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1. The cell cycle 

Life cannot exist without a previous cell division, since every cell comes from the 

division of a previous cell (Omnis cellula e cellula). This idea, first proposed by Robert 

Remark and Rudolf Virchow on the 19
th

 century, has been essential for the study of the 

cell cycle and division, the bases of life. 

The cell cycle, the group of processes involved in the duplication and division of a cell in 

two daughter cells, is essential for all organism existence. In the case of unicellular 

organisms, this process results in the generation of a new organism; while in 

pluricellular organisms, the generation, development and maintenance of all tissue and 

organs is dependent on thousands of consecutive cell divisions
1
. 

The main objective of the cell cycle is the duplication and division of the genetic 

material or DNA (Deoxyribonucleic acid), in a process occurring in four consecutive cell 

cycle phases (Figure 1). The duplication of the genetic material takes place in S phase or 

synthesis phase, in a process known as DNA replication
1
. This process has to be done 

accurately, completely and only once per cell cycle to avoid the loss of information and 

the acquisition of genomic instability, hallmarks of cancer
2
. Once duplicated, the 

genetic material has to be equally divided in two daughter cells. This division occurs on 

M phase or mitosis, which is subdivided in four different phases. The division of the 

genetic material starts with the condensation of DNA and the nuclear envelope 

breakdown during prophase. After that, the mitotic spindle is formed, which allows 

condensed chromosomes to be aligned in the center of the cell (metaphase). During 

this phase, the kinetochores of each sister chromatid are connected with the 

centrosomes present on each one of the poles of the cell through their attachment to 

the microtubules. Once all the kinetochores are properly attached to the microtubules, 

each sister chromatid is forced to migrate to one of the poles of the cell during 

anaphase. Finally, DNA is decondensed and the new nuclear envelopes are synthesize 

(telophase), while cell starts to divide (cytokinesis), thus forming two daughter cells 

containing the same genetic material
1
. 

For proper duplication and division, two additional phases are required, G1 (gap 1) and 

G2 (gap 2) phases, previous to S and M phases respectively. Cells duplicate and 

synthesize other necessary components for cell growth and division during those 

phases. Additionally, several extracellular and intracellular signals are integrated during 

those phases that will determine the progression or arrest of the cell cycle. During G1 

phase for example, cells receive extracellular signals that determine the cell cycle entry. 

Once the restriction point has been bypassed, cells are forced to arrive to S phase, and 

to continue through all the cell cycle until next G1, independently of these extracellular 

signals. By contrast, the absence of growth factor or other extracellular signals during 

G1, before cells pass through the restriction point, can promote a reversible cell cycle 

exit into a quiescent state or G0 phase
1
. 

The ordered and correct progression thought the different cell cycle phases is 

accomplished by the correct regulation of cyclin-CDK (cyclin-dependent kinase) 

complexes
1
. Additionally, there are several mechanisms or checkpoints to ensure the 

proper completion of each cell cycle phase (Figure 1), preventing the progression 
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through a subsequent phase if the previous one has not properly been concluded
3
. The 

correct regulation of all these mechanisms is essential to guarantee a correct cell 

division and to avoid the transmition of errors to daughter cells. 

The functions and regulation of those mechanisms are further explained in the 

following sections. 

 

Figure 1. Cell cycle and checkpoints. 

The cell cycle and mitotic phases, and the checkpoints acting on each of them are shown. Adapted from “The 
cell cycle, principles of control”

1
. 

1.1. Cell cycle regulation by cyclin-CDKs 

1.1.1. Cyclin-CDK complexes 

Cyclin-CDK complexes are essential factors for the progression and regulation of the 

cell cycle, in which cyclins correspond to the regulatory subunits while CDKs represent 

the catalytic one. CDKs are Serine/Threonine protein kinases that cannot be activated 

without their association with cyclins. The interaction with cyclins promotes a 

conformational change essential for their kinase activity. Additionally, cyclins regulate 

the subcellular localization of CDKs, necessary for their association with substrates
1
. 
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In mammals, CDK family contains 20 proteins although only some of them are essential 

for cell cycle regulation. Likewise, although 29 proteins have been shown to contain 

cyclin domains, not all of them are required for cell division
4,5

. From works done in 

mammal cells, it was described that the ordered progression through the cell cycle was 

accomplished by the progressive activation and inhibition of four different CDKs (CDK1, 

CDK2, CDK4 and CDK6) associated with four different cyclins (Cyclin A, Cyclin B, Cyclin D 

and Cyclin E)
6
. 

According to this model, CDK4 and CDK6 associated with Cyclin D are the first ones 

acting during G1 to promote the passage through the restriction point in response to 

extracellular signals. After that, Cyclin E-CDK2 is activated during G1/S transition to 

allow the cells to enter into S phase. Once in S phase, Cyclin E-CDK2 activity is gradually 

replaced by Cyclin A-CDK2, which has important roles for S-phase and G2 progression. 

At the end of the interphase, when cells are about to enter into mitosis, Cyclin A-CDK1 

is activated to facilitate the onset of mitosis. Finally, Cyclin B-CDK1 is activated to 

progress through mitosis and allow the division of the cell (Figure 2)
6
. 

 

Figure 2. Cell cycle regulation by cyclin-CDKs. 

The cyclin-CDK complexes acting on each cell cycle phase (or phases) are shown. Adapted from “The cell 
cycle: a review of regulation, deregulation and therapeutic targets in cancer”

7
. 

Remarkably, this classic model has recently been challenged, since studies using 

knockout mice have shown that there is a huge redundancy between CDKs. Those 

studies have shown that the deletion of CDK1 is the only one that cannot be 

compensated by other CDKs, and consequently, mice lacking CDK1 fail to develop 

morula and blastocyst stages
8
. By contrast, the deletion of the other CDKs alone or in 

combination does not abrogate the development at those stages
8–10

. Nevertheless, 

although their deletion may not be lethal for initial embryonic stages, it is thought that 

they are all essential for a correct development and survival of the complete organism 

and its germ line
6
. 
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Similar to CDKs, cyclins do also present a huge redundancy. In mammals, there are 

different isoforms of each cyclin, which present specific expression patterns during 

embryonic development and adult tissues in some cases. These isoforms include:  two 

Cyclin A isoforms (A1 and A2), three Cyclin B isoforms (B1, B2 and B3), three Cyclin D 

isoforms (D1, D2 and D3) and two Cyclin E isoforms (E1 and E2)
6
. Interestingly, although 

they all seem to be necessary for the development of certain tissues, Cyclin A2, Cyclin 

B1, Cyclin E1 and Cyclin E2 seem to be the only essential ones in most cases
11–14

. 

1.1.2. Regulation of cyclin-CDKs 

Due to the importance of cyclin-CDK complexes for a correct cell cycle progression, 

these complexes are tightly regulated by several mechanisms that are explained below. 

• Synthesis and degradation of cyclins 

As previously mentioned, it is generally accepted that each particular cyclin-CDK 

complex acts in a certain moment during the cell cycle, participating in different 

processes specifically on that phase (or phases). Therefore, cells have evolved to 

promote the ordered activation and inhibition of the different cyclin-CDK 

complexes during the cell cycle
6
. As a general rule, CDKs are constitutively 

expressed and are relatively stable, whereas cyclin levels oscillate
15

. Moreover, as 

each CDK presents affinity for a specific cyclin (or cyclins in some cases) the 

regulation of cyclin levels allows the ordered activation of cyclin-CDK complexes 

during the cell cycle. Thus, the first level of regulation of these cyclin-CDK 

complexes is based on the synthesis and degradation of cyclins, which allows the 

accumulation of a specific cyclin at each time (Figure 3)
16

. 

 
Figure 3. Cyclin levels oscillations throughout the cell cycle. 

The levels of each cyclin through the cell cycle are represented on the graph. 

The expression of a particular cyclin is usually promoted by the cyclin-CDK complex 

that acts just before during the cell cycle, thus allowing the ordered accumulation 

of the different cyclins. In this sense, in response to mitogenic signals, Cyclin D 
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expression is promoted by the activation of the Ras-Raf-MAPK (mitogen-activated 

protein kinase) pathway during G1. This accumulation of Cyclin D allows the 

activation of Cyclin D-CDK4/6, which in turn activates the E2F transcription factors, 

involved in the expression of Cyclin E, Cyclin A and other substrates
1,6,16

. 

E2F family (E2F1-8) contains 8 different transcription factors, which are classified 

as cell cycle activators (E2F1-3) or repressors (E2F4-8) based on their 

transcriptional roles
17

. However, several data suggest that in fact they can function 

as both depending on the cellular context. For instance, E2F1 and E2F2 depletion 

has been reported to result on accelerated DNA replication in bone marrow cells
18

. 

These transcription factors are important cell cycle regulators that control G1/S 

and G2/M transition, but also, processes such as apoptosis, DNA replication or 

repair. 

E2F transcription factors are regulated by their association with pocket family 

proteins (pRb (Retinoblastoma protein), p107 and p130), which inhibit E2F 

proteins in the absence of appropriate extracellular signals
17,19–21

. In this sense, the 

activation of Cyclin D-CDK4/6 phosphorylates those pocket family proteins, 

promoting their dissociation from E2F1-3 transcription factors, thus allowing the 

expression of some of the E2F1-3 substrates such as Cyclin E in late G1. This results 

in the activation of Cyclin E-CDK2, which promotes G1/S transition. At this time, 

Cyclin E-CDK2 further phosphorylates pocket family proteins, resulting in an 

increased activation of E2F1-3 that allows the expression of Cyclin A from S phase 

on
1,6,16,19

. Finally, Cyclin A-CDK2/1 contributes to the expression of Cyclin B1 during 

S and G2 phases, as it phosphorylates and activates other transcription factors, 

such as NF-Y, b-Myb and FoxM1, essential for the expression of this last cyclin
22

. 

Apart from their synthesis, cyclins are also regulated by degradation through the 

ubiquitin-mediated proteasome system
16

. Two different E3 ubiquitin ligase 

complexes are responsible for the degradation of cyclins and other cell cycle 

regulators, SCF (Skp/Cullin/F-Box containing complex) and APC/C (anaphase-

promoting complex/cyclosome)
23

. Cyclin D and Cyclin E are degraded by the SCF 

complex, either when they are free
24,25

 or associated with CDKs
26–28

, while Cyclin A 

and Cyclin B are degraded by the APC/C complex
29,30

. These complexes-mediated 

cyclins and other cell cycle components degradation, and their implication on cell 

cycle regulation, is further explained in section (1.2). 

• Regulation of cyclin-CDKs by phosphorylation and dephosphorylation 

As previously explained, the association of cyclins with CDKs is essential for the 

activation of cyclin-CDK complexes. However, this interaction is not sufficient for 

their activation. Several phosphorylation and dephosphorylation events 

participate in the regulation of these complexes
16

. 

First, once associated with cyclins, CDK1 and CDK2 have to be phosphorylated, on 

Threonine 161 and 160 respectively, in order to become activate. These 

phosphorylations are mediated by another cyclin-CDK complex, the CAK (CDK-

activating kinase)
31–34

. Notably, phosphorylation on Threonine 160 can be reverted 
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by Kap1 phosphatases, although it seems that this residue is only 

dephosphorylated once the partner cyclin has been degraded
35

. 

Additionally, cyclin-CDKs are phosphorylated on Threonine 14 and Tyrosine 15 in 

an inhibitory manner once the complex is established
36,37

. In higher eukaryotes, 

these phosphorylations are mediated by Myt1 and Wee1 kinases respectively
38–40

. 

In order to become activate, Threonine 14 and Tyrosine 15 have to be 

dephosphorylated by Cdc25 phosphatases. In mammals, three isoforms (A, B and 

C) of Cdc25 phosphatases have been described, which differ on their affinities for 

each cyclin-CDK complex, their expression pattern, subcellular localization and 

mechanism of action
41

. 

Due to the importance of the dephosphorylation of Threonine 14 and Tyrosine 15 

for the activation of cyclin-CDK complexes, Wee1 and Cdc25 are tightly regulated 

by cell cycle checkpoints
42

. The mechanisms involved in this regulation are further 

explained in the following sections. 

• CKIs: cyclin-dependent kinase inhibitors 

Apart from the previously explained mechanisms, cyclin-CDK complexes are also 

regulated by CKI proteins, which in turn are controlled, at least in part, by the 

ubiquitin-mediated proteasome system
16,23

. CKIs are cyclin-CDK inhibitors that can 

be grouped in two main families that differ on their specificity to substrates and 

mechanism of action. INK4 (inhibitor of Kinase 4/alternative Reading Frame) family 

proteins (p16
INK4a

, p15
INK4b

, p18
INK4c

 and p19
INK4d

) can only interact with CDK4 and 

CDK6 kinases, disrupting their association with cyclins. On the other hand, CIP/KIP 

(CDK-interacting protein/kinase inhibitory protein) family proteins (p21
CIP1

, p27
KIP1

 

and p57
KIP2

) can interact with all the cyclin-CDK complexes, promoting a 

conformational change that inhibits their kinase activity
43

. 

CIP/KIP proteins are important for cell cycle regulation during development and in 

response to stress
44

. In particular, p21
CIP1

 (from now on refer to as p21) for 

example has been shown to be implicated in differentiation, apoptosis and 

senescence
45–47

. Additionally, p21 is an important transcriptional target of p53 

transcription factor that mediates the DNA damage-induced G1 and G2 arrests
48,49

. 

Moreover, p21 has also CDK inhibitor-independent roles that regulate the cell 

cycle. For instance, p21 inhibits E2F1
50

 and other transcription factors
45

 by its 

direct binding to promoters. These and other p21 functions are further explained 

in sections (3.2) and (3.4). 

All the previously described regulatory mechanisms (summarized on Figure 4) are 

essential to ensure the proper coordination of cyclin-CDKs in order to guarantee 

the correct completion of the cell cycle
16

. 
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Figure 4. Regulation of cyclin-CDKs. 

Summary of the mechanisms involved in the regulation of cyclin-CDK complexes. Adapted from “The 
role of Cdk7 in CAK function, a retro-retrospective”

51
. 

1.2. Cell cycle regulation by the ubiquitin proteasome system 

The UPS (ubiquitin proteasome system) consist in the association of several ubiquitin (a 

small highly conserved protein) molecules to target substrates in a process known as 

ubiquitylation, to finally induce their degradation through the 26S proteasome 

complex. This ubiquitylation occurs in three consecutive enzymatic steps:  1) First, the 

ubiquitin molecule is linked to an ubiquitin-activating enzyme (E1) and activated in an 

ATP-dependent manner; 2) After that, the activated ubiquitin is transferred to an 

ubiquitin-conjugating enzyme (E2); 3) Finally, an (E3) ubiquitin ligase binds the ubiquitin 

molecule to a specific Lysine residue on the target protein. Once marked with several 

ubiquitin molecules on a specific Lysine residue (polyubiquitylation), target proteins 

are recognized and degraded by the 26S proteasome complex
52,53

. 

Apart from the formation of polyubiquitin chains, UPS also mediates the addition of 

individual ubiquitin molecules to a particular Lysine (monoubiquitylation) or several 

molecules to different Lysine residues of the same substrate 

(multimonoubiquitylation). While Lysine 11- and Lysine 48-linked polyubiquitin chains-

containing substrates are committed to 26S proteasome complex-mediated 

degradation, mono- and polyubiquitilations in other Lysine residues induce and 

regulate other non-proteolytic functions
52,53

. 

Additionally, cells contain DUBs (deubiquitinating enzymes) that are able to hydrolyze 

ubiquitin-protein peptide bonds to reverse the ubiquitylation of substrates, leading to a 

model in which ubiquitylation is controlled by the balance between an E3 ligase and a 

DUB
52,53

. 

E3 ubiquitin ligases are the responsible for substrate recognition and thus, cells present 

multiple E3 ubiquitin ligases to provide specificity and versatility to the UPS
52,53

. These 

enzymes can be subdivided in two major classes: 1) HECT (homologous to E6-AP C-

terminus) family E3 ligases, which form transient covalent linkages with ubiquitin 

during the ubiquitylation process; and, 2) RING (really interesting new gene) family E3 
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ligases that only mediate the transfer of ubiquitin from the E2 directly to the substrate. 

This last class includes proteins that contain RING and the substrate adaptor domain, 

and multisubunit complexes, in which these domains are part of distinct proteins within 

the complex
53

. From those multisubunit RING ligases, CRL (cullin RING ligase) 

superfamily is the most important for the regulation of the cell cycle as it contains the 

SCF and APC/C complexes, which are responsible for the degradation of several cell 

cycle regulators
23,52,53

. 

1.2.1. SCF: Skp1/Cullin1/F-box containing complex 

Three invariable components (Rbx1 RING-finger protein, Cul1 scaffold protein and Skp1 

adaptor protein) and an additional variable component known as F-box protein form 

the SCF complex (Figure 5)
23,52,53

. 

 

Figure 5. Structure of the SCF ubiquitin ligase.  

On one side, the SCF binds to an E2 ubiquitin conjugating enzyme through its Rbx1 domain. On the other side, 

the SCF is connected to the substrate through its association with the F-box protein. Adapted from “The 
ubiquitin proteasome system”

53
. 

F-box proteins, which are the substrate binding subunits, are formed by a 40-amino-

acid motif and an additional substrate binding domain. According to this last substrate 

binding domain, F-box proteins can be classified in three different groups: 1) Fbxws 

proteins, which contain WD-40 domains; 2) Fbxls proteins that present Leucine-rich 

repeats; and, 3) Fbxos proteins, which include diverse motifs such as Proline-rich motifs 

among others. The phosphorylation of target substrates is generally required for F-box-

mediated substrate recognition, as most of them recognize specific phosphodegrons 

(phosphorylated destruction motifs)
23,52–54

. 

Since F-box proteins are the responsible for substrate recognition, around 70 of them 

have been described until now in human cells. However, from those, only three are 

involved in cell cycle regulation: Skp2 (FBXL1), Fbw7 (FBXW7) and β-TrCP (FBXW1/11). 

These F-box proteins, together with the SCF complex, regulate the S-phase entry and 

the mitotic onset by targeting several proteins. Some of their substrates include cyclin-

CDK regulators
23,52,53

. Skp2 for example targets various cell cycle inhibitors such as 

CIP/KIP family proteins (p21
CIP1  

and p27
KIP1

 for instance)
28,55–58

, and also pocket family 

proteins
59

. By contrast, Fbw7 promotes the degradation of Cyclin E
60–62

 and other 

proliferation agents
63

. β-TRCP in turn controls the levels of cyclin-CDK regulators such 
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as Wee1
64

 and Cdc25A
65

, and it also induces the degradation of Emi1 (an APC/C 

inhibitor) at the onset of mitosis
66,67

. 

These SCF functions and their regulation during the cell cycle are summarized on 

section (1.2.3). 

1.2.2. APC/C: anaphase-promoting complex/cyclosome 

APC/C is a multisubunit cullin-RING E3 ubiquitin ligase structurally similar to the SCF 

complex (Figure 6), which is composed of at least 13 different proteins. This includes 

the Apc11 RING-finger protein, which interacts with the ubiquitin conjugating enzyme, 

and the Apc2 cullin-like subunit, that serves as scaffold protein. In somatic cells, APC/C 

is activated through its association with Cdc20 or Cdh1 (also known as Fzr1) 

coactivators. Additional APC/C coactivators function during meiosis and in non-dividing 

cells
23,52,68

. 

 

Figure 6. Structure of the APC/C ubiquitin ligase. 

As in the case of SCF, one side of APC/C ubiquitin ligase is associated with the ubiquitin conjugating enzyme, 

in this case through its RING-finger protein Apc11. The other side of the complex is associated with the 
substrate through Cdc20 or Cdh1 adaptor proteins with the help of Apc10. Adapted from “The ubiquitin 
proteasome system”

53
. 

Cdc20 and Cdh1 adaptor proteins confer substrate specificity to APC/C in the same way 

that F-box proteins do to the SCF complex. They recognize short degrons (destruction 

motifs) on target substrates through C-terminal domains composed of WD40 repeats. 

The canonical destruction motifs recognized by APC/C are the D-box (consensus 

sequence RXXLXXXXN) and the KEN-box (consensus sequence KENXXXN). Efficient 

ubiquitylation of substrates depends on both degrons. However, some substrates only 

present one of them, in one or more copies, which gives certain specificity, since Cdc20 

preferentially recognizes D-box motifs while Cdh1 recognizes both of them
52,68

. Apart 

from the interaction with these coactivators, the association of APC/C with its 

substrates is thought to require an additional interaction with Apc10 subunit of the 

core complex
52,68

. Additionally, a class of non-canonical APC/C recognition motif is 

thought to contribute to the degradation of some substrates, as some of them lack 

both, D-box and KEN-box, destruction motifs
68

. 
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• Regulation of APC/C 

APC/C
Cdc20

 is important to ensure correct chromosome segregation and to 

coordinate mitosis with cytokinesis. As a consequence, this complex is active from 

prometaphase until at least telophase
69–72

. APC/C
Cdh1

 in turn is important for 

mitotic exit and G1 maintenance, and thus, it is active from late mitosis until G1/S 

transition, when it has to be inactivated for proper S-phase completion
71–74

. 

The inactivation of APC/C
Cdh1

 at G1/S transition is accomplished by several 

mechanisms
53,68,75–77

. First, UbcH10, an APC/C specific E2 ubiquitin conjugating 

enzyme is ubiquitylated by APC/C
Cdh1

, providing a negative feedback loop that 

starts to reduce the activity of APC/C
Cdh1 78

. Likewise, APC/C itself is 

autoubiquitylated by APC/C
Cdh1

, further contributing to the inhibition of this E3 

ubiquitin ligase
79

. Furthermore, an unidentified SCF complex participates in the 

degradation of Cdh1 during S phase
80

. Moreover, CDKs phosphorylate Cdh1 

compromising its association with APC/C during S, G2 and early mitosis
81–89

. 

Nevertheless, despite all the previous mechanisms, APC/C
Cdh1

 is not completely 

inhibited until Emi1 is expressed
75

. 

Emi1 is an APC/C inhibitor that acts as a pseudosubstrate
90–92

. This protein 

synthesis is induced by E2F1 and E2F3 transcription factors at the end of G1, when 

pRb is phosphorylated and thus, E2F transcription factors are released
93

. While 

cells progress through the cell cycle and arrive to prophase, Emi1 levels start to 

decrease due to SCF
βTrCP

-mediated proteolysis, as a result of consecutive Cyclin B-

CDK1- and Plk1-mediated phosphorylations
66,67,94,95

. To avoid premature 

degradation of Emi1, this protein is stabilized by its association with Evi5 during 

G2
96

. In mitosis, Evi5 is phosphorylated and degraded, allowing the degradation of 

Emi1
96

. Additionally, Emi1 has been shown to be phosphorylated in mitosis to 

inhibit its association with APC/C
97

. Apart from Emi1 downregulation, Cdc20 

accumulation during S, G2 and mitosis, as well as Cyclin B-CDK1-mediated APC/C 

phosphorylation, are required for the activation of APC/C
Cdc20

 
77,98

. 

Until a few years ago, Emi1 downregulation was thought to be essential for the 

activation of APC/C
Cdc20

 in prometaphase
67,92

. However, a more recent study 

challenged this idea since cells expressing a non-degradable Emi1 were shown to 

be able to degrade Cyclin A and other APC/C
Cdc20

 substrates at the same time as 

control cells
99

. In any case, low Emi1 levels together with increased Cyclin B-CDK 

activity results in favorable conditions for the activation of APC/C
Cdc20

 in 

prometaphase
98

, while APC/C
Cdh1

 would remain inactive due to CDK-mediated 

Cdh1 phosphorylations
81–89

. However, APC/C
Cdc20

 is kept inactive until anaphase by 

the SAC (spindle assembly checkpoint, also known as mitotic checkpoint), although 

there are proteins that can be degraded independently of it
69,72–74,77,100–103

. 

After anaphase, APC/C
Cdc20

 is progressively replaced by APC/C
Cdh1 77

. Cdh1 and 

UbcH10
78

 re-accumulation during G2 and the decrease in cyclin-CDK activity 

contribute to the activation of this complex
53,77

. In yeast, Cdc14 phosphatase-

mediated Cdh1 dephosphorylation participates in the activation of APC/C
Cdh1

 
104,105

. Nevertheless, the contribution of this phosphatase to the activation of 
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APC/C
Cdh1

 during a normal cell cycle in higher eukaryotes has not been elucidated 

yet. 

Once activated, APC/C
Cdh1

 mediates the degradation of Cdc20
106,107

, thus inducing 

a complete switch from APC/C
Cdc20

 to APC/C
Cdh1 77

, which would remain active until 

G1/S transition when, as explained, several mechanisms will induce its 

inhibition
53,68,75–77

. 

• Functions of APC/C during mitosis 

Cells have two major challenges during mitosis: to ensure that each daughter cell 

receives an equal and identical genomic material; and to prevent cell separation 

before chromosome segregation. These problems are solved by the controlled 

degradation of Securin and Cyclin B by APC/C
Cdc20 69,72,98,103,108,109

. 

At the initial stages of mitosis, cohesins maintain sister chromatids together before 

their segregation. For chromosome segregation, Separase-mediated Scc1 cohesin 

subunit cleavage is required. However, this protease is inactive through its 

association with a small protein known as Securin, which acts as a chaperone and 

an inhibitor of Separase. Additionally, Cyclin B-CDK1 inhibits Separase by direct 

binding and phosphorylation. In this sense, the activation of APC/C
Cdc20

 during 

mitosis initiates the ubiquitylation of Securin and Cyclin B, resulting in the 

activation of Separase and the inactivation of CDK1. This in turn allows Separase to 

cleave cohesins to liberate sister chromatids at the anaphase onset, allowing 

chromosome segregation. Notably, cytokinesis is inhibited by Cyclin B until its 

degradation, to avoid cell separation before chromosome segregation
69,72–74,77

. 

To prevent premature separation of sister chromatids and mitotic exit, APC/C
Cdc20

 

is inhibited by the SAC, which is activated by unattached kinetochores. Only when 

the sister chromatids are aligned at the metaphase plate and have established 

bivalent spindle attachments can the APC/C
Cdc20

 be activated
69,72–74,77

. 

In addition to Securin and Cyclin B, APC/C
Cdc20

 targets several other proteins for 

degradation such as Cyclin A, Nek2 (a kinase that regulates centrosomes 

separation) and p21
CIP1

. These proteins are degraded after nuclear envelope 

breakdown, before metaphase-anaphase transition, and their degradation is not 

inhibited by the SAC
69,72,73,100–103

. 

The decrease of cyclin-CDK activity as a consequence of Cyclin B degradation at the 

end of mitosis, results in Cdh1 dephosphorylation and the activation of APC/C
Cdh1

.  

Once activated, this E3 ubiquitin ligase allows mitotic exit by targeting for 

destruction other kinases such as Plk1
110

, Aurora A
111,112

 and Aurora B
113

; and by 

completing the elimination of Securin
108

 and mitotic cyclins
114

. Furthermore, as 

previously explained, Cdh1 also degrades Cdc20
106,107

, leading to a complete switch 

from APC/C
Cdc20

 to APC/C
Cdh1

 during the exit from mitosis
72,73

. 
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• G1 maintenance and regulation of DNA replication by APC/C
Cdh1

 

After its activation during late mitosis, APC/C
Cdh1

 is preserved in an active state 

during G1 to maintain cells in this phase until the extracellular signals that 

determine the cell cycle entry are receive and the necessary factors for a new cell 

cycle round are synthesize. Additionally, the activation of this ubiquitin ligase in G1 

is essential for the correct regulation of DNA replication
71–74

. 

Due to the large size of the eukaryotic genome, DNA replication is accomplished by 

the coordinated activation of hundreds of thousands of replication forks, which 

allows timely completion of genome duplication and the establishment of a 

replication timing program (different regions of the genome are replicated at 

different times). However, the use of multiple origins makes it more difficult to 

ensure the complete replication of the genome without re-replicating certain 

areas. To solve it, cells have developed a system in which replication is divided in 

two non-overlapping steps: origin licensing or the formation of pre-RCs (pre-

replication complexes) that occurs during late mitosis and G1; and origin firing or 

the activation of origins, which takes place during S phase
115–118

. 

During mitotic exit, replication origins are recognized by ORC (origin recognition 

complex). After that, in G1 phase, Cdc6 and Cdt1 allow the loading of two MCM2–

7 (minichromosome maintenance protein complex) hexamers around DNA in an 

antiparallel conformation, forming the pre-RC. Finally during S phase, hundreds of 

those pre-loaded origins are fired by the sequential action of DDK (Dbf4-

dependent kinase) and CDK kinases, which phosphorylate key components and 

facilitate the recruitment of Cdc45 and GINS, thus forming and stabilizing the CMG 

(Cdc45-MCM-GINS) helicase complex
117,119–124

. The factors involved in DNA 

replication and their regulation are further explained in section (2). 

Each origin can only fire once and origin licensing is limited to G1 phase. Therefore, 

pre-RCs are loaded in excess on the genome to allow replication to be completed 

in case fired origins stall
125

.The limitation of origin licensing to G1 phase and the 

prevention of origin firing during this phase, both essential to prevent 

rereplication (the same DNA fragment is replicated more than ones), is 

accomplished by the activation of APC/C
Cdh1

 
72,73,116,118

. 

During G1, APC/C
Cdh1

 degrades several of its substrates such as Cyclin A
114

, Cyclin 

B
114

, Cdc25A
126

 and Tome-1 (involved in the proteolysis of Wee1)
127

 which 

maintains low levels of CDK activity and thus, allows the maintenance of cells in 

G1
71–73

. Moreover, APC/C
Cdh1

 also degrades components of the SCF complex, such 

as Skp2
128,129

 and Cks1
129

, which as previously explained are involved in p27
Kip1

 and 

p21
Cip1 

CKIs and other proteins degradation
28,55–58

. Consequently, APC/C
Cdh1

-

mediated Skp2 and Cks1 proteolysis, also participates in the maintenance of cells 

in G1 by inhibiting for example Cyclin E-CDK2 complexes
71–73

. 

Additionally, APC/C
Cdh1

 also targets Geminin
130,131

, a Cdt1 inhibitor
132,133

, for 

degradation. This, together with low CDK activity, allows Cdt1 to be in a 

dephosphorylated and free state necessary for origin licensing
71–73

.  Furthermore, 

low CDK activity also prevents Cdc6 phosphorylation and its consequent 
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degradation
134–137

 or export from nuclei
138,139

, thus allowing the formation of pre-

RCs
71–73

. Surprisingly, Cdc6 has been shown to be an APC/C
Cdh1

 substrate
140

. 

However, it is thought that APC/C reduces its affinity for Cdc6 during G1
141

. 

Apart from promoting origin licensing, APC/C
Cdh1

 is also important to prevent 

origin firing during G1. The low CDK activity levels, together with the degradation 

of other proteins, such as Tk1
142,143

 and Tmpk
143

 enzymes involved in dNTP 

(Deoxyribonucleotide triphosphates) synthesis, avoids origin firing during G1
71–73

. 

Due to the importance of APC/C
Cdh1 

in G1 maintenance and correct replication, its 

ablation induces genomic instability
72,73,144

. For instance, cells in which Cdh1 has 

been depleted, prematurely enter S phase resulting in aberrant DNA replication
145–

147
. Likewise, Cdh1-depleted cells obtained from Cdh1 lacking embryos proliferate 

inefficiently and accumulate numeric and structural chromosomal aberrations
148

. 

Moreover, Cdh1 heterozygous animals show increased susceptibility to 

spontaneous tumors
148

. Furthermore, Cdh1-depleted cells have been shown to be 

able to enter into mitosis despite incomplete replication, which results in the 

accumulation of DSBs (double-strand breaks) and anaphase bridges, as well as in 

cytokinesis defects and tetraploidization
149

. Collectively, all the previous results 

seem to indicate that APC/C
Cdh1

 acts as a tumor suppressor. In fact, APC/C
Cdh1

 has 

been described to be activated in response to DNA damage to degrade several of 

its substrates and to induce a G2 arrest
150–152

. Interestingly, APC/C has been shown 

to be mutated in several tumor cells
153

. DNA damage-induced APC/C
Cdh1

 activation 

and its consequences are further explained in sections (3.2.2) and (3.4.2). 

As previously explained, the inhibition of APC/C
Cdh1 

is essential to prevent origin 

licensing in S phase, and thus, its aberrant activation might also cause genomic 

defects. In this sense, Emi1 depletion-promoted APC/C
Cdh1

 activation results in 

Geminin and Cyclin A degradation, causing rereplication in several non-

transformed and tumor cell lines
99,154

. 

Apart from the previously described cell cycle regulator roles, APC/C is also involved in 

many other cell cycle-independent cellular functions
70,72,74

. 

1.2.3. Interplay between SCF and APC/C during the cell cycle 

The previously explained functions of the SCF and APC/C ubiquitin ligases in cell cycle 

regulation are summarized on Figure 7.   
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 Figure 7. Interplay between SCF and 

APC/C during the cell cycle. 

Summary of SCF and APC/C ubiquitin 
ligases functions during the cell cycle. 

The positive and negative regulations 
of the different proteins, is 

represented with arrow and bar-head 
lines respectively. Continuous bar-
head lines correspond to degradation-

mediated inhibition, while dotted ones 
represent other ways of inhibition. 

Cyclin-CDK activity levels are 
represented in orange (low) and blue 
(high). The main functions regulated 

by the APC/C ubiquitin ligase during 
cell cycle are represented as grey 
boxes. Green (active) and red 

(inactive) color correspond to APC/C 
and SCF activation state. Green and 

red lines around cell cycle phase’s 
diagram correspond to APC/C 
activation state. The dotted red line 

defines inactive APC/C region whereas 
the dotted-green line represents the 
active one. The functions regulated by 

APC/C ubiquitin ligase when is active 
or inactive are represented with green 

and red colors respectively. The 
inactive state of one of the functions 
regulated by APC/C is represented as a 

red box. The mechanisms involved in 
the regulation of APC/C are 
represented in light grey. 
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2. DNA replication 

DNA replication consists in the duplication of the genetic material in order to obtain 

two copies of the same information, to finally transmit it to daughter cells. As 

previously explained, this process occurs in two non-overlapping consecutive steps, 

each of them working on a specific cell cycle phase. During G1, pre-RCs are formed in a 

process known as origin licensing; whereas in S phase, thousands of those pre-loaded 

origins are fired, in order to duplicate the genetic material. The uncoupling of these 

steps in two different cell cycle phases is essential to guarantee a correct duplication of 

the genome
1,115–118

. 

Apart from DNA itself, the epigenetic information must also correctly be propagated 

into daughter cells to preserve epigenome integrity. Therefore, the duplication of the 

genetic material and the transmition of the epigenetic information to new DNA strands 

are tightly coordinated during S phase. Additionally, increasing evidences suggest that 

chromatin architecture/organization and nuclear structure are also involved in the 

activation of origins and correct regulation of DNA replication
155–159

. 

The main mechanisms involved in all this processes and their regulation are 

summarized on this section. 

2.1. DNA replication: initiation, elongation and termination 

Once origins have been licensed, DNA replication in S phase occurs in three consecutive 

phases that result in whole-genome duplication. In eukaryotic cells, this process 

requires the action of around 40–50 distinct proteins that comprise the replication 

apparatus or replisome
160

. This section summarizes how are origins fired during S phase 

(initiation), and how replication forks progress (elongation) until they converge with 

adjacent replication forks (termination)
161

. 

2.1.1. Initiation 

DNA replication in S phase starts with the asynchronous activation of several pre-RCs in 

a process that depends on CDK2 and DDK kinases
162,163

. The phosphorylation of pre-RCs 

and other proteins allows a stable CMG complex formation onto chromatin, thus 

forming the pre-IC (pre-initiation complex). The following unwinding of DNA by CMG 

helicase results in the formation of bidirectional replication forks, and the consequent 

initiation of nascent DNA synthesis
164,165

. 

The formation of a stable CMG complex to induce the initiation of DNA replication is a 

process conserved from yeast to human, despite the mechanism of recruitment of 

Cdc45 and GINS proteins slightly differ between the different species
164,165

. These 

mechanisms have been mainly studied in budding yeast, where a model for CMG 

complex formation has been proposed (Figure 8). In this model, DDK-mediated MCM2-

7 complex phosphorylation
162,166

 promotes the formation of CMG complex and the 

initiation of DNA replication. Additionally, CDK2 phosphorylates several factors that are 

not part of the replisome but are essential for a stable CMG complex formation
164,167

. 

Some of these factors include Sld2 and Sld3 proteins, the phosphorylation of which 
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promotes their interaction with Dpb11, a protein required for the formation of CMG 

complex
168–171

. In particular, Sld3 was shown to be recruited to chromatin in a mutually 

dependent manner with Cdc45
172

, although Sld3 is required only for initiation while 

Cdc45 is also necessary for elongation
172,173

. On the other hand, CDK2-mediated Sld2 

phosphorylation was shown to promote the formation of a pre-LC (pre-loading 

complex). This complex is composed by GINS, Polymerase ξ (epsilon), Dpb11 and Sld2 

proteins
174

, and acts as a carrier of GINS to the pre-RC, where Dpb11 is thought to be 

the responsible for the association of this complex with the already recruited Sld3 and 

Cdc45 proteins, to finally form an active CMG helicase
167

. 

 

Figure 8. A model for DNA replication initiation in budding yeast. 

Schematic of the mechanism involved in the formation of CMG helicase complex in budding yeast. Orange 

spots correspond to phosphorylations. Adapted from “Initiation of chromosomal DNA replication in 
eukaryotic cells; contribution of yeast genetics to the elucidation”

165
. 

Further studies have shown that the mechanism for the formation of pre-ICs is quite 

similar also in fission yeast, with a few differences such as the requirement of DDK for 

the phosphorylation of Sld3 and its recruitment to origins
164

. 

Interestingly, the process of CMG complex formation seems to be quite similar also in 

higher eukaryotes
164,165

. In this sense, DDK-mediated MCM2-7 phosphorylation is 

required for CMG complex formation also in human cells
175

. Additionally, TopBP1, 

Treslin and RecQ4 (orthologs of yeast Dpb11, Sld3 and Sld2 respectively), have also 

been shown to be required for stable CMG complex formation
164,165

. In this sense, 

TopBP1 for example has been shown to interact with Cdc45
176

. Moreover, the 

phosphorylation of Treslin by CDK2 is essential for its interaction with TopBP1 and the 
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consequent CMG helicase complex formation in Xenopus laevis and human cells
177,178

. 

Furthermore, Xenopus laevis RecQ4 can be phosphorylated by CDK at least in vitro, and 

it can directly bind TopBP1
179

. However, in contrast to yeast, CMG complex can be 

assembled independently of RecQ4 in higher eukaryotes, despite it is required for the 

initiation of DNA replication
179,180

. In addition, other proteins such as GEMC1 (Geminin 

coiled-coil domain-containing protein 1) and DUE-B (DUE binding protein) have also 

been shown to be required for stable CMG complex formation in Xenopus laevis egg 

extracts
181,182

. Likewise, MCM10 is also thought to be important for CMG complex 

formation and the initiation of DNA replication
183

. 

2.1.2. Elongation 

Once pre-IC complex has been formed, DNA starts to be unwinded by the CMG 

helicase, resulting in the formation of two bidirectional replication forks, each of them 

containing two antiparallel ssDNA (single-stranded DNA) templates together with 

replisome components (Figure 9). In eukaryotes, these ssDNA templates, which are 

used by the replicative DNA polymerases to synthesize nascent DNA strands, are 

stabilized by the heterotrimeric complex RPA (replication protein A). The 

heterotrimeric complex RPA is formed by RPA70 (RPA1), RPA32 (RPA2) and RPA14 

(RPA3) subunits, and interacts with ssDNA to protect it from nucleases 

degradation
160,184,185

. 

 

Figure 9. Ongoing replication fork. 

Parental strands (in black) and nascent DNA strands (in grey) are represented together with their 

directionality.  The proteins that compose the replication pausing complex and the main replisome 
components are represented. 
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During DNA unwinding, positive supercoils ahead of the fork and catenates behind it 

are formed, and thus, topoisomerases are required to relax the DNA. DNA 

topoisomerases are enzymes that act as swivels to relax the DNA by inducing transient 

DNA breaks through which strand passage can occur. There are two types of DNA 

topoisomerases: type I topoisomerases, which carry out strand passage through a 

reversible SSB (single-strand break), important during elongation; and type II 

topoisomerases, which mediate strand passage through a DSB, essential for 

termination
186

. 

Three replicative DNA polymerases have been described to be required for 

chromosomal DNA replication in eukaryotes: α (alfa), δ (delta) and ξ (epsilon). These 

enzymes catalyze the addition of dNTPs to 3’-OH ends of nucleotides, and as a 

consequence, DNA is synthesized in 5’ → 3’ direction. Moreover, due to the antiparallel 

nature of the duplex DNA, replication occurs in opposite direction on both DNA strands. 

In this sense, the leading strand is synthesized by Polymerase ξ in a continuous fashion 

as it progresses in the same direction as DNA unwinding. By contrast, the lagging 

strand is synthesized by Polymerase δ in the opposite direction to DNA unwinding and 

consequently, its synthesis is discontinuous, producing small DNA fragments of around 

100-200 bases known as Okazaki fragments 
187–192

. 

As DNA polymerases are not able to synthesize DNA de novo, pre-existing nucleotide 

primers are required for strand elongation. In this sense, Polymerase α associated with 

an RNA primase acts as a replicative primase generating a 10 nucleotide RNA fragment 

followed by 10-20 DNA bases. The presence of these primers is required at the 

beginning of each leading strand and at the 5’ end of each Okazaki fragment. Once 

primers are synthesized, Polymerase α is replaced, with the help of clamp loaders, by 

Polymerase ξ and δ to continue the elongation of DNA strands
160,193–195

. 

Due to the semiclosed hand structure of polymerases, additional proteins are required 

to stabilize their association with DNA and increase their processivity. In eukaryotes, 

ring-shape trimer DNA sliding clamp known as PCNA (proliferating cell nuclear antigen) 

is the responsible for the stabilization of polymerases onto chromatin. Additionally, this 

protein acts as a platform for a large number of replication and repair factors
160,196

. To 

be loaded onto chromatin, PCNA must be opened and then closed around DNA, which 

in eukaryotes is accomplished by the pentameric clamp loader RFC (replication factor C; 

RFC1-5; RFCA–E; p140, p40, p36, p37 and p38)
197

. 

Finally, to complete lagging strand synthesis, Okazaki fragments must be processed to 

remove 5’ RNA primers. Several proteins, such as Fen1, RNAseHII and Dna2 have been 

shown to be implicated in this process. However, the exact contribution of each of 

them to the maturation of Okazaki fragments is still unknown. Once primers have been 

removed, DNA fragments are sealed together by DNA ligase I to form a continuous 

DNA strand. Interestingly, PCNA is important for the maturation of Okazaki fragments 

as it acts as a platform for, among others, Fen1 and DNA ligase I recruitment
160,198

. 

Apart from all these factors, correct DNA replication requires additional proteins 

involved for instance in coupling helicases with polymerases, to avoid the accumulation 

of large ssDNA tracts that can induce aberrant DNA repair processes. This coupling is 
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mainly accomplished by the RPC (replication pausing complex) that travels with the 

replisome
199

, although ATR itself is also thought to participate in this process through 

the regulation of MCM-mediated unwinding
200–203

. In metazoan, the RPC is composed 

by Tim1, Tipin, Claspin and And1 proteins that can interact with several replisome 

components. Interestingly, these proteins are part of the replisome progression 

complex which links MCM helicase with other replisome components such as 

Polymerase α for proper DNA replication
199,204,205

. Additionally, while replication forks 

progress, the resulting sister chromatids must be maintained together for their correct 

segregation in mitosis. This is accomplished by the ring-shape cohesin complex, which 

in somatic vertebrate cells is composed by: SMC1 (structural maintenance of 

chromosomes protein 1), SMC3 (structural maintenance of chromosomes protein 3), 

Rad21 and SA1/2. The sister chromatid cohesion mediated by this complex is important 

not only for proper segregation but also, for HR- (homologous recombination) 

mediated DNA repair
206

. 

2.1.3. Termination 

The termination of DNA replication occurs at random sites when two adjacent forks 

converge. When this happens, replisome must be disassembled from DNA and 

catenates must be resolved by type II topoisomerases to avoid the accumulation of 

aberrant structures that may induce genomic instability. In contrast to initiation and 

elongation steps, termination is still poorly understood, as it occurs asynchronously 

during replication and thus, it is difficult to study
207

. 

Overall, the termination of DNA replication is thought to involve four different steps: 1) 

Last stretch of parental DNA between the forks must be unwound by dissolution; 2) 

Remaining gaps on nascent-DNA strand must be filled; 3) Aberrant DNA structures such 

as catenates must be resolved; and, 4) Replisome must be disassembled
208

. 

This process has been mainly studied in SV40 system, were its been described that 

dissolution of parental strands during termination requires the rotation of the entire 

fork, which results in the formation of catenations behind the fork that must be 

resolved by a type II topoisomerase
209,210

. 

Additionally, recent works in Xenopus laevis and Saccharomyces cerevisiae have 

described that the disassembly of the replisome during termination is mediated by 

MCM7 polyubiquitylation, which promotes the disassembly of MCM2-7 from CMG 

complex and its further degradation, with the help of Cdc48/p97 segregase
211,212

. This 

MCM7 polyubiquitylation occurs only on active CMG complexes, and not in all MCM2-7 

molecules present on chromatin, thus suggesting, that the mechanisms by which active 

and inactive helicases are disassembled are different
207

. Interestingly, this MCM7 

polyubiquitylation in budding yeast have been described to be mediated by SCF
Dia2

, 

which can interact with components of the replisome progression complex. However, 

this interaction is thought to increase the association of SCF
Dia2

 with the replisome in 

order to favor MCM7 polyubiquitylation, rather than inducing the ubiquitylation of this 

protein itself
212,213

. 

Based on the current knowledge, three different models have been proposed to explain 

the termination of DNA replication. The first one, known as “simultaneous removal of 
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converging replisomes”, consist in direct collision between adjacent forks, after which 

both helicases are disassembled at the same time, and additional factors resolve the 

final sections of DNA. The second one proposes that one of the helicases is 

disassembled while the other one finishes replication without the requirement of 

additional factors. This model is known as the “sequential removal of converging 

replisomes”. Finally, the third model, known as “passing replisomes”, is based on the 

fact that helicases can slide onto dsDNA (double-strand DNA) and cross each other at 

the termination site before being disassembled
207

. 

Interestingly, a recent work using Xenopus laevis egg extracts has described that DNA 

synthesis is not slowed down as forks approach each other. Moreover, the authors 

show that helicases can pass each other while leading strand is elongated and that 

CMG complexes are not disassembled until the leading strand of one of the forks is 

ligated to the lagging strand of the adjacent fork, suggesting that termination occurs 

according to the “passing replisomes” model (Figure 10)
208

. 

 

Figure 10. DNA replication termination according to “passing replisomes” model. 

The different steps by which replication is terminated according to “passing replisomes” model is 

represented. Adapted from “The mechanism of DNA replication termination in vertebrates”
208

. 

2.2. The implication of epigenetic inheritance, chromatin architecture/organization 

and nuclear structure in DNA replication 

The genomic DNA of all eukaryotes is packaged with the help of histones and other 

proteins into a structure known as chromatin, being the nucleosome its basic unit. 
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Nucleosomes are formed by the wrapping of about 150bp of DNA around a histone 

octamer core composed by two copies of each H2A, H2B, H3 and H4 canonical 

histones. The different nucleosomes that form the chromatin are linked between them 

by short DNA fragments known as linker DNA, thus forming the chromatin fibers. The 

wrapping of DNA around histones and the short-range interactions between 

nucleosomes gives certain level of compaction. Under certain conditions, such as for 

example during mitosis, when DNA has to be condensed for its proper segregation, this 

packaging can be increased even more with the help of other proteins and fiber-fiber 

interactions, to finally form higher-order chromatin structures
214

. 

Nucleosomal histones suffer several PTMs (post-translational modifications), especially 

on their flexible tails, which are rich on Lysine residues and extended away from 

nucleosomal DNA. Additionally, under certain conditions, there are several histone 

variants that can be incorporated into the nucleosomes in a replication-independent 

manner. Together with DNA methylation, these histone modifications and histone 

variant replacements are part of epigenetic inheritance. The combination of these 

marks results in numerous specific and different outcomes by recruiting diverse 

effector proteins and modulating genome accessibility. Consequently, alterations in 

these epigenetic marks may induce the loss of cellular memory and disable tumor 

suppressor functions. Therefore, the proper segregation of those marks into daughter 

cells is essential to guarantee genome stability
155–157

. 

During DNA replication, there is a high demand of histones in order to package nascent 

DNA strands. However, accumulation of free histones may be potentially toxic for the 

cell. Thus, the synthesis of canonical histones is closely coordinated with DNA 

replication
215

. Additionally, since DNA must be unwinded during this process, chromatin 

is disrupted ahead of replication forks, and then must be restored behind the fork on 

new DNA strands. Furthermore, as previously mentioned, the propagation of epigenetic 

inheritance to newly synthesized DNA is essential for the maintenance of epigenome 

stability. For all that, DNA replication is tightly coordinated with nucleosome assembly 

and chromatin maturation
155–157

. 

Several factors are involved in nucleosome assembly, as well as in coupling it with DNA 

replication (Figure 11)
155,156

. One of this factors is CAF-1 (chromatin-assembly factor 1), 

a histone chaperone involved in H3 and H4 histone deposition onto replicating DNA. In 

order to coordinate histone deposition with DNA replication, CAF-1 interacts with PCNA 

in a DDK-dependent manner
216–218

. Another histone chaperone involved in coupling 

chromatin assembly with DNA replication is Asf-1, which interacts with MCM2-6 

helicase
219–221

. This protein is thought to act as a histone acceptor and donor at 

replication forks, finally transferring histones to CAF-1
221,222

. To complete nucleosome 

formation, H2A and H2B histones must also be incorporated in order to form the whole 

histone octamer core. In contrast to H3 and H4, the deposition of these proteins onto 

nascent DNA is not necessarily linked to DNA replication, and is thought to be mediated 

by NAP-1 (nucleosome-assembly protein 1) chaperone and FACT (facilitates chromatin 

transcription) complex, in which FACT is thought to act as a histone acceptor and donor 

for NAP-1
155,156,223–225

. 
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Figure 11. Nucleosome assembly and epigenetic inheritance. 

The main factors involved in nucleosome assembly and in coupling this process with DNA replication are 
represented. Adapted from “Chromatin and DNA replication”

156
. 

While the process involved in nucleosome assembly is relatively well-known, the 

mechanisms that allow the reproduction of a similar chromatin environment on 

nascent DNA are still to be elucidated. According to recent data, this process is thought 

to be accomplished by transferring modified histones, and maybe other chromatin 

bound factors, from parental to daughter DNA strands, together with the newly 

synthesized ones. After that, new histones are thought to somehow assimilate the PTM 

signature present on parental histones to maintain the epigenetic state of 

chromatin
155,156,226

.  In this sense, a recent work have shown that PTM signature is 

mirrored on nascent DNA strands by both, parental histone acquisition, and by copying 

the parental signature on the newly synthesized ones within one cell cycle
227

. 

In addition to their importance in maintaining a correct chromatin environment that 

prevents genomic instability, and consistent with their ability to modulate genome 

accessibility, epigenetic marks are also thought to be implicated in origin licensing and 

selection
155–158

. 
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As previously explained, DNA replication is initiated at specific positions on the 

genome, known as origins. In prokaryotes and lower eukaryotes, these origins are 

usually identified by specific DNA sequences. By contrast, a universal signature that 

could predict the location of origins in metazoans has not been established 

yet
118,155,158,159

. In this sense, during the last years it has been postulated that certain 

DNA structures rather than specific DNA sequences may be the predictors of the 

metazoans origins. Accordingly, a few years ago G-quadruplexes (G4s; four-stranded 

DNA structures that can be formed in Guanine-rich regions) were postulated as possible 

origin predictors, as human replication origins were found to be widely associated with 

this structures
228

. Other studies have also determined that metazoans origins are 

usually localized in CG-rich regions, such as CpG islands. Additionally, the presence or 

absence of nucleosomes, histone modifications or even transcription, are also thought 

to be implicated in origin recognition by ORCs
155,158,159

. 

Due to the large size of their genomes, replication in higher eukaryotes is accomplished 

by the activation of hundreds or thousands of origins which can only fire once. 

Interestingly, only around the 10% of licensed origins are fired during a normal S phase 

in adult somatic cells, while most of them remain dormant
229

. Consistently, MCM levels 

can be reduced approximately 3 to 10-fold without affecting S-phase kinetics under 

normal situation. However, under certain circumstances that may cause replication fork 

stalling, these dormant origins might be required to complete DNA replication
118,230–232

. 

The choice of origins to be activated is flexible. Even in the same population, the origins 

that are activated vary from cell to cell
233

. Nevertheless, genome can be classified into 

two different megabase-scale DNA domains (early- and late-replicating domains) that 

replicate more or less synchronously at defined points during S phase, indicating that 

despite its flexibility, origin selection is not totally random. The chronological activation 

of origins determines a replication timing program that is established during G1. This 

program is thought to be regulated by the accessibility to limiting replication factors, 

which in turn, might be regulated by chromatin modifications, spatial organization of 

the genome and nuclear structure
155,156,159

. 

In this sense, early-replicating domains are usually enriched on replication origins and 

generally contain active gene-rich domains with active epigenetic marks, while late-

replicating domains are associated with origin-poor regions enriched on repressive 

epigenetic marks, a heterochromatin hallmark
158,159

. Moreover, other proteins such as 

Rif1 for example are also involved in the activation of origins through the regulation of 

chromatin architecture
234–237

. 

Additionally, the different levels of spatial organization of the thousands of origins 

present on metazoans genomes also regulate origin firing (Figure 12). In this sense, pre-

RCs are formed around all the potential origins that are grouped into replication units 

or replicons of around 50 – 120Kb (in metazoans), in which only one of them will be 

activated under normal circumstances. In turn, these replicons are grouped into 

replication clusters or foci of around 400Kb - 1Mb (in mammals), in which origins of 

each replicon are fired synchronously
159

. 
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Figure 12. Organization of replication origins in higher eukaryotes. 

Five different replicons (represented with different colors) from a same replication cluster, and the active or 
flexible origins present on each of them are shown. Adapted from “DNA replication origin activation in space 

and time”
159

. 

Apart from epigenome and chromatin organization, nuclear structure is also thought to 

involved in origin accessibility and firing. In this sense, the formation of the nuclear 

envelope at the end of mitosis is thought to introduce structural organization to DNA, 

essential for the regulation of origin firing
158,159

. As a consequence, the formation of the 

nuclear envelope is a prerequisite for origin firing
238

. Additionally, nuclear lamins are 

thought to regulate the replication timing through the regulation of nuclear structure. 

In this regard, the disruption of lamins for example has been shown to alter the 

elongation of origins
239

, and late-replicating regions have been shown to be located at 

lamin-associated domains
240,241

. 

Notably, all this nuclear organization allows defining different replication patterns 

associated with different replication moments. In this regard, the S-phase state of a 

certain cell can be predicted through its replication foci distribution. Early S phase for 

instance is characterized by a homogenous distribution of small replication foci 

throughout the entire nuclei. By contrast, these replication foci are mainly associated 

with perinuclear and perinucleolar heterochromatin regions at mid S phase. Finally, a 

few large replication foci, associated with constitutive heterochromatin chromosomal 

regions, characterize the late S phase
242,243

 (Figure 13). 
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Figure 13. Distribution of replication foci during S phase. 

Replication foci patterns at different S-phase stages of HeLa cells stably expressing GFP-PCNA is shown. 
Adapted from “Organization of DNA replication”

243
.  
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3. The DNA replication stress response 

Alterations in DNA replication dynamics result in the accumulation of RS (replication 

stress), one of the major sources of genomic instability. Cells respond to RS by 

activating several mechanisms to ensure stabilization and repair of forks, to coordinate 

these functions with cell cycle, and thus, to prevent cell division in the presence of 

unreplicated or damage DNA.  By doing so, these mechanisms will try to overcome the 

damage and if so, DNA replication stress response will promote replication resumption 

and cell cycle progression. By contrast, in the cases of persistent damage, cells will be 

driven to apoptosis or senescence
244–248

. 

This section summarizes the main DNA replication alterations that may cause RS and 

how cells respond to this stress. 

3.1. DNA replication-associated problems 

Several endogenous and exogenous factors can compromise replication dynamics 

resulting in the accumulation of RS. This stress is generally characterized by the 

presence of stalled replication forks that can lead to fork collapse and the accumulation 

of DNA damage
2,244,248

. 

The main alterations in DNA replication dynamics that can lead to genomic instability 

are summarized on this section. 

3.1.1. Fork stalling 

Replication forks can encounter several obstacles that may lead to fork stalling. The 

accumulation of these local alterations can result in global DNA replication inhibition 

and in the abrogation of mitotic entry.  In addition, persistent fork stalling can result in 

fork collapse and in the accumulation of DSBs, which can lead to the acquisition of 

genomic instability
2,159,244,248,249

. 

• Low nucleotide or histone levels 

Similarly to all other cellular processes, appropriate metabolic conditions are 

required for correct DNA replication. During S phase, there is a high demand of 

dNTPs and histones, the decrease of which can result in fork stalling
248

. Notably, a 

decrease in the pool of dNTPs can be artificially induced by the addition of 

ribonucleotide reductase inhibitor HU (hydroxyurea)
250,251

. Furthermore, 

overexpression of some oncogenes can also induce RS due to a nucleotide 

deficiency
252–254

. 

Additionally, as previously explained, chromatin assembly must be coupled to DNA 

replication to ensure the correct transmition of epigenetic inheritance to daughter 

cells
155,156

. In this sense, defects on chromatin assembly have been shown to result 

in fork stalling and collapse
255,256

. A decrease in histone levels may cause a 

deregulation in the coupling of these processes, which may result in the 

accumulation of stalled forks
248

. Accordingly, the inhibition of canonical histones 

biosynthesis has been described to result on impaired replication fork 
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progression
257

, although a sustained defect on histone supply seems to be 

required for the activation of the DNA replication stress response
248

. 

• RFBs: replication fork barriers 

RFBs are obstacles present on DNA that result on replication fork slowdown and 

stalling. These barriers can arise after the addition of external agents, but they can 

also appear at natural pausing sites during unperturbed S phase. These natural 

pausing sites are intrinsic DNA regions where replication machinery tends to stall. 

This can occur for instance due to the presence of secondary DNA structures such 

as hairpin loops (folds in a single strand of DNA) and G-quadruplexes, which 

collide with the replication machinery promoting its stalling
157,244,248

. In this sense, 

the stabilization of G-quadruplexes results in slower replication speed and 

increased accumulation of DSBs
258

. 

Additionally, DNA-protein complexes or unrepaired DNA lesions that result from 

either exogenous or endogenous agents may also disrupt the progression of 

replication forks. For example, the addition of cisplatinum or mitomycin C, as well 

as the metabolic aldehydes that arise from alcohol metabolism, induce ICLs (inter-

strand crosslinks) and probably also protein-DNA crosslinks
244,248

. 

Interestingly, although it is not exactly a barrier, chromatin compaction status has 

also been postulated as another source of impediment for fork progression
244,248

. 

• Interferences between transcription and replication machineries 

Transcription has been described to be a source of genomic instability in a 

replication-dependent manner
259

. Consistently, the inhibition of transcription has 

been shown to reduce Cyclin E-induced RS in human cells, reinforcing the idea that 

the transcription machinery acts as an impediment for replication fork 

progression
260

. This is thought to be due to the fact that transcription and 

replication machineries share the same DNA templates, and thus, they are prone 

to collide. 

However, a clash between replication and transcription machineries does not 

seem to be the sole explanation by which transcription may hinder fork 

progression
246,248,261

. From works showing that topoisomerases can reduce 

transcription-dependent RS
262,263

, it has been proposed that topological 

perturbations, such as positive supercoilings generated when replication and 

transcription machineries converge, may also contribute to transcription-mediated 

fork stalling
248,261

. 

Additionally, the R-loops generated during transcription are also thought to be 

another cause of transcription-mediated fork stalling
246,248,262,264

. R-loops are 

RNA/DNA hybrids that are formed during transcription when the nascent RNA is 

annealed to the template DNA, leaving the non-template DNA strand unpaired
265

. 

These structures are removed by RNAseH and specialized helicases, and in fact, 

depletion of these factors involved in R-loop removal or prevention have been 

shown to induce RS
266–268

. 
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• Low origin density or excessive origin firing 

As previously explained, replication in higher eukaryotes is accomplished by the 

activation of hundreds of origins that represent around the 10% of the total 

licensed origins
229

. Additionally, in contrast to prokaryotes and lower eukaryotes, 

specific sequences that predict origin positioning in higher eukaryotes have not 

been established yet. In fact, although certain structures are thought to somehow 

define the location of metazoan origins, they are unequally distributed along the 

genome
118,155,158,159,228

. This, together with the fact that origin activation is 

flexible
233

, raises the probability of having large inter-origin gaps, which in turn, 

increases the risk of spontaneous fork stalling
118

. In this sense, a decrease in origin 

density will rise the inter-origin distance, which may result in an increased risk of 

fork stalling
118

. Consistently, it has been shown that cells derived from MCM2-7 

hypomorphic mice present an increase in fork stalling and DNA breaks
269

. 

Furthermore, Cyclin E overexpression has been shown to reduce the number of 

licensed origins, which contributes to replication impairement
270

. Collectively, 

these data indicate that a reduced origin density may raise the possibility of 

stalling, or at least, increase the risk of accumulating stalled forks due to the 

shortage of back-up origins to cope with those forks
118,245,246,248

. 

Alternatively, an excessive origin firing is also thought to promote fork stalling. In 

this case, a deficiency in limiting factors, such as for example insufficient dNTP 

levels, might be the reason for stalling
248

. 

3.1.2. Unscheduled replication 

Another alteration in DNA replication dynamics that can result in the accumulation of 

RS and the acquisition of genomic instability, is the altered timing of origin firing
246

. As 

previously explained, replication in higher eukaryotes occurs through the activation of 

several origins
229

. Moreover, even if the choice of origins to be activated is flexible, 

there is a replication timing program that is established in G1, which defines early- and 

late-replicating domains that are going to be chronologically activated in S 

phase
155,156,159

.  In this sense, the deregulation of the factors involved in controlling this 

replication timing program will induce unscheduled origin firing, leading to alterations 

in replication timing. Remarkably, this alterations may promote epigenetic changes that 

result in the acquisition of non-structural genomic instabilities
155–157,271,272

. 

In addition, as previously explained, the altered regulation of origin firing might result 

on a deficiency in limiting factors, which may lead to fork stalling
248

. Additionally, the 

deregulation of origin activation can result in the rereplication of certain DNA 

regions
116,118,246

. For example, alterations in origin licensing factors and their regulators, 

such as the upregulation of Cdt1
273

/Cdc6
274

 or the downregulation of 

Geminin
275

/Emi1
154

, causes rereplication. Moreover, the overexpression of some 

oncogenes, such as Cyclin E, also induces this effect
276

. Furthermore, the deregulation 

of histoneH4K20 methyl-transferase SETD8
277

 or the overexpression of other chromatin 

modifiers
278

 can also promote rereplication. Apart from the obvious impact that  

rereplication may have on genomic instability, this alteration also results in the 

accumulation of ssDNA, which favors the acquisition of DNA breaks
279

. 
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3.1.3. Modified bases and alterations due to DNA damage tolerance mechanisms 

UV light and other agents can cause bulky DNA adducts, such as pyrimidine dimers, that 

are usually repaired by NER (nucleotide excision repair). These alterations do not 

represent real barriers for replication machinery, but can stall the polymerases 

resulting in uncoupled unwinding and synthesis. Due to the discontinuous nature of the 

lagging strand, it tolerates much better than the leading strand this type of alterations. 

In this sense, the DNA adducts present on leading strand represent a major obstacle for 

the processivity of DNA replication. Therefore, to avoid fork stalling and to ensure 

replication fork progression in the presence of this kind of alterations, cells have 

developed DDT (DNA damage tolerance) mechanisms
280,281

. 

In some cases, bulky DNA adducts are bypassed by specialized DNA polymerases in a 

process known as TLS (translesion synthesis). In this case, the replicative polymerases 

are replaced by specific TLS polymerases in a process known as polymerase switching. 

These TLS polymerases have low fidelity and low processivity. However, they are able 

to accommodate bulky DNA lesions and maintain fork processivity, although they can 

compromise genome integrity due to reduced fidelity
282

. 

Another DDT mechanism that prevents fork stalling in the presence of bulky DNA 

adducts is fork repriming
280,281

. In this case, the replisome bypasses the damaged area 

and continues DNA synthesis downstream the damage site, by de novo priming of 

replicative polymerases (either by recycling or exchanging the polymerases that were 

working before bypassing the damage site)
283–285

. In human cells, the PrimPol primase-

polymerase, which has also TLS polymerase activity, is the responsible for restarting 

DNA synthesis downstream the DNA adduct
286–288

. After replication, the ssDNA gap 

generated during adduct bypass must be repaired. This is usually mediated by HR-

mediated repair mechanisms or by filling the gaps using TLS polymerases. In addition, if 

ssDNA gaps are not repaired they might be converted to DSBs. Thus, once again this 

mechanism may also compromise genome integrity
280,281

. 

3.1.4. Fork collapse and reversal 

As previously explained, in response to fork stalling, the DNA replication stress 

response will promote the stabilization of replication forks, to allow replication to be 

restarted from the same forks when the stress is overcome. However, persistent fork 

stalling can result in replication fork collapse
2,244,289

. 

Fork collapse has been used to describe several potentially different processes 

including the dissociation of the replisome and the formation of DSBs at stalled forks
290

. 

Thus, it has usually been understood as a process that implies the inactivation of 

replication forks
289,290

. 

Based on chromatin immunoprecipitation studies on yeast, it was proposed that in the 

absence of Mec1 and Rad53 (orthologs of human ATR and Chk2 respectively), 

replisome components such as the replicative polymerases and the helicase are 

disassembled from chromatin after exposure to genotoxic agents
200,291–296

. However, 

this idea was later challenged by another study showing that the replisome remains 

associated with DNA in HU-treated checkpoint mutants
297

. An explanation that agrees 
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with both results would be that the replisome is not dissociated but instead, replication 

forks are remodeled, promoting a displacement of replisome components away from 

replication forks
280

. An example that might explain this displacement of replisome 

components without necessarily implying their dissociation would be fork 

reversal
281,298–300

. 

Fork reversal was first described in 1976 as a process that induces the remodeling of 

replication forks into four-way junctions, by the coordinated reannealing of parental 

strands, and the annealing of nascent DNA strands. This results in the formation of a 

fourth regressed arm at the fork elongation point which is also known as chicken 

foot
301

. Several DNA translocases and helicases, such as SMARCAL1 (SWI/SNF-related 

matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1) 

and WRN (Werner syndrome ATP-dependent) respectively, have been described to 

promote fork reversal in vitro
281

. However, only the FBH1 helicase has been described 

to be able to induce fork reversal in vivo
302

. Additionally, Rad51, a protein that mediates 

strand invasion during HR (explained in section (3.3.2)), has been reported to be 

required for replication fork reversal
303

. 

Due to the lack of technical approaches to properly study fork reversal, until very 

recently, it has mainly been studied only in prokaryotes. The first direct observation of 

reversed (also known as regressed) forks in eukaryotes by two-dimensional (2D) gel 

electrophoresis
304

 and later by electron microscopy
201

, linked these structures with the 

inability to restart stalled replication forks. Since then, fork reversal has been 

interpreted as a pathological mechanism linked to fork collapse
261,289

. Consistently, it 

has been described that reversed forks are processed by nucleases and/or break repair 

mechanism to result in illegitimate ligation or toxic intermediates
280,292,305–308

. 

Consistent with this, several studies have shown that the DNA replication stress 

response tries to prevent this remodeling of the fork
305,307

. Moreover, cohesin complex 

have also been implicated in preventing this process
309

, indicating that several 

mechanism have evolved to act against it. 

However, during the last years several works have shown that fork reversal is a 

common and general feature in response to several genotoxic stress-inducing 

agents
303,310–312

. Furthermore, fork reversal has been proposed to occur even in the 

absence of those agents
303,310,313–315

 and in the absence of DSBs
302,303

. In fact, 

mechanisms of restart from reversed forks have been described
311,312

. Therefore, it is 

started to consider that fork reversal may have a dual role, being harmful under certain 

conditions, but also, being a protective evolutionary conserved response that 

contributes to the safeguarding of genome integrity
298

. 

The mechanisms described to promote replication restart from reversed forks are 

explained in section (3.3.1). 

3.2. Cell cycle checkpoints 

Cell cycle checkpoints are the mechanisms responsible for damage or abnormalities 

detection, and for coordination of cell cycle progression with DNA repair pathways, 

avoiding cell division in the presence of damage or unreplicated DNA. These 

mechanisms act as signal transduction cascades that are divided in three major levels: 
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1) First, sensor proteins are the responsible for damage or abnormalities detection and 

for the initial cascade activation; 2) Secondly, transducer proteins, usually protein 

kinases, mediate signal amplification by phosphorylating other kinases or target 

proteins; 3) Finally, effector proteins are the ones that act on several downstream 

target proteins in order to activate all the checkpoint responses, such as the inhibition 

of cell cycle progression
3,316,317

. 

Cells are constantly being challenged by endogenous and exogenous forms of damage, 

which can appear in all the cell cycle phases. As a consequence, checkpoints can be 

activated in every cell cycle phase. In this sense, cell cycle checkpoints can be classified 

according to the cell cycle phase in which they are activated as the: G1/S checkpoint, S-

phase checkpoint, G2/M checkpoint and mitotic or spindle checkpoint (Figure 1)
3,316,317

. 

From the different cell cycle phases, the S phase is the most vulnerable to the 

acquisition of DNA damage. As previously explained, several mechanisms can induce 

fork stalling during this phase, which leads to the accumulation of ssDNA. This results 

on the activation of the DNA replication checkpoint in order to monitor the fidelity of 

copying the DNA. Additionally, if this stalling is persistent, cells are prone to collapse 

and accumulate DSBs. When this happens, the DDR (DNA damage response), including 

the DNA damage checkpoint, is activated. All together, these mechanisms will promote 

replication fork stabilization and repair, while inhibiting cell cycle progression, to avoid 

mitotic entry with damaged or unreplicated DNA
245–248,316

. 

Two PIKK (Phosphoinositide 3-kinase related protein kinase) family members, ATR 

(ATM and Rad3 related) and ATM (Ataxia-telangiectasia mutated), are the major 

regulators of the DNA replication stress and damage responses
318,319

. In addition, 

several works have described that p38 and JNK (c-Jun N-terminal kinase) SAPKs (stress-

activated protein kinases) also contribute to the prevention of aberrant mitotic entry in 

response to several genotoxic stresses, including RS, and even during unperturbed cell 

cycle
320–324

. Specifically, ATR sensor protein is the main upstream kinase of the DNA 

replication checkpoint, while ATM is the one of the DNA damage checkpoint
316

.  Both 

kinases target an overlapping set of substrates that promote cell cycle arrest and DNA 

repair, and thus, the DNA replication and DNA damage checkpoints are tightly 

connected during S phase
318,319

. Although both mechanisms are essential to preserve 

genome integrity, ATR (or its downstream kinase Chk1) deletion results in embryonic 

lethality
325–327

, whereas ATM-depleted embryos are viable despite they present several 

problems such as growth retardation, infertility and cancer predisposition
328–330

. 

Interestingly, a recent work has described that in stark contrast to ATM null mice, point 

mutations on ATM that cause the loss of its kinase activity also result in embryonic 

lethality
331

. 

Additionally, a third PIKK family member known as DNA-PK (DNA-dependent protein 

kinase) is also activated in response to DSBs. Nevertheless, the function of this last one 

seems to be limited to NHEJ- (non-homologous end-joining) mediated repair rather 

than in coordinating a global response, although there are evidences indicating that it 

may be important for checkpoint signaling in the absence of ATM
318,319

. 
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All three PIKK family members phosphorylate preferentially Serine/Threonine residues 

that are adjacent to a Glutamine residue (S/TQ)
332

. Remarkably, they share some 

common substrates, such as for example H2AX histone variant
333,334

. The 

phosphorylation of H2AX on S139 (γ-H2AX) has been commonly used as a DSB 

marker
335

. However, latest evidences suggest that this phosphorylation is a common 

event in response to several genotoxic stresses, which does not always colocalize with 

other DSB markers
336

. Another common substrate for all three PIKKs is RPA32
337

. During 

unperturbed cell cycle, RPA32 is phosphorylated at G1/S transition and it remains 

phosphorylated until mitotic exit
338

. These cell cycle-regulated phosphorylation events 

are mediated by CDK1
339,340

 and CDK2
340,341

. In addition, in response to DNA damage, 

RPA32 is further phosphorylated by ATR, ATM and DNA-PK in several of its residues, 

although the exact implication of each of those phosphorylations is still unknown
337

. 

The DNA replication and DNA damage checkpoint activation cascades, their functions, 

and the crosstalk between both pathways are summarized below. 

3.2.1. The DNA replication checkpoint 

As previously explained, several mechanisms can induce the stalling of replication 

forks
2,244,248

. When this happens, ssDNA is accumulated as a result of the uncoupling of 

the replicative polymerases and the helicase. Likewise, in the presence of damage 

templates, the uncoupling of the leading and lagging strands may also generate ssDNA. 

Additionally, the replication forks that are stalled due to the presence of barriers can be 

processed by nucleases and helicases resulting in the accumulation of ssDNA
281

. In all 

cases, the accumulation of ssDNA will result on the activation of the DNA replication 

checkpoint
319,342,343

 (Figure 14). 

The activation of this checkpoint starts with the loading of RPA protein onto ssDNA. 

This RPA-coated ssDNA acts as a platform for the recruitment of other proteins, 

essential for the activation of the DNA replication checkpoint. One of these proteins is 

ATR, which is recruited to this platform with the help of ATRIP (ATR-interacting 

protein)
344

, a protein that directly binds RPA. ATR-mediated ATRIP phosphorylation at 

S68 and S72 is thought to be important for the activation of the DNA replication 

checkpoint
345

. Additionally, Sirtuine-2-mediated ATRIP deacetylation has been reported 

to be required for its interaction with RPA
346

. ATRIP-mediated recognition of RPA-

coated ssDNA is essential for the recruitment of ATR onto chromatin. Nevertheless, this 

is not sufficient to the activation of ATR
319,342

. In this sense, a second group of proteins 

are also recruited to RPA-coated ssDNA independently of ATR-ATRIP. This group 

includes the heterotrimeric ring-shape protein 9-1-1 (Rad9-Rad1-Hus1), which is 

phosphorylated on S387
347

 and S341 by CKII (Casein kinase 2)
348

, allowing the 

recruitment of TopBP1, an essential protein for the activation of ATR
349–351

. 9-1-1 

protein recognizes RPA-coated ssDNA regions that are adjacent to DNA ends. This 

protein complex is related, in structure and sequence, to PCNA, and accordingly, it 

requires the action of clamp loaders to bind the chromatin
352

. In this case, Rad17-RFC 

complex, a RFC-like complex in which RFC1 has been substituted by Rad17
353

 is the 

responsible for  the recruitment of 9-1-1
319,342,354

. 
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The main role of this second group of proteins is to bring TopBP1 in close vicinity to 

ATR-ATRIP
349,350

. TopBP1 directly interacts with ATR-ATRIP
355,356

 and stimulates the 

kinase activity of ATR in vitro
355

.  However, the exact mechanism by which TopBP1 

favors or mediates the activation of ATR in vivo still remains to be elucidated
319,342,357

. In 

this sense, it has been reported that ATR can be autophosphorylated in trans on T1989 

and that this phosphorylation assists its binding to TopBP1
358

. Nevertheless, although 

this phosphorylation is a mark of ATR activation, mutations on this phosphorylation site 

do not have an strong impact on ATR function
359

. Remarkably, ATM-mediated TopBP1 

phosphorylation on S1131 has been reported to be important for TopBP1-mediated 

stimulation of ATR activity in Xenopus laevis
360

. Moreover, other proteins such as MRN 

(Mre11-Rad50-Nbs1) and RHINO (Rad9, Rad1, Hus1 interacting nuclear orphan) are also 

thought to be important for the recruitment of TopBP1, and thus, for the activation of 

ATR
357

. In this case, RHINO for instance has been described to interact with 9-1-1 and 

TopBP1, stabilizing the interaction between them, to retain TopBP1 on damage sites or 

to promote conformational changes on TopBP1 that may contribute to the activation of 

ATR
361

. In any case, sustained interaction between ATR-ATRIP and 9-1-1-TopBP1 is 

thought to favor the activation of ATR
319,357

, although additional proteins, such as 

FANCM (Fanconi anemia group M protein)
362

 or Dna2
363

, may also be required for full 

ATR activation. 

The fact that the DNA replication checkpoint activation requires two independent initial 

recruitments is thought to be important to activate it only when is really needed. 

During an unperturbed S phase, ssDNA is generated, which will recruit RPA onto 

chromatin. Additionally, the 5’-junction and the ssDNA generated on the lagging strand 

could also act as a platform for the recruitment of 9-1-1. Thus, the requirement of two 

individual signals may force a situation in which the amount of the initial signal is 

critical for the activation of this checkpoint
319

. Consistent with this hypothesis, larger 

gaps of ssDNA have been shown to be more efficient on the activation of the DNA 

replication checkpoint
364

. 

Once activated, ATR phosphorylates several substrates to mediate the different DNA 

replication checkpoint responses
319,342

. Chk1 kinase is the main downstream substrate 

of ATR, which acts as a transducer protein to mediate the variety of functions of the 

DNA replication checkpoint response
316,327

. This kinase is transiently localized to 

damage sites to be activated by ATR, and then, it is released from chromatin and 

spread over the nucleus to interact with its different substrates
365

. ATR phosphorylates 

Chk1 on S345 and S317
366

, which induces conformational changes on Chk1 that allow 

its own autophosphorylation on S296
367

 and its further activation. Additionally, other 

mediator proteins also contribute to ATR-mediated Chk1 activation. One of such 

proteins is Claspin
368

, which is phosphorylated on T916 and S945
369,370

 by CS1γ1 (Casein 

kinase 1 gamma 1) in an ATR-dependent manner
371

, to interact with Chk1 favoring its 

activation. Apart from Claspin, Tim and Tipin have also been described to contribute to 

ATR-mediated Chk1 activation
372,373

. 
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Figure 14. A model for DNA 

replication checkpoint activation in 

metazoans. 

1) The uncoupling of CMG helicase 
and replicative polymerases results 

in the accumulation of high 
amounts of ssDNA that are 
wrapped by RPA. 2) This RPA-

coated ssDNA is recognized by 
ATRIP which brings ATR close to the 

ssDNA. Additionally, 9-1-1 protein 
recognizes the RPA-coated ssDNA 
that is adjacent to a DNA end, and is 

recruited to the damage site with 
the help of Rad17-RFC, bringing 

with it TopBP1 protein. Other 
proteins such as MRN and RHINO 
also contribute to this recruitment 

of TopBP1. The vicinity of TopBP1 
favors ATR activation, which is 
autophosphorylated in trans on 

T1989. Other proteins also 
contribute to the activation of ATR. 

3) Once activated, ATR 
phosphorylates several substrates. 
Chk1, the main transducer protein 

of the DNA replication checkpoint, 
is one of those ATR substrates. ATR 
phosphorylates Chk1 on S345 and 

S137, with the help of mediator 
proteins such as Claspin, Tim1 and 

Tipin. 4) Chk1 phosphorylation by 
ATR induces a conformational 
change on Chk1 that allows its own 

autophosphorylation on S296.  
Once activated, Chk1 is released 

from chromatin and spread over 
the nucleus to interact with its 
several substrates. 
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• Functions of the DNA replication checkpoint 

As previously mentioned, the DNA replication checkpoint is activated in response 

to ssDNA accumulation. When this happens, this checkpoint promotes a reversible 

cell cycle arrest (through mitotic entry and origin firing inhibition), as well as the 

stabilization of replication forks, to avoid mitotic entry with unreplicated or 

damage DNA, and to maintain the competence to recover when the stress is 

overcome. Additionally, this checkpoint also regulates other functions, such as 

DNA repair and transcription, altogether contributing to safeguarding the genome 

integrity
247,318,319,342,343

. 

The molecular mechanisms involved in the most important DNA replication 

checkpoint functions are summarized below: 

̵ Inhibition of mitotic entry: ATR/Chk1 prevents mitotic entry by inducing the 

inhibition of cyclin-CDK complexes, which is accomplished by Chk1-mediated 

Wee1 and Cdc25 phosphorylation. These phosphorylations result on Wee1 

activation while promoting Cdc25 degradation, mislocalization or export from 

nuclei, altogether contributing to the inhibition of CDKs
41,42

. Additionally, Nek11 

kinase has also been shown to be activated by Chk1, which contributes to the 

degradation of Cdc25A
374

. The inhibition of these cyclin-CDK complexes is the 

main mechanism to avoid mitotic entry with unreplicated or damage DNA
319

. 

̵ Origin firing inhibition: Inhibition of replication initiation is the other mechanism 

used by the DNA replication checkpoint to prevent cell cycle progression. In this 

case, ATR and Chk1 are involved in global origin firing inhibition, while allowing 

local dormant origin firing
118

. 

ATR/Chk1 inhibits origin firing through several mechanisms. For example, ATR-

mediated FANCI (Fanconi anemia group I protein) phosphorylation inhibits origin 

firing to promote fork restart
375

. In addition, Chk1 inhibits Treslin
376

, which is 

required for a stable CMG complex formation
164,165

. Additionally, since CDK2 and 

DDK are essential kinases for the initiation of  DNA replication
162,163

, the 

previously explained Chk1-mediated CDK inhibition will contribute to origin 

firing prevention. Moreover, Dbf4, the regulatory subunit of DDK kinase, is also 

an ATR substrate
377

. However, whether DDK is inactivated in response to RS in 

human cells is still controversial
378

. In this sense, the phosphorylation of Dbf4 by 

ATR does not affect the DDK kinase activity
377

. Moreover, through Claspin 

phosphorylation, DDK has been described to be required for Chk1 

activation
379,380

. Furthermore, ATR/Chk1-promoted APC/C
Cdh1

 inhibition, 

prevents the degradation of Dbf4 and results on the accumulation of DDK onto 

chromatin in response to RS
381

. As DDK is a crucial player for TLS, it seems 

conceivable that it may be required, at least under certain circumstances, for the 

DNA replication stress response
378

. 

However, if DDK is activated in response to RS, how is origin firing inhibited 

under these conditions? And most importantly, how does ATR/Chk1 promote 

dormant origin firing while inhibiting the activation of late origins? Interestingly, 

it has been described that ATR-/ATM-mediated PP1 phosphatase recruitment to 

chromatin counteracts DDK-mediated MCM phosphorylation
382

. The selective 
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inhibition of certain origins by this machinery has been postulated as a 

mechanism for late origin firing inhibition
378

. In this sense, Rif1, one of the major 

regulators of the replication timing program
234–237

, has been shown to recruit 

PP1 to late origins on yeast, in order to counteract DDK-mediated MCM 

phosphorylation
383,384

. In addition, ATR/Chk1 has also been described to 

specifically inhibit late origin firing by preventing the activation of new 

replication factories
385

. The specific inhibition of only the new replication 

factories will allow dormant origin firing, since they are located in the already 

activated ones. Interestingly, the DNA replication checkpoint not only allows but 

also promotes the activation of dormant origins. In this sense, ATR has been 

shown to phosphorylate MCM in Xenopus laevis, which induces PLx1 (ortholog 

of human PLK1) recruitment to stalled forks. This PLx1 attenuates the inhibitory 

activity of the checkpoint towards unfired origins that are close to the stalled 

ones
386

. 

Importantly, ATR/Chk1 have been shown to regulate origin firing, and 

consequently fork progression, not only in response to RS, but also in 

unperturbed S phase
387,388

. Consistent with this, Claspin has also been described 

to regulate normal fork progression
389

. 

̵ Stabilization of replication forks: Fork stabilization has been described to be 

another important function of the DNA replication checkpoint, to avoid fork 

collapse and to allow replication to be resumed from the same forks when the 

stress is overcome
247,318,319,342

. 

As previously explained, based on data from yeast, it was described that 

replisome components are disassembled from replication forks in response to RS 

when checkpoint kinases are abscent
200,291–296

. However, this hypothesis was 

later challenged
297

. A possible explanation that agrees with both results is that 

replication forks are remodeled into chicken foot structures, which do not 

necessarily imply the dissociation of the replisome
280,281,298–300

. In this sense, ATR 

for instance has been described to phosphorylate the DNA translocase 

SMARCAL1 to restrain fork reversal and to avoid fork collapse
305

. 

Nonetheless, recent data indicate that replication can be restarted from 

reversed forks
298

. Thus, the accumulation of DNA damage rather than fork 

remodeling, seem to be the mechanism that hinders the stability of replication 

forks, resulting in fork inactivation. Consistently, a recent work has shown that 

fork collapse in the absence of ATR is due to other mechanisms rather than the 

deregulation of replisome mainteinance
390

.  Accordingly, replication checkpoint 

kinases have been shown to protect replication forks from the accumulation of 

DSBs through several mechanisms. For instance, ATR-mediated origin firing 

inhibition prevents RPA exhaustion-promoted DSBs
391

. Moreover, ATR promotes 

the association of FANCD2 (Fanconi anemia group 2 protein) with MCM helicase 

to prevent massive ssDNA accumulation, which can result in the formation of 

DSBs
391,392

. Furthermore, Chk1 protects replication forks from Mus81 

endonuclease-mediated breakages
393

. 

Interestingly, proteins involved in HR-mediated repair (explained in section 

(3.3.2)), such as Rad51, BRCA2 (breast cancer type 2 susceptibility protein) and 
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FANCD2 have been reported to play a repair-independent role in protecting 

stalled replication forks from nucleases degradation
394–396

. Specifically, the 

association of Rad51 with ssDNA protects replication forks from Mre11 

nuclease-mediated degradation
396

. Likewise, FANCD2 and BRCA2 also prevent 

Mre11-mediated degradation in a Rad51-dependent manner
394,395

. Additionally, 

WRN helicase presents a nonenzymatic role in protecting nascent DNA strands 

from Mre11-dependent degradation after camptothecin treatment
397

. If these 

functions are regulated or not by the DNA replication checkpoint is still 

unknown
398

, but in any case, fork protection seems to be necessary to allow fork 

restart once the stress is overcome
244,247,289

. Consistently, cohesins, which are 

involved in the maintenance of fork integrity,  are also thought to be important 

to allow replication restart from stalled forks
206,399

. In this sense, Rad50-

mediated cohesin recruitment at replication sites has been shown to be required 

for the recovery of stalled replication forks
400

. 

̵ Regulation of DNA repair mechanisms: ATR is predominantly activated in 

response to RS. Nevertheless, DSB-inducing agents can also lead to its activation. 

Moreover, the RS generated during S phase can lead to the accumulation of DNA 

damage. Furthermore, DNA repair mechanisms have to be coordinated with cell 

cycle progression to guarantee genome integrity. Thus, the regulation of DNA 

repair mechanisms is another function of the DNA replication checkpoint. Since 

DSBs are also sensed by the DNA damage checkpoint, there is a high crosstalk 

between both pathways at this point (further explained in section 

(3.2.3))
247,318,319,342

. 

DNA replication checkpoint mediators, such as the 9-1-1 protein complex, have 

been reported to be implicated in the regulation of several DNA repair 

mechanisms including for instance BER (base excision repair)
247,342

. 

In addition, ATR has been described to be implicated in HR-mediated repair 

rather than in NHEJ-mediated one
401

. For instance, ATR regulates BRCA1 (breast 

cancer type 1 susceptibility protein), a tumor suppressor involved in HR-

mediated repair
402

 (explained in section (3.3.2)). Moreover, ATR-mediated 

FANCD2 phosphorylation promotes its monoubiquitylation, required for its 

recruitment onto damage sites
403

. In addition, Chk1-mediated Rad51 or BRCA2 

phosphorylations have been shown to stimulate HR
404–406

. However, as 

previously explained, the DNA replication checkpoint promotes the stabilization 

of forks to avoid fork collapse. Thus, ATR/Chk1-induced HR might be restricted 

only to certain cellular conditions. Consistently, it has been reported that the 

DNA processing and initiation events required for HR-mediated repair, are 

actively suppressed by the DNA replication checkpoint
407–410

. 

̵ Regulation of transcription: Several data from yeast have connected the DNA 

replication checkpoint with the regulation of cellular transcription. In response 

to fork stalling, hundreds of genes are up- or down-regulated
247,342

. 

In addition, as explained in section (1.1.2), the synthesis of each cyclin is usually 

regulated by the cyclin-CDK complex that acts just before during the cell cycle. In 

this regard, the inhibition of cyclin-CDK complexes by the DNA replication 

checkpoint may compromise the synthesis of cyclins. For example, the synthesis 
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of Cyclin B1 requires the activation of NF-Y, b-Myb and FoxM1 transcription 

factors, which are activated by Cyclin A-CDK2/1. Thus, the inhibition of CDK2/1 

by the DNA replication checkpoint will prevent the activation of those 

transcription factors, resulting in a reduced Cyclin B1 expression that will 

contribute to mitotic entry abrogation
1,6,16,22,319

. 

Additionally, E2F transcription factors, which are involved in the regulation of 

DNA replication and repair
19,20

, are also controlled by cyclin-CDK complexes
19

. 

Thus, the inhibition of these cyclin-CDK complexes may disturb E2F-dependent 

functions. 

Notably, the checkpoint-induced regulation of transcription is thought to have 

little impact on fork stabilization or cell viability
247,343

, since inhibiting protein 

synthesis (by cycloheximide treatment) has little impact on cell survival after 

RS
411

. 

3.2.2. The DNA damage checkpoint 

As previously mentioned, the RS generated during S phase can result in the 

accumulation of DSBs
244–248

. In addition, during S phase, as in the other cell cycle 

phases, certain agents can also induce DSBs on DNA. When this happens, the DDR is 

activated (Figure 15) to detect DNA lesions, signal their presence and promote their 

repair, all this coordinated with the inhibition of cell cycle progression, to prevent 

mitotic entry with damaged DNA. All these functions are mediated by the DDR, through 

the coordinated action of the DNA damage checkpoint and the DNA repair 

mechanisms
412

. 

DSBs are sensed by the MRN complex
413

, which as previously mentioned is composed 

by Mre11, Rad50 and Nbs1 proteins. Mre11 presents endonuclease and 3’ → 5’ 

exonuclease activities, while Rad50 exhibits ATPase and adenylate kinase activities. By 

contrast, Nbs1 contains FHA (forkhead-associated domain) and BRCT (tandem BRCA1 C-

terminal domains) domains to interact with other proteins and to regulate their 

activities by modulating their protein-protein interactions and structure
414

. 

In the presence of DSBs, MRN is rapidly recruited to damage sites
415

. Once there, it 

promotes ATM recruitment
416–418

 and monomerization, necessary for the activation of 

ATM
418

. This kinase is predominantly found as an inactive noncovalent homodimer in 

the nucleus. In response to DNA damage, its monomerization and autophosphorylation 

in trans on S1981 allow its activation
419

. Further autophosphorylation sites on ATM 

have also been described. However, studies in other species have reported that 

phosphorylation of ATM on S1981 is not essential for its function, despite being a 

sensitive marker of ATM activation state
415

. In any case, ATM autophosphorylation has 

been shown to depend on Tip60 histone acetyltransferase-mediated K3016 acetylation 

on ATM
420,421

. Interestingly, mutations on this acetylation site have been shown to 

disrupt not only ATM autophosphorylation, but also, the phosphorylation of ATM 

downstream targets
421

. 
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Figure 15. A model for DDR 

activation and signal 

amplification. 

1) ATM is commonly found as 
noncovalent homodimers in 

the nuclei. 2) In response to 
DSBs, MRN is rapidly recruited 
to damage sites. Once there, 

MRN contributes to ATM 
recruitment, monomerization 

and autophosphorylation, 
being Tip60-mediated 
acetylation necessary for this 

last one.  Once activated, 
ATM phosphorylates several 

substrates such as Chk2, 
Rad17 or H2AX. 3) H2AX 
phosphorylation on S139 

promotes the recruitment of 
MDC1 to damage sites. From 
there, MDC1 favors the 

association and recruitment 
of MRN. Rad17 also 

contributes to this function. 
This MRN stabilization 
contributes to further ATM 

recruitment. 4) Increased 
ATM recruitment and 
activation favors further 

substrate phosphorylation. 5) 
The phosphorylations of H2AX 

are recognized by the RNF8 
ubiquitin ligase, which 
ubiquitylates H2AX and H2A 

histones. 6) RNF8-mediated 
ubiquitylations are in turn 

recognized by RNF168, which 
further ubiquitylates H2AX 
and H2A histones, 

contributing to signal 
amplification. Finally, all these 
modifications promote a 

proper DNA damage 
checkpoint activation and 

favor the recruitment of 
repair proteins to damage 
sites.  
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Once activated, ATM phosphorylates Chk2, the main transducer protein of the DNA 

damage checkpoint
316

, on T68
422

. Additionally, together with the other PIKKs, ATM 

phosphorylates H2AX histone variant on S139
333–335

. This γ-H2AX is detected by the 

MDC1 (mediator of DNA damage checkpoint 1) protein, which is recruited to damage 

sites. Once there, MDC1 protein retains and allows the propagation of MRN to adjacent 

chromatin
423

. Moreover, the interaction of MRN with phosphorylated Rad17 (by ATM) 

contributes to its maintenance onto damage sites
424

. This MRN retention and spread to 

adjacent chromatin may further increase the recruitment and the activation of ATM. 

Accordingly, MDC1 protein has been described to enhance the association of ATM with 

chromatin, which allows γ-H2AX signal amplification
425

. Moreover, it has been reported 

that the association of ATM with undamaged chromatin might be important to 

correctly activate the ATM pathway
426

. Collectively, these suggest that chromatin 

context is important for correct signal amplification, and thus, for a correct DNA 

damage checkpoint activation and response
415

. In this sense, several acetylations, 

SUMOylations, ubiquitylations and other PTMs have been described to be required for 

the correct activation of the DNA damage checkpoint
427

. For example, MDC1 triggers 

the recruitment of the RNF8 E3 ubiquitin ligase, which ubiquitylates γ-H2AX
428,429

 and 

H2A
429

. This ubiquitylations are recognized by another E3 ubiquitin ligase, the RNF168, 

which further ubiquitylates γ-H2AX
430

 and H2A
430,431

 to amplify the signal. This signal 

amplification may be important for a correct DNA damage checkpoint activation, but 

also, it is required for the recruitment of repair proteins such as BRCA1 or 53BP1, being 

this last one involved in the recruitment of, among others, TopBP1
427,432

. 

• Functions of the DNA damage checkpoint 

The main function of the DNA damage checkpoint is to prevent cell cycle 

progression, to avoid mitotic entry in the presence of damaged DNA
3,316

.  In this 

sense, by phosphorylating Cdc25 phosphatases, Chk2 inhibits CDKs as an early 

response to DNA damage
3,41

. 

Additionally, in response to persistent damage, ATM/Chk2 promotes the 

stabilization of p53 transcription factor
3,316

, which regulates several mechanisms 

involved in the maintenance of the cell cycle arrest
433,434

. ATM/Chk2 promotes the 

stabilization of p53 in several ways. First, ATM phosphorylates p53 on S15, 

inducing its transcriptional activation
435,436

. Moreover, Chk2 phosphorylates p53 

on S20 reducing its ability to interact with the MDM2 ubiquitin ligase
437–440

. 

Furthermore, ATM phosphorylates MDM2, preventing the export of p53 to the 

cytoplasm where it is degraded
441

. 

Once active and stabilized, p53 tumor suppressor regulates the expression of 

several proteins involved in processes such as cell cycle arrest, apoptosis or 

senescence
433,434

. Most of this p53-regulated functions, are mediated by its 

downstream target p21
48,49

. The contribution of p53/p21 to apoptosis and 

senescence are further explained in section (3.4). 

As previously explained, p21 is a CKI, and thus,  it abrogates cell cycle progression 

by inhibiting the cyclin-CDK complexes
43

. In addition, p21 has also CDK inhibitor-

independent roles that regulate cell cycle progression
45,50,442

. One of those 
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functions is the inhibition of E2F1 transcription factor by direct binding to its 

promoter
45

. In this sense, since, as previously mentioned, the APC/C inhibitor Emi1 

is an E2F1 target
93

, the inhibition of E2F by p21, either by direct binding or through 

the regulation of CDKs, may induce APC/C activation. Accordingly, premature 

APC/C
Cdh1

 activation in response to DNA damage
443

 has been described to be 

mediated, at least in part, by p21-dependent Emi1 downregulation
152

. This 

APC/C
Cdh1

 activation in response to DNA damage induces a permanent arrest in G2 

by degrading several substrates such as Cyclin A, Cyclin B, Aurora A and Plk1
150–152

. 

In addition, p21 is also involved in the regulation of several DNA repair 

mechanisms
45

. For instance, p21 competes with other repair proteins for PCNA 

binding to regulate replication and repair processes
444

. In this sense, p21 binding 

to PCNA induces a DNA replication blockade
442

. Moreover, p21 inhibits TLS by 

preventing PCNA monoubiquitylation, required for the recruitment of TLS 

polymerases
445,446

. 

3.2.3. Crosstalk between the DNA replication and DNA damage checkpoints 

As previously explained, DNA damage promotes the activation of both ATM and ATR. In 

addition, since stalled replication forks can eventually collapse and accumulate DSBs, 

fork stalling can also result in the activation of both pathways. Moreover, ATM and ATR 

present several common substrates, and in turn, several proteins are involved in the 

activation of both pathways. These observations underline the high redundancy 

between the DNA replication and DNA damage checkpoints
318,319,342

. 

This redundancy is highlighted for instance in response to fork reversal, since it has 

been described that reversed forks are able to activate, not only ATR, but also ATM 

pathway. In this particular case, the free DNA ends exposed by reversed forks are 

sufficient to activate ATM in the absence of DSBs
302

. 

This crosstalk is also evident during the repair of DSBs. In this case, the 3’ overhang of 

ssDNA generated by DNA resection, during HR-mediated repair, will also promote the 

activation of ATR
319

. HR-mediated repair is further explained in section (3.3.2). 

Additionally, upon persistent RS, not only ATM/Chk2 but also, ATR/Chk1 has been 

reported to induce the stabilization of p53
440,447

. Accordingly, prolonged ATR activation, 

even in the absence of DNA damage, has been shown to be sufficient to promote 

senescence in a p53-dependent manner
448

. 

3.3. Replication restart and repair pathways 

In response to RS, cells will try to stabilize the replisome to allow replication to be 

resumed from the same forks once the damage or stress has been overcome
247

. 

Replication resumption from the same forks contributes to the safeguarding of genome 

integrity, since it guarantees the replication of the whole genome, maintaining the 

replication timing program
271,449

. 

Additionally, upon RS, replication can also be restored from dormant origins, which also 

contributes to the preservation of genome integrity. The existence of those dormant 

origins ensures whole genome replication and contributes to prevent rereplication. 
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Furthermore, since dormant origins are located in the same replicons as the stalled 

forks, their activation do not alter the replication timing program
118,159

. However, 

dormant origins allow replication to be resumed once the replication forks have been 

processed into DSBs
450

, and thus, in this case they might contribute to the acquisition of 

genomic instability
290,451

. 

In addition, in contrast to what it was thought, recent data have shown that replication 

can also be restarted from broken replication forks by BIR (break-induced 

replication)
452–455

. Notably, this mechanism is highly error-prone and mutagenic
456–459

. 

This section summarizes the main mechanisms involved in replication resumption after 

RS. 

3.3.1. Direct restart or restart from reversed forks 

Once the stress is removed, replication can be restarted from unbroken stalled forks, 

either by direct restart or through fork remodeling processes. The maintenance of 

replisome components and the stabilization of replication forks by the DNA replication 

checkpoint, allows replication to be resume by direct restart from the same forks 

(Figure 16)
247,280,289

. 

Additionally, as previously explained, replication forks are commonly regressed into 

chicken foot structures
303,310

. Moreover, although these structures have been linked to 

the accumulation of illegitimate ligations and toxic intermediates
280,292,305–308

, it is 

started to consider that fork reversal may also have a role in safeguarding genome 

integrity
298

. In this sense, in contrast to what it was thought, replication restart from 

reversed forks has been described
300,311,312

, although this mechanism is still poorly 

understood. 

The first question that still remains to be elucidated in this regard is whether fork 

reversal implies replisome dissociation or not
281,298

. The first direct evidences of fork 

reversal on eukaryotes came from studies on Rad53 (the yeast ortholog of human 

Chk2) mutants, in which the presence of these structures was linked to a replication 

recovery failure
201,304

. In this sense, it was postulated that fork reversal might entail 

replisome disassembly
298,299

, thus compromising DNA synthesis resumption. However, 

the fact that replication can be restarted from reversed forks
300,311,312

 have 

compromised this hypothesis, since MCM helicase for instance, which is part of the 

active CMG helicase complex, can only be loaded onto chromatin during G1
116

, and 

thus, its disassembly would hinder replication resumption. Consistent with this, a 

recent study have shown that at least in the T4 bacteriophage system, fork reversal can 

occur without dissociation of replisome components
300

. Nevertheless, further studies 

are necessary to know if this is also the case in higher eukaryotes. 

Regarding the replication resumption mechanisms to resume replication from reversed 

forks, two recent studies have described two different pathways of replication restart 

from reversed forks in human cells (Figure 16): 1) RecQ1 helicase mediates branch 

migration, to reverse regressed forks and to restore their initial status, allowing 

replication to be resumed from the same place. In this case, RecQ1 helicase is inhibited 

by PARP1 (poly [ADP-ribose] polymerase 1) until the damage is repaired or the stress is 
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overcome
311

; 2) Dna2 nuclease and WRN helicase-mediated 5’ → 3’ resection creates a 

3’ overhang, promoting fork restart. In this case, fork restart has been postulated to 

occur either by an unknown branch migration factor or by strand invasion (search and 

invasion of homologous sequences), for instance mediated by Rad51
281,312

. Remarkably, 

consistent with what has been postulated
206,399

, cohesin complexes might be necessary 

for replication restart under this condition, since they are required for proper strand 

invasion. Interestingly, Mre11 nuclease does not contribute to this resection. 

Moreover, in this case resection is restricted by RecQ1 to prevent massive degradation 

of nascent DNA
312

. 

 

Figure 16. Models of mammalian replication fork restart in the absence of DSBs. 

The mechanisms used to restart replication from unbroken forks are represented. Some of the molecules 
involved in certain steps are also represented. Adapted from “Pathways of mammalian replication fork 

restart”
289

 and “Replication stress: getting back on track”
281

. 

3.3.2. Dormant origin firing and the repair of DSBs 

Due to the bidirectional nature of replication forks, when a replication fork is stalled, a 

converging fork can compensate and replicate the entire intervening DNA. However, if 

both converging forks stall, dormant origins must be required to ensure replication of 

that area, unless replication is restarted from those stalled forks when the stress is 

overcome. In this regard, dormant origin firing is one of the mechanisms used to 

resume replication once replication forks have been processed into DSBs (Figure 17). 

However, even if replication is resumed by dormant origin firing, DSBs must be repaired 

afterwards
118,450

. 
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DSB are repaired either by NHEJ- or HR-mediated mechanisms. It is generally accepted 

that NHEJ is the main repair mechanism during G1, although it is active throughout the 

entire cell cycle, while HR acts predominantly on S and G2 phases, when sister 

chromatids are present
412,432

. However, it has also been reported that NHEJ is the 

dominant repair pathway also in G2
460

. Several proteins have been described to be 

implicated in the choice of each of the pathways
432

. For instance, 53BP1 negatively 

regulates resection in G1 by protecting DSB ends, which is antagonized by BRCA1 in S 

phase to promote HR-mediated repair
461,462

. 

NHEJ consist in the ligation of broken DNA ends without homology, although there is a 

subtype of NHEJ, known as MMEJ (microhomology-mediated end-joining), that uses a 

little homology for this process
412,463

. On the other hand, HR uses homologous 

sequences, usually from the sister-chromatid, for the repair of DSBs. 

HR-mediated repair starts with MRN complex and its interacting partner CtIP-induced 

DNA resection. The first step is the creation of nicks upstream the DSBs, which are 

followed by an initial 3’→ 5’ resection. These resections are then further extended in 5’ 

→ 3’ direction by Exo1 and Dna2 nucleases with the help of helicases such as BLM 

(Bloom syndrome protein). The resulting product is a 3’ overhangs required for strand 

invasion
412,414,463

.  This ssDNA is first wrapped by RPA protein, which is afterwards 

replaced by Rad51 with the help of several proteins such as BRCA1, BRCA2 and PALB2 

(partner and localizer of BRCA2)
464

. The formed Rad51 nucleofilament mediates distant 

homologous sequence search and strand invasion. This invasion results in the 

formation of D-loops (displacement loops), since the invading ssDNA is paired to the 

homologous sequence, displacing the complementary strand. Finally, these structures 

lead to the formation of double-Holliday junctions (branched  structures containing 

four double-stranded arms joined together) that are resolved either by dissolution or 

resolution mechanisms
463

. Due to the importance of maintaining sister chromatids 

together to allow strand invasion, cohesin complex is thought to be important also for 

HR-mediated repair
206,399

. 

3.3.3. Break-induced replication 

In contrast to what it was thought, during the last years, increasing evidences agree on 

the possible reactivation of collapsed forks
452,453,455

. In this sense, Mus81 endonuclease-

created DSBs were shown to contribute to replication restart
465

, although another 

study showed that the terminally arrested replication forks were not efficiently 

restarted by Mus81
450

. 

The generation of breaks at replication forks results in the formation of one-end DSBs, 

which are thought to be repaired by a sub-type of HR-mediated mechanism known as 

BIR
452,453,455

 (Figure 17). Notably, BIR-based mechanisms seem to be implicated not only 

in the repair of DSBs, but also, in the reactivation of broken replication forks. In fact, a 

couple of years ago, replication restart from broken forks by BIR was confirmed for the 

first time in human cells
454

. 

BIR consist in a Rad51-mediated strand invasion event that allows copying hundreds of 

kbs of DNA from a template strand. Interestingly, from works done in yeast it has been 

reported that the D-loop formed during strand invasion is not immediately resolved 
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during BIR to reestablish a functional replication fork. Instead, replication proceeds by 

D-loop migration while lagging strand is synthesize by using the nascent DNA as a 

template, being Polymerase 32 (ortholog of human PolD3) required for this process
466–

468
. Notably, the CMG complex and Cdt1 are required for BIR

469
. 

Interestingly, since reversed forks have been shown to be processed by nucleases 

and/or break repair mechanisms
292,306,307

, and as Mus81-induced DSBs have been 

shown to promote fork restart
465

, it has been postulated that reversed forks that are 

unable to resume DNA replication might also use this mechanism to restart
281

. 

 

Figure 17. Models of mammalian replication resumption mechanisms from or in the presence of broken 

forks. 

The mechanisms used to resume replication once replication forks have been processed into one-end DSBs 
are represented. Some of the molecules involved in certain steps are also represented. Adapted from 
“Pathways of mammalian replication fork restart”

289
 and “Sources of DNA double-strand breaks and models 

of recombinational DNA repair”
463

. 

3.4. Cell cycle exit 

As previously mentioned, in response to RS, cells will try to stabilize the forks and repair 

the damage in order to resume replication once the stress has been overcome. 

However, in response to persistent damage, cells are withdrawal from the cell cycle to 

avoid cell division in the presence of unreplicated or damage DNA, contributing to 

safeguarding the genome integrity
244–248

. 

The mechanisms that determine a cell going to apoptosis or senescence are not clear, 

but this choice seems to be cell type specific
47,433

. Consistently, extensive genotoxic 

stress has been shown to promote apoptosis in thymocytes
470

, while fibroblasts are 

shown to initiate cellular senescence under this condition
471

. 
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3.4.1. Apoptosis 

One of the mechanisms that promotes cell cycle exit in response to persistent damage 

is apoptosis, a programmed cell death that serves to eliminate deregulated or damaged 

cells
433,472

. Proteins involved in cell cycle regulation and arrest are also regulators of 

apoptosis
472

. For instance, p53 regulates the expression of several proteins involved in 

apoptosis
433

. Additionally, apoptosis can also occur independently of the cell cycle 

arrest machinery
472

. 

As previously mentioned, p21 is one of the main downstream targets of p53, which 

mediates most of the tumor suppressor functions of this protein
48,49

. Paradoxically, in 

this case, p21 has been reported to have anti-apoptotic functions. Cytoplasmic p21 

inhibits the activity of pro-apoptotic proteins such as caspases or SAPKs. Moreover, p21 

induces the upregulation of anti-apoptotic genes, while it suppresses the induction of 

pro-apoptotic genes by Myc and E2F
45

.  In this sense, p21 protects against apoptosis for 

instance in response to a deprivation of growth factors or to p53 overexpression. 

However, it is also thought to promote apoptosis either by p53-dependent or 

independent mechanisms under certain cellular stresses, although the mechanism is 

not clear
45

. 

3.4.2. Senescence 

Senescence was first described as the finite proliferative capacity. This concept is used 

to describe a permanent cell cycle exit, which, as explained in section (4.1), has been 

proposed to be a tumor suppressor mechanism. In contrast to other non-proliferative 

cells (arrested or quiescent cells), senescent cells express several markers and suffer 

morphological changes that are characteristic of them
47,473

, although not all of them are 

universal
474

. 

Senescence has been described to occur either in G1, S or G2 phases depending on the 

cellular context. Additionally, depending on the factor promoting this phenomenon, 

two types of senescence have been described. The first one, known as replicative 

senescence (sometimes termed as cellular aging), is the one promoted by telomere 

shortening. The other one is induced by several aging- or telomere shortening- 

independent factors that promote stress, such as oncogenes or genotoxic agents, and is 

known as premature senescence
47

. 

Two different mechanisms have been reported to activate this permanent arrest, the 

ARF/p53 and p16/pRb pathways (Figure 18), although some evidences have suggested 

that there also additional pathways. These two pathways can interact between them, 

and proteins involved in one of them can induce senescence through the other 

pathway. In this sense, different stimuli are thought to activate different mechanisms 

to finally induce senescence
47,473

. 
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Figure 18. Senescence signaling pathways. 

The signaling cascades that promote senescence are shown. In response to RS, p53 stabilization promotes 
p21-mediated senescence. In response to other intracellular or extracellular signals, senescence can be 
induced by other mechanisms. p53 and p16/pRb are the classical signaling pathways. However, there is a high 

crosstalk between them and proteins from one of the cascades can act on the other pathway. Moreover, the 
existence of additional pathways has also been postulated. Adapted from “Cellular senescence: when bad 

things happen to good cells”
47

. 

In response to persistent damage, p53 and p21 are the mediators of cellular 

senescence
45,433

. p21 promotes senescence by inhibiting CDKs, which indirectly will also 

inhibit E2F1-3-induced proliferation
45,47

. In addition, p21 may also promote senescence 

through CDK inhibition-independent roles, such as by direct binding to E2F1
50

. 

Nevertheless, since these are also the mechanisms used to induce a transient arrest, 

the determinants that promote senescence remain to be elucidated.  In this sense, it 

has been postulated that rapid repair would quickly terminate p53/p21 signaling, 

promoting a transient arrest, whereas a permanent p53/p21 signaling due to 

unrepaired or persistent stress would induce senescence
47

. However, a transient p53 

activation has recently been reported to be sufficient to induce senescence
475

. 

Remarkably, p53-/p21-mediated nuclear Cyclin B translocation has been described as 

the restriction point for a permanent withdrawal from the cell cycle in this case
475–477

. 
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4. Replication stress, genomic instability and cancer 

The accumulation of RS is one of the major sources of genomic instability, a hallmark of 

cancer. Alterations generated during replication are the major source of deletions, 

translocations, amplifications and other aberrations that can be carried until mitosis if 

the DNA replication stress response fails. This results in the accumulation of 

abnormalities in the genome that contribute to the development and/or progression of 

human malignancies such as cancer
245,246,451,478

. 

Tumor cells tend to accumulate mutations and increased copy number of 

chromosomes to silence or overexpress certain genes, in order to acquire growth, 

survival or metastatic advantages
451,479

.  In this regard, proteins involved in the DNA 

replication stress response and in cell cycle regulation, such as p53, pRb or ATM, are 

some of the most commonly mutated genes on human cancers
478

. In addition, CIN 

(chromosomal instability), which reflects ongoing changes on chromosome structure 

and number, is also commonly observed in tumor cells. Likewise, aneuploidy (abnormal 

number of chromosomes) is another common feature of cancer cells, which has been 

reported to contribute to increase the numerical and structural chromosomal 

aberrations
479

. 

This ongoing acquisition of mutations and alterations seems to be required for cancer 

development. In fact, cancer development seems to be a multistep process in which 

each particular mutation confers a unique capability that cancer cells need to acquire to 

proliferate, survive and metastasize
480

. 

The complexity and variety of the alterations that lead to cancer development makes it 

almost impossible to find universal therapies to act against it. For this reason, the 

identification of critical characteristics for the survival of cancer cells would be crucial 

to develop successful therapies. Accordingly, new promising therapies based on the 

increased RS
252,253

 and dependency that tumor cells present on ATR/Chk1 pathway
245

, 

or on the ability to incorporate damaged dNTPs
481

 have been proposed. 

This section summarizes the contribution of replication-related alterations and RS to 

the acquisition of genomic instability. 

4.1. Genomic instability due to alterations during DNA replication 

4.1.1. Common fragile sites and early replicative fragile sites 

CFSs (common fragile sites) are the most vulnerable regions to RS. This stress induces 

DNA breaks on CFSs and ERFSs (early-replicating fragile sites), which lead to 

chromosomal aberrations such as deletions
245,246

. 

CFSs are late-replicating genome regions that accumulate breaks, gaps and 

constrictions that can be observed in metaphase chromosomes.  These regions are 

characterized for presenting lower density of origins, A-T rich repetitive sequences and 

for being at euchromatin-heterochromatin transition regions. As previously mentioned, 

this lower density  of origins increases the risk to accumulate stalled forks
246,248,482

, 

which may explain the genomic instability associated with CFS. Accordingly, decreased 
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origin firing capability as a result of reduced MCM2-7 function, has been shown to 

increase genomic instability and breast cancer risk
483

. 

However, regardless the accumulation of stalled forks, the increased number of DNA 

breaks in those CFS regions is thought to be due to active, rather than passive, 

mechanisms such as Mus81- or ERCC1-induced breaks
244

, and thus, the resulting 

genomic instability might also be promoted by those mechanisms. 

By contrast, ERFSs are located at open chromatin regions that are replicated early in S 

phase, and which present high levels of transcription. In this case, RS that might lead to 

the acquisition of genomic instability is thought to arise from R-loops or other 

transcription-replication interferences
244,245

. 

CFSs and ERFSs are often found rearranged in human tumors. In this sense, a high 

number of cancer-associated deletions, and most of the cancer-specific translocation 

breakpoints are found at CFSs and ERFSs
245,246,482

. Additionally, CFSs are the favorite 

targets of oncogene-induced RS in precancerous lesions
246

. 

4.1.2. Replication restart and DNA repair mechanisms-induced genomic instability 

Replication restart after RS does not necessarily imply the acquisition of genomic 

instability. In fact, if the DNA replication checkpoint works properly, forks would be 

stabilized to resume replication from the same place once the stress is removed, and 

thus, genome integrity would not be compromised
247,280,289

. However, if forks are not 

properly stabilized and they acquired DSBs, replication resumption from broken forks 

or in the presence of them can compromise genome integrity
290,451

. In addition, even in 

the absence of DSBs, DDT mechanisms may also induce genomic instability after 

RS
280,281

. 

As previously explained, replication resumption after replication forks have been 

processed into DSBs is meditated either by origin firing or BIR
450,454

, which can both 

compromise genome integrity. In this sense, deregulated origin firing could for instance 

alter the replication timing program and modify epigenetic inheritance
271,449

. Moreover, 

unscheduled origin firing can result in overreplication, promoting ssDNA accumulation 

or a deficiency in limiting factors, and lead to chromosomal breakages. Furthermore, 

these alterations can result in genome rereplication which has been associated with 

gene amplification events, which are one of the major drivers of cancer
451

. 

Additionally, even if replication is correctly resumed from dormant origins
118

, DSBs 

must be repaired afterward, and this may also compromise genome integrity since 

repair mechanisms can be error-prone
248,450

. For example, HR in S phase can result in 

epigenetic alterations
272

. Moreover, HR using repetitive sequences can lead to large-

scale genome rearrangements
248

.  In this sense, it has been shown that small insertions 

or deletions at repetitive regions can lead to big genome rearrangement if this regions 

are used to recombine
484

. 

In addition, BIR has also been shown to be highly mutagenic
456–459

. Indeed, BIR-based 

mechanisms can explain the complexity of the chromosomal changes that occur on 

cancer cells
252,253,485–487

. For instance, BIR-based mechanisms can generate complex 

genome rearrangements if the broken replication fork is annealed with microhomology 
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on any ssDNA that is nearby
487

. Furthermore, since BIR can occur by several rounds of 

strand invasion, dissociation and reinvasion within a dispersed repeated sequence can 

lead to genome rearrangements
456

. In addition, the non-canonical polymerase activity 

of Pol32  has been described to be highly mutagenic
458

. 

Finally, even if the used repair mechanism is not error-prone, the increased 

accumulation of DSBs enhances the risk of leaving unrepaired breaks that can lead to 

chromosomal rearrangements or deletions that contribute to the acquisition of 

genomic instability
451,479

. 

4.1.3. OIS: Oncogene-induced senescence 

Oncogenes are positive regulators of cell cycle progression, and thus, they are 

commonly mutated in cancer. Indeed, oncogenes are considered as one of the drivers 

of cancer development
478

. 

However, some years ago it was shown in vivo that oncogene overexpression results in 

the accumulation of senescent cells in precancerous lesions
488,489

. At the same time, it 

was reported that precancerous lesions present an increased DDR, and it was 

postulated that this response was an important tumorogenic barrier
276,490

. In fact, 

shortly after, it was shown that the establishment of a correct DDR after oncogene 

overexpression was essential for the induction of senescence in precancerous lesions, 

which was as an important tumorogenic barrier
252,253,491

. Since then, the inactivation of 

the DDR is thought to be required to abrogate OIS and to promote tumorogenesis, after 

oncogene overexpression or their constitutive activation
252,253,491

. Indeed, this might 

explain why precancerous lesions present much higher DDR than tumors at later and 

more aggressive stages
276,490

. Interestingly, DNA hypereplication and the accumulation 

of RS as a result of oncogene overexpression were shown to be essential for the 

establishment of the DDR under these conditions
252,253

. In this sense, the inhibition of 

DNA replication was shown to abrogate the DDR activation and senesce after oncogene 

overexpression, confirming that the accumulation of RS is important for OIS 

establishment
252

. Accordingly, and consistent with the idea that ATR/Chk1 pathway 

limits RS
318,319

, the incorporation of an extra allele of Chk1 results on increased 

transformation due to reduced RS after H-Ras
G12V  

expression
492

. 

Oncogene overexpression or constitutive activation is known to promote fork stalling, 

which can ultimately lead to the accumulation of DSBs, resulting in the activation of the 

DDR. However, how these oncogenes promote RS is still controversial. In this sense, 

several hypotheses have been postulated. On the one hand, it has been shown that the 

overexpression of Cyclin E results in premature S-phase entry with reduced number of 

licensed origins
270

, which results in shortage of back-up origins to cope with stalled 

forks
118,245,246,248

. In addition, Cyclin E overexpression has been reported to increase 

origin firing, resulting on replication-transcription interferences and increasing the 

topological stress, which results in fork reversal and reduced replication fork 

progression
260,313

. Additionally, it has also been described that Cyclin E overexpression 

can promote rereplication
276

, which as previously explained, increases the risk of fork 

stalling due to ssDNA accumulation or to insufficient limiting factors among other
248,279

. 

In relation with this, it has also been reported that oncogene overexpression-induced 
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RS is due to a nucleotide deficiency
254,493–495

. In this case, H-Ras
G12V  

expression, as well 

as Ras or c-Myc overexpression, resulted in reduced expression of RR (Ribonucleotide 

reductase) and TS (Thymidylate synthase), promoting a decrease in dNTP levels that 

can explain the RS
493–495

. Nevertheless, this is somehow controversial with the fact that 

RR is generally overexpressed in human cancers
496

. 

Notably, the decrease in dNTP levels induced by Ras and c-Myc was shown to be 

important for OIS establishment and maintenance
493–495

. By contrast, a decrease in RS, 

induced by an extra supply of nucleotides, was shown to decrease transformation in 

HPV-16 E6/E7 expressing cells
254

, indicating that the response to different oncogenes 

may be diverse. 

4.1.4. CIN: chromosomal instability 

CIN is a hallmark of cancer. However, whether CIN can initiate cancer, of if by contrast 

it is a consequence is still under debate.  Several evidences indicate that although CIN 

might favor cancer initiation, further mutations may also be required
479

. 

Until very recently, altered mitotic checkpoint, supernumerary centrosomes and other 

aberrations that cause chromosome segregation errors during mitosis were thought to 

be the drivers of CIN
479

. Accordingly, tetraploidy has also been reported to promote 

CIN
497

. However, a few years ago it was described that RS was the major driver of CIN. 

In this sense, it was reported that CIN positive tumor cells present several structural 

and numerical chromosomal alterations associated with RS-mediated DNA damage. 

This alterations were reverted by preventing RS-induced DNA damage by nucleoside 

addition, supporting a direct role of RS in driving CIN
485

. 

Nevertheless, this affirmation is still somehow controversial. It has been generally 

accepted that alterations during DNA replication would contribute to structural 

rearrangements of chromosomes. However, if these pre-mitotic alterations, such as 

unresolved or unreplicated regions that result in acentric fragments or anaphase 

bridges among others, are sufficient to cause numerical instability is still under 

debate
479

. In this sense, it has been postulated that errors arising from mitosis, such as 

lagging chromosomes, rather than pre-mitotic defects, may be the main drivers of 

numerical instability-associated CIN
498

.  
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1. Non-transformed human cells are able to resume replication and enter into mitosis 

after short but not long RS 

As explained in the introduction, DNA replication is highly vulnerable to the acquisition 

of DNA damage. Defects in this process are known to promote genomic instability, a 

hallmark of cancer. Therefore, several mechanisms have evolved to ensure accurate 

duplication of the genomes
2,480

. While the DDR has been extensively studied in tumor 

cells, the pathways involved in the DNA replication stress response are less understood 

especially in non-transformed human cells. In this regard, the main goal of our group is 

to analyze and characterize the DNA replication stress response of human cells, using 

mainly the ribonucleotide reductase inhibitor HU as a RS agent
250,251

. Previous data 

from our group showed that tumor and non-transformed human cells present different 

responses to RS
324,499,500

. In the presence of HU, tumor cells, such as HeLa or HCT116, 

entered into mitosis after the inhibition of checkpoint kinases. By contrast, all the 

analyzed non-transformed human cells remained arrested in S phase under the same 

conditions (Figure 1). 

 

Figure 1. Non-transformed human cells remain arrested in S phase despite the inhibition of checkpoint 

kinases. 

(A) HeLa and HCT116 cell were treated with 1.5mM HU +/- Chk1 inhibitor (inh, 300nM UCN-01) for 24h (Chk1 
inhibitor was added during the last 10h of treatment). (B) Several non-transformed human cells were treated 
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with 1.5mM HU for 24h. Nocodazole +/- Chk1 (300nM UCN-01) and p38 (20µM SB203580) inhibitors were 
added during the last 6h of treatment. hTERT-RPE cells were synchronized in S phase and then treated with 

HU +/- Chk1 (300nM UCN-01) and p38 (20µM SB203580) inhibitors for 6h in the presence of nocodazole. DNA 
content (PI: propidium iodide) and the percentage of mitotic cells (P-H3: P-histone 3 positive cells) were 
analyzed by flow cytometry. Representative percentages of P-H3 positive cells are indicated. 

These results demonstrate that non-transformed human cells have a more robust DNA 

replication checkpoint response, and thus, during the last years our group has focused 

on studying the additional mechanisms present on non-transformed human cells that 

contribute to preserve genome integrity in those cells. 

Given the importance of a correct DNA replication in safeguarding genome integrity, 

the next objective of our group was to analyze the determinants of the cell cycle arrest 

observed in non-transformed human cells. For this purpose, hTERT-RPE cells
501

 were 

labeled with BrdU (5-bromo-2’-deoxyuridine) and then treated during 2  or 14 hours 

with 10mM HU, which was shown to be the minimal dose able to induce a complete 

arrest in S phase (Figure 2A). Cells were finally released into nocodazole containing 

medium for 24 hours, after which S-phase arrest and mitotic entry from BrdU positive 

population was analyzed by flow cytometry. This experiment showed that hTERT-RPE 

cells are able to resume DNA replication and arrive to mitosis after short (2-hour) but 

not long (14-hour) HU treatment (Figure 2B). 

 

Figure 2. hTERT-RPE cells are able to resume cell cycle after a short but not long HU treatment. 

(A) hTERT-RPE cells were labeled with BrdU for 30min and then treated with the indicated HU concentration 
for 14h. DNA content (PI: propidium iodide) from BrdU positive population was analyzed by flow cytometry. 

Noc: cells were treated with nocodazole for 14h. t=0h: cells were harvested just after the BrdU labeling. (B) 
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hTERT-RPE cells were labeled with BrdU as in (A), treated during the indicated time with HU (or left 
untreated, control), and finally released into nocodazole containing medium for 24h. DNA content and 

mitotic entry, from BrdU positive population, was analyzed by flow cytometry. The average percentages of 
BrdU positive cells that remain in S phase (left panel) or that enter into mitosis (right panel) after release are 
shown in the graphs. Error bars represent standard deviation, (paired t test, n=6). 

Similar results were also obtained in two additional non-transformed human cells (BJ-

5ta and MCF10A), and in response to DNA damage-inducing agents (camptothecin or 

etoposide) (Figure 3). 

 
Figure 3. Non-transformed human cells lose the ability to recover upon severe replication stress.  

(A) Asynchronously growing MCF10A and BJ-5ta cells were labeled with BrdU for 30min, treated during 14h 
with HU (or left untreated, control) and then released into fresh medium with nocodazole for 24h. The 
average percentages of BrdU positive cells that remain in S phase after release are shown in the graphs. (B) 

hTERT-RPE cells were labeled with BrdU as in (A), treated with the indicated drug for 14h, and finally released 
into nocodazole containing fresh medium. The average percentage of cells that remain in S phase (left panel) 

or mitosis (right panel) from BrdU positive population are shown in the graphs. CPT: camptothecin. Etop.: 
etoposide. Error bars represent standard deviation, (paired t test, n=3). 

2. Cyclin A2 and Cyclin B1 are degraded in S phase after prolonged DNA replication 

inhibition 

Due to the importance of cyclins for cell cycle progression
1
, it was though that low 

cyclin levels could be the responsible for the observed arrest.  Consistently, Cyclin B1 

expression had been shown to be repressed in several cell lines in response to HU
499,500

. 
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Interestingly, Cyclin A2 and Cyclin B1 levels decreased in response to HU, despite cells 

were arrested in S phase (Figure 4A and 2A). Moreover, this decrease was due to 

degradation since the addition of MG132 proteasome inhibitor recovered their levels 

(Figure 4B). 

 

Figure 4. Cyclin A2 and Cyclin B1 are degraded in hTERT-RPE cells after prolonged DNA replication 

inhibition. 

(A, B) hTERT-RPE cells were synchronized in S phase and then treated during the indicated time with HU or 

left untreated (-). Proteasome inhibitor MG132 (MG) and nocodazole (Noc) were added where indicated. 
Whole cell lysates were analyzed by WB with the indicated antibodies. GAP120 was used as loading control. 

Cyc: cyclin. 

3. The degradation of Cyclin A2 and Cyclin B1 correlates with the loss of replication 

recovery competence 

To determine if the degradation of Cyclin A2 and Cyclin B1 was responsible for the 

observed loss of replication recovery competence, hTERT-RPE cells were synchronized 

in S phase, treated with HU and then harvested at different time points simultaneously 

for WB (Western blot) or flow cytometry (cell were released into nocodazole containing 

medium for 24 hours before harvest them in the second case). This experiment showed 

that there is a correlation between the time in which these proteins start to degrade 

and the replication recovery competence is lost (Figure 5). 

 

Figure 5. Cyclin A2 and Cyclin B1 degradation timing correlates with the loss of replication recovery 

competence in hTERT-RPE cells. 

S-phase synchronized hTERT-RPE cells were treated during the indicated time with HU (or left untreated, Cs) 
and then harvested (for WB) or released into nocodazole containing fresh medium for 24h (for flow 
cytometry). DNA content was used to determine the number of cells that remain in S phase after release (left 

panel). The average percentages of cells that remain in S phase are shown. Error bars represent standard 
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deviation, (paired t test, n=4). Whole cell lysates were analyzed with the indicated antibodies (right panel). 
CDK4 was used as loading control. Cyc: cyclin. 

Additionally, this experiment confirmed that thymidine synchronization had no effect 

on cell cycle progression in hTERT-RPE cells (Figures 5 and 2).  
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The general aim of this thesis was to define and characterize new DNA replication 

stress response pathways that contribute to preserve genome integrity of non-

transformed human cells. From the data presented in the previous section, we defined 

three specific objectives for this thesis: 

I. To study the mechanisms involved in the loss of replication recovery competence of 

non-transformed human cells. 

II. To establish the differences, at replication fork level, between short and long HU 

treatments that determine the loss of replication recovery competence in hTERT-

RPE cells. 

III. To analyze the contribution of severe replication stress-induced S-phase arrest 

towards safeguarding genome integrity. 
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Chapter I 

Deciphering the mechanisms involved in the loss of 

replication recovery competence and defining their role in 

preventing genomic instability 

 

 

 

 

 

 

 

 

 

The results presented in this chapter have been obtained working  

in collaboration with Alba Llopis, Ph.D. 
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As previously explained, our group is interested in studying the DNA replication stress 

response of non-transformed human cells, in order to define the mechanisms involved 

in preventing genomic instability in this model. Previous studies from our group showed 

that non-transformed human cells present a more robust DNA replication stress 

response than tumor cells
324,499,500

. Moreover, non-transformed human cells were 

shown to lose the ability to recover from severe replication stress. Furthermore, a 

correlation between the degradation of Cyclin A2 and Cyclin B1 in S phase and the loss 

of replication recovery competence was described. However, the mechanism behind 

this degradation and its implication in the loss of replication recovery competence were 

still unknown. Likewise, the contribution of this loss of replication recovery competence 

towards safeguarding genome integrity also remained to be elucidated. 

1.1. hTERT-RPE cells become senescent after prolonged DNA replication inhibition 

The previous data from our group indicating that the recovery from severe replication 

stress was impaired in non-transformed human cells came from studies in which 

recovery was only analyzed during the first 24 hours of release. Thus, in order to verify 

that the observed S-phase arrest was maintained over time, we decided to perform a 

cell proliferation assay. 

To this end, S-phase synchronized hTERT-RPE cells were treated during 14 hours with 

HU and then released into fresh medium during different times. Finally, cell 

proliferation was analyzed by measuring the absorbance of crystal violet (λ595) (Figure 

1). This experiment showed that proliferation was impaired even after 72 hours of 

release, indicating that cells remain arrested after 3 days of HU treatment. 

 
Figure 1. Cell proliferation is strongly compromised in hTERT-RPE cells after a 14-hour HU treatment. 

S-phase synchronized hTERT-RPE cells were treated during 14h with HU or left untreated (Cs) and then 
released (R) into fresh medium during the indicated time. Finally, cells were harvested and stained with 

crystal violet to analyze cell proliferation by measuring its absorbance (λ595). The average fold increase, 
relative to t=0h, in each time point is shown in the graph. Error bars represent standard deviation, (unpaired t 

test, n=4). 

In order to define the fate of those S-phase arrested cells, we decided to analyze 

several senescence markers
47

. Interestingly, pRb was shown to be hypophosphorylated 

after a 24-hour release from long HU treatment (Figure 2). Likewise, an increase in p21 

levels was observed under the same conditions. Moreover, hTERT-RPE cells present SA-
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β-Gal (senescence-associated β-galactosidase activity)
502

 after a 48-hour release from 

long HU treatment. 

 

Figure 2. hTERT-RPE cells become senescent after prolonged DNA replication inhibition. 

(A) S-phase synchronized hTERT-RPE cells were treated during 14h with HU or left untreated (Cs) and then 

harvested (for WB) or released (R) into fresh medium for 24h. Whole cell lysates were analyzed by WB with 
the indicated antibodies. CDK4 was used as loading control. The arrow indicates the hyperphosphorylated 
band of pRb. (B) hTERT-RPE cells were synchronized in S phase, treated during 14h with HU (or left untreated 

(C or Control)) and then released into fresh medium for 48h. Representative images of SA-β-Gal staining (left 
panel) and the average fold increase in SA-β-Gal positive cells relative to control are shown (right panel). 
Error bars represent standard deviation, (unpaired, n=4). 

Altogether, the above results indicate that the previously observed S-phase arrest, 

correlates with an increase in senescent cells in response to prolonged DNA replication 

inhibition. 

1.2. The degradation of Cyclin A2 and Cyclin B1 in S phase is a general feature of non-

transformed human cells in response to severe replication stress 

The degradation of Cyclin A2 and Cyclin B1 in S phase in response to prolonged HU 

treatment has been described by our group. Additionally, a correlation between the 

time those proteins start to degrade and the replication recovery competence is lost 

has been established. In this sense, while recovery studies had been validated in several 

non-transformed human cells and in response to different stress-inducing agents, the 

degradation of Cyclin A2 and Cyclin B1 in S phase had only been studied in HU-treated 

hTERT-RPE cells. Thus, we wondered whether, consistent with our previous data, the 

degradation of these proteins was also a general feature of non-transformed human 

cells, observed in response to several stress-inducing agents. 
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In this regard, the degradation of Cyclin A2 and Cyclin B1 was analyzed in hTERT-RPE 

cells treated with other DNA damage-inducing agents, such as camptothecin or 

etoposide, known to promote an S-phase arrest after a long treatment (as shown by 

previous data from our group).  As expected, a long treatment with those DNA damage-

inducing agents also promoted a decrease in CyclinA2 and Cyclin B1 levels in hTERT-RPE 

cells (Figure 3). 

 

Figure 3. Cyclin A2 and Cyclin B1 levels decrease in hTERT-RPE cells after a long treatment with DNA 

damage-inducing agents. 

hTERT-RPE cell were synchronized in S phase and then treated during the indicated time with camptothecin 

(CPT) or etoposide (Etop.). Whole cell lysates were analyzed by WB with the indicated antibodies. CDK4 was 
used as loading control. Cyc: cyclin. 

Moreover, those proteins degradation was also observed in BJ-5ta and MCF10A cells 

(Figure 4), which had previously been shown to become arrested in S phase in response 

to prolonged HU treatment. Thus, consistent with our previous data, these results 

indicate that the degradation of Cyclin A2 and Cyclin B1 in S phase is also a general 

feature of non-transformed human cells upon severe replication stress. 

 

Figure 4. Cyclin A2 and Cyclin B1 are degraded in BJ-5ta and MCF10A in response to prolonged DNA 

replication inhibition. 

BJ-5ta and MCF10A cells were synchronized in S phase and then treated during the indicated time with HU or 
left untreated (Cs). MG132 (MG) proteasome inhibitor was added during the last 6h of treatment where 
indicated. Whole cell lysates were analyzed by WB with the indicated antibodies. GAP120 was used as loading 

control. Cyc: cyclin. 

To further confirm the previously observed correlation, we wanted to verify if, as in the 

case of replication resumption, thymidine synchronization had no effect either on the 

degradation of Cyclin A2 and Cyclin B1. To this end, hTERT-RPE cells were synchronized 

by serum starvation and then treated with HU during different times. As expected, 
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Cyclin B1 levels decreased after prolonged HU treatment also in this case, indicating 

that thymidine had no effect in the degradation of this protein (Figure 5). 

 

Figure 5. Cyclin B1 levels decrease in response to HU in serum starvation synchronized hTERT-RPE cells. 

hTERT-RPE cells were synchronized by serum starvation and then treated during the indicated time with HU. 
Whole cell lysates were analyzed with the indicated antibodies. CDK4 was used as loading control. Cyc: cyclin 

Furthermore, as replication recovery competence had been analyzed on cells released 

from HU treatment, we wondered if the degradation of these proteins was also 

observed under this condition. To analyze it, we treated S-phase synchronized hTERT-

RPE cells during 14 hours with HU, and then released them into fresh medium during 

different times to analyze Cyclin A2 and Cyclin B1 levels. Remarkably, the degradation 

of these proteins continued even after HU removal under these conditions (Figure 6). 

 

Figure 6. The degradation of Cyclin A2 and Cyclin B1 continues even after HU removal in hTERT-RPE cells. 

hTERT-RPE were synchronized in S phase and then treated during 14h with HU. Cells were then harvested or 
released into fresh medium during the indicated time. MG132 (MG) proteasome inhibitor was added during 
the last 6h of treatment where indicated. Whole cell lysates were analyzed by WB with the indicated 

antibodies. GAP120 was used as loading control. Cyc: cyclin. 

Collectively, the above results showing that the degradation of Cyclin A2 and Cyclin B1 

is a general feature of non-transformed human cells in response to severe replication 

stress, observed even after HU removal, reinforces the idea that there is a correlation 

between the degradation of these proteins and the loss of replication recovery 

competence in those cells. 

1.3. APC/C
Cdh1

 is prematurely activated in S phase in response to prolonged DNA 

replication inhibition in hTERT-RPE cells 

According to our previous data, the characterization of the mechanisms involved in the 

degradation of Cyclin A2 and Cyclin B1 in S phase in response to severe replication 

stress, may be useful to study how replication recovery competence is lost under these 

conditions. Therefore, we decided to analyze which was the ubiquitin ligase responsible 

for the degradation of those proteins, and how was it regulated. 
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1.3.1. The activation of APC/C
Cdh1

 in S phase is the responsible for, among others, 

Cyclin A2 and Cyclin B1 degradation in response to prolonged HU treatment 

During a normal cell cycle, Cyclin A2 and Cyclin B1 are regulated by the APC/C
29,30

. 

Moreover, this ubiquitin ligase, associated with its coactivator Cdh1, has been shown to 

be activated in response to DNA damage in G2 in order to degrade several of its 

substrates
150–152,443

. Thus, we wondered whether this complex was also the responsible 

for the degradation of Cyclin A2 and Cyclin B1 in S phase in response to prolonged DNA 

replication inhibition. 

In this regard, we decided to analyze the degradation of Cyclin A2 and Cyclin B1 in S-

phase synchronized hTERT-RPE cells that had been treated with HU and the APC/C 

inhibitor proTAME
503

. Interestingly, the pharmacologic inhibition of the APC/C ubiquitin 

ligase recovered Cyclin A2 and Cyclin B1 levels in HU-treated hTERT-RPE cells (Figure 7). 

 

Figure 7. Cyclin A2 and Cyclin B1 are degraded by APC/C in hTERT-RPE cells in response to prolonged DNA 

replication inhibition. 

hTERT-RPE cells were synchronized in S phase and then treated during the indicated time with HU +/- 
proTAME. Whole cell lysates were analyzed by WB with the indicated antibodies. CDK4 was used as loading 

control. Cyc: cyclin. 

Additionally, since proTAME is a general inhibitor of APC/C, we decided to analyze if 

specifically APC/C
Cdh1

 was the responsible for the degradation of those proteins. 

Remarkably, Cdh1 depletion (by siRNA) recovered Cyclin A2 and Cyclin B1 levels under 

these conditions in hTERT-RPE cells (Figure 8). Moreover, the addition of MG132 

proteasome inhibitor did not further increase the levels of those proteins, indicating 

that this ubiquitin ligase was the sole responsible for the observed degradation. 

In addition, other APC/C
Cdh1

 substrates, such as Plk1 and Aurora A, were also degraded 

in S phase by this ubiquitin ligase after prolonged DNA replication inhibition, and once 

again, their degradation did not further increase after the addition of MG132 (Figure 8). 

Collectively, the above results indicate that the activation of APC/C
Cdh1

 in S phase is the 

responsible for, among others, Cyclin A2 and Cyclin B1 degradation after prolonged HU 

treatment in hTERT-RPE cells. 
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Figure 8. APC/C
Cdh1

 is activated in S phase in hTERT-RPE cells to degrade several of its substrates in response 

to prolonged HU treatment. 

hTERT-RPE cells were transfected with the indicated siRNAs and then synchronized in S phase before HU 

treatment. Cells were harvested at the indicated time of HU treatment. MG132 (MG) was added during the 
last 6h of treatment where indicated. DNA content (PI: propidium iodide) of Cdh1-depleted 14h HU-treated 
cells was analyzed by flow cytometry. A representative DNA profile is shown (right panel). Whole cell lysates 

were analyzed by WB with the indicated antibodies (left panel). GAP120 and CDK4 were used as loading 
control. Cyc: cyclin. NT: non-target. 

1.3.2. The activation of APC/C
Cdh1 

in S phase correlates with a decrease in Emi1 

levels, is not prevented by the inhibition of ATM/ATR, but is abrogated in 

p53-/p21-depleted cells 

Once having defined that the activation of APC/C
Cdh1

 in S phase was the responsible for 

the degradation of Cyclin A2 and Cyclin B1 in response to prolonged DNA replication 

inhibition, we wanted to know how this complex was activated under these conditions. 

• The inhibition of ATM/ATR does not prevent the activation of APC/C
Cdh1

 in 

response to HU 

In response to DNA damage, APC/C
Cdh1

 has been described to be activated either 

by ATM-dependent or -independent mechanisms
150–152

. Thus, we decided to 

analyze if ATM was required for the activation of this ubiquitin ligase in S phase. 

Moreover, since ATR is the main kinase involved in the DNA replication stress 

response
247

, we decided to analyze also its contribution to this ubiquitin ligase 

activation. 

To this end, S-phase synchronized hTERT-RPE cells were treated with HU in the 

presence of ATM or ATR inhibitors, and Cyclin A2/Cyclin B1 levels were analyzed 

(as markers of APC/C
Cdh1

 activation) during different time points. As shown in 

Figure 9, the pharmacological inhibition of ATM and ATR alone or in combination 

did not abrogate the activation of APC/C
Cdh1

 in S phase in response to prolonged 
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HU treatment. However, whereas ATR inhibition alone resulted in advanced 

degradation of Cyclin A2 and Cyclin B1, the sole ATM inhibition had no effect on 

the APC/C
Cdh1 

activation dynamics. 

 

Figure 9. The inhibition of ATM and ATR does not abrogate the activation of APC/C
Cdh1

 in S phase in 

HU-treated hTERT-RPE cells. 

(A, B) S-phase synchronized hTERT-RPE cells were treated with HU +/- ATM (KU-55933) or ATR (VE 821) 
inhibitor (inh) during the indicated time. MG132 (MG) was added during the last 6h of treatment where 

indicated. Whole cell lysates were analyzed with the indicated antibodies. GAP120 was used as loading 
control. Cyc: cyclin. 

Additionally, consistent with the previously described correlation between the 

degradation of Cyclin A2 and Cyclin B1 and the loss of replication recovery 

competence, the inhibition of ATM and ATR did not either abrogate the S-phase 

arrest induced by prolonged HU treatment (Figure 10). 
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Figure 10. The inhibition of ATM and ATR does not abrogate prolonged DNA replication inhibition-

induced S-phase arrest in hTERT-RPE cells. 

Asynchronously growing hTERT-RPE cells were labeled with BrdU and then treated with HU +/- ATM 
and ATR inhibitors (inh) (KU-55933 and VE 821 respectively) for 14h or left untreated (24h Noc). Cells 

were then released (R) into nocodazole (Noc) containing fresh medium for 24h more. DNA content (PI: 
propidium iodide) of BrdU positive cells was analyzed by flow cytometry. The percentage of S-phase 

arrested cells from BrdU positive population is indicated. Similar results were obtained in at least three 
independent experiments. 

• The activation of APC/C
Cdh1 

in S phase correlates with a decrease in the levels of 

phosphorylated Chk1 

The above result showing that the degradation of Cyclin A2 and Cyclin B1 started 

earlier when ATR was inhibited, prompted us to analyze if, as it had been 

previously described
381

, Chk1 might be implicated in the inhibition of APC/C
Cdh1

 in 

response to RS. 

Interestingly, the analysis of Chk1 phosphorylation in response to HU treatment, 

allowed us to determine that there was a correlation between the activation of 

APC/C
Cdh1

 in S phase and the time the levels of phosphorylated Chk1 started to 

decrease (Figure 11). 

 

Figure 11. The activation of APC/C
Cdh1

 in response to HU correlates with a decrease in the levels of 

phosphorylated Chk1 in hTERT-RPE cells. 

hTERT-RPE cells were synchronized in S phase and then treated during the indicated time with HU or 
left untreated (Cs). Whole cell lysates were analyzed by WB with the indicated antibodies. GAP120 was 

used as loading control. Cyc: cyclin. 

• The activation of APC/C
Cdh1

 in S phase correlates with a decrease in Emi1 levels in 

response to HU 

As explained in the introduction, Emi1 is an APC/C inhibitor involved in the 

regulation of this ubiquitin ligase during a normal cell cycle
90–92,99

. Furthermore, 
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p21-mediated Emi1 repression has been postulated as one of the mechanisms 

involved in the activation of APC/C
Cdh1 

in G2 in response to DNA damage
152

. Thus, 

to analyze if the activation of APC/C
Cdh1

 in S phase might be due to a decrease in 

Emi1 levels, we synchronized hTERT-RPE cells, treat them with HU and analyzed 

Emi1 levels in a timecourse experiment. Remarkably, this analysis showed that 

there was a correlation between the time Emi1 started to decrease and the 

APC/C
Cdh1

 was activated (as shown by the degradation of Cyclin B1) (Figures 12 and 

11). 

 

Figure 12. Emi1 levels decrease after a long HU treatment in hTERT-RPE cells. 

Same samples as in (Figure 11) were used for WB analysis with the indicated antibodies. GAP120 was 

used as loading control. Cs: Untreated S-phase cells. 

• p53/p21 depletion prevents the activation of APC/C
Cdh1

 in S phase 

As a decrease in Emi1 levels seemed to be implicated in the activation of APC/C
Cdh1 

in S phase, we decided to analyze if, as it has been previously described
151,152

, p21 

was involved in this activation. Moreover, as p53, which is upstream p21
48,49

, has 

also been described to be implicated in the activation of APC/C
Cdh1 

in response to 

DNA damage
151

, we decided to analyze the implication of both, p53 and p21, in the 

activation of this ubiquitin ligase in S phase. 

To this end, first we analyzed the stabilization of p53 and the induction of p21 in 

response to a 14-hour HU treatment. Surprisingly, although HU induced an 

increase in p53 levels, similar to the one observed after the addition of DNA 

damage-inducing agents, p21 was not induced under this condition (Figure 13). 

Moreover, even a low HU treatment was shown to be sufficient to stabilize p53, 

while p21 was not induced either in this case. 

 

Figure 13. p53 levels increase while p21 is not induced in hTERT-RPE cells in response to prolonged 

HU treatment. 

S-phase synchronized hTERT-RPE cells were treated with the indicated drugs for 14h or left untreated  

(-). Whole cell lysates were analyzed by WB with the indicated antibodies. CDK4 was used as loading 
control. Exp.: exposure. 
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However, p21 depletion by siRNA, abrogated the activation of APC/C
Cdh1

 in S phase 

in hTERT-RPE cells treated during 14 hours with HU, as shown by the recovery on 

Cyclin B1 levels under these conditions (Figure 14). Moreover, in agreement with 

previous works
152

, Emi1 levels were higher in p21-depleted cells. Likewise, an 

increase in the levels of hyperphosphorylated pRb was observed under these 

conditions. 

 

Figure 14. p21 depletion abrogates the activation of APC/C
Cdh1

 in response to prolonged DNA 

replication inhibition in hTERT-RPE cells. 

hTERT-RPE cells were transfected with the indicated siRNAs, synchronized in S phase and then treated 
with HU during the indicated time. MG132 (MG) was added during the last 6h of treatment where 

indicated. Whole cell lysates were analyzed with the indicated antibodies. GAP120 and Lamin B were 
used as loading control. The arrow indicates the hyperphosphorylated band of the pRb. NT: non-target. 
Cyc: cyclin. Exp.: exposure. 

Remarkably, knockdown analysis showed that p21 was being degraded in the 

presence of HU, as the addition of MG132 proteasome inhibitor highly increased 

its levels (Figure 14). Thus, although p21 was not induced in response to HU 

(Figure 13), we thought that p53 might be important to maintain its basal levels. 

To prove it, p53 was depleted in hTERT-RPE cells. As expected, p53 depletion 

promoted a decrease in p21 levels, which, according to our previous results, 

correlated with a recovery on Cyclin B1 levels after a 14-hour HU treatment (Figure 

15). Furthermore, once again, the abrogation of APC/C
Cdh1

 activation, due to p53 

depletion in this case, correlated with an increase in Emi1 levels and with an 

accumulation of the hyperphosphorylated band of pRb under these conditions. 
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Figure 15. p53 depletion prevents the activation of APC/C
Cdh1

 in response to a long HU treatment in 

hTERT-RPE cells. 

Non-target (NT) or p53 siRNA was transfected to hTERT-RPE cells. After that, cells were synchronized in 
S phase and treated with HU during the indicated time. MG132 (MG) was added during the last 6h of 

treatment where indicated. Whole cell lysates were analyzed by WB with the indicated antibodies. The 
arrow indicates the hyperphosphorylated band of pRb. GAP120 and Lamin B were used as loading 

control. Cyc: Cyclin. Exp.: exposure. 

Collectively, these results indicate that the presence of p53 and p21, which are 

important to maintain low Emi1 levels, is required for the activation of APC/C
Cdh1

 in 

S phase in response to prolonged DNA replication inhibition. 

Additionally, these last experiments showed that the previously observed decrease 

in Emi1 levels at the time APC/C
Cdh1

 was activated (Figures 11 and 12) was due to 

degradation, since the addition of MG132 recovered its levels (Figures 14 and 15). 

In this sense, neither p53 nor p21 depletion abrogated the degradation of Emi1 in 

response to HU (Figures 14 and 15). In addition, the increase in Emi1 levels shown 

after p53 or p21 depletion was already observed in untreated S-phase cells, 

indicating that it was not a response to RS (Figure 16). Likewise, the accumulation 

of hyperphosphorylated pRb was also observed under this condition. 

Altogether, the above results indicate that the activation of APC/C
Cdh1

 in S phase in 

response to prolonged HU treatment is not prevented by the inhibition of 

ATM/ATR, but requires the presence of p53 and p21, which are necessary to 

maintain low Emi1 levels. However, whereas the decrease in Emi1 levels 

correlated with the activation of APC/C
Cdh1

, we were unable to observe any change 

on p53 or p21 at this time, suggesting they were not the triggers of APC/C
Cdh1

 

activation in response to HU. Moreover, the decrease in Emi1 levels was shown to 
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be due to its degradation, which was independent of p53 and p21. Thus, 

collectively, this data suggest that the degradation of Emi1, rather than p53- or 

p21-mediated Emi1 down-regulation, is the responsible for the activation of 

APC/C
Cdh1

 in S phase in response to severe replication stress. 

 

Figure 16. p53 or p21 depletion promotes an increase in Emi1 levels even in the absence of HU 

treatment in hTERT-RPE cells. 

hTERT-RPE cells were transfected with the indicated siRNA, synchronized in S phase and harvested for 
WB analysis with the indicated antibodies. The asterisk indicates a non-specific band. The arrow 

indicates the hyperphosphorylated band of pRb. Actin was used as loading control. NT: non-target. 

1.4. The activation of APC/C
Cdh1

 in S phase contributes to the loss of replication 

recovery competence upon prolonged DNA replication inhibition 

As previously explained, one of the objectives of this thesis was to analyze the 

mechanisms involved in the loss of replication recovery competence. In this sense, 

previous data from our group indicated that there was a correlation between the 

degradation of Cyclin A2 and Cyclin B1 and the loss of replication recovery competence. 

Thus, defining the mechanisms involved in the degradation of these proteins could be 

helpful to figure out how the loss of replication recovery competence was promoted. In 

this sense, our results showed that APC/C
Cdh1

 activation in S phase was the mechanism 

responsible for the degradation of Cyclin A2 and Cyclin B1 upon prolonged HU 

treatment. Moreover, we showed that its activation was not abrogated by the 

inhibition of ATM/ATR, which consistent with our previous results, did not either 

abrogated the S-phase arrest under this condition. Collectively, the above results 

pointed to the activation of APC/C
Cdh1

 in S phase as the mechanism responsible for the 

loss of replication recovery competence. 

To prove it, replication recovery was analyzed in Cdh1-depleted hTERT-RPE cells treated 

during 14 hours with HU. To avoid Cdh1 depletion to promote a premature entry into S 

phase, which can result in the accumulation of DNA damage
145–147

, cells were 

transfected with the indicated siRNA, and once they were properly attached to the 

plate (~12 h), thymidine was added to block the cells into S phase. By doing so, 

thymidine accumulates the cells in S phase before Cdh1 depletion is noticeable, and 

thus, the effect of Cdh1 depletion on G1/S transition is avoided. Remarkably, this 

experiment showed that the cells in which Cdh1 had been depleted were able to 

resume replication and acquired a DNA content of 4n after a 14-hour HU treatment, 

indicating that as postulated, APC/C
Cdh1

 contributes to the loss of replication recovery 

competence in response to severe replication stress (Figure 17). 
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Figure 17. hTERT-RPE cells are able to resume replication after a 14-hour HU treatment when Cdh1 is 

depleted.  

hTERT-RPE cells were transfected with the indicated siRNAs, synchronized in S phase, labeled with BrdU and 

then treated during 14h with HU. After that, cells were released into nocodazole containing fresh medium for 
24h. DNA content (PI: propidium iodide) from BrdU positive cells was analyzed by flow cytometry. A 
representative DNA profile is shown (left panel). The average fold increase in the number of S-phase arrested 

cells in Cdh1-depleted relative to non-target (NT) siRNA transfected cells is shown in the graph (middle 
panel). Untreated S-phase synchronized cells were harvested and analyzed by WB with the indicated 
antibodies (right panel). CDK4 was used as loading control. Error bars represent standard deviation, (unpaired 

t test, n=4). 

Moreover, consistent with our previous results showing that p53 or p21 depletion 

avoids APC/C
Cdh1

 activation in S phase, cell were shown to be able to resume replication 

and arrive to 4n when these proteins were depleted in hTERT-RPE cells (Figure 18). 

 

Figure 18. p53- or p21-depleted hTERT-RPE cells maintain the competence to recover from prolonged HU 

treatment. 

(A) siRNA transfected and S-phase synchronized cells were labeled with BrdU and then treated with HU for 

14h. After the treatment, cells were released into nocodazole containing fresh medium for 24h. DNA content 
(PI: propidium iodide) was used to analyze the number of S-phase arrested cells from BrdU positive 
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population. Representative DNA profiles (upper-left panel) and the average fold increase in the number of S-
phase arrested cells on p53- or p21-depleted relative to non-target (NT) siRNA transfected cells are show 

(bottom-left panel). Untreated S-phase synchronized cells were harvested for WB analysis with the indicate 
antibodies (right panel). CDK4 was used as loading control. (B) Samples from (A) and (Figure 17) were used for 
mitotic entry (MPM2 positive) analysis. The average fold increase in the number of mitotic cells in Cdh1-/ 

p53-/p21-depleted relative to NT siRNA transfected cells, from BrdU positive population is shown. Error bars 
represent standard deviation, (unpaired t test, n=4). 

Interestingly, while the ability to enter into mitosis was also recovered in p53- or p21-

depleted cells, Cdh1-depleted cells were shown to become mainly arrested in G2 

(Figures 17 and 18). Likewise, whereas senescence was abrogated on p53- or p21-

depleted cells, the fate of the cells in which Cdh1 had been depleted did not change 

(Figure 19). 

 

Figure 19. Senescence is abrogated by p53 or p21 depletion in hTERT-RPE cells treated during 14 hours with 

HU. 

siRNA transfected hTERT-RPE cells were synchronized in S phase and then treated during 14h with HU or left 
untreated for WB analysis. Cells were then released into fresh medium for 48h before harvest them for SA-β-

Gal analysis. Whole cell lysates were analyzed by WB with the indicated antibodies (left panel). GAP120 was 
used as loading control. The average fold decrease in the number of senescent cells in Cdh1-/p53-/p21-

depleted relative to non-target (NT) siRNA transfected cells is shown (right panel). Error bars represent 
standard deviation, (unpaired t test, n=3). 

Collectively, the above results indicate that, as expected, the activation of APC/C
Cdh1

 in 

S phase promotes the loss of replication recovery competence. However, while Cdh1-

depleted cells are unable to enter into mitosis, p53 or p21 depletion recovers also the 

mitotic entry and senescence, indicating that these proteins have additional functions 

in response to prolonged DNA replication inhibition. 

1.5. New origin firing inhibition by premature APC/C
Cdh1

 activation in S phase 

contributes to the loss of replication recovery competence in hTERT-RPE cells 

The above results indicated that the activation of APC/C
Cdh1

 in S phase was, at least in 

part, responsible for the observed S-phase arrest in response to prolonged DNA 

replication inhibition. However, how was the activation of this ubiquitin ligase 

promoting the loss of replication recovery competence, still remained to be elucidated. 

In this regard, we decided to analyze which were the replication resumption pathways 

that failed to be activated in response to prolonged HU treatment in hTERT-RPE cells, to 
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finally analyze if Cdh1 depletion was able to recover any of them, to determine the 

function of APC/C
Cdh1

 in S phase. 

1.5.1. Replication forks of hTERT-RPE cells are processed into DSBs after a long but 

not short HU treatment 

As explained in the introduction, from works done in tumor cells, it was reported that 

stalled replication forks can eventually collapse and be processed into DSBs in response 

to prolonged HU treatment
450

. Additionally, previous data from our group indicated 

that non-transformed human cells loss the ability to recover from prolonged but not 

acute RS. Thus, these results prompted us to wonder if replication forks of hTERT-RPE 

cells were being processed into DSBs, promoting the loss of replication recovery 

competence under these conditions. In this regard, we decided to analyze the presence 

of both 53BP1
504

 and γ-H2AX
335

 foci, two markers of DSBs, in cells that had been treated 

during a short or a longer time with HU.  

 
Figure 20. hTERT-RPE cells present 53BP1 and γ-H2AX foci after prolonged DNA replication inhibition. 

Asynchronously growing hTERT-RPE cells were labeled with EdU for 30min and then treated with HU during 

the indicated time or left untreated (Control). Click chemistry was performed to conjugate 488 fluorescent 
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dyes to EdU after cell fixation. Finally 53BP1 and γ-H2AX immunofluorescences were performed. 
Representative images (upper panel) and the average percentage of cells presenting 53BP1 (>6) and γ-H2AX 

(>10) foci from EdU positive population (bottom panel) are shown. Error bars represent standard deviation, 
(paired t test, n=3). 

In agreement with published data
450

, replication forks of hTERT-RPE cells were shown 

to accumulate DNA damage after a long HU treatment (Figure 20). 

To further confirm the presence of DNA damage in hTERT-RPE cells after sustained HU 

treatment, we decided to validate the previous results by a more direct DSB indicator, 

the DNA break analysis by PFGE (pulse-field gel electrophoresis)
505

. As expected, this 

technique showed once again that replication forks of hTERT-RPE cells were being 

processed into DSBs after a long but not short HU treatment (Figure 21). 

 

Figure 21. Replication forks of hTERT-RPE cells are processed into DSBs after a long HU treatment. 

S-phase synchronized hTERT-RPE cells were treated during the indicated time with HU, during 14h with 

camptothecin (CPT) or left untreated (Cs). Cells were finally harvested and prepared for DNA break analysis 
by PFGE. A representative image of three independent experiments is shown. 

1.5.2. The mechanisms able to resume replication in the presence of DSBs are 

inhibited in hTERT-RPE cells after a 14-hour HU treatment 

As previously explained, once replication forks have been processed into DSBs, 

replication can be resumed either by BIR, which depends on the formation of a Rad51 

coated 3’ DNA end
452–455

, or by new origin firing
118,450

. Thus, we wondered whether 

these mechanisms were inhibited in hTERT-RPE cells upon prolonged DNA replication 

inhibition. 

In this regard, we decided to monitor replication by DNA fiber analysis
506

, to analyze the 

possible failures on the activation of those mechanisms. To set up the experimental 

conditions for this analysis, we first decided to validate if, as indicated by previous 

works done in our laboratory (see chapter II results), HU (10mM) triggers 15 minutes to 

completely stall replication forks in hTERT-RPE cells. To this end, we labeled the cells 

with CldU (5-Chloro-2′-deoxyuridine) thymidine analog for 30 minutes, and then, we 

treated them with HU in the presence of IdU (5-Iodo-2′-deoxyuridine) analog to analyze 

its incorporation. Additionally, we included another condition in which CldU was 
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replaced by IdU during the first 15 minutes of HU treatment, to compare it with the 

previous one, and discern if there was any incorporation at this time. 

As shown in Figure 22, HU addition completely abrogated the incorporation of IdU 

thymidine analog after the first 15 minutes of treatment. Additionally, the number of 

forks that were able to incorporate IdU during those first minutes of HU treatment was 

very low. Moreover, the length of those few IdU tracks that had incorporated the IdU 

analog during the first 15 minutes of treatment was very short. Altogether, with these 

results, we concluded that HU (10mM) completely blocks replication fork progression 

after 15 minutes of treatment, and that even during this first minutes of treatment, 

fork progression is strongly compromised. 

 

Figure 22. HU completely inhibits replication fork progression after 15 minutes of treatment. 

Asynchronously growing hTERT-RPE cells were labeled and treated as indicated (upper panels). After the 
treatment, cells were harvested and prepared for DNA fiber analysis. Representative images are shown 

(middle panels). The percentage of DNA fibers labeled with both analogs, relative to total CldU labeled ones is 
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represented (bottom-left panel). The IdU track length distribution of those fibers labeled with both analogs is 
represented (bottom-right panel). More than 150 fibers were measured. Box and whiskers show: Min, Max, 

Median and first quartiles, (unpaired t test). 

Once having validated that HU was completely stalling replication fork progression, we 

decided to perform the DNA fiber experiment to analyze if any of the previously 

explained mechanisms was being abrogated in hTERT-RPE cells in response to 

prolonged HU treatment. To this end, cells were labeled with CldU for 30 minutes, then 

treated during 2 or 14 hours with HU, and finally labeled with IdU for 1 hour more. The 

second labeling period was prolonged to avoid the possible delay in restarting stalled 

forks interfering in the analysis. Additionally, CldU was maintained in the media during 

the first 15 minutes of HU treatment, to avoid fork progression in the absence of CldU 

incorporation. 

Remarkably, a decrease in the number of restarted forks and an increase in the number 

of stalled forks were observed after a 14-hour but not 2-hour HU (Figure 23). Moreover, 

in contrast to tumor cells
450

, this decrease in the number of restarted forks did not 

correlate with an increase in new origin firing events in hTERT-RPE cells. Thus, DNA 

fiber analysis indicated that the pathways involved in replication restart, once DSBs are 

present, were inhibited in hTERT-RPE cells, explaining why those cells loss the ability to 

resume replication under these conditions. 

 

Figure 23. Replication forks of hTERT-RPE cells become inactivated after sustained DNA replication 

inhibition. 

S-phase synchronized hTERT-RPE cells were labeled and treated as indicated (upper panel). CldU was present 
on the medium during additional 15min during the HU treatment. After the treatment, cells were harvested 
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and prepared for DNA fiber analysis. Representative images are shown (middle panels). The percentage of 
replication fork restart, stalled replication forks and new origin firing relative to total CldU labeled fibers is 

shown in the graphs (bottom panels). At least 1500 fibers were counted in each condition. Means and 
standard deviation (bars) are shown, (paired t test, n=3). 

To further verify that BIR-mediated restart was impaired in hTERT-RPE cells treated 

during 14 hours with HU, the association of Rad51 with chromatin was analyzed. In 

agreement with previous data
396,450

, Rad51 was shown to be associated with chromatin 

after a short HU treatment, and even in untreated cells. However, the association of 

Rad51 with chromatin was lost after a long HU treatment in hTERT-RPE cells, and this 

association was not reestablished either after release from this treatment (Figure 24). 

Moreover, consistent with its already known repair-independent role in protecting DNA 

from nucleases degradation
394–396

, the analysis of CldU (first labeling) track length 

showed that nascent DNA was being degraded after a long HU treatment. 

 

Figure 24. Rad51 is dissociated from chromatin after prolonged DNA replication inhibition in hTERT-RPE 

cells. 

(A) S-phase synchronized hTERT-RPE cells were treated with HU during the indicated time or left untreated 

(Cs). After the treatment cells were harvested or released (R) into fresh medium for 30min. Chromatin 
extraction was performed and extracts were analyzed by WB with the indicated antibodies. Lamin B was used 

as loading control. Input: whole cell extracts. (B) DNA fibers from (Figure 23) were used to measure CldU 
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track length. At least 300 fibers were measured for CldU track length distribution and statistical analysis. Box 
and whiskers show: Min, Max, Median and first quartiles, (unpaired t test, n=3). 

Collectively, the above results indicated that both BIR-mediated restart and new origin 

firing were inhibited in hTERT-RPE cells after prolonged HU treatment. Thus, together 

with the previously observed accumulation of DSBs, these results explained why hTERT-

RPE cells remained arrested in S phase under these conditions. 

1.5.3. The activation of APC/C
Cdh1 

in S phase inhibits new origin firing in response 

to prolonged HU treatment 

As previously explained, once having established which replication resumption 

pathways were inhibited in hTERT-RPE cells in response to prolonged HU treatment, 

our next goal was to analyze if the inhibition of any of them might be reverted by Cdh1 

depletion, with the idea of deciphering which was the function of APC/C
Cdh1

 in S phase. 

To this end, we first analyzed the association of Rad51 with chromatin in Cdh1-depleted 

hTERT-RPE cells treated during 2 or 14 hours with HU. As shown in Figure 25, Cdh1 

depletion did not recover the association of Rad51 with chromatin after a 14-hour HU 

treatment. 

 

Figure 25. Cdh1 depletion does not recover the association of Rad51 with chromatin after a 14-hour HU 

treatment. 

hTERT-RPE cells were transfected with the indicated siRNA, synchronized in S phase and then treated during 
the indicated time with HU or left untreated (Cs). Chromatin extracts were prepared and analyzed with the 
indicated antibodies. Lamin B was used as loading control. NT: non-target. Input: whole cell extracts. 

Consistently, DNA fiber analysis showed that nascent DNA was degraded at stalled, but 

not restarted, replication forks of hTERT-RPE cells treated during 14 hours with HU, 

independently of Cdh1 depletion (Figure 26). 
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Figure 26. Nascent DNA is degraded at stalled replication forks of hTERT-RPE cells after prolonged HU 

treatment. 

hTERT-RPE cells were transfected with the indicated siRNA, synchronized in S phase and then treated and 
labeled as indicated for DNA fiber analysis (upper-right panel). CldU (250µM) was present on the media for 
additional 15min during the HU treatment. Untreated S-phase synchronized cells were harvested in parallel 

for knockdown analysis by WB with the indicated antibodies (upper-left panel). CDK4 was used as loading 
control. At least 300 fibers were measured for CldU track length distribution and statistical analysis (middle 
and bottom panels). Box and whiskers show: Min, Max, Median and first quartiles, (unpaired t test, n=3). NT: 

non-target. 
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Moreover, Cdh1 depletion did not increase the number of restarted forks after 

prolonged HU treatment. Likewise, the number of stalled forks did not either change 

under these conditions (Figure 27). 

Altogether, the above results indicated that Rad51-dependent BIR was not the 

mechanism used by Cdh1-depleted hTERT-RPE cells to resume replication after 

sustained DNA replication inhibition. Thus, we next wondered if the loss of replication 

recovery competence upon severe replication stress was promoted by APC/C
Cdh1

-

mediated origin firing inhibition. 

Interestingly, Cdh1 depletion strongly increased the number of new origin firing events 

after prolonged HU treatment (Figure 27). Furthermore, similarly to 2 hour HU-treated 

or to untreated cells, the percentage of active forks (restart + new origin) in Cdh1-

depleted 14 hour HU-treated cells, relative to the initial ones (all CldU labeled ones), 

corresponded approximately to the 80% (Figure 27). Notably, this indicated that the 

observed increase in new origin firing events might be potentially sufficient to restore 

DNA synthesis after prolonged replication inhibition in those cells. 

 

Figure 27. Cdh1 depletion increases the new origin firing events in hTERT-RPE cells treated during 14 hours 

with HU. 

Samples from (Figure 26) were used to analyze the percentage of replication fork restart, stalled replication 
forks and new origin firing events relative to total CldU labeled fibers (bottom panels). Representative images 

are shown (upper panels). More than 1000 fibers were counted in each condition. Means and standard 
deviation (bars) are shown, (paired t test, n=3). NT: non-target. 
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Accordingly, in the absence of Cdh1, the IdU (second labeling) incorporation rate 

(measured by the average IdU intensity per nuclei) was similar in both short- and long-

treated cells (Figure 28), which further supported the idea that the new origin firing 

observed in the absence of APC/C
Cdh1

 activation was sufficient to reestablish the DNA 

replication rate. 

 

Figure 28. Cdh1-depleted and 14-hour HU-treated hTERT-RPE cells incorporate the same amount of IdU as 

the 2-hour HU-treated cells. 

siRNA transfected (NT: non-target) hTERT-RPE cells were synchronized in S phase followed by a 15min 
labeling with CldU (250 µM) and then treated with HU during the indicated time or left untreated (control). 
After that, cells were released into fresh media for 30min before label them during 15min with IdU. Cells 

were finally fixed and immunostained with anti-BrdU antibodies. Schematic of the labeling protocol is shown 
(upper-right panel). Relative IdU intensity distribution per nuclei from CldU positive population, normalized 

by untreated cells, is shown in the graph (left panel). Box and whiskers show: Min, Max, Median and first 
quartiles, (unpaired t test). Whole cell extracts of untreated S-phase synchronized cells were harvested in 
parallel and analyzed by WB with the indicated antibodies (bottom-right panel). CDK4 was used as loading 

control. 

In conclusion, the above results showed that the activation of APC/C
Cdh1

 in S phase 

inhibits new origin firing in hTERT-RPE cells, compromising replication resumption upon 

severe replication stress. Remarkably, it should be considered that with the used 

methodology the firing of nearby origins is not distinguished from real fork restart
155,159

 

and thus, Cdh1 depletion-induced new origin firing events may correspond mainly to 

the ones activated in different replicons in this case. 

1.6. Replication resumption after prolonged DNA replication inhibition increases 

genomic instability 

As previously explained, once having described the mechanisms that promote the loss 

of replication recovery competence after prolonged HU treatment, our next objective 

was to define the contribution of this S-phase arrest to the prevention of genomic 

instability. Remarkably, the fact that, in contrast to tumor cells, non-transformed 

human cells are arrested in S phase after a long but not short HU treatment, when DSBs 

are already present, suggests that these cells are arrested to avoid cell cycle 

progression in the presence of DNA damage. 
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To prove it, and taking advantage of our knowledge regarding the mechanisms involved 

in the loss of replication recovery competence, we decided to analyze the acquisition of 

genomic instability in Cdh1-depleted cells. According to our previous results, Cdh1 

depletion may allow replication to be resumed after prolonged HU treatment (Figure 

17). However, Cdh1-depleted cells will be mainly arrested in G2 due to a correct G2-

checkpoint (Figures 17 and 18). Thus, this model would not allow us to elucidate the 

real impact of Cdh1 depletion to the acquisition of genomic instability. Therefore, we 

decided to evaluate also the acquisition of genomic instability in p21-depleted HU-

treated hTERT-RPE cells, in which not only the activation of APC/C
Cdh1

 but also the G2 

arrest would be abrogated (Figure 18). 

Interestingly, consistent with our previous results showing that replication forks were 

being processed into DSBs after a 14-hour HU treatment, non-target-/Cdh1-/p21-

depleted cells presented in all cases an increase in the number of cells containing 

53BP1 foci when cells were released from a 14-hour HU treatment (Figure 29). 

 

Figure 29. hTERT-RPE cells accumulate DNA damage after prolonged DNA replication inhibition. 

(A) hTERT-RPE cells were transfected with the indicated siRNA, synchronized in S phase and then harvested 
for WB analysis with the indicated antibodies. CDK4 was used as loading control. (B) siRNA transfected and S-
phase synchronized, as in (A), hTERT-RPE cells were treated with HU for 14h or left untreated (Cs), and then 

released (R) into fresh media for 12h. Finally cells were immunostained with 53BP1 antibody. The average 
percentage of cells presenting 53BP1 foci (>6) from total population is shown. Error bars represent standard 

deviation, (paired t test, n=3). (C) hTERT-RPE cells were transfected and synchronized as in (A). After that, 
cells were treated with HU for 14h and then released into nocodazole containing fresh medium for 24h. Cells 
were finally immunostained with γ-H2AX antibody. DNA was counterstained with propidium iodide. 

Representative images of γ-H2AX positive mitotic cells are shown. NT: non-target. 

Moreover, the cells that eventually escaped the arrest and arrived to mitosis, also 

presented γ-H2AX foci in mitosis under these conditions (Figure 29). Of course, as 
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previously explained, the difference would be that, while p21-depleted cells might be 

able to arrive to G1 with DNA damage, non-target- and Cdh1-depleted cells would 

become mainly arrested in S and G2 phases respectively when released from prolonged 

HU treatment.  Accordingly, cells that present 53BP1 foci in G1 (as analyzed by Cyclin 

D1) were found in p21-depleted hTERT-RPE cells under these conditions (Figure 30). 

Likewise, p21-depleted cells presenting micronuclei were also found when these cells 

were released from prolonged HU treatment. 

 

Figure 30. p21-depleted cells present 53BP1 foci in G1 and micronuclei. 

p21-depleted cells were synchronized in S phase and then treated during 14h with HU. Cells were then 

released (R) into fresh medium for 12h after which cells were fixed and immunostained with 53BP1 and 
Cyclin D1 (CycD1) antibodies (left panel). Cells were counterstained with DAPI to analyze the presence of 
micronuclei (upper-right panel). siRNA transfected and S-phase synchronized untreated cells were harvested 

for WB analysis with the indicated antibodies (bottom-right panel). CDK4 was used as loading control. 

All together, these results highlighted the importance of adding previous barriers to the 

G2 arrest, such as by the activation of APC/C
Cdh1

 in S phase, to prevent cell cycle 

progression in case this arrest fails, and thus, to avoid cell division in the presence of 

damage DNA. 

To further study the contribution of the S-phase arrest to the prevention of genomic 

instability, we decided to analyze the acquisition of genomic instability in cells that, in 

contrast to hTERT-RPE cells, do not activate APC/C
Cdh1

 and thus, are not arrested in S 

phase. 

As explained in the introduction, APC/C
Cdh1

 has been reported to be usually mutated in 

tumor cells
153

. Consistently, works done in our laboratory have shown that tumor cell 

preferentially do not activate APC/C
Cdh1

 in response to HU, which correlates with the 

ability to resume replication after release from prolonged HU treatment
507

. Thus, we 

decided to analyze the consequences of this lack of APC/C
Cdh1

 activation in one of those 

cell lines. 
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As shown in Figure 31, HCT116 colorectal cancer cells did not activate APC/C
Cdh1

 in S 

phase after prolonged HU treatment, and consistent with our previous results, they 

maintained the ability to resume replication when the stress was removed. Moreover, 

these cells were not only able to resume replication but also to divide and proliferate 

under these conditions. 

 

Figure 31. HCT116 cells maintain the competence to recover upon prolonged HU treatment. 

(A) HCT116 cells were synchronized in S phase and then treated with HU during the indicated time or left 

untreated (Cs). MG132 (MG) was added during the last 6h of treatment where indicated. Whole cells lysates 
were analyzed by WB with the indicated antibodies. GAP120 was used as loading control. (B) HCT116 and 

hTERT-RPE cells were labeled with BrdU and then treated with HU for 14h or left untreated (Control). Cells 
were then released into nocodazole containing fresh medium for 12h (HCT116) or 24h (hTERT-RPE). The 
average percentage of S-phase arrested (DNA content; propidium iodide; upper panel) and mitotic (MPM2 

positive; bottom panel) cells from BrdU positive population are shown. Error bars represent standard 
deviation, (paired t test, n= 3). (C) HCT116 and hTERT-RPE cells were synchronized in S phase and then 
treated during 14h with HU or left untreated. Cells were then released into fresh media for 12h and diluted 

(250 cells per well on 6-well plates) for colony formation assay. Colonies were harvested 8 days later. The 
average percentage of colonies in HU-treated relative to control was calculated in each case. Error bars 

represent standard deviation, (unpaired t test, n=3). 
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Interestingly, the analysis of the acquisition of genomic instability in response to 

prolonged HU treatment in this model, showed that HCT116 cells were able to arrive to 

G1 with DNA damage, since there was an increase in the percentage of HCT116 cells 

presenting 53BP1 foci in G1 (analyzed by Cyclin D1) after prolonged HU treatment 

(Figure 32). Moreover, the increase in G1 cells presenting 53BP1 foci correlated with an 

increase in the percentage of cells with micronuclei under these conditions. 

These data further support the idea that an S-phase arrest, such as by the activation of 

APC/C
Cdh1

, may act as an additional barrier to prevent cell cycle progression with 

damaged DNA, consequently contributing to safeguarding the genome integrity of non-

transformed cells in response to severe replication stress. 

 

Figure 32. HCT116 cells accumulate genomic instability after prolonged DNA replication inhibition. 

HCT116 cells were synchronized in S phase and then treated with HU for 14h or left untreated (Cs). Cells were 
then released into fresh medium for 12h, after which they were fixed and immunostained with 53BP1 and 

Cyclin D1 antibodies. DNA was counterstained with DAPI. The average percentage of 53BP1 foci (>6) 
containing cells in G1 (CycD1: Cyclin D1) relative to total G1 cells is shown (A). The average percentage of cells 
presenting micronuclei from total population is shown (B). Representative images are shown (upper panels). 

Error bars represent standard deviation, (paired t test, n=3). 

All the previous data showing a connection between replication resumption after 

prolonged HU treatment and the acquisition of genomic instability was based on 

correlations. Therefore, to analyze the real impact of an S-phase arrest on the 
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HCT116 cells. Emi1 depletion had been reported to be sufficient to promote APC/C
Cdh1

 

activation
154,508

. Thus, we thought that an artificial Emi1-induced APC/C
Cdh1

 activation in 

S phase, could compromise replication resumption under these conditions. 

Remarkably, Emi1 depletion allowed the activation of APC/C
Cdh1

 in S phase (as shown by 

the degradation of Cyclin A2 and Cyclin B1) in HCT116 cells, even after HU addition 

(Figure 33). Moreover, this artificial activation of APC/C
Cdh1

 in S phase compromised the 

ability to resume replication after prolonged HU treatment in those cells. Interestingly, 

this resulted in a reduced number of 53BP1 foci containing G1 cells. Likewise, a 

reduction in the number of cells presenting micronuclei was also observed in under 

these conditions. 

 

Figure 33. Abrogation of replication resumption after prolonged HU treatment contributes to the 

prevention of genomic instability in HCT116. 

(A) HCT116 cells were transfected with the indicated siRNA (NT: non-target) and 4 h later (Ct), thymidine was 

added to synchronize cells in S phase. After synchronization, cells were treated with HU during the indicated 
time or left untreated (Cs). Whole cell extracts were prepared and analyzed by WB with the indicated 
antibodies. MG132 (MG) was added during the last 6h of treatment where indicated. GAP120 was used as 

loading control. Cyc: cyclin. (B) HCT116 cells were transfected and synchronized as in (A). After 
synchronization, cells were treated with HU for 14h and then released into fresh medium with nocodazole for 

12h. DNA content (PI: propidium iodide) was analyzed by flow cytometry. Representative DNA profiles (right 
panel) and the average fold increase of cells that remain in S phase after release relative to non-target siRNA 
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transfected cells (left panel) are shown. Error bars represent standard deviation, (unpaired t test, n=3). (C) 
HCT116 cells were transfected and synchronized as in (A). After synchronization, cells were treated during 

14h with HU and then released into fresh medium for 12h, before fixing and immunostaining them for 53BP1 
and Cyclin D1 analysis. DNA was counter stained with DAPI. The average fold increase in the number of Emi1-
depleted cells with 53BP1 foci in G1 (upper panel) and in the number of Emi1-depleted cells with micronuclei 

(bottom panel) relative to NT transfected cells are shown. Error bars represent standard deviation, (unpaired 
t test, n=3). 

Collectively, all the previous data support the idea that the abrogation of replication 

resumption, such as by the activation of APC/C
Cdh1

, contributes to the safeguarding of 

genome integrity upon severe replication stress. 
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One of the main objectives of our group is to identify new mechanisms involved in the 

DNA replication stress response of non-transformed human cells. Previous data from 

our group indicated that non-transformed human cells loss the ability to recover from a 

14-hour, but not 2-hour, HU treatment. Thus, we decided to perform a comparative 

analysis of the proteins associated with replication forks under those conditions, in 

order to define the changes, at replication fork level, that promote this loss of 

replication recovery competence. Additionally, this approach would allow us to 

discover new essential proteins of the DNA replication stress response, important to 

maintain the competence to recover from a RS. 

2.1. Proteomic analysis of the proteins associated with replication forks after 

acute or prolonged HU treatment 

iPOND (isolation of proteins on nascent DNA)
509

 in combination with MS (mass 

spectrometry)
510

 had been described as a powerful tool to characterize the human 

replisome and replisome-associated proteins. Furthermore, a more efficient modified 

version of iPOND coupled with MS had been described by the laboratory of Prof. Patrik 

Ernfors Ph.D. at the Karolinska Institutet
511

. Therefore, in collaboration with them, we 

decided to perform a comparative analysis of the proteins associated with replication 

forks after acute or prolonged HU treatment using this approach. The study was 

conducted in S-phase synchronized hTERT-RPE cells. 

2.1.1. Set-up and experimental design 

iPOND technology is based on the isolation of protein complexes crosslinked to EdU (5-

ethynyl-2’-deoxyuridine) thymidine analog-containing DNA fragments. However, in 

contrast to other thymidine analogue-based, DNA-mediated chromatin 

coimmunoprecipitation and pulldown technics
450,512

, it incorporates a new idea. This 

idea consist in comparing EdU-containing DNA fragments that are located at active 

replication forks, with those fragments present on mature chromatin, in order to 

discern between the proteins associated specifically with replication forks or 

throughout the entire chromatin
509

 (Figure 34). 

 

Figure 34. iPOND technology. 

(A) The pulse and chase conditions used during iPOND, together with the proteins bound to EdU in each of 
them, are represented. Pulse: Cells are harvested just after a 15min EdU labeling. Chase: Cells are labeled 

with EdU for 15min and then released into fresh medium for 2h more. Thymidine (low dose, 50µM) is added 
during the release to displace the residual EdU present on cells. (B) Analysis of PCNA by iPOND as an example 
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of replisome components visualization using this technic. Histones are used as an immunoprecipitation 
control. Input: nuclear extract. -: negative control (no EdU). H4: Histone 4. 

Three conditions are essential when performing iPOND: negative control, the pulse and 

the chase (Figure 34). Moreover, in order correctly analyze our particular experimental 

data, it was necessary to add an additional control. This new control would consist in 

the addition of EdU until the HU had completely blocked replication forks, to avoid the 

incorporated EdU to be displaced away from replication forks during the first minutes 

of HU treatment. This extra EdU addition would increase the number of labeled forks, 

as well as the length of the labeled nascent DNA. Thus, it was important to include an 

extra control in which cells had been treated with HU and EdU at the same time (after 

the pulse), until the HU had completely blocked replication fork progression, to 

correctly analyze the HU-treated samples. Thus, in order to set up our experiment 

conditions, first, we decided to analyze the time the HU required to completely block 

replication forks. 

To this end, we decided to analyze the BrdU incorporation rate in cells that had been 

treated with HU during different times. BrdU was added to the medium during the last 

30 minutes of HU treatment, and its incorporation was analyzed by flow cytometry 

(Figure 35). This experiment showed that replication forks of hTERT-RPE cells were 

completely stalled after 30 minutes of HU treatment. 

 

Figure 35. Replication forks of hTERT-RPE cells are completely stalled after 30 minutes of HU treatment. 

S-phase synchronized hTERT-RPE cells were treated during the indicated time with HU. BrdU was added 
during the last 30min of HU treatment. 30min BrdU: untreated cells labeled with BrdU for 30min. Negative 

control: untreated cells without BrdU. DNA content (PI: propidium iodide) and BrdU incorporation rate were 
analyzed by flow cytometry. Representative images are shown. 

Once narrowed down the time necessary to completely inhibit replication fork 

progression after HU addition, we wanted to define more precisely this time. As iPOND 

is a very sensitive technic
509

, we decided to perform an iPOND experiment with several 

EdU and HU conditions (as indicated), using equal protein levels for the 

immunoprecipitation in all of them (Figure 36). By doing so, immunoprecipitated 

histone levels would be proportional to the amount of incorporated EdU. Thus, this 

experiment would allow us to analyze more precisely the EdU incorporation rates.  

As expected, an increase in the EdU incorporation time correlated with an increase in 

the levels of immunoprecipitated histones (Figure 36; lanes 2 and 3). Remarkably, this 

experiment showed that, although there was a slight incorporation of EdU during the 
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first 15 minutes of HU treatment (Figure 36; lanes  2, 3 and 4), replication forks of 

hTERT-RPE cells were completely stalled after this time (Figure 36; lanes 4, 5 and 6). 

 

Figure 36. Replication forks of hTERT-RPE cells do not incorporate EdU after 15 minutes of HU treatment. 

hTERT-RPE cells were synchronized in S phase and then treated with EdU and HU as indicated. Cells were 

harvested and iPOND was performed using equal protein levels in all conditions. Negative control: no EdU. 
Input: nuclear extract. H3: Histone 3. 

With the above results, we defined the experimental conditions for the iPOND+MS 

experiment as follows (Figure 37): 

 

Figure 37. Experimental conditions for the iPOND+MS experiment. 

Schematic of the experimental conditions used for the iPOND+MS experiment. Negative control: no EdU. 
Thymidine is added (low dose, 50µM) during the chase to displace the residual EdU present on cells. 

2.1.2. Preparation of samples, protein isolation and identification/quantification 

by MS 

Once established the experimental conditions, the following step was to harvest and 

prepare the samples to perform the modified version of iPOND. The experiment was 

conducted in triplicate, using three p150 plates per condition in each of them. Samples 

were harvested in parallel for flow cytometry, in order to analyze the percentage of S-

phase arrested cells in each case (Figure 38). 
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Figure 38. More than the 25% of BrdU positive hTERT-RPE cells were arrested in S phase after a 14-hour HU 

treatment in each experiment. 

hTERT-RPE cells were synchronized in S phase, labeled with BrdU for 30min, treated with HU for 14h and the 

released into nocodazole containing fresh medium for 24h. DNA content (PI: propidium iodide) of BrdU 
positive cells was used to analyze the number of cells arrested in S phase after HU treatment. The percentage 
of S-phase arrested cells from BrdU positive population, in each experiment, is shown. 

Before performing iPOND, cell extracts have to be processed in order to obtain properly 

biotinylated and sonicated samples. The biotinylation of the samples was verified by 

dot-blot analysis using a peroxidase conjugated anti-biotin antibody (Figure 39A). In 

addition, around the 5% of the processed sample was used to validate the sonication of 

the samples in each case. To this end, the purified DNA was run in a 1.5% agarose gel, 

and the size of the obtained DNA fragments was analyzed. As shown in Figure 39B, the 

size of the obtained fragments was between 100 and 300 bp in all cases, indicating that 

sonication had been correct. 

 
Figure 39. The samples used for the iPOND+MS experiment were properly biotinylated and sonicated. 

(A) The biotinylation of the samples used for the iPOND+MS experiment was confirmed by dot-blot analysis. 
(B) DNA from the same processed samples was purified and run in a 1.5% agarose gel to validate the 

sonication. Representative images are shown. Conditions have been previously described (Figure 37). 

Once having validated that samples were correct, the modified version of iPOND was 

performed. Finally, the proteins isolated by this approach were identified/quantified by 

high-resolution MS. 
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2.1.3. Data analysis 

The proteomic data are summarized on Appendix 1. This table shows the protein ID of 

the identified proteins, as well as their relative abundance (RA) value in each condition 

and replicate. Only the proteins from which more than one peptide was identified by 

MS were included on this table. Due to experimental problems, we had to perform the 

MS analysis in two rounds and besides, the 14h HU sample of the first biological 

replicate had to be analyzed by MS together with the second and third replicates in the 

second MS round. Consequently, the negative control, the pulse, the chase, the 

15’EdU/HU and the 2h HU samples of the first biological replicate were analyzed in a 

first MS round, while all the other samples were analyzed in a second MS round. 

Unfortunately, some of the proteins were only identified in one of the MS rounds. 

A total of 716 proteins were identified by MS (Appendix 1). The pulse/chase 

enrichment ratios (RA of a certain protein in the pulse/RA of the same protein in the 

chase) showed that the proteins most enriched at nascent DNA in the pulse condition 

include: DNA polymerase delta, DNA polymerase epsilon, CAF-1, DNA primase, DNA 

ligase, RFC1, RFC2, MCM4 and RFC5; validating the strength of the used proteomic 

approach for the identification of nascent DNA-bound proteins (Figure 40). 

 

Figure 40. Proteins most enriched at nascent DNA in the pulse. 

The protein ID and the pulse/chase enrichment ratio values of the 20 proteins most enriched at nascent DNA 
in the pulse condition, in each MS round, are shown. The pulse/chase enrichment ratio values of the second 

First MS round Second MS round

PROTEIN ID Pulse/Chase PROTEIN ID Pulse/Chase

1433S_HUMAN 5,140E+12 OAT_HUMAN 1,871E+12

RN166_HUMAN 4,089E+12 KINH_HUMAN 1,652E+12

DPOD3_HUMAN 2,640E+12 TBC8B_HUMAN 1,624E+12

DPOE1_HUMAN 2,340E+12 RRBP1_HUMAN 1,145E+12

CAF1B_HUMAN 1,934E+12 CTBP2_HUMAN 1,014E+12

PDLI5_HUMAN 1,671E+12 FBRL_HUMAN 8,552E+11

WDHD1_HUMAN 8,562E+11 PRI2_HUMAN 8,484E+11

SPB4_HUMAN 423,300 RO60_HUMAN 8,343E+11

NTKL_HUMAN 195,852 DYR_HUMAN 7,710E+11

LEG7_HUMAN 96,738 UBP2L_HUMAN 6,086E+11

PRI2_HUMAN 43,938 PDCD4_HUMAN 4,653E+11

DNLI1_HUMAN 39,823 ESTD_HUMAN 4,287E+11

RFC1_HUMAN 33,089 SK2L2_HUMAN 4,103E+11

RFC2_HUMAN 31,065 MCM4_HUMAN 3,968E+11

MSH6_HUMAN 20,867 U5S1_HUMAN 3,475E+11

TOM70_HUMAN 16,703 KI21B_HUMAN 2,560E+11

EPIPL_HUMAN 14,850 ACL6B_HUMAN 1,819E+11

S10A8_HUMAN 13,388 HMGB2_HUMAN 1,762E+11

MSH2_HUMAN 12,849 RFC5_HUMAN 1,707E+11

GRWD1_HUMAN 11,848 SF01_HUMAN 1,542E+11
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MS round correspond to the average pulse/chase enrichment ratio values between the second and third 
replicates. Keratins were not considered. (Related to Appendix 1) 

In order to monitor the HU-induced changes, raw data from Appendix 1 were 

processed as follows: 

1. For every protein, the RA value in each condition was divided by the maximum 

RA value for that protein in that replicate: 

nRA= RA of a protein in a certain condition/max. RA value for that protein in 

that replicate 

With this division, for each protein we obtained nRA values between 0-1 in each 

condition and replicate. 

2. The proteins that showed very different kinetics in each biological replicate 

were removed from the study. Additionally, the proteins that presented a 

higher value than 0.6 in the negative control were not considered. In addition, 

Keratins and ribosomal proteins were also removed from the study (keratin 

contamination was similar in all the conditions of a certain replicate). 

3. The average of nRA (anRA) values from the different triplicates was calculated 

for each protein and condition. A new table containing those anRA values was 

created. The proteins that had been identified only in the first MS round were 

included on this new table with the values obtained in the first step (written in 

grey to distinguish them), since there were no more replicates to calculate their 

average values. 

4. In order to normalize the entire data of the new table, the anRA values were 

corrected again as in the first step. By doing so, we obtained a new table in 

which for each protein, the normalized anRA (NRA, normalized relative 

abundance) value in each condition was represented with a value between 0 

and 1, being 1 the condition where a certain protein was the most abundant 

compared to the other conditions. 

5. To facilitate the visualization, a heatmap was created by dividing the NRA values 

(from lowest to highest) into 5 groups and giving increasing color intensities to 

each of them. 

6. Finally, proteins were manually classified by their best known function with the 

help of PANTHER database
513

. Each function was represented by a defined 

color. 

The resulting final table (Appendix 2) shows: 1) protein ID; 2) each protein function, 

represented with different colors; and 3) the NRA values combined with different color 

intensities to represent them as a heatmap. 

This final table contains 101 proteins. From those, a total of 50 proteins were 

considered nascent DNA-bound proteins, since they present fold enrichments higher 

than 2 compared to the chase. 8 of those proteins were considered as nascent DNA-
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bound proteins on the pulse and 13 on the HU-treated samples, while 29 were 

considered as nascent DNA-bound proteins in both conditions (Figure 41). 

 

Figure 41. Classification of the nascent-DNA bound proteins of our proteomic analysis. 

Venn diagram comparing the proteins classified as nascent DNA-bound proteins on different iPOND+MS 

experimental conditions. The total number of proteins in each group is indicated (in italic). Each circle 
represents a protein group. The number of proteins found in common (in bold) or individually in each group 

are represented inside the circles. 

Additionally, 29 proteins were considered to be enriched at mature chromatin as they 

present a fold decrease higher than 2 compared to the pulse. Accordingly, 22 proteins 

were not considered either nascent DNA-bound proteins or mature chromatin-

associated proteins, since they present similar NRA values in all conditions. 

A comparative analysis between our data and the data available from other published 

works
390,392,510,511,514,515

, confirmed the reliability of our approach since 30 out of 37 

(81%) of the proteins classified as nascent DNA-bound proteins on the pulse in our 

proteomic analysis were also found as nascent DNA-bound proteins in other reports 

(Appendix 3). Furthermore, gene ontology (GO) analysis of the biological processes
516

 

confirmed the veracity of our proteomic analysis, since 21 out of 37 (57%) of the 

nascent DNA-bound proteins present on the pulse, were shown to be related to DNA 

replication (Figure 42).  In addition, this analysis also allowed us to define the sensitivity 

of the approach. In this sense, 21 out of 211 (10%) of the proteins related to DNA 

replication on the entire GO database were found in our study. 

 

Figure 42. DNA replication-related proteins found in our proteomic analysis. 

Venn diagram comparing the proteins classified as nascent DNA-bound proteins on the pulse in our 

proteomic analysis, with the DNA replication-related proteins found in the entire GO database. Each circle 
represents a protein group. The total number of proteins in each group is represented (in italic). The number 

of proteins found in common (in bold) or individually in each group are represented inside the circles. The 
percentage that a certain protein group represents relative to total proteins is shown. 
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Notably, from the 29 proteins shown to be enriched at mature chromatin, 9 (31%) were 

histones. Likewise, further examination (by GO analysis) of the functions related to the 

proteins found in mature chromatin proved once again the strength of the used 

approach (Figure 43). 

 

Figure 43. Most of the proteins enriched in the chase condition have mature chromatin-related functions. 

The proteins found to be enriched in the chase condition in our proteomic analysis were analyzed by GO to 
determine their best known function. The percentage of proteins related to a certain function relative to total 

proteins is shown. 

An exhaustive comparison of the proteins associated with nascent DNA after a 2-hour 

but not 14-hour HU treatment, allowed us to select some candidates in order to 

analyze their implication on fork protection and restart. Nevertheless, due to time 

limitation, this project will be followed by another Ph.D. student from our group. 

However, the detailed examination of the HU-induced changes (Appendix 2) 

highlighted some interesting results that we decided to further analyze on this thesis. 

As explained in the introduction, it has been described that stalled replication forks can 

eventually be remodeled and regressed into chicken foot structures
281,298,299

. Moreover, 

several recent studies have highlighted that in contrast to what it was thought, fork 

reversal is a very common event in response to several genotoxic stresses
302,303,310–312

, 

from which replication can be restarted with the help of certain proteins such as RecQ1 

or Dna2/WRN
311,312

. 

Interestingly, our proteomic analysis also pointed to that situation. As explained in the 

previous chapter, hTERT-RPE cells are able to resume replication from the same forks 

after a short (2 hour) HU treatment (Figures 23 and 27). Nonetheless, our proteomic 

results showed that replisome components were dissociated from nascent DNA under 

this condition (Figure 44). Even the MCM helicase, which is essential for DNA 

replication and can only be loaded onto chromatin on late mitosis and G1
116

, was 

dissociated from nascent DNA under this condition. 
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Figure 44. Replisome components of hTERT-RPE cells are dissociated from nascent DNA after a 2-hour HU 

treatment. 

The protein ID of the replisome components found in our iPOND+MS experiment is shown. The NRA value in 
each condition is represented by certain color intensity as indicated. Proteins in grey are the ones identified 

only in one of the biological replicates. Black boxes represent lack of data. (Related to Appendix 2) 

Moreover, our proteomic results also showed that RecQ1, which is involved in the 

restart from reversed forks
311

, was present at replication forks of hTERT-RPE cells after 

a 2-hour HU treatment (Figure 45). Furthermore, our results from the previous chapter 

revealed that Rad51, which has been described as an essential protein for fork 

reversal
312

, was also recruited to chromatin after a 2-hour HU treatment (Figures 24 

and 25). 

Collectively, these results suggest that replication forks of hTERT-RPE cells are 

regressed into chicken foot structures after a 2-hour HU treatment. 

Interestingly, the analysis of fork stability and repair proteins identified in our 

iPOND+MS experiment showed that some of them, such as FANCD2, FANCI and SMC3, 

increased their association with nascent DNA in response to HU (Figure 45). 
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Furthermore, consistent with our previous observations showing that non-transformed 

human cells, are able to resume replication after short but not long HU treatment, 

those proteins were present on nascent DNA after a 2-hour HU treatment (Figure 45). 

Moreover, at least some of them decreased their association with nascent DNA after a 

14-hour HU treatment. 

 
Figure 45. DNA repair proteins are recruited to nascent DNA in response to HU addition. 

The protein ID of those proteins identified in our iPOND+MS experiment and classified as DNA repair proteins 

according to PANTHER database
513

 is shown. The NRA value in each condition is represented by certain color 
intensity as indicated. Proteins in grey are the ones that were identified only in one of the biological 
replicates. Black boxes represent lack of data. (Related to Appendix 2) 

As previously shown (Figures 24 and 26), nascent DNA is degraded after a 14-hour HU 

treatment. Accordingly, only a few proteins were classified as nascent DNA-bound 

proteins (they present fold enrichments higher than 2 compared to the chase) on the 

14h HU condition (Figure 46). In fact, although these proteins were considered as 

nascent-DNA bound proteins, at least some of them presented a lower relative 

association with nascent DNA than in the pulse or in the other HU conditions. 

 
Figure 46. Nascent DNA-bound proteins present on the 14h HU condition. 

The protein ID of those proteins from the 14 hour HU condition that showed an enrichment of at least two 

fold compared to the chase is shown. Their NRA value in each condition is represented by certain color 
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intensity as indicated. Protein functions, classified according to PANTHER database
513

, are represented by 
different colors as indicated. (Related to Appendix 2) 

2.2. Replication forks of hTERT-RPE cells are remodeled after a short HU 

treatment 

In agreement with previous works
302,303,310–312

, our proteomic results suggested that 

replication forks of hTERT-RPE cells were being reversed after a short (2 hour) HU 

treatment. This was underlined by the fact that replisome components were being 

dissociated from nascent DNA under this condition, despite maintaining the 

competence to recover. To prove it, we decided to indirectly analyze the formation of 

these structures in response to HU in hTERT-RPE cells. 

2.2.1. Indirect visualization of reversed forks 

BrdU immunofluorescence under native conditions has been described to be useful to 

analyze the accumulation of ssDNA in chromatin
517

. A couple of years ago, this 

immunofluorescence was used for the first time to indirectly visualize replication 

intermediates that contain ssDNA, including reversed forks, by reducing the BrdU 

incorporation time from one day to 10 minutes, to label only the nascent DNA present 

on replication forks or close by
305

. 

From the results obtained in the previous chapter, we knew that replication forks of 

hTERT-RPE cells are not processed into DSBs after a 2-hour HU treatment (Figures 20 

and 21). Thus, fork reversal would be the most likely explanation for the presence of 

single-stranded nascent DNA. The formation of these structures exposes a fragment of 

ssDNA on the 3’ end of the nascent leading strand
312

 that can be indirectly visualized by 

BrdU immunofluorescence
302,305

 (Figure 47). 

 

Figure 47. Analysis of fork reversal by BrdU immunofluorescence under native conditions. 

Cells are labeled with BrdU for 10min. After that, the presence of single-stranded nascent DNA is detected by 
BrdU immunofluorescence under native conditions. If forks are reversed as indicated, BrdU antibody can 
reach the ssDNA present on the 3’ end of the leading strand. 

BrdU immunofluorescence under native conditions showed that as expected, hTERT-

RPE cells presented single-stranded nascent DNA after a 2-hour HU treatment (Figure 

48). Moreover, this experiment also showed that replication forks of hTERT-RPE cells 

treated during 14 hours with HU, which were already processed into DSBs (Figure 20 

and 21), accumulated more single-stranded nascent DNA than the ones treated during 

2 hours with HU (Figure 48). 
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Figure 48. Replication forks of hTERT-RPE cells present single-stranded nascent DNA even after a 2-hour HU 

treatment. 

S-phase synchronized hTERT-RPE cells were treated during the indicated time with HU or left untreated 
(Control). BrdU was maintained during additional 15min during the HU treatment. After that, cells were 

harvested and BrdU immunofluorescence was performed under native conditions. DNA was counterstained 
with propidium iodide (PI). Representative images are shown (left panel). The ROIs used to quantify BrdU 

intensity are shown. The relative BrdU intensity, in arbitrary units (a.u.), of more than 500 cells per condition 
from three independent experiments is represented on the scatterplot (right panel). The relative BrdU 
intensities were enclosed into 3 different groups that are represented with different colors (<7 in black; 7-14 

in dark grey; >14 in light grey). Around the 98% of control cells were included in the first group. Error bars 
indicate the mean and the standard deviation, (unpaired t test, n=3). 

2.2.2. ATM kinase is activated before replication forks are processed into DSBs 

Fork reversal has been described to be able to activate ATM kinase even in the absence 

of DSB, as it exposes a free DNA end
302

. Accordingly, a 2-hour HU treatment resulted in 

Chk2 phosphorylation and p53 stabilization in an ATM-dependent manner despite 

replication forks of hTERT-RPE cells did not present DSBs at this time (Figures 49, 20 

and 21). Additionally, although some phosphorylation of RPA32 (analyzed by 

electrophoretic mobility shift) was already observed after a 2-hour HU treatment, its 

hyperphosphorylation, which has been describe to occur following DNA breaks in a 

CtIP-dependent fashion
518

, was not observed under these conditions (Figure 49). 

Remarkably, both RPA32 hyperphosphorylation and CtIP phosphorylation (analyzed by 

electrophoretic mobility shift), which are marks of DNA resection
518

, were observed 

after a 14-hour HU treatment (Figure 49). Moreover, in agreement with published 

data
302

, only CtIP phosphorylation was shown to depend on ATM  under these 

conditions. 
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Figure 49. ATM is activated in hTERT-RPE cells before replication forks are processed into DSBs. 

hTERT-RPE cells were synchronized in S phase and then treated during the indicated time with HU +/- ATM 

kinase inhibitor (inh) (KU-55933), or left untreated (Cs). Whole cell lysates were analyzed by WB with the 
indicated antibodies. GAP120 was used as loading control. The arrow indicates the hyperphosphorylated 
band of RPA32. 

Collectively, all the previous results seem to indicate that replication forks of hTERT-RPE 

cells are regressed into chicken foot structures after a short HU treatment. Additionally, 

the increased BrdU staining (Figure 48) and the presence of resection marks (Figure 49), 

together with the previously observed degradation of nascent DNA after a 14-hour HU 

treatment, suggests that replication forks of hTERT-RPE cells are not only remodeled 

but also processed after prolonged HU treatment. 

2.3. Replisome components are dissociated from chromatin in hTERT-RPE cells 

after a long but not short HU treatment 

As explained in the introduction, whether fork reversal entails replisome disassembly 

and if so, how is replication restarted from reversed forks afterwards, are questions 

that have not been elucidated yet, at least in higher eukaryotes
281,298–300

. Remarkably, 

since our results suggest that replication forks of hTERT-RPE cells are regressed into 

chicken foot structures after a short HU treatment, our proteomic analysis may 

contribute to define the composition of reversed forks, which will let to gain a better 

understanding of the previous concerns. In this sense, to try to define if replisome 

components were displaced away from replication forks but still recruited onto 

chromatin, we decided to validate the proteomic results by iPOND+WB, to study the 

association of these proteins with chromatin afterwards. Additionally, the combined 

analysis of the proteins associated with nascent DNA and with chromatin, will 

contribute to understand how, consistent with our previous data (Figures 23 and 27), 

replication forks are able to restart after a short but not long HU treatment. 
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2.3.1. Validation of proteomic results 

In order to validate the proteomic results, hTERT-RPE cells were treated as previously 

(Figure 37) to perform the modified version of iPOND. Nonetheless, in this case, the 

proteins present on iPOND extracts were analyzed by electrophoresis and WB 

(iPOND+WB). 

This experiment showed that consistent with the proteomic results, replisome 

components such as PCNA, Fen1 or RFC3, and even the MCM6, were not associated 

with nascent DNA after a 2-hour HU treatment (Figure 50). Additionally, RPA32, which 

in contrast to other RPA subunits was shown to increase its association with nascent 

DNA after a 2-hour HU treatment in the proteomic analysis (Figure 44), was shown to 

reduce its association with nascent DNA under this condition when analyzed by 

iPOND+WB (Figure 50). 

 
Figure 50. Replisome components of hTERT-RPE cells are dissociated from nascent DNA after a 2-hour HU 

treatment. 

hTERT-RPE cells were synchronized in S phase and then treated, as previously indicated (Figure 37), for 
iPOND. The proteins present on iPOND extracts were analyzed by WB with the indicated antibodies. Histone 

3 (H3) was used as an immunoprecipitation control. Input: nuclear extract. -: negative control. Exp.: exposure. 
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Remarkably, this experiment also allowed us to observe the dissociation (after a 2-hour 

HU treatment) of other replisome components (Claspin, Cdc45 and Tipin) that were not 

identified in the iPOND+MS experiment, further supporting the idea that the replisome 

was being dissociated from nascent DNA after a 2-hour HU treatment (Figure 50). 

Moreover, consistent with our previous results, all those proteins were shown to 

remain dissociated from nascent DNA after a 14-hour HU treatment. Furthermore, 

RPA32 was clearly hyperphosphorylated under this condition. 

Apart from validating the dissociation of replisome components after a 2-hour HU 

treatment, iPOND+WB analysis also allowed us to confirm that proteins described to be 

important for fork protection and restart, such as FANCD2
289,395,519

 and SMC3
206,399

, 

were associated with nascent DNA under these conditions (Figure 51). Likewise, this 

experiment also allowed us to confirm that other proteins that had not been identified 

by MS, but are also thought to be important for fork protection and restart (SMC1
206,399

 

and Rad51
289,394–396

), were also present on nascent DNA under this condition. 

Interestingly, consistent with our previous results showing that replication fork restart 

was impaired (Figures 23 and 27), and that nascent DNA was being degraded after a 14-

hour HU treatment (Figures 24 and 26), all these proteins were shown to decrease their 

association with nascent DNA under this condition (Figure 51). In addition, in the case 

of FANCD2, this decreased correlated with a slight reduction on its total nuclear levels 

(input). 

 
Figure 51. Proteins involved in fork protection and restart are present on nascent DNA after a 2-hour but 

not 14-hour HU treatment in hTERT-RPE cells. 

Same iPOND extracts as in (Figure 50) were used to analyze Rad51, FANCD2 and SMC3. New extracts, 
harvested as in (Figure 50), were used to analyze SMC1. The proteins present on iPOND extracts were 

analyzed by WB with the indicated antibodies. Histone 3 (H3) was used as an immunoprecipitation control 
(controls from (Figure 50) are displayed again to show which samples were used in each case). Input: nuclear 
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extract. -: negative control. The asterisk indicates a non-specific band while the arrow indicates the specific 
band of SMC3. 

2.3.2. Chromatin association analysis 

In order to discern if the observed dissociation of replisome components from nascent 

DNA after a 2-hour HU treatment, was due to a real disengagement or if by contrast, 

was due to a displacement of those proteins away from replication forks, the 

association of them with chromatin was analyzed. To this end, hTERT-RPE cells were 

treated during 2 or 14 hours with HU, and then chromatin extracts were prepared and 

analyzed by electrophoresis and WB. 

As shown in Figure 52, the MCM helicases were present on chromatin after a 2-hour 

HU treatment. Moreover, no dissociation was observed either after a 14-hour HU 

treatment. 

 

Figure 52. MCM helicases are present on chromatin despite the HU treatment in hTERT-RPE cells. 

hTERT-RPE cells were synchronized in S phase and then treated with HU during the indicated time or left 
untreated (Cs). Chromatin extracts were prepared and the proteins present on them were analyzed by WB 
with the indicated antibodies. Input: whole cell lysates. Lamin B1 was used as loading control. Exp.: exposure 

However, only the ~10% of the licensed origins are fired during a normal replication, 

which implies that much more MCM2-7 helicases than the ones activated would be 

associated with DNA during S phase
229

. Thus, it is not surprising to find these proteins 

loaded onto chromatin even after a 14-hour HU treatment, as the HU may have only an 

effect in those origins that have been activated, and therefore, the effect may not be 

noticeable. 

Interestingly, the analysis of other replisome components association with chromatin 

showed that most of them remained loaded onto chromatin after a 2-hour HU 

treatment (Figure 53), despite not being present on nascent DNA (Figure 50). Even the 

Cdc45, which is part of the CMG helicase complex (Cdc45-MCM-GINS)
124

, was shown to 
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remain associated with chromatin under this condition (Figure 53). Only the PCNA was 

shown to decrease its association with chromatin after a 2-hour HU treatment. 

Remarkably, most of those replisome components seemed to be released from 

chromatin after a 14-hour HU treatment, although total protein levels (input) remained 

constant in most cases (Figure 53). From the analyzed proteins, only the RPA was 

clearly shown to remain associated with chromatin under this condition. Moreover, 

consistent with our previous results, RPA32 was shown to be hyperphosphorylated 

after a 14-hour HU treatment. 

 

Figure 53. Replisome components of hTERT-RPE cells are dissociated from chromatin after a long but not 

short HU treatment. 

S-phase synchronized hTERT-RPE cells were treated during the indicated time with HU or left untreated (Cs). 

Chromatin extracts were prepared and analyzed by WB with the indicated antibodies. Input: whole cell 
lysates. Lamin B1, MCM6 and Histone 3 (H3) were used as loading control. 

The analysis of chromatin-bound proteins after HU treatment, also allowed us to 

determine, that as expected, proteins thought to be important for replication fork 

restart, such as SMC1 and SMC3
206,399

, were present on chromatin after a 2-hour HU 
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treatment (Figure 54). Moreover, their association with chromatin decreased after a 

14-hour HU treatment. 

Additionally, consistent with our previous results showing that Rad51 was associated 

with chromatin in untreated or 2-hour HU-treated cells, but not in 14-hour HU treated 

cells (Figures 24 and 25), proteins reported to be required for Rad51 recruitment 

(BRCA2 or FANCD2
520

) recapitulated the same phenotype (Figure 54). Moreover, the 

association of those proteins with chromatin was not reestablished either after HU 

removal. Remarkably, consistent with the previously observed decrease in FANCD2 

nuclear levels (Figure 51), a reduction on its total levels was observed after a 14-hour 

HU treatment (Figure 54). To analyze if this decrease was due to degradation, MG132 

proteasome inhibitor was added to HU-treated hTERT-RPE cells. Notably, the addition 

of MG132 disrupts the electrophoretic mobility shift of FANCD2 and other proteins in 

our hands. Thus, the recovery on FAND2 levels was difficult to analyze. However, the 

addition of this drug restored BRCA2 and Rad51 association with chromatin. 

 

Figure 54. Proteins involved in fork protection and restart are associated with chromatin after a 2-hour but 

not 14-hour HU treatment in hTERT-RPE cells. 

(A) Chromatin samples from (Figure 53) were used for SMC1 and SMC3 analysis. The asterisk indicates a non-
specific band. The arrow indicates the specific band for SMC3. (B) hTERT-RPE cells were synchronized in S 

phase and then treated during the indicated time with HU or left untreated (Cs). MG132 (MG) proteasome 
inhibitor was added during the last 6h of treatment where indicated. Cells were released (R) into fresh 

medium for 30min where indicated. Chromatin extracts were analyzed with the indicated antibodies. The 
arrow indicates the phosphorylated band of FANCD2. Input: whole cell lysates. Lamin B1 and MCM6 were 
used as loading control. Exp.: exposure. 

Altogether, the above results suggest that consistent with works done in T4 

bacteriophage system
300

, metazoan replisome components are displaced away from 

nascent DNA but are not dissociated from chromatin during fork reversal. Additionally, 

consistent with our previous results, most of the replisome components are dissociated 

from chromatin after prolonged HU treatment. Furthermore, proteins reported to be 

important for replication fork protection and restart have also been shown to be 
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dissociated from chromatin and nascent DNA under this condition, which all together 

contributes to explain the previously observed loss of replication recovery competence. 

2.4. Replication forks of hTERT-RPE cells are able to restart after a 2-hour HU 

treatment even in the absence of CDK activity 

As explained in the previous chapter, replication forks of hTERT-RPE cells are able to 

restart after a short but not long HU treatment (Figures 23 and 27). In addition, we 

have shown that, in contrast to 14-hour HU-treated cells, replisome components are 

displaced away but not dissociated from chromatin after a short HU treatment. In this 

sense, it is known from the literature that in contrast to MCM2-7, which is loaded in 

excess onto chromatin during S phase
229

, CMG active helicase complex is only formed 

at fired origins
124,164,167

. Thus, a previously formed CMG complex would be required to 

resume replication from the same forks if proteins such as Cdc45, which are part of the 

CMG complex
124

, have been dissociated or displaced away from replication forks as in 

our case. Collectively, all these results suggest that the same replisome components as 

the ones used before fork stalling are recycled to resume replication after a short HU 

treatment. 

However, as previously explained, the used DNA fiber approach did not allow us to 

unequivocally dismiss the possibility that the observed fork restart came from the 

activation of nearby origins. Thus, to prove that the observed replication restart came 

from a real fork restart, we decided to perform a DNA fiber experiment using the CDK 

inhibitor roscovitine
521

, to inhibit the CDK2-mediated replisome components 

phosphorylations, which are essential for origin firing
124,177,178

. 

For this analysis, asynchronously growing hTERT-RPE cells were labeled with CldU 

thymidine analog for 30 minutes, and then HU+/- roscovitine was added during 2 hours. 

As in the previous experiments, CldU was maintained in the media during the first 15 

minutes of HU treatment. Finally, cells were incubated with IdU thymidine analog in the 

presence or absence of roscovitine for 1 hour more. 

As shown in Figure 55, consistent with our previous results (Figures 23 and 27), around 

the 80% of the initially fired replication forks were shown to restart despite the 

addition of roscovitine (Figure 55). Likewise, the number of stalled forks did not either 

change due to roscovitine addition. By contrast, the slight increase in the number of 

new origin firing events, observed after a 2-hour HU treatment, was abrogated by the 

addition of roscovitine, supporting the idea that origin firing was inhibited under these 

conditions.  

Notably, the length of the IdU tracks (second labeling) was also a bit shorter in the 

presence of roscovitine, probably due to an impaired activation of nearby origins. 
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Figure 55. The addition of CDK inhibitor roscovitine does not abrogate fork restart after a 2-hour HU 

treatment. 

(A) Asynchronously growing hTERT-RPE cells were labeled and treated as indicated (upper panel). CldU was 
present for additional 15min on HU-treated cells. DNA fibers were prepared and stained with BrdU 
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antibodies. Around 1500 fibers from three independent experiments were counted in each condition. The 
average percentage of new, stalled and restarted forks, relative to total CldU labeled fibers, is shown. 

Representative images are shown (bottom-right panel). Error bars represent standard deviation, (paired t 

test, n=3). (B) DNA fibers from (A) were used to measure the IdU (second labeling) track length. 300 fibers 
from three independent experiments were measured. IdU track length distribution and statistical analysis are 

shown. Box and whiskers show: Min, Max, Median and first quartiles, (unpaired t test, n=3). 

Collectively, in agreement with previous reports
311,312

 and with our previous 

observations, the above results support the idea that replication can be restarted from 

reversed forks. Additionally, the fact that replication forks are restarted after a 2-hour 

HU treatment in the presence of roscovitine, once Cdc45 has been displaced away from 

replication forks despite being associated with chromatin, suggests that the replisome 

components used before fork stalling are recycled to reinitiate replication after the 

stress. In this regard, replisome components dissociation from chromatin, such as the 

one observed after a 14-hour HU treatment, may contribute to prevent replication fork 

restart. 

2.5. Replication resumption upon short HU treatment does not compromise 

genome integrity in hTERT-RPE cells 

As previously explained, whether fork reversal is pathological or if by contrast, has a 

protective role under certain conditions, is another concern that still remains to be 

elucidated
298

. Our previous results suggest that replication forks of hTERT-RPE cells are 

reversed after a 2-hour HU treatment and that replication is restarted from the same 

forks afterwards. Thus, we decided to analyze the possible acquisition of genomic 

instability under these conditions. 

As shown in Figure 56, consistent with our previous results, hTERT-RPE cells lost the 

ability to divide and arrive to G1 after a 14-hour HU treatment. Notably, despite 

replication forks of those cells presented DSBs under this condition (Figure 29), the 

number of cells arriving to G1 with DNA damage did not increase (Figure 56). Likewise, 

the number of cells arriving to G1 with 53BP1 foci did not either increase when cells 

had been treated during 2 hours with HU. Nevertheless, the percentage of cells that 

arrive to G1 did not change in this case, consistent with the previously observed 

maintenance of cell cycle resumption competence after a short HU treatment. 

Remarkably, these results support the idea that replication resumption from reversed 

forks do not necessarily compromise genome integrity, at least if replication forks have 

not been further processed by nucleases or other proteins that induce fork collapse. 
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Figure 56. Analysis of the ability to divide of hTERT-RPE cells in the presence of DNA damage. 

S-phase synchronized hTERT-RPE cells were treated during the indicated time with HU or left untreated (Cs), 

and then released (R) for 12h into fresh medium. Representative images are shown (upper panel). The 
average percentage of G1 cells is shown (bottom-left panel). The average percentage of 53BP1 foci (>6) and 
Cyclin D1 (CycD1) double positive cells relative to total G1 (Cyclin D1 positive) cells is shown (bottom-right 

panel). Error bars represent standard deviation, (paired t test, n=3).  

C
s+

R
2h

 H
U

+
R

14
h 

H
U

+
R

CycD1 53BP1 merge

%
 o

f 5
3B

P
1 

/ C
yc

D
1 

do
ub

le
 p

os
iti

ve
 c

el
ls

(r
el

at
iv

e 
to

 to
ta

l G
1 

ce
lls

)

C s+ R 2 h HU+R 1 4h H U+R
0

2 0

4 0

6 0

8 0

1 00

**

n .s.

%
 o

f G
1 

ce
lls

0

2 0

4 0

6 0

8 0

1 00

n .s.

n .s.

C s+ R 2h HU+R 1 4h H U+R



 

 

 

 

 

 

DISCUSSION 

  



 

 

 

 



Discussion 

149 

 

Cell division is essential for all organisms’ existence. This process requires an accurate 

duplication of the genome in order to correctly transmit the genetic and epigenetic 

information to each daughter cell. In this regard, several mechanisms have evolved to 

ensure that DNA is replicated completely, accurately and only once per cell cycle, 

preventing the loss of information and the acquisition of genomic instability, a hallmark 

of cancer
1,3,478

. 

Cells are constantly being challenged by endogenous and exogenous forms of damage 

that can cause RS
2,244,248

. In this sense, the mechanisms involved in monitoring the 

fidelity of copying the DNA are essential not only in the presence of external agents, 

but also during unperturbed cell cycle
387–389

. The importance of these mechanisms for 

cell survival is underlined by the fact that the depletion of some of the proteins 

involved in these processes, such as ATR or Chk1, results in embryonic lethality
325–327

. 

In the presence of RS, cells respond by activating several mechanisms to ensure the 

stabilization and repair of forks, as well as to inhibit cell cycle progression, to avoid cell 

division in the presence of unreplicated or damaged DNA. In addition, in the cases of 

persistent damage, these mechanisms prevent cell cycle resumption by driving cells to 

apoptosis or senescence, to avoid the acquisition of genomic instability
244–248

. 

Remarkably, oncogene-induced RS results in cellular senescence, which acts as a 

tumorogenic barrier in premalignant lesions
252,253

. 

While the DDR has been extensively studied in tumor cells, the pathways involved in 

the response to RS are less understood, especially in non-transformed human cells. In 

this regard, the main objective of this thesis was to define and characterize new DNA 

replication stress response mechanisms that contribute to preserve genome integrity in 

non-transformed human cells. 

Interestingly, our results, together with other works from the literature, have 

highlighted the complexity and variety of the mechanisms involved in the abrogation of 

cell cycle resumption after severe replication stress, which may contribute to the 

safeguarding of genome integrity. In this sense, our result show that in response to a 

sustained DNA replication inhibition that results in the accumulation of DSBs, the 

APC/C
Cdh1

 ubiquitin ligase is activated in S phase to prevent origin firing and to inhibit 

replication resumption in non-transformed human cells (Discussion I). Additionally, we 

have seen that replication forks of hTERT-RPE cells suffer several changes that may also 

contribute to the inhibition of cell cycle resumption under these conditions (Discussion 

II). Notably, although replication forks of hTERT-RPE cells are remodeled already after a 

short HU treatment (Discussion II), this remodeling does not seem to imply the loss of 

replication recovery competence and the acquisition of genomic instability, at least 

unless replication forks are further processed (Discussion II and III). 

The fact that replication resumption is compromised once replication forks have been 

processed into DSBs, underlines the idea that those mechanisms shown to avoid 

replication resumption after severe replication stress might be implicated in preventing 

the acquisition of genomic instability (Discussion III). In this sense, replication 

resumption from or in the presence of broken replication forks has been reported to 

compromise genome integrity
290,451,456–459

.  Interestingly, our results suggest that the 
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mechanisms involved in replication resumption under these conditions
450,452–455

 are 

inhibited in hTERT-RPE cells, and accordingly, these cells become senescent (Discussion 

I and II). Remarkably, tumor cells might lack some of those responses since they are 

able to resume replication under the same conditions
450

. Notably, several works have 

shown that non-transformed human cells present a more robust DNA replication stress 

response than tumor cells
324,499,500

. Consistently, our results show that, in agreement 

with previous reports
153

 and with other works done in our laboratory
507

, HCT116 cells 

do not activate APC/C
Cdh1

 in S phase in response to prolonged replication inhibition 

(Discussion I). Additionally, artificial APC/C
Cdh1

 activation in S phase reduces HU-induced 

genomic instability in those cells (Discussion III). 

Collectively, the results of this thesis show that non-transformed human cells present 

several DNA replication stress response mechanisms to avoid cell cycle resumption 

after severe replication stress, which contributes to the safeguarding of genome 

integrity. Remarkably, our results also suggest that at least some of those mechanisms 

are compromised in tumor cells.  
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Discussion I: Implication of APC/C
Cdh1

 in the loss of 

replication recovery competence upon severe replication 

stress 

Previous results from our group indicated that there was a correlation between the loss 

of replication recovery competence and the degradation of Cyclin A2 and Cyclin B1 in 

response to prolonged HU treatment. Thus, we decided to analyze the mechanisms 

involved in the degradation of these cyclins, in order to define new pathways that 

might contribute to the loss of replication recovery competence. 

1.1. Severe replication stress-induced APC/C
Cdh1

 activation in S phase in non-

transformed human cells 

The APC/C ubiquitin ligase is one of the regulators of Cyclin A2 and Cyclin B1 during 

unperturbed cell cycle
29,30

. Additionally, APC/C
Cdh1

 has been reported to become 

prematurely activated in G2 in response to DNA damage
150–152,443

. Accordingly, our 

results show that the addition of APC/C inhibitor proTAME or the depletion of Cdh1 

induces a recovery on Cyclin A2 and Cyclin B1 proteins levels, indicating that they are 

degraded by APC/C
Cdh1

 in response to severe replication stress in non-transformed 

human cells. However, in contrast to previous reports
150–152,443

, our results show that 

this ubiquitin ligase is activated in S phase in response to prolonged HU treatment or 

after the addition of DNA damage-inducing agents to S-phase synchronized cells, 

suggesting that this is a general feature in response to several stress agents. In this 

sense, since previous reports came from works mainly done in tumor cells
150–152,443

, 

which have a less robust DNA replication stress response
324,499,500

,  we propose that 

premature APC/C
Cdh1 

activation in S phase is an additional response to severe 

replication stress of non-transformed human cells that tumor cells may lack. Consistent 

with this, we have seen that HCT116 colorectal cancer cells do not activate APC/C
Cdh1

 in 

S phase after prolonged HU treatment, while hTERT-RPE, BJ-5ta and MCF10A non-

transformed cells do activate it under this condition. Nevertheless, we cannot rule out 

the possibility that different agents might induce different responses that depend on 

the nature of the stress or the cell cycle phase that is affected. 

Interestingly, the activation of APC/C
Cdh1

 in S phase is observed once replication forks 

have been processed into DSBs, suggesting that fork collapse is required for the 

activation of this ubiquitin ligase in S phase. In this regard, fork stalling, even if it is 

sustained, might not be sufficient to activate APC/C
Cdh1

 unless replication forks are 

processed into DSBs. Consistently, thymidine synchronization, which implies a 

replication blockade of 20 hours, does not activate APC/C
Cdh1

. In fact, thymidine 

synchronization results only on a slight advancement on APC/C
Cdh1

 activation timing 

when compared to serum-starved cells, which is probably due to the fact that more 

cells are accumulated in S phase by thymidine synchronization than by serum 

starvation, and thus, the activation of APC/C
Cdh1

 in S phase may be more noticeable in 

the first case. 
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The activation of APC/C
Cdh1

 in G2 in response to DNA damage has been described to 

occur either by ATM-dependent or -independent mechanisms
150,522

. Our results suggest 

that the activation of APC/C
Cdh1

 in S phase in response to severe replication stress 

occurs independently of ATM activity. Moreover, in response to prolonged HU 

treatment, APC/C
Cdh1

 is activated in S phase even after the simultaneous 

pharmacological inhibition of ATM and ATR, indicating that there is no compensatory 

effect between these kinases that have an overlapping set of substrates
318,319

. 

Remarkably, in agreement with previous reports showing that Chk1, the main 

downstream kinase of ATR
316,327

, inhibits APC/C
Cdh1

 in response to RS
381

, the inhibition 

of ATR alone results in advanced APC/C
Cdh1 

activation in S phase in response to 

prolonged HU treatment. Moreover, the activation of APC/C
Cdh1

 in S phase correlates 

with a decrease in Chk1 phosphorylation under these conditions. Thus, it is conceivable 

that a decrease in Chk1 activity collaborates in the initial trigger of APC/C
Cdh1 

activation 

in S phase. Nevertheless, Chk1 could also positively regulate the activation of APC/C
Cdh1

 

by preventing Cdh1 phosphorylation through the inhibition of CDKs
41,42

. In addition, 

ATR inhibition-promoted advanced APC/C
Cdh1

 activation could also be due to an 

increase in DSBs. In this sense, ATR/Chk1 are involved in preventing the accumulation 

of DSBs by inhibit origin firing and Mus81 nuclease-mediated processing among 

others
391,393

. Thus, since our results suggest that APC/C
Cdh1

 is activated in response to 

DSBs, we propose that ATR inhibition-promoted accumulation of DSBs is the reason for 

advanced APC/C
Cdh1

 activation under these conditions. 

Additionally, the activation of APC/C
Cdh1

 in response to DNA damage has been reported 

to depend on p53 and p21
151,152

. Consistent with this, our results show that p53/p21 

depletion prevents the activation of APC/C
Cdh1

 in S phase in response to prolonged DNA 

replication inhibition. Nevertheless, in this case, p21 is not induced during the HU 

treatment, despite the stabilization of p53. In this sense, as p53 depletion results in 

reduced p21 levels; and, since p21 is actively degraded during the HU treatment, as 

observed by the increase in p21 levels after the addition of MG132 proteasome 

inhibitor, we suggest that the induction of p53 is required to maintain the basal levels 

of p21 under these conditions. However, p21 is not the sole target of p53
433

, and thus, 

the observed p53 induction upon HU treatment, even at low concentration, might also 

be important for p21-independent functions. 

Interestingly, p21-promoted Emi1 down-regulation has been reported to be the 

mechanism for p53-/p21-mediated APC/C
Cdh1

 activation in response to DNA 

damage
151,152

. Consistently, the activation of APC/C
Cdh1

 in S phase in response to 

prolonged HU treatment correlates with a decrease in Emi1 levels. Moreover, Emi1 

depletion in S phase in HCT116 cells, allows the activation of APC/C
Cdh1

 under these 

conditions. These results suggest that a decrease in Emi1 levels is the responsible for 

the activation of APC/C
Cdh1

 in S phase in response to severe replication stress. 

Notably, p53/p21 depletion results on increased levels of hyperphosphorylated pRb 

and Emi1, which could explain why APC/C
Cdh1

 is not activated in those cells. However, 

as previously mentioned, p21 is not induced during the HU treatment and in fact, Emi1 

is increased, and more pRb is hyperphosphorylated, already in untreated p53-/p21-
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depleted hTERT-RPE cells. Therefore, we consider that p53 and p21 are unlikely the 

triggers of APC/C
Cdh1

 activation in response to prolonged HU treatment. 

Remarkably, the decrease in Emi1 levels in the presence of HU is due to degradation, 

since the addition of MG132 proteasome inhibitor recovers its levels. Additionally, this 

degradation of Emi1 occurs independently of p53/p21 depletion. Thus, we propose that 

Emi1 degradation, rather than p53 or p21, is the trigger of APC/C
Cdh1

 activation in S 

phase in response to severe replication stress. Nevertheless, p53- or p21-deficient cells 

may become more resistant to the activation of this ubiquitin ligase due to the 

presence of higher Emi1 levels. 

1.2. Contribution of APC/C
Cdh1

 to the loss of replication recovery competence 

The activation of APC/C
Cdh1

 in G2 has been shown to promote a sustained G2 arrest and 

even senescence upon DNA damage
150–152

. Accordingly, previous results from our group 

indicated that there was a correlation between the mechanism behind the degradation 

of Cyclin A2 and Cyclin B1 and the loss of replication recovery competence. In this 

sense, as previously argued, our results pointed to the activation of APC/C
Cdh1

 in S 

phase as the mechanism for the degradation of Cyclin A2 and Cyclin B1 after severe 

replication stress. Interestingly, the fact that APC/C
Cdh1

 remains active after release 

from HU treatment, when the loss of replication recovery competence is analyzed, 

strongly suggests that APC/C
Cdh1

 actively contributes to this permanent S-phase arrest. 

Consistent with this, Cdh1 depletion restores the ability to resume replication after 

prolonged HU treatment. Moreover, p53/p21 depletion, which compromises the 

activation of APC/C
Cdh1

 in S phase, also recovers the competence to resume replication 

upon prolonged DNA replication inhibition. Furthermore, HCT116 cells, which have an 

impaired activation of APC/C
Cdh1

 in S phase in response to prolonged HU treatment, are 

able to resume replication and proliferate after this stress. However, the correlation 

between the lack of APC/C
Cdh1

 activation in S phase and the ability to recover upon 

prolonged HU treatment in HCT116 could be due to additional mutations that these 

cancer cells may have acquired to proliferate. Nevertheless, Emi1 depletion in S phase 

in HCT116 cells compromises the competence to resume replication, at least in a 

fraction of cells. Remarkably, this indicates that even though HCT116 cells may have 

acquired additional mutations that favor their proliferation, the sole APC/C
Cdh1

 

activation in S phase is sufficient to promote the loss of replication recovery 

competence in those cells. Collectively, these results strongly support the idea that 

premature APC/C
Cdh1

 activation in S phase promotes the loss of replication recovery 

competence after severe replication stress. 

However, approximately half of the cells that are commonly arrested in S phase upon 

prolonged HU treatment remain arrested despite Cdh1 depletion. This indicates that 

additional APC/C
Cdh1

-independent mechanisms may also contribute to severe 

replication stress-promoted S-phase arrest. Notably, those additional mechanisms 

might not depend on ATM and ATR activity, since the inhibition of those kinases does 

not prevent prolonged DNA replication inhibition-induced S-phase arrest. Remarkably, 

the fact that ATM and ATR inhibition does not abrogate prolonged HU treatment-
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induced S-phase arrest reinforces once again the idea that the activation of APC/C
Cdh1

 

contributes to the loss of replication recovery competence. 

According to our previous observations, the activation of APC/C
Cdh1

 in S phase will 

induce the loss of replication recovery competence once replication forks have been 

processed into DSBs. Remarkably, replication resumption from or in the presence of 

broken replication forks has been reported to occur either by origin firing or BIR-

mediated mechanisms
450,452–455

, which can both compromise genome integrity
290,451,456–

459
. Interestingly, our results suggest that these mechanisms are inhibited in hTERT-RPE 

cells upon severe replication stress. 

In this sense, our results show that Cdh1 depletion increases the number of new origin 

firing events upon prolonged HU treatment. Notably, the used methodology do not 

allow us to discern if fork restart comes from a real restart or from the firing of nearby 

origins
159

. This is due to the fact that the maximum length of a replicon is around 

120Kb
159

, while replication fork speed is around 2-3kb min
-1

 in eukaryotic cells
155

. Thus, 

since we incubate the cells during 1 hour with the second thymidine analog after the 

HU treatment, until 180Kb could be labeled during this time. Consequently, origins that 

are located in the same replicon or even in the adjacent one could be observed as fork 

restarts under these conditions (Figure 1). 

 

Figure 1. Visualization of origin firing by DNA fiber analysis. 

A replication cluster containing three different replicons with several origins on each is represented (left 
panel). Each replicon has a maximum length of 120Kb. A certain origin (in green) is activated before HU-

induced fork stalling. After the treatment, cells are incubated with the second thymidine analog during 1h. 
Since the eukaryotic replication fork speed is around 2-3Kb min

-1
, until 180Kb can be labeled during this time. 

If the origin that is fired after HU treatment (in red) is located in the same or adjacent replicon, it could be 

observed as a fork restart event (1 and 2, right panel). By contrast, if the origin that is activated after HU 
treatment is located in a distant replicon, it could be observed as a new origin event (3, right panel). 

Interestingly, this suggests that the observed Cdh1 depletion-induced new origin firing 

events may mainly correspond to the activation of origins located in different replicons, 

which are far enough so that we can distinguish them. In this sense, ATR/Chk1 has been 
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implicated in preventing the firing of late origins
118

, which are located in different 

replicons from the early ones
159

. Thus, the observed decrease in Chk1 activity after 

prolonged HU treatment, when Cdh1 depletion-induced origin firing events are 

observed, agrees on the fact that the origins that are activated under these conditions 

may correspond to those located in different replicons. Origin firing requires the 

sequential action of DDK and CDK2 kinases, which phosphorylate several components 

to allow the formation of a stable CMG helicase complex
117,119–124

. Thus, the observed 

APC/C
Cdh1

-induced Cyclin A2 degradation in S phase in response to severe replication 

stress, might be sufficient to prevent origin firing under these conditions. Accordingly, 

the degradation of Cyclin A2 is one of the mechanisms by which APC/C
Cdh1

 prevents 

origin firing during G1
71–73

. However, it has been reported that Emi1 depletion-induced 

APC/C
Cdh1

 activation, promotes rereplication in cells in which Cyclin A2 has been 

degraded
154

. Thus, the degradation of additional substrates must be required for 

APC/C
Cdh1

-induced origin firing inhibition in S phase. Consistently, our results show that 

not only cyclins but also other APC/C
Cdh1

 substrates are degraded after prolonged HU 

treatment. Notably, Dbf4, the regulatory subunit of DDK, has been described to be an 

APC/C
Cdh1

 substrate
381

. Therefore, we propose that the degradation of Cyclin A2 may 

contribute to APC/C
Cdh1

-induced origin firing inhibition upon prolonged HU treatment, 

although the degradation of other substrates such as Dbf4 might also be required. 

Additionally, our results suggest that BIR-mediated restart is also impaired in hTERT-

RPE cells after severe replication stress. This is underlined by the fact that a huge 

increase in the percentage of stalled forks is observed by DNA fiber in hTERT-RPE cells 

after a sustained HU treatment that induces DSBs. Moreover, we have seen that Rad51, 

a protein required to mediate strand invasion during BIR
523,524

, is released from 

chromatin and nascent DNA under these conditions. Notably, Rad51 remains 

dissociated from chromatin even after HU removal. 

Several other evidences also prove that Rad51 is not associated with chromatin after 

prolonged HU treatment. First, consistent with its already known role in protecting DNA 

from nucleases degradation
396

, nascent DNA is degraded after sustained DNA 

replication inhibition. Furthermore, proteins involved in the recruitment of Rad51 to 

damage sites, such as FANCD2 and BRCA2
520

, are also released from chromatin under 

these conditions. Notably, ATR activity, which is important for FANCD2 recruitment
403

, 

also decreases after prolonged HU treatment. Collectively, these results strongly 

support the idea that Rad51 is released from replication forks upon severe replication 

stress. 

Interestingly, resection marks such as the phosphorylation of CtIP and the 

hyperphosphorylation of RPA32
518

 are also observed after a 14-hour HU treatment. In 

fact, the high amount of ssDNA generated upon this treatment suggests that an 

excessive resection is occurring, which has been linked with the inability to recruit 

Rad51
525

. Nonetheless, the ssDNA generated after a 14-hour HU treatment might also 

correspond to a normal resection generated in response to severe replication stress
526

. 

In this sense, extensive resection has been described to be prevented by APC/C
Cdh1

-

mediated degradation of CtIP
525

. Thus, the activation of APC/C
Cdh1

 in S phase in hTERT-

RPE cells after prolonged HU treatment should prevent this extensive resection. In any 
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case, the fact that replication fork restart is compromised after prolonged HU 

treatment, and that Rad51 is not associated with nascent DNA under these conditions, 

strongly supports the idea that BIR is impaired in hTERT-RPE cells. 

Nevertheless, whether the activation of APC/C
Cdh1

 in S phase upon severe replication 

stress contributes to the abrogation of BIR-mediated restart is not clear. On the one 

hand, our results show that the proteins involved in the recruitment of Rad51, and 

Rad51 itself, are released from chromatin after prolonged HU treatment in a 

proteasome-dependent manner, since the addition of MG132 recovers their binding to 

chromatin. In this sense, APC/C
Cdh1

-mediated those proteins degradation or of other 

proteins involved in their recruitment could be the responsible for the observed 

dissociation under these conditions. In fact, in agreement with published data
525

, 

results from our laboratory indicate that CtIP, which has been described to be 

important for the stabilization of FANCD2 on damage sites
519

, is degraded in response 

to prolonged HU treatment in an APC/C
Cdh1

-dependent manner (unpublished data). 

These data agree with the idea of APC/C
Cdh1

 being implicated in preventing BIR-

mediated restart after severe replication stress. However, Cdh1 depletion does not 

recover the loading of Rad51 to chromatin and accordingly, the degradation of nascent 

DNA is neither prevented under these conditions. Moreover, the percentage of stalled 

forks does not decrease under these conditions. Thus, APC/C
Cdh1

 does not seem to be 

implicated in hindering BIR-mediated restart after severe replication stress. 

Nonetheless, since Cdh1 depletion has been reported to increase CtIP-mediated 

resection in response to DNA damage, which reduces the formation of Rad51 foci
525

, 

and as our results show that nascent DNA is degraded despite Cdh1 depletion, we 

cannot exclude the possibility of Rad51 recruitment being compromised due to the 

absence of appropriate binding site for it in this case. Nevertheless, as previously 

mentioned, in contrast to Cdh1 depletion, the addition of MG132 proteasome inhibitor 

is able to recover BRCA2, FANCD2 and Rad51 association with chromatin, which 

suggests that another ubiquitin ligase is the responsible for those proteins dissociation 

from chromatin in response to severe replication stress. Therefore, although we cannot 

rule out a role for APC/C
Cdh1

 in controlling DNA processing and Rad51 dissociation at 

stalled replication forks, we propose that the main function of APC/C
Cdh1

 to promote 

the loss of replication recovery competence after severe replication stress is to prevent 

origin firing under these conditions. 

Remarkably, the fact that both origin firing and BIR-mediated restart seem to be 

inhibited in hTERT-RPE cells upon severe replication stress raises the question whether 

an individual cell of a certain population lacks both mechanisms or if by contrast, 

different cells from the same population present only one of those mechanisms 

inhibited. In this sense, our results show that Cdh1 depletion restores the ability to 

recover of a fraction of cells, while the other ones remain arrested, after a prolonged 

HU treatment. An explanation for this would be that those cells that are able to recover 

under these conditions, present a correct BIR-mediated restart. However, BIR-mediated 

restart is supposed to repair the DSBs
452,453,455

, and by contrast, Cdh1-depleted cells 

present 53BP1 foci after release from HU treatment, and the ones that resume 

replication are arrested in G2, suggesting that they still contain DNA damage. 

Additionally, our results suggest that Cdh1 depletion-promoted new origin firing is 
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potentially sufficient to completely reestablish DNA synthesis after 14-hour HU 

treatment. This is shown by the similarities in the number of active forks and in the 

second thymidine analog incorporation rates, between 2-hour HU-treated and 14-hour 

HU-treated cells after Cdh1 depletion. Thus, this suggests that the reestablishment of 

only one of the mechanisms involved in replication resumption after severe replication 

stress is sufficient to resume replication. Therefore, the inability to resume replication 

may require both mechanisms to be hindered. Of course, it is also conceivable that the 

loss of one of the mechanisms has a higher impact than the other for the cells. In any 

case, since DSBs does not seem to be repaired in those cells that resume replication 

after Cdh1 depletion, we propose that each individual cell of a population presents 

both origin firing and BIR-mediated restart hindered, to prevent replication resumption 

upon severe replication stress. Additionally, we suggest that the inability to recover of 

Cdh1-depleted cells may rely on the amount of collapsed forks that those cells contain. 

For instance, a cell with numerous collapsed forks, without licensed origins between 

converging forks, may rely more on BIR-mediated restart to complete replication after 

severe replication stress, even after Cdh1 depletion. Moreover, increasing the number 

of collapsed forks raises the probability of presenting origin-free regions between 

collapsed converging forks. 

Interestingly, our results show that prolonged HU treatment-induced loss of replication 

recovery competence results in a permanent withdrawal from the cell cycle, in which 

cells become senescent, as observed by the SA-β-Gal activity and the other senescence 

markers that they present. Notably, previous reports have described that the activation 

of APC/C
Cdh1

 in G2 is important to promote senescence after DNA damage
151,522

. 

Additionally, Emi1 depletion-induced increased APC/C
Cdh1

 activity has also been 

reported to promote senescence
508

. By contrast, Cdh1 depletion does not reduce the 

number of senescent cells upon prolonged replication inhibition in hTERT-RPE cells. This 

suggests that APC/C
Cdh1

 is not the trigger of cellular senescence after sustained 

replication inhibition. However, Cdh1-depleted cells are arrested in G2 under these 

conditions, and thus, senescence might be mediated by a G2 checkpoint mechanism in 

this case. Therefore, we have been unable to analyze the real contribution of 

premature APC/C
Cdh1

 activation in S phase to cellular senescence. Remarkably, recent 

reports have shown that the nuclear translocation and retention of Cyclin B1, which 

precedes the activation of APC/C
Cdh1

, marks the restriction point for a permanent 

withdrawal from the cell cycle
475,476

. Notably, this Cyclin B1 retention is mediated by 

p53 and p21
475,476

, and a transient p53 activation has been reported to be sufficient to 

induce senescence
475

. Consistent with this, in contrast to Cdh1, p53 or p21 depletion 

strongly reduces the number of senescent cells after prolonged HU treatment, 

suggesting that p53/p21, rather than APC/C
Cdh1

, induces senescence upon severe 

replication stress. Moreover, the fact that APC/C
Cdh1

 remains active even after HU 

removal, suggests that the activation of APC/C
Cdh1

 in S phase is not sufficient to mark 

cell to withdrawal from the cell cycle, unless in contrast to p53, a prolonged APC/C
Cdh1

 

signaling is required in this case. In this sense, although APC/C
Cdh1

 activation in S phase 

might not be sufficient to induce senescence, it may be important to maintain the cells 

arrested in S phase until the mechanism or signal that induces senescence is activated. 

Therefore, we propose that severe replication stress-induced APC/C
Cdh1 

activation in S 
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phase reinforces a permanent arrest that can lead to cellular senescence. Moreover, 

since it has been postulated that unknown senescence pathways might exist
47

 and since 

several lines of evidence indicate that the activation of APC/C
Cdh1

 itself is sufficient to 

induce senescence
522,527,528

, we do not exclude even a direct function of APC/C
Cdh1

 in 

promoting cellular senescence that we have been unable to observe.  
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Discussion II: Differences at replication forks of hTERT-RPE 

cells treated during 2 or 14 hours with HU that determine the 

loss of replication recovery competence 

One of the main goals of our group is to identify new mechanisms involved in the DNA 

replication stress response of non-transformed human cells. In this sense, since we 

knew that non-transformed human cells were able to recover after a 2-hour but not 14-

hour HU treatment, we decided to compare the proteins associated with replication 

forks in those conditions, with the aim of defining the changes that promote the loss of 

replication recovery competence. Additionally, by comparing the proteins present at 

replication forks of 2-hour but not 14-hour HU-treated cells, we would be able to 

identify new proteins involved in fork stability and restart. 

2.1. iPOND+MS to study the HU-induced changes at replication fork level 

iPOND
509

 coupled with MS has been described as a powerful tool to characterize the 

human replisome and replisome-associated proteins
510

. Moreover, a more efficient 

modified version of iPOND has been developed
511

. Thus, in order to compare the 

proteins associated with replication forks after short and long HU treatments, we 

decided to perform an experiment combining the modified version of iPOND
511

 with a 

label-free MS method that in contrast to label-based MS methods allows the 

comparison of multiple statements. Additionally, we decided to use hTERT-

immortalized RPE cells, which are non-transformed human diploid cells that are easily 

maintained in culture. Moreover, since only the EdU-labeled fraction is 

immunoprecipitated during iPOND, we decided to synchronize the cells in S phase to 

increase the immunoprecipitation efficiency, and thus, to obtain more sample from the 

same amount of initial cells to facilitate the detection of low-abundance proteins. 

Regarding the labeling scheme, although according to previous works the most 

common is to label the cells during 10 minutes with EdU
390,510,511

, we decided to 

perform a labeling of 15 minutes, which has already been validated
514

, to raise the 

number of labeled forks without excessively increasing the length of labeled tracks. 

Additionally, in agreement with previous reports
392,515

, we decided to use a chase time 

of 2 hours. In addition, since there is some EdU incorporation during the first 15 

minutes of HU treatment, we decided to include a condition in which cells were labeled 

with EdU and then with EdU+HU during 15 minutes. This condition was important to 

properly analyze the HU-treated samples, since this slight EdU incorporation can 

increase the number of labeled forks, as well as the length of labeled tracks, and thus, 

the proteins present on nascent DNA in this case may be different from the ones 

present on the pulse. Of course, the fact that HU is added to these samples might also 

change the protein content of nascent DNA under this condition. Therefore, we 

decided to use both untreated (Pulse) and 15’ EdU/HU condition for data analysis. 

Additionally, to increase the robustness of the obtained data, based on other published 

works
392,515

, we decided to use three biological replicates for the iPOND+MS 

experiment. Moreover, the effect of the HU treatment in each biological replicate was 
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tested before MS analysis, by harvesting samples in parallel for MS and flow cytometry, 

in order to determine the percentage of cells that were arrested in S phase under these 

conditions in each case. Likewise, sonication and biotin incorporation were also verified 

in all cases before MS analysis. 

The strength of our iPOND+MS experiment to identify nascent DNA-bound proteins is 

validated by the fact that the proteins most enriched in the pulse condition compared 

to the chase are mainly already known replisome components. In this sense, the 

comparison of the proteins present on nascent DNA after a 2-hour HU treatment but 

not after a 14-hour HU treatment has allowed us to identify new potential candidates 

that might be important to maintain the stability of the fork and to promote fork 

restart upon severe replication stress. However, due to time limitation, the validation 

and further experiments related to this are going to be followed for someone else. 

Nevertheless, taking advantage of the obtained proteomic data, we wanted to analyze 

the HU-induced changes at replication fork level that might be promoting the loss of 

replication recovery competence. To this end, the obtained data were processed to 

facilitate and simplify the analysis. Based on previous reports
390,514

, a fold exchange of 2 

was considered as the minimum difference to classify the proteins on a certain group. 

Consistent with this, 37 proteins were classified as nascent DNA-bound proteins on the 

pulse compare to the chase after data processing. From those, the 81% were already 

considered as nascent DNA-bound proteins in other similar studies
390,392,510,511,514,515

, 

validating the reliability of the used approach. In this sense, none of the previous 

studies had been performed in human non-transformed cell lines, and thus, the 

remaining 19% of the proteins considered as nascent DNA-bound proteins in our 

analysis might be specific of this cell lines. Nonetheless, at least some of those proteins 

might also correspond to false positives, since they have been identified only in one of 

the MS rounds and none else have identified them as nascent DNA-bound proteins. 

Remarkably, the 57% of the proteins classified as nascent DNA-bound proteins on the 

pulse in our analysis have already known replication-related functions. Likewise, almost 

all the proteins considered to be enriched at mature chromatin, present chromatin 

maturation-related functions, proving altogether the veracity of the used approach. 

Furthermore, the results obtained by iPOND+WB experiments correlated very well with 

the classification made by analyzing the data obtained from the iPOND+MS experiment, 

highlighting once again the robustness of our proteomic data and the accuracy of the 

used approach for data processing. 

Additionally, regarding the sensitivity, the used modified version of iPOND is supposed 

to be able to immunoprecipitated the 4% of the whole PCNA present at replication 

forks
511

. In this sense, our proteomic analysis has identified, in the pulse condition, the 

10% of the whole proteins found in GO database
516

 that present replication-related 

functions. Hence, we could say that the sensitivity of the used approach has been high 

in the context of iPOND. Nevertheless, when comparing with other published 

works
390,392,510,511,514,515

, the sensitivity of our iPOND+MS experiment has been a bit low, 

since we have identified less nascent DNA-bound proteins than in other reports. In this 

sense, the sensitivity could have been improved by increasing the amount of initial 

sample to raise the ability to detect low-abundance proteins, or also by including more 
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replicates as in other studies
510,511,514

. Increasing the amount of replicates would have 

enhanced the probability of a certain protein to be identified by MS. Consistent with 

this, due to technical problems we had to perform the MS analysis in two rounds, and 

unfortunately, some proteins have only been identified in one of them, showing that 

not all the proteins present on a sample are identified by MS in all cases. In addition, an 

increase in the number of replicates would have reduced the experimental noise and 

would have allowed being less stringent when deciding the minimum fold exchange to 

include a protein on a certain group. Nonetheless, this would have raised the price of 

the study. Thus, since our main objective was to analyze the general HU-induced 

changes at replication forks, and as previously argued, three biological replicates are 

sufficient to obtain robust proteomic data for this purpose, we decided to compromise 

the sensitivity. Notably, the use of other MS techniques, such as the label-based ones, 

may also increase the sensitivity of the experiment. However, we wanted to compare 

several different conditions between them, and hence, label-free methods are more 

appropriate for this type of studies. 

2.2. Changes at replication forks of hTERT-RPE cells that promote the loss of 

replication recovery competence 

As previously mentioned, iPOND+MS is a powerful technique to analyze the HU-

induced changes at replication fork level. In this sense, our proteomic analysis has 

highlighted some interesting issues that, together with other experiments, have 

allowed us to have a better understanding regarding how non-transformed human cells 

deal with the DNA replication stress. 

2.2.1. Replication fork reversal upon short HU treatment 

Our proteomic results, together with the results obtained by iPOND+WB experiments, 

show that replisome components are dissociated from nascent DNA already after a 2-

hour HU treatment. Interestingly, this does not result in the dissociation of those 

proteins from chromatin at this time, suggesting that replisome components are 

displaced away rather than dissociated from replication forks after a short HU 

treatment. Notably, this might be due to replication fork reversal, which does not 

necessarily imply the dissociation of replisome components
281,298–300

. 

Several evidences agree on the fact that replication forks of hTERT-RPE cells are 

regressed into chicken foot structures after a short HU treatment, despite replication 

forks are not processed into DSBs at this time. In this sense, as previously mentioned, 

our results show that Rad51, a protein required for fork reversal
312

, is recruited to 

nascent DNA after a short HU treatment. Likewise, RecQ1, a protein involved in the 

restart from reversed forks
311

, is also present on nascent DNA under these conditions. 

Moreover, as shown by BrdU immunofluorescence under native conditions
302,305

, 

hTERT-RPE cells expose single-strand nascent DNA already after a 2-hour HU treatment. 

Remarkably, since replication fork do not present DSBs at this time, the presence of 

reversed forks would be almost the sole explanation for the observed BrdU staining 

(Figure 2). 
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Figure 2. Analysis of single-stranded nascent DNA by BrdU immunofluorescence. 

Cells are labeled with BrdU during 10min before analyzing the presence of accessible single-strand nascent 

DNA fragments. If forks are reversed (upper panel), BrdU antibody can reach the ssDNA present on the 3’ end 
of the leading strand, generated by controlled DNA resection. If forks are processed into DSBs (bottom panel), 
BrdU antibody can also reach the ssDNA present on nascent DNA after parental strand DNA resection. 

Additionally, fork reversal has been reported to promote ATM activation before DSBs 

are present
302

. Accordingly, our results show that p53 is stabilized and that Chk2 is 

activated in an ATM-dependent manner in hTERT-RPE cells treated during 2 hours with 

HU, when DSBs are not still present. Collectively, the above results strongly support the 

idea that replication forks of hTERT-RPE cells are regressed into chicken foot structures 

after a short HU treatment. 

However, our results showing that RPA, a protein that preferentially binds 

ssDNA
160,184,185

, is not dissociated from chromatin despite being displaced away from 

nascent DNA after a short HU treatment, make it difficult to figure out how can this 

protein be associated with chromatin, if replication forks are reversed under these 

conditions. In this sense, during iPOND, proteins and DNA are crosslinked before 

immunoprecipitation and thus, the RPA present on parental-unlabeled ssDNA is 

isolated together with nascent DNA-bound proteins. Thus, since fork reversal entails 

the annealing of nascent DNA strands together with the reannealing of parental 

strands
301

, the amount of RPA isolated by iPOND should decrease after fork reversal 

(Figure 3). Accordingly, our results show that the amount of isolated RPA is lower after 

a 2-hour HU treatment than on the pulse or in 15’ EdU/HU condition. 

 

Figure 3. Analysis of replication fork-bound proteins by iPOND.  

During iPOND, proteins and DNA are crosslinked before immunoprecipitation. Due to the uncoupling of the 
replicative polymerases and the helicase, ssDNA, which would be coated by RPA, is accumulated on the 
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parental strands of stalled replication forks (upper panel). Fragments of around 300Kb are 
immunoprecipitated by iPOND. Hence, the RPA located at parental ssDNA would be isolated by this technique 

in this case. By contrast, since fork reversal entails the reannealing of parental strands (bottom panel), the 
RPA located at this parental strands would be displaced away. Thus, the levels of isolated RPA will decrease in 
the second case. 

In addition, our results also show that Rad51, which can bind the same ssDNA as 

RPA
464

, increases its association with nascent DNA after a short HU treatment. Hence, 

the substitution of RPA by Rad51 may also explain this decrease in the levels of RPA on 

nascent DNA. Notably, in contrast to what our results show, this decrease in the levels 

of RPA isolated by iPOND, should result in a reduced RPA binding to chromatin, unless 

this displaced RPA is loaded to other chromatin regions under these conditions. 

Nonetheless, fork stalling, even if replication forks may not be reversed, cannot explain 

the absence of RPA on nascent DNA while it is present on total chromatin. Thus, 

consistent with all the previous evidences, we propose that replication forks of hTERT-

RPE cells are reversed after a 2-hour HU treatment. 

2.2.2. Mechanisms of replication fork restart after a short HU treatment 

During the last years, increasing evidences suggest that replication fork reversal is a 

very common event in response to several genotoxic stresses
302,303,310–312

. Consistent 

with this, as previously discussed, our results also pointed to that situation. 

Interestingly, one of the question that still remains to be elucidated in this regard, is 

whether fork reversal entails replisome disassembly or not, and if so, how is replication 

restarted in this case
281,298,299

. In this sense, our results suggest that replisome 

components are not dissociated from chromatin despite being displaced away from 

nascent DNA during from reversal. Consistent with this, a recent work have shown that 

fork reversal can occur without replisome disassembly in T4 bacteriophage system
300

. 

Remarkably, several recent reports have shown that in contrast to what it was thought, 

replication can be restarted from reversed forks
300,311,312

. Accordingly, our results show 

that replication forks of hTERT-RPE cells maintain the ability to restart after a short HU 

treatment, when replication forks are supposed to be reversed.  Interestingly, 

replication forks of hTERT-RPE cells are able to restart after a 2-hour HU treatment 

even in the presence of CDK inhibitor roscovitine. Notably, CDK2 activity is required for 

Cdc45 loading onto MCM2-7 and a stable CMG formation
124,177,178

. In this sense, we 

have seen that Cdc45 is released from nascent DNA but not chromatin after a short HU 

treatment. Thus, a previously formed stable CMG complex must be required to restart 

replication under these conditions, since Cdc45 cannot be loaded in the absence of 

CDK2 activity. Nonetheless, one should argue that the observed replication restart 

under these conditions could also be explained by BIR-mediated mechanisms, in which 

forks progress by D-loop migration. However, BIR is a mechanism to restart replication 

from broken forks
452–455

, and replication forks of hTERT-RPE cells do not present DSBs at 

this time. Moreover, the replicative CMG helicase is required for BIR and thus, the 

absence of Cdc45 may also hinder this mechanism
469

. 

Notably, our results show that fork progression is compromised in the presence of 

roscovitine, as observed by the shortening on the length of IdU tracks (second labeling) 
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under this condition. In this sense, since, as previously argued, firing of nearby origins is 

observed as a fork restart event by the used DNA fiber approach
155,159

, this shortening 

can be explained by the absence of origin firing events due to roscovitine-promoted 

CDK2 inhibition
124,177,178

. Nevertheless, it has also been postulated that CDK2 activity 

could be required for replication fork progression
164

. In any case, these observations, 

together with the decrease in the number of new origin firing events observed after the 

addition of roscovitine, confirms that roscovitine was properly inhibiting CDK2 in our 

experimental conditions. 

Collectively, the above observations strongly support the idea that previously used 

replisome components, at least some of them, are recycled to resume replication after 

a short HU treatment. Remarkably, either direct restart or restart from reversed forks 

may require the presence of previously formed CMG active helicase complexes on 

chromatin. Nonetheless, the fact that replisome components are dissociated from 

nascent DNA indicates that replication forks are being remodeled under this condition. 

Thus, this result further supports the idea that replication forks of hTERT-RPE cells are 

restarted from reversed forks after a short HU treatment. 

2.2.3. Changes at replication forks that prevent replication fork restart after 

prolonged HU treatment 

Consistent with the observed degradation of nascent DNA after prolonged HU 

treatment, our proteomic results show that very few protein are found to be enriched 

at nascent DNA in the 14h HU condition, relative to the chase. Moreover, in agreement 

with previous works from yeast, showing that replisome components are disassembled 

from replication forks in the absence of checkpoint kinases
200,291–296

, our results show 

that replisome components are not only displaced away from nascent DNA but also 

dissociated from chromatin after prolonged HU treatment, when Chk1 activity has 

already decreased. Notably, replication forks are processed into DSBs under these 

conditions. Interestingly, as previously discussed, BIR-mediated mechanisms seem to 

be compromised in hTERT-RPE cells under these conditions. Remarkably, this is also 

underlined by the observed replisome components dissociation from chromatin, since 

CMG helicase complex and other replisome components are required for BIR
469

. 

Strikingly, recent reports have shown that in stark contrast to previous works, most 

replisome components remain associated with chromatin even after fork 

collapse
297,390,529

. One of those works shows that in budding yeast, replisome is stably 

associated with DNA after RS even in the absence of checkpoint kinases
297

. Additionally, 

using Xenopus laevis egg extracts, another work has shown that GINS and Polymerase ξ, 

but not Cdc45 and MCM2-7, are dissociated from replication forks upon fork 

collapse
529

. Notably, the authors of this work propose that BIR-mediated mechanisms 

are required to reload these replisome components, and thus, for replication fork 

restart. Remarkably, these works have been performed on yeast and Xenopus models, 

while our results have been obtained working with human cells. Hence, the observed 

differences could be due to the used model in each case. Nonetheless, using human 

cells, a recent work has shown that replisome components remain associated not only 

with chromatin, but also with nascent DNA (analyzed by iPOND), after ATR inhibition-
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promoted fork collapse
390

. Interestingly, in contrast to our study, this one has been 

performed with tumor cells. Remarkably, this underlines a possible difference between 

tumor and non-transformed human cells that may contribute to explain why tumor 

cells are able to resume replication after severe replication stress, while non-

transformed human cells are not. In this sense, consistent with our previous 

observations suggesting that replisome components are recycled for replication fork 

restart after a short HU treatment, a release of Cdc45 and other replisome components 

from chromatin after a 14-hour HU treatment may explain why replication forks of 

hTERT-RPE cells are unable to restart under these conditions. Moreover, as previously 

discussed, lack of replisome components’ association with chromatin may contribute to 

hinder BIR-mediated restart in hTERT-RPE cells under these conditions. By contrast, BIR 

has been described to occur in human U2OS osteosarcoma cells
454

. In this sense, the 

fact that replisome components are stably associated with chromatin in tumor cells
390

 

may allow replication to be restarted by BIR in those cells. Furthermore, even if some 

replisome components such as GINS or Polymerase ξ are dissociated from chromatin 

after fork collapse in tumor cells, according to the data obtained from Xenopus laevis 

egg extracts
529

, BIR-based mechanisms could promote the reloading of the dissociated 

replisome components in those cells, which will not occur in hTERT-RPE cells under the 

same conditions. Interestingly, this capability to maintain replisome components stably 

bound to chromatin
390

, contributing to preserve the ability to restart by BIR
469

, together 

with the ability to activate new origins
450

, most likely by impaired activation of 

APC/C
Cdh1

 in S phase, may explain why tumor cells are able to resume replication after 

severe replication stress while non-transformed human cells are not. 

Remarkably, the dissociation of replisome components is not the sole reason that 

explains the lack of replication fork restart, observed after prolonged HU treatment in 

hTERT-RPE cells. In this sense, our proteomic results, together with data obtained by 

iPOND+WB experiments, have shown that proteins described to be important for 

replication fork restart
206,289,311,394–396,399,519

 such as FANCD2, Rad51, SMC1, SMC3 and 

RecQ1 are present at replication forks of 2-hour HU-treated hTERT-RPE cells, but not at 

replication forks of 14-hour HU-treated ones. Moreover, our chromatin association 

analysis shows that FANCD2, Rad51, SMC1, SMC3 and even BRCA2, which is also 

important for replication fork restart
289,394

, are released not only from nascent DNA, but 

also from chromatin, after prolonged HU treatment. Notably, replication forks have 

already been processed into DSBs after prolonged HU treatment. Consequently, BIR is 

the sole option for replication fork restart under these conditions
452–455

, which, as 

previously discussed, is impaired in hTERT-RPE cells. Remarkably, the observed 

dissociation of the cohesin complex also contributes to explain this lack of BIR, since 

these proteins are important for sister chromatin cohesion
206,399

 and thus, might be 

required for strand invasion during BIR. 

Interestingly, the fact that replication forks of hTERT-RPE cells suffer several different 

changes that may contribute to explain the lack of fork restart after prolonged HU 

treatment, raises an interesting question regarding which events occurs before the 

others. In this sense, lack of BRCA2
394

, FANCD2
395

 and Rad51
396

 will promote Mre11-

mediated nascent DNA degradation upon severe replication stress, which in turn, could 

promote the dissociation of replisome components and other proteins from chromatin 
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under these conditions. Remarkably, an extensive resection could explain the lack of 

Rad51 association with chromatin after prolonged HU treatment
525

 and consequently, 

also the observed degradation of nascent DNA under these conditions. Notably, the 

dissociation of replisome components in turn may also explain this extensive resection, 

since DNA must be unprotected under these conditions, increasing the risk of 

nucleases-mediated degradation. 

The previous observations suggest that each of the changes observed after prolonged 

HU treatment could explain the other alterations, showing the difficulty to decipher 

which is the initial trigger for all of them. In this sense, the total levels of most of the 

analyzed replisome components remained constant despite their dissociation from 

chromatin after prolonged HU treatment, indicating that the degradation of replisome 

components is not the trigger for their dissociation. By contrast, FANCD2 for instance is 

slightly degraded under these conditions, and in fact, the addition of MG132 

proteasome inhibitor recovers the association of BRCA2, FANCD2 and Rad51 with 

chromatin after a 14-hour HU treatment. Notably, as previously argued, the recovery of 

those proteins’ association with chromatin might prevent the degradation of nascent 

DNA, which in turn, could avoid the dissociation of replisome components and other 

proteins. In this regard, the sole degradation of FANCD2 could explain most of the 

changes induced by prolonged HU treatment at replication fork level. Consistently, it 

would be interesting to analyze if the addition of MG132 proteasome inhibitor restores 

the ability to restart upon severe replication stress, to determine if the degradation of 

this protein is the initial and sole trigger to prevent BIR-based mechanisms under these 

conditions. 

Interestingly, if the degradation of FANCD2 was the sole trigger that prevents fork 

restart upon severe replication stress, APC/C
Cdh1 

may not be implicated in this process 

since in contrast to the addition of MG132 Cdh1 depletion does not recover Rad51 

levels on chromatin. However, another possibility is that all the observed alterations 

are due to several different mechanisms that are all activated at the same time. 

Remarkably, all these alterations are observed ones replication forks have been 

processed into DSBs, pointing to the acquisition of DNA damage as the trigger. In this 

sense, as previously discussed, our results suggest that APC/C
Cdh1

 for instance is 

activated in response to DSBs to prevent origin firing and thus, to avoid replication 

resumption in the presence of broken forks. Accordingly, we propose that DSBs are also 

the initial trigger for the different changes observed at replication forks of hTERT-RPE 

cells, to prevent replication fork restart under this condition. Notably, the fact that both 

origin firing and replication restart are compromised in non-transformed human cells 

upon severe replication stress explains why those cells loss the ability to recover under 

these conditions (Figure 4).  
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Figure 4. Final model.  

In response to fork stalling, 

replication forks are regressed 
into chicken foot structures 
without losing the ability to 

resume replication once the 
stress is overcome. At his time, 

replisome components are 
displaced away from nascent 
DNA but they still remain 

associated with chromatin, 
perhaps close to the stalled 
forks. By contrast, if the 

stalling is persistent, 
replication forks are prone to 

collapse and accumulate DSBs. 
Once this has happened, non-
transformed human cells lose 

the ability to resume 
replication. This loss of 

replication recovery 
competence is accomplished 
by preventing both new origin 

firing and BIR-mediated 
restart. In this sense, the 
degradation of Emi1 promotes 

the activation of APC/C
Cdh1

 in S 
phase. Once activated, this 

APC/C
Cdh1

 degrades Cyclin A2 
and probably also other 
proteins required for origin 

firing. Additionally, replication 
forks suffer several alterations 
that compromise the ability to 

resume replication by BIR. 
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Discussion III: Contribution of the loss of replication recovery 

competence towards safeguarding genome integrity 

The activation of APC/C
Cdh1 

in S phase occurs once replication forks have been 

processed into DSBs. Moreover, the inhibition of ATR, which may enhance the 

accumulation of DSBs
391,393

, results in advanced activation of APC/C
Cdh1

. Remarkably, as 

previously discussed, the activation of this ubiquitin ligase promotes the loss of 

replication recovery competence in non-transformed human cells under these 

conditions. Notably, the activation of APC/C
Cdh1

 in S phase correlates with a decrease in 

Chk1 phosphorylation, suggesting that APC/C
Cdh1

 acts as a long-term response of the 

DNA replication stress response to prevent replication resumption once DSBs are 

present. Moreover, our results suggest that replication forks of hTERT-RPE cells suffer 

numerous changes that also contribute to the loss of replication recovery competence 

under these conditions. Interestingly, as previously argued, at least some of those 

mechanisms seem to be abrogated in tumor cells, which are able to resume replication 

after severe replication stress. Notably, the DSBs generated during S phase can be 

repaired in G2 phase before cells enter into mitosis, although these DNA repair 

mechanisms can compromise genome integrity
248,272,450,484

. Thus, we propose that non-

transformed human cells avoid replication resumption and are withdrawal from the cell 

cycle, instead of repairing the breaks and proliferate, to preserve genome integrity. 

3.1. Participation of APC/C
Cdh1

-mediated S-phase arrest in safeguarding genome 

integrity 

As previously explained, Cdh1 depletion restores the ability to resume replication after 

prolonged HU treatment. Nonetheless, mitotic entry is still compromised under these 

conditions. Notably, the number of cells containing 53BP1 foci is not reduced after HU 

removal despite Cdh1 depletion, indicating that DSBs are not repaired although cell are 

now able to resume replication upon prolonged HU treatment. This suggests that the 

G2 checkpoint senses those DSBs and acts independently of APC/C
Cdh1

 to prevent 

mitotic entry in the presence of damaged DNA. Remarkably, p53 or p21 depletion 

restores not only the ability to resume replication but also to enter into mitosis after 

severe replication stress, suggesting that as expected
48,49,434

, they are also involved in 

promoting a DNA damage-induced G2 arrest. In this sense, our results show that p21 

levels increase after HU removal, supporting the idea that p21 may have an additional 

function during recovery from severe replication stress. Consistent with this, our results 

show that in contrast to Cdh1, p53 or p21 depletion strongly reduces the number of 

senescent cells. 

Interestingly, the cells that eventually escape the G2 arrest and arrive to mitosis, 

present Ү-H2AX foci, highlighting the importance of preventing cell cycle resumption 

after severe replication stress to safeguard genome integrity. In this sense, p21-

depleted cells, which are able to resume replication and enter into mitosis after 

prolonged HU treatment, arrive to G1 with DNA damage, as indicated by the presence 

of 53BP1 foci containing G1 cells. Moreover, cells presenting micronuclei are also found 

under these conditions. Notably, since Cdh1-depleted cells are arrested in G2 under 
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these conditions, it is difficult to analyze the contribution of APC/C
Cdh1 

activation in S 

phase towards safeguarding genome integrity. In this sense, as previously argued, Cdh1 

depletion-induced new origin firing may correspond mainly to the activation of origins 

located in different replicons. Remarkably, this may alter the replication timing 

program which can result in epigenetic changes that may contribute to the acquisition 

of epigenome instability
155–157,159,271,272

. Additionally, our results suggest that DSBs are 

not repaired after replication resumption in Cdh1-depleted cells. Moreover, the cells 

that escape the G2 arrest, can arrive to mitosis with DSBs. Thus, we propose that 

premature APC/C
Cdh1

 activation in S phase is important to prevent genomic instability 

by adding a barrier prior to the G2 arrest. 

Notably, Cdh1 depletion induces DNA damage due to a premature S-phase entry
145–147

, 

which can result in numerical and structural chromosomal aberrations
148

. Therefore, all 

the experiments in which Cdh1 was depleted were done by synchronizing the cells in S 

phase (by thymidine addition) before siRNA transfection, to prevent the damage 

induced by Cdh1 knockdown by itself. 

Remarkably, the fact that Cdh1 depletion results in the acquisition of genomic 

instability
72,73,144

, suggests that APC/C
Cdh1

 may act as a tumor suppressor. Consistent 

with this, APC/C has been shown to be mutated in several tumor cells
153

. Accordingly, 

data from our laboratory also indicates that tumors cell lines are predominantly 

deficient in the activation of APC/C
Cdh1

 in S phase in response to prolonged HU 

treatment
507

. In this sense, our results show that HCT116 cells, which do not activate 

APC/C
Cdh1

 in S phase in response to severe replication stress, are able to divide in the 

presence of DNA damage. Interestingly, we have seen that Emi1 depletion-promoted 

artificial APC/C
Cdh1

 activation in S phase in HCT116 tumor cells decreases the number of 

cells that are able to divide in the presence of DNA damage, as well as the number of 

cells presenting micronuclei after prolonged HU treatment. Thus, these results further 

support the idea that the activation of APC/C
Cdh1

 in S phase prevents the acquisition of 

genomic instability after severe replication stress. 

Notably, Emi1-induced aberrant APC/C
Cdh1

 activation has been shown to promote 

rereplication
154,508

, which results in the acquisition of DNA damage and chromosomal 

breakages
154,279,508

. Therefore, to prevent rereplication, we decided to deplete Emi1 in 

S-phase arrested cells, first by thymidine and by HU afterwards. Despite that, the 

presence of cells presenting a DNA content above 4n, suggest that, in agreement with 

previous reports
154,508

, Emi1-depleted cells that maintain the ability to resume 

replication after prolonged HU treatment can in fact rereplicate. 

Collectively, the above observations strongly support the idea that lack of APC/C
Cdh1

 

activation in S phase promotes the acquisition of genomic instability in response to 

severe replication stress. 

3.2. Other mechanisms involved in safeguarding genome integrity 

As previously discussed, our results suggest that replication forks of hTERT-RPE cells are 

regressed into chicken foot structures after a 2-hour HU treatment, when replication 

forks are not still processed into DSBs. In this sense, during the last years increasing 

evidences agree on a possible function of fork reversal in the maintenance of genome 
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integrity
298

. Notably, our results agree with this idea, since replication restart after a 

short HU treatment that is thought to promote fork reversal does not result in the 

acquisition of genomic instability in hTERT-RPE cells. 

By contrast, several works have also reported that reversed forks are processed by 

nucleases and/or break repair mechanisms, inducing toxic intermediates
280,292,305–308

 

and in fact, the DNA replication stress response and other mechanisms have been 

describe to prevent this remodeling
305,307,309

. In this sense, our results show that 

replication forks are processed into DSBs after prolonged HU treatment. Moreover, 

apart from the presence of DSBs, replication forks of hTERT-RPE cells suffer several 

other modifications under these conditions. Notably, our results suggest that restoring 

the ability to resume replication under these conditions contributes to the acquisition 

of genomic instability. 

Based on the above evidences, we suggest that fork reversal by itself is not pathological 

for the cell, until under certain circumstances, replication forks are further processed. 

In this sense, the inhibition of Chk1 kinase for instance, which according to our results 

occurs after prolonged HU treatment, will allow Mus81-mediated processing
393

 of 

reversed forks, resulting in the formation of DSBs that can lead to the acquisition of 

genomic instability. 

Additionally, as previously mentioned, the ssDNA present at replication forks must be 

protected to prevent its nucleases-mediated degradation
394–396

. In this sense, the 

uncoupling of the replicative polymerases and the helicase for instance can generate 

long fragments of ssDNA
319,342

. Thus, it is also conceivable that under this or similar 

circumstances, fork reversal is also involved in reducing the amount of exposed ssDNA 

by generating four-branched structures. Nonetheless, our results suggest that some 

ssDNA is already exposed at reversed forks after a short HU treatment. Notably, this 

ssDNA may correspond to the one present on the 3’ end of the leading strand (Figure 

2), which is generated by controlled Dna2-/WRN-mediated processing
312

 and which 

according to our results, may correspond to small DNA fragments that are protected by 

Rad51. Remarkably, the removal of Rad51 will lead to Mre11-mediated extensive 

ssDNA degradation
396

 at reversed forks, resulting in the generation of toxic 

intermediates. However, once again, this might only occur under certain circumstances 

and fork reversal will not promote genomic instability until this further processing. 

Finally, the fact that the alterations at replication forks of hTERT-RPE cells that 

compromise fork restart, occur once replication forks have been processed into DSBs, 

suggests, once again, that this alterations arise to prevent replication resumption from 

or in the presence of broken replication forks, which can compromise genome 

integrity
290,451,456–459

. Accordingly, as previously discussed, some of these changes may 

not occur in tumor cells
390

, which maintain the competence to restart
454

. Moreover, as 

previously argued, these alterations compromise BIR-mediated restart, which has been 

described to be highly mutagenic
456–459

, and in fact, BIR-based mechanisms can explain 

the complexity of the chromosomal changes that occur on cancer cells
252,253,485–487

. 

Therefore, we propose that, as in the case of APC/C
Cdh1

-mediated origin firing 

inhibition, the impairment of BIR-mediated restart upon severe replication stress is a 
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mechanism of non-transformed human cells that contributes to the safeguarding of 

genome integrity.  



 

 

 

 

 

 

CONCLUSIONS 

  



 

 

  



Conclusions 

175 

 

Based on the initially defined objectives and the exposed results, the conclusions of this 

thesis are: 

I. Conclusions from the study of the mechanisms involved in the loss of replication 

recovery competence in non-transformed human cells. 

1.1) The loss of replication recovery competence upon prolonged HU treatment 

correlates with the appearance of senescence markers in hTERT-RPE cells. 

1.2) APC/C
Cdh1

 is prematurely activated in S phase in non-transformed human cells, 

in response to a severe replication stress that induces DSBs.  

1.3) The activation of APC/C
Cdh1

 in S phase correlates with a decrease in Emi1 levels, 

is not prevented by the inhibition of ATM/ATR, but is abrogated in p53- or p21-

depleted cells. 

1.4) The activation of APC/C
Cdh1

 in S phase contributes to the loss of replication 

recovery competence. 

1.5) New origin firing inhibition is the main function of APC/C
Cdh1

 in S phase to 

promote the loss of replication recovery competence.  

1.6) Fork restart is impaired in hTERT-RPE cells after a sustained HU treatment that 

induces DSBs. 

II. Conclusions from the analysis of the differences, at replication fork level, between 

short and long HU treatments that determine the loss of replication recovery 

competence in hTERT-RPE cells. 

2.1) iPOND+MS is a powerful tool to analyze the HU-induced changes at replication 

fork level. 

2.2) Replication forks of hTERT-RPE cells are remodeled after a 2-hour HU 

treatment that results in the displacement of replisome components without 

their dissociation from chromatin. 

2.3) Replication forks of hTERT-RPE cells maintain the competence to restart, even 

in the absence of CDK activity, after a 2-hour HU treatment that promotes the 

displacement of the replisome away from nascent DNA. 

2.4) Replisome components are released from chromatin after a 14-hour HU 

treatment that compromises the competence to recover of hTERT-RPE cells. 

2.5) The dissociation, from nascent DNA and chromatin, of the proteins involved in 

fork protection and restart after a 14-hour HU treatment that promotes DSBs, 

correlates with the degradation of nascent DNA. 

III. Conclusions from the analysis of the contribution of severe replication stress-

induced S-phase arrest towards safeguarding genome integrity. 

3.1) Replication resumption is abrogated in non-transformed human cells once 

replication forks have been processed into DSBs. 
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3.2) Lack of APC/C
Cdh1

 activation-promoted S-phase arrest, increases genome 

instability after prolonged replication inhibition. 

3.3) Replication resumption after a short HU treatment that results in fork 

remodeling, does not compromise genome integrity unless replication forks 

are further processed. 
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1. Cell culture and treatments 

1.1. Cell lines and culture conditions 

Cell line Medium Origin 
Immortalization 

method 

hTERT-RPE, human 

retinal pigment epithelial 

cells 

DMEM: F12 (1:1), 6% FBS 

(fetal-bovine serum) 
ATCC hTERT 

BJ-5ta, human foreskin 

fibroblasts 

DMEM:M199 (4:1), 10% 

FBS 
ECACC hTERT 

MCF10A, human 

mammary epithelial cells 

DMEM: F12 (1:1), 5% HS 

(horse serum) 
ATCC - 

HCT116, human 

colorectal cancer cells 
DMEM: F12 (1:1), 6% FBS Dr. Capellà, ICO - 

*All culture media were supplemented with: essential amino acids (1%), L-glutamine (2mM), 

pyruvic acid (1mM) and antibiotics (penicillin/streptomycin; 50units/mL and 50µg/mL 

respectively) 

*MCF10A cells were additionally supplemented with EGF (epidermal growth factor) (20ng/mL), 

hydrocortisone (0.5µg/mL) and insulin (10µg/mL) 

1.2. Synchronization methods 

Cell synchronization is used to obtain a population enriched in a certain cell cycle 

phase. There are several protocols that can be used to synchronize the cells. Two 

different methods have been used in this thesis: 

• Synchronization by serum starvation 

Serum starvation promotes a reversible quiescent state at G0/G1 as a result of the 

removal of growth factors, which can be easily abrogated by the addition of serum 

to the media. Every cell line presents a different cell division rate, and thus, the 

method used to accumulate those cells in a certain cell cycle phase is different in 

each case. 

̵ Synchronization of hTERT-RPE cells by serum starvation: Cells were cultured very 

confluent for 48 hours to inhibit cell proliferation by contact inhibition. After 

that, cells were diluted 1:4, and cultured in serum-free medium for 36-48 hours. 

Cells were finally forced to re-enter the cell cycle by the addition of serum, to 

obtain an S-phase enriched population after 16 hours. Around the 40-50% of the 

cells are accumulated in S phase by this method. 

• Single thymidine synchronization 

The addition of thymidine to the media induces a reversible S-phase arrest due to 

the presence of excessive nucleosides, which can be easily reverted by removing 

the thymidine from the media, to allow the cell to re-enter into S phase. This 

synchronization method is more efficient than the previous one, resulting in the 

accumulation of the 80% of the population in S phase. However, it should be taken 
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into account that this drug may promote replication stress, as it promotes fork 

stalling, and thus, in some cases other methods might be preferentially used. 

This synchronization method can be used to synchronize any cell line in S phase in 

the same way. Therefore, if not specified otherwise, cells were always 

synchronized by this method. To this end, cells were incubated with thymidine for 

20-24 hours, and then released into fresh medium for 2 hours more. In the case of 

siRNA-transfected cells, if not specified otherwise, siRNA transfection was 

performed 12 hours before the addition of thymidine. 

1.3. Drugs 

Name Reference 
Working 

concentration 
Function 

Hydroxyurea H8627-Sigma 
10mM, if not 

specified otherwise 

Ribonucleotide reductase 

inhibitor 

Etoposide E1383-Sigma 
50µM, if not specified 

otherwise 
DNA topoisomerase II inhibitor 

Camptothecin C9911-Sigma 0.5µM DNA topoisomerase I inhibitor 

Thymidine T1895-Sigma 

1.5mM, hTERT-RPE 

2.5mM, other cell 

lines, if not specified 

otherwise 

Deoxynucleoside 

Nocodazole M-1404-Sigma 

250ng/mL, tumor cell 

lines 

500ng/mL, non-

transformed cell lines 

Inhibitor of microtubule 

polymerization  

KU-55933 
S1092-

Selleckhem 
20µM ATM kinase inhibitor 

VE 821 
1893-Axon 

Medchem 
10µM ATR kinase inhibitor 

MG132 S2619-SelleckBio 20µM Proteasome inhibitor 

proTAME 
I-440-

BostonBiochem 
50µM APC/C ubiquitin ligase inhibitor 

BrdU B5002-Sigma 

10µM, 

asynchronously 

growing cells 

20µM, synchronized 

cells 

Thymidine analog 

CldU C6891-Sigma 
25µM, if not specified 

otherwise 
Thymidine analog 

IdU I7125-Sigma 250µM Thymidine analog 

EdU 
A10044-

Invitrogen 
50µM Thymidine analog 

Roscovitine R7772-Sigma 25µM CDK inhibitor 

1.4. siRNA transfection 

Transient siRNA transfections were performed using HiPerfect Transfection Reagent 

(Qiagen) or Lipofectamine® RNAiMAX (Invitrogen), according to manufactures 
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guidelines. HiPerfect-mediated transfections were performed using cells in suspension. 

The number of cells used in each case was calculated according to manufactures 

guidelines. siRNAs were mixed with the transfection reagent on a specific culture 

medium (Opti-MEM; Gibco) in both cases. Filter tips and gloves were used in all cases. 

To eliminate possible off-side effects, oligo sets containing 4 different sequences (ON-

TARGETplus SMARTpools; Dharmacon) were used in all cases. The siRNA concentration 

that results in an efficient decrease in target protein levels was analyzed for each of 

them before experiments were conducted. At the end, 50nM was the final 

concentration used for all of them. 

The following siRNA oligos were used in each case: 

Target protein Reference Sequences 

Cdh1 L-015377-00-0005 

5’-CCACAGGAUUAACGAGAAU-3’ 

5’-GGAACACGCUGACAGGACA-3’ 

5’-GCAACGAUGUGUCUCCCU A-3’ 

5’-GAAGAAGGGUCUGUUCACG-3’ 

p21 L-003471-00-0005 

5’-CGACUGUGAUGCGCUAAUG-3’ 

5’-CCUAAUCCGCCCACAGGAA-3’ 

5’-CGUCAGAACCCAUGCGGCA-3’ 

5’-AGACCAGCAUGACAGAUUU-3’ 

p53 L-003329-00-0005 

5’-GAAAUUUGCGUGUGGAGUA-3’ 

5’-GUGCAGCUGUGGGUUGAUU-3’ 

5’-GCAGUCAGAUCCUAGCGUC-3’ 

5’-GGAGAAUAUUU CACCCUUC-3’ 

 

Emi1 

 

L-012434-00-0005 

5’-CAACAGACACUUAAUAGUA-3’ 

5’-CGAAGUGUCUCUGUAAUUA-3’ 

5’-UGUAUUGGGUCACCGAUUG-3’ 

5’-GAAUUUCGGUGACAGUCUA-3’ 

Non-target (NT) D-001810-10-20 

5’-UGGUUUACAUGUCGACUAA-3’ 

5’-UGGUUUACAUGUUGUGUGA-3’ 

5’-UGGUUUACAUGUUUUCUGA-3’ 

5’-UGGUUUACAUGUUUUCCUA-3’ 

2. Cell proliferation and survival assays 

2.1. Cell proliferation assay 

Cell proliferation assay is based on crystal violet-mediated protein and DNA staining, 

which can be used to estimate the amount of cells present on a plate. This method is 

useful to analyze cell proliferation during several days. 

For this assay, cells were cultured in 12-well plates at low confluence and then treated 

as indicated. Plates were harvested before and just after the treatment (0h) and at the 

indicated time after release. To this end, cells were extensively rinsed with PBS 

(phosphate buffered saline) and then fixed with 4% PFA- (paraformaldehyde) PBS for 15 

minutes at RT (room temperature), stained with 0.25% crystal violet-containing 
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ultrapure water for 5 minutes and finally washed several times with deionized water. 

The absorbance of crystal violet (λ595) was measured and used to determine the cell 

confluency in each condition. 

2.2. Colony formation assay 

Colony formation assay is also based on crystal violet-mediated protein and DNA 

staining. However, in this case, crystal violet is used to improve the visualization of 

colonies. This assay is used to study cell viability long time after the treatment. 

For colony formation assays, cells were cultured in 12-well plates and treated as 

indicated. After 12 hours of release, cells were plated diluted (250 cells in each well) in 

6-well plates. 8 days later, cells were fixed and stained with 1% crystal violet-containing 

70% ethanol for 10 minutes at RT, and the number of colonies was counted. 

3. SA-β-Gal (senescence-associated β-galactosidase) activity assay 

The analysis of SA-β-Gal activity can be used to quantify the number of senescent cells 

on a plate
530

. For this analysis, cells were plated on 24-well plates, treated as indicated, 

washed several times with PBS and then fixed with 2% PFA-/0.2% glutaraldehyde-PBS 

for 3 minutes at RT. After fixation, cells were washed several times with PBS and then 

incubated with X-gal- (B4252, Sigma) containing staining solution for 15 hours at 37ºC 

in the dark. Finally, staining solution was removed, cells were washed a couple of times 

with PBS and then incubated with methanol absolute (300µL in each well) until its 

evaporation (inside the hood). 

• Staining solution (pH 6) 

̵ 40mM citric acid/ Na phosphate buffer 

̵ 5mM K4[Fe(CN)6]·3H2O 

̵ 5mM K3[Fe/(CN)6] 

̵ 150mM NaCL 

̵ 2mM MgCl2 

̵ 1mg/mL X-gal 

4. Electrophoresis and WB (Western blot) 

4.1. Preparation of samples 

Three different types of samples: whole cell lysates, chromatin-enriched fractions and 

iPOND extracts have been used for electrophoresis and WB analysis in this thesis. The 

preparation of each of them was performed as follows: 

• Whole cell lysates 

Cells were washed with PBS and then lysed by the addition of SDS- (sodium 

dodecyl sulfate) containing lysis buffer. Cells were finally collected with the help of 

a scrapper and stored at -20ºC. 
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Since SDS is an anionic detergent that denaturalizes all the proteins, the addition 

of inhibitors is not required in this case. Nonetheless, SDS precipitates at low 

temperature. Thus, samples must be collected at RT in this case. 

• Chromatin-enriched fractions 

Chromatin extraction was performed following a modified version of the protocol 

described on Mendez & Stillman
531

: 

̵ First, cells were harvested in ice-cold PBS with the help of a scraper, and then 

centrifuged at 660g for 5 minutes at 4ºC. (Pellets can be stored at -80ºC during 

several weeks). 

̵ Next, cells were lysed by the addition of buffer A (8 times the volume of the 

pellet), supplemented with freshly added protease and phosphatase inhibitors, 

and Triton X-100. The optimal concentration of Triton X-100 and the incubation 

time must be set up for each cell line. In the case of hTERT-RPE cells, lysis was 

performed in 0.1% Triton X-100-containing buffer A during 10 minutes on ice. 

After that, cells were centrifuged at 600g for 5 minutes at 4ºC. 

̵ Supernatants (S1 fractions), corresponding to the cytoplasmic fraction of cells, 

were collected in new tubes and stored at -20ºC.  

̵ Pellets (nuclei) were washed with buffer A (8 times the volume of the pellet) 

supplemented with inhibitors but without Triton X-100, and then centrifuged at 

600g for 5 minutes at 4ºC. 

̵ Supernatants were discarded, and pellets were incubated during 10 minutes on 

ice with buffer B (8 times the volume of the pellet) supplemented with freshly 

added protease and phosphatase inhibitors. After incubation, nuclei were 

centrifuged at 1700g for 5 minutes at 4ºC. 

̵ Supernatants (S2 fractions), corresponding to the nuclear soluble fractions, were 

collected in new tubes and stored at -20ºC.  

̵ Pellets, corresponding to chromatin-associated and nuclear matrix-bound 

proteins, were washed with buffer B supplemented with inhibitors until they 

became transparent. Supernatants were discarded each time by centrifugation 

at 600g for 5 minutes at 4ºC. 

̵ Finally, pellets were resuspended in lysis buffer (3 times the volume of the 

pellet) and stored at -20ºC. 

* Samples must be kept on ice all the time. 

• iPOND extracts 

Nascent DNA-bound proteins were isolated by a modified version of iPOND
511

 as 

explained in section (5). The protein concentration of each extract is not measured 

in this case. Instead, the same volume of each iPOND extract is loaded during the 
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electrophoresis. Samples are boiled during 20 minutes at 95ºC before the 

electrophoresis and WB. 

• Lysis Buffer (pH 6.8) 

̵ 67mM tris 

̵ 2% SDS 

• Buffer A 

̵ 10mM hepes, pH 7.4 

̵ 10mM KCl 

̵ 1.5mM MgCl2 

̵ 0.34 M sucrose 

̵ 10% glycerol 

̵ 1mM DTT 

̵ Protease inhibitors: 10µg/mL leupeptine; 1µg/mL aprotinine; 1mM PMSF 

̵ Phosphatase inhibitors: 1mM NaF;  0.1mM Na3VO4 

• Buffer B 

̵ 3mM EDTA 

̵ 0.2mM EGTA 

̵ 1mM DTT 

̵ Protease inhibitors: 10µg/mL leupeptine; 1µg/mL aprotinine; 1mM PMSF 

̵ Phosphatase inhibitors: 1mM NaF;  0.1mM Na3VO4 

4.2. Protein quantification 

Protein quantification was performed using Lowry
532

 or BCA methods (according to 

manufactures (ThermoFisher scientific) guidelines), which are compatible with SDS-

containing samples.  Due to SDS-promoted DNA denaturalization, samples are very 

viscous, and thus, they must be boiled at 95ºC during 15 minutes before quantification 

to degrade the DNA. 

* These boiled samples can be stored at -20ºC during months. 

4.3. Electrophoresis and WB 

Electrophoresis coupled with WB is a semi-quantitative method used to detect and 

quantify the relative abundance of proteins of interest on a certain sample. The first 

step consists in separating the proteins by SDS-PAGE electrophoresis. The SDS present 

on the samples, the gel and the buffers denatures the proteins and adds negative 

charges to them so they can migrate towards a positive pole, while they are separated 

according to their molecular weight. Separated proteins are then transferred to 

nitrocellulose membranes, where they are detected by incubation with primary and 

secondary antibodies. The primary antibodies are associated with the proteins of 

interest. These primary antibodies are then recognized by secondary antibodies 

conjugated to HRP (horseradish peroxidase) enzyme on their constant region (Fc). 



Materials and methods 

185 

 

Finally, these secondary antibodies are detected by the addition of peroxidase 

substrate ECL (enhanced chemiluminescent substrate), which reacts with the HRP 

enzyme present on the secondary antibody, giving a chemiluminescent substrate. 

* The electrophoresis and WB experiments were performed at least three times in each 

case. 

• SDS-PAGE electrophoresis 

Samples were prepared to load between 25-50µg of protein in each well. The 

volumes of the different samples were normalized between them by adding lysis 

buffer. Finally, loading buffer (Laemmli buffer
533

) was added at 1x final 

concentration, samples were boiled for 5 minutes at 95ºC, and run in 

polyacrylamide gels at 100V using standard protocols. 

• Transference of proteins to nitrocellulose membranes 

After separation, proteins were transferred to nitrocellulose membranes by 

incubating the gel with nitrocellulose membranes for 1 hour and 30 minutes at 

70V, using standard protocols. For proteins with a molecular weight higher that 

120KDa, the transference was performed using a 2x transference buffer during 2 

hours at 70V, which contains twice the SDS and electrolyte concentration. 

• Blocking of membranes 

Membranes must be blocked to avoid the antibodies to be non-specifically 

attached to the membranes. Blocking of membranes was performed using 3% 

milk- (for total proteins) or 3% BSA- (bovine-serum albumin; for phosphoproteins) 

containing TBS-T. Nitrocellulose membranes were incubated with those buffers for 

1 hour at RT. 

• Incubation with primary and secondary antibodies 

Blocked membranes were incubated overnight at 4ºC with primary antibodies 

against the proteins of interest, diluted in 3% BSA-containing blocking solution. 

After that, membranes were washed several times with TBS-T and then incubated 

during 1 hour at RT with secondary antibodies against the primary antibodies, 

diluted in 5% milk-containing TBS-T (1/3000 for whole cell lysates and 1/2000 for 

chromatin-enriched fractions and iPOND extracts; 1/10000 and 1/5000 

respectively in the case of the anti-goat secondary antibody). 

• Developing 

After incubation with secondary antibodies, membranes were washed twice with 

TBS-T and once with TBS. Finally, they were developed by adding an ECL solution 

(EZ-ECL, Biological Industries) that reacts with the HRP enzyme present on the 

secondary antibody, giving a chemiluminescent reaction. 
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•  Antibodies 

Antibody Reference Dilution 

Actin sc-8432 1/2000 

Aurora A #3092 1/500 

BRCA2 ab123491 1/2000 

Cdc45 (G-12) sc-55569 1/200 

Cdh1 Homemade (by R. Freire) 1/1000 

CDK4 (H-303) sc-709 1/500 

Claspin Homemade (by R. Freire) 1/5000 

CtIP A300488a 1/1000 

Cyclin A2 (H-432) sc-751 1/500 

Cyclin B1 (GNS1) sc-245 1/200 

Emi1 37-6600 1/100 

FANCD2 ab2187 1/5000 

Fen1 BD-611294 1/1000 

GAP120 sc-63 1/200 

H3 ab1791 1/2000 

H4 05-858 1/1000 

Lamin B1 (M-20) sc-6217 1/500 

MCM2 (H-126) sc-10771 1/200 

MCM6 (C-20) sc-9843 1/200 

p21 (Ab-1) OP64 1/1000 

p53 MS-186 1/1000 

Pan-MCM A303-477A 1/1000 

P-Chk1 (S296) #2349 1/1000 

P-Chk2 (T68) NB100-92502 1/1000 

PCNA ab18197 1/1000 

Plk1 (F-8) sc-17783 1/50 

Pol α sc-5921 1/200 

Pol δ ab10362 1/1000 

pRb (IF-8) sc-102 1/500 

Rad51 (H-92) sc-8349 1/200 

RPA32 #2208 1/1000 

RFC3 ab154899 1/1000 

SMC1 A300-055A 1/1000 

SMC3 A300-060A 1/1000 

Tipin Homemade (by R. Freire) 1/2000 

• Electrophoresis buffer 

̵ 14,41g/L glicine 

̵ 3.03g/L tris 

̵ 1g/L SDS 

• Transference buffer 

̵ 14.41g/L glicine 

̵ 3.016g/L tris 
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̵ 0.2g/L SDS 

̵ 20% ethanol 

• 2x transference buffer 

̵ 28.82g/L glicine 

̵ 6.032g/L tris 

̵ 0.4g/L SDS 

̵ 20% ethanol 

• TBS 

̵ 20mM tris HCl, pH 7.5 

̵ 150mM NaCl 

• TBS-T 

̵ 20mM tris HCl, pH 7.5 

̵ 150mM NaCl 

̵ 0.05% Tween -20 

5. iPOND: isolation of proteins on nascent DNA 

iPOND
509

 is a powerful technique to analyze the replisome components as well as the 

changes at replication forks after certain treatments or conditions. The proteins 

obtained by iPOND can be visualized by electrophoresis and WB (iPOND+WB); or by 

contrast, they can be identified/quantified by MS (iPOND+MS). In both cases, the 

modified version of iPOND
511

 was performed in the same way with the only difference 

that for MS analysis 3 p150 plates per condition were used, while only 1 p100 was used 

for WB. The biotinylation and sonication of the samples was always validated before 

performing the modified version iPOND. 

5.1. Preparation of cell extracts 

Cells were cultured and treated as indicated, and then crosslinked with 1% PFA for 10 

minutes at RT. After crosslinking, PFA was quenched with 0.125mM glycine (pH 7) for 5 

minutes at RT. After that, cells were harvested in ice-cold PBS, supplemented with 

protease inhibitor cocktail (PIC, Roche), with the help of a scraper. Cell pellets were 

obtained by centrifugation at 1000g for 10 minutes at 4ºC and finally stored at -80ºC. 

*Pellets can be stored at -80ºC during a couple of weeks. 

• Processing: biotinylation and sonication of samples 

̵ Cell pellets were lysed by incubation with lysis buffer (ChIP Express kit, Active 

Motif) during 30 minutes on ice. 

̵ Lysates were passed 10 times through a 21-gauge needle, and then nuclei were 

pelleted by centrifugation at 2400g for 10 minutes at 4ºC. 
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̵ Pellets were rinsed with PBS supplemented with PIC and centrifuged again at 

2400g for 10 minutes at 4ºC. 

̵ In order to conjugate biotin to the EdU present on the samples, click reaction 

was performed. To this end, cell pellets were incubated during 30 minutes at RT 

with click reaction solution. After click reaction, nuclei were pelleted by 

centrifugation, rinsed again as previously with PBS supplemented with PIC, and 

then pelleted again by centrifugation at 2400g for 10 minutes at 4ºC. 

̵ Finally, pellets were resuspended in shearing buffer (ChIP Express kit, Active 

motif), sonicated (Bioruptor, Diagenode) for 15 minutes at high intensity (30-

s/30-s on/off pulses), and centrifuged at 15.000g for 20 minutes at 4ºC. After 

that, supernatants were collected and stored at -20ºC. 

* Samples must be kept on ice if not specified otherwise. 

• Click reaction solution 

̵ 100mM tris HCl, pH 8 

̵ 2mM CuSO4 

̵ 0,2mM biotin azide 

̵ 100mM ascorbic acid 

* Reagents must be added to ultrapure water in this certain order. 

5.2. DNA purification and validation of sonication 

For DNA purification, 30µL (5%) of processed cell extracts were mixed and incubated 

overnight at 65ºC with 170µL of ultrapure water, 10µL of NaCl (5M) and 1µL of RNAse 

(10µg/µL) to reverse the crosslinks. After that, 2µL of Proteinase K (10µg/µL) were 

added, and samples were incubated at 55ºC during more than 4 hours. Next, 250µL of 

ultrapure water were added to each sample, and finally phenol: chloroform 

extraction
534

 was used to separate proteins from DNA.  

The obtained DNA was quantified using a nanodrop (ThermoFisher scientific). After 

that, 0.5µg of DNA were loaded and separated in a SYBR® Safe-containing (Sigma; 

according to manufactures guidance) 1.5% agarose gel. Finally, DNA fragments were 

visualized using a Gel Doc® EZ System (Bio-Rad). 

5.3. Dot-blot 

The biotinylation of the samples was analyzed by dot-blot. To this end, 1µL of 

processed cell extract was spotted onto a nylon membrane (Hybond-N+, Amersham) in 

triplicate. After that, membranes were air-dried at RT for 15 minutes, and then DNA 

was crosslinked to the membrane by UV light (4000µJx100). After crosslinking, 

membranes were rehydrated with TBS-T, blocked with 5mg/mL salmon sperm DNA- 

(Sigma) containing TBS-T for 1 hour at RT, and washed several times with TBS-T before 

incubation with primary antibody. A primary antibody against Avidin, which was 

already conjugated to HRP enzyme, was used in this case. Membranes were incubated 
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during 15 minutes at RT with the primary antibody (1/1000), washed several times with 

TBS-T and finally developed using ECL. 

* A serially diluted 5’-biotinylated oligonucleotide served as standard (5’-CTCATAGCT 

CACGCTGTAGGTATCTCAGTTCGG-3’). 

5.4. iPOND 

The modified version of iPOND was performed as follows: 

Streptavidin-conjugated Dynabeads M-280 (Invitrogen) were washed three times with 

1x ChIP buffer and then blocked during 1 hour at RT with 10 mg/mL salmon sperm 

DNA- (Sigma-Aldrich) containing PBS. Processed cell extracts were then incubated with 

previously blocked Dynabeads (1:10) for 30 minutes at RT. Finally, beads were washed 

twice with low salt buffer and twice with high salt buffer, and then resuspended in 

Laemmli buffer
533

 either by MS or WB analysis. 

* Samples must be kept on ice before the addition of Laemmli buffer if not specified 

otherwise. 

• 1x ChIP buffer 

̵ 1% Triton X-100 

̵ 2mM EDTA, pH 8 

̵ 150mM NaCl 

̵ 20mM tris HCl, pH 8 

̵ 20mM beta-glycerol phosphate 

̵ 2mM Na3VO4 

• Low salt buffer 

̵ 1% Triton X-100 

̵ 2mM EDTA, pH 8 

̵ 150mM NaCl 

̵ 20mM tris HCl, pH 8 

• High salt buffer 

̵ 1% Triton X-100 

̵ 2mM EDTA, pH 8 

̵ 500mM NaCl 

̵ 20mM tris HCl, pH 8 

6. High-resolution MS 

Due to technical problems, the MS analysis had to be performed in two rounds. The 

steps explained below were performed individually for each MS round. Additionally, 

the 14h HU sample of the first biological replicate was analyzed in the second MS 

round, together with the samples of the second and third replicates. Thus, the 

calculations to obtain the nRA values of the proteins present on the 14h HU condition 
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of the first biological replicate were performed per duplicate with the values of the 

second and third replicates in each case. As a result, for each protein, two different nRA 

values were obtained in the 14h HU condition of the first replicate. Therefore, in order 

to normalize this condition with the other ones, we calculated the average of both nRA 

values in this case. 

6.1. Protein separation and silver staining 

The proteins present on iPOND extracts were slightly separated in a 10% 

polyacrylamide gel by SDS-PAGE electrophoresis (as previously explained) and then 

silver-stained. 

The staining was performed using a MS compatible method as follows: 

̵ Gels were rinsed with ultrapure water. 

̵ After that, gels were fixed by incubation with H2O: methanol: acetic acid 

(50:40:10) solution for 45 minutes at RT. 

̵ After fixation, gels were washed several times with ultrapure water during more 

than 1.5 hours at RT. 

̵ Gels were then incubated with 0.02% (w/v) sodium thiosulfate for 3 minutes at 

RT. 

̵ Two washes of 1 minute each with ultrapure water were performed. 

̵ After that, gels were stained with 0.1% (w/v) silver nitrate solution for 30 

minutes at 4ºC in the dark. 

̵ Two washes of 1 minute each with ultrapure water were performed. 

̵ Finally, gels were developed with 0.04% PFA-containing 2% (w/v) sodium 

carbonate at 4ºC. Developing solution was changed with a new one when it 

turned yellow. Gels were incubated with developer until proteins bands were 

visible. Once protein bands were visible, developer was removed and reaction 

was stopped by the addition of 5% acetic acid. 

* All the reagents were freshly prepared with sterilized ultrapure water. Clean trays 

were used and gels were always manipulated using gloves to avoid keratin 

contamination. All washes and incubations were performed in a shaker. 

For the identification/quantification of nascent DNA-bound proteins, silver-stained gel 

lanes (each of them corresponding to a certain condition (Figure 1)) were sent to the 

proteomic service of the Karolinska Institutet to analyze them by high-resolution MS. 

This analysis allowed us not only to identify but also to compare the relative protein 

abundance values between samples, using a label-free quantification method. 

The in-gel digestion, MS analysis (liquid chromatography tandem MS), database search 

and protein identification /quantification were performed by the proteomic service of 

the Karolinska Institutet. 
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Figure 1. Protein visualization by silver staining. 

A representative image of a silver-stained polyacrylamide gel is shown. The proteins present on iPOND 
extracts were separated in a 10% polyacrylamide gel, and then stained with silver. Each lane, representing a 

certain condition, was isolated as indicated (with a black box) and sent to the proteomic service for further 
analysis. 

6.2. In-gel digestion of silver-stained gel bands 

Each gel lane was divided into several pieces, which were de-stained in 50mM 

ammonium bicarbonate and 50% acetonitrile. Liquid was removed and the gel pieces 

were directly subjected to a tryptic digestion protocol carried out by a liquid handling 

robot (MultiProbe II, Perkin Elmer). This included the reduction of proteins for 30 

minutes in 10mM DTT at 56 °C and their alkylation in 15mM iodacetamide for 30 

minutes at RT in the dark. Gel pieces were dehydrated in 100% acetonitrile, trypsin was 

added to a final concentration of 13ng/µl, and the pieces were digested for 5 hours at 

37°C. Extracted peptides from each lane were pooled into one sample. 

6.3. Liquid chromatography tandem MS 

• First MS round 

Tryptic peptides were cleaned with C18 StageTips (Thermo Fisher Scientific Inc) 

and the resulting peptide mixture was injected into an Easy-nLC system (Thermo 

Scientific, Bremen, Germany) in-line coupled to a hybrid LTQ Orbitrap Velos ETD 

mass spectrometer (Thermo Scientific, San Jose, USA). The chromatographic 

separation of the peptides was achieved using a 10 cm fused Silica Tip column 

(New Objective, Inc.) self-packed with 3-µm C18-AQ ReproSil-Pur (Dr. Maisch 

GmbH) using a linear gradient from 3−48% acetonitrile in 1 hour and 29 minutes, 

at flow rate of 300 nl/min.  

The MS acquisition method was comprised of one survey full scan ranging from 

m/z 300 to m/z 2000 acquired in the FT-Orbitrap with a resolution of R= 60,000 at 

m/z 200 followed by up to five data-dependent CID fragmentation scans in profile 

mode from the most intense precursor ions with a charge state ≥ 2. 
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• Second MS round 

Tryptic peptides were cleaned with C18 StageTips (Thermo Fisher Scientific Inc) 

and the resulting peptide mixture was injected into a nano-Ultimate system 

(Thermo Scientific, Bremen, Germany) in-line coupled to a Fusion Orbitrap mass 

spectrometer (Thermo Scientific, San Jose, USA). The chromatographic separation 

of the peptides was achieved using a 15cm long prepacked Thermo Scientific EASY-

Spray column (3um, 75 um ID) at 55°C with the following gradient: 4−30% 

acetonitrile in 1 hour 54 minutes, 30−96% ACN for 5 minutes and 96% ACN for 8 

minutes all at a flow rate of 300nl/min. 

The MS acquisition method was comprised of one survey full scan ranging from 

m/z 300 to m/z 1750 acquired with a resolution of R= 60,000 at m/z 200 and a 

target value of 2x10
5
, followed by data-dependent higher-energy collisional 

dissociation fragmentation scans in Top Speed data mode for precursor ions with a 

charge state ≥ 2. Sequencing was done with a target value of 5x10
4
 ions 

determined with predictive automatic gain control, for which the isolation of 

precursors was performed with a window of 2 m/z. Scans were acquired with a 

resolution of R=15000 and normalized collision energy was set to 35. 

6.4. Database search and protein identification/quantification 

Fragmentation spectra were extracted using Raw2MGF (in-house developed software), 

and the resulting mascot generic files were searched against a SwissProt protein 

database (reversed protein sequences had been added to database for decoy search) 

using the Mascot 2.3.0 (Matrix Science Ltd.). Mascot was set up to search a 

concatenated SwissProt protein database with enzyme specificity set as C-terminal to 

arginine and lysine, allowing cleavage before proline and a maximum of  and two 

missed cleavage sites. The allowed peptide mass deviation was set to 10ppm and 0.6 or 

0.02Da (first and second round respectively) for the fragment ions. 

Carbamidomethylation of cysteine was specified as a fixed modification, whereas 

oxidation of methionine and deamidation of asparagine and glutamine were defined as 

variable modifications. 

Quantitative information was extracted using the software package Quanti
535

. This 

software performs extracted ion current quantification for label free quantitation and 

normalization. Only peptides identified with a Mascot score higher than 28 or 37 (first 

and second round respectively) were selected. Such a threshold was set to fulfill 

condition of no more than 1% FDR over the total peptide population. Only proteins 

quantified with such peptides were considered for quantitation. 

7. Flow cytometry 

Flow cytometry is used to analyze different cell features such as DNA content, as well as 

to determine the number mitotic cells. For this analysis, cells were harvested by 

trypsinization, and centrifuged at 660g for 5 minutes at 4ºC in all cases. After that, cell 

pellets were washed with ice-cold PBS and centrifuged again as before. Finally, pellets 
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were resuspended in ice-cold PBS, diluted 1:10 in ethanol (70%) and stored at -20ºC at 

least during 2 hours to fix them. 

* Samples can be stored during several months at -20ºC. 

7.1. DNA content analysis 

DNA content was analyzed by staining the DNA with PI (propidium iodide) in the 

presence of RNAse. The PI is intercalated into DNA and RNA, proportionally to the 

amount of them. Therefore, since RNA is degraded by the addition of RNAse, the 

incorporated PI will be proportional to the amount of DNA. 

For this analysis, after fixation, cells were washed with 0.05% Tween-20- containing PBS 

(PBS-T), centrifuged at 660g for 5 minutes at 4ºC and resuspended in 1% PI-containing 

PBS, supplemented with 1mg/mL RNAse. Cells were incubated with this buffer for 30 

minutes at 37ºC to ensure that RNA was degraded. 

 

7.2. BrdU/MPM2 and PI analysis 

A combined analysis of BrdU, MPM2 and DNA content was used to analyze the number 

of cells arrested in S phase, as well as the number of mitotic cells. 

For this analysis, cells were incubated with BrdU-containing medium before treating 

them as indicated. Cells were then fixed as previously explained. After fixation, cells 

were washed with PBS-T, and then centrifuged at 660g for 5 minutes at 4ºC. After that, 

DNA was denatured by incubation with 0.1% Triton X-100-containing 2M HCl-PBS 

solution for 15 minutes at RT. HCl was then neutralized by washing twice with borate 

buffer (borate solution was removed each time by centrifugation at 660g for 5 minutes 

at 4ºC). After neutralization, cell pellets were rinsed with PBS-T, blocked by incubation 

with 3% BSA-containing PBS-T for 1 hour at RT, and then incubated with primary 

antibodies (anti-BrdU (Abcam, ab6326; 1/250) and  anti-MPM2 (Millipore, #05-368; 

1/250) diluted in blocking solution) for 1 hour at RT. Finally, cell pellets were washed 

with PBS-T, incubated with secondary antibodies (anti-rat488 (Invitrogen; 1/400) and 

anti-mouse647 (Invitrogen; 1/500) diluted in PBT-T) for 45 minutes at RT, washed again 

with PBT-T and finally resuspended in 1% PI-containing PBS, supplemented with 

1mg/mL RNAse. Cells were incubated with this solution during 30 minutes at 37ºC 

before flow cytometric analysis. 

• Borate buffer (pH 8.5) 

̵ 0.1M Na2B4O7*10H2O 

* Ajust the pH by adding 0.1M boric acid solution. 

8. Immunofluorescence 

As flow cytometry, immunofluorescence is a useful technique to analyze several cell 

features. These techniques consist in labeling the proteins of interest with primary 
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antibodies, to visualize them afterwards by their detection with secondary antibodies 

conjugated to fluorescent molecules. 

For flow cytometric analysis, cells are maintained in suspension. By contrast, cells are 

attached to coverslips for immunofluorescence techniques. To improve microscope 

imaging, coverslips are mounted onto slides with mowiol after the 

immunofluorescence. 

Images were obtained using Leica TCS-SL or TCS-SP5 confocal microscopes and then 

analyzed using Fiji (Image J) software in all cases. 

8.1. CldU/IdU immunofluorescence 

For CldU and IdU immunofluorescence, previously labeled and treated cells were fixed 

during 10 minutes with 70% ethanol at RT. Cells were then rinsed with PBS and 

incubated with 0.2% Triton X-100 containing 2M HCl-PBS solution for 30 minutes at RT. 

HCl was neutralized by washing three times with borate buffer. Cells were then washed 

twice with PBS and blocked with 1% BSA- containing PBS for 15 minutes. Finally, cells 

were incubated with primary anti-BrdU (Abcam, ab6326; 1/250 for CldU labeling and 

Becton Dickinson, 347580; 1/50 for IdU labeling) antibodies for 1 hour at 37ºC, and 

with secondary, anti-rat (Alexa488 conjugated; 1/500) and anti-mouse (Alexa647 

conjugated; 1/500) antibodies, for 45 minutes at 37ºC, all of them diluted in blocking 

buffer. DNA was counterstained with DAPI before mounting. 

8.2. 53BP1/YH2AX, 53BP1/CycD1 and 53BP1immunofluorescence 

Previously treated cells were rinsed with PBS and fixed with 2% PFA-PBS for 20 minutes 

at RT. After extensive washing, cells were permeabilized with 0.2% Triton X-100-

containing PBS for 10 minutes at RT, and washed with PBS for 5 minutes. Cells were 

then blocked with 3% FBS-containing 0.1% Triton X-100-PBS for 1 hour at RT, and then 

incubated with the indicated antibodies, diluted in blocking solution, for 45 minutes at 

37ºC. The following primary antibodies were used: anti-γ-H2AX (Millipore, #05-636; 

1/3000), anti-53BP1 (Abcam, ab36823; 1/500), anti-Cyclin D1 (DCS-6, sc-20044; 1/100). 

After extensive washing in blocking solution, cells were incubated with Alexa488-, 

Alexa555-, or Alexa647-conjugated secondary antibodies (Invitrogen, 1/500 diluted in 

blocking solution) for 20 minutes at 37ºC.  Finally, cells were counterstained either with 

1% PI-containing 0.1 mg/mL RNAse A- (Fermentas) PBS solution or with DAPI (Sigma-

Aldrich). Cells were maintained at 37ºC during 15 minutes in the case of PI staining. 

For EdU staining, previously labeled and treated cells were fixed with 4% PFA-PBS for 

30 minutes at RT, and then click reaction was performed (as previously described) with 

1 µM Alexa488-azide (Invitrogen). 

8.3. ssDNA analysis by BrdU immunofluorescence under native conditions 

For ssDNA detection, previously labeled and treated cells were rinsed with PBS, 

permeabilized with 0.5% Triton X-100-PBS for 10 minutes at 4ºC, and then fixed with 

3%PFA/2%sucrose-PBS solution for 10 minutes at RT. After several washing with PBS, 

cells were blocked by incubation during 1 hour at RT with 3% BSA-containing PBS-T. 
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Cells were then incubated with the anti-BrdU (Becton Dickinson; 1/50) antibody, 

diluted in blocking solution, for 1 hour at 37ºC, washed with blocking solution for 15 

minutes at RT, and then incubated with the secondary antibody (anti-mouse 488; 

1/500) for 20 minutes at 37ºC. Finally, cells were washed again with blocking solution 

for 15 minutes at RT, and DNA was counterstained with 0.1mg/mL RNAse-containing 

1% PI solution (15 minutes at 37ºC). 

9. DNA fiber analysis 

DNA fiber assay is a powerful technic to analyze replication dynamics
506

. DNA fibers are 

labeled with different thymidine analogs, which are visualized by staining them with 

anti-BrdU antibodies that present different specificities for each of them. The 

incubation of cells with defined and different analogs, before and after the HU 

treatment, allowed us to determine the number of restarted (stained with both colors), 

stalled (stained only with the first color) and new origin firing (stained with the second 

color) events in each case. 

DNA fiber was performed as follows: 

̵ First, hTERT-RPE cells were pulse labeled with CldU/IdU and treated as indicated. 

Labeled cells were washed with PBS, centrifuged at 660g for 5 minutes at 4ºC, 

harvested by trypsinization and resuspended in ice-cold PBS at 5 x 10
5
 cells/mL 

concentration. 

̵ After that, DNA spreading was performed. To this end, 2µL of cells were spotted onto 

glass slides and lysed with 7µL of spreading buffer. Slides were tilted (15º to 

horizontal), allowing a stream of DNA to run slowly down the slide, air-dried for 1 

hour at RT, and then fixed with methanol/acetic acid (3:1) solution for 10 minutes 

(inside the hood). (Slides can be stored at 4ºC overnight after fixation). 

̵ For CldU and IdU immunostaining, slides were first washed twice during 5 minutes 

with ultrapure water. 

̵ Then, slides were incubated with 2.5M HCl solution during 1 hour and 15 minutes 

(inside the hood). After this time, HCl was removed from slides by washing twice with 

PBS, and then twice (during 5 minutes each) with blocking solution. 

̵ Once washed, slides were blocked by incubation during 1 hour with 1% BSA- and 

0.1% Tween-20-containing PBS solution at RT, and then incubated with anti-BrdU 

primary antibodies (Abcam, ab6326; 1/1000 for CldU labeling and Becton Dickinson, 

347580; 1/200 for IdU labeling) diluted in blocking solution for 1 hour and 30 minutes 

at 37ºC. 

̵ After that, slides were washed three times with PBS, fixed with 4%PFA-containing PBS 

for 10 minutes at RT, washed again three times with PBS and then twice (during 5 

minutes each) with blocking solution. 

̵ Finally, slides were incubated with secondary antibodies (Alexa488-conjugated anti-

rat and Alexa555-conjugated anti-mouse; 1/500) diluted in blocking solution for 1 

hour and 30 minutes at 37ºC, washed five times with PBS and mounted with mowiol. 
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• Spreading buffer 

̵ 0.5% SDS 

̵ 200mM tris HCl, pH 7.4 

̵ 50mM EDTA 

* All material and reagents used for DNA fiber spreading and staining were previously 

sterilized. 

10. DNA break analysis by PFGE (pulse-field gel electrophoresis) 

PFGE can be used to detect the presence of DSBs on genomic DNA
505

. In the absence of 

breaks, chromosomes are unable to enter inside the agarose gel due to their size. By 

contrast, once broken, DNA fragments can enter and migrate thought the gel. 

For DNA break analysis, cells were washed with PBS, centrifuged at 660g for 5 minutes 

at 4ºC, trypsinized and then resuspended in incubation buffer at 8.33 x 10
6
 cells/mL 

concentration. 120µL of diluted cells were mixed 1:1 with 1% low-melting point agarose 

(Sigma), to obtain two agarose inserts each of them containing 0.5 x 10
6
 cells. After 

that, cells in plugs were lysed for 48 hours at 50ºC, washed three times with TE buffer 

and run in 1% agarose gel (chromosomal grade; Bio-Rad) in a CHEF DR III PFGE 

apparatus (Bio-Rad;  120 angle; 60–240 s switch time; 4 V/cm) at 14ºC for 20 hours. 

Finally, gels were stained with SYBR® Safe (Sigma) and analyzed by LAS-4000 system 

(Fujifilm). 

• Incubation buffer 

̵ 0.25mM EDTA 

̵ 20mM NaCl 

̵ 10mM tris HCl, pH 7.5 

• Lysis buffer 

̵ 0.25mM EDTA 

̵ 20mM NaCl 

̵ 10mM tris HCl, pH 7.5 

̵ 1% N-laurylsarcosyl 

̵  1 mg/ml proteinase K 

• TE buffer 

̵ 10mM tris HCl, pH 7.5 

̵ 1mM EDTA 

11. Statistical analysis 

Statistical analysis was always performed using Graphpad Prism 6 software. Paired or 

unpaired t test analyses were performed as indicated. Values marked with asterisks are 

significantly different: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). n.s. was 

used to indicate absence of statistical significance. 
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Appendix 1. Raw data. 

The protein ID and the relative abundance values, in each condition and replicate, of the proteins identified in our iPOND+MS experiment are shown. Data from each MS 

round are separated with a grey line. In light grey, proteins that were identified as reversed. Proteins that were not identified in one of the MS rounds are represented as 
empty boxes. Conditions have been previously described (Figure 37). 

 
n=1 n=1 (14 h HU); n=2; n=3 

      n=2 n=3 n=1 

PROTEIN ID Negative 
control Pulse 15' 

EdU/HU 
2h 
HU Chase Negative 

control Pulse 15' 
EdU/HU 

2h 
HU 

14h 
HU Chase Pulse 15' 

EdU/HU 
2h 
HU 

14h 
HU Chase 14h 

HU 

1433B_HUMAN 1,324 1,146 0,761 0,684 1,268 
            

1433E_HUMAN 1,554 0,325 0,707 1,731 1,936 
            

1433F_HUMAN 0,764 0,626 3,325 0,828 0,779             
1433G_HUMAN 1,100 0,792 1,255 0,843 1,204 0,000 0,784 1,843 1,540 0,792 0,305 1,675 0,762 1,264 0,870 0,897 1,273 

1433S_HUMAN 0,206 5,140 0,000 0,000 0,000             
1433T_HUMAN 0,770 0,726 1,283 1,611 1,034 

            
1433Z_HUMAN 1,085 0,898 0,874 1,084 1,081 0,000 0,885 0,699 0,975 0,292 1,454 0,865 0,283 1,385 1,584 2,341 2,927 

2AAB_HUMAN 0,965 0,894 1,129 0,859 1,245 
            

2ABD_HUMAN 1,057 1,323 0,537 1,318 0,969 
            

5HT6R_HUMAN 
     

0,173 0,989 1,294 1,009 1,351 1,712 1,798 1,894 1,286 0,999 1,044 0,350 

5NTC_HUMAN 1,074 0,000 0,598 2,200 0,708 
            

5NTD_HUMAN 1,120 0,561 1,557 0,900 1,108 
            

6PGD_HUMAN 0,901 0,716 1,115 1,198 1,145 1,823 1,009 0,305 0,917 1,652 1,643 2,217 0,748 0,561 1,167 0,415 1,327 

AATM_HUMAN 1,241 0,908 0,483 1,655 1,192 
            

ABC3B_HUMAN 0,814 0,355 1,449 0,947 2,459             
ABCA7_HUMAN 0,867 1,586 0,798 1,200 0,794             
ABCB6_HUMAN 1,431 0,916 1,594 0,174 2,632             
ABCE1_HUMAN 1,138 1,499 0,861 0,747 0,964 

            
ACACA_HUMAN 0,828 1,067 0,709 1,485 1,045 

            
ACADM_HUMAN 2,548 0,406 0,227 1,969 1,946 

            
ACL6B_HUMAN      0,000 0,364 2,152 3,791 0,644 0,000 0,163 3,728 1,429 1,063 0,776 0,567 

ACLY_HUMAN 0,997 0,879 1,879 0,942 1,052 1,852 0,080 0,682 2,290 2,534 0,803 4,123 1,196 0,900 1,922 0,599 0,495 

ACON_HUMAN 3,937 0,000 0,189 2,211 0,643             
ACTBL_HUMAN 1,028 0,000 3,120 0,464 0,660 

            
ACTG_HUMAN 1,115 0,812 0,780 1,469 0,948 1,847 0,743 0,764 0,699 1,089 0,664 1,170 0,960 0,920 0,955 1,198 1,455 

ACTN1_HUMAN 1,850 0,858 0,945 0,878 0,792 0,000 1,257 0,204 0,262 1,206 1,244 0,897 1,133 0,894 1,446 1,578 2,448 
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ACTN4_HUMAN 1,176 0,798 1,001 1,331 0,799 8,105 1,178 1,114 0,689 1,053 0,141 0,333 0,745 0,432 0,903 2,119 1,970 

ACTZ_HUMAN 1,382 0,686 1,388 1,552 1,381 
            

ADK_HUMAN 1,593 0,331 0,485 1,808 2,069 
            

ADNP_HUMAN 
     

0,000 0,000 1,190 0,957 0,000 0,705 0,000 1,230 0,942 1,095 0,981 0,000 

ADT2_HUMAN 1,631 0,406 0,392 2,388 1,677             
ADT3_HUMAN      0,909 0,733 0,951 1,891 1,717 1,133 1,087 0,254 1,648 0,563 1,094 1,215 

AHNK_HUMAN 1,747 0,775 1,256 0,663 0,912 0,608 4,371 0,431 0,904 0,271 0,729 0,106 2,909 1,840 1,710 2,320 2,062 

ALBU_HUMAN 1,391 0,912 1,220 0,802 0,789 4,854 0,277 0,261 0,559 0,520 10,628 1,247 1,027 1,053 0,785 0,561 0,613 

ALDOA_HUMAN 1,006 0,596 0,835 1,297 1,365 1,454 1,051 0,876 0,860 0,750 1,013 1,491 1,108 0,935 0,577 0,648 1,454 

AN32E_HUMAN 0,056 1,845 3,014 1,127 3,034 0,000 2,872 5,892 4,404 0,288 1,721 4,265 0,160 3,736 0,109 1,417 0,066 

ANLN_HUMAN 0,118 1,992 2,897 0,959 1,500 0,000 2,929 2,249 2,461 0,197 0,920 1,417 1,223 2,964 0,681 1,088 0,110 

ANM1_HUMAN 0,573 1,132 1,290 0,973 1,283 0,000 1,193 0,294 0,646 0,000 6,136 2,646 0,695 10,91 0,262 0,593 0,000 

ANXA1_HUMAN 1,146 0,875 1,007 0,784 1,266 2,384 2,337 1,563 2,531 0,245 1,276 1,725 0,429 1,338 0,245 1,542 0,593 

ANXA2_HUMAN 1,470 0,656 0,721 1,236 1,099 2,662 1,076 0,941 0,939 0,644 0,800 1,128 0,780 0,950 0,720 1,148 1,108 

ANXA5_HUMAN 1,109 0,936 0,971 1,000 1,075 0,259 4,517 2,023 5,373 1,004 1,023 2,205 0,081 1,145 1,474 2,866 0,312 

ANXA6_HUMAN 
     

0,000 0,320 2,206 0,573 0,786 0,209 0,000 0,810 1,471 1,933 0,770 1,437 

APEX1_HUMAN 1,737 0,837 1,400 1,058 2,066 0,343 0,430 0,502 0,995 0,691 1,180 0,424 1,603 3,260 0,986 1,876 2,429 

API5_HUMAN 0,511 1,278 1,529 0,909 1,009             
ARF4_HUMAN 0,971 1,247 1,021 0,665 1,490             
ARF5_HUMAN 

     
2,266 0,271 0,741 0,905 0,623 2,434 0,890 0,513 1,996 0,405 0,197 11,928 

ARMC6_HUMAN 0,000 0,000 0,000 0,096 8,268 
            

ARP3_HUMAN 1,286 0,992 0,969 1,287 0,725 
            

ARPC2_HUMAN 1,834 1,732 0,538 2,992 2,689 
            

ARPC4_HUMAN 1,182 1,749 0,516 0,976 0,973 0,310 0,494 1,859 0,817 2,444 1,826 1,035 0,571 0,955 0,729 2,748 2,463 

ARPC5_HUMAN 1,048 3,395 0,397 0,204 3,386 
            

ASAP2_HUMAN 1,957 0,437 1,544 3,094 0,251 0,707 4,809 3,432 3,451 2,860 0,285 3,877 2,633 0,242 0,208 0,371 0,193 

AT1A1_HUMAN 2,201 0,433 0,973 2,212 0,632 
            

ATD3A_HUMAN 1,592 0,779 0,766 1,582 1,092 
            

ATPA_HUMAN 1,141 0,953 0,815 1,499 0,763 1,124 1,741 0,827 1,013 1,625 0,594 1,139 2,152 1,409 0,928 0,163 1,512 

ATPB_HUMAN 1,424 0,869 0,628 1,497 0,884 0,697 2,234 1,225 2,081 2,133 0,304 2,416 1,506 1,483 0,976 0,162 0,712 

ATPO_HUMAN 1,227 1,430 0,427 1,137 1,254             
BAZ1B_HUMAN 0,000 2,378 2,371 0,583 0,305 

            
BRD4_HUMAN 0,000 0,000 0,000 1,000 0,000 
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BUB3_HUMAN 0,397 0,277 2,527 1,419 2,508 
            

BZW1_HUMAN 1,839 0,675 0,742 1,206 1,064 
            

C1TC_HUMAN 0,916 0,930 1,232 1,366 0,852 
            

CAF1A_HUMAN 2,308 4,183 1,285 0,143 1,943 
            

CAF1B_HUMAN 0,000 1,934 0,000 0,508 0,000             
CALD1_HUMAN      14,540 1,567 3,464 0,669 1,564 0,676 0,391 0,263 0,526 0,389 4,304 0,541 

CAMP2_HUMAN      0,000 0,000 0,272 0,895 0,604 0,955 17,512 2,087 1,326 0,000 0,210 0,000 

CAN2_HUMAN 1,318 0,883 1,092 0,667 1,102 
            

CAND1_HUMAN 0,596 1,066 1,605 1,012 0,873 2,859 1,485 1,670 2,613 0,960 0,560 0,505 1,363 0,635 1,063 0,705 0,490 

CAP1_HUMAN 1,645 0,877 0,801 0,932 0,966 1,442 2,894 0,157 0,469 1,498 0,505 0,833 1,669 2,382 0,180 2,977 2,618 

CAPR1_HUMAN 5,219 0,256 2,283 1,327 0,300 
            

CAPZB_HUMAN 0,537 1,866 0,349 1,910 2,367 
            

CATD_HUMAN 
     

0,641 0,189 4,283 2,313 0,524 0,678 0,519 0,171 3,982 1,571 0,294 8,297 

CAZA2_HUMAN 1,133 0,991 0,837 0,879 1,240 
            

CBX3_HUMAN 
     

0,074 0,927 1,408 2,166 0,654 0,036 2,269 3,402 3,559 2,576 2,159 1,869 

CBX5_HUMAN 
     

0,000 0,454 1,131 1,277 0,791 1,299 1,997 0,901 1,310 0,913 1,360 0,560 

CCD93_HUMAN 1,131 0,814 0,853 1,137 1,138             
CCDC8_HUMAN 0,801 0,746 1,335 0,945 1,229             
CDC37_HUMAN 0,404 1,007 1,283 1,342 1,425             
CDC5L_HUMAN 

     
0,000 2,638 0,992 0,533 1,037 0,881 1,013 1,014 1,207 1,489 0,642 0,000 

CDK1_HUMAN 0,609 1,141 1,304 1,092 0,995 
            

CDSN_HUMAN 1,882 2,299 0,199 1,122 0,986 
            

CE290_HUMAN 2,467 1,871 0,754 0,257 1,247 
            

CERU_HUMAN 0,000 0,000 0,314 3,213 0,000 
            

CH60_HUMAN 1,240 1,132 0,692 1,391 0,775 0,771 2,274 0,796 1,187 0,547 0,848 1,465 2,364 1,484 0,623 0,453 0,786 

CHCH3_HUMAN 
     

1,637 0,000 0,000 0,000 0,000 0,000 0,000 0,329 3,344 0,354 0,000 1,594 

CISY_HUMAN 
     

1,278 0,232 0,793 1,694 0,772 0,512 6,776 2,984 2,085 0,851 0,344 0,455 

CKAP4_HUMAN 1,259 1,051 0,762 0,929 0,966 
            

CLH1_HUMAN 1,331 0,765 0,962 1,027 0,946 0,381 1,612 1,016 0,554 1,526 0,525 0,597 1,321 1,230 1,904 0,990 2,277 

CLIC1_HUMAN 0,739 0,866 1,055 1,460 1,350             
CLIC4_HUMAN 0,735 0,276 0,305 4,426 4,047             
CNN2_HUMAN 1,290 0,764 0,921 1,013 1,106 0,282 1,182 1,612 0,445 1,762 1,377 0,408 1,507 1,144 1,112 1,091 2,298 

CNTP4_HUMAN 
     

0,217 1,452 0,983 1,159 0,629 1,512 1,276 1,191 1,446 1,050 1,838 0,531 
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CO4B_HUMAN 1,780 2,822 0,903 0,286 0,782 3,643 0,301 1,043 0,730 1,017 1,351 1,441 1,768 1,314 0,596 0,579 0,705 

COF1_HUMAN 0,875 0,977 1,215 0,684 1,485 
            

COPA_HUMAN 
     

402,854 0,522 0,229 0,000 0,492 0,252 0,000 0,715 0,000 0,591 0,346 1,397 

COPB2_HUMAN 
     

0,337 0,671 0,954 0,792 2,722 1,182 0,487 1,460 0,323 1,486 1,981 2,422 

COPG1_HUMAN 1,335 0,841 0,880 1,488 0,907 2,248 0,755 0,314 0,879 1,366 1,320 0,557 1,830 0,474 0,757 1,145 1,310 

COR1C_HUMAN 1,189 1,069 0,979 0,870 0,928             
CP2CJ_HUMAN      0,416 1,107 4,398 4,434 0,930 3,114 0,605 0,643 2,229 0,229 0,541 0,376 

CPNE1_HUMAN 1,246 1,237 0,943 0,637 1,113 29,164 0,998 1,997 3,160 0,820 1,195 0,470 0,449 0,668 0,513 1,556 0,451 

CPNE3_HUMAN 0,547 1,129 2,148 1,170 0,646 
            

CPNE9_HUMAN 
     

0,981 4,325 1,567 1,571 1,475 2,492 1,567 0,626 0,347 0,677 0,304 0,756 

CPSF6_HUMAN 0,826 0,879 1,183 0,745 1,856 0,000 0,931 0,331 1,760 1,401 1,931 0,654 1,314 0,949 0,904 1,922 0,269 

CSN4_HUMAN 0,895 0,741 1,166 0,817 1,598 
            

CSPG2_HUMAN 0,000 0,232 0,486 11,72 0,723 
            

CTBP1_HUMAN 0,218 2,737 0,952 1,725 1,208 0,348 0,345 11,025 3,032 17,461 0,431 0,308 0,157 0,631 0,199 29,289 0,081 

CTBP2_HUMAN 0,000 0,692 0,000 2,572 0,571 0,000 2,028 1,475 0,442 0,000 0,000 0,980 0,800 0,000 2,657 0,395 0,000 

CTNA1_HUMAN 1,565 3,006 0,871 0,754 1,850 
            

CUL4B_HUMAN 0,460 1,678 2,284 0,564 1,064             
CUX1_HUMAN 0,420 0,000 0,000 2,768 0,000             
CYBP_HUMAN 0,392 0,546 1,468 1,455 2,258 1,595 1,155 1,853 0,843 0,280 0,535 1,227 1,132 0,308 1,122 4,774 0,725 

DAZP1_HUMAN 0,260 1,012 0,783 1,864 2,599 
            

DDX1_HUMAN 1,247 1,480 0,996 0,718 0,890 0,000 4,351 0,655 1,357 1,800 0,531 0,288 0,414 2,603 1,690 0,378 1,269 

DDX17_HUMAN 0,256 0,751 2,969 1,631 1,574 1,631 0,778 0,980 1,811 0,904 1,621 0,768 0,403 1,312 1,368 1,159 0,256 

DDX21_HUMAN 0,530 1,017 1,799 0,939 2,588 3,673 3,754 0,254 0,751 0,560 1,923 0,125 0,197 1,065 2,797 12,414 0,509 

DDX23_HUMAN 
     

1,401 0,126 0,075 0,753 5,468 0,187 0,086 5,935 1,507 2,190 7,826 5,093 

DDX3X_HUMAN 1,203 1,148 0,897 0,959 0,845 
            

DDX5_HUMAN 0,438 1,038 1,706 0,915 1,387 1,279 1,864 1,162 2,630 0,745 3,268 0,359 0,698 1,061 1,133 0,788 0,242 

DEK_HUMAN 0,172 0,582 2,097 1,477 3,048 0,064 1,368 2,819 2,935 1,431 0,802 2,508 1,729 2,410 2,177 2,487 0,037 

DESP_HUMAN 1,284 2,213 0,692 0,715 0,743 1,943 4,110 1,199 0,317 3,552 1,160 0,287 0,921 0,912 0,827 0,752 0,509 

DHB4_HUMAN 0,864 0,512 1,263 2,002 0,907             
DHE4_HUMAN 0,753 0,895 0,517 3,166 1,228             
DHSA_HUMAN 0,923 1,282 0,912 1,197 0,762             
DHX15_HUMAN 0,410 1,334 1,919 0,824 1,629 

            
DHX9_HUMAN 0,411 1,240 1,696 0,792 1,403 0,219 1,324 1,067 4,076 1,617 0,744 0,772 0,555 1,066 0,236 1,683 0,844 
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DLDH_HUMAN 
     

0,000 0,000 0,415 0,381 3,094 0,435 0,806 1,904 1,014 1,279 3,445 0,773 

DNJC9_HUMAN 
     

0,000 3,460 2,655 2,522 0,427 0,403 5,176 0,135 2,370 1,835 0,886 0,080 

DNLI1_HUMAN 0,000 5,775 2,259 0,541 0,145 
            

DNM1L_HUMAN 1,514 0,717 0,691 1,338 1,027 
            

DNMT1_HUMAN 0,916 4,540 1,944 0,247 0,432 1,405 12,32 0,527 0,476 0,271 2,474 16,668 0,891 0,403 0,316 0,195 0,944 

DPOA2_HUMAN 0,533 2,173 3,753 0,762 0,287             
DPOD1_HUMAN 0,000 1,864 2,852 0,559 0,364 0,000 4,427 9,094 1,226 0,080 0,299 8,245 2,286 2,042 0,136 0,088 0,000 

DPOD3_HUMAN 0,000 2,640 1,396 0,262 0,000 
            

DPOE1_HUMAN 0,219 2,340 5,744 0,155 0,000 
            

DPYL2_HUMAN 1,035 1,871 0,936 0,842 0,620 1,225 1,228 0,898 1,088 1,081 1,395 0,956 0,456 0,885 1,309 0,918 0,895 

DPYL5_HUMAN 
     

0,618 0,351 1,068 0,740 0,918 0,923 1,700 2,168 0,932 1,091 1,429 1,080 

DRG1_HUMAN 3,659 0,417 0,470 1,502 0,926 
            

DSC1_HUMAN 1,459 1,853 0,613 0,988 0,611 
            

DSG1_HUMAN 1,528 1,830 0,534 0,889 0,753 12,809 1,510 0,650 0,880 0,930 0,485 1,364 0,687 0,789 0,876 0,403 1,158 

DX39B_HUMAN 0,441 1,151 1,516 1,050 1,359 0,000 3,879 0,701 2,892 0,661 2,093 1,230 0,915 1,053 0,445 0,696 0,468 

DYH5_HUMAN 1,158 0,347 1,245 1,688 1,242 0,748 2,991 1,060 0,970 0,926 0,792 1,205 0,869 0,900 0,538 1,078 1,041 

DYHC1_HUMAN 1,657 0,798 0,711 1,057 1,131 0,000 2,206 0,795 0,521 1,406 2,719 0,286 1,656 0,592 0,518 1,480 1,590 

DYR_HUMAN 0,000 0,535 1,601 0,478 2,323 0,000 1,542 1,099 8,947 0,783 0,000 0,849 1,293 0,300 0,852 0,562 0,616 

E2AK2_HUMAN 0,871 0,708 1,253 1,121 1,142             
ECHA_HUMAN 1,541 1,474 0,441 1,578 0,650 

            
ECHM_HUMAN 0,828 0,935 0,750 1,360 1,315 

            
EF1A3_HUMAN 1,509 0,884 0,800 1,033 0,939 1,616 1,069 0,882 0,684 0,799 1,049 1,005 0,942 1,002 0,653 0,691 2,016 

EF1D_HUMAN 3,656 1,528 0,500 0,994 0,993 0,848 1,314 1,433 0,994 0,942 0,599 0,999 0,443 1,628 0,835 1,585 1,140 

EF1G_HUMAN 1,375 0,912 1,123 0,805 0,963 0,573 0,992 0,597 0,639 0,790 0,495 1,064 0,826 1,571 1,258 0,911 7,074 

EF2_HUMAN 1,279 1,047 0,973 0,924 0,817 0,940 1,238 0,967 0,765 1,010 1,163 0,783 1,160 0,949 0,866 0,981 1,329 

EFTU_HUMAN 1,294 0,597 0,658 1,702 1,280 4,509 1,040 0,631 0,794 0,555 0,231 2,607 1,914 0,732 0,426 0,390 1,105 

EIF3A_HUMAN 1,217 1,009 1,072 0,830 0,938 
            

EIF3F_HUMAN 1,674 1,430 0,650 0,609 1,035 
            

EIF3L_HUMAN 1,405 1,178 0,828 1,374 0,593             
ELAV1_HUMAN 0,478 1,257 1,761 0,874 2,334 0,246 1,380 1,779 2,160 0,932 1,091 1,355 0,785 1,355 1,659 1,428 0,377 

ENOA_HUMAN 0,781 1,155 0,757 1,185 1,194 1,204 1,279 1,049 1,186 0,829 0,812 1,070 0,807 0,514 1,229 0,708 1,810 

ENOB_HUMAN 0,867 0,987 0,757 1,239 1,262 
            

ENPL_HUMAN 1,346 0,250 0,898 2,287 1,546 1,243 3,692 1,157 0,411 3,021 0,132 0,609 0,302 0,248 3,338 0,722 2,542 
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EPIPL_HUMAN 0,811 4,419 0,000 0,000 0,298 
            

ESTD_HUMAN 
     

0,000 0,857 0,919 1,124 1,171 0,000 1,469 0,000 0,576 0,724 1,425 0,000 

ESYT1_HUMAN 1,463 1,148 0,629 0,847 1,140 1,178 9,015 0,414 0,418 1,158 8,602 0,334 0,664 0,493 0,760 1,030 1,162 

EWS_HUMAN 0,198 1,496 0,720 1,910 2,431 
            

EZRI_HUMAN 1,254 0,546 1,286 1,084 1,046 0,626 1,407 1,379 0,921 1,081 0,334 1,224 0,461 1,293 3,509 1,151 0,601 

FA84B_HUMAN      0,207 2,073 0,219 0,973 2,275 4,417 2,751 0,248 2,012 2,410 2,168 0,160 

FACD2_HUMAN 0,000 0,237 3,202 4,006 0,306             
FANCI_HUMAN 0,000 0,179 2,474 1,908 1,114 

            
FAS_HUMAN 1,291 0,874 1,089 0,809 1,017 17,956 1,489 1,441 0,559 1,132 0,763 0,524 1,191 0,885 0,379 0,725 0,915 

FBF1_HUMAN 0,766 0,871 1,118 1,140 1,245 0,115 0,332 1,789 2,098 2,133 1,571 1,916 0,099 3,391 2,724 3,863 0,302 

FBRL_HUMAN 
     

0,000 1,710 0,805 0,587 0,581 0,000 0,574 0,532 0,787 1,096 19,145 0,536 

FEN1_HUMAN 0,191 2,762 2,582 0,735 1,037 0,000 1,655 1,600 1,346 0,516 1,136 3,189 1,728 2,022 0,889 0,534 0,084 

FILA2_HUMAN 2,699 0,902 0,416 1,453 0,686 
            

FINC_HUMAN 
     

0,000 12,81 1,226 0,162 0,460 0,776 0,000 0,427 0,539 0,262 6,985 2,606 

FLNA_HUMAN 1,197 0,909 1,060 0,968 0,884 0,868 1,496 0,766 0,636 0,933 0,865 0,697 1,187 1,059 0,975 1,237 1,932 

FLNB_HUMAN 
     

0,285 2,462 0,996 1,179 1,374 0,195 0,200 1,058 1,535 1,370 2,009 3,118 

FLNC_HUMAN 1,585 0,726 1,067 0,904 0,959 0,405 2,079 1,067 0,945 1,465 0,455 0,402 1,008 1,023 1,403 1,551 1,900 

FSCN1_HUMAN 0,772 0,781 0,816 1,359 1,456 1,886 1,149 0,716 1,654 5,542 0,274 0,554 1,177 1,023 0,667 0,901 0,640 

FUBP1_HUMAN 0,924 0,755 1,338 1,139 1,390 0,239 0,130 2,778 2,854 2,360 0,333 2,503 0,346 0,223 3,139 3,263 2,302 

FUBP2_HUMAN 0,700 0,862 1,483 0,791 1,386 0,234 1,668 1,629 1,185 1,265 3,842 0,203 0,427 1,239 2,858 2,324 0,398 

FUS_HUMAN 0,579 1,101 2,037 1,051 1,154 
            

FXR1_HUMAN 2,381 0,478 1,118 0,904 0,838 
            

G3P_HUMAN 0,951 0,809 0,756 1,157 1,595 1,189 0,250 1,469 1,398 1,152 2,714 1,214 0,968 0,955 0,772 0,985 0,729 

G3PT_HUMAN 2,032 1,120 0,768 0,628 0,900 
            

G6PI_HUMAN 2,030 0,604 0,715 2,968 0,380 
            

GBLP_HUMAN 1,508 0,873 0,838 1,053 0,912 0,104 1,066 1,359 1,530 1,293 1,649 1,121 1,031 1,677 1,272 2,098 0,344 

GDF11_HUMAN 2,209 0,227 2,069 0,318 2,303 
            

GDIB_HUMAN 1,638 0,931 0,688 1,134 0,874 
            

GFAP_HUMAN 1,763 0,236 8,588 0,502 0,553             
GLSK_HUMAN      0,000 0,703 0,467 0,394 0,955 0,610 1,521 1,288 7,979 1,877 0,554 0,765 

GLYM_HUMAN 1,259 0,853 0,677 1,564 0,867 1,270 1,039 2,044 0,732 1,411 0,337 3,963 1,103 1,474 0,469 0,363 0,369 

GNA13_HUMAN 1,829 0,504 1,059 1,071 0,989 
            

GOGA2_HUMAN 2,448 0,287 2,867 0,424 1,149 
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GRP75_HUMAN 1,505 0,898 0,567 1,339 0,948 3,256 0,879 0,665 0,997 0,856 0,263 1,223 1,635 0,882 1,486 0,589 1,590 

GRP78_HUMAN 1,125 0,923 0,653 1,604 1,038 0,880 1,117 0,794 0,859 1,599 1,540 1,322 0,225 0,788 3,722 0,445 1,887 

GRWD1_HUMAN 0,691 5,388 1,300 0,620 0,455 
            

GSDMA_HUMAN 0,622 0,462 0,956 2,563 1,412 3,902 1,648 1,075 0,958 0,660 1,444 0,511 1,411 0,672 0,762 0,268 0,000 

GSTP1_HUMAN 0,750 1,061 1,214 0,812 1,256             
GTF2I_HUMAN 0,361 1,726 2,474 0,853 0,821 1,927 0,945 1,070 1,988 0,216 1,723 1,050 0,771 0,414 0,787 0,395 7,841 

GTR1_HUMAN 0,311 1,646 0,955 1,821 1,111 0,222 1,167 0,956 1,522 6,853 1,158 0,426 0,597 0,635 3,398 1,115 1,924 

GUAA_HUMAN 0,294 1,799 1,498 0,998 1,329 0,000 1,489 1,600 3,016 1,510 1,517 1,646 1,748 1,349 0,971 0,287 0,115 

H12_HUMAN 
     

0,098 0,397 1,127 1,402 0,681 5,752 0,767 1,082 1,402 1,451 2,532 0,667 

H14_HUMAN 0,327 0,528 1,111 1,212 4,022 
            

H15_HUMAN 0,172 0,624 1,356 1,427 4,849 0,021 0,535 1,390 1,687 1,084 2,644 0,963 1,178 1,841 3,015 2,904 0,611 

H1X_HUMAN 
     

3,631 0,042 1,233 3,059 0,197 17,059 0,443 0,690 1,490 2,399 7,113 0,094 

H2A2C_HUMAN 0,055 1,271 3,657 1,739 3,319 0,035 0,506 5,514 1,763 1,495 0,007 2,735 2,531 2,366 2,702 2,729 2,609 

H2A3_HUMAN 0,000 0,488 0,370 1,599 3,334 
            

H2AX_HUMAN 0,266 0,871 0,945 1,725 2,541 0,053 0,120 2,223 1,273 1,134 1,986 1,958 1,576 1,149 2,324 1,961 1,982 

H2AY_HUMAN 0,155 0,726 1,463 2,084 4,501 0,029 0,215 2,427 2,719 3,787 7,461 0,300 0,199 1,081 7,645 1,209 1,666 

H2AZ_HUMAN 0,434 0,380 2,869 2,913 5,759 1,563 0,216 14,656 8,857 1,548 0,495 0,100 0,354 6,910 0,691 0,580 0,153 

H2B2E_HUMAN      0,875 0,279 1,330 0,969 0,857 0,050 1,699 1,224 1,277 1,596 1,697 1,401 

H2BFS_HUMAN 0,189 0,775 1,767 1,038 3,757 0,080 0,313 1,387 0,961 0,949 1,323 1,515 1,798 1,488 1,773 2,216 2,065 

H31_HUMAN 0,291 1,192 0,360 3,006 2,858 
            

H32_HUMAN 0,321 0,933 2,895 0,668 2,375 1,028 0,433 1,292 0,973 0,788 0,883 1,476 1,038 0,949 1,307 1,248 1,176 

H33_HUMAN 0,558 0,871 2,367 0,989 1,296 
            

H4_HUMAN 0,242 1,101 1,535 0,975 2,622 0,222 0,170 1,325 1,186 1,190 1,234 1,341 1,904 0,922 1,890 1,666 1,550 

HAT1_HUMAN 1,080 0,674 1,250 0,750 1,494 
            

HBA_HUMAN 1,327 0,744 0,915 1,273 1,057 
            

HCD2_HUMAN 1,368 0,810 0,932 2,898 0,873 
            

HCDH_HUMAN 1,597 0,507 0,587 1,630 1,024 
            

HMGA1_HUMAN 0,072 1,026 2,688 0,882 5,725 0,000 0,008 2,063 1,605 0,705 0,786 2,414 1,830 1,802 2,069 2,128 2,037 

HMGB1_HUMAN 0,118 1,145 1,832 2,379 1,844 0,000 0,075 1,622 3,196 1,625 0,190 1,792 0,713 0,689 1,097 1,994 4,236 

HMGB2_HUMAN      0,000 0,352 0,588 1,433 0,840 0,000 1,883 1,825 0,473 1,377 1,667 1,095 

HMGN1_HUMAN      0,000 0,000 0,000 0,508 0,245 2,070 0,144 1,659 1,990 2,003 2,971 1,280 

HNRDL_HUMAN 0,346 0,797 2,156 0,556 3,165 0,164 1,380 1,960 2,204 1,218 0,012 1,926 1,719 1,711 1,493 2,048 1,992 

HNRH1_HUMAN 0,270 0,816 2,247 1,517 1,605 
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HNRH2_HUMAN 
     

0,091 0,918 1,155 1,377 1,630 0,858 1,396 1,528 1,683 1,885 0,772 1,049 

HNRH3_HUMAN 0,863 0,801 1,015 0,894 1,617 
            

HNRL1_HUMAN 0,000 0,566 1,411 1,714 1,074 
            

HNRL2_HUMAN 
     

0,000 2,121 0,808 0,496 0,266 1,999 8,274 0,826 0,601 0,859 0,696 0,000 

HNRPC_HUMAN 0,622 0,732 1,424 0,940 1,703 0,184 0,878 1,252 1,302 0,855 2,128 1,527 1,273 1,411 1,291 1,122 0,668 

HNRPD_HUMAN 0,499 1,103 1,444 0,820 1,487 0,195 1,990 1,245 0,777 0,834 596,003 0,003 2,579 0,796 0,678 0,783 2,914 

HNRPF_HUMAN 0,559 0,948 1,612 0,799 1,669             
HNRPK_HUMAN 0,553 0,972 1,404 1,051 1,282 0,136 0,761 1,363 1,388 1,240 1,660 1,306 1,072 1,166 1,296 1,474 0,647 

HNRPL_HUMAN 0,311 0,940 1,731 1,513 1,435 0,169 1,724 2,910 1,601 0,948 1,441 1,524 1,647 2,249 1,235 1,468 0,159 

HNRPM_HUMAN 0,417 0,869 1,705 1,178 1,405 0,324 0,514 1,522 2,328 1,463 2,076 1,128 0,774 1,199 1,848 1,599 0,196 

HNRPQ_HUMAN 1,224 0,937 0,979 0,949 0,942 
            

HNRPR_HUMAN 0,213 0,552 3,213 1,384 2,277 61,345 0,813 10,018 0,611 0,247 16,227 0,048 0,159 0,117 1,043 0,861 0,363 

HNRPU_HUMAN 0,518 0,936 1,450 1,003 1,392 0,126 0,696 1,750 1,641 1,094 3,589 0,503 1,615 1,202 1,631 1,440 0,378 

HORN_HUMAN 0,919 0,978 1,049 0,893 1,171 0,128 0,000 1,466 0,830 1,908 2,038 0,617 2,453 0,907 1,178 0,896 0,989 

HP1B3_HUMAN 0,762 0,413 0,808 2,977 1,851 0,460 0,132 0,895 2,401 3,826 3,121 0,149 0,480 1,395 8,995 3,471 0,076 

HPT_HUMAN 1,467 1,160 0,664 0,624 1,381 
            

HS90A_HUMAN 0,874 1,040 0,987 1,171 0,989 0,205 1,400 2,018 2,305 2,327 0,409 1,412 0,524 0,465 2,035 0,797 1,496 

HS90B_HUMAN 0,962 1,044 1,077 0,935 1,030 2,523 1,095 1,000 0,924 0,889 0,984 0,971 0,896 0,857 0,847 0,724 1,172 

HSDL2_HUMAN 1,140 0,000 0,664 1,436 0,879             
HSP7C_HUMAN 0,704 1,198 1,162 1,168 0,863 1,130 0,955 0,945 1,057 0,855 1,175 1,057 0,974 0,927 1,065 0,793 1,247 

HSPB1_HUMAN 1,034 1,272 1,132 0,733 0,991 0,074 1,318 1,182 1,178 1,319 2,853 1,106 1,373 1,402 0,488 1,211 1,544 

HUTH_HUMAN 1,352 1,435 0,203 2,377 1,016 
            

IF2A_HUMAN 
     

0,000 0,462 0,000 0,000 0,000 5,445 0,000 0,000 1,004 0,397 0,000 0,000 

IF2B2_HUMAN 0,646 1,152 1,617 1,274 0,648 
            

IF2G_HUMAN 1,401 1,224 0,686 2,214 1,423 
            

IF4A1_HUMAN 1,572 0,787 0,984 0,946 0,852 1,058 2,991 0,414 1,918 1,265 1,324 0,951 0,630 0,964 0,622 0,533 1,124 

IF4A3_HUMAN 0,545 0,621 0,891 1,744 1,869 0,021 0,428 0,774 1,420 1,542 19,897 1,567 1,072 1,113 2,593 0,964 0,381 

IF4B_HUMAN 0,595 0,000 2,702 1,630 0,474 
            

IF4G1_HUMAN 1,132 2,196 1,820 2,575 1,478             
IF4H_HUMAN 0,808 0,438 0,870 1,827 2,320 0,551 1,587 5,790 6,600 2,348 0,120 2,574 0,000 0,108 0,616 2,734 0,308 

IF5_HUMAN 2,245 0,330 0,856 1,687 0,907             
IF5A1_HUMAN 0,833 1,025 1,461 0,688 1,142 

            
IF5AL_HUMAN 

     
0,157 3,989 0,697 0,780 0,578 1,237 1,530 0,821 0,642 0,491 0,955 1,778 
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IF6_HUMAN 0,716 1,156 0,626 2,571 0,688 
            

IGHG1_HUMAN 
     

245,376 0,302 0,500 89,32 0,260 0,573 0,276 0,312 0,427 0,569 0,144 0,187 

IKIP_HUMAN 0,767 0,000 0,000 1,645 0,829 
            

ILF2_HUMAN 0,651 0,890 1,378 0,619 1,991 0,000 0,663 1,102 1,161 1,822 1,355 0,377 0,638 0,535 1,817 2,243 1,145 

ILF3_HUMAN 0,679 0,818 1,354 0,919 1,465 0,144 2,159 2,712 1,624 1,674 0,266 1,166 1,935 2,306 3,067 3,128 0,086 

IMA2_HUMAN 0,359 1,065 1,008 4,120 0,629             
IMA7_HUMAN 0,885 1,131 1,737 0,815 0,740             
IMB1_HUMAN 1,311 1,140 0,988 0,848 1,003 

            
IMDH2_HUMAN 4,062 0,885 0,499 0,480 1,112 6,009 3,086 0,779 0,692 1,054 1,719 1,414 1,363 0,354 0,197 0,819 0,490 

INF2_HUMAN 3,056 0,355 1,023 1,155 0,810 
            

IPO5_HUMAN 1,568 3,397 0,979 0,744 0,685 
            

IPO7_HUMAN 0,680 0,714 0,747 1,812 1,826 
            

IPO9_HUMAN 0,642 0,567 1,821 1,538 1,144 
            

IQGA1_HUMAN 1,045 0,710 1,029 1,137 1,156 0,399 3,530 1,971 0,477 1,806 0,971 0,490 2,388 1,069 0,887 1,111 0,941 

ITB1_HUMAN 1,291 1,561 0,318 1,139 1,270 0,254 2,767 1,939 1,075 0,427 0,851 0,623 1,454 1,116 1,369 2,674 1,183 

K121P_HUMAN 0,000 0,000 29,327 0,000 0,032 
            

K1C10_HUMAN 1,258 1,968 0,590 1,102 0,625 4,301 1,266 0,759 0,984 1,346 0,901 1,019 1,074 0,572 0,808 0,363 0,819 

K1C12_HUMAN 2,279 0,441 2,287 0,382 1,159             
K1C13_HUMAN 1,647 0,946 1,617 0,736 0,550 0,341 13,39 5,210 9,172 0,582 0,863 0,354 0,000 0,000 0,024 0,000 0,000 

K1C14_HUMAN 1,406 1,448 0,491 0,899 1,029 4,421 1,079 0,426 1,353 1,885 0,088 1,841 1,297 1,151 1,259 0,461 1,146 

K1C16_HUMAN 1,076 2,334 0,498 0,751 1,014 3,831 0,619 0,736 0,806 1,251 0,559 1,134 0,941 0,970 1,190 0,436 1,233 

K1C17_HUMAN 1,467 0,707 0,385 2,335 1,069 13,115 0,471 0,718 0,658 0,748 0,880 1,641 1,117 0,773 0,985 0,419 0,781 

K1C18_HUMAN 1,075 0,464 1,527 2,267 0,899 0,133 1,683 0,569 0,895 1,280 0,621 1,333 0,967 1,161 1,330 1,237 1,994 

K1C24_HUMAN 7,438 0,137 4,034 0,429 1,038 
            

K1C9_HUMAN 1,414 1,313 0,935 0,865 0,681 3,617 0,902 1,076 0,975 1,388 1,090 0,951 1,115 0,690 0,693 0,456 0,710 

K1H1_HUMAN 4,096 0,262 14,814 3,165 0,269 0,000 0,122 0,082 0,318 2,168 64,017 0,990 2,374 0,905 1,296 0,327 0,000 

K22E_HUMAN 1,194 1,485 0,664 1,165 0,734 4,324 0,917 1,053 0,812 1,273 0,898 0,839 1,295 0,740 0,904 0,374 0,941 

K2C1_HUMAN 1,325 1,555 0,732 1,034 0,642 4,125 1,013 1,074 1,112 1,454 0,800 0,951 1,008 0,577 0,959 0,359 0,867 

K2C1B_HUMAN 1,582 1,145 0,579 1,626 0,599 2,255 1,271 0,838 0,554 12,744 118,012 0,530 0,444 0,308 0,464 0,095 0,126 

K2C3_HUMAN 1,575 2,148 0,416 0,831 1,069 0,000 1,856 0,000 0,159 0,337 0,605 0,000 0,000 0,000 4,244 1,626 0,991 

K2C4_HUMAN 1,451 1,042 0,720 0,999 1,093 5,068 2,457 1,255 2,477 0,922 0,281 0,000 0,000 0,244 0,000 0,287 0,000 

K2C5_HUMAN 1,403 1,912 0,637 0,873 0,652 6,500 1,045 0,713 0,914 1,195 1,225 0,894 1,079 0,685 0,732 0,362 0,897 

K2C6A_HUMAN 1,431 2,230 0,448 2,141 0,530 9,171 1,023 0,814 1,291 0,842 0,813 1,223 0,847 0,625 0,885 0,365 0,568 
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K2C6B_HUMAN 1,738 2,169 0,207 1,538 0,866 
            

K2C73_HUMAN 1,004 0,000 0,000 1,013 1,039 
            

K2C74_HUMAN 0,000 0,000 0,000 0,739 1,354 
            

K2C78_HUMAN 1,611 1,869 0,489 1,133 0,631 3,624 3,750 0,826 2,056 3,198 0,239 0,833 2,419 0,289 1,444 0,261 0,185 

K2C8_HUMAN 0,945 0,937 1,037 0,944 1,153 0,657 2,346 0,349 0,307 0,928 0,732 0,796 1,628 1,063 1,150 1,482 2,834 

K2C80_HUMAN 1,779 1,871 0,511 1,603 0,676             
KCY_HUMAN 0,838 1,566 0,992 0,538 1,413             

KHDR2_HUMAN 
     

0,802 0,474 0,129 1,801 1,431 1,988 1,373 1,160 2,260 1,000 1,661 0,606 

KI21B_HUMAN 
     

0,000 0,512 1,419 0,770 0,000 0,000 0,000 0,000 1,833 0,000 1,002 0,000 

KI67_HUMAN 
     

0,000 1,017 0,245 0,287 2,088 1,736 0,000 0,525 1,285 1,553 7,692 0,441 

KIF4A_HUMAN 1,575 1,851 1,106 0,449 0,933 
            

KINH_HUMAN 
     

0,000 3,305 1,018 0,820 1,191 0,000 0,416 0,348 1,372 1,138 1,106 1,295 

KMT2D_HUMAN 
     

0,464 1,933 1,684 1,986 1,644 2,225 2,781 0,305 0,114 1,594 0,982 0,669 

KPYM_HUMAN 1,131 0,881 0,889 1,110 1,019 3,042 0,858 0,983 1,121 0,831 0,934 1,241 0,860 0,682 0,919 0,708 1,045 

KR111_HUMAN 0,166 0,662 9,324 0,000 0,000 7,096 36,30 0,150 0,331 0,000 0,293 22,749 0,000 0,000 0,013 0,000 0,000 

KRA31_HUMAN 0,496 0,000 0,000 2,063 0,000 
            

KRA33_HUMAN 0,956 0,214 0,000 6,196 0,000             
KRT34_HUMAN 2,328 2,443 1,218 0,581 0,588             
KRT35_HUMAN 0,251 0,162 24,456 0,481 0,000 0,000 0,042 0,000 0,105 4,883 9,933 0,075 4,599 4,110 5,903 5,186 0,109 

KRT36_HUMAN 0,062 0,418 37,201 0,065 0,000 3,737 0,101 0,000 7,976 2,834 0,933 148,928 0,146 0,103 0,077 0,000 0,477 

KRT81_HUMAN 0,863 0,000 0,000 1,159 0,000 
            

KRT82_HUMAN 0,582 0,425 307,778 0,180 0,276 
            

KRT83_HUMAN 1,162 0,124 8,341 0,889 0,000 0,794 0,073 0,999 17,85 5,594 2,868 203,32 0,253 0,282 0,144 0,243 0,145 

KRT84_HUMAN 6,802 0,824 0,724 0,205 1,540 0,882 50,57 0,173 0,198 0,089 13,825 0,321 6,566 0,165 0,351 0,339 9,929 

KRT85_HUMAN 4,449 0,446 0,934 3,437 0,177 
            

KRT86_HUMAN 5,512 1,330 0,078 4,590 0,381 
            

KT33A_HUMAN 0,000 0,000 0,382 2,801 0,000 2,368 0,221 0,048 7,182 0,351 1,176 224,57 1,103 0,362 0,223 1,104 0,885 

KT33B_HUMAN 3,672 0,000 0,000 1,655 0,362 
            

LA_HUMAN 0,230 1,243 1,893 1,184 2,624             
LAC3_HUMAN      0,912 0,000 0,000 13,43 0,000 0,000 0,000 0,000 0,102 0,000 0,000 0,000 

LAP2A_HUMAN      0,000 0,768 0,296 4,858 0,000 7,606 0,155 0,442 2,078 3,543 0,800 0,209 

LAP2B_HUMAN 0,669 0,239 1,776 1,098 3,267 0,000 0,469 0,622 1,086 1,170 1,678 0,896 0,331 0,624 2,374 1,456 0,866 

LDH6B_HUMAN 0,541 1,676 1,216 0,554 1,546 
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LDHA_HUMAN 1,063 1,067 0,886 0,782 1,217 3,477 0,937 0,941 0,947 0,603 0,603 1,303 0,910 1,213 0,765 0,784 1,210 

LDHB_HUMAN 1,351 0,668 0,749 1,336 1,142 3,638 1,168 2,740 1,981 0,508 0,036 1,227 0,614 2,539 1,132 1,552 0,877 

LEG7_HUMAN 0,666 38,89 0,131 0,193 0,402 
            

LIPB2_HUMAN 2,352 0,078 2,425 1,409 1,553 
            

LMNA_HUMAN 0,375 0,743 1,349 1,156 2,478 0,094 0,728 0,980 1,271 1,381 2,191 0,877 1,031 1,104 2,354 1,547 1,048 

LMNB1_HUMAN 0,228 0,686 0,777 1,961 4,611 0,107 0,743 0,749 2,027 2,251 3,383 0,335 0,708 0,896 4,048 2,260 0,953 

LMNB2_HUMAN 5,720 0,359 5,940 0,031 5,918 0,336 0,357 0,675 1,441 2,459 1,714 0,216 0,760 1,042 5,086 1,999 0,556 

LONM_HUMAN 0,708 0,000 0,000 3,148 0,266 
            

LPPRC_HUMAN 1,228 0,641 0,815 1,592 0,976 
            

LRC59_HUMAN 1,498 0,345 1,012 2,119 0,941 
            

LST2_HUMAN 
     

0,000 5,960 0,502 0,877 0,431 0,787 0,000 0,000 0,604 0,726 1,690 0,000 

MAD3_HUMAN 0,718 1,023 1,224 0,813 1,370 
            

MAP1B_HUMAN 
     

0,000 3,532 0,698 0,358 1,367 0,338 0,751 0,000 0,817 0,402 1,591 1,216 

MAP4_HUMAN 1,231 1,038 0,830 1,472 0,760 
            

MATR3_HUMAN 0,677 0,960 1,227 0,839 1,492 0,000 0,696 0,884 0,948 0,811 1,057 1,346 1,186 1,039 1,068 1,290 0,860 

MBB1A_HUMAN 0,000 1,446 1,062 0,890 0,912 
            

MCCA_HUMAN 0,984 0,898 0,834 1,493 0,907 0,694 0,506 0,738 1,813 0,674 1,146 0,563 0,942 1,647 1,897 0,747 2,208 

MCCB_HUMAN 0,832 0,966 1,023 1,511 0,845             
MCM2_HUMAN 0,231 2,490 3,131 0,935 1,128 9,695 1,518 7,362 1,939 0,189 0,724 1,610 0,769 0,811 0,178 0,531 0,465 

MCM3_HUMAN 0,296 1,858 2,550 0,674 1,118 0,000 8,366 10,442 6,297 0,181 0,945 0,568 1,206 1,399 0,377 0,269 0,151 

MCM4_HUMAN 0,653 2,447 2,926 0,592 0,567 5,016 1,277 13,241 0,987 0,406 0,470 0,794 0,363 0,483 0,475 0,000 0,000 

MCM5_HUMAN 0,000 1,796 2,111 0,547 0,475 21,721 1,149 6,540 1,958 0,417 2,542 0,669 1,938 3,283 0,300 0,297 0,121 

MCM6_HUMAN 0,225 1,351 2,393 1,004 1,282 0,000 5,016 1,128 4,415 0,389 2,359 1,814 1,102 0,522 0,149 0,304 0,000 

MCM7_HUMAN 0,191 2,548 3,141 0,887 0,915 0,000 0,000 1,756 0,495 0,963 0,185 2,184 0,831 1,267 1,915 1,484 0,000 

MDHM_HUMAN 1,181 0,845 0,562 1,523 1,284 1,935 0,276 0,777 0,800 0,415 0,649 0,707 1,497 10,83 0,220 0,186 23,170 

MIF_HUMAN 1,259 1,149 1,160 0,615 0,970 
            

ML12B_HUMAN 1,252 1,107 1,164 0,525 1,159 
            

MMS19_HUMAN 1,540 0,405 1,219 2,728 0,515 
            

MMS22_HUMAN 0,000 0,901 5,910 1,125 0,155             
MOES_HUMAN 1,057 1,036 0,929 1,022 0,889 0,325 1,491 0,844 0,856 1,289 0,910 1,427 1,068 0,888 1,819 1,514 0,738 

MORC1_HUMAN 4,738 0,375 0,097 9,436 0,618             
MPCP_HUMAN 

     
0,000 0,985 0,000 0,977 0,746 1,445 0,000 0,000 0,000 0,973 1,051 0,933 

MPPA_HUMAN 2,863 0,454 0,281 1,915 1,884 
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MSH2_HUMAN 0,178 4,361 4,641 0,865 0,339 45,922 5,831 1,457 0,139 1,787 16,220 0,096 2,857 0,094 0,096 0,050 13,476 

MSH6_HUMAN 0,163 6,533 7,553 0,398 0,313 0,000 3,837 3,926 1,812 0,130 0,764 17,531 2,102 1,559 0,170 0,161 0,141 

MT2_HUMAN 0,454 0,974 1,563 0,918 1,630 
            

MYH10_HUMAN 
     

0,356 3,143 0,957 0,227 1,022 1,131 0,413 0,276 0,706 1,465 4,865 2,889 

MYH9_HUMAN 1,348 0,810 1,121 0,835 0,963 0,646 1,354 0,684 0,602 0,848 0,652 0,769 1,103 1,073 1,148 1,934 2,496 

MYL6_HUMAN 1,328 1,118 1,122 0,497 1,216 1,863 0,793 1,535 0,907 0,740 0,179 1,564 0,972 0,848 0,941 1,267 1,976 

MYO1C_HUMAN 3,818 0,310 1,567 0,736 0,783             
MYOF_HUMAN 0,982 0,845 1,295 0,821 1,048 0,755 3,512 0,762 0,364 1,863 0,363 0,189 1,274 1,609 0,517 1,580 4,001 

NAA16_HUMAN 
     

0,000 0,312 0,315 4,840 0,493 2,514 1,389 2,242 1,122 2,653 1,591 0,125 

NACA_HUMAN 1,663 0,241 1,036 1,783 1,446 
            

NAR4_HUMAN 1,379 0,952 1,323 0,584 0,930 27,536 5,141 9,552 0,145 0,051 11,745 0,276 2,245 1,530 0,053 0,000 0,131 

NASP_HUMAN 
     

0,000 2,085 1,303 7,405 0,210 3,528 0,733 1,379 0,219 1,898 0,157 0,000 

NC2A_HUMAN 0,000 0,604 1,194 0,711 1,847 
            

NDC1_HUMAN 
     

0,000 0,320 1,641 0,782 0,843 0,551 1,987 0,929 0,773 1,116 0,596 1,734 

NDKB_HUMAN 
     

1,813 1,071 2,126 1,107 1,067 0,205 1,697 1,007 1,268 0,650 0,791 2,086 

NDUA9_HUMAN 0,470 0,360 0,000 2,393 2,631 
            

NDUAA_HUMAN 1,591 0,359 0,884 1,356 1,332             
NFIC_HUMAN 0,959 0,000 0,000 0,000 1,080             
NFIX_HUMAN      0,000 0,457 0,870 5,532 0,493 9,428 1,086 0,518 0,587 0,505 0,588 0,000 

NOLC1_HUMAN 0,294 0,789 2,214 0,849 2,251 
            

NONO_HUMAN 0,525 1,143 1,620 1,085 1,053 0,000 0,868 0,459 2,632 1,381 1,753 1,622 0,459 0,824 1,597 1,813 0,173 

NOP56_HUMAN 0,738 0,873 1,993 1,241 0,613 
            

NP1L1_HUMAN 1,342 0,447 1,747 0,934 1,005 
            

NPM_HUMAN 0,473 0,728 1,649 0,757 2,579 0,428 1,020 0,936 1,999 0,993 0,836 2,284 0,782 0,987 1,384 3,800 0,181 

NQO1_HUMAN 
     

0,000 0,245 0,532 0,270 1,941 0,376 1,047 1,486 5,540 0,678 5,680 1,076 

NSUN2_HUMAN 
     

0,000 0,606 0,863 0,757 0,749 19,691 0,898 0,000 0,000 0,599 0,374 0,000 

NTKL_HUMAN 4,773 67,30 0,071 0,126 0,344 
            

NUCL_HUMAN 0,521 0,994 1,416 0,948 1,411 0,128 1,614 1,353 1,465 0,913 3,561 0,933 1,049 1,427 1,289 2,406 0,164 

NUMA1_HUMAN      5,895 0,894 0,557 1,387 0,473 2,616 1,080 0,834 1,106 1,256 0,791 0,224 

OAT_HUMAN 1,294 0,513 0,651 2,392 1,134 0,000 0,771 0,567 0,526 0,707 0,000 2,972 1,529 0,853 0,699 0,000 2,149 

ODO2_HUMAN 0,839 0,962 1,177 1,621 0,970             
ODP2_HUMAN 3,335 0,838 0,541 1,710 0,363 

            
ODPA_HUMAN 0,000 0,000 0,000 1,000 0,000 

            



 

 

 

2
1

1
 

A
p

p
e

n
d

ix 1
 

OLA1_HUMAN 1,236 1,055 0,790 0,915 0,969 
            

OST48_HUMAN 1,433 0,724 0,719 0,962 1,402 0,332 0,746 0,900 1,892 3,192 0,143 2,777 0,745 1,283 2,238 1,434 0,775 

P5CR1_HUMAN 2,148 0,498 0,194 2,926 1,747 
            

P5CS_HUMAN 1,444 0,814 0,747 1,677 0,679 0,216 1,283 0,438 0,244 2,361 0,228 0,961 4,018 2,918 3,068 0,569 1,084 

P63_HUMAN      3,142 0,996 1,337 0,984 2,159 0,001 3,678 3,514 2,551 1,116 1,636 2,817 

P66B_HUMAN      0,000 0,896 1,078 0,915 1,819 16,166 1,436 0,860 0,531 0,208 0,804 0,434 

PA2G4_HUMAN 1,115 0,922 0,727 0,915 1,377             
PABP1_HUMAN 1,466 0,981 0,859 1,012 0,822 

            
PABP3_HUMAN 

     
0,957 0,825 0,583 1,030 3,535 0,481 0,627 0,538 0,667 4,125 1,435 0,835 

PAIRB_HUMAN 1,647 0,946 1,596 0,695 1,180 0,168 0,000 1,779 1,474 2,221 0,993 2,576 1,236 0,770 1,464 1,708 0,161 

PAPS1_HUMAN 0,095 1,746 2,619 1,732 1,247 
            

PAPS2_HUMAN 0,211 1,756 1,488 1,291 1,435 
            

PARP1_HUMAN 0,082 1,612 2,893 1,369 2,329 0,000 0,541 2,666 1,604 0,588 5,355 1,988 0,290 1,206 0,802 1,652 0,126 

PCBP1_HUMAN 1,314 0,703 1,592 0,982 1,422 0,830 1,008 1,577 1,260 0,764 2,770 0,803 0,724 0,866 0,782 0,749 0,843 

PCBP2_HUMAN 1,006 0,929 1,262 0,733 1,191 
            

PCCA_HUMAN 0,891 1,352 0,541 2,304 0,732 2,132 0,351 0,774 0,474 0,790 0,506 3,086 1,437 1,263 1,039 0,882 1,847 

PCCB_HUMAN 0,941 1,320 0,685 1,459 0,823 1,250 0,773 0,689 0,655 1,073 0,377 2,741 0,937 1,886 1,689 0,694 0,656 

PCNA_HUMAN 0,153 4,155 3,500 1,127 0,363 0,070 4,351 4,735 3,487 0,210 0,666 18,856 3,790 2,967 0,463 0,249 0,052 

PDC6I_HUMAN 1,026 0,967 0,735 1,506 1,158             
PDCD4_HUMAN 

     
0,000 1,597 0,000 0,000 0,000 0,970 0,931 1,064 1,027 0,486 0,000 0,773 

PDE12_HUMAN 0,312 0,000 0,919 2,452 1,221 
            

PDIA1_HUMAN 
     

0,000 1,311 0,411 1,756 0,000 1,192 0,000 0,000 0,000 1,283 0,791 0,871 

PDIA3_HUMAN 2,558 0,239 0,907 1,548 1,196 
            

PDLI1_HUMAN 
     

0,370 6,103 0,270 0,313 6,247 2,034 0,374 0,216 0,302 0,700 9,452 1,556 

PDLI5_HUMAN 0,000 1,671 1,160 1,075 0,000 
    

0,512 
       

PDLI7_HUMAN 
     

0,000 2,153 0,789 0,617 0,921 0,959 0,688 1,526 1,150 0,833 2,500 0,573 

PDS5B_HUMAN 0,000 0,806 1,927 0,771 0,815 
            

PGK1_HUMAN 0,745 0,954 0,837 1,017 2,070 
            

PHB_HUMAN 1,357 0,716 0,954 1,003 1,095 1,584 0,714 1,462 3,414 1,547 13,723 4,851 0,202 0,186 0,366 0,937 0,473 

PHB2_HUMAN 1,402 0,691 0,830 1,107 1,093 0,488 1,073 0,905 0,981 0,535 0,655 1,949 0,412 2,109 2,056 2,971 0,678 

PLAK_HUMAN 1,497 3,066 0,567 0,838 0,552             
PLEC_HUMAN 

     
1,143 6,604 0,496 0,914 2,106 0,659 0,357 0,720 1,265 0,391 1,199 1,206 

PML_HUMAN 
     

0,000 0,631 1,402 0,723 1,313 3,125 0,440 0,904 0,644 2,470 1,410 0,718 
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PNMA2_HUMAN 2,512 0,709 0,620 1,623 0,557 
            

PP1G_HUMAN 0,915 0,864 0,936 0,729 1,851 
            

PP1R7_HUMAN 1,456 0,228 0,912 1,414 2,393 
            

PPIA_HUMAN 0,855 1,069 1,237 0,686 1,264 1,655 0,863 1,041 0,847 0,654 1,029 1,575 1,255 1,101 0,722 0,676 1,208 

PPIB_HUMAN      0,661 1,226 1,242 0,580 0,705 1,189 0,656 1,055 0,825 0,451 1,523 4,458 

PPM1G_HUMAN      0,000 0,000 2,361 1,697 0,403 2,949 2,039 0,281 0,361 1,326 0,914 0,000 

PPR18_HUMAN      0,000 1,548 0,612 0,557 0,477 1,882 0,614 1,912 1,060 0,751 1,499 1,429 

PPR35_HUMAN 0,196 0,151 5,923 2,230 3,372 
            

PRDX1_HUMAN 1,074 1,083 1,055 0,751 1,103 4,807 0,669 0,788 0,878 0,545 4,802 0,874 0,686 0,587 0,492 0,560 1,414 

PRDX2_HUMAN 0,970 0,873 0,975 1,243 1,230 
            

PRDX3_HUMAN 0,736 0,761 1,272 2,223 1,109 3,385 1,991 0,743 0,741 1,042 0,188 1,461 1,274 1,831 0,691 0,904 3,131 

PRI2_HUMAN 0,091 7,797 9,402 1,011 0,177 0,000 0,000 1,671 0,532 0,000 0,000 1,697 0,847 0,749 0,000 0,000 0,000 

PRKDC_HUMAN 0,286 1,303 2,539 0,729 1,537 1,625 1,548 1,484 1,428 0,944 1,062 0,929 1,294 1,780 1,254 0,891 0,219 

PROF1_HUMAN 0,886 1,583 1,064 0,689 0,950 2,053 0,474 1,093 0,833 0,946 1,155 1,587 0,985 0,359 0,554 1,474 0,973 

PRP8_HUMAN 0,349 0,680 3,779 1,421 1,471 
            

PRS6B_HUMAN 1,090 2,559 1,182 0,980 0,732 
            

PRS8_HUMAN 0,589 1,399 0,942 2,064 0,553             
PSA1_HUMAN      0,573 1,087 2,933 2,293 0,932 0,551 3,556 0,528 1,023 1,271 1,188 0,156 

PSA2_HUMAN 0,514 0,774 0,825 1,675 1,828             
PSA4_HUMAN 4,489 0,746 1,086 0,195 1,435 0,663 2,233 0,566 2,669 1,624 0,433 0,314 0,365 3,395 0,795 1,626 0,532 

PSA6_HUMAN 1,028 1,189 0,829 2,653 0,888 0,134 1,737 2,044 2,282 1,896 0,039 2,648 0,635 1,313 1,144 1,451 2,080 

PSA7_HUMAN 0,846 0,847 1,098 2,145 1,520 
            

PSB3_HUMAN 0,744 1,284 0,820 0,907 1,486 
            

PSB5_HUMAN 0,463 0,845 1,382 1,839 1,454 
            

PSB6_HUMAN 0,965 1,199 0,676 1,008 1,310 0,153 2,771 3,729 3,585 0,828 2,410 0,978 0,162 0,720 1,907 0,185 2,124 

PSD12_HUMAN 0,838 1,347 0,956 0,937 1,048 
            

PSDE_HUMAN 0,703 0,000 0,574 1,152 2,268 0,000 1,410 1,769 1,497 1,620 0,427 0,509 0,145 2,377 1,059 0,674 0,928 

PSIP1_HUMAN 0,000 0,134 1,307 1,528 3,897 0,000 0,000 0,992 0,867 0,819 2,224 0,949 1,251 1,418 1,639 1,278 0,164 

PSMD1_HUMAN 1,464 0,331 0,949 1,809 1,165             
PSMD2_HUMAN 3,178 0,759 0,785 1,486 1,339 0,711 1,958 0,720 0,683 1,704 2,073 0,569 0,786 1,661 2,483 1,161 0,259 

PSMD4_HUMAN 2,063 0,382 0,326 1,945 1,911             
PTBP1_HUMAN 0,545 1,313 1,435 0,836 1,171 0,046 1,179 2,019 1,405 1,526 1,112 1,967 0,967 1,890 1,542 1,442 0,352 

PTBP2_HUMAN 0,598 1,150 1,564 1,009 0,919 0,076 1,198 1,793 1,758 1,210 0,301 1,899 1,506 1,883 1,724 1,206 0,639 
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PTHD1_HUMAN 7,396 0,000 0,637 0,243 0,820 
            

PUR6_HUMAN 1,157 1,773 1,338 0,845 3,141 2,496 1,000 1,865 1,563 1,659 8,308 0,828 0,482 0,232 1,406 0,182 0,401 

PYC_HUMAN 0,925 0,322 0,984 1,854 2,939 
            

PYGB_HUMAN 2,312 0,653 1,518 0,543 0,806 
            

QCR1_HUMAN 1,438 0,000 0,205 1,660 1,938 8,345 0,565 0,272 0,377 0,558 0,250 2,033 1,430 3,201 0,971 0,650 11,256 

QCR2_HUMAN 1,123 1,886 0,200 2,296 1,106             
RAB10_HUMAN 1,564 0,299 1,199 1,206 1,542             
RAB3B_HUMAN 0,368 0,352 2,213 1,302 2,893 

            
RAB5C_HUMAN 1,444 0,878 0,995 0,994 0,801 

            
RALY_HUMAN 

     
0,000 0,814 4,417 6,282 0,891 2,957 0,241 0,325 0,451 0,544 0,832 0,000 

RALYL_HUMAN 0,200 0,363 3,051 1,430 3,120 
            

RAN_HUMAN 0,258 1,347 1,486 1,135 1,805 1,639 0,090 7,960 0,565 8,221 0,396 1,916 0,787 0,000 0,000 1,825 0,267 

RBBP7_HUMAN 21,543 0,201 0,615 0,847 0,462 
            

RBM14_HUMAN 0,558 0,844 1,733 0,600 1,906 0,000 0,643 0,884 1,230 1,324 0,200 0,538 1,579 2,173 2,396 2,054 0,711 

RBMX_HUMAN 0,285 0,623 1,736 1,370 2,334 
            

RCC1_HUMAN 
     

0,000 1,593 0,248 3,131 0,856 4,134 0,701 0,283 1,398 1,412 1,173 1,190 

RCC2_HUMAN      0,000 0,200 4,042 1,525 1,868 4,484 0,549 0,419 0,599 3,316 0,662 0,138 

RECQ1_HUMAN 0,159 1,837 2,468 0,815 1,721 0,000 1,610 1,593 2,165 1,041 0,442 0,956 0,502 1,587 1,882 0,698 0,250 

CD33_HUMAN      0,225 0,065 0,680 2,810 1,736 70,431 2,052 1,638 1,998 2,133 1,402 0,031 

CP250_HUMAN 
     

11,715 0,025 2,057 0,281 5,554 115,423 0,052 9,316 0,604 0,014 0,290 24,014 

F184A_HUMAN 
     

0,739 4,086 1,867 1,269 0,292 0,744 0,163 0,271 1,510 2,169 2,494 1,830 

GFOD2_HUMAN 
     

0,217 2,562 3,872 3,605 1,477 1,596 1,671 1,011 0,261 2,859 0,976 0,048 

HOME3_HUMAN 
     

0,067 0,663 1,679 1,368 0,915 3,155 0,807 1,408 1,373 1,178 1,181 1,037 

MOD5_HUMAN 
     

0,666 0,304 3,448 0,180 3,012 2,156 0,456 1,169 1,471 0,717 3,272 0,656 

NLRC3_HUMAN 
     

0,290 0,000 0,613 1,319 0,888 0,692 4,240 1,304 1,857 1,648 0,976 0,544 

PCM1_HUMAN 
     

1,330 0,092 0,554 1,857 0,634 1,812 2,006 1,727 1,417 0,696 4,113 0,487 

PCY2_HUMAN 
     

1,136 0,383 1,120 0,716 1,336 1,272 0,109 2,489 2,394 1,162 1,573 1,639 

RGS13_HUMAN 
     

2,604 1,236 0,816 0,752 0,911 0,839 1,059 1,051 0,847 0,709 0,891 1,239 

RNF8_HUMAN      0,000 1,189 0,822 2,104 1,014 2,686 0,386 0,448 0,456 0,976 1,736 1,475 

TITIN_HUMAN      0,000 17,62 1,249 0,589 0,492 0,584 0,000 0,000 0,494 0,537 1,277 0,758 

UBP19_HUMAN      0,078 1,463 2,030 0,446 1,321 0,510 0,402 1,707 2,601 1,567 1,937 2,280 

VP37A_HUMAN 
     

1,302 1,378 0,955 0,889 0,834 0,919 1,070 1,026 0,981 0,982 0,691 1,186 

WNK1_HUMAN 
     

63,303 0,280 25,905 0,236 0,113 0,253 7,002 0,271 0,180 0,128 0,131 59,150 
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ZW10_HUMAN 
     

0,000 0,392 0,000 3,697 0,747 0,000 0,866 0,808 1,613 0,305 3,516 0,926 

RFA1_HUMAN 0,000 1,660 2,772 1,334 0,372 28,086 0,336 0,683 2,611 0,743 0,262 1,978 0,755 2,112 1,363 0,182 0,261 

RFA2_HUMAN 0,194 1,386 2,925 3,399 1,637 0,000 1,855 1,540 3,339 0,895 0,310 1,148 1,218 4,061 1,597 0,628 0,072 

RFC1_HUMAN 0,000 4,751 4,976 0,332 0,144 
            

RFC2_HUMAN 0,079 8,081 6,037 1,307 0,260 1,070 6,839 0,819 0,385 0,131 1,066 22,784 1,005 8,082 0,194 0,150 0,126 

RFC3_HUMAN 0,000 1,972 3,307 0,581 0,276 0,000 0,828 5,606 4,874 0,238 1,272 11,679 0,000 0,000 0,080 0,147 0,000 

RFC4_HUMAN 0,332 4,022 3,436 0,590 0,385 0,000 3,846 7,846 5,284 0,060 0,560 14,495 1,981 3,194 0,113 0,150 0,227 

RFC5_HUMAN 0,072 4,980 4,173 1,052 0,614 0,000 0,341 3,612 0,890 0,709 0,000 1,302 2,660 0,981 0,766 0,380 0,981 

RIF1_HUMAN 0,074 4,923 9,480 0,495 0,818 
            

RINI_HUMAN 0,714 1,181 1,127 0,936 1,211 0,100 3,225 2,190 3,745 1,580 3,420 0,156 1,167 0,204 0,587 0,981 0,699 

RIR2_HUMAN 
     

2,438 6,062 3,355 0,217 1,403 0,365 1,279 1,376 2,496 0,091 1,273 0,118 

RL10_HUMAN 1,031 0,762 1,280 0,996 1,007 0,000 0,000 0,000 0,468 1,082 0,000 0,398 0,000 1,575 0,487 6,322 0,000 

RL10A_HUMAN 1,098 0,884 1,113 0,978 1,047 
            

RL11_HUMAN 0,986 1,075 1,088 0,794 1,154 0,221 0,459 0,607 0,496 0,610 278,381 0,685 0,738 0,612 0,578 0,542 1,598 

RL12_HUMAN 1,351 1,191 0,854 0,655 1,066 0,863 0,804 1,411 0,828 1,083 0,083 1,470 1,988 1,402 1,043 1,325 2,985 

RL13_HUMAN 0,795 0,944 1,012 1,060 1,286 0,312 0,168 0,705 0,725 1,026 0,607 1,325 1,297 1,090 1,190 1,318 5,424 

RL13A_HUMAN 0,926 0,985 0,840 1,197 1,334 0,000 0,182 2,612 1,017 1,001 0,133 2,406 1,148 3,542 0,817 1,096 1,918 

RL14_HUMAN 0,849 0,984 0,996 0,982 1,289 0,171 0,278 1,140 1,313 0,899 3,846 0,601 0,466 1,480 1,511 1,465 5,868 

RL15_HUMAN 0,789 1,002 1,257 0,818 1,277 0,151 0,247 1,728 0,596 1,894 0,696 0,938 1,804 1,179 1,365 2,385 2,965 

RL17_HUMAN 0,847 0,945 0,958 1,238 1,093 0,054 0,459 1,255 0,454 2,355 0,715 0,920 1,083 1,495 1,374 2,011 8,443 

RL18_HUMAN 0,660 0,910 1,180 1,254 1,198 0,612 0,276 1,382 0,979 1,332 1,134 1,378 1,025 1,081 1,178 1,373 1,629 

RL18A_HUMAN 0,757 0,746 1,107 1,332 1,210 0,520 0,296 2,048 0,561 0,958 1,081 1,195 0,616 1,469 1,198 1,619 2,887 

RL19_HUMAN 0,662 1,075 1,073 1,080 1,182 
            

RL1D1_HUMAN 0,660 0,000 0,920 1,272 1,290 0,000 2,162 0,376 1,228 1,341 1,459 0,287 0,476 0,734 2,160 2,727 0,515 

RL21_HUMAN 2,137 0,114 5,012 0,436 1,440 
            

RL22_HUMAN 1,078 1,528 1,072 0,595 1,004 
            

RL23_HUMAN 0,791 0,605 1,234 1,142 1,272 
            

RL23A_HUMAN 1,043 0,995 1,007 0,870 1,068 
            

RL24_HUMAN 0,956 1,104 0,895 1,065 0,979 0,000 0,000 0,353 0,298 4,827 0,085 12,338 0,529 2,319 4,053 5,157 0,121 

RL26_HUMAN 1,035 0,995 1,116 0,757 1,217 0,226 1,424 3,604 0,461 0,585 0,507 0,839 3,189 2,445 0,385 0,876 2,699 

RL27_HUMAN 1,141 1,301 1,030 0,507 1,266 1,133 0,500 1,310 0,642 1,011 0,046 2,399 2,610 1,959 1,228 1,337 5,557 

RL27A_HUMAN 0,858 1,451 0,832 0,878 1,076 2,193 0,402 0,792 0,452 0,664 5,140 1,148 1,066 0,651 0,693 0,661 2,324 

RL28_HUMAN 0,755 0,772 1,499 0,945 1,209 0,191 0,103 2,060 1,697 1,321 0,000 1,937 0,000 0,000 2,248 2,464 0,000 
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RL29_HUMAN 0,953 1,060 0,848 1,212 1,029 0,262 0,377 0,237 0,475 3,941 4,700 0,096 0,105 4,451 4,652 3,812 6,478 

RL3_HUMAN 0,903 0,633 1,159 1,295 1,137 0,130 0,737 1,228 0,991 1,039 1,615 1,248 1,250 1,393 1,305 1,275 1,260 

RL30_HUMAN 0,999 1,233 1,280 0,596 1,063 
            

RL31_HUMAN 1,158 0,707 1,357 0,789 1,319 
            

RL32_HUMAN 0,225 2,293 0,981 2,600 2,538             
RL35_HUMAN 0,528 1,263 1,407 0,877 1,350 2,337 0,406 0,898 0,505 0,844 0,647 1,809 1,501 1,023 0,887 0,948 1,646 

RL35A_HUMAN 0,686 0,932 1,983 0,651 1,283             
RL36_HUMAN 0,713 1,147 0,865 2,794 0,761 0,205 0,284 1,223 1,103 2,507 0,159 2,664 1,037 1,517 1,559 3,761 1,164 

RL37A_HUMAN 1,024 1,522 1,097 0,661 0,880 0,000 0,000 0,365 0,681 0,311 0,229 4,814 5,249 0,600 1,822 2,472 1,010 

RL4_HUMAN 0,819 0,819 1,090 1,285 1,073 0,072 0,793 0,560 0,593 1,305 1,395 0,967 1,678 2,238 1,436 2,121 1,719 

RL5_HUMAN 1,046 1,019 0,844 0,978 1,196 1,276 2,466 2,929 2,988 0,925 1,973 0,406 0,947 1,222 0,242 0,386 0,432 

RL6_HUMAN 0,895 1,114 1,154 0,692 1,271 1,778 4,979 0,195 0,482 0,738 1,569 0,620 3,727 0,716 1,784 1,227 0,393 

RL7_HUMAN 0,931 0,816 1,261 0,925 1,187 
            

RL7A_HUMAN 0,982 0,763 1,081 1,146 1,034 0,543 0,182 0,604 0,291 0,280 0,726 2,688 2,084 2,987 2,135 2,736 3,488 

RL8_HUMAN 0,952 0,724 0,901 1,400 1,168 0,776 0,848 0,899 0,728 0,629 1,251 0,649 2,155 2,293 1,035 0,912 1,511 

RL9_HUMAN 1,204 0,510 1,157 1,107 1,207 
            

RLA0_HUMAN 1,434 0,701 0,919 1,042 1,054 0,759 1,455 0,865 0,805 0,683 0,089 0,782 0,814 2,794 0,825 2,742 4,419 

RMXL3_HUMAN      0,028 0,918 1,786 3,580 2,162 5,697 0,141 1,848 1,172 1,906 0,605 0,568 

RN166_HUMAN 0,000 4,089 0,780 0,266 0,000             
RO60_HUMAN 

     
0,000 1,669 1,398 0,805 0,952 0,000 0,741 0,739 1,517 0,334 1,025 2,566 

ROA0_HUMAN 
     

0,000 0,000 3,099 0,890 0,528 0,456 4,523 0,702 0,811 0,882 1,265 0,564 

ROA1_HUMAN 0,758 0,650 1,128 1,146 1,481 0,545 0,559 0,926 1,530 1,170 0,840 1,786 1,044 1,120 1,321 1,591 0,816 

ROA2_HUMAN 0,621 0,814 1,370 0,884 1,650 0,136 0,398 1,022 1,112 0,913 1,526 1,906 1,538 1,355 1,406 1,564 1,385 

ROA3_HUMAN 0,211 2,181 0,411 1,716 2,976 
            

ROAA_HUMAN 0,285 0,261 3,573 2,286 2,955 0,150 1,537 3,341 3,634 1,832 2,108 0,812 0,320 4,160 0,387 0,497 0,259 

RPA34_HUMAN 1,099 1,000 1,027 0,973 1,000 
            

RPC4_HUMAN 2,705 4,329 0,933 0,121 0,760 
            

RPN1_HUMAN 0,884 1,108 1,069 0,920 1,002 0,112 2,262 1,695 0,563 3,616 0,172 0,280 0,987 1,450 4,168 2,438 1,505 

RPN2_HUMAN 1,710 1,080 0,000 2,376 0,273             
RRBP1_HUMAN 1,474 0,669 1,259 1,432 0,582 0,100 2,290 3,281 0,600 0,000 0,000 1,052 0,000 0,000 3,034 1,078 0,327 

RS10_HUMAN 1,694 0,918 0,879 2,775 0,739             
RS11_HUMAN 1,087 4,685 0,692 5,298 0,814 0,150 0,300 0,951 0,492 0,709 0,907 2,266 1,568 1,733 1,464 2,065 4,022 

RS12_HUMAN 
     

0,465 0,096 3,170 1,611 2,292 0,388 3,002 2,042 2,422 0,098 2,520 1,570 
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RS13_HUMAN 0,980 1,157 1,060 0,693 1,234 0,299 0,546 1,231 0,665 1,224 0,300 1,256 1,737 1,192 0,777 1,413 5,469 

RS14_HUMAN 1,071 1,230 1,035 0,636 1,142 0,000 0,019 0,000 0,068 0,171 1,840 3,630 3,324 3,661 3,482 3,504 5,398 

RS15_HUMAN 1,155 1,685 0,799 0,733 1,037 0,403 0,165 0,602 0,074 0,768 1,224 2,305 2,872 0,693 1,168 4,293 2,875 

RS15A_HUMAN 0,944 0,988 1,399 0,843 0,915 
            

RS16_HUMAN 1,061 1,116 1,206 0,640 1,112 2,178 0,180 0,799 0,257 1,567 1,487 1,138 2,111 1,277 1,257 1,787 1,201 

RS17_HUMAN 0,977 2,169 1,183 0,645 1,180             
RS18_HUMAN 1,251 1,110 0,881 0,663 1,072 0,887 2,261 3,986 2,567 1,427 0,105 1,425 0,369 0,436 2,619 1,199 0,528 

RS19_HUMAN 1,304 1,618 0,952 0,878 0,579 0,409 0,480 1,639 0,794 1,354 0,782 1,561 0,719 1,047 1,137 1,122 1,866 

RS2_HUMAN 0,880 0,693 1,135 1,383 1,085 0,431 0,861 1,266 0,999 1,169 1,051 1,195 1,143 1,525 1,216 1,498 0,567 

RS20_HUMAN 0,837 1,055 1,490 0,815 0,937 
            

RS23_HUMAN 0,844 1,043 1,337 0,652 1,249 0,456 0,840 1,832 0,870 1,918 0,055 0,592 1,557 1,792 1,232 2,398 1,234 

RS24_HUMAN 0,819 1,162 0,856 1,191 1,072 0,264 0,517 1,220 1,596 2,189 0,274 1,297 1,631 0,230 0,993 3,167 2,181 

RS25_HUMAN 1,151 1,140 1,016 0,619 1,218 2,414 2,197 0,410 0,090 0,282 2,368 2,799 3,236 0,995 0,720 2,152 0,490 

RS26_HUMAN 1,097 1,207 0,879 0,748 1,130 
            

RS3_HUMAN 1,296 0,888 1,029 0,893 0,945 0,810 0,854 1,076 0,961 0,960 1,289 1,193 0,902 1,266 1,253 1,268 0,744 

RS3A_HUMAN 1,267 0,765 0,967 1,156 0,944 2,614 0,657 0,346 1,345 0,770 1,914 0,470 0,321 1,595 2,976 2,564 0,787 

RS4X_HUMAN 1,011 0,921 0,916 1,068 1,054             
RS4Y2_HUMAN      0,238 0,556 1,090 0,605 1,052 0,825 1,542 1,710 1,273 1,020 1,631 2,729 

RS5_HUMAN 0,834 1,160 0,965 1,054 0,998 2,598 0,411 0,604 1,300 0,062 0,243 3,537 6,294 1,454 1,417 1,487 1,937 

RS6_HUMAN 0,903 0,987 1,126 0,976 1,065 0,170 0,616 1,227 0,380 1,228 1,137 1,253 0,794 1,439 1,328 1,741 1,400 

RS7_HUMAN 1,140 0,729 0,854 1,177 1,334 0,449 1,792 1,612 3,030 1,625 2,352 0,510 0,601 0,123 0,591 0,761 4,459 

RS8_HUMAN 1,124 0,894 0,899 1,076 1,089 0,129 1,099 1,773 1,638 2,118 0,010 2,168 1,987 1,918 1,750 2,489 2,363 

RS9_HUMAN 0,764 0,885 1,360 0,757 1,389 0,160 1,232 2,640 1,830 0,810 0,381 0,472 0,645 1,455 0,342 2,478 2,918 

RSF1_HUMAN 
     

159,325 0,026 376,281 0,103 288,84 0,053 534,82 0,036 0,022 0,387 0,015 0,131 

RSMN_HUMAN 0,975 0,518 1,316 0,891 1,704 0,141 1,568 1,991 2,461 1,460 0,107 1,840 1,719 2,172 1,498 1,467 1,499 

RSSA_HUMAN 1,515 0,815 0,864 0,851 1,033 3,464 0,709 0,973 0,668 0,723 1,637 1,095 1,284 0,940 0,582 0,547 0,965 

RT05_HUMAN 
     

5,512 2,575 0,229 0,825 0,000 0,936 0,940 0,552 5,422 1,140 0,092 0,378 

RTCB_HUMAN 0,407 1,458 1,573 1,408 0,530 
            

RTL1_HUMAN      0,078 1,176 1,564 1,930 1,152 1,070 0,290 0,626 1,599 2,361 2,245 1,833 

RU17_HUMAN      0,000 0,314 1,741 1,935 0,000 0,405 0,000 0,000 0,000 2,051 0,000 0,000 

RUVB1_HUMAN      0,449 2,888 0,449 1,738 2,986 0,669 1,095 0,928 5,715 1,765 0,627 0,280 

RUVB2_HUMAN 0,000 1,300 1,161 1,057 0,647 0,117 2,824 1,816 2,614 1,754 2,475 0,518 0,702 1,508 0,309 1,187 0,617 

S10A6_HUMAN 0,630 1,807 1,047 0,600 1,435 
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S10A8_HUMAN 0,444 8,260 0,400 1,657 0,617 
            

S10A9_HUMAN 
     

0,000 0,000 0,000 1,661 0,000 0,000 0,725 0,000 0,000 0,000 0,770 0,000 

S4A11_HUMAN 
     

5,212 1,281 1,257 1,173 1,464 0,489 0,843 0,885 0,569 0,886 0,246 1,531 

S61A1_HUMAN 
     

1,120 1,033 1,106 0,465 0,806 3,261 0,307 1,011 1,098 1,406 0,831 1,918 

S61A2_HUMAN 1,127 0,675 0,621 2,834 0,704             
SAE1_HUMAN 0,231 0,248 1,867 3,232 2,570             

SAFB1_HUMAN      0,000 0,961 2,190 1,841 0,585 2,035 0,905 0,155 1,119 3,530 1,793 0,257 

SAHH_HUMAN 1,012 1,226 1,035 0,796 0,982 0,141 1,738 2,358 1,844 2,557 0,800 2,663 1,455 1,922 1,050 0,906 0,050 

SARNP_HUMAN 0,876 0,815 0,487 1,320 2,133 
            

SBSN_HUMAN 0,481 0,000 1,278 2,509 0,541 
            

SCOT1_HUMAN 1,350 1,042 0,697 1,506 0,692 
            

SEC13_HUMAN 
     

1,771 1,296 0,476 0,583 0,452 0,765 0,872 0,457 2,717 0,810 2,157 1,104 

SEMG1_HUMAN 
     

2,611 0,000 0,866 0,447 0,935 0,000 0,000 0,000 0,000 0,657 0,801 2,078 

SERA_HUMAN 1,266 0,783 1,152 1,034 0,915 
            

SERPH_HUMAN 0,000 0,000 1,472 0,935 0,739 1,195 0,845 0,236 2,036 1,491 1,033 0,654 0,985 0,598 0,798 1,479 1,494 

SF01_HUMAN 
     

0,000 0,308 1,477 2,074 0,000 0,000 0,000 0,000 0,000 1,118 0,000 0,000 

SF3B1_HUMAN 1,983 1,097 2,803 0,669 1,454             
SF3B2_HUMAN 0,503 4,671 1,795 0,200 0,999 0,000 3,634 2,082 3,625 0,560 4,353 0,126 0,409 1,368 1,768 1,073 0,130 

SF3B3_HUMAN 0,999 1,176 1,879 0,683 1,329 0,000 2,433 2,721 2,862 1,353 0,301 0,455 0,426 2,725 1,613 2,438 0,147 

SFPQ_HUMAN 0,713 0,973 1,391 0,995 1,113 0,144 4,496 5,200 3,935 0,100 2,068 0,198 0,191 2,670 4,972 1,019 1,090 

SHRM3_HUMAN 2,386 0,954 0,746 1,424 1,018 
            

SHRM4_HUMAN 6,240 0,088 7,715 0,151 1,850 
            

SK2L2_HUMAN 0,400 1,316 1,866 1,900 0,783 0,000 0,821 1,823 1,353 0,599 0,000 0,544 0,465 0,702 0,766 2,162 2,168 

SMC1A_HUMAN 0,607 0,598 2,686 1,280 1,925 0,101 0,993 1,789 2,128 0,727 3,419 4,406 1,005 2,417 0,389 1,702 0,148 

SMC2_HUMAN 
     

0,869 1,521 2,881 0,728 1,231 3,923 1,040 0,557 1,634 0,313 0,839 0,778 

SMC3_HUMAN 0,000 0,350 3,735 0,710 1,327 0,000 0,605 4,859 3,064 0,257 0,711 0,201 0,554 11,172 0,272 1,718 0,000 

SMC4_HUMAN 0,000 0,000 1,568 0,000 0,630 
            

SMCA5_HUMAN 0,000 1,658 2,340 0,270 0,947 
            

SMD1_HUMAN 1,213 1,068 0,963 0,706 1,029             
SMD3_HUMAN 0,797 1,402 1,536 0,451 1,309 0,196 0,995 2,462 1,341 1,112 0,005 2,287 1,767 1,511 1,163 1,371 1,392 

SMTN_HUMAN 0,278 1,465 0,760 1,680 1,922 0,000 1,354 3,134 3,041 3,009 0,045 0,202 0,403 2,792 4,285 2,234 0,273 

SND1_HUMAN 1,416 0,875 0,779 1,201 0,877 
            

SNUT2_HUMAN 
     

0,245 1,913 1,040 2,185 1,395 0,328 1,296 1,283 1,235 0,837 1,489 0,154 
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SP16H_HUMAN 0,103 2,581 3,381 1,158 0,775 0,000 2,749 2,737 1,812 0,253 0,210 2,193 3,149 0,930 0,776 0,612 0,389 

SPB12_HUMAN 2,616 2,106 0,399 1,155 0,681 
            

SPB4_HUMAN 4,642 21,47 0,000 0,299 0,051 
            

SPIN1_HUMAN 
     

0,000 0,332 0,719 0,999 1,587 6,673 1,355 2,147 2,970 0,610 0,549 0,462 

SPTB2_HUMAN      0,697 13,35 1,822 0,273 0,311 0,492 0,769 0,309 2,942 0,957 2,012 0,833 

SPTN1_HUMAN 4,220 0,513 0,333 0,887 1,567 0,445 1,091 0,670 0,565 0,661 27,775 0,416 0,530 0,616 0,896 1,121 1,500 

SRP14_HUMAN 0,431 1,728 1,536 0,533 1,656 0,000 0,250 0,820 1,108 0,155 1,021 3,923 0,866 5,249 1,158 2,047 0,614 

SRRT_HUMAN 
     

0,000 0,763 4,009 1,110 0,423 9,893 0,614 0,652 0,801 0,477 0,969 0,437 

SRS10_HUMAN 0,148 0,274 2,965 2,045 4,058 
            

SRSF1_HUMAN 0,392 0,459 1,863 1,113 2,696 
            

SRSF3_HUMAN 0,530 1,027 1,563 0,706 1,677 
            

SRSF6_HUMAN 
     

0,231 0,080 2,353 4,222 1,367 1,158 1,562 0,313 1,697 1,751 3,915 0,316 

SRSF8_HUMAN 0,247 1,034 1,854 0,965 2,268 0,385 0,963 3,609 3,024 1,331 3,618 2,180 0,412 0,924 0,085 2,330 0,254 

SSRP1_HUMAN 0,059 2,364 2,988 2,264 1,878 0,443 1,882 2,106 1,712 0,763 0,248 2,800 2,229 1,426 1,082 0,553 0,154 

STAG2_HUMAN 0,000 0,622 1,881 1,137 0,803 
            

STMN1_HUMAN 
     

1,256 1,802 2,559 0,686 1,116 0,065 1,465 1,344 1,889 0,677 1,091 0,432 

SUMO4_HUMAN 0,252 5,452 2,789 0,557 1,477 0,000 0,818 1,324 0,919 0,729 1,030 1,805 1,712 1,186 1,080 0,805 0,463 

SYEP_HUMAN      0,000 0,956 1,318 0,235 0,563 0,559 0,653 2,921 3,556 0,436 1,550 2,071 

SYK_HUMAN 1,668 1,090 0,630 1,058 0,805             
TADBP_HUMAN 0,000 0,000 0,606 1,203 1,395 

            
TAGL2_HUMAN 1,173 1,224 0,513 1,180 1,183 0,453 1,613 1,117 3,190 0,571 0,849 1,238 0,172 0,652 1,346 2,831 1,436 

TALDO_HUMAN 0,000 0,000 0,458 0,762 2,867 
            

TBA1A_HUMAN 1,414 0,849 0,924 1,067 0,832 
            

TBA1B_HUMAN 
     

0,132 1,664 1,271 1,449 2,054 8,179 2,070 2,024 0,268 1,051 2,010 0,211 

TBA1C_HUMAN 
     

0,079 4,205 3,783 3,564 6,483 0,287 0,504 4,233 0,182 1,047 3,940 0,288 

TBA4A_HUMAN 1,018 1,879 0,833 0,790 0,784 
            

TBA4B_HUMAN 1,644 1,189 1,035 0,758 0,630 
            

TBB3_HUMAN 2,441 0,792 0,579 3,303 0,724 
            

TBB4B_HUMAN      0,780 4,622 1,113 2,272 1,613 2,425 0,122 0,875 1,074 1,017 0,325 0,931 

TBB5_HUMAN 1,714 1,050 0,980 0,712 0,785 3,503 1,288 0,874 0,865 0,869 0,505 1,181 1,239 0,779 0,811 0,854 1,286 

TBB6_HUMAN 1,215 1,045 0,936 1,105 0,752             
TBC8B_HUMAN 

     
0,000 3,248 0,457 2,282 0,503 0,000 1,447 0,293 6,015 0,329 3,084 0,221 

TCPA_HUMAN 0,968 1,175 1,190 0,814 0,870 0,945 3,450 1,756 1,329 1,944 0,120 1,167 1,167 0,789 0,825 1,292 0,458 
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TCPB_HUMAN 1,249 1,064 1,105 0,915 0,734 0,106 5,142 4,103 3,179 3,019 0,146 1,405 0,819 0,383 1,201 1,846 0,144 

TCPD_HUMAN 0,685 1,039 1,474 1,255 0,763 0,470 2,226 3,023 2,600 1,704 0,417 1,084 0,501 0,476 0,994 1,341 0,218 

TCPE_HUMAN 2,069 1,738 0,885 1,358 0,759 820,085 0,064 113,928 0,229 0,261 3,071 1,043 0,250 0,248 0,424 0,236 0,214 

TCPG_HUMAN 1,107 1,167 1,131 0,951 0,738 0,453 2,656 1,509 1,374 1,020 0,712 0,845 1,036 1,228 1,160 0,575 0,555 

TCPH_HUMAN 0,788 1,368 0,961 1,131 0,878             
TCPQ_HUMAN 1,004 1,038 1,252 1,079 0,697 0,130 2,149 2,159 1,388 1,494 0,397 1,435 1,368 1,534 0,888 1,424 1,016 

TCPZ_HUMAN 1,123 0,879 1,090 1,031 0,924 1,748 1,598 1,485 1,071 0,776 1,703 0,461 1,474 1,752 0,382 0,686 0,459 

TERA_HUMAN 0,963 1,425 1,091 0,660 0,938 0,000 0,347 0,406 0,839 0,988 15,921 1,992 0,705 3,985 1,223 0,267 0,148 

TGM2_HUMAN 1,161 0,909 1,038 0,916 0,964 
            

TGM3_HUMAN 2,050 2,351 0,363 0,594 0,934 5,149 0,746 0,425 0,551 2,671 2,658 0,805 1,024 0,846 0,872 0,262 0,552 

THIL_HUMAN 1,331 0,634 0,474 2,559 1,384 0,951 0,909 1,511 0,703 0,501 0,392 1,046 7,429 2,605 0,559 0,661 0,999 

THIO_HUMAN 1,859 2,560 1,092 0,421 0,508 4,218 1,046 1,381 0,546 0,916 1,164 0,934 1,805 1,277 0,373 0,568 0,582 

THOC4_HUMAN 1,973 0,791 1,290 1,381 1,406 
            

TIF1B_HUMAN 0,338 1,634 2,185 0,892 1,144 0,153 1,570 2,399 2,026 0,307 1,073 1,993 1,676 1,301 1,383 0,894 0,225 

TITIN_HUMAN 7,348 18,33 22,004 2,490 1,693 7,348 18,33 22,004 2,490 1,693 0,163 0,093 0,495 0,469 0,233 0,164 0,423 

TKT_HUMAN 0,374 1,426 1,340 1,045 1,347 0,217 1,774 2,262 3,375 1,160 2,061 0,503 0,648 1,180 2,432 0,484 0,348 

TLN1_HUMAN 1,099 0,898 1,142 1,241 0,840 0,791 3,199 0,567 0,607 1,486 0,851 0,530 0,874 1,208 0,784 1,235 1,538 

TLR7_HUMAN      0,110 0,935 2,050 2,275 1,554 3,332 0,887 1,039 1,189 0,918 1,173 0,444 

TNPO1_HUMAN      0,883 2,460 2,739 1,653 2,967 0,220 0,171 0,714 0,638 1,871 2,595 0,559 

TOM34_HUMAN 1,235 0,776 0,672 1,317 1,273 
            

TOM70_HUMAN 1,807 7,101 0,515 0,357 0,425 
            

TOP1_HUMAN 0,000 0,714 1,590 0,595 1,469 0,000 0,000 0,158 1,734 1,409 2,857 0,498 0,878 0,346 1,893 3,257 0,000 

TOP2A_HUMAN 0,211 1,628 2,942 0,828 1,232 0,216 1,107 2,852 1,661 1,036 1,013 1,760 1,820 1,744 1,329 1,322 0,069 

TPIS_HUMAN 0,486 0,423 0,595 3,374 2,804 0,183 0,724 1,426 1,933 0,661 1,079 0,993 1,649 1,835 0,837 0,588 2,676 

TPM4_HUMAN 
     

0,450 3,253 1,142 1,340 0,717 0,647 0,813 0,517 1,172 0,922 1,605 1,137 

TPR_HUMAN 
     

0,000 0,805 0,591 1,361 1,099 3,098 0,446 0,626 0,973 0,814 0,661 0,000 

TPX2_HUMAN 0,254 1,355 2,172 0,729 1,882 
            

TR150_HUMAN 
     

0,000 0,659 0,301 0,800 11,432 0,818 0,513 0,188 0,645 1,451 38,477 0,211 

TRAF7_HUMAN      0,000 0,429 1,355 1,696 5,335 0,853 0,442 0,431 1,341 1,383 1,027 0,261 

TRAP1_HUMAN 1,126 1,471 0,911 0,803 0,818 2,067 0,840 0,834 0,681 0,635 5,780 0,942 0,907 0,946 0,709 0,586 1,091 

TRI16_HUMAN      0,896 0,664 0,742 1,070 1,146 2,417 0,698 0,820 0,969 2,006 0,956 0,831 

TRXR1_HUMAN 0,632 1,211 0,356 1,683 2,406 
            

TRY1_HUMAN 2,078 0,950 0,682 0,873 0,868 
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TTLL5_HUMAN 2,062 1,932 1,590 0,111 1,502 
            

TUT4_HUMAN 0,196 0,885 1,887 1,059 2,883 
            

TXTP_HUMAN 0,927 0,712 1,107 5,447 3,898 
            

U2AF1_HUMAN 
     

0,000 1,639 1,702 1,620 0,803 1,627 1,550 1,225 1,429 0,124 1,523 0,367 

U2AF2_HUMAN 0,368 1,074 1,555 1,096 2,248             
U520_HUMAN      0,000 0,925 1,574 1,690 2,381 0,395 1,121 1,805 0,166 2,839 1,475 0,329 

U5S1_HUMAN      0,000 0,695 0,970 1,039 1,972 0,000 0,000 0,890 1,963 0,581 1,005 0,000 

UBA1_HUMAN 0,766 1,283 1,093 0,771 1,172 0,176 5,745 2,642 3,036 0,688 1,214 1,133 0,273 0,858 1,237 0,778 0,446 

UBC_HUMAN 0,298 1,652 1,736 1,744 3,125 1,042 0,554 1,074 1,342 0,902 2,152 0,825 0,917 1,027 1,026 1,070 0,842 

UBP2L_HUMAN 
     

0,000 1,217 0,000 0,000 0,000 0,000 0,000 1,068 1,011 0,196 0,000 0,000 

UCHL1_HUMAN 1,174 1,453 0,975 0,668 0,991 
            

UGDH_HUMAN 0,424 2,009 1,074 0,914 1,250 0,099 2,139 2,754 3,351 1,026 0,670 1,831 0,816 2,229 2,962 0,362 0,352 

VDAC1_HUMAN 0,953 0,898 1,182 0,984 1,090 1,796 1,107 0,979 1,345 0,233 0,494 0,982 0,878 2,769 2,522 2,244 0,808 

VDAC2_HUMAN 1,146 0,615 0,822 1,412 1,259 2,421 0,748 0,607 0,766 0,767 0,722 1,352 0,665 1,342 1,238 1,410 1,151 

VDAC3_HUMAN 0,969 0,480 1,603 1,051 1,455 0,250 0,941 0,529 6,143 0,417 0,101 1,001 0,209 3,810 8,660 6,800 1,640 

VIME_HUMAN 1,054 0,893 1,161 1,042 0,910 1,623 1,457 0,662 0,787 0,910 0,990 0,861 0,915 0,905 0,772 0,972 1,512 

VINC_HUMAN 1,372 1,120 0,948 0,868 0,825 0,497 1,855 1,216 0,804 1,000 0,949 0,492 0,877 1,100 0,894 1,163 2,291 

VPS35_HUMAN 1,758 0,828 0,655 1,216 1,004             
WDHD1_HUMAN 0,495 0,856 5,391 0,428 0,000             
WDR1_HUMAN 0,601 1,235 0,847 1,802 1,104 0,000 12,21 2,023 1,667 0,445 3,306 0,467 0,413 0,295 0,530 0,569 1,099 

XPO1_HUMAN 0,652 0,466 1,951 0,867 1,942 
            

XPO2_HUMAN 0,498 1,255 1,626 0,981 1,177 1,044 0,167 1,226 1,011 1,327 3,153 0,973 1,418 1,016 1,076 1,377 0,268 

XRCC5_HUMAN 0,158 1,390 2,395 1,428 1,527 0,077 1,303 2,214 1,836 1,309 1,658 1,492 1,195 1,406 1,479 1,066 0,335 

XRCC6_HUMAN 0,130 1,237 2,556 1,381 1,741 0,152 0,943 1,165 1,162 1,128 1,557 1,735 1,260 1,385 1,307 1,137 0,762 

XRN2_HUMAN 
     

0,000 1,150 1,197 0,588 1,384 1,271 0,573 0,205 1,919 0,894 3,057 0,000 

YBOX3_HUMAN 
     

5,572 0,288 0,983 0,967 1,622 0,293 3,629 1,301 0,365 1,188 0,986 1,007 

YES_HUMAN 0,513 1,134 1,967 0,648 1,268 
            

ZA2G_HUMAN 0,776 0,714 1,072 1,507 1,090 
            

ZAGL1_HUMAN      20,886 4,113 0,371 0,787 0,539 0,297 1,156 0,790 0,771 0,917 0,369 0,393 

ZNF34_HUMAN     0,099 0,320 3,600 4,118 3,691 0,240 2,095 0,000 0,058 5,581 2,441 0,000 
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Appendix 2. Functions and NRA values of the proteins identified in our iPOND+MS experiment. 

The protein ID, function (represented by different colors as indicated) and NRA values of the proteins 

identified in our iPOND+MS experiment are shown. The NRA values are clustered into five different groups 
(from lowest to highest), each of them represented with certain color intensity to create a heatmap in order 
to make the results more visual. Proteins in grey represent the ones that were identified only in the first MS 

round. Conditions have been previously described (Figure 37). 

 

 

 

 

FUNCTION PROTEIN ID Negative 
control Pulse 15'EdU/H

U 2h HU 14h HU Chase 

 
DNLI1_HUMAN 0,000 1,000 0,391 0,094 

 
0,025 

 DPOA2_HUMAN 0,142 0,579 1,000 0,203  0,076 

 
DPOD1_HUMAN 0,000 0,940 1,000 0,205 0,008 0,057 

 
DPOD3_HUMAN 0,000 1,000 0,529 0,099 

 
0,000 

 DPOE1_HUMAN 0,038 0,407 1,000 0,027  0,000 

 
FEN1_HUMAN 0,023 1,000 0,814 0,571 0,210 0,410 

 
MCM2_HUMAN 0,074 0,795 1,000 0,299 

 
0,360 

 MCM3_HUMAN 0,041 0,676 1,000 0,652 0,116 0,241 

 
MCM5_HUMAN 0,000 0,851 1,000 0,259 

 
0,225 

 
MCM6_HUMAN 0,037 1,000 0,714 0,529 0,053 0,391 

 MCM7_HUMAN 0,026 0,761 1,000 0,481 0,475 0,359 

 
PCNA_HUMAN 0,019 1,000 0,700 0,388 0,025 0,080 

 
PRI2_HUMAN 0,004 0,732 1,000 0,347 0,000 0,006 

 RFA1_HUMAN 0,000 0,599 1,000 0,481  0,134 

 
RFA2_HUMAN 0,019 0,415 0,541 1,000 0,227 0,243 

 
RFC1_HUMAN 0,000 0,955 1,000 0,067 

 
0,029 

 RFC2_HUMAN 0,071 1,000 0,304 0,191 0,013 0,065 

 
RFC3_HUMAN 0,000 0,872 1,000 0,400 0,016 0,108 

 
RFC4_HUMAN 0,033 1,000 0,799 0,347 0,013 0,059 

 RFC5_HUMAN 0,005 0,558 1,000 0,291 0,268 0,089 

 
FACD2_HUMAN 0,000 0,059 0,799 1,000 

 
0,076 

 
FANCI_HUMAN 0,000 0,072 1,000 0,772 

 
0,450 

 MSH2_HUMAN 0,038 0,940 1,000 0,186  0,073 

 
MSH6_HUMAN 0,008 1,000 0,746 0,201 0,022 0,082 

 
PRKDC_HUMAN 0,113 0,513 1,000 0,287 

 
0,605 

 RECQ1_HUMAN 0,030 0,918 0,922 0,789 0,581 0,460 

Replisome components

Fork stability and DNA repair

Histones and histone variants

Proteolysis

Other funct ions

0.8 -1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

Protein classification (by function)  NRA values classification  
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RIF1_HUMAN 0,008 0,519 1,000 0,052 

 
0,086 

 SMC3_HUMAN 0,000 0,115 1,000 0,888 0,026 0,218 

 
XRCC5_HUMAN 0,054 0,774 1,000 0,846 0,590 0,700 

 
XRCC6_HUMAN 0,096 0,844 1,000 0,823 0,647 0,779 

 H12_HUMAN 0,028 0,186 0,312 0,399 0,346 1,000 

 
H14_HUMAN 0,081 0,131 0,276 0,301 

 
1,000 

 
H15_HUMAN 0,017 0,219 0,404 0,521 0,549 1,000 

 H1X_HUMAN 0,362 0,032 0,085 0,194 0,174 1,000 

 
H2AY_HUMAN 0,019 0,106 0,313 0,449 0,801 1,000 

 
H2BFS_HUMAN 0,049 0,378 0,773 0,555 0,830 1,000 

 H31_HUMAN 0,097 0,396 0,120 1,000  0,951 

 
H33_HUMAN 0,236 0,368 1,000 0,418 

 
0,548 

 
H4_HUMAN 0,134 0,446 0,921 0,624 0,997 1,000 

 PRS6B_HUMAN 0,426 1,000 0,462 0,383  0,286 

 
PSA2_HUMAN 0,281 0,423 0,451 0,916 

 
1,000 

 
PSA6_HUMAN 0,199 0,885 0,580 0,940 0,795 0,319 

 PSA7_HUMAN 0,395 0,395 0,512 1,000  0,709 

 
PSB3_HUMAN 0,501 0,864 0,552 0,610 

 
1,000 

 
PSB5_HUMAN 0,252 0,459 0,751 1,000 

 
0,790 

 1433T_HUMAN 0,478 0,450 0,796 1,000  0,642 

 
CAND1_HUMAN 0,371 0,664 1,000 0,630 

 
0,544 

 
CLIC1_HUMAN 0,506 0,593 0,722 1,000 

 
0,924 

 CPNE3_HUMAN 0,255 0,526 1,000 0,545  0,301 

 
DDX17_HUMAN 0,086 0,253 1,000 0,549 

 
0,530 

 
DHE4_HUMAN 0,238 0,283 0,163 1,000 

 
0,388 

 DHX15_HUMAN 0,214 0,695 1,000 0,429  0,849 

 
DNMT1_HUMAN 0,133 1,000 0,175 0,039 0,036 0,103 

 
FUS_HUMAN 0,284 0,540 1,000 0,516 

 
0,566 

 GRP78_HUMAN 0,541 0,592 0,350 0,635 1,000 0,628 

 
GRWD1_HUMAN 0,128 1,000 0,241 0,115 

 
0,084 

 
GTF2I_HUMAN 0,146 0,698 1,000 0,345 

 
0,332 

 GTR1_HUMAN 0,111 0,495 0,346 0,581 1,000 0,457 

 
GUAA_HUMAN 0,067 1,000 0,970 0,776 0,369 0,469 

 
HCD2_HUMAN 0,472 0,279 0,322 1,000 

 
0,301 

 IF4G1_HUMAN 0,440 0,853 0,707 1,000  0,574 

 
ILF2_HUMAN 0,119 0,357 0,576 0,432 0,867 1,000 

 
ILF3_HUMAN 0,221 0,679 1,000 0,772 0,542 0,699 

 IPO5_HUMAN 0,462 1,000 0,288 0,219  0,202 

 
IPO9_HUMAN 0,352 0,311 1,000 0,845 

 
0,628 
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LA_HUMAN 0,088 0,474 0,721 0,451 

 
1,000 

 LAP2B_HUMAN 0,078 0,279 0,403 0,477 0,818 1,000 

 
LEG7_HUMAN 0,017 1,000 0,003 0,005 

 
0,010 

 
LMNA_HUMAN 0,088 0,378 0,538 0,570 0,787 1,000 

 LMNB1_HUMAN 0,042 0,176 0,221 0,487 0,752 1,000 

 
LMNB2_HUMAN 0,101 0,094 0,212 0,395 1,000 0,545 

 
MCCA_HUMAN 0,491 0,410 0,510 1,000 0,827 0,544 

 NPM_HUMAN 0,211 0,576 0,543 0,642 0,385 1,000 

 
NUCL_HUMAN 0,153 0,515 0,606 0,559 0,283 1,000 

 
PABP3_HUMAN 0,251 0,193 0,148 0,227 1,000 0,242 

 PCBP1_HUMAN 0,300 0,364 0,569 0,455 0,276 1,000 

 
PGK1_HUMAN 0,360 0,461 0,405 0,492 

 
1,000 

 
PLAK_HUMAN 0,488 1,000 0,185 0,273 

 
0,180 

 PLEC_HUMAN 0,173 1,000 0,075 0,138 0,319 0,100 

 
PP1G_HUMAN 0,494 0,467 0,506 0,394 

 
1,000 

 
PRP8_HUMAN 0,092 0,180 1,000 0,376 

 
0,389 

 PSIP1_HUMAN 0,000 0,221 0,556 0,593 0,523 1,000 

 
PTBP2_HUMAN 0,167 0,861 1,000 0,937 0,643 0,464 

 
PYC_HUMAN 0,315 0,109 0,335 0,631 

 
1,000 

 RBMX_HUMAN 0,122 0,267 0,744 0,587  1,000 

 
RINI_HUMAN 0,255 0,715 0,913 0,707 0,479 1,000 

 
S10A8_HUMAN 0,054 1,000 0,048 0,201 

 
0,075 

 S61A1_HUMAN 0,343 0,317 0,339 0,143 0,247 1,000 

 
SP16H_HUMAN 0,010 0,821 1,000 0,433 0,157 0,167 

 
SRSF8_HUMAN 0,127 0,552 0,664 0,552 0,165 1,000 

 SSRP1_HUMAN 0,139 0,960 1,000 0,722 0,271 0,315 

 
SUMO4_HUMAN 0,018 1,000 0,940 0,484 0,484 0,498 

 
TCPD_HUMAN 0,409 0,948 1,000 0,727 0,474 0,552 

 TIF1B_HUMAN 0,104 0,846 1,000 0,671 0,309 0,473 

 
TOP1_HUMAN 0,000 0,206 0,453 0,372 0,367 1,000 

 
TOP2A_HUMAN 0,089 0,636 1,000 0,607 0,375 0,500 

 TPIS_HUMAN 0,113 0,347 0,604 1,000 0,599 0,570 

 
TRXR1_HUMAN 0,263 0,503 0,148 0,699 

 
1,000 

 
TXTP_HUMAN 0,170 0,131 0,203 1,000 

 
0,716 

 U2AF2_HUMAN 0,164 0,478 0,692 0,488  1,000 

 
UGDH_HUMAN 0,122 1,000 0,723 0,736 0,473 0,315 
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Appendix 3. Comparative analysis of the nascent DNA-bound proteins found in the pulse condition on different iPOND+MS studies. 

The protein ID and function (represented by different colors as indicated on Appendix 2), of the proteins considered as nascent DNA-bound proteins in the pulse condition in 
our proteomic analysis are shown. The results from our proteomic analysis were compared with data from other published works. Boxes in light grey represent the proteins 
that were considered nascent DNA-bound proteins in the pulse condition on published works. 
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