

Co-designed Solutions for Overhead Removal

in Dynamically Typed Languages

Gem Dot Artigas

Department of Computer Architecture

Universitat Politècnica de Catalunya

Advisors:

Alejandro Martínez

ARM

Antonio González

Universitat Politècnica de Catalunya

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy / Doctor per la UPC

i

ACKNOWLEDGMENTS

Llegados a este punto toca poner la vista atrás y poder agradecer y dedicar este trabajo a

todas las personas que han estado a tu lado a lo largo de este largo camino y también a las

que se han unido en el transcurso de éste. Para ello agradezco primero a mi madre, por haber

estado ahí en los momentos más duros; a mi padre, por haberme enseñado como se afrontan

los momentos complicados de esta vida; a mis abuelas, por haber hecho de abuelas; a mis

abuelos; a la Carme; a mis dos hermanos Nil y Blai y a mi hermana Ruth; y a mis primos y

tíos. Quisiera agradecer mucho a mis directores de esta tesis, Alejandro y Antonio, por haber

sido mis mentores en este largo camino y haberme dado la oportunidad de poder aprender de

ellos. Muy muy importante para mí es agradecer también a mis amigos-hermanos del vallés

accidental, especialmente a Ion, Pacheco, Anto, Chino, Mora, Chicho, Amanda, Pelli, Killo,

Pau, Taba, Pol, Dani, David, Vakero, Ivan, Mella, Neus, Lluís, Artús, Roura, Roger, Kike así

como también el resto de amigos del vallés. Agradezco mucho a la gente de mi segundo pueblo

llamado Colera, especialmente a Antonio, por todo lo que me has enseñado, y a la familia y

amigos que durante estos últimos 10 años han pasado por el restaurante La Gambina: Joelle,

Xavi, Julie, Jose Luis, Jose, Ferran, Helena, Jordi, Victor, Roxana, Jadilla, Maite, Oriol, Oriol

y Carlitos. También agradecer a los del restaurante Mont-Mercé. Agradezco mucho también

a mis amigos de la carrera, los ingenieros anónimos, los cuáles estoy muy contento de seguir

conservando amistades tan grandes. Agradezco muchísimo mis compañeros y excompañeros

del grupo de investigación ARCO los cuales son grandes personas e investigadores.

Agradezco a todas las grandes personas y amigos de mis equipos de futbol de estos últimos

años (a pesar que ya hace más de un año que no juegue): Los Voldamistas, Vilerpool y

Vengalas, especialmente a Javi y a Manu. Que grandes partidos, donde darlo todo en el campo

y luchar por cada balón como si nos fuera la vida, llueva o nieva, era lo más importante, como

un reflejo de la vida misma. También agradecer a Mika, por haberme ayudado a encontrar mi

piso actual; a Eric, por enseñarme a cocinar sushi; también quiero agradecer a Asier, por

haber dirigido mi trabajo de fin de carrera; agradezco a Josep Josa, por haberme asesorado

cuando empecé el máster; y a todas las demás personas que tenga algo también que agradecer

y me haya olvidado de mencionar. Por último, dedico también esta tesis a todas las personas

que luchan y nunca se rinden, a pesar de caerse innumerables veces.

ii

This Thesis has been partially supported by the Spanish Ministry of Economy and

Competitiveness under grants TIN2010-18368 and TIN2013-44375-R and the Spanish

Ministry of Education, Culture and Sport under grant FPU12/05670.

iii

ABSTRACT

Dynamically typed languages are ubiquitous in today’s applications. These languages ease the

task of programmers but introduce significant runtime overheads since variables are neither

declared nor bound to a particular type. For efficiency reasons, the code generated at runtime

is specialized for certain data types, so the types of variables require to be constantly validated.

However, these specialization techniques still carry important overheads, which can adopt

different forms depending on the kind of applications. This thesis proposes three hybrid

HW/SW mechanisms that reduce these different forms of overhead.

The first two mechanisms target the overhead produced during the execution of the

specialized code, which is characterized by the frequent execution of checking operations that

are used to verify some assumptions about the object types. The first technique improves the

performance by reducing the number of instructions used to perform these checks. The second

technique is based on a novel dynamic type-profiling scheme that removes most of these

checks.

The third technique targets the overhead due to the execution of the non-optimized

code, which performs an important amount of profiling for future optimizations. We present a

hybrid HW/SW mechanism that reduces the cost of computing the addresses of object

properties in a very efficient manner. This is an innovative approach that significantly

improves the speculative strategy currently adopted by state-of-the-art dynamic compilers.

iv

v

Table of Contents

Acknowledgments .. i

Abstract ... iii

List of Figures ... ix

List of Tables ... xi

1. Introduction ... 1

1.1 Dynamically Typed Languages ... 2

1.2 Overheads in Dynamically Typed Languages ... 2

1.3 Contributions ... 3

 1.3.1 Analysis of Overhead ... 3

 1.3.2 Fusion of Common Instruction Patterns ... 3

 1.3.3 The Class Cache ... 4

 1.3.4 The Property Cache .. 4

1.4 Thesis Organization ... 4

2. Related Work ... 7

2.1 Techniques to Reduce the Overhead Produced by Dynamic Typing 7

 2.1.1 Type Feedback Proposals ... 7

 2.1.2 Type Inferring Proposals .. 9

 2.1.3 Value Specialization Proposals ... 9

 2.1.4 Hybrid Proposals .. 10

2.2 Parallelization Techniques ... 10

3. Background .. 13

3.1 JavaScript .. 13

3.2 The V8 JavaScript Engine ... 15

 3.2.1 Hidden Classes ... 15

 3.2.2 Inline Caching in V8 .. 17

 3.2.3 Full Codegen Compiler .. 18

 3.2.4 Crankshaft Compiler .. 19

 3.2.5 V8 Dynamic Components .. 23

4. Experimental Framework .. 25

4.1 Tools .. 25

 4.1.1 Pin ... 25

 4.1.2 V8 Sampling Profiler .. 25

 4.1.3 Sniper .. 26

 4.1.4 Marss .. 26

 4.1.5 McPAT .. 26

vi

 4.1.6 CACTI .. 26

 4.1.7 Microarchitectural Configuration ... 27

4.2 Benchmarks ... 27

 4.2.1 Octane ... 27

 4.2.2 SunSpider ... 27

 4.2.3 Kraken .. 28

 4.2.4 JSBench .. 28

5. Analysis of Overhead .. 29

5.1 Analysis of V8 Dynamic Components .. 29

5.2 Overheads in the Steady State ... 30

 5.2.1 Checking Operations .. 33

 5.2.2 Tagging/Untagging Operations... 36

 5.2.3 An Example of JavaScript Code ... 36

5.3 Overheads in the Initial Phase ... 40

 5.3.1 A Simple Example of a JavaScript Application .. 42

6. Fusion of Common Instructions Patterns ... 47

6.1 Introduction ... 47

6.2 Motivation ... 48

6.3 Optimization of Common Instructions Patterns .. 49

6.3.1 HW Exception Mechanism ... 49

6.3.2 SMI Untag Pattern .. 54

6.3.3 Check Non-SMI and Check Maps Pattern ... 55

6.4 An Example of the Proposed Optimizations ... 56

6.5 Performance Evaluation .. 57

6.5.1 Dynamic Instruction Count Improvements .. 57

6.5.2 Cycle Count Improvements .. 58

6.5.3 Energy Consumption .. 60

6.6 Conclusions ... 60

7. The Class Cache Mechanism .. 63

7.1 Introduction ... 63

7.2 Motivation ... 64

7.3 The Class Cache Mechanism .. 68

 7.3.1 The New Structures .. 68

 7.3.2 How the Mechanism Works ... 75

 7.3.3 New Speculative Optimizations ... 76

 7.3.4 An Example of the Proposed Optimizations .. 77

7.4 Performance Evaluation .. 77

vii

 7.4.1 Dynamic Instruction Count Improvements .. 78

 7.4.2 Cycle Count Improvements .. 79

 7.4.2.2 Results .. 79

 7.4.3 Energy Reduction ... 81

 7.4.4 Incurred Overheads .. 82

 7.4.5 Hardware Cost .. 83

7.5 Conclusions ... 84

8. The Property Cache Mechanism ... 87

8.1 Introduction ... 87

8.2 Motivation ... 89

8.3 The Property Cache Mechanism ... 90

8.3.1 Overview .. 90

8.3.2 The New Structures .. 90

 8.3.3 How The Mechanism Works .. 93

 8.3.4 The New Runtime Subroutines .. 94

 8.3.5 Other Issues .. 96

 8.3.6 An Example of the Proposed Optimizations .. 100

8.4 Performance evaluation ... 101

8.4.1 Execution Time ... 101

8.4.2 Sensitivity Analysis .. 102

 8.4.3 Energy Consumption .. 104

8.5 Conclusions ... 104

9. Summary and Future Work ... 106

9.1 Summary ... 106

9.2 Future Work ... 107

References .. 109

Appendix A: New x86-64 Instructions of chapter 6. ... 114

Appendix B: New x86-64 Instructions of chapter 7 .. 116

Appendix C: New x86-64 Instructions of chapter 8 .. 117

viii

ix

List of Figures

Figure 3.1: Prototype chain scheme. ... 14

Figure 3.2: Example of two objects and their corresponding Hidden Classes (Double and

Vector). .. 16

Figure 3.3: Basic Inline Caching process. ... 18

Figure 3.4: Full codegen compilation process. ... 19

Figure 3.5: Crankshaft compilation process. .. 19

Figure 5.1: V8 engine components in steady state execution. .. 31

Figure 5.2: V8 execution breakdown in the first execution. ... 32

Figure 5.3: V8 execution breakdown in JSBench. .. 33

Figure 5.4: Breakdown of main overheads. .. 34

Figure 5.5: Breakdown of checking operations. ... 35

Figure 5.6: Breakdown of Tagging/Untagging operations. ... 37

Figure 5.7: Example of a JavaScript function. .. 38

Figure 5.8: nodes object structure. .. 38

Figure 5.9: x86-64 optimized code corresponding to findGraphNode function 39

Figure 5.10: Object property accesses overhead. .. 41

Figure 5.11: Object property accesses overhead for JSBench .. 42

Figure 5.12: Example of JavaScript code. .. 43

Figure 5.13: Generated x86-64 optimized code corresponding to the JavaScript code line 23.

 ... 44

Figure 5.14: Inline Cache of the property load scenario in uninitialized state. 46

Figure 5.15: Inline Cache of the property load scenario in monomorphic state. 46

Figure 5.16: Inline Cache of the property load scenario in polymorphic state. 46

Figure 5.17: Inline Cache of the property load scenario in polymorphic state. 46

Figure 6.1: Overhead produced by Checking operations, tagging/untagging operations and

Math Assumptions. .. 50

Figure 6.2: Instructions patterns for checking operations, tagging/untagging operations and

math assumptions. ... 51

Figure 6.3: HW Exception mechanism improvement for Check Maps. 52

Figure 6.4: HW Exception mechanism improvement for Check Non-SMI. 53

Figure 6.5: HW Exception mechanism improvement for Integer Addition. 53

Figure 6.6: HW Exception mechanism improvement for Check Stack. 53

Figure 6.7: Block diagram for the HW Exception mechanism. ... 54

Figure 6.8: SMI Untag pattern improvement. ... 55

Figure 6.9: Block diagram for the SMI Untag pattern optimization 55

Figure 6.10: Check Non-SMI and Check Maps pattern improvement. 57

file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451260997
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451260999
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261002
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261003
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261003
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261006
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261005
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261004
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261007
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261009
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261009

x

Figure 6.11: Example of the proposed optimizations. .. 58

Figure 6.12: Improvement in dynamic instructions. ... 59

Figure 6.13: Improvement in number of cycles. ... 61

Figure 6.14: Improvement in energy consumption. .. 62

Figure 7.1: Overhead produced by checking and untagging operations after performing

object load accesses of properties and elements arrays. ... 66

Figure 7.2: Object load accesses to monomorphic properties and monomorphic elements

arrays. ... 67

Figure 7.3: Number of different Hidden Classes used for each benchmark. 67

Figure 7.4: Block diagram of a Class Cache access for a movStoreClassCache instruction. . 72

Figure 7.5: Block diagram of a Class Cache access for a movStoreClassCacheArray

instruction. ... 73

Figure 7.6: Scheme of a Class Cache entry. .. 74

Figure 7.7: Optimization process. ... 76

Figure 7.8: Example of the proposed optimizations. .. 78

Figure 7.9: Improvement in number of instructions. .. 80

Figure 7.10: Improvement in number of cycles. ... 80

Figure 7.11: Improvement in energy consumption. .. 81

Figure 7.12: Object property accesses that target the first cache line. 83

Figure 8.1: Object property loads overhead due to the Inline Caching mechanism. 89

Figure 8.2: Property List structure. ... 91

Figure 8.3: Scheme of a Property Cache entry. ... 92

Figure 8.4: Scheme of a Prototype Cache entry. ... 93

Figure 8.5: Block diagram of the proposed mechanism. .. 95

Figure 8.6: Specialized code with Check Maps operations. ... 97

Figure 8.7: Block diagram of the Property Cache optimized for single-prototype Hidden

Classes. .. 98

Figure 8.8: Prototype Cache invalidations. ... 99

Figure 8.9: An example of the proposed optimizations. ... 100

Figure 8.10: Improvement in execution time. ... 102

Figure 8.11: Overhead reduction in number of cycles. ... 103

Figure 8.12: Hit rate of the Property Cache for 256 entries and 4-way associativity. 104

Figure 8.13: Improvement in energy consumption. .. 105

file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261018
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261019
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261020
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261021
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261026
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261026
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261031
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261030
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261032
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261037
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261044
file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261046

xi

List of Tables

Table 4.1: Microarchitectural configuration. .. 27

Table 7.1: Class List Structure. ... 70

Table 8.1: Overhead produced by Property Cache Misses. .. 103

file:///C:/Users/hpca/Desktop/save_tesis19/PHD_memoriaV10.docx%23_Toc451261088

xii

1

Chapter 1

Introduction

Scripting languages have become very popular in the recent years [56]. These languages are

often dynamically typed languages, which provide a higher flexibility and allow a faster

application development compared to other traditional statically typed languages, such as C,

C++ or Java. JavaScript [18] is the most popular one; Python, PHP, Ruby, Smalltalk and Self

are other commonly used dynamically typed languages. Initially, these languages were

designed for connecting different system components, which were written in traditional

languages [35][57]. The reason for this is the higher flexibility that the dynamic typing

provides for gluing tasks, which would require a more complex and longer-term task in

statically typed languages. However, in the last years, scripting languages have gained

popularity and have also been used to construct entire applications from scratch [35]. This is

due to different factors:

 The increasing demand of web applications, where these languages require

different components to work together.

 The importance of graphical user interfaces, which are used to connect graphical

controls and the internal program functionality.

 Modern scripting languages are executed in complex virtual machines, which make

use of Just-In-Time (JIT) compilation techniques to improve the performance of

the code.

 Scripting languages are easier to learn for non-professional programmers than

traditional static typed languages, due to their lower complexity. Non-professional

programmers represent an important percentage in today’s programmer

community.

2

On the other hand, applications written in dynamically typed languages are less

efficient than applications written in statically typed languages. The reason for this is because

the types of variables in these applications are not known at compile time and therefore, these

types need to be checked at run-time. This thesis focuses on proposing new dynamic

compilation techniques for dynamically typed languages based on hybrid HW/SW support.

1.1 Dynamically Typed Languages

In dynamically typed programming languages, types are checked at run-time since variables

are neither declared nor bound to a particular type, and their types change during the execution.

In addition, the most popular dynamically typed programming languages are also object-

oriented languages. In these cases, objects can change their class dynamically and therefore,

the lookup of their methods and attributes (i.e. the properties of an object) are performed at

run-time. This is also known as late binding.

Traditionally, dynamically typed languages used to be interpreted because a static

compilation cannot benefit from the runtime information, which is necessary to perform the

type checks and the late binding of the object methods. However, interpretation introduces a

high overhead to their execution. These factors penalized the applications written in

dynamically typed languages, in comparison with the execution of the same applications

written in statically typed languages. In order to reduce this performance gap, modern virtual

machines for dynamically typed languages combine both interpretation and Just-In-Time

compilation techniques, with the support of some kind of dynamic profiling to produce

specialized code.

1.2 Overheads in Dynamically Typed Languages

The performance of the applications developed in these languages depends on two kinds of

overheads: the overheads associated to the virtual machines, and the overheads due to type

checks and late binding in the generated code.

The former overhead is caused by the time spent in dynamic compilation, interpretation,

garbage collection and other housekeeping tasks. Complex virtual machines adopt different

strategies that combine JIT compilation and interpretation techniques, in order to focus the

efforts in the most executed code regions.

3

The latter overhead (i.e. the overheads belonging to the type checks and late binding)

has been an important focus of the research community. Most proposals consist of collecting

dynamic information about types, in order to produce specialized code for these types.

Although the specialized code is more efficient than a more general version, it still incorporates

an important amount of overhead, which is mainly due to the execution of checking operations

that verify the assumptions about the types. Often, these checking operations follow the same

pattern of instructions, which basically are composed of an arithmetic and a branch instruction.

Moreover, there are other frequently executed patterns of instructions, which are composed of

more than one kind of checking operations. Other proposals focus on type inference

techniques, which are based on the deduction of types at compile time.

The execution of non-optimized code is rather slow, which has an important

performance impact for short applications common in some web sites. This penalty mainly

comes from object property lookup operations and profiling activity that is necessary for the

compilation of the optimized code.

1.3 Contributions

In this thesis we propose different HW/SW techniques that target the overheads due to type

checks and late binding. We use JavaScript [18] as the experimental platform to demonstrate

the benefits of the techniques, more concretely, the JavaScript engine from Google, known as

V8 [28]. As a first step, we perform a detailed analysis of common JavaScript applications.

Below we described in more detail these contributions.

1.3.1 Analysis of Overhead

We perform a detailed analysis that characterizes the contribution to the execution time of the

different components of V8 [22][23]. We consider the execution of both the first phases of

JavaScript applications and the steady state of these applications. We quantify the overhead

produced by the dynamic type profiling and code specialization techniques. This analysis has

served as a guide for the techniques proposed later in this dissertation.

1.3.2 Fusion of Common Instruction Patterns

The checking operations used to preserve some assumptions about types in the optimized code

often use the same pattern of instructions. When these assumptions are not fulfilled, the code

4

branches to a deoptimization procedure. However, these assumptions are rarely not met.

Taking account this consideration, we optimize the pattern of checking operations by

proposing a novel exception mechanism that removes the branch instructions used to perform

these type checks [22][23]. Moreover, two new optimizations are presented, which reduce the

dynamic instruction count of other frequently executed instruction patterns.

1.3.3 The Class Cache

When the checking operations target monomorphic object variables (i.e., object properties or

elements from an array that only have one single type during the execution), their execution is

not necessary. In this regard, we have proposed a technique that completely removes some of

these checking operations, which improves the execution of optimized code. This consists of

a HW/SW mechanism based on a novel dynamic type-profiling scheme that identifies

monomorphic object variables. Then, the application code is recompiled in a way that the type

checks that target these monomorphic variables are completely removed, and an exception

mechanism is triggered when this assumption is not met [24].

1.3.4 The Property Cache

This technique reduces the overhead related to the late binding of object properties. Moreover,

this technique targets both non-optimized and optimized codes. For non-optimized code, all

the operations related to the lookup and profiling of object property accesses are substantially

optimized. On the other hand, most of the type checks that verify type assumptions before

accessing object properties in the optimized code are also removed. This technique is based on

a hybrid HW/SW mechanism that provides the information required to identify the addresses

of object properties in a very efficient manner [25].

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 describes the most relevant related

work about on the techniques that deal with the overheads described earlier. Chapter 3 provides

some background to help understand the techniques that we will present later. Chapter 4

describes the simulation tools used to evaluate the proposed mechanisms. Chapter 5 presents

the analysis of overhead of dynamic typed languages, which is used as the motivation for the

proposed techniques. Chapter 6 explains our proposal of the fusion of pattern instructions in

5

the optimized code. Chapter 7 presents our proposal called The Class Cache mechanism.

Chapter 8 presents the Property Cache mechanism. Finally, Chapter 9 concludes this

dissertation.

6

7

Chapter 2

Related Work

The reduction of the overheads of dynamically typed languages has been an important topic

for the research community, due to the booming of web scripting applications in recent years,

including proposals based on parallelization techniques. In this chapter, we review the state-

of-the-art techniques to improve the performance of dynamically typed languages.

2.1 Techniques to Reduce the Overhead Produced by Dynamic

Typing

These techniques are divided in two different families: type inferring techniques and type

feedback techniques. The latter are normally more effective due to two main reasons. On the

one hand, type inference requires a significant amount of computation to deduce all the

application types, which is an important drawback for these languages that are dynamically

compiled and thus, the compilation time becomes critical. On the other hand, most of the types

cannot be deduced at compile time, due to the dynamic typing nature of these languages.

Although modern virtual machines [9][28][45][63] combine both kind of techniques,

the type feedback approach represents the main component of the strategy followed by these

engines to reduce the overhead. In this regard, type feedback is applied at the beginning of the

execution of the application, in order to collect the information necessary to specialize the

hottest regions of code [41]. Once the code is specialized, a type inference pass is performed

to eliminate unnecessary type checks and to specialize even more the code. Therefore, type

feedback techniques introduce less initial overhead and collect more type information, whereas

type inferring efforts mainly focus on hot specialized code, which is more deductible.

8

2.1.1 Type Feedback Proposals

A significant number of works target type feedback techniques for dynamically typed

languages, due to their important role in modern virtual machines. In this section the most

important approaches of type feedback techniques are presented.

2.1.1.1 Inline Caching

The state-of-the-art technique used by current JavaScript virtual machines [9][28][45][63] to

address the overhead of object property accesses (i.e. accesses to an attribute or method of an

object) due to the runtime binding problem is known as Inline Caching [40][15]. It consists of

generating type specialized code for the accesses to properties and other program variables

that have been previously seen. Next time a given property of a particular object type is

accessed, this code is used to access the property in a more efficient manner.

The first work [40] to introduce the Inline Caching technique targeted Smalltalk

compilers. Other works [59][60][61] have improved this technique for Self [17][20] compilers.

Hölzle et al. [59] extends this technique to polymorphic Inline Caching, which extends Inline

Caches to more than one object type. Hölzle and Ungar [60] propose a dynamic recompilation

of hot functions that uses the type information previously collected by the Inline Caches to

produce more efficient specialized code for the whole function.

Recently, some other techniques to improve the performance of Inline Caching have

been proposed [25][51][54][62]. Ahn et al. [62] presents a new scheme that reduces the miss

ratio of Inline Caching and optimizes polymorphic Inline Caching for real-web applications.

Li et al. [51] propose a new mechanism similar to Inline Caching, in order to access the object

properties without incurring the overhead produced by the code generation. It is based on a

software structure that keeps the information corresponding to property accesses produced in

every location of the source code. When an object property is accessed in line i of the source

code, the i-th position of this structure is accessed and the necessary information to perform

the access (i.e. the address of the property) is obtained.

2.1.1.2 Trace Based

In a trace based approach [1][7][42], cyclic regions of code called traces are dynamically

recorded in initial runs of the application. At the same time, the specific types used in these

9

traces are also profiled. Then, when a trace becomes hot, its corresponding code is recompiled

and speculatively specialized with the profiled types and predicted branches, which results in

a more efficient code. These assumptions about types and taken branches are verified with

checks and when these conditions are not fulfilled, the execution exits the trace. When a trace

is exited, a new trace may be recorded and recompiled with the alternative path or type,

forming a trace tree.

2.1.1.3 Customized Compilation

Customized compilation techniques [8][12] are based on dynamically compiling functions

according to the types of their arguments when these functions are called for the first time. In

this regard, multiple versions of the same function can be compiled, which takes more memory

space and compilation time. However, the advantage of these techniques is the generation of

more type specialized code for the compiled functions, which results in a better performance.

2.1.1.4 Other Complementary Works

Other works propose improvements that can be complementary to the approaches described in

the above sections. Driesen [39] proposes a space-efficient technique for object method

lookups in dynamically typed languages. Other works focus on reducing the overhead

produced by type checks [22][23][24][47][49]. Anderson et al. [47] introduces automatic

checking of types, which is performed implicitly by a dedicated hardware.

2.1.2 Type Inferring Proposals

Type inferring techniques for dynamically typed languages [10][11][37][43][48][50][52] are

based on statically analyzing the applications, in order to ensure type safety. These techniques

allow for the early detection of type errors, such as accesses to non-existing members of objects

or incorrect type conversions. In this regard, the applications that contain errors are rejected

before executing them. Basically, these works provide a type system that defines some

constraints to represent the relationships between types. Then, an algorithm uses these

constraints to infer the types of the application. When these constraints are violated, runtime

errors are signaled.

10

2.1.3 Value Specialization Proposals

Costa et al. [32] proposes a technique to dynamically specialize the values of function

parameters. When a function is called for the first time, the values of the parameters are

collected. If these arguments remain unchanged between calls, then the function is recompiled

and its arguments are replaced by the collected values. This allows to apply classic

optimizations for the recompiled functions, such as constant propagation, dead-code

elimination, array bounds check elimination and function inlining, which further improve

performance.

2.1.4 Hybrid Proposals

Other works combine both type inference and type feedback approaches, in order to take

benefit from the synergy between them [6][41]. Hacket and Guo [6] propose a hybrid type

inference algorithm that performs an analysis of the application before its execution, in order

to make assumptions about types. These assumptions are guided by some rules, which are

based on the effect that operations have on their produced values. However, these assumptions

are not guaranteed to be correct during the execution of the application and therefore, runtime

checks are required. This hybrid mechanism is faster and more precise than pure static

inference algorithms, which cannot perform assumptions about types.

On the other hand, Kedlaya et al. [41] propose an initial type inference step before the

execution of the application, in order to reduce the profiling overhead produced by the type

feedback step. As a result, some type profiling activity becomes unnecessary because the type

inference pass has already deduced the type.

2.2 Parallelization Techniques

Although most of the research efforts in dynamically typed languages focus on reducing the

overhead of type checks and late binding, some other recent works propose different

techniques to introduce some kind of parallelization. Traditionally, virtual machines for these

languages do not exploit parallelism, despite the fact that these applications are often executed

in parallel hardware platforms. In addition, some studies [19] show that current applications

written in these languages are well-suited for parallelization.

11

These works are basically divided into implicit and explicit parallelization support. The

former is based on dynamically identifying code regions that are parallelizable and

speculatively execute them on different threads. There are proposals that parallelize loops

[44][66], whereas others parallelize function calls [33][34]. Moreover, some modern virtual

machines for dynamically typed languages execute application code and compilation tasks in

parallel, as it is the case of V8 JavaScript engine [28]. On the other hand, works based on

explicit parallelism extend the APIs of these languages to provide parallel semantics to the

programmer [13][30][31][38].

12

13

Chapter 3

Background

In this chapter, we present the main characteristics of JavaScript and the V8 JavaScript engine

from Google [28], which is an open source and widely used dynamic compiler for JavaScript.

In this thesis, V8 (64 bits) has been used as part of the experimental platform. Nevertheless,

the basic techniques used by this dynamic compiler are also adopted by other modern virtual

machines, such as Nitro from Apple (previously known as SquirrelFish Extreme [63]),

SpiderMonkey from Mozilla [45] and Chakra from Microsoft [9]. Therefore, although the

techniques presented in this dissertation are evaluated for a V8 JavaScript environment, they

can be extended to other engines for dynamically typed languages, as long as they use similar

approaches to deal with object typing.

3.1 JavaScript

HTML5 has improved not only the design of attractive websites (CSS style sheets, SVG

images, and video), but also has succeeded in creating web applications with performance

comparable to desktop applications. To achieve this, it uses JavaScript [18], which is a

dynamically typed programming language embedded into web pages that allows the creation

of sophisticated solutions in the client-side web.

JavaScript provides a small set of data types (e.g. Boolean, String, Object, etc.), some

built-in objects and functions and an inheritance mechanism based on prototype objects. In

addition, JavaScript has access to its host environment through the Document Object Model

(DOM), which is an API that allows JavaScript to interact dynamically with web pages.

In JavaScript, the structure of an object is defined by its ordered set of named variables

(i.e. variables that are referenced by name) and methods. Objects that have the same structure

are considered of the same type. For the rest of this dissertation, the term property of an object

refers to any of its named variables or methods. Moreover, JavaScript uses an inheritance

14

mechanism to share properties among different objects. This mechanism is implemented

through what is called prototype objects. Each object x has an associated prototype, which is

another object that contains a set of additional properties that the object x can access. In

JavaScript all objects have a property that point to its prototype (which can be null in some

cases), thereby forming a prototype chain (see next paragraph for more detail). Therefore,

when accessing a property of an object, the entire prototype chain needs to be searched.

Furthermore, when a constructor object creates an object, the new object inherits the prototype

of the constructor. Some object variables are accesses by a number like conventional arrays

elements. However, these numbered variables do not affect the object structure because they

are considered as conventional elements of a special array that belongs to the object.

In Figure 3.1, objects o and k have been created by the object constructor c. Therefore

o and k inherit the prototype of the constructor c, which is p. In this way, properties f and g

from the prototype p can also be accessed from o and k in addition to c. In other words, these

are properties shared by these three objects.

Figure 3.1: Prototype chain scheme.

Dynamically-typed languages like JavaScript increase programmer productivity but

present important inefficiencies compared to statically-typed languages. This is mainly due to

the fact that compilers cannot determine the type of the objects that will be accessed at runtime.

One of the major overheads is when the value of an object property has to be loaded. In this

15

scenario, we need to first know the address in memory of this property (i.e. the offset of this

property with respect to the address of the object), which entails a costly sequence of steps:

first of all, the type of the accessed object has to be obtained, then the property has to be found

in the type descriptor, which contains the offset for all its properties, and finally this offset is

used to obtain the memory address where the value is stored.

3.2 The V8 JavaScript Engine

V8 was specifically designed for fast execution of large JavaScript applications. Its

performance is normally better if it runs the same functions repeatedly, instead of running

many different functions very few times each. This is because V8 focuses on optimizing hot

functions (i.e. those functions that execute very often). V8 integrates two compilers, one that

has light overhead and produces generic code (Full Codegen); and another that is heavier but

generates more optimized code (Crankshaft) [3][4][5]. When a new function is encountered, it

is first compiled by Full Codegen just before its execution, instead of being interpreted. After

a while, if the function becomes hot, then it is compiled by Crankshaft.

Inline Caching [15][40] is applied by both compilers, despite the fact that the dynamic

profiling of the code is only performed during the execution of the non-optimized code (i.e.,

the generic code produced by Full Codegen).

3.2.1 Hidden Classes

JavaScript is an object-oriented programming language without explicitly declared classes.

However, V8 uses Hidden Classes to represent object types (i.e. an ordered collection of

properties). All objects built by the same function constructor share the same Hidden Class. In

other words, objects that share the same Hidden Class have the same type. When a function

constructor at runtime creates an object for the first time, its Hidden Class is also created.

Moreover, every time that a new property, x, is added to an object, the object changes its

Hidden Class to another one, which contains all properties of the old Hidden Class and the

property x. If this second Hidden Class does not exist yet (i.e. it is the first time that x is added

to the old Hidden Class), then it is created.

In Figure 3.2, there is an example: object v belongs to Hidden Class Vector. It also

contains a property, x, which belongs to Hidden Class Double. Note that the first field of each

16

object (called Map) contains the address of the Hidden Class descriptor. In V8, this address is

also used as identifier for the Hidden Class, which is called the Hidden Class identifier. For

the rest of this thesis, we use the terms Hidden Class and type of an object indistinctly.

Note also that the prototype property of an object is kept in its Hidden Class descriptor,

instead of the object itself, as we can see in Figure 3.2. Therefore, when the prototype property

of an object is overwritten, the Hidden Class of that object also changes, as Hidden Classes

are immutable data structures.

Figure 3.2: Example of two objects and their corresponding Hidden Classes (Double and Vector).

Furthermore, objects contain two reserved special properties, which are used to manage

their numbered variables (i.e., variables that are indexed by a number): The elements array

pointer and the elements length, which are located in the third and fourth 8-byte words of the

object, respectively. The former contains a pointer that targets an internal array called the

elements array, which contains all the variables of the object that are indexed by a number, as

explained in section 3.1. The latter contains the length of the elements array, which can change

during the execution. However, in some other cases, the elements length is directly located

inside the elements array, instead of the object itself.

Occasionally, when the number of properties (i.e., named variables or methods) of an

object exceeds a particular threshold (128 properties), their properties are stored in a separate

dictionary-style structure called the property dictionary collection. When this happens, the

subsequent additions of new properties for the object will not change its Hidden Class, because

its structure keeps being the same. In addition, the object will contain another special property

called the property pointer, which keeps the address to its property dictionary collection. Note

that the property pointer is always located in the second position of the object. This is an

17

optimization performed by V8, in order to avoid an explosive number of Hidden Class

creations for objects that are used as dictionaries.

Note that all objects in V8 are represented by their address. When they are stored in a

register, its least-significant bit is set to 1. Therefore, before a particular object is accessed, this

bit has to be cleared, in order to obtain the address. As exception, small integers (SMIs) that

do not need more than 32 bits for its representation are directly stored in registers, in the 32

most significant bits, and the least-significant bit is set to 0, to indicate that the register contains

a SMI, instead of an object address.

3.2.2 Inline Caching in V8

Inline Caching has a twofold purpose: recording information concerning the types of objects

and improving the performance of the system lookup routine used to disambiguate the type of

objects when they are accessed. Full Codegen and Crankshaft apply this technique in a

different manner, as described below for loads or stores to object properties, which is the most

common scenario for this technique. Inline Caching is also applied for loads and stores to

object array elements (i.e. object variables that are referenced by number), method invocations,

arithmetic operations, boolean operations, and other binary operations, in a similar manner.

 During the execution of the generic code produced by Full Codegen, for each object

property access, a call instruction is executed, which is constantly patched by the runtime. The

first time that the access is produced, the call instruction targets a lookup routine that performs

a sequence of steps that determine the type of the object and find the offset for that property.

Then, the access is performed by this routine. Since this process is quite costly, a special

software structure called Inline Cache (IC) is created, which contains specialized code (i.e.,

the code to perform that access) for that particular object type and the offset found. Then, the

call instruction is patched to point to this Inline Cache. Therefore, subsequent accesses are

substantially faster if the type keeps being the same. In this regard, a type check needs to be

inserted before the generated code to verify that the type is the expected one. Figure 3.3

illustrates the use of Inline Caching for loads. In Figure 3.3a, we show the scenario for the first

time an object property load is performed. In this case, it is executed by the lookup routine,

which is rather costly. Subsequent accesses are executed by the optimized Inline Caches, as

we can see in Figure 3.3b.

18

Figure 3.3: Basic Inline Caching process.

The information recorded during this process is also used by Crankshaft (the optimizing

compiler) to perform more aggressive optimizations for hot code. In this regard, Crankshaft

generates specialized code that performs directly the property accesses for those Hidden

Classes previously encountered by the Inline Caches, instead of executing a call instruction

for each of them. Also, type checks are introduced in this specialized code, in order to verify

that the encountered type is the expected one; otherwise (i.e., when a type check fails), the

optimized code falls back to non-optimized code through a deoptimization bailout. Note that

the specialized code produced by Crankshaft is much more efficient than the non-optimized

code produced by Full Codegen, due to the fact that the call instructions are not present, which

also allows that other standard compiler optimizations can be performed over this specialized

code.

3.2.3 Full Codegen Compiler

This compiler takes as input the abstract syntax tree (AST) of a function, walks over the nodes

in the AST, and emits calls to a macroassembler. The code produced is generic native code, for

which only the inline caching optimization is performed. Figure 3.4 outlines the flow of data

at the compilation process.

Furthermore, Full Codegen does not store local variables in registers; instead these are

stored either on the stack or on the heap. All variables stored on the heap belong to objects

contexts, each one associated to a different function. When the value of a local variable is

needed, the compiler emits a load to pull the value into a register [5].

19

Figure 3.4: Full codegen compilation process.

3.2.4 Crankshaft Compiler

Once V8 has identified that a function is hot (by profiling) and has collected some type

information through the Inline Caches, compiles that function through the optimizing compiler

(Crankshaft). As we can see in Figure 3.5, the process of Crankshaft is more sophisticated than

Full Codegen [4].

Figure 3.5: Crankshaft compilation process.

Crankshaft first translates the JavaScript AST to a high-level static single-assignment

(SSA) Intermediate Representation, which is called Hydrogen. In this part of the process, the

compiler specializes the code according to the information collected (i.e. Inline Caching

technique) and tries to apply other high-level optimizations. Then, the Hydrogen code is

translated to a machine-specific low-level Intermediate Representation, which is called

Lithium. This representation facilitates other machine-specific optimizations. Finally, Register

Allocation and Code Generation are performed.

3.2.4.1 High Level Optimizations

Other high level optimizations mentioned above are:

 Mark Dead Subgraphs: Regions of code without Inline Cached types means that

some paths in the original function may have never been executed. This

optimization avoids optimizing these blocks and wasting compilation time.

 Redundant/Dead Phi Elimination: The AST to SSA Hydrogen translation

process handles Phi instruction insertions [48]. This optimization eliminates Phi

instructions that are not needed, either because they are redundant (consequence of

a dead subgraph) or because they do not have real uses.

20

 Representation Inference: Numbers need also a mechanism to indicate that they

are numbers (i.e. integers or doubles), before manipulating them. In this regard,

numbers are represented in a similar manner than the rest of object types, which is

called boxed representation. When a boxed number is needed to execute any

operation, it is necessary a previous unboxing process to obtain the value of the

number. Therefore, the manipulation of objects in a boxed representation is costlier

than the direct manipulation of the value. The goal of this optimization is to

represent temporary variables as integers or doubles, whenever possible, instead of

a boxed representation. Inference techniques are used to deduce the type of these

temporaries.

 Range Analysis: This optimization tries to determine the range of some values. It

allows asserting various properties that influence code generation, such as the lack

of overflow or the lack of negative zero values.

 Type Inference and Canonicalization: Type Inference can help to eliminate

runtime checks. After this, each instruction is canonicalized (i.e. elimination of

unnecessary operations) to eliminate other useless checks.

 Stack Check Elimination: Loops need to be interruptible. As a solution, a Stack

checking operation is inserted at the beginning of every iteration. If the runtime

wants to interrupt a loop, it resets the stack limit of the process to wait for the next

stack check. This optimization eliminates some of these checks in case that a call

dominates its backward branches, since all calls have a fixed stack check in the

callee’s prologue.

 Global Value Numbering: Other typical high level optimizations are

implemented, such as Common Subexpressions Elimination and Loop Invariant

Code Motion.

3.2.4.2 Additional Operations Performed in the Optimized Code

In this section, we present some operations performed during the execution of the optimized

code that are not part of the JavaScript application. Instead, these additional instructions can

be considered as overhead produced by Crankshaft, as a consequence of the dynamic

21

characteristics of the language.

Checking Operations

As we outlined above, type checks are introduced in the execution of optimized code to

preserve assumptions about types. Moreover, other kinds of checks are also inserted at this

optimization level, which are used for similar purposes. When a check fails, the optimized

code falls back to non-optimized code through a deoptimization bailout, with the exception of

Check Stack. In this latter case, the program is interrupted and another routine is executed,

which handles an external exception. These checking operations are detailed below:

 Check Maps: These are the most commonly used type checks. The first slot in

each V8 object points to its Hidden Class identifier (i.e. the object type). In this

operation, the type of an object is checked to be the same as that of another recorded

type, which has been seen before.

 Check SMI: A register containing a boxed object can be of two types: either a

small integer (SMI), which has its last bit cleared or an object address, which has

its last bit set. In this case, the last bit of a register is checked to know whether it is

a SMI.

 Check Non-SMI: The opposite of check SMI.

 Check Instance Type: It checks whether the kind of a particular instance is the

expected one.

 Check Function: This is used to check whether an inlined function is the expected

one.

 Check Prototype Maps: There are accessible object properties that reside in its

prototype chain. Therefore, when a function call belonging to a prototype object is

inlined, it is necessary to introduce a type check of that prototype.

 Check Map Value: It is like a Check Maps, but for enumerable objects in a for-in

statement.

 Check Bounds: After obtaining the total length of the array, it is checked that the

22

accessed position of the array is not out of bounds.

 Check Stack: Inside a loop, the stack pointer is checked to see if it has been reset,

in order to know whether an external exception has been produced.

Tagging/Untagging Operations

Other overhead instructions are tagging and untagging instructions, which are used to box and

unbox number values. When a number value is boxed, the register that supposedly contains

that number does not contain the value directly. Instead, it contains the object (i.e. the address

of the object, but its last bit is set to 1) where that value is stored. As an exception, if the boxed

number is a SMI, the value is located in the 32 most significant bits of the register and the last

bit is set to 0. The specific tagging/untagging operations are detailed next:

 Number Tag (Non-SMI): This process consists of allocating in the heap an object

structure that contains a number. The type (i.e. Hidden Class) of this object depends

on the type of the number, such as Integer, Unsigned Integer or Double. Therefore,

the resulting register contains the address of the allocated object.

 SMI Tag: This process consists in introducing the value in the 32 most significant

bits of the resulting register. In addition, the last bit of the register is set to 0.

 Number Untag (Non-SMI): The input register contains the address of an object

that contains a number. Therefore, this operation obtains this number from this

object, which is in heap memory.

 SMI Untag: Reverse process of tagging a SMI. Therefore, the resulting register

contains the SMI value from the 32 most significant bits of the tagged input

register.

Math Assumptions

There are some math operations that require some runtime value verifications on their source

operands or the produced result. The most common scenarios are overflows of SMIs and

division by 0. Note that the former is necessary because when the produced value is not a SMI

(i.e., it needs more than 32 bits for its representation), this has to be boxed as a non-SMI. Note

also that these situations rarely occur during the execution. Therefore, V8 assume

23

optimistically that they will never occur, in order to produce more efficient code (i.e., the

generated code does not cover these alternative paths). However, these rare situations have to

be detected when they occur. In this regard, V8 inserts additional instructions that verify that

these math assumptions are correct. When any of these validations fails, the code is

deoptimized.

3.2.5 V8 Dynamic Components

V8 is a dynamic compiler and therefore, program execution and code generation/optimization

have to be efficiently synchronized in order not to affect responsiveness. Moreover, JavaScript

is a managed memory language, which needs a mechanism to reclaim memory that will no

longer be used. Taking into account these characteristics, the execution of an application in V8

can be broken down into the next components:

 Non-optimizing compiler: V8 runtime executing Full Codegen compiler.

 Execution of non-optimized code: Execution of application code produced by

Full Codegen compiler.

 V8 runtime: The execution of various management routines.

 Optimizing compiler: V8 runtime executing Crankshaft compiler.

 Execution of optimized code: Execution of application code produced by

Crankshaft compiler.

 Garbage collector: V8 runtime mechanism that reclaims memory used by objects

that are no longer required.

 Shared libraries: Execution of auxiliary libraries.

 Helpers: Execution of helper code to carry out some aspects of the JavaScript

engine, such as built-ins corresponding to JavaScript construct calls. Note that most

of these helpers are executed during the execution of the non-optimized code, in

order to perform tasks related to the management of the Inline Caching mechanism.

This classification will be used in the following chapters and we will refer it frequently.

24

25

Chapter 4

Experimental Framework

The V8 JavaScript engine described in the previous chapter is part of the experimental

framework that we have used to demonstrate the ideas proposed in this dissertation. In this

chapter, we describe the rest of tools and benchmark suites that have been used.

4.1 Tools

Pin [16] and V8’s built-in sampling profiler [28] have been used for the analysis of the V8

JavaScript engine. Marss [2] and Sniper [58] micro-architectural simulators have provided the

results regarding the speedups achieved by the proposed ideas. McPAT [53] and CACTI [55]

power modeling tools have provided the energy savings of these proposals. We briefly describe

these tools below.

4.1.1 Pin

Pin is a dynamic instruction instrumentation tool for the x86 instruction set architecture. It is

based on inserting profiling code to the application binary. This instrumentation code collects

run-time information about the instructions, such as their type, the type of their operands,

number of operands, etc. In our experiments, we use Pin mainly to count the total number of

dynamic instructions.

4.1.2 V8 Sampling Profiler

This is an internal tool of the V8 JavaScript engine, based on a sampler profiler that records

the execution time spent in the different execution components of V8, which are described in

section 3.3.5.

26

4.1.3 Sniper

Sniper is a timing multi-core simulator that uses a novel simulation technique called interval

simulation [14], which allows nearly as much accuracy as a cycle-level approach while

providing faster simulation speed. Interval simulation is based on partitioning the execution

time into intervals, which are determined by the miss events. These events are modeled by an

event based simulator. Then, the timing for each interval is derived by an analytical model,

which also includes the penalties associated to the corresponding miss event. These penalties

are determined by the type of the miss: I-cache miss, branch missprediction, long-latency load

miss and resource stalls.

4.1.4 Marss

Marss is a cycle-level, full system, multicore simulator for the x86-64 ISA. This simulator is

the result of the combination of two existing frameworks, which are Qemu and PTLsim. The

former is a full system emulator that supports multiple ISAs and the latter is a cycle-level

simulator. Marss provides a modular framework for the simulation of different cpu cores and

cache memory models. Moreover, this modular framework allows the integration of other

simulation tools, such as DRAMSim2, which is a DRAM simulator. The full system simulation

includes the activity of operating systems, standard libraries and kernel interrupt handlers. It

allows the evaluation of parallel applications and heterogeneous architectures, and eases the

implementation of HW/SW co-designed techniques.

4.1.5 McPAT

McPAT is a multicore modeling framework that integrates power, area and timing. The power

model includes both leakage and dynamic power consumption. The input for McPAT is a file

that describes the dynamic events of a previous performance simulation, such as the number

of cycles, number of L1 misses, number of branch misspredictions, etc. In addition, this file

defines the architectural, circuit and technological parameters of the system. In general, any

micro-arquitectural performance simulator can feeds the input for McPAT, as long as its output

has the required format for McPAT.

4.1.6 CACTI

CACTI is an analytical model that estimates latency, power and area of memory units (e.g.,

27

cache memories). For caches, this tool takes as input the cache size, cache block size, cache

associativity, technology, number of ports, and number of banks. The output is the optimal

cache configuration for the input parameters and its associated latency, power and area.

4.1.7 Microarchitectural Configuration

For the experiments presented in this dissertation, the core configuration used by the

simulators described above is shown in Table 4.1, which closely resembles a Nehalem core

[65]. In this thesis, we use applications compiled for the x86-64 ISA.

Issue width 4

Instruction Issue queue 36 entries

Window size 128

Outstanding load/stores 10

Itlb 128 entries, 4-way

Dtlb 64 entries, 4-way

IL1 cache 32 KB, 4-way

DL1 cache 32 KB, 8-way

L2 cache

L3 cache

256 KB, 8-way

2MB, 16-way

Table 4.1: Microarchitectural configuration.

4.2 Benchmarks

We have used four common JavaScript benchmarks suites for our experiments: Octane

[26][27], SunSpider [64], Kraken [46] and JSBench [29][36].

4.2.1 Octane

Octane is commonly used for evaluating JavaScript since it is representative of current

workloads and execution profiles of real web applications. Octane's goal is to be a proxy for

JavaScript applications like browser games, highly-interactive web pages and online

productivity tools.

4.2.2 SunSpider

SunSpider consists of more than a dozen tests, each concentrating on a different part of the

JavaScript language. Since SunSpider focuses on computation (does not include HTML, CSS,

networking, etc.), its applications are micro-benchmarks that are very computational intensive.

28

4.2.3 Kraken

Kraken centers on four key areas of browser performance:

 Audio: These applications perform various audio functions, including fast fourier

transforms, discrete fourier transforms, audio oscillator and beat frequency

detection.

 Image filtering: These application use Pixastic Processing Library to desaturate

an image, perform a Gaussian blur and other image manipulations.

 JSON: These applications test how quickly a browser can transmit data between

two or more objects, which are usually a web server and a client.

 Cryptography: These applications use the Stanford JavaScript Crypto Library to

perform four common cryptographic functions.

4.2.4 JSBench

JSBench are representative of user interactions from five representative websites: Google,

Amazon, Facebook, Yahoo and Twitter. However, we have discarded Facebook and Yahoo

benchmarks for our evaluations, because these applications cannot run without a browser.

29

Chapter 5

Analysis of Overhead

The performance of applications written in dynamically typed languages such as JavaScript

changes with time. In this regard, at the beginning, the execution time is dominated by non-

optimized code, interpretation, and compilation tasks, which result in low performance. Later,

as the code becomes increasingly optimized, performance improves until no further

optimization is possible, reaching a steady state. Note that some overhead remains in the steady

state, which is mainly due to the verification of some assumptions made to generate the code.

Short-running JavaScript web applications for event-driven scripts are dominated by

the execution of the non-optimized code, helper routines and runtime tasks (i.e., compilation

tasks), because there is not time for much code specialization. On the other hand, long-running,

sophisticated applications such as online image editors and games tend to execute repeatedly

the same regions of code, which become very soon specialized. Therefore, the execution time

is dominated by this optimized code.

Since there is a no consensus in the scientific community about which kind of

applications will predominate in the future [44], this dissertation considers both short and long-

running applications. Two of the techniques we propose target the execution of optimized code,

whereas another technique targets both the execution of the non-optimized code and some

runtime tasks.

In this section, we analyze the contribution of these execution components in the V8

JavaScript engine, and characterize the most important overheads.

5.1 Analysis of V8 Dynamic Components

Figures 5.1 and 5.2 show the contribution of the V8 dynamic components described in section

3.2.5 to the total run time of Octane, SunSpider and Kraken benchmarks. We consider both

30

steady state and first iteration (i.e. the first execution of the application). Figure 5.3 shows the

same statistics for JSBench benchmark suite, regarding the fourth iteration of each application

(i.e., the application is executed four times and the statistics are taken from the fourth iteration)

[62]. We are most interested in the execution of the JavaScript code rather than other

preliminary compilation tasks, such as the source code scanning process, which represents

more than 50% of the dynamic instructions for the first iteration of these benchmarks. Steady

state for JSBench is not analyzed because these benchmarks are not meant for modeling long-

running complex applications. In all the cases, results were obtained through the V8’s built-in

sampling profiler [28].

Figure 5.1 shows that in steady state, most of the time is consumed in optimized code

and only a very small fraction of time is dedicated to non-optimized code and helpers. In

addition, V8 runtime tasks represent around 24% of the total time for Octane and Kraken and

14% for SunSpider. In Octane, the garbage collector is a very important contributor for splay,

typescript and earley-boyer benchmarks, which make an intensive use of heap memory.

Nevertheless, in this dissertation, we do not focus in the garbage collector because this is a

widely investigated topic elsewhere. Note also that many benchmarks (for instance, code-load,

json-parse, and json-stringify benchmarks) have little optimized code since they have limited

code reuse.

Figure 5.2 shows that during the first iteration of Octane, SunSpider and Kraken, the

execution time is dominated by V8 runtime tasks. SunSpider and Kraken have more optimized

code than non-optimized code and helpers, which means that these are benchmarks that are

dominated by hot loops. In contrast, the contribution of non-optimized code and helpers in

Octane is higher than the optimized code. This correlates with the profile of JSBench (Figure

5.3), which hardly executes any optimized code. Therefore, Octane in the first iteration

presents a similar behavior to real web applications.

5.2 Overheads in the Steady State

As detailed above, in the steady state of Octane, SunSpider and Kraken, the most important

component is the optimized code. This subsection quantifies the contributions of the different

kinds of overheads in optimized code. We achieve steady state by executing each benchmark

ten times and taking statistics from the tenth iteration. We run each benchmark twice. In the

31

Figure 5.1: V8 engine components in steady state execution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st

an
fo

rd
-c

ry
p

to
-s

h
a2

5
6

-i
te

ra
ti

ve
K

ra
ke

n
 a

ve
ra

ge

Ti
m

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Ti
m

e

Shared libraries V8 runtime Optimized Code

Non-Optimized Code Helpers Garbage Collector

32

Figure 5.2: V8 execution breakdown in the first execution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st

an
fo

rd
-c

ry
p

to
-s

h
a2

5
6

-i
te

ra
ti

ve
K

ra
ke

n
 a

ve
ra

ge

Ti
m

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Ti
m

e

Shared libraries V8 runtime Optimized Code

Non-Optimized Code Helpers Garbage Collector

33

Figure 5.3: V8 execution breakdown in JSBench.

first run, we count the total number of x86-64 dynamic instructions using Pin [16]. In the

second run, we introduced additional assembler code (i.e., dynamic counters) to the V8

runtime in order to gather some statistics of interest (e.g., number of times a given check is

performed). Results are presented as percentages with respect to the original unmodified code.

The overheads are broken down into three categories: Checks, Tags/Untags and Math

Assumptions which are described in section 3.2.4.2. Figure 5.4 shows the breakdown of these

overheads. Rest of code means the non-optimized code, the garbage collector, V8 runtime

tasks, auxiliary libraries, etc. We can observe similar overheads for the three suites. They have

a similar percentage of Checks, and these are the most frequent operations. In addition,

Tags/Untags category has an important contribution only for a few benchmarks of SunSpider.

Finally Math Assumptions only represent 1.4% of the total dynamic instructions. Next, each

of the above overheads is further broken down into subcategories.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Amazon Google Twitter Jsbench Average

Ti
m

e

V8 runtime Non-Optimized Code Helpers

Shared libraries Optimized Code Garbage Collector

34

Figure 5.4: Breakdown of main overheads.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st

an
fo

rd
-c

ry
p

to
-s

h
a2

5
6

-i
te

ra
ti

ve
K

ra
ke

n
 a

ve
ra

ge

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)

Checks Tags/Untags Math Assumptions Other Optimized Code Rest of Code

35

Figure 5.5: Breakdown of checking operations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

co
d

e-
lo

ad

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

n
av

ie
r-

st
o

ke
s

p
d

fj
s

ra
yt

ra
ce

re
ge

xp

ri
ch

ar
d

s

sp
la

y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft

au
d

io
-f

ft

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

d
ar

kr
o

o
m

im
ag

in
g-

d
es

at
u

ra
te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6
-i

te
ra

ti
ve

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 In
st

ru
ct

io
n

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

D
yn

am
ic

 In
st

ru
ct

io
n

s

Check Maps Check SMI Check Non-SMI
Check Instance Type Check Function Check Prototype Maps
Check Map Value Check Bounds Check Stack

36

5.2.1 Checking Operations

Figure 5.5 shows the dynamic instruction breakdown for Checks. Check Map, Check Stack,

and Check Bounds are the most important checks for SunSpider and Kraken, whereas Check

Maps, Check Non-SMI, Check Bounds, Check Stack and Check Prototype Maps are the most

important ones for Octane. Some programs, such as 3d-morph, access-nsieve, and math-

spectral-norm, from SunSpider, only have Check Bounds and Check Stack operations as

overhead. It means that these are loop-intensive benchmarks, because V8 generates a Check

Stack operation for every loop iteration, in order to know if an external exception has

happened. Finally, benchmarks with a high percentage of both Check Maps and Check Non-

SMI operations are also very common.

5.2.2 Tagging/Untagging Operations

Figure 5.6 shows a breakdown for Tag and Untag operations. The vast majority of the

benchmarks present either SMI tagging/untagging operations or Number tagging/untagging

operations, the former being the most frequent for all suites. Note that some of the untagging

operations also perform Check Maps, Check Non-SMI and Check SMI operations before the

value is untagged, in order to verify that the number to be untagged has the expected type (i.e.,

either SMI or Non-SMI number). We have included these additional checking operations in

the tagging/untagging category.

5.2.3 An Example of JavaScript Code

In Figure 5.7, we show an example of a JavaScript function called findGraphNode, which is

extracted from ai-astar benchmark, from Kraken. This benchmark implements the A* graph

search algorithm, which finds the best path (i.e., the path with the minimum cost) between two

nodes of a graph. The findGraphNode function is a member method of a Hidden Class (i.e.

nodeList) that represents a list of nodes structure. This function checks whether a particular

node of the graph is contained in that list. This consists of a loop that compares the position

property of the node with all the nodes of the list. Note that this variable refers to the object

itself, which in this case is the list of nodes. In Figure 5.8, we show the main Hidden Classes

that involve nodes object of Figure 5.7, which belongs to nodeList Hidden Class. The node

objects contained in nodes belong to GraphNode Hidden Class and they are stored in the

elements array of nodes.

37

Figure 5.6: Breakdown of Tagging/Untagging operations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

co
d

e-
lo

ad

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s

ra
yt

ra
ce

re
ge

xp
ri

ch
ar

d
s

sp
la

y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft

au
d

io
-f

ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al
js

o
n

-s
tr

in
gi

fy
-t

in
d

er
b

o
x

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6
-i

te
ra

ti
ve

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 In
st

ru
ct

io
n

s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

D
yn

am
ic

 In
st

ru
ct

io
n

s

Number Tag SMI Tag Number Untag SMI Untag

38

Figure 5.8: nodes object structure.

In Figure 5.9, we show the generated x86-64 optimized code corresponding to the

findGraphNode function of Figure 5.7. Instruction I1 loads the this variable, which contains

the address of the nodes object (i.e., the list of nodes on which the findGraphNode function is

applied). Then, instructions I2 and I3 perform a Check Non-SMI operation, which checks

whether its last bit is set to 1, in order to verify that this contains an address. If so, then a Check

Maps operation takes place, which is executed by instructions I4 to I6. Check Maps verifies

that the expected Hidden Class (i.e., nodeList Hidden Class, which has been profiled during

the execution of the non-optimizing code) and the Hidden Class of the nodes object is the

same. If this comparison is successful, then the elements array and the elements length

properties of nodes object are obtained by instructions I7 and I8, respectively. In addition,

instruction I9 performs a SMI Untag operation over the register (rbx) that contains the elements

length property, which does not require any previous check to verify that the value is a SMI

because it is a special property that always contain SMI values. Finally, before entering the

loop, the same process is repeated (I10 to I16) with node object (i.e., the input parameter of

the function) and the property position is obtained. Moreover, Instructions I17-I21 verifies that

the Hidden Class of position is the expected (classPosition).

1 findGraphNode = function(node) {
2 for(var i=0;i<this.length;i++) {
3 if(this[i].position == node.position) {
4 return true;
5 }
6 }
7 return false;
8 }

Figure 5.7: Example of a JavaScript function.

39

Once the loop is entered, instruction I22 is used to compare the loop control variable,

i, with the total number of loop iterations (i.e., this.length). If this comparison is equal, then

the function ends (I23) and the false value is returned, which means that the node has not been

found in the nodes list. Otherwise the loop body is executed. At the beginning of the loop body,

a Check Stack operation is performed by instructions I24 and I25, which compare the stack

pointer (contained in rsp register) with the stack limit value, in order to know whether an

I1 movq rax, this // load this
I2 test rax, 1 // check non-smi
I3 jz code_deoptimization // check non-smi
I4 movq r10, nodeList // check maps
I5 cmpq (rax-1), r10 // check maps
I6 jnz code_deoptimization // check maps
I7 movq rdx,(rax+15) // load elements array

I8 movq rbx, (rax+23) // load elements length
I9 shrq rbx, 32 // SMI Untag
I10 movq rcx, (rbp+16) // load node
I11 testb rcx, 1 // check non-smi
I12 jz code_deoptimization // check non-smi
I13 movq r10, GraphNode // check maps
I14 cmpq (rcx-1), r10 // check maps
I15 jnz code_deoptimization // check maps
I16 movq rsi,(rcx+47) // load node.position

I17 testb rsi, 1 // check non-smi
I18 jz code_deoptimization // check non-smi
I19 movq r10, classPosition // check maps
I20 cmpq (rsi-1), r10 // check maps
I21 jnz code_deoptimization // check maps
loop:
I22 cmpl rdi, rbx // compare i to this.length
I23 jge return_false // node not found: return false
I24 cmpq rsp, (stack_limit) // check stack
I25 jc external_exception // check stack
I26 cmpl rbx,rdi // check bounds
I27 jna code_deoptimization // check bounds
I28 movq r8, (rdx+rdi*8) // load this[i]
I29 testb r8, 1 // check non-smi
I30 jz code_deoptimization // check non-smi
I31 movq r10, GraphNode // check maps
I32 cmpq (r8-1), r10 // check maps
I33 jnz code_deoptimization // check maps
I34 movq r9,(r8+47) // load this[i].position

I35 testb r9, 1 // check non-smi
I36 jz code_deoptimization // check non-smi
I37 movq r10, classPosition // check maps
I38 cmpq (r9-1), r10 // check maps
I39 jnz code_deoptimization // check maps
I40 cmpq r9,rsi // compare property position
I41 jz return_true // node found: return true
I42 addl rdi,0x1 // i++
I43 jmp loop // loop back edge

Figure 5.9: x86-64 optimized code corresponding to findGraphNode function

40

external exception has been produced (i.e., when an external exception occurs, the stack

pointer is reset to the stack limit value). Then, instructions I26-I27 compare the loop control

variable i with the elements length, in order to check whether the array position is not out of

bounds (i.e., Check Bounds operation). After this check, the load access to the corresponding

i position of elements array is performed by instruction I28. Again, the obtained value is

verified to contain an address by instructions I29 and I30 (Check Non-SMI) and the Hidden

Class of the object is compared to the expected one by instructions I31 to I33 (Check Maps).

If these checks are successful, then the property position is obtained by instruction I34. Again,

position is checked to belong to the expected Hidden Class, which is performed by instructions

I35 to I39. Lastly, the property position of this[i] and node variables are compared (I40) and

if they are equal, the function ends (I41) and the true value is returned, which means that the

node has been found in the nodes list. Otherwise, the control loop variable is incremented by

1 (I42) and the next loop iteration is executed (I43).

5.3 Overheads in the Initial Phase

As stated above, at the beginning of the application, the execution is dominated by the V8

runtime tasks, the non-optimized code and some helpers. Furthermore, during this initial phase

the overhead is high. This is due to the time spent in both compilation of the code and

initialization and warm-up of the Inline Caches. Note that Inline Caching is managed not only

by the non-optimized code, but also by some compilation tasks and helpers. Moreover, as we

discussed in section 3.2.2, the most common scenarios for Inline Caching are object property

loads and object property stores. In this regard, this section analyzes the overhead produced

by this mechanism in these common scenarios during the initial phases of the application. We

consider the first iteration of Octane, SunSpider and Kraken applications. For JSBench suite,

we consider as initial phase the fourth iteration of the applications, as explained in section 5.1.

Figure 5.10 shows the overhead of Inline Caching for Octane, Kraken and SunSpider

suites, due to object property accesses. The same results for JSBench suite are showed in

Figure 5.11. Results are broken down into overheads produced during the optimized code and

the non-optimized code. It can be seen that this overhead is quite important in practically all

programs of JSBench and Octane suites, with an average overhead of 23.4% and 16.7%

respectively. However, for SunSpider and Kraken, this overhead is not very important, due to

the low amount of non-optimized code and helpers in these initial phases. Moreover, the

41

0

5

10

15

20

25

30

35

40

45

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u
-p

ar
t1

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

re
ge

xp

ri
ch

ar
d

s

sp
la

y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

A
ve

ra
ge

A
i-

as
ta

r

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft

au
d

io
-f

ft

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

d
ar

kr
o

o
m

im
ag

in
g-

d
es

at
u

ra
te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 A
ve

ra
ge

C
yc

le
s

(%
)

0

2

4

6

8

10

12

14

16

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

C
yc

le
s

(%
)

IC Object Property Store Overhead In Optimized Code
IC Object Property Load Overhead In Optimized Code
IC Object Property Store Overhead In Non-Optimized Code
IC Object Property Load Overhead In Non-Optimized Code

Figure 5.10: Object property accesses overhead.

42

overhead incurred in the optimized code in these latter suites is also low. Note that although

the percentage of optimized execution for Kraken is 30%, and the percentage of checking

operations in the optimized code is also significant, these checks not only target object property

accesses, but also other common scenarios of the Inline Caching mechanism, such as the

accesses to object variables that are indexed by a number (i.e., numbered variables). We have

not considered these other scenarios because the addition of these variables to an object do not

change the object structure (i.e., the Hidden Class of the object keeps being the same) and

therefore, the Inline Caches for these scenarios do not reflect the most important issues about

dynamic typing. These Inline Caches are used to deal with other more specific optimizations,

such as the efficient access to arrays that contain only one particular type of objects (e. g., SMI

arrays).

5.3.1 A Simple Example of a JavaScript Application

In this section, we illustrate how the Inline Caching mechanism works during the execution of

the non-optimized code. In Figure 5.12 we show an example of a simple JavaScript

application, which calculates the total sum of salaries of a university department staff. In lines

0

5

10

15

20

25

30

35

Amazon Google Twitter JSBench Average

C
yc

le
s

(%
)

IC Object Property Store Overhead In Optimized Code
IC Object Property Load Overhead In Optimized Code
IC Object Property Store Overhead In Non-Optimized Code
IC Object Property Load Overhead In Non-Optimized Code

Figure 5.11: Object property accesses overhead for JSBench.

43

1-14, we define the Hidden Classes Researcher, Technician and Other, which represent the

different kind of the staff people. For example, people from PDI have four properties, which

correspond to their id number, position, number of publications and salary. Note that all kinds

of staff have the property salary. Then, we create another class that represents all the staff of

a department (lines 16-26). This class has three properties: the name of the department, the

people of the department, and a function called calculateTotalSalaries, which is used to

calculate the total sum of salaries. The body of this function is based on a loop that traverses a

1 Researcher=function(id,p,n,s){
2 this.id=id;
3 this.position=p;
4 this.numberOfPublications=n;
5 this.salary=s

6 }
7 Technician=function(id,p,s){
8 this.id=id;
9 this.position=p;
10 this.salary=s;
11 }
12 Other=function(id,s){
13 this.id=id;
14 this.salary=s;
15 }
16 departmentStaff=function(name,p){
17 this.departmentName=name;
18 this.people=p;
19 this.calculateTotalSalaries=function(){
20 var total=0;
21 for(var i = 0; i<this.people.length; i++){
22 total=total+this.people[i].salary;
23 }
24 return total;
25 }
26 }
27 var g=new Array(9);
28 g[0]=new Researcher(1,"Phd student",2,900);
29 g[1]=new Technician(2,"Travel administrator",1300);
30 g[2]=new Other(3,1200);
31 g[3]=new Researcher(4,"Postdoc",4,1800);
32 g[4]=new Researcher(5,"Professor",30,2800);
33 g[5]=new Researcher(6,"Phd student",1,900);
34 g[6]=new Technician(7,"Phd administrator",1300);
35 g[7]=new Researcher(8,"Phd student",3,900);
36 g[8]=new Other(9,1000);
37 staff= new departmentStaff("DAC",g)
38 print(staff.calculateTotalSalaries());

Figure 5.10: Example of JavaScript code.

44

list that contains all the people from the department and accumulates their salary on the

variable total, which is returned at the end of the function. Finally, the main of this program

creates the objects that represent a particular department staff (lines 27-36) and invokes the

calculateTotalSalaries function for this department.

In Figure 5.13, the generated x86-64 optimized code corresponding to the JavaScript

code line 22 of departmentStaff function from Figure 5.12 is showed. Concretely, we show the

code corresponding to this.people[i].salary statement. First, the Inline Cache mechanism is

used to obtain the property people of the object pointed by this. For this purpose, the this

pointer is obtained from the stack and loaded into the rdx register (I1-I2), which corresponds

to the first argument of the Inline Cache. Then, the address that contains the “people” string

object is loaded (I3) into rcx, which is the second argument of the Inline Cache. Finally the

incline cache is called (I4), which finds a property called “people” inside the this object.

As second step, instructions I5 to I9 are used to obtain the object corresponding to the

numbered variable i (i.e. the i-th element from the elements array) of the this.people object. In

this regard, Instructions I6 and I7 load the control loop variable i into the rcx register and the

instructions I5 and I8 load the address of this.people into the rdx register. Finally, the Inline

Cache is called again, which finds the object corresponding to the position i of the elements

array contained in this.people.

As last step, instructions I10 to I12 are used to obtain the property salary of the object

obtained by the previous Inline Cache (i.e., this.people[i] object). For this purpose, the same

process as in the first step is repeated, but using the string “salary” and the this.people[i] object

as Inline Cache parameters.

I1 movq rax, [rbp+16] // load this
I2 movq rdx, rax // move this to rdx
I3 movq rcx, ”people” // load “people” to rcx
I4 call IC_loadNamed // call to property load Inline Cache
I5 push rax // push this.people on stack
I6 movq rax, [rbp-32] // load control loop variable i
I7 movq rcx, rax // move i to rcx
I8 Pop rdx // pop this.people from the stack to rdx
I9 call IC_loadNumbered // call to numbered variable load Inline

 Cache
I10 movq rdx, rax // move this.people[i] to rdx
I11 movq rcx, “salary” // load “people” to rcx
I12 call IC_loadNamed // call to property load Inline Cache

Figure 5.11: Generated x86-64 optimized code corresponding to the JavaScript code line 23.

45

If we focus on the Inline Cache load scenario of salary property of Figure 5.13, when

the call instruction I12 is executed for the first time (i.e., in the first loop iteration), the state

of the Inline Cache is not initialized, which means that no Hidden Class has been profiled yet,

as shown in Figure 5.14.

In this state, the Inline Cache branches directly (jump instruction I5, from Figure 5.14)

to a handler routine that searches the relative position that salary occupies inside this.people[0]

object, which depends on its Hidden Class Researcher. Then, the value of salary is obtained.

Finally, the Inline Cache evolves to a monomorphic state, which incorporates the Hidden Class

Researcher and the relative position (i.e. the offset) that salary occupies inside objects

belonging to Researcher, in order to accelerate future accesses with the same Hidden Class.

Figure 5.15 shows the Inline Cache in monomorphic state. Instruction I3 is used to

obtain the current Hidden Class of the object, which is compared to Researcher (i.e., the

expected Hidden Class) by instruction I5. If this comparison is successful, then the code

branches (I6) to specialized code, which obtains the corresponding value of salary in a very

efficient manner, because the relative position of this property is already known. Otherwise,

the code branches to the Inline Cache miss handler (I7).

At the second iteration of the loop of Figure 5.13, the call instruction I12 is patched to

branch to the new version of the Inline Cache (i.e., the monomorphic state). However, in this

loop iteration, the Hidden Class of this.people[1] is Technician, which is not registered yet by

the Inline Cache. Therefore, the code branches to the Inline Cache miss handler, in order to

obtain the corresponding position of salary for the new Hidden Class. Then, the Inline Cache

evolves to polymorphic state, which incorporates the two Hidden Classes seen until now (i.e.,

Researcher and Technician), as we can see in Figure 5.16. The polymorphic version is very

similar to the monomorphic one, but with the addition of instructions I7 to I9, which cover the

case when the Hidden Class of this.people[i] is Technician.

At the third iteration of the loop, the call instruction I12 has been patched to branch to

the new polymorphic state of the Inline Cache. However, now the Hidden Class of

this.people[2] is Other, which is not registered yet by this Inline Cache. Therefore, the Inline

Cache of figure 5.16 is extended to incorporate this new Hidden Class, as shown in Figure

5.17, where instructions I10 to I12 cover this new scenario. Note that for the remaining loop

iterations, this.people[i] will always belong to one of the three Hidden Classes already profiled

46

by this Inline Cache and therefore, it will never miss again to the property handler.

I1 testb rdx,0x1 // check non-smi
I2 jz miss // check non-smi
I3 movq rax,[rdx-1] // load hidden class of this.people[i]
I4 movq rbx, Researcher // load pointer to Researcher hidden class
I5 cmpq rax,[rbx+7] // hidden class comparison
I6 jz loadPropertyStub // branch to load property code (fast)

miss:
I7 jmp LoadIC_Miss //jump to load property IC miss handler

I1 testb rdx,0x1 // check non-smi
I2 jz miss // check non-smi
I3 movq rax,[rdx-1] // load hidden class of this.people[i]
I4 movq rbx, Researcher // load pointer to Researcher hidden class
I5 cmpq rax,[rbx+7] // hidden class comparison
I6 jz loadPropertyStub // branch to load property code (fast)
I7 movq rbx, Technician // load pointer to Technician hidden class
I8 cmpq rax,[rbx+7] // hidden class comparison
I9 jz loadPropertyStub // branch to load property code (fast)
miss:
I10 jmp LoadIC_Miss //jump to load property IC miss handler

I1 pop rbx
I2 push rdx // Push this.people[i]
I3 push rcx // Push “people”
I4 push rbx
I5 jmp LoadIC_Miss // Jump to load property IC miss handler

Figure 5.16: Inline Cache of the property load scenario in polymorphic state.

Figure 5.14: Inline Cache of the property load scenario in uninitialized state.

Figure 5.17: Inline Cache of the property load scenario in polymorphic state.

Figure 5.15: Inline Cache of the property load scenario in monomorphic state.

I1 testb rdx,0x1 // check non-smi
I2 jz miss // check non-smi
I3 movq rax,[rdx-1] // load hidden class of this.people[i]
I4 movq rbx, Researcher // load pointer to Researcher hidden class
I5 cmpq rax,[rbx+7] // hidden class comparison
I6 jz loadPropertyStub // branch to load property code (fast)
I7 movq rbx, Technician // load pointer to Technician hidden class
I8 cmpq rax,[rbx+7] // hidden class comparison
I9 jz loadPropertyStub // branch to load property code (fast)
I10 movq rbx, Other // load pointer to Other hidden class
I11 cmpq rax,[rbx+7] // hidden class comparison
I12 jz loadPropertyStub // branch to load property code (fast)
miss:
I13 jmp LoadIC_Miss //jump to load property IC miss handler

47

Chapter 6

Fusion of Common Instructions Patterns

In JavaScript long-running, compute-intensive applications, the execution time is dominated

by specialized code. Although this code is similar to the code produced by other compilers

tailored to statically typed languages, it incorporates important inefficiencies, mainly due to

the checking of some assumptions. In this chapter, we propose some techniques to reduce the

impact of these overheads.

6.1 Introduction

JavaScript applications are dynamically typed and therefore, object types cannot be inferred at

compile time because variables of these applications (including all the object variables) can

change their type at any time. In order to deal with this issue, modern JavaScript compilers

perform a dynamic profiling of the types of objects. Then, the code is optimized and

specialized with the information collected. Moreover, some checking operations and

tagging/untagging operations are inserted to this specialized code, in order to check the

assumptions about object types. It represents an important overhead, as we saw in chapter 5.

The objective of this chapter is to reduce the overhead of checking and

tagging/untagging operations. In this regard, we propose three HW/SW optimizations that

reduce the dynamic instruction count and number of cycles for the most common instruction

patterns used for checks and tagging/untagging operations. These optimizations require new

ISA instructions and some software changes in V8.

There are few works in the literature that reduce these overheads using a HW/SW

approach. The most relevant one [47] introduces automatic checking of types of objects, in

order to reduce the overhead of these checks. However, that work only deals with checks that

target property accesses. The technique presented in this chapter, addresses all types of

checking operations, which have been analyzed in Chapter 5. Furthermore, it also improves

48

the performance of some other patterns of instructions, such as the SMI Untag operations.

In the rest of the chapter we first motivate our proposal. Next, the proposed technique

is presented and lastly, the results are shown and discussed.

6.2 Motivation

In Figure 6.1, we show the overheads related to checks and tagging/untagging operations,

which were quantified in section 5.2. These overheads represent 25.4% of the total dynamic

instructions for long-running, compute intensive applications. If we take into account only the

optimized code, these overheads represent 37.4% of the total dynamic instructions, which is a

very important fraction of the total activity.

We have observed that most of these operations follow the same pattern of machine

instructions. The most common patterns consist of the execution of two or three instructions

that verify that a particular assumption is correct and a branch to deoptimization code when

the assumption is not fulfilled. The most frequent checking operation is Check Maps, which

usually executes the pattern of three x86-64 instructions showed in Figure 6.2a. The first

instruction is a move, which is used to load the expected Hidden Class to register regA. The

second instruction is a cmp, in order to compare the expected Hidden Class with the Hidden

Class of the current object, which is contained in regB. Finally, the third instruction branches

to a deoptimization code, in case that the comparison is not equal. Another example of these

patterns is showed in Figure 6.2b, which corresponds to the Check Non-SMI operation. In this

example, two x86-64 instructions are executed. The first one is a test instruction, which is used

to check whether the last bit of the register regA is set to 1, which means that the register

contains the address of an object, instead of a SMI. The second instruction is a branch

instruction, which branches to code deoptimization, in case that the register contains a SMI.

Figure 6.2c shows the two-instruction sequence for a Check Stack operation. The first

instruction compares the stack pointer with the stack limit, which is contained in the memory

position pointed by (regA + imm). If the stack pointer is below the stack limit, then the code

branches to an exception routine, instead to deoptimization of the code.

The instructions used to verify math assumptions follow patterns similar to checking

operations. However, these patterns do not perform any comparison or testing before

branching to deoptimization code. Instead, the branch to deoptimization is based on the

49

outcome of an arithmetic or a logical instruction. In Figure 6.2d, we show an example of a

math assumption scenario, which consists on a 32-bit addition (I1) between a SMI value

contained in a register (regA) and an immediate value (imm). For the rest of the execution, V8

assumes that the resulting value is also a SMI value, which needs less costly tagging/untagging

operations, compared to non-SMI numbers. However, this fact has to be validated by

Instruction I2, which branches to code deoptimization, in case that the result overflows (i.e.,

the result needs more than 32 bits for its representation, which means that it is not a SMI value).

Regarding tagging/untagging operations, the most common instruction pattern

corresponds to the SMI Untag operation, which is shown in Figure 6.2e. In this case, the first

two instructions check whether the register regA contains a SMI (i.e., Check SMI operation).

If so, a 32-bit shift right operation is performed, in order to untag the SMI value contained in

regA. Otherwise, the code is deoptimized.

Finally, we have detected other frequently executed instructions patterns, which are

composed of various checking operations. The most common one is a Check Non-SMI

followed by a Check Maps, as shown in Figure 6.2f.

In conclusion, there is a great opportunity to improve the performance of JavaScript

platforms by reducing the latency and number of instructions used to perform the overhead

operations described above.

6.3 Optimization of Common Instructions Patterns

Below we present three proposed HW/SW optimizations that target the patterns described in

the previous section. In this regard, we extend the ISA with new x86-64 instructions and we

describe the required hardware to implement these new instructions.

6.3.1 HW Exception Mechanism

We have observed that when the code may branch to deoptimization code (due to math

assumptions and checking operations, with the exception of Check Stack, as described in

Section 3.2.4.2), in the vast majority of cases (almost 100%) the code is not deoptimized. Every

time the optimized code is checked to potentially deoptimize it, two instructions are used. The

first one is an instruction that changes a flag. This instruction is usually a test or a cmp

instruction, but can also be an arithmetic or a logical instruction, such as the add instruction of

50

Figure 6.1: Overhead produced by Checking operations, tagging/untagging operations and Math

Assumptions.

0

10

20

30

40

50

60

70

80

90

100

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)

0

10

20

30

40

50

60

70

80

90

100

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized code

D
yn

am
ic

In
st

ru
ct

io
n

s
(%

)

51

I1 mov regA, expected_type // load expected type

I2 cmp (regB-1), regA // compare expected type with

 the type of the object

I3 jnz deoptimization bailout // if not equal, branch to

 deoptimization

a) Check Maps.

I1 test regA, 1 // test last bit of the object
I2 jz deoptimization bailout // if it is not set to 1, branch to

 deoptimization

b) Check Non-SMI.

I1 cmp rsp, (regA+imm) // stack pointer with stack limit
I2 jc external exception // if stack pointer is below stack

 limit, branch to external

 exception

c) Check Stack.

I1 add regA,imm32 // add immediate to regA

I2 jo deoptimization bailout // if the result overflows, branch

 to deoptimization

d) Integer Addition.

I1 test regA, 1 // test the last bit
I2 jnz deoptimization bailout // if it is not set to 1, branch to

 deoptimization

I3 shr regA, 32 // perform shift right 32-bits

 displacement

e) SMI Untag.

I1 test regA, 1 // test last bit of the object
I2 jz deoptimization bailout // if it is not set to 1, deoptimize

I3 mov regB, expected_type // load expected type

I4 cmp (regA-1), regB // compare expected type with object

 type
I5 jnz deoptimization bailout // if not equal, branch to

 deoptimization

f) Check Non-SMI and Check Maps

Figure 6.2: Instructions patterns for checking operations, tagging/untagging operations and math

assumptions.

52

Figure 6.2e. The second one is a conditional branch to a deoptimization bailout depending on

the flag.

Our proposal is to replace these two instructions by a new one. This new instruction

performs a scalar operation (test, cmp, add, etc.) and checks the resulting value of a specific

flag. Moreover, this instruction can throw a HW exception according to the encoded specific

flag. Therefore, branch prediction is not needed and whenever the code is not deoptimized,

less dynamic instructions are executed. If the code has to be deoptimized, a hardware exception

is thrown. This exception is intercepted by a handler in the V8 runtime and executes a special

routine, which finds the action to do according to the current program counter. This action is a

jump to an address that targets a specific deoptimization bailout. The overhead of this lookup

is negligible compared with the deoptimization routine itself.

The new x86-64 instructions that we have introduced to allow the implementation of

this optimization are described in Appendix A. Note that the third argument of these new

instructions corresponds to the flag to be checked and the fourth argument indicates the

expected value for that flag (0 or 1), in order not to throw a HW exception.

In Figures 6.3, 6.4 and 6.5, we show three examples of these optimizations, which

correspond to the instructions patterns showed in Figures 6.2a, 6.2b and 6.3d, respectively. We

show the changes at x86-64 and microinstruction level. Note that each microinstruction is

numbered according to the x86-64 instruction that it belongs to.

Figure 6.3: HW Exception mechanism improvement for Check Maps.

53

Figure 6.4: HW Exception mechanism improvement for Check Non-SMI.

Figure 6.5: HW Exception mechanism improvement for Integer Addition.

We can use the same exception mechanism to optimize the Check Stack pattern. This

check uses the same routine as the deoptimization bailout to find the action to do. However, in

this case, the action is a call that interrupts the program because an external exception has

taken place, as explained in section 3.2.4.2. Figure 6.6 illustrates this optimization at

instruction and microinstruction level.

Figure 6.6: HW Exception mechanism improvement for Check Stack.

Figure 6.7 outlines the required hardware support for this mechanism. A mux is added

in the execute stage to select the flag to check, which is compared with the expected value.

The result of this comparison is saved in the exception bit. If this bit is set, a HW exception

54

will be thrown at the commit stage. Note that the Hardware support for this optimization is

very simple and, in addition, the critical path is not affected, because the result is not needed

until the commit stage.

These optimizations can also be applied to other common JavaScript engines and other

dynamically typed languages. For instance, SpiderMonkey [45] and Nitro [63] introduce a

guard just before unboxing an object, in order to ensure that the specific type of the object is

the expected one. This guard also consists of a comparison and a subsequent conditional jump

to a bailout that can be optimized in the same way as shown for V8. These guards are also used

for other type of assumptions (e.g., arithmetic assumptions).

Figure 6.7: Block diagram for the HW Exception mechanism.

6.3.2 SMI Untag Pattern

As commented in section 6.2, SMI Untag operations follow a very common pattern of

instructions for tagging/untagging. These operations are necessary when SMI integer values

need to be unboxed. As shown in section 5.2, they represent 5% of the dynamic instructions

for SunSpider on average, and can reach up to 9% for some benchmarks.

The optimization that we propose for the SMI Untag instruction pattern of Figure 6.2e

is based on replacing three x86-64 instructions by a new single one, which is called xehtestshr.

This new instruction shifts the value of the register at the same time that checks whether the

value is a SMI. If it is not, an exception is raised. Figure 6.8 presents the code and micro code

for the SMI Untag pattern before and after applying this optimization.

55

Figure 6.8: SMI Untag pattern improvement.

Figure 6.9 presents a block diagram of the hardware required to support the xehtestshift

instruction, which is an extension of the scheme of Figure 6.7. Note that another mux is

introduced to select between the flag indicated by the previous optimization and the least-

significant bit, which indicates whether the value is a SMI. In this case, the least-significant

bit is compared to 0 (i.e. because the last bit of a SMI is cleared) and the result of this

comparison is saved in the exception bit. If this bit is set, then a HW exception will be thrown

at the commit stage. Note that both the negate bit, the flag selector and the optimization mode

selector bit of Figure 6.9 are directly codified in the xehtestshift instruction, instead of as a

source operands.

Both Nitro and IonMonkey encode the integer tag into the most significant part of the

64 bit register. This optimization could be easily adapted for them.

Figure 6.9: Block diagram for the SMI Untag pattern optimization

Figure 6.8: SMI Untag pattern improvement.

56

6.3.3 Check Non-SMI and Check Maps Pattern

As explained in section 6.2, there are sequences of different checking operations that are very

frequent. The most repeated of these patterns is a Check Non-SMI followed by a Check Map

operation, so in this section we present an optimization for it.

The optimization that we propose consists of replacing the instructions I1, I2, I4 and I5

by a new single instruction called xehtestcmp, as we can see in the upper part of Figure 6.10.

The optimized instruction sequence consists of the mov instruction I3, followed by the

xehtestcmp instruction. This new instruction has two source operands: the first one is a register

that contains an object address. The second is a register that contains the expected Hidden

Class identifier (type) of the object pointed by the first operand.

The bottom part of Figure 6.10 shows this optimization at microinstruction level. We

can see that the x86-64 xehtestcmp instruction is cracked into three microinstructions. The first

one (µ-xehtestsub) checks whether the address of the object is not a SMI, at the same time that

calculates the effective address of its first memory position, which contains the Hidden Class

identifier. If the address is a SMI, then a HW exception is raised. Note that the hardware

mechanism for µ-xehtestsub is very similar to the mechanism described above for µ-xehtestshr.

However, µ-xehtestsub microinstruction decrements the value contained in the source register

regA, instead of performing a shift right operation.

The second microinstruction (µ-load) performs a memory load operation using the

effective address stored in reg_tempA. Finally, the third microinstruction (µ-xehcmp) is the

same used for the mechanism described in section 6.3.1. This instruction raises and exception

in case that the values stored in reg_tempB and regB are not equal. In this way, the number of

dynamic x86-64 instructions for Check Non-SMI and Check Map pattern is reduced from five

to two and the number of microinstructions is reduced from seven to four, as showed in Figure

6.10.

As Both Nitro and IonMonkey encode the integer tag in the same way as the other object

types, they do not need to use this optimization. They simply need to perform a single check

for the expected type of the object.

57

Figure 6.10: Check Non-SMI and Check Maps pattern improvement.

6.4 An Example of the Proposed Optimizations

As example, Figure 6.11 shows the new x86-64 code for the example described in section

5.2.3, before and after applying our optimizations. The bold Instructions of the left part of this

Figure correspond to the instructions patterns optimized in this example. The right part of this

Figure shows the resulting code after applying our optimizations, which are also in bold.

Note that Instructions I2-I6, I11-I15, I17-I21, I29-I33 and I35-I39 correspond to the

Check Non-SMI and Check Map pattern and instructions I24-I25 and I26-I27 correspond to a

Check Stack and Check bounds operations, respectively. The code of the outer loop is reduced

from 21 to 12 x86-64 dynamic instructions, whereas the code of the inner loop is reduced from

22 to 14 x86-64 dynamic instructions.

6.5 Performance Evaluation

Below we present the performance of the proposed optimizations using Octane, Kraken and

SunSpider benchmark suites. As in section 5.2, the results are reported for the tenth iteration,

in order to focus on the steady state of the applications.

6.5.1 Dynamic Instruction Count Improvements

We have measured the reduction in instruction count through instrumentalization of the V8

engine. In this regard, we have inserted additional assembler code to the V8 runtime, in order

to identify the instructions patterns that our mechanism optimizes. Then, we have quantified

the number of removed x86-64 dynamic instructions in these patterns. On the other hand, the

number of total dynamic instructions has been obtained using Pin [16].

58

Figure 6.12 shows the results for the three benchmark suites. Overall the proposed

techniques achieve an 11.2% dynamic instruction reduction for the whole application and

17.3% reduction for optimized code. All three suites get an important improvement from the

HW Exception mechanism optimization because it targets all kinds of check operations. On

the other hand, most benchmarks from Octane execute an important amount of Check Non-

SMI and Check Map patterns so they significantly benefit from our optimization. Finally,

controlflow-recursive and bitops-bitwise-and benchmarks, from SunSpider, and Richards and

Crypto, from Octane, benefit a lot from our SMI Untag pattern optimization, which reduces to

two thirds the total dynamic instructions used for these operations.

Figure 6.11: Example of the proposed optimizations.

59

6.5.2 Cycle Count Improvements

In this section we analyze the execution time improvements of our technique using the Sniper

simulator [58]. For this purpose, each benchmark was previously executed nine times for the

warm up phase (mandreel and typescript are not included since they crash in our simulation

environment) and statistics were taken from the tenth execution. We have extended Sniper with

the ability to detect the patterns mentioned above. Then, for each of these patterns, we have

0

5

10

15

20

25

30

35

40

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

In
st

ru
ct

io
n

 C
o

u
n

t
R

e
d

u
ct

io
n

 (
%

)

0

5

10

15

20

25

30

35

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized Code

In
st

ru
ct

io
n

C
o

u
n

t
R

e
d

u
ct

io
n

 (
%

)

Figure 6.12: Improvement in dynamic instructions.

60

obtained the number of cycles that the removed instructions (and corresponding

microinstructions) take for their execution, in order to subtract this number from the total

cycles of the entire simulation.

Figure 6.13 presents the speedups for the three benchmark suites. Overall the proposed

techniques achieve a 6.2% cycle count reduction for the whole application and 9% for

optimized code. Regarding the whole application, the speedups achieved by the three suites

are approximately half the dynamic instruction count reduction results showed in the previous

section. This is basically due to two main reasons. On the one hand, the instructions that we

are removing belong to checking operations, which usually are not in the critical path of the

applications. They consist basically of either a compare instruction or an arithmetic instruction

that is followed by a branch that rarely is taken and thus, the branch predictor for these cases

is very accurate. Therefore, as long as there are enough resources, these instructions do not

suppose a main bottleneck for the application.

Besides, the kind of instructions that we are removing in our optimizations are cracked

into only one microinstruction whereas the new x86-64 instructions need more than one

microinstruction for their execution.

6.5.3 Energy Consumption

Figure 6.14 shows the energy savings of our technique for the three benchmark suites, which

are measured through the McPAT simulator [53]. Energy consumption is reduced by 3.9% on

average for the whole application and 5.7% for optimized code. These savings correlate with

the reduction of execution time (which results in less leakage energy) and number of executed

instructions (which results in less dynamic energy).

6.6 Conclusions

The analysis performed in section 5.2 showed that around 25% of the overhead produced in a

steady state execution of representative benchmarks is due to checking, tagging/untagging and

math assumptions operations. In addition, we have found that most of these operations follow

the same pattern of instructions. In this regard, three optimizations are proposed in this chapter,

in order to reduce the dynamic instruction count and number of cycles due to these patterns,

which represent an important fraction of the quantified overhead. These optimizations are

61

based on a hybrid HW/SW approach that requires the introduction of some new machine

instructions, some additional hardware support and some changes in the code generated by the

dynamic compiler.

We have shown that these optimizations result in an average 6.2% speedup and 3.9%

reduction in energy consumption for representative benchmarks. Although the techniques are

implemented on V8 JavaScript engine, these optimizations can be extended to other engines

for dynamically typed languages using similar type profiling mechanisms.

0

5

10

15

20

25

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

Sp
e

e
d

u
p

 (
%

)

0

5

10

15

20

25

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized Code

Sp
e

e
d

u
p

 (
%

)

Figure 6.13: Improvement in number of cycles.

62

0

2

4

6

8

10

12

14

b
o

x2
d

co
d

e-
lo

ad
cr

yp
to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r
gb

em
u

m
an

d
re

el
n

av
ie

r-
st

o
ke

s
p

d
fj

s
ra

yt
ra

ce
re

ge
xp

ri
ch

ar
d

s
sp

la
y

ty
p

es
cr

ip
t

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft
au

d
io

-f
ft

au
d

io
-o

sc
ill

at
o

r
im

ag
in

g-
d

ar
kr

o
o

m
im

ag
in

g-
d

es
at

u
ra

te
im

ag
in

g-
ga

u
ss

ia
n

-b
lu

r
js

o
n

-p
ar

se
-f

in
an

ci
al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x
st

an
fo

rd
-c

ry
p

to
-a

es
st

an
fo

rd
-c

ry
p

to
-c

cm
st

an
fo

rd
-c

ry
p

to
-p

b
kd

f2
st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

En
e

rg
y

re
d

u
ct

io
n

 (
%

)

0

2

4

6

8

10

12

14

16

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized Code

En
e

rg
y

re
d

u
ct

io
n

 (
%

)

Figure 6.14: Improvement in energy consumption.

63

Chapter 7

The Class Cache Mechanism

In this chapter, we present the Class Cache, a HW/SW hybrid mechanism that allows the

removal of checking operations executed in the optimized code by performing a HW profiling

of the types of object properties and objects contained in the elements arrays. As explained in

chapter 3, the elements array is an internal array owned by each object, which contains all the

variables of an object that are indexed by a number. Note that this technique takes a different

approach than the optimizations presented in the previous chapter. Before, we improved

performance by reducing the dynamic instruction count of these checking operations, while

now we are removing the checks completely. Both kinds of techniques are complementary and

can be implemented together.

7.1 Introduction

The main characteristic of dynamically typed languages such as JavaScript is that variables

are neither declared nor bound to a particular type, and their types may change during the

execution. Compilers usually make some assumptions about the types of the variables, in order

to generate specialized code, which is significantly more efficient than a generic one. These

assumptions are based on some dynamically profiled information collected previously by the

runtime. This collected information consists of the object types seen in particular static points

of the program. However, these assumptions need a verification mechanism that introduces

some overhead to this specialized code. The operations used by this verification mechanism

are referred to as checking operations. For long-running, compute-intensive applications in

which the execution is dominated by specialized code, the overhead produced by checking

operations is significant.

Although the assumptions verified by checking operations are fulfilled most of the time,

they are not removed either because the compiler cannot ensure that the types will not change

during the program execution or because the time spent on an exhaustive dynamic analysis of

64

the application would not compensate the gains of removing some unnecessary checking

operations.

In order to improve this part in an effective way, we propose a HW/SW technique that

allows the removal of some checking operations in a safe and efficient manner. The basic idea

of this technique is that object properties and elements arrays that always contain objects with

the same type do not need to be type checked. We refer to them as monomorphic properties or

monomorphic elements arrays. Our technique keeps this information at Hidden Class

granularity, which means that it tracks which properties or elements arrays of every Hidden

Class are monomorphic. This information is tracked by a new hardware structure called the

Class Cache, which is located next to the L1 data cache.

Once these monomorphic properties or monomorphic elements arrays are identified,

the information is passed to the compiler, which can use it to remove some checking operations

assuming that the type of these properties will never change. In order to verify these

assumptions, when a store that writes a monomorphic property or a monomorphic elements

array is executed, the Memory Unit sends a request to the Class Cache indicating the type of

the object to be stored. If this type is different to the one observed in the past, then the

corresponding property or elements array will no longer be considered as monomorphic. In

addition, if any optimization (i.e., the removal of any checking operation) has been previously

performed considering this property or elements array as monomorphic, then a HW exception

is triggered. This exception is captured by the runtime, which recompiles all the affected

functions (i.e., deoptimizes them to a version that does not consider that property or elements

array as monomorphic).

In the rest of this chapter, we first explain the reasons that have motivated us to devise

the proposed mechanism. Next, we present the design and functionality of the technique and

then, we describe the optimizations that make use of it. Finally, we provide a performance

evaluation of these optimizations.

7.2 Motivation

We have observed that in a significant fraction of the benchmarks, the main source of overhead

comes from checking operations of objects obtained from properties or elements arrays. In

Figure 7.1 we quantify this overhead for both the whole application and optimized code. Note

65

that we also include part of the overhead of untagging operations, which corresponds to the

checking operations needed before unboxing a value.

We can see that about half of the total benchmarks present a zero overhead. One of the

major reasons for this is that some of them do not exploit the object-oriented paradigm of

JavaScript and therefore, they do not perform many dynamic object accesses. Another

important reason is that although some of these benchmarks perform a significant number of

object accesses, they do not require any type checks after these accesses because they use built-

in JavaScript objects for their computations. Note that most of the properties from built-in

objects are either read-only or type specific (e.g., Float64Array objects) and therefore, they do

not require any type check after they have been obtained. Finally, there are a few number of

benchmarks that still are spending a significant fraction of the time in non-optimized code

(e.g., string-base64 benchmark, from SunSpider suite), which does not suffer from the

overheads targeted in this section. For the rest of this chapter, in order to evaluate the impact

of these particular checking operations, we have selected the benchmarks with more than 1%

overhead, which represent 27 out of the 54 benchmarks. In this regard, we have averaged the

benchmarks suites of Figure 7.1 only for these selected benchmarks. We can see that these

overheads represent 10.7% of the total dynamic instructions. Furthermore, if we take into

account only the optimized code, these overheads represent 15.9% of the total dynamic

instructions, which is quite significant.

On the other hand, we have observed that most of the type checks quantified in Figure

7.1 are performed over monomorphic properties or monomorphic elements arrays (i.e., those

that stay with the same type throughout the whole execution of the program). We have

quantified that 66% of the object load accesses target either monomorphic properties or

monomorphic elements arrays, as showed in Figure 7.2. Lastly, we have also observed that

many checking operations target these object load accesses. Therefore, the key idea behind our

technique is that these checking operations can be removed as long as the monomorphism of

the variables is preserved during the execution of the program.

Finally, we have also observed that programs normally use a limited number of Hidden

Classes and these classes tend to remain constant. Our analysis of representative workloads

reveals that the number of Hidden Classes is relatively small in almost all benchmarks: they

all use up to 32 Hidden Classes excepting box2d and raytrace, from Octane, as we can see in

66

Figure 7.3. Therefore, the hardware structure (i.e., the Class Cache) that we use to keep the

Hidden Class information about monomorphic properties or monomorphic elements arrays

does not have important storage requirements.

Figure 7.1: Overhead produced by checking and untagging operations after performing object load

accesses of properties and elements arrays.

0

5

10

15

20

25

30

35

40

45

b
o

x2
d

co
d

e-
lo

ad

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

n
av

ie
r-

st
o

ke
s

p
d

fj
s

ra
yt

ra
ce

re
ge

xp

ri
ch

ar
d

s

sp
la

y

zl
ib

O
ct

an
e

av
er

ag
e

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-d

ft

au
d

io
-f

ft

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

d
ar

kr
o

o
m

im
ag

in
g-

d
es

at
u

ra
te

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

js
o

n
-p

ar
se

-f
in

an
ci

al

js
o

n
-s

tr
in

gi
fy

-t
in

d
er

b
o

x

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)

0

5

10

15

20

25

30

35

40

45

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

ac
ce

ss
-n

si
ev

e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
yt

e

b
it

o
p

s-
b

it
s-

in
-b

yt
e

b
it

o
p

s-
b

it
w

is
e-

an
d

b
it

o
p

s-
n

si
ev

e-
b

it
s

co
n

tr
o

lf
lo

w
-r

ec
u

rs
iv

e

cr
yp

to
-a

es

cr
yp

to
-m

d
5

cr
yp

to
-s

h
a1

d
at

e-
fo

rm
at

-t
o

ft
e

d
at

e-
fo

rm
at

-x
p

ar
b

m
at

h
-c

o
rd

ic

m
at

h
-p

ar
ti

al
-s

u
m

s

m
at

h
-s

p
ec

tr
al

-n
o

rm

re
ge

xp
-d

n
a

st
ri

n
g-

b
as

e6
4

st
ri

n
g-

fa
st

a

st
ri

n
g-

u
n

p
ac

k-
co

d
e

st
ri

n
g-

va
lid

at
e-

in
p

u
t

Su
n

Sp
id

er
 a

ve
ra

ge

Whole application Optimized code

D
yn

am
ic

 In
st

ru
ct

io
n

s
(%

)

67

Figure 7.2: Object load accesses to monomorphic properties and monomorphic elements arrays.

Figure 7.3: Number of different Hidden Classes used for each benchmark.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6
-i

te
ra

ti
ve

K
ra

ke
n

 a
ve

ra
ge

O
b

je
ct

 lo
ad

 a
cc

e
ss

e
s

(%
)

monomorphic properties monomorphic array elements
no monomorphic properties no monomorphic array elements

0

20

40

60

80

100

120

140

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

N
u

m
b

e
r

o
f

H
id

d
e

n
 C

la
ss

e
s

68

7.3 The Class Cache Mechanism

The Class Cache mechanism is based on a small, special new HW/SW structure that keeps

information about monomorphic properties and monomorphic elements arrays at Hidden Class

level. In other words, it stores which properties and elements arrays have the same type (i.e. a

particular Hidden Class or SMI) for all the objects of the same Hidden Class during the

execution of a program. This structure collects information during the execution of the code

produced by the Full Codegen compiler (i.e., non-optimized code). This information is used

to perform the optimizations in the code produced by Crankshaft compiler (i.e. optimized

code). Then, this structure is accessed to verify the assumptions about monomorphic properties

and monomorphic elements arrays. In this regard, the class properties’ information is read on

demand when a store that targets an object property is executed. Similarly, the class elements

array’ information is read on demand when a store that targets an elements array is executed.

On the other hand, a new entry is stored in this structure every time that a property of a

new Hidden Class (i.e., a Hidden Class that is not yet present in the structure) is written for the

first time. Below we explain in detail the new structures used for this mechanism and how

these two phases, profiling and optimization, work.

7.3.1 The New Structures

In this section, we present the software and hardware components used for the Class Cache

mechanism.

7.3.1.1 The Class List

The runtime maintains a software structure that we call the Class List, which stores the object

types of the monomorphic properties and monomorphic elements arrays for each Hidden Class

of the JavaScript application. As we outlined in Section 3.2.1, the V8 engine creates these

Hidden Classes dynamically as objects are constructed. For each Hidden Class, the Class List

contains as many entries as cache lines the objects belonging to this class occupy (one is

enough most of the time as we will show later). Note that for each 64-byte cache line, there

are up to seven 8-byte properties, because the first 8-byte word contains the identifier for the

Hidden Class along with the corresponding relative cache line position. For each entry, it

contains the following information.

69

 ClassID, Line: The identifier of the Hidden Class together with the relative cache

line that this entry represents. As commented above, each entry represents up to

seven properties of the object. Note that these identifiers are not the same that the

ones used by V8, which need 48 bits for their representation because they are

memory addresses of the Hidden Class descriptors. Instead, the identifiers for the

Hidden Classes that we use are consecutive numbers, which allow us to represent

them with only 8 bits. On the other hand, the Line attribute is represented with 8

bits. Note that the Class List occupies only 2^16 entries, which are located together

in the same memory region. As special case, the SMI type is encoded as 11111111.

 InitMap: An 8-bit map that indicates for each property of the entry whether it has

been initialized in any object. This bitmap is initialized to zeros, indicating that no

property has been initialized so far. Note that each bit represents a different

property, so only the 7 least-significant bits are used in practice.

 ValidMap: An 8-bit map that indicates for each property of the entry whether this

is monomorphic so far. As with InitMap field, each bit represents a property of the

object. This bitmap is initialized to 11111111, indicating that all properties are

monomorphic. Note that the first time that a type is profiled for a particular

property, the corresponding bit of the InitMap field is set to 1. Then, if the type of

that property differs from the profiled one, the corresponding bit of the ValidMap

field is set to 0 and this will never be set to 1 again.

 SpeculateMAP: A bit map that indicates for each property whether a speculative

optimization that depends on this property has been applied by the Crankshaft

compiler. This field is initialized to zeros, indicating that no speculation has been

applied yet.

 Prop1 … Prop7: Seven 1-byte fields that contains the ClassIDs that are profiled

for each property of the entry. As special case, the Prop2 field of the first line of

each object contains the ClassID that has been profiled for the objects contained in

the elements array, as long as all the objects contained in this array have been

profiled with one single ClassID.

 FunctionList: For each property, the list of functions that have been speculatively

optimized based on this property.

70

In Table 7.1 we show an example of a Class List, which contains two Hidden Classes:

NodeList and GraphNode. GraphNode occupies two cache lines because it has 9 properties.

In the first cache line, the InitMap field indicates that all the properties have been initialized

for that line and therefore, Prop1 to Prop7 fields contain the profiled ClassID for each property.

Note also that the ValidMap field indicates that all the ClassIDs profiled for each property are

valid (i.e., monomorphic), which means that they can be used for our optimizations. Moreover,

findGraphNode function has been speculatively optimized assuming that the sixth (position)

property is monomorphic, and its type is classPosition Hidden Class, according to the profiling

data. The two properties contained in the second cache line have not been used to optimize

any function, despite the fact that both properties are valid and initialized.

NodeList objects occupy only one cache line because they contain four properties. In

Table 7.1, all the properties of this Hidden Class have been initialized and are considered valid.

Note also that the second property of this Hidden Class has been used to speculatively optimize

findGraphNode function. As commented above, this is a special property that contains the

elements array pointer of the object. Therefore, the Hidden Class profiled for this property

(i.e., GraphNode) corresponds to the type of the objects contained in the elements array of

NodeList.

ClassID,

Line

InitMap ValidMap Speculate

Map

Prop1 Prop2 … Prop6 … FunctionList

(property: list

of functions)

GraphNode,

1

01111111 11111111 00000010 …. …. … classPosition … 6th property

(position):

findGraphNode

GraphNode,

2

01100000 11111111 00000000 …. …. … …. … ---

NodeList,

1

01111000 11111111 00100000 …. GraphNode … …. … 2nd property

(elements

array):

findGraphNode

… … … …. …. … …. … …

Table 7.1: Class List Structure.

Besides, there is a special register that has a pointer to this Class List in memory, in a

similar way that there is a special register that points to the memory translation table. Note that

the Class List entries are together in the same 1 MB memory region (i.e., 16 bytes reserved for

each entry) and therefore, all the entries are indexed by adding to this special register the

resulting value of concatenating the ClassID and the Line number attributes.

71

7.3.1.2 New Machine Instructions

The compiler (both Full Codegen and Crankshaft) identifies which stores can affect objects

and they are encoded with a new different opcode through two new instruction called

movStoreClassCache and movStoreClassCacheArray. The former is used for stores that target

object properties and the latter is used for stores to the elements array of an object. These

instructions are similar to a mov x86-64 instruction, but in addition to the L1 data cache write,

they perform a request to the Class Cache in parallel.

Besides these instructions, two more new instructions are required by our mechanism,

which are called movClassID and movClassIDArray. The former loads the ClassID of an

object to a special 8-byte register called regObjectClassId. If the object is a SMI (i.e. the least-

significant bit of the register that represents the object is 0), the corresponding ClassID value

for SMI’s (i.e., 11111111) is directly loaded to regObjectClassId. Otherwise, since the register

that represents the object contains the memory address where the object resides, the ClassID

is obtained from the first 8-byte word of this location. Note that this register will be used by

both movStoreClassCache and movStoreClassCacheArray instructions. The latter works

similar to the former, but instead of loading the ClassID to the regObjectClassId special

register, it is loaded to a specified register among an additional set of four special 8-byte

registers called regArrayObjectClassId0-3. Note that these registers will be consumed only by

movStoreClassCacheArray instructions, which need a source operand (i.e., regArray) to

indicate which of the four registers they use.

 Appendix B details the mnemonics of these new instructions. Note that identifying

these object stores is straightforward for the dynamic compiler, since it knows the semantics

of the code being generated.

7.3.1.3 The Class Cache

The Class Cache is a cache of the Class List, in a similar way as the TLB is a cache of the Page

Table. When a special store that writes to an object property or an elements array (i.e., a

movStoreClassCache or an movStoreClassCacheArray instruction) is executed, the Memory

Unit sends a request to the Class Cache that includes the ClassID of the Hidden Class that

contains that property or array, the relative cache line (0 in case of a movStoreClassCacheArray

instruction), the position of the property that is written (2 in case of a

72

movStoreClassCacheArray instruction) and the ClassID of the object to be stored.

In Figure 7.4 we depict a Class Cache request for a movStoreClassCache instruction.

Note that in V8, the first 8-byte word of the first cache line of an object contains its Hidden

Class identifier, which occupies the 48 least-significant bits. Therefore, we store the ClassID

and Line parameters in the two most significant bytes of the first 8-byte word. Furthermore,

for objects larger than one cache line, the rest of lines also contain the ClassID and Line

parameters in the same position (and the rest of the bytes in the first 8-byte word are not used).

Consequently, the proposed mechanism requires that objects are created aligned to cache lines.

Note that this restriction is not costly [47] and both Nitro [63] and Mozilla JavaScript engines

[45] already apply it. Moreover, a Class Cache request needs to specify the relative position

that the property occupies inside the cache line. Since objects are cache line aligned, this

information is contained in the bits 3-5 of the store address. Finally, each execution of a

movStoreClassCache instruction requires the previous execution of a movClassID instruction,

which loads the ClassID of the object that is written in the selected property to the

regObjectClassId register.

Figure 7.4: Block diagram of a Class Cache access for a movStoreClassCache instruction.

In Figure 7.5 we illustrate a Class Cache request for the movStoreClassCacheArray

instruction. This scenario is very similar to the previous one, with two main differences. The

first one is that the relative property position and the Line parameters of the Class Cache are

fixed to 2 and 0, respectively. As commented above, the field inside the Class Cache that is

73

reserved for the elements array pointer (i.e., the second property of each Hidden Class) is used

to keep the ClassID that has been profiled for the objects contained in the elements array. Note

that this special property will never be used by a movStoreClassCache instruction. The second

difference is that the ClassID parameter of the Class Cache (i.e., the Hidden Class identifier

of the object that contains the elements array in which the store will write) comes from another

special register (regArrayObjectClassId0-3), which is selected by the

movStoreClassCacheArray instruction. In this regard, each execution of a

movStoreClassCacheArray instruction requires the previous execution of a movClassIDArray

instruction, apart from the corresponding movClassID instruction. This movClassIDArray

instruction loads the ClassID of the object that contains the elements array to one of the

regArrayObjectClassId0-3 registers.

Note that in the optimized code, both movStoreClassCache and

movStoreClassCacheArray instructions are inserted only for those properties or elements

arrays that still are considered as monomorphic. Otherwise, a regular store is used.

Furthermore, the movClassIDArray instructions can be moved out of the loop in many cases,

as long as the variable that contains the object is not modified inside the loop and there are not

function calls inside this loop. For this reason, we have four regArrayObjectClassId0-3

registers, in order to move out of the loop up to four movClassIDArray instructions for

different objects that are accessed inside the loop.

Figure 7.5: Block diagram of a Class Cache access for a movStoreClassCacheArray instruction.

74

Each Class Cache entry contains the ClassID, the Line, the InitMap, the ValidMap and

the SpeculateMAP attributes from the Class List, as we can see in Figure 7.6. The ClassID and

Line parameters are used to index the Class Cache. The Class Cache checks whether it has the

corresponding entry stored, as we can see in the left upper part of Figure 7.6. If the class is not

present, its information is obtained from the Class List in memory, in a similar way to a TLB

miss, and one of the entries is replaced and copied back to the Class List. Once the requested

entry is in the cache, the corresponding bits of InitMap, ValidMap and SpeculateMap are

selected by the relative property position input parameter. Moreover, the corresponding field

with the profiled ClassID (Prop1-Prop7) is selected by this input parameter.

The first time that a particular property is selected, the corresponding InitMap bit

contains a 0 value, indicating that no ClassID have been profiled yet for that property.

Therefore, the Object ClassID input parameter is stored in the corresponding prop1-prop7 field

and, the InitMap bit is set to 1. For the following accesses to that property, the Object ClassID

input parameter is compared to the corresponding prop1-prop7 field. When this comparison is

not equal, the corresponding ValidMap bit is set to 0 and it will never be set to 1 again.

Moreover, the corresponding SpeculateMap bit is checked. If this bit is set to 1, then a HW

exception is raised, because at least one function was optimized assuming that this property

was monomorphic, but it is not anymore. The exception routine deoptimizes the offending

functions and sets to 0 the corresponding SpeculateMap bit.

Figure 7.6: Scheme of a Class Cache entry.

75

7.3.2 How the Mechanism Works

As explained in chapter 3.2, when a function is invoked by the first time, the code is compiled

by Full Codegen and then it is executed. This execution may create new classes and their

corresponding entries in the Class List and the Class Cache. In addition, it updates all the fields

of the Class Cache accordingly. That is, when a property or elements array is written, the Class

Cache is accessed, in order to perform the corresponding profile.

When a function has been executed often enough (hot function), the runtime compiles

it with the more aggressive compiler (Crankshaft). Using the information collected by the

Class List, the compiler can perform some speculative optimizations that we describe later

(section 7.3.3), based on the assumption that the monomorphic properties or monomorphic

elements arrays will remain so for the rest of the execution. When any of these optimizations

are applied, the relevant bit in the SpeculateMAP of the corresponding property or elements

array is set to 1. Figure 7.7 illustrates this optimization process.

For every store to an object property or elements array, the Class Cache is accessed, in

order to perform the corresponding Hidden Class profiling and to check whether a

misspeculation has occurred (i.e. a monomorphic property or a monomorphic elements array

is not monomorphic anymore and it had previously been used to optimize at least one function).

If so, then a hardware exception is triggered. In the exception routine, the V8 runtime is called,

which invalidates and recompiles all the functions that have performed speculative

optimizations assuming that the property or elements array was monomorphic. These

functions are identified by the runtime through the FunctionList field of the Class List. Note

that the application state is correct because up to this point in the execution all the assumptions

were correct, so no recovery action is required.

There is a situation that deserves special attention, which is due to functions in the

program stack (i.e. function f calls function g, and g causes an exception that requires f to be

deoptimized). This case can be handled by performing on-stack-replacement, which is a

technique that modern JavaScript engines already support.

Although this technique introduces some overheads (extra movClassID and

movClassIDArray instructions, larger objects, managing misspeculations, Class Cache

misses), it allows for new compiler optimizations, and the net benefit is a significant reduction

76

in execution time and energy consumption, as we will see in the next sections.

Figure 7.7: Optimization process.

7.3.3 New Speculative Optimizations

Functions compiled with the non-optimizing compiler do not contain any speculation and are

executed as usual. When functions become hot and are optimized by the Crankshaft compiler,

the information contained in the Class Cache and the Class List is used to optimize the

generated code. Below we describe several new optimizations that we have developed based

on this scheme.

Check Maps Elimination

We remove the Check Maps operations that verify the monomorphic properties or

monomorphic elements arrays. Note that this optimization also includes the Check Maps

operations that are necessary for the Number Untags commented in section 5.2.2.

Check Non-SMI Elimination

We remove the Check Non-SMI operations that verify monomorphic properties or

monomorphic elements arrays that are profiled as non-SMI. Note that this optimization also

includes the Check Non-SMI operations that are necessary for the Number Untags.

Check SMI Elimination

We remove the Check SMI operations that verify the monomorphic properties or monomorphic

elements arrays that are profiled as SMIs. Note that this optimization also includes the Check

77

SMI operations that are necessary for the SMI Untags.

7.3.4 An Example of the Proposed Optimizations

In Figure 7.8 we show an example of our optimizations for the findGraphNode function

explained in section 5.2.3. As we have seen in Table 7.1, our mechanism has optimized this

function by considering that the 6th property (position) from GraphNode and the elements

array from NodeList are monomorphic. The position property of GraphNode has been profiled

with a single ClassID (i.e., classPostion) and all the objects stored in the elements array of

NodeList have also been profiled with a single ClassID (i.e., GraphNode).

The left part of Figure 7.8 shows that instructions I17-I21 and instructions I35-I39 are

used to perform a Check Non-SMI and a Check-Maps operations to the values obtained from

the position property of GraphNode objects. The right part of Figure 7.8 shows that these

instructions are removed by our Class Cache mechanism, because up to this point all position

properties of GraphNode are monomorphic properties that contain objects that belong to the

classPosition Hidden Class.

On the other hand, the left part of Figure 7.8 shows that instructions I29-I33 are used

to perform a Check Non-SMI and a Check-Map operations to the values obtained from the

elements array of NodeList objects. The right part of Figure 7.8 shows that these instructions

are removed by our Class Cache mechanism, because up to this point the elements array of

NodeList is monomorphic since all objects contained in this array belong to the GraphNode

Hidden Class.

7.4 Performance Evaluation

In this section, the benefits of the Class Cache mechanism are evaluated for a subset of Octane,

Kraken and SunSpider benchmark suites. The V8 JavaScript engine has been extended to

include the proposed optimizations. As in section 5.2, the reported results refer to the tenth

iteration, in order to achieve a steady state of the benchmarks.

In the experiments below, the Class Cache has 128 entries and 2-way set associativity.

We have chosen this configuration because it achieves more than 99.9% of hit rate for all the

benchmarks, with very low hardware cost.

78

Figure 7.8: Example of the proposed optimizations.

As evaluation methodology, we have implemented the Class Cache mechanism in V8

JavaScript engine, in order to remove the execution of the corresponding checking operations.

Besides, we have also inserted additional mov x86-64 instructions before the corresponding

stores to properties or array elements, in order to obtain their ClassID parameters. Finally, in

a separated simulation of the Class Cache, we have quantified the number of dynamic

instructions and cycles taken by all the misses of the Class Cache.

79

7.4.1 Dynamic Instruction Count Improvements

In this section we analyze the dynamic instructions that are executed with and without our

technique. Figure 7.9 shows the results for the three benchmark suites, considering both the

whole application and the optimized code. Our technique reduces the number of instructions

in optimized code by 7.5% on average and up to 21% in the best case. We achieve similar

improvements for all three benchmarks suites. If we consider not only the optimized code, but

the compiler, garbage collector and the rest of the runtime as well (i.e., the whole application),

instruction count gains are still important with an average improvement of 5.2% and up to

20.5%.

Note also that our technique reduces the overhead quantified in section 7.1 by 51% on

average. The overhead that is not removed by our mechanism consists basically of checking

operations of properties or elements arrays that are not monomorphic.

As we have seen in Section 5.2, the percentage of dynamic checks in Kraken is similar

to Octane and SunSpider. However, as shown in Figure 7.9, Kraken gets 5.7% instruction count

reduction for the whole application, which is a bit better than the other suites. This is mainly

due to the fact that Kraken has a higher fraction of dynamic instructions in optimized code.

There are benchmarks that do not have much optimized code and therefore our technique

provides small benefits for these cases. However, as JavaScript applications become more

compute intensive, we expect that the relative overhead of the compiler will decrease and the

weight of the optimized code will become more important, which will increase the benefits of

our technique.

7.4.2 Cycle Count Improvements

In this section we evaluate the performance benefits of our technique, as measured with Marss

[2] cycle-level microarchitectural simulator. Figure 7.10 shows the speedups for both the

optimized code and the whole application. Regarding the former, our technique achieves an

average speedup of 7.1%. We can see benchmarks with gains up to 34%. This confirms that

our technique has an important impact on the execution of many JavaScript applications.

If we look at the whole application, including all the runtime, the average speedup is

5%. This is still an important benefit and, as discussed above, we expect it will improve as

JavaScript applications become more compute intensive and the relative overhead of the

80

housekeeping tasks decreases.

These results correlate significantly with the ones presented in the previous section for

dynamic instructions. For Octane and SunSpider suites, the obtained speedup is somewhat

lower than the dynamic instruction count reduction. The reason is that some of these checking

0

5

10

15

20

25

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-…

K
ra

ke
n

 a
ve

ra
ge

Whole Application Optimized Code

In
st

ru
ct

io
n

 C
o

u
n

t
R

e
d

u
ct

io
n

 (
%

)

0

5

10

15

20

25

30

35

40

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

Whole Application Optimized Code

Sp
e

e
d

u
p

 (
%

)

Figure 7.10: Improvement in number of cycles.

Figure 7.9: Improvement in number of instructions.

81

operations are not in the critical path of the application, so they have a small impact on

performance. On the other hand, we see the opposite effect for Kraken suite, for which the

speedup is higher than the reduction in dynamic instruction count. A remarkable case is ai-

astar benchmark, from Kraken, which achieves a 34% of speedup. This benchmark is

executing most of the time a loop with many object property accesses, which require an

important number of checking operations that are removed by our optimizations. More than

half are Check-Maps operations and as commented in chapter 5, a Check-Maps operation

performs a memory access, in order to obtain the Hidden Class identifier of the object. We

have observed that after removing most of these memory accesses, the DL1 hit rate, the L2 hit

rate and the Dtlb hit rate have improved by 20%, 40% and 37% respectively, which indicates

that memory accesses are an important bottleneck for this benchmark.

7.4.3 Energy Reduction

Figure 7.11 shows the energy savings of our technique for the three benchmark suites, which

are measured through the McPAT simulator [53]. We used CACTI [55] to obtain the energy

consumption of the Class Cache. Energy consumption is reduced by 4.5% on average for the

whole application and 6.5% for optimized code. These savings come mainly from the

reduction in number of executed instructions (which results in less dynamic energy) and

execution time (which results in less leakage energy). Again, Kraken suite achieves the best

0

5

10

15

20

25

30

35

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd

-c
ry

p
to

-s
h

a2
5

6
-i

te
ra

ti
ve

K
ra

ke
n

 a
ve

ra
ge

Whole Application Optimized Code

En
e

rg
y

R
e

d
u

ct
io

n
 (

%
)

Figure 7.11: Improvement in energy consumption.

82

energy savings with a 6.5% improvement. The consumed energy of this suite is also

significantly reduced for optimized code, by 8.8% on average.

7.4.4 Incurred Overheads

In this section we present a detailed analysis of the overheads incurred by our technique.

7.4.4.1 Class Cache Hits

Every time that a special store instruction that targets an object is performed, the Class Cache

has to be accessed at the same time as the data is written to L1 data cache. Therefore, as long

as the access hits in the Class Cache, we do not incur any penalty for the movStoreClassCache

and movStoreClassCacheArray instructions.

7.4.4.2 Class Cache Misses

When a miss in the Class Cache happens, the information has to be retrieved from the Class

List, which resides in main memory, and is a rather slow operation. However, the hit rate of a

Class Cache of just 128 entries and 2-way set associativity is higher than 99.9% for all

benchmarks and thus the penalty of misses is negligible.

7.4.4.3 Misspeculations and Recompilations

When a misspeculation occurs for a particular property or elements array (i.e., a property or

elements array that has been used to optimize at least one function changes its profiled

ClassID), a hardware exception is triggered and all the functions that have been optimized

using that property or elements array have to be recompiled. This exception is captured by the

runtime, which manages this recovery mechanism. Identifying the functions to recompile is

straightforward because these are kept in the FunctionList field of the Class List. Note that all

code executed until this point is correct, and by recompiling the speculative functions, the code

executed in the future will also be correct. In other words, our scheme never executes incorrect

code that has later to be squashed.

Since our results report the tenth iteration of each benchmark, there is not any

misspeculation at that point. However, we have verified that in the first iteration, the number

of misspeculations is negligible for all the benchmarks. The main reason is that at the

83

beginning of the application all the functions are executed in non-optimized code. Therefore,

during this period the Class Cache performs a very accurate profiling of the monomorphic

properties and monomorphic elements arrays, which does not differ much for the rest of

execution.

7.4.4.4 Larger Objects

The objects whose size is higher than 64 bytes (one cache line) require an extra memory word

for each extra line (i.e., because the insertion of ClassID and Line fields), as described in

section 7.3.1. The fact that a small fraction of the objects are slightly larger (up to 11% larger)

may affect the L1 Data Cache hit rate. However, most of the object property accesses (79%)

target the first cache line, as we can see in Figure 7.12. Therefore, the L1 Data Cache miss rate

hardly increases and this overhead is not relevant.

7.4.5 Hardware Cost

The Class Cache occupies less than 1.5KB, which represents less than 0.04% of the total area

of the core, measured through McPAT [53] and CACTI [55]. Similarly, the energy

0

20

40

60

80

100

120

b
o

x2
d

cr
yp

to

d
el

ta
b

lu
e

ea
rl

ey
-b

o
ye

r

gb
em

u

m
an

d
re

el

p
d

fj
s

ra
yt

ra
ce

ri
ch

ar
d

s

O
ct

an
e

av
er

ag
e

3
d

-c
u

b
e

3
d

-r
ay

tr
ac

e

ac
ce

ss
-b

in
ar

y-
tr

ee
s

ac
ce

ss
-f

an
n

ku
ch

ac
ce

ss
-n

b
o

d
y

cr
yp

to
-a

es

d
at

e-
fo

rm
at

-t
o

ft
e

m
at

h
-s

p
ec

tr
al

-n
o

rm

st
ri

n
g-

u
n

p
ac

k-
co

d
e

Su
n

Sp
id

er
 a

ve
ra

ge

ai
-a

st
ar

au
d

io
-b

ea
t-

d
et

ec
ti

o
n

au
d

io
-o

sc
ill

at
o

r

im
ag

in
g-

ga
u

ss
ia

n
-b

lu
r

st
an

fo
rd

-c
ry

p
to

-a
es

st
an

fo
rd

-c
ry

p
to

-c
cm

st
an

fo
rd

-c
ry

p
to

-p
b

kd
f2

st
an

fo
rd
-c
ry
p
to
-s
h
a2

5
6
-…

K
ra

ke
n

 a
ve

ra
ge

O
b

je
ct

 P
ro

p
e

rt
y

A
cc

e
ss

e
s(

%
)

Figure 7.12: Object property accesses that target the first cache line.

84

consumption of this hardware structure has a negligible impact in total consumption of the

core.

Note that a pure software implementation of the proposed technique would be possible

but would result in significant penalties, which would more than offset its benefits. In

particular, several additional instructions (more than seven micro-operations) would be needed

for every store to an object, to perform the following steps:

1. Load the class identifier of the property or elements array (ClassID).

2. Load the relative cache line (Line).

3. Load the class identifier of the object to be stored (Object ClassID).

4. Hash the Line with the ClassID to index the corresponding Class Cache entry.

5. Load the Class Cache entry.

6. Compare the first two fields of this entry (i.e., ClassID and Line attributes) with

the ClassID and Line fields of the object.

7. If they are not equal, then branch to the Class Cache miss routine.

8. Check the corresponding InitMap bit. If this bit is 0, then write the Object ClassID

to the corresponding Prop1-Prop7 field of the entry and set the InitMap bit to 1.

Otherwise, go to step 9.

9. Check the corresponding ValidMap bit. If this bit is 1, compare the Object ClassID

with the corresponding Prop1-Prop7 field of the entry.

10. If they are not equal, set the ValidMap bit to 0 and check the corresponding

SpeculationMap bit.

11. If the SpeculationMap bit is 1, branch to the routine that deoptimizes the functions

that have been optimized considering the stored property as monomorphic.

7.5 Conclusions

In this chapter, we have proposed a new mechanism, the Class Cache, which allows a number

85

of optimizations based on code specialization for particular object types. The specialization is

based on a run time profiling that is extremely accurate. Besides, the proposed scheme detects

when the specialized code is no longer correct before executing it, so there is no need for

providing a recovery mechanism. In those cases, an exception is triggered and the code is

recompiled to a non-specialized version that is guaranteed to be correct.

We have shown that these optimizations achieve important improvements in terms of

speedup (7.1% on average; up to 34% for some programs), dynamic instruction count

reduction (7.5% on average) and energy consumption (6.5% on average) for optimized

JavaScript code.

86

87

Chapter 8

The Property Cache Mechanism

The execution of short JavaScript web applications for event-driven scripts is dominated by

non-optimized code, helper routines and runtime tasks (i.e. compilation tasks). Furthermore, a

significant fraction of time is dedicated to access object properties, due to the fact that program

variables are not tailored to any specific type, which is known as the dynamic binding problem.

In this regard, when a property is accessed by the first time, the type of the object has to be

obtained, in order to compute the correct address for that property. Then, this access is

improved by specializing the code for that particular type. Note that every time that a particular

access encounters a new type, this process can be very time-consuming.

In this chapter, we present a HW/SW mechanism that performs the accesses to object

properties in a more efficient manner than state-of-the-art techniques.

8.1 Introduction

In dynamically typed languages, variables are neither declared nor bound to a particular type

(i.e., Hidden Class), and their types may change during the execution. One of the major issues

with this feature is that when a property (i.e., an attribute or method of an object) of a particular

variable is accessed, the corresponding address (i.e., offset) for that property is not known at

compile time. Therefore, a time-consuming process is needed to obtain the corresponding

address according to the type of the object that is contained in the variable.

The state-of-the-art technique used by current JavaScript virtual machines to address

this overhead is known as Inline Caching [40][15]. This technique has a twofold purpose:

record information concerning the types of objects and improve the performance of the system

lookup routine used to disambiguate the type of objects when they are accessed. As explained

in Chapter 3, both Full Codegen and Crankshaft compilers from V8 apply this technique, but

in a different manner.

88

In the code produced by Full Codegen, each property access is represented by a x86-64

call instruction, which is constantly patched by the runtime. The first time that a particular

property access is performed, this call instruction targets a lookup routine that performs a

sequence of steps that determine the Hidden Class of the object and find the offset for that

property, in order to perform the access. Then, this lookup routine is specialized for that

particular Hidden Class, in order to accelerate future accesses. This code is preceded by a

checking operation that verifies that the Hidden Class of the object is the expected one. This

specialized code is kept in a software structure called Inline Cache (IC), which is unique to

each property access. The call instruction is patched to point to this Inline Cache and therefore,

the subsequent accesses are substantially faster as long as the Hidden Class of the object keeps

being the same. Otherwise, the default lookup routine is executed.

On the other hand, the information (i.e., the Hidden Class of the objects) recorded by

the Inline Caches during the process explained above is later used by Crankshaft to perform

more aggressive optimizations for hot code. In this regard, the specialized code generated by

Crankshaft performs directly the property accesses for those Hidden Classes previously

encountered by the Inline Caches, instead of executing a call instruction for each of them.

Therefore, Check Maps operations are also introduced in this specialized code in order to

verify that the encountered Hidden Class is the expected one; otherwise (i.e. when a Check

Maps fails), the optimized code falls back to non-optimized code through a deoptimization

bailout.

The technique presented in this chapter takes an innovative HW/SW approach to

remove most of the overhead produced by the Inline Caching mechanism for short-running

event-based applications. Concretely, it targets loads of object properties, which is the most

frequent scenario. This new approach is based on a small hardware structure called the

Property Cache that caches the addresses of the most commonly used object properties, which

are also stored on a runtime-built software structure. Therefore, when a particular object

property is found in the Property Cache, the access is performed with minimal overhead and

without executing any lookup routine.

In the rest of this chapter, we first explain the reasons that have motivated us to devise

this new technique. Next, we present the design and functionality of the mechanism and finally,

we evaluate the performance of this technique.

89

8.2 Motivation

In Figure 8.1 we show the overhead of to the Inline Caching mechanism for object property

loads, for both non-optimized and optimized code. As explained in section 5.1, we have chosen

for our experiments the first and fourth iterations of Octane and JSBench suites, respectively,

in order to reflect typical short-running event-based applications. We can see that this overhead

is significant, being 12% on average.

On the other hand, note that the offsets of all properties of any Hidden Class are known

before the corresponding loads are performed. In this regard, we propose a mechanism to

obtain the corresponding offsets for each object property load in an efficient manner, which

require small hardware extensions. Unlike Inline Caching, our mechanism does not require

any dynamic profiling neither the dynamic creation of specialized code for property loads. In

addition, it is not speculative.

The proposed technique does not target stores because the first store to a property

creates a new Hidden Class that contains the new property and the corresponding offset is not

known until then. Besides, when a store is executed, a write barrier operation is performed, in

order to notify the garbage collector of new pointers. These issues would significantly reduce

the benefits of the proposed technique and increase its complexity.

Figure 8.1: Object property loads overhead due to the Inline Caching mechanism.

0

5

10

15

20

25

30

35

40

IC Object Property Load Overhead In Optimized Code
IC Object Property Load Overhead In Non-Optimized Code

C
yc

le
s

(%
)

90

8.3 The Property Cache Mechanism

In this section we present the Property Cache, a HW/SW mechanism that reduces some of the

most important inefficiencies due to dynamic typing. First, we present a general overview of

the technique. Then, the required software and hardware structures are presented. Next, the

entire process is described and finally, we detail some particularly important scenarios.

8.3.1 Overview

Our mechanism is based on obtaining on demand and efficiently the offsets for each load to

an object property which is indexed by name. In order to obtain these offsets, we keep in

memory a data structure called Property List, which contains all property names and their

corresponding offsets for all Hidden Classes. In order to efficiently access this information,

we extend the hardware with two new structures that cache the information needed to compute

the effective address of the latest accessed properties: the Property Cache and the Prototype

Cache.

For every property load, we first check these caches, and in case of hit, the address is

obtained in a very efficient manner. Otherwise, a software trap is generated and control is

transferred to a subroutine that traverses the Property List in order to obtain the information

related to this property.

8.3.2 The New Structures

In this section, we present the software and hardware components used by the mechanism.

8.3.2.1 The Property List

The Property List is a software structure that contains as many entries as different property

names encountered during the execution of a JavaScript program. In figure 8.2a, we show an

example of the Property List for the JavaScript program explained in section 5.3.1. Each entry

contains the following information:

 Property name: The name of the property.

 Property identifier: a number that identifies the property name.

 Hidden Classes table pointer: A pointer to a table that contains as many entries

91

as the number of Hidden Classes that use this property name. For each entry of this

table there are two fields: the Hidden Class identifier and the corresponding offset

of this property in this Hidden Class (see Figure 8.2b1-b7). In other words, each

pair of Hidden Class identifier and property identifier has a particular offset.

Besides, there is a special register that has a pointer to this Property List in memory, in

a similar way that there is a pointer to memory translation tables (i.e., the Property List special

register in Figure 8.2a).

Figure 8.2: Property List structure.

8.3.2.2 The Property Cache

The Property Cache keeps the most recently used information of the Property List. In Figure

8.3, the basic scheme of a Property Cache entry is shown. When a particular cache entry is

selected through a hash function, the property identifier and the Hidden Class identifier fields

are used as cache tags. If a hit occurs, then the offset, P and I fields are returned. P field

indicates whether the property comes from a prototype object instead of the object itself (see

section 3.1). The I field indicates whether the property is contained in a property dictionary

92

collection structure (see section 3.2.1). If a miss occurs, then the control is transferred to the

runtime to obtain the offset from the Property List and this information is stored in the Property

Cache by replacing one of the entries. Section 8.3.4.2 describes the miss subroutine.

Figure 8.3: Scheme of a Property Cache entry.

8.3.2.3 The Prototype Cache

When the property comes from a prototype object instead of the object itself, we need to obtain

the address of the prototype object in addition to the offset since the load instruction only

knows the address of the object but not the address of its prototype property (see section 3.1).

However, prototype object addresses are not kept in the Property Cache for space efficiency

reasons because the majority of requested properties are contained in the object itself and thus,

the prototype address is not required for these cases. For this purpose, we use the Prototype

Cache, which contains the most recently used prototype addresses.

In Figure 8.4, a block diagram of a Prototype Cache entry is shown. The property

identifier and the Hidden Class identifier fields are used as cache tags. In case of a hit, the

corresponding prototype address field is transferred to the output. In case of a miss, a software

exception is generated only when the P bit from the Property Cache is set to 1 (which means

that the object prototype address is necessary).

8.3.2.4 Two New Machine Instructions

Besides this new hardware support we extend the ISA with two new special machine

instructions, which are used to interact with this hardware. We call these two instructions

specialMovMap and specialMovOffset, whose mnemonics are detailed in appendix C.

93

SpecialMovMap instruction has a source memory operand that is the address of an

object (the object to which the property belongs) and returns its Hidden Class identifier, which

is located in the first 8-byte word of the object. This Hidden Class identifier is stored into the

first 8-byte word of a special 64-byte register that we call hiddenClassReg. Moreover, the

following 56 bytes of this register are filled with the rest of the cache line obtained from the

memory request, which corresponds to the first properties of the object. In this regard, heap-

allocated values need to be cache line aligned, which is a common constraint of current

JavaScript engines. However, in rare occasions the source operand might contain a SMI value,

instead of an object address. We can easily identify these cases because the least-significant

bit of a SMI value is 0. Therefore, when the hardware detects that this bit is 0, a special value

(i.e., to indicate that it is a SMI) is directly stored to the hiddenClassReg register, instead of

obtaining it from memory.

SpecialMovOffset instruction has two source operands, the address of the object and the

property identifier, and a destination operand that is a register where the value of the property

will be stored. This instruction performs the access to the value of the property and stores it in

the destination register. In this way, each property load is translated to a sequence of these two

instructions (the reason for having two separate instructions rather than a single one is

described in Section 8.3.5.1).

8.3.3 How The Mechanism Works

In Figure 8.5, we show the main components of our mechanism and the steps taken by a load

of a property. First, (1a) the specialMovMap instruction is executed in order to obtain the

Hidden Class identifier of the object to which the property belongs, and (1b) store it in the

Figure 8.4: Scheme of a Prototype Cache entry.

94

special 64-byte register hiddenClassReg, along with the rest of cache line. Then, (2) the

specialMovOffset instruction is executed, which results in the following actions: First, (3) the

Hidden Class identifier and the property identifier are used to index both the Property and

Prototype Caches. Although the Prototype Cache is always accessed, its information will be

used only when the accessed property is contained in a prototype object, instead of the object

itself. In this regard, (4) the base address used to compute the effective address of the accessed

property comes from either the object address, the prototype object address, or the second 8-

byte word of the hiddenClassReg register (i.e., this word contains the property pointer, but

only for those objects that have their properties stored in a property dictionary collection),

which is selected by both the P and I signals. Then, this value is added to the offset (5) obtained

from the Property Cache, in order to compute the effective address, which is used to perform

a memory request to read the property value (6a). Then, this value is written to the destination

register (7).

As commented in the previous section, when the specialMovMap instruction stores the

result in the hiddenClassReg register, not only the Hidden Class identifier is kept, but also the

entire cache line is transferred to this special register, in order to optimize the access to nearby

properties. The number of prefetched properties is equal to the size of the cache line (i.e. the

number of the properties that fit in a cache line) minus one. Therefore, when the offset obtained

by the Property Cache is less than or equal to this number of prefetched properties, the accessed

property is obtained from the hiddenClassReg register and a new access to memory is saved.

We illustrate this situation in the step 6b of Figure 8.5.

In rare occasions, it may happen that the requested property does not exist for this object

(i.e., it is because a program error) and therefore, it is not found in the Property List. When

this occurs, the runtime sets the NoExist signal to 1 and the special undefined value is returned.

On the other hand, when the hiddenClassReg contains a SMI (see previous section), the special

undefined value is also returned. We illustrate this situation in step 6c of Figure 8.5.

8.3.4 The New Runtime Subroutines

In this section we detail the subroutines that are used to manage the Property List.

95

Figure 8.5: Block diagram of the proposed mechanism.

8.3.4.1 The Creation Subroutine

When at compile time a new property name is found, a new entry is created in the Property

List, and the corresponding Hidden Classes table for this name is also created, which does not

contain any entry at this point in time. Note that the property identifiers are natural numbers

assigned sequentially as new names are encountered.

As we saw in Section 3.2.1, the V8 engine creates Hidden Classes dynamically as new

properties are encountered at runtime. Therefore, the Property List is updated whenever a new

Hidden Class is created. For this purpose, the name of the property is searched in the Property

List, and a new entry is added to the corresponding Hidden Classes table.

8.3.4.2 The Miss Subroutine

When a Property or Prototype cache miss occurs, a software trap is generated and the runtime

executes a subroutine that searches the required information from the Property List. For this

purpose, the Property List is indexed by the property identifier, in order to obtain the pointer

to the corresponding Hidden Classes Table. In this table, the subroutine searches the entry that

matches the Hidden Class identifier. If the entry is found, then its offset field is transferred to

the Property Cache and the exception routine finishes. If the entry is not found, it probably

means that the property is contained in the prototype chain of the object. In this case, we obtain

96

the prototype of the object, and the table is searched again for this Hidden Class identifier of

the prototype. This is an iterative process that is repeated successively with all the prototype

chain, until the Hidden Class identifier matches an entry or the end of the prototype chain is

reached. When the former occurs, the offset field is transferred to the Property Cache and the

P field for that offset is set to 1 (see figure 8.2). Moreover, the address of the prototype whose

Hidden Class identifier has matched the entry is transferred to the Prototype Cache, since in

this case the accessed property is contained in this prototype instead of the object itself. If the

Hidden Class identifier has not matched any entry and the end of the prototype chain is

reached, the NoExist signal of Figure 8.5 is set to 1 and the special undefined value is returned,

as explained in section 8.3.3

8.3.5 Other Issues

In this section we describe some special cases and optimizations.

8.3.5.1 Two Special Instructions

As we have explained in section 3.2.2, Crankshaft generates specialized code that contains

checking operations and an important amount of these operations are inserted just before every

property access. However, there are some situations where the compiler removes the execution

of some Check Maps operations that guard loads of properties when they target objects that

have already been checked in the same basic block.

In figure 8.6a, we observe a scenario where for every property load of the same object

obj, a Check Maps operation is initially inserted. If no stores for this object are performed in

between, all these Check Maps operations can be removed, except for the first one. The

optimized version is showed in Figure 8.6b.

The reason for having two new instructions (as described in section 8.3.2.4) instead of

just one is to optimize the scenario described above in Figure 8.6b. For the first load both

specialMovMap and specialMovOffset instructions are needed, whereas for the other loads,

just the specialMovOffset is sufficient since the specialMovMap instruction is redundant (all

would return the same Hidden Class identifier).

97

Figure 8.6: Specialized code with Check Maps operations.

8.3.5.2 Prototype Cache Optimizations

We have observed that most of the accessed prototypes are located in the first level of the

prototype chain (i.e. the first prototype after the object). When all objects of a particular Hidden

Class have accessed only up to the first prototype level, we refer to that Hidden Class as single-

prototype. The information about which Hidden Classes are single-prototype is kept in a new

field of the Hidden Class descriptors. When a new Hidden Class is created, this field is

initialized to single-prototype and it is updated by the runtime when either a Property Cache

miss, or a Prototype Cache miss occurs, if the accessed property is located in a prototype

beyond the first level of the prototype chain.

Therefore, when the Prototype Cache is accessed using a single-prototype Hidden

Class, then the tag comparison regarding the property identifier is not required. This is because

we are sure that only one prototype (i.e. the first one) contains the requested property, no matter

which property we access. We can exploit this fact to reduce the size of the Prototype Cache

since all properties of a single-prototype Hidden Class can share the same entry. The hardware

modifications to implement this optimization are shown in Figure 8.7. Note that in this case,

the property identifier is set to a special value (all bits are set to 1) which does not belong to

any property. If the Hidden Class identifier matches the searched one, there will be a hit no

matter which property is being searched.

We have experimentally observed that this optimization is very effective since about

90% of the property loads are performed to single-prototype Hidden Classes.

98

Figure 8.7: Block diagram of the Property Cache optimized for single-prototype Hidden Classes.

8.3.5.3 Offset Invalidations

There are two scenarios that may require the offset invalidation of a Prototype Cache entry:

The addition of a new property in a prototype object and the overwriting of the prototype

property in a prototype object. It is important to recall that a prototype is any object that is

located within at least one prototype chain. Next, we describe in detail these two scenarios.

In Figure 8.8a, we show the prototype chain of a particular object O and the current

state of the Prototype Cache. This prototype chain contains two prototype objects: prototype 1

and prototype 2. Each prototype has two different properties with a different identifier

(property identifiers 3 and 4 in prototype 1, and 5 and 6 in prototype 2). In this scenario, the

Prototype Cache has an entry for each one of these four properties, since they have been

previously accessed by object O.

In Figure 8.8b, we show the prototype chain of figure 8.8a after adding a new property

(property identifier 6) in prototype 1. Note that this property has the same identifier as the

second property of prototype 2, which means that both have the same name (but not necessarily

the same type). In this scenario, the Prototype Cache state of Figure 8.8a is incorrect, because

according to the JavaScript inheritance mechanism, we have to obtain the closest property of

the prototype chain. Therefore, the property with ID 6 has to come from prototype 1 and the

corresponding entry in the Prototype Cache is incorrect.

In Figure 8.8c, we show the prototype chain of figure 8.8a after overwriting the

prototype property of prototype 1 (its corresponding prototype is changed to another object:

99

object prototype 3). In this scenario, the Prototype Cache state of Figure 8.8a is also incorrect.

This is because the prototype chain has changed, which now is composed by prototype 1 and

prototype 3. Therefore, all the entries that their property comes from prototype 2 are incorrect

(see in Figure 8.8c).

In summary, every time that the above scenarios occur, all entries in the Prototype

Cache whose Hidden Class contains the modified object in its prototype chain should be

invalidated. Since identifying all these entries can be costly, and we have observed that this

scenario is relative rare, we have adopted a conservative simple solution consisting in

invalidating all the Prototype Cache entries that do not contain a single-prototype Hidden

Class.

We do not need to invalidate single-prototype Hidden Class entries because on the one

hand, according to the problem described in Figure 8.8b, we are sure that the properties

represented by these entries are the closest ones of the prototype chain. Therefore, other new

properties with the same name in subsequent levels of the prototype chain will not be owned

by the object. On the other hand, according to the problem described in Figure 8.8c, for single-

prototype Hidden Class entries we only care about the first prototype of the chain (i.e. which

is contained in the Hidden Class of the object). If this prototype is overwritten, then the class

of the object also changes (see section 3.1) and therefore, next time that the object is accessed,

it will miss in the Property and Prototype Caches.

Figure 8.8: Prototype Cache invalidations.

100

8.3.6 An Example of the Proposed Optimizations

In Figure 8.9, we show an example of our proposed optimizations for the line 22 of the

departmentStaff function explained in section 5.3.1, taking into account the Class List example

showed in Figure 8.2. The left part of the Figure shows the original assembly x86-64 code,

which performs two object property loads (highlighted in bold). For the first property load

(instructions I2-I4), a call instruction is executed, which targets the corresponding Inline Cache

for this access, in order to obtain the value of a property called people (property identifier 5)

from the object contained in the rax register (then moved to rdx as an input parameter for the

call). For the second property load (instructions I10-I2), the same process is repeated for a

property called salary (property identifier 3).

The right part of the Figure contains the x86-64 assembly code after applying our

optimizations. The first property load described above is performed by instructions I2 and I3.

The former instruction is a specialMovMap instruction, which loads the Hidden Class of the

object to the special hiddenClassReg register. The latter is a specialMovOffset instruction,

which accesses the Property Cache, in order to obtain the corresponding offset for the property

called people (property identifier 5) from the Hidden Class stored in hiddenClassReg. Then, a

memory access is performed using the obtained offset and the resulting value is stored to the

rax register. The second property load is performed by instructions I9 and I10, which work

very similar than instructions I2 and I3, but with salary as a property name (property identifier

3).

Note that with our optimizations we are avoiding the execution of call instructions to

miss handler subroutines or Inline Caches, as long as no Property nor Prototype Cache misses

are produced.

Figure 8.9: An example of the proposed optimizations.

101

8.4 Performance evaluation

In this section we evaluate the benefits of the proposed technique in terms of performance and

energy consumption. We have implemented the software changes required by the above

mechanism in V8. To model the hardware, we have used the Marss [2] cycle-level

microarchitecture simulator. For energy consumption we have used McPat [53] and CACTI

[55] power models. We have used Octane [26][27] (navier-stokes and code-load are not

included since they crash in our simulation environment) and JSBench [29][36] benchmark

suites for the evaluation of the proposed mechanism. We have discarded SunSpider and Kraken

benchmark suites for the evaluations of this technique because they are not representative of

typical short-running web applications, as explained in chapter 5, and therefore they hardly

benefit from this mechanism.

We have chosen a 256-entry, 4-way set associative configuration for the Property Cache

and a 64-entry, direct-mapped configuration for the Prototype Cache. Next section provides a

sensitivity analysis to varying these parameters.

The additional hardware incurs in a 2-cycle penalty for each load of an object property.

This overhead is mainly due to both the addition operation used to obtain the effective address

and the access to the Property and Prototype Caches, which are very small structures (1.25 KB

and 0.5 KB respectively). However, when the accessed property is directly obtained from the

hiddenClassReg register (see section 8.3.3), the additional hardware incurs only a 1-cycle

penalty because the addition operation of the step 5 from Figure 8.5 is not necessary for these

cases.

As evaluation methodology, we have measured the total number of cycles and dynamic

instructions of our technique by adding the results of two separate simulations. In the first

simulation, we have executed our technique with a perfect Property and Prototype Caches (i.e.,

without cache misses). In this simulation, we have also measured the penalty (i.e., the time

spent by executing specialMovMap instructions and the extra 1-cycle or 2-cycle latency for

specialMovOffset instructions) incurred by accessing the new hardware structures in a hit

scenario. In the second simulation, we have obtained the number of cycles and dynamic

instructions for the Property and Prototype Cache misses and the updates to the Property List,

which is modified (i.e., extended) for each new hidden class creation.

102

8.4.1 Execution Time

Our technique achieves an important improvement in the execution time of JavaScript

applications, with an average speedup of 11% as shown in Figure 8.10. A remarkable case is

raytrace benchmark, with a 33% speedup. This benchmark performs an important number of

property loads during the non-optimized code, which are optimized by our technique. Gbemu

and typescript benchmarks also obtain an important benefit with our technique. These two

benchmarks use a large number of different properties and Hidden Classes during execution,

which increases the degree of polymorphism of the Inline Caches. The larger the degree of

polymorphism, the slower the Inline Cache is. On the other hand, mandrel and zlib benchmarks

present a very poor improvement since they perform very few property loads. In addition, all

applications from JSBench suite achieve important improvements, which confirm the

effectiveness of the Property Cache Mechanism for short-running web applications.

Figure 8.11 shows the reduction of the overhead produced by loads of object properties

(original overhead is shown in Figure 8.1). We can see that our technique reduces drastically

this overhead, by 90% on average, and the reduction is quite high for all programs, which

proves that our technique addresses a rather common source of overhead in JavaScript

applications.

Figure 8.10: Improvement in execution time.

0

5

10

15

20

25

30

35

Sp
e

e
d

u
p

 (
%

)

103

8.4.2 Sensitivity Analysis

The main motivation of this sensitivity analysis is to identify a good tradeoff between cost and

benefits of the proposed mechanism. We have evaluated the Property Cache mechanism with

different number of entries and associativity for the Property Cache. Table 8.1 shows the

resulting overhead due to misses for the different configurations.

To identify the capacity requirements, let us first look at the Full-Associative row. We

can observe that a cache with 128 entries still suffers from these misses, whereas using 256 or

more entries practically removes all miss penalties. Regarding conflict misses, we discarded a

direct-mapped configuration because its high miss rate. Both, 2-way and 4-way configurations

seem reasonable, so we finally chose a 256-entry, 4-way set associative cache as the best trade-

off between cost and benefit. Figure 8.12 shows the Property Cache hit rate using this

configuration.

The total size of the Property Cache is 1.25 KB since each entry occupies 5 bytes: 20

bits for the Hidden Class identifier, 10 bits for the property identifier, 9 bits for the offset, and

0

20

40

60

80

100

120

R
e

d
u

ce
d

O
ve

rh
e

ad
 (

%
)

Figure 8.11: Overhead reduction in number of cycles.

128 entries 256 entries 512 entries

Direct-mapped 7,28% 3,48% 1,29%

2-way 2,71% 1,22% 0,61%

4-way 2,15% 0,82% 0,45%

Full-associative 1,51% 0,23% 0,01%

Table 8.1: Overhead produced by Property Cache Misses.

104

1 bit for the P field. In the extremely rare case that an application requires more bits for any of

these fields, the proposed mechanism would be simply not used for this particular application

(this never happened in our benchmarks). Note that the Hidden Class identifier is an address

that points to the Hidden Class descriptor (i.e. it occupies 64 bits), but we have observed that

only the 20 least-significant bits or less change for typical applications, since these structures

are put together in consecutive memory locations.

The Prototype Cache has 64 entries and is direct-mapped. We have chosen a simple and

small configuration for the Prototype Cache, as the majority of object property accesses target

the object itself, instead of the prototype chain.

The total size of the Prototype Cache is 0.5 KB since each entry occupies 8 bytes: 20

bits for the Hidden Class identifier, 10 bits for the property identifier, 9 bits for the prototype

address, and 1 bit for the invalid field. Note that for the prototype address needs we only keep

the 32 least-significant bits. This is because V8 only reserves 4 GB of virtual memory for the

heap and therefore, the remaining bits are the same for all object addresses.

8.4.3 Energy Consumption

Figure 8.12 shows the energy savings of our technique for Octane and JSBench benchmark

suites, which are measured through the McPAT simulator [53] and CACTI [55] (i.e. CACTI

has been used to obtain the energy consumption of the Property and Prototype Caches). Energy

96.5

97

97.5

98

98.5

99

99.5

100

100.5

H
it

 R
at

e
 (

%
)

Figure 8.12: Hit rate of the Property Cache for 256 entries and 4-way associativity.

105

consumption is reduced by 9.9% on average and is close to 30% in some applications (e.g.

raytrace). These important savings come mainly from the reduction in number of executed

instructions (which results in less dynamic energy) and execution time (which results in less

leakage energy).

8.5 Conclusions

In this chapter, we have proposed a HW/SW mechanism that removes most of the overhead

due to the Inline Caching mechanism in short-running applications. This mechanism requires

small hardware extensions, mainly two new specialized memories with a total capacity less

than 2KB and two new machine instructions.

We have shown that the proposed mechanism produces important benefits both in

execution time and energy consumption. This technique opens a new avenue in the way to deal

with code specialization in dynamically typed languages. In future work we plan to investigate

how to apply a similar approach to remove other overheads related to other scenarios of the

Inline Caching mechanism, such as the array accesses.

0

5

10

15

20

25

30

35

En
e

rg
y

R
e

d
u

ct
io

n
 (

%
)

Figure 8.13: Improvement in energy consumption.

106

107

Chapter 9

Summary and Future Work

In this chapter, the main thesis conclusions are summarized and some future work is presented.

9.1 Summary

Dynamically typed languages are ubiquitous in today applications. These languages ease the

task of programmers but introduce significant runtime overheads. Since variables are neither

declared nor bound to a particular type, for efficiency reasons, the code generated at runtime

is specialized for certain types and assumptions about the types of variables require to be

constantly validated. These validations are an important source of overheads.

Analysis of Overheads. In chapter 5, we have evaluated the overheads for different kind of

JavaScript applications, including short-running, event-based applications and long-running,

compute-intensive applications. In the former, the overhead mainly occurs during the

execution of non-optimized code, which performs an important amount of profiling work and

other tasks related to the lookup of object properties. In the latter, the main overheads arise

while executing specialized code, and are mainly due to the frequent execution of checking

operations that are used to preserve some type assumptions.

Fusion of Common Instruction Patterns. In chapter 6, we propose three instruction-level

optimizations, in order to improve the performance of checking operations executed in the

optimized code. These optimizations are based on a hybrid HW/SW approach that requires the

introduction of some new machine instructions, which improve the performance of the most

common instruction patterns related to this overhead. These optimizations require also some

changes in the code generated by the dynamic compiler.

The Class Cache. In chapter 7, we demonstrate that in long-running applications, an important

amount of checking operations target monomorphic properties or monomorphic elements

arrays. In this regard, we have proposed a new hybrid HW/SW scheme based on a runtime

108

profiling that keeps information about these monomorphic properties and elements arrays, in

order to remove the checking operations that target them, in a safely manner. Besides, the

proposed scheme detects when this specialized code is no longer correct before executing it,

so there is no need for providing a recovery mechanism. In these cases, an exception is

triggered and the code is recompiled to a non-specialized version that is guaranteed to be

correct.

The Property Cache. In chapter 8, we propose a hybrid HW/SW mechanism that removes

most of the overhead in short-running applications. The proposed technique avoids the

speculative strategy adopted by state-of-the-art dynamic compilers for property lookup

operations. Instead of speculation, our approach relies on a runtime-built structure that

provides the information required to identify the addresses of object properties in a very

efficient manner. Besides, a hardware cache of this structure stores the most frequently

elements to speedup its access. This technique is applied to both optimized and non-optimized

code.

9.2 Future Work

The work presented in this thesis can open different research lines, according to the kind of

applications.

Long-running applications. The Class Cache mechanism presented in chapter 7 is focused

on checking operations for objects properties or object elements arrays. However, there are

checking operations that target other program variables, such as function parameters or global

variables. We can extend the Class Cache to profile the types of these other program variables

by providing them a pseudo-ClassID, which would be also contained in the first 8-byte word

of each cache line that contains any of these variables.

Short-running applications. The Prototype Cache mechanism presented in chapter 8 opens a

new avenue in the way to deal with code specialization in dynamically typed languages. In

future work we plan to investigate how to apply a similar approach to remove the overheads

related to other scenarios of the Inline Caching mechanism, such as the stores to object

properties. Although object property stores can be optimized in a similar way as object

property loads, they are different because in some cases Hidden Class transitions occur. As

explained in chapter 5, every time that a new property, x, is added to an object, the object

109

changes its Hidden Class to another one, which contains all properties of the old Hidden Class

plus the property x. To deal with this situation, a new cache called the Transition Cache could

be added to our mechanism, in order to keep the target Hidden Classes of these transitions.

Therefore, when a property store that produces a transition is executed, both the Property

Cache and the Transition cache would be accessed, and the Hidden Class of the object would

be updated with the corresponding Hidden Class of the Transition Cache.

110

111

References

[1] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare, B.

Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.

Trace-based Just-in-Time Type Specialization for Dynamic Languages. PLDI, 2009.

[2] A. Patel, F. Afram, S. Chen, K. Ghose, MARSS: a full system simulator for multicore x86 CPUs,

Proceedings of the 48th Design Automation Conference, June 05-10, 2011, San Diego, California.

[3] A. Wingo. v8: a tale of two compilers. http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-

compilers, 2011.

[4] A. Wingo. a closer look at crankshaft,v8's optimizing compiler.

http://wingolog.org/archives/2011/08/02/a-closer-look-at-crankshaft-v8s-optimizing-compiler, 2011.

[5] A. Wingo. inside full-codegen, v8's baseline compiler. http://wingolog.org/archives/2013/04/18/inside-

full-codegen-v8s-baseline-compiler, 2011.

[6] Brian Hackett , Shu-yu Guo. Fast and precise hybrid type inference for JavaScript, Proceedings of the

33rd ACM SIGPLAN conference on Programming Language Design and Implementation, June 11-16,

2012, Beijing, China.

[7] Carl Friedrich Bolz , Antonio Cuni , Maciej Fijalkowski , Armin Rigo, Tracing the meta-level: PyPy's

tracing JIT compiler, Proceedings of the 4th workshop on the Implementation, Compilation,

Optimization of Object-Oriented Languages and Programming Systems, p.18-25, July 06-06, 2009,

Genova, Italy.

[8] C. Chambers , D. Ungar, Customization: optimizing compiler technology for SELF, a dynamically-

typed object-oriented programming language, Proceedings of the ACM SIGPLAN 1989 Conference

on Programming language design and implementation, p.146-160, June 19-23, 1989, Portland, Oregon,

USA.

[9] Chakra’s Technical review. http://blogs.msdn.com/b/ie/archive/2014/10/09/announcing-key-

advances-to-javascript-performance-in-windows-10-technical-preview.aspx.

[10] Christopher Anderson , Paola Giannini , Sophia Drossopoulou, Towards type inference for javascript,

Proceedings of the 19th European conference on Object-Oriented Programming, July 25-29, 2005,

Glasgow, UK.

[11] Christopher Anderson , Paola Giannini, Type Checking for JavaScript, Electronic Notes in

Theoretical Computer Science (ENTCS), v.138 n.2, p.37-58, November, 2005.

[12] Craig Chambers , David Ungar , Elgin Lee, An efficient implementation of SELF, a dynamically-

typed object-oriented language based on prototypes, Lisp and Symbolic Computation, v.4 n.3, p.243-

281, July 1991.

http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-compilers
http://wingolog.org/archives/2011/07/05/v8-a-tale-of-two-compilers
http://wingolog.org/archives/2011/08/02/a-closer-look-at-crankshaft-v8s-optimizing-compiler
http://wingolog.org/archives/2013/04/18/inside-full-codegen-v8s-baseline-compiler
http://wingolog.org/archives/2013/04/18/inside-full-codegen-v8s-baseline-compiler
http://blogs.msdn.com/b/ie/archive/2014/10/09/announcing-key-advances-to-javascript-performance-in-windows-10-technical-preview.aspx
http://blogs.msdn.com/b/ie/archive/2014/10/09/announcing-key-advances-to-javascript-performance-in-windows-10-technical-preview.aspx

112

[13] D. Bonetta, W. Binder, C. Pautasso: TigerQuoll: parallel event-based JavaScript. In: Proc. of PPoPP,

pp. 251–260 (2013).

[14] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising the level of abstraction in

architectural simulation. In Proceedings of the 16th International Symposium on High Performance

Computer Architecture (HPCA), pages 307--318, Feb. 2010.

[15] D.-M. Ungar. The Design and Evaluation of a High-Performance Smalltalk System. Ph.D.

dissertation, the University of California at Berkeley, Feb., 1986. MIT Press, Cambridge, MA, 1987.

[16] Drevor, Tevi, Pin : Intel’s Dynamic Binary Instrumentation Engine, Pin Tutorial. Intel Corporation,

2010.

[17] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings OOPSLA ’87.

[18] ECMA. ECMAScript Language Specification – Fifth Edition. http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-262.pdf.

[19] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A limit study of JavaScript parallelism. In

Proceedings of IISWC, pages 1–10, 2010.

[20] E. Lee. Object Storage and Inheritance for SELF, a Prototype-Based Object-Oriented Programming

Language. Engineer’s thesis, Stanford University, 1988.

[21] E. Meijer and P. Drayton. Static typing where possible, dynamic typing when needed: The end of the

cold war between programming languages. In OOPSLA’04 Workshop on Revival of Dynamic

Languages, 2004.

[22] G. Dot, A. Martínez, A. González, “Analysis and optimization of engines for dynamically typed

languages”, Proc. Of the 27th Int. Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD), IEEE (ISSN 1550-6533), Florionopolis (Brasil), October 2015, pág. 41-

48.

[23] G. Dot, A. Martínez, A. González, “Analysis and optimization of JavaScript engines”, 1st Workshop

on High Performance Scripting Languages, in conjunction with 20th ACM SIGPLAN Symposium on

principles and Practice of Parallel Programming (PPOPP), San Francisco (USA), February 2015.

[24] G. Dot, A. Martínez, A. González, “Removing Checks in Dynamically Typed Languages through

Efficient Profiling”. Submitted to Dynamic Languages Symposium (DLS), 2016.

[25] G. Dot, A. Martínez, A. González, “ERICO: Effective Removal of Inline Caching Overhead in

Dynamic Programming Languages”. Submitted to 23rd IEEE Int. Conference on High Performance

Computing, Data and Analytics (HiPC), 2016.

[26] Google Inc. Octane. https://developers.google.com/octane, 2013.

[27] Google Octane benchmark suite. http://blog.chromium.org/2012/08/octane-javascript-benchmark-

suite-for.html.

[28] Google V8 JavaScript Engine - http://code.google.com/p/v8

[29] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated construction of JavaScript benchmarks. In

OOSPLA, 2011.

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
https://developers.google.com/octane
http://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
http://blog.chromium.org/2012/08/octane-javascript-benchmark-suite-for.html
http://code.google.com/p/v8

113

[30] Herhut, S., Hudson, R.L., Shpeisman, T., Sreeram, J.: River trail: a path to parallelism in JavaScript.

In: OOPSLA, pp. 729–744 (2013).

[31] I. Jibaja, P. Jensen, J. McCutchan, D. Gohman, N. Hu, M. Haghighat, S. Blackburn, and K. McKinley

“Vector Parallelism in JavaScript: Language and compiler support for SIMD”. In Proc of PACT 2015.

[32] I. R. de Assis Costa, H. N. Santos, P. R. Alves, F. M. Quintão Pereira. Just-in-Time value

specialization. Department of Computer Science, Federal University of Minas Gerais (UFMG),

Brazil. In Proceedings CGO 2013.

[33] J. K. Martinsen, H. Grahn and A. Isberg. "Using speculation to enhance JavaScript performance in

web applications", IEEE Internet Computing , vol. 17 , no. 2 , pp.10 -19, 2013.

[34] J.K. Martinsen and H. Grahn, "An alternative optimization technique for JavaScript engines",

appeared in proceeding of the Third Swedish Workshop on Multi-Core Computing (MCC-10), pages

155-160, November 2010, Göteborg, Sweden.

[35] J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE Computer, March

1998.

[36] JsBench. http://plg.uwaterloo.ca/~dynjs/jsbench/.

[37] Justin O. Graver and Ralph E. Johnson. A type system for smalltalk. In Proceedings of the 17th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 136–150. ACM

Press, 1990.

[38] J Verdú, A Pajuelo. Performance Scalability Analysis of JavaScript Applications with Web Workers.

In Computer Architecture Letters, Volume:PP , Issue: 99. October of 2015.

[39] Karel Driesen, Selector table indexing & sparse arrays, ACM SIGPLAN Notices, v.28 n.10, p.259-

270, Oct. 1, 1993.

[40] L. P. Deutsch and A. Schiffman, Efficient Implementation of the Smalltalk-80 System. Proceedings

of the 11th Symposium on the Principles of Programming Languages, Salt Lake City, UT. 1984.

[41] Madhukar N. Kedlaya , Jared Roesch , Behnam Robatmili , Mehrdad Reshadi , Ben Hardekopf.

Improved type specialization for dynamic scripting languages, Proceedings of the 9th symposium on

Dynamic languages, October 28-28, 2013, Indianapolis, Indiana, USA.

[42] M. Chang, M. Bebenita, A. Yermolovich, A. Gal, and M. Franz. Efficient just-in-time execution of

dynamically typed languages via code specialization using precise runtime type inference. Technical

Report ICS-TR-07--10, University of California, Irvine, 2007.

[43] Mike Salib. Static type inference (for python) with starkiller.

http://www.python.org/pycon/dc2004/papers/1/paper.pdf, 2004.

[44] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke, "Dynamic parallelization of JavaScript

applications using an ultra-lightweight speculation mechanism," in Proc.of HPCA, 2011.

[45] Mozilla. Spidermonkey javascript engine. https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/SpiderMonkey.

[46] Mozilla. Kraken. https://krakenbenchmark.mozilla.org, 2013.

http://plg.uwaterloo.ca/~dynjs/jsbench/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://krakenbenchmark.mozilla.org/

114

[47] O. Anderson, E. Fortuna, L. Ceze, S. Eggers. Checked Load: Architectural Support for JavaScript

Type-Checking on Mobile Processors. Computer Science and Engineering, University of

Washington, 2011.

[48] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type inference of SELF: Analysis of objects

with dynamic and multiple inheritance. Lecture Notes in Computer Science, 707:247–262, 1993.

[49] Peter Steenkiste , John Hennessy, Tags and type checking in LISP: hardware and software approaches,

Proceedings of the second international conference on Architectual support for programming

languages and operating systems, p.50-59, October 1987, Palo Alto, California, USA.

[50] Peter Thiemann, Towards a type system for analyzing javascript programs, Proceedings of the 14th

European conference on Programming Languages and Systems, p.408-422, April 04-08, 2005,

Edinburgh, UK.

[51] Shisheng Li , Buqi Cheng , Xiao-Feng Li, TypeCastor: demystify dynamic typing of JavaScript

applications, Proceedings of the 6th International Conference on High Performance and Embedded

Architectures and Compilers, January 24-26, 2011, Heraklion, Greece.

[52] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In Static

Analysis Symposium (SAS), 2009.

[53] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.Tullsen, and N. P. Jouppi. The McPAT

framework for multicore and manycore architectures: Simultaneously modeling power, area, and

timing.

[54] Stefan Brunthaler, Inline caching meets quickening, Proceedings of the 24th European conference on

Object-oriented programming, June 21-25, 2010, Maribor, Slovenia.

[55] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1. HP Laboratories, April

2008.

[56] Tiobe Index. http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[57] Tratt L. (2009). Dynamically typed languages. Adv. Comput. 77, 149–18410.1016/S0065-

2458(09)01205-4.

[58] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level of abstraction

for scalable and accurate parallel multi-core simulations. In International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), November 2011.

[59] U. Hölzle , C. Chambers , D. Ungar, Optimizing Dynamically-Typed Object-Oriented Languages

With Polymorphic Inline Caches, Proceedings of the European Conference on Object-Oriented

Programming, p.21-38, July 15-19.

[60] U. Holzle and D. Ungar. Optimizing Dynamically-dispatched Calls with Run-time Type Feedback.

In Conference on Programming language Design and Implementation (PLDI), 1994.

[61] U. Holzle, Adaptive Optimization for Self: Reconciling High Performance with Exploratory

Programming, PhD dissertation, Stanford Univ., Stanford, Calif., 1994.

[62] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas. Improving JavaScript performance by

deconstructing the type system. In PLDI, 2014.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

115

[63] WebKit. Introducing SquirrelFish Extreme. https://webkit.org/blog/214/introducing-squirrelfish-

xtreme, 2008.

[64] WebKit. SunSpider JavaScript Benchmark. http://webkit.org/perf/SunSpider-0.9/SunSpider.html,

2008.

[65] White Paper: Intel® Next Generation Microarchitecture (Nehalem), 2008.

[66] Yeoul Na, Seon Wook Kim, Youngsun Han. “JavaScript Parallelizing Compiler for Exploiting

Parallelism from Data-Parallel HTML5 Applications”. ACM Transactions on Architecture and Code

Optimization (TACO), Volume 12 Issue 4, Article No.64, January 2016.

https://webkit.org/blog/214/introducing-squirrelfish-xtreme
https://webkit.org/blog/214/introducing-squirrelfish-xtreme
http://webkit.org/perf/SunSpider-0.9/SunSpider.html

116

117

Appendix A: New x86-64 Instructions of chapter 6.

name Mnemonic Description

xehcmp xehcmp reg32, imm32, flag, neg HW exception comparison of reg32 with imm32

xehcmp reg32, reg32, flag, neg HW exception comparison of reg32 with reg32

xehcmp reg64, reg64, flag, neg HW exception comparison of reg64 with reg64

xehcmp reg64, mem64, flag, neg HW exception comparison of reg64 with mem64

xehcmp mem64, reg, flag, neg HW exception comparison of mem64 with reg64

xehtest xehtest reg64, reg64, flag, neg HW exception test of reg64 with reg64

xehtest reg32, reg32, flag, neg HW exception test of reg32 with reg32

xehtest reg32, imm32, flag, neg HW exception test of reg32 with imm32

xehtest mem8, imm8, flag, neg HW exception test of mem8 with imm8

xehtest reg8, imm8, flag, neg HW exception test of reg8 with imm8

xehadd xehadd reg32, reg32, flag, neg HW exception addition of reg32 with reg32

xehadd reg32, imm32, flag, neg HW exception addition of reg32 with imm32

xehadd reg32, mem32, flag, neg HW exception addition of reg32 with mem32

xehadd reg64, reg64, flag, neg HW exception addition of reg64 with reg64

xehadd reg64, mem64, flag, neg HW exception addition of reg64 with mem64

xehsub xehsub reg32, reg32, flag, neg HW exception subtraction of reg32 less reg32

xehsub reg32, imm32, flag, neg HW exception subtraction of reg32 less imm32

xehsub reg32, mem32, flag, neg HW exception subtraction of reg32 less mem32

xehsub reg64, reg64, flag, neg HW exception subtraction of reg64 less reg64

xehsub reg64, mem64, flag, neg HW exception subtraction of reg64 less mem64

118

name Mnemonic Description

xehimull xehimul reg32, reg32, flag, neg HW exception integer multiplication of reg32 with reg32

xehimul reg32, imm32, flag, neg HW exception integer multiplication of reg32 with imm32

xehimul reg32, mem32, flag, neg HW exception integer multiplication of reg32 with mem32

xehimul reg64, reg64, flag, neg HW exception integer multiplication of reg64 with reg64

xehadd reg64, mem64, flag, neg HW exception integer multiplication of reg64 with mem32

xehor xehor reg32, reg32, flag, neg HW exception binary or of reg32 with reg32

xehor reg32, mem32, flag, neg HW exception binary or of reg32 with mem32

xehor reg64, reg64, flag, neg HW exception binary or of reg64 with reg64

xehsub reg64, mem64, flag, neg HW exception binary or of reg64 with mem64

xehand xehand reg32, imm32, flag, neg HW exception binary and of reg32 with imm32

xehneg xehneg reg32, flag, neg HW exception binary neg of reg32

xehneg reg64, flag, neg HW exception binary neg of reg64

xehucomis xehucomis reg128, reg128 flag, neg HW exception ucomis operation of reg128 with reg128

xehtestshr xehtestshr reg8 HW exception test + shift rigth operations with reg8

xehtestshr reg32 HW exception test + shift rigth operations with reg32

xehtestshr reg64 HW exception test + shift rigth operations with reg64

xehtestcmp xehtestcmp reg64, reg64 HW exception test + comparison of reg64 and reg64

xehtestcmp rax, reg64 HW exception test + comparison of rax and reg64

119

Appendix B: New x86-64 Instructions of chapter 7

name Mnemonic Description

movStoreClassCache movStoreClassCache mem64,

reg64

Class Cache Request for property access

scenario plus mov instruction of reg64 to

mem64

movStoreClassCacheArray movStoreClassCacheArray

mem64, reg64, regArray

Class Cache Request for elements array

access scenario plus mov instruction of reg64

to mem64

movClassID movClassID mem64 Special mov instruction of ClassID field

from an object to the regObjectClassId

register

movClassIDArray movClassIDArray regArray,

mem64

Special mov instruction of ClassID field

from an object to a regArrayObjectClassId0-

3 register

120

121

Appendix C: New x86-64 Instructions of chapter 8

name Mnemonic Description

specialMovMap specialMovMap

mem64

Special mov instruction to load the Hidden Class identifier of an

object (along with the whole cache line) to the special

hiddenClassReg register.

specialMovOffset specialMovOffset

reg64, mem64,

propertyID

Property Cache and Prototype Cache request, which is indexed by

both the propertyID operand and the Hidden Class identifier

stored in the hiddenClassReg register. Then a memory request is

performed with the obtained offset. At the end of the instruction,

the obtained value from memory is stored to reg64 destination

register.

