We show, in this section, how to obtain a general equation for the time evo-
lution of the first-order moments 〈si〉 [Eq. (4.4) in the main text of the

chapter]. Let us start by using the definition of the step operators in Eq. (4.27)
and the binary character of each individual node state variable, si = {0, 1}, to
derive, for a given function of the state of node i, f(si), four relations which will
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ease later calculations. While the function f might also depend on the other vari-
ables, f = f(s1, ..., si, ..., sN ), we restrict our attention, without loss of generality,
to the case f(si). For the first two relations, we have that∑

si

(
E+1
i − 1

)
[sif(si)] =

∑
si

(
E+1
i [sif(si)]− sif(si)

)
= 1 · f(1)− 0 · f(0) + 0− 1 · f(1) = 0 ,

(4.32)

and∑
si

(
E−1
i − 1

)
[(1− si)f(si)] =

∑
si

(
E+1
i [(1− si)f(si)]− (1− si)f(si)

)
= 0− 1 · f(0) + 1 · f(0)− 0 · f(1) = 0 ,

(4.33)

where the sums are over the two possible values of si. Looking at the master
equation (4.31), one can understand that these two relations translate the fact
that any increase in the probability of a given node being in a given state must be
accompanied by a corresponding decrease in the probability of the complementary
state. Regarding the other two relations, we can write∑

si

si
(
E+1
i − 1

)
[sif(si)] =

∑
si

si
(
E+1
i [sif(si)]− sif(si)

)
= 0 · (1 · f(1)− 0 · f(0)) + 1 · (0− 1 · f(1))

= −1 · f(1)

= −
∑
si

sif(si) ,

(4.34)

and∑
si

si
(
E−1
i − 1

)
[(1− si)f(si)] =

∑
si

si
(
E+1
i [(1− si)f(si)]− (1− si)f(si)

)
= 0 · (0− 1 · f(0)) + 1 · (1 · f(0)− 0 · f(1))

= 1 · f(0)

=
∑
si

(1− si)f(si) .

(4.35)

Let us also introduce, for clarity, the notation
∑
{s} to refer to the sum over

all the possible combinations of states of all the individual nodes’ variables,∑
{s}

≡
∑
s1

∑
s2

· · ·
∑
sN

, (4.36)
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and
∑
{s}j

to indicate the sum over all the possible combinations of states of all
the variables except sj , ∑

{s}j

≡
∑
s1

· · ·
∑
sj−1

∑
sj+1

· · ·
∑
sN

. (4.37)

Note that these two definitions are related by∑
{s}

=
∑
{s}j

∑
sj

, (4.38)

which allows us to split the sum over all possible configurations of the system into
a sum over the values of one of the variables and a sum over the configurations
of the rest of the system. By using the notation in (4.36), the average of a given
function of the states of the nodes, f(s1, . . . , sN ), can be written as〈

f(s1, . . . , sN )
〉

=
∑
{s}

f(s1, . . . , sN )P (s1, . . . , sN ) . (4.39)

Using this expression and the master equation in (4.31) we derive an equation
for the time evolution of the average value of the state of node i,

d〈si〉
dt

=
∑
{s}

si
dP (s1, . . . , sN )

dt

=
∑
{s}

N∑
j=1

si
(
E+1
j − 1

) [
sjr
−
j P (s1, . . . , sN )

]

+
∑
{s}

N∑
j=1

si
(
E−1
j − 1

) [
(1− sj)r+

j P (s1, . . . , sN )
]
.

(4.40)

Separating the terms with j = i and those with j 6= i, we find
d〈si〉
dt

=
∑
{s}

si
(
E+1
i − 1

) [
sir
−
i P (s1, . . . , sN )

]
+
∑
{s}

si
(
E−1
i − 1

) [
(1− si)r+

i P (s1, . . . , sN )
]

+
∑
{s}

N∑
j 6=i

si
(
E+1
j − 1

) [
sjr
−
j P (s1, . . . , sN )

]

+
∑
{s}

N∑
j 6=i

si
(
E−1
j − 1

) [
(1− sj)r+

j P (s1, . . . , sN )
]
.

(4.41)
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If we now use the relation (4.38) to extract, from the general sum over {s}, the
sum over the values of si for the terms with j = i, while we extract the sum over
the values of sj for the terms with j 6= i, we obtain

d〈si〉
dt

=
∑
{s}i

[(∑
si

si
(
E+1
i − 1

) [
sir
−
i P (s1, . . . , sN )

])

+
(∑

si

si
(
E−1
i − 1

) [
(1− si)r+

i P (s1, . . . , sN )
])]

+
N∑
j 6=i

∑
{s}j

si

[(∑
sj

(
E+1
j − 1

) [
sjr
−
j P (s1, . . . , sN )

])

+
(∑

sj

(
E−1
j − 1

) [
(1− sj)r+

j P (s1, . . . , sN )
])]

,

(4.42)

where we can easily identify relations (4.32) and (4.33) for the terms with j 6= i,
and relations (4.34) and (4.35) for the terms with j = i. In this way, we can write

d〈si〉
dt

=
∑
{s}i

(
−
∑
si

sir
−
i P (s1, . . . , sN )

)

+
∑
{s}i

(∑
si

(1− si)r+
i P (s1, . . . , sN )

)
,

(4.43)

which, after combining the sums together again, becomes

d〈si〉
dt

=
∑
{s}

[
r+
i − (r+

i + r−i )si
]
P (s1, . . . , sN ) , (4.44)

and we finally find the equation for the time evolution of the first-order moments
presented in the main text of the chapter,

d〈si〉
dt

= 〈r+
i 〉 − 〈(r

+
i + r−i )si〉. (4.45)
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4.C

Equation for the time evolution of the
second-order cross-moments

In order to find a general equation for the time evolution of the second-order
cross-moments 〈sisj〉 [Eq. (4.5) in the main text of the chapter] we proceed

in a similar way as we did in the previous section for the first-order moments.
Taking into account the master equation (4.31) and using the definition of the
average value in (4.39), we can write for the second-order cross-moments,

d〈sisj〉
dt

=
∑
{s}

sisj
dP (s1, . . . , sN )

dt

=
∑
{s}

N∑
k=1

sisj
(
E+1
k − 1

) [
skr
−
k P (s1, . . . , sN )

]

+
∑
{s}

N∑
k=1

sisj
(
E−1
k − 1

) [
(1− sk)r+

k P (s1, . . . , sN )
]
.

(4.46)

For the terms of the sum with k 6= i, j, we can use relation (4.38) to write

N∑
k 6=i,j

∑
{s}k

sisj

[(∑
sk

(
E+1
k − 1

) [
skr
−
k P (s1, . . . , sN )

])

+
(∑

sk

(
E−1
k − 1

) [
(1− sk)r+

k P (s1, . . . , sN )
])]

= 0 ,

(4.47)

where the equality follows from an application of relations (4.32) and (4.33).
Similarly, we can use relations (4.34) and (4.35) to transform, in Eq. (4.46), the
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terms with k = i 6= j as

∑
{s}i

sj

[(∑
si

si
(
E+1
i − 1

) [
sir
−
i P (s1, . . . , sN )

])

+
(∑

si

si
(
E−1
i − 1

) [
(1− si)r+

i P (s1, . . . , sN )
])]

=
∑
{s}i

sj

[
−
∑
si

sir
−
i P (s1, . . . , sN ) +

∑
si

(1− si)r+
i P (s1, . . . , sN )

]

=−
∑
{s}

sisjr
−
i P (s1, . . . , sN ) +

∑
{s}

(1− si)sjr+
i P (s1, . . . , sN )

=〈r+
i sj〉 − 〈(r

+
i + r−i )sisj〉 ,

(4.48)

and, equivalently, the terms with k = j 6= i as

∑
{s}j

si

[(∑
sj

sj
(
E+1
j − 1

) [
sjr
−
j P (s1, . . . , sN )

])

+
(∑

sj

sj
(
E−1
j − 1

) [
(1− sj)r+

j P (s1, . . . , sN )
])]

=〈r+
j si〉 − 〈(r

+
j + r−j )sisj〉 .

(4.49)

Note that, for both expressions (4.48) and (4.49), we have assumed that i 6= j.
In order to study the other case, when i = j, we simply need to notice that, being
the possible values of the variables si = {0, 1}, then s2

i = si, and therefore

d〈sisi〉
dt

= d〈si〉
dt

= 〈r+
i 〉 − 〈(r

+
i + r−i )si〉 , (4.50)

where we have used the result (4.45) for the first-order moments derived in the
previous section.

Thus, we can write an equation for the second-order cross-moments as

d〈sisj〉
dt

=

〈r
+
i sj〉+ 〈r+

j si〉 − 〈qijsisj〉 if i 6= j

〈r+
i 〉 − 〈(r

+
i + r−i )si〉 if i = j

, (4.51)
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where qij = r+
i + r−i + r+

j + r−j . Finally, using the Kronecker delta, we obtain
the expression presented in the main text of the chapter,

d〈sisj〉
dt

= 〈r+
i sj〉+ 〈r+

j si〉 − 〈qijsisj〉+ δij
[
〈sir−i 〉+ 〈(1− si)r+

i 〉
]
. (4.52)

4.D

Variance of n

We derive in this appendix an analytical expression for the steady state vari-
ance of n [Eq. (4.14) in the main text of the chapter]. Let us start by

introducing the transition rates of the noisy voter model [Eq. (4.1) in the main
text of the chapter] into the equation for the time evolution of the second-order
cross-moments obtained in the previous section, Eq. (4.52),

d〈sisj〉
dt

=a(〈si〉+ 〈sj〉) + h

ki

∑
m∈nn(i)

〈smsj〉+ h

kj

∑
m∈nn(j)

〈smsi〉

− 2(2a+ h) 〈sisj〉

+ δij

a+ h〈si〉+ h

ki

∑
m∈nn(i)

〈sm〉 −
2h
ki

∑
m∈nn(i)

〈smsi〉

 .
(4.53)

Applying now the annealed approximation for uncorrelated networks described
in the main text of the chapter [see Eq. (4.10)], we can replace the sums over sets
of neighbors by sums over the whole system, finding

d〈sisj〉
dt

=a(〈si〉+ 〈sj〉) + h

Nk

∑
m

km (〈smsi〉+ 〈smsj〉)− 2(2a+ h)〈sisj〉

+ δij

[
a+ h〈si〉+ h

Nk

∑
m

km〈sm〉 −
2h
Nk

∑
m

km〈smsi〉

]
.

(4.54)

Bearing in mind the definition of the covariance matrix in terms of the first-
order moments and the second-order cross-moments, σij = 〈sisj〉 − 〈si〉〈sj〉, we
can find an equation for its time evolution from Eq. (4.6) in the main text of the

112



4.D. Variance of n

chapter and Eq. (4.54),

dσij
dt

=d〈sisj〉
dt

− d〈si〉
dt
〈sj〉 − 〈si〉

d〈sj〉
dt

=− 2(2a+ h)(〈sisj〉 − 〈si〉〈sj〉)

+ h

Nk

∑
m

km

[
(〈smsi〉 − 〈sm〉〈si〉) + (〈smsj〉 − 〈sm〉〈sj〉)

]

+ δij

[
a+ h〈si〉+ h

Nk

∑
m

km〈sm〉 −
2h
Nk

∑
m

km〈smsi〉

]
,

(4.55)

which can be written in terms of only the covariance matrix and the first moments,

dσij
dt

=− 2(2a+ h)σij + h

Nk

∑
m

km (σmi + σmj)

+ δij

[
a+ h

Nk

∑
m

km〈sm〉+
(
h− 2h

Nk

∑
m

km〈sm〉

)
〈si〉

− 2h
Nk

∑
m

kmσmi

]
.

(4.56)

In the steady state, and using also the steady state solution of the first order
moments 〈si〉st = 1/2 [Eq. (4.7) in the main text of the chapter], we find

σij =

h

Nk

∑
m

km (σmi + σmj) + δij

[
a+ h

2 −
2h
Nk

∑
m

kmσmi

]
2(2a+ h) . (4.57)

Note that, for the sake of notational simplicity, we have dropped the subindex st
for the steady state solution of the covariance matrix. Recalling now the relation
between the variance of n and the covariance matrix [Eq. (4.13) in the main text
of the chapter], we can find an equation for the steady state variance of n by
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simply summing Eq. (4.57) over i and j,

σ2
st[n] =

∑
ij

σij =

h

Nk

∑
ijm

km (σmi + σmj) +
∑
i

[
a+ h

2 −
2h
Nk

∑
m

kmσmi

]
2(2a+ h)

=

h

k

∑
im

kmσmi +
∑
jm

kmσmj

+N

(
a+ h

2

)
− 2h
Nk

∑
im

kmσmi

2(2a+ h)

=
N

(
a+ h

2

)
+ 2h

k

(
1− 1

N

)∑
im

kmσmi

2(2a+ h) .

(4.58)

Let us introduce now the set of variables Sx, with x ∈ {0, 1, 2, . . .}, and defined
as

Sx =
∑
im

kxi kmσmi . (4.59)

In this way, we can rewrite the steady state variance of n in terms of one of these
new variables, S0,

σ2
st[n] =

N

(
a+ h

2

)
+ 2h

k

(
1− 1

N

)
S0

2(2a+ h) . (4.60)

In order to find an equation for this new variable S0, we could use again the
equation for the covariance matrix in (4.57), multiplying it by kj and summing
over i and j, obtaining a solution in terms of the variable S1. We could then
proceed similarly and find an equation for S1 as a function of S2, for S3 as a
function of S4, and so forth. In general, for any x, we have

Sx =
∑
ij

kxi kjσij

=

h

Nk

∑
ijm

kxi kjkm (σmi + σmj) +
∑
i

kx+1
i

[
a+ h

2 −
2h
Nk

∑
m

kmσmi

]
2(2a+ h) ,

(4.61)
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which can be written as

Sx =

h

Nk

∑
j

kj
∑
im

kxi kmσmi + h

Nk

∑
i

kxi
∑
jm

kjkmσmj

2(2a+ h)

+

∑
i

kx+1
i

(
a+ h

2

)
− 2h
Nk

∑
im

kx+1
i kmσmi

2(2a+ h)

=
hSx + h

k
kxS1 +Nkx+1

(
a+ h

2

)
− 2h
Nk

Sx+1

2(2a+ h) ,

(4.62)

where the overbar notation is used for averages over the degree distribution [see
Eq. (4.3) in the main text of the chapter]. From Eq. (4.62) we can obtain an
expression for the variable Sx in terms of only S1 and Sx+1,

Sx =

h

k
kxS1 +Nkx+1

(
a+ h

2

)
− 2h
Nk

Sx+1

4a+ h
. (4.63)

By inverting Eq. (4.63), we can write all variables Sx+1 in terms of the pre-
ceding ones,

Sx+1 =
[
− (4a+ h)Nk

2h

]
Sx + N

2

[
kxS1 + Nk

h

(
a+ h

2

)
kx+1

]
, (4.64)

which has the general form

Sx+1 = ASx +Bx . (4.65)

It is easy to see that this recurrence relation has the solution

Sx+1 = AxS1 +
x∑

m=1
Ax−mBx , (4.66)

where the choice of S1 instead of S0 in the first term allows us to write all the
variables Sx+1 in terms of only one of them, S1. Note that this choice is required
by the presence of a term with S1 inside Bx. Thus, we can write the solution for
our original recurrence relation in (4.64) as

Sx+1 =
[
− (4a+ h)Nk

2h

]x
S1

+
x∑

m=1

[
− (4a+ h)Nk

2h

]x−m
N

2

[
kmS1 + Nk

h

(
a+ h

2

)
km+1

]
.

(4.67)
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If we now rewrite Eq. (4.67) as

Sx+1[
− (4a+ h)Nk

2h

]x =

= S1 +
x∑

m=1

[
− (4a+ h)Nk

2h

]−m
N

2

[
kmS1 + Nk

h

(
a+ h

2

)
km+1

]
,

(4.68)
we find that the left hand side of this equation vanishes in the limit of x→∞,

lim
x→∞

Sx+1[
− (4a+ h)Nk

2h

]x = lim
x→∞

∑
ij

kx+1
i kjσij[

− (4a+ h)Nk
2h

]x

=
[
− (4a+ h)Nk

2h

]
lim
x→∞

∑
ij

[
− 2hki

(4a+ h)Nk

]x+1
kjσij

= 0 ,
(4.69)

where we have used the definition of the variables Sx given in Eq. (4.59). A
necessary and sufficient condition for the last equality in Eq. (4.69) to hold is
that

∀i :
∣∣∣∣− 2hki

(4a+ h)Nk

∣∣∣∣ < 1 =⇒ ∀i : ki <
(4a+ h)Nk

2h , (4.70)

which is generally true and always true for h > 0 and k ≥ 2. Thus, in the x→∞
limit, we can equate the right hand side of Eq. (4.68) to zero,

S1 +
( ∞∑
m=1

[
− (4a+ h)Nk

2h

]−m
N

2 k
m

)
S1

+
( ∞∑
m=1

[
− (4a+ h)Nk

2h

]−m
N2k

2h

(
a+ h

2

)
km+1

)
= 0 ,

(4.71)

and find, in this way, a solution for S1,

S1 =
−N

2k

2h

(
a+ h

2

) ∞∑
m=1

[
−2h

(4a+ h)Nk

]m
km+1

1 + N

2

∞∑
m=1

[
−2h

(4a+ h)Nk

]m
km

. (4.72)
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Regarding the sums in Eq. (4.72), we can use the sum of the geometric series
∞∑
m=1

Amkm+z = kz
∞∑
m=1

Amkm = Akz+1

1−Ak , if |Ak| < 1 , (4.73)

where the condition of convergence is exactly the same as presented before in
Eq. (4.70), and thus generally true and always true for h > 0 and k ≥ 2. In this
way, applying the result (4.73) to Eq. (4.72) we have

S1 =

N2k

(
a+ h

2

) k2

1 + 2hk
(4a+h)Nk


(4a+ h)Nk − hN

 k

1 + 2hk
(4a+h)Nk



=
N2k

(
a+ h

2

)
(4a+ h)

(
k2

(4a+ h)Nk + 2hk

)
4a+ h− h

k

(
(4a+ h)Nkk

(4a+ h)Nk + 2hk

) ,

(4.74)

where the denominator can be rewritten as

4a+ h−h
k

(
(4a+ h)Nkk

(4a+ h)Nk + 2hk

)
=

= 4a+ h

k

[(4a+ h)Nk + 2hk]k − (4a+ h)Nkk
(4a+ h)Nk + 2hk

= 4a+ h

k

[(4a+ h)Nk + 2hk](k − k) + 2hk2

(4a+ h)Nk + 2hk

= 4a+ h

k
(k − k) + 2h2

k

(
k2

(4a+ h)Nk + 2hk

)

= 4a+ 2h2

k

(
k2

(4a+ h)Nk + 2hk

)
,

(4.75)

thereby finding a final expression for S1,

S1 =
N2k

(
a+ h

2

)
(4a+ h)

(
k2

(4a+ h)Nk + 2hk

)
4a+ 2h2

k

(
k2

(4a+ h)Nk + 2hk

) . (4.76)
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If we now go back to the equation for the steady state variance σ2
st[n] as a

function of S0, Eq. (4.60), and we use Eq. (4.63) to find an expression for S0 as
a function of S1,

S0 =
Nk

(
a+ h

2

)
+ h

k

(
1− 2

N

)
S1

4a+ h
, (4.77)

then we can write an equation for the steady state variance as a function of S1,

σ2
st[n] = N

4

[
1 +

2h
(
1− 1

N

)
4a+ h

+
(
N − 3 + 2

N

)(
h

k

)2 2S1

N2
(
a+ h

2
)

(4a+ h)

]
.

(4.78)
Finally, introducing here what we found for S1 in Eq. (4.76), we arrive to the
final expression for the steady state variance of the global variable n as presented
in the main text of the chapter,

σ2
st[n] = N

4

1 +
2h
(

1− 1
N

)
4a+ h

+

(
N − 3 + 2

N

)(
h2

k

)(
k2

(4a+ h)Nk + 2hk

)
2a+

(
h2

k

)(
k2

(4a+ h)Nk + 2hk

)
 .

(4.79)

4.E

Asymptotic approximations for the variance of n

We develop here a first-order approximation for the steady state variance of
n with respect to the system size N . Given the dependence of the result of

this approximation on the relationship between the system size N and the noise
parameter a, we are forced to consider two different asymptotic approximation
regimes: one for small a [corresponding to Eq. (4.16) in the main text of the
chapter] and the other for large a [corresponding to Eq. (4.17) in the main text
of the chapter].

Let us start by noticing that the structural constraint imposed by the an-
nealed approximation for uncorrelated networks on the degrees of the network,
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ki <
√
Nk, allows us to write Eq. (4.79) as

σ2
st[n] =

= N

4

1 +
2h
(
1− 1

N

)
4a+ h

+
(
N − 3 + 2

N

) (
h2

k

)(
k2

(4a+ h)Nk
(
1 +O

(
N−1/2

)))

2a+
(
h2

k

)(
k2

(4a+ h)Nk
(
1 +O

(
N−1/2

)))
 .

(4.80)
In this way, we notice that, depending on the order of the product aN , the approx-
imation of the third term in Eq. (4.80) will lead to different results. In particular,
when the noise parameter a is of order O(N−1) or smaller, then the product aN
is, at most, of order O(N0), and we can continue with the approximation as

σ2
st[n] =

= N

4

1 +
2h
(
1− 1

N

)
4a+ h

+
(
N − 3 + 2

N

)
(
h2

k

)(
k2

(4a+ h)Nk

)

2a+
(
h2

k

)(
k2

(4a+ h)Nk

) +O(N−1/2)




= N

4

1 + 2
(

1− 1
N

)
+
(
N − 3 + 2

N

)
h

(
k2

k
2

)

2aN + h

(
k2

k
2

) +O(N−1/2)


 ,

(4.81)
which, to the first order in N , becomes

σ2
st[n] = N

4

N


h

(
k2

k
2

)

2aN + h

(
k2

k
2

) +O(N−1/2)


 . (4.82)

Using now the definition of the variance of the degree distribution, σ2
k = k2 − k2,

we find the approximation presented in the main text of the chapter for the steady
state variance of n for small a and to the first order in N ,

σ2
st[n] = N2

4

 h

(
σ2
k

k
2 + 1

)
2aN + h

(
σ2
k

k
2 + 1

)
+O(N3/2) . (4.83)
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Note that the remaining terms are at most of order O(N3/2).

On the contrary, when a is of order O(N0) or larger, then the product aN is,
at least, of order O(N), and we can approximate Eq. (4.80) as

σ2
st[n] =

= N

4

1 +
2h
(
1− 1

N

)
4a+ h

+
(
N − 3 + 2

N

)
(
h2

k

)(
k2

(4a+ h)Nk

)

2a+
(
h2

k

)(
k2

(4a+ h)Nk

) +O(N−3/2)




= N

4

1 +
2h
(
1− 1

N

)
4a+ h

+
(
N − 3 + 2

N

)
h2

(
k2

k
2

)

2a(4a+ h)N + h2

(
k2

k
2

) +O(N−3/2)




= N

4

1 +
2h
(
1− 1

N

)
4a+ h

+
(
N − 3 + 2

N

)
h2

(
k2

k
2

)
2a(4a+ h)N +O(N−3/2)


 .

(4.84)
Note that the remaining terms are now one order ofN smaller than in the previous
approximation [Eq. (4.81)]. To the first order in N we have

σ2
st[n] =N

4

1 + 2h
4a+ h

+
h2

(
k2

k
2

)
2a(4a+ h) +O(N−1/2)



=N

4

1 +
4ah+ h2

(
k2 − k2 + k

2

k
2

)
2a(4a+ h) +O(N−1/2)

 ,
(4.85)
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and, finally, we find the approximation presented in the main text of the chapter
for the steady state variance of n for large a and to the first order in N ,

σ2
st[n] = N

4

1 + h

2a +
h2σ

2
k

k
2

2a(4a+ h)

+O(N1/2) , (4.86)

where the remaining terms are at most of order O(N1/2).

4.F

Critical point approximation

In this appendix, we derive an analytical approximation for the critical point of
the bimodal-unimodal transition [Eq. (4.18) in the main text of the chapter],

which can be defined as the relationship between the model parameters a and h
leading the steady state variance of n to take the value σ2

st[n] = N(N + 2)/12,
corresponding to a uniform distribution between 0 and N . In particular, bearing
in mind that the critical value ac of a fully-connected system is of order O(N−1)
and that the change due to the network structure appears to be of order O(N0)
(see Fig. 4.2 in the main text of the chapter), then we can expect the value of the
critical point to be still of order O(N−1), and we can therefore use the small a
asymptotic approximation in Eq. (4.83),

σ2
st[n] = N2

4

 h

(
σ2
k

k
2 + 1

)
2acN + h

(
σ2
k

k
2 + 1

)
+O(N3/2) = N(N + 2)

12 . (4.87)

The solution of this equation leads, for large N , to the value of the critical point
discussed in the main text of the chapter,

ac = h

N

(
σ2
k

k
2 + 1

)
+O(N−3/2) , (4.88)

consistent with the assumption of a critical value of order O(N−1). Note that
assuming, instead, the critical value to be of order O(N0), and using therefore
the large a asymptotic approximation in Eq. (4.86), leads again to an ac of order
O(N−1), inconsistent with the initial assumption.
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4.G

Order parameter: the interface density ρ

We obtain, in this appendix, an analytical expression for the order parameter
ρ [Eq. (4.21) in the main text of the chapter]. ρ is defined as the interface

density or density of active links, that is, the fraction of links connecting nodes
in different states. In terms of the connectivity matrix Aij ,

ρ =

1
2
∑
ij

Aij [si(1− sj) + (1− si)sj ]

1
2
∑
ij

Aij

=

∑
ij

Aij(si + sj − sisj)∑
ij

Aij
, (4.89)

and introducing the annealed approximation for uncorrelated networks described
in the main text of the chapter [see Eq. (4.10)], we find

ρ =

∑
ij

kikj

Nk
(si + sj − sisj)

∑
ij

kikj

Nk

=
∑
ij

kikj(
Nk
)2 (si + sj − sisj) . (4.90)

Restricting our attention to the steady state average value of Eq. (4.90),

〈ρ〉st =
∑
ij

kikj(
Nk
)2
(
〈si〉st + 〈sj〉st − 〈sisj〉st

)
, (4.91)

we can use the steady state mean solution found before for the individual node
variables si, 〈si〉st = 1/2, and the definition of the covariance matrix in the steady
state, σij = 〈sisj〉st − 1/4, in order to write

〈ρ〉st = 1
2 −

2(
Nk
)2

∑
ij

kikjσij , (4.92)

where we can identify the variable S1 [see Eq. (4.59)],

〈ρ〉st = 1
2 −

2S1(
Nk
)2 . (4.93)

Finally, reversing the relation (4.78) between the variance of n and the variable
S1, we can write the steady state average interface density ρ in terms of the
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variance of n,

〈ρ〉st = 1
2 −

2
(hN)2

[
(4a+ h)(2a+ h)(
1− 1

N

) (
1− 2

N

) (σ2[n]− N

4

)
−
(
a+ h

2
)(

1− 2
N

)hN] , (4.94)

as it appears in the main text of the chapter.

4.H

Autocorrelation function of n

We derive here an analytical expression for the steady state autocorrelation
function of n [Eqs. (4.23) and (4.24) in the main text of the chapter], defined

as
Kst[n](τ) = 〈n(t+ τ)n(t)〉st − 〈n〉2st , (4.95)

where τ plays the role of a time-lag. As far as the second point in time, t+ τ , is
concerned, we assume that the system was at n(t) at time t, and hence we can
treat n(t) as an initial condition,

Kst[n](τ) = 〈〈n(t+ τ)|n(t)〉n(t)〉st − 〈n〉2st , (4.96)

which, in terms of the individual variables {si} and taking into account that
〈n〉st = N/2, can be written as

Kst[n](τ) =
∑
ij

〈〈si(t+ τ)|{sl(t)}〉sj(t)〉st −
N2

4 . (4.97)

We need, therefore, an expression for 〈si(t+ τ)|{sl(t)}〉, which we find by in-
tegration of the equation for the temporal evolution of the first-order moments
〈si〉 —obtained by introducing the transition rates of the noisy voter model into
Eq. (4.45)—,

d〈si(t+ τ)|{sl(t)}〉
dτ

= a−(2a+h)〈si(t+τ)|{sl(t)}〉+
h

Nk

∑
m

km〈sm(t+τ)|{sl(t)}〉 .

(4.98)

In order to integrate Eq. (4.98), we must first obtain an expression for

b(t+ τ) ≡ h

Nk

∑
m

km〈sm(t+ τ)|{sl(t)}〉 , (4.99)
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which we can find by multiplying Eq. (4.98) by hki/Nk and summing over i,

d

dτ

(
h

Nk

∑
i

ki〈si(t+ τ)|{sl(t)}〉
)

= ah

Nk

∑
i

ki −
(2a+ h)h

Nk

∑
i

ki〈si(t+ τ)|{sl(t)}〉

+
(
h

Nk

)2∑
i

ki
∑
m

km〈sm(t+ τ)|{sl(t)}〉 .

(4.100)
In this way, we arrive to the differential equation

db(t+ τ)
dτ

= ah− (2a+ h)b(t+ τ) + hb(t+ τ) = ah− 2ab(t+ τ) , (4.101)

which has the solution

b(t+ τ) = h

2
(
1− e−2aτ)+ b(t)e−2aτ , (4.102)

depending on the initial condition b(t). Using this expression, we can now inte-
grate Eq. (4.98) for the first-order moments,

d〈si(t+ τ)|{sl(t)}〉
dτ

= a− (2a+ h)〈si(t+ τ)|{sl(t)}〉+ b(t+ τ) , (4.103)

which has the general solution

〈si(t+ τ)|{sl(t)}〉 =

∫ τ

0
e(2a+h)τ ′ [a+ b(t+ τ ′)] dτ ′ + c1

e(2a+h)τ

=

∫ τ

0
e(2a+h)τ ′

[
a+ h

2

(
1− e−2aτ ′

)
+ b(t)e−2aτ ′

]
dτ ′ + c1

e(2a+h)τ

=

(
a+ h

2

)∫ τ

0
e(2a+h)τ ′dτ ′ +

(
b(t)− h

2

)∫ τ

0
ehτ

′
dτ ′ + c1

e(2a+h)τ

= 1
2

(
1− e−(2a+h)τ

)
+
b(t)− h

2
h

(
e−2aτ − e−(2a+h)τ

)
+ c1e

−(2a+h)τ .

(4.104)
Applying now the initial condition 〈si(t)|{sl(t)}〉 = si(t), we find

〈si(t+ τ)|{sl(t)}〉 = 1
2
(
1− e−(2a+h)τ)+ b(t)−h

2
h

(
e−2aτ − e−(2a+h)τ)+ si(t)e−(2a+h)τ .

(4.105)
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We are now ready to go back to the autocorrelation function (4.97) and write,
in the steady state,

Kst[n](τ) =
∑
ij

〈
1
2

(
1− e−(2a+h)τ

)
sj(t)

〉
st

+
∑
ij

〈
b(t)− h

2
h

(
e−2aτ − e−(2a+h)τ

)
sj(t)

〉
st

+
∑
ij

〈
si(t)sj(t)e−(2a+h)τ

〉
st
− N2

4 .

(4.106)

Given that we assume the state of the system at t to be our initial condition, b(t)
can be written as

b(t) = h

Nk

∑
i

ki〈si(t)|{sl(t)}〉 = h

Nk

∑
i

kisi(t) , (4.107)

and thus we have, for the autocorrelation function,

Kst[n](τ) =1
2

(
1− e−(2a+h)τ

)∑
ij

〈sj(t)〉st

+ 1
Nk

(
e−2aτ − e−(2a+h)τ

)∑
ijm

km〈sm(t)sj(t)〉st

− 1
2

(
e−2aτ − e−(2a+h)τ

)∑
ij

〈sj(t)〉st + e−(2a+h)τ
∑
ij

〈si(t)sj(t)〉st

− N2

4 .

(4.108)
Using now the value found before for the steady state solution of the first-order
moments, 〈si〉st = 1/2, and the definition of the covariance matrix in the steady
state, σij = 〈sisj〉st − 〈si〉2st = 〈sisj〉st − 1/4, we find

Kst[n](τ) =− e−2aτ N
2

4 + 1
k

(
e−2aτ − e−(2a+h)τ

)∑
jm

km

(
σmj + 1

4

)

+ e−(2a+h)τ
∑
ij

(
σij + 1

4

)
.

(4.109)

Finally, identifying in the previous equation the variance of n and the variable
S1 [see Eq. (4.59)], and reordering terms according to their exponential decay, we
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find the expression for the autocorrelation function of n discussed in the main
text of the chapter,

Kst[n](τ) =
(
σ2[n]− S1

k

)
e−(2a+h)τ + S1

k
e−2aτ . (4.110)

The definition of the variable S1 given in the main text of the chapter, as a
function of the variance of n, can be directly obtained by reversing Eq. (4.78).

4.I

Order parameter for a fully connected network

As an example of topology where local effects are absent, we show in Fig. 4.9
both numerical and analytical results for the case of a fully-connected net-

work. As we can observe, our approximation successfully fits the results in this
case, suggesting that the origin of the discrepancy observed for intermediate val-
ues of a in Fig. 4.7 lies in the annealed network approximation, when we replace
the original network by a weighted fully-connected topology, and thus we lose
track of all local effects.
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Figure 4.9: Steady state of the average interface density as a function of the noise
parameter a in a linear-logarithmic scale and for three different types of networks with
mean degree k = 8: Erdös-Rényi random network, Barabási-Albert scale-free network
and dichotomous network. A fully connected topology is also included for comparison.
Symbols: Numerical results (averages over 20 networks, 10 realizations per network
and 50000 time steps per realization). Solid lines: Analytical results [see Eq. (4.94)].
Dashed line: Mean-field pair-approximation (see Diakonova et al., 2015) for a mean
degree k = 8. Dash-dotted line: Mean-field pair-approximation for a mean degree
k = 2499. The interaction parameter is fixed as h = 1 and the system size as N = 2500.
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CHAPTER 5
Link-state dynamics in a

coevolving network

Inspired by language competition processes where both the language used in
the interactions between speakers and the topological structure of those inter-

actions can evolve in time and affect each other, we propose in this chapter a
coevolving network model with link-state dynamics. Along the lines of the model
studied by Fernández-Gracia et al. (2012), we consider links with binary, equiva-
lent states —representing the use of two socially equivalent languages— updated
according to the majority rule: links adopt the state of the majority of their
neighboring links in the network. Additionally, we define a rewiring mechanism
capturing the fact that, when a speaker is uncomfortable with the language used
on a given interaction, she can either try to change that language or simply stop
this interaction and start a new one in her preferred language. In other words, a
link that is in a local minority can be rewired to a randomly chosen node while
changing its state to conform to the local majority of the rewiring node.

While large systems evolving under the majority rule alone always fall into
disordered topological traps composed by frustrated links (whose state conforms
to the local but not to the global majority), any amount of rewiring is able to
drive the network to complete order, by relinking frustrated links and so releasing
the system from traps. However, depending on the ratio between the probability
of a majority rule updating and that of a rewiring event, the system evolves to-
wards different absorbing configurations: either a one-component network with
all links in the same state —extinction of one of the languages— or a network
fragmented in two components with opposite states —survival of both languages
in completely segregated communities—. In both cases, the described dynamics
leads always to the disappearance of the bilingual speakers. While for finite sys-
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tems and small rewiring rates we find a region of bistability between fragmented
and non-fragmented absorbing states, larger rewiring rates lead always to the
fragmentation of the network into two similar size components with different link
states. By means of a scaling analysis we show that the bistability region van-
ishes as the system size is increased, and thus fragmentation is the only possible
scenario for large coevolving systems. We also show that a mean-field approach
is able to describe the ordering of the system and its average time of convergence
to the final ordered state for large rewiring values.

In Section 5.1 we define the rewiring mechanism which, coupled with the
majority rule for link states, leads to a coevolving model. We also present in
this section a schematic review of the main results obtained with the majority
rule for link states in static topologies and some quantities introduced for its
characterization. In Section 5.2 we describe the final states obtained with the
coevolving model and we characterize the observed fragmentation transition. A
study of the time evolution of the system is presented in Section 5.3, including a
description of the trajectories in phase space, a mean-field approximation for the
order parameter, and an analysis of the times of convergence to the final ordered
state. Finally, Section 5.4 contains a discussion summary.

5.1

The Model

We consider an initially connected Erdös-Rényi random network composed
by a fixed number of nodes N and with a fixed mean degree µ ≡ 〈k〉. The

state of each link ` is characterized by a binary variable Sl which can take two
equivalent or symmetrical values, for example, A and B. Link states are initially
distributed with uniform probability. At each time step, a link ` between nodes i
and j is chosen at random. Then, with probability p a rewiring event is attempted
(see Fig. 5.1 for a schematic illustration of the dynamics): one of the two nodes
at the ends of `, for example i, is chosen at random and

1. if Sl is different from the state of the majority of links attached to i, then the
link ` is disconnected from the opposite end, j, and reconnected to another
node, k, chosen at random, and also its state Sl is switched to comply with
the local majority around node i;

2. otherwise, nothing happens.

With the complementary probability, 1−p, the majority rule is applied: the
chosen link, `, adopts the state of the majority of its neighboring links, i.e.,
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those links connected to the ends of ` (nodes i and j). In case of a tie, ` switches
state with probability 1/2. Finally, time is increased by 1/N , so that for each
node, on average, the state of one of its relationships is updated per unit time.
In this manner, the time scale of the process for each agent becomes independent
of system size for constant degree distribution.

With
probability

1
2
p

With
probability

(1 − p)

i j

k

i j

k

i j

k

Node i attempts
a rewiring:

Majority rule:

?

ℓ

State A

State B

Node j attempts a
rewiring: No change

With
probability 1

2
p

Figure 5.1: Schematic illustration of the dynamics for both a successful and a failed
rewiring attempt and the application of the majority rule.

The rewiring mechanism mimics the fact that, when a speaker is uncomfort-
able with the language used in her interaction with other speaker, one of her
possibilities is to stop this relationship and start a new one in her preferred lan-
guage with any other individual. The majority rule mechanism captures the fact
that the language spoken in a given interaction tends to be the one most pre-
dominantly used by the interacting individuals, that is, the one they use more
frequently in their conversations with other people. In this way, agents tend to
avoid the cognitive cost or effort associated with switching between several lan-
guages (Meuter and Allport, 1999; Jackson et al., 2001; Abutalebi and Green,
2007; Moritz-Gasser and Duffau, 2009). The rewiring probability p measures the
speed at which the network evolves, compared to the propagation of link states.
It is, therefore, a measure of the plasticity of the topology. When p is zero the
network is static and only the majority rule dynamics takes place (as studied by
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Fernández-Gracia et al., 2012), while in the opposite situation, p = 1, there is
only rewiring.

The implementation of the majority rule that we use here is equivalent to the
zero-temperature Glauber dynamics 1, which has been extensively studied in the
context of spin systems in fixed networks and from a node states perspective.
These studies show that, in Erdös-Rény random networks, most realizations of
the dynamics arrive to a fully ordered, consensual state in a characteristic time
which scales logarithmically with system size (Castellano et al., 2005; Baek et al.,
2012). However, a very small number of runs (around a 0.02% for N = 103

and 〈k〉 = 10) end up in a disordered absorbing state, which can be frozen or
dynamically trapped (Castellano et al., 2005). The same disordered absorbing
configurations have also been found by Fernández-Gracia et al. (2012) with a pro-
totype model of link-state majority rule dynamics. Nevertheless, the probabilities
are reversed: the frozen and dynamically trapped configurations (see Fig. 5.2 for
schematic examples) are the predominant ones in a link-based dynamics, while
full order is only reached in very small and highly connected networks.

(a) Frozen disordered configuration.

Blinker link
PA = 1/2
PB = 1/2

(b) Dynamical trap based on a
blinker link which keeps changing
state forever with probability 1/2.

Figure 5.2: Schematic illustration of the disordered configurations found with a ma-
jority rule dynamics on link states with no rewiring (p = 0).

In order to characterize the system at different times it is useful to consider
the density of nodal interfaces ρ as an order parameter (Fernández-Gracia et al.,
2012), defined as the fraction of pairs of connected links that are in different states.
If ki is the degree of node i, and kA/Bi is the number of A/B-links connected to

1Different implementations are possible, for example, by varying the probability to switch
states in case of tie.
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node i (with obviously ki = kAi + kBi ), then ρ is calculated as:

ρ =
∑N
i=1 k

A
i k

B
i∑N

i=1 ki(ki − 1)/2
. (5.1)

The density ρ is zero only when all connected links share the same state and
it takes the value ρ = 1/2 for a random distribution of states (as it is the case
in our initial condition), thus it is a measure of the local order in the system.
Note that complete order, ρ = 0, is achieved for both connected consensual
configurations, where all links are in the same state, and configurations where
the network is fragmented in a set of disconnected components, each formed
by links with the same state. In both cases complete order is identified with
absorbing configurations, where the system can no longer evolve. In terms of the
node-equivalent graph, the line-graph, the order parameter ρ becomes the density
of active links, i.e., the fraction of links of the line-graph connecting nodes with
different states.

5.2

Final states

In order to explore how the coevolution of link states and network topology
affects the final state of the system we run numerical simulations of the dy-

namics described above. The system evolves until the network reaches a final
configuration that strongly depends on the system size N and the rewiring prob-
ability p. The case p = 0 corresponds to a static network situation, analyzed by
Fernández-Gracia et al. (2012). In this case, system sizes larger than N = 500
lead to disordered final states represented by network configurations composed
by several interconnected clusters of type A and B links. A link that connects
two clusters is either frozen, because it is in the local majority, or switching ad in-
finitum between states A and B (“blinking”), because it has the same number of
neighboring links in each state. Therefore, we refer to these as disordered config-
urations (ρ > 0) that are either frozen or dynamically trapped, respectively (see
Fig. 5.2). For p > 0 the network always reaches an absorbing ordered configura-
tion that can be, either a one-component network with all links sharing the same
state, or a fragmented network consisting of two large disconnected components
of size similar to N/2 and in different states 2. We remark that all links inside
each component are in the same state, thus the order parameter ρ equals zero, as
in the non-fragmented case. The behavior of ρ for different values of p is shown in

2A few disconnected nodes can also be occasionally found.
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Fig. 5.3, both as an average over different realizations [Fig. 5.3(b)] and as single
trajectories [Fig. 5.3(a)]. For p = 0 almost every realization reaches a plateau or
stationary value of ρ > 0 [see upper panel in Fig. 5.3(a)]. For any p > 0 every
run reaches an ordered absorbing state with ρ = 0 [see middle and lower panels
in Fig. 5.3(a)]. However, for small values of p we observe a distinction between
two groups of realizations, one ordering much faster than the other [see middle
panel in Fig. 5.3(a)]. These different time scales will be discussed in Section 5.3.
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(a) Density of nodal inter-
faces ρ for 100 individual real-
izations in a semilogarithmic
scale.
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(b) Average density of nodal interfaces 〈ρ〉 over 10000
realizations.

Figure 5.3: Behavior of the order parameter for a system with N = 2000 and 〈k〉 = 10.
The time interval shown has been chosen for the sake of clarity; actually, the runs for
p = 0.01 do not reach zero until t ≈ 30000 while the ones for p = 1.00 are zero from
t ≈ 350.

Fragmentation transition in finite systems

We study here three relevant quantities characterizing how the network evo-
lution affects the likelihood and the properties of the two possible outcomes

described above, one component or fragmentation in two components. These
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quantities are the probability P1 that the final network is not fragmented, i.e, that
it settles in one component, the relative size sL of the largest network component
and the magnitude σsL

of its associated fluctuations across different realizations.
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Figure 5.4: Probability P1 that the system ends in a single network component as
a function of the rewiring probability p, for networks of mean degree µ = 10 and size
N = 500 (circles), N = 1000 (squares), N = 2000 (triangles up), N = 4000 (triangles
left) and N = 8000 (diamonds). 10000 runs were used to estimate P1, starting from
an Erdös-Rényi network with random initial conditions. The limit of the region of
bistability, p∗, is shown for the size N = 2000. Note that ∀p ≥ p∗, P1(p) < 1/N . Inset:
Curves collapse when p is rescaled by Nα, with α = 0.42.

In Fig. 5.4 we show P1 as a function of p, calculated as the fraction of simula-
tion runs that ended up in a single component. We observe that P1 = 1 only for
p = 0, then it decreases continuously between p = 0 and a certain value p = p∗

and it remains always smaller than 1/N for p ≥ p∗. This defines three regimes
regarding p: one point at p = 0 where the system is always connected, a region
of bistability in 0 < p < p∗ where the system can both stay connected in one
piece or break into disconnected components, and a fragmented region for p ≥ p∗
where the network always splits apart.

This result is consistent with the behavior of the average value of sL over
many realizations (see Fig. 5.5), which decreases from 〈sL〉 = 1 for p = 0 to
〈sL〉 ' 0.5 for large p. As shown in Fig. 5.6, the standard deviation of sL (σsL

)
has its maximum at a value pmax for which P1 is approximately 0.5, that is, where
fragmented and non-fragmented realizations are equally likely. The peak in σsL

indicates a broad distribution of possible largest component sizes in that region
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Figure 5.5: Average relative size 〈sL〉 of the largest network component as a function
of p, and for the same network sizes as in Fig. 5.4. sL is defined as the fraction of nodes
included in the largest connected component. Inset: As in Fig. 5.4, p is rescaled by Nα,
making the curves collapse to one.

and thus pmax can be used as a footprint of the transition point. This broad
distribution can also be seen in Fig. 5.7, where we present a color-map of the
fraction of runs that ended up in a given relative size sL of the largest network
component for a network of N = 2000 nodes. For the sake of clarity we also
present in Fig. 5.8 histograms of network relative sizes s (not only the largest) for
four different values of p. We note that the maximum of σsL

occurs around p ≈ 0.1
(see Fig. 5.6), which corresponds in the color-map to a distribution of sL that
has a peak at sL = 1 (one component) and a broad distribution corresponding
to fragmented cases with 0.5 ≤ sL ≤ 0.875. This division into fragmented and
non-fragmented runs can also be clearly observed in the histogram corresponding
to p = 0.1 [see upper right panel in Fig. 5.8].

Interestingly, a common feature of P1(p), sL(p) and σs(p) curves is that they
are shifted to smaller values of p as the system sizeN increases, and thus the range
of p for which there is bistability of fragmented and non-fragmented outcomes
seems to vanish in the thermodynamic limit, i.e., p∗ tends to zero as size is
increased. This shifting behavior also points at the fact that the transition point
pmax appears to tend to zero in the infinite size limit. A dependence of the
transition point with the system size, in a way that it tends to zero in the infinite
size limit, has been shown to be the case in several opinion dynamics models
(Toral and Tessone, 2007). Such systems, as it is the case here, do not display a
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Figure 5.6: Standard deviation σsL of the relative size sL of the largest network
component for the same system sizes N as in Fig. 5.4. σsL is a measure of the magnitude
of the fluctuations in the final size of the largest network component across different
realizations of the dynamics. Inset: Collapse of all curves by rescaling p by Nα and σsL

by N−β , with α = 0.42 and β = 0.022.

typical phase transition in the thermodynamic limit with a well defined critical
point and its associated critical exponents, divergences (in case of a continuous,
second order phase transition) or discontinuities (in case of a first order phase
transition). However, for any finite system a transition point can be clearly
defined as separating two different behavioral regimes.

To gain an insight about the N →∞ behavior, we perform a finite-size scaling
analysis by assuming that P1, sL and σsL

are functions of the variable x ≡ pNα:

P1(p,N) = P1(pNα) ,

sL(p,N) = sL(pNα) ,

σsL
(p,N) = NβσsL

(pNα) .

(5.2)

The values of the exponents α and β should be such that the curves for different
sizes collapse into a single curve. Therefore, the location of the peak in all σsL

(p)
curves of Fig. 5.6 should scale as pmax ∼ N−α. By fitting a power-law function
to the plot pmax as a function of N we found α ' 0.42. In the insets of Figs. 5.4,
5.5 and 5.6 we observe the collapse for different network sizes when magnitudes
are plotted versus the rescaled variable x (rescaling also the y-axis by N−β in the
case of σsL

). This scaling analysis shows that, in the thermodynamic limit, the
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Figure 5.7: Color-map of the fraction of runs ending in a given relative size of the
largest network component sL for N = 2000, 〈k〉 = 10 and 10000 runs starting from
random initial conditions. Note the logarithmic color scale, with white corresponding
to no run ending in that relative size.

network would break apart for any finite value of p > 0. This might be related
to the fact that when the system evolves under the majority rule alone, it always
gets trapped in disordered configurations (in the N →∞ limit). Then, it seems
that even a very small rewiring rate is enough to remove the system from traps,
but at the cost of breaking the network apart. However, as we will show in the
next section, the time needed for the fragmentation to occur diverges with system
size. A deeper understanding of this phenomenon can be achieved by studying
stochastic trajectories of single realizations.

5.3

Time evolution

We are interested in quantifying the evolution of the system towards the final
states described above. In Fig. 5.9 we plot the survival probability Ps(t),

i.e, the probability that a realization did not reach the ordered state (ρ = 0) up
to time t.
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Figure 5.8: Histogram of network relative sizes for four different probabilities of
rewiring p, for N = 2000, 〈k〉 = 10 and 10000 runs starting from random initial condi-
tions.

When p = 0 we have Ps = 1 for all times, meaning that all realizations (except
for a few runs with the smallest size N = 500, as reported by Fernández-Gracia
et al., 2012) fall into a disordered configuration characterized by a constant value
of ρ > 0, as we shall discussed in detail in the next section. For p = 0.01,
p = 0.05 and p = 0.10 [panels (a), (b) and (c), respectively] we observe that Ps
experiences two decays at very different time scales, revealing the existence of two
different ordering mechanisms. As we will explain, the first decay from Ps = 1
to a plateau corresponds to the ordering of non-fragmented realizations, while
the second decay from the plateau to zero is due to the ordering of fragmented
runs. Take, for instance, p = 0.01 and N = 8000. We observe in Fig. 5.4 that
the fraction of runs ending in one component is P1 ' 0.9. We interpret that it
is the arrival of this 90% of runs to a one-component absorbing state with ρ = 0
which produces the first decay of the survival probability to Ps ' 0.1 around a
time t ' 103, as can be observed in panel (a) of Fig. 5.9. The remaining fraction
Ps ' 0.1 that survive lead to the plateau that lasts up to the second decay
around t ' 104, when they arrive to a fragmented absorbing state, again with
ρ = 0. Note also that both decay times decrease for increasing p, while the height
of the plateau rises (P1 increases). In the p = 0.30 case [panel (d) of Fig. 5.9]
the first decay of Ps is only observed for small systems, since for larger ones most
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Figure 5.9: Time evolution of the survival probability Ps for different values of p and
networks of size N = 500, 1000, 2000, 4000 and 8000 (curves from bottom to top and,
respectively, dotted, dashed, dash-dotted, solid and dash-dash-dotted). Averages are
over 104 independent runs.

realizations end up with a fragmented network (see Fig.5.4). This picture also
holds for larger values of p.

Description of trajectories in phase space

In order to gain an insight about the fragmentation phenomenon, we investigate
in this subsection individual trajectories of the system on the m − ρ plane,

where m is the link magnetization (Vazquez and Eguíluz, 2008; Vazquez et al.,
2008), the difference between the fractions of A and B links,

m =
∑N
i=1
(
kAi − kBi

)∑N
i=1 ki

. (5.3)

In Fig. 5.10 we display typical trajectories of the system for a network ofN = 2000
nodes and values of the rewiring probability p = 0, 0.01, 0.1 and 0.5. Trajectories
start at (m, ρ) ' (0, 0.5), corresponding to random initial conditions. Points (1, 0)
and (−1, 0) represent A and B one-component consensual configurations, while
the absorbing line ρ = 0 with |m| < 1 corresponds to a fragmented network.
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Figure 5.10: Typical trajectories of the system on the (m, ρ) space for a network of
N = 2000 nodes and different values of the rewiring probability p.

In the p = 0 case [Fig. 5.10(a)], we observe that realizations undergo a fast ini-
tial ordering in which associated trajectories go from ρ ' 0.5 to ρ ' 0.2 (with some
small changes in m) in approximately 25 Monte Carlo steps. This corresponds to
the fast formation of two giant (connected) domains of opposite states due to the
majority rule dynamics, as has been reported in previous works (Castellano and
Pastor-Satorras, 2006). Afterwards trajectories enter in a common curve which,
as in other cases (Vazquez et al., 2008), can be fit by a parabola, and where the
ordering process is accompanied by a change in magnetization. In our case the
parabola takes the approximate form ρ ' 0.2(1 − m2) and the system evolves
following a direct path towards |m| = 1, due to the fact that ρ cannot increase
in a majority rule update. This corresponds to the largest domain progressively
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invading the other. However, the ordering stops abruptly when the system falls
to a topologically trapped state with ρ > 0, preventing it from arriving to the
one-component ordered A or B states, (1, 0) or (−1, 0) points, respectively.

For p = 0.01 [Fig. 5.10(b)], most runs finally arrive to the one-component
ordered state, by means of the rewiring mechanism that helps the system escape
from frozen or dynamical traps. As mentioned before, even a small rewiring rate is
able to unlock frustrated links, allowing the system to keep evolving towards one-
component order (|m| = 1, ρ = 0). Nevertheless, there are some runs that escape
from the parabola and follow a nearly vertical downward trajectory (line ending
at ρ = 0 and m ' 0.25), even if they are initially attracted towards |m| = 1.
These runs are trapped around a given value of m and experience a relaxation
that decreases ρ very slowly while keeping m almost constant. It seems that in
these realizations some rewiring events trigger only a few successful majority rule
updates that are not enough to completely order the system in a one-component
network. This corresponds to the process of fragmentation of the network in two
components with different states. For larger rewiring rates more runs end up
fragmenting in two components [see Fig. 5.10(c)], until for large enough p no run
is able to follow the parabola [see Fig. 5.10(d)], leading to only fragmented final
states.

Mean-field approach

As explained in the last subsection and shown in Fig. 5.3, 〈ρ〉 undergoes a first
fast decay in a short time scale corresponding to the contribution of non-

fragmented realizations, and then a second much slower decay that corresponds
to fragmented realizations. Therefore, bearing in mind that much of the time
evolution of 〈ρ〉 is controlled by the second very slow dynamics of fragmenting
realizations, we develop in this section an analytical approach for this second
regime. We assume that the system starts at t = 0 from a trapped configuration
(see Fig. 5.2), which consists of two network components of similar size N/2
interconnected by frustrated links. These are links with the same state as the
majority of their neighboring links, thus they cannot change state [see Fig. 5.2(a)],
or links with equal number of neighbors in each state, thus they keep flipping
state from A to B and vice versa [blinkers, see Fig. 5.2(b)]. To estimate how
the density of frustrated links β varies with time, we now describe the events
and their associated probabilities that lead to a change in β. In a single time
step of interval dt = 1/N , a frustrated link is chosen with probability β. Then,
with probability p/2 the end of the link connected to the minority is randomly
chosen and rewired to another random node in the network. Finally, this end
lands on the component that holds the link’s state with probability 1/2. After
the rewiring, this link does no longer connect both components, thus the number
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of frustrated links is reduced by 1, leading to a change ∆β = −2/µN (with
µ ≡ 〈k〉, as above). Gathering all these factors, the average density of frustrated
links evolves according to

dβ(t)
dt

= − p

2µβ(t) , (5.4)

with solution

β(t) = β0 e
− p

2µt , (5.5)

where β0 is the initial density of frustrated links. Given that, on average, each
frustrated link accounts for the existence of µ−1 nodal interfaces, ρ is proportional
to β, and therefore we expect the average density of interfaces to decay as

ρ(t) ∼ e
− p

2µt . (5.6)
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Figure 5.11: Time evolution of the average density of nodal interfaces 〈ρ〉 on a semilog-
arithmic scale, for different values of the rewiring probability p. Symbols at the top cor-
respond to simulations on a network of N = 4000 nodes and mean degree µ = 20, while
bottom symbols are for a network of size N = 8000 and mean degree µ = 10. Time is
rescaled by p and 〈ρ〉 is normalized by its initial value to make the data collapse. Solid
lines are the analytical approximations from Eq. (5.6).

In Fig. 5.11 we show 〈ρ〉 as a function of time obtained from numerical sim-
ulations for various values of p (symbols) and two different networks, one of size
N = 8000 and µ = 10 and the other with N = 4000 nodes and µ = 20. We
observe that the expression (5.6) (solid lines) captures the behavior of 〈ρ〉 for
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most values of p and has the correct scaling with µ. The data for p = 0.2 deviates
from the pure exponential decay at long times, probably because the analyti-
cal approximation works better for large p, where the rewiring process seems to
dominate the dynamics.

Convergence times

Another quantity that is worth studying in this system is the time to reach
the final state, or convergence time, given that it complements our previous

analysis of the two ordering dynamics, majority rule and rewiring. In Fig. 5.12 we
show the mean time of convergence to the final ordered state for non-fragmented
and fragmented runs, respectively T1 and T2, versus the rewiring probability p 3.
Results are shown for three different system sizes. We observe that T2 is about
ten times larger than T1 for all values of p. This confirms the dynamical picture
that we discussed in the previous subsections. There is a first fraction of runs in
which the majority rule dynamics plays a leading role, constantly ordering the
system until it reaches one-component full order in a short time scale T1. But
there is also a second fraction of runs which fall into particular topological traps
that prevent the system from further ordering, and then the rewiring process
slowly leads to the fragmentation of the network in a much longer time scale
T2. Interestingly, rewiring always works as a perturbation that frees the system
whenever it gets trapped, but it seems that in the first type of runs perturbations
trigger cascades of ordering updates which are large enough to completely order
the network before it breaks apart.

An approximate expression for T2 can be obtained by considering the relax-
ation to the fragmented state given by Eq. (5.6), where the mean number of nodal
interfaces decreases to zero. The network breaks into two components when the
fraction of frustrated links holding both components together becomes smaller
than 2/µN , or ρ ∼ 1/N , since ρ is proportional to β, as we mentioned before.
Then, we can write 1/N ∼ exp(−p T2/2µ), from where

T2 ∼
µ

p
lnN . (5.7)

The inset of Fig. 5.12 shows that the approximate expression (5.7) captures the
right scaling of T2 with p and N . In Fig. 5.13 we check the dependence of T1
and T2 with the system size N . The y-axis of the main plot showing T2 has been
rescaled according to Eq. (5.7). The inset shows that T1 also scales as lnN .

As Fig. 5.12 shows, both T1 and T2 decay as 1/p in the low p limit. This is due
to the fact that, when p is very small, we can picture the typical evolution of the

3The subindices 1 and 2 refer here to one and two components, even though fragmented runs
may also have a few disconnected nodes
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Figure 5.12: Mean time to reach the fragmented and non-fragmented final states,
respectively T1 and T2, as a function of the rewiring probability p, for networks of size
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system as a series of alternating pinning and depinning processes. That is, initially
a series of majority rule updates take place, which partially order the system until
it reaches a frustrated configuration. Then the system stays trapped there for a
time of order 1/p until a successful rewiring event unlocks it. This is followed
by another avalanche of majority rule updates that ends on the next trapped
state. This process is repeated until a final absorbing ordered configuration is
reached. Given that the mean time interval between two avalanches scales as
1/p, the convergence time to any final state should scale as 1/p (see Fig. 5.12).
This implies that T1 and T2 diverge as p → 0. However, when p is strictly zero
the system is absorbed in a disordered configuration, which can be frozen or
dynamically trapped, and so the convergence time is finite. The p = 0 case also
differs from the p > 0 case in the fact that convergence times to the absorbing
disordered configurations seem to scale as T ∼ N0.375 (see Fig. 5.14), instead of
lnN .

10
2

10
3

10
4

N

10
2

10
3

T
10

2
10

3
10

4

N

0

150

300

450

600

T

Figure 5.14: Average time to reach an absorbing disordered state T as a function of
the systems size N on a logarithmic scale, for a static network (p = 0). The dashed line
has slope 0.375. The semilogarithmic scale in the inset shows that T grows faster than
lnN .
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5.4

Concluding remarks

We have studied a model that explores the majority rule link dynamics on a
coevolving network, where links in the local minority are rewired at random.

On topologically static (p = 0) large networks, the ordering process induced by
the majority rule stops before a completely ordered state is reached with all links
in the same state (the only possibility with no rewiring), because the system
falls into trapped disordered configurations. When the rewiring is switched on
(p > 0), the system is able to escape from these trapped configurations and
reach an ordered absorbing state that can be either a one-component network
with all links in the same state or a fragmented network with two opposed states
disconnected components. The former output is more likely when the rewiring
rate is low or networks are small, while the latter output becomes more and more
common as the rewiring rate increases or networks get larger, and it is the only
possible result for large rewiring rates or in the limit of very large networks. For
any finite-size network, a range of values of the rewiring probability p can be
found for which there is bistability between both possible outcomes. In the very
large size limit, however, the bistability region progressively vanishes and thus
even very small amounts of rewiring make the network break apart.

By studying the trajectories of the system in the m − ρ space, we were able
to identify two types of evolutions, which provides an insight about the mech-
anism of fragmentation. For no rewiring, all trajectories fall into an attractive
path with a parabolic envelope that ends in a point corresponding to a one-
component ordered configuration. However, these trajectories stop before reach-
ing that point, indicating that the system is trapped in a disordered configuration.
For low rewiring, most trajectories quickly move along the parabola until they
hit the one-component ordered absorbing point. This complete ordering process
is mainly driven by majority rule updates, and happens in a quite short time
scale. For high rewiring a new scenario appears. Most trajectories quickly stop
at some point in the parabola, and then slowly follow a nearly vertical path that
ends in the absorbing line ρ = 0 with |m| < 1, corresponding to a fragmented
network. This second fragmentation process takes a much longer time than the
initial ordering process, and controls the total convergence time to the final state.
Our results show that the frozen and dynamically trapped disordered configura-
tions promoted by the link-based majority rule dynamics are not robust against
topological perturbations in the form of a rewiring, since the continuous relinking
updates are able to remove the system from the topological traps.
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CHAPTER 6
Coupled dynamics of node and link

states

In order to address the intertwined dynamics of language use as a means of
communication —a property of the links or interactions between speakers—

and language preference as an attitude towards it —a property of the nodes or
speakers themselves—, we develop in this chapter a model of coupled evolution of
node and link states. As in the previous chapter, the use of two socially equivalent
languages is represented by a binary-state variable associated to the links. In
addition, nodes are endowed with a discrete variable representing their level of
preference for one or the other language. We assume the evolution of the language
used in the interaction between two speakers to result from the interplay between
their tendency to use their internally preferred language and their tendency to
reduce the cognitive cost associated with the use of several languages (Meuter
and Allport, 1999; Jackson et al., 2001). Finally, we also assume that the use of
a certain language among the social contacts of a speaker leads to an increase of
her preference for that language. In this way, node states influence the evolution
of link states and vice versa.

A broad range of possible asymptotic configurations is found, which can be
divided into three categories: frozen extinction of one of the languages, frozen co-
existence of both languages or dynamically trapped coexistence of both languages.
The probability of reaching a configuration where one of the languages becomes
extinct is found to vanish exponentially for increasing system sizes. The coexis-
tence of both languages is based on “ghetto-like” structures, where predominantly
bilingual speakers use one of the languages for the interactions among themselves
while they switch to the other language for communications with the rest of the
population. Furthermore, metastable states with non-trivial dynamics and very
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long survival times are frequently found. A system size scaling shows that the
time scale of survival of these metastable states increases linearly with the size of
the system. Thus, non-trivial dynamical coexistence is the only possible outcome
for large enough systems.

A detailed presentation of the model is given in Section 6.1, with a particular
emphasis on the coupling between the dynamics of link states and the dynamics
of node states. The structural constraints imposed by the definition of the model
are also described in this section, as well as the particularities of the networks
used for the numerical simulations. The different asymptotic configurations of
the model, as well as their respective likelihoods, are presented in Section 6.2,
while in Section 6.3 we study two different time scales characterizing the tran-
sient dynamics of the model before reaching these asymptotic configurations. In
Section 6.4 we investigate the kind of speakers that sustain the coexistence of
both languages. A comparison with a previously proposed model which takes
into account the existence of bilingual speakers is addressed in Section 6.5. Fi-
nally, some conclusions are drawn in Section 6.6. A further exploration of the
influence of one of the model parameters is addressed in Appendix 6.A.

6.1

The model

Inspired by the aforementioned language competition processes, we consider a
population of N speakers and the linguistic interactions between them —any

social interaction mediated through language—, represented, respectively, by the
nodes and the links of a network. We focus on the competition between two
socially equivalent languages, that we label as A and B. On the one hand, each
speaker i, with ki neighbors in the network of interactions, is characterized by a
certain preference xi for language A (node state), being (1 − xi) its preference
for language B. In particular, we model the preference xi as a discrete variable
taking values xi ∈ {0, 1/ki, 2/ki, . . . , 1}, where xi = 1 indicates an absolute or
extreme preference for language A and xi = 0 an absolute or extreme preference
for language B. On the other hand, each interaction between speakers can take
place in one of the two possible languages, being thus each link i–j characterized
by a binary variable Sij (link state) taking the value Sij = 1 if the language
spoken is A and Sij = 0 if language B is used.

Finally, the states of nodes and links evolve asynchronously, i.e., a single node
or link is updated at each time step: with probability p a randomly chosen node
is updated, and with the complementary probability (1 − p) a randomly chosen
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link is updated. Therefore, the probability p sets the relationship between the
time scale of evolution of the speakers’ preferences and the time scale at which
the language used in conversations changes. Note that time is measured in the
usual Monte Carlo steps, with N updating events per unit time —whether node
or link updates. While the parameter p does have an effect on how fast the system
reaches its asymptotic behavior, the main features of this asymptotic regime seem
to be unaffected by it (see Appendix 6.A). Thus, we focus here on the particular
case of equal probability of node and link updates, i.e., p = 0.5.

Evolution of link states

The dynamics of link states —the language used in the interactions between
speakers— results from the interplay between two mechanisms. On the one

hand, we assume that there is a cognitive effort or cost associated with the use
of several languages (Meuter and Allport, 1999; Jackson et al., 2001), which
leads speakers to try to use the same language in all their conversations. As a
consequence, the interaction between two given speakers tends to take place in
the language most often used by both of them in their conversations with other
speakers. In particular, we can define for each link i–j the majority pressure for
language A as the fraction of the total number (ki − 1) + (kj − 1) of interactions
with other speakers in which language A is used,

FAij =
kAi + kAj − 2Sij
ki + kj − 2 , (6.1)

where kAi stands for the number of interactions in which speaker i uses language
A, and ki for its total number of interactions. On the other hand, speakers tend
to use their internally preferred language: the higher their preference for a given
language, the more willing they are to enforce its use in their conversations with
other speakers. Combining the preferences of both participants in each interaction
i–j, we can define the link preference for language A as

PAij =



xixj
xixj + (1− xi)(1− xj)

, if xixj + (1− xi)(1− xj) > 0 ,

1
2 , otherwise ,

(6.2)

where the second case ensures that Pij is well-defined when there is a tie between
two speakers with extreme preferences for different languages (xi = 0 and xj = 1,
or xi = 1 and xj = 0). This expression for PAij takes into account the preferences
of both nodes, xi and xj , in such a way that it yields the value 1 if both nodes
have complete preference for language A, xi = xj = 1, and it yields 0 if both
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nodes have null preference for it, xi = xj = 0. If one of the nodes is neutral
with respect to language A, say xi = 1/2, then the link preference is equal to
the other node’s preference, xj . Finally, the definition is such that it satisfies the
requirement PAij (xi, xj) = 1− PAij (1− xi, 1− xj) or PAij (xi, xj) = 1− PBij (xi, xj)
reflecting the symmetry between the two languages. A schematic example of the
calculation of these two quantities is shown in Fig. 6.1. Note that the majority
pressure and link preference for language B are, respectively, FBij = 1− FAij and
PBij = 1− PAij .

xi ∈ {0, 1
ki

, 2
ki

, ..., 1}

PA
ij = 1

3

FA
ij = 4

7

Sij

FA
ij < PB

ij =⇒ Sij → Sij = 0

xj = 1
4

xi = 3
5

i j

A

B

FB
ij = 3

7

PB
ij = 2

3

1

0

Figure 6.1: Schematic illustration of the evolution of link states. The use of the two
competing languages is represented, respectively, by red links and blue links, while the
preferences of the speakers are represented by node colors ranging from red to blue
through white. The interaction being updated is represented by a gray link. Only bold
links are relevant for the particular link update illustrated here.

When a link i–j is picked for updating, its new state is chosen according to the
following rules: (i) if the sum of the majority pressure and the link preference for
language A is larger than the corresponding sum for language B, then language
A is chosen; (ii) if, on the contrary, the sum is larger for language B than it is
for language A, then language B is chosen; (iii) if there is a tie between both
languages, then one of them is chosen at random. Given the symmetry between
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both languages, these rules can be formally written as

Sij =


1 (language A) , if FAij > PBij ,

0 (language B) , if FAij < PBij ,

0 or 1 randomly , if FAij = PBij ,

(6.3)

(see Fig. 6.1 for a schematic example of a link update). Note that, if the prefer-
ences of all the speakers are fixed as 1/2, then all link preferences are also fixed as
1/2 and we recover the majority rule for link states studied by Fernández-Gracia
et al. (2012): the state of a link is updated to the state of the majority of its neigh-
boring links. With freely evolving preferences of the speakers, on the contrary,
the threshold for a state to be considered a majority is not anymore universal and
fixed at 1/2, but becomes local and dynamic: the fraction of neighbors in state B
needs to be larger than PAij for link i–j to change its state to B, while the fraction
of neighbors in state A needs to be larger than PBij = (1 − PAij ) for it to change
its state to A. Finally, note that speakers with extreme preferences (xi = 0 or
xi = 1) impose their preferred language in all their conversations, except when
they are faced by a speaker with an extreme preference for the other language,
when there is an equilibrium between them and the language for their interaction
is chosen at random.

Evolution of node states

Regarding the dynamics of node states, we assume that speakers update their
preferences according to the language that they observe their neighbors us-

ing between them —obviously, only those who are also neighbors of each other.
Thus, we implicitly assume that triangles represent actual group relationships, in
which each speaker is aware of the interaction between the other two (see Serrour
et al., 2011, for a study on the relationship between communities and triangles).
In these terms, the more often the participants of the closer social group of a
speaker —her triangular relationships— use a given language to communicate
between themselves, the more likely it is that the speaker will update her prefer-
ence towards that language. In particular, when a node i is picked for updating,
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its state xi evolves according to the following probabilities

P

(
xi → xi + 1

ki

)
=


TAi
Ti

, if xi 6= 1 ,

0 , otherwise ,

P

(
xi → xi −

1
ki

)
=


(

1− TAi
Ti

)
, if xi 6= 0 ,

0 , otherwise ,

(6.4)

where Ti is the total number of links between neighbors of node i and TAi is
the number of those links in state 1, i.e., those in which language A is used
(see Fig. 6.2 for a schematic example of a node update). Note that this evolu-
tion is equivalent to a one-dimensional random walk in the discrete-state space
xi ∈ {0, 1/ki, 2/ki, . . . , 1} with a bias towards 0 or 1 given by the probabilities in
Eq. (6.4). The fact that the modification of the preference (∆x = 1/ki) is larger
in nodes with fewer links can be motivated by noting that they tend to have fewer
triangles and, therefore, each of them has a stronger influence on the node.
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Figure 6.2: Schematic illustration of the evolution of node states. The use of the
two competing languages is represented, respectively, by red links and blue links, while
the preferences of the speakers are represented by node colors ranging from red to blue
through white. Only bold links are relevant for the particular node update illustrated
here.
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Network structure

The model presented above imposes a structural constraint on the underlying
network topology: in order for the evolution of the speakers’ preferences to be

well-defined, each of them must be part of, at least, one triangle. In fact, it has
been recently shown that real social networks are characterized by an abundance
of triangles, related to high values of the clustering coefficient (Newman and Park,
2003; Dorogovtsev and Mendes, 2003; Newman, 2010; Foster et al., 2011; Colomer-
de Simón et al., 2013). Thus, we are interested in networks with a large proportion
of triangles (Serrano and Boguñá, 2005; Newman, 2009; Bianconi et al., 2014).
In particular, we focus here on a socially inspired network generation algorithm
proposed by Klimek and Thurner (2013) and based on triadic closure, i.e., on
the principle that individuals tend to make new acquaintances among friends of
friends. Validated with data from a well-studied massive multiplayer online game
(Szell et al., 2010; Szell and Thurner, 2010, 2012), this network generation model
involves three different mechanisms: random link formation, triadic closure —
link formation between nodes with a common neighbor—, and node replacement
—removal of a node with all its links and introduction of a new node with a
certain number of links.

Bearing in mind the structural constraint imposed by our model, and noticing
that the node replacement mechanism might lead to some nodes losing all their
triangles, we introduce a modification of the algorithm so as to avoid removing
all the triangles from any node. Namely, when the removal of a node would lead
to some of its neighbors losing all their triangles, these neighbors are arranged
in triangles between themselves, or with randomly chosen nodes when necessary.
Furthermore, the new node is introduced as a triangle by initially linking it with
a random node and one of its neighbors. Finally, we use the same parameter
values found by Klimek and Thurner (2013) when calibrating their algorithm
to the friendship network of the above-mentioned online game: a probability of
triadic closure c = 0.58 [being (1 − c) the probability of random link formation]
and a probability of node replacement r = 0.12. The degree distribution and
the scaling of the average clustering coefficient as a function of the degree are
shown in Fig. 6.3 for the networks obtained in this manner. A fit of the degree
distribution to a q-exponential function, eq(x) = (1 + (1− q)x)(1/(1−q)), leads to
a value of q compatible with a purely exponential decay [q = 1.0096, see panel
(a)]. Regarding the average clustering coefficient as a function of the degree, a fit
to a power-law decay leads to an exponent slightly smaller than one [β = 0.9548,
see panel (b)]. Comparing these results with those presented by Klimek and
Thurner (2013) (with fitting parameters q = 1.1162 and β = 0.693), we conclude
that the described modification does not affect the general characteristics of the
networks created, but it does have an effect on the specific values of the different
scaling exponents.
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Figure 6.3: Panel (a): Degree distribution and fit to a q-exponential function (for
k ≥ 3). Panel (b): Average clustering coefficient as a function of the degree and fit to a
power-law function (for k ≥ 5). 10000 realizations of the network generation algorithm
were used.

6.2

Transient dynamics and asymptotic
configurations

By means of numerical simulations, we study the coupled dynamics of node
and link states described above. Let us start by introducing three different

measures characterizing the state of the system at any given time. Firstly, bearing
in mind that we are interested here in the survival of languages regarding their
actual use in the interactions between speakers, we can define an order parameter
ρ in terms of link states. In particular, we define ρ as the density of nodal
interfaces (Fernández-Gracia et al., 2012; Carro et al., 2014), i.e., the fraction of
pairs of connected links —links sharing a node— that are in different states,

ρ =

N∑
i=1

kAi k
B
i

N∑
i=1

ki(ki − 1)/2
, (6.5)

where ki is the degree of node i, and kA/Bi is the number of A/B-links connected
to node i. The order parameter ρ, by definition ρ ∈ [0, 1], is thus a measure of
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the local order in the system, becoming ρ = 0 when all connected links share
the same state and ρ = 1/2 for a random distribution of link states. Note that,
defined as such, the order parameter ρ can also be understood as the usual density
of active links —fraction of links connecting nodes with different states— in the
line-graph of the original network (Rooij and Wilf, 1965; Krawczyk et al., 2011;
Fernández-Gracia et al., 2012; Carro et al., 2014).

Secondly, we introduce the fraction of links in the minority language, m, as an
alternative, non-local measure characterizing the system in terms of link states,

m =



∑
i

kAi∑
i

ki
, if

∑
i

kAi ≤
∑
i

kBi ,

∑
i

kBi∑
i

ki
, otherwise .

(6.6)

Note that the minority language is thereby defined as that which is less used in
interactions between speakers —fewer links in the corresponding state—, regard-
less of the total number of those speakers. In this way, even if a majority of
the population uses a certain language in some of their interactions, we will still
consider it to be the minority language if only a minority of the total number of
interactions actually take place in that language. By definition, m ∈ [0, 1/2].

Finally, we can characterize the system in terms of node states by introducing
the average preference of the speakers for the minority language, xM ,

xM =


1
N

∑
i

xi , if
∑
i

kAi ≤
∑
i

kBi ,

1
N

∑
i

(1− xi) , otherwise ,
(6.7)

where, as before, the minority language is identified according to the fraction of
interactions in which it is used. By definition, xM ∈ [0, 1].

The time evolution of these three measures is presented in Fig. 6.4 for indi-
vidual realizations of the model: the order parameter in panel (a), the fraction
of links in the minority language in panel (b), and the average preference of
the speakers for the minority language in panel (c). All realizations start from
a random initial distribution of states for both nodes and links, leading to all
three measures starting from 1/2, and they all experience a substantial ordering
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process in which one of the languages becomes predominant, leading to a large
decrease of all three measures. Nevertheless, a variety of asymptotic behaviors
can be observed. These behaviors are a direct consequence of the different types
of asymptotic configurations reached by the system, which can be classified as:

(i) Frozen extinction states: Absorbing configurations where one of the lan-
guages has completely disappeared, all links and nodes sharing the same
state, and thus no further change of state is possible in the system. As
a result, all the three introduced measures become zero (see black lines in
Fig. 6.4).

(ii) Frozen coexistence states: Absorbing configurations where both language
still exist but no further change of state is possible in the system. As a
result, all our three measures remain constant with non-zero values (see
blue lines in Fig. 6.4). Note that these situations of coexistence are charac-
terized by one of the languages becoming a minority but persisting in the
form of “ghetto-like” structures, defined as subsets of nodes such that all
of them belong to triangles completely included in the subset. A schematic
illustration of a simple “ghetto-like” motif composed of a single triangle can
be found in Fig. 6.5(a).

(iii) Dynamically trapped coexistence states: Configurations where both lan-
guages still exist and the system is forever dynamic, but only a restricted
(and usually small) number of changes of state are possible. In particu-
lar, only changes that do not modify the density of nodal interfaces are
accessible. Bearing in mind that, by definition of the model, these changes
are reversible, the system can move back and forth ad infinitum (Olejarz
et al., 2011a,b). Depending on the kind of dynamical trap involved, we can
identify three types of configurations:

– Configurations based on Blinker links: Both the order parameter and
the average preference of the speakers for the minority language remain
constant while the fraction of links in the minority language fluctuates
around a certain value (see orange lines in Fig. 6.4). A schematic illus-
tration of the most simple blinker link motif is presented in Fig. 6.5(b).

– Configurations based on Blinker nodes: Both the order parameter and
the fraction of links in the minority language remain constant while
the average preference of the speakers for the minority language fluc-
tuates around a certain value (see green lines in Fig. 6.4). A schematic
illustration of a single blinker node motif can be observed in Fig. 6.5(c).

– Configurations based on both blinker links and blinker nodes: More
or less complex combinations of the two previous types, leading to
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6.2. Transient dynamics and asymptotic configurations

a constant order parameter and a fluctuating fraction of links in the
minority language and average preference of the speakers for it.

Note that dynamical traps can only appear at the interface between the
frozen, “ghetto-like” structures described above and the rest of the network.

Apart from these asymptotic configurations, we can also observe the presence of
long-lived metastable coexistence states. These non-trivial dynamical states are
characterized by fluctuating, non-zero values of all the three introduced measures
(see red lines in Fig. 6.4). The metastability of these states is based on a variation
or weaker version of the “ghetto-like” structures described above, which would
now consist of a subset of nodes such that a significantly large fraction of the
triangles they belong to are completely included in the subset, i.e., they have
a significantly larger number of triangles towards the inside of the subset than
towards the outside. Due to finite-size fluctuations, however, the system always
ends up falling to one of the previously described asymptotic states.

Once the different types of asymptotic states of the system have been pre-
sented, let us now focus on their relative likelihood. In particular, we show in
Fig. 6.6 the fraction of realizations having reached each of the possible asymptotic
configurations before the end of the studied time period (t = 105), as well as the
fraction of those still in a metastable state, for different system sizes. While the
(frozen) extinction of the minority language is the most likely outcome for small
systems (N < 2000), its probability decreases exponentially with system size,
thus becoming negligible for large enough systems. Frozen coexistence is clearly
predominant for large system sizes inside the studied range (2000 < N ≤ 8000).
However, given the linear growth observed in the fraction of dynamically trapped
coexistence configurations, the numerical results presented in this figure for lim-
ited system sizes are inconclusive regarding the prevalence of frozen or dynam-
ically trapped coexistence in the infinite size limit. Regarding the metastable
coexistence states, it should be noted that they are not asymptotic states, and
thus the system will eventually end up falling to any of the other frozen or dynam-
ically trapped configurations. The fact that the fraction of metastable realizations
at a given time grows linearly with the system size, suggests that the time scale
in which the system is able to leave those metastable states also grows linearly
with N , a point that will be discussed further in the next section.
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Figure 6.4: Time evolution of (a) the order parameter, (b) the fraction of links in
the minority language, and (c) the average preference of the speakers for the minority
language. 200 individual realizations of the process are shown, among which 5 realiza-
tions are highlighted as representative of the different types of possible trajectories. The
system size used is N = 8000.
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Figure 6.5: Schematic illustration of the kind of structural motifs characterizing the
different asymptotic configurations. The use of the two competing languages is repre-
sented, respectively, by solid red links and dashed blue links, while the preferences of
the speakers are represented by node colors ranging from red to blue through white.
Gray color is used to represent blinking or undecided situations. Crosses indicate the
non-existence of a link.

6.3

Time scales of extinction and metastable
coexistence

Due to the diversity of possible asymptotic configurations described in the
previous section, different time scales can be defined to characterize the

dynamics of the system. In particular, we focus here on two time scales: the
characteristic time of extinction of one of the languages and the characteristic
duration or survival time of the metastable states. While in the first case we
focus on realizations reaching the frozen extinction state over the time period
under study, in the second case we consider all realizations leaving the metastable
coexistence state over that time period, regardless of the particular asymptotic
state they reach.

Let us start by considering the time evolution of the probability of coexistence
of both languages Pc(t), i.e., the fraction of realizations not having reached a
frozen extinction configuration by time t, depicted in Fig. 6.7 for different system
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Figure 6.6: Scaling with system size of the fraction of realizations having reached each
of the possible asymptotic configurations at time t = 105, as well as the fraction of
those still in a metastable state. A total of 10000 realizations were used, with different
networks and different initial conditions.

sizes. Coherent with the results presented above in Fig. 6.6, the coexistence
probability becomes closer and closer to one, for any time, as the system size
becomes larger and larger. For small systems, on the contrary, the probability of
both languages coexisting shows a large decrease around a certain characteristic
time, which grows with system size, before asymptotically reaching a plateau.
Note, nevertheless, that this plateau is not reached as long as there are metastable
realizations able to reach the frozen extinction configuration.

As we can observe in Fig. 6.7, most extinction events take place around a
certain characteristic time. For instance, for the system size N = 1000, 90%
of all extinction events observed in the interval t ∈ [0, 105] take place between
t = 200 and t = 2000. However, for a non-negligible fraction of realizations the
extinction of one of the languages happens at significantly longer times, and thus
the coexistence probability keeps on slowly decreasing instead of quickly reaching
a plateau. In order to further analyze this behavior, we present in Fig. 6.8 the
probability distribution of extinction times pe(t) for the system size N = 1000,
where, according to the results presented in Fig. 6.6, extinction is predominant.
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Figure 6.7: Time evolution of the coexistence probability (fraction of realizations not
having reached the frozen extinction configuration by time t) for different system sizes,
namely N = 250, 500, 1000, 2000, 4000, and 8000. A total of 10000 realizations were
used, with different networks and different initial conditions.

Note that this distribution is related to the coexistence probability by

Pc(t) = 1−
∫ t

0
pe(t′)dt′ . (6.8)

In this way, we see that extinction times are broadly distributed and that the
decay of their probability for long times seems to be compatible with a power law
pe(t) ∼ t−α with exponent α ∼ 0.5. Being the exponent smaller than one, the
mean of the distribution diverges, and thus there is no well-defined characteristic
time scale for the extinction events. As a consequence, even if the extinction of
one of the languages is predominant for small system sizes, there are, at all time
scales, realizations where both languages are still coexisting.

A further characterization of the behavior of the model is given by the time
scale at which the system is able to escape from the metastable coexistence states,
i.e., the characteristic survival time of these non-trivial dynamical states before
the dynamics of the system becomes locked in any frozen or dynamically trapped
configuration. In order to study this, let us first introduce the survival probability
of the metastable states Ps(t), defined as the fraction of realizations not having
reached any frozen or dynamically trapped state by time t. Our results for this
probability are presented in Fig. 6.9, on a log–log scale, for different system sizes.
Comparing Figs. 6.7 and 6.9 we can observe that, similarly to the coexistence
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Figure 6.8: Distribution of extinction times for realizations reaching the frozen extinc-
tion configuration over the interval t ∈ [0, 105] (69.5% of the 10000 realizations studied)
for a system size N = 1000. A power-law decay with exponent α = 0.5 is shown as a
guide to the eye.

probability, surviving realizations are more and more likely, for any point in time,
for larger and larger systems. On the contrary, the survival probability of the
metastable states does not asymptotically approach any plateau, as it was the case
for the coexistence probability. This is coherent with the fact that, by definition,
all metastable realizations eventually end up being frozen or dynamically trapped.

Even if the survival probability of the metastable states appears to be fat-
tailed in the log–log scale of Fig. 6.9, a closer look at the same results presented
on a semilogarithmic scale in Fig. 6.10 shows that any fat-tailed behavior is
interrupted by an exponential decay occurring after a long cutoff time. This
final exponential decay allows for both the mean and the fluctuations of the
distribution of survival times of the metastable states to be well-defined, and
thus the mean can play the role of a characteristic duration or survival time
of these metastable states τs before the system reaches a frozen or dynamically
trapped configuration.

The characteristic survival time of the metastable states τs can be directly
computed from their survival probability Ps(t) as

τs =
∫ ∞

0
Ps(t)dt . (6.9)
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Figure 6.9: Time evolution of the survival probability of the metastable states (fraction
of realizations not having reached any frozen or dynamically trapped state by time t) on
a log–log scale and for different system sizes, namely N = 250, 500, 1000, 2000, 4000,
and 8000. A total of 10000 realizations were used, with different networks and different
initial conditions.

However, given that a non-negligible number of realizations in our sample stay in a
metastable state for the whole period under study —particularly for large system
sizes—, we cannot simply discard the queue of the distribution and numerically
compute the mean using only the observed survival times. On the contrary, we
need to take the queue of the distribution into account, which we can do by
fitting the final exponential decay uncovered above in Fig. 6.10. In particular,
if we assume that the survival probability of the metastable states takes the
functional form

Ps(t) = ae−b(t−t
∗) for t > t∗ , (6.10)

from a certain cutoff time t∗, where a, b and t∗ are fitting parameters, then we
can divide the integral in Eq. 6.9 into two terms,

τs =
∫ t∗

0
Ps(t)dt+

∫ ∞
t∗

Ps(t)dt =
∫ t∗

0
Ps(t)dt+

∫ ∞
t∗

ae−b(t−t
∗)dt . (6.11)

Finally, solving the integral in the last term, we find an expression for the char-
acteristic survival time of the metastable states as a sum of two contributions,

τs =
∫ t∗

0
Ps(t)dt+ a

b
, (6.12)
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Figure 6.10: Time evolution of the survival probability of the metastable states (frac-
tion of realizations not having reached any frozen or dynamically trapped state by time
t) on a semilogarithmic scale and for different system sizes, namely N = 250, 500, 1000,
2000, 4000, and 8000. An exponential decay with the slope obtained by fitting the data
for N = 1000 is also shown as a guide to the eye (thin solid gray line). A total of 10000
realizations were used, with different networks and different initial conditions.

the first of which can be numerically computed as the average of the survival
times of the realizations reaching a frozen or dynamically trapped state before t∗.
Regarding the second contribution, it can be computed by an exponential fit to
the results presented in Fig. 6.10 for t ≥ t∗.

Results for the scaling with system size of the characteristic survival time of
the metastable states are presented in Fig. 6.11, showing a linear relationship
between both quantities. Thus, for increasing system sizes, realizations survive
for longer and longer times in a metastable state before falling to a frozen or
dynamically trapped configuration. Moreover, in the infinite size limit, the system
is unable to escape from the metastable states in any finite time.

6.4

Use of the minority language

Once we have identified the different types of configurations associated with
the coexistence of both languages, and studied their probabilities and typical
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Figure 6.11: Scaling with system size of the characteristic survival time of the
metastable states. A total of 10000 realizations were used, with different networks
and different initial conditions.

time scales, let us now turn our attention to the extent of this coexistence. In
particular, bearing in mind that the situations of coexistence are characterized
by one of the languages becoming a clear minority (see Section 6.2), we focus
here on two measures quantifying the use of this minority language: the number
of speakers who use only this language (minority language monolingual speakers,
NM ) and the number of those who use both languages (bilingual speakers, NAB).
In order to consider only very long-lived metastable states, apart from frozen and
dynamically trapped coexistence configurations, we focus on the last point of
the time period under study, t = 105, and we average only over realizations
where both languages are still coexisting (which we note by 〈·〉c). Results for
the dependence of these two quantities on system size are presented in Fig. 6.12,
measured as fractions of the total number of speakers in the main plot and as
absolute numbers in the inset.

A first observation is that the state of coexistence is predominantly sustained
by bilingual speakers, both their fraction and their absolute number being signif-
icantly larger that those corresponding to monolingual speakers of the minority
language for any system size. Secondly, while both fractions of minority-language
speakers are shown to be decreasing functions of the system size for small systems,
they appear to be reaching a plateau for large systems. On the one hand, bearing
in mind that averages are computed over coexisting realizations —rare for small
systems, predominant for large ones—, this suggests that there is a minimum
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Figure 6.12: Scaling with system size of the fractions of minority-language monolingual
and bilingual speakers at the last point of the time period under study, t = 105, averaged
over coexisting realizations. Inset: Scaling with system size of the absolute number of
minority-language monolingual and bilingual speakers at the last point of the time
period under study, t = 105, averaged over coexisting realizations.

size of the structures sustaining the use of the minority language. In this way,
the smaller the size of the system, the less likely these minimal structures are to
appear, but the larger the fraction of the system they represent whenever they
actually appear. On the other hand, the asymptotic tendency of both fractions
towards a plateau suggests a linear growth with system size of the absolute num-
ber of both monolingual and bilingual speakers of the minority language for large
systems, which is confirmed in the inset. Finally, the substantially faster growth
of the absolute number of bilingual speakers with system size, as compared to
minority-language monolinguals, underlines again the importance of bilinguals in
sustaining the use of the minority language: bilingualism becomes more and more
prevalent among speakers of the minority language for growing systems.
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6.5

Comparison with the AB-model

Given the non-standard topology used for our numerical simulations, im-
posed by the structural constraints of the model —namely, an abundance of

triangles—, we present here, for comparison, numerical results for the AB-model
in the same networks. Let us first briefly recall the main features of this model,
in which language use is considered to be a state of the agents. As outlined in
Section 1.3, the AB-model was proposed by Castelló et al. (2006) based on the
works of Wang and Minett (2005), and it develops a modification of the original,
binary-state Abrams-Strogatz model to account for the case of two non-excluding
options by introducing a third, intermediate state. Thus, agents can be in one
of the following states: A (monolingual speaker of language A), B (monolingual
speaker of language B), or AB (bilingual speaker). Starting from a random initial
distribution of states, an agent is randomly chosen at each iteration and its state
is updated according to the following probabilities,

pA→AB = 1
2σB , pB→AB = 1

2σA ,

pAB→B = 1
2(1− σA) , pAB→A = 1

2(1− σB) ,
(6.13)

where σA, σB and σAB are, respectively, the fractions of neighbors of the chosen
agent in state A, B and AB (note that σA + σB + σAB = 1). That is, monolingual
speakers of A (B) become bilinguals with a probability proportional to the local
fraction of monolingual speakers of B (A), while bilinguals become monolingual
speakers of A (B) with a probability proportional to the local fraction of speakers
of A (B), which includes both monolingual and bilingual speakers.

Frozen coexistence configurations and dynamically trapped states are not pos-
sible in the AB-model, which has, by definition, a single absorbing state: the
extinction of one of the languages. Therefore, the order parameter ρAB , defined
now as the density of link interfaces —fraction of links connecting nodes with
different states—, is enough to characterize the time evolution of individual re-
alizations, some of which are shown in Fig. 6.13. While this parameter ρAB is
different from the order parameter ρ used above to characterize our model, both
of them are measures of the local order of the system. Note that, due to the exis-
tence of three different states, all realization start from ρAB = 2/3, corresponding
to a random initial distribution of states. Similarly to our model, all the real-
izations go through a substantial ordering process in which one of the languages
becomes predominant. In contrast to our model, however, this ordering process
takes place around an order of magnitude before (t ∼ 102 as opposed to t ∼ 103)
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and it very quickly leads to the complete extinction of one of the languages, all
nodes sharing the same state, whether A or B monolingual. Furthermore, only
very few realizations are observed to last noticeably longer than the rest of them
(t ∼ 600), suggesting that there are no long-lived metastable coexistence states
(compare with Fig. 6.4).
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Figure 6.13: Time evolution of the order parameter (interface density) for the AB-
model. 200 individual realizations of the process are shown. The system size used is
N = 8000.

Given that the only asymptotic state of the AB-model is the frozen extinction
of one of the languages, the survival of a non-trivial dynamics —not having
reached any frozen or dynamically trapped state— and the coexistence of both
languages —not having reached the frozen extinction state— are equivalent, and
so are their respective probabilities, Ps and Pc. Results for the time evolution
of the survival (or coexistence) probability Ps(t) are presented in Fig. 6.14 for
different system sizes. As we can observe, after a very short transient (lasting until
t ∼ 30), the likelihood of an active state where both languages coexist quickly
falls to zero, with no fat-tailed behavior. Furthermore, this decrease seems to be
almost independent of system size. Both features are in agreement with the results
reported for the AB-model in random networks without communities (Castelló
et al., 2007; Toivonen et al., 2009). They are, however, in sharp contrast with
the results corresponding to our model, presented above in Figs. 6.7 and 6.9.

The probability distribution of extinction (or survival) times pe(t) is shown
in Fig. 6.15 for a system size N = 8000. As opposed to the results presented in
Fig. 6.8 for our model, the extinction times of the AB-model are very closely dis-
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Figure 6.14: Time evolution of the survival probability (fraction of realizations not
having reached a frozen state by time t) for the AB-model and for different system sizes,
namely N = 250, 500, 1000, 2000, 4000, and 8000. A total of 10000 realizations were
used, with different networks and different initial conditions.

tributed around the peak, i.e., almost no realization is found to last significantly
longer than the rest of them —suggesting the absence of long-lived metastable
states—. Therefore, the mean of the distribution is well-defined and it can be
used as a characteristic extinction time scale. In contrast with the method used
to analyze our model, where a non-negligible number of realizations survived in
a non-trivial dynamical state for the whole period of time under study (see Sec-
tion 6.3), we can here numerically compute the mean of the distribution from
our sample of realizations, given that all their survival times are smaller that the
studied time period. The dependence of this characteristic extinction time τe on
system size is also depicted in Fig. 6.15 as an inset. In particular, τe is found
to be a logarithmic function of the system size, to be compared with the linear
relationship found for our model and shown in Fig. 6.11. This result is coherent
with the previous observation regarding the small influence of system size on the
survival probability.
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Figure 6.15: Distribution of extinction times for the AB-model and for a system size
N = 8000. Inset: Scaling with system size of the characteristic extinction time for the
AB-model. A total of 10000 realizations were used, with different networks and different
initial conditions.

6.6

Concluding remarks

We introduced here a language competition model where both the use and
the preference for a given language are included, with different but coupled

dynamics. In particular, we proposed to consider the use of a language as a
property of the interactions between speakers and the preference or attitude of
the speakers towards it as a property of the speakers themselves, and we focused
on the case of two socially equivalent languages. In this way, bilingualism is
not anymore introduced as an ad hoc, third, mixed state as in previous works,
but arises naturally by simply considering speakers who use different languages
in different interactions. In the proposed model, the language used in a given
interaction results from an interplay between the preferences of both speakers
and the languages they use in the rest of their interactions. Furthermore, the
preferences of the speakers are influenced by the language used by their social
contacts between themselves —triangles in the social network of interactions—.
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Thus, we focused on socially inspired network topologies, where triangles are
generally abundant.

As opposed to most of the previously proposed models, where the extinction of
one of the languages is an inevitable outcome of the dynamics, we found a broad
range of possible asymptotic configurations, which can be classified as: frozen
extinction states, frozen coexistence states, and dynamically trapped coexistence
states. Furthermore, metastable coexistence states with non-trivial dynamics
were found to be abundant and with very long survival times. By means of a
system size scaling, we showed that the probability of extinction of one of the lan-
guages decreases exponentially with system size, therefore becoming negligible for
large enough systems. Moreover, we showed that even for small systems extinc-
tion times are so broadly distributed that coexisting realizations can be found
at all time scales. Regarding the metastable coexistence states, we showed that
their characteristic duration or survival time before the system reaches any frozen
or dynamically trapped configuration scales linearly with system size. Thus, in
the infinite size limit, all realizations will be found to be in a non-trivial dynam-
ical coexistence state for any finite time. Finally, we showed that bilingualism
becomes more prevalent among speakers of the minority language the larger the
size of the system.

The dynamics of the system being characterized by the fast emergence of
a predominant language, we found that, as the use of the minority language
decreases, it becomes increasingly confined to the more intimate social spheres
or group interactions —triangular relationships—. In particular, the situations
of coexistence were found to be based on the existence of “ghetto-like” struc-
tures, where predominantly bilingual speakers use the minority language for the
interactions among themselves —mostly triangular— while they switch to the
majority language for communications with the rest of the population —mostly
non-triangular—. In this way, bilingual speakers with a strong preference for the
minority language, and using it for their close group interactions, are found to
play an essential role in its survival.
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APPENDICES
TO CHAPTER6

6.A

Relative time scales for the evolution of nodes
and link states

The model of coupled evolution of node and link states introduced in Section 6.1
includes a parameter p that sets the relationship between the time scales of

evolution of the speakers’ preferences —node states— and the languages used in
conversations —link states—. In particular, at each time step, we choose whether
to update the state of a node or the state of a link according to the probabilities
p and (1 − p), respectively. All the results presented in the main text of the
chapter were obtained for the particular case of equal probability of node and
link updates, i.e., p = 0.5. In this appendix, we explore the influence of this
parameter p on some of the quantities studied above, showing that, while there
is an influence on how fast the system reaches its asymptotic behavior, the main
features of the asymptotic states described in the main text of the chapter are
independent of p.

Let us start by considering the influence of p on the time evolution of the
probability of coexistence of both languages Pc(t), i.e., on the fraction of realiza-
tions not having reached a frozen extinction configuration by time t. We show in
Fig. 6.16 this time evolution for a system size N = 1000 and for different values
of the parameter p. Note that the value p = 0.5 in this figure coincides with the
system size N = 1000 shown above in Fig. 6.7. As we can observe, all curves be-
have as explained in the main text for small system sizes: all of them experience
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a substantial decrease around a certain characteristic time before asymptotically
reaching a plateau, whose height appears to be largely unaffected by the value
of p. On the contrary, it appears to have a relevant influence on both the char-
acteristic time at which this large decrease takes place and on its duration. In
particular, the further away we move from p = 0.5 towards p = 0 or p = 1, the
larger the characteristic time of the decrease (see dark red and blue as opposed to
light colors). Thus, we see that the arrival of the system to the asymptotic state
is delayed whenever there is a difference in the rate of evolution of nodes and
links. This is due to the fact that, being their dynamics coupled, if links evolve
faster than nodes, then the links have to wait for the evolution of the nodes, and
vice versa. Furthermore, larger values of p lead to faster rates of decrease of the
probability of coexistence (see the slope of the dark blue curve as opposed to the
dark red one), which points at the fact that faster nodes (p > 0.5) lead to a faster
evolution of the system than faster links (p < 0.5).
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Figure 6.16: Time evolution of the coexistence probability (fraction of realizations not
having reached the frozen extinction configuration by time t) for a system size N = 1000
and for different values of the parameter p. A total of 10000 realizations were used, with
different networks and different initial conditions.

A similar influence of the parameter p can be observed in Fig. 6.17 for the
time evolution of the survival probability of the metastable states. Given that
all realizations end up escaping from the metastable state and reaching a frozen
or dynamically trapped configuration, the asymptotic value of this probability is
always zero, independently of the value of p. Again, we observe in panel (a) that
values of the parameter towards p = 0 or p = 1 significantly delay the beginning
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of the decrease, while larger values of p lead to faster rates of decrease. Regarding
the final exponential decay of the probability, we observe in panel (b) that the
slope of the decay seems to be mostly unaffected by changes in the parameter p.

Finally, let us focus on the influence of the parameter p on the relative likeli-
hood of the different asymptotic states described in the main text of the chapter.
In particular, we show in Fig. 6.18 the fraction of realizations having reached
each of the possible asymptotic configurations before the end of the studied time
period (t = 105), as well as the fraction of those still in a metastable state, for
different system sizes and different values of p (for each color, darker tones iden-
tify larger values of p). In general, we observe the same behavior for all values
of p, in particular for small system sizes. Note, however, that for large system
sizes and both very small and very large values of p, there is a significant number
of realizations which, instead of reaching a frozen coexistence configuration, are
found to be still in a metastable state at the end of the studied period. This is
simply a consequence of the effects described above. In particular, a consequence
of the slower evolution of the system for values of p closer to p = 0 or p = 1.
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Figure 6.17: Time evolution of the survival probability of the metastable states (frac-
tion of realizations not having reached any frozen or dynamically trapped state by time
t) on a log–log scale [panel (a)] and a semilogarithmic scale [panel (b)], for a system
size N = 1000 and for different values of the parameter p. An exponential decay with
the slope obtained by fitting the data for p = 0.5 is also shown as a guide to the eye
in panel (b) (dashed black line). A total of 10000 realizations were used, with different
networks and different initial conditions.
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Figure 6.18: Scaling with system size of the fraction of realizations having reached
each of the possible asymptotic configurations at the end of the studied time period,
t = 105, as well as the fraction of those still in a metastable state, for different values
of the parameter p. Note that, for each color, darker tones identify larger values of
p. A total of 10000 realizations were used, with different networks and different initial
conditions.
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CHAPTER 7
Conclusions and outlook

By means of an agent- or individual-based modeling approach, we have stud-
ied the emergence of collective behaviors in social and economic systems.

In this way, we have explored different kinds of simple microscopic interaction
mechanisms leading to the emergence of complex collective phenomena at the
macroscopic level. In particular, we have focused on three main topics: opinion
dynamics, herding behavior in financial markets, and language competition.

7.1

Opinion dynamics

In Chapter 2, we studied the influence of the initial distribution of opinions on
the asymptotic state of a continuous-opinion, bounded-confidence model based

on random pairwise interactions. The results presented underline the importance
of this initial distribution of opinions. Indeed, we showed that it is possible to
promote or prevent a consensus among a group of agents by imposing an ini-
tial distribution of opinions slightly consensual or slightly polarized, respectively.
When the agents are given the opportunity to choose a new opinion from a given
probability distribution from time to time, however, the influence of the initial
condition is mostly replaced by that of the distribution of the noise. Further-
more, we find that the symmetry or lack of symmetry of the initial distribution
of opinions does also have an important influence on the outcome of the model,
suggesting that the variance of this initial distribution is not enough to predict
the asymptotic state, and thus other higher moments should be considered.
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Outlook and final remarks

For most of the models presented in the literature, only a random initial con-
dition has been considered. While for some of these models the influence of

the initial condition vanishes after a short transient, the analysis presented in
the first chapter of this thesis suggests that, for others, the particular asymp-
totic results obtained might be highly dependent on that initial condition. Thus,
the conclusions of such works should be considered as valid only for random ini-
tial conditions, until a more detailed exploration of the influence of the initial
distribution of states is accomplished. In this context, further work is needed
to develop an in-depth classification of models according to their sensitivity to
initial conditions.

Regarding the particular model studied in Chapter 2, the Deffuant, Weisbuch
et al. model, further work is needed to characterize the influence of higher order
moments, beyond the variance, of the initial distribution of opinions. Further-
more, it would be interesting to explore different implementations of the noise.
For instance, instead of giving the agents the opportunity to take a random opin-
ion from time to time, which leads sometimes to very large changes, one could
think of allowing them to take a new random opinion only in the neighborhood
of their current one, or even assuming constant length jumps in the opinion space
with a random direction.

7.2

Herding behavior and financial markets

In Chapter 3 we studied the influence of an external source of information upon
a financial market model characterized by a competition between herding be-

havior and idiosyncratic changes of state. By introducing a German index of
economic sentiment as an external signal and by comparing the results of the
model with the German DAX stock index, we showed that the introduction of an
information signal of small strength leads to an improved capacity of the model to
reproduce general statistical properties of real financial data, such as the volatil-
ity clustering effect, the slow decay of the autocorrelation of the normalized daily
volatility for short time lags, and its zero and slightly negative values for long
time lags. Furthermore, we were able to identify three different market regimes
regarding the assimilation of incoming information, depending on the relative im-
portance of the herding and the idiosyncratic tendencies: an amplification of the
incoming information in markets dominated by herding behavior, an undervalu-
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ation of incoming information in markets dominated by idiosyncratic behavior,
and a regime of precise assimilation of incoming information in-between.

From a practical point of view, it is important to note that the overreaction
to incoming information can lead to explosions of fear or confidence triggered
from outside the market, and thus not necessarily related to real changes in the
fundamental value of the traded asset. We have shown that this amplification
of external information is associated with the existence of short periods of enor-
mous price variations, large volatility and, therefore, to a great instability of the
market. The results presented in Chapter 3 support the idea that the greater
importance of the herding with respect to the idiosyncratic tendency may play
an important role in the development of such instabilities in a financial market
open to the arrival of external information. In general, the analysis presented
in Chapter 3 constitutes an example of how the amplification of incoming infor-
mation by different social and economic systems can be explained in terms of
stochastic resonance phenomena.

In Chapter 4 we focused on the influence of the topology of the social network
of interactions between agents in a system characterized, again, by a competition
between herding and idiosyncratic behavior. By using an annealed approxima-
tion for uncorrelated networks, we were able to uncover the dependence of the
asymptotic behavior of the system not only on the mean degree of the underlying
topology (the mean-field prediction) but also on more complex averages over the
degree distribution. In particular, we showed that different collective behavioral
regimes can be achieved by introducing changes in the underlying network of
interactions. Furthermore, we showed how the influence of the network on the
temporal autocorrelation of the variable characterizing the macroscopic state of
the system can be used to infer information about the underlying network —its
normalized level of degree heterogeneity— by studying only the aggregate behav-
ior of the system as a whole. The relevance of this latter point is evident for
systems where macroscopic, population level variables are easier to measure than
their microscopic, individual level counterparts, such as financial markets, where
information about the (global) price is much easier to access than information
about the market position of each individual trader.

Outlook and final remarks

Regarding the analysis of the influence of an external source of information
presented Chapter 3, we did only consider the quality of the response of the

market to the arrival of external information. A natural step forward would be
to study the delay of the market in following the arrival of news, i.e., to take
into account the time lag which leads to the maximum of the cross-correlation
function between the input signal and the system output. Our results showing the
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existence of different market regimes regarding the assimilation of incoming news
open the door for more comprehensive studies taking into account important
features of today’s information processing by market agents. A most relevant
feature of real markets is the existence of different categories of investors, which
could be characterized by different levels of sensitivity to incoming information,
as empirically found by Lillo et al. (2015). A further aspect to be considered
is the asymmetric behavior that traders may have towards positive and negative
news, leading, for instance, to explosions of fear but only slow waves of confidence.
Note that asymmetry could also be introduced as a different sensitivity to news
when prices are rising and when they are falling. Furthermore, we have focused
here on the case of a global and passive reception of news. Thus, the modeling of
an individual and active search for information, as empirically analyzed by Preis
et al. (2010, 2013), Moat et al. (2013), and Curme et al. (2014) is left for future
studies.

Given the generality of the approach used in Chapter 4 to study the influ-
ence of the underlying network of interactions between agents, it could be easily
applied to other stochastic, binary-state models. Even if we compared, for the
particular herding model used, our results with those derived from the most sim-
ple versions of a mean-field approximation and a mean-field pair-approximation,
further research is needed to contrast our method with more nuanced mean-field
pair-approximations, such as those based on “link magnetization” (Vazquez and
Eguíluz, 2008). In order to keep the presentation of the method as clear and
general as possible, we did not use in Chapter 4 the market framework previ-
ously introduced in Chapter 3. Therefore, a natural step forward would be to
use that one or any other market framework to obtain analytical expressions for
the relevant financial variables, such as the autocorrelation of absolute or squared
returns, which could then be compared with real financial data.

7.3

Language competition

In Chapter 5 we developed a language competition model with coevolution of the
network. In particular, the use of a language is considered as a state of the link

between two speakers, its temporal evolution is governed by the majority rule,
and links in the local minority can be rewired at random. While topologically
static large networks always end up falling into frozen or dynamically trapped
configurations where both languages coexist, we showed that, when the rewiring
is switched on, the system is able to escape from these configurations and reach
an absorbing state that can be either a one-component network where one of the
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languages has completely disappeared or a fragmented network with a separate
component for each of the two possible languages. The one-component solution
is more likely when the plasticity of the network is low or networks are small,
while the fragmented solution becomes more and more common as the plasticity
of the network increases or networks get larger. For any finite size network, there
is a region of the plasticity parameter characterized by the bistability between
both possible outcomes. In the very large size limit, however, the bistability re-
gion progressively vanishes and thus even very small amounts of rewiring lead
to the fragmentation of the network. Thus, we characterized the transition as a
finite-size fragmentation transition with a region of bistability. In this way, our
results showed that the frozen and dynamically trapped coexistence configura-
tions promoted by the link-based majority rule dynamics are not robust against
topological perturbations in the form of a rewiring, since the continuous relinking
updates are able to remove the system from the topological traps.

Regarding the language competition model introduced in Chapter 6, where
both the use (link state) and the preference (node state) for a given language
were included with different but coupled dynamics, a broad range of possible
asymptotic configurations were found by numerical simulation of the model on
socially-inspired network topologies —based on a mechanism of triadic closure—.
We classified these configurations as: frozen extinction states, frozen coexistence
states, and dynamically trapped coexistence states. By means of a system size
scaling analysis, we showed that the probability of extinction of one of the lan-
guages becomes negligible for large enough systems and that, even for small sys-
tems, extinction times are so broadly distributed that coexisting realizations can
be found at all time scales. Furthermore, metastable coexistence states with non-
trivial dynamics were found to be abundant and with survival times which scale
linearly with system size. In this way, we showed that, in the infinite size limit,
all realizations will be found to be in a non-trivial dynamical coexistence state for
any finite time. Interestingly, we found that, as the use of one of the languages
decreases, it becomes increasingly confined to the more intimate social spheres
or group interactions —triangular relationships—, such that the situations of co-
existence were found to be based on the existence of “ghetto-like” structures:
groups of predominantly bilingual speakers who use the minority language for
the interactions among themselves —mostly triangular— while they switch to
the majority language for communications with the rest of the population —
mostly non-triangular—. In this way, bilingualism was found to be prevalent
among the speakers of the minority language. Thus, our results highlight the
importance of the network topology for determining the possibility of coexistence
of two competing languages. However, as opposed to previous studies, we find
that group interactions —in the form of triangles— can play a more relevant role
than simple one to one interactions.
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Outlook and final remarks

While examples of language competition are abundant and some of them have
been known and studied for a long time, accurate data has traditionally been

scarce and limited to aggregate, population level statistics. A further problem
is its lack of accurate information about the temporal evolution of language use.
This is the kind of data used, for instance, by Abrams and Strogatz (2003), con-
cerning the competition between Quechua and Spanish, between Scottish Gaelic
and English, and between Welsh and English. More detailed and up-to-date data
has been recently used by Blondel et al. (2008), who analyzed the language used
(French or Dutch) by customers of a Belgian mobile phone network, and by Mo-
canu et al. (2013) and Gonçalves and Sánchez (2014), who studied the use of
different languages in Twitter. Unfortunately, these new data sets are still not
suitable to test the models developed in this thesis. In the case of phone data, in-
teractions are strictly one-to-one, with no group conversations where speakers can
be aware of the language used by their contacts between themselves and modify
their preferences accordingly. In the case of Twitter data, the time period avail-
able is still too short to capture changes in the network due to language use and
the evolution of the speakers’ preferences. Furthermore, the broadcasting nature
that Twitter inherits from the blog paradigm is likely to influence the speakers’
choice of language, which would require a modification of the models presented
in this thesis.

Regarding the notion of cognitive cost or effort associated with switching
between several languages, it has been suggested in the literature that the cost
of switching towards the first language (mother tongue) is lower than the cost
of switching towards the second (Meuter and Allport, 1999; Jackson et al., 2001;
Abutalebi and Green, 2007; Moritz-Gasser and Duffau, 2009). This asymmetric
switching cost could be easily implemented in the models presented here, whether
associated to the first language used by a speaker or to its preferred language.

The ideas and methods used here to study language competition processes
can also be useful in different contexts. Indeed, the idea of a coevolution of node
and link states is very general and could be applied whenever there is a relevant
property associated to the interactions between agents or nodes and this property
is characterized by a dynamics of its own, which is not completely determined
by the states of the agents and their particular dynamics. Examples range from
friendship-enmity relationships and trust to the coupled dynamics of trade and
economic growth (Garlaschelli et al., 2007). Finally, the importance of triangu-
lar structures both in the definition and in the results of the model presented in
Chapter 6 calls for a generalization of the concept of network beyond the tradi-
tional dyadic interactions, in order to take into account also group interactions
of higher order (triadic, tetradic, etc).
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