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Abstract

English

Image comparison is a main ingredient in many image processing and com-
puter vision problems and applications, and not surprisingly it is a very
diverse topic. The subject of this thesis is the comparison of local patches
of images by means of similarity measures (or distance functions). In par-
ticular, we are interested in affine invariant patch-wise image comparison
which opens the door to a more thorough analysis of similarities and self-
similarities present in natural images. Our work is based on a recently
proposed axiomatic framework for similarity measures between images de-
fined on Riemannian manifolds. At the beginning we derive and study some
affine invariant similarity measures and then present two novel methods
built around them. The first method for exemplar-based image inpainting
is aimed at the recovery of occluded, missing or corrupted parts of an image,
in such a way that the reconstructed image looks natural. It is capable of
reconstructing textures under perspective or even more complex distortions.
The second method extends the well-known Non-Local Means approach for
image denoising by taking advantage of affine invariant self-similarities of
real images. Our extension improves the original method in both quan-
titative and qualitative assessments, and the results are promising when
compared with state-of-the-art methods.

Español

La comparación de imágenes es un ingrediente fundamental en muchos prob-
lemas de procesamiento de imagen y visión por computador. Esta tesis
aborda el problema de la comparación de entornos locales en imágenes, o
patches, por medio de medidas de similitud (o funciones distancia). En
particular, estudiamos el problema de la comparación invariante af́ın de
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viii abstract

imágenes a partir de sus patches, lo cual abre la puerta a un análisis más
profundo de la estructura de similitud y auto-similitud existente en imágenes
naturales. Nuestro trabajo parte de una aproximación axiomática reciente
a las medidas de similitud entre imágenes definidas en variedades de Rie-
mann. Empezamos obteniendo y estudiando medidas de similitud af́ın in-
variantes para después construir con ellas dos nuevos métodos. El objetivo
del primero de ellos es la reconstrucción o completación plausible de re-
giones de una imagen donde la información se ha perdido, dañado o está
oculta. El modelo propuesto es capaz de reconstruir texturas con distorsión
perspectiva o incluso más compleja. El segundo método extiende la aproxi-
mación denominada de Non-Local Means para el problema de eliminación
de ruido en imágenes aprovechando la auto-similitud invariante af́ın de las
imágenes reales. Nuestra extensión es comparada con éxito con el método
original, tanto cualitativa como cuantitativamente, y se obtienen resultados
prometedores en comparación con los métodos del estado del arte.



Preface

In short, the subject of this thesis is the comparison of a pair of locations
in an image or two images. In digital image processing it is common to
see an image as a grid of pixels, each of which contains one or several
numbers describing the color at that point. In a regular color image every
pixel carries 24 bits of color information which in total makes 16 777 216
possible colors. Even though this number might seem large, the color of
a single pixel is not very distinctive to use it alone in the comparison. A
logical idea would be to consider a small neighborhood of pixels around
a given location. Even a tiny neighborhood 3 by 3 pixels in size already
gives around 1065 different combinations to encode local structure and thus
is much more informative. In the image and video processing literature
these neighborhoods are usually called patches. A function that compares
two given patches can be called patch similarity measure of patch distance
measure. Essentially, in the context of image comparison, similarity and
distance represent the same relation between two patches in the whole space
of patches; therefore, we shall use these terms interchangeably.

Image comparison by means of patch similarity measures has multitude
of fascinating applications. Obviously, different images of the same scene
contain resembling visual details. Moreover, natural images themselves are
normally redundant and self-similar. Even though patches capture only
small local pieces of visual information, by comparing them we can reveal
global geometric structures and texture patterns. In other words, patch-
wise image comparison allows us to analyze similarities and self-similarities
in natural images.

Frequently, patches that are used in comparison are rigid in the sense that
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Figure 1: Inpainting of the texture under the perspective distortion. On the left:
the original image with the inpainting domain shown in red. On the right: the
result produced by our inpainting method.

they have fixed shapes and sizes, defined beforehand. In this thesis we ex-
plore the topic of image comparison with shape-adaptive patches that might
change their appearance to match the underlying local image content. Con-
sider a simple example, when we want to compare a pair of images, one of
which is just a rotated version of another. If we somehow adjust orienta-
tions of patches around their centers in accordance with the global rotation,
we can obtain a patch similarity measure that is invariant to that rotation
and use it to analyze this pair of images properly. In this work we focus
on a much more complex case, when patches can be related by local affine
transformations and a similarity measure thus should be affine invariant
in this sense. An affine invariant patch similarity measure based on shape-
adaptive patches allows, for instance, to detect similar texture patterns that
are distorted differently by the perspective effect, or to compare two images
of the same 3D scene, taken from different viewpoints.

This thesis is divided into two parts. In the first part we derive and study
two affine invariant similarity measures. For that we consider a recently pro-
posed axiomatic framework for similarity measures between images defined
on Riemannian manifolds (Ballester et al. (2014)). From this framework we
extract one particular linear model describing a family of similarity mea-
sures. The model is represented by a partial differential equation, and we
obtain two specific similarity measures as approximate solutions of it. We
also propose an iterative construction scheme to define and compute the
affine covariant structure tensors that can be used as Riemannian metrics
with these similarity measures. We pay a lot of attention to the efficient nu-
merical implementation of the proposed similarity measures. Even though
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Figure 2: Motivation for the denoising with shape-adaptive patches. From left to
right: the original image, the zoom of the search window with its central (reference)
point shown in white, similarity values computed between the central point and all
other points using the square patches, and using the proposed affine invariant patch
similarity measure with shape-adaptive patches. Brighter colors encode higher
similarities.

throughout this work we focus only on the 2D images, the proposed affine
invariant similarity measures can as well be used for the comparison of
videos and 3D images. Therefore, we cover implementation details for both
2D and 3D cases. Finally, we study the proposed similarity measures in the
set of experiments.

In the second part of the thesis we present two novel image processing meth-
ods that are built around the affine invariant similarity measure, namely an
exemplar-based image inpainting method and an image denoising method.
Image inpainting, also called image completion, is aimed at the recovery
of occluded, missing or corrupted parts of an image, collectively called in-
painting domain, in such a way that the reconstructed image looks natural.
Exemplar-based inpainting methods exploit the self-similarity of natural
images by assuming that the missing information can be found elsewhere
outside the inpainting domain. The affine invariant similarity measure al-
lows us to properly compare shape-adaptive patches inside and outside the
inpainting domain, even if they are related by some local affine transforma-
tion. The most similar source patches from the outside can then be copied
into the inpainting domain after applying appropriate transformations. In
other words, the affine invariant similarity measure effectively extends the
space of available source patches. Figure 1 shows an example of the in-
painting result obtained using our method for a texture pattern under the
perspective effect.

For the image denoising problem we extend the well-known Non-Local
Means denoising method using the affine invariant similarity measure. In
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the Non-Local Means approach it is assumed that for every noisy reference
patch a bunch of other similar noisy patches can be collected together and
averaged to produce a single denoised patch. The bigger amount of patches
is aggregated, the more noise can be suppressed by averaging. Therefore,
the performance of the Non-Local Means denoising is largely determined
by the ability to find many similar patches. With the help of the proposed
similarity measure we can find and aggregate more similar patches, which
in turn leads to better denoising results. This is illustrated in Figure 2.
Similarity values are computed between the central (reference) point and
all other points within a relatively small window. As can be seen, more
points are recognized as similar to the reference in the case when the affine
invariant similarity measure is used.

For both presented methods we explain the most important details of their
numerical implementation and perform comparisons with other relevant
methods from the literature.
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Chapter 1

Introduction

Image comparison is a topic that has received a lot of attention from the
image processing and computer vision communities. It is a main ingredi-
ent in many applications such as object recognition, stereo vision, image
registration, image denoising, exemplar-based image inpainting, to name a
few. There are plenty of techniques for image comparison and the partic-
ular choice always depends on the specific task. In some sense the most
simple examples of image comparison are the quantitative visual quality
assessment measures such as mean square error (MSE), peak signal to noise
ration (PSNR) and structural similarity (SSIM) of Wang et al. (2004). They
are widely used, for instance, to measure the quality of lossy compression
and restoration of images and videos. Similarity measures, that compare
two given images as a whole and assign a single similarity values to them,
are sometimes called global. Such similarity measures, for example, Mutual
Information (MI) of Viola and Wells (1995) and its multiscale extension
of Zimmer and Piella (2014), are typically used as cost functions in image
registration.

Very frequently it is required to compare two given points in an image or,
in more general case, in two different images. Since a single color value of
a point is not very descriptive, it is common to use a small neighborhood
around that point in the comparison. Traditionally such neighborhoods are
called patches. A distinctive property of all patch-wise image comparison
techniques, sometimes also called template matching, is that they assign a
similarity (or distance) value to any given pair of points. In other words, for
every single point in one image there is a dense similarity (distance) field
associated with another image. Let u : Ωu ⊂ R

N → R
M and v : Ωv ⊂ R

N →

3



4 introduction

R
M be two images with M color channels. Here Ωu and Ωv denote their

image domains. This general definition of u and v emphasizes that the image
comparison theory deals both with regular 2D images and videos, as well
as with 3D images, sequences of 3D images captured over time and other
more exotic data structures. The patch-wise image comparison functions
can then be generalized as

D : Ωu × Ωv −→ R

(x , y) −→ D(x, y)

where u and v may coincide. Let p denote a patch, which usually is given
by a connected subset of RN centered at the origin. Some examples of such
functions, that are usually called similarity measures, are:
maximum absolute difference

Dmax(x, y) = max
h∈p
|u(x+ h)− v(y + h)| ,

Cross-Correlation

DCC(x, y) =
∑

h∈p
u(x+ h)v(y + h),

Sum of Absolute Differences

DSAD(x, y) =
∑

h∈p
|u(x+ h)− v(y + h)| ,

Sum of Squared Differences

DSSD(x, y) =
∑

h∈p
(u(x+ h)− v(y + h))2 .

Of course, much more elaborated similarity measures can be found in the lit-
erature, such as Zero-mean Normalized Cross-Correlation (ZNCC) in Lewis
(1995), Phase Correlation in Foroosh et al. (2002), IMage Euclidean Dis-
tance (IMED) in Wang et al. (2005), etc.

In some contexts, for example, in object detection and object recognition, it
is common to compute similarity values sparsely by detecting keypoints or
salient regions (collectively called features) in the images being compared.
Detected features are then described in one way or another, and a matching
cost is assigned to a given pair of descriptors. For such applications it is
much more important to have similarity values (or matching costs) at a
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Figure 1.1: Extension of the space of available patches. On the left: rotations.
On the right: affine transformations.

few repetitive and distinctive locations, rather then to be able to compute
them densely. This freedom of choosing the features to work with leads
to the image comparison that can be invariant to different kinds of image
transformations, or at least sufficiently invariant to be used in numerous
applications. For example, multiple feature detectors and descriptors, that
are rotation and scale invariant, were developed recently (see Tuytelaars
and Mikolajczyk (2008)). Among them SIFT of Lowe (2004) is probably
the most widely known. The main idea behind these approaches is to build
a scale-space of an image by low-pass filtering and then to search through
this scale-space for scale invariant keypoints. Some methods go beyond
that and allow to detect and describe features in an affine invariant way,
for example, ASIFT of Morel and Yu (2009) or Harris-Affine of Mikolajczyk
and Schmid (2004).

In this work we focus on the image comparison by the means of dense
patch-wise similarity measures. We consider patches to be the basic units
of information that allow us to analyze and exploit the self-similarity prop-
erty, usually attributed to natural images. Commonly, patches have square
shape and fixed size, and are used as they appear in an image without any
transformations. However, in the image formation process final appear-
ance of visual details of an observed scene is affected by the geometry of
that scene and by their positions with respect to the camera. Therefore,
it might be beneficial to consider shape-adaptive patches despite the addi-
tional computational burden associated with them. This point is illustrated
by Figure 1.1, where reference patches are shown in red and several other
patches, containing similar visual details, are shown in blue. In the left
image similar patches are related by rotations. In the right image patches
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containing the same pieces of texture are related by affine transformations.
Some examples of image processing methods that exploit shape-adaptive
patches are Foi et al. (2007); Deledalle et al. (2012). Our goal is to intro-
duce and study a family of affine invariant similarity measures that quite
naturally also imply shape-adaptive patches. These similarity measures pro-
vide dense image comparison given an arbitrary pair of points, which at the
same time is invariant to affine transformations. Potential applications of
the affine invariant patch similarity measures are numerous, in particular,
in Part II we present two novel methods for image denoising and image
inpainting.

In order to derive the affine invariant similarity measures we exploit an
axiomatic approach that previously was used in Alvarez et al. (1993) to
classify and study multiscale analyses of images. Multiscale analysis of
images was defined there as a family of transforms Tt (t ≥ 0) which, when
applied to an image u, yield a sequence of images u(t) = Tt(u) at different
scales. This is a classical technique in image processing and computer vision
and such sequence of images is usually called the scale-space. The scale
is related to the degree of smoothing or to the size of the neighborhood
which is used to give an estimate of the brightness of the picture at a given
point. The core idea of the axiomatic approach is that image processing
transforms in general must satisfy some formal requirements which can be
represented by a set of axioms. A particular transform can then be deduced
from a given set of axioms. By changing the set of axions one can obtain
transforms with different properties. Therefore, it provides a useful tool
for classification of already existing transforms and also for exploration of
the new ones. For example, in Alvarez et al. (1993) it was shown that
under reasonable assumptions (compositions of axioms) all scale-spaces are
(viscosity) solutions of partial differential equations of second order. The
classification, given in that work, covers many well-known techniques such as
mathematical morphology operations (dilation and erosion), Gaussian scale-
space, Perona-Malik diffusion and mean curvature motion. In addition, the
Affine Morphological Scale Space (AMSS), which is affine invariant and
corresponds to motion of level lines by the power 1

3 of its curvature, was
obtained.

Later on this axiomatic approach was extended for images defined on Rie-
mannian manifolds in Calderero and Caselles (2014). Such manifolds arise,
for instance, for images defined on R

N , endowed with a suitable metric
depending on the image. Among other contributions this generalization al-
lowed to include the anisotropic scale-spaces in the common classification.
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Recently the same approach was used in Ballester et al. (2014) to classify
and study not scale-spaces of images, but rather multiscale similarity mea-
sures. It was shown that multiscale analyses of similarities between images
on Riemannian manifolds, satisfying a certain set of axioms, are (viscosity)
solutions of a family of degenerate PDEs. Interestingly enough, the Sum of
Squared Differences discussed above also fits in this framework. This simple
similarity measure can be written in the continuous setting as

D(t, x, y) =
∫

R2

gt(h)(u(x+ h)− v(y + h))2 dh, (1.1)

where gt is a given windowing function that we assume to be Gaussian of
variance t. Then it can be shown that (1.1) solves

∂D
∂t

= ∆xD + 2Tr(D2
xyD) + ∆yD, (1.2)

which is probably the simplest case of linear PDE expressing the multiscale
comparison of two image patches. Notice that we refer to this similarity
measure as multiscale, because the naturally appearing windowing function
gt allows to control the support (or scale) of patch comparison by adjusting
the t parameter.

In our work we study one particular linear model proposed among many oth-
ers in Ballester et al. (2014). In order to keep this dissertation self-contained,
in Chapter 2 we summarize some basic definitions and notation from Ten-
sor Calculus and Differential Geometry and also recall from Ballester et al.
(2014) the notion of an a priori connection which plays an important role
in this work. Then in Chapter 3 we define the particular set of axioms that
should be satisfied by the linear model we are interested in. In Chapter 4
we finally present this model which is generic and at the same time leads
to computationally feasible similarity measures that have the complexity
of the usual Sum of Squared Differences. We should remark at this point,
that the PDE corresponding to the linear model involves spatially varying
metrics G1(x) and G2(y) in image domains

∂D
∂t

= Tr(G1(x)
−1D2

xD)+2Tr(G1(x)
− 1

2G2(y)
− 1

2D2
xyD)+Tr(G2(y)

−1D2
yD).
(1.3)

This means that the computational complexity of solving (1.3) is of order S4,
if each image is determined on a grid of size S2. For that reason we use WKB
approximation, named after Wentzel, Kramers and Brillouin, to develop an
approximate solution that gives two practical similarity measures.
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We also focus on the problem of defining the metrics Gi, i = 1, 2, such
that the resulting multiscale similarity measure is affine invariant. It is well
known that the structure tensors can be used as metrics in image domains.
In Chapter 5 we propose a novel iterative scheme to define and compute
structure tensors which are guaranteed, at least theoretically, to be affine
covariant. By affine covariance we mean that the structure tensors trans-
form appropriately by affine transformations. We study their properties
both theoretically and experimentally. We also show that affine covari-
ant neighborhoods (or shape-adaptive patches) are naturally defined by the
affine covariant structure tensors.

We pay much attention to the efficient numerical implementation of the
affine invariant similarity measures and thus present the most important
details of it in Chapter 6. We cover both 2D and 3D cases which are the
most practical ones. In Chapter 7 we present experimental results illustrat-
ing multiscale and affine invariance properties of the proposed similarity
measures. Finally, Chapter 8 concludes the first part of the thesis.



Chapter 2

Preliminaries

In this chapter we collect some basic definitions and notation from Tensor
Calculus and Differential Geometry, in particular about Riemannian man-
ifolds, that will be useful for the following theoretical derivations. We also
recall the notion of a priori connection from Ballester et al. (2014).

Throughout this work we consider images defined on Riemannian manifolds.
A subsetM⊂ R

P is called a smooth N -dimensional manifold in R
P (P,N ∈

N0 and P ≥ N), if every point ξ of M has an open neighborhood V ⊂
M that is diffeomorphic to an open subset U ⊂ R

N . In other words,
locally an N -dimensional manifold looks like some Euclidean space R

N . A
diffeomorphism φ : V → U is called a coordinate chart ofM and its inverse
ψ := φ−1 : U → V is called a parametrization of M around point ξ (see
Figure 2.1). In principle there is no need for an ambient space RP to define
a manifoldM.

The simplest example of an N -dimensional manifold is the Euclidean space
R
N itself. A more illustrative example is the smooth 2-dimensional manifold

defined as

M := S2 = {(x, y, z) ∈ R
3| x2 + y2 + z2 = 1},

which is a sphere in R
3. Let V ⊂ R

3 and U ⊂ R
2 be the open sets

V := {(x, y, z) ∈M| z > 0}, U := {(x, y) ∈ R
2|x2 + y2 < 1}.

The map φ : V → U is then given by

φ(x, y, z) := (x, y).

9
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M

ξ
V ⊂ M U ⊂ RNφ : V → U

ψ : U → V

Figure 2.1: Open sets V ⊂ M and U ⊂ R
N , coordinate chart φ : V → U and

coordinate system ψ := φ−1 : U → V .

It is bijective and its inverse ψ := φ−1 : U → V is given by

ψ(x, y) = (x, y,
√
1− x2 − y2).

Since both φ and ψ are smooth, the map φ is a coordinate chart on S2.
Similarly, the open sets corresponding to z < 0, y > 0, y < 0, x > 0 and
x < 0 can be used to completely cover S2 by six coordinate charts. Hence
S2 is a smooth manifold.

A Riemannian manifold is a smooth (C∞) manifold equipped with a Rie-
mannian metric, which provides smoothly varying choices of inner products
on tangent spaces and allows one to measure geometric quantities such as
distances and angles. For instance, the Euclidean metric is an example of
Riemannian metric.

2.1 Notation

Let (N , g) be a smooth Riemannian manifold of dimension N , endowed with
a general metric g. Let ξ be a point on N . Let U ⊆ R

N be an open set,
containing 0, and ψ : U → N be any coordinate system such that ψ(0) = ξ.

Let gij(ξ) and ΓN ,k
ij (ξ) (indices i, j, k run from 1 to N) denote, respectively,

the coefficients of the first fundamental form (metric tensor) of N and the
Christoffel symbols, computed in the coordinate system ψ around ξ. For
simplicity we shall denote by G(ξ) the symmetric matrix [gij(ξ)] and by

ΓN ,k(ξ) the matrix formed by the coefficients [ΓN ,k
ij (ξ)], i, j = 1, . . . , N for

each k = 1, . . . , N .

We shall use the Einstein summation convention that implies summation
over repeated indices. That is, if otherwise is not stated, aib

i represents∑
i aib

i and superscript indices should not be confused with exponents.
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As usual, given a point ξ ∈ N , we denote by TξN the tangent space to
N at the point ξ. By T ∗

ξN we denote its dual space. The scalar product
of two vectors v, w ∈ TξN is denoted by 〈v, w〉ξ and, in the coordinate
system ψ : U → N , is computed as 〈v, w〉ξ = gij(ξ)v

iwj , where vi, wi

are the contravariant coordinates of v and w in the basis ∂
∂xi
|ξ of TξN .

The action of a covector p∗ ∈ T ∗
ξN , on a vector v ∈ TξN , is denoted by

(p∗, v) = piv
i. Here pi denotes covariant coordinates of p. The relation

between contravariant and covariant coordinates is given by

pi = gij(ξ)p
j and pi = gij(ξ)pj , (2.1)

where gij(ξ) denotes the coefficients of the inverse matrix of gij(ξ). We can
also write (2.1) as

p∗ = G(ξ)p and p = G−1(ξ)p∗.

In this way G(ξ) : TξN → T ∗
ξN . Notice that we may also write (p∗, v) =

gij(ξ)p
jvi.

In the case when ψ is a geodesic normal coordinate system centered at
ξ, the matrix G(ξ) is the identity matrix I = (δij), and I maps vectors
to covectors, that is, I : TξN → T ∗

ξN (with the same coordinates in the

dual basis). We shall denote by I−1 the inverse of I, mapping covectors to
vectors.

Maps and Symmetric Maps

We shall use the coordinate system ψ to express a bilinear map Â : TξN ×
TξN → R. Indeed, if [Aij ] is the matrix of Â in this basis, and v, w ∈ TξN ,

we may write Â(v, w) = Aijv
jwi. If Aij = gik(ξ)Akj , then [Aij ] determines a

map A : TξN → TξN such that Â(v, w) = 〈Av,w〉 = (G(ξ)Av,w). Observe
that G(ξ)A : TξN → T ∗

ξN . Observe also that our notation Aij already

indicates that A = [Aij ] maps vectors to vectors. In our notation, we shall
not distinguish between matrices and maps.

As usual, we say that a linear map L : TξN → T ∗
ξN is symmetric if

(Lv,w) = (Lw, v) for any v ∈ TξN , w ∈ TξN . We shall use the nota-
tion

SMξ(N ) := {A : TξN → T ∗
ξN , A is symmetric}.

We shall also write

Sξ(N ) := {A : TξN → TξN , G(ξ)A ∈ SMξ(N )}.
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From now on, when the point ξ ∈ N is understood, we write G instead of
G(ξ).

Notice that if A : TξN → TξN , we define At : T ∗
ξN → T ∗

ξN by

(Atp, v) = (p,Av) ∀v ∈ TξN , p ∈ T ∗
ξN .

This equality will be useful later on, in the proof of the Theorem 4.1.

Rotations in the Tangent Space

We define a rotation R : TξN → TξN as a linear map that satisfies

〈Rv,Rw〉 = 〈v, w〉 ∀v, w ∈ TξN .

Notice that R does not affect lengths and angles of vectors in the tangent
space, hence it satisfies

RtGR = G.

Let B : TξN → TξN be a matrix such that BI−1Bt = G−1. Thus, BtGB =
I and B is mapping an orthonormal basis of (TξN , I) to an orthonormal
basis of (TξN , G(ξ)).

If R : TξN → TξN is a rotation then

(B−1RB)tI(B−1RB) = I.

That is, B−1RB is a classical rotation.

Gradient and Hessian

Given a function u on N , we denote by DNu and D2
Nu the gradient and

Hessian of u, respectively. In a coordinate system, DNu is the covector ∂u
∂xi

,

and D2
Nu is the matrix ∂2u

∂xi∂xj
− ΓN ,k

ij
∂u
∂xk

which acts on tangent vectors.

Therefore, in this notation D2
Nu(ξ) : TξN × TξN → R is a bilinear map,

and is a symmetric matrix in coordinates. We denote by ∇Nu the vector
of coordinates gij ∂u

∂xj
. Then, |∇Nu(ξ)|2ξ = 〈∇Nu(ξ),∇Nu(ξ)〉ξ. To simplify

the notation we shall write Du and ∇u instead of DNu, and ∇Nu. The
vector field ∇u satisfies 〈∇u, v〉ξ = du(v), v ∈ TξN , du being the differential
of u.
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Product Manifold N =M1 ×M2

Let (Mi, gi) be a smooth Riemannian manifold with metric gi, for i = 1, 2.
Let Γ(i) be the connection on Mi. We shall work here with a product
manifold N = M1 × M2 with the metric g = g1 × g2, so that TξN =
Tξ1M1 × Tξ2M2, ξ = (ξ1, ξ2) ∈ M1 ×M2. If (vi, wi) ∈ Tξ1M1 × Tξ2M2,
ξ = (ξ1, ξ2) ∈M1 ×M2, then we consider the metric

〈(v1, w1), (v2, w2)〉ξ = 〈v1, v2〉ξ1+〈w1, w2〉ξ2 = (G1(ξ1)v1, v2)+(G2(ξ2)w1, w2).

With a slight abuse of notation, let us write G(ξ) = diag(G1(ξ1), G
2(ξ2)).

Let ξ = (ξ1, ξ2) ∈ M1 × M2. We consider a coordinate system of the
form ψ = (ψ1, ψ2) : U1 × U2 → M1 × M2 with ψi(0) = ξi, Ui being a
neighborhood of 0 in R

N . We also consider points x ∈ U1 and y ∈ U2.

Without loss of generality, let us assume thatM1 andM2 have dimension
N . Let us denote the connection on M1 ×M2 as Γ := Γ(1) ⊗ Γ(2) with
indices i, j, k ∈ {1, . . . , 2N}, with ξi = ξ1i, i ∈ {1, . . . , N}, and ξi = ξ2(i−N),
i ∈ {N + 1, . . . , 2N}. We can denote the coordinates as zi, i ∈ {1, . . . , 2N}
with zi = xi, i ∈ {1, . . . , N}, and zi = yi−N , i ∈ {N + 1, . . . , 2N}. Using
the formula

(Γ(1) ⊗ Γ(2))kij =
1

2
gkl
(
∂gjl
∂zi

+
∂gil
∂zj
− ∂gij
∂zl

)
,

we obtain

(Γ(1) ⊗ Γ(2))k(x, y) =

[
Γ(1)k(x) 0

0 Γ(2)k(y)

]
.

We denote by SMξ(N ) the set of symmetric matrices of size 2N × 2N in
N =M1 ×M2.

2.2 A Priori Connections on Product Manifold

The concept of a priori connection is important for this work and we need
to clarify it. Suppose that both manifolds M1 and M2 coincide with R

N

endowed with the Euclidean metric. Let u and v be two given images defined
on R

N . Then it would be standard to use the L2 distance to compare the
patches centered at x and y,

D(t, x, y) =
∫

RN

gt(h)(u(x+ h)− v(y + h))2 dh, (2.2)
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where gt is a given window that we assume to be Gaussian of variance t.
But if the image v is rotated we could also use the L2 distance between u
and a rotated version of v (around y), namely,

D(t, x, y) =
∫

RN

gt(h)(u(x+ h)− v(y +Rh))2 dh. (2.3)

We admit that this decision is taken a priori and is done thanks to an
operator that connects the tangent plane at both points.

Definition 2.1. We say that P (ξ), ξ = (ξ1, ξ2) ∈ N , is an a priori connec-
tion map in N if P (ξ) : (Tξ1M1, G1(ξ1))→ (Tξ2M2, G2(ξ2)) is an isometry,
that is,

〈P (ξ)v, P (ξ)w〉G2(ξ2) = 〈v, w〉G1(ξ1) ∀v, w ∈ Tξ1M,

and we assume also that the map is differentiable in ξ.

Given an a priori connection P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)),
we can also define its inverse P (ξ)−1 : (Tξ2M2, G2(ξ2))→ (Tξ1M1, G1(ξ1)).
For simplicity, and because the arguments in P clearly specify whether it
goes from M1 to M2 or inversely, we denote P (ξ2, ξ1) = P (ξ1, ξ2)

−1, so
that we have

P (ξ2, ξ1)P (ξ1, ξ2) = I. (2.4)

Remark 1. Note that if we have a complete manifold with empty cut locus,
we can define the a priori connection in it by parallel transport without
ambiguities.

Remark 2. Let Isom(TMi) denote the set of isometry maps in the tangent
bundle TMi. Let R1 :M1 → Isom(TM1) and R2 :M2 → Isom(TM2) be
two given maps. If P (ξ) is an a priori connection, then R2(ξ2)P (ξ)R

1(ξ1)
is also an a priori connection.

The isometry property can be written as

(P (ξ)tG2(ξ2)P (ξ)v, w) = (G1(ξ1)v, w),

where P (ξ) is expressed in the basis of Tξ1M1 associated with the metric
G1(ξ1) and the basis of Tξ2M2 associated with the metric G2(ξ2). Then

P (ξ)tG2(ξ2)P (ξ) = G1(ξ1). (2.5)

Note that from (2.5) it also follows that, for smooth and orientable mani-
folds, an a priori connection can be found when the metrics are known.
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A Priori Connections in Different Coordinate Systems

Let us recall from Ballester et al. (2014) how to compute the a priori
connection in another coordinate system. The map P (ξ) expresses the a
priori connection in the coordinate system ψ1 → ψ2. Let ψ = (ψ1, ψ2)

be another coordinate system around ξ. Let Gi(ξi) and G
i
(ξi), i = 1, 2,

be the metric matrices represented in the coordinate systems ψi and ψi,
respectively. Let B

Gi,G
i(ξi) = D(ψ−1

i ◦ ψi)(0), i = 1, 2, and BG,G(ξ) =

(B
G1,G

1(ξ1), BG2,G
2(ξ2)). Note that

B
Gi,G

i(ξi) : (TξiMi, G
i
(ξi))→ (TξiMi, Gi(ξi))

is such that B
Gi,G

i(ξi)
tGi(ξi)BGi,G

i(ξi) = G
i
(ξi). Note also that all matrices

here are uniquely defined. Using the last equality, (2.5) can be expressed as

P t(ξ)B
G2,G

2(ξ2)
−tG

2
(ξ2)BG2,G

2(ξ2)
−1P (ξ) = (2.6)

B
G1,G

1(ξ1)
−tG

1
(ξ1)BG1,G

1(ξ1)
−1.

If we define
P (ξ) := B

G2,G
2(ξ2)

−1P (ξ)B
G1,G

1(ξ1), (2.7)

then P (ξ) is an a priori connection in the coordinate system ψ1 → ψ2,

P (ξ) : (Tξ1M1, G
1
(ξ1))→ (Tξ2M2, G

2
(ξ2)). Indeed, we can express (2.6) as

P (ξ)tG
2
(ξ2)P (ξ) = G

1
(ξ1),

which is the isometry property defining a priori connections. We say that
P (ξ) is the derived a priori connection from P (ξ) and ψ.

Then, (2.7) can be re-written as

B
G2,G

2(ξ2)P (ξ) = P (ξ)B
G1,G

1(ξ1), (2.8)

and we see that both maps B
G1,G

1(ξ1) and B
G2,G

2(ξ2) reflect the same

rotation when expressed in the corresponding a priori connections P (ξ) and
P (ξ), respectively.

Definition 2.2. We say that the coordinate systems ψ, ψ are P (ξ)-related
if P (ξ) is defined by (2.7).

Let us consider the case whereM1 =M2 =M and P (ξ) as an internal a
priori connection given from parallel transport between ξ1 and ξ2, which is
an isometry. Then one can define P (ξ) by parallel transport expressed in
the coordinate systems ψ1, ψ2.
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Generation of A Priori Connections

In order to generate an a priori connection in a given coordinate system,
we first fix a geodesic coordinate system around each point ofMi. In this
coordinate system Ii(ξi) denotes the metric for every point ξi ∈ Mi. For
each ξ ∈ N , consider an isometry map (assuming that it exists)

Q(ξ) : (Tξ1M1, I1(ξ1))→ (Tξ2M2, I2(ξ2)).

Let Isom((TM1, I1), (TM2, I2)) denote the set of such maps. Notice that
this is nothing else than an a priori connection – we just express the same
concept in different coordinate systems. Now, using the transformation of
a priori connections discussed above, we can take an a priori connection
Q in a geodesic coordinate field GS and derive its expression in another
coordinate system field.

Let Bi(ξi) : (TξiMi, Ii(ξi)) → (TξiMi, Gi(ξi)) be the corresponding canon-
ical maps connecting a geodesic coordinate system GS around points ξi to
(TξiMi, Gi(ξi)). Thus,

Bi(ξi)
tGi(ξi)B

i(ξi) = Ii(ξi).

Note that the map Bi(ξi) is uniquely defined by the coordinate systems.
When changing, for example, rotating the geodesic coordinate system we
get a different matrix.

Let Q(ξ) ∈ Isom((TM1, I1), (TM2, I2)), where each I is referred to GS,
and let us define

P (ξ) := B2(ξ2)Q(ξ)B1(ξ1)
−1. (2.9)

Then P (ξ) is an a priori connection map (see Figure 2.2).

Let us note that for any Bi(ξi), defined by the choice of new coordinate
systems, there are infinitely many a priori connections. Indeed, the initial
isometry map Q(ξ) in (2.9) may well be any arbitrary orthogonal transfor-
mation (rotation and/or reflection). This will become important later on,
and in Section 5.2 we will propose a practical approach to calculate a unique
a priori connection.

Related Rotations

Let us consider a coordinate system field and an a priori connection P (ξ) :
(Tξ1M1, G1(ξ1))→ (Tξ2M2, G2(ξ2)) in that system field. Let us consider a

second coordinate system field with metric G
i
(ξi) = Gi(ξi), i = 1, 2, for each
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Figure 2.2: Schematic illustration of generation of an a priori connection.

ξi ∈ Mi so that B
Gi,G

i(ξi) is an isometry field. Let Ri(ξi) := B
Gi,G

i(ξi).

Let P (ξ) be the derived connection. Then (2.8) can be written as

R2(ξ2) = P (ξ)R1(ξ1)P (ξ)
−1. (2.10)

We say that (R1(ξ1), R
2(ξ2)) are P (ξ)-related. We call R = (R1(ξ1), R

2(ξ2))
a diagonally related rotation (or just a diagonal rotation, if no confusion
arises).

Related Germs of Functions on N =M1 ×M2

Finally, we introduce the space of similarity measures. Let Cb(N ) denote
the space of bounded continuous functions in N with the maximum norm.
We think of Cb(N ) as the space of similarity functions on N =M1 ×M2.
We denote by C∞

b (N ) the space of infinitely differentiable functions on N .

Let C ∈ Cb(N ). Let us denote

(C,ψ)(x, y) = C(ψ1(x), ψ2(y)), ∀(x, y) ∈ U1 × U2.

We can say that ψ = (ψ1, ψ2) and ψ = (ψ1, ψ2) are P (ξ)-related, if (2.10)
holds. If ψ is P (ξ)-related to ψ, we write (C,ψ) as R(C,ψ). Note that
R(C,ψ) is a linear map for the restriction of functions in Cb(N ) to a neigh-
borhood of (0, 0).
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Let us finally introduce notations for the gradient and the Hessian of C,
namely,

DNC = (DxC,DyC) and D2
NC =

[
DN ,xxC DN ,xyC
DN ,xyC DN ,yyC

]
.

In coordinates, with i, j, k ∈ {1, . . . , N},

D2
NC =

[
∂2C
∂xi∂xj

∂2C
∂xi∂yj

∂2C
∂yj∂xi

∂2C
∂yi∂yj

]
−
[
Γ(1)k(x) ∂C

∂xk
0

0 Γ(2)k(y) ∂C
∂yk

]
.



Chapter 3

Axiomatic Approach to Patch

Similarity Measures

In this chapter we describe an axiomatic approach that allows one to derive
various patch similarity measures that differ in their properties. A similar
approach was originally proposed in Alvarez et al. (1993) for classification
and study of multiscale analyses of images. “Multiscale analysis” was de-
fined there as a family of transforms Tt (t ≥ 0) which, when applied to an
image u, yield a sequence of images u(t) = Tt(u) at different scales. The
scale is related to the degree of smoothing or to the size of the neighbor-
hood which is used to give an estimate of the brightness of the picture at
a given point. Their classification covers many well-known techniques in-
cluding the Gaussian scale-space (Marr and Hildreth (1980); Koenderink
(1984); Koenderink and Van Doorn (1986); Witkin (1984); Hummel et al.
(1985); Hummel (1987); Lindeberg (1993); Weickert et al. (1999)), Perona-
Malik diffusion (Perona and Malik (1990a); Catté et al. (1992)), mean cur-
vature motion (Alvarez et al. (1992)), mathematical morphology operations
(dilation and erosion), the affine morphological scale-space (Alvarez et al.
(1993); Sapiro and Tannenbaum (1993, 1994); Olver et al. (1993); Guichard
and Morel (2001)), and others. Later on, in Calderero and Caselles (2014),
the axiomatic approach was extended to multiscale analyses of images de-
fined on Riemannian manifolds. Among others, their goals were to include
anisotropic scale-spaces in the common framework of multiscale analyses
and to define new scale-spaces for video that take into account anisotropies
and motion. Then, in Ballester et al. (2014), the same approach was adapted
to study not scale-spaces of images, but rather multiscale similarity mea-

19
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sures between images defined on Riemannian manifolds. Such similarity
measures compare small local neighborhoods or patches which size is deter-
mined by a variable scale. Several models of multiscale analyses of patch
similarity measures were studied there, and in our work we concentrate on
one of them.

The key idea behind the axiomatic approach is to express desired properties
of a multiscale patch similarity measure as a set of axioms. These axioms
can then be turned into a family of partial differential equations and a proper
similarity measure can be obtained as a solution of such a PDE. By changing
the set of axioms it is possible to obtain similarity measures with different
properties. Let us note, however, that some of the axioms are required in
order to have a partial differential equation form of the multiscale analysis
of similarity measures. As proposed in Alvarez et al. (1993), all axioms may
be classified into three groups: the so called “architectural axioms”, one of
a kind “comparison principle” and “morphological axioms”.

In the remainder of the chapter we first describe the set of axioms that we
consider and then present theorems that link these axioms with a family of
partial differential equations.

3.1 Axioms

Since a complete axiomatic classification of the different patch similarity
measures is not in the scope of this work, we do not include here all possible
axioms. Instead we focus only on those of them, that lead to a very practical
linear model we are interested in.

In order to derive a linear multiscale analysis of similarity measures between
images on Riemannian manifolds we work here with the product manifold
N = M1 ×M2. Let us recall from the previous chapter that the metric
on this manifold is denoted by g = g1 × g2, and that G(ξ), G1(ξ1), G

2(ξ2)
represent the corresponding matrices in a coordinate system at given points
ξ = (ξ1, ξ2) ∈ N , ξ1 ∈M1, ξ2 ∈M2.

Let (κ) := κn be an increasing sequence of non-negative constants. We
define the following set of functions

Q((κ)) := {C ∈ C∞
b (N ) : ‖DαC‖∞ ≤ κn ∀n ≥ 0 ∀|α| ≤ n}.

As usual, O(f) denotes any expression which is bounded by c|f | for some

constant c > 0. And o(f) denotes any expression such that o(f)
|f | → 0 as
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f → 0. Assume that Tt : Cb(N ) → Cb(N ) is a nonlinear operator for any
t ≥ 0. We shall denote C(t, ξ) = TtC(ξ), C ∈ Cb(N ), ξ = (ξ1, ξ2) ∈ N , t ≥
0. By a slight abuse of notation, to highlight the implicit coordinate system
ψ : U1 × U2 → N , we will denote it as Tt(C,ψ), which can also be written
as C(t, ψ(x, y)) = Tt(C,ψ)(x, y), where x, y ∈ U1×U2. Assume that we are
given an a priori connection P on N .

Architectural Axioms

[Recursivity] T0(C) = C, Ts(TtC) = Ts+tC, ∀s, t ≥ 0, ∀C ∈ Cb(N ).

In other words, if Recursivity is satisfied, then C(t2, ξ) can be computed
from C(t1, ξ) for any t2 ≥ t1 and T0(C) = C is the identity. Notice also,
that TtC = TnhC when t = nh. This means that the effect of Tt can
be achieved after n discrete iterations of Th. The next axiom states the
independence of the multiscale analysis of the choice of h.

[Infinitesimal generator]

Th(C,ψ)−(C,ψ)
h → (A(C), ψ) as h→ 0+ for any C ∈ C∞

b (N ) and any coordi-
nate system ψ = (ψ1, ψ2) around ξ ∈ N
A is the so-called infinitesimal generator for Tt. We assume that

Tt(R(C,ψ))(ψ
−1(ξ)) = R(Tt(C), ψ)(ψ

−1(ξ))+ o(t) = Tt(C)(ξ)+ o(t) (3.1)

as t → 0+, for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and
any R which are P (ξ)-related rotations. We have denoted by R(C,ψ) the
function in the coordinate system ψ which is P (ξ)-related to ψ.

By writing (3.1) in terms of the generator A we have

R(C,ψ)(0) + tA(R(C,ψ))(0) + o(t) = R((C,ψ) + tA(C,ψ))(0) + o(t)

= C(ξ) + tA(C,ψ))(0) + o(t).

Using the linearity of R(C,ψ), dividing by t and letting t→ 0+ we obtain

A(R(C,ψ))(0) = RA(C,ψ)(0) = A(C,ψ)(0) (3.2)

for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any P (ξ)-
related rotations R.
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Remark 3. In Tt(R(C,ψ)) the a priori connection is expressed in the coor-
dinate system ψ = (ψ1, ψ2). In R(Tt(C), ψ) = Tt(C) the a priori connection
is expressed in the coordinate system ψ = (ψ1, ψ2). That is, the Infinites-
imal generator axiom says that both expressions are the same (intrinsic
character of Tt) when the coordinate systems are P (ξ)-related.

Remark 4. The Infinitesimal generator axiom contains the invariance with
respect to diagonal rotations in the tangent plane of M1 × M2. When
(Mk, Gk) = (RN , I), k ∈ {1, 2}, it amounts to invariance with respect to
Euclidean diagonal rotations in R

2N . That is, Tt(RC) = RTt(C) ∀t ≥ 0,
∀C ∈ C∞

b (RN × R
N ), and for all ∀R ∈ O(N) (Euclidean rotations in R

N )
where RC(x, y) = C(Rx,Ry).

Remark 5. When both manifolds areM = R
N with the Euclidean metric,

the axioms is just:

[Infinitesimal generator] ThC−C
h → A(C) as h → 0+. This holds for any

C ∈ C∞
b (RN × R

N ).

In some sense the coordinate system around each point is always the same,
the canonical one; they are related by the identity.

[Regularity] ‖Tt(C +hC̃)− (Tt(C)+hC̃)‖∞ ≤Mht ∀h, t ∈ [0, 1], ∀C, C̃ ∈
Q((κ)) where the constant M depends on Q((κ)).
Regularity states a natural assumption of continuity of Tt; therefore, it is
a strong justification for the existence of an infinitesimal generator for the
multiscale analysis (Alvarez et al. (1993)).

[Locality] Tt(C,ψ)(x, y) − Tt(C̃, ψ)(x, y) = o(t) as t → 0+, x, y ∈ R
N ,

∀C, C̃ ∈ Cb(N ) such that DαC(ψ(x, y)) = DαC̃(ψ(x, y)) for all multiindices
α.

This axiom states that the value of TtC for small t, at any point ξ, is
determined by the behavior of C near ξ.

Comparison Principle

[Comparison principle] TtC ≤ TtC̃ ∀t ≥ 0 and all C, C̃ ∈ C∞
b (N ) such

that C ≤ C̃.
The comparison principle expresses an order-preserving property. If a sim-
ilarity measure C̃ is everywhere bigger than another similarity measure C,
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then applying a multiscale analysis Tt does not invert this relation. Intu-
itively, no enhancement is made in the comparison, but just a smoothing of
the original one.

Let us note at this point that Recursivity, Regularity and Locality axioms,
together with the Comparison principle, are required in order to have a
partial differential equation representation of a multiscale analysis.

Morphological Axioms

We are not going to consider the morphological comparison of image patches;
therefore, we just mention here the Gray level shift invariance axiom.

[Gray level shift invariance] Tt(0) = 0, Tt(C + κ) = Tt(C) + κ ∀t ≥ 0,
∀C ∈ C∞

b (N ), ∀κ ∈ R.

This axiom states that the multiscale analysis of similarity measures is in-
dependent of the absolute zero in the comparison. In other words, patch
distance between the two most similar points may well be non-zero. Al-
though in our case of multiscale analysis of similarity measures we deal with
similarity values instead of intensities, by analogy we keep for this axiom
the same name introduced in Alvarez et al. (1993) for image analysis.

3.2 Similarity Measures as Solutions of PDEs

In this section we collect theorems that link together the axioms and a
partial differential equation characterization of the multiscale analyses of
similarity measures. We do not include here any proofs and instead refer to
corresponding results from previous works.

Recall that we denote G = (G1, G2) and Γ = Γ(1) ⊗ Γ(2). To simplify the
notation we will not indicate explicitly the arguments for G and Γk.

Theorem 3.1. (i) Let Tt be a multiscale analysis satisfying all the Architec-
tural axioms, and the Comparison principle. Let ψ be a coordinate system
around ξ ∈ N . Then there exists a function F : SMξ(N )×T ∗

ξN×R×N → R

increasing with respect to its first argument such that

Tt(C,ψ)− (C,ψ)

t
→ F (D2(C ◦ ψ)(0), D(C ◦ ψ)(0), C(ξ), ξ, G,Γk) in Cb(N )

as t → 0+, for all C ∈ C∞
b (N ). The function F is continuous in its first

three arguments.
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(ii) If we assume that Tt is also gray level shift invariant, then the function
F does not depend on C(ξ).

This theorem states a general from of a function F , implied by the Infinitesi-
mal generator. Similar theorem for multiscale analyses of images was proven
in Alvarez et al. (1993) (Theorem 2) and the proof was extended to images
defined on Riemannian manifolds in Calderero and Caselles (2014) (The-
orem 3.2). Notice that the first argument in F is a symmetric map from
TξN to T ∗

ξN .

Lemma 3.2. The function F is elliptic, that is, if A1, A2 : TξN → T ∗
ξN

are two matrices such that A1, A2 are symmetric and A1 ≤ A2, p ∈ T ∗
ξN ,

c ∈ R, then

F (A1, p, c, ξ, G,Γ
k) ≤ F (A2, p, c, ξ, G,Γ

k).

This Lemma was proven in Calderero and Caselles (2014) (Lemma 3.3).

Theorem 3.3. Let Tt be a multiscale analysis satisfying all the Architec-
tural axioms, the Comparison principle, and Gray level shift invariance. If
C(t, ξ) = TtC(ξ), then C(t, ξ) is a viscosity solution of

∂C

∂t
= F (D2

NC,DC, ξ,G,Γ
k), (3.3)

with C(0, ξ) = C(ξ).

The proof of that theorem follows as in Alvarez et al. (1993) (Theorem 2),
see also Guichard and Morel (2001) (Chapters 19 and 20).

Together with the previous results, the Theorem 3.3 states that a multiscale
similarity measure, that satisfies the set of axioms from Section 3.1, can be
obtained as a (viscosity) solution of the parabolic PDE (3.3). The PDE is
given here in a very general form. In the following Chapter 4 we will go into
details of the case when the operator Tt is linear and we will present the
specific family of PDEs for that case. We will also derive practical similarity
measures as approximate solutions of the corresponding PDE.



Chapter 4

Derivation of Patch Similarity

Measures

In this chapter we concentrate on a linear model, first described in Ballester
et al. (2014). From that model we derive two patch similarity measures that
are well-suited for practical applications.

We start off with a particular form of PDE, obtained from the generic
one (3.3), by aditionally considering the Tt operator to be linear. Then we
make an assumption about the manifolds that is reasonable in the context
of image and video processing. Namely, we consider Mi = R

N endowed
with a general metric. Then we study a simple case, when the metrics on
manifolds are constant all over the image domains. And finally, we apply
the WKB approximation method to derive the similarity measure that takes
into account spatially varying metrics.

4.1 Linearity Assumption

From now on we consider the operator Tt to be linear, that is

Tt(aC1 + bC2) = aTt(C1) + bTt(C2), ∀a, b ∈ R, ∀C1, C2 ∈ Cb(N ).

Notice that this can be seen as an additional Linearity axiom which should
be satisfied by the multiscale analysis of similarity measures.

Theorem 4.1. Let Tt be a multiscale analysis of similarity functions sat-
isfying all Architectural axioms, the Comparison principle, and Gray level

25
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shift invariance axiom. Assume also that Tt is linear. Then

∂C

∂t
= F (D2

NC, ξ,G),

where

F (X, ξ,G) = c11(ξ)Tr((G
1)−1(ξ1)X11) + 2c12(ξ,G)Tr(D̄12I

1(ξ1)
−1X12)

+ c22(ξ)Tr((G
2)−1(ξ2)X22),

and D̄12 is an isometry from (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). The
ellipticity of F implies that c11, c22 ≥ 0.

Moreover,

2c12(ξ,G)D̄12I
1(ξ1)

−1 = B2(ξ2)D
′B1(ξ1)

t, (4.1)

and the dependence of c12(ξ,G)D̄12I
1(ξ1)

−1 on G is only in isometries
B2(ξ2) and B1(ξ1)

t. Here D′ is a matrix that only depends on ξ (see
Ballester et al. (2014)). We could also write the second term as

2c21(ξ,G)Tr(D̄21I
2(ξ2)

−1X21).

Notice that for X = D2
NC we have Xii = D2

Mi
C and that the operators

cii(ξ)Tr((G
i)−1(ξi)Xii) are multiples of the Laplace-Beltrami operator. No-

tice also that there are no first order terms in these operators. They cannot
couple with vectors, and thus we have the required invariance induced by
the rotations in tangent planes.

Theorem 4.1 was originally proved in Ballester et al. (2014). Since it is of
great importance for our work, we include the proof of it in Appendix A.

4.2 The Case of (Mk
, g

k) = (RN
, g

k)

To fix ideas we consider M1 = M2 = M = R
N and gkij(x) be general

metrics in R
N , k = 1, 2, x ∈ Mk. We know that ei = Gk(x)−

1
2 fi is a

orthonormal basis of (TxMk, gk(x)), if fi is a Euclidean orthonormal basis.
Indeed, for i, j ∈ {1, . . . , N}, we have

〈ei, ej〉Mk = 〈Gk(x)ei, ej〉RN ,Eucl
= 〈Gk(x) 1

2 ei, G
k(x)

1
2 ej〉RN ,Eucl

= 〈fi, fj〉RN ,Eucl
= δij .
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Let Ik(x) : (RN , gk(x))→ (RN , (gk)−1(x)) be given by Ik(x)ei = e∗i . Then

Ik(x) = Gk(x).

IfBk(x) satisfiesBk(x)Ik(x)−1Bk(x)t = Gk(x)−1, then we can takeBk(x) =
I.

We can define P (x, y)(v) = G2(y)−
1
2G1(x)

1
2 v, v ∈ R

N , as the a priori
connection of x and y. Then |P (x, y)v|g2 = |v|g1 for all (x, y) ∈ R

2N . Recall
that D̄1,2 : (R

N , g1(x))→ (RN , g2(y)) is an isometry, in this case it is given

by D̄1,2 = G2(y)−
1
2G1(x)

1
2 . Then (4.1) is

2c12(x, y)D̄1,2I
1(x)−1 = 2c12(x, y)G

2(y)−
1
2G1(x)−

1
2 .

The PDE obtained is

∂C

∂t
= a(x, y)∆MxC+2c12(x, y)Tr(G

2(y)−
1
2G1(x)−

1
2DxyC)+c(x, y)∆MyC,

(4.2)
where

∆MxC = Tr(G1(x)−1(DxxC(x)− Γ(1)(DxC)(x))).

Similarly for the operator ∆My.

Remark 6. Note that (first by transposition, then by reordering), we have

Tr(G2(y)−
1
2G1(x)−

1
2DxyC) = Tr(DyxCG

1(x)−
1
2G2(y)−

1
2 ) =

= Tr(G1(x)−
1
2G2(y)−

1
2DyxC),

which is a symmetric expression in (x, y). If Tt is symmetric in (x, y), then
c12 is also symmetric.

In the symmetric case, the matrix associated with the operator (4.2) is

[
a(x, y)G1(x)−1 c12(x, y)G

2(y)−
1
2G1(x)−

1
2

c12(x, y)G
1(x)−

1
2G2(y)−

1
2 c(x, y)G2(y)−1

]
.

It is positive semidefinite if and only if a, c ≥ 0 and ac− c212 ≥ 0.
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4.3 Similarity Measure with Constant Metrics

In this section we consider a simple case among the models described in
Theorem 4.1 which corresponds to the situation when the metrics are con-
stant in both images and we demonstrate an example of patch similarity
measure solving that equation.

Let u and v be two given images. Let A and B be two N × N matrices.
Then a simple PDE is given by

∂C

∂t
= Tr(AAtD2

xC) + 2Tr(ABtDxyC) + Tr(BBtD2
yC). (4.3)

It can be shown, that (4.3) is satisfied by the following multiscale similarity
measure

C(t, x, y) =

∫

RN

gt(h)C(0, x+Ah, y +Bh) dh, (4.4)

where gt is the Gaussian of scale t, and

C(0, x, y) = (u(x)− v(y))2.

Indeed,

∂C

∂t
=

∫

RN

∂

∂t
(gt(h))C(0, x+Ah, y +Bh) dh

=

∫

RN

∆hgt(h)C(0, x+Ah, y +Bh) dh

=

∫

RN

gt(h)∆hC(0, x+Ah, y +Bh) dh

=

∫

RN

gt(h)∆h(u(x+Ah)− v(y +Bh))2 dh.

Note that

∆h(u(x+Ah)− v(y +Bh))2 = 2‖∇h(u(x+Ah)− v(y +Bh))‖2
+ 2(u(x+Ah)− v(y +Bh))∆h(u(x+Ah)− v(y +Bh)) =: I + II,

where we have denoted both previous terms as I and II in order to compute
them separately. For notation simplicity we omit the arguments of u and
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v. Then

II = 2(u− v)∆h(u− v) = 2(u− v)
(
Tr(AAtD2

xu)− Tr(BBtD2
yv)
)

= 2(u− v)
(
Tr(AAtD2

x(u− v)) + Tr(BBtD2
y(u− v))

)

= Tr(AAtD2
x(u− v)2)− 2Tr(AAt∇x(u− v)⊗∇x(u− v))

+ Tr(BBtD2
y(u− v)2)− 2Tr(BBt∇y(u− v)⊗∇y(u− v))

= Tr(AAtD2
x(u− v)2)− 2‖At∇xu‖2 +Tr(BBtD2

y(u− v)2)
− 2‖Bt∇yv‖2

and

I = 2‖∇h(u− v)‖2 = 2‖At∇xu−Bt∇yv‖2
= 2‖At∇xu‖2 + 2‖Bt∇yv‖2 − 4〈At∇xu,Bt∇yv〉.

Then

I + II = Tr(AAtD2
x(u− v)2) + Tr(BBtD2

y(u− v)2)− 4〈At∇xu,Bt∇yv〉
= Tr(AAtD2

x(u− v)2) + Tr(BBtD2
y(u− v)2) + 2Tr(ABtDxy(u− v)2).

Thus,

∂C

∂t
= Tr(AAtD2

xC) + Tr(BBtD2
yC) + 2Tr(ABtDxyC).

4.4 Approximate Solution for Varying Metrics

Let us first analyse the example of similarity measure with constant metrics
from the previous section. We start by writing the operator in (4.3) as

∂C

∂t
= Tr(AAtD2

xC) + 2Tr(ABtDxyC) + Tr(BBtD2
yC).

= Tr

([
AAt ABt

BAt BBt

] [
DN ,xxC DN ,xyC
DN ,xyC DN ,yyC

])
.

Note that [
AAt ABt

BAt BBt

]
=

[
A 0
B 0

] [
At Bt

0 0

]
=: ΣΣt.

Note that neither Σ nor ΣΣt are invertible operators and we would need to
regularize them, for instance, by introducing a perturbation ǫI in the (2, 2)
entry of Σ.
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Remark 7. Note that the PDE above can be related to the stochastic
ODE:

dXt = AdWt

dYt = BdWt
(4.5)

where the Brownian motion dWt is common in both equations.

The more general linear case derived from (4.2) is

∂C

∂t
= ∆MxC + 2Tr(G2(y)−

1
2G1(x)−

1
2DxyC) + ∆MyC, (4.6)

where
∆MxC = Tr(G1(x)−1(DxxC − Γ(1)(DxC)(x, y))),

∆MyC = Tr(G2(y)−1(DyyC − Γ(2)(DyC)(x, y))).

It involves spatially varying metrics and can be subsumed under the previous
notation by taking

A = G1(x)−
1
2 , B = G2(y)−

1
2 .

Notice that we do not necessarily assume A and B to be constant, even
though we write here A and B instead of A(x) and B(y).

In any case, Σ to be invertible, let us write (4.3) as

∂C

∂t
= Tr(ΣΣtD2

NC) =: Tr(ΣΣt)−1(D2
NC) (4.7)

where Tr(ΣΣt)−1(D2
NC) is a notation for the Laplace-Beltrami operator

(eventually degenerated), that is, the trace of the Hessian with respect to
the (eventually degenerated) metric g := (ΣΣt)−1. In this case, the result
in Varadhan (1967) could give the approximate formula we are looking for.
However, we will use another approach.

We would like to obtain an approximation formula of the type

C(t+ ǫ, p) =

∫
K(ǫ, p, p′)C(t, p′)dp′

where p = (x, y), p′ = (x′, y′).

We proceed using the so called WKB approximation as in Sochen et al.
(2001) (Sections 3 and Appendix). Let us recall that WKB theory, named
after Wentzel, Kramers and Brillouin, is well known in quantum mechanics
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and is used to find approximate solutions to linear partial differential equa-
tions with spatially varying coefficients. Following the WKB method, we
assume the kernel K to be of the form

K(t, p, p′) =
H(t, p, p′)√

t
e−Ψ(p,p′)/t.

We are interested in the behavior of the kernel for t small. Without loss of
generality, we can assume that H(t, p, p′) = H0, a constant. Indeed, as in
Sochen et al. (2001) (Appendix) one can check that for t small the leading
term corresponds to H = H0 constant. The function Ψ does not depend
on t and is positive. The validity of this approximation procedure can be
found, for example, in Cohen et al. (1972).

To simplify the notation, let us forget the arguments of the above functions.
Since the equation is linear we may assume that it is satisfied by the ker-
nel K. Then, introducing K into the equation (4.7), some straightforward
computations produce an equality with several terms. For short times only
the most singular part is dominant. Therefore, by considering the leading
terms of order 1

t5/2
of both sides of the equation, which are the most diver-

gent ones as t→ 0+, we have that the term on the left hand side (obtained
from ∂K

∂t ) is
H0√
t
e−Ψ/tΨ

t2

and the term obtained from the right hand side is

H0√
t
e−Ψ/t 1

t2
〈ΣΣt∇pΨ,∇pΨ〉.

The equality of both terms gives the PDE:

〈ΣΣt∇pΨ,∇pΨ〉 = Ψ,

that is,
‖Σt∇pΨ‖2 = Ψ. (4.8)

If Φ = 2
√
Ψ, (4.8) becomes

‖Σt∇pΦ‖2 = 1. (4.9)

From Σt =

[
At Bt

0 0

]
, we can write the above equation (4.9) as

‖AtDxΦ+BtDyΦ‖2 = 1. (4.10)
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Let us denote (P,Q) = (DxΦ, DyΦ), andH(P,Q) = ‖AtP+BtQ‖2. Writing
the Hamilton-Jacobi equation (4.10) in terms of H, the solution of

H(P,Q) = 1

is given in terms of the Lagrangian

L(P̄ , Q̄) = sup
(P,Q)

{
〈(P̄ , Q̄), (P,Q)〉 −H(P,Q)

}
.

Note that, with

R = AtP +BtQ, S = AtP −BtQ,

R̄ = A−1P̄ +B−1Q̄, S̄ = A−1P̄ −B−1Q̄,

we may write

L(P̄ , Q̄) = sup
(R,S)

{
1

2
〈(R̄, S̄), (R,S)〉 − ‖R‖2

}
.

Then,

if S̄ 6= 0, then L(P̄ , Q̄) = +∞,

if S̄ = 0, then L(P̄ , Q̄) = 1
16‖R̄‖2 = 1

16‖A−1P̄ +B−1Q̄‖2.
Recall that the solution of the Hamilton-Jacobi equation (4.10) is given by

Φ(t, p, p′) =
1

16
inf
C

∫ p′

p
‖A−1γ̇(s) +B−1 ˙̃γ(s)‖2 ds,

where p = (x, y), p′ = (x′, y′), C is the set of curves (γ, γ̃) such that γ is a
curve joining x to x′ and γ̃ a curve joining y to y′, and

A−1γ̇(s) = B−1 ˙̃γ(s),

that is,

γ̇(s) = AB−1 ˙̃γ(s). (4.11)

The observations above are valid for any metrics being constant or not.
Let us analyze the last formula when A and B are constant matrices. By
integrating (4.11) we get

x′ − x = AB−1(y′ − y),
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that is,
B−1(y′ − y) = A−1(x′ − x) := h.

Thus, we may write

x′ − x = Ah, y′ − y = Bh.

Moreover,

Φ(t, p, p′) =
1

4
inf
γ

∫ x′

x
‖A−1γ̇(s)‖2 ds

(
=

1

4
inf
γ

∫ y′

y
‖B−1 ˙̃γ(s)‖2 ds

)
.

(4.12)

Let us solve this equation explicitly in the case of constant matrices A,B.
The solution is given by γ being a straight line joining its two endpoints.
Indeed, writing α(s) := A−1γ(s), then

Φ(t, p, p′) =
1

4
inf
α

∫ A−1x′

A−1x
‖α̇(s)‖2 ds. (4.13)

The solution is given by

Φ(t, p, p′) =
1

4
‖A−1x−A−1x′‖ = 1

4
‖h‖. (4.14)

Recall Φ = 2
√
Ψ. Then, for t > 0 small enough, we have the approximation

C(t, p) =
H0√
t

∫
e−Ψ(t,p,p′)/tC(0, x+Ah, y +Bh)dh

for some constant H0. Then, after adjusting constants,

C(t, p) =

∫
gt(h)C(0, x+Ah, y +Bh)dh,

where gt(h) denotes the Gaussian of variance t, and we recover the formula
given in Section 4.3.

In the general case, where A and B are not constant matrices but A(x) =

G1(x)−
1
2 , B(y) = G2(y)−

1
2 , we have

Φ(t, p, p′) =
1

4
inf
γ

∫ x′

x
‖G1(γ(s))

1
2 γ̇(s)‖2 ds = (4.15)

=
1

4
inf
γ̃

∫ y′

y
‖G2(γ̃(s))

1
2 ˙̃γ(s)‖2 ds.
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If we interpret (4.15) intuitively as a geodesic distance d(x, x′) in the man-
ifoldM1, and set x′ = x+A(x)h, then

C(t, p) =
H0√
t

∫
e−d(x,x+A(x)h)

2/tC(0, x+A(x)h, y +B(y)h)dh.

After adjusting constants and substituting back the metrics we finally obtain

C(t, p) =

∫
e−d(x,x+G

1(x)−
1
2 h)2/tC(0, x+G1(x)−

1
2h, y +G2(y)−

1
2h)dh.

(4.16)
The geodesic distance can be approximated as in the bilateral filter in
Tomasi and Manduchi (1998) by

d(x, x+G1(x)−
1
2h)2

= κspatial‖G1(x)−
1
2h‖2 + κcolor|u(x)− u(x+G1(x)−

1
2h)|2,

where κspatial > 0, κcolor > 0, and u is the image onM1.

On the other hand, by a drastic approximation, writing A = G1(x)−
1
2 ,

B = G2(y)−
1
2 , h = A−tx′ − A−tx, we can also obtain the formula that

coincides with the one for constant metrics A and B

C(t, p) =

∫
gt(h)C(0, x+G1(x)−

1
2h, y +G2(y)−

1
2h)dh. (4.17)

Recall that in both (4.16) and (4.17) we consider p = (x, y) and

C(0, x, y) = (u(x)− v(y))2 .

Formulas (4.16) and (4.17) represent the patch similarity measures that are
well suited for practical applications. The difference between them is in the
weighting function. Approximated geodesic weights are used in the first
case, while simpler Gaussian weights are used in the second case. In the
following chapter it will be shown that these similarity measures can in fact
be affine invariant. Both of them will be discussed and tested in Sections
7.1 and 7.2. Then in Part II of this dissertation the computationally less
expensive (4.17) will be exploited for image inpainting and image denoising
applications.



Chapter 5

Structure Tensor as a Metric

In the previous chapter we have derived two patch similarity measures,
namely (4.16) and (4.17), with some Riemannian metrics incorporated in
them. It is well known, that the so called structure tensor (also known as
second-moment matrix) can be seen as a metric in the image domain (e.g.
Weickert (1998, 1999); Kimmel et al. (2000); Brox et al. (2006b,a)). It is
used in image processing and computer vision fields in applications ranging
from nonlinear filtering to motion analysis.

In this chapter we address the construction of affine covariant structure
tensors and discuss their properties. As will be shown, the proposed iter-
ative scheme gives structure tensors that transform properly by an affine
transformation; therefore, we additionally title them as “affine covariant”.
The a priori connection, built from affine covariant structure tensors, allows
us to compare vicinities of two given points regardless of any affine trans-
formation between them. In order to stress this property, we will denote
the proposed patch similarity measures built with affine covariant struc-
ture tensors as Da(t, x, y) and name them affine invariant patch similarity
measures. That is, we explicitly say that the similarity value between two
patches does not change under affine transformations.

The computation of affine covariant structure tensors is closely related to the
problem of estimating affine covariant regions. The latter was addressed be-
fore in the object recognition literature. In Mikolajczyk and Schmid (2004),
the authors compute affine covariant regions on a set of points that are ro-
bust to scale changes. Given two matching points, the affine transformation
can then be estimated up to a rotation. In Matas et al. (2004), the authors
build up affine covariant domains referred to as maximally stable extremal

35
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regions (MSER). Mainly, MSER are defined as the most contrasted con-
nected components of upper and lower level sets of the image. Even though
these approaches give very good results in the object recognition context,
they do not provide a dense set of regions with a guarantee of their affine
covariance. In the following section we propose a way of calculating affine
covariant regions directly from the dense field of affine covariant structure
tensors.

We begin this chapter with a general definition of the affine covariant struc-
ture tensors and neighborhoods in Section 5.1. We also propose an iterative
construction scheme that defines particular affine covariant structure ten-
sors and neighborhoods. We show that the proposed structure tensors are
well-suited to be used as metrics in the affine invariant similarity measures.
In Section 5.2 we put together the affine covariant structure tensors and
the concept of a priori connection. Then in Section 5.3 we briefly discuss
limitations of the proposed structure tensors computed in real discrete im-
ages. In Section 5.4 we empirically study the convergence and dependency
on initial conditions of the iterative construction scheme. Finally, in Sec-
tion 5.5 we compare in terms of performance the proposed affine covariant
neighborhoods with a related approach from the literature.

5.1 Affine Covariant Structure Tensors

In this section we describe the construction of structure tensors and their
corresponding neighborhoods which are affine covariant.

Let u be a given image, u : RN → R. Let GL(N) be the set of invertible
matrices in R

N . Let A ∈ GL(N) be an affine transformation. We denote
by uA(x) := u(Ax) a version of an image u, transformed by an affinity A.
Notice that it is equivalent to say that A transforms the basis of u to the
basis of uA.

We begin with some examples of the kind of tensors we are interested in.
Assume that we have a metric g on R

N . The map A induces another metric
gA in R

N such that GA(x) = AtG(Ax)A. As always G(x) denotes the
symmetric matrix [gij ] known as metric tensor. The law of transformation
from G to GA is implied by the properties of metric tensor. Hessian, which
as well can be seen as tensor, is the next relevant example. It can be
shown that the same law of transformation holds for the Hessian of an
image u and the Hessian of its transformed version uA. Indeed, D

2uA(x) =
AtD2u(Ax)A. Obviously it is also the case when we consider the Hessian
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of u, defined on the Riemannian manifold (M1, g1) := (RN , g), and the
Hessian of uA, defined on the Riemannian manifold (M2, g2) := (RN , gA).
Indeed, D2

M2uA(x) = AtD2
M1u(Ax)A. The following definition generalizes

this property for a (1, 1) tensor field computed from an image.

Definition 5.1. Let Hu be a (1, 1) tensor defined on R
N such that, for each

x ∈ R
N , it is represented by a N × N matrix Hu(x) mapping a vector in

R
N to another vector in R

N . We say that Hu is an affine covariant tensor
if it satisfies

HuA(x) = AtHu(Ax)A, (5.1)

where uA(x) := u(Ax) for A ∈ GL(N).

Let us highlight a slight clash of terminology that we commit here. In gen-
eral the term “covariant tensor” is used to denote any tensor of type (0, n),
that is, any tensor that has n covariant indices and no contravariant indices.
On the other hand, in the context of Definition 5.1 we say “affine covariant”
to emphasize that such tensor, computed from an image u, transforms in
accordance with an affinity.

Another interesting example is F (u) = Du ⊗ Du, where ⊗ denotes the
tensor product. Then,

F (uA)(x) = DuA(x)⊗DuA(x) = AtDu(Ax)⊗AtDu(Ax) (5.2)

= AtDu(Ax)⊗Du(Ax)A = AtF (u)(Ax)A.

Thus, F (u) is an affine covariant tensor.

This law of transformation is well adapted to define neighborhoods that
transform properly with respect to affine transformations.

Lemma 5.2. Let Hu be an affine covariant tensor. Let

BHu(x, r) = {y : 〈Hu(x)(y − x), (y − x)〉 ≤ r2} x ∈ R
N , r > 0. (5.3)

Then, BHuA
(x, r) = A−1BHu(Ax, r).

We say that BHuA
(x, r) is an affine covariant neighborhood.

Proof. Using (5.1) we can write

BHuA
(x, r) = {y : 〈HuA(x)(y − x), (y − x)〉 ≤ r2}

= {y : 〈AtHu(Ax)A(y − x), (y − x)〉 ≤ r2}



38 structure tensor as a metric

Let x̄ = Ax, ȳ = Ay. Then

BHuA
(x, r) = {A−1ȳ : 〈Hu(x̄)(ȳ − x̄), (ȳ − x̄)〉 ≤ r2} = A−1BHu(Ax, r).

In particular, if we define

Bu(x, r) = {y : |Du(x)(y − x)| ≤ r}, (5.4)

then

BuA(x, r) = {y : |DuA(x)(y − x)| ≤ r}
= A−1{y : y ∈ Bu(Ax, r)} = A−1Bu(Ax, r),

that is, BuA(x, r) is an affine covariant neighborhood as well.

Iterative Construction Scheme

At this point we have all the ingredients we need to describe the scheme
for construction of affine covariant structure tensors and affine covariant
neighborhoods.

Let Bu(x, r) be an affine covariant neighborhood in image u. For example,
Bu(x, r) can be computed using (5.3) or (5.4).

Let

T (u)(x) =

∫

Bu(x,r)
Du(y)⊗Du(y) dy. (5.5)

Then

T (uA)(x) =

∫

BuA
(x,r)

DuA(y)⊗DuA(y) dy (5.6)

=

∫

A−1Bu(Ax,r)
AtDu(Ay)⊗Du(Ay)Ady

and by writing ȳ = Ay, y ∈ A−1Bu(Ax, r) we get

T (uA)(x) = At
∫

Bu(Ax,r)
Du(ȳ)⊗Du(ȳ)|detA|−1 dȳA. (5.7)

Notice that T (uA)(x) = |detA|−1AtT (u)(Ax)A; therefore, T (uA) is an affine
covariant tensor with a weight expressed by |detA|−1. We still refer to it as
an affine covariant tensor density of exponent −1.
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Although the following results hold for the general case of RN , we will focus
on the case of regular images where Bu(x, r) ⊂ R

2. To cancel the fac-
tor |detA|−1, we observe that Area(BuA(x, r)) = |detA|−1Area(Bu(Ax, r)).
Therefore, if we normalize T (u)(x) and define

NT (u)(x) =

∫
Bu(x,r)

Du(y)⊗Du(y) dy
Area(Bu(x, r))

, (5.8)

we have NT (uA)(x) = AtNT (u)(Ax)A. In other words, NT (u) is an affine
covariant tensor (or an affine covariant tensor density of exponent 0), com-
puted on an affine covariant neighborhood.

Lemma 5.3. Let H1 be an affine covariant tensor density of exponent p
(p = 0,−1) and let H2 be an affine covariant tensor. Let H i

A be the tensor
after the affine transformation A. Let BH1(x, r) be an affine covariant
neighborhood, computed from H1. Let

T (H1, H2)(x) =

∫

BH1 (x,r)
H2(y) dy. (5.9)

Then
T (H1

A, H
2
A)(x) = |detA|pAtT (H1, H2)(Ax)A. (5.10)

That is, T (H1, H2) is an affine covariant tensor density of exponent p.

We have taken p = 0,−1 because we wanted to cover our examples. Other
exponents could be taken as well.

Lemma 5.3 permits to iterate the above construction (5.8) and redefine for
k ≥ 1

NT (k)(u)(x) =

∫
B

NT (k−1)(u)
(x,r)Du(y)⊗Du(y) dy

Area(BNT (k−1)(u)(x, r))
(5.11)

where k is the index of iteration, and

BNT (k)(u)(x, r) = {y : 〈NT (k)(u)(x)(y − x), (y − x)〉 ≤ r2} (5.12)

for k ≥ 1,
BNT 0(u)(x, r) = {y : |Du(x)(y − x)| ≤ r} (5.13)

for k = 0.

Equations (5.11), (5.12) and (5.13) constitute an iterative scheme for cal-
culation of affine covariant structure tensors and neighborhoods.
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Figure 5.1: Evolution of affine covariant neighborhoods over iterations of the
construction scheme (k from 0 to 5).

Notice that the initial neighborhood (5.13) takes into account non-local
information due to its infinite band support. Moreover, its shape depends
only on the gradient at a single point and thus may be subjected to noise.
The iterative process decreases this dependency of the structure tensor on
the initial neighborhood BNT 0(u)(x, r). Figure 5.1 illustrates evolution of
affine covariant neighborhoods over iterations. In Section 5.4 we empirically
study the convergence of the iterative scheme and the above mentioned
dependency on the initial iteration.

To simplify the notation we will usually denote by Tu(x) the affine covariant
structure tensor NT (k)(u)(x) for a fixed number of iterations k and a given
value of r. We say that Tu is the affine covariant structure tensor field
associated with u. Similarly we will use the notation BTu(x) to refer to the
affine covariant neighborhood BNT (k)(u)(x, r).

Let us note that r is a free parameter. It controls the size of the affine
covariant neighborhood at a given point. On the other hand, the size of the
neighborhood is also affected by the texture in the vicinity of that point.
Some examples of the affine covariant neighborhoods, computed using the
same value of r, are shown in Figure 5.2.

Remark 8. Another potentially interesting approach to the initial neigh-
borhood calculation would be

B̄u(x, r) = {y : |Du(y)(y − x)| ≤ r}. (5.14)

Notice that in contrast to (5.13), the gradient here is taken at the point y;
therefore, such neighborhood does not depend solely on the point x. Since
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Figure 5.2: Affine covariant neighborhoods computed every 25 pixels using the
same values of r.

B̄uA(x, r) = A−1B̄u(Ax, r), we get an affine covariant neighborhood. This
approach is yet to be studied in the future work.

5.2 A Priori Connection from Structure Tensors

In this section we link together the affine covariant structure tensors and the
a priori connection, defined earlier in Section 2.2. Even though the a priori
connection appears only implicitly in the patch similarity measures (4.16)
and (4.17), the concept is still of great importance for both theoretical and
practical aspects of this work. To give a better geometrical intuition for
the a priori connection, we study in detail its construction from the affine
covariant structure tensors.

Let u = Ωu → R and v = Ωv → R be two given images. We do not assume
any global relation between the two images. Let Tu(x) be the structure
tensor of u at any point x ∈ Ωu and let Tv(y) be the structure tensor of v
at any point y ∈ Ωv.

By extending domains of u and v to R
N (first by an even extension and then

by periodicity) and considering structure tensor fields Tu and Tv as metrics
on these domains, we obtain two manifolds (RN , G1 := Tu), (R

N , G2 := Tv).
As was shown in Section 2.2, given two manifolds, an a priori connection
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Figure 5.3: Affine covariant neighborhoods (shape-adaptive patches) computed at
corresponding points in two images. Despite the difference in viewpoints, patches
capture the same visual information.

can be computed as

P (x, y) = G2(y)−
1
2G1(x)

1
2 .

To calculate the square root of G1(x) and G2(y) we first diagonalize the
tensors matrices

Tu(x) = Uu(x)Du(x)U
t
u(x),

Tv(y) = Uv(y)Dv(y)U
t
v(y).

Here

Du(x) = diag(λu,1(x), λu,2(x)), λu,1(x) ≥ λu,2(x),
Dv(y) = diag(λv,1(y), λv,2(y)), λv,1(y) ≥ λv,2(y).

The matrices Uu(x) and Uv(y) are rotation matrices formed by the eigen-
vectors of Tu(x) and Tv(y), respectively. Let eu,i(x) be the eigenvector of
Tu(x) associated with the eigenvalue λu,i(x), i ∈ {1, 2}. Let ev,i(y) be the
eigenvector of Tv(y) associated with the eigenvalue λv,i(y). That is, eu,i(x)
is the i-th column of Uu(x) and ev,i(y) is the i-th column of Uv(y).

Recall that each structure tensor can be described by its corresponding
neighborhood, which in R

2 is an ellipse given by

BTu(x) = {x̄ : 〈Tu(x)(x̄− x), x̄− x〉 ≤ r2},

BTv(y) = {ȳ : 〈Tv(y)(ȳ − y), ȳ − y〉 ≤ r2}.
Figure 5.3 shows examples of affine covariant neighborhoods computed at
corresponding point in two views of the same scene.
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Figure 5.4: Decomposition of an a priori connection P (x, y).

If we define Au(x) := Du(x)
1
2Uu(x)

t, then by the change of variables X =

Au(x)x
′, we have Au(x)

eu,i(x)√
λu,i(x)

= fi, where fi is a Euclidean orthonormal

basis. Which means that Uu(x)
t rotates the ellipse, aligning the minor axis

to f1 and the major to f2, and Du(x)
1
2 changes the length of both axis. Sim-

ilarly for the ellipse associated with Tv(y), we define Av(y) := Dv(y)
1
2Uv(y)

t

and, by the change of variables Y = Av(y)y
′, we have Av(y)

ev,i(y)√
λv,i(y)

= fi.

After these operations both ellipses are transformed to a standard discs of
radius r and hence can be compared. From another point of view, when
combined into an a priori connection, these transformations warp an ellip-
tical region at point x into an elliptical region at point y (Figure 5.4).

Using the above notation we can redefine the a priori connection as

P (x, y) := Av(y)
−1Au(x) = Uv(y)Dv(y)

− 1
2Du(x)

1
2Uu(x)

t. (5.15)

Additional Rotation

Similarly to Garding and Lindeberg (1994), it can be shown that in general
the formula (5.15) allows to determine local affine transformation from two
affine covariant structure tensors, but only up to some orthogonal transfor-
mation. The following Lemma 5.4 illustrates this statement. Let us remark
that the exact local affinity can be obtained by (5.15), when an additional
constraint is applied. For example, it is possible in the context of stereo
imaging, when the vertical displacement of points is known to be zero after
rectification.

For any orthogonal matrix R in R
2, let us denote

PR(x, y) = Tv(y)
− 1

2 R Tu(x)
1
2 .
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Figure 5.5: Schematic illustration of alignment of elliptical patches that takes
into account the additional rotation R(x, y).

Lemma 5.4. Let u and v be two images, such that u(z) = v(Az) for all
z ∈ R

N and for some A ∈ GL(N). Then, PR(x, y) = A for y = Ax and
some orthogonal matrix R.

Proof. Consider y = Ax. To prove A = PR(x, y) = Tv(y)
− 1

2RTu(x)
1
2 is

equivalent to prove that Tv(y)
1
2ATu(x)

− 1
2 is an orthogonal matrix. But

Tv is an affine covariant tensor field. Therefore, Tu(x) = AtTv(y)A. This

identity is equivalent to I =
(
Tv(y)

1
2ATu(x)

− 1
2

)t (
Tv(y)

1
2ATu(x)

− 1
2

)
. That

is, Tv(y)
1
2ATu(x)

− 1
2 is an orthogonal matrix.

This means that a truly affine invariant a priori connection should be defined
as

P (x, y) := Av(y)
−1R(x, y)Au(x) = Uv(y)Dv(y)

− 1
2R(x, y)Du(x)

1
2Uu(x)

t,
(5.16)

where R(x, y) is some additional orthogonal transformation. Due to the fact

that Uu(x) and Uv(y) are rotations and Du(x)
1
2 , Dv(y)

1
2 are scalings, there

is no reflection involved in these transformations and, therefore, R(x, y) is
indeed a rotation. Figure 5.5 illustrates the complete chain of transforma-
tions that align one patch with another.

The additional rotation R(x, y) can be computed from the image content
inside elliptical regions at points x and y. When two elliptical regions are
normalized to the discs, a proper additional rotation should align these
circular regions. Since exhaustive search is not an option for any practical
application, we instead split the sought-for rotation into two rotations

R(x, y) = Rv(y)
−1Ru(x),
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each of which now depends on image content around only one point, x or
y. We look for rotation invariant features inside both normalized circular
regions and compute from them two small sets of dominant orientations.
Each dominant orientation corresponds to a candidate rotation. Such com-
bination of rotations, that leads to the best alignment, forms the resulting
additional rotation R(x, y). In Section 6.3 we explain the estimation of
dominant orientations in detail.

Let us finally show that the additional rotation is consistent with our original
definition of the a priori connection given in Section 2.2. Recall that from
its definition in Section 2.2, the a priori connection is an isometric map that
can be generated as (2.9):

P (x, y) := B2(y)Q(x, y)B1(x)−1,

where Q(x, y) is any isometry between geodesic coordinate systems around
points x and y, B1(x) and B2(y) represent some change of coordinate sys-
tems, defined by the choice of metrics. For given points x and y, and given
metrics, we obtain the whole family of valid a priori connections by varying
Q(x, y). For example, if Q(x, y) is the identity, we recover (5.15). The right
choice of Q(x, y) allows us to obtain the a priori connection that not only
preserves lengths and angles, but also aligns image content in the vicinities
of x and y. And the additional rotation R(x, y) in (5.16) is indeed such an
isometry.

On the Proposed Affine Invariant Similarity Measures

When (M1, g1) = (RN , Tu) and (M2, g2) = (RN , Tv), the affine invariance
property of the patch similarity measures (4.16) and (4.17) proposed in
Chapter 4 stems from the affine covariance property of the proposed struc-
ture tensors. In other words, when the proposed affine covariant structure
tensors are used as metrics in the image domains, the linear multiscale
analysis of similarities is affine invariant.

This fact can also be deduced from the following additional remark on the
solutions of equations of the form (4.7). To simplify the notation, let us
consider the case of a linear multiscale analysis of images of the same kind.
Note that if A ∈ GL(N) and g is a metric on R

N defined as above by the
affine covariant structure tensor associated with a given image, u : RN → R,
then, as previously noticed, A : RN → (RN , g) induces a metric gA in R

N

such that GA(x) = AtG(Ax)A. If Γ̃ is the Levi-Civita connection in the
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metric gA, then

Γ̃(Atp) = AtΓ(p)A.

Let (M1, g1) = (RN , g), (M2, g2) = (RN , gA). Therefore, the equation

∂u

∂t
= Trg

(
D2

M1u
)
,

where Trg(Q) = Tr(G−1Q) = gijQij , is affine invariant. Indeed, since

TrgA
(
D2

M2uA
)
= Tr

(
G−1
A D2

M2uA
)
= Tr

(
A−1G−1A−tAtD2

M1uA
)

= Tr
(
G−1D2

M1uAA
−1
)
= Tr

(
G−1D2

M1u
)
= Trg

(
D2

M1u
)
,

then

∂

∂t
uA(t, x) =

∂

∂t
u(t, Ax) = Trg

(
D2

M1u
)
(t, Ax) = TrgA

(
D2

M2uA
)
(t, x).

That is, uA solves the same equation as u(t, x) with initial condition u(Ax).
This gives an example of a linear multiscale analysis that is affine invariant

Notice that the metric depends on the initial condition. This may not be
obvious from the notation above, but the equation is applied to a given
image, and the metric is constructed from the initial condition. This guar-
antees that whenever for u(0, x) the metric is g, for u(0, Ax) the metric is
gA(x) = Atg(Ax)A.

5.3 Structure Tensors in Discrete Images

So far we were considering ideal continuous images with infinite resolution.
Real images, acquired with a digital camera, are affected by the optical blur
(which we assume to be Gaussian) and by the sampling. In this section
we analyze, to what extend the affine covariance property of the structure
tensors holds for real discrete images. For simplicity, we consider planar
images defined on R

2. Furthermore as in Morel and Yu (2011), we assume
an affine camera model, that is, we disregard perspective effects.

Let f : Ω→ R be an infinite resolution image on a plane, seen from a frontal
view. We consider an image u : Ω→ R, resulting from looking at f from a
different viewpoint. Under an affine camera, we can express u as follows:

u(x) = fA(x) = f(Ax),
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where A ∈ GL(N) is an affinity matrix associated with the viewpoint (with-
out loss of generality, we omit the translation of the affinity). Throughout
this section we use the notation fA = Af , that is, we use the same sym-
bol for the affinity matrix A and for the operator that warps an image in
accordance with affinity A. Since the proposed structure tensors are affine
covariant, when computed at corresponding locations on f and u, they
should be related by (5.1).

Both u and f are infinite resolution images, seen from two different view-
points before acquisition. When acquired by a finite resolution camera an
image is modified by a filtering operation GΣ1 and a sampling operator S1.
We assume the GΣ1 to be a Gaussian kernel with covariance matrix Σ1,
such that its width is the smallest one that allows sampling with a step of
1 without aliasing. We assume that Σ1 = σ1I as defined in Morel and Yu
(2011). Thus, after acquisition we have û1 = S1GΣ1∗Af and f̂1 = S1GΣ1∗f .
In order to study the effect of blurring separately from the sampling, we
consider images u1 = GΣ1 ∗Af and f1 = GΣ1 ∗ f before sampling.

In general the warping by A and the Gaussian filter do not commute; thus,
after acquisition, u1 and f1 will not be related by an affinity anymore.
Indeed, if GΣ is a Gaussian kernel with covariance matrix Σ and zero mean,
then we have that

GΣ ∗Af = AGAΣAt ∗ f,
a property which is sometimes referred to as weak commutativity (Morel
and Yu (2011)).

Thus, in the affine camera model, a change of viewpoint associated with the
affinity A induces an antialiasing Gaussian filter GAΣ1At . Structure tensors
computed on u1 = AGAΣ1At ∗ f1 match the ones computed on GAΣ1AT ∗ f1,
but differ from structure tensors of f1 = GΣ1 ∗ f . An exception is given by
the case in which the Gaussian kernel is isotropic (as GΣ1) and A = R is a
rotation, since in that case Rσ2IRt = σ2I. However, this is not true, if the
affine transformation involves scalings and/or tilts.

5.4 Empirical Study of the Construction Scheme

The proposed scheme for construction of the affine covariant tensors and
neighborhoods is an iterative scheme which starts from some initial region
and then alternately updates the structure tensor and the corresponding
region. The purpose of the iterative scheme is not to enforce affine covari-
ance property, but rather to diminish dependency on the very first iteration.
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Figure 5.6: Average change of structure tensors from one iteration to another,
depending on the number of iteration. Thumbnails of the corresponding images
are shown on the right.

By Lemma 5.3 the structure tensor is guaranteed to be affine covariant at
any iteration of the scheme. Therefore, we should obtain a correct a priori
connection from a pair of structure tensors, if for both of them we run the
construction scheme for the same amount of iterations k.

In this section we first study the convergence of the proposed iterative
scheme and then also the dependency of structure tensors on the initial
iteration for different values of parameter r.

Convergence

Given an image u : R2 → R, consider the affine covariant tensorsNT (k)(u)(x)
for x ∈ R

2, k ∈ N, r > 0. We have empirically observed that after a few
iterations the proposed scheme either converges to a single affine covariant
structure tensor, or starts to cycle over a finite number of them (typically
2 or 3). Let us note once again, that any of these structure tensors is
indeed affine covariant. The convergence can be clarified with the follow-
ing experiment. Given an image u, we calculate the structure tensors at
every point x using different number of iterations k. Then we calculate
the Frobenius norms of the differences

∥∥NT (k)(u)(x)−NT (k+1)(u)(x)
∥∥
F

for every two consecutive values of k. Finally, we average the norms over
all points x in the image u. Figure 5.6 shows these average changes over k
for three selected images. The fact that the average changes approach some
non-zero value is indeed explained by the occasional alternation between
several affine covariant tensors at some points. This behavior is typical for
all tested images.
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Figure 5.7: Two images with identical central part and different peripheral parts.

In our experiments in this work we always take k = 30.

Dependency on Initial Condition

In our iterative construction scheme, the initial region (5.13) is an infi-
nite band whose orientation is given by the gradient at the central point.
Therefore, the resulting structure tensor may depend somehow on all the
pixels within the initial band. In general this dependency tends to vanish
with a sufficient number of iterations of the proposed scheme; however, this
tendency is also affected by the image content and the value of r.

In order to study the dependency of the tensors on the initial region we
select a highly textured image and create a second image by replacing the
peripheral part of the first image with another content (Figure 5.7). Let
Tu(x) and Tv(x) be tensors on the first and the second image respectively.
We then calculate the error between two corresponding tensors as e(x) =
‖Tu(x)−Tv(x)‖2F , where ‖ · ‖2F is the Frobenius norm. Figure 5.8 shows the

errors, color-coded by c(x) = 255 exp(− e(x)2

2σ2 ), where σ is in the order of
102.

Even for small values of r (50, 100, 150) the majority of points has zero er-
ror e(x) and thus does not depend on the initial iteration. However, many
covariant neighborhoods (especially close to strong edges) degenerate into
rather small sets of pixels or even into a single pixel (Figure 5.9). With
such small neighborhoods, the structure tensor estimation may converge to
an incorrect solution. Obviously in this case structure tensors do depend
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Figure 5.8: Errors between corresponding tensors for different values of r.
Darker color means bigger error. From left to right and top to bottom: r =
50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600.
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Figure 5.9: Histograms of the ellipse sizes for different values of r. Vertical axis
is in logarithmic scale. From left to right and top to bottom: r = 50, 100, 150, 200.

on the initial iteration, which explains mismatches in the central part of
the images for small r. Moreover, it explains occasional low errors on the
peripheral part of the images, where structure tensors close to strong edges
occasionally capture the same direction of these edges, but the correspond-
ing neighborhoods do not have enough information to distinguish between
two different images.

With the value of r large enough, dependency of structure tensors on the
initial iteration is negligible in the whole central region. Let us note that
structure tensors near the peripheral region are inevitably influenced by this
region in all the iterations and not only during the initial one. Therefore
they are irrelevant for this experiment. In Section 7.2, we additionally
study the proposed similarity measure on a boundary between two objects,
undergoing different transformations.
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5.5 Related Approaches to Affine Covariant

Regions

The proposed iterative method for the computation of affine covariant struc-
ture tensors allows us to estimate the a priori connection between two given
points and thus a local affinity. Other methods, suitable for the local affinity
estimation, can be found in the literature. Our approach to affine covariant
structure tensors and neighborhoods has much in common with the iterative
shape adaptation algorithm of Mikolajczyk and Schmid (2004) used in the
Harris-Affine feature detector. In this section we compare both approaches
in their ability to estimate an affine transformation. We use an implemen-
tation of the Harris-Affine feature detector of Vedaldi and Fulkerson (2008).

The method of Mikolajczyk and Schmid (2004) was originally proposed in
the feature extraction context for object recognition purposes. It starts
by building a scale-space for a given image and detecting stable keypoints
together with their characteristic scales. Oriented elliptical neighborhoods
are then calculated at these keypoints using an iterative procedure. First, a
so-called shape adaptation matrix is estimated in the vicinity of a keypoint,
and then the image is warped in accordance with this matrix. The amount
of information around a keypoint that is considered in the calculation of the
shape adaptation matrix is controlled by the integration scale σI . Both σI
and the position of the keypoint are updated in each iteration. The process
is repeated until a convergence criteria is met. In the feature detection
context, the integration scale σI is related to the characteristic scale of a
keypoint.

Like the proposed affine covariant structure tensor, the shape adaptation
matrix can be used to estimate an affine transformation that aligns the
vicinities of two given points. However, for arbitrary points which are not
keypoints, one needs to provide σI as a free parameter. In this case param-
eter σI resembles the radius parameter r in our approach. Also, positions of
the points should be fixed. Let us note that the method described in Miko-
lajczyk and Schmid (2004) is initialized on a circular window given by an
isotropic Gaussian which is not affine covariant. Whereas, our scheme be-
gins from an affine covariant initial band and guarantees that at any stage
of the algorithm the computed tensor is affine covariant.

In order to compare both methods we use an image sequence well known in
the feature detection community: the graffiti sequence, taken from the test
data in Mikolajczyk (2007). It contains six images showing different views
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of the same scene. Five ground truth global transformations from the first
image to all the others are known. We uniformly sample 2745 points in the
first image and use the ground truth transformations to obtain the sets of
corresponding points for the other images. We then estimate local affinities
A(x, y) for every pair of corresponding points x and y using both methods.
Knowing locations of the corresponding points we obtain estimated global
transformations Ā(x, y) from local ones. For that we write the transfor-
mations in the 2D projective space using homogeneous coordinates, and
obtain

Ā(x, y) :=

[
I y
0 1

] [
A(x, y) 0

0 1

] [
I −x
0 1

]

where x, y ∈ R
2. We measure the estimation error by the Frobenius norm of

the difference between the estimated and the ground truth transformations.
Let us note once again that in both methods the sizes of neighborhoods
are controlled by free parameters: r in our method and σI in the Harris-
Affine one. However, the values of r and σI could not be easily related.
Therefore, for each pair of images we test extensive ranges of r and σI
and select the ones giving the smallest median value of the error. With
this experiment we indirectly evaluate the degree of affine covariance of
the proposed covariant structure tensors and affine normalization proposed
in Mikolajczyk and Schmid (2004). Figure 5.10 shows statistics for both
methods over the five pairs of images. It can be seen that statistically our
method performs slightly better.

Let us note that other approaches to affine neighborhoods exist, for exam-
ple, Baumberg (2000); Tuytelaars and Van Gool (2004); Matas et al. (2004);
Morel and Yu (2009). However, using these methods it is impractical or
even impossible to extract affine covariant regions densely. In contrast, our
approach by design is capable of producing dense field of affine covariant
neighborhoods.
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Figure 5.10: Boxplot showing statistics of homography estimation error for 2745
uniformly sampled points. Homography is estimated for the first image and all the
others (labeled as “1-to-2”, “1-to-3” and so on). Estimation using shape adaptation
matrix of Harris-Affine feature detector (labeled as “HA”) is compared with our
approach using structure tensors (labeled as “ST”). As usual, boxes represent the
first, second and third quartiles, the length of the whiskers corresponds to 1.5
interquartile range (IQR) and red dots are outliers. Thumbnails of the images
being used are shown on the right.



Chapter 6

Numerical Implementation

In this chapter we describe a numerical implementation of the proposed
affine invariant patch similarity measures (4.16) and (4.17) that we use in
all experiments and applications throughout this work. Recall that these
similarity measures involve Riemannian metrics, and that the affine covari-
ant structure tensors, studied in Chapter 5, can be used as such metrics.
Both similarity measures can be written as

Da(t, x, y) =
∫

∆t

gt(h)

∥∥∥∥u(x+ T
− 1

2
u (x)R−1

u (x)h)− v(y + T
− 1

2
v (y)R−1

v (y)h)

∥∥∥∥
2

2

dh, (6.1)

where gt(h) is either a Gaussian of variance t, or an approximated geodesic
weighting function, Tu and Tv are the structure tensor fields, Ru and Rv are
the additional rotations. In this dissertation we always refer to u and v as
images, even though they might as well represent regular videos, sequences
of 3D images captured over time, etc. In general, we say that u : Ωu ⊂
R
N → R

M and v : Ωv ⊂ R
N → R

M are defined on R
N with values in

R
M . However, throughout this chapter we consider only two most practical

cases, namely N = 2, 3. In R
3, u and v might represent regular videos

or 3D images. The number of color channels M is usually assumed to be
1 or 3. Since the particular choice of M does not affect the reasoning in
this chapter, we do not specify it explicitly. Without loss of generality we
assume that u = v.

The similarity measure (6.1) assigns a distance to a pair of shape-adaptive
patches centered at two given points in the following way. The scheme de-
scribed in Section 5.1 allows to calculate at any given point x both the affine

55
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covariant structure tensor and the affine covariant region (shape-adaptive
patch) defined by it. In order to compare two shape-adaptive patches we
have to align (register) them first. A proper registration can be obtained
from the structure tensors; however, as commented in Section 5.2, we have
to specify additional rotations. We estimate these missing rotations by ex-
tracting dominant orientations of gradients within the patches. For the
purposes of comparison we normalize shape-adaptive patches to discs or
spheres of the same radius and interpolate these normalized versions to the
regular grid. In this way we obtain a convenient representation of shape-
and size-varying patches by arrays of interpolated color values whose sizes
are all equal and known in advance. Notice that there might be several
dominant orientations within a patch; therefore, for a single point x we
might have multiple normalized versions of the patch. We compare every
version associated with the point x with every version associated with the
point y and finally assign to these points the smallest distance among all
the combinations.

In the following section we present a more formal overview of the numerical
implementation and then describe specific parts of it in more detail.

6.1 Outline of Patch Similarity Computation

This section presents an overview of the numerical implementation of the
proposed similarity measures. The following high-level outline of the algo-
rithm is structured in the form of a data flow, where every step is described
by a set of inputs (“in”), a set of internal parameters (“prm”) and a set of
outputs (“out”). Figure 6.1 shows a data flow diagram that graphically rep-
resents the outline. Locations x and y are the inputs of the algorithm itself.
They can come from the same image u or from two different images u and
v; however, for simplicity of notation we assume here that u = v. Distance
d, together with the corresponding configuration of additional rotations, are
the outputs of the algorithm.

Let us recall some useful notation from the previous chapters. We denote
by u a given image and by ∇u its gradient. We denote by Tu(x) the affine
covariant structure tensor at point x and by BTu(x) its corresponding affine
covariant neighborhood. Parameter r controls the size of affine covariant
neighborhoods in the construction scheme described in Section 5.1. The
rest of the notation used in the outline is explained upon appearance.
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Outline

0. Build regular grid for interpolation

prm: g, r
out: G := {wi}
Parameter g controls the resolution of the regular grid, set G con-
tains coordinates of the grid nodes. This is a preprocessing step that
normally should be done only once and before any patch distance
computations. See Section 6.4 for details.

1. Calculate structure tensor and shape-adaptive patch

in: ∇u, x
prm: r, nST

out: Tu(x), BTu(x)

Parameter nST controls the number of iterations in the construction
scheme for the affine covariant structure tensors and neighborhoods
(Section 5.1). The algorithm for collecting points belonging to the
neighborhood BTu(x) is explained in Section 6.2.

2. Estimate dominant orientations

in: ∇u, BTu(x), Tu(x), x
prm: nbins, σDO, δ, nDO

out: {Θk}
Parameter nbins controls the number of bins in the gradient orien-
tations histogram, parameter σDO controls the intra-patch weighting
and parameter δ is the cut-off threshold for local maxima as in Lowe
(2004). Parameter nDO limits the maximum number of orientations
to output and {Θk} is the set of estimated dominant orientations. See
Section 6.3 for details.

3. Normalize shape-adaptive patch (for each Θk)

in: u, Tu(x), BTu(x), x, Θk

out: B̄k(x) := {(zj , z̄j , cj)}
Set B̄k(x) contains points of the neighborhood BTu(x), transformed by

R(Θk)Tu(x)
1
2 , where R(Θk) represents an additional rotation. Every

j-th element of the set B̄k(x) includes original coordinate zj , trans-
formed coordinate z̄j and color value cj = u(zj). See Section 6.4 for
details.
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4. Interpolate normalized patch to the grid G (for each Θk)

in: B̄k(x), G, σG
out: {c̄i}k
Here σG is the interpolation parameter. Output set contains interpo-
lated color values. For every node wi of the regular grid G we obtain
the interpolated color value c̄i. See Section 6.4 for details.

Note: after this step all interpolated candidate normalizations, cor-
responding to the same point x, are combined in a set P(x) :=
{({c̄i}k,Θk)}.

5. Calculate patch distance between points x and y

in: P(x), P(y)
out: d,Θx,Θy

Every candidate normalization from P(x) is compared with every can-
didate normalization from P(y), and a configuration that gives the
smallest distance is returned.

P(x)x

y

1

1

2

2

3

3

4

4

3

3

4

4

P(y)

5 d,Θx,Θy

Θ1

ΘN

Θ1

ΘM

Figure 6.1: Data flow diagram for the patch similarity (distance) calculation
between given points x and y. Numbers in the nodes correspond to the steps of
the outline.

6.2 Affine Covariant Regions

The numerical scheme for the construction of affine covariant structure ten-
sors and neighborhoods is described in Section 5.1. In this section we explain
an efficient way to determine a set of points that belong to a given affine co-
variant region. A näıve approach would be to apply the flood fill algorithm
that is used, for example, in image editing software to fill connected areas of
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the same color with a new color. Given a seed point the flood fill recursively
moves from point to point and fills a region from the inside out. Luckily
in our case the shape of a region is completely defined by its corresponding
structure tensor. This leads to a much simpler algorithm without recursion.
At first we consider the R

2 case, when affine covariant regions are ellipses,
and then we extend the algorithm to R

3 for processing ellipsoids.

Throughout this section we use different notation for points in images to
simplify explicit coordinates indication. Let p̄ be the central point of an
affine covariant region BTu(p̄) and p be just any point on u. Point p belongs
to an affine covariant region BTu(p̄) if and only if

〈Tu(p̄)(p− p̄), (p− p̄)〉 ≤ r2

Then the boundary of an affine covariant region BTu(p̄) is given by

∂BTu(p̄) = 〈Tu(p̄)(p− p̄), (p− p̄)〉 = r2. (6.2)

Affine Covariant Regions in R
2

Let us indicate components of p̄ ∈ R
2 and p ∈ R

2 as p̄ = [x̄, ȳ]t and p =
[x, y]t. From the expression (6.2) we can compute two points on ∂BTu(p̄)
with the biggest and the smallest y coordinates. Let

Tu(p̄) =

[
T00 T01
T10 T11

]
,

where T01 = T10. By taking partial derivative of (6.2) with respect to x we
obtain

T00(x− x̄) + T01(y − ȳ) + T01(x− x̄)
∂y

∂x
+ T11(y − ȳ)

∂y

∂x
= 0.

Then by setting ∂y
∂x = 0 we have

x− x̄ = −T01
T00

(y − ȳ).

By substituting the above expression into (6.2) we obtain the y coordinates
of the two extreme points (shown in Figure 6.2a)

y = ȳ ∓ r
(
T11 −

T 2
01

T00

)− 1
2

. (6.3)
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Figure 6.2: Schematic illustration of traversing of shape-adaptive patches.
(a) elliptical patch in R

2. (b) ellipsoidal patch in R
3.

Let us denote them y− and y+. To collect the points p that belong to
BTu(p̄) we traverse rows lying between the extreme points. For every row y
(where y− ≤ y ≤ y+) we compute the x coordinates of two its intersections
with the elliptical boundary (6.2) as

x(y) = x̄− a(y − ȳ)±
√
b(y − ȳ)2 + c, (6.4)

where the constants are given by

a =
T01
T00

, b = a2 − T11
T00

and c =
r2

T00
.

Then we collect all points p belonging to that row and located within the
boundary of BTu(p̄). Figure 6.2a schematically illustrates the traversing.

At some points near high contrast edges, for small values of r, the numerical
scheme may yield degenerate structure tensors which are either not positive
definite, or close to it and result in extremely elongated and narrow regions.
In both cases we output a region containing only the central point p̄ instead.
To check that a matrix is positive definite we check that det(A) > 0 and
A00 > 0. For the structure tensor, T00 is always greater then or equal to
0; thus it is sufficient to check only its determinant. The elongation of an
elliptical region can be found using the ratio between eigenvalues of the
corresponding structure tensor. As discussed in Lowe (2004) (Section 4.1),
since only the ratio is needed, there is no need to compute the eigenvalues
themselves. Let λ1 and λ2 be eigenvalues of a structure tensor Tu(p). Then
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its trace and determinant are

Tr(Tu(p)) = λ1 + λ2,

Det(Tu(p)) = λ1λ2.

Let α = λ1/λ2 be the eigenvalue ratio. Then

Tr(Tu(p))
2

Det(Tu(p))
=

(λ1 + λ2)
2

λ1λ2
=

(αλ2 + λ2)
2

αλ22
=

(α+ 1)2

α
.

Notice that the previous expression, f(α) := (α+1)2

α , is an increasing func-
tion of α. Therefore, when

Tr(Tu(p))
2

Det(Tu(p))
>

(ᾱ+ 1)2

ᾱ

for a given eigenvalue ratio threshold ᾱ, we recognize the structure tensor
Tu(p) as degenerate as well. Throughout this work we set ᾱ = 100.

The whole procedure is summarized in Algorithm 1.

Affine Covariant Regions in R
3

Let us indicate components of p̄ ∈ R
3 and p ∈ R

3 as p̄ = [x̄, ȳ, z̄]t and
p = [x, y, z]t. When the video case is considered, we can think of z as the
time coordinate.

In R
3 every affine covariant region BTu(p̄) is an ellipsoid. To efficiently col-

lect points, that belong to BTu(p̄), we cut it into R
2 slices in some direction

and then assembly it slice by slice. The slices have elliptical shape defined
by the corresponding structure tensor Tu(p̄); therefore we can apply almost
the same procedure as before to process them. Let

Tu(p̄) =



T00 T01 T02
T01 T11 T12
T02 T12 T22


 .

In the video case it would be natural to cut BTu(p̄) by video frames; thus, we
choose to do so in the direction of z. Notice, however, that the direction of
cutting only affects indexing. We can determine the first and the last slices
of u, containing points of BTu(p̄), by taking partial derivatives of (6.2) with
respect to x and y, and setting them to zero:

{
T00(x− x̄) + T01(y − ȳ) + T02(z − z̄) = 0

T01(x− x̄) + T11(y − ȳ) + T12(z − z̄) = 0
.
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Algorithm 1: Assembly of affine covariant regions in R
2.

Input: Tu(p̄), Ωu, p̄ = [x̄, ȳ]t // Ωu ∈ R
2 is domain of u.

Parameters: r, ᾱ
Output: BTu(p̄)

T := Tu(p̄) // alias

BTu(p̄)← {}
// Ensure tensor in not degenerate

if det(T ) ≤ 0 or trace(T )2

det(T ) > (ᾱ+1)2

ᾱ then

BTu(p̄)← BTu(p̄) ∪ p̄
Stop

// Compute offsets of extreme points from the center

oy ← r
(
T11 − T 2

01
T00

)− 1
2

// Eq. (6.3)

// Compute auxiliary constants

a← T01
T00

b← a2 − T11
T00

c← r2

T00

// Traverse row by row

for ȳ − ⌊oy⌋ ≤ y ≤ ȳ + ⌊oy⌋ do
Skip y, if it is outside of Ωu // y ∈ R

x− ← x̄− a(y − ȳ)−
√
b(y − ȳ)2 + c // left intersection

x+ ← x̄− a(y − ȳ) +
√
b(y − ȳ)2 + c // right intersection

for ⌈x−⌉ ≤ x ≤ ⌊x+⌋ do
BTu(p̄)← BTu(p̄) ∪ p // p = [x, y]t

From the above system and (6.2) we obtain that

z = z̄ ± r
(
T00b

2 + T11a
2 + T22 + 2T01ab+ 2T02b+ 2T12a

)− 1
2 ,

where the constants are given by

a =
T01T02 − T00T12
T00T11 − T 2

01

and b = − 1

T00
(T01a+ T02).

Let us denote these coordinates as z− and z+. For every slice z (where
z− ≤ z ≤ z+) within the ellipsoid we apply a procedure similar to the one
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explained in Algorithm 1 to collect all points belonging to that slice. The
main difference is that instead of the equation (6.3) for the y coordinates of
extreme points we now have

y(z) = ȳ + a(z − z̄)±
√
b(z − z̄)2 − c, (6.5)

where the constants are given by

a =
T01T02 − T00T12
T00T11 − T 2

01

, b = a2 − T00T22 − T 2
02

T00T11 − T 2
01

and c =
T00r

2

T00T11 − T 2
01

.

Instead of the equation (6.4) for the intersections of rows of slices with the
boundary of BTu(p̄) we have slightly more complicated

x(y, z) = x̄− a(y − ȳ)− b(z − z̄)± (6.6)

±
√
c(y − ȳ)2 + d(z − z̄)2 + e(y − ȳ)(z − z̄) + f,

where the constants are given by

a =
T01
T00

, b =
T02
T00

, c = a2 − T11
T00

, d = b2 − T22
T00

,

e = ab− T12
T00

, f =
r2

T00
.

Figure 6.2b schematically illustrates the traversing in the R
3 case.

6.3 Dominant Orientations

In Section 5.2 it was shown that a local affine transformation can be es-
timated from two structure tensors, but only up to a rotation. To com-
pensate for the missing rotation we estimate dominant orientations of the
normalized patches using histograms of gradient orientations as in the SIFT
descriptors of Lowe (2004). Notice that there might be several dominant
orientations and thus several equivalent options for the additional rotation.
The procedure for estimating dominant orientations is described below and
summarized in Algorithm 2 for the case of images in R

2. Thereafter an
extension for the R

3 case is also proposed.
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Dominant Orientations in R
2

Recall that in order to compute affine covariant structure tensors we first
compute the gradient field ∇u. The same gradient vectors, when trans-
formed appropriately, can be used to estimate the dominant orientation
within normalized patches. Let T̂ (x) = Tu(x)

1
2 be the transformation that

normalizes an elliptical patch at x to a disc of radius r. Of course, this nor-
malization does not yet take any additional rotation into account. It can
be shown that the suitable transformation to apply to the gradient vectors
is (T̂ (x)−1)t.

For every point y ∈ BTu(x) we transform the corresponding gradient vec-
tor ∇u(y), compute its direction and magnitude and use them to fill-in the
circular histogram of orientations. Note that the magnitude value is addi-
tionally weighted by the anisotropic Gaussian intra-patch weight, depending
on the distance to the center of the patch, given by

ωx(y) = exp

(
−〈Tu(x)(y − x), (y − x)〉

2σ2DO

)
. (6.7)

The resulting value is then distributed linearly between the nearest bins of
the histogram in proportion to the distance to these bins. In that histogram
we find the global maximum and all other local maxima which are big
enough. We fit the quadratic function to the histogram values around every
such maximum and take its argmax as orientation Θ in order to improve
the accuracy of estimation. Up to nDO highest peaks in the histogram are
considered as dominant orientations and gathered into the output set {Θk}.
According to our observations, most commonly the number of dominant
orientations does not exceed two.

Given a dominant orientation Θ, the additional rotation Ru(x) can be com-
puted as

Ru(x) := R(Θ) =

[
cosΘ sinΘ
−sinΘ cosΘ

]
. (6.8)

In our experiments we set the number of bins in the histogram nbins = 72,
the cut-off threshold δ = 45%, the weighting parameter σDO = 0.5 and the
limit on the number of orientations nDO = 3.

Dominant Orientations in R
3

In contrast to the R
2 case, where a single angle fully defines an orientation,

in R
3 we need three angles: two angles to define a direction and a tilt
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Algorithm 2: Estimation of dominant orientations in R
2.

Input: ∇u, BTu(x), Tu(x), x ∈ R
2

Parameters: nbins, σDO, δ, nDO

Output: {Θk}
σ := σDO // alias

A← ((Tu(x)
1
2 )−1)t // transformation for gradient vectors

H ← array of (nbins + 2) elements, all set to 0 // histogram

// Fill-in histogram H
foreach y ∈ BTu(x) do
∇̃u(y)← A∇u(y)
α← exp

(
− 〈Tu(x)(y−x),(y−x)〉

2σ2

)∥∥∥∇̃u(y)
∥∥∥

γ ← angle between ∇̃u(y) and X axis in range [0, 2π]

p← γ nbins
2π // real-valued position in histogram

i← ⌊p− 0.5⌋+ 1 // index of the left closest bin

d← p− i+ 0.5 // distance to the center of i-th bin

Hi ← Hi + (1− d) α
Hi+1 ← Hi+1 + d α

// Merge boundary values, because H should be circular

H0 ← H0 +H−2 // H−2 is penultimate element

H−1 ← H−1 +H1 // H−1 is last element

H−2 ← H0

H1 ← H−1

Smooth H by convolving it six times with
[
1
3 ,

1
3 ,

1
3

]
kernel

// Collect peaks that are big enough

C ← {} // set of candidate orientations

for 1 ≤ i ≤ nbins do
if Hi ≥ δ max(H) and hi > Hi−1 and Hi > Hi+1 then

C ← C ∪ (Hi, i) // append tuple (Hi, i) to C

Sort C in descending order by histogram values

// Refine and collect dominant orientations

Θ← {}
for 0 ≤ j < min(nDO, size(C)) do

i← second element from tuple Cj

Θ← Θ ∪ 2π
nbins

(
i+ 0.5 + 0.5 Hi−1−Hi+1

Hi−1−2Hi+Hi+1

)
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angle around that direction to completely define an orientation. By analogy
with the geographic coordinate system, we can call the first two angles
longitude and latitude. Dominant orientations can still be computed using
a slightly modified approach of SIFT based on the histograms of gradient
orientations. As before, given an ellipsoidal affine covariant region BTu(x),

we first transform the gradient vectors within it by (Tu(x)
− 1

2 )t and obtain
a set of vectors within a sphere.

For every transformed gradient vector we compute its direction (first two
angles) and magnitude. Figure 6.3a illustrates the two angles defining direc-
tion. In that setting angle θ ∈ [0, 2π] denotes longitude and angle ϕ ∈ [0, π]
denotes colatitude, which is the complementary angle of latitude. We fill-in
the 2D histogram of directions with the magnitudes of gradients according
to their θ and ϕ. Notice that the histogram should be circular in the longi-
tude dimension. As in the R2 case, the magnitudes are weighted depending
on the distance to the center of the patch using (6.7). Each contribution
should additionally be normalized by the area (or solid angle) of its cor-
responding bin, because bins near the equator of a sphere are larger than
at its poles and this introduces an unwanted bias. The solid angle can be
computed as

ω(θ, ϕ) = ∆θ(cos(ϕ)− cos(ϕ+∆ϕ)),

where ∆θ = 2π/nbins and ∆ϕ = 2π/nbins stands for the span of the bins.
The complete weight for every contribution at y ∈ BTu(x) is then given by

ω(y) :=
ωx(y)

ω(θy, ϕy)
.

After filling-in and smoothing the 2D histogram we locate at most nDO peaks
of dominant directions. To refine values of θ and ϕ we fit the quadratic
function to the histogram values around the peaks separately for each of
two angles.

For every dominant direction (θi, ϕi) we now need to compute a tilt angle.
Let us call a plane orthogonal to the direction (θi, ϕi) a tilt plane. The
idea is to apply the similar procedure as in the R

2 case to the orthogonal
projections of the transformed gradient vectors onto a tilt plane. For that
we first compute a rotation that aligns (θi, ϕi) direction with the Z axis

R(θ, ϕ) =




cosθ −sinθ 0
sinθ cosϕ cosθ cosϕ −sinϕ
sinθ sinϕ cosθ sinϕ cosϕ


 .
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Figure 6.3: Orientations in R
3. (a) longitude θ and colatitude ϕ of some vector

v. (b) rotation of the coordinate system around Z axis by θ. (c) rotation of the
coordinate system around X axis by ϕ. (d) tilt γ of some other vector v̄ in the
rotated coordinate system.

This rotation can be decomposed into two steps. At the first step the orig-
inal coordinate system XY Z is rotated around Z axis by θ which gives the
coordinate system X ′Y ′Z ′ (Figure 6.3b). At the second step the coordinate
system X ′Y ′Z ′ is rotated around X ′ axis by ϕ which gives the coordinate
system X ′′Y ′′Z ′′ (Figure 6.3c). In this new coordinate system X ′′Y ′′Z ′′ the
plane X ′′Y ′′ corresponds to a tilt plane. Figure 6.3d illustrates the tilt angle
γ ∈ [0, 2π]. To compute dominant tilts we rotate every transformed gradient
vector by R(θi, ϕi), compute its tilt angle γ, compute the magnitude of its
projection onto the coordinate plane X ′′Y ′′ and proceed with the histogram
of tilt angles as in the R

2 case. As previously, up to nDO tilt angles can be
obtained for every pair (θi, ϕi); thus, the explained procedure might return
at most (nDO)

2 dominant orientations Θ = (θ, ϕ, γ) in the R
3 case.

Given all three angles θ, ϕ and γ that in R
3 constitute a single dominant

orientation Θ, the additional rotation Ru(x) can finally be computed as

Ru(x) := R(Θ) = R(θ, ϕ, γ) = (6.9)


cosθ cosγ − sinθ cosϕ sinγ −sinθ cosγ − cosθ cosϕ sinγ sinϕ sinγ
cosθ sinγ + sinθ cosϕ cosγ −sinθ sinγ + cosθ cosϕ cosγ −sinϕ cosγ

sinθ sinϕ cosθ sinϕ cosϕ


 .

6.4 Normalization and Interpolation

In this section we delve into the details of registration of elliptical patches for
comparison. In our specific setting there are two approaches to registration:
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Figure 6.4: Registration of two shape-adaptive patches for comparison by nor-
malization and additional rotation.

either one of the elliptical patches is transformed using the a priori connec-
tion (5.16), or both elliptical patches are normalized to circular patches as
shown in Figure 6.4. The first approach will be exploited later on for image
synthesis in application to image inpainting and denoising. Meanwhile the
second option is more suitable for patch comparison, because it allows inter-
mediate data caching. We first describe normalization and interpolation for
2D images and in the end of the section briefly comment on the differences
in the R

3 case.

In order to normalize an elliptical patch we need a proper transformation.
As was shown previously, an initial transformation is obtained directly from
a corresponding structure tensor. This preliminary normalization is used
to estimate dominant orientations within the normalized patch. Several
dominant orientation might be estimated for every patch; therefore, there
can be several options for the normalizing transformations. Let us denote
them here by Ak(x) = R(Θk)Tu(x)

1
2 , where R(Θk) is the additional rotation

given by (6.8). Obviously, all the options are equivalent and we should
consider each of them.

Since in practice digital images are discrete, after normalization any patch
turns into a set of scattered points, example of which is shown in blue
in Figure 6.5. In order to compare one normalized patch with another,
we interpolate these sets of scattered points to a regular grid G (shown in
red in Figure 6.5). We consider the resolution of the regular grid to be
constant throughout a single run of any experiment; thus, it can be built in
the preprocessing phase. In terms of data structure the grid is represented
by a set of real-valued coordinates of its nodes. Any normalized patch is
contained within a circle of radius r; therefore, the regular grid is built in
such a way that its nodes evenly cover this circle with a given resolution. It is
convenient to specify the resolution of the grid by the number of nodes that
should fit along the diameter of the circle. We denote this free parameter
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Figure 6.5: Elliptical patch normalization. On the left an elliptical patch is shown
in blue. On the right a set of scattered points of that patch, being normalized by
R(Θk)Tu(x)

1

2 to a disc, is shown in blue over a regular grid which is shown in red.
In this case, the grid resolution (number of grid nodes along the diameter) g = 11.

of the method by g. Algorithm 3 illustrates the construction of the regular
grid.

In principle, after normalization we could interpolate one set of scattered
points directly to another; however, the usage of the intermediate regular
grid allows us to precompute all normalized patches and store them in
memory. If we store all possible normalized versions for every elliptical
patch, together with their corresponding candidate transformations Ak(x),
the calculation of the patch distance between two points boils down to
several sums of squared differences as in (1.1).

For interpolation we use the Nadaraya-Watson estimator Nadaraya (1964);
Watson (1964), with Gaussian kernel which standard deviation σG depends
on the density of the scattered points. More specifically, it depends on the
radius of a normalized patch (which is determined by the parameter r of
the method) and on the number of points within a patch being normalized:

σG =
r√
|Bu(x)|

. (6.10)

Algorithms 4 and 5 describe the normalization and interpolation of elliptical
patches in a more formal way.

In the R
3 case, ellipsoidal patches are normalized to spheres of radius r;

therefore, the regular grid is three-dimensional with its resolution equal in
all dimensions. The normalization procedure is almost the same, with the
difference that the additional rotations R(Θk) are now computed by (6.9).
The interpolation is done using the same estimator with 3D Gaussian kernel
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which standard deviation is

σG =
r

3
√
|Bu(x)|

. (6.11)

Algorithm 3: Construction of a regular grid in R
2.

Parameters: g, r
Output: G
s← 2r

g // grid step

G ← {} // set of grid nodes

for 0 ≤ i < g do
for 0 ≤ j < g do

ω ← [j s+ 0.5 s− r, i s+ 0.5 s− r]t // ω ∈ R
2

if ‖ω‖22 ≤ r2 then

G ← G ∪ ω

Algorithm 4: Normalization of elliptical patches.

Input: u, Tu(x), BTu(x), x ∈ R
2, Θk

Output: B̄k(x)

R←
[
cosΘk sinΘk

−sinΘk cosΘk

]
// additional rotation

A← R Tu(x)
1
2

B̄k(x)← {}
foreach y ∈ BTu(x) do

ȳ ← A (y − x)
B̄k(x)← B̄k(x) ∪ (y, ȳ, u(y))
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Algorithm 5: Interpolation of normalized patches to a regular grid.

Input: B̄k(x), G, σG
Output: C̄ := {c̄i}k
σ := σG // alias

C̄ ← {}
foreach ω ∈ G do

c̄← 0 // interpolated color value

W ← 0 // total weight

foreach (z, z̄, c) ∈ B̄k(x) do
d← ‖ω − z̄‖2
w ← exp(− d

2σ2 ) // current weight

c̄← c̄+ c w
W ←W + w

C̄ ← C̄ ∪ c̄W−1





Chapter 7

Experimental Results for the

Similarity Measures

In this chapter we illustrate the properties of the similarity measures (4.16)
and (4.17), equipped with the affine covariant structure tensors. The first
set of experiments demonstrates the multiscale property and the second set
is devoted to the affine invariance property.

Throughout this work we refer to (4.16) and (4.17) as similarity measures;
however, what we actually compute by Da(t, x, y) (or, equivalently, by
C(t, x, y)) is a distance (or dissimilarity) between two patches at points
x and y, and scale t. We use the terms similarity and distance interchange-
ably, because in the context of image comparison they represent essentially
the same relation between two patches in the whole space of patches.

There are two main parameters involved in the proposed affine invariant
patch similarity measures that control the amount of support we allow in
the comparison of two patches: t and r. In several experiment in this work
both t and r are variable and, therefore, it is useful to link them together
by

t =

(
r

t̂

)2

.

Small values of t̂ correspond to coarse scales (larger window), while big
values correspond to fine scales (smaller window). We will call both t and
t̂ scale parameters or simply “scales”. Notice, however, that t can be seen
as an absolute scale, while t̂ as a relative scale with respect to r. Recall
that in (4.17) gt is a window that we assume to be Gaussian of variance
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Figure 7.1: Stereo pair used in the first experiment. Two red crosses show the
selected points of interest.

t. Then informally t̂ can be seen as the number of Gaussian sigmas that
should fit into a patch, which in the R2 case has elliptical shape and can be
normalized to a circle of radius r. By introducing t̂ we can specify one set
of scales for all values of r.

7.1 Multiscale Property

In this section we concentrate on the multiscale property of the proposed
patch similarity measures. In many cases the scale of patch comparison can
be selected once and for all; however, it might also be helpful to compare
patches at several scales simultaneously. The following experiments are
aimed to demonstrate the behavior of the similarity measures at different
scales and motivate the usage of multiple scales. For illustrative purposes
we select the problem of disparity map estimation. Let us remark that even
though all the experiments in this section were made in the context of dis-
parity map estimation, the complete application of the proposed similarity
measure to depth estimation from stereo images is out of the scope of the
current work.

First Experiment

In the first experiment we compute similarity values between a given point
in the left image and all the points in the right image of the stereo pair
shown in Figure 7.1. One point was selected in the interior of an object in
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Figure 7.2: Similarity maps for the point inside the object calculated using the
similarity measure (4.17) with Gaussian weights. From left to right and top to
bottom: t̂ is set to 0.01, 0.5, 1, 3, 6 and 9.

the left image and another point on a boundary of an object. In the figure
these points are marked with red crosses.

In this experiment the radius was set to r = 150 and the scale parameter
was selected to be t̂ ∈ {0.01, 0.5, 1, 3, 6, 9}. A small value of t̂ (e.g. t̂ = 0.01)
corresponds to a coarse scale (large window), while a big value (e.g. t̂ = 9)
corresponds to a fine scale (small window).

For visualization purposes we color-code the patch distances by

c(x, y, t) = 255 exp

(
−(Da(t, x, y)−Damin)2

2σ2

)
, (7.1)

where σ =
Damax−Damin

γ , Damax and Damin are the maximum and minimum
patch distance values, respectively, and γ > 0 is a visualization parameter.
Notice that the highest value of c(x, y, t) corresponds to the most similar
patches. For all experiments in this section we set γ = 50, which stretches
values close to 1. The values of Damax and Damin were computed from the
whole set of distances across all the scales, which means that equal colors
on two different similarity maps correspond to the same similarity values.
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Figure 7.3: Similarity maps for the point on the boundary calculated using the
similarity measure (4.17) with Gaussian weights. From left to right and top to
bottom: t̂ is set to 0.01, 0.5, 1, 3, 6 and 9.

Figures 7.2 and 7.3 show similarity maps computed using the similarity
measure (4.17). Figure 7.2 shows maps for the point selected in the interior
of the object, while Figure 7.3 shows maps for the point selected on the
boundary. Similarly, Figures 7.4 and 7.5 show similarity maps for the same
setting, but computed with approximated geodesic weights (4.16) as in the
bilateral filter (with κspatial = 1.0 and κcolor = 3.0). Let us note that in
the case of disparity map estimation from stereo images it is common to
restrict the search for the most similar point to the epipolar lines or, when
the images are rectified, to the corresponding scan lines. The scan lines in
which we would be interested while estimating disparities are marked with
small red strokes in the figures.

Discussion

The first point was selected inside an object on a region with a smooth
texture, far away from the boundary of that object. In this case, one would
expect that the better matching can be achieved with a larger window. It
is confirmed by the experiments (Figures 7.2 and 7.4), showing that small
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Figure 7.4: Similarity maps for the point inside the object calculated using the
similarity measure (4.16) with geodesic weights. From left to right and top to
bottom: t̂ is set to 0.01, 0.5, 1, 3, 6 and 9.

values of t̂ give more distinctive matching and better localization, whereas
big values (for example, t̂ = 9) produce equally high similarity values for
many adjacent points.

The point on a boundary of the object was selected in such a way that
the background of that object undergoes a severe change (Figures 7.3 and
7.5). This determines very low similarities for small values of t̂ when the
influence of the background is high due to the large window. The difference
is especially noticeable with the geodesic weights which produce sharp edges
in the similarity maps.

The underlying premise of geodesic weights is that colors or intensities can
be used to distinguish between different objects. That is, the pixels in
the neighborhood of x with a color similar to u(x) have more influence on
the similarity calculation than pixels with different colors, which probably
belong to another object.

Note that in the approximated geodesic distance in (4.16) the influence of
the image colors is controlled by κcolor. The geodesic weights on a region
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Figure 7.5: Similarity maps for the point on the boundary calculated using the
similarity measure (4.16) with geodesic weights. From left to right and top to
bottom: t̂ is set to 0.01, 0.5, 1, 3, 6 and 9.

with similar color are virtually identical to the Gaussian weights. However,
if the window contains two objects with different colors, then (for a rea-
sonable choice of κcolor) only the pixels with a color similar to the center
of the window have a significant contribution in the similarity calculation.
Finally, by taking a very large value for κcolor one would recover the Gaus-
sian weights (4.17) regardless of the image colors. The choice of κcolor is
delicate as it should be small to distinguish objects by their intensity, but
large enough to capture the variations of intensity within an object. In the
context of a denoising application the value of this parameter is usually
chosen to be proportional to the noise present in the image (Tomasi and
Manduchi (1998)).

In stereo-vision the geodesic weights are particularly important, because
matching using fixed weights produces the so-called foreground fattening
effect. This phenomenon occurs when a matching window contains parts
of objects with different depths. In this setting, background pixels near
an occluding edge may get the depth of the occluding edge (which is in
the foreground), hence in the estimated depth map the foreground object
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Figure 7.6: Stereo pair used for disparity maps calculation.

appears fattened.

The geodesic weights correspond to a well-established stereo-vision tech-
nique of Yoon and Kweon (2006) that allows to estimate sharper depth
maps near depth discontinuities using weights similar to the bilateral filter
of Tomasi and Manduchi (1998).

It is worth mentioning, that for the small values of t̂, points close to the
tip of the cone (Figures 7.3 and 7.5) have much higher similarity values,
than points on the scan line. This happens because in these locations back-
ground has more similar appearance to the one at the reference point. In
applications other than stereo this might be a desirable best match.

Second Experiment

In order to show the effect of changing the scale on the whole image, we
calculate disparity maps for the stereo pair shown in the Figure 7.6. For
every point in the left image we compute the disparity by exhaustive search
for the best match in the range of possible offsets [−55,−5] along the scan
line in the second image. For this experiment the r parameter is fixed as
before to r = 150 and the scale parameter varies in t̂ ∈ {0.01, 1, 3, 6, 9}. For
approximated geodesic weights (equation (4.16)), the coefficients were set
to κspatial = 1.0 and κcolor = 3.0.

Figure 7.7 shows the ground truth disparity map and the disparity maps
computed at different scales using the similarity measure (4.17). Figure
7.8 shows the occlusion mask and the errors with respect to the ground
truth excluding the occlusion mask. Similarly, Figures 7.9 and 7.10 show
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Figure 7.7: Disparity maps calculated using the similarity measure (4.17) with
Gaussian weights. Brighter colors correspond to bigger offsets. From left to right
and top to bottom: ground truth, disparity maps for t̂ set to 0.01, 1, 3, 6, 9.
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Figure 7.8: Errors in disparities with respect to the ground truth excluding the
occlusion mask. Disparities were calculated using the similarity measure (4.17)
with Gaussian weights. Darker colors correspond to bigger errors. From left to
right and top to bottom: occlusion mask, error maps for t̂ set to 0.01, 1, 3, 6, 9.
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Figure 7.9: Disparity maps calculated using the similarity measure (4.16) with
geodesic weights. Brighter colors correspond to bigger offsets. From left to right
and top to bottom: ground truth, disparity maps for t̂ set to 0.01, 1, 3, 6, 9.
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Figure 7.10: Errors in disparities with respect to the ground truth excluding the
occlusion mask. Disparities were calculated using the similarity measure (4.16)
with geodesic weights. Darker colors correspond to bigger errors. From left to
right and top to bottom: occlusion mask, error maps for t̂ set to 0.01, 1, 3, 6, 9.
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Figure 7.11: Closed up errors with respect to the ground truth excluding the
occlusion mask. First row: calculated using (4.17) for t̂ = 0.01, t̂ = 9. Second row:
calculated using (4.16) for t̂ = 0.01, t̂ = 9.

disparity maps and errors computed using the similarity measure (4.16)
with approximated geodesic weights.

Discussion

As it can be seen, calculating similarity values on a coarse scale results in
smooth disparity maps which closely match the ground truth within the
objects but are over-smoothed at the boundaries. In contrast, fine scale
similarities emphasize sharp boundaries of objects, but produce a lot of
mismatches inside flat regions.

Figure 7.11 shows the closed up fragments of error maps for the limit cases
(t̂ = 0.01 and t̂ = 9). Some of the interesting regions are highlighted in red.
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This illustrates the point that in general, if a foreground object is moving
over its background, the similarity measure performs differently at different
scales within the object and close to its boundary.

In conclusion, in the context of stereo-imaging and for some other appli-
cations it is desirable to look for the closest patch across multiple scales.
For that, patches can be compared at several scales simultaneously and
then multiple responses can be “merged” in one way or another. The exact
approach to the multiscale patch comparison may vary depending on the
application. In the ones described in Part II we select a single scale for
patch comparison beforehand. The issue of combining responses from dif-
ferent scales is out of the scope of the current work and should be studied
in detail in future.

7.2 Affine Invariance Property

In this section we focus on the affine invariance property of the proposed
patch similarity measures (4.16) and (4.17).

Similarity Measures under Different Transformations

At first we evaluate performance of the proposed affine invariant similarity
measures on pairs of images, which undergo different kinds of transforma-
tions. For this purpose we calculate patch distance values Da(x, y, t) be-
tween corresponding points in two images. In each selected pair of images,
differing by an affine or planar projective transform, the ground truth corre-
spondences are either given (Figure 7.12), or easy to estimate (Figures 7.14
and 7.16). In the following experiments we demonstrate results for a rota-
tion, an affine transformation and finally for a perspective transformation.
In each case we compare the proposed affine invariant similarity measure
(4.17) with the well-known Euclidean distance given by (1.1). Let us remark
that (1.1) can be seen as a particular case of (4.17), where Tu(x) = I and
Tv(y) = I. This similarity measure is modeled by a usual patch distance
between square patches of a given size. The results for the similarity mea-
sure (4.16) with geodesic weights are very alike; therefore, we do not show
them.

For both patch similarity measures being compared we test several sizes of
patches. For (1.1) we directly set the size of square patches in pixels in
the range of [5, 23]. For the proposed similarity measure (4.17) we set the r
parameter in the range of [50, 300]. In the described setting there is only one
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Figure 7.12: Original image and rotation of the original image by an angle of 37
degrees superimposed on the original.

object shown in a pair of images under different transformations; moreover,
the ground truth correspondences are provided. Therefore, for the following
experiments we fix the scale parameter t̂ = 0.01, which correspond to almost
uniform weights within the shape-adaptive patches.

As before, in order to visualize similarity maps, we color-code patch dis-
tances Da(x, y, t) by (7.1). Recall that γ > 0 is a visualization parameter
that controls stretching of values close to 1. Brighter color means higher
similarity value. For each pair of images, distances were normalized all to-
gether using the same Damin and Damax, which means that equal colors on
two different similarity maps correspond to the same similarity values.

First experimental setting. In the first experiment we verify the in-
variance to rotations on a pair of images shown in the Figure 7.12. The left
image is the original one, and the right image was rotated clockwise by an
angle of 37 degrees. Figure 7.13 shows similarity values calculated from the
given correspondences. The distances were color-coded with γ = 10.

Second experimental setting. For the second experiment we use a pair
of images (Figure 7.14) related by an affine transform. The left image is the
fronto-parallel view and the right image is the affinely-rectified view of the
same scene. Figure 7.15 shows similarity values calculated from the given
correspondences. The distances were color-coded with γ = 20.
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Figure 7.13: Similarity maps for given correspondences between the original and
rotated images. First and second rows: similarities calculated using square patches
of sizes 5, 7, 9, 11, 13; 15, 17, 19, 21, 23. Third and fourth rows: similarities
calculated using the proposed similarity measure (4.17) with r set to 50, 75 ,100,
150, 175; 200, 225 ,250, 275, 300.

Third experimental setting. Third pair of images (Figure 7.16) in-
cludes two different views of the same packet of juice. We are interested
in the front side of the packet, which is planar. Two given views of that
front side are related by perspective transform of a plane. Figure 7.17 shows
similarity values calculated from the given correspondences. The distances
were color-coded with γ = 10.

As expected, in all three settings and for the whole ranges of square patch
sizes and values of r, the proposed affine invariant similarity measure outper-
forms the usual Euclidean distance (1.1). Since a projective transformation
can locally be approximated by an affinity, the proposed similarity measure
was able to handle the third case. These results show also that the param-



88 experimental results for the similarity measures

Figure 7.14: Fronto-parallel and affinely-rectified views of the same scene.

Figure 7.15: Similarity maps for given correspondences between the images re-
lated by an affinity. First and second rows: similarities calculated using square
patches of sizes 5, 7, 9, 11, 13; 15, 17, 19, 21, 23. Third and fourth rows: similar-
ities calculated using the proposed similarity measure (4.17) with r set to 50, 75
,100, 150, 175; 200, 225 ,250, 275, 300.
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Figure 7.16: Two views of the same packet of juice.

Figure 7.17: Similarity maps for given correspondences between two views of
the front side of the packet of juice. First and second rows: similarities calculated
using square patches of sizes 5, 7, 9, 11, 13; 15, 17, 19, 21, 23. Third and fourth
rows: similarities calculated using the proposed similarity measure (4.17) with r
set to 50, 75 ,100, 150, 175; 200, 225 ,250, 275, 300.
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Figure 7.18: Pair of images used to study the robustness of the proposed affine
invariant similarity measures in regions close to the boundary of two different
transformations. The region of interest is marked by a red dashed square.

eter r may vary in a relatively wide range without significant impact on
the resulting similarity values. The actual choice of r should depend on the
application, the sizes of the image features to be captured, the image noise
and texture content itself.

Conjunction of Transformations

Finally, we study the behavior of the affine invariant similarity measures
(4.16) and (4.17) in the discrete setting for regions close to a boundary
between two different transformations applied to parts of the digital im-
age. For this we created a pair of synthetic images, shown in Figure 7.18.
In these images two different views from the graffiti sequence are used as
backgrounds and two different views of another object are imposed as fore-
ground objects. Therefore, the backgrounds are related by one transfor-
mation while the foreground objects are related by another transformation.
The ground truth correspondences are calculated first for the backgrounds,
then for the foreground objects and finally combined using a mask.

Figure 7.19 shows similarity maps calculated from the known correspon-
dences for different values of r and scale parameter t̂. The set of r values
is r ∈ {50, 100, 150, 200} and the set of t̂ values is t̂ ∈ {0.01, 3, 9}. Notice
that the similarity maps are computed only for a region of interest around
the foreground object. This region is shown as a red dashed square in
Figure 7.18. The similarities are computed using both similarity measures
(4.16) and (4.17). In the later case the geodesic distance is approximated
as in the bilateral filter of Tomasi and Manduchi (1998) with κspatial = 1.0
and κcolor = 3.0. For visualization purposes the similarity values are lin-
early mapped into intensity values. Brighter color corresponds to higher
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similarity.

The similarity maps in figure 7.19 show that for all selected combinations of
t̂ and r the matching is correct even close to the boundary of different trans-
formations with some expected errors right at the boundary. The problem-
atic region at the boundary is smaller for the similarity measure (4.16) with
geodesic weights which naturally separates objects with different colors. In
general, accuracy at the boundary between two different transformations
can be controlled by the scale parameter t̂. This emphasizes once again the
importance of a multiscale similarity computation for the cases where two
or more objects, undergoing different transformations, meet each other.
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Figure 7.19: Similarity values for given correspondences, calculated for different
values of t̂ and r. Columns: r is equal to 50, 100, 150 and 200. First three rows:
Gaussian weights (4.17), t̂ is equal to 0.01, 3 and 9. Last three rows: geodesic
weights (4.16) with κspatial = 1.0 and κcolor = 3.0, t̂ is equal to 0.01, 3 and 9.



Chapter 8

Conclusions

In the first part of the thesis we have studied the linear model of affine
invariant patch-wise image comparison for images defined on Riemannian
manifolds. This generic and at the same time practical linear model was
originally described in Ballester et al. (2014) within a broad framework of
multiscale analyses of similarity measures. Throughout this work, speaking
about image comparison, we have in mind a patch similarity measure as-
signing a similarity (distance) value to a given pair of points at two images.

In an attempt to keep the thesis self-contained, we have collected the nec-
essary notation and have given an overview of the underlying mathematical
concepts, related to Riemannian manifolds. We have also presented the
axiomatic approach used in Ballester et al. (2014) to classify and study
multiscale analyses of similarity measures, in an amount that is sufficient
for derivation of the linear model we are interested in. Following the previ-
ous work, we have shown that multiple multiscale similarity measures can
be obtained as solutions of partial differential equations corresponding to
the linear model. Since in general the model involves spatially varying Rie-
mannian metrics in image domains, a direct solution of such PDE would
have computational complexity of order S4, if both images being compared
are defined on a grid of size S2. Therefore, using WKB method, we have
developed an approximate solution leading to a family of patch similarity
measures that are well-suited for practical applications. This approxima-
tion, together with two particular multiscale similarity measures (4.16) and
(4.17), should be considered as the first major contribution of the thesis.

After deriving two multiscale similarity measures, we have focused on the
problem of defining the Riemannian metrics, such that the similarity mea-
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sures are affine invariant. Our second contribution is the novel definition
and the iterative computational scheme for the structure tensors, that can
be used as metrics in image domains. We have shown that the structure
tensors, defined in the proposed way, are guaranteed to be affine covariant in
the contentious setting of infinite resolution images. We have also discussed
the limitations, implied by the discrete setting and real images.

Although the formalism of image comparison studied in this work holds
for images defined in R

N , the most common and thus practical cases are
obviously R

2 and R
3. The latter covers, for example, 3D medical images

and regular videos. We have discussed the most important details of the
efficient numerical implementation of the proposed similarity measures in
R
2 and R

3. This should be considered as our next contribution.

Finally, we have experimentally studied the multiscale and affine invariance
properties of the proposed similarity measures. We have shown that the
multiscale image comparison might be beneficial when two or more objects
within a scene undergo different transformations and occlude each other.
For example, this is normally the case in the context of stereo-imaging.
As expected, the proposed affine invariant similarity measures outperform
the simple Sum of Squared Differences (1.1) in comparison of two images
related by different transformations. A more rigorous study of the extent,
to which the proposed similarity measures are affine invariant in practice,
is a subject for future work. Another direction of the future research is a
detailed comparison of both similarity measures in terms of performance
and applicability in different contexts. Moreover, many other similarity
measures covered by the linear model are left beyond the scope of this
work. Even more possibilities offered by the axiomatic approach are yet to
be explored.

In the second part of the thesis we present two particular applications of
the similarity measure (4.17) to image inpainting and image denoising.
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Applications
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Chapter 9

Introduction

The second part of the thesis is dedicated to applications of the affine in-
variant patch similarity measures. Our aim in this chapter is to recap the
important components of the proposed patch similarity measures. Then in
Chapter 10 we describe the application to exemplar-based image inpainting
and in Chapter 11 we cover the extension of Non-Local Means image de-
noising method. We have decided to pursue these particular applications,
because on the one hand inpainting results can be very much illustrative,
and on the other hand denoising performance is easy to measure quantita-
tively. Finally, Chapter 12 concludes our work.

9.1 An Affine Invariant Similarity Measure

In Part I two examples of an affine invariant patch similarity measure were
derived from the theoretical framework of multiscale analyses of similarity
measures. In order to give a better intuition, in this section we look at them
from a slightly different perspective. We begin with the affine covariance
property of the proposed structure tensor and construct from it an affine
invariant patch similarity measure.

Affine Covariant Structure Tensors

First of all we recall the notion of affine covariant structure tensors and the
way they can be used to define shape-adaptive patches. Given a real-valued
image u : Ωu → R, we consider an image-dependent structure tensor field
Tu as a function that associates a structure tensor (a symmetric, positive
semi-definite 2× 2 matrix) with each point x in the image domain Ωu. For
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Figure 9.1: Affine covariant neighborhoods (shape-adaptive patches) computed
at corresponding points in two images taken from different viewpoints. Despite the
change in appearance, patches capture the same visual information.

simplicity we assume here the image domain to be R2. The structure tensor
field is said to be affine covariant if, for any affinity A,

TuA(x) = ATTu(Ax)A, (9.1)

where uA(x) := u(Ax) denotes the affinely transformed version of u. Given
a structure tensor Tu(x) we can associate with it an elliptical region of
“radius” r centered at x

Bu(x, r) = {y ∈ R
2 : 〈Tu(x)(y − x), (y − x)〉 ≤ r2}. (9.2)

When a structure tensor is affine covariant, we obtain an affine covariant
elliptical region, such that

ABuA(x, r) = Bu(Ax, r).

This means that the structure tensors can be used to define affine covariant
regions which transform properly via an affinity. We refer to these affine
covariant regions as shape-adaptive or elliptical patches to distinguish them
from the square patches of fixed size. Figure 9.1 demonstrates elliptical
patches defined by affine covariant structure tensors, computed for a set of
corresponding points in two images related by a homography. Recall that
the efficient way to collect all points belonging to an elliptical patch was
proposed in Section 6.2.

As shown in Section 5.2, given two affine covariant structure tensors we
can extract the affine transformation between the corresponding elliptical
patches up to some rotation. Indeed, for any affine transformation A, there
exists an orthogonal matrix R such that

A = Tu(Ax)
− 1

2RTuA(x)
1
2 . (9.3)
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The equation above provides an intuitive geometric relationship between the
structure tensors, the associated elliptical patches and the affinity. Consider
a point x and the corresponding elliptical patch BuA(x). Transforming
BuA(x) by an affinity yields Bu(Ax). The application of affinity A can be

decomposed in three steps. First, TuA(x)
1
2 transforms BuA(x) into a disc

or radius r. We refer to the resulting disc as a normalized patch. Then, a
rotation R is applied to the normalized patch. Finally, Tu(Ax)

− 1
2 maps the

rotated normalized patch to the elliptical patch Bu(Ax).

To fully determine the affinity A, one needs to find the rotation R. Any
rotation would yield an affinity that maps the elliptical patch associated
with TuA at x to the one associated with Tu at Ax. However, for a wrong
value of the rotation the image content inside both patches will not match.
Therefore, the correct value for the rotation can be computed by aligning
the image content of both patches. For this aim, we decompose the rotation
as

R = R−1
u (Ax)RuA(x), (9.4)

where Ru(Ax) and RuA(x) are estimated from the image content inside the
patches. In practice, we calculate them by aligning dominant orientations
of the normalized patches. To compute the dominant orientations we use
histograms of gradient orientations as explained in Section 6.3.

Computation of Affine Covariant Tensors

Let us recall the particular definition and the iterative scheme proposed in
Section 5.1 that allows us to compute a dense field of affine covariant tensors
and associated neighborhoods:

T (k)
u (x) =

∫
B

(k−1)
u (x,r)

Du(y)⊗Du(y) dy

Area(B
(k−1)
u (x, r))

, (9.5)

where u is the given image and B
(k)
u is the affine covariant neighborhood

related to T
(k)
u , defined by

B(k)
u (x, r) = {y : 〈T (k)

u (x)(y − x), (y − x)〉 ≤ r2} (9.6)

for k ≥ 1, and
B(0)
u (x, r) = {y : |Du(x)(y − x)| ≤ r} (9.7)

for k = 0. As before, to simplify the notation we denote by Tu(x) the

affine covariant structure tensor T
(k)
u (x) for a fixed values of k and r (r > 0
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is a free parameter). Similarly, we denote by Bu(x) the affine covariant

neighborhood B
(k)
u (x, r).

An Affine Invariant Patch Similarity

Previously in this section we were considering two images u and uA, related
by a global affinity. For the patch comparison problem we can generalize our
reasoning and consider two arbitrary images u : Ωu → R and v : Ωv → R.
Let x and y be two given points in images u and v, respectively. The struc-
ture tensors Tu(x) and Tv(y) define elliptical patches BTu(x) and BTv(y)
around these points. Equations (9.3) and (9.4) suggest the following map-
ping between the elliptical patches:

P (x, y) = Tv(y)
− 1

2R−1
v (y)Ru(x)Tu(x)

1
2 . (9.8)

We can interpret P (x, y) as a local affinity, mapping the elliptical patch
associated with Tu(x) into the one associated with Tv(y). In other words, if
u in the vicinity of x is an affinely transformed version of v in the vicinity
of y, then P (x, y) recovers the true affinity. Intuitively, an affine invariant
patch similarity could be computed as the distance between the elliptical
patch at y and the elliptical patch at x, transformed by P (x, y) beforehand.
In practice, it is more convenient to transform both elliptical patches to
discs of radius r, as explained in Section 6.4, and to compare the aligned
normalized patches:

Da(t, x, y) =
∫

∆t

gt(h)

(
u(x+ T

− 1
2

u (x)R−1
u (x)h)− v(y + T

− 1
2

v (y)R−1
v (y)h)

)2

dh, (9.9)

where ∆t denotes a disc centered at the origin of R2 with radius propor-
tional to scale t > 0 and big enough such that the weighting function gt
has effective support in ∆t. If gt is the Gaussian weighting function of vari-
ance t, the patch distance Da(t, x, y) coincides with the similarity measure
(4.17) derived in Section 4.4. If we replace the Gaussian weights by the bi-
lateral weights as in Tomasi and Manduchi (1998), we recover the similarity
measure (4.16). Recall that throughout this work we use the terms patch
similarity measure and patch distance measure interchangeably.

While the parameter t in (9.9) affects the scale of patch comparison explic-
itly, the r parameter in (9.6) and (9.7) also has its impact. As discussed in
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Chapter 7, we can link both parameters together by

t =

(
r

t̂

)2

,

where t̂ now defines the relative scale with respect to r. We call both t and
t̂ scale parameters. In practice we specify t̂ because then it allows us to vary
r independently.

In our notation Bu(x) denotes a set of points constituting an affine covariant
neighborhood. Even though we refer to it as patch, it does not represent
actual color values. To explicitly specify a patch as a subset of color values
of an image u we denote it as

pu(x) := pu(x, ·), (9.10)

where
pu(x, h) := u(x+ Tu(x)

− 1
2h)

and h belongs to ∆t.

Let us finally note, that for color images we consider a generalization of
(9.9). Let u : Ωu → R

3 and v : Ωv → R
3 be color images, then the affine

invariant similarity measure becomes

Da(t, x, y) =
∫

∆t

gt(h)

∥∥∥∥u(x+ T
− 1

2
u (x)R−1

u (x)h)− v(y + T
− 1

2
v (y)R−1

v (y)h)

∥∥∥∥
2

2

dh, (9.11)

where ‖·‖2 denotes the Euclidean norm of vectors in R
3. The affine covariant

structure tensors and neighborhoods are computed using the corresponding
gray-scale versions of u and v. From now on when referring to (9.9), we
will implicitly assume (9.11) for color images.

In the following chapters we describe two applications of the similarity mea-
sure (9.9). For these specific applications it is sufficient and more practical
to use the simpler similarity measure with Gaussian weights. The second
similarity measure, involving approximated geodesic weights, might be use-
ful in other applications.





Chapter 10

Image Inpainting

In this chapter we present an application of the proposed affine invariant
patch similarity measure (9.9) to exemplar-based image inpainting. Re-
call that for color images we implicitly consider (9.11) without changing
the notation. In Section 10.1 we introduce the inpainting problem and
in Section 10.2 review the related work. Section 10.3 is devoted to the
variational formulation of the inpainting method that we propose. In Sec-
tion 10.4 we discuss in detail the numerical implementation of the algorithm.
Then in Section 10.5 we present some experiments asserting the validity of
our theoretical approach together with a comparison with other well-known
exemplar-based methods. Finally, Section 10.6 concludes the chapter.

10.1 Problem Statement

Image inpainting, also known as image completion or disocclusion, refers to
the recovery of occluded, missing or corrupted parts of an image in a given
region so that the reconstructed image looks natural. It has become a key
tool for digital photography and movie post-production where it is used, for
example, to eliminate unwanted objects that may be unavoidable during
filming.

Automatic image inpainting is a challenging task that has received signifi-
cant attention in recent years from the image processing, computer vision,
and graphics communities. Remarkable progress has been achieved with
the advent of exemplar-based methods, which exploit the self-similarity of
natural images by assuming that the missing information can be found
elsewhere outside the inpainting domain. Roughly speaking, these meth-
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Figure 10.1: Self-similarity under different distortions. On the left: two views of
the same scene related by a projective transformation. On the right: self-similar
texture underwent a severe fish-eye lens distortion.

ods work by copying patches taken from the known part of the image and
pasting them smartly in the inpainting domain. These methods can ob-
tain impressive results but many of them rely on the assumption that the
required information can be copied as it is, without any transformation.
Therefore, applicability of such methods is limited to the scenes in which
objects are in a fronto-parallel position with respect to the camera.

In the image formation process, textured objects may appear distorted by
some complex transformation (see Figure 10.1). This is a pervasive phe-
nomenon in our daily life. In fact, any person can mentally fill-in occluded
parts of an image, even if the missing information is available to them un-
der a different perspective. Our brain is able to appropriately transform the
available information to match the perspective distortion of the occluded re-
gion. For instance, in Figure 10.1 one can easily infer what is hidden behind
the red rectangle in the graffiti scene on the left, or use the non-trivially
distorted context in the right image to fill-in the hole.

We address this issue by incorporating the affine invariant patch similarity
measure (9.9) into a variational formulation of the inpainting problem. In
this way we can compare patches, related by an affinity, and also trans-
form known patches properly before pasting them in the inpainting do-
main. The transformation is determined for each patch in a fully automatic
way. Moreover, instead of searching for an appropriate transformation in
a high-dimensional space, our approach allows us to determine a single
transformation from the surrounding texture content. As opposed to some
previous works which only consider rotations and scalings, we can handle
full affinities, which in principle extends the applicability of the method to



10.2. related work 105

any transformation that can be locally approximated by an affinity, such as
perspective distortion.

10.2 Related Work

Most inpainting methods found in the literature can be classified into two
groups: geometry- and texture-oriented, depending on how they character-
ize the redundancy of the image.

The geometry-oriented methods formulate the inpainting problem as a bound-
ary value problem and the images are modeled as functions with some degree
of smoothness expressed, for instance, in terms of the curvature of the level
lines (Masnou and Morel (1998); Ballester et al. (2001); Masnou (2002);
Cao et al. (2011)), with propagation PDEs (Bertalmı́o et al. (2000)), or as
the total variation of the image (Chan and Shen (2001)). These methods
perform well in propagating smooth level lines or gradients, but fail in the
presence of texture or big inpainting domains.

Texture-oriented (also called exemplar-based) methods were initiated by the
work of Efros and Leung (1999) on texture synthesis. In that work the idea
of self-similarity is exploited for direct and non-parametric sampling of the
desired texture. The self-similarity prior is one of the most influential ideas
underlying the recent progress in image processing and has been effectively
used for different image processing and computer vision tasks, such as de-
noising and other inverse problems (Foi and Boracchi (2012); Buades et al.
(2005); Gilboa and Osher (2008); Peyré (2009); Pizarro et al. (2010)). It
has also found its application to inpainting: the value of each target pixel x
in the inpainting domain can be sampled from the known part of the image
or even from a vast database of images as in Hays and Efros (2007).

The exemplar-based approach to inpainting has been intensively studied
(Demanet et al. (2003); Criminisi et al. (2004); Wexler et al. (2007); Kawai
et al. (2009); Aujol et al. (2010); Arias et al. (2011)). However, many such
methods are based on the assumption that the information necessary to
complete the image is available elsewhere and can be copied without any
modification but a translation.

Some works consider a broader family of transformations. In Drori et al.
(2003) a heuristic criteria is used to vary the scale of patches. In Mans-
field et al. (2011) and Barnes et al. (2010) the space of available patches
is extended by testing possible rotations and scales of a source patch. The
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search in the space of available patches is usually performed by a collab-
orative random search. However, this implies that for each query patch,
the position of the matching patch as well as the parameters of the trans-
formation (scale, rotation angle, tilt, etc) must be determined. The high
dimensionality of the parameter space makes the search problem very com-
putationally expensive and the excessive variability of candidates may lead
to unstable results. In order to restrict the search space, the authors of Cao
et al. (2011) propose to combine an exemplar-based approach that includes
all rotated patches, with a geometric guide computed by minimizing Euler’s
elastica of contrasted level lines in the inpainted region.

Several authors (e.g., Pavić et al. (2006); Huang et al. (2013)) have ad-
dressed this issue using some user interaction to guide the search process.
For instance, the user provides information about the symmetries in the im-
age, or specifies 3D planes which are then used for rectification and the rec-
tified planes in turn are used to look for correspondences. Recently, Huang
et al. (2014) proposed a method for automatic guidance that searches for
appropriately transformed source patches. It starts by detecting planes and
estimating their projection parameters, which are then used to transform
the patches. This allows one to handle perspective transformations, in sit-
uations when representative planes can be detected.

Most of those works use a similarity measure, either explicitly or implic-
itly, to compute a matching cost between patches. Our proposed affine
invariant similarity measure (9.9) automatically distorts the patches being
compared. Our method thus considers a rich patch space that includes
all affine-transformed patches, furthermore, for each pair of patches the
transformations are uniquely determined using the image content. This ef-
fectively limits the search space, making the method more stable. Since the
patch distortions depend on the texture content of the image, our technique
is related in that sense to a shape-from-texture approach (G̊arding (1992);
Garding and Lindeberg (1994); Ballester and Gonzalez (1998)).

In this chapter we extend the variational framework described, for example,
in Wexler et al. (2007); Kawai et al. (2009); Arias et al. (2011). We propose
a new energy and an optimization algorithm for affine invariant exemplar-
based inpainting.

Let us finally note that Wang (2008) proposed a self-similarity measure for
image inpainting, comparing dense SIFT descriptors on square patches of
a fixed size. However, the method is not fully affine invariant, in partic-
ular, neither the dense SIFT descriptors nor the square patches are scale
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invariant. Several authors have addressed the affine distortion and affine in-
variance problem in other contexts such as image comparison (Mikolajczyk
and Schmid (2004)), object recognition (Matas et al. (2004)), and stereo
(Garding and Lindeberg (1994)).

10.3 Inpainting Formulation

Exemplar-based inpainting methods aim at filling-in the image in such a
way that each patch in the inpainting domain is similar to some known
patch. This implies comparison of known patches with partially or com-
pletely unknown patches. For this we extend the variational framework
described in Wexler et al. (2007); Kawai et al. (2009); Arias et al. (2011) by
using the affine invariant similarity measure (9.9). We formulate the prob-
lem of inpainting from affinely transformed patches via the minimization of
the following energy functional

E(u, ϕ) =

∫

Õ
Da (t, x, ϕ(x)) dx, (10.1)

where O ⊂ Ω ⊂ R
2 is the inpainting domain, û : Ω \ O → R is the known

part of the image, Õ includes all the centers of patches intersecting O and
Õc is its complement, that is, Õc contains centers of fully known patches (see
Figure 10.2). The minimization of (10.1) aims at finding a visually plausible
completion u of û in the unknown region O. The additional variable ϕ :
Õ → Õc determines for each unknown target patch the location of a source
patch from which the information will be copied.

Figure 10.2: Schematic representation of the sets O, Oc, Õ and Õc.

This energy compares patches defined on elliptical regions centered at x
and ϕ(x). In the known part of the image, these regions are defined by the
affine covariant structure tensors Tû. Since the image is unknown inside the
inpainting domain we have to estimate the structure tensors together with
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the image. The relationship between u and Tu introduces a complex depen-
dency in the energy (10.1), which complicates its minimization. Therefore,
we propose to relax it and consider instead the minimization of the energy

Ẽ(u, ϕ,G) =

∫

Õ

∫

∆t

gt(h)

·
(
u(x+G(x)−

1
2h)− û(ϕ(x) + Tû(ϕ(x))

− 1
2R−1

û (ϕ(x))h)
)2
dhdx

(10.2)

where G(x) is an invertible 2 × 2 matrix, ∀x ∈ Õ. For now, we will not
restrict the tensor field G to be given by the structure tensors Tu. Instead,
we consider it as an additional variable, in principle independent of u. In
this way, we do not have to deal with the complex dependency between Tu
and u. In practice, due to the properties of the affine covariant structure
tensors, it turns out that the G(x) can be estimated from Tu(x) and the
additional rotation Ru(x), as will be explained later in this section.

Approximate Minimization Algorithm

We compute a local minimum of the energy with an alternating optimization
scheme on the variables u, G and ϕ which is summarized in Algorithm 6.

Image update step. In the image update step, ϕ and G are fixed, and
the energy is minimized with respect to u. With the change of variables z =
x+G(x)−

1
2h, the Euler-Lagrange equation leads to the following expression:

u(z) =
1

̺(z)

∫

Õ
gt

(
G(x)

1
2 (z − x)

)

· û
(
ϕ(x) + Tû(ϕ(x))

− 1
2R−1

û (ϕ(x))G(x)
1
2 (z − x)

) ∣∣∣G(x)
1
2

∣∣∣ dx, (10.3)

where ̺(z) is normalization factor such that the sum is an average. The
field G determines elliptical patches centered at each x ∈ Õ. For each one
of these patches a matching patch centered at ϕ(x) is known, as well as its
shape which is given by the structure tensor Tû(ϕ(x)). The corresponding
patch is then warped via the affinity

P̃ (ϕ(x), x) = G(x)−
1
2Rû(ϕ(x))Tû(ϕ(x))

1
2

and aggregated in the inpainting domain. Note that if G(x) is given by
Tu(x), then P̃ (ϕ(x), x) coincides with equation (9.8).
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Affine correspondence update step. Given a fixed u, the minimiza-
tion of the energy with respect to (ϕ,G) can be performed as independent
minimization of the patch distance function Da for each x ∈ Õ. This prob-
lem is very complex to solve since it is a nearest neighbor search where we
also optimize for the affine transformation of the patch at x, given by G.

We will exploit the properties of the affine covariant structure tensors to
obtain an approximate solution. For that, let us consider a completion can-
didate u and assume that a local vicinity of x on u is an affinely transformed
version of a local vicinity of ϕ(x) on û. That is, u(x+ h) = û(ϕ(x) + Ah),
which is the case when x and ϕ(x) do actually correspond. Setting G(x)

such that G− 1
2 (x)Rû(ϕ(x))Tû(ϕ(x))

1
2 = A will lead to a correct mapping

and thus to the zero patch distance. On the other hand, using (9.8) we

can find this affinity as A = Tu(x)
− 1

2RTû(ϕ(x))
1
2 where R is some or-

thogonal 2 × 2 matrix and Tu is calculated on u. Then G(x) such that

G
1
2 (x) = R(x)T

1
2
u (x), together with ϕ(x), will be global minimizers of the

patch distance function Da at x. Therefore, we need to search only for ϕ(x)
and R(x). An approximate ϕ(x) can be found efficiently using our modified
version of the PatchMatch algorithm of Barnes et al. (2009), detailed in
Section 10.4. The additional rotation R(x) is determined as described in
Section 6.3, in the same way as for the known part of an image. Notice that
for notation consistency we should write R(x) := Ru(x).

Of course, if the neighborhood of x does not match any affinely transformed
patch, then the estimated G might not minimize the patch distance Da.

Algorithm 6: Approximate minimization of Ẽ(u, ϕ,G).

Input: Initial condition u0 at O, tolerance τ > 0
Output: Image completion u

repeat
Compute affine covariant structure tensors Tuk−1(x) and rotations
Ruk−1(x) for all x ∈ Õ;

Estimate optimal correspondences ϕk using the modified
PatchMatch (see Section 10.4);

Update image uk = argminu Ẽ(u, ϕk, Gk), subject to uk = û in
Oc;

until ‖uk − uk−1‖ < τ ;

Another interpretation of the approximate minimization can be given by
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adding to the minimization of Ẽ(u, ϕ,G) the constraint that G
1
2 (x) =

Ru(x)T
1
2
u (x) for all x ∈ Õ and for some rotation matrix Ru(x), namely,

min Ẽ(u, ϕ,G) subject to G
1
2 = RuT

1
2
u .

The correspondence update step corresponds to the constrained minimiza-
tion of the energy with respect to ϕ,G for a fixed image u. In the image
update step the energy is minimized with respect to u, but without enforc-
ing the constraint. Therefore, our approximate minimization can be seen
as an alternating minimization applied to a constrained problem. The con-
straint is enforced only when minimizing with one of the variables (the pair
ϕ,G). There are no theoretical guarantees for the convergence of such a
scheme, although we have not yet encountered a practical case where the
algorithm failed to converge.

10.4 Numerical Implementation

Image Update Step

The actual implementation of (10.3), that we use in our method, is

u(z) =
1

C(z)

∑

x∈Õ

gt(T
1
2
u (x)(z − x))mc(x)w(x, z)

· û
(
ϕ(x) + P (x, ϕ(x))(z − x)

)
|T

1
2
u (x)|, (10.4)

where P (x, ϕ(x)) = T
− 1

2
û (ϕ(x))R−1

û (ϕ(x))Ru(x)T
1
2
u (x) is the estimated affin-

ity that maps the target patch at x onto the source patch at ϕ(x). The
structure tensor field Tu is computed using the inpainted image u from the
previous iteration.

Of course, in the discrete setting some kind of interpolation needs to be
done after transforming one elliptical patch into another by P (x, ϕ(x)).
For that we use the Nadaraya-Watson estimator (Nadaraya (1964); Watson
(1964)) with Gaussian kernel which standard deviation is specified by a free
parameter σNW.

The extra term mc in (10.4) is a so-called confidence mask that takes values
from 1 to 0, exponentially decreasing with the distance to the set of known
pixels Oc. This mask is usual in exemplar-based inpainting, for instance, it
is used in Criminisi et al. (2004); Arias et al. (2011). It helps to guide the
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flow of information from the boundary towards the interior of the inpainting
domain, eliminating some local minima and reducing the effect of the initial
condition. More precisely, we compute the confidence mask as

mc(x) = (1− c0)exp
(
−d(x,O

c)

ct

)
+ c0, (10.5)

where d(x,Oc) is the distance from a point x to the boundary of the Oc

set, such that d(x,Oc) = 0 when x ∈ Oc. Parameter 0 < c0 ≤ 1 defines the
smallest (asymptotic) value that mc can take and ct > 0 controls the rate
of decay. In fact, ct can be computed in such a way that the asymptotic
value will always correspond to the maximum distance

ct = −
max

(
d(·, Oc)

)

ln c0
,

where 0 < c0 < 1. When c0 = 1, the confidence mask is simply set to
1 everywhere and makes no effect. This confidence mask never changes
during the inpainting process and can be precomputed for a given inpainting
domain.

There is also another additional weighting term w(x, z) in (10.4). In princi-
ple, all patches containing a pixel z contribute to its color value. To control
the amount of contributors, we introduce the auxiliary Gaussian weight,
that depends on the patch distance between a contributing patch and its
corresponding known patch

w(x, z) = exp

(
−
(
Da(t, x, ϕ(x))−min(D(z))

)2

2σ2cut-off(z)

)
, (10.6)

where D(z) = {Da(t, y, ϕ(y)) : z ∈ BTu(y)} is a set of patch distances
to known patches, computed among all patches contributing to z, and
σcut-off(z) defines a soft threshold for the patch distance values. This weight
allows us to cut off contributors with low similarity (high distance) values,
which in turn results in sharper reconstructions.

To compute σcut-off(z) we begin by computing the first estimate for the
cut-off distance

Da1 (z) = γcut-off
(
max(D(z))−min(D(z))

)
,

where γcut-off ∈ (0, 1) is a parameter of the method. Since distance values are
usually distributed unevenly, the initial distance threshold Da1 might discard
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Figure 10.3: Schematic depiction of two different cases of patch distance dis-
tribution. Gray filled-in curves represent histograms of distance values computed
between patches overlapping z ∈ O and their most similar known counterparts
from Õc. Weighting functions are shown in red. In both cases γcut-off ≈ 0.45.

too few or too many contributors. Therefore, we very roughly estimate the
density of values that fall below Da1 and refine the initial cut-off distance by

Da2 (z) = γcut-off
Da1 |D(z)|

N1
,

where |D(z)| stands for the total number of elements in the set D(z) and
N1 = |{Da ∈ D(z) : Da −min(D(z)) < Da1 (z)}| is the number of distance
values retained by Da1 . Then the final cut-off threshold is given by

σcut-off(z) =
1

6

(
Da1 (z) +Da2 (z)

)
.

The factor 1
6 in the formula above implies that the Gaussian (10.6) ap-

proaches zero at the average cut-off distance between the first and second
estimates. Figure 10.3 illustrates the cut-off distances for two different cases
of distance values distribution.

The energy (10.1) is non-convex and might have several local minima. As
a consequence, there is a dependency on the initialization. To alleviate
this dependency, we try to promote the propagation of information from
the boundary towards the interior of the inpainting domain during the very
first iterations of inpainting. Recall that the extended domain Õ contains
the centers of all elliptical patches overlapping the inpainting domain. We
enlarge Õ by a few pixels to capture a narrow stripe Õ+ := (Õ ⊕ Bb) \ Õ
around the extended inpainting domain, that contains centers of completely
known elliptical patches . Here Bb denotes a circular structuring element
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of radius b, acting in the dilation of Õ. Obviously, the elliptical patches
in Õ+ do not intersect the inpainting domain. To make them contribute
to the inpainting we should enlarge them first. For that we recompute
them doubling the value of r. Notice that we use r′ = 2r only for the
points within the stripe Õ+ and only in the image update step. We do
not recompute the corresponding structure tensors; thus, we only increase
the sizes of these elliptical patches and do not modify their shapes. This
additional contribution from elliptical patches, that do not depend by any
means on the inpainting domain, boosts the information propagation at the
boundaries of the inpainting domain.

Affine Correspondence Update Step

During the update of the correspondence map we compute an approxima-
tion of the nearest neighbor field using PatchMatch of Barnes et al. (2009,

(a) (b)

Figure 10.4: Propagation directions in PatchMatch: (a) original scheme, (b)
modified scheme.

2010). The PatchMatch algorithm speeds up the computation of optimal
correspondences by exploiting the correlation between patches so that they
can be found collectively. Since we are working with elliptical patches which
might be arbitrarily rotated, we adapt the PatchMatch propagation scheme
to take this into account. Let x be the current pixel and d1 = (±1, 0),
d2 = (0,±1) be the directions of propagation. Then, the adjacent pixels
yi = x− di (i = 1, 2) are tested during the propagation. Assume i = 1 (see
Figure 10.4). Pixel ŷ = ϕ(y) is the current nearest neighbor candidate for y.
The standard PatchMatch would try to propagate position ŷ+ d to pixel x
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(Figure 10.4a). In contrast, we calculate the direction d̂ = P (y, ŷ)d, where
P is the a priori connection, and we try a few positions along that direc-
tion (Figure 10.4b). This generalization gives more meaningful propagation
along edges.

At early iterations of our algorithm, the inpainted image may be blurry.
This is typical for iterative patch-based inpainting methods and is caused
by aggregating patches that do not coincide in their overlap area at the
initial iterations. As discussed in Section 5.3, the structure tensors are
sensitive to blur, tending to larger elliptical patches in blurry regions. Es-
sentially, smoothing of an image suppresses small details and produces the
same effect as scaling the image down. The elliptical patches in turn cap-
ture larger areas. To compensate for this, we allow the parameter r to vary
during the correspondence map estimation. That is, while Tû(ϕ(x)) is al-
ways computed with the fixed r, say r0 (a given parameter of the method),
in the computation of Tu(x) we consider a few values of r smaller than r0
and select the one giving the smallest patch distance Da between points x
and ϕ(x). The value of r decreases by the step of hr and the number of
such steps is specified by nr parameter. Let us note, that to be able to com-
pare patches, computed with different values of r, we scale the normalized
patches to discs of radius one.

10.5 Experimental Results

In this section we present results obtained by the proposed method. First
of all we summarize the parameters of the method and specify the values
used in our experiments:

• r – the “radius” used in the elliptical patch calculation (9.2). See
Sections 5.1 and 9.1. Is set to 250− 350 in our experiments.

• t̂ – the “scale” that controls the intra-patch Gaussian weights. See
Section 9.1. Is set to 3.0− 3.5 in our experiments.

• g – the resolution of the regular grid used for interpolation during
the patch distance calculation. See Section 6.4. Is set to 21 in our
experiments.

• τ – the tolerance in the energy minimization process. See Section 10.3.
Is set to 0.01 in our experiments.
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• b – the width of the stripe Õ+ in pixels. See Section 10.4. Is set to 6
in our experiments.

• γcut-off – the soft threshold on the percentage of contributing patches.
See Section 10.4. Is set to 0.4 in our experiments.

• c0 – the asymptotic value of the confidence mask. See Section 10.4.
Is set to 0.1 in our experiments.

• σNW – the interpolation coefficient used in the image update step. See
Section 10.4. Is set to 0.3 in our experiments.

• nPM – the number of PatchMatch iterations. See Barnes et al. (2009).
Is set to 16 in our experiments.

• hr, nr – the length of the steps in r and the number of such steps, used
in the Tu(x) computation to compensate blurring. In our experiments
hr is set to 10− 15 and nr is set to 4− 9. See Section 10.4.

Another implicit parameter, that can be found in many exemplar-based
inpainting methods, is the initialization of the inpainting domain. In the
very first iteration we do not expect to find any good matches for the patches
from the middle of the inpainting domain and rely on the mostly known
patches. Since in the absence of texture elliptical patches tend to grow in
area, we do not use the common initialization by a uniform color. Instead
we initialize the inpainting domain using a smooth checkerboard patter to
keep patches inside it small.

For all the experiments in this section, we compare our results with the ones
obtained by the multiscale Non-Local Means method (Wexler et al. (2007);
Kawai et al. (2009)) which we find to be a representative exemplar-based im-
age inpainting method operating with only translations of patches. When-
ever possible, we also compare against the method of Mansfield et al. (2011)
with a single scale and considering rotations, and the method of Huang et al.
(2014). In both cases we use implementations provided by the authors.

As a sanity check we first test the proposed method on a synthetic example,
displayed in Figure 10.5. We take a textured image and create an affinely
transformed version of it. We select a part of the transformed image as the
inpainting domain. Instead of using the rest of the transformed image to
copy information from, we make the original (not transformed) image to be
the source. Let us remark that the ground truth affinity is not provided
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Figure 10.5: First row: source image, target image with the inpainting domain
shown in red, and close-ups around the inpainting area of the NL-Means result
and the result of our method. Second row: evolution of the inpainting domain over
iterations of our method (every second iteration).

Figure 10.6: First row: image with the inpainting domain shown in red. Sec-
ond row: close-ups around the inpainting area of the NL-Means result, the result
of Mansfield et al. (2011) (considering rotations), the result of Huang et al. (2014),
and the result of our method. Third row: evolution of the inpainting domain over
iterations of our method (every third iteration).
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Figure 10.7: First row: image with the inpainting domain shown in red. Sec-
ond row: close-ups around the inpainting area of the NL-Means result, the result
of Mansfield et al. (2011) (considering rotations), the result of Huang et al. (2014),
and the result of our method. Third row: evolution of the inpainting domain over
iterations of our method (every third iteration).

to the algorithm, hence, we test the ability of the proposed method to
identify and copy affinely transformed patches. We do not show any results
for Mansfield et al. (2011) and Huang et al. (2014) for this experiment, since
the available implementations do not support the use of a separate image
as a source.

A more realistic case would be associated with a more general transforma-
tion. Since for planar objects a projective transformation can be locally
approximated by an affinity, in the second example (shown in Figure 10.6)
we test the robustness of our method in the reconstruction of an image
distorted by perspective. As usual in inpainting applications, in this ex-
periment we use the known part of the image as source. We compare our
method with the Non-Local Means method, that works only with transla-
tions, and additionally with the method of Mansfield et al. (2011) in the
mode when the rotations are also considered, and the method of Huang
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Figure 10.8: First row: source image, target image with the inpainting domain
shown in red, and close-ups around the inpainting area of the NL-Means result
and the result of our method. Second row: evolution of the inpainting domain over
iterations of our method (every second iteration).

et al. (2014). Note that the latter method successfully determines a single
plane in the image and, as expected, achieves a good reconstruction.

The third example (Figure 10.7) demonstrates the reconstruction of a tex-
ture with some lens distortion applied to it. The known part of the image is
used as a source and, like in all other experiments, just a rotation of source
patches is not sufficient to obtain a good result. As in the previous case,
here we compare our method with the Non-Local Means method (transla-
tions), the method of Mansfield et al. (2011) (translations and rotations),
and the method of Huang et al. (2014) (projective transformation).

A final experiment, which is also potentially interesting for real applications,
consists in inpainting one view of a scene using information from another
view of the same scene. Figure 10.8 shows the results of this experiment
where we have applied the proposed method to two views related by an
unknown homography. As before, we compare our result with the result of
the Non-Local Means method.

Let us note that the method of Mansfield et al. (2011) also supports ro-
tations plus scalings. However, we could not obtain meaningful results on
these examples for this mode. It seems that the additional variability added
by the scalings makes it easier for the algorithm to be trapped in a bad lo-
cal minimum. For example, a constant region can be produced by scaling
a small uniform patch.

Finally, we briefly discuss the limitations of the proposed method. Since
the transformation between two patches is estimated from the surrounding
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Figure 10.9: Failure cases. From top to bottom: insufficient textural information,
severe distortion, too big inpainting domain. More details are given in the text.

texture, the method fails when there is not enough textural information
(Figure 10.9, first row). Severe transformations between pairs of patches
may be recovered incorrectly. This can be illustrated by replacing the source
image in the last experiment with a much more slanted view (Figure 10.9,
second row). The proposed method does not exploit the common multiscale
scheme which limits the maximum possible size of the inpainting domain
(Figure 10.9, third row).

10.6 Conclusions

In this chapter we have presented a new variational formulation for exemplar-
based image inpainting that takes advantage of affine invariant self-simi-
larities of real images. Due to the affine invariant similarity measure (9.9),
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incorporated in the inpainting energy functional, our method naturally op-
erates with the shape-adaptive patches. Since an appropriate affine trans-
formation relating any given pair of patches is computed locally, the method
can handle textured objects under projective transformations or even more
complex distortions. For instance, it is well suited for inpainting of one view
of a scene using other view of the same scene as a source, or for completion
of an image acquired with a so-called fisheye lens. The obvious requirement
though is to have enough textural information.

The exemplar-based inpainting is a complex non-convex problem with many
local minima. As pointed out in Cao et al. (2011), additional degrees of
freedom in transformations of patches make it even more complex. The
proposed similarity measure is beneficial in this respect, because shapes of
patches are uniquely determined by an underlying texture and the amount
of ways in which one patch can be aligned with another is constrained. This
eliminates some of the variability and leads to a faster and more accurate
minimization algorithm. We have proposed a tractable approximate opti-
mization scheme for our formulation of the inpainting problem and then
have delved into the details of its numerical implementation. Finally, we
have shown inpainting results for several different settings together with
some failure cases.

Some weaknesses of the method are intrinsic to the proposed approach itself.
For example, the lack of textural information makes shape-adaptation and
alignment of patches unreliable. As concerning large inpainting domains,
the issue can be solved by exploiting a multiscale scheme, as it is customary
in the literature (Wexler et al. (2007); Kawai et al. (2009); Arias et al.
(2011)). Modifying the proposed method to be multiscale, however, is a
complex problem in itself and it is left outside the scope of the current work
as an interesting direction for future research.



Chapter 11

Image Denoising

In this chapter we demonstrate how the well-known Non-Local Means im-
age denoising method can be extended with the help of the affine invariant
patch similarity measure (9.9) or its generalization for color images (9.11).
Our extension takes advantage of the affine invariant self-similarities in real
images and thus is able to aggregate more similar patches which leads to
better denoising results. At first we introduce the denoising problem in Sec-
tion 11.1 and in Section 11.2 we review the related work on image denoising.
Then in Section 11.3 we explain the proposed extension and in Section 11.4
we discuss the most important implementation details. In Section 11.5 we
briefly comment on the choice of parameters of the method. In Section 11.6
we present both quantitative and qualitative assessments of the proposed
method. Finally, Section 11.7 concludes the chapter.

11.1 Problem Statement

There are many different ways of obtaining a digital image of a real world
scene: digital cameras, scanning devices, etc. Unless an image is generated
completely by a computer, it is subject to the acquisition noise. Many
different kinds of denoising algorithms are widely used to suppress this noise
while preserving image details, textures and colors. They are embedded in
firmware of digital cameras and are also applied in the very beginning of
image and video processing pipelines.

In this chapter we focus on the Non-Local Means framework for image de-
noising and propose an extension for it, which effectively exploits the affine
invariant self-similarities present in images of real scenes. The Non-Local
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Means approach to image denoising considers 2D patches and, in general,
assumes that for every noisy reference patch a bunch of other similar noisy
patches can be collected together and averaged to produce a single de-
noised patch. Usually, the contribution of each patch in the averaging is
additionally weighted by its similarity to the reference patch. The bigger
amount of samples is aggregated, the more noise can be suppressed by aver-
aging. Therefore, the ability to find many similar patches largely determines
the performance of the Non-Local Means denoising. The original method
of Buades et al. (2005) operates with square patches of a fixed size and
thus is able to collect similar patches that differ only in their location in an
image. However, in real images similar patches might be related by much
more complex transformations, for example, by an affinity. Such distinction
in appearance of patches, that contain essentially the same visual informa-
tion, might be due to some nontrivial self-similarity of a scene or simply
because of difference in positions with respect to the camera. With the
help of the affine invariant patch similarity measure (9.9) we can properly
compare patches related by an affinity. As a result, more similar patches
can be found and aggregated, which in turn provides better denoising re-
sults. We demonstrate that our method outperforms the original Non-Local
Means method both in terms of PSNR values and in visual quality of re-
sults. Compared with a state-of-the-art method of Lebrun et al. (2013b),
our method concedes in numbers, but produces images that visually look
at least as good and in some cases even more pleasing.

11.2 Related Work

The problem of removing the noise of an image while preserving its structure
and characteristics like geometry, texture or color has been extensively inves-
tigated over the last decades. Some early works approach denoising by local
methods, for example, using anisotropic diffusion as in Perona and Malik
(1990b). The total variation denoising model of Rudin et al. (1992) inspired
many variational formulations for image denoising. In Rudin et al. (1992)
it was applied for images corrupted by the Gaussian noise (see also Cham-
bolle (2004); Almansa et al. (2006)), and has also been used for Riccian
(Martn et al. (2011)), salt-and-pepper (Nikolova (2004)) and multiplicative
noise (Aubert and Aujol (2008)). Other operators have been proposed, for
example, the total generalized variation (Bredies et al. (2010)) or non-local
regularizers as in Gilboa and Osher (2008); Brox et al. (2008). Frequency
domain methods have been developed and extensively studied as well, for
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instance, windowed discrete cosine transform (DCT) in Yaroslavsky (1996);
Yu and Sapiro (2011), wavelet transform based methods in Donoho and
Johnstone (1994); Portilla et al. (2003), curvelets in Starck et al. (2002),
etc. More recently it was proposed (Elad and Aharon (2006); Mairal et al.
(2008); Yu et al. (2010)) to learn dictionaries for sparse and redundant im-
age representation from images themselves instead of exploiting predefined
ones (like wavelets or DCT). These methods attempt to model the space of
image patches.

Non-local or patch-based approaches are used in most of the state-of-the-
art methods for image denoising, restoration, super-resolution, inpainting
and object recognition (Peyré (2009); Protter et al. (2009); Pizarro et al.
(2010); Foi and Boracchi (2012); Pierazzo et al. (2014); Kheradmand and
Milanfar (2014)). Image denoising has gone along with the advances in
patch-based techniques. Non-Local Means of Buades et al. (2005) exploits
the notion of non-local self-similarity of image patches and works by col-
lecting and averaging the most similar patches in the image. This seminal
approach inspired many denoising methods and has also led to the study
and development of non-local regularity priors (Peyré et al. (2008); Arias
et al. (2011)). One of the state-of-the-art denoising methods, the BM3D
method of Dabov et al. (2007), combines spatial self-similarity with thresh-
olding in the frequency domain through the collaborative filtering of groups
of similar patches. The resembling method of Zhang et al. (2010) exploits
principal component analysis instead of DCT. Both methods involve two
almost identical steps: the first one provides the basic estimate and the
second one refines the final result using the initial estimate as a guide. A
Bayesian interpretation of the method of Zhang et al. (2010), named Non-
Local Bayes, was recently proposed in Lebrun et al. (2013b). Non-Local
Bayes is a spatial-based method that improves Non-Local Means by consid-
ering a Gaussian probability model for each set of similar patches.

In many denoising works it is assumed that the noise type and level are
known in advance. The Noise Clinic method of Lebrun et al. (2015) for
blind denoising goes beyond this assumption and combines a noise model
estimation with a multiscale modification of the Non-Local Bayes method.

Let us finally note that rotationally invariant patch comparison for image
denoising was already studied in the past (Grewenig et al. (2011); Zuo et al.
(2015)). Besides that, it was noticed that denoising with regular square
patches may cause noise halos around contrasted edges. To remove this
kind of artifacts it was proposed in Deledalle et al. (2012) to replace square
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patches by several types of neighborhoods with various shapes (discs, bands,
half-discs, quarter-discs) and to combine their estimations using Stein’s Un-
biased Risk Estimate (Stein (1981)). Our affine invariant patch similarity
measure (9.9) considers a richer domain of shape-adaptive patches. On the
other hand, for each pair of patches the transformations are determined
using the image content, which effectively reduces the search space when
looking for similar patches.

11.3 Affine Non-Local Means Denoising

In this section we describe our extension of the well-known Non-Local Means
denoising method. We start by motivating the use of the proposed affine
invariant similarity measure (9.9) for patch-based denoising. Additionally,
we propose a modification that better adapts this similarity measure for
denoising.

Motivation

Recent progress in image denoising is associated with the concept of self-
similarity which is pervasive for natural images. In a broad sense, such
methods as Buades et al. (2005); Lebrun et al. (2013b); Dabov et al. (2007);
Kheradmand and Milanfar (2014) work by combining neighborhoods of
points or patches of a noisy image that appear similar to each other and ex-
tracting from them a common estimate of the original noiseless image. The
basic principle is that, by the variance law in probability theory, the noise
standard deviation of the average of samples decreases. This approach is
intuitively consistent, if one can find many samples for every image detail.
In order to find patches which are most similar to a reference patch, many
denoising methods use a simple patch distance measure:

D(x, y) = 1

|B|
∑

i∈B
(u(x+ i)− v(y + i))2, (11.1)

where B denotes a neighborhood of the origin 0 ∈ R
2 forming a patch, and

|B| denotes the area of B (in practice, the number of pixels in B). This can
be rewritten in the continuous setting as:

D(x, y) = 1

̺

∫

R2

η(h)(u(x+ h)− v(y + h))2 dh, (11.2)
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Figure 11.1: From left to right: original Dice image, a zoom of a search window
with its central (reference) point shown in white, similarity values computed be-
tween the central point and all other points using the similarity measure (11.2) and
square patches, and using the proposed affine invariant patch similarity measure
(9.9). White color encodes the highest similarity.

where ̺ is the normalizing factor, η(h) is a characteristic function of the
patch which equals to 1 when h ∈ B and 0 otherwise. Sometimes η is a
weighted characteristic function such as a Gaussian.

Usually, patches are set to be squares and no transformations are allowed
between two patches being compared. Since it is numerically impractical
to check the whole image, similar patches are searched in a relatively small
window around a reference point. The usual size of the search window
ranges from 21 by 21 to 35 to 35 pixels. This allows one to reduce the
overall computational expenses; however, when the level of noise increases,
it is becoming less probable to encounter enough similar patches. If we allow
for more complex transformations between patches being compared, we can
increase the amount of similar patches within the search window and thus
improve the denoising result. Figure 11.1 illustrates this argument with a
simple experiment on the classical Dice image. For a given point and a
search window around it we calculate the similarity between that point and
all other points in the window using both the similarity measure (11.2) and
our proposed similarity measure (9.9). As can be seen, in our case much
more points along the edge receive high similarity values. This in turn leads
to a better denoising result, as will be shown in Section 11.6.

Description of the Method

In this work we follow the strategy of the original Non-Local Means scheme
proposed in Buades et al. (2005). In particular, given a noisy image we go
through all of its points and, for every point, we calculate patch distances
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between that reference point x and other points y around it. As in the other
works, we limit this set of surrounding points to a square window of a given
size w, centered at the reference point x. Instead of the very common patch
distance measure (11.2) we use the proposed measure (9.9). Consequently,
instead of common square patches, we consider elliptical patches given by
the affine covariant structure tensor at every point of an image. Note that
in the denoising problem, v in (9.9) coincides with u.

In order to convert distances into similarities we use the exponential function
and define the similarity of the patches centered at x and y as:

Sa(x, y) := exp

(
−D

a(t, x, y)

λ2

)
, (11.3)

where λ = bσ is a bandwidth that depends on the standard deviation σ of
the noise and is controlled by the parameter b > 0 of the method. Notice
that the distance Da is already squared.

To denoise an elliptical patch at the reference point x, we average all the
patches at surrounding points y using their similarity values Sa(x, y) as
weights. Note that in this aggregation process elliptical patches have to
be appropriately transformed to match the patch at x being denoised. We
calculate this transformation from the structure tensors using the a priori
connection (9.8). The denoised patch is then given by a weighted average

p̂u(x) =
1

̺(x)

∑

y∈Ww(x)

Sa(x, y)
(
P (y, x)pu(y)

)
,

̺(x) =
∑

y∈Ww(x)

Sa(x, y), (11.4)

where Ww(x) denotes the square search window of size w, centered at x.
Recall that pu(x) is defined as (9.10) and stands for a patch as a subset
of color values of u. The notation P (y, x)pu(y) colloquially designates the
mapping of an elliptical patch at y to an elliptical patch at x by P (y, x).
The map P (y, x) first transforms an elliptical patch to a disc, then rotates
this disc and finally transforms it into another elliptical patch. Of course,
in the discrete setting, some kind of interpolation of color values has to be
done after this transformation.

Since denoised patches may overlap each other, every pixel of the resulting
image receives multiple color estimates. The estimates coming from a de-
noised patch are weighted depending on their distance to the center of that
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patch. The resulting color for a pixel is therefore calculated as a weighted
average of all estimates. We use here an anisotropic Gaussian kernel, given
by the affine covariant structure tensor, as an intra-patch weighting function

gt(Tu, x) = exp

(
−〈Tu(x)(y − x), (y − x)〉

2t

)
,

where y ∈ Bu(x) and t = ( r/t̂ )2. Essentially, these are the same weights as
in the similarity measure (9.9) and we use the same value of t̂ in both cases.
In this way the patch aggregation complies with the patch comparison.

The proposed method described above is summarized in Algorithm 7.

Algorithm 7: The extension for Non-Local Means image denoising.

Input: u : Ωu → R
3 // noisy image

Output: û : Ωu → R
3 // denoised image

Compute tensor field Tu
û← 0
̺û ← 0
for x ∈ Ωu do

p̂u(x)← 0 // denoised elliptical patch

̺(x)← 0
for y ∈Ww(x) do

p̂u(x)← p̂u(x) + Sa(x, y)
(
P (y, x)pu(y)

)

̺(x)← ̺(x) + Sa(x, y)
p̂u(x)← ̺(x)−1 p̂u(x) // normalize p̂u(x)

Compute intra-patch Gaussian weights gt(Tu, x)
û← û+ gt(Tu, x) p̂u(x)
̺û ← ̺û + gt(Tu, x)

û← ̺−1
û û // normalize û

Patch Size Constraint

In most of the patch-based methods square patches of a fixed size are used.
The size of the patches may change depending on the noise level; however,
it is always the same within a single image. Commonly square patches are
chosen to be small, their size ranges from 3 by 3 to 7 by 7 pixels (sometimes
slightly bigger). Our method allows the shapes of patches to adapt to the
local image content; thus, the patches may well have different sizes. We
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Figure 11.2: Elliptical patches in images with different levels of noise. From left
to right, standard deviation of noise: 0 (original noiseless image), 2, 5, 10, 15.

Figure 11.3: Elliptical patches in the original noiseless image, calculated using
different size constraints (different values of ρmax in (11.8)). From left to right,
ρmax: ∞ (β = 0, no size constraint), 20, 15, 10 and 5.

would like to preserve this shape-adaptiveness and at the same time to be
able to limit the maximum patch size to capture only small pieces of visual
information. To some extent the r parameter in (9.2) controls the size of
a covariant elliptical patch; however, it also depends on the image content
itself (see Figure 11.2, left image). For the same value of r, elliptical patches
are always significantly bigger in homogeneous regions than in textured
regions or close to edges. As shown in Figure 11.2, in the presence of noise
elliptical patches tend to shrink due to the additional gradients induced
by the noise. This effect is accentuated in homogeneous regions; therefore,
elliptical patches become more uniform in size. On the other hand, as these
additional gradients have random magnitudes and directions, the shape of
patches does not change a lot. This phenomenon motivates the way of
placing an upper boundary constraint on the size of elliptical patches.

We are interested in simulating additive Gaussian noise in our structure
tensor computation scheme (9.5)–(9.7). From this perspective, additional
noise can intuitively be seen as a multitude of extra gradients with random
directions and expected magnitude related to the variance of noise. We
approximate it by adding a small constant value to the diagonal elements
and define a new structure tensor to be

T̃u(x) = Tu(x) + βI, (11.5)



11.3. affine non-local means denoising 129

where β controls the amount of simulated noise and, therefore, the maxi-
mum allowed size of the associated elliptical patches, say it B̃u(x). Notice
that the constraint term βI is incorporated right into the iterative scheme
for structure tensor construction; thus, equation (9.5) becomes

T (k)
u (x) =

∫
B

(k−1)
u (x,r)

Du(y)⊗Du(y) dy

Area(B
(k−1)
u (x, r))

+ βI. (11.6)

To relate β with the size constraint, let the reference point x be located in
an infinitely wide region of uniform color. Since all the gradients are equal
to zero, the term Tu(x) is equal to zero as well and the resulting structure
tensor is defined solely by β. If β = 0, an elliptical patch at x would have
infinite size. If β > 0, the patch becomes a disc. From (9.2), its boundary
is given by

∂B̃u(x) = {y : 〈βI(y − x), (y − x)〉 = r2} = {y : β ‖y − x‖2 = r2}. (11.7)

Let ρmax be the radius of this disc. Then ‖y − x‖2 = ρ2max and

β =
r2

ρ2max
. (11.8)

The relation (11.8) allows us to parametrize the patch size constraint in
terms of the maximum possible radius of a patch, shall it appear in a com-
pletely homogeneous region. Figure 11.3 shows the effect of applying the
size constraint with different values of ρmax. Note that for ρmax = 5, ellip-
tical patches are almost uniform in size and still follow the image content.

Of course, this term, added to the structure tensors, breaks their affine
covariance property. Most strongly it affects invariance of the similarity
measure to scaling. This is easy to verify mathematically and can be il-
lustrated with the following experimental example (Figure 11.4). Let two
corresponding points be given in two images related by an affinity, in this
particular case – a scaling. Two elliptical patches calculated using the orig-
inal scheme are shown in Figures 11.4a and 11.4b. They cover the same
visual information. Elliptical patches with the size constraint applied are
shown in Figures 11.4c and 11.4d. The patch shown in Figure 11.4c cannot
grow enough to take the edges into consideration. As a consequence, the
corresponding elliptical patches do not capture the same visual informa-
tion; moreover, tensors do not recover the correct local affinity. For some
applications this breaking of affine covariance is unacceptable; however, in
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(a) (b) (c) (d)

Figure 11.4: Effect of constraining the patch size. (a) and (c) show part of an
image in its original size, (b) and (d) show part of the same image scaled down by
2. (a) and (b) illustrate elliptical patches without any size constraints, (c) and (d)
illustrate elliptical patches with the size constraint ρmax = 25 applied.

the case of denoising we do not expect to encounter severe change in scale
within a relatively small search window.

The size constraint plays the most important role for the cases of small
levels of noise when it prevents elliptical patches from growing too big in
uniform regions. When there is a clearly defined structure within a patch
it is less affected by the size constraint.

Homogeneous Region Test

Our patch comparison by means of the affine invariant similarity measure
can be related to the shape-from-texture techniques in the sense that the
shape of elliptical patches is defined by the underlying image texture. Thus,
in the absence of clear textural information in homogeneous regions, the
shape of elliptical patches becomes very dependant on the image noise. In
the denoising application this leads to insufficient suppression of high fre-
quency noise in such regions. To reduce this dependency, the parameters of
the method can be adjusted to allow for bigger patches; however, it usually
leads to a blurry reconstruction in textured regions. To avoid contradic-
tion in the choice of parameters for denoising homogeneous regions and
fine image details, such as textures and standalone edges, we treat them
differently.

Motivated by the approach of Lebrun et al. (2013b), we first check whether
a reference patch can be considered as located in a homogeneous region.
For that we calculate the variance of all color values in a set of nH patches
in Ww(x), most similar to the reference patch at x. Here nH is a parameter
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Figure 11.5: Left to right: original images, and homogeneous regions, in white,
computed for noisy images with noise standard deviation 2, 10 and 30.

of the method. As commented in Lebrun et al. (2013b), for homogeneous
regions that color variance is expected to be small and close to the noise
variance. We check if it is less then γH σ

2, where σ is the noise variance
and γH is a thresholding parameter of the method. Note that we use the
same values for both nH and γH in all our experiments (see Section 11.5).
If the homogeneous region test is passed, meaning that the patch belongs
to a homogeneous region, the reference patch is denoised by filling it with
a single average color c(x), computed from the similar patches. For every
channel separately:

c(x) =
1

̺(x)

∑

y∈P(x)

∑

z∈Bu(y)

u(z),

̺(x) =
∑

y∈P(x)

∑

z∈Bu(y)

1, (11.9)

where P(x) is a set of at most nH centers of patches which are most similar
to a patch centered at x. If the homogeneous region test is failed, the
algorithm proceeds normally. Figure 11.5 shows some examples, computed
for noisy images with different levels of noise. The points satisfying the
homogeneity criterion are shown in white. With this trivial modification
we can avoid usage of the similarity measure in the case it was not designed
for.
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P(y,x)  

a) b) c) d) e)

W

Figure 11.6: Diagram illustrating the aggregation step of the proposed method:
a) normalization (W denotes the search window); b) interpolation; c) patch de-
noising; d) color estimates aggregation; e) resulting denoised image.

11.4 Implementation Details

As commented in Section 6.4, to compare elliptical patches in a more effi-
cient way, we normalize them and interpolate to the regular grid. Since an
input noisy image never changes during the denoising process, normalized
patches at every point can be precomputed beforehand and stored together
with their corresponding normalizing transformations. In the aggregation
step, similar patches have to be transformed once again to match a ref-
erence patch. For that we calculate the complete transformation P (y, x)
using (9.8). Since halves of it, namely the normalizing transformations

Ru(x)Tu(x)
1
2 and Ru(y)Tu(y)

1
2 , are computed in advance and stored in

memory, the computation of P (y, x) takes only one matrix inversion and
one matrix multiplication.

After transforming a similar patch to its reference patch, another interpo-
lation is needed to aggregate color values from that similar patch. For this
we use the same Nadaraya-Watson estimator as in the patch comparison,
but for now the Gaussian standard deviation of the kernel is specified by a
free parameter of the method, denoted by σNW. This parameter allows us
to control to some extent the sharpness of the denoising result. The choice
of its value, same for all levels of noise, is discussed in Section 11.5.

In the aggregation process, patches within the search window are weighted
depending on their similarity (11.3) to the reference patch. This suggests
the weight value of 1 for the reference patch itself. To avoid overweighting
of the noise from the reference patch we instead take the maximum weight
among the other patches in the search window.

For performance reason we use three pairs of buffers of the same size as an
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input image during the denoising (see Figure 11.6). In every pair, the first
buffer accumulates color values and the second buffer is for total weights.
Normalized values are then obtained by element-wise division of the first
buffer by the second. The first pair of buffers is used to interpolate every
patch from within the search window after transforming it to its correspond-
ing reference patch. The second pair of buffers is used to aggregate these
transformed patches in order to denoise their reference patch. And, finally,
the third pair of buffers aggregates color estimates for every pixel of the
output image from different denoised patches.

11.5 Parameters Selection

The proposed method depends on the following parameters. Below, we
explain the criteria to fix them.

• r – the “radius” used in the elliptical patch calculation (9.2). See
Sections 5.1 and 9.1.

• ρmax – the maximum size constraint for elliptical patches. It is spec-
ified in terms of the radius of a patch, shall it appear in a wide and
completely homogeneous region. See Section 11.3.

• t̂ – the “scale” that controls the intra-patch Gaussian weights. See
Sections 9.1.

• g – the resolution of the regular grid used for interpolation during the
patch distance calculation. See Section 6.4.

• w – the size of the search window around a reference patch. See
Section 11.3.

• b – the bandwidth multiplier. See Section 11.3.

• σNW – the interpolation coefficient used in the aggregation step. See
Section 11.4.

• nH – the number of most similar patches to be considered in the
homogeneous region test. See Section 11.3.

• γH – the decision threshold of the homogeneous region test. See Sec-
tion 11.3.
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Table 11.1: Average PSNR values obtained for a test set of color images while
varying the r and ρmax with all the rest parameters being fixed. The best config-
uration is in bold

σ = 2 σ = 5

r 25 30 35 15 20 25
ρmax ρmax
2 45.00 45.02 45.01 2 39.52 39.60 39.65
3 44.85 44.85 44.83 3 39.68 39.69 39.67
4 44.75 44.74 44.72 4 39.67 39.66 39.61

σ = 10 σ = 20

r 20 25 30 40 45 50
ρmax ρmax
4 35.92 36.05 36.06 7 32.61 32.64 32.64
5 35.95 36.07 36.05 8 32.61 32.66 32.65
6 35.96 36.06 36.03 9 32.61 32.65 32.64

σ = 30 σ = 40

r 60 65 70 85 90 95
ρmax ρmax
12 30.65 30.69 30.69 18 29.26 29.28 29.27
13 30.67 30.71 30.68 19 29.28 29.31 29.29
14 30.66 30.69 30.69 20 29.29 29.28 29.28

Table 11.2: Parameters of the method chosen for different noise levels σ

σ ρmax r w g

2 2 30 29 9
5 3 20 29 9
10 5 25 31 9
20 8 45 33 13
30 13 65 35 13
40 19 90 35 21

Table 11.3: Parameters of the method that do not depend on the noise level

t b σNW nH γH
1 0.35 0.4 30 0.35

Since it would be impractical to test all possible combinations of all the
parameters, we split them into several groups and adjust one group at a
time. We measure performance of the method on each configuration of
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parameters by the average PSNR value, computed for the test set of eight
color images shown in Figure 11.7.

The first group of parameters includes r, ρmax and t which control the size
of elliptical patches. Some of the PSNR values obtained while varying the r
and ρmax parameters are shown in Table 11.1 as an example. Let us remark
that only a few values around the maximum are shown for every level of
noise; however, much wider ranges were actually tested.

The second group of parameters includes w and g which as well should
be picked for every noise level separately. The size of the search window w
should be bigger for higher levels of noise to provide more patch candidates.
The value of g should roughly follow the value of ρmax to ensure enough res-
olution of the regular grid to represent normalized patches. These intuitions
are confirmed while testing the ranges of values for these two parameters.

The third group of parameters includes b and σNW. In contrast to the
original work of Buades et al. (2005) we have not observed any significant
effect of varying the b parameter for different noise levels. The value of σNW

has no relations with the noise level; therefore, a single value was picked for
all the experiments.

The fourth group of parameters includes nH and γH which are associated
with the homogeneous region test. The same values were picked for all levels
of noise.

The values of parameters selected for different levels of noise are summa-
rized in Table 11.2. The values of parameters, that do not depend on the
noise level and thus are fixed for all our experiments, are summarized in
Table 11.3.

11.6 Experimental Results and Assessment

In this section we present assessment of the proposed method and compare
it with the original Non-Local Means method of Buades et al. (2005) and
the state-of-the-art Non-Local Bayes method of Lebrun et al. (2013b). In
order to assess the performance of the proposed method, we demonstrate
the “method noise” and the “noise to noise” benchmarks commonly used
in the literature. For a quantitative evaluation, we show the PSNR values
computed for multiple test images and different values of the standard devi-
ation of noise. Finally, we show some of the denoised images for a qualitative
assessment.
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Figure 11.7: Noiseless images used in the experiments: Alley, Computer, Dice,
Flowers, Girl, Traffic, Trees and Valldemossa.

To obtain the results for Non-Local Means and Non-Local Bayes, we use
public implementations made by the authors (Buades et al. (2011); Lebrun
et al. (2013a)) and available online at http://www.ipol.im/. For PSNR
evaluation, visual comparison and some other experiments we use the set
of eight color images shown in Figure 11.7, available online at http://www.
ipol.im/ under a Creative Commons CC-BY license. Images Alley and
Valldemossa by A. Buades, the rest six images by M. Colom.

“Method Noise” and “Noise to Noise” Assessments

At first, we assess the proposed method by calculating the so called “method
noise” (Buades et al. (2005)). For that, we calculate the difference between
a noisy image and an output of a denoising method. The “method noise”
should contain as little structure from a noisy image as possible. Figure 11.8
shows the comparison between the Non-Local Bayes, the original Non-Local
Means and our proposed method. It is easy to see that for the proposed
method the “method noise” looks almost like a white noise and is very close
to the one of the Non-Local Bayes method.

According to the “noise to noise” principle (Lebrun et al. (2012)), a denois-
ing method should transform white noise into white noise. If in contrast a
method creates some structure from that noise, it will introduce similar arti-
facts in the denoising result. For this benchmark a uniform image with color
values (127, 128, 129) is used as an input. White noise of standard deviation
30 is added separately to every channel of that image and the obtained noisy
image is then processed by a denoising method. For visualization purposes

http://www.ipol.im/
http://www.ipol.im/
http://www.ipol.im/
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Figure 11.8: “Method noise” benchmark. From left to right: noisy image with
added Gaussian white noise of standard deviation σ = 5, “method noise” for the
Non-Local Bayes method, for the original Non-Local Means method and for our
method. For the visualization purposes, the difference values were scaled from the
range of [−4σ, 4σ] to the range of [0, 255].

Figure 11.9: “Noise to noise” benchmark. From left to right: an image of uniform
color (127, 128, 129) with added Gaussian noise of standard deviation σ = 30,
results of applying the Non-Local Bayes, the original Non-Local Means and our
proposed method. Note that for the Non-Local Bayes and for our method, top-left
half was processed as homogeneous region (as it should be) while bottom-right as
non-homogeneous (this might happen if the homogeneity criterion is not accurate).

the resulting denoised images are amplified: for every pixel the difference
to the mean color (128, 128, 128) is magnified by the factor of 5 (see Lebrun
et al. (2012) for the complete methodology). Figure 11.9 shows the “noise to
noise” benchmark for the Non-Local Bayes, the original Non-Local Means
and our proposed method. Notice that for the Non-Local Bayes and for our
method the result of this benchmark depends on whether the noisy image is
treated as homogeneous or as non-homogeneous region. We show both out-
comes in a single image, where top-left and bottom-right halves correspond,
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respectively, to homogeneous and non-homogeneous branches of the algo-
rithms. As can be seen, the proposed method leaves no structural artifacts
in both cases. In contrast, the Non-Local Bayes method introduces some
artifacts when the noisy image is processed as non-homogeneous region.
This indicates that the homogeneity threshold γ of that method should be
carefully adjusted to avoid such artifacts in real images.

PSNR and Visual Comparison

Mean square error (MSE) and peak signal-to-noise ratio (PSNR) are com-
monly used in the denoising literature to quantify a relative performance
of different denoising methods. Tables 11.4 and 11.5 show PSNR values for
denoising results obtained for the eight color images of Figure 11.7 and stan-
dard deviation of noise σ ∈ {2, 5, 10, 20, 30, 40}. As expected, our method
almost always outperforms the original Non-Local Means method in terms
of PSNR. For high levels of noise, PSNR values for our method are not very
far from the ones of the state-of-the-art Non-Local Bayes method.

Even though comparison by PSNR provides a handy objective metric, an
important evaluation is visual comparison that for now can only be done
by a human being. Figure 11.10 shows several denoising results for high
levels of noise. To better illustrate the comparison, Figure 11.11 shows the
same results zoomed around some interesting regions. As can be seen, the
original Non-Local Means suppresses small image details and thus produces
“flattened” results. This is especially noticeable in the images Alley, Girl
and Flowers. The Non-Local Bayes, while providing high PSNR values,
may introduce the so-called staircasing effect – abrupt jumps in colors in
regions where a smooth transition should take place. Appearance of these
new edges leads to a mosaicing that is most visible in the images Dice, Girl
and Flowers. It is also affected by the noise halo (rare patch effect, Deledalle
et al. (2012)) around high contrasted edges which can be observed in the
images Traffic and Computer. Our method is capable of denoising both
small image details, sharp edges and smooth color transitions. It can be
noticed, however, that in some particular cases the proposed method may
oversmooth or suppress small image details. Another problem is a low
frequency noise that remains in homogeneous regions and can be explained
by the effect that noise has on the shape adaptive patches. Figure 11.12
illustrates some failure cases that actually can be observed in the denoising
results of all methods being compared at hight level of noise.
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Table 11.4: PSNR values for noise σ = 2, 5 and 10

σ = 2

NL-Bayes NL-means our

Alley 45.28 42.68 43.37
Computer 45.81 43.93 44.67

Dice 49.17 48.12 48.22
Flowers 47.75 46.31 46.89
Girl 47.67 46.71 46.71

Traffic 45.17 43.45 44.00
Trees 43.44 42.15 42.62

Valldemossa 45.07 43.26 43.67

σ = 5

NL-Bayes NL-means our

Alley 39.14 37.25 37.31
Computer 40.54 38.93 39.15

Dice 46.02 44.93 45.22
Flowers 43.29 42.17 42.74
Girl 44.18 43.36 43.37

Traffic 39.39 37.59 38.01
Trees 36.54 34.71 35.03

Valldemossa 38.62 35.96 36.70

σ = 10

NL-Bayes NL-means our

Alley 34.82 33.64 33.55
Computer 36.68 35.54 35.40

Dice 43.20 41.92 42.63
Flowers 39.53 38.59 39.38
Girl 41.43 40.40 40.85

Traffic 35.15 34.05 34.10
Trees 31.70 29.59 30.31

Valldemossa 33.96 32.15 32.33

11.7 Conclusions

In this chapter we have presented an extension for the Non-Local Means
image denoising method that considers shape-adaptive patches instead of
the very common square ones. The affine invariant patch similarity measure
(9.9) allows us to compare patches related by an affinity and thus plays an
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Table 11.5: PSNR values for noise σ = 20, 30 and 40

σ = 20

NL-Bayes NL-means our

Alley 31.17 29.98 30.15
Computer 32.98 31.67 32.03

Dice 40.17 38.31 39.62
Flowers 36.14 34.53 36.08
Girl 38.62 36.92 38.02

Traffic 31.24 30.14 30.46
Trees 27.36 26.37 26.40

Valldemossa 29.72 28.44 28.51

σ = 30

NL-Bayes NL-means our

Alley 29.15 27.85 28.37
Computer 30.68 29.28 30.06

Dice 37.95 36.92 37.54
Flowers 33.85 32.35 34.11
Girl 36.69 35.58 36.25

Traffic 29.03 27.74 28.54
Trees 25.03 23.79 24.31

Valldemossa 27.35 25.89 26.46

σ = 40

NL-Bayes NL-means our

Alley 27.77 26.48 27.11
Computer 29.04 27.61 28.57

Dice 36.24 35.26 36.05
Flowers 32.13 30.58 32.70
Girl 35.06 34.17 35.00

Traffic 27.52 26.23 27.17
Trees 23.50 22.42 22.88

Valldemossa 25.81 24.46 25.04

essential role in our method. By extending the space of patches being
considered, this similarity measure helps to detect larger amount of similar
noisy patches. This in turn leads to better denoising results. Moreover,
shape-adaptive patches are well-suited for denoising along contrasted edges,
as a result, we obtain denoised images that does not suffer from the halo
artifacts.
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After introducing the denoising problem itself and the original Non-Local
Means method, we have described the proposed extension and have sug-
gested a slight modification of the similarity measure (9.9) that better
adapts it for denoising application. In addition, we have introduced an idea
of separating the treatment of homogeneous and textured regions, that was
not exploited in the original Non-Local Means. To facilitate reproduction of
the presented results we have commented on the most important implemen-
tation details of the algorithm and have also specified values of parameters
being used in the experiments. We have conducted the assessment of our
extension by the so-called “method noise” and “noise to noise” benchmarks
from the literature. Finally, we have shown that our extension outperforms
the original Non-Local Means method both quantitatively and qualitatively.
Furthermore, while showing slightly smaller PSNR values than the state-
of-the-art Non-Local Bayes method, the proposed method provides results
of comparable or even better visual quality. We find these observations to
be promising and consider a similar extension of Non-Local Bayes method
as a possible direction for future research. It will also be useful to per-
form a focus group evaluation of the denoising results produced by different
methods. Another subject for future work is the low frequency noise that
remains in homogeneous regions for the noise levels of σ = 30 and higher.
Perhaps a better suppression of this residual noise can be achieved using
multiscale and two-step approaches to denoising.
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Figure 11.10: Denoising results. In columns: noisy image, NL-Bayes, NL-Means,
our method. In rows: Alley (noise σ = 20), Traffic (noise σ = 20), Computer (noise
σ = 30), Dice (noise σ = 30), Trees (noise σ = 30), Valldemossa (noise σ = 30),
Girl (noise σ = 40), Flowers (noise σ = 40).
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Figure 11.11: Zoomed denoising results. In columns: noisy image, NL-Bayes,
NL-Means, our method. In rows: Alley (noise σ = 20), Traffic (noise σ = 20),
Computer (noise σ = 30), Dice (noise σ = 30), Trees (noise σ = 30), Valldemossa
(noise σ = 30), Girl (noise σ = 40), Flowers (noise σ = 40).
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Figure 11.12: Closeups of some failure cases in denoised images Valldemossa
(noise σ = 30) and Girl (noise σ = 40). In columns: noisy image, NL-Bayes, NL-
Means, our method. In rows: rare patch effect in NL-Bayes and NL-Means results,
occasional oversmoothing of details in NL-Means and our results, staircasing effect
in NL-Bayes result, suppression of details in NL-Means and our results.



Chapter 12

Conclusions

In the second part of the thesis we have presented two novel image processing
methods for image inpainting and image denoising that exploit the affine
invariant patch similarity measure (4.17) proposed and studied in Part I.
These promising methods should be considered as two major contributions
of the second part of the thesis. We have started off with a revision of
our approach to image comparison. In order to provide a better intuition,
we have shown a way to engineer the same similarity measure (9.9) from
bottom up, regardless the theoretical framework of multiscale analyses of
similarity measures.

In the context of exemplar-based image inpainting the affine invariant sim-
ilarity measure allows us to perform completion of a texture under perspec-
tive effect and lens distortion, and also to inpaint one view of a scene, using
information from another view as a source. We have suggested a varia-
tional formulation of the inpainting problem with the similarity measure
(9.9) embedded in it. From that formulation we have obtained an effi-
cient approximate minimization scheme that exploits the affine covariance
property of the structure tensors to directly compute an appropriate trans-
formation between a pair of shape-adaptive patches. We have discussed
the numerical implementation of that minimization scheme and have also
illustrated the capabilities and weaknesses of the proposed affine invariant
image inpainting method by a set of experiments.

Finally, we have extended the well-known Non-Local Means image denois-
ing method. The affine invariant similarity measure allows us to detect
and aggregate more similar noisy patches which in turn leads to a better
denoising performance. We have suggested a modification of the similarity
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measure (9.9) that better adapts it for denoising problem. As usual, we
have discussed the most important details of the numerical implementation
of the proposed extension. Lastly, we have evaluated our method quantita-
tively, by comparing it in terms of PSNR values with the original Non-Local
Means method and the state-of-the-art Non-Local Bayes method, and qual-
itatively, by the “method noise” and “noise to noise” benchmarks and also
by the visual comparison of the denoising results.

We have covered only two possible applications of the affine invariant simi-
larity measures studied in this work. Both inpainting and denoising meth-
ods have potential for further improvements; moreover, these similarity
measures might prove useful in many other image and video processing
problems, for instance, in stereo vision, segmentation, texture replacement,
registration, etc.
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Appendix A

Proof of Theorem 4.1

Lemma A.1. Let M be a Riemannian manifold. Let D be a matrix such
that

RDRt = D

for all rotations R in (Tξ(M), G(ξ)). Then D = λG(ξ)−1 for some λ ∈ R.

The proof of this Lemma can be found in Calderero and Caselles (2014)
(Lemma 5.1).

Theorem A.2. Let Tt be a multiscale analysis of similarity functions sat-
isfying all Architectural axioms, the Comparison principle, and Gray level
Shift invariance axiom. Assume also that Tt is linear. Then

∂C

∂t
= F (D2

NC, ξ,G),

where

F (X, ξ,G) = c11(ξ)Tr((G
1)−1(ξ1)X11) + 2c12(ξ,G)Tr(D̄12I

1(ξ1)
−1X12)

+ c22(ξ)Tr((G
2)−1(ξ2)X22),

and D̄12 is an isometry from (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). The
ellipticity of F implies that c11, c22 ≥ 0.

Proof. For any symmetric matrix X = [Xij ] ∈ SMξ(N ), any p ∈ T ∗
ξN , and

c ∈ R, let the function F̃ be defined by the identity

F̃ (X, p, c, ξ,G,Γk) = F (X + Γ(p), p, c, ξ, G,Γk).
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Since Tt is gray level shift invariant, then F̃ does not depend on c. On the
other hand, it does not depend on Γk. The linearity of Tt and Theorem 3.1
imply that in terms of the function F̃

F̃ (rX1 + sX2, rp1 + sp2, ξ, G) = rF̃ (X1, p1, ξ, G) + sF̃ (X2, p2, ξ, G)

for any X1, X2 ∈ SMξ(N ), any p1, p2 ∈ T ∗
ξN , any r, s ∈ R. By taking

X1 = X, X2 = 0, p1 = 0, p2 = p, r = 1, s = 1, we write

F̃ (X, p, ξ,G) = F̃ (X, 0, ξ, G) + F̃ (0, p, ξ, G) =: K ′(X, ξ,G) +K ′′(p, ξ,G),
(A.1)

where K ′ is linear in X and K ′′ is linear in p. Moreover, from the rotation
invariance of F̃

F̃ (X, p, ξ,G) = F̃ (RtXR,Rtp, ξ,G),

for all diagonal rotations R in (TξN , G(ξ)). Recall that in this context
“diagonal rotation” means R = (R1, R2), where R1 and R2 are related. We
deduce that

K ′(X, ξ,G) = K ′(RtXR, ξ,G) (A.2)

K ′′(p, ξ,G) = K ′′(Rtp, ξ,G). (A.3)

Let us write

X =

[
X11 X12

X21 X22

]
,

where X21 = Xt
12. We write also

R =

[
R1 0
0 R2

]
,

whereR1 : (Tξ1M1, G1(ξ1))→ (Tξ1M1, G1(ξ1)), andR2 : (Tξ2M2, G2(ξ2))→
(Tξ1M2, G2(ξ2)), with R2P (ξ) = P (ξ)R1. Then

RtXR =

[
Rt1X11R1 Rt1X12R2

Rt2X21R1 Rt2X22R2

]
.

At first we concentrate on (A.2). Since K ′ is linear in X, we have

K ′(X, ξ,G) = K ′
11(X11, ξ, G)+K

′
12(X12, ξ, G)+K

′
21(X21, ξ, G)+K

′
22(X22, ξ, G),

where each K ′
ij(Xij , ξ, G) is linear in Xij and by (A.2) we have

K ′
11(R

t
1X11R1, ξ, G) = K ′

11(X11, ξ, G),
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K ′
12(R

t
1X12R2, ξ, G)+K

′
21(R

t
2X21R1, ξ, G) = K ′

12(X12, ξ, G)+K
′
21(X21, ξ, G),

(A.4)
K ′

22(R
t
2X22R2, ξ, G) = K ′

22(X22, ξ, G).

At ξ fixed, and for i = 1, 2, K ′
ii(Xii, ξ, G) is a symmetric linear function of

the eigenvalues of Xii, then there exists a matrix Dii : (TξiMi, Gi(ξi)) →
(TξiMi, Gi(ξi)) (depending on ξ,G) such that

K ′
ii(Xii, ξ, G) = Trace(DiiXii).

From the rotation invariance

Trace(DiiXii) = Trace(DiiR
t
iXiiRi) = Trace(RiDiiR

t
iXii).

Since this is true for all Xii, then RiDiiR
t
i = Dii. By Lemma A.1 we have

that Dii = cii(ξ,G)(G
i)−1(ξi) for some constant cii(ξ,G).

Therefore, we can rewrite (A.1) as

F̃ (X, p, ξ,G) = c11(ξ,G)Tr((G
1)−1(ξ1)X11) + c22(ξ,G)Tr((G

2)−1(ξ2)X22)

+K ′
12(X12, ξ, G) +K ′

21(X21, ξ, G) +K ′′(p, ξ,G),

Now, K ′
12(X12, ξ, G)+K

′
21(X21, ξ, G) is a linear function of X12. Thus, there

is a matrix D′
ij such that

K ′
12(X12, ξ, G) +K ′

21(X21, ξ, G) = Trace(D′
12X12).

Since the map has to be an endomorphism, D′
12X12 has to be a map

(Tξ2M2, G2(ξ2)) → (Tξ2M2, G2(ξ2)). However, X12 : (Tξ2M2, G2(ξ2)) →
(Tξ1M1, G1(ξ1))

∗; therefore, we write the map D′
12 = D12I(ξ1)

−1, where
I(ξ1) : (Tξ1M1, G1(ξ1)) → (Tξ1M1, G1(ξ1))

∗ and D12 : (Tξ1M1, G(ξ1)
1) →

(Tξ2M2, G2(ξ2)). Using the rotation invariance (A.4) we have

Trace(D12I
1(ξ1)

−1X12) = Trace(D12I
1(ξ1)

−1Rt1X12R2) (A.5)

= Trace(R2D12I
1(ξ1)

−1Rt1X12).

Note that all maps inside the traces map (Tξ2M2, G2(ξ2))→ (Tξ2M2, G2(ξ2)).
This implies that

D12I(ξ1)
−1 = R2D12I(ξ1)

−1Rt1,

that is,
D12 = R2D12I

1(ξ1)
−1Rt1I

1(ξ1),
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as maps from (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). Let us observe that
I1(ξ1)

−1Rt1I
1(ξ1) : (Tξ1M1, G1(ξ1)) → (Tξ1M1, G1(ξ1)) is an isometry and

denote it by R
t
1 = I1(ξ1)

−1Rt1I
1(ξ1). We can write

D12R
−t
1 = R2D12. (A.6)

We interpretR2 as a representation of the isometry group of (Tξ2M2, G2(ξ2)),

and R
−t
1 is a representation of the isometry group of (Tξ1M1, G1(ξ1)). De-

note them by ρ(R) and ρ(R), respectively (R represents a rotation). Notice
the slight abuse of notation writing R in both cases, but note that R1 is de-
termined by R2, since both are P (ξ)-related. Then ρ(I) = I and ρ(I) = I.
Note also that I = ρ(RR−1) = ρ(R)ρ(R−1); thus, ρ(R−1) = ρ(R)t (they
are isometries). Similarly for ρ(R). We rewrite (A.6) as

D12ρ(R) = ρ(R)D12 ∀R. (A.7)

By transposing we have

ρ(R)tDt
12 = Dt

12ρ(R)t ∀R. (A.8)

After multiplying by D12,

D12ρ(R)tDt
12 = D12D

t
12ρ(R)t ∀R. (A.9)

Writing (A.7) withR−1 instead ofR and using the fact that ρ(R−1) = ρ(R)t
and ρ(R−1) = ρ(R)t, we have

D12ρ(R)t = ρ(R)tD12 ∀R. (A.10)

Combining (A.10) with (A.9), we have

ρ(R)tD12D
t
12 = D12D

t
12ρ(R)t ∀R. (A.11)

Then, by Schur’s Lemma (see Kanatani (1990)), there is a constant c ∈ R

such that D12D
t
12 = cI. Thus, either D12 = 0 or 1√

c
D12 is an isometry in

(Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). Note that this cannot be improved
since reading this backwards, we have that (A.4) holds. We denote this
constant c as 2c12(ξ,G).

We have proved that

K ′
12(X12, ξ, G) +K ′

21(X21, ξ, G) = 2c12(ξ,G)Trace(D̄12I
1(ξ1)

−1X12),
(A.12)
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where D̄12 : (Tξ1M1, G1(ξ1))→ (Tξ2M2, G2(ξ2)) is an isometry.

Since for i = 1, 2, we can write

K ′
ii(Xii, ξ, G) = cii(ξ,G)Trace((G

i)−1(ξi)Xii)

= cii(ξ,G)Trace(B
i(ξi)(B

i)t(ξi)Xii)

= cii(ξ,G)Trace((B
i)t(ξi)XiiB

i(ξi))

= Hii(Bi(ξi)
tXiiB

i(ξi), 0, ξ),

whereHii is linear in its first argument (see Proposition 3.6 in Ballester et al.
(2014)), we deduce that cii(ξ,G) does not depend on G. The ellipticity of
F̃ proves that cii(ξ) ≥ 0, i = 1, 2.

We can rewrite (A.1) as

F̃ (X, p, ξ,G) = c11(ξ)Tr((G
1)−1(ξ1)X11) + 2c12(ξ,G)Tr(D̄12I

1(ξ1)
−1X12)

+ c22(ξ)Tr((G
2)−1(ξ2)X22) +K ′′(p, ξ,G),

Let us now prove that K ′′(p, ξ,G) = 0. By (A.3) we have

K ′′(p, ξ,G) = K ′′(Rtp, ξ,G),

for all diagonal rotations as above. Let p = (p1, p2). Then we may write

K ′′(p, ξ,G) = K ′′
1 (p1, ξ, G) +K ′′

2 (p2, ξ, G),

where K ′′
i is linear in pi (ξ,G fixed). Thus, letting p1 = 0 and p2 = 0,

respectively, we deduce

K ′′
i (pi, ξ, G) = K ′′

i (R
t
ipi, ξ, G)

for i = 1, 2. Thus, K ′′
i does not depend on pi, only on its modulus, that is

K ′′
i (pi, ξ, G) = K̄ ′′

i (|pi|(gi)−1 , ξ, G)

for some function K̄ ′′
i .

Let us compute the modulus. Observe that

〈Rtipi, Rtip′i〉 = ((Gi)−1(ξi)R
t
ipi, R

t
ip

′
i) = (Ri(G

i)−1(ξi)R
t
ipi, p

′
i).

From RtiG
i(ξi)Ri = Gi(ξi), we have Ri(G

i)−1(ξi)R
t
i = (Gi)−1(ξi). Thus,

(Ri(G
i)−1(ξi)R

t
ipi, p

′
i) = ((Gi)−1(ξi)pi, p

′
i) = 〈pi, p′i〉.



154 proof of theorem 4.1

Thus, |Rtipi|(gi)−1(ξi) = |pi|(gi)−1(ξi) for any covector pi. Then

2K̄ ′′
i (|pi|(gi)−1(ξi), ξ, G) = K ′′

i (pi, ξ, G) +K ′′
i (−p, ξ,G) = K ′′

i (0, ξ, G) = 0.

Finally, we can rewrite (A.1) as

F̃ (X, ξ,G) = c11(ξ)Tr((G
1)−1(ξ1)X11) + 2c12(ξ,G)Tr(D̄12I

1(ξ1)
−1X12)

+ c22(ξ)Tr((G
2)−1(ξ2)X22).

Therefore, our claim is proved.
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