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Abstract

The continental lithosphere thinning generate elongated depressions known as continental rifts, those
are instability regions where continents can be pulled apart. Incipient rifting stages are represented by
the emplacement of alkaline magmas, such as carbonatites — composed of >50% of carbonates.
Carbonatitic volcanism was reported in the Catanda area (Angola). Their age was estimated to be
Cretaceous, i.e. similar to other magmatic activity of kimberlites and carbonatites in central and eastern.
The Angolan carbonatites and kimberlites are distributed along a narrow (1000 km wide) SW-NE
trending depression, the Lucapa corridor. Here we report new 40Ar/39Ar and (U-Th-Sm)/He
geochronology results on phlogopite and fluorapatite, which demonstrate that the Catanda carbonatites
were emplaced at 0.65+0.05 Ma. Seismic tomography evidences a low-velocity zone beneath Catanda
and extending towards inland Angola, proving the occurrence of upper-mantle magmatism beneath this
area. eHf-eNd isotopic values obtained in Catanda are similar to those reported for mantle-derived
melts (i.e. OIB’s and Group | Kimberlites) and Sr-Nd isotopes present similitudes to carbonatites from
continental rifting areas worldwide. Our dating and isotopic data, combined with the geophysical
evidence suggest that the Catanda volcanism was inextricably linked to the present-day re-activation of
the Lucapa rift. Lucapa were relevant in the break-up of Gondwana during the Cretaceous so it is not
discernable that Africa can break up along this rifting structure in the future. At last, considering the
young age of the Catanda volcanism, the occurrence of upcoming carbonatitic eruptions in this region of

SW Africa is also plausible.
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1. Introduction

Rifting events are extensional processes associated to asthenosphere rising and the
corresponding thinning of the overlying lithosphere. In continental areas, these
processes may create instability regions where continents can be pulled apart and
even generate new plate boundaries, in the last stages of rifting evolution (Fourel et
al., 2013). The incipient stages of rifting are associated with the emplacement of
alkaline and carbonatite magmas in the crust (Pirajno, 2015). Several examples of
incipient rifting areas with associated alkaline-carbonatite magmatism have been
reported worldwide as, for example, the Rio Grande rise (Brasil) (O’Connor & Duncan,
1990), the Cenozoic European Rift System (CERS) (Lustrino & Wilson, 2007) or the East
African Rift (EAR) (Chorowicz, 2005).

In the west margin of Africa is located the Lucapa corridor (Fig.1), a >1000 km-long NE-
SW graben defined by a set of discontinuous fractures along. The Lucapa structure is
located along the suture of Pan-African belts; those were originated during
Neoproterozoic orogenic events in relation to the formation of the Gondwana
supercontinent (McKenzie, 2015). Magmatism in Lucapa has been intermittent,
occurring in the Neoproterozoic and the Permian (Sykes, 1978) and latter in the
Cretaceous, when kimberlites, carbonatites and related magmas emplaced in the
upper crust, which is probably best represented by the age of several kimberlite
localities such as Catoca (117.9 + 0.7 Ma) (Robles-Cruz et al.,, 2012), Val do Queve
(133.4 £ 11.5 Ma) (Haggerty et al., 1983) or Luxinga clusters (from 145 to 113 Ma) (Eley
et al., 2008). During the Cretaceous, Lucapa structures also played a relevant role in
the break-up of Gondwana and the corresponding opening of the Atlantic Ocean.
Nowadays, the Lucapa corridor is approximately aligned to the Rio Grande Atlantic
fracture zone (Fig.1), which is considered the boundary between the Central and the
Southern segments of the Atlantic Ocean (Moulin et al.,, 2010), so, now, the main
question is if Western Africa can break up along this seemingly inter-continental

structure.



Volcanic activity in the Lucapa corridor is well represented in the northern border of
the area by the Catanda extrusive carbonatites (Fig.1). The Catanda carbonatite
complex consists of a cluster of small volcanic edifices with maar and tuff ring
morphologies that outcrop over a 50-km? area hosted in Archaean granites (Campeny
et al.,, 2014). The volcanic materials are mainly pyroclastic rocks but also minor
carbonatitic lavas are found, which include altered natrocarbonatites (Campeny et al.,
2015), similar to those reported in few localities from the EAR such as the Oldoinyo
Lengai, Tinderet or Kerimasi (Hay, 1983; Deans & Roberts, 1984; Dawson, 1993; Zaitsev
et al., 2013). Some nephelinitic dykes are also present in the Catanda area and a poorly
constrained K-Ar age of 92 +7 Ma was reported for one of these dykes (Torquato &
Amaral, 1973). A similar age was also proposed for the carbonatite rocks (Silva &
Pereira, 1973). However, the well-preserved morphology of the volcanic edifices and
present-day hydrothermal activity (i.e. travertine deposits, mud-spots) in the area
suggest a younger age for the carbonatites (Fig. 2). Here, we present the first direct
dating of the Catanda carbonatites, which indicate a Middle Pleistocene age for this
volcanism. This new dating argues for the present-day magmatic re-activation of rifting
structures from the Lucapa corridor. The general implications of this new finding are

discussed below.
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Figure 1. Synthetic map of the Mid-Atlantic Ridge. Location of the Catanda volcanic carbonatites and
the Lucapa rift domain in relation to the tectonic structures and magmatic regions of the Mid-Atlantic
Ridge area. Map of distribution of main carbonatites and kimberlites located in Angola.



Figure 2. Detailed images from the Catanda area outcrops. (a), (b) General view of Catanda volcanic
edifices in which is possible to distinguish a well-preserved morphology of the eruptive centres. (c)
Travertine deposits up to 30 m thick, associated to present-day hydrothermal systems located in the
Catanda area. (d) Recent carbonated mud pots in the carbonatite outcrops from Catanda.

2. Results

Catanda volcanic series mainly consist of pyroclastic rocks, those are generated during
explosive eruptive episodes and contain carbonatitic minerals but also several grains
coming from the hosted Archaean granites (Campeny et al., 2014). Given this
consideration, our work has been focused in the study of the minor Catanda
carbonatitic lavas, generated during more effusive episodes and majorly composed by
primary carbonatitic minerals without a significant percentage xenolithic material.
Catanda lavas generally consist of variable proportions of microphenocrysts of calcite,
fluorapatite, magnetite, clinopyroxene and phlogopite hosted in calcite-rich

groundmass also composed by variable proportion of accessory minerals such as



pyrochlore, perovskite, cuspidine and periclase (Campeny et al., 2015). We calculated
the age of the Catanda carbonatites through “°Ar-**Ar dating of phlogopite (556 * 21
ka) and (U-Th-Sm)/He dating of fluorapatite (660 + 90 ka) at the University of
Melbourne (see Methods). The Sr-Nd-Hf-Pb isotopic compositions of fluorapatite and
clinopyroxene grains from lava samples of three distinct units were also measured at
the University of Melbourne (see Methods) (Table. A6). Catanda isotopic values are
similar to those described in other present-day volcanic carbonatites associated to
continental rift areas worldwide (Fig.3), such as the Quaternary carbonatites from the
EAR (Bell & Blenkinsop, 1987) and the Eifel volcanoes, those are located in the CERS
(Riley et al., 1996).

3. Methods

3.1. U-Pb dating of fluorapatite

Fluorapatite is one of the most abundant minerals in the Catanda rocks, but attempts
to date fluorapatite by laser ablation ICP-MS were unsuccessful. We analysed 60
fluorapatite grains, and despite promising U and Th concentrations (1.8 to 14.6 ppm of
U and 16.9 to 232.3 ppm of Th; Table. A1), 2°”/*pb ratios are high (0.78 to 1.02; Table.
A2) and dominated by “common Pb” (i.e. non-radiogenic Pb incorporated in the
mineral lattice during crystallisation) and do not show clear correlations with
238 /?°®pp ratios in the Tera-Wasserburg diagram. Pb isotope data for one fluorapatite
(#21) and the groundmass samples for 3 samples (#21, #24, #25) acquired by MC-
ICPMS (with U/Pb and Th/Pb from trace element data for the same sample solutions;
Table. Al), also failed to provide unequivocal age information. Despite high and
variable 2**U/***Pb (120-314) and **’Th/***Pb (354-3585), measured **°Pb/***Pb and
298pp /2%%pp ratios are similarly low in all 4 fractions (20.09-20.58, 39.87-40.18) (Table.
A2). In the Th-Pb isochron diagram, the data points for the groundmass samples define
a well-correlated line (MSWD 0.67, 20 input errors of x=1%, y=0.1%, rho=0.6) with an
apparent age of 10.3+1.8 Ma (*®*Pb/***Pbi=39.69+6). By contrast, the Th-Pb data for

fluorapatite and groundmass in sample #21 yield an apparent age of 1.26+0.36 Ma



(**®Pb/***Pbi=39.96+5). In summary, the **3U->°Pb system does not yield interpretable

age constraints.

3.2. (U-Th-Sm)/He dating of fluorapatite

Nine different grains of fluorapatite from two different carbonatitic lava samples were
used for (U-Th-Sm)/He (AHe) analysis. The method used followed an established
laboratory routine for laser He extraction (House et al., 2000). Whereas clear euhedral
and non-fractured grains are usually sought for such analysis, in this case all crystals
were markedly anhedral and fractured. Grains chosen for analysis were hand picked
under an Olympus SZX12 binocular microscope and subsequently immersed in ethanol
and checked under polarised light to detect possible mineral inclusions. As it was not
possible to accurately estimate the grain geometry for applying the a-ejection
correction (Farley et al., 1996), grains selected were subjected to mechanical air
abrasion. This was achieved by using silicon carbide grit (300-425 mm) to remove at
least the outer ~25-30 um of the apatite (> a-ejection distance) in a cell similar to that
described by Krogh (1982). This approach has previously been applied to (U-Th)/He
dating of Late Tertiary to Quaternary volcanic samples (Spiegel et al., 2009). Abrasion
was halted periodically and grain sizes and shapes were monitored using digital image
capture. Using this approach makes it unnecessary to apply the a-ejection correction,
and can also potentially overcome any influence of He implantation into the apatite
from surrounding minerals.

In order to extract sufficient *“He gas for measurement for most analyses more
than one grain was required and these were loaded into small, acid-treated platinum
capsules. Grains were then outgassed under vacuum at ~900°C for 5 minutes, using a
semiconductor diode Coherent Quattro FAP laser, set on a wavelength of 820 nm with
fibre-optic coupling to the sample chamber (to provide optimal coupling with samples
and heating without melting, ablation or fusion). “He content was determined by
isotope dilution using a pure *He spike calibrated against an independent *He standard
and measured using a Balzers quadrupole (QMS 200-Prisma) mass spectrometer. A
hot blank was run after each gas extraction to verify complete outgassing of the

apatite grains. Most samples yielded negligible amounts of gas even after the first re-



extract, and for all samples the second re-extract contributed less than 0.5% of the
total measured “He.

Samples were removed from the laser chamber and 238U, 235U, 22Th and *'sm
concentrations obtained by total dissolution of outgassed fluorapatite (still in their Pt
capsules) in HNO3; and analysed using an Agilent 7700x inductively coupled plasma
mass spectrometer (ICP-MS). Analyses were calibrated using the reference material
BHVO-1, with Mud Tank apatite and international rock standard BCR-2 used as check
standards and run together with each batch of samples analysed. Analytical
uncertainties for the University of Melbourne He facility for abraded samples (where
uncertainties in grain size measurements do not need to be taken into account) are
estimated at 3% (+10), which incorporates gas analysis and ICP-MS analytical
uncertainties. Accuracy and precision of U, Th and Sm content ranges up to 2% (at
+20), but is typically better than 1%. With each batch of samples analysed Durango
apatite was also run as an internal standard and served as a further check on accuracy.
The weighted mean of 4 Durango apatite measurements carried out for this study was
31.2 + 1.9 Ma (uncertainty at 95% confidence level). This compares favourably (within
error uncertainties) with a (U-Th-Sm)/He age of 31.02 + 1.01 Ma (*1s) reported for a
set of 24 Durango apatite analyses carried in the Caltech He laboratory. The results
obtained for the two samples yield grand weighted apparent ages of 650 + 130 ka and

660 + 90 ka (£20), respectively (Table. A3).

3.3. Rb-Sr dating of phlogopite

Phlogopite is also a common microphenocryst in all Catanda carbonatite lavas.
Preliminary trace element data for phlogopite from 3 samples (PHL-21, PHL-24, PHL-
25) indicated high Sr contents (200-4000 ppm) and Rb/Sr<1, presumably related to Sr-
rich impurities (fluorapatite, carbonate) (Table. A4). Two splits of each separate were
therefore briefly leached with warm 0.5M and 2M nitric acid, respectively, to gently
remove easily soluble impurities and generate higher Rb/Sr ratios — more suitable for
Rb-Sr dating - in the residual phlogopite (Maas, 2003). This treatment reduced Sr
contents to 115-227 ppm and raised Rb/Sr to 1.79-4.48. The complementary 2M nitric
acid leachates were high in Sr and had low Rb/Sr (0.05-0.28). Measured 85r/%%Sr in the



phlogopite residues is low (0.70331-0.70397; Table. A4), irrespective of Rb/Sr, and
similar to measured ®’Sr/®°Sr in the leachates (0.70346-0.70348; Table. A4) and in
coexisting fluorapatite and clinopyroxene (0.70309-0.70354; Table. A4). This suggests
that the Rb-Sr systems are very young. Various combinations of data points yield
apparent ages in the range 0-4 Ma but no firm conclusions can be drawn because the

data do not produce clear isochronous arrays.

3.4. Ar-**Ar dating of phlogopite

Five phlogopite grains from samples PHL-21, PHL-24 and PHL-25 were also analysed for
©Ar/®Ar dating with a new generation ARGUSVI mass spectrometer (Phillips &
Matchan, 2014) Samples PHL-24 and PHL-25 behaved quite similarly to one another,
and contained a higher proportion of “°Ar* (~15% of total “°Ar) (Table. A5). Total gas
ages ranged from 582 t 26 ka to 797 + 80 ka. Data points were combined for inverse
isochron analysis, which reveals the presence of some excess argon in these grains
(**Ar/*°Ar = 302.2 +/- 1.1 during 20). The 6-pt inverse isochrone age yield 556 + 21 ka
(20), derived from combining high-T data from PHL-24 and PHL-25. On the other hand,
sample PHL-21 was collected from underlying stratigraphic compared to samples PHL-
24 and PHL-25, and this fact is also reflected in the significant older age. Calculating a
weighted mean age from concordant OAr*/*°Ar values from high-T heating steps (from
all five grains, n=7 steps), sample PHL-21 yields an age of 741 + 44 ka (6% 20; MSWD =
1.3, p=0.23; Table. A5).

3.5. Sr-Nd-Pb-Hf isotopes

Fluorapatite and clinopyroxene from samples 21, 24 and 25 show variable Sr contents
(3539-4274 ppm in fluorapatite, 147-2861 ppm in clinopyroxene), low Rb/Sr (*’Rb/®°sr
0.00003-0.00045 in fluorapatite, 0.0059-0.096 in clinopyroxene) and a narrow range of
measured ®’Sr/®°Sr (0.70309-0.70354) (Table. A6). Nd concentrations are similarly
diverse (536-1155 ppm in fluorapatite, 16.3-40.6 ppm in clinopyroxene, 183-220 ppm
in groundmass) but measured BNd/**Nd ratios show little range (0.512782-0.512855,

eNd +2.1 to +4.2, average +3.0+0.6, 1s). Y8Ht/YHf ratios for groundmass and



clinopyroxene also show a narrow range (0.282752-0.282827, eHf -0.7 to +1.9), as do
the Pb isotope ratios for the groundmass and one of the fluorapatite fractions (Table.
Ab6). Given the young age of the carbonatite, age corrections are trivial in almost all

cases (*®®Pb/*®*Pb in 21ap shifts from 40.18 to 40.06).

4. Discussion

The Middle Pleistocene age obtained for the Catanda carbonatites indicates active
volcanism in SW Angola. Recent low magnitude earthquakes (4.2 to 5.1 M;
http://www.earthquake.usgs.gov) of unresolved focal mechanism in the area also
points to active tectonism along this region. Modern tectonics is also represented by a
Quaternary transform faults system known as the Atlantic Hinge Line (Guiraud et al.,
2010), which is sub-parallel to the Angolan coastline and the Mid-Atlantic Ridge (Fig.1).
So, the main question is whether this volcanic and tectonic activity at Catanda is due to

a local anomaly or can be linked to a broader-scale tectonic process.

The broad-scale option is supported by seismic tomography studies; those reported a
low-velocity region at the lithosphere-asthenosphere boundary beneath the Catanda
area and extending towards inland Angola (Fishwick, 2010; Hansen 2012). This mantle
anomaly is also complemented by the detection of anomalous positive topography in
the same area (Moucha & Forte, 2011). The € Hf-e Nd isotopic relation obtained for
the Catanda lavas agree with the lithosphere-asthenosphere origin for the Catanda
parental melts, plotting well below the global Hf-Nd isotope array and being also
similar to geochemical signature of mantle-derived magmas such as the OIB’s and the

Group | kimberlites (Fig. 3a).

Similar low velocity regions and topographic anomalies as detected in SW Angola have
been reported in incipient continental rift areas worldwide, such as the EAR (Pik, 2011;
Civiero, 2015) or the CERS (Ritter et al., 2001; Willner et al., 2006), where the
occurrence of volcanic events of carbonatitic composition is also well known (Woolley

& Church, 2005).
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The similitudes of Catanda with worldwide incipient continental rift areas is also
supported by the occurrence of altered natrocarbonatite lavas (Campeny et al., 2015),
similar to those described in a few localities from the EAR (i.e. Kerimasi and Tinderet:
Hay, 1983; Deans & Roberts, 1984; Zaitsev & Keller, 2006; Zaitsev et al., 2013) and the
CERS (i.e. Rockeskyll complex; Keller, 1989; Riley et al., 1996). The Sr-Nd isotopic
features of the Catanda lavas confirm this resemblance. Catanda data follow the trend
marked by the volcanic carbonatite localities from the EAR and also present like values

to those reported in the Eifel carbonatites (Fig. 3b).

In our opinion, the occurrence of mantle geophysical anomalies in the area, the

isotopic and compositional features of the Catanda lavas and the general similitudes

between Catanda and incipient continental rift areas with associated carbonatitic

10



volcanism worldwide (i.e. the EAR and the CERS) argue for the occurrence of a broad-

scale process of embryonic rifting in SW Angola.

The more plausible option to explain the origin of this process is the re-activation of
the Lucapa rift structures, where the majority of the Angolan kimberlites and
carbonatites, including Catanda, stand out (Fig.1). The Lucapa corridor was formed
with the Pan-African orogen (at about 500-550 Ma) and the corridor experienced
intermittent periods of extensional tectonism and anorogenic magmatism since the
Neoproterozoic and later at the Permian and Cretaceous (Sykes, 1978; Jelsma et al.,
2009). Anorogenic magmatism is well characterized by the intermittence of tectonic
relaxed periods and apparent quiescence (Martin et al., 2012) as seems that occurred
in Lucapa and also in several localities worldwide, those are associated with alkaline or
carbonatitic magmatism such as in Chilwa (Malawi), Gardar (Greenland), Kola (Russia),
or Grenville (Canada) (Martin et al., 2012). Following the intermittence of these cycles,
it seems that Lucapa corridor is nowadays suffering a new period of magmatic re-
activation, but the main issue is to understand why this process is occurring in this

region at present-day.

A very plausible answer is the existence of a deep mantle superplume beneath
Southern Africa (Gurnis, 2000), which has continuity to the to upper mantle and
contributes to the generation of shallow magmatic events (Al Hajri et al., 2009). The
interaction of this superplume is broadly accepted to explain the magmatism of the
EAR (Ritsema et al., 1999; Behn 2004; Civiero, 2015), but recent works argue for its
displacement towards western Africa (Conrad, 2003). Then, would be not discernable
the connection of this lower mantle superplume with the occurrence of embryonic
continental rifting in SW Africa, which would be exemplified by the Pleistocene

carbonatitic volcanism at the Catanda area.

In summary, our general interpretation is that present-day embryonic sub-lithospheric
rifting is nowadays occurring in SW Africa. This process would be related with tectonic
and magmatic re-activation of the Lucapa rift structures, generated by the interaction

of the southern African superplume with the upper mantle beneath western Angola.

11



This general setting is exemplified by the occurrence of carbonatitic volcanism in the

Catanda region.

The Lucapa rift structures were relevant in the break-up of Gondwana and the
corresponding opening of the Atlantic Ocean during the Cretaceous so should not be
discarded that western Africa can break up along this inter-continental structure if the

rifting process continues active in the future.

At last, considering the young age of the Catanda volcanism, and the profusion of
carbonatite and kimberlite outcrops in the Lucapa corridor, the occurrence of future
alkaline-carbonatitic or kimberlitic eruptions in this portion of SW Africa is also

plausible.
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Table A2

Fluorapatite

sample  AP-O1 AP-02 AP-03 AP-04 AP-05 AP-06 AP-07 AP-08 AP-09 AP-10 AP-11 AP-12 AP-13 AP-14 AP-15 AP-16 AP-17 AP-18 AP-19 AP-20 AP-21 AP-22 AP-23 AP-24 AP-25 AP-26 AP-27 AP-28 AP-29 AP-30 AP-31 AP-32 AP-33 AP-34
Wopp/BBy 0,021 0,021 0016 0,022 0028 0030 0015 0014 0020 0019 0029 0028 0027 0023 0024 0031 0020 0016 0015 0015 0016 0036 0029 0032 0017 0020 0032 0030 0030 0030 0029 0055 0016 0,035
SAIRSE  42%  42%  39%  40%  39%  SS% 45K 49%  39%  40%  36%  42%  47%  42%  42%  41%  43%  44%  44%  44%  40%  47%  43%  43%  61%  62%  43%  33%  35%  35%  35% 3%  39%  44%
8pb/™Th 0,008 0,009 0,005 0,014 0,008 0,004 0,005 0,002 0,010 0,006 0010 0,009 0012 0,008 0,009 0,010 0,009 0,008 0,007 0,006 0,007 0,021 0014 0017 0,002 0,003 0019 0011 0,009 0013 0,012 0,016 0,007 0,005
SIRSE 234%  300%  224% 380% 219%  33% 2L8%  33%  336%  202% 171% 151% 199% 180% 222% 259% 333% 325% 0% 223% 286% 3L0% L% 303%  A40%  A0%  ILe%  320% 193% 312% 181% 153% 1% 26%
*7pp/™ph 0,963 0,864 006 0920 0,857 0,859 0,888 0,904 0,827 0,872 0,884 0,863 0936 0998 0916 0,909 1,021 0,885 0,937 0,990 0,855 1,000 0,913 0915 0,924 0,983 0,909 0,822 0,860 0,802 0,833 0,787 0,910 0,840

SAIRSE 46%  46%  40%  43%  40%  S8%  41%  S1%  39%  42%  39%  47%  57%  4S%  44%  4S%  40%  AG%  42%  52%  43%  S50%  A40%  A7%  59%  69%  44%  35%  43%  37%  41%  35%  A46%  A5%

Table A3

Sample no. Lab. no. No. of crystals analysed He no. “He (ncc) Th/Uratio °*MeanF; Age(Ma) Error (+20) (Ma)

21 8971 3 27059 0,047 11,86 1,00 0,69 0,04
21 9009 4 27145 0,078 12,88 1,00 0,89 0,05
21 9069 7 27193 0,166 12,26 1,00 0,58 0,03
21 9070 6 27195 0,208 13,29 1,00 0,57 0,03
21 11669 4 36352 0,035 15,75 1,00 0,65 0,04
b0.65 0,13
25 8989 1 27083 0,017 13,34 1,00 0,64 0,04
25 9012 6 27156 0,044 8,82 1,00 €1.33 0,08
25 11673 4 36364 0,075 11,60 1,00 0,63 0,04
25 11674 6 36367 0,029 11,39 1,00 0,76 0,05
25 9072 5 27199 0,068 11,35 1,00 0,62 0,04
b0.66 0,09
Durango apatite - standard
Durango 9074 1 27204 1,308 17,32 1,00 32,4 2,0
Durango 11658 1 36180 5,357 15,27 1,00 31,6 2,0
Durango 11675 1 36289 3,867 15,18 1,00 31,7 2,0
Durango 11684 1 36400 21,672 17,25 1,00 29,7 1,8
b31.3 1,9

®FTis the a-ejection correction after Farley et al. (1996).
bWeighted mean ages (95% confidence level) calculated using Isoplot v. 3.0 (Ludwig, 2003).
¢ Analysis excluded from calculation of weighted mean.

Table A4

Phlogopite Fluorapatite Clinopyroxene
Initial (2M) Separated-1 (0.5M) Separated-2 (2M)
Sample AC-21 AC-24 AC-25 AC-21 AC-24 AC-25 AC-21 AC-24 AC-25 AC-21 AC-24 AC-25 AC-21 AC-24 AC-25
ppm
Rb 431 169 66 513 475 409 210 378 459 0,3 0,4 2,6 4,2 0,1 11
Sr 1672 3748 236 115 227 196 118 174 169 5830 6335 3114 469 203 452
Rb/Sr 0.26 0.05 0.28 4.48 2.09 2.08 1.79 218 2.72 0 0 0,001 0,009 0 0,024
87Rb/BESr 0.7458 0.1301 0.8143 12,9521  6.0468 6.0261 5.1638 6.2915 7.8585 0 0 0.002 0.026 0.001 0.068

sr/%sr 0703471 0.703463 0.703475 0.70397 0.70338 0.70343 0.70346  0.70345 0.70331 0.70337 0.70346 0.70354 0.70353  0.70311 0.70309




(49

(12%56 10 o1) 3dAy "Ladun  u

uolssaiday

€L°0
S9°0

€20
1Z'0

L00
29'0

d

S0
4]

€T
v'T
L't
990

AMSIN (52) (s9e)3 (ST) (sqe)3 (ST) ()3 'V, /2,

st'o
9’0
vL'o

SSS60°T

w0 ¥1'0 T0°20€
SS0 810 ST‘20€
8€°0 €10 81'862
€20 800 81867
LEO zr'o 65°L6Z

€900
7800

1200
¥20°0

080°0
5900
8600

TLED
6210
8970
0600
0810

(ew) 3

9€T'6
8€T0T

678'c
SLE'Y

668'S

982'0T
99v'8
SYY'zT

699'TL
88Y'6T
[4:143
(44442
€V9'LT

(%)3

sz (rpPxa) 4013

£90°0
780°0

1200
vzo‘o

vv0'0

080°0
5900
860°0

TLED
6710
8920
0600
0810

(ew) 3

9€Z'6
8ET0T

678'€
9LE'Y

668'S

98201
99v'8
14

699'TL
8861
785'TE
€22CT
£V9°LT

(%)3

Sz (f *pu1) 403

7€0°0
00

1100
7100

z20'0

ovo‘o
€00
6v0°0

9810
7900
vET'0
Sv0'0
0600

(ew) 3

8197
6TT'S

v16'T
881°C

6V6'C

VTS
£ETY
€22'9

SE8'SE
vvL'6
T6L'ST
1119
TZ8'ET

(%)3

ST (rpxa) Jou3

7€00
00

1100
2100

20’0

0v0‘0
€00
6v0°0

9810
¥90°0
YET'0
S0'0
0600

(ew) 3

819y
6TT'S

ST6'T
881°C

0S6'T

EVT'S
13344
€229

SE8'SE
L6
T6L'ST
1119
TZ8'€T

(%)3

ST (f "ppul) 4013

9890
L6L0

9550
2550

we'o

080
¥9L0
98L'0

6150
0990
8180
LELD
7590

(ew) 98y

L£O'0
LEO'0

L£00
L£0'0

9£0°0

9£0°0
9€0°0
9£0°0

9€0°0
9€0°0
9€0'0
9€0°0
9€0°0

(sT ‘%) 3

S89¥0T000°0
95870T000°0

S89¥0T000°0
958010000

£T0S0T000°0

£20S0T000°0
£T0S0T000°0
£20S0T000°0

£Z0S0T000°0
£Z0S0T000°0
£T0S0T000°0
£Z0S0T000°0
£Z0S0T000°0

anjea-r

(424
s

16'T
61°C

S6'C

vr's
€Ty
(4]

¥8'SE
SL'6
6L'ST
119
T8'eT

(ST (%)3 v fav,

€9
wy

S6C
67

16°€

oy
€07
ST'Y

vL'T
6v'€
8’y
68'
(443

T-THdST 3|dwes
T-THdPT 3|dwes
sade sed |ejol

(9=U) THAST + Z'BT UIRJD -THdYT

(€=u) 28T UIe4D -THdYT
§3}|NSaJ UOJIYI0S! 9sIaAU]|

THSZ “THdYZ

(1HATZ Y04 39V Q3¥YIIIYd)
(£=u ‘sjuiod juepioduod |-ydiy) suresd g ‘o8e ueaw paydiom

(sda3s (pjoq) Juepioduod) £=u §'Y'E‘Z T-THATZ
(sjuiod (paJ) paroalal uou) ZT=u §‘p'€‘Z'T-THdTT

4S-THdTZ
Av-THdTZ
€-THdTT
T-THATZ
T-THdTZ

# 9|dwes

9-T sda3s ‘T-1HdTZ
$3|NS3J UOJYI0S| 3SIdAU|

sade sed |ejol
THdTZ

0T-3v5'
epquiel

Table A5




Table A6

Sample
ppm

Rb
Sr
Nd
Sm
Lu
Hf
Pb
Th
U

S7Rb/®sr
875, /gy
W/ Nd
143Nd/144Nd
eNd
176 /17
176Hf /177|_If
eHf

238) 204y,
2320 204p),
206p), /204py,
207Pb/204pb
208Pb/204pb

Groundmass Clinopyroxene Fluorapatite
AC-21 AC-24 AC-25 AC-21 AC-24 AC-25 AC-21 AC-24 AC-25
4.17 5.05 8.75 6.2 0.3 95.2 0.04 0.18 0.6
2495 2442 1036 601 146.6 2861 3539 4274 3996
220 211 183 40.6 21.4 16.27 536 1155 839
28 27.1 22.3 11.3 6.06 37.97 163 169 123.4
0.32 0.32 0.24 0.18 0.08 0.42 1.08 1.08 0.8
2.94 31 2.95 20.35 17.11 61.86 0.09 0.29 0.16
2.34 1.37 2.74 0.48 0.36 1.75 0.97 221.2 0.97
18.5 18.4 14.1 0.68 0.23 1.18 50.62 929 5491
6.77 6.43 4.97 0.13 0.04 0.31 3.88 6.53 4.59
0.00482 0.00597 0.02441 0.02987 0.0059 0.09618 0.00003 0.00012 0.00045
- - - 0.70353 0.70310 0.70309 0.70336 0.70346 0.70354
0.07708 0.07762 0.07388 0.10131 0.10911 0.12269 0.08968 0.08851 0.08868
0.51279 0.51282 0.51280 0.51280 0.51286 0.51281 0.51278 0.51278 0.51278
2.96 3.47 3.08 3.22 4.23 3.36 2.81 2.85 2.83
0.01546 0.01466 0.01155 0.00090 - 0.00081 - - -
0.28280 0.28281 0.282802 0.28275 - 0.28283 - - -
1.20 1.24 1.06 -0.71 - 1.95 - - -
193 314.24 120.3 - - - 261.17 - -
547 930.66 353.64 - - - 3584.62 - -
20.58 20.5 20.09 - - - 20.5 - -
15.79 15.81 15.78 - - - 15.81 - -
39.99 40.17 39.87 - - - 40.18 - -




