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Abstract

Most preterm newborns must be admitted to a Neonatal Intensive Care Unit (NICU) where they receive

a specialized medical care, what, in many cases, is crucial for their survival. The acoustic environment of

a typical NICU is highly diverse and may contain a large number of di�erent sounds, which come either

from various biomedical equipment or from human activities taking place in the unit. There exists a

medical concern about the e�ect of that noisy acoustic environment on further growth and neurological

development of preterm infants. The long-term e�ects of a NICU acoustic environment on a preterm

infant could be revealed by the infant short-term reactions to auditory stimuli from it, which can be

investigated by relating the presence of particular sounds with the preterm physiological variables. To

carry out such statistical correlation study that uses the sound identities and their situation in time,

big amounts of labelled audio data are required, which can hardly be obtained without using automatic

detection from audio signals. Furthermore, automatic detection is also required for acoustic monitoring

of the NICU environment to assist the medical sta� in their work.

The major part of this thesis work is devoted to the challenging task of acoustic event detection

in the NICU, where the goal is to develop robust systems able to detect and identify the sounds that

appear in such environment. The detection of the two most relevant types of sounds is targeted in this

work: equipment alarms and vocalizations. Acoustic alarms triggered by biomedical equipment play a

key role in providing healthcare and are extensively present in a NICU environment. Several systems

are proposed and developed in this thesis for automatic detection of particular types of alarm sounds.

They are based on di�erent approaches: a relatively simple signal processing based approach, which

does not require model training; a model based approach that uses knowledge about the spectral and

temporal structure of alarms and includes a speci�c feature extraction scheme; and, �nally, an approach

based on neural networks where the topology of the net is focalized to either a generic or a particular

type of alarm sounds. The other type of considered sounds are vocalizations, a term used to encompass

all sounds produced through a vocal tract. Vocalizations frequently happen in a NICU environment

and may a�ect the preterm baby in various ways. The proposed binary detection system includes a

prior vocalization enhancement step, and several techniques have been investigated for reduction of

non-vocalization sounds. The development of the detection systems has required a design of proper

evaluation metrics and the targeted medical application has been considered for that purpose.
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Abstract

A non-negligible part of the thesis work concerns the audio database acquisition and annotation.

Due to the pioneering character of the application, a whole framework has been generated (in close

collaboration with medical and engineering sta� from the HSJD-Barcelona) for audio database produc-

tion for the NICU environment, including key speci�cations like the recording setup and guidelines, and

the labelling protocol. The produced database contains more than 1.5 hours of recorded audio data,

and the laborious manual annotations cover roughly half of it. Finally, another contribution of this

thesis work consists in an overall exploratory description of the NICU acoustic environment from the

audio recordings. Unlike most previously published works, the whole content of the audio signal has

been analysed, and, besides the usual measurements of sound pressure levels, the types of sounds and

their spectro-temporal properties has been described. Additionally, a set of acoustic scenarios has been

de�ned and described, and a sound taxonomy has been proposed for the NICU acoustic environment.
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Resum

La majoria dels nadons prematurs han de ser ingressats a una Unitat de Cures Intensives Neonatals

(UCIN), on reben l'atenci�o m�edica especialitzada que, en molts casos, �es crucial per a la seva super-

viv�encia. L'entorn ac�ustic d'una UCIN t��pica pot contenir un gran nombre de sons diferents, que

provenen dels diversos equips biom�edics i de les activitats humanes que tenen lloc a la unitat. Existeix

una certa preocupaci�o m�edica per l'efecte d'aquest entorn ac�ustic soroll�os en el creixement i desenvolu-

pament neurol�ogic posterior dels infants prematurs. �Es probable que aquests possibles efectes a llarg

termini de l'ambient ac�ustic d'una UCIN sobre un infant prematur es manifestin en les seves reaccions a

curt termini als est��muls auditius de l'entorn, els quals poden ser investigats relacionant la pres�encia de

sons particulars amb les variables �siol�ogiques del prematur. Per dur a terme aquest estudi de correlaci�o

estad��stica que utilitza les identitats dels sons i les seves ubicacions en el temps, es requereixen grans

quantitats de dades d'�audio etiquetades, que dif��cilment poden ser obtingudes sense l'�us de detecci�o

autom�atica a partir dels senyals d'�audio. D'altra banda, la detecci�o autom�atica tamb�e es requereix en

la monitoritzaci�o ac�ustica de l'entorn de la UCIN per ajudar el personal m�edic en el seu treball.

La major part del treball d'aquesta tesi est�a dedicat a la tasca de detecci�o d'esdeveniments ac�ustics

en la UCIN, on l'objectiu �es desenvolupar sistemes robustos, capa�cos de detectar i identi�car els sons

que apareixen en aquest entorn. En aquest treball es consideren els dos tipus de sons m�es rellevants:

les alarmes d'equips biom�edics i les vocalitzacions. Les alarmes ac�ustiques dels equips tenen un paper

clau en la prestaci�o de l'assist�encia sanit�aria i estan �ampliament presents en l'ambient d'una UCIN.

En aquesta tesi, s'han proposat i desenvolupat diversos sistemes de detecci�o autom�atica dels sons

d'alarmes, que estan basats en diferents enfocaments: un primer enfocament, relativament simple,

basat en el processament de senyals, que no requereix l'entrenament d'un model; un segon enfocament

basat en modelatge, que utilitza coneixement de l'estructura espectral i temporal de les alarmes i

inclou un esquema d'extracci�o de caracter��stiques espec���c; i, �nalment, un enfocament basat en xarxes

neuronals, on la topologia de la xarxa �es, o b�e generica, o b�e focalitzada a un tipus particular de sons

d'alarmes. L'altre tipus de sons considerat �es el de les vocalitzacions, terme que abasta tots els sons

produ��ts a trav�es d'un tracte vocal. Les vocalitzacions ocorren freq�uentment en l'entorn d'una UCIN i

podrien afectar el nad�o prematur de diverses maneres. El sistema de detecci�o bin�aria proposat inclou

un pas previ de millora dels senyals, i s'han investigat diverses t�ecniques per a la reducci�o dels sons que
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Resum

no s�on vocalitzacions. El desenvolupament de tots els sistemes de detecci�o ha requerit el disseny de

m�etriques d'avaluaci�o apropiades i per a aquest prop�osit s'ha tingut en compte l'aplicaci�o m�edica que

es persegueix.

Una part no menyspreable del treball de la tesi consisteix en l'adquisici�o de la base de dades d'�audio

i en el seu etiquetatge. A causa del car�acter pioner de l'aplicaci�o, s'ha generat un protocol sencer (en

estreta col·laboraci�o amb el personal m�edic i d'enginyeria de HSJD-Barcelona) per a la producci�o de

bases de dades d'�audio per a l'entorn d'una UCIN, incloent especi�cacions claus com la con�guraci�o

de la gravaci�o i les directrius i el protocol d'etiquetaci�o. La base de dades produ��da cont�e m�es de 1,5

hores de d'enregistraments d'�audio, i les laborioses anotacions manuals en cobreixen aproximadament la

meitat. Finalment, una altra contribuci�o d'aquesta tesi consisteix en la descripci�o global explorat�oria de

l'ambient ac�ustic de la UCIN a partir de les gravacions d'�audio. A difer�encia de la majoria dels treballs

publicats anteriorment, s'ha analitzat tot el contingut del senyal d'�audio i, a m�es de les mesures usuals

de nivells de pressi�o sonora, s'han descrit els tipus de sons i les seves propietats espectrotemporals. Per

�ultim, s'ha de�nit i descrit un conjunt d'escenaris ac�ustics, i s'ha proposat una taxonomia de sons per

a l'entorn ac�ustic d'una UCIN.
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Chapter 1

Introduction

1.1 Thesis motivation

Newborns delivered at a gestational age of 24-32 weeks (very low birth weight preterms) commonly

have health problems and must be admitted to a Neonatal Intensive Care Unit (NICU), what, in most

of the cases, is crucial for their survival. The increased survival and reduced neonatal morbidity of

preterm infants in the past three decades has not always been accompanied by an improvement in their

neurological development [1]. It is known that the noisy acoustic environment of the NICU may have

adverse e�ects on the growth and neurodevelopment of the preterm infants as inadequate, loud, unex-

pected sounds replace natural hearing placental stimulation [2]. The negative or stressful environmental

impact of NICUs on the developing brain has been widely documented [3�6]. An important negative

e�ect of noise in the NICU is the one it has on sleep, which is essential for neurosensory development,

learning, memory and preservation of brain plasticity [7].

The acoustic environment of a typical NICU is highly diverse and may contain a large number

of sounds coming from numerous sources, such as alarm sounds generated by di�erent biomedical

equipment, noisy mechanical ventilation, telephone ring sound, people conversations, etc [8,9]. Various

acoustic events are usually taking place simultaneously in a NICU and the maximum sound pressure

level limits recommended [10] are exceeded frequently [11], being of a great concern in the medical

literature.

Di�erent ways that have been proposed to deal with this can be divided into two groups. The

major group of methods is aimed at analysing and changing the acoustical environment of a NICU

(for example, by planning a more rational distribution of the wards [12] or controlling and reducing

the activities taking place in it [13]). The other group of methods directly concerns the preterm baby

and implies protecting a baby with special accessories (earmu�s) [14, 15]. But although the prolonged

time of sleep and stress reduction were reported, the e�ect on the physiological variables has not been

completely proved and there is no information about the long-term outcomes. This thesis work, which

consists in analysing the acoustic environment of a preterm baby, is in the scope of the �rst group of
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methods.

The acoustic environment of a preterm baby admitted into a NICU has been the object of a

number of reported studies during the last two decades. These works analyse the environment placing

a microphone both inside [16] and outside the incubator. Usually, sound is represented only by its

intensity level and just a few works weakly analyse sound spectra [9, 17]. Moreover, to our knowledge,

very little studies considered the intensity levels of speci�c sounds [8] or analysed speci�c conditions of

the NICU's acoustic environment [18]. Unlike most previous works, in this work the whole content of

the audio signal is used and an automatic description of the whole sound landscape is pursued.

The short term e�ects of a NICU acoustic environment on a preterm infant could be revealed by

the infant reactions to auditory stimuli from it, which can be investigated by relating the presence

of particular sounds with the preterm physiological variables. Note that in such study the sounds

are not produced arti�cially, but occur naturally in the NICU environment and are the ones actually

perceived by the preterm infant. Such investigation can complement greatly the work already reported

in the literature, in which only the sound pressure level is considered without taking into account the

spectro-temporal properties and identity of sounds (e.g. in [19]).

To carry out a statistical correlation study that uses the sound identities, big amounts of labelled

audio data are required, which can hardly be obtained without using automatic detection from audio

signals. The manual annotation of audio data is usually extremely time consuming and tedious, re-

quires speci�c skills, prone to errors and may be inconsistent when several independent annotators are

involved [20]. A robust detection system may be used to overcome these limitations while keeping the

human-involved labour at a minimum level.

In addition, automatic detection systems may be used for real-time or o�ine acoustic monitor-

ing of the NICU environment. While video monitoring provides valuable information, the automatic

monitoring based on audio information has several advantages: cheaper sensors, lower computational

requirements, avoiding image limitations (e.g. blind spots), etc. [21]. Speci�cally, in the NICU envi-

ronment a lot of distributed cameras would be needed.

Therefore, the major part of this thesis work is devoted to the task of Acoustic Event Detection

(AED), where the main goal is to develop robust systems able to detect and identify the sounds that

appear in the NICU environment. Due to the multisource nature of that environment and the fact that

most sounds are simultaneous, that AED task is rather challenging. In particular, the detection of the

two most represented types of sounds is targeted: equipment alarms and vocalizations.

Equipment alarms, which are extensively present in a NICU environment, are used in biomedical

equipment to alert of situations requiring medical attention. The fact that a large number of sounding

alarms are not clinically relevant and/or are unrelated to emergency situations [22], and also general

noise and information overload may lead to unsatisfactory quality of healthcare provided by the medical

sta�. Intelligent alarming systems are being proposed [22, 23] in order to improve the alarm handling

process in NICUs and reduce noise levels. These solutions make use of alternative alarm modalities and
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usually imply development of a distributed alarm system where all or almost all the medical equipment

is connected to a central monitoring system and medical sta� carries personal noti�cation devices,

whereas only the most critical alarms are sounding. Unfortunately, in the majority of the NICUs smart

alarming solutions are yet to be developed.

Vocalizations, which encompass all sounds produced through a vocal tract either by infant or adult,

are the sounds most frequently happening in a NICU environment and may a�ect a preterm baby [24,25].

For instance, newborns demonstrate a clear preference for the maternal voice [3], which can have a

calming e�ect, while shouts or cries may a�ect them in a negative manner.
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1.2 Thesis objectives

The main objective of this thesis work is the automatic analysis of the acoustic environment of a preterm

infant in a Neonatal Intensive Care Unit (NICU), which can be expressed in terms of several speci�c

objectives which are relevant for the medical application.

I. An overall description of the NICU acoustic environment: existing acoustic scenarios, sound types

and their sources, sound categories, relations between sounds, etc. This is relevant for the medical

application in two senses:

(a) The knowledge of the NICU acoustic environment is required to implement policies for

consistently and substantially reducing the types of noise that may a�ect the newborns.

(b) To design a NICU room with better acoustic characteristics. General principles for designing

a quiet NICU were proposed in [10, 12], yet more studies about the e�ects of various NICU

designs on infants, parents, clinicians and the delivery of services are needed to advance the

�eld of design.

Apart from that, audio data description is a required initial step for any audio classi�cation task

as it helps to explore the data domain.

II. The second objective, which actually is the main one, is detection of some relevant NICU acoustic

events: equipment alarms and vocalizations. The aim of the developed Acoustic Event Detection

(AED) systems is to automatically label temporal regions within the input audio where a partic-

ular sound is present, i.e. to specify the start and end time of each relevant sound occurrence.

This can be useful for two medical application purposes:

(a) To assist the medical sta� in their work and facilitate the reaction to events. For example,

in [13] a sound-activated light device was implemented for alerting the sta� members when

the sound pressure level exceeded a prede�ned threshold. The automatic detection system

can be a part of a more sophisticated noti�cation system allowing smart handling algorithms,

which could be designed to warn about triggering of particular sounds, to take into account

their clinical relevance and urgency, etc.

(b) To detect sounds that may be a�ecting the preterm infant. Sound description obtained

from AED systems can be correlated with the preterm physiological variables in order to

investigate how a preterm infant reacts to the sounds that take place in a NICU.

III. The acquisition and annotation of an audio database is required in order to meet the above

mentioned objectives. The produced database, that captures the NICU environment in various

conditions, is important both for performing its acoustic description and for developing automatic

detection systems for the relevant types of sounds. Due to the pioneering character of this work,

a general framework of the database production for the NICU environment has to be designed,

which includes specifying the recording setup (equipment, conditions, timetable, guidelines, etc.),

the considered acoustic scenarios and the labelling protocol.
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1.3 Thesis outline

The thesis is organized as follows.

Chapter 2 starts with reviewing the work already reported in the literature about the analysis of

the acoustic environment of a preterm in a NICU. It then presents a literature review for AED from

a point of view of possible applications, further discussing the state of the art approaches to feature

extraction, classi�cation algorithms, audio enhancement and source separation techniques that have

been used for AED so far.

Chapter 3 reports our work on the audio database acquisition and annotation, where we provide

details of the recording setup, specify the selected acoustic scenarios and describe the recording sessions

carried out. Also, in this chapter we outline the annotation campaign progress, de�ne the labelling

protocol and give information about the produced annotations.

Chapter 4 contains the results of acoustic description of the NICU environment, where we provide

an extensive list of acoustic events found in that environment, structure them into acoustically homo-

geneous groups by building a taxonomy and present the analysis of the major types of sounds. Also,

the considered acoustic scenarios are characterized.

Chapter 5 and Chapter 6 describe our work on the automatic detection systems for two types

of sounds that are the most represented ones in a NICU environment: alarms and vocalizations. In

Chapter 5 several systems for automatic detection of equipment alarm sounds are proposed, which deal

with the problem from three di�erent perspectives: a signal processing based approach, a knowledge-

based approach that employs machine learning, and an approach based on neural networks. Chapter 6

presents our work on an automatic system for detection of vocalization sounds. The focus is put on

reducing the presence of irrelevant sounds prior to detection, and so several techniques for vocalizations

enhancement are investigated.

Finally, Chapter 7 concludes the work. The main achievements are summarised and several promis-

ing directions for future work are highlighted in this chapter.
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Chapter 2

Literature review

2.1 Chapter overview

In this chapter, the work done so far on the acoustic description of a Neonatal Intensive Care Unit

(NICU) environment and in the area of Acoustic Event Detection (AED) is reviewed.

The sections of this chapter are organized as follows. Section 2.2 describes the work already reported

on analysis of the acoustic environment of a NICU. Section 2.3 presents the AED task. The review of the

state-of-the-art approaches in areas of feature extraction, classi�cation algorithms, audio enhancement

and source separation is provided in Sections 2.4, 2.5 and 2.6, respectively.
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2.2 Acoustic analysis of a NICU environment

The acoustic environment of a NICU and its e�ects on preterm infants have been extensively studied

during the last two decades, where the research works mainly concerned describing a NICU acoustic

environment and its major sound sources, looking for possible solutions for reducing the noise levels

within a NICU and evaluating their e�ectiveness, �nding the potential adverse e�ects of the NICU

acoustic environment on preterm babies, and studying the impact of the NICU design on well-being of

neonates.

The common approach to the description of a NICU acoustic environment lies in measuring the

Sound Pressure Levels (SPLs) with the microphone placed in the central location of the room [26].

In some works, like in [27], the microphone is placed inside the incubator, at some distance from

the infant's ear, so as to measure what the preterm infant is perceiving. The average noise levels

measured in di�erent conditions (e.g. during day and night shifts) are reported and compared with the

recommendations of the American Academy of Pediatrics [6]. The SPL values are usually presented in

dBA units. For that purposes, the A-weighting is �rst applied to modify the audio signal spectrum,

modelling the spectral response of the human auditory system, as was done, for example, in [11, 17].

Such studies usually describe the typical sound sources, which could contribute to high SPL values,

and propose a potential solutions for reducing the noise levels within a NICU [28].

Attempts on characterizing the sound levels of particular sound sources have been reported in the

literature. For instance, in [8] the noise level increment due to the most frequent types of sounds,

like phone ring, alarms, speech, baby crying, is analysed. The measurements were made with the

microphones placed both inside (1 cm near the newborn's ear) and outside (at around 50cm distance)

the incubator, and also the background SPLs were measured at a central location in the middle of the

unit room.

To our knowledge, few works analysed the sound spectra. In [9] the spectral analysis of the noise

generated by individual equipment and activities is performed, where the SPLs across the frequency

spectrum are analysed. Similar work, which concentrated on investigating the major sound sources

within an incubator (incubator cooling fan and ventilator), is reported in [17]. In this work, the SPLs,

measured during the routine morning clinical activity close to a dummy infant's ear and at the head level

outside the incubator, are analysed at di�erent frequencies and their cumulative values are reported.

In [5] an overview of studies looking for potential adverse e�ects of the noisy NICU acoustic envi-

ronment on cardiovascular, auditory, nervous systems and on long-term neurodevelopment of preterm

infants is given. The problem of validity and reliability of such studies is discussed in [29], where

the authors provide clear criteria for research evaluation and identify possible study design problems.

In particular, the importance of measuring SPLs at the infant's ear or a speci�c distance from it is

emphasized.

In [24] the importance of the positive early auditory experience for the development of the preterm
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infants is described. The appropriate auditory input and careful protection against overstimulation

while the stay of a neonate in the NICU are emphasized. Among the proposed recommendations

are playing the mother's voice inside the incubator and introducing vocal music (such as lullabies).

In [30] the e�ects of music therapy (recorded music, parent voices, sung lullabies) on physiological

variables, sleep and feeding of preterm infants were explored. The study reported in [31] revealed that

the controlled music stimulation appears to be a safe and e�ective way to ameliorate pain and stress

in premature infants following heel sticks. On the other hand, the problem of feasibility and safety

of producing the maternal sounds (i.e. voice, heartbeat) inside the incubator with the preterm baby

was addressed in [32]. In [25] the acoustic environment of a preterm infant cared for in the NICU

was explored in order to determine the in�uence of the parent's speech on the number of preterm

infant vocalizations over time. For that purpose, the counts of adult words, infant vocalizations and

conversational turns were related.

Due to the excessive noise levels reported in the literature [11, 33], some studies concentrated on

optimizing the hospital environment for preterm newborns. The main purpose of these works is to

ameliorate the negative e�ects of noxious stimuli and to decrease unfavourable auditory stimulation

to a minimum. For instance, in [22] the authors focused on investigating the ways of reducing the

noise levels and the number of sounds to which the newborns are exposed by improving the alarms

handling process, which could be done by introducing technological and organizational changes. In [13]

the e�cacy of the speci�cally designed light-alarm device for reducing the sta�-produced noise in a

NICU was studied. The device was activated when the sound levels exceeded a threshold in order to

notify sta� of it.

Various studies have evaluated the impact of the NICU design on preterm infants. In particular,

the literature review reported in [34] explores the main features of the NICU design and links a range of

aspects of the physical environment of NICU to well-being of neonates, family comfort and caregiving

process. The study reported recently in [35] investigates the relationship between the NICU room type

and the primary outcome of neurodevelopmental performance at the age of 2 years.

Advancing methods in medical practice often require new healthcare facilities or improvements of

the existing ones. The study reported in [18] compares the sound levels, sta� perceptions and patient

outcomes before, during and after the renovation project taking place near the NICU. In [36] the noise

levels before and after the structural reconstruction within a NICU were compared. In this study,

authors divide all the sound sources within a NICU into two groups: 1) operational (sta� or equipment

generated sounds); 2) structural (building generated sounds).

2.3 Acoustic event detection in real-world environments

A real-world acoustic environment represents a complex scenario, and is characterized by a huge number

of sound sources, occuring spontaneously and possibly overlapping, along with di�erent combinations

9



2.3. Acoustic event detection in real-world environments

of their positions. Depending on the enviromnent, the types of sounds that may be encountered spread

from natural ambient sounds, through sounds produced by humans and animals, to arti�cial sounds

coming from machines and equipment. The human activity in such environments is re�ected in a rich

variety of sounds, produced by a human body or by objects handled by humans. All these sounds are

connected to a wide variety of objects, actions, events, and communications, thus an acoustic environ-

ment is a rich source of information on the types of activities, participants involved, and communication

modes.

While speech is, obviously, the most informative sound, other kinds of sounds may also provide useful

cues for context understanding. For instance, in a meeting/lecture context, we may associate a chair

moving or door noise to its start or end, cup clinking to a co�ee break, or footsteps to somebody entering

or leaving. Furthermore, some of these acoustic events are tightly coupled with human behaviors or

psychological states: paper wrapping may denote tension; laughing, cheerfulness; yawning in the middle

of a lecture, boredom; keyboard typing, distraction from the main activity in a meeting; and clapping

during a speech, approval.

Generally, the term acoustic event or sound event refers to a label that people would use to describe

a recognizable event in a region of audio [37]. More speci�cally, as it is said in [38], it is �any possible

audible acoustic event which is caused by motions in the ordinary human environment; they have real

events as their sources; they are meaningful, in the sense that they specify events in the environment

(...)�. Hence, acoustic events can be used to represent an acoustic environment in a symbolic way, e.g.,

a busy street environment contains events of passing cars, car horns, or footsteps of people rushing.

AED is a discipline belonging to the area of the computational auditory scene analysis [39] that

consists of processing acoustic signals and converting them into symbolic descriptions corresponding

to a human listener's perception of the di�erent sound events that are present in the signals and their

sources. While acoustic event classi�cation deals with events that have already been isolated from their

temporal context, acoustic event detection aims at determining both the temporal positions and the

identities of sounds in a continuous audio stream. So far, acoustic event detection and classi�cation

has been found useful in manifold applications, like surveillance [21,40], ambient assisted living [41,42],

robotics [43], information indexing and retrieval [44,45], to list a few.

From a semantic point of view, AED has been addressed for recognition of generic sounds and

sounds speci�c to a given environment or activity. For instance, in [46] the problem of detecting

alarm sounds was investigated, where such alarms as phone rings, smoke alarms, sirens, car/truck

horns were considered. Detection of acoustic events has been carried out in di�erent environments like

living environments [47,48], kitchen rooms [49], bathrooms [50], public places [51], o�ces [52], meeting

rooms [53], industrial workplaces [54], etc. It has been showed, that AED systems can bene�t from the

incorporation of the context-related information, like count-based event priors and context-dependent

acoustic models [37].

While considerable e�ort has been devoted to speech and music related research, the AED task has
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been far less studied. Nevertheless, there exists an increasing interest in this topic and several interna-

tional e�orts to evaluate systems designed to recognize acoustic events have already been conducted.

In the framework of CLassi�cation of Events, Activities and Relationships (CLEAR) campaigns in

2006 [55] and 2007 [56] the participating systems were evaluated on the set of acoustic event classes

speci�c to a meeting-room environment. During the IEEE AASP Challenge on Detection and Classi�-

cation of Acoustic Scenes and Events (D-CASE) in 2013 [52] the problem of detecting acoustic events

in an o�ce enviromnent was addressed.

2.4 Audio feature extraction

Numerous studies have been devoted to the topic of audio feature extraction, and audio features pro-

posed in the literature can be roughly divided into three categories:

• Time-domain features are computed directly from the audio waveforms. Features like frame

energy, zero-crossing rate,high zero-crossing rate [57] comprise this category.

• Frequency-domain features are derived from the Fourier transform of the time signal over a �xed

time period, e.g. frame. This category contains such features as fundamental frequency [58],

spectral centroid, spectral �ux [43, 59], spectral rollo� [57], spectral tilt [60], �lter-bank energies

[61], etc.

• Time-frequency or spectro-temporal features operate in time and frequency domain jointly. Some

variants of those features will be discussed later in this section.

Depending on the time span considered the features can be regarded as short-term (frame-level)

or long-term (segment-level). The frame-level features are usually designed to capture the short-term

characteristics of the audio signal, where the signal can be considered stationary. The concept of

the audio frame comes from traditional speech signal processing, where analysis over a short time

interval has been found to be appropriate. To extract the semantic content, the temporal variation or

evolution of signal is observed on a longer time scale. This consideration has lead to the development

of various segment-level features. The segment duration, in this case, may span up to several seconds.

For example, these features can be built on top of the frame-level features and characterize how they

are changing over a segment with some kind of statistics, e.g. bag-of-frames approach [62] or factor

analysis [63]. It is worth mentioning that the temporal evolution of the audio signal could be captured

on the model level, for instance, by Hidden Markov Models (HMMs).

In [64] the authors model the temporal context by employing convolutive Non-negative Matrix

Factorization (NMF) for feature extraction. NMF is used for discovering a set of spectro-temporal

patches which roughly correspond to the acoustic events considered, and the features are derived from

the activations of this patches in time.

As a common approach, audio signals have been often characterized with the conventional well

investigated features for Automatic Speech Recognition (ASR), like Mel-Frequency Cepstral Coe�cients
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(MFCC) features [65], Frequency Filtered Logarithm Filter Bank Energies (FF-LFBE) [66] or linear

prediction coe�cients. Usually, these features are combined with the speci�c features designed for a

particular application [43, 64], and in most of the cases this leads to a better recognition accuracy.

The temporal evolution of the above mentioned features may be incorporated by adding duration

and dynamics features. In the later case, usually the �rst and the second temporal derivatives are

used [67,68].

Several techniques, that have been proposed for describing the temporal dynamics of audio signal,

work in a modulation frequency domain [69,70]. Generally, these techniques divide the audio signal to a

set of sub-bands and derive the sub-band amplitude modulation envelopes, which are further converted

to a modulation frequency domain. Conversely, in [70] the modulation features are obtained by means

of a frequency-domain linear prediction, that provides an approximation of the temporal (Hilbert)

envelope of the time domain signal.

In [71] authors explored the use of recurrence quanti�cation analysis for providing additional infor-

mation about the temporal evolution of audio. In particular, it was applied for the characterization of

environmental sounds. The features based on that analysis do not require assumptions about linearity

or stationarity of the time series, and are extracted from the frame-level spectral audio features (namely,

MFCC features).

Many research works on audio feature extraction aimed at emulating human audio perception

mechanism in order to achieve human-like performance. These approaches try to model functioning of

the human auditory system, have similar structures as the human auditory pathway, yielding so-called

perceptual psychoacoustic features.

In the Perceptual Linear Prediction (PLP) technique [72], the short-term spectrum of the speech is

modi�ed by several psychophysically based transformations, which make use of the three concepts from

the psychophysics of hearing to derive an estimate of the auditory spectrum: the critical-bands spectral

resolution, the equal-loudness curve, and the intensity-loudness power law. This feature extraction

technique is widely used in speech recognition systems.

The author in [73] proposes an approach to feature extraction which utilizes two-dimensional

spectro-temporal modulation �lters (Gabor functions). The use of two-dimensional Gabor �lters is

motivated by their similarity to the spectro-temporal patterns of neurons in the auditory cortex of

mammals, reported in physiological and psychoacoustic studies. The resultant feature vector size is

relatively large (more than 2000).

In [43] the authors propose to use the matching pursuit algorithm to obtain time-frequency features.

The matching pursuit based method utilizes a dictionary of spectro-temporal Gabor atoms to select

features. The results showed that this approach is promising in capturing unstructured environmental

sounds, while traditionally used MFCC features may fail to e�ectively model them.

In [74] the audio signal is passed through a pole-zero �lter cascade (a time-varying �lterbank) to

simulate the output of the inner hair cells along the length of the cochlea. In [75] author proposes to �rst
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modify the signal spectrum by means of an A-weighting �lter, which models the spectral response the

human auditory system. In that work the use Gammatone �lterbank is also explored, which provides

a good approximation to experimentally determined spectral responses of the basilar membrane in

cochlea.

Instead of using the Fourier transform which results in a constant time-frequency resolution, some

works on feature extraction employed the wavelet transform [47, 75]. It provides better frequency

resolution at low frequencies and better time localization of the transient phenomena in the time

domain. In that respect it resembles the �rst stage of human auditory perception and to basilar

membrane excitation which exhibits similar time-frequency resolution characteristics.

Because of the large number of possible features some studies focused on elaborating feature selection

techniques [76]. The feature selection is traditionally motivated by three main reasons [68]: performance

improvement; general data reduction, to limit storage requirements and increase algorithm speed; and

feature understanding, to gain knowledge about the process that generated the data. There are a

lot of di�erent feature selection algorithms reported in the literature. In [77] signi�cant feature space

reduction was obtained by applying Principal Component Analysis (PCA) in each frequency sub-band.

In [68] a fast one-pass-training technique was introduced in the context of a multimodal AED, resulting

in an optimal feature subset for each acoustic event class.

2.5 Classi�cation algorithms

Any recognition task requires a classi�cation step, on which the features are fed to a classi�er that

provides a label for an unseen input pattern.

One of the very �rst works on audio classi�cation used a minimum distance classi�cation model,

i.e. a simple distance-based classi�er with the Euclidean distance between extracted features [78]. The

minimum distance classi�ers choose a class according to the closest training sample. A bit more complex

algorithms determine k-nearest neighbors to an unknown input, and then they choose the class that is

most represented by that neighbors [43]. Yet, classi�cation becomes very complex when a lot of training

data is used as one must measure a distance to all the training samples. By using clustering and storing

only the centres of the clusters (class prototypes) the computational e�ciency can be improved. The

mentioned algorithms and other related optimization steps for audio classi�cation have been reviewed

in [49,51].

A rule-based classi�cation algorithm, that is based on a good task domain knowledge, has been

used in [58]. In that work, several simple task-speci�c features were put to work with a set of heuristic

classi�cation rules to ensure the feasibility of real-time processing. In [54] the detection algorithm

applies decision rules to zero-crossing rate of the autocorrelation of the signal envelope for detecting

alarms in industrial environments, where the real-time detection with low latency is crucial for notifying

the user of a dangerous situation.
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Among other classi�cation paradigms, a way to classify audio data consists in using already devel-

oped and well-tested speech recognition algorithms. In ASR, usually Gaussian Mixture Models (GMMs)

and Hidden Markov Models (HMMs) are used [79]. They are well suited to work with time series data,

and to deal with the information included in the temporal evolution of the audio signal. A lot of audio

recognition works have exploited the above-mentioned techniques. For instance, GMMs have been used

in [57,65], and HMMs in [21,41,63,70]. Instead of using generative classi�cation models, discriminative

ones, like arti�cial neural networks in [46,48] or Support Vector Machiness (SVMs) in [45,59,67], have

been used in a number of works.

Recently, deep learning has been drawing a lot of interest in the pattern recognition �eld [80],

dramatically improving the state-of-the-art in image, audio, and speech processing areas [61, 81, 82].

For instance, the combinations of Deep Neural Networks (DNNs) and HMMs (the so-called hybrid

approach) applied to speech recognition tasks are able to achieve signi�cantly higher accuracies than

the conventional GMM-HMM classi�ers in [83, 84]. Among the main factors responsible for the recent

emergence of DNNs are the possibility of initializing the weights sensibly, which results in a very

e�cient learning algorithm [85], and the dramatic improvement of computing power, which makes it

feasible to train DNNs e�ectively. Commonly, the network weights are initialized by unsupervised

generative training, then, by adding a top label layer and using a standard backpropagation algorithm,

the generative network is converted to a discriminative one and, therefore, becomes appropriate for

classi�cation tasks [83] (see Section 2.5.1 for more details).

A large variety of DNN architectures have been proposed in the literature. Typically DNNs are

designed as feedforward networks, but other variants like recurrent neural networks (and, in particular,

Long Short-Term Memory networks (LSTMs)) [86] and Convolutional Neural Networks (CNNs) [87,88]

have been successfully applied to audio and speech processing tasks. In [89] the three types of networks

(namely, DNNs, LSTMs and CNNs) are combined in a uni�ed architecture and trained jointly, thus,

the complementarity in their modelling capabilities is exploited.

Deep learning requires very little engineering by hand and can easily take advantage of increases in

the amount of available computational power and data [80]. The powerful learning procedures allow

DNNs to handle correlations between input features, and it has been shown that for the ASR task

they work signi�cantly better on �lterbank outputs than on standard MFCC features [90]. Moreover,

attempts on directly modelling a raw waveform have been reported in the literature [91], although such

systems have not yet outperformed the ones employing �lterbank features.

In [92] the feature extraction is integrated in a DNN, and mel-scale �lterbank is replaced by the

�lterbank layer, which is trained jointly with the rest of the network. It is argued that the standard

perceptually motivated �lterbank may not be particularly optimal for the ASR task, and letting the

network learn appropriate feature extraction and discrimination is much more powerful. Both feature

extraction and acoustic modelling are performed jointly by a DNN in [93] for the voice activity detection

task, where the standard PLP features are approximated by a neural network.
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Unlike the binary classi�cation algorithms, where the decision is taken between two classes, the

multiclass classi�ers can deal with several classes. Some classi�cation algorithms, like neural networks,

k-nearest neighbors, HMMs, naturally permit the use of more than two classes. Yet, a combination of

several binary classi�ers can be used to solve a given multiclass problem [94]. Among the commonly

used strategies are: one-against-all, where for each class a classi�er which distinguishes that class from

all other classes is trained; one-against-one, where the classi�er is trained for every pair of classes and

the decision is taken by voting. In [95] a hierarchical architecture for a group of binary classi�ers was

proposed for audio segmentation task, where each classi�er is responsible for detecting the class of

interest and posterior classi�ers bene�t from the previous classi�er decision.

A post-processing (smoothing) is commonly applied to yield longer contiguous segments of classes

of interest, which corresponds to de-noising the classi�cation output. In [57] for the speech / non-speech

segmentation system a post-processing of GMMs and maximum entropy classi�er outputs is performed

by using an ergodic HMM, which has two states (�speech� and �non-speech�) and equal transition cost

in either direction. There is no cost for remaining in the same state, what creates a smoothing e�ect

by discouraging state changes. In [96] the authors employed convolutive NMF to force grouping of

SVMs outputs into events. The proposed approach is reported to yield better results compared to the

traditional �winner-takes-all� strategy, where the whole audio segment is assigned to a class to which

the majority of the classi�er outputs in that segment belong. In [67] the hypothesized sequence is

smoothed by assigning to the current decision point the label that is the most frequent in a string of

�ve decision points around the current one.

2.5.1 Neural network based pre-training

Deep Belief Networks (DBNs) are originally probabilistic generative models with multiple layers of

stochastic hidden units above a layer of visible variables which represent an input vector (e.g., see Figure

2.1). There is an e�cient greedy layer-wise algorithm for learning DBNs [85]. The algorithm treats

every two adjacent layers as a Restricted Boltzmann Machine (RBM) network, which is constructed

from a layer of binary stochastic hidden units and a layer of stochastic visible units. The output of

each RBM is considered as the input to the next RBM.

v

h

(a)

v

h

o

(b)

Figure 2.1: (a) Generative one-layer DBN structure and (b) whole NN structure used in the

experiments.
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Training an RBM is based on an approximated version of the contrastive divergence algorithm

[82, 85] which consists of three steps. At �rst, hidden states (h) are computed given visible states (v);

then, using those h, v is reconstructed; and, on the third step, h is updated, given the reconstructed

v. Finally, the change of connection weights is given as follows,

∆wij ≈ −α (〈vihj〉data − 〈vihj〉recon) , (2.1)

where α is the learning rate, wij represents the connection weight between the visible unit i and the

hidden unit j, 〈.〉data and 〈.〉recon denote the expectations when the hidden state values are driven

respectively from the input visible data and the reconstructed data.

In fact, the training process tries to minimize the reconstruction error between the actual input data

and the reconstructed one. The parameter updating process is iterated until the algorithm converges.

Each iteration is called an epoch. It is possible to perform the parameter update after processing each

training example, but it is often more e�cient to divide the whole input data (batch) into smaller

size batches (minibatch) and to do the parameter update after each minibatch. More theoretical and

practical details can be found in [82,85,97].

When the unsupervised learning is �nished, it can be converted to a discriminative model by adding a

label layer (o) on top of the network and doing a supervised backpropagation training. In other words,

the unsupervised learning can be considered as a pre-training for the supervised stage. It has been

shown [85] that this unsupervised pre-training can set the weights of the network to be closer to a good

solution than random initialization and, therefore, avoids local minima when using supervised gradient

descent.

In this work, a Gaussian-Bernoulli RBM [97, 98] is employed as the �rst RBM. The input vectors

are mean-variance normalized before being fed to the network; the mean and variance values calculated

on the training data are also applied to the testing data. The training data is balanced with regards

to classes by randomly selecting samples of the predominant class.

2.6 Audio enhancement and source separation

Like in other audio processing areas, acoustic event detection or classi�cation in mismatched conditions

is a very challenging task, and the recognition systems are known to deteriorate in the presence of

background noise. Audio enhancement techniques deal with this problem by denoising the signal so

that the extracted features are closer to the training conditions. The typical techniques include spectral

subtraction (see Section 2.6.1) and Wiener �ltering [99].

In rich uncontrolled multisource environments AED systems undergo the problem of temporal over-

lappings between events, which makes the recognition problem more challenging. One of the possible

solutions to the overlapping problem is employing source separation at the front end of the system,

which allows to segregate the desired source from the other interfering sources or noise. Source separa-
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tion techniques can be broadly classi�ed into two categories:

1. Array processing based separation that exploits the information about the positions and orien-

tations of the sources and sensors [100, 101]. In [101] although the partial source separation is

achieved by employing null-stearing beamformers, the signals obtained after it are used for joined

classi�cation and localization of acoustic events.

2. Blind Source Separation (BSS), which separate the signal with or without the aid of the informa-

tion about the source signals or mixing process [102].

It should be mentioned that in a multi-microphone setup a channel selection technique may be

applied for selecting the signal with the highest quality, which may be either the intrinsic quality of a

given signal or how well it �ts the acoustic models of the recognition system. Several such signal-based

and decoder-based techniques have been proposed in [103] in the context of an ASR task.

Many di�erent approaches of source separation have been attempted by numerous researchers using

arti�cial learning, higher order statistics, minimum mutual information, beamforming based adaptive

signal separation and noise cancellations, each claiming various degrees of success. Among the most well-

known BSS techniques are PCA, Independent Component Analysis (ICA), NMF, de�ation approach

and singular value decomposition.

In particular, PCA is a second order statistical method that decorrelates the data and reduces the

dimensionality of the problem, but does not achieve full independence [104]. Moreover, it generally

results in variables that are hard to interpret. On the other hand, ICA [105] has the capacity to make

the signals fully independent, since it is a higher order statistical method. The combination of both

PCA and ICA is used for BSS in [106], where initially the dimensionality of the problem is reduced

using PCA, thus making it easier for the ICA algorithm to solve it. In [107] the de�ation method was

proposed, which consists in iteratively extracting the sources one after the other. The main advantage

of this method lies in the fact that the contrast function does not present any spurious local maximum.

Among the popular techniques applied in the noisy or overlapped audio recognition, NMF-based

are the ones that have recently received the most interest in the literature. NMF (see Section 2.6.2) in

its basic form was �rst presented in [108], where it was applied for learning parts-based representation

of face images and for automatic semantic indexing of encyclopedia articles by topic. Since then it has

proven to be useful in many pattern recognition areas [109�111], and in particular in audio processing,

and various algorithm enhancements were prosoposed [112]. Both single-microphone [113] and multi-

microphone versions of NMF have been widely investigated [114].

In [115] the convolutive NMF version is introduced, which takes into account the dependencies

between successive columns of the input matrix. In audio spectrum analysis such dependencies across

columns correspond to the time-frequency representations or patterns. Further inclusion of the sparse-

ness constraint on the activation patterns [116] enables the discovery of the over-complete representa-

tions.

In [113] an AED system for the natural multisource environments which uses a sound source sepa-
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ration front-end is described. The audio is pre-processed using an unsupervised NMF-based algorithm,

which is capable of separating up to four individual streams from the overlapping events audio, where

each of the streams corresponds to a combination of the physical sources present in the original signal.

This work was further continued in [117], where the problem of �nding the separated stream which con-

tains the targeted source is solved using two iterative approaches based on the expectation-maximization

algorithm.

In [118] the exemplar-based sparse representations are used for the noise robust ASR. The noisy

speech is modeled by a sparse linear combination of speech and noise exemplars, which are, correspond-

ingly, the examples of clean speech and noise segments spanning multiple time frames. In this work,

the exemplar-based approach is used as a source separation technique in order to do missing data mask

estimation and feature enhancement. The hybrid exemplar-based/HMM method called sparce classi�-

cation is employed, where the calculation of the likelihoods of HMM states is based on the activations

of exemplars.

Probabilistic latent component analysis (PLCA), which is numerically equivalent to NMF, is pre-

sented in [119] for the separation of multiple speakers from mixed single-channel recordings. Unlike

NMF, the probabilistic decomposition naturally extends from matrices to tensors of arbitrary dimen-

sions [120]. Due to the possibility of statistical interpretation, it can be easily extended or generalized,

to allow, for example, overcomplete sparse representations, invariance to transformations, etc. The use

of PLCA in several audio-related applications such as feature extraction, source recognition, source

separation and denoising is described in [121].

2.6.1 Spectral subtraction and minima-controlled recursive-averaging algorithm

Spectral Subtraction (SS) algorithm is the classical tool used for audio denoising where an additive

model is assumed, i.e. the noise-corrupted input signal y(t) is composed of the clean signal x(t) and

the additive noise signal d(t), that is y(t) = x(t) + d(t). Then, the clean signal spectrum X̂(t, k) can

be estimated by subtracting an estimate of the noise spectrum D̂(t, k) from the noisy signal spectrum

Ŷ (t, k) as follow [122]:

|X̂(t, k)|γ =

|Ŷ (t, k)|γ − α|D̂(t, k)|γ , if |Ŷ (t, k)|γ > (α+ β)|D̂(t, k)|γ

β|D̂(t, k)|γ , otherwise
(2.2)

where t and k are, correspondingly, the frame and the frequency bin index, γ = 1 yields magnitude

and γ = 2 yields power spectrum subtraction, α is the subtraction factor, which controls the amount

of noise to be subtracted, and 0 < β � 1 is the spectral �oor parameter, which controls the amount

of the residual and perceived musical noise. This approach is referred to as SS using oversubtraction

(because usually α ≥ 1) [99].

The use of a proper noise estimate D̂(t, k) is crucial for the quality of the enhanced signal. Often,

it is obtained once from the �rst frames of the input audio. Alternatively, the noise estimate can be
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obtained and updated along the input signal, taking into account the probability of speech presence.

In the Minima-Controlled Recursive-Averaging (MCRA) algorithm [99], employed in this work, an

estimate of the noise power spectrum is obtained recursively as follows:

|D̂(t, k)|γ = αd(t, k)|D̂(t− 1, k)|γ + (1− αd(t, k))|Ŷ (t, k)|γ , (2.3)

where αd(t, k) is a smoothing factor de�ned as

αd(t, k) = α+ (1− α)p(t, k). (2.4)

Here, p(t, k) is the speech-presence probability which is calculated using the ratio of the smoothed noisy

signal spectrum to its local minimum. The smoothed noisy spectrum S(t, k) is obtained as follows:

S(t, k) = αsS(t− 1, k) + (1− αs)
Lw∑

i=−Lw

w(i)|Ŷ (t, k − i)|γ , (2.5)

where αs is a time smoothing factor, and the second term represents smoothing over frequency with

the Hamming windowing function w(i) and a window of length 2Lw +1. The local minimum Smin(t, k)

is found via samplewise comparison of S(t, k) in the previous D frames. The ratio S(t, k)/Smin(t, k)

is compared to a threshold δ yielding a binary speech-presence probability estimate p̄(t, k), which is

further smoothed over time with a smoothing factor αp as

p(t, k) = αpp̄(t− 1, k) + (1− αp)p̄(t, k). (2.6)

After computing the smoothed speech-presence probability p(t, k), the time-frequency-dependent

factor αd(t, k) is calculated using Equation 2.4, and the noise spectrum estimate is updated using

Equation 2.3.

2.6.2 Non-negative matrix factorization

Non-negative Matrix Factorization (NMF) is a linear decomposition technique that attempts to ap-

proximate an input non-negative matrix V as a product of two non-negative matrices, i.e.

VF×T ≈WF×R ·HR×T , (2.7)

where R ≤ F controls the rank of the approximation. In audio signal processing, NMF is typically

applied to the magnitude spectrogram of the signal, and F and T correspond to the number of frequency

bins and number of frames, respectively. The columns of W are usually referred to as bases, and the

rows of H are their corresponding weights or activations in time.

The problem of minimizing the divergence between the input matrix and its approximation needs

to be solved:

arg min
W,H

D(V ||WH) + λ|H|1 W,H ≥ 0 (2.8)
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where D is a cost function (in this work, the Kullback-Leibler divergence), and the parameter λ ≥ 0

is used to impose a sparsity constraint on the activations, thus favouring solutions with fewer bases

activated at a given time.

In the supervised NMF approach the bases matrix is trained beforehand on the training data. In the

general case, when S sound sources are considered, a bases matrix is trained for each source separately

and a global bases matrix is constructed via concatenation Wtrain = [W1; ...;WS ]. At the source

separation step the bases matrix is �xed and only the activations matrix is estimated H = [H1; ...;HS ].
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2.7 Chapter summary

In this chapter, the task of AED in real-world environments was discussed, and the state of the art, in

particular of feature extraction, classi�cation algorithms, source separation techniques, in the wider area

of audio recognition was reviewed. Also, the work already done in analysis of the acoustic environment

of a preterm in a NICU was presented.
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Chapter 3

Database acquisition and annotation

3.1 Chapter overview

This chapter contains the description of how the database used in this thesis work was produced.

In Section 3.2 we provide details of the recording setup, specify the selected acoustic scenarios and

describe the recording sessions carried out. In Section 3.3 the protocol used for audio data annotation is

de�ned and in Section 3.4 information about the produced labelling is given. Since several independent

annotators were involved in the annotation campaign, in Section 3.4 we also provide a rough estimation

of consistency of the acquired labels.
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3.2 Audio data acquisition: recording setup, sessions and scenarios

The acoustic analysis and the experimental evaluations presented in this thesis were performed using

the real-world audio recordings made in the Neonatal Intensive Care Unit (NICU) of Hospital Sant

Joan de D�eu. It is a level III NICU that accommodates 42 places. In particular, the recordings were

carried out in a room designated for intensive care of very preterm newborns, i.e. the ones born before

32 weeks of gestation. It is a rectangular room equipped with 4 incubators (see Figure 3.1), which

covers an area of 35 m2 and is attended by two nurses 24 hours a day. The room is limited on top by

a corridor for the medical sta� passage with the door depicted in Figure 3.1 at the top left corner; the

bottom wall isolates from the hall; the left wall is the border with another NICU room; and the right

part of the room is open, adjoining the nursing station and the door for the family members entrance.

4
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3

Incubator

Chair

Sink

Pilar

Table

Door

Telephone

Figure 3.1: The layout of the NICU room with the four positions of the incubators and other equipment

The whole set of recordings includes 18 recording sessions that capture the NICU environment in

di�erent scenarios. Only 10 sessions were included in the database for consistency reasons; the other

8 sessions had either exploratory character or did not follow the recording protocol completely. The

information about all the carried out recording sessions can be found in Appendix A. It should be

mentioned that another database of continuous acoustic environment recordings (that also includes

video recordings of the cardiorespiratory monitor screen) was recorded, but not annotated. The details

of that database are given in Appendix B.

Table 3.1 provides information about the ten recording sessions included in the database used in

this work, which were carried out both in the morning and in the afternoon. The overall duration of

the acquired audio data is 108.7 minutes. In each recording session the incubator position was chosen
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under the following conditions:

1) The preterm infant did not have any malformations at the time of birth and was at least one

week old.

2) The preterm infant was clinically stable (without infections or cardiorespiratory instability), did

not need mechanical ventilation and was not given medications depressing the nervous system.

3) The consent of the preterm's parents for audio acquisition was obtained.

Table 3.1: Information about the recording sessions included in the database

Part of the day Session code Time Incubator Duration (s)

Morning

RS4 13.00 1 481.28

RS11 09.25 4 1030.9

RS12 13.00 3 581.87

RS15 09.05 4 659.76

RS16 09.15 4 804.03

Afternoon

RS3 15.30 3 587.16

RS13 17.10 2 683.58

RS14 17.25 4 918.19

RS17 17.00 3 658.63

RS18 17.20 2 429.03

Two electret unidirectional microphones connected to the Olympus LS-5 Linear PCM Recorder

were used to make recordings. One microphone was placed inside the incubator, close to the infant's

ear, and the other one outside the incubator, at approximatively 50 cm distance above it, as shown in

Figure 3.2. The recording protocol was created and shared with the medical sta� taking part in the

recording sessions, where the positions of the microphones, recording device settings and guidelines for

the recordings were speci�ed.

Obviously, the amount of activities that take place in the NICU can be very large. The list of the

most common of them is given below:

• Nursery care

• Visit of parents

• Kangaroo care

• Visit of a specialist (paediatrician, cardiologist, etc.)

• Examinations (X-ray, ultrasound, etc.)

• Preterm's entry or relocation

• Preterm's death

• Surgical interventions

• Music therapy

• Cleaning

A set of acoustic scenarios, which mostly correspond to the daily nursery care related activities

(marked in italic in the above presented list), was selected for recording. Approximately every 3-4

hours every preterm in the NICU receives a nursery care. There is a standard list of interventions that
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Figure 3.2: The conventional microphone positions used throughout the recording sessions

should be done to a preterm infant, which may vary depending on the infant's needs, and includes:

changing a diaper, measuring blood pressure, changing an oxygen sensor, cleaning respiratory secretions,

measuring temperature, changing temperature sensors, weighting a newborn, paediatric observation,

changing medications. Each of these nursery care operations is considered as a scenario. Also, a neutral

scenario was de�ned for including the time periods when no nursery care scenario takes place, the baby

is untouched and the doors of the incubator are closed. It should be mentioned that, except for nursery

care, the activities from the list above can take place during this generic neutral scenario.

Every recording session contains a subset of the de�ned scenarios. Each scenario was recorded to

a separate audio �le, and in average 8.6 recordings per scenario were acquired. Except for neutral,

the possibility to make a recording of the concrete scenario during the recording session depended on

preterm's individual needs. Besides, the weighting of a newborn was usually performed in the afternoon.

The duration of each scenario varied from session to session, which depended on ad-hoc variations of

the procedure and on the work style of a nurse performing it. The duration of the neutral scenario

was controlled, and usually a 1-2 minute recording was acquired. The detailed information about the

scenarios recorded in each session can be found in Table 3.3.
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3.3 Labelling protocol: list of acoustic events and criteria

The audio data was manually annotated using the ELAN tool [123]. For each relevant audio event

it's time boundaries and identity (label) were speci�ed. For each scenario, a single annotation was

produced, which corresponds to the audio recorded both inside and outside the incubator.

All the labelled acoustic events were grouped into several tiers of annotations:

• Alarms for alarm sounds generated by various biomedical equipment.

• Vocalizations for all the sounds produced through a vocal tract, either by infant or adult.

• Events for the rest of the relevant acoustic events, which are mainly the events speci�c to the

considered scenarios.

• CPAP, a separate tier for the Continuous Positive Airway Pressure (CPAP) noise.

• Noises for the acoustic events that were not speci�ed in the labelling protocol, but which anno-

tators considered relevant and perhaps recognized. All the events in this tier have a special label

nn followed by (if recognized) a label in square brackets.

Table 3.2 contains a list of acoustic events considered for annotation, their corresponding labels and

the criteria used for annotation. The annotation campaign was performed in two stages, where the

�rst portion of labels was obtained in an exploratory work during summer 2013 and later augmented

during summer 2014, and the two annotators worked independently. The list of considered acoustic

events de�ned for the �rst stage of the annotation campaign di�ers from the de�nitive list presented

in Table 3.2. These di�erences are outlined in Appendix C. At the second stage, the annotation was

limited to the two most relevant types of sounds (i.e. equipment alarms and vocalizations), for which

the automatic detection systems were developed, and some resembling events (buttons). This was done

in order to speed up the annotation process and to obtain as much annotated acoustic event samples

as possible.

The general labelling guidelines shared with annotators were the following:

1. Only the de�ned labels (see Table 3.2) must be used for annotating the relevant acoustic events.

2. The annotation should be primarily based on the audio acquired using the microphone placed

outside the incubator, since it is closer to the sound sources. The audio obtained inside the

incubator should be consulted in case of ambiguity or doubt, as well as used for veri�cation of

the complete annotation.

3. The spectrogram must be checked during the annotation process.

4. It is better to label more than less, i.e. the timestamps should not be too narrow, to avoid possible

cutting of an acoustic event.

5. In case of several simultaneous events belonging to one tier, an additional tier should be created

with the name [{TierName}{N}], where TierName is one of the de�ned tier names, and N � is

the index number of the tier (e.g., tiers Voices1, Voices2, Voices3, etc).

6. In case of doubts about the speci�c class of an acoustic event, a more generic or a more common
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label should be used. I.e., confusing vocalization events should be labelled as �background voices�

(bv), and for alarms and other sounds generic al and nn labels used, respectively.

7. For the periodic events each period should be labelled separately. For instance, in case of alarms

every alarm signal interval should be annotated.

The criteria used during the annotation process, which are provided in Table 3.2, were initially

de�ned for some of the confusing events and complemented by the annotators during the work. The

labelling was produced by hearing audio samples and guided by spectrogram observations. Still, in

some particularly di�cult cases (i.e. some blurred sounds) it was not possible to clearly follow the

de�ned criteria.

Note that for alarms a source device name is speci�ed as an acoustic event name in Table 3.2 and

it may be not unique. To assist the annotation of alarms, an exemplary sample of each alarm class

was extracted and provided to annotators. The annotators were also instructed to obtain such sample

for every new alarm class found. Also, the document containing the basic information about the alarm

classes was shared, in which the tonal structure (i.e. melody), duration of signal and silence intervals

in an alarm period and major frequencies were described.

Table 3.2: List of labelled acoustic events and corresponding annotation criteria

Tier Label Acoustic event Criteria

A
la
rm

s

a1 Monitor Philips In-

telliVue MP30

• The timestamps are easier to be decided at 1.465 kHz.

If not possible, based on any other harmonic visible on a

spectrogram, paying more attention to listening.

a2 Ventilator In�nity

C500 Dr�ager

• The entire alarm signal interval (4 higher beeps and two

lower beeps) should be labelled.

• If possible, the beginning is decided at 1 kHz and the end

around 0.8 kHz.

a3 Incubator Atom • The beginning is decided at 0.665 kHz and the end at

0.54 kHz.

a4 Respirator of non-

invasive ventilation

a5 Incubator Atom

a6 Respirator Babylog

Dr�ager

• The timestamps can usually be clearly decided at 2.4 kHz.
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A
la
rm

s
a7 Monitor Philips

Agillent V24C

• The beginning timestamp is clear at 2.9 kHz.

• The silence interval is very short, but is approximately

20-30 ms.

• If not followed by another period of the same alarm, the

end timestamp is decided based on listening and spectrum.

a8 Monitor Philips

Agillent V24C

• If possible, the beginning is decided at 3.5 kHz and the end
at 4.5 kHz.

a9 Thermometer • Conventionally, the device produces the alarm for 10 peri-

ods, but may be stopped before.

a10 Infusion pump

Alaris GH Plus

• It is easier to decide about the timestamps at 1.14 kHz.

a11 Infusion pump

Alaris GH Plus

a12 Respirator • The timestamps can be based on the fundamental fre-

quency 2.3 kHz.

• Each signal interval consist of 5 tones.

a13 Incubator Kaleo

a14 Incubator Atom

a15 Infusion pump

Alaris GH Plus

a16 Monitor Philips In-

telliVue MP70

V
o
ca
li
za
ti
on
s

fv Foreground voices • Any kind of speech (except shouts) that is close to the

microphone.

• A distinct voice over background voices or babble having

a high intensity.

bv Background voices • Speech that is far from the microphone, but the content is

understandable.

• Babble, possibly coming from several people talking at a

time.

bc Baby crying/voice • All sounds coming from preterm infants.

• Depending on whether the vocalization was produced in-

side or outside the incubator, the decision about the times-

tamps should made based on the audio acquired, correspond-

ingly, inside or outside of it.

• A special label bci should be used for the infant vocaliza-

tions heard only inside the incubator.
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co Cough

sh Shout • Short loud speech produced either close or far from the

microphone.

lg Laughter

E
ve
n
ts

bi Buttons of the in-

fusion pump

• Each sound should be labelled separately.

bw Buttons of weights • The timestamps can be decided at approximately 0.45 kHz.

nn[bm] Buttons of the

monitor

nn[bp] Buttons of the in-

fusion pump

• The timestamps are easier to be decided at 3.55 kHz.

Information about the amount of labelled alarm and vocalization samples can be found in Ap-

pendix D. Note that some of the alarm classes (namely, a4, a5, a13, a14 and a15) were found in the

NICU environment, but were not present in the annotated �les.

The resultant annotation �le, which has an XML-like structure, was further converted to a CSV

format for each considered detection task.

3.4 Produced annotations

As mentioned before, the labelling production was performed in two stages, and later a revision stage

was needed in order to correct the labels of equipment alarm and vocalization sounds and to make them

follow a uni�ed protocol (see Appendix C for more details on the protocol changes). In particular, at

the revision stage the labelling was reviewed for adding the annotations of the classes not considered

in the labelling protocol before, for changing the labels that were assigned to a wrong class, and for

removing labels of some acoustic events with very low signal-to-noise ratio. A label timestamp was

modi�ed only in case it was clearly inaccurate.

During the two annotation stages the audio database was labelled only partially. Table 3.3 provides

an overview of the acquired and annotated acoustic scenario samples, where each cell contains the

duration (in s) of the corresponding audio �le. Table 3.4 provides information about the amount and

type of labelling produced by each annotator. In total, for the two major types of sounds, the amount

of annotated data is the following: alarm sounds are annotated in 47 �les (which is 54.7% of total �les

in database or 54.3 minutes) and vocalizations are annotated in 35 �les (40.7% of �les or 40.2 minutes).
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Table 3.3: Information about the acquired scenario samples, their duration (in s) and the produced labelling

Scenario

code
Scenario

Recording session

RS3 RS4 RS11 RS12 RS13 RS14 RS15 RS16 RS17 RS18

AS1 Changing a diaper 35.67 81.08 118.56 114.73 99.13 168.44 76.35 95.16 96.06 �

AS2 Measuring blood pressure 59.56 45.14 140.64 65.48 98.01 81.92 112.64 170.81 75.79 �

AS3 Changing an oxygen sensor 34.34 64.44 83.94 � � 71.54 89.03 60.81 48.13 �

AS4 Cleaning respiratory secretions 36.71 77.46 119.26 43.47 150.81 � � � � 145.8

AS5 Measuring temperature 87.14 61.16 80.39 57.89 60.12 135.77 59.77 161.19 105.12 65.76

AS6 Changing temperature sensors 44.09 31.21 61.09 83.66 � 153.88 131.31 � 118.14 �

AS7 Weighting a newborn 47.58 � 95.78 � 26.61 35.32 � � 73.77 �

AS8 Paediatric observations 190.03 22.36 155.55 60.46 81.29 118.35 93.27 132.01 � 62.62

AS9 Changing medications 52.04 31.42 53.29 35.39 44.03 27.79 35.25 60.4 13.31 33.37

AS10 Neutral
� 67.01 122.39 120.79 62.07 61.58 62.14 61.51 65.41 60.81

� � � � 61.51 63.6 � 62.14 62.9 60.67

35.67

153.88

35.25

Table 3.4: Information about the labelling produced by each annotator

Annotator Annotated sounds Time (s) Number of �les

I All sounds 1124.1 17

I Alarms 987.72 13

II Alarms, vocalizations 1242.61 18

S Alarms 47.58 1

S Alarms, vocalizations 81.08 1

3
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3.4. Produced annotations

Note that the annotator names I and II correspond to the �rst and the second annotation stages,

respectively, and Annotator S (the author of this thesis work) was supervising their work and carried

out the corrections. In general, Annotator I was working standalone guided by the labelling protocol

and the auxiliary information provided, and the subsequent corrections primarily a�ected the labelling

obtained at this stage. At the second stage the labelling was produced in closer collaboration between

the Annotator II and the Annotator S, and it was included in the database with slight changes. Alarm

annotations were to a larger extent produced by Annotator I (57.91% of total time annotated for

alarms). Vocalization annotations were produced more or less in equal proportion by both annotators

(Annotator II labelled 51.52% of total time annotated for vocalizations).

As can be seen from Table 3.3, some randomly chosen audio �les (namely, RS3_AS1, RS14_AS6,

RS15_AS9 ) were intentionally given for labelling to both Annotators I and II. The aim was to estimate

the labelling consistency (or, in other words, to measure an interobserver agreement) for alarm and

vocalization sounds, which can give a notion about the upper bound of the detection systems perfor-

mance. From this set of �les, vocalization sounds were labelled by both annotators only in RS3_AS1

recording, which is 1.48% of total time with vocalizations annotated. Concretely, in this �le there is

only one vocalization event, a background voice bv, which in the �nal version of annotations spans an

interval of 2.43 s. On the other hand both annotators labelled alarms in all the abovementioned �les,

and it corresponds to 6.74% of total time with alarm sounds annotated. Only several alarm classes

were present in these recordings, namely, a1, a3, a7, a10 and a16. It should be noted that a16 alarm

was labelled as belonging to a1 class by the Annotator I. The �nal database contains the labelling of

these three �les made by Annotator II.

The labelling consistency was measured using the frame-level Missing Rate (MR) and the False

Alarm Rate (FAR) metrics that were used during the development of the detection systems. These

metrics are de�ned as

MR =
NM

NT
, FAR =

NFA

NNT
, (3.1)

where NT and NNT are the total number of frames for target and non-target class (e.g. alarm and

non-alarm), respectively; and NM and NFA are the number of misclassi�ed frames for target and non-

target class, respectively. Note that the frame and frame shift durations were di�erent for the two types

of sounds: for alarms these values were set to 85.3 ms and 42.6 ms, respectively, and for vocalizations

they were equal to 30 ms and 10 ms, respectively.

Table 3.5 provides the consistency measures in terms of metric scores for the �les labelled by both

annotators. These scores are obtained by evaluating the labels of Annotator II with regards to the

labels of Annotator I, which serve as a reference. Since the amount of data used for this estimation

is small, the obtained conclusions are not signi�cant. Also, the labels from Annotator I were changed

during the correction stage, so in fact the presented metric scores don't re�ect the consistency of the

�nal database. Still they can be viewed as a rough estimation and, hopefully, the consistency was

improved after corrections.
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Chapter 3. Database acquisition and annotation

Table 3.5: Estimation of the produced labelling consistency in terms of metric scores (in %) for the

two types of sounds annotated

Recording code
Alarms Vocalizations

MR FAR MR FAR

RS3_AS1 10.36 2.91 0.41 0.03

RS14_AS6 17.26 1.69 � �

RS15_AS9 20.34 1.30 � �

Average 15.99 1.97 0.41 0.03

In fact, the labelling of Annotator II doesn't contain 9 out of 50 alarms for RS14_AS6 and 7 out of

11 alarms for RS15_AS9, with respect to the labelling of Annotator I. These di�erences are attributable

to two factors. First, Annotator II did not include the labels due to a too low energy of the sound. And,

second, almost all the alarm sounds labelled by Annotator I in �le RS15_AS9 as belonging to class a11

were the buttons of the infusion pump (bi). Therefore, for metric scores calculation these alarms were

removed from consideration in labelling of Annotator I (as was done, in general, during the correction

stage), and the scores reported in Table 3.5 are obtained after these modi�cations. Without removing

such alarm labels, the MR metric scores calculated for the recordings RS14_AS6 and RS15_AS9 are

equal to 37.81% and 55.05%, correspondingly.

The consistency measures for alarms were also calculated in terms of the event-level metric, that

was de�ned to present the performance of detection systems in a way more meaningful for the med-

ical application. The details of this metric, which is called Period-Based ERror Rate (PB-ERR), are

provided in Section 5.3. In terms of this metric, for all the alarm classes the error scores were equal

to 0%.
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3.5 Chapter summary

In this chapter, all the steps of the database production, from acoustic scenarios de�nition and audio

acquisition to annotation production, were reviewed in detail. During the work on the database produc-

tion, key speci�cations (e.g. recording setup and guidelines, labelling protocol) were designed and the

whole framework of the audio database production for the NICU environment was set up. Due to the

pioneering character of the work in that acoustic environment, the abovementioned speci�cations had

to be designed from scratch in close collaboration with medical and engineering sta�. Several rounds

were required, which allowed re�nement of these speci�cations based on the obtained experience, but

also implied more e�ort for making possible that the produced database follows a uni�ed protocol.

A number of recording sessions were carried out in the NICU following the designed guidelines. A

part of these recordings formed the produced database. In total, it includes more than 1.5 hours of

audio data, which corresponds to 86 samples of the de�ned acoustic scenarios. Not taking into account

the pilot recording sessions, the audio acquisition process lasted for about 4 months.

The annotations cover roughly half of the database. They were obtained in two stages, and pos-

teriorly revised. The �rst stage had an exploratory character, where both initial experience and more

speci�c knowledge about the NICU acoustic environment were gained. The second stage used a re-

�ned labelling protocol and led to better de�ned criteria for acoustic events labelling. Eventually, the

produced database contains labelling mainly for the two major types of sounds (namely, equipment

alarms and vocalizations). It should be noted that database annotation required a lot of e�ort. It was

the most time-consuming part of the database production and took about 6 person-months of work in

total, with last revisions taking place in October 2015.
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Chapter 4

Acoustic description

4.1 Chapter overview

A typical Neonatal Intensive Care Unit (NICU) environment is acoustically very rich and may be

characterized by a large diversity of sounds coming from numerous sources. This chapter presents the

results of the acoustic description of that environment carried out from a set of audio recordings. In

particular, the �rst exploratory recording sessions RS1 and RS2 (see Appendix A) as well as recordings

from the acquired database were used, and, in case of alarm analysis, also recordings made in a quiet

room.

This chapter is organized as follows. Section 4.2 presents the list of acoustic events found in

the NICU environment, whereas Section 4.3 provides an analysis of the acoustic scenarios from the

acquired database. In Section 4.4 a sound taxonomy for NICU sounds is proposed, which is followed

by the description of the most typical sounds from the NICU environment in Section 4.5.
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4.2 List of acoustic events

During our study more than 60 di�erent acoustic events happening in the NICU environment were

found. It should be mentioned that this number was surprisingly high even for the medical sta�

working in the unit. Table 4.1 provides an extensive but not exhaustive list of the acoustic events

found.

Table 4.1: List of NICU acoustic events

N Acoustic event Label

1-16 Equipment alarms a1-a16

17,18 Buttons of infusion pump bi, nn[bp]

19 Buttons of the weights bw

20 Buttons of the monitor nn[bm]

21 Foreground voice fv

22 Background voice (babble) bv

23 Baby crying/voice bc

24 Cough co

25 Shout sh

26 Laughter lg

27 Incubator door opening/closing od/cd

28 Doors slam nn[do]

29 Telephone ring nn[te]

30 Mobile phone nn[ma]

31 Chair moving nn[ch]

32 Knock nn[kn]

33 Step nn[st]

34 Respiration noise nn[tr]

35 Continuous Positive Airway Pressure (CPAP) nc

36 Paper work pw

37 Squeak nn[xi]

38 Secretions cleaning cs

39 Spray nn[sp]

40 Glass jingle gc

41 Plastic wrapping pl

42 Drawer nn[dr]

43 Diaper dp

44 Click of infusion pump cb
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Chapter 4. Acoustic description

45 Hissing hi

46 Jingle jg

47 Metallic tray stroke ms

48 Plastic hit ph

49 Folding paper bags fb

50 Keyboard typing kt

51 Dragging object so

52 Shifting with wheels sw

53 Putting on/o� sphygmomanometer ab

54 Water running wr

55 Cleaning hands nn[clh]

56 Using paper towels pt

57 Click cl

58 Clap cp

59 Putting on rubber gloves rg

60 Windows OS error sound nn[xp]

61 Music mu

62 Taking sensor o� ts

63 Object on incubator ob

64 Cloth rustling ct

The acoustic events listed in Table 4.1 are roughly the sounds produced by the human body, by ob-

jects handled by humans or by equipment. Some of the acoustic event types, like mobile phone (nn[ma]),

music (mu) or knocks (nn[kn]), are acoustically very broad and may contain various realisations.

4.3 Description of acoustic scenarios

This section provides the description of a set of scenarios from the audio database used in this thesis

work (see Chapter 3). Apart from the neutral scenario (AS10), which denotes the periods of time when

the preterm infant is untouched and the doors the incubator are closed, that set comprises of nursery

care related scenarios, namely: changing a diaper (AS1), measuring blood pressure (AS2), changing

an oxygen sensor (AS3), cleaning respiratory secretions (AS4), measuring temperature (AS5), chang-

ing temperature sensors (AS6), weighting a newborn (AS7), paediatric observation (AS8), changing

medications (AS9). The respective codes of scenarios are provided in round brackets.

Regarding Sound Pressure Level (SPL) measurements, for all the scenarios the average SPLs ob-

tained from recordings 1 acquired inside the incubator are higher than the ones outside the incubator.

1The calculation of SPL values from the recorded audio is discussed in the Technical report HSJD-UPC-5-2015.
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4.3. Description of acoustic scenarios

Depending on the scenario, this di�erence may be from 1.65 to 3.61 dBA, where the boundary values

of that range correspond to measurements obtained, respectively, for the neutral and the paediatric

observation scenarios. It might be related to sound reverberation inside the incubator (note that similar

results were obtained in [17]). On the other hand, no signi�cant di�erences in SPL measurements were

observed between sessions recorded in the morning and in the afternoon.

Most sounds (like steps, door slam, vocalizations) from Table 4.1 are common to all the scenarios

and, in principle, can happen at any period of time. But some of the acoustic events are speci�c to the

scenario in which they occur, namely, they are happening under certain conditions. Table 4.2 shows

the speci�c sounds for some of the scenarios from the recorded database.

Table 4.2: Scenario-speci�c acoustic events

Scenario Speci�c events

AS1 Changing a diaper Diaper (dp)

AS2 Measuring blood pressure Putting on/o� sphygmomanometer (ab), rhythmic

hissing (hi), squeak (nn[xi])

AS3 Changing an oxygen sensor Taking sensor o� (ts)

AS4 Cleaning respiratory secretions Plastic wrapping (pl), secretions cleaning (cs)

AS5 Measuring temperature Alarm of a thermometer (a9)

AS7 Weighting a newborn Buttons of the weights (bw), diaper (dp)

AS9 Changing medications Buttons (bi), click of infusion pump (cb)

As was observed, scenario-speci�c events are present in some scenarios but neither are they present

in the same scenarios along di�erent recording sessions nor their presence is signi�cant enough in

comparison to other acoustic events.

The spectral characteristics of the di�erent scenarios were analysed by observing the distribution

of the average energy along frequency sub-bands. In total 24 sub-bands were applied to the original

44.1 kHz recordings. The audio data was pre-processed: the DC component was removed and an energy

normalization was performed. Figure 4.1 shows the distribution of energy along sub-bands for di�erent

scenarios in a given recording session, and Figure 4.2 shows this information the other way round,

namely, the distribution of energy along sub-bands for a given scenario in di�erent recording sessions.

It can be seen that the considered scenarios are very similar acoustically and are really hard to

distinguish. Figures 4.1 and 4.2 indicate that the di�erence between recording sessions is more sig-

ni�cant than the di�erence between acoustic scenarios. The main reason for that strong similarity of

the acoustic scenarios from the same recording session lies in the presence of a distinct session-speci�c

equipment noise (see Section 4.5.3), which is present throughout the audio recordings acquired in a

recording session.
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Chapter 4. Acoustic description

Figure 4.1: Average logarithm �lterbank energies for the scenarios in a given session.
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4.3. Description of acoustic scenarios

Figure 4.2: Average logarithm �lterbank energies for a given scenario in di�erent recording sessions.
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Apart from the presence of equipment noise, there are other factors that may contribute to the

variability of a scenario acquired in di�erent sessions. These factors are outlined below, grouped by

major sources of variability:

I. Recording device and microphones:

a. Variations in microphones position and direction

b. Recording device setup (mostly concerns recording volume, which was controlled by a dial)

II. Equipment and its position:

a. Incubator type

b. Incubator position (if close to other incubators, to working desks, drawers, sink, doors, etc.)

c. Accompanying equipment (i.e. monitor, type of ventilation equipment, infusion pumps); also,

the neighbouring incubators, as the sounding alarms may be di�erent.

III. Time period of the recording session:

a. Part of the day

b. The activities it coincides with (i.e. attending hours, parents visit, surgical intervention,

etc.), which also in�uence the number of people present in the unit room and their behaviour.

IV. Nursing work, which in�uences the sequence of actions in each sample of the scenario:

a. Ad-hoc variations based on the particular preterm infant needs

b. Organization of the working place

c. Style of work

d. Number of nurses attending a preterm (i.e. in recording session RS17 there were two nurses

working together)

4.4 Sound taxonomy

The sounds found in the NICU environment have diverse spectro-temporal characteristics. For instance,

regarding the time dimension, we observe sounds which are continuous (like chair moving or drawer)

or impulsive (like knocks, steps or door slam); sounds which are periodic (like alarms or CPAP noise)

or aperiodic (like spray or plastic wrapping). By building a taxonomy we try to structure the whole

diversity of observed sounds into homogeneous groups.

On the other hand, there is a necessity to limit the number of acoustic event classes considered for

automatic detection, and one way of doing so is by providing a sound taxonomy. The development of

the sound taxonomy helps to better understand the data domain [124], increase the accuracy and speed

of classi�cation [125]. Obviously, a sound taxonomy is subjective and very dependent on the chosen

classi�cation domain.

Figure 4.3 presents the sound taxonomy proposed for NICU sounds. Both acoustical and semantical

criteria are used, and sounds are joined in acoustical groups and semantical categories, where the

semantical categories are denoted in italic. The leaves of the taxonomy tree show examples of sounds
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4.4. Sound taxonomy

belonging to a particular group or category.

In general, the set of all the sounds can be split into three major groups, which possess di�erent

acoustical properties: tone, vocalization and other.

Tone (in music, note) denotes a sound of distinct fundamental frequency and duration. The tone

group mostly comprises equipment alarms, and can be divided into two subgroups regarding the pres-

ence or absence of a long-term periodicity in time, i.e. by whether there are repetitions of a basic sound

over identical time periods or not. From a semantical point of view this group contains informative

sounds produced by devices.

The vocalization group includes all the sounds that are produced through the vocal tract, either by

infant or adult. In this group, three semantical categories are distinguished: adult speech (i.e. fore-

ground and background voices), infant vocalizations (mostly cries) and non-speech adult vocalizations

(like cough or laughter).

The sounds which cannot be referred to the two previous groups are assigned to the other group.

Acoustically this group is even more diverse, and with regards to the spectral domain we divide it

into di�erent subgroups: lower- (≤ 3 kHz) and higher-frequency sounds, and sounds with their content

spread over a wide frequency range.

As was commented in Chapter 3, some audio recordings were labelled completely during the �rst

exploratory stage of database annotation (in Table 3.3 these scenarios are marked in green). Based on

the analysis of these recordings, we observed that tones, vocalizations and other sounds are present in

20.59%, 63.55% and 70.14% of time, respectively.

42



C
h
a
p
te
r
4
.
A
c
o
u
stic

d
e
sc
r
ip
tio

n

Alarm
Telephone

Button Baby crying

Cough
Laughter

Knock
Step
Door slam

Chair moving
Drawer

Squeak
Diaper

CPAP Spray
Ventilation noise

Audio

SilenceSound

Other

Wide-band

noise

AperiodicPeriodic

Higher-

frequency

Lower-

frequency

ContinuousImpulsive

Vocalization

Non-speech

adult

vocalizations

Infant vocalizationsSpeech

Tone

AperiodicPeriodic

Figure 4.3: A general sound taxonomy of a typical NICU.
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4.5 Analysis of typical types of sounds

4.5.1 Equipment alarms

Equipment alarms are extensively present in a NICU environment and are used in monitoring or

supporting equipment to alert of situations requiring medical attention. By observing the recorded

audio data we have found 16 di�erent types of alarms happening in our NICU and coming from:

1) cardiorespiratory monitors � 4 types of alarms (65.7% of samples),

2) incubators � 4 (9.1%),

3) ventilators � 4 (15.6%),

4) infusion pumps � 3 (7.5%),

5) thermometer � 1 (2.1%).

It should be noted that although the set of observed alarms is quite representative of the NICU

environment, it is not exhaustive and more alarm classes can be found. It can be seen that most alarms

are generated by monitors and ventilation devices.

Figure 4.4: Graphical description of terms used to denote particular alarm properties. Only the

fundamental frequency is depicted for clarity of presentation.

Generally, the acoustic properties of the observed alarms can be described as:

1. They reveal periodicity in time. Each alarm period consists of signal and silence intervals of

established durations (see Figure 4.4). The period duration of 13 alarm types is from 0.45 to 4.25

s, while other types are up to 15.3 s long.

2. The signal interval may consist of one or several consecutive stationary signals (tones): only one

tone (7 alarm types); several repetitions of the same tone, possibly of di�erent duration (5 types);

or several di�erent consecutive tones (4 types).

3. Each tone contains one or several simultaneous frequency components, which may or may not be

harmonically related.
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Chapter 4. Acoustic description

The particular characteristics of each of the alarm classes are presented in Table 4.3. The alarm-

speci�c frequencies, and the signal and silence interval duration parameters were obtained from the

recorded database and, in part, from the recordings made in a quiet room. The alarm-speci�c frequency

values (with a resolution of 1 Hz) and period durations were obtained by visual inspection of alarm

samples. The reported signal interval durations are an average over the annotated samples. Note that

signal (and, therefore, silence) duration measurements are a�ected by the reverberation inherent to a

room environment and may di�er from the factory setup values.

Five of the alarm classes (namely, a1, a3, a7, a9 and a10) show some variation in the frequency

and duration values among di�erent device units of the same model. Since for the medical sta� such

alarms are perceived alike, for our purposes they belong to the same alarm class and are referred to as

di�erent versions of the alarm.

In total, there are 1431 alarm samples in the annotated data, which corresponds to 19.28% of an-

notated time. Only the alarm signal interval was labelled (see Figure 4.4 for notation). The acoustic

environment of a NICU represents a complex scenario where numerous acoustic events happen sponta-

neously and simultaneously. Concerning the alarm sounds, most of the time they are overlapped with

other sounds, but the overlaps between alarms of di�erent classes or even between those belonging to

the same class are not rare either. For example, for the annotated data, the statistics of time when

several alarms occur simultaneously is the following: 2 alarms � 6.81%, 3 alarms - 0.70%, 4 alarms -

0.07% of total time labelled as alarm signal.

The average increment of SPLs in intervals with sounding alarms with respect to the intervals with

no alarms is 0.7 dBA, which suggests that equipment alarms are not contributing much to the noise

levels in the NICU environment. However, it is still of medical concern that the speci�c spectro-temporal

structure of alarms (beats, tones and specially high frequencies) might adversely a�ect preterm infants.
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Table 4.3: Detailed characteristics of the equipment alarm sounds

Class Source device Signal description Frequencies (kHz)
Signal

duration (s)

Silence

duration (s)
Noti�cation

a1 Monitor 1 tone i) 0.495, 1.465, 2.435 1,2

ii) 0.515, 2.455, 3.445, 4.415

0.698±0.170 i) 1.351

ii) 1.548

One of the physi-

ological variables is

out of range.

a2 Ventilator 4 higher tones and 1 lower.

There is a longer pause be-

tween each two alarm periods.

1 / 0.830 3 1.232±0.078 0.803

a3 Incubator 1 higher and 1 lower tone i) 0.665, 1.330, 1.990, 2.660 /

0.540, 1.600, 3.150

ii) 0.520 / 0.420

0.634±0.142 14.666 Problem with the in-

cubator setup.

a4 Ventilator 3 shorter and 1 longer tone,

short pause, 1 longer tone

2.350, 4.700 2.675 0.785

a5 Incubator 3 tones 0.530, 1.060, 1.590, 2.120 0.970 3.280 Humidity or temper-

ature value is out of

range.

a6 Ventilator 1 tone 2.410 0.374±0.069 0.073

a7 Monitor 1 tone i) 0.980, 2.935

ii) 2.880

0.836±0.188 0.179 Desaturation.

a8 Monitor 1 tone 0.490, 1.480, 2.460, 3.440,

4.420

0.280±0.060 1.965

1Comma-separated frequencies are simultaneous in time.
2Information in each item corresponds to a di�erent version of the alarm.
3Information separated with slash corresponds to tones consecutive in time.
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Table 4.3: Detailed characteristics of the equipment alarm sounds

Class Source device Signal description Frequencies (kHz)
Signal

duration (s)

Silence

duration (s)
Noti�cation

a9 Thermometer 1 tone i) 5.320

ii) 5.190

iii)6.030

0.525±0.161 0.545 Switching on/o�

or end of measure-

ments.

a10 Infusion

pump

1 tone i) 1.140, 2.280, 3.425

ii) 0.880

0.675±0.112 0.325 Medication �nished.

a11 Infusion

pump

3 tones 0.880, 1.740 0.376±0.073 2.574 Waiting mode.

a12 Ventilator 3 tones, short pause, 2 tones 2.305, 4.610, 6.915 1.820±0.077 0.680

a13 Incubator 2 lower tones and 1 higher 0.475, 1.335, 3.100, 3.985,

5.750 / 0.540, 1.590, 2.650,

3.680, 5.770

1.105 10.905

a14 Incubator 3 tones, short pause, 2 tones.

There is a longer pause be-

tween each two alarm periods.

3.075, 6.115, 9.195 1.730 0.370 The incubator setup

is incorrect.

a15 Infusion

pump

2 higer tones and 1 lower 1.270, 3.810, 6.330, 8.870 /

1.015, 3.015, 5.015, 7.020

0.56 0.3

a16 Monitor 1 tone 0.495 0.307±0.055 1.746 Temperature sensor

is not connected.
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4.5.2 Vocalizations

In fact, the considered vocalization sounds are generic and, except perhaps of baby crying, may occur

in many acoustic environments. The properties of these sounds have already been described in reported

works; therefore, their analysis is based on the literature review of these works. In general, the content

of vocalizations can be observed up to 8 kHz. In our data, speech-related sounds (i.e. foreground and

background voices) are predominant and occur 89.68% of time annotated as vocalizations.

Speech properties were analysed thoroughly in the scope of development of automatic speech recog-

nition systems [126]. Speech is a slowly time varying signal (fairly stationary up to 100 ms), which

contains aperiodic unvoiced and quasi-periodic voiced intervals. In spectral representation, voiced in-

tervals usually consist of individual spectral harmonics corresponding to the pitch of the speech wave-

form, and intervals of unvoiced speech mainly correspond to high-frequency content. The distinctive

frequency components of the speech signal, called formants, are frequency bands that carry most of

the acoustic energy. Typically, there are three signi�cant formants below about 3.5 kHz. Basically,

shouts have the same acoustic properties as normal speech, except that some of their formants occur

at higher frequencies [127], they are associated with higher amplitude values [128], and show a shorter

duration [129].

The acoustic properties of both cough and infant vocalization sounds were extensively studied for

diagnostics of various diseases [130,131]. The fundamental frequency of cries ranges from 0.2 to 0.6 kHz,

and usually six formants can be observed up to around 7.2 kHz. The duration of an infant cry is quite

short, and in our data was up to 600 ms. A typical cough sound is generated by a sudden air expulsion

from the airways [130], and has a higher degree of irregularity compared to speech. It is usually

described as having three phases (namely, explosive, intermediate and voiced), where the �rst and the

last phases are sometimes called �bursts� [132]. Cough has a wide distribution of energy across the

frequencies, in contrast to the voiced speech, which exhibits harmonic content. The typical duration of

cough is about 350 ms.

Laughter is described as a highly diverse signal with various subtypes, which in some aspects

resembles speech [133]. The voiced laughter (which is the type we mostly observed in our data) usually

has a vowel-like structure and is harmonically rich, although the formant structure of laughter is less

prominent than that of speech vowel sounds. Also, the fundamental frequency is much higher in laughter

than in speech.

4.5.3 Equipment noise

During the analysis of the audio recordings we found two speci�c types of noise produced by equip-

ment. In most of the cases these noises are simultaneous, but may also happen individually, and are

present throughout recordings obtained both inside and outside the incubator. Figure 4.5 shows the

spectrogram of a neutral scenario from the recording session RS17 with the observed equipment noises
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marked.

(a) (b)

Figure 4.5: Spectrogram of a neutral scenario acquired (a) outside and (b) inside the incubator with

the equipment noise marked: the narrow-band noise in red, the ventilation noise in blue and the noise

studied in the reported work in black.

The �rst type of noise is a narrow-band noise at 15 kHz frequency. That noise has short temporal

interruptions that can be considered almost periodic: 5.5 s of noise are followed by 1-1.5 s of pause.

Most probably this noise is generated by ventilators, biomedical devices for the supporting breathing

function of infants. In the vast majority of recordings the noise is stronger outside than inside the

incubator.

The second type of noise is the ventilation noise, which is a stationary noise usually spread over a

wide frequency range. Depending on the recording session (i.e. equipment used) the noise is stronger

either inside or outside the incubator; in particular, for the session showed in Figure 4.5 it is stronger

outside the incubator. There are several di�erent types of ventilation equipment in the NICU, having

noises with di�erent spectral characteristics. Depending on the particular needs of a preterm infant

an appropriate type of ventilation is used, and this fact introduces a lot of variability to the data.

Note that the ventilation noise sample depicted in Figure 4.5 is one of the weakest in our database and

was chosen for the clarity of presentation. To give a better notion, Figure 4.6 shows spectrograms of

the neutral scenario (recorded with the microphone inside the incubator) from other sessions, which

represent more typical samples of the ventilation noise.

A speci�c type of ventilation noise is the CPAP noise, which was only observed in the recording

session RS3. This noise is also wideband, but has periodic intervals with higher amplitude. Basically,

the noise periodicity corresponds to the required breathing pattern, and during that periodic intervals

the air under pressure is pumped into the airway of lungs.

49



4.5. Analysis of typical types of sounds

(a) (b)

Figure 4.6: Spectrograms of the neutral scenario from recording sessions (a) RS11 and (b) RS13.

The low-frequency noise marked in Figure 4.5 in black was studied in [17]. In that work, only the

frequencies up to 2048 Hz were considered. Some noise at 200, 400, and 600 Hz was regarded to be

generated by the incubator fan, and some ventilator noise was reported to contribute to higher SPLs

in the low-frequency band of 0 to 100 Hz.
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4.6 Chapter summary

In this chapter, the results of exploring the NICU acoustic environment from the set of acquired audio

recordings were reported. The whole content of the audio signal was analysed, and besides the usual

measurements of SPLs, the identity of sounds and their spectro-temporal properties were described.

First of all, an extensive list of more than 60 acoustic events found in the NICU environment was

presented, which generally contains sounds produced by human body, by objects handled by humans or

by equipment. A general sound taxonomy of a NICU environment was proposed to structure the whole

diversity of sounds into acoustically homogeneous groups. Three major acoustic groups were de�ned,

so any NICU sound can be attributed to tone, vocalization or other. These groups were then divided

into more speci�c acoustic subgroups and semantical categories.

Further, a detailed acoustic analysis of the most represented types of sounds was provided, namely,

equipment alarms, vocalization sounds and equipment noise. A thorough description of 16 classes of

acoustic alarms found in the NICU was carried out, where their sources, types of noti�cation, spectro-

temporal properties and information about occurrence were speci�ed. Since vocalizations are generic

sounds that are well-studied, the description was based on the review of reported works. Finally, the two

types of equipment noise found were analysed, and it has been observed that the stationary ventilation

noise is predominant in most audio recordings.

Apart from that, a set of acoustic scenarios was de�ned and characterised. The scenarios, which

were used in the recordings, were described in terms of their general spectral properties and speci�c

acoustic events. Also, average SPL measurements from scenario recordings were compared with regards

to the position of the microphone (inside or outside the incubator) and the period of the day (morning

or afternoon). It has been observed that the di�erence between the recording sessions is more signi�cant

than the di�erence between the acoustic scenarios itself, and the factors contributing to a strong inter-

session variability were outlined.

In summary, the provided description of the acoustic environment of a NICU showed its strong

diversity.
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Acoustic alarm detection

5.1 Chapter overview

A number of alarm sounds triggered by biomedical equipment occur frequently in the noisy environment

of a Neonatal Intensive Care Unit (NICU) and play a key role in providing healthcare. This chapter

presents our work on the automatic detection of acoustic alarms in that di�cult environment. In

particular, two detection problems were considered in this thesis work. First, a binary detection problem

(alarm vs. non-alarm) with the aim to automatically label temporal regions within the input audio

where an alarm is sounding, the work on which was reported in [134]. Second, a more challenging

detection problem, where not only the timestamps, but also the particular type of alarm sound is

detected.

For the latter problem, we propose several detection systems, which are based on di�erent ap-

proaches: 1) a relatively simple signal processing based approach; 2) a knowledge-based machine learn-

ing approach that takes advantage of the peculiar spectral and temporal properties of alarms; 3) an

approach based on neural networks, in which all stages of the detection system are machine learning

based.

This chapter is organized as follows. Section 5.2 reviews the research on the topic of automatic

detection of alarm sounds done so far. The general evaluation setup used to assess the detection

systems performance and some considerations about their development are given in Sections 5.3 and 5.4,

respectively, whereas Sections 5.5, 5.6 and 5.7 describe the three alternative approaches proposed.

53



5.2. Related work

5.2 Related work

To our knowledge, research on the topic of automatic alarm sounds detection was �rst reported in [46],

where general characteristics of alarms are described and the conventional approach based on techniques

and representations from speech recognition is compared to the signal-separation approach based on

sinusoidal modelling.

Posterior works investigated acoustic alarm detection for the purposes of hearing impaired assistance

in tra�c [135] or hearing support in very noisy conditions [136]. The proposed methods usually try to

make use of peculiar properties of alarms in one form or another. The algorithm presented in [136] is

based on detection of amplitude periodicity in a speci�ed frequency bandwidth and applies a set of rules

to the zero-crossing rate of the autocorrelation function. In [137] a real-time siren detection system

is proposed that employs pitch detection in the prede�ned frequency range and makes a decision by

comparing the presence probability to a �xed threshold. A rule-based approach is proposed in [138],

where spectral and time-domain morphological features, which estimate various parameters of the

considered alarms, and are used together with template-based distance computation. In [139] the

acoustic siren detection problem is tackled from the image processing perspective. In that work the

spectrogram is treated as an image and part-based models, which consist of spectro-temporal patches

in relative and �exible time-frequency con�gurations, are learnt.

5.3 Evaluation setup

The experiments were carried out with the part of the recorded database that was annotated. The

total amount of data used is around 54.3 minutes, and 19.74% of this time is labelled as alarm (note,

only the alarm signal interval was labelled). In total there were 47 �les from di�erent recording sessions

(the concrete scenario �les used can be found in Table 3.3). Only recordings made with the microphone

placed outside the incubator were used to keep homogeneous experimental conditions, and also because

this microphone is closer to the alarm sources. The original 44.1 kHz recordings were downsampled to

24 kHz.

As the dataset is relatively small, in order to obtain more statistically relevant results, a 10-fold

cross-validation scheme was applied, i.e., on each fold, 9 sessions of data were used for training and 1

session for testing. Further, the results were aggregated over all 10 folds and the overall metric scores

were obtained. The reported results correspond to the average of class-based metric scores.

Apart from the frame-level metrics used during system development, we evaluate the detection

systems using the event-level metric that can present system performance in a way more meaningful

for the medical application.
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5.3.1 Frame level evaluation

For the frame-based or frame-level evaluations, the Missing Rate (MR) and the False Alarm Rate (FAR)

metrics are used. These are de�ned as

MR =
NM

NA
, FAR =

NFA

NNA
, (5.1)

where NM and NFA is the number of misclassi�ed frames for alarm and non-alarm class, respectively,

and NA and NNA is the total number of alarm and non-alarm frames, respectively.

In our initial work reported in [134] a di�erent frame-based metric was used, which is de�ned as

one minus the relative system error:

FB-ACC = 1− NM +NFA

Ntotal
, (5.2)

where Ntotal = NA + NNA is the total number of frames evaluated. This metric re�ects the overall

system accuracy and equally treats both types of errors, namely misses and false alarms, which may

not be particularly suitable when there is a tangible unbalance in the number of alarm and non-alarm

frames. Therefore, only MR and FAR metrics were used for the frame-level evaluation as they provide

more adequate information about the detection performance.

5.3.2 Event level evaluation

The period of the alarm is chosen as event, since it is a natural alarm-speci�c unit. The period-based

error rate, denoted as PB-ERR, is de�ned as the reformulated F -score as follows

PB-ERR = 1− 2 ·NC

2 ·NC +NFA +NM
, (5.3)

where NC is the number of correctly detected reference alarm periods, NM and NFA is the number

of missed and falsely inserted periods. Each reference period is regarded as correctly detected if there

exists a detected alarm period in the tolerance interval [Tref−Ttol;Tref+Ttol], where Tref is the reference

period timestamp and Ttol is the tolerance interval duration. Note that Ttol should be less than half

the alarm period duration, otherwise one detected period may be associated with two reference periods

making both correctly detected. In this work, the Ttol was set to 49% of the alarm period duration,

and in fact it is the largest value Ttol can take on. In this case, the system is expected to detect an

alarm in the tolerance interval that has the duration of almost one alarm period, which is acceptable

for the medical application, taking into account that the duration of most of the alarm classes is quite

short.

Another event-level metric, that with regards to a time span is a trade-o� between an alarm period

and an alarm sequence (see Figure 4.4 for notation), was proposed in our earlier work [134] for the

binary detection problem. Inspired by [113], we call it a block-based metric. To compute that block-

based metric, the input audio stream is divided into consecutive non-overlapping blocks of 5 s length.
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For each of them a label (alarm or non-alarm) is assigned using the following criterion: the block is

labelled as alarm in case it has more than one alarm signal; otherwise it is labelled as non-alarm. The

basic idea that is being pursued is that neither the sta� nor the preterm baby respond to only one

alarm signal, but there should occur several of them (we believe from 2 to 4 periods of signal-silence,

are enough) in order that the sound is perceived as alarm. The de�ned block-based metric is based on

the detection cost function (CDet) used in NIST evaluations [140], and is computed using the formula:

BB-ACC = 1− α · ((CM · PM |Target · PTarget)+

(CFA · PFA|NonTarget · PNonTarget)),
(5.4)

where PTarget = 0.59 and PNonTarget = 0.41 are, respectively, the fractions of alarm and non-alarm

blocks calculated over all the database; CM = 0.3 and CFA = 0.7 are estimated application-speci�c

costs of misses and false alarm errors; α is a normalization factor equal to a fraction of 1 by a score of

the system, that is always wrong; and, �nally, PFA|NonTarget and PM |Target basically correspond to the

FAR and MR metrics, de�ned above in (5.1), calculated at the block level.

In fact, the inclusion of the application-speci�c costs of miss and false alarm errors in the block-based

metric was motivated by the fact that the vast majority of sounding alarms are non-actionable [141].

Although this may suit well the purposes of medical sta� noti�cations, the alarms that are missed by

the system due to the low cost of miss errors may still be perceived by the preterm baby.

Only the period-based metric (PB-ERR) is used in our event-level evaluations. Note that this metric

could also be used for the binary detection problem evaluation, in which case the tolerance value Ttol

should be �xed.

5.4 Development of detection systems

Only 7 alarm classes out of 16 described in Section 4.5.1 were chosen in our tests under the criteria of

having su�cient number of samples in the database and being relevant from the medical point of view.

These are classes a1, a3, a6, a7, a8, a10 and a16.

Each developed detection system consists of a set of binary detectors (alarm class vs. non-alarm

class), where the total number of detectors corresponds to the number of considered alarm classes, i.e.

is 7 in our case. An individual binary detector is designed to deal with a particular alarm class, and

is trained following the one-against-all strategy. The input audio is processed by each binary detector

independently. Although this solution may be complicated when the number of considered classes is

large, there are several reasons behind using it:

1) A set of considered alarm classes is not de�nitive, e.g. new alarm types can appear in the NICU

environment if new equipment is installed. Also, due to the lack of data, not all the alarm

types already found were considered for detection. Building individual binary detectors provides

�exibility as the detection system can be easily extended to new alarm classes.
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2) A detector designed for a particular alarm class can better exploit its speci�c properties, which

are useful for discriminating that class (e.g. by employing a speci�c feature set).

3) In case of temporal overlaps between alarm sounds, multiple labels can be provided by the detec-

tion system for the audio region with overlapping.

4) A set of alarm classes in another NICU room may be di�erent, and already developed individual

detectors could be reused for coinciding alarm classes.

Due to the speci�c characteristics of the proposed systems, they perform detection either at the

frame (neural network based systems) or at the period (signal processing based system) level. The

knowledge-based system initially provides decisions at the frame level, but includes a speci�c post-

processing scheme (with temporal modelling, see Section 5.6.3) for obtaining the period level decisions.

For systems operating at the frame level, the decision threshold is chosen based on the Equal Error

Rate (EER) criterion, so assuming that both miss and false alarm errors are equally important at the

frame level. In these systems, for the period-level evaluation, the beginning of a sequence of consecutive

frames detected as belonging to the alarm class is regarded as the timestamp of the alarm period label.

For the systems providing period-level decisions, to obtain the frame-level decisions, Lsig frames after

each of the detected alarm periods are assigned to the alarm class. In all cases, a constraint of minimal

distance between the detected periods is applied, where the minimal distance is taken equal to 75% of

the alarm period duration.

5.5 Signal processing based approach

The proposed system1 that is based on matched �lter and morphological tools consists of 4 di�erent

stages (see Figure 5.1). The �rst stage is an Energy Overload Protection (EOP), which performs a

prior enhancement of the input signal s[n]. The second stage, a Matched Filter (MF), is used to obtain

a signal proportional to the detection output, where ai[n] is the reference sample of alarm of class i. At

the third stage that signal is processed with morphological tools to obtain an envelope ei[n]. Finally,

at the last stage the decision about whether the alarm is detected or not is taken. The output of the

system is the detection signal di[n], which is equal to 1 if alarm i is detected and to 0 otherwise.

Figure 5.1: General scheme of the proposed detection system with four stages depicted (from left to

right): energy overload protection, matched �lter, morphological envelope, decision.

1The detection system described in this section was developed by Sergi G�omez Quintana in his Final Project work,

which was supervised by the author of this PhD thesis.
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In the following sections the stages of the system are described in details. Although the EOP is

the very �rst stage of the proposed system, it was developed the last as an enhancement and will be

described in the end.

5.5.1 Matched �lter stage

From the system point of view, the Matched Filter (MF) can be expressed as a linear and time-invariant

system (see the second block in Figure 5.1). The output ci[n] is computed as:

ci[n] = xc{si[n], ai[n]} =

∑L−1
k=0 si[n+ k]ai[k]∑L−1

k=0 a
2
i [k]

, (5.5)

where xc is the cross-correlation function, si[n] and ai[n] are the input and the reference alarm signals,

respectively. Note that for a particular alarm class the detection system consists of a bank of MFs,

each dealing with a di�erent version of that alarm class.

Since the recorded alarm reference may have certain noise �oor at non-alarm frequencies, �ltering is

performed to obtain a �clean� reference. The designed �lter is based on relevant harmonics, which are

estimated from the noisy alarm reference. Relevant harmonics are de�ned as frequencies corresponding

to local maxima of power spectral density such that their power with regards to the power of the

strongest frequency (e.g. fundamental) is under Relevant Harmonics Ratio (RHR) value (see Figure 5.2).

Note that RHR has to be less than the Signal-to-Noise Ratio (SNR) of the noisy reference, and in this

work it is set to 90 dB. For alarms with several tones, the relevant harmonics are de�ned in frames

(200 ms, half-overlapped), where the power spectral density of each frame is normalized with respect

to the maximum among all frames.

Figure 5.2: Graphical example of relevant harmonics de�nition (shown in blue).

5.5.2 Morphological envelope stage

The Morphological Envelope (ME) stage can be represented as a concatenation of two non-linear

and time-invariant systems: full-wave recti�er and morphological closing. Closing is a morphological

operator de�ned as:

ϕ{x[n]} = εb{δb{x[n]}}. (5.6)
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In this equation, δ· and ε· are the other two simple morphological operators called dilation and erosion,

respectively, both of which use a binary sequence b[n] called structuring element. In particular, a �at

structuring element of size S is used:

b[n] =

0, if 0 ≤ n ≤ S

−∞, otherwise
(5.7)

where the value of S is based on the fundamental frequency of alarm f0 and is equal to the integer

closest to 1/f0. Since closing only takes into account positive peaks, a full-wave recti�er is used to

obtain absolute values.

5.5.3 Decision stage

At this stage, the decision about whether a certain peak at the output of the ME stage corresponds to

an alarm detection is taken. First, a low-pass Finite Impulse Response (FIR) �lter is used to smooth

the envelope signal ei[n]. To construct the �lter, an expected response is obtained as the output of the

ME stage when the reference alarm signal is introduced at the input of the system. Further, since the

envelope can contain some peaks that do not correspond to the alarm being detected, the values of the

envelope below a prede�ned threshold U are assigned to zero. The particular value of the threshold is

based on the maximum value of that non-alarm peaks. Finally, the peak detector outputs the binary

decision signal di[n] which equals to 1 at the local maxima (i.e. peak) locations and to 0 otherwise.

5.5.4 Energy overload protection stage

The recordings often have some strong knocks and glitches, i.e. signal intervals with the energy which

is very high in comparison to the usual energy of the input signal, which may a�ect the response of the

MF. In order to deal with that the Energy Overload Protection (EOP) stage is proposed, which consists

of a �lter followed by a dynamic compressor. The �lter designed for obtaining the clean reference alarm

signal is employed (see Section 5.5.1).

A compressor is de�ned by a threshold T (in dB), after which the signal starts to be compressed, and

by a compression ratioR : 1 (in our case, R = 10). In this work, the threshold T is estimated statistically

from the training data as 90th percentile (thus, only 10% of the input signal are compressed). The input

signal is smoothed before compression by convolving its absolute value with a window. That window

is de�ned by 3 time parameters: attack (also known as a look ahead time, 5 ms), sustain (10 ms) and

release (50 ms) times, which are de�ned based on the length of glitches.

5.5.5 Experimental results

Two di�erent setups were used for the system evaluation. In the �rst setup, which we call �oracle�, the

knowledge about the temporal location of non-alarm intervals (i.e. labelling) in each scenario sample
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at the input of the system is used to estimate the threshold U . This setup was used during the system

development and gives a notion about the upper bound of its performance.

In the second setup, the threshold is estimated from the training data. For each scenario from the

training sessions a threshold is computed using labelling, as was done in the �oracle� setup. The testing

threshold is computed based on training thresholds as an average of their minimum and maximum

values. Note that the testing threshold will have the same value for all scenarios of the testing session.

Since the amplitude of the smoothed envelope may vary from session to session, for each scenario it is

normalized by its mode value.

Table 5.1 presents results for the two evaluation setups, and also for the initial version of the

developed system (Without EOP stage). It can be seen that once the EOP stage is added as the �rst

stage of the system, the amount of false alarm errors is reduced drastically, which leads to a very low

PB-ERR metric score of 12.15%.

The results for the evaluation setup with training are not as good as the ones obtained for �oracle�

setup as the threshold U estimate is less precise due to mismatched conditions. The system produces

more miss and false alarm errors, where a relative deterioration of 57.27% and 184.24% is obtained in

terms of MR and FAR metric scores, respectively. Still, this relatively simple detection system is able

to perform quite well in terms of PB-ERR metric.

Table 5.1: Alarm detection performance obtained by the signal processing based system

System setup
Evaluation metrics (%)

MR FAR PB-ERR

Without EOP stage 18.23 67.99 92.46

�Oracle� 27.50 0.19 12.15

With training 43.25 0.54 34.26

Analysing the detection results for each alarm class separately, classes a1, a8 and a16 reveal the

highest scores in terms of MR metric. This can be explained by the fact that these alarms have

similar spectro-temporal properties (see Table 4.3), which is con�rmed by calculating the normalized

maximum of cross-correlation between the alarm reference signals (see Table 5.2, the most similar

alarms are marked with greyer background). Basically, a large number of miss errors is caused by a

high threshold U estimate, which is due to high non-alarm peaks obtained from similar alarms present

in the training data.

5.6 Knowledge-based approach

This section describes a machine-learning detection system where the knowledge about the particular

spectral and temporal characteristics of each alarm class is integrated at di�erent stages. The feature
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Table 5.2: Normalized alarm cross-correlation values

a1_v1 a1_v2 a3_v1 a3_v2 a6 a7_v1 a7_v2 a8 a10_v1 a10_v2 a16

a1_v1 0.005 0.013 0.006 0.003 0.003 0.001 0.007 0.005 0.002 0.005

a1_v2 0.005 0.017 0.048 0.010 0.025 0.012 0.589 0.025 0.011 0.080

a3_v1 0.013 0.017 0.067 0.001 0.002 0.000 0.021 0.003 0.001 0.025

a3_v2 0.006 0.048 0.067 0.000 0.004 0.000 0.061 0.002 0.001 0.067

a6 0.003 0.010 0.001 0.000 0.002 0.005 0.014 0.007 0.000 0.002

a7_v1 0.003 0.025 0.002 0.004 0.002 0.004 0.014 0.012 0.001 0.002

a7_v2 0.001 0.012 0.000 0.000 0.005 0.004 0.002 0.003 0.000 0.012

a8 0.007 0.589 0.021 0.061 0.014 0.014 0.002 0.017 0.003 0.231

a10_v1 0.005 0.025 0.003 0.002 0.007 0.012 0.003 0.017 0.006 0.002

a10_v2 0.002 0.011 0.001 0.001 0.000 0.001 0.000 0.003 0.006 0.002

a16 0.005 0.080 0.025 0.067 0.002 0.002 0.012 0.231 0.002 0.002

extraction is performed around the alarm-speci�c frequencies and is based on applying either a method

for detection of sinusoidal signals (previously published in [142]) or the Non-negative Matrix Factor-

ization (NMF) algorithm. The temporal structure of alarms, in terms of duration of signal and silence

intervals in every alarm period, is incorporated by aggregating the frame-level posterior probabilities.

The system uses a set of Gaussian Mixture Model (GMM) based or pre-trained Neural Network (NN)

based detectors, each designed to deal with a speci�c alarm.

5.6.1 Modelling of the alarm spectral structure

5.6.1.1 Feature extraction

In all the feature extraction schemes, the acoustic signal is split into frames each frame containing

N = 2048 samples of the signal and the shift between frames being L = 1024 samples. The Discrete

Fourier Transform (DFT) of each frame is calculated.

Baseline

The baseline feature extraction scheme consists of obtaining 18 Frequency Filtered Logarithm Filter

Bank Energies (FF-LFBE) [66] along with their �rst temporal derivatives, for each frame. Therefore,

the dimension of the feature vector is 36. The FF-LFBEs are generic audio features used in speech and

audio processing that cover the entire frequency bandwidth.

Sinusoidal detection based

This feature extraction scheme is based on the fact that the alarms consist only of sinusoidal

components, and therefore employs detection of sinusoids. A variety of methods for sinusoid detection

have been proposed, e.g., see [143] for a review of methods used in audio processing. In this work,
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we have employed a method for detection of sinusoidal signals introduced in [142] which tackles the

detection of sinusoidal components as a pattern recognition problem. This method was employed

in recent works on analysis of bird vocalisations in [144, 145], and in its earlier version for speech

recognition [146].

Sinusoid detection is performed independently for each frame. Let us denote by St(k) the short-

time spectrum of the tth frame of the acoustic signal and by kp the frequency index of a spectral peak

found in the short-time magnitude spectrum. A given spectral peak kp is characterised by a feature

vector y=(y1,y2), where y1 and y2 are formed using M points of the short-time magnitude and phase

spectrum around the peak, respectively, to capture the spectral magnitude shape and phase continuity

information around the peak. The magnitude shape feature vector y1 is obtained by using spectral

magnitudes normalised by the magnitude value at the peak, i.e., y1=(|St(kp−M)|/|St(kp)|, . . . , |St(kp+

M)|/|St(kp)|). The phase continuity feature vector y2 is obtained by using the spectral phase di�erence

between the current and previous frame, i.e., y2=(∆φt(kp−M), . . . ,∆φt(kp+M)). The phase di�erence

is de�ned as ∆φt(k) = φt(k) − φt−1(k) − 2πkpL/N , where φt(k) and φt−1(k) denote the phase of the

frequency point k at frame-time t and t− 1, respectively.

The distribution of the multivariate feature vector y is modelled using a multi-component Gaussian

mixture. A model is obtained for spectral peaks corresponding to noise, denoted by λn, and for

sinusoidal signals, denoted by λs, at various Signal-to-Noise Ratios (SNRs). For a given spectral peak

represented by the feature vector y, the likelihood is obtained on the sinusoidal model, denoted by

p(y|λs), and on the noise model, p(y|λn). The log-likelihood corresponding to non-peak spectral points

is randomly drawn from a uniform distribution in the interval [−710; 690].

The above provides an information about the detected sinusoidal components at each signal frame.

We performed the following steps to re�ne this result. Firstly, only the peaks above 40 dB in relation to

neighbouring spectral points were considered. Further, all segments of a very short length, speci�cally

those of less than 4 frames, were discarded assuming that these were detected by error.

An example of a spectrogram of an audio recording and the detected sinusoidal components is

depicted in Figure 5.3. Note that the binary decision about each peak based on the di�erence p(y|λs)−
p(y|λn) is shown. It can be seen that even weak sinusoidal components are detected well.

We form a feature vector characterising each alarm frame by selecting the log-likelihood values

log p(y|λs) and log p(y|λn) obtained from the sinusoidal detection in the frequency intervals around

each alarm-speci�c frequency (from the Table 4.3) with the tolerance δ = ±20 Hz. Only one value for

each likelihood is chosen in each interval, and in this work it corresponds to the spectral point that has

the maximum sinusoidal model likelihood in that interval.

We also incorporate the amplitude structure of the alarms by including in the feature vector the

magnitude values at individual alarm-speci�c frequency regions. In order to disregard the e�ect of

volume, these magnitudes are normalised by the sum of the magnitudes of all the alarm-speci�c fre-

quencies.
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Figure 5.3: An example of a spectrogram (a) of audio recording and the detected sinusoidal

components (b).

The following parameter setup is used. Each frame is rectangularly windowed and padded with

2048 zeros to obtain a �ner sampled DFT spectrum. The parameter M is set to 6 frequency bins and

the sinusoidal/noise models consist of 32 Gaussian mixture components.

NMF based

Similar to works reported in [64,147], the feature representation employed in this work is based on the

activations obtained after NMF separation (see Section 2.6.2). In our experiments, we consider S = 2

sources corresponding to alarm and non-alarm classes, and the global bases matrixWtrain = [WA;WNA]

consists of the bases trained for each class, respectively. The alarm bases WA are trained using the

alarm signal intervals only and the non-alarm bases WNA are trained using the data segments that do

not contain any alarms. In this case, the number of alarm bases accounts for the variability that may

be present in the alarm signal interval, i.e. di�erent alarm versions, distinct alarm tones, variation of

the tone amplitude, etc. The whole set of activations H is normalized in each frame such that it sums
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to 1 and only activations corresponding to alarm bases HA are used as features.

In our work, the implementation of NMF described in [116] is used, with the following parameter

setup: the input matrix V is a magnitude spectrogram computed on Hann-windowed frames. As in

the sinusoidal detection method, only the spectral points within frequency regions around each alarm-

speci�c frequency with a tolerance δ are used for NMF processing. We train R = 4 and 15 bases per

alarm and non-alarm classes, respectively, where each base corresponds to a vector of dimension F × 1.

The sparsity parameter λ is set to 1. At the training and testing time we use up to 20 iterations. Note

that a cross-validation scheme was also applied for NMF-based feature extraction, where 9 sessions

were used for training the bases, which were applied to process 1 testing session.

5.6.1.2 Statistical modelling

A variety of pattern recognition techniques can be employed to construct class-speci�c detectors mod-

elling the spectral features described in the previous subsection. In this work, we used Gaussian Mixture

Modelling (GMM) and Neural Networks (NN).

For each alarm class, a GMM-based detector consists of a model for alarm and a model for non-

alarm. Generally each model is a single Gaussian probability density function with diagonal covariance

matrix as, in our experiments, this resulted in better recognition performance than using more mixture

components.

The unsupervised pre-training of NN is performed using Deep Belief Networks (DBNs) as described

in Section 2.5.1. Due to the scarcity of data, only one hidden layer networks are explored (as shown in

Figure 2.1). The hidden layer has 32 units. Experimentally, the size of each minibatch is set to 10 and

the inputs are randomly distributed among minibatches. The learning rate (α), the number of epochs

(NofE), and the momentum in the unsupervised stage are set, respectively, to 0.001, 80, and 0.9. The

supervised learning is then carried out with α = 0.001, NofE = 50, and a �xed momentum of 0.9. The

weight decay for unsupervised and supervised stages is set, correspondingly, to 2×10−7 and 1.2×10−4.

5.6.2 Modelling of the alarm temporal structure

The log-posteriors of the alarm and the non-alarm class are calculated for each frame based on the

probabilities obtained from the statistical models described in Section 5.6.1. The information about

the longer-term temporal structure of alarms is incorporated by aggregating these frame-level log-

posteriors over the intervals corresponding to durations of signal and silence segments in every alarm

period. At each frame t, the probability of it being the �rst frame of the alarm period is calculated as

Pperiod(t) =

t+Lsig+Lsil−1∑
i=t

α(i) · (PA(i)− PNA(i)) (5.8)

where PA and PNA are log-posteriors of the alarm and non-alarm class, Lsig and Lsil are, corre-

spondingly, the duration of signal and silence intervals in an alarm period, and α(i) is set to 1 for
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i ∈ [t, t+Lsig−1] and to −1 for i ∈ [t+Lsig, t+Lsig+Lsil−1]. The alarm period probability estimates

correspond to the peaks of the curve resulting from computing that aggregated probability along the

frame time index. An illustration is given in Figure 5.4.
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Figure 5.4: The output of the period probability estimation. Circles correspond to the estimated period

timestamps after applying a threshold and crosses are the reference period timestamps.

5.6.3 Post-processing and decision

Several alternative decision and post-processing schemes were applied after the modelling.

First, with the likelihoods obtained from the models, each frame was classi�ed either as alarm or

non-alarm. The resulting sequence of labels was smoothed by means of the majority voting. The length

of the smoothing window was set to be the minimum of the signal and silence interval length in an

alarm period.

Second, the period probability Pperiod(t) was subjected to a class-speci�c thresholding and the

peaks of this probability curve above the threshold were chosen as the detected alarm periods and were

directly evaluated at the period level (circles in Figure 5.4). Note that the class-speci�c threshold was

chosen so as to provide the best period-level performance.

Third, a parallel combination of the previous two schemes was applied as follows. By an alarm

event we denote a sequence of consecutive frames belonging to the alarm class. If none of the detected

alarm periods obtained from the second scheme coincides with an alarm event from the �rst scheme or

is around it with a tolerance of ±Lsig/2, the frames of that event are assigned to the non-alarm class.

5.6.4 Experimental results

5.6.4.1 Comparison of feature extraction schemes

First, in Table 5.3 we present experimental results obtained when only the modelling of the spectral

structure of the alarms is incorporated. In this setup, the GMM-based detectors are used and the
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post-processing steps are omitted. The EER, which corresponds to both MR and FAR metrics having

the same value, is reported.

It can be seen that the baseline features (row 1) are not performing well as they do not take into

account the speci�c properties of the alarms we are dealing with. Both features based on the sinusoidal

detection (SD) and on the non-negative matrix factorization (NMF), which exploit the knowledge of

alarm properties, can signi�cantly outperform the conventional features. The relative improvement

obtained in both cases is equal to, correspondingly, 62.12% and 45.01%.

Table 5.3: Alarm detection performance obtained by a system modelling the spectral structure only

Features
Evaluation metrics (%)

MR = FAR

Baseline 35.30

SD LLH ratio 32.16

SD LLH 14.52

SD LLH & Amp 13.37

NMF 19.41

The second part of the Table 5.3 (rows 2-4) shows results when SD is applied for feature extraction.

In this case the feature vector can be formed using the log-likelihood ratio of the sinusoidal and noise

models (LLH ratio) or using these log-likelihoods as separate features (LLH). The performance of the

detection system employing the latter features is clearly better as more information is provided to

classi�ers. These features are further combined with the normalized magnitude values to model the

alarm amplitude structure (row 4), which brings an additional relative improvement of 7.92%. In fact,

the information about the amplitude structure may be helpful for distinguishing between alarms that

share very similar frequency components as well as between di�erent alarm versions.

The last part of the table presents the results for the NMF-based features and it can be seen that

they do not outperform the SD-based features. Actually, their performance is 45.18% relatively worse,

which may be explained by the fact that the spectral information captured by NMF-based features is

less accurate. In fact, the NMF framework is based on an approximation, which is performed both at

the training and the source separation (i.e. feature extraction) steps. While the SD algorithm treats

each spectral point independently, in NMF processing, the spectral structure of alarms is captured as

a whole by the trained bases. Also, unlike the SD-based features, the activations obtained from NMF

processing can be sensitive to the amplitude of the signal.
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5.6.4.2 Assessing the performance of the system according to the quality of alarm samples

The alarm occurrences which are most di�cult to detect are likely those associated with low Signal-

to-Noise Ratio (SNR) values. In this case, the e�ect of the alarm stimuli on the preterm infant is very

small, so a more adequate measurement of the detection error may be obtained by discarding the alarm

occurrences with low SNR values. In this section we explore the performance of the system for the

best performing feature setup (i.e. SD LLH & Amp) considering the quality of the labelled alarm,

which is assessed by calculating the local SNR value. The idea is that the e�ect on the preterm infant

of the auditory stimulus due to an alarm is noticeable only if its SNR is su�ciently high. The SNR

value is calculated using the recordings made with the microphone placed inside the incubator, so it

measures what the preterm infant was receiving. As in the previous section, the GMM-based detectors

are employed and no post-processing steps are performed.

For each labelled alarm, the local SNR is calculated around alarm-speci�c frequency bins fb with a

margin ±δ and both the signal and noise powers are estimated by averaging the spectrum both in time

and frequency. The signal power for a bin fb is estimated as

Psb =
1

T · (2δ + 1)

(
T∑
t=1

(
fb+δ∑

k=fb−δ
S2
k,t

))
, (5.9)

where S2
k,t is the spectral power at bin k and frame t, T is the number of frames of the current alarm

signal. And taking K spectral power values around the alarm-speci�c bin, we estimate the noise power

as,

Pnb
=

1

T ·K

(
T∑
t=1

(
fb−δ−1∑
k=fb−∆

S2
k,t +

fb+∆∑
k=fb+δ+1

S2
k,t

))
, (5.10)

where K = 2(∆− δ) and ∆ corresponds to 100 Hz. The noise margin value ∆ is chosen so as to avoid

overlapping with alarm-speci�c bins while keeping enough samples for estimation. Then the SNR value

for an alarm sample is obtained as an average over the corresponding alarm-speci�c bins as follows

SNRdB = 10 · log10

(
1

B

B∑
b=1

Psb
Pnb

)
, (5.11)

where B is the total number of alarm-speci�c bins.

Figure 5.5 shows the distribution of the alarm samples as a function of their local SNR value. It

can be seen that this distribution is rather exponentially modi�ed Gaussian with the exponential decay

towards higher SNR values.

The whole range of SNR values over the entire labelled database was further divided in 5 dB

intervals and all alarm samples were grouped according to these intervals. These groups were evaluated

independently and the evaluation results are presented in Table 5.4 as an average over the considered

alarm classes. It can be clearly seen that the system performance improves as the SNR becomes

higher and so the quality of the evaluated alarm samples increases. Note that the models used for this

67



5.6. Knowledge-based approach

−5 0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

SNR (dB)

N
u

m
b

e
r 

o
f 

a
la

rm
 s

a
m

p
le

s

Figure 5.5: Global SNR histogram over all labelled alarm samples from the database.

evaluation were trained using the whole set of alarms from the database, which means that the models

were trained on multiple conditions.

Table 5.4: Alarm detection performance obtained over the SNR intervals

SNR range (dB) < 0 0 - 5 5 - 10 10 - 15 15 - 20 20-25 > 25 All

MR = FAR (%) 19.79 15.84 13.66 13.19 7.40 9.01 7.27 13.37

Alarms evaluated 77 555 354 122 96 36 47 1347

We further explored how the performance of the detection system changes in case the lowest quality

alarm samples are discarded from the evaluation. Table 5.5 shows the evolution of the detection error

with regards to the threshold placed on the SNR values, where alarms with SNR below this threshold

are not included in the evaluation. Notice that there is a drop in the detection error when alarm

samples with SNR value below 5 dB are discarded, and in that case the detection error (MR = FAR)

becomes 10.55%.

5.6.4.3 Comparison of statistical models

The extracted spectral features are further modelled by the individual class-speci�c detectors, and in

this work we explore two di�erent statistical models, described in Section 5.6.1. As in the previous

subsection, for this comparison no post-processing schemes are applied, and the best-performing feature

extraction setup, namely SD LLH & Amp, is employed.
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Table 5.5: Alarm detection performance obtained by discarding the alarm samples below the SNR

threshold

SNR threshold (dB) None 0 5

MR = FAR (%) 13.37 13.09 10.55

Alarms discarded 0 77 632

The Detection Error Tradeo� (DET) graphs for the GMM-based and NN-based statistical models

are shown on Figure 5.6. The curves were obtained by varying a threshold on the log-likelihood ratio

and averaged over the considered alarm classes. It can be seen that the GMM-based models outperform

the NN-based ones at almost all the operating points of the curve, even though the NN-based models

are discriminatively trained. This behaviour may be explained by the fact that a very limited amount

of data is available for model training, which reduces the generalization capability of the networks and

may cause over�tting.

Figure 5.6: The Detection Error Tradeo� (DET) graphs for di�erent statistical models. Circles

correspond to points closest to EER.

5.6.4.4 Comparison of post-processing schemes with application-speci�c evaluation

Table 5.6 shows the results when temporal modelling and smoothing are incorporated, as described in

Section 5.6.3. It can be seen that none post-processing scheme improves MR scores compared to not
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performing any post-processing at all, but all schemes improve the FAR metric scores to a large extent

(up to 87.8% relative improvement in the best case). Moreover, all the post-processing schemes are

able to improve the PB-ERR scores.

Table 5.6: Alarm detection performance obtained from di�erent ways of post-processing

Post-processing
Evaluation metrics (%)

MR FAR PB-ERR

None 13.37 13.37 68.96

Smoothing (S) 13.70 9.61 53.62

Temporal modelling (TM) 33.56 2.36 36.27

Combination (S & TM) 32.49 1.57 33.09

In general, we could say that smoothing provides better results at the frame level, while temporal

modelling performs better at the period level. This fact should be mainly attributed to the way the

results are obtained for these post-processing schemes, as described in Section 5.6.3. It can be seen that

smoothing slightly increases MR, but is able to signi�cantly improve results in terms of FAR (which

corresponds to -2.64% and 28.12% relative improvement). Temporal modelling, on the other hand,

reduces even stronger the FAR error (by 82.35%, relatively) and is not performing well in terms of

MR metric, but gives better period-level score, which is more important for the medical application.

Although there is a big di�erence between frame-level metrics, in terms of the absolute number of frame

errors the deterioration of MR results is smaller than the improvement of FAR results.

The best PB-ERR metric score corresponds to the combination of both smoothing and temporal

modelling (S & TM ), which is 52.02% relatively better than the baseline. Moreover, it should be

noted that the combination of both schemes outperforms the temporal modelling not only in terms of

PB-ERR, but also at the frame level.

5.7 Neural network based approach

The systems1 proposed in this section are based entirely on the use of Neural Networks (NNs), and

no speci�c feature extraction schemes or signal processing techniques are employed at the input. The

idea is to let NN learn by itself the speci�c spectro-temporal structure of alarms and their particular

discriminative properties. Following this idea, two detection systems are proposed, in which the topol-

ogy of the net is focalized to either a generic or a particular type of alarm sounds. Moreover, partially

connected hidden layers with limited weight sharing are explored for weighting the input information

in time and in frequency and, perhaps, thus emphasizing the alarm-speci�c properties. Due to the

1The detection systems described in this section are the result of fruitful discussions in the scope of the master thesis

work carried out by Alex Peir�o Lilja, which was supervised by the author of this PhD thesis.
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limited amount of available annotated data, the employed network structures have small scale, thereby

the number of network parameters to train is constrained.

5.7.1 Generic system

The network structure employed by this system is designed for a generic type of alarms, i.e. is used

for all the alarm classes. This means that no speci�c knowledge or assumptions about the properties

of alarm classes are exploited by this system.

The acoustic signal is split into frames. Each frame contains 2048 samples of the signal, and the

frames are half-overlapped. The logarithmic spectral amplitude of each frame is used at the input of

the network, thus, the input size is 1024 units. The input features are mean-variance normalized, and

the mean and variance values calculated on the training data are also applied to the testing data.

The hidden and output units have the sigmoid and the softmax activation functions, correspond-

ingly. Stochastic gradient descent is used for network optimization, and the binary cross-entropy

objective function is employed. The number of epochs is 70 and the minibatch size is set to 10. The

learning rate and momentum parameters are set to 0.01 and 0.9, respectively. The training data is

balanced with regards to classes by randomly selecting samples of non-alarm class. No unsupervised

pre-training of NN is performed. For simpli�cation purposes, the described network con�guration is

used in all the experiments.

In the baseline setup the whole spectral frame is introduced at the input, and it has been observed

that even using only 8 hidden units the NN is very prone to over�tting. For that reason, max pooling

is used at the input to compress the spectral representation and reduce the number of parameters to

be trained. The max pooling strategy is borrowed from convolutional neural networks, where it is used

to reduce spectral variance [148]. It seems to �t well our task as high spectral peaks corresponding to

alarms are supposed to be preserved. In this work, we use either uniform (basically as the one depicted

in Figure 5.7) or mel-scale �lterbank based (with 60 �lterbanks) distribution of pooling �lters, and the

input layer size is reduced to either 256 or 60 units, respectively.

Further, we explore the inclusion of partially connected hidden layers, which apart from reducing the

number of network parameters, perhaps, could also exploit the information about alarms in frequency

and in time. In fact, these layers correspond to simple unidimensional convolutional layers of one �lter

with limited weight sharing and no overlapping.

Figure 5.7 shows partially connected hidden layer for frequency weighting, where the weighting �lters

are uniformly distributed and are non-overlapping. Since alarms occupy narrow frequency regions, the

width of the �lter is relatively small and only spreads 4 input units. Note that no information about

the alarm-speci�c frequencies is provided to the layer.

Figure 5.8 shows partially connected hidden layer for weighting the spectral information in time,

as used in our experiments. The temporal context of several frames is exploited by this layer, and the

smoothed representation of the spectral frame is obtained.
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Figure 5.7: Partially connected hidden layer for weighting in frequency.

Figure 5.8: Partially connected hidden layer for weighting in time.

5.7.2 Particular system

As in the knowledge-based approach described in Section 5.6, in this system it is assumed that the

particular spectral and temporal properties of alarms are known. In fact, only the spectral information

is used, since the inclusion of the temporal information (i.e. signal and silence interval duration) would

require much more network weights to be trained and is not feasible (in our experiments, the results

were clearly worse). The spectral information is exploited at the input of the network, where the input

features are the logarithmic spectral amplitudes at the alarm-speci�c frequency bins and bins around

them. Obviously, no pooling strategies and partially connected layers for frequency weighting are used

by this system.

5.7.3 Experimental results

The development of the systems was �rst carried out for the alarm class a8, which is the class that has

only one version and the largest number of samples in our database (see Table D.1). Nevertheless, the

proposed detection systems perform in the same manner when being extended to the other considered

classes, with some minor exceptions. Therefore, we �rst present the results for the generic and particular

systems for alarm class a8, and then the best setups obtained are extended to all the considered alarm

classes. No post-processing schemes are employed for presenting the results, and the EER value is
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reported.

Table 5.7 contains the baseline results as well as the results obtained by the generic system employing

di�erent pooling strategies for class a8. We also perform the comparison of the uniform max pooling

with average pooling. For each experiment, the number of trained NN parameters is provided. Note

that depending on the alarm class, the balanced training data contains from 1744 frames (for class a16)

to 7083 frames (for class a1), and, in particular, 5320 frames for class a8. It can be seen that none

pooling strategy improves the baseline results, although the uniform max pooling provides comparable

results with roughly 4 times less number of parameters. The results using mel-scale max pooling

are worse (by 6.66% relatively compared to the baseline results), most probably due to the stronger

information reduction it performs. As supposed, max pooling is able to better empasize the alarm-

speci�c frequencies rather than simple averaging.

Table 5.7: Alarm detection performance obtained by the generic system with di�erent pooling strategies

Pooling
Evaluation metrics (%) Number of

parametersMR = FAR

None (baseline) 23.44 8208

Average 30.24 2064

Uniform max 23.55 2064

Mel-scale max 25.00 496

Table 5.8 shows the generic system performance when partially connected hidden layers are included

in NN structure for frequency weighting (FW) and temporal weighting (TW). In order to keep the

number of trained parameters small, max pooling is applied at the input of the NN. Uniform max

pooling is used before the partially connected hidden layer for weighting in frequency, while mel-scale

max pooling is used before the partially connected hidden layer for weighting in time, and in both cases

the detection results are improved. In particular, weighting in frequency and in time yield 22.06% and

40.83% relative improvement over baseline, respectively, which suggests that the temporal context is

more important. Note that no extra hidden layers are used in these experiments.

Table 5.8: Alarm detection performance obtained by the generic system with partially connected

hidden layers

Layer type
Evaluation metrics (%) Number of

parametersMR = FAR

FW 18.27 384

TW 13.87 420
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Table 5.9 presents the results for the particular system, and it can be seen that improvements over

baseline are obtained in all the setups due to the speci�c knowledge about alarms being used. We �rst

try the input that contains spectral bins corresponding to alarm-speci�c frequencies and ± 1 or ± 2

neighbouring bins. Thus, for the alarm class a8, the input size is equal to 15 or 25 units, respectively.

Also, a fully connected (FC) hidden layer with 8 units is used. There is no signi�cant di�erence in

detection results between both types of input, still the input with ± 2 bins provides better performance

and may be more suitable when extending the results to other classes. It is further used with the

partially connected hidden layer for weighting in time (TW), which yields 19.18% relative improvement

compared to the network structure with a fully connected hidden layer. Moreover, when an extra fully

connected hidden layer (FC) is introduced, the detection error drops to only 10.69%.

Table 5.9: Alarm detection performance obtained by the particular system

Input, layers
Evaluation metrics (%) Number of

parametersMR = FAR

± 1 bin, FC 16.44 146

± 2 bins, FC 16.37 226

± 2 bins, TW 13.23 202

± 2 bins, TW+ FC 10.69 376

Table 5.10 summarizes the results for best-performing system setups, which are higlighted in bold

in Tables 5.7, 5.8 and 5.9, over all the considered alarm classes. Although the average results for the

generic and the particular systems are a bit worse that the ones obtained for alarm class a8, the same

general conclusions about the performance of the various systems hold true.

Table 5.10: Average alarm detection performance obtained by the neural network based systems over

all alarm classes

System
Evaluation metrics (%)

MR = FAR

Baseline 23.42

Generic 17.76

Particular 11.13
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5.8 Chapter summary

In this chapter, our work on the problem of automatic detection of acoustic alarms in a NICU envi-

ronment was reported. Several detection systems were proposed for the detection of particular types of

alarm sounds, which are based on the approaches that deal with the problem from di�erent perspectives.

The detection system based on a signal processing approach was presented �rst, where matched

�lter and morphological tools were employed. The system requires that a sample of the alarm class

to be detected, including all its versions, is available. That sample is used as a reference signal at the

matched �lter stage, and should be an �ideal� representation of the alarm class, with which the matching

will be performed. In order to enhance the reference signal, the system includes a prior �ltering step,

which suppresses the content at all frequencies not relevant to the alarm class. The system performance

depends greatly on the proper choice of the decision threshold U . According to experimental results,

the inclusion of the EOP stage played a crucial role in improving the system performance.

Basically, the detection system following the signal processing approach is deterministic and only

employs several training samples for each alarm class, where the exact number of samples corresponds

to the number of alarm versions. Note that the decision threshold choice is based on the non-alarm

training data. The other two detection systems employ statistical modelling of the training data, where

a multitude of alarm samples is used. In fact, for these two systems, and especially for the system based

on neutral networks, the amount of training data available is an important factor.

The knowledge-based detection system strongly relies on the feature extraction process, and is

based on exploiting the knowledge about the particular spectro-temporal properties of alarms. First,

the spectral information about alarms is captured at the feature level. The best-performing features are

based on the output of sinusoidal detector complemented by the amplitude structure information at the

alarm-speci�c frequency regions. Second, after the statistical modelling of that features, the temporal

information is included at the post-processing step. In particular, the period probability estimate is

obtained at each frame by aggregating the log-posterior probabilities from statistical models along the

signal and silence intervals in the alarm period. It has been shown that the detection system bene�ts

largely from the introduction of both spectral and temporal information, and both were important to

improve the detection performance.

At the statistical modelling step, due to the scarcity of data, simple detectors based on GMMs

outperformed pre-trained NNs. Also, the experimental results showed that, as can be expected, the

system is able to better detect alarm samples that are associated with higher SNR values, and this

matches well the fact that the e�ect of the auditory stimulus on a preterm infant is more noticeable for

those alarm samples, since they likely show a higher amplitude.

Last but not least, a neural network based approach was explored. Following this approach, two

detection systems were developed: 1) a generic system where no speci�c knowledge about the alarm

properties is used to construct the network; 2) a particular system where, similarly to the knowledge-
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based approach, the information about particular spectral properties of alarms is incorporated. It has

been shown that the particular detection system clearly outperforms the generic system. On the other

hand, while the particular system has to be adapted to each alarm class, the generic system has the

advantage of using the same network structure for all the classes, so it can be easily extended to new

alarm classes.

Due to the limited amount of data available, the employed network structures must have small

scale, thereby the number of network parameters to train is constrained. Taking into account this

consideration, two types of partially connected layers with limited weight sharing are explored for

weighting the input information in time and in frequency. Apart from reducing the number of network

parameters, these layers also reduce the time complexity of network training. It has been shown that

including such layers in the neural network provides better detection results than employing only fully

connected layers. Moreover, for both generic and particular systems, the layer exploiting temporal

context improved the results to a larger extent. It should be noted that, according to experimental

results, there is no clear dependency between the number of network parameters and the detection

performance.

The detection errors obtained by the proposed systems are rather high, which can be attributed

to both the fact that the real-world NICU environment is noisy and to the scarcity of available data.

In general, all the detection systems obtained the worst metric scores for the alarm classes that share

similar spectro-temporal properties and the discrimination between these classes seems to be di�cult.

E.g. for the signal processing based system these alarms were associated with high cross-correlation

values at the matched �lter stage.

Table 5.11 summarizes the results obtained by the proposed detection systems, where either smooth-

ing (S) or temporal modelling (TM) post-processing is applied. Note that, for comparison purposes,

smoothing, which uses the information about the durations of signal and silence intervals in alarm

period, is also applied to the generic NN based system.

Table 5.11: Alarm detection performance obtained by systems following the three alternative

approaches

Approach EER
Evaluation metrics (%)

MR FAR PB-ERR

Signal processing � 43.25 0.54 34.26

Knowledge + TM 13.37 33.56 2.36 36.27

Knowledge + S 13.37 13.70 9.61 53.62

Generic NN + S 17.76 33.52 7.94 54.80

Particular NN + S 11.13 17.72 5.22 53.75

Overall, as can be expected, the systems performing detection at the frame level provide better
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performance in terms of the frame-level metrics, and the same applies to the systems operating at the

period level, which provide better results in terms of the period-level metric. Also, it can be seen that

the inclusion of the knowledge about alarm properties is bene�cial for the detection results.

Apart from presenting the detection systems and their respective experimental results, some con-

siderations about the importance of proper metrics design were outlined in this chapter. In our case,

several rounds were required to de�ne metrics that are adequate for the considered detection problem

and medical application.
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Chapter 6

Vocalization detection

6.1 Chapter overview

This chapter presents our work on the automatic system for detection of vocalization sounds, which

encompass all sounds produced through a vocal tract either by infant or adult (i.e. speech, cries, laugher,

cough, etc.). Due to the rich multisource nature of the Neonatal Intensive Care Unit (NICU) acoustic

environment, various sound events are usually taking place simultaneously. Considering vocalizations,

the temporal overlaps with other sounds are even more probable due to their extensive presence.

Moreover, a stationary ventilation noise which spreads over a wide frequency range is strongly present

in the recordings. These factors make a vocalization detection in a NICU rather challenging.

In order to have a more robust detection, the proposed system includes a pre-processing enhance-

ment step that reduces the presence of irrelevant sounds prior to detection. Several techniques are

investigated for vocalizations enhancement, which are based on either the widely used Spectral Sub-

traction (SS) algorithm or the Non-negative Matrix Factorization (NMF) algorithm, or a combination

of both. In this case, SS is used to attenuate the stationary ventilation noise, while NMF, which is

more suitable for audio enhancement in the presence of non-stationary noises, segregates vocalizations

from the other interfering sounds and noise. The vocalization sounds are further detected from the

enhanced audio signal.

The chapter is organized as follows. In Section 6.2 the evaluation setup is explained. Section 6.3

provides details on how the pre-processing step of the detection system is implemented, and Section 6.4

contains the description of the detection system itself. The experimental results are presented Sec-

tion 6.5.
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6.2 Evaluation setup

The evaluation setup for the vocalization detection is very similar to the one used for the alarm detection

task. The experiments were carried out with the part of the recorded database that was annotated. The

total amount of data used is around 40.2 minutes, and 56.7% of this time is labelled as vocalizations.

In total there were 35 �les from di�erent recording sessions (the concrete scenario �les used can be

found in Table 3.3). Only recordings made with the microphone placed outside the incubator were

used to keep homogeneous experimental conditions, and also because this microphone is closer to the

vocalization sources. The original 44.1 kHz recordings were downsampled to 16 kHz. As for the alarm

detection task, a 10-fold cross-validation scheme was applied, including for NMF processing.

In our preliminary work reported in [149] an event-level metric (based on F-score) was used to

assess the system performance. That metric was de�ned mainly for presenting the �rst results to the

medical sta�, and in that case the temporal precision of the results was not required. However, since

the main application of the vocalization detection system is automatic annotation of the audio data,

time precision is of concern. On the other hand, since the set of vocalization subclasses is quite diverse

and includes events related to speech that may span over long periods of time, the de�nition of a

common event unit is not much meaningful. Therefore, for vocalization detection task the recognition

performance was only evaluated at the frame level and, as for alarm detection, the Missing Rate (MR)

and the False Alarm Rate (FAR) metrics were de�ned as follows:

MR =
NM

NV
, FAR =

NFA

NNV
, (6.1)

where NM and NFA are the number of misclassi�ed frames for vocalization and non-vocalization class,

respectively, and NV and NNV are the total number of vocalization and non-vocalization frames,

respectively.

6.3 Enhancement techniques

6.3.1 Spectral subtraction

In the standard SS, the details of which are given in Section 2.6.1, the noise estimate is obtained once

from the �rst frames of the input audio. But since the annotation data is not available, it is not

guaranteed that there are no vocalization sounds present in that beginning segment. On the other

hand, since ventilation noise is stationary and is present throughout the recording, we propose to use

as noise estimate the average spectrum of the whole input signal. Alternatively, the noise estimate can

be obtained and updated along the input signal, and such approach is able to deal better with highly

nonstationary noise environments. In this work, we employ the Minima-Controlled Recursive-Averaging

(MCRA) algorithm, which is described in Section 2.6.1.

80



Chapter 6. Vocalization detection

The following parameter setup is used: the processing is performed on Hann-windowed half-

overlapped 64 ms frames with γ = 2. For standard SS, α = 0.01 {0..3}1, β = 0 {0..1} and the

noise estimate is obtained from the �rst 7 frames of the audio recording (which roughly corresponds

to 200 ms); for SS with the average spectrum noise estimate, α = 0.2 {0..1} and β = 0 {0..1}; for
SS with MCRA, α, β, αd, αs, αp are equal to, correspondingly, 1 {0..1}, 0.01 {0..0.1}, 0.2 {0.2..0.95},

0.9 {0.7..0.95} and 0.1 {0.01..0.7}.

6.3.2 Non-negative matrix factorization

Following the general NMF framework, described is Section 2.6.2, the bases matrix was trained before-

hand on the training data. In the case of binary vocalization detection, we consider S = 2 sources cor-

responding to vocalization and non-vocalization classes. The global bases matrix Wtrain = [WV ;WNV ]

consists of the bases trained for each class, respectively. The enhanced audio signal is then reconstructed

using only the vocalization spectra V̂V and the phase of the original input audio.

In the basic case, the spectrum of each source can be obtained by multiplication of the source bases

by the corresponding activations, i.e.

V̂i = WiHi, i ∈ [1..S]. (6.2)

Commonly, an approach similar to Wiener �ltering is applied to reconstruct each source:

V̂i =
WiHi∑
iWiHi

⊗ V, (6.3)

where multiplication ⊗ and division operations are element-wise [112].

The implementation of NMF described in [116] is used, with the following parameter setup: the

input matrix V is a magnitude spectrogram computed on Hann-windowed frames of 32 ms length with

16 ms shift. We train R = 25 {25..100} bases per class, where each base corresponds to a vector of

dimension F × 1. The sparsity parameter λ is set to 0.01 {0..2}. At the training and testing time we

use up to 25 iterations.

6.3.3 Combined approach

We want to exploit the complementarity that may exist between the SS and NMF algorithms, by

investigating several combinations of the techniques.

Firstly, we try the combination in which SS and NMF are applied consecutively. In this case, the

audio data is previously processed by SS in order to attenuate the ventilation noise, and then this

enhanced audio is used as training data for NMF. Alternatively, NMF is applied prior to SS processing.

1The range of values on which each parameter was optimized is shown in curly brackets. Note that the parameter

tuning was not exhaustive and there may be more optimal parameter con�gurations, but, as observed during tuning, no

large improvement should be expected and the general relation between the technique performance will hold.
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Secondly, we employ NMF to obtain the noise spectrum estimate |D̂(n, k)|γ for SS technique.

Contrary to NMF based pre-processing, where the spectrum is reconstructed for vocalizations, here we

obtain the reconstructed spectrum V̂NV for non-vocalizations or, in other words, the irrelevant sounds.

Each column n of the reconstructed non-vocalization spectral matrix V̂NV , which corresponds to the

time frame n, is assigned to the vector |D̂(n, k)|γ in (2.2). The advantage of this approach is that the

noise estimate is supposed to be more accurate.

6.4 Detection system

The input signal is split into frames using a Hamming window with the frame length of 30 ms and the

frame shift of 10 ms. 16 Frequency Filtered Logarithm Filter Bank Energies (FF-LFBE) features [66]

along with their 16 �rst temporal derivatives were extracted from each frame. Therefore, the dimension

of the feature vector is 32.

A Gaussian Mixture Model (GMM) based detector was used, consisting of a model for vocalization

and a model for non-vocalization. Each model is a single Gaussian pdf with diagonal covariance

matrix as, in our experiments, this resulted in better recognition performance than using more mixture

components. With the likelihoods obtained from the two models, each frame is classi�ed either as

vocalization or non-vocalization. The decision threshold is chosen based on the Equal Error Rate

(EER) criterion, so assuming that both types of errors are equally important at the frame level.

In contrast to GMMs, which is a generative classi�cation model, we also perform experiments

employing a discriminative Support Vector Machines (SVM) based classi�er. SVMs aim at maximizing

the margin between the classes and have an advantage of using only the training samples that are

the closest to the decision surface, which can be bene�cial when a limited amount of training data is

available. In this work, both linear and Radial Basis Function (RBF) kernels are employed. Before

being fed to the classi�er, the input features are mean-variance normalized; the mean and variance

values calculated on the training data are also applied to the testing data.

Optionally, smoothing (via majority voting) is applied to the string of output labels. The length of

the smoothing window was optimized with regards to the recognition performance and is equal to 31

frames.

6.5 Experimental results

The baseline system performance is presented in Table 6.1 as a function of the number of Gaussian

components used. The EER, which corresponds to both MR and FAR metrics having the same value,

is reported when no post-processing (i.e. smoothing) is applied. It can be seen that the increase of

the number of Gaussians seems to be detrimental to the detection performance, therefore only one

Gaussian is used in subsequent experiments. Furthermore, in all cases smoothing the classi�er output
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improves the detection results in terms of both metrics, yielding up to 12% relative improvement in the

best case. The system performance will be further compared to the smoothed baseline.

Table 6.1: Vocalization detection performance obtained by the baseline system

Number of

Gaussians

No post-processing Smoothing

Evaluation metrics (%)

MR = FAR MR FAR

1 32.90 29.64 29.68

2 35.40 31.19 31.23

4 36.55 32.17 32.49

8 39.33 34.15 37.23

Table 6.2 shows the detection performance of the system when di�erent pre-processing schemes are

applied prior to detection. Several of the proposed schemes are able to improve the baseline results.

First of all, the results for the SS and NMF techniques applied separately are presented. It can be

seen that applying the standard SS leads to the performance loss (by 3.74% and 5.93% relatively in

terms of MR and FAR, respectively). This may be explained by the fact that some of the recordings

contain vocalization sounds at the beginning and the obtained noise estimate is not accurate, which

may cause the distortion of vocalizations. This explanation is also justi�ed by the optimal parameter

values obtained (α = 0.01, β = 0) which basically corresponds to not doing almost any subtraction.

On the other hand, SS using the average spectrum noise estimate (SS average) and SS with the

MCRA algorithm for the noise estimation (SS + MCRA) are both able to improve the baseline result

due to the better noise estimate obtained. In the case of SS average the relative improvement is of

7.35% and 6.27% in terms of MR and FAR, respectively, showing that the average noise estimate is

able to represent the ventilation noise. It is also re�ected in the higher optimal value of α = 0.2. And

as SS + MCRA pre-processing results in a more accurate noise estimate, it yields even higher relative

improvement: 11.13% in terms of MR and 13.58% in terms of FAR metric scores.

As for NMF-based pre-processing the gain is not so obvious. Employing the basic technique for

vocalizations reconstruction (NMF basic) doesn't bring any improvement to the baseline result; con-

versely, a relative loss of 1.18% in terms of MR and of 0.98% in terms of FAR is obtained. On the

other hand, NMF with Wiener-like reconstruction (NMF Wiener) improves the results, but to a small

extent: by 1.79% and 4.78% relatively in terms of MR and FAR. The reason for NMF not performing

so well may be the fact that the strong ventilation noise and other sounds are present in the training

data of both vocalizations and non-vocalizations, thus reducing the discriminative power of the trained

bases.

The last part of the table contains the detection results for di�erent technique combinations: when
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Table 6.2: Vocalization detection performance obtained by the GMM-based system with di�erent

pre-processing schemes

Pre-processing

No post-processing Smoothing

Evaluation metrics (%)

MR = FAR MR FAR

None 32.90 29.64 29.68

SS standard 33.92 30.75 31.44

SS average 31.20 27.46 27.82

SS + MCRA 29.39 26.34 25.65

NMF basic 33.56 29.99 29.97

NMF Wiener 32.12 29.11 28.26

SS → NMF 31.99 27.44 27.96

NMF → SS 28.31 24.44 25.26

SS + NMF 33.80 30.54 30.19

SS and NMF are applied consecutively to the audio signal (SS → NMF and NMF → SS ) and, also,

when NMF is used to obtain the noise estimate for SS (SS + NMF ). Note that the best setups of SS and

NMF techniques are used for the audio-based combinations, namely, SS + MCRA and NMF Wiener.

For SS + NMF pre-processing, NMF Wiener is used for the noise estimation, the parameters of SS are

set to α = 0.2, β = 0 and the frame length is set to 64 ms. In the rest of cases the optimal parameter

setups obtained for each technique separately are kept.

The best detection results are obtained when SS is applied to the audio signal pre-processed with

NMF (NMF → SS ) and in this case the relative improvement achieved is 17.54% in terms of MR and

14.89% in terms of FAR. The detection results for the alternative pre-processing sequence (SS→ NMF )

are worse than using SS alone (only 7.42% and 5.80% relative improvement in terms of MR and

FAR, respectively, compared to the baseline results). This may be due to the fact that SS processing

introduces a musical noise to the output audio which, like it occurs with the ventilation noise, is not

bene�cial for bases training. It can also be seen that SS + NMF combination is not outperforming the

baseline setup. At least partially, this can be attributed to the fact that the processing window length

used in SS is not optimal for NMF.

The Detection Error Tradeo� (DET) graphs are shown at Figure 6.1 for the best performing setups of

SS, NMF and their combination when no post-processing is applied. It can be seen that the combination

of both techniques outperforms each one of them at all the operational points of the curve except for

the ones where FAR is very low.
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Figure 6.1: The Detection Error Tradeo� (DET) graphs for the three best performing setups. Circles

correspond to EER points.

In Table 6.3 we provide the detection results for the SVM-based classi�cation, both with linear and

RBF kernels. Either no pre-processing or the NMF → SS pre-processing, which gave the best results

for GMM-based classi�er, is applied. For linear SVM, the parameter C, which controls the tradeo�

between the training error and the margin, is set to 1e−4 {1e−5..1}. For SVM with RBF kernel, this

parameter equals to C = 0.05 {1e−4..1}, and the parameter γ of RBF is set to 0.001 {0.0001..0.25}.

Table 6.3: Vocalization detection performance obtained by the SVM-based system

Pre-processing,

kernel

No post-processing Smoothing

Evaluation metrics (%)

MR FAR MR FAR

None, linear 30.65 37.60 27.83 36.59

None, RBF 30.67 37.24 27.93 36.08

NMF → SS, RBF 25.09 35.2 22.07 33.94

It can be seen that there is no signi�cant di�erence in the detection results for the two types of

SVM kernel functions on our data, and the RBF kernel only slightly outperforms the linear one. I.e.

with smoothing post-processing, the total error (MR+FAR) for linear kernel equals to 64.42%, while for
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RBF kernel it is equal to 64.01%. Similarly to the GMM-based system, these results are improved when

the pre-processing step is added, although the overall improvement is somewhat smaller. In particular,

the relative improvement in terms of MR and FAR is equal to 20.98% and 5.93%, respectively.

Comparing the results for the two types of classi�cation models, a generative GMM and a discrim-

inative SVM, it can be seen that SVM-based system is not able to outperform the GMM-based one.

The total error for the GMM-based and for the SVM-based systems is equal to 49.7% and to 56.01%,

respectively. Perhaps, this is due to a strong overlap between the vocalization and non-vocalization

classes. Figure 6.2 provides an illustration of it, where the distribution of 1st and 4th FF-LFBE features

over all the recording sessions is provided for both classes. Most of the features behave like the 4th

one, so indeed there is a strong overlap between the classes, and the 1st feature is rather an exception

and seems to be the most discriminative.

(a) (b)

Figure 6.2: Distribution of (a) 1st and (b) 4th FF-LFBE features for vocalization and non-vocalization

classes.
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6.6 Chapter summary

In this chapter, we presented a system for automatic detection of vocalization sounds. This type of

sounds is the most represented in the NICU environment recordings, and includes various subclasses

like voices (background and foreground), baby crying, laughter and cough. In this work, the binary vo-

calization detection problem is considered, where the decision is taken between the generic vocalization

and non-vocalization classes.

The proposed system includes a �rst step of non-vocalization sounds reduction, based either on

NMF or SS or their combination. In general, the detection system bene�ts from introducing the

enhancement step, which in the best setup leads to 17.54% relative improvement over the baseline.

It has been shown that for our data NMF alone as the pre-processing step is not performing as well

as applying SS alone, most likely due to the predominant presence of the ventilation noise. Anyhow,

when NMF is applied before SS denoising for pre-processing, the best detection performance is obtained.

Two types of classi�cation models were explored, namely, a generative GMM based and a discriminative

SVM based, and in our experiments the GMM-based system outperformed the SVM-based one.

The obtained detection error is still quite high due to the complexity of the detection problem in a

real-world hospital environment and the scarcity of data. But it should be taken into account that in

this work the focus was mainly put on the pre-processing step, and, apparently, better results could be

achieved by improving other steps, like feature extraction or post-processing.
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Conclusions and future work

7.1 Summary of conclusions

This thesis work presents a rather new and challenging research area of automatic analysis: the acoustic

environment of a preterm infant in a Neonatal Intensive Care Unit (NICU). The work carried out can

be brie�y summarized in the following lines of work: 1) audio database production, from acoustic

scenarios de�nition and audio acquisition to annotation production; 2) overall description of the NICU

acoustic environment from the audio recordings; 3) development of automatic detection systems for

some relevant acoustic events. In the following, several contributions of the thesis work along these

lines are summarized.

To our knowledge, the database produced in this thesis work is the �rst annotated audio database

acquired in a NICU environment. During the work on the database production, key speci�cations

(e.g. recording setup and guidelines, labelling protocol) were designed and the whole framework of the

audio database production for the NICU environment was set up. Due to the pioneering character

of the work in that acoustic environment, the abovementioned speci�cations had to be designed from

scratch in close collaboration with medical and engineering sta� from the Hospital Sant Joan de D�eu

Barcelona. Several rounds were required, which allowed re�nement of these speci�cations based on

the obtained experience, but also implied more e�ort for making possible that the produced database

follows a uni�ed protocol. A number of recording sessions were carried out in the NICU following

the designed guidelines. In total, the produced database includes more than 1.5 hours of audio data.

The annotations cover roughly half of it; they were obtained via manual annotation in two stages, and

posteriorly revised.

Using the acquired audio recordings, an exploratory acoustic description of a NICU environment

was performed, which shows its strong acoustic diversity. Unlike most works previously reported in the

literature, the whole content of the audio signal was analysed, and, besides the usual measurements of

sound pressure levels, the identity and the spectro-temporal properties of sounds were described. An

extensive list of more than 60 acoustic events found in the NICU environment was presented. To struc-
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ture the whole diversity of sounds, a general sound taxonomy of a NICU environment was proposed,

where the three major acoustic groups de�ned are tone, vocalization and other. Further, a detailed

description of the types of sounds most represented in recordings (namely, equipment alarms, vocal-

ization sounds and equipment noise) was carried out. Besides, the set of considered acoustic scenarios

was analysed. The di�erences between the scenarios appeared to be not signi�cant in comparison to

the inter-session variability, and the factors of that were outlined.

The main contribution of this thesis lies in the work on development of acoustic event detection

systems for some relevant types of sounds from the NICU acoustic environment. In particular, the

detection of equipment alarms and vocalization sounds was targeted, since, according to the results of

acoustic description, these types of sounds are the most common.

Regarding the task of automatic detection of acoustic alarms, several detection systems were pro-

posed. These systems are based on approaches that deal with the task from di�erent perspectives:

1) A signal processing based approach that employs matched �lter and morphological tools. The

detection system following this approach is deterministic, and its performance depends greatly

on the proper choice of the decision threshold. Nevertheless, the performance of this system is

comparable to the performance of the detection systems that employ machine learning.

2) A knowledge-based machine learning approach, which integrates the knowledge about the peculiar

spectral and temporal properties at di�erent stages of the system. The spectral information

is captured in a feature vector, which in the best-performing case includes the output of the

sinusoidal detection along with the amplitude structure information, both obtained around alarm-

speci�c frequencies. The temporal information is incorporated at the post-processing step by

aggregating the frame-level posterior probabilities, obtained from statistical modelling, along

the duration of signal and silence intervals in every alarm period. According to experimental

results, the detection system bene�ts largely from the introduction of both spectral and temporal

information.

3) An approach based on neural networks in which all stages of the detection system are machine

learning based. Two detection systems were developed following this approach: a generic system,

where no knowledge about the alarm properties is used, and a particular system, where the

information about spectral properties of alarms is incorporated, similarly to the abovementioned

knowledge-based approach. Also, two types of partially connected layers with limited weight

sharing were explored for weighting the input information in time and in frequency, and the

temporal weighting improved the detection performance to a larger extent. In our experiments,

the particular system clearly outperformed the generic one.

Note that the developed systems consist of several individual detectors, each one dealing with a

particular alarm class, and the speci�c class of each detected alarm occurrence was speci�ed. It has

been shown that the discrimination between some of the alarm classes is di�cult due to the fact that

these alarms share similar specto-temporal properties.
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Additionally, the development of the detection systems required a design of proper evaluation metrics

and the targeted medical application has been considered for that purpose. In particular, for the alarm

detection task an event-level metric was proposed that is based on the alarm period unit.

Regarding the task of automatic detection of vocalization sounds, the work on the detection system

focused on the pre-processing step of non-vocalization sounds reduction. In particular, several tech-

niques were investigated for vocalization enhancement, which are based either on non-negative matrix

factorization or spectral subtraction or their combination. It has been shown that the detection system

clearly bene�ts from introducing the enhancement step, and the combination of non-negative matrix

factorization followed by spectral subtraction at the pre-processing step provided the best detection per-

formance. Also, the two types of classi�cation models, namely, a generative Gaussian mixture model

based and a discriminative support vector machines based, were assessed for this task. The binary

detection problem (vocalization vs. non-vocalization) was considered.

The detection errors obtained by all the developed detection systems are still rather high, which

could be attributed to the rich multisource, noisy nature of the real-world hospital environment and

to the scarcity of available annotated data. However, these results encourage further advances and

sophisticated solutions for the challenging problem of acoustic event detection in a NICU environment.
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7.2 Future work

The list provided below contains the most important points requiring improvements as well as several

directions for future work that seem promising.

7.2.1 Collection of a larger database

The collection of a larger database is essential to advance in all the directions of future work. Apart

from acquiring more data, the work on a larger database production could include completing the

labelling of already recorded audio data and extending the labelling protocol to more acoustic event

types. In particular, the following research lines will bene�t from larger data:

1) A large database recorded to account for diverse conditions of the NICU is useful for performing a

more comprehensive acoustic analysis of its environment. Detailed annotations, where the labels

possibly cover all the acoustic events present in the recordings, will be needed for this task.

2) The incorporation of more data will allow further improvements in detection results of the de-

veloped systems. As greater amount of samples of various acoustic events will be obtained,

detection systems could be developed for the types of sounds not considered before, e.g. other

acoustic alarms, �ner vocalization classes, other relevant acoustic events (like telephone, steps,

door slam, etc.).

3) Recordings with more newborns would be necessary for investigating the in�uence of the auditory

stimuli from the NICU environment on a preterm infant (see Section 7.2.2).

7.2.2 Analysis of sound impacts on a preterm infant

As mentioned before, it is medically relevant to correlate the presence of particular sounds with the

preterm physiological variables in order to investigate how a preterm infant reacts in a short term to

an auditory stimuli from the NICU environment. Note that the criteria of inclusion of a preterm baby

in the study would be the same as described in Section 3.2 for database acquisition.

Various parameters and in�uencing factors have to be taken into account and related in such inves-

tigation:

1) Clinical parameters collected at the outset. These in general include gestational age, weight at

birth, sex, anthropometry, patient perinatal history (e.g. mother's age, type of delivery, need

and type of resuscitation at birth, etc.), co-morbidities, treatment received, type of mechanical

ventilation.

2) Physiological variables, which include haemoglobin saturation, heart rate and respiratory rate.

It should be noted that, according to our experience, the extraction of these parameters from

the monitoring equipment may be not a trivial task as it requires either agreement of collabora-

tion between the hospital and equipment manufacturers or bearing substantial �nancial costs of

purchasing a speci�c software.
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3) Environmental exposure parameters, which include:

a) Acoustic parameters, i.e. sound pressure levels, spectro-temporal properties and identity of

sounds. At the initial stage of the study, when detection systems for automatic sound identity

annotations may not be available yet, Sound Pressure Levels (SPLs) and spectro-temporal

features alone can constitute acoustic parameters representation.

b) Micro-environmental parameters like luminosity, temperature, humidity.

4) State of consciousness, which could be estimated from video recordings of a preterm infant. This

data could also be used for investigation of sound impacts on preterm's sleep patterns.

In various works reported in the literature, the analysis of newborn infant responses to sound stimuli

has been usually addressed from a statistical point of view, where ANalysis Of VAriance (ANOVA),

ANalysis of COVAriance (ANCOVA) and Student's t-test are among the frequently used techniques.

For example, the sensitivity of auditory cortex of newborns to the temporal structure of sounds was

investigated in [150]; the study of hemodynamic responses in newborn infants to speech and music

was reported in [151]; the electromyographic and behavioural reactivity of newborns to various sound

intensity was assessed in [152]; the mean arterial blood pressure and heart rate in preterm infants were

correlated with SPLs inside the incubator in [153], to list a few.

In the study [19] similar to the proposed research line, the physiological variables, cerebral and

behavioural data of preterm infants were analysed in relation to SPL peaks from 5 to 15 dBA above

the background level. In that study, each physiological parameter was compared using ANOVA, and

post-hoc analyses using Newman-Keuls test were performed when appropriate.

While statistical techniques provide a descriptive analysis of the data, machine-learning based data

mining algorithms may be useful to extract meaningful patterns and provide predictions on that data

(e.g. [154]). For instance, the deep learning approach may be used to construct predictive models,

linking environmental exposure, clinical and state of consciousness parameters to the physiological

variables of a preterm infant.

7.2.3 Extended acoustic description

A more accurate sound taxonomy could be built automatically by employing an event-based clustering

(e.g. using k-means algorithm) or by building a decision tree (e.g. based on a measure of entropy

between acoustic events). Both types of analysis require a set of features that provide a comprehensive

spectro-temporal description of sounds. Features like zero-crossing rate, energy, frequency sub-band

log energies, fundamental frequency, spectral centroid, spectral roll-o�, spectral bandwidth, spectral

�ux, and their evolution in time could be employed.

A possible direction of further research could be to look for typical chains of acoustic events and

relationships between them. For instance, interrelationships between di�erent equipment alarm cate-

gories (i.e. provoked by desaturation, bradycardia or apnea) and patterns in alarming in a NICU have

been investigated based on heuristic techniques in [141]. Extending such research to more sound classes
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would help to gain a better insight about the processes in a NICU acoustic environment and to better

characterise the types of sound sources present (i.e. provoked/spontaneous, evitable/non-evitable).

Besides, a detailed analysis could be provided for other relevant sound classes (like telephone, steps,

chair moving, door slam, etc.), which could be further considered for automatic detection.

7.2.4 Acoustic alarm detection

The developed detection systems consist of individual detectors, each one dealing with a particular

alarm class. In each system, to obtain the �nal decision, the independent outputs of the detectors

should be combined (e.g. superimposed), and at this step the knowledge about confusion between

the alarms that share similar spectro-temporal properties could be integrated. Alternatively, in order

to improve the detection performance, some detection hierarchy could be considered. E.g. the alarm

classes that have similar spectral structure could be detected consecutively, starting �rst with those

having more frequency components.

Due to the complementarity that may exist between the detection systems following di�erent ap-

proaches, the fusion of their output scores could be performed, e.g. using weighted arithmetical mean

or fuzzy integral [155].

For the purposes of sta� noti�cation, an alarm sequence (see Figure 4.4) could be considered for

event level evaluation. It could be based on the period-level decisions provided by the detection systems,

e.g. an alarm sequence is regarded as detected if any of its periods is detected. As in the proposed

block-based metric, application-speci�c error costs could be introduced penalising the false alarm errors.

Also, miss error costs could depend on the alarm sequence duration, where a sequence containing only

one period may be accidental and non-relevant and its detection may not be important, while missing

an alarm sequence of a long duration may be critical.

We further provide the directions for future work for each of the proposed alternative approaches.

7.2.4.1 Signal processing based approach

Due to similarities between some of the alarm classes that lead to deterioration of the detection perfor-

mance, an additional pre-processing step could be implemented to reduce the cross-correlation between

reference signals of the alarm classes (e.g. by removing the common harmonics). Possible system

enhancements could also concern the choice of a proper decision threshold U , in particular:

1) During training only the data segments that do not contain any alarms could be used to avoid

situations when the decision threshold is too high due to the presence of similar alarms.

2) The probability density function of the morphological envelope could be employed for the thresh-

old choice. It has been observed that such representation provides distinct peaks for alarm and

non-alarm data segments, and the decision threshold would correspond to the least probable value

between these two peaks.
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3) More complex ways of combining the training thresholds could be explored that may lead to a

more optimal testing threshold value.

7.2.4.2 Knowledge-based approach

The detection error obtained by the knowledge-based system is rather high, in part, due to the scarcity

of the data available, so acquiring more annotated data is important for advances in this approach.

Feature extraction schemes that would explicitly capture a peculiar spectro-temporal structure of

alarms could be tried. For instance, some modulation features that describe a temporal evolution in

spectral domain (e.g. [70]) or two-dimentional Gabor-based features [73] that would be oriented along

time axis could be employed. Also, a more sophisticated algorithm for sinusoidal detection could be

used.

Further work could focus on improving the period probability estimation algorithm, where an adap-

tive thresholding could be implemented for period detection, and the way of combining it with smooth-

ing might be investigated.

Alternatively, the information about the temporal structure of alarms could be implicitly captured

by classi�cation models like recurrent neural networks or hidden Markov models. Note that in our pre-

liminary experiments the use of hidden Markov models was not yielding the performance improvement.

7.2.4.3 Neural network based approach

Obtaining a larger database will be the most crucial factor for the advancing in this approach as it

will allow to explore more complex neural network structures. More training data could be obtained

automatically through data augmentation, which is a strategy typically used for deep learning in speech

recognition in order to avoid over�tting and improve robustness [156]. Following such strategy, clean

alarm samples (e.g. reference signals used in signal processing based approach) would be mixed with

noise samples. Note that the noise samples and the generated data in general should represent as close

as possible the sound diversity of the NICU environment.

Having more training data, network structures with larger number of hidden layers could be trained,

where deeper hidden layers correspond to feature representations of higher level of abstraction (Deep

Neural Networks (DNNs)). Also, the system performance may improve when a larger temporal context

(e.g. an alarm period for the particular approach) is introduced at the input of the network. The eval-

uation over cross-validation data for the early stopping strategy and dropout [157] could be employed

to avoid over�tting in networks with a large number of parameters.

In our preliminary experiments, the long short-term memory networks [86], which are typically used

to model a sequential data and could capture the temporal recurrence inherent to alarm sounds, didn't

achieve an improvement in detection performance. More work is required in this direction to get a

better insight about the obtained results, and possibly improve them. On the other hand, more �lters
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could be included in the proposed partially connected hidden layers for performing convolution in time

and in frequency. Future work could concern the implementation of other pooling schemes (e.g. [148])

that would emphasize the alarm-speci�c properties.

As the trained neural networks deal independently with each of the considered alarm classes, to

account for similarities between some of the alarm classes, the outputs of neural networks or of their

penultimate layers could be shared via a jointly trained layer. The idea of a multi-label DNN that was

proposed in [158] could be used to deal with the problem of temporal overlaps between alarm sounds.

7.2.5 Vocalization detection

The binary detection of vocalizations presented in this work is a �rst step towards the correlation study

and will have to be followed by the detection of each relevant type of vocalization sounds. In particular,

more speci�c tasks of detecting higher intensity vocalizations (i.e. foreground speech and shouts, the

detection of which may be easier), parental voices could be considered, as these sounds are supposed

to a�ect a preterm baby the most [3]. Also, the task of baby crying detection alone could be relevant

for the medical application.

More sophisticated combinations of Spectral Subtraction (SS) and Non-negative Matrix Factor-

ization (NMF) techniques could be explored in future work. First, NMF could be used in SS with

Minima-Controlled Recursive-Averaging (MCRA) algorithm for a more adequate estimation of the

speech-presence probability. Second, the noise estimate obtained from MCRA could be integrated in

the NMF-based enhancement. E.g. in [159] an unsupervised noise estimate was incorporated in bases

training, and improvement over straightforward cascading of SS and NMF techniques was reported.

In this work, the focus in development of the system for vocalization detection was put on the

pre-processing enhancement step, but improvements could be introduced at other steps. For instance,

other feature extraction schemes and their combinations could be tried, which might allow better

discrimination between vocalization and non-vocalization classes. A comprehensive study, like the one

reported in [160], where the performance of various types of features (i.e. based on energy, harmonicity,

formants, stationarity and modulation) for voice activity detection was analysed, can serve as a starting

point.
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Description of the recording sessions set

This appendix provides information about the entire set of recording sessions carried out while acquiring the database used in this thesis

work. Table A.1 contains a description of each session, where sessions included in the database are marked in green.

To begin with, the recording sessions RS1 and RS2 were performed for exploring the NICU acoustic environment: to perform its general

analysis and for initial acquisition of the acoustic scenarios. No external microphones were connected to the recording device during these

sessions. Starting from the recording session RS3, the recording setup described in Section 3.2 was adopted, where the de�ned set of ten

acoustic scenarios was recorded using two microphones connected to the recording device. It should be noted that the recording device

setup was strictly checked only starting from the recording session RS7.

Table A.1: Information about all the performed recording sessions

Session code Date Time Incubator Duration (s) Comments

RS1 22.01.2013 unknown � 5419.21 The recording device was placed at the table closest to the center of

the room (see Figure 3.1). There are 6 recordings each 5 minutes long

and an hour-long recording.
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RS2 20.02.2013 unknown unknown 545.58 The recording device was placed inside the incubator. There are

recordings of the following scenarios: 4 of nursery care (without spec-

ifying the concrete acoustic scenarios), 1 of changing medications, 2

of pediatric observation and 1 neutral.

RS3 07.03.2013 15.30 3 587.16

RS4 20.03.2013 13.00 1 481.28

RS5 21.03.2013 13.00 unknown 258.03 Only changing an oxygen sensor, cleaning respiratory secretions and

measuring temperature scenarios were recorded.

RS6 22.03.2013 15.30 1 368.65 Due to the incubator design, the conventional microphones positions

were not followed.

RS7 04.04.2013 16.45 � 748.34 These recording sessions were carried out in another NICU room,

which is to the right from the room depicted in Figure 3.1.RS8 05.04.2013 16.30 � 1035.61

RS9 08.04.2013 05.00 4 382.77 Night time recording session.

RS10 11.04.2013 15.10 � 74.05 Recording of the kangaroo care.

RS11 16.04.2013 09.25 4 1030.9

RS12 16.04.2013 13.00 3 581.87

RS13 04.06.2013 17.10 2 683.58

RS14 11.06.2013 17.25 4 918.19

RS15 13.06.2013 09.05 4 659.76

RS16 20.06.2013 09.15 4 804.03

RS17 27.06.2013 17.00 3 658.63 The preterm infant was attended by two nurses at the same time, so

all the four doors of the incubator were open during manipulations

(only two doors were open in other sessions).

RS18 09.07.2013 17.20 2 429.03
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Appendix B

Neutral scenario database

An additional database of continuous acoustic environment recordings was collected in April 2014, which was recorded but not annotated.

Besides audio, a video signal from the cardiorespiratory monitor screen was recorded to be able to annotate posteriorly the physiological

variables. For this database, only the neutral scenario was considered in order to exclude the periods during which the preterm infant is

exposed to tactile stimuli. Note that if the baby had to be manipulated during the recording session, recording was interrupted and a

stabilization period of several minutes was used to take into account the tactile stimuli in�uence decay.

These recordings are supposed to capture the NICU environment during various common activities and events (see Section 3.2),

possibly happening close to the incubator with which the recordings are performed. For example, in case of capturing the nursery care

activities, it is preferable that a nurse attends a preterm infant in the neighboring incubator. The particular activities and scenarios that

were taking place simultaneously with the recording sessions, as well as the information about these sessions can be found in Table B.1.

The activities are provided in temporal order and the incubator with which the activity occurred is noted down in round brackets.

The total duration of the acquired audio data is 235.1 minutes, and part of this data was discarded during synchronization of audio

and video modalities. The overall duration of the relevant audio data is 201.66 minutes, which is around 3.3 hours. All the recording

sessions were performed with the incubator at position 2. Moreover, recording sessions RS20�RS22 were made with the same preterm

infant. The state of concious of the preterm was noted down, but not thoroughly and without previous assessment of the medical sta�.

In general, compared to the �rst database of acoustic scenarios, this audio database has more controlled conditions and is less diverse.

Namely, only one scenario (neutral) is recorded, the incubator position and the medical equipment set are �xed, the doors of the incubator
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are always closed, the recordings are performed during limited number of time slots.

Table B.1: Information about the recording sessions of the second database

Session code Date Time Duration (s) Comments

RS19 20.01.2014 unknown 750.37 Pilot recording session carried out to check the technical setup. Is not included in

the database.

RS20 01.04.2014 10.20 3941.77 Surgical intervention (3), nursery care (1), visit of parents (3), changing medica-

tions (2), nursery care(4).

RS21 02.04.2014 15.20 5875.49 The environment was very quiet and only changing medication (2) occurred during

this session.

RS22 03.04.2014 09.15 2282.55 Examination (X-Ray; 3), pediatric observation (1), nursery care(1), examination

(ultrasound; 1), preterm's relocation (3).

1
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Appendix C

Labelling protocol changes

This appendix summarizes the changes in the labelling protocol used during the two stages of the

annotation campaign. In particular, Table C.1 outlines the di�erences in the list of acoustic events

considered during the �rst stage with regards to the �nal list presented in Table 3.2. The three alarms

not labelled during the �rst stage were found after it. Also, more vocalization classes were considered

at the second stage.

The �rst stage also had more exploratory character and some of the audio recordings (namely, 18

�les) were annotated fully. Moreover, for these �les the number of speakers in vocalization intervals

was speci�ed. The events tier contains acoustic events speci�c to the considered scenarios, and acoustic

events in the noises tier are the ones recognized by the annotator during the work. Note that one of

these events is cough (nn[co]), which was added to the protocol at the second stage of the campaign.

Table C.1: Di�erences in the list of acoustic events considered for annotation during the �rst stage of

the annotation campaign

Tier Label Acoustic event

Not considered for annotation

Alarms

a14 Incubator Atom

a15 Infusion pump Alaris GH Plus

a16 Monitor Philips IntelliVue MP70

Vocalizations

sh Shout

lg Laughter

co Cough

bci Baby crying/voice (heard only inside the incubator)

Events
nn[bm] Buttons of the monitor

nn[bp] Buttons of the infusion pump
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Annotated for a part of the recordings

dp Diaper

Events

ab Putting on/o� sphygmomanometer

hi Hissing (rhythmic)

nn[xi] Squeak

ts Taking sensor o�

pl Plastic wrapping

cs Secretions cleaning

cb Click of the infusion pump

od/cd Incubator door opening/closing

CPAP nc Continuous Positive Airway Pressure (CPAP) noise

Noises

nn[kn] Knock

nn[ch] Chair moving

nn[dr] Drawer

nn[st] Steps

nn[te] Telephone ring

nn[co] Cough

nn[ma] Mobile phone

nn[sp] Spray

nn[clh] Cleaning hands

nn[do] Door slam
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Appendix D

Number of annotated alarm and

vocalization samples

This appendix provides information about the number of annotated samples that belong to two types

of acoustic events: equipment alarms (see Table D.1) and vocalizations (see Table D.2). These are the

major acoustic event classes for which the detection systems were developed in this work. In the tables,

the classes al and vo correspond to the generic classes used in the binary detection. Note that the total

number of samples along all classes may not be equal to that number in the binary case due to the

temporal overlaps between acoustic events.

Table D.1: Number of annotated alarm samples in each recording session

Session

code

Class

al a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

RS3 67 27 0 15 0 0 0 7 4 0 5 7 2 0 0 0 0

RS4 193 0 0 17 0 0 53 0 146 12 0 0 0 0 0 0 0

RS11 104 60 6 20 0 0 7 0 3 10 19 0 0 0 0 0 0

RS12 113 1 3 0 0 0 35 0 29 7 33 0 0 0 0 0 17

RS13 203 10 4 9 0 0 0 0 147 0 0 18 0 0 0 0 36

RS14 106 5 0 0 0 0 0 42 12 0 0 0 0 0 0 0 53

RS15 78 24 0 36 0 0 0 15 3 1 1 0 0 0 0 0 0

RS16 91 25 0 9 0 0 0 35 0 0 0 0 5 0 0 0 25

RS17 146 67 0 3 0 0 108 0 14 0 15 7 0 0 0 0 4

RS18 136 19 0 21 0 0 0 15 95 0 2 0 0 0 0 0 0

Total 1237 238 13 130 0 0 203 114 453 30 75 32 7 0 0 0 135
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Table D.2: Number of annotated vocalization samples in each recording session

Session

code

Class

vo bv fv bc co sh lg bci

RS3 60 52 6 8 1 2 3 0

RS4 70 48 19 37 0 0 2 0

RS11 27 27 0 0 0 0 0 0

RS12 50 32 8 19 1 0 0 0

RS13 63 53 9 0 1 1 5 0

RS14 64 47 6 48 0 0 0 13

RS15 72 61 7 12 0 4 4 0

RS16 86 36 0 61 0 1 0 5

RS17 70 45 25 8 1 2 3 3

RS18 92 59 32 5 3 3 2 0

Total 654 460 112 198 7 13 19 21
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