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Abstract 
 

This dissertation uses an experimental approach to analyze the behavior of people in 

controlled environments based in different theoretical issues of relatively recent 

discussion in macroeconomic theory. The first chapter focuses in a rational bubbles 

environment. It shows that people behavior is affected by the presence of sunspot 

messages; however, they do not necessarily react optimally to these messages. In 

addition, people can adapt their strategies to the optimal equilibrium strategies if these 

are not too much complex, but not all people have the same ability to implement this 

adaptation process. The second chapter shows that in an information constraint 

environment people pay more attention to the most important and variable sources of 

information. In addition, it reveals that the strategic complementarity between the 

choices of people is a key ingredient to explain the size of the interaction effects. The 

third chapter analyzes some predictions attributed to the multiple equilibria that are 

present in the global game models with endogenous information structure. It shows in a 

lab experiment that the weakest policy makers have a higher probability that their 

policies become unsustainable. In addition, it founds that if the uncertainty about the 

strength of the policy makers increases, then the probability that people attack their 

policies also increases. 

 

 

Resumen 
 

Esta tesis utiliza una aproximación experimental para analizar el comportamiento de 

las personas en ambientes controlados basados en diferentes temas teóricos de discusión 

relativamente reciente en teoría macroeconómica. El primer capítulo se enfoca en un 

ambiente de burbujas racionales. Éste muestra que el comportamiento de las personas se 

ve afectado por la presencia de mensajes “sunspot”; sin embargo, ellas no 

necesariamente reaccionan óptimamente a los mismos. Adicionalmente, las personas 

pueden adaptar sus estrategias a las estrategias óptimas de equilibrio si estas no son muy 

complejas; sin embargo, no todas las personas tienen la misma habilidad para adaptarse. 

El segundo capítulo muestra que en un ambiente con restricciones de información las 

personas ponen más atención a las fuentes de información más importantes y más 

variables. Adicionalmente, revela que la complementariedad estratégica entre las 

decisiones de las personas es un ingrediente esencial para explicar los efectos de 

interacción. El tercer capítulo analiza algunas predicciones que se atribuyen a los 

múltiples equilibrios que se presentan en los modelos de juegos globales que tienen una 

estructura de información endógena. Éste muestra en un experimento de laboratorio que 

los hacedores de política más débiles tienen una mayor probabilidad de que sus políticas 

se vuelvan insostenibles. Adicionalmente, éste encuentra que si la incertidumbre acerca 

de la fortaleza de los hacedores de política se incrementa, entonces la probabilidad de 

que las personas ataquen sus políticas también se incrementa.  
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Foreword 
 

 

This dissertation consists in three self-contained papers. All papers analyze the 

behavior of people in controlled environments that are based in different theoretical 

issues of relatively recent discussion in macroeconomic theory; in particular: rational 

bubbles (Chapter 1), rational inattention (Chapter 2) and global games with an 

endogenous information structure (Chapter 3). 

Almost all the lab experiments that have been done about asset price bubbles are 

based on theoretical models that do not have bubbling equilibria, therefore these 

experiments have not considered all possibilities of analysis that the environments with 

bubbling equilibria provide.  

The goal of Chapter 1 (“Bubbles and Crashes: A Laboratory Experiment”) is to 

analyze how people behave in a lab experiment when they face an economic 

environment in which there exist bubbling equilibria. As far as we know there are only 

two papers in this area of research1: Morgan and Brunnermeier (2010) and Kang, Ray 

and Camerer (2012)2. The experiments of these papers reveal several aspects about the 

behavior of people: (1) people effectively take advantage of the presence of rational 

bubbles, but they usually attack the bubbles too early; (2) the early attacks are more 

usual in people that have higher levels of risk aversion or anxiety; (3) during the 

experiments people learn to wait until the moment in which is optimal to attack the 

bubble; and (4) if they can observe the choices of the other people then there is a 

herding behavior when someone decides to attack the bubble. In Chapter 1 we propose a 

rational bubbles model3 with some characteristics that do not appear in the theoretical 

model used as benchmark in Morgan and Brunnermeier (2010) and Kang, Ray and 

Camerer (2012); then, we propose a lab experiment based in this theoretical model. We 

found many of the results obtained in the experiments commented above. However, we 

also obtained some results that are new: in the bubbling equilibrium environment, 

people do not necessarily react optimally to sunspot messages even though the presence 

of these messages affect their behavior; and people can adapt their strategies to the 

optimal equilibrium strategies if these strategies are not too much complex, but not all 

people have the same ability to implement this adaptation process. 

Mackowiak and Wiederholt (2009) built a rational inattention macroeconomic model 

that can explain some important stylized facts of the US economy; these explanations 

are possible due to the following two theoretical results obtained in their model: (1) 

when idiosyncratic conditions are more variable or more important than aggregate 

conditions, firms pay more attention to idiosyncratic conditions than to aggregate 

                                                            
1 Moinas and Pouguet (2013) propose a bubble game that can be adapted to produce rational or irratio-

nal bubbles. However, we do not include this paper to the list because the speculative analysis proposed 

in their paper can be done perfectly using only the irrational bubbles version of the model. 
2 The lab experiments of both papers are based in the same theoretical model which is explained in the 

first sections of Morgan and Brunnermeier (2010). 
3 Based on the model built by Abreu and Brunnermeier (2003) 
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conditions; and (2) there are interaction effects because firms track endogenous 

variables.  

The goal of Chapter 2 (“Multiple Sources of Information and Strategic Behavior”) is 

to examine in a lab experiment the two theoretical results obtained by Mackowiak and 

Wiederholt (2009). We propose a rational inattention model that also obtains these two 

theoretical results. In addition, to better understand the interaction effects, we also 

contemplate an extension to the model in which we consider the possibility of strategic 

behavior. We then propose a lab experiment that follows closely our model. In the 

experiment, the behavior of the participants is coherent with the theoretical results 

obtained by Mackowiak and Wiederholt (2009); that is, the agents pay more attention to 

the sources of information that are more important and variable, and the interaction 

between agents that have incomplete information affects the choices of the other agents 

(i.e. there is an interaction effect). Our main finding in this chapter is that the strategic 

complementarity between the choices of the participants in the experiment is quite 

important to explain the deviations to the equilibrium strategies.  

In Chapter 3 we discuss a new model related to global games. One appealing 

characteristic of the standard global game models is the equilibrium uniqueness 

obtained in these models. However, many papers have found that the multiplicity of 

equilibria may reappear when the endogeneity of the information structure is taken into 

account. Angeletos and Pavan (2013) propose a general global game model with 

endogenous information that also obtains multiple equilibria. One of the novelties of 

their research is that they identify some specific predictions that are inherent to these 

equilibria.  

The goal of Chapter 3 (“Global Games with Endogenous Policy Intervention: An 

Experiment”) is to analyze if the predictions of Angeletos and Pavan (2013) can also be 

obtained in a lab experiment that is based on an endogenous policy intervention global 

game model. In the first part of the chapter we explain the model. Then we explain the 

experimental design and the results obtained in the experiment. We found some 

discrepancies between the behavior of the participants in the experiment and the 

equilibrium strategies predicted by the model. However, some of the predictions found 

by Angeletos and Pavan (2013) are also obtained in the experiment. For instance, the 

weakest policy makers have a higher probability that their policies become 

unsustainable. In addition, we found that if the uncertainty about the strength of the 

policy makers increases, then the probability that the agents attack their policies also 

increases.   
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Chapter 1 
 
BUBBLES AND CRASHES:  
A LABORATORY EXPERIMENT 
 

 

1.1  Introduction 
 

One of the most interesting questions about financial markets is how traders behave 

when there is an asset price bubble1. It is complicated to answer this question using 

exclusively field data because of a lack of control over the environment in which the 

bubble happens. In particular, with field data, it is difficult to have control over the 

fundamental value of the assets and over the information that the traders have. On the 

other hand, the analysis of bubbles using information obtained from lab experiments is 

more transparent in the sense that the fundamental value and the information that the 

agents have can be predetermined directly in the experimental design.   

Some scholars have traditionally argued that bubbles happen due to the irrationality 

of traders2. However, since the eighties some economists have tried to show that 

bubbles also begin and are perpetuated in environments in which rational traders play an 

important role.  

In a finite horizon economy in which all traders are rational and there is common 

knowledge about the price and the fundamental value of the assets3 the principle of 

backward induction implies that it is not possible to have a bubbling equilibrium4. 

                                                            
1 An asset price bubble happens when the price of an asset is higher than its fundamental value during 

several periods.  
2 For instance, when Sir Isaac Newton was asked about the continuance of the rising of South Sea 

stock? - He answered, "that he could not calculate the madness of people." (Spence, Anecdotes, 1820, p. 

368). During the South Sea Bubble Newton initially made substantial profits and then re-invested; he lost 

ultimately £20,000, a fortune at that time (Carswell, 1960). More recently, in 1996 Alan Greenspan 

(Chairman of the Federal Reserve of the United States from 1987 to 2006) used the expression irrational 

exuberance to describe the movements of speculative bubbles in financial markets. 
3 Therefore, when there is a bubble each trader knows the bubble, each trader knows that all other 

traders know the bubble, each trader knows that all other traders know that all traders know the bubble, 

and so on.  
4 There is not a bubbling equilibrium because in the last period (e.g. period T) the rational agents are 

not dispose to face the lost that implies to have overvalued assets. Thus in period T, given the assumption 

of common knowledge, no one is disposed to buy these assets. Therefore, in period T-1, given the 

assumption of common knowledge, no one is disposed to have and consequently to buy overvalued 

assets. In conclusion, by backward induction, in the first period no one is disposed to buy overvalued 

assets so the bubble is never realized at the equilibrium. 
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Therefore, to introduce this kind of equilibrium in an environment of rational traders we 

have to assume that these traders trade according to an unbounded horizon or that there 

are some asymmetries in beliefs such that the presence of bubbles is not common 

knowledge.   

Respect to the first assumption, for instance, Tirole (1982) in a discrete-time finite-

horizon setting showed that price bubbles depend on the myopia of traders and these are 

ruled out if traders adopt a truly dynamic maximizing behavior; Blanchard and Watson 

(1982) explained using an infinite horizon model that rational agents only hold a bubble 

asset if the bubble grows in expectation ad infinitum5;  and Tirole (1985) found that in 

overlapping generations economies rational asset price bubbles only happen at the 

equilibrium when the interest rate is lower than the growth of the economy, that is 

bubbles are only possible in economies that are dynamically inefficient. Abel, Mankiw, 

Summers and Zeckhauser (1989) criticize the result obtained by Tirole (1985) because 

they have found using empirical data that the U.S. economy is dynamically efficient6. 

However, many economists introducing mainly financial frictions into the analysis have 

shown that bubbles are also possible in dynamically efficient economies (e.g. Farhi and 

Tirole, 2012; Martin and Ventura, 2012). 

Respect to the second point, there are many ways to break the assumption of 

common knowledge in a finite horizon economy. For instance, Allen and Gorton (1993) 

show that when there is asymmetric information between investors and portfolio 

managers, portfolio managers can gain from buying overpriced assets, since trading 

allows them to fool their clients into believing that they have superior trading 

information7; De Long, Shleifer, Summers and Waldman (1990) show that the presence 

of behavioral traders imply a noise trader risk that incentives rational traders to 

perpetuate the bubbles; Abreu and Brunnermeier (2003) show that the asymmetries of 

information about the existence of the bubbles also motivate rational traders to 

perpetuate the bubbles; finally, Allen, Morris and Postlewaite (1993) and Scheinkman 

and Xiong (2003) show that with heterogeneous beliefs and short-sale constraints 

rational agents pay prices that exceed their own valuation of the fundamental value 

because they believe that in the future they will find agents that are willing to pay more 

(i.e. they will find agents that have more optimistic beliefs).  

There are many papers that have analyzed asset price bubbles using lab experiments8. 

In the last twenty-five years many of these experiments follow closely the setting 

proposed by Smith, Suchanek and Williams (1988). This setting is based in an efficient 

double-auction market model in which bubbles are not possible at the equilibrium. The 

interesting aspect of their experiment is that they obtain asset price bubbles and crashes 

in a finite horizon economy in which the fundamental value of the assets (and 

consequently the bubble) is common knowledge. The most frequent argument respect to 

this result is that the participants in the experiment speculate; however, Lei, Noussair 

and Plott (2001) using a similar setting to the one proposed by Smith, Suchanek and 

                                                            
5 It means that the transversality condition that avoids the presence of overvalued assets at the 

infinitum does not apply. 
6 That is, in U.S. the interest rate is higher than the growth of the economy. 
7 A portfolio manager that does not trade would reveal that she does not have private information. 

Consequently, portfolio managers have incentives to churn bubbles at the expense of their uninformed 

client investors. 
8 For instance, look at the literature referenced in Sunder (1992) 
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Williams (1988) with the only difference that speculation is not allowed9 have found 

that bubbles also appear. On the other hand, Crocket and Duffy (2015) propose an 

experiment based on a version of the consumption asset pricing model of Lucas (1978) 

that does not have a bubbling equilibrium, and they find that in identical economies 

bubbles are low (high) when consumption smoothing is induced via a concave (linear) 

utility. 

The main characteristic of the experiments remarked in the previous paragraph is that 

they have found bubbles in settings in which according to the economic theory bubbles 

should not appear. However, Brunnermeier and Morgan (2010) have proposed a clock 

game experiment based on a clock game model in which there is a bubbling 

equilibrium. In this game there is a clock that goes backwards when there is a bubble, if 

the clock arrives to zero the bubble bursts however it also bursts if there is an enough 

mass of traders that have already sold the only asset that each trader has. The traders do 

not know the exact moment at which the clock begins, but they are informed in an 

asynchronized way about this event, therefore the size of the bubble (an also the 

presence of the bubble) is never common knowledge. At the equilibrium the agents sell 

their asset at the moment at which the earnings of having the asset are equal to expected 

earnings of selling it. The main results obtained in the model (which are partially 

supported by their lab experiment) are: (1) the delay of selling the asset decreases as the 

agents are more synchronized respect to the moment they are informed about the 

bubble; and (2) if the bubble becomes common knowledge, due to a signal that is 

observed by everyone, then traders herd immediately. Kang, Ray and Camerer (2012) 

also take as setting the model proposed by Brunnermeier and Morgan (2010), the main 

difference is that in their experiment one human player is trading against some 

computerized players (in the original experiment there are only human players). Kang, 

Ray and Camerer (2012) test the first result obtained by Brunnermeier and Morgan 

(2010) and they also analyze how is the learning process that the human traders have 

after many times playing the game10. 

Most of the lab experiments observing asset price bubbles are based on theoretical 

models that do not have a bubbling equilibrium, therefore they do not take into account 

all the richness that can be found in models that consider this kind of equilibrium. The 

goal of this chapter is to propose a lab experiment that uses a benchmark model with 

bubbling equilibrium. More specifically, we propose a modified version of the model 

built by Abreu and Brunnermeier (2003), we explain the experimental design used in 

our lab experiment and finally we analyze how human agents behave in this theoretical 

context. The theoretical model proposed by Brunnermeier and Morgan (2010) have also 

some similarities with Abreu and Brunnermeier (2003). However, there are also some 

differences that we have not avoided, for instance we allow traders to buy and sell their 

                                                            
9 In particular, in Lei, Noussair and Plott (2001) participants are not allowed to adopt the dual role of 

buyers and sellers.  
10 One important aspect highlighted by almost all lab experiments about bubbles is that the 

participants have to play the game many times in order to give them the opportunity to better understand 

the way in which the experiment works. For instance, the experiments that follow Smith, Suchanek and 

Williams (1988) regularly find that after many times playing the same game there is a learning process 

such that the number and the size of bubbles decreases. That is, after many times playing the game the 

behavior of the participants approaches to the behavior of the rational traders at the theoretical 

equilibrium. 
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assets as many times as they want, we inform traders sequentially about the bubble and 

we propose a sunspot extension which is also proposed in the original model11. 

The rest of the chapter is organized as follows. Section 1.2 explains the theoretical 

model. Section 1.3 presents the experimental design. Section 1.4 shows an econometric 

analysis about the results obtained in the experiment. Finally, section 1.5 presents some 

final comments. 

 

 

1.2 Model 
 

The model that we propose is a version of the model built by Abreu and 

Brunnermeier (2003)12. The technical details of this version are analyzed in Appendix 

A1. In the next paragraphs we will explain the most important assumptions and results 

obtained with the model.  

The main differences with the original model is that Abreu and Brunnermeier (2003) 

assume a continuum of traders and continuous time. In the new version of the model the 

number of traders is finite and time is discrete13.  

Assume an economy with two kinds of agents which are either rational or irrational. 

Irrational agents are only useful to explain the emergence and the size of the bubbles14, 

but they cannot recognize the future bubble collapse. Therefore, these agents are not 

going to be analyzed explicitly in our model15. On the other hand, there are 𝑁 rational 

agents (traders) who understand that an eventual collapse of a bubble is inevitable. The 

rational agents are risk neutral and they know that a coordinated attack to the bubble can 

precipitate its collapse, but they cannot communicate to each other to coordinate an 

attack.   

There are two types of assets: safe and risky. The price of each kind of asset has a 

stock market value and a fundamental value. The stock market value of the safe assets is 

always equal to its fundamental value and both grow every period at a rate of  𝑟. On the 

other hand, until period 𝑡0 − 1 the stock market value of the risky asset is equal to its 

fundamental value and both grow every period at a rate of 𝑔 > 𝑟. But, from period 𝑡0 

afterwards the fundamental value of the risky assets grows every period at a rate of 𝑟, 

and the stock market value of the risky assets grows every period at a rate of 𝑔, except 

in the period when the bubble bursts, in this period the stock market value of the risky 

asset falls until to catch up its fundamental value. Therefore, if a rational agent has a 

portfolio of only risky assets when the bubble bursts then she loses all capital gains 

obtained in these assets during bubble’s appreciation (Figure 1.1).  

 

[Figure 1.1] 

                                                            
11 In Brunnermeier and Morgan (2010) a trader finishes to play as soon as she sells the only asset that 

she has; traders are informed in a uniform and independent way about the bubble; and their model and 

experiment do not consider the sunspot extension. 
12 We do not use exactly the same version of the model that was proposed by these authors because 

some assumptions of the original model have problems to be implemented in a lab experiment. 
13 Time is discretized in a way that traders can only make at most one kind of financial transaction per 

period. 
14 That is, irrational agents sustain the price of the bubble during the bubbling period. 
15 Similarly, the analysis of irrational agents is also not considered in the model of Abreu and 

Brunnermeier (2003). 
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We will assume that at time 𝑡 = 0 rational traders are fully investing in the risky 

asset and they cannot recognize immediately when there is a bubble, but since period 𝑡0 

(i.e. since the beginning of the bubbling period) they are sequentially aware, one trader 

per period, about its existence. Therefore, in period 𝑡0 there is only one trader who 

knows the existence of the bubble, in period 𝑡0 + 1 a new agent is aware about the 

bubble and this process continues until period 𝑡0 + 𝑁 − 1 in which all agents are aware 

about the existence of the bubble.  

When rational traders are aware about the existence of the bubble, they cannot 

recognize exactly the number of periods that has elapsed since the emergence of the 

bubble and how many other rational traders recognize the bubble before or after them. 

In particular, period 𝑡0 is unknown, however all traders know that variable 𝑡0 ∈
[1, 2,3… ,∞) and it has a geometric cumulative distribution function Φ(𝑡0) = 1 − (𝒫)

𝑡0 

where 𝒫 is the probability that a bubble does not begin in a specific period.  

In every period all traders decide the kind of portfolio they want to have, but 

diversification is not allowed16. Therefore, every period a trader who has a portfolio of 

risky assets has to decide if she wants to sell her portfolio to buy a portfolio of safe 

assets. Similarly, every period a trader who has a portfolio of safe assets has to decide if 

she wants to sell her portfolio to buy a portfolio of risky assets. In the model buyback 

shares (i.e. buyback portfolios) is allowed.  

The bubble can burst by exogenous or endogenous reasons. It bursts by endogenous 

reasons when an enough number of rational traders have a portfolio of safe assets. More 

specifically, it bursts in a specific period by endogenous reasons if 𝜏𝜅 traders have 

portfolios of safe assets17. It implies that the value of the portfolio of a specific trader 

can be affected by the actions of the other traders if these actions cause an endogenous 

burst of the bubble. On the other hand, the bubble bursts by exogenous reasons when it 

is old and if an endogenous bursting has not happened previously. More specifically, the 

exogenous burst happens at time 𝑡0 + 𝜏̅ where 𝜏̅ is the maximum age that a bubble can 

has.  

All agents who have a portfolio of risky assets at the moment of the bubble bursting 

suffer capital losses because of the fall in the stock market price (as it is shown in the 

right hand side of Figure 1.1). However, in the model there is a rule in which no more 

than 𝜏𝜅 traders can have portfolios of safe assets in the same period. Therefore, if in a 

specific period (e.g. period 𝑡) some traders decide to change their portfolio of risky 

assets by a portfolio of safe assets, they can do it without any problem except in the case 

in which our rule is violated. In this specific case, some of the traders who try to get the 

portfolio of safe assets cannot make the financial transaction. These traders are chosen 

randomly such that in period 𝑡 + 1 the number of traders with a portfolio of safe assets 

is equal to 𝜏𝜅 and consequently there is an endogenous bursting of the bubble. 

As we will explain in the next section, in the experiment we are more interested to 

analyze the endogenous burst of the bubble. Therefore, we will assume (as it is 

                                                            
16 Abreu and Brunnermeier (2003) allow diversification, however in equilibrium it is not optimal to 

have a diversified portfolio. Therefore, our assumption is not critical and allows us to have a shortcut to 

describe faster the solution of the model. Additionally, the assumption of not allowing diversification is 

directly related to the experiment proposed in the next section of the chapter.  
17 Since only one new trader is informed per period about the existence of the bubble, then 𝜏𝜅 also 

represents the length of time until the number of traders who know the existence of the bubble is enough 

to burst it. 
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explained in Appendix A1) a combination of parameters such that in equilibrium an 

endogenous burst is ensured.  

Define 𝜏∗ as the lowest integer value of 𝜏 that solves the following inequality: 

 

(
𝑔−𝑟

1+𝑟
) − {1 − [

1+𝑟

1+𝑔
]
(𝜏𝜅+𝜏)

}  ℎ(𝑡𝑖 + 𝜏|𝑡𝑖) ≥ 0                                                                       (1.1) 

where period 𝑡𝑖 is the period at which trader 𝑡𝑖 is aware about the bubble18 and  ℎ(𝑡𝑖 +

𝜏|𝑡𝑖) =
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
  is the hazard rate that the bubble will burst at period 𝑡𝑖 + 𝜏 19. 

Therefore, there exists a unique trading equilibrium20 in which all traders that become 

aware about the bubble after or at period 𝜏𝜅 get the portfolio of safe assets 𝜏∗ periods 

after the period in which they become aware of it. On the other hand, all traders who 

become aware about the bubble before period 𝜏𝜅 get the portfolio of safe assets at 

period  𝜏𝜅 + 𝜏
∗. In this equilibrium the portfolio of safe assets is maintained until the 

bubble bursts.  

In equation (1.1) the first term represents the earnings obtained per asset by 

continuing one additional period with the portfolio of risky assets and the second term 

represents the expected potential losses per asset by continuing one period more with 

the portfolio of risky assets, where [
1+𝑟

1+𝑔
]
(𝜏𝜅+𝜏)

represents the decrease in prices a trader 

with a portfolio of risky assets faces when the bubble burst at period 𝑡0 + 𝜏𝜅 + 𝜏.  
Finally, notice that 𝜏∗can also be represented as21: 

 

𝜏∗ ⌊≥⌋ [ln(1 −
𝑔−𝑟

1+𝑟
[1−𝒫]
𝒫

1−(𝒫)𝜏𝜅

) [ln (
1+𝑟

1+𝑔
)]
−1
] − 𝜏𝜅                                                                  (1.1’) 

From expressions (1.1) and (1.1’) we can infer that 𝜏∗ is the same for all 𝑡𝑖 agents 

and it does not depend on time. This result is mainly due to the assumption that  𝑡0 is 

randomly determined by a geometric distribution function that is memoryless22.  

 

 

Public signals or synchronized events 
 

Until now, we have not assumed any mechanism to coordinate an attack to the 

bubble. However, in addition to the previous assumptions, assume that the agents know 

the existence of public signals (or synchronized events) that can induce a synchronized 

                                                            
18 That is, in the model 𝑡𝑖 is a random variable such that 𝑡𝑖 ∈ [𝑡0, 𝑡0 + 1, 𝑡0 + 2,… , 𝑡0 +𝑁 − 1] 
19 That is, ℎ(𝑡𝑖 + 𝜏|𝑡𝑖) is the probability that the bubble that has survived until period 𝑡𝑖 + 𝜏 will burst 

at period 𝑡𝑖 + 𝜏 
20 A trading equilibrium (when diversification is not allowed) is defined as a Perfect Bayesian Nash 

Equilibrium in which every trader who has a portfolio of safe assets (correctly) believes that all traders 

who became aware of the bubble prior to her also have portfolios of safe assets. 
21 The operator ⌊≥⌋ means the minimum integer value of 𝜏∗ that satisfies the inequality. 
22 A similar result is obtained by Abreu and Brunnermeier (2003) who assumed that 𝑡0 is randomly 

determined by an exponential distribution function (this distribution function is also memoryless) 
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attack to the bubble. Assume these signals appear randomly at the rate 𝜃 and are only 

observed by traders who already became aware about the bubble.  

Define 𝜏∗∗ as the lowest integer value of 𝜏 that solves the following equation 

 

𝑔−𝑟

1+𝑟
− [1 − (

1+𝑟

1+𝑔
)
(𝜏+𝜏𝜅)

] ℎ(𝑡𝑖 + 𝜏|𝑡𝑖) −. 

           𝜃 ∑ ∑ [
𝑠−𝜏𝜅

𝜔
(1 − (

1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏)

)]𝜙(𝑡0|𝑡𝑖)  ≥  0𝑡0=𝑡𝑖+𝜏−1+𝑠−𝜏𝜅
𝜏
𝑠−𝜏𝜅=0

                (1.2) 

where 
𝑠−𝜏𝜅

𝜔
 is the probability that a trader, who observe the public signal, has a capital 

loss when there is a successful synchronized attack to the bubble. 𝜔 is the number of 

traders who pretend to get the portfolio of safe assets in the period immediately after the 

public signal23 and 𝑠 − 𝜏𝜅 ≥ 0 is the number of traders who could not get the portfolio 

of safe assets in the period immediately after the public signal (so this 𝑠 − 𝜏𝜅 traders 

have capital losses when the bubble bursts due to the synchronized attack to the bubble). 

ℎ(𝑡𝑖 + 𝜏|𝑡𝑖) =
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
 is the hazard rate that the bubble will burst at period 𝑡𝑖 + 𝜏; and 

𝜙(𝑡0|𝑡𝑖) =
𝒫−𝑁[1−𝒫]

𝒫−𝑁−1
 is the conditional probability mass function of 𝑡0. Notice that if 

there are not public signals then 𝜃 = 0 and we obtained an equation identical to 

equation (1.1).  

In equation (1.2) the first term represents the earnings obtained per asset by 

continuing one additional period with the portfolio of risky assets. The second term 

represents the expected potential losses per asset by continuing one period more with 

the portfolio of risky assets if there is an endogenous burst. Finally, the last term 

represents the expected potential losses if there is a synchronized attack to the bubble 

which was motivated by the appearance of a public signal.  

Under the new assumptions there are multiple trading equilibria24 but (as it is 

explained in Appendix A1) there exists a unique responsive equilibrium25. In this 

equilibrium each trader 𝑡𝑖 always sells the portfolio of risky assets at the instances of 

synchronizing events 𝑡𝑒 such that 𝑡𝑒 ≥ 𝑡𝑖 and 𝑡𝑒 ≥ 𝜏𝜅 (i.e. in 𝑡𝑒 there is a synchronized 

endogenous attempt to burst the bubble). Furthermore, trader 𝑡𝑖 stays with the portfolio 

of safe assets for all 𝑡 ≥ 𝑡𝑖 + 𝜏
∗∗ except in the event that the last synchronized 

endogenous burst attempt failed in which case she re-buys the portfolio of risky assets 

for the interval 𝑡 ∈ (𝑡𝑒, 𝑡𝑒 + 𝜏
∗∗), unless a new synchronizing event occurs in the 

interim.  

To summarize, in the model proposed in this section we have found the optimal 

delays (𝜏∗and 𝜏∗∗) traders have in two different scenarios. In the first one the individuals 

are aware in private but sequentially about the existence of a bubble. In the other one, 

                                                            

23 More specifically, 𝜔 = {
𝜏     𝑖𝑓 𝑠 − 𝜏𝜅 ≤ 𝜏 ≤ 𝑠

°
𝑠      𝑖𝑓 𝑠 < 𝜏 ≤ 𝑁       

. From this equation, notice that 𝜏 is also the 

maximum number of traders who are aware about the bubble and has the portfolio of risky assets.  
24 For instance, if all traders do not pay attention to public events then we obtained the same 

equilibrium analyzed previously. 
25 A responsive equilibrium is a trading equilibrium in which each trader believes that all other traders 

will synchronize (selling their portfolio of risky assets) at each synchronizing event if it happens at or 

after period 𝜏𝜅. 
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some agents also observe public signals that can help them to coordinate endogenous 

attempts to burst the bubble. In the next section we proposed an experiment to analyze 

if this behavior is coherent when an individual is facing an economy populated by 

computational traders who behave as rational traders and have beliefs which are 

consistent with the trading and the responsive equilibria respectively. 

 

 

1.3 Experimental design 
 

The experiment is based in the theoretical model proposed in the previous section. 

We prepared two sessions, one session was for the case in which there were no public 

signals (baseline session) and the other corresponds to the cases in which individuals 

can observe a public signal without any informational content (sunspot session). 19 

subjects were recruited from the UPF Leex Lab to participate in each session, and no 

subject appeared in more than one session. The software used in the experiment was z-

tree. At the beginning of each session, the subjects were seated at computer terminals 

and given a set of instructions, which were then read aloud by the experimenter. A copy 

of the instructions appears in Appendix B1. To ensure that subjects understood the 

game structure, some examples and some questions of understanding were administered 

at the end of the instructions.  

In the instructions of the experiment we avoided to use some words or sentences that 

could lead to negative (or positive) misunderstandings. For instance, in the experiment 

instead of denoting the assets as risky or safe (as was done in the theoretical model) we 

named them as private and public assets respectively. Similarly, we did not use the 

word bubble, so when there was a bubble we talked about a divergence between the 

stock market value and the true value of the private assets26. In the rest of the chapter we 

will continue the explanation with the same terminology that we have used in section 

1.2.  

Each participant played the same game 50 times in succession, all under the same 

treatment. Each participant played in his own market with 24 computer players (i.e. 

𝑁 = 25) programmed to follow the theory predicted equilibrium strategy27. Participants 

were informed that they were playing with computer players, who would receive the 

same amount of information as they had and who would employ a consistent strategy 

throughout the experiment. However, the strategy of the computer players remained 

unknown to the participants. All the time subjects knew the current value of their 

respective portfolios but during each game they never knew the current value of the 

portfolio of the computer participants; only at the end of each game the human 

participants were informed about the highest three portfolio values obtained by the 

computer players. In addition, at the end of each game the agents were informed about 

                                                            
26 In addition, we changed the word games by transaction rounds and we did not denominate the 

participants of the experiment as players. 
27 We also considered the possibility of only having human players within a game. However, this 

alternative has two inconveniences that were found in a pilot experiment: (1) each game takes too much 

time and (2) the amount of information that we can obtain per individual is low. These two 

inconveniencies became critical because most of the experiments that analyze asset price bubbles have 

found that the learning process is important.   
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the current and cumulative earnings (in ECUs)28 they have at that moment in the 

experiment.  

To minimize problems due to the Active Participation Hypothesis we restrict the 

human trader to interact in the game only when she is aware about the existence of the 

bubble29. More specifically, in each game the first screen that human subjects can see in 

their computers corresponds to the period in which they are informed about the 

existence of the bubble (notice that this period changes from game to game because 𝑡0 

and consequently 𝑡𝑖 are randomly determined). In addition, we will analyze if this 

restriction helps us also to solve at least in part the time effect problem found in the 

experiments done by Brunnermeier and Morgan (2010) and Kang, Ray and Camerer 

(2012). In our experiment the time effect happens if the individuals tend to sell their 

portfolio of risky assets too early (i.e. if in the experiment the values of 𝜏∗and 𝜏∗∗ are 

lower than the results obtained in the theoretical model).  

At the start of each game (i.e. in period 0), the human player and the 24 computer 

players received a portfolio of risky assets that has the same value. Since the solution of 

the theoretical model is not affected by the value of the portfolio (or by the level of 

prices) we decided to normalize this value in 1 ECU at the moment the human players 

are informed about the existence of the bubble. That is, in the first screen that the agents 

see in every game the current value of their portfolio is always equal to 1 ECU. With 

this procedure we are trying to avoid money illusion effects30 and to simplify the 

information that individuals can see in the screen of their computers. In addition, the 

participants in the experiment do not need to know the value of their portfolio without 

the normalization because this value is not critical to determine the earnings that the 

agents have in every game.  

In each game when a human player begins to participate (i.e. when she becomes 

aware about the bubble) z-tree randomly has already determined the age of the bubble, 

and consequently the periods of the endogenous and the exogenous bursts. However, 

the players do not have this information and consequently they cannot infer exactly how 

many subjects were aware about the bubble before them and the period in which the 

bubble bursts. They only know that since the first period there is a probability of 5% per 

period that the bubble begins (i.e. 1 − 𝒫 = 0.05).  

Individuals are informed that diversification is not allowed and that each game ended 

once 15 traders have a portfolio of safe assets in the same period (i.e. 𝜏𝜅 = 15) or when 

100 periods have elapsed since the beginning of the bubble (i.e. 𝜏̅ = 100). However, 

they do not know that the experiment is programmed such that the exogenous burst 

never happens. More specifically, they are not informed that the baseline experiments 

                                                            
28 ECU (or Experimental Currency Unit) is the monetary denomination used in the experiment. 
29 The Active Participation Hypothesis implies that subjects in experimental markets trade because 

they feel that they are supposed to trade, even if it does not increase their payoffs (Lei, Noussair and Plott, 

2001). Even though our experiment does not follow the structure of Smith, Suchanek and Williams 

(1988) (which is the structure used by Lei, Noussair and Plott, 2001), the fact that the bubble does not 

emerge immediately implies that agents can become impatient (remember that in our experiment the 

bubble emerges in a random period because it is critical that agents cannot identify perfectly the moment 

at which it begins).  
30 We consider that it is important to eliminate money illusion effects because period 𝑡0 is randomly 

chosen, then the value of the portfolio at period 𝑡𝑖 (i.e. when the individual 𝑡𝑖 is informed about the 

bubble) without normalization should not reveal any information about the size of the bubble or about the 

period in which it bursts.  
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always end one period after, one period before or at the period  𝑡0 + 𝜏𝜅 + 𝜏
∗31. In 

addition, they do not know that in the cases in which there exist public signals the 

bubble does not burst later than 𝑡0 + 𝜏𝜅 + 𝜏
∗∗; and they do not know that each time 

there is a public signal all computer traders who became aware about the bubble decides 

to obtain the portfolio of safe assets.   

In addition to the 5€ show-up fee, subjects were paid whatever they earned during 

the experiment. The earnings of each game were determined according to the following 

equation: 

 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑔𝑎𝑚𝑒 = 0.01 € ×  (
𝐹𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑡𝑟𝑎𝑑𝑒𝑟

𝐹𝑖𝑛𝑎𝑙 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑎𝑠𝑠𝑒𝑡𝑠
) 

= 0.01 € ×  (
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑡𝑟𝑎𝑑𝑒𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑖𝑛𝑎𝑙 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑎𝑠𝑠𝑒𝑡𝑠
) 

Earnings averaged 12.2€, and each session lasted around 90 minutes. To summarize, 

the parameter values used in the experiment and known to the traders were:  

 

 Number of traders: 𝑁 = 25 

 Number of traders necessary for bubble bursting: 𝜏𝜅 = 15 

 Probability that a bubble begins:  (1 − 𝒫) = 0.05, then  𝒫 = 0.95 

 𝑔 = 10%,   
 𝑟 = 1%,   
 Delay of the exogenous crash: 𝜏̅ = 100 

 

Therefore, according to the theoretical model in the baseline session there was 

always an endogenous crash32 (with no buyback) and the optimal equilibrium delay was 

𝜏∗ = 1333. Thus, if an individual becomes aware about the bubble after period 15 she 

should strategically delay for 13 periods until she obtains the portfolio of safe assets and 

she should maintain this portfolio until the end of the game. On the other hand, 

according to the theoretical model if an individual is informed about the bubble before 

or at period 15, then she will obtain the portfolio of safe assets in period 28 (𝜏𝜅 + 𝜏
∗ =

15 + 13). Consequently, the bubble almost always bursts in period 𝑡0 + 𝜏𝜅 + 𝜏
∗ = 𝑡0 +

28 (where 𝑡0 is randomly determined in each game)34.  

On the other hand, in the sunspot session we considered also the presence of a 

random synchronized event that appears every period at a rate of 5% (i.e. 𝜃 = 0.05) and 

this event is only known by the agents who already know about the existence of the 

                                                            
31 Notice that the game can finish one period before (after) period 𝑡0 + 𝜏𝜅 + 𝜏

∗ if the human player 

retains the portfolio of risky assets less (more) time than the theory predicts. 
32 The condition to ensure an endogenous burst is satisfied. From Appendix A1 we know that this 

condition is 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ <

[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
  (if we replace the parameters by the respective value that we are 

considering we get 0.092<0.098) 
33 This value was obtained numerically from equation (1.1) and it is also equal to the analytical value 

that results from equation (1.1’). 
34 It can burst also one period after or one period before depending on the behavior of the human 

player. 
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bubble. In this case the optimal delay is 𝜏∗∗ = 735 and the game always finishes before 

or at 𝑡0 + 𝜏𝜅 + 𝜏
∗∗ = 𝑡0 + 22.  

In a clock game experiment the length of each period is a time interval that has been 

previously predetermined (in this kind of experiments regularly the length of each 

period is a fraction of a second). On the other hand, in the experiment that we propose 

the participants have direct control over the length of each period (i.e. each period 

changes immediately the participant makes a decision). Therefore, we consider that our 

experiment has the advantage that the human traders can reason more carefully their 

decisions and they are not mainly acting as a reflex action.  

Finally, since in the experiment we are using a human player faced with only 

computer players, then our experiment has some of the advantages already commented 

by Kang, Ray and Camerer (2012), in particular: (1) we can control collusive 

strategies36; (2) human players do not face strategic uncertainty about behavior of other 

people37; and (3) using computer opponents also prevents subject from being able to 

guess when other agents have sold from physical sound such as key pressing38. 

 

 

Baseline and Sunspot Sessions.  
 

The main goal of our experiment is to evaluate how a human player behaves when 

she faces the theoretical setting proposed in the previous section. Remember that the 

other players (i.e. the computer traders) play an equilibrium strategy that is unknown to 

the human player. In addition, we want to analyze how the presence of public signals 

affects the behavior of the human players. To reach these goals we propose the 

following two sessions39: 

 Baseline Treatment Session: In this session the traders are randomly but 

sequentially informed by a private message when there is a bubble. The purpose of 

this session is to replicate the model when there is private and sequential awareness 

about the existence of the bubble but there is not public information that can be 

useful to coordinate an attack to the bubble.  

 Sunspot Treatment Session: In this session traders also receive a public message 

without any informational content. This message is only observed by all those 

traders who are already aware about the bubble and it appears with a probability of 

5%. The public message that we propose is “Do not leave for tomorrow what you 

can do today” There are other messages that we could have used; for instance, 

Duffy and Fisher (2005) show that the semantics of the sunspot message matter. 

                                                            
35This value was obtained numerically from equation (1.2). Notice that it is not possible to get 𝜏∗∗ 

using an analytical procedure. 
36 That is, subjects cannot coordinate to wait longer than they would otherwise, and split the high 

payoff outside the lab. 
37 Instead, they face the challenge of learning the computerized agents’ strategy 
38 That is, we are avoiding information leakage 
39 Besides these two scenarios, Abreu and Brunnermeier (2003) also proposed a situation in which 

there are random temporary price drops that are observed by all traders. We did not analyze this extension 

because its solution is similar in structure to the sunspot extension and it increases in an important amount 

the complexity of the experimental design. More specifically, this extension requires that we have to 

consider in the analysis a function 𝜏𝑝 (that depends on the history of price drops) such that given a price 

drop at any period 𝑡𝑝, then all traders 𝑡𝑖 who became aware of the bubble prior to period 𝑡𝑝 − 𝜏𝑝 sells the 

portfolio of risky assets and all the other traders do not sell. 
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However, according to our theoretical model a neutral message is enough to get 

coordination.  

In this session the computer traders that are already aware about the bubble 

always get the portfolio of public (safe) assets immediately after the public message 

appears. This treatment session is useful to analyze additional questions as: How 

sensible is the behavior of the human traders respect to a sunspot message? Do the 

agents buy back the portfolio of safe assets if there is no bubble bursting after a 

synchronized event?40 

 

 

1.4 Results 
 

Remember from the last section that in the baseline scenario if a trader is aware 

about the bubble before period 15 (i.e. if 𝑡𝑖 < 15)41 then her trading equilibrium 

strategy is to sell the portfolio of risky assets in period 28 (i.e. 𝑇(𝑡𝑖) = 28)42 to continue 

with the portfolio of the safe assets until the bursting of the bubble. On the other hand, if 

a trader is aware about the bubble at or after period 15 (i.e. if 𝑡𝑖 ≥ 15) then her trading 

equilibrium strategy is to sell the portfolio of risky assets 13 periods after she was aware 

about the bubble (i.e. 𝜏∗ = 13) to continue with the portfolio of the safe assets until the 

bursting of the bubble.  

Similarly, remember that in the sunspot scenario if a trader is aware about the bubble 

before period 15 then the recursive equilibrium strategy is to sell the portfolio of risky 

assets in period 22 and if a trader is aware about the bubble at or after period 15 then her 

trading equilibrium strategy is to sell the portfolio of risky assets 7 periods after this 

awareness (i.e. 𝜏∗∗ = 7). In addition, it is important to remember that the recursive 

equilibrium strategy implies that if a sunspot appears at or after period 15 then the 

traders who are already aware about the bubble immediately get the portfolio of safe 

assets and if the bubble does not burst then they re-buy the portfolio of risky assets for 

the interval (𝑡𝑒 , 𝑡𝑒 + 𝜏
∗∗)43, unless a new sunspot occurs in the interim. 

In this section we evaluate, in the experiment, how close or far are the strategies 

followed by the human traders with respect to the strategies followed by the theoretical 

agents (and consequently, by the computer traders). The section is divided in three 

parts. In section 1.4.1 we will examine if the strategies followed by the participants in 

the experiment differ from the equilibrium strategies found in our theoretical model.  In 

section 1.4.2 we will analyze the elements that affect the individual strategies of the 

individuals in the experiment. Finally, in section 1.4.3 we will analyze if the strategies 

followed by the human traders converge to the strategies followed by the computer 

traders.  

 

                                                            
40 Respect to the second question remember that in the model in the equilibrium without public signals 

there is not buyback but with public signals there is buyback when a synchronized attack could not burst 

the bubble. 
41 Remember that in the experiment 15 (i.e. 𝜏𝜅) is the number of traders who are enough to burst the 

bubble. 
42 In appendix A1 𝑇(𝑡𝑖) is defined as the first instant at which trader 𝑡𝑖 sells her portfolio of risky 

assets. 
43 Remember from section 1.2 and Appendix A1 that 𝑡𝑒 is the period in which the sunspot (i.e. the 

synchronizing event) appears. 
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1.4.1. Equilibrium strategies (Theory vs. Experimental Sessions) 
 

From the experimental design, notice that we did not consider explicitly a training 

section. In particular, we are assuming that players learnt during the experiment. Since 

our goal in sections 1.4.1 and 1.4.2 is not to analyze the learning process of the 

participants during the experiment, then we confine the analysis in these sections only 

to the last 25 times each human trader plays the game44.  

In Table 1.1 we present t-tests to analyze if the delays found in the theoretical model 

are statistically the same as the delays obtained in the experiment. As a result, we found 

that in all cases the theoretical equilibrium values are outside the 95% confidence 

interval; therefore, in all cases the hypothesis that the results obtained in the experiment 

are equal to the theoretical values is rejected. In particular notice that the theoretical 

equilibrium values are always higher than the 95% confidence interval of our estimated 

values45; that is, on average human traders behaved more as risk averse traders.  

 

[Table 1.1] 

 

In each session 950 observations were collected46. However, in Table 1.1 we are not 

using all this information because: (1) 475 observations were omitted since, as we 

explained before, we are confining the analysis only to the last 25 times each participant 

plays the game; (2) in the analysis we are only considering the games in which the 

players can theoretically get bubbling earnings if they apply the trading equilibrium 

strategy (i.e. in the analysis we are not considering games in which 𝑡𝑖 ≥ 𝑡0 + 𝜏𝜅)47; and 

(3) we are not taking into account games in which the bubble bursts before the agents 

sell the portfolio of risky assets (i.e. in Table 1.1. we are omitting in the analysis the 

right censored delays).   

 

[Table 1.2] 

 

If we recode the delays that are right censored such that these delays are assigned a 

value that is 1 unit higher than the maximum value obtained in each session48, then from 

the t-tests that appear in Table 1.2 we obtained that in almost all cases the theoretical 

equilibrium value is higher than the 95% confidence interval. Only in the sunspot 

session in the case in which 𝑡𝑖 ≥ 𝜏𝜅 we cannot reject in a 95% confidence interval the 

hypothesis that the theoretical value of the optimal delay is equal to the results obtained 

in the experiment.49,50 

                                                            
44 We also did the analysis using the last 40 times each human trader plays the game (i.e. in this case 

we considered 10 training periods). In this case there is more volatility; however, the main conclusions of 

the chapter do not change. 
45 These results were also validated by non-parametric sign tests and by non-parametric Wilcoxon 

signed-rank tests. 
46 Remember that in each session 19 players were playing the same game 50 times in succession. 
47 That is, we are only taking into account the games in which traders can reveal as risk averse, risk 

neutral or risk lover traders. We are not taking into account the games if the traders do not have the option 

to reveal themselves as risk lover traders. 
48 For instance, from figure 1.2 and figure 1.3 we can appreciate that these assigned values are 35 in 

the baseline session when 𝑡𝑖 ≥ 15 and 26 when 𝑡𝑖 < 15 
49 These results were also validated by non-parametric sign tests and by non-parametric Wilcoxon 

signed-rank tests. 
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In addition, from Figure 1.2 (i.e. in the baseline session when the traders are infor-

med about the bubble before period 15) notice that: (1) on average traders are risk a-

verse; (2) 17.94% of the times traders have an irrational behavior because they decide to 

sell their portfolio of risky assets before period 15 (i.e. before there were a high enough 

mass of traders that can burst the bubble); (3) only 25.64% of the times the traders sell 

the portfolio of risky assets between periods 26 and 30 (i.e. around the theoretical equi-

librium value), and (4) there are 5.13% missing values (right censored delays).  

 

[Figure 1.2] 

 

Similarly, from Figure 1.3 (i.e. in the baseline session when traders are informed 

about the bubble at or after period 15), notice that: (1) we confirm that on average 

traders are risk averse; (2) only 23.33% of the times the traders sell the portfolio of risky 

assets between 11 and 15 periods after they were informed about the bubble (i.e. around 

the theoretical equilibrium value), and (3) there are 9.52% missing values (right 

censored delays).51   

 

[Figure 1.3] 

 

Therefore, from the previous results we conclude that in our experiment the human 

traders are less patient than the rational traders of the theoretical model52. We guess that 

this conclusion is the result of three assumptions used in the theoretical model that may 

not be validated by the participants in the experiment. First, in the model the rational 

agents are risk neutral, but in the experiment human traders may exhibit some amount 

of risk aversion. Second, the model assumes that the distribution of 𝑡0 is memoryless 

(i.e. it does not depend on time), however the human traders may not interiorize this 

characteristic of the distribution into the analysis. Third, some participants in the 

experiment sometimes play irrationally in the sense that they play strictly dominated 

strategies; remember that in the baseline scenario 17.94% of the times traders decide to 

sell the portfolio of risky assets before the period in which they know there is a high 

enough mass of traders that can burst the bubble.  

A characteristic that is part of the equilibrium strategy followed by the rational 

traders in the theoretical model is that if an agent receives a sunspot message before 

period 15 then she does not react to this message, but if she receives the message at or 

after period 15 then she immediately gets or continue with the portfolio of safe assets53. 

                                                                                                                                                                              
50 From Table 1.1 (or Table 1.2) notice that the confidence intervals of the delays in the sunspot 

session are always lower than the confidence intervals of the baseline session (for the same case). This 

result is in concordance with the theoretical results obtained in section 1.2. However, we consider that this 

result is mainly influenced by the fact that each human player was playing with many computer players 

who followed an equilibrium strategy which have a lower delay in the case of the sunspot scenario. 
51 Similar results are obtained in the case of the sunspots experiments. 
52 In the case of the sunspot session, we can argue that in Tables 1.1 and 1.2 agents seem to sell their 

portfolio of risky assets too early because the theoretical equilibrium values that appear in the tables are 

overvaluated.  In particular, in these tables we do not consider that at the theoretical equilibrium the 

traders sell their portfolio of risky assets also when they observe sunspot messages. However, as we will 

see in section 1.4.2, this conclusion does not change if we take into account appropriately the sunspot 

messages.  
53 It is important to clarify that during the first 25 times the game was played (i.e. during the learning 

part of the experiment), the participants in the sunspot session experienced situations in which the bubble 

bursts and situations in which the bubble does not burst immediately after a sunspot message. 
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From Table 1.3 it seems that in the experiment they do not necessarily apply quite well 

this strategy because in only 39.02% of the times (i.e. 16 of 41) the agents with a 

portfolio of risky assets do not react (selling their portfolio) to the sunspot message 

when it appears before period 15 and only 71.95% of the times (i.e. 118 of 164) they 

immediately get or continue with the portfolio of safe assets when the message appears 

at or after period 15.  In addition, from the first part of Table 1.3, when the traders 

received the sunspot message before period 15, notice that 78.08% of the times traders 

shows an irrational behavior because in 43.84% of the times (i.e. 32 of 73) they already 

have a portfolio of safe assets when they receive the message and in 34.24% of the 

times (i.e. 25 of 73) they react immediately to the message; however, in this scenario if 

we consider all games in which the participants were informed about the bubble before 

period 15, only in 50.00%  of the games the participants in the experiment show an 

irrational behavior.  

 

[Table 1.3] 

 

Another characteristic of the equilibrium strategies obtained in the theoretical model 

is that in the baseline scenario the traders followed a trigger strategy in which they 

maintain the portfolio of risky assets an optimal number of periods, they sell this 

portfolio and they continue with portfolio of safe assets until the bubble bursting. That 

is, there is no buyback to get the portfolio the risky assets again. However, in the 

experiment we observe buybacks as it is shown in Tables 1.4 and 1.5.  

 

[Table 1.4] 

 

[Table 1.5] 

 

Finally, respect to the sunspot scenario, the behavior of the rational traders in the 

theoretical model is more complex because the buyback of the portfolio of risky assets 

is the optimal behavior when there is not a bursting of the bubble immediately after a 

sunspot message. However, as you can appreciate in Table 1.6 in the experiment only 

21.7% of the people (i.e. 13 of 60) that have the portfolio of safe assets decide to get 

again the portfolio of risky assets after a sunspot that does not imply a bubble bursting. 

This result is not quite unexpected because as we showed previously in Table 1.3 the 

participants in the experiment do not incorporate quite well the presence of the sunspot 

to their respective strategies. 

 

[Table 1.6] 

 

 

1.4.2. What explains the strategies in the experiment sessions?  
 

In the previous section we have shown that the theoretical equilibrium strategies are 

different from the strategies followed by the human traders in the experiment. 

Therefore, in this section we are interested to find the elements that affect their 

strategies. In particular, we are interested to analyze how the following three variables 

are affected: 
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 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔): Delay until the first time an agent gets the portfolio of safe assets 

in the current game 𝑔54 (this variable was represented by 𝜏∗ in the baseline model 

and 𝜏∗∗ in the sunspot model). 

 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔): Period in which the agent gets the first time the portfolio of safe 

assets in the current game 𝑔 (this variable was represented by 𝑡𝑖(𝑔) + 𝜏
∗ in the 

baseline model and by 𝑡𝑖(𝑔) + 𝜏
∗∗ in the sunspot model).  

 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔): Number of times the agent sells the portfolio of risky assets to 

get a portfolio of safe assets in the game 𝑔.55 

 

To analyze the previous variables, we considered four kinds of independent 

variables56,57: 

  

1. Time dependence variables:   

 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖(𝑔): Period in which an agent is informed about the bubble in the 

current game (in the theoretical model this variable was represented by  𝑡𝑖(𝑔)).  
2. Adaptive behavior variables:   

 𝑃𝑒𝑟𝑖𝑜𝑑𝑐𝑏𝑢𝑟𝑠𝑡(𝑔 − 1): Period in which the bubble burst in the previous game 

(i.e. approximately 𝑡0(𝑔 − 1) + 𝜏𝜅 + 𝜏
∗ in the baseline experiment or 

approximately 𝑡0(𝑔 − 1) + 𝜏𝜅 + 𝜏
∗∗ in the sunspot experiment) 

 𝐺𝑜𝑜𝑑𝑡𝑖𝑚𝑖𝑛𝑔(𝑔 − 1):  Dummy variable equal to 1 (0) if the trader finishes the 

previous game with a portfolio of safe (risky) assets 

 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖𝑚𝑒(𝑔 − 1): Number of periods the agent was aware about the bubble 

before the bubble bursting in the previous game 

 𝑅𝑒𝑔𝑟𝑒𝑡(𝑔 − 1): Difference of earnings obtained by the computer player who 

got the higher earnings in the previous game respect to the earnings obtained by 

the human player in that game. 

With these variables we analyze how the agents behave depending on the 

experience obtained in the previous game. According to the theoretical model the 

adaptive behavior variables do not affect our dependent variables.  

3. Trend variables: 

 𝐺𝑎𝑚𝑒(𝑔): Number of the game that is currently played by the human player.  

With this variable we analyze if the decisions of the human players are following 

a deterministic trend. 

4. Sunspot variables:  

The sunspot variables try to capture the effect of the sunspot messages in the 

decisions of the players.  

                                                            
54 Remind that in each game when an agent is informed about the bubble the value of her portfolio is 

equal to 1 ECU. Therefore, this variable is equivalent to use the portfolio value when the agent decided 

the first time to sell the portfolio of risky assets to get a portfolio of safe assets. 
55 We also analyzed a variable that represents the number of times the agent sells the portfolio of safe 

assets to get a portfolio of risky assets in the game 𝑔; however, the results did not change. 
56 The main characteristic of these variables is that all are known (or deduced instantly) by traders all 

the time or at the end of the previous game. In particular, notice that the adaptive behavior variables are 

the only variables that are known by traders at the end of the previous game. 
57 We also considered persistence variables (represented by the past values of the respective dependent 

variables) but the dynamic panel model that we regressed using the estimators proposed by Arellano and 

Bond (1991) and Arellano and Bover (1995) showed that our main conclusions were not affected and 

most of the time the persistence variables did not have statistical significant effects over the dependent 

variables. 
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 𝑆𝑢𝑛𝑠𝑝𝑜𝑡(𝑔): Dummy variable equal to 1 if there is a sunspot. 

 𝑆𝑢𝑛𝑠𝑝𝑜𝑡𝑠𝑢𝑚(𝑔): Sum of sunspots in each game 𝑔. 

 𝑆𝑢𝑐𝑐_𝑎𝑡𝑡𝑎𝑐𝑘(𝑔 − 1): Dummy variable equal to 1 if in the previous game there 

were a bubble bursting immediately after the sunspot. Notice that this is also an 

adaptive behavior variable. According to the theoretical model this variable does 

not affect our dependent variables. 

5. Other variables: 

 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖𝑚𝑒(𝑔): Number of periods the agent was aware about the bubble 

before the bubble bursting in the present game. This variable is important to 

control right side truncation in 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔) and 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔) and to 

analyze if the number of periods played per game affects  𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔). 
 

Tables 1.7a and 1.7b summarize the effects deduced from the theoretical model. 

Tables 1.8a and 1.8b show the results of the econometric estimations. More specifically, 

we used fixed effects panel models to analyze the variables 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔) and 

𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔)58, and conditional fixed effects Poisson panel models in the case of 

the variable 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔)59.  

 

[Table 1.7a] 

 

[Table 1.7b] 

 

According to the theoretical model and the parameters used in the experiment if 

𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖(𝑔) ≥ 15 [𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖(𝑔) < 15] then at the equilibrium 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔) 
[𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔)] remains constant in the baseline session and only reacts to the 

presence of sunspot messages in the sunspot session. Therefore, 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔) 
[𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔)] should not be affected by any variable in the baseline session and 

can only be affected negatively by the variable 𝑆𝑢𝑛𝑠𝑝𝑜𝑡(𝑔) in the sunspot session 

(Table 1.7a).  

[Table 1.8a] 

 

[Table 1.8b] 

 

From the econometric estimations note that in the sunspot session the variable 

𝑆𝑢𝑛𝑠𝑝𝑜𝑡(𝑔) has the predicted negative effect over 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔) and 

𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔); however, we also recognize three additional effects in our 

experiment (Table 1.8a):   

 

i. An adaptive behavior effect60 in the baseline session that affects 

𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔). That is, the results of the previous game affect the behavior of 

traders that are informed later than period 15 in the baseline session. 

                                                            
58 We used the Robust Hausman test explained by Cameron and Trivedi (2009) (based on Wooldridge 

(2002)) to choose between the fixed and the random effects panel models. 
59 We use a Poisson approach because the variable 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔) only has small discrete 

positive values in the database. 
60 The agents adjust their decisions depending on information obtained in the previous game (even 

when they know that both games are independent) 
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ii. A deterministic trend effect that affects positively (negatively) 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒(𝑔) 
in the baseline (sunspot) session. That is, agents slightly increase (decrease) their 

delays during the baseline (sunspot) session.  

iii. A positive time effect in 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶(𝑔). That is, if a human trader is 

informed near to period 1 about the bubble then she sells the portfolio of risky 

assets in an earlier period than if she is informed near to period 15. This effect is 

also appreciated in Figure 1.4 

 

[Figure 1.4] 

 

Finally, according to the theoretical model and the parameters used in the 

experiment, in the baseline session 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔) is equal to 0 if 

𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖𝑚𝑒(𝑔) < 13 and equal to 1 if 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖𝑚𝑒(𝑔) ≥ 13. On the other hand, in the 

sunspot experiment 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔) depends positively on the number of sunspot 

messages. Therefore, in Table 1.7b the variable 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔) is only affected by 

the variable 𝑆𝑢𝑛𝑠𝑝𝑜𝑡𝑠𝑢𝑚(𝑔). The effect of the variable 𝑆𝑢𝑛𝑠𝑝𝑜𝑡𝑠𝑢𝑚(𝑔) is validated 

by the data; however, there is an impatience effect because the variable 

𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠(𝑔) is also affected by the number of periods the participants play 

each game61 (i.e. by the variable 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖𝑚𝑒(𝑔)). 
 

 

1.4.3. Do the strategies of the human traders converge to the  

          strategies of the theoretical traders? 
 

In section 1.4.1 we have found that the strategies followed by the human traders in 

the experiment regularly differ from the theoretical equilibrium strategies. Now, we are 

interested to check if the strategies of the human traders converge to the optimal 

theoretic strategies followed by risk neutral traders.  

In particular, we will analyze if the variable 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑔), defined as the 

distance of the strategies of the human traders62 respect to the strategies of the 

theoretical traders, approaches to zero during the experiment (i.e. when the variable 

𝐺𝑎𝑚𝑒(𝑔) increases). If this situation happens, it means that human traders adapt their 

strategies respect to the strategies followed by the traders.  

Formally, depending on the scenario, the variable 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑔) is defined as63: 

  

(a) Baseline scenario: 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑔) = {
|𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶 − 28|    𝑖𝑓 𝑡𝑖 < 15
|𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒 − 13|       𝑖𝑓 𝑡𝑖 ≥ 15 

  

                                                            
61 This effect happens when the agents already have the portfolio of safe assets but they are impatient 

because the game does not finish, so they decide to get the portfolio of risky assets again. 
62 In this definition the strategies of the human traders are determined by the first time these traders 

decide to sell their portfolio of risky assets to get the portfolio of safe assets (i.e. these strategies are 

determined by 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒 and 𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶) 
63 Remember that 𝑡𝑖 is the period at which a human trader is informed about the bubble and 𝑡𝑒 is the 

period at which a sunspot message appears and is observed by the human trader (in this section, if the 

human trader observes many sunspot messages in the same game, 𝑡𝑒 represents the first one depending on 

the corresponding conditional). 
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(b) Sunspot scenario: 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑔) =

{
 

 
|𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶 − 22|    𝑖𝑓 𝑡𝑖 < 15  𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 15 < 𝑡𝑒 < 22                   
|𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶 − 𝑡𝑒|     𝑖𝑓 𝑡𝑖 < 15  𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 15 < 𝑡𝑒 < 22 
|𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒 − 7|        𝑖𝑓 𝑡𝑖 ≥ 15 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑡𝑒 < 𝑡𝑖 + 7                          
|𝐹𝑖𝑟𝑠𝑡𝐶ℎ𝑜𝑖𝑐𝑒𝐶 − 𝑡𝑒|    𝑖𝑓 𝑡𝑖 ≥ 15 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑡𝑒 < 𝑡𝑖 + 7       

  

 

[Table 1.9] 

 

In Table 1.9, using fixed effects panel models we get three interesting results: (1) 

human traders learn to react to the presence of sunspots; (2) in the baseline model 

human trader strategies converge to the optimal strategies when the human trader is 

informed about the bubble at or after period 15; and (3) human trader strategies do not 

converge to the strategies of the computer traders if these strategies are complex. In 

particular, respect to the last point, notice that: (i) there is not a convergence in the 

sunspot scenario because the structure of the strategies of the computer traders is more 

complicated than this structure in the baseline scenario; and (ii) when a human trader is 

informed about the bubble earlier than period 15 she has less games to learn (e.g. in the 

baseline model in only 17.05% of the 950 games a human trader was informed about 

the bubble before period 15), and also the optimal strategy is more complex to learn 

because in this case you have to follow the optimal strategy of the computer trader who 

is informed about the bubble in period 15 (remember that this strategy is unknown since 

the beginning of the experiment).64  

At this point, it is important to comment that in the experiment we observe some 

human traders with strategies converging to the strategies of the computer traders and 

others using strategies that do not converge. Two examples are in Figures 1.5; in 

particular, notice that the strategies of human trader 15 in the baseline scenario 

converges to the optimal strategies when she is informed about the bubble before period 

15 (red circles) and when she is informed about the bubble at or after period 15 (blue 

triangles); the opposite happens to the strategies of human trader 5 in the baseline 

scenario. Finally, in Table 1.10 using conditional fixed effects Poisson panel models we 

have found that in the baseline session human traders change less times their portfolio 

during the experiment; that is, their strategies approach to the optimal trigger strategy 

proposed by the theoretical model. In this table we did not analyze the behavior of the 

variable 𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘𝑠 during the sunspot session because the strategy of the 

computer traders when a bubble does not burst after a sunspot was very complex to 

follow by the human traders. 

 

[Figure 1.5] 

  

[Table 1.10] 

                                                            
64 On the other hand, notice (using Figure 1.4 and Table 1.9) that when 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖 < 15 then an 

increment of the variable 𝑃𝑒𝑟𝑖𝑜𝑑𝑡𝑖 decreases the value of the variable 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒. This result is not 

strange because remember from section 1.4.1 that human traders are on average risk averse, then if a 

human trader is informed about the bubble closer to period 15 then she will attack the bubble in a period 

nearer to period 22 or 28 (in the sunspot and baseline scenario respectively) compared to a human trader 

who is informed about the bubble in a period closer to period 1. 
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1.5 Final comments 
 

In the experiment that we propose in the chapter the optimal delay is not easy to get 

without the background, the tools and the time necessary to find and solve equations 

(1.1) and (1.2). Therefore, it is not strange that the participants in the experiment did not 

follow exactly the same equilibrium strategy proposed in the theoretical model. 

However, there are some particular characteristics about their strategies that are 

interesting to highlight.  

First, human traders were most of the time risk averse; then, they speculate less than 

the traders in the theoretical model65. Therefore, in the experiment there was a pressure 

to burst the bubble earlier. This result differs from the conclusion obtained by Smith, 

Suchanek and Williams (1988) because in their experiment, respect to their theoretical 

model, there is a pressure to increase the size and the horizon of the bubbles.66  

Second, human traders show some level of irrational behavior in the sense that their 

strategies were affected by trend and adaptive variables67. It can be argued that even 

after more than 25 games the participants were learning about the optimal strategy to 

follow. However, the irrational behavior also happens because 6 participants in the 

baseline session (i.e. 31.6% of the participants) and 12 in the sunspot session (i.e. 63.2% 

of the participants) in at least one game sold the portfolio of risky assets in periods 

lower than 15. Remember that, by construction of the experimental design, before 

period 15 is common knowledge that the mass of traders informed about the bubble was 

not enough to burst it.  

Third, in around 30% of the games the human traders change their portfolio more 

than the optimal times predicted by the theoretical model. Therefore, they experienced 

some level of impatience.  

Fourth, almost all participants in the sunspot experiment recognize in a 

questionnaire, answered at the end of the experiment, that the sunspot message was 

important to determine the period in which the bubble bursts. In particular, we have 

found econometrically that the presence of sunspots messages motivates participants to 

attack the bubble earlier (Tables 1.8a and 1.9). However, the participants did not 

necessarily react instantly to these messages; more specifically, in periods greater or 

equal than 15, a little more than 50% of the times a participant with a portfolio of risky 

assets decides to sell this portfolio immediately after the appearance of the sunspot 

message (Table 1.3).   

Fifth, human traders do not adapt their strategies to converge to the optimal strategies 

played by the computer traders if the last ones are too much complex. However, they 

can do it if the optimal strategies are easy to follow.  

Finally, as it is shown in Figure 1.5, all human traders do not have the same ability to 

adapt their strategies such that these converge during the experiment, at least partially, 

to the optimal strategies played by the computer traders.  

                                                            
65 Remember that the traders in the theoretical model are risk neutral. 
66 Remember that Smith, Suchanek and Williams (1988) obtain bubbles in experiments based on a 

theoretical setting in which bubbles do not exist at the equilibrium. 
67 Remember that in every game the beginning of the bubble and the moment at which each agent is 

informed about the bubble is determined randomly. Therefore, the rational agents do not have a 

theoretical reason to incorporate the information of adaptive variables to establish their strategies. 
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To summarize, the main differences of our human traders respect to the theoretical 

traders is that the first ones experience some level of bounded rationality68, they are 

usually not risk neutral (most of the time they are risk averse), sometimes they behave 

clearly irrationally, they suffer impatience and they do not necessarily react optimally to 

sunspot messages (even though the presence of these messages affect their behavior). 

However, human traders can adapt their strategies to the optimal equilibrium strategies 

if these strategies are not too much complex, but not all human traders have the same 

ability to implement this adaptation process. 

 

  

                                                            
68 In the sense that the rationality of the participants in the experiment is limited by the information 

they have, the cognitive limitations of their minds, and the finite amount of time they have to make a 

decision. 
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1.6 Appendix A169: The model – Technical details 
 

All the assumptions and part of the notation used in the following propositions were 

already presented in section 1.2.  

 

 

Definitions:  
 

𝑵: Total number of rational agents (traders) 

 

𝒕𝟎: Period in which the bubble appears and the first trader is aware about the existence 

of the bubble. 

 

𝒕𝒊: Period in which trader 𝑡𝑖 becomes aware of the bubble70.  

 

𝒔(𝒕, 𝒕𝟎): Given a bubble that emerges in period 𝑡0, 𝑠(𝑡, 𝑡0) is the number of traders that 

have the portfolio of safe assets in period 𝑡 ≥ 𝑡0.   

 

𝝉𝜿: Number of traders who are enough to burst the bubble. Since only one new trader 

becomes aware of the bubble in each period, then 𝜏𝜅 also represents the length of time 

until the number of traders who know the existence of the bubble is enough (assuming 

that the rest of traders only have portfolios of risky assets) to burst it. 

 

𝑻∗(𝒕𝟎): Bursting time of the bubble for a given realization of 𝑡0.  
 

𝑻(𝒕𝒊):  First instant at which trader 𝑡𝑖 sells her portfolio of risky assets. 

 

𝛕𝒕𝒊 = 𝑇(𝑡𝑖) − 𝑡𝑖: Length of time trader 𝑡𝑖 chooses to ride the bubble subsequent to 

becoming aware of the mispricing. 

 

𝜱(𝒕𝟎) = 1 − (𝒫)
𝑡0: Cumulative distribution function of 𝑡0.  

 

𝚷(𝒕|𝒕𝒊) = Φ(𝑇∗−1(𝑡)|𝑡𝑖): Trader 𝑡𝑖 ′𝑠 beliefs about the bursting date of a bubble. That 

is, trader 𝑡𝑖 ′𝑠 conditional cumulative distribution function of the bursting date at time 

𝑡. 71 

 

𝛑(𝒕|𝒕𝒊) = Π(𝑡|𝑡𝑖) − Π(𝑡 − 1|𝑡𝑖): Associated conditional density of  Π(𝑡|𝑡𝑖). 72 

 

𝑭𝑽𝒕: Fundamental value of a portfolio of risky assets that has been maintained until 

period 𝑡 

                                                            
69 Given that our model is a version of the model proposed by Abreu and Brunnermeier (2003), then 

some proofs follow closely the proofs proposed by these authors. 
70 Since only one new trader becomes aware of the bubble in each period, then 𝑡0 + 𝑁 − 1 ≥ 𝑡𝑖 ≥ 𝑡0. 

71 If trader 𝑡𝑖 believes that the bubble bursts at 𝑡0 + 𝜁. Then, 𝛱(𝑡|𝑡𝑖) = 𝛱(𝑡𝑖 + 𝜏|𝑡𝑖) =
(𝒫)−𝑁−(𝒫)−( 𝜁−𝜏)

(𝒫)−𝑁−1
 

72If trader 𝑡𝑖 believes that the bubble bursts at 𝑡0 + 𝜁. Then,  𝜋(𝑡|𝑡𝑖) = 𝜋(𝑡𝑖 + 𝜏|𝑡𝑖) =
(𝒫)−(𝜁−𝜏+1)[1−𝒫]

(𝒫)−𝑁−1
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𝑷𝒕: Stock market price of a portfolio of risky assets that has been sold in period 𝑡 
 

𝒕𝒆: The date of a synchronizing event 

 

𝚪(𝒕): Cumulative distribution function that the bubble bursts due to the synchronized 

event prior to 𝑡. 
 

𝜸(𝒕): Associated density of Γ(𝑡) 
 

 

Equilibrium: Definitions. 
 

Trading Equilibrium: A trading equilibrium is defined as a Perfect Bayesian Nash 

Equilibrium in which whenever a trader’s risky asset holding is less than her maximum, 

then the trader (correctly) believes that the risky asset holding of all traders who became 

aware of the bubble prior to her are also at less than their respective maximum. 

 

Since in the model we are assuming that diversification is not allowed73, then in this 

context we can refine the definition of a trading equilibrium.  

 

Trading Equilibrium (refine definition): When diversification is not allowed, a 

trading equilibrium is defined as a Perfect Bayesian Nash Equilibrium in which every 

trader who has a portfolio of safe assets (correctly) believes that all traders who became 

aware of the bubble prior to her also have portfolios of safe assets.  

 

Responsive Equilibrium: A responsive equilibrium is a trading equilibrium in 

which each trader believes that all other traders will synchronize (selling their portfolio 

of risky assets) at each synchronizing event if it happens at or after period 𝜏𝜅74. 

 

The refine definition of trading equilibrium and the fact that in period 0 all traders 

have portfolios of risky assets implies directly the following corollary. 

 

Corollary 1: In a trading equilibrium when trader 𝑡𝑖 sells her portfolio of risky 

assets, all traders 𝑡𝑗 where 𝑡0 ≤ 𝑡𝑗 < 𝑡𝑖 also have already sold, or will at that moment 

sell their portfolio of risky assets. 

 

 

 

 

 

                                                            
73 That is, all traders have portfolios of only risky assets or portfolios of only safe assets. 
74 The last part of the definition of the recursive equilibrium is an extension to the original definition 

proposed by Abreu and Brunnermeier (2003). This extension is important because in our model (and 

similarly in Abreu and Brunnermeiers’ model) it is never an equilibrium strategy to get the portfolio of 

risky assets before period 𝜏𝜅 (i.e. before the number of traders who know about the bubble is enough to 

burst it). 
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What happen if there is private and sequential awareness about 

the bubble? 
 

Proposition 1: Define 𝜏∗ as the minimum integer value of 𝜏 that solves the following 

inequality [
𝑔−𝑟

1+𝑟
] − (1 − [

1+𝑟

1+𝑔
]
(𝜏𝜅+𝜏)

)
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
≥ 0 and suppose 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ <

[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
<

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏𝜅 . Then there exists a unique trading equilibrium in which all traders 𝑡𝑖 such 

that 𝑡𝑖 ≥ 𝜏𝜅 get the portfolio of safe assets 𝜏∗periods after they become aware of the 

bubble. On the other hand, all traders 𝑡𝑖 such that 𝑡𝑖 < 𝜏𝜅 get the portfolio of safe 

assets at period  𝜏𝜅 + 𝜏
∗.  

 

Lemma 1 and Proposition 2 are important to prove Proposition 1. 

 

Lemma 1: In equilibrium, trader 𝑡𝑖 believes at time 𝑇(𝑡𝑖) that at most 𝜏𝜅 traders 

became aware of the bubble prior to her. In other words, the lower bound of support of 

trader 𝑡𝑖’s posterior beliefs about  𝑡0 is  𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) ≥ 𝑡𝑖 − 𝜏𝜅75. 

 

Proof of Lemma 1 (by contradiction): Assume in equilibrium, trader 𝑡𝑖 believes at 

time 𝑇(𝑡𝑖) that 𝜏̂ > 𝜏𝜅 traders became aware of the bubble prior to her. This assumption 

is a contradiction because all traders 𝑡𝑗 ∈ [𝑡0, 𝑡0 + 𝜏𝜅) have an incentive to participate in 

an endogenous burst attempt before the possible crash at 𝑇(𝑡𝑖). In particular, Corollary 

1 implies that the number of traders that have the portfolio of safe assets at 𝑇(𝑡𝑖) is 

𝑠(𝑇(𝑡𝑖), 𝑡0) = 𝜏̂ > 𝜏𝜅 with strictly positive probability, so the bubble would have 

already burst before period  𝑇(𝑡𝑖).                                                                                       

 

Proposition 2: In equilibrium, trader 𝑡𝑖 maintains the portfolio of safe assets for 

all 𝑡 ≥ 𝑇(𝑡𝑖), until the bubble bursts. That is, in equilibrium there is no buyback. 

 

Proof of Proposition 2 (by contradiction): Assume there exists an equilibrium in 

which trader 𝑡𝑖 who gets the portfolio of safe assets at 𝑇(𝑡𝑖) stays with this portfolio at 

least until period 𝑇(𝑡𝑖 + 𝜗), for some 𝜗 ∈ {1,2,3, … }76 independent of 𝑡𝑖. By Corollary 

1 trader 𝑡𝑖 cannot re-buy the portfolio of risky assets until after trader 𝑡𝑖 + 𝜗 first re-

buys the portfolio of risky assets77. The same reasoning applies to trader 𝑡𝑖 + 𝜗 with 

respect to 𝑡𝑖 + 𝜗 + 1. Applying the same logic iteratively we conclude that trader 𝑡𝑖 
stays with the portfolio of safe assets until the bubble bursts exogenously at period 𝑡0 +
𝜏̅ or until the bubble bursts endogenously in an earlier period.                                 

 

                                                            
75 The upper bound of support of trader 𝑡𝑖’s posterior beliefs about 𝑡0 is 𝑡𝑖 because traders become 

aware of the bubble when effectively there is a bubble.  
76 𝜗 ≠ 0 because traders can do at most one kind of financial transaction per period, so traders cannot 

buy and sell the same kind of portfolio in the same period. Therefore, since by definition trader 𝑡𝑖 buys 

the portfolio of safe assets at 𝑇(𝑡𝑖), then she can sell this portfolio at least at  𝑇(𝑡𝑖) + 1. 
77 That is, if trader 𝑡𝑖 + 𝜗 has a portfolio of safe assets and trader 𝑡𝑖 has a portfolio of risky assets then 

there is a violation of Corollary 1. More specifically, there is a violation of the definition of trading 

equilibrium. 
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Proof of Proposition 1: This proof has been divided in four steps: 

 

First step: (Circumstances under which any trader 𝑡𝑖 prefers to have a portfolio of 

risky assets or a portfolio of safe assets). Proposition 2 implies that in equilibrium there 

is no buyback. Therefore, the expected payoff at period 0 of selling the portfolio of 

risky assets at period 𝑡 is78: 

 

(𝐸𝑥𝑝. 𝑃)𝑡 = 
𝐹𝑉

𝑇∗−1(∙)
(1+𝑟)𝑡−𝑇

∗−1(∙)+1

(1+𝑟)𝑡+1
π(𝑇∗−1(∙)|𝑡𝑖) + ⋯+

𝐹𝑉𝑡𝑖
(1+𝑟)𝑡−𝑡𝑖+1

(1+𝑟)𝑡+1
π(𝑡𝑖|𝑡𝑖) +

𝐹𝑉𝑡𝑖+1
(1+𝑟)𝑡−𝑡𝑖

(1+𝑟)𝑡+1
π(𝑡𝑖 + 1|𝑡𝑖) + ⋯+

𝐹𝑉𝑡−2(1+𝑟)
3

(1+𝑟)𝑡+1
π(𝑡 − 2|𝑡𝑖) +

𝐹𝑉𝑡−1(1+𝑟)
2

(1+𝑟)𝑡+1
π(𝑡 − 1|𝑡𝑖)  +

 
𝑃𝑡(1+𝑟)

(1+𝑟)𝑡+1
[1 − Π(𝑡 − 1|𝑡𝑖)] .   

 

That is, (𝐸𝑥𝑝. 𝑃)𝑡 is equal to the expected payoff obtained if the bubble bursts for 

endogenous reasons in any period prior to 𝑡 (
𝐹𝑉

𝑇∗−1(∙)
(1+𝑟)𝑡−𝑇

∗−1(∙)+1

(1+𝑟)𝑡+1
π(𝑇∗−1(∙)|𝑡𝑖) + ⋯+

𝐹𝑉𝑡−1(1+𝑟)
2

(1+𝑟)𝑡+1
π(𝑡 − 1|𝑡𝑖)) plus the payoff obtained if there is no bubble burst prior to 𝑡 

and the portfolio of risky assets is sold at period  (
𝑃𝑡(1+𝑟)

(1+𝑟)𝑡+1
[1 − Π(𝑡 − 1|𝑡𝑖)]).   

The previous equation can also be written as    

 

(𝐸𝑥𝑝. 𝑃)𝑡 = 
𝐹𝑉

𝑇∗−1(∙)

(1+𝑟)𝑇
∗−1(∙)

π(𝑇∗−1(∙)|𝑡𝑖) + ⋯+
𝐹𝑉𝑡𝑖

(1+𝑟)𝑡𝑖
π(𝑡𝑖|𝑡𝑖) +

𝐹𝑉𝑡𝑖+1

(1+𝑟)𝑡𝑖+1
π(𝑡𝑖 + 1|𝑡𝑖) +

⋯+
𝐹𝑉𝑡−2

(1+𝑟)𝑡−2
π(𝑡 − 2|𝑡𝑖) +

𝐹𝑉𝑡−1

(1+𝑟)𝑡−1
π(𝑡 − 1|𝑡𝑖)  +  

𝑃𝑡

(1+𝑟)𝑡
[1 − Π(𝑡 − 1|𝑡𝑖)]  

 

Thus, the expected payoff at period 0 of selling the portfolio of risky assets at period 

𝑡 + 1 is: 

 

(𝐸𝑥𝑝. 𝑃)𝑡+1 = {(𝐸𝑥𝑝. 𝑃)𝑡 −
𝑃𝑡

(1+𝑟)𝑡
[1 − Π(𝑡 − 1|𝑡𝑖)]} +

𝐹𝑉𝑡

(1+𝑟)𝑡
π(𝑡|𝑡𝑖)  + 

𝑃𝑡+1

(1+𝑟)𝑡+1
[1 −

Π(𝑡|𝑡𝑖)]    then79, 

 

 (𝐸𝑥𝑝. 𝑃)𝑡+1 = (𝐸𝑥𝑝. 𝑃)𝑡 + 

  𝑃0[1 − Π(𝑡|𝑡𝑖)] (
1+𝑔

1+𝑟
)
𝑡
{(

1+𝑔

1+𝑟
) + [

1+𝑟

1+𝑔
]
(𝑡−𝑇∗−1(∙)) π(𝑡|𝑡𝑖)

[1−Π(𝑡|𝑡𝑖)]
−
[1−Π(𝑡−1|𝑡𝑖)]

[1−Π(𝑡|𝑡𝑖)]
}  

                                                            
78 Remember that 𝑇∗(𝑡0) is the bursting time of the bubble for a given realization of 𝑡0. Therefore, 

𝑇∗−1(𝑡) is the birth time of a bubble (i.e. 𝑡0) given that it bursts at period 𝑡.  
79 The share of the price of the risky assets that is explained by its fundamental value is:  

 

𝐹𝑉𝑡

𝑃𝑡
= {

(1+𝑔)𝑡0−1(1+𝑟)𝑡−𝑡0+1

(1+𝑔)𝑡
= (

1+𝑟

1+𝑔
)
(𝑡−𝑡0+1)

  𝑖𝑓 𝑡 = 𝑡0, … , 𝑇
∗

𝑒
1                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 .  Therefore, 

 

 
𝐹𝑉𝑡

(1+𝑟)𝑡
= [

1+𝑟

1+𝑔
]
(𝑡−𝑡0+1) 𝑃𝑡

(1+𝑟)𝑡
= 𝑃0 (

1+𝑔

1+𝑟
)
𝑡

[
1+𝑟

1+𝑔
]
(𝑡−𝑡0+1)
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Since ℎ(𝑡𝑖 + 𝜏|𝑡𝑖) = ℎ(𝑡|𝑡𝑖) =
π(𝑡|𝑡𝑖)

1−Π(𝑡|𝑡𝑖)
 is the hazard rate that the bubble will burst at 

period 𝑡 = 𝑡𝑖 + 𝜏 (i.e. the probability that a bubble that has survived until period 𝑡 will 

burst at this period), we obtain80 

 

(𝐸𝑥𝑝. 𝑃)𝑡+1 = (𝐸𝑥𝑝. 𝑃)𝑡 + 𝑃0[1 − Π(𝑡|𝑡𝑖)] (
1 + 𝑔

1 + 𝑟
)
𝑡

{(
𝑔 − 𝑟

1 + 𝑟
) − [1 − (

1 + 𝑟

1 + 𝑔
)
(𝑡−𝑇∗−1(∙))

] ℎ(𝑡|𝑡𝑖)} 

 

Notice that the term 𝑃0[1 − Π(𝑡|𝑡𝑖)] (
1+𝑔

1+𝑟
)
𝑡+1

 is always positive, therefore if  

  

ℎ(𝑡|𝑡𝑖) =
[1−𝒫]

𝒫

1−(𝒫)(𝑡−𝑇
∗−1(𝑡)−𝜏)

>
𝑔−𝑟

1+𝑟

1−[
1+𝑟

1+𝑔
]
(𝑡−𝑇∗−1(∙))

= 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑖𝑜     (Condition A1) 

the risk neutral trader 𝑡𝑖 does not have incentives to have the portfolio of risky assets.  

 

Similarly, if 

 

ℎ(𝑡|𝑡𝑖) =
[1−𝒫]

𝒫

1−(𝒫)(𝑡−𝑇
∗−1(𝑡)−𝜏)

<
𝑔−𝑟

1+𝑟

1−[
1+𝑟

1+𝑔
]
(𝑡−𝑇∗−1(∙))

= 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑖𝑜     (Condition A2) 

the risk neutral trader 𝑡𝑖 has incentives to have the portfolio of risky assets.  

 

Second step: (𝜏∗defines a symmetric equilibrium). Suppose that all traders with 𝑡𝑖 ≥
𝜏𝜅 sell the portfolio of risky assets at 𝑡𝑖 + 𝜏 and all traders with 𝑡𝑖 < 𝜏𝜅 sell the portfolio 

of risky assets at 𝜏𝜅  + 𝜏 for some 𝜏 ∈ (0,1,… , 𝜏̅ − 𝜏𝜅). Then all traders believe that the 

bubble will bursts, because of endogenous reasons, at 𝑡 = 𝑡0 + 𝜏𝜅 + 𝜏.  
Therefore, 𝜏∗ defines an equilibrium if it is equal to the lowest integer value of 𝜏 that 

satisfies the inequality (𝐸𝑥𝑝. 𝑃)𝑡0+𝜏𝜅+𝜏 ≥ (𝐸𝑥𝑝. 𝑃)𝑡0+𝜏𝜅+𝜏−1 where 𝑡0 + 𝜏𝜅 is the 

period at which the number of traders informed about the bubble is enough to burst it. 

So, in equilibrium 𝜏∗ is the lowest integer value of 𝜏 that satisfies the inequality   

 

([
1+𝑟

1+𝑔
]
(𝜏𝜅+𝜏)

− 1)
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
+ [

𝑔−𝑟

1+𝑟
]  ≥  0  

 

Equivalently, we can say that in equilibrium 𝜏∗ is the lowest integer value of 𝜏 that 

satisfies the inequality 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏)

≥
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
 where the LHS expression (i.e. the 

Benefit-Cost Ratio) is decreasing in 𝜏 and the RHS (i.e. the Hazard Rate) is not affected 

by 𝜏81. So82, 

                                                            
80 Since 𝛱(𝑡|𝑡𝑖) − 𝛱(𝑡 − 1|𝑡𝑖) = 𝜋(𝑡|𝑡𝑖), then  

[1−𝛱(𝑡−1|𝑡𝑖)]

[1−𝛱(𝑡|𝑡𝑖)]
= 1 + ℎ(𝑡|𝑡𝑖) 

81 That is, (
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
)
∆𝜏

= 0 and  (
𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏∗)

 )

∆𝜏

< 0. Therefore, once this inequality is not 

satisfied (for a determined value of 𝜏) then it won’t be satisfied thereafter. 
82 The operator ⌊≥⌋ means the minimum integer value of 𝜏∗ that satisfies the inequality. 
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 𝜏∗⌊≥⌋ [ln(1 −
𝑔−𝑟

1+𝑟
[1−𝒫]
𝒫

1−(𝒫)𝜏𝜅

) [ln (
1+𝑟

1+𝑔
)]
−1
] − 𝜏𝜅  

   

Finally, notice that the assumptions 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ <

[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
(=

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏

∗)) <

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏𝜅  in the same order imply  𝜏̅ > 𝜏𝜅 + 𝜏

∗ and 𝜏∗ > 0. Therefore, 𝜏∗defines a 

symmetric equilibrium. 

 

Third step: (Since 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ <

[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
  then the bubble always bursts for endogenous 

reasons). Let 𝜏𝐸𝑋 to be minimum integer value of 𝜏 that solves 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ ≥

[1−𝒫]

𝒫

1−(𝒫)(𝜏̅−𝜏)
 83. 

Therefore, if each trader 𝑡𝑖 believes that the bubble would burst for exogenous reasons 

at 𝑇∗−1(𝑡) + 𝜏̅ then they would buy the portfolio of safe assets at 𝑡𝑖 + 𝜏
𝐸𝑋. Thus, the 

bubble can burst for exogenous reasons if 𝜏𝑡𝑖 > 𝜏
𝐸𝑋 for at least some 𝑡𝑖. Consider any 

trader 𝑡̃𝑖, we will show that 𝜏𝑡̃𝑖 > 𝜏𝐸𝑋 leads to a contradiction84.   

According to Lemma 1 the inequality 𝑡0
𝑠𝑢𝑝𝑝

(𝑡̃𝑖) ≥ 𝑡̃𝑖 − 𝜏𝜅 has to be satisfied by all 

traders. However, 

  

 If 𝑡0
𝑠𝑢𝑝𝑝

(𝑡̃𝑖) > 𝑡̃𝑖 − 𝜏𝜅, then the hazard rate at 𝑇(𝑡̃𝑖) that the bubble will bursts for 

exogenous reasons is greater than 
𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ . Then, she has an incentive to sell the 

portfolio of risky assets strictly prior to 𝑇(𝑡̃𝑖).   
 

 If 𝑡0
𝑠𝑢𝑝𝑝

(𝑡̃𝑖) = 𝑡̃𝑖 − 𝜏𝜅 . Since, we are assuming the bubble burst at 𝑡0 + 𝜏𝜅 + 𝜏𝑡̃𝑖 >

 𝑡0 + 𝜏𝜅 + 𝜏
𝐸𝑋 then 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏𝜅+𝜏𝑡̃𝑖

<
𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏𝜅+𝜏

𝐸𝑋 . But, since 𝜏𝑡̃𝑖 > 𝜏𝑡𝑖  ∀𝑡𝑖 then 

ℎ(𝑇(𝑡̃𝑖)|𝑡̃𝑖) ≥
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
. Therefore, trader 𝑡̃𝑖 violates Condition A2 at 𝑇(𝑡̃𝑖).    

  

In conclusion, the bubble always burst for endogenous reasons (i.e. 𝑇(𝑡0 + 𝜏𝜅) <
𝑡0 + 𝜏̅).

85 

 

                                                            
83 Notice that in this equation 𝑡 = 𝑇∗−1(𝑡) + 𝜏̅. That is, 𝑡 is the period in which the exogenous burst 

happens. 
84 Remember that 𝜏𝑡̃𝑖 is the length of time trader 𝑡̃𝑖 chooses to ride the bubble subsequent to becoming 

aware of the mispricing. 
85 Similarly, notice that the statement of step 3 implies directly 𝜏∗ < 𝜏𝐸𝑋 because the hazard rate at 𝜏∗ 

under the assumed condition is always greater than the benefit cost ratio at 𝜏𝐸𝑋. 
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Fourth step: (Uniqueness). In equilibrium, for traders aware in period 𝑡𝑖 ≥ 𝜏𝜅, we 

have 𝑇(𝑡𝑖) = 𝑡0 + 𝑡𝑖 + 𝜏
∗ (i.e. they have the same 𝜏𝑡𝑖) and for traders aware in period 

𝑡𝑖 < 𝜏𝜅, we have  𝑇(𝑡𝑖) = 𝑇(𝜏𝜅) = 𝑡0 + 𝜏𝜅 + 𝜏
∗.  

 

(a) Minimum and maximum of 𝜏𝑡𝑖 coincide for the traders aware in period 𝑡𝑖 ≥ 𝜏𝜅: 

Remember, Lemma 1 implies that 𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) ≥ 𝑡𝑖 − 𝜏𝜅. However, 𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) > 𝑡𝑖 − 𝜏𝜅 

can be excluded since trader 𝑡𝑖 would be strictly better off by getting the portfolio of 

safe assets at 𝑇(𝑡𝑖) + 1. Hence, given that 𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) = 𝑡𝑖 − 𝜏𝜅 we get 

ℎ(𝑇(𝑡𝑖)|𝑡𝑖 , 𝑇
∗(𝑡0) ≥ 𝑇(𝑡𝑖)) =

[1−𝒫]

𝒫

1−(𝒫)
(𝑇(𝑡𝑖)−𝑇

∗−1(𝑇(𝑡𝑖))−𝜏)
 which is increasing in 𝑡𝑖. Let two 

traders 𝑡𝑖 ∈ argmin{𝜏𝑡𝑖} and  𝑡𝑖 ∈ argmax{𝜏𝑡𝑖} and suppose that max 𝜏𝑡𝑖 > min 𝜏𝑡𝑖, 

then ℎ (𝑇 (𝑡𝑖) |𝑡𝑖 , 𝑇
∗(𝑡0) ≥ 𝑇 (𝑡𝑖)) < ℎ (𝑇(𝑡𝑖)|𝑡𝑖 , 𝑇

∗(𝑡0) ≥ 𝑇(𝑡𝑖)) 86 . However, 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏𝑡𝑖

)
≥

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏𝑡𝑖

)
. In conclusion, condition A1 and condition A2 cannot 

be satisfied for both traders 𝑡𝑖 and 𝑡𝑖 , a contradiction.    

 

(b) For traders aware in period 𝑡𝑖 < 𝜏𝜅, 𝑇(𝑡𝑖) = 𝑇(𝜏𝜅): Since at least 𝜏𝜅 traders are 

needed to burst the bubble, then no 𝑡𝑖 should sell the portfolio of risky assets prior to 

𝑇(𝜏𝜅) and by corollary 1 will sell this portfolio at 𝑇(𝜏𝜅)                                                  

 

 

What happen if we incorporate synchronized events (public 

signals) to the analysis?  
 

Proposition 3: Define 𝜏∗∗ as the minimum integer value of 𝜏 that solves the 

following inequality: 

 

 [
𝑔−𝑟

1+𝑟
] − (1 − [

1+𝑟

1+𝑔
]
(𝜏𝜅+𝜏)

)
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
− 𝜃∑ ∑ [

𝑠−𝜏𝜅

𝜔
(1 − (

1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏)

)]
𝒫−𝑁[1−𝒫]

𝒫−𝑁−1𝑡0=𝑡𝑖+𝜏−1+𝑠−𝜏𝜅
𝜏
𝑠−𝜏𝜅=0

≥ 0,  

 

then there exists a unique responsive equilibrium. In this equilibrium, if 𝑡𝑒 ≥ 𝜏𝜅 each 

trader 𝑡𝑖 always sells the portfolio of risky assets at the instances of synchronizing 

events 𝑡𝑒 ≥ 𝑡𝑖. Otherwise (i.e. if 𝑡𝑒 < 𝜏𝜅), traders do not react to the synchronized 

event. Furthermore, each trader 𝑡𝑖 ≥ 𝜏𝜅 (𝑡𝑖 < 𝜏𝜅) stays with the portfolio of safe assets 

for all 𝑡 ≥ 𝑡𝑖 + 𝜏
∗∗ (𝑡 ≥ 𝜏𝜅 + 𝜏

∗∗) except in the event that the last synchronized 

endogenous burst attempt failed in which case she re-buys the portfolio of risky assets 

for the interval 𝑡 ∈ (𝑡𝑒 , 𝑡𝑒 + 𝜏
∗∗), unless a new synchronizing event occurs in the 

interim.    

 

Before doing the proof we need the following proposition: 

                                                            
86 Given that 𝑡0

𝑠𝑢𝑝𝑝
(𝑡𝑖) = 𝑡𝑖 − 𝜏𝜅 we get π(𝑡𝑖 − 𝜏𝜅|𝑡𝑖 , 𝑇

∗(𝑡0) ≥ 𝑇(𝑡𝑖)) =
(𝒫)−𝜏𝜅[1−𝒫]

(𝒫)−𝜏𝜅−1
 which is 

independent of 𝑡𝑖, and Π (𝑇 (𝑡𝑖) |𝑡𝑖 , 𝑇
∗(𝑡0) ≥ 𝑇 (𝑡𝑖)) =

[1−𝒫]

𝒫

1−(𝒫)
𝜏𝑡𝑖
<

[1−𝒫]

𝒫

1−(𝒫)
𝜏
𝑡𝑖
= Π (𝑇(𝑡𝑖)|𝑡𝑖 , 𝑇

∗(𝑡0) ≥ 𝑇(𝑡𝑖)) 
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Proposition 4: In equilibrium, trader 𝑡𝑖 follows a trigger strategy between two 

successive synchronizing events (i.e. agents follow interim-trigger-strategies) 

 

Proof of Proposition 4 (by contradiction): Suppose not. That is, assume there 

exists and equilibrium in which trader 𝑡𝑖 (who get the portfolio of safe assets at 𝑇(𝑡𝑖)) 
stays with the portfolio of safe assets at least until 𝑇(𝑡𝑖 + 𝜗) for some 𝜗 ∈ {1,2,… , 𝑁 − 1} 

independent of 𝑡𝑖. Hence, a generalized version of Proposition 2 applies between 

synchronizing events.  

More specifically, by Corollary 1 trader 𝑡𝑖 cannot re-buy the portfolio of risky assets 

until after trader 𝑡𝑖 + 𝜗 first re-buys the portfolio of risky assets. The same reasoning 

applies to trader 𝑡𝑖 + 𝜗 with respect to 𝑡𝑖 + 𝜗 + 1. Applying the same logic iteratively 

we conclude that trader 𝑡𝑖 stays with the portfolio of safe assets until: (1) the bubble 

bursts exogenously at period 𝑡0 + 𝜏̅, (2) there is an endogenous burst or (3) there is a 

failed attempt to burst the bubble due to a synchronized event.  

Respect to the third point, we have to take into account that in a responsive 

equilibrium, traders belief that the bubble bursts with strict positive probability at each 

𝑡𝑒 ≥ 𝜏𝜅 if others attack at 𝑡𝑒, too. Therefore, it is always an equilibrium that each trader 

who observes the synchronized event attacks the bubble at 𝑡𝑒 ≥ 𝜏𝜅. However, if there is 

a failed attempt to burst the bubble, then all traders who participate in the attack update 

their beliefs and they will re-buy the portfolio of risky assets and sell this portfolio again 

exactly: (1) when the “first” trader, who did not participate in this common attempt, 

sells the portfolio of risky assets or (2) when there is a new synchronized event. That is, 

traders follow interim-trigger-strategies                                                                             

 

Proof of Proposition 3: This proof has been divided in four steps: 

 

First step: (Circumstances under which any trader 𝑡𝑖 prefers a portfolio of risky 

assets or a portfolio of safe assets). Proposition 4 implies that the expected payoff at 

period 0 of selling out the portfolio of risky assets at period 𝑡 or until she observes the 

first synchronized event is:  

 

(𝐸𝑥𝑝. 𝑃)𝑡 = 
𝑃𝑡(1+𝑟)

(1+𝑟)𝑡+1
[1 − Π(𝑡 − 1|𝑡𝑖)][1 − Γ(𝑡 − 2|𝑡𝑖)]. 

+∑
𝐹𝑉𝑧(1+𝑟)

𝑡−𝑧+1

(1+𝑟)𝑡+1
𝑡−1
𝑧=𝑇∗−1(∙) π(𝑧|𝑡𝑖)[1 − Γ(𝑧 − 1|𝑡𝑖)] + ∑ [1 − Π(𝑧 − 1|𝑡𝑖)]𝛾(𝑧 −

𝑡−1
𝑧=𝑡𝑖

1|𝑡𝑖)∑ ∑ [
[(1−

𝑠−𝜏𝜅
𝜔

)𝑃𝑧+(
𝑠−𝜏𝜅
𝜔

)𝐹𝑉𝑧](1+𝑟)
𝑡+1−𝑧

(1+𝑟)𝑡+1
]

𝜙(𝑡0|𝑡𝑖)

1−Φ(𝑡𝑖−𝜏𝜅|𝑡𝑖)
𝑧+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

+ 𝑉(𝑡𝑖)  . 

 

The first term is the payoff obtained if there is no bubble burst87 prior to 𝑡 and the 

portfolio of risky assets is sell out at period 𝑡. The second term is the expected payoff 

obtained if the bubble does not burst after a synchronized event but it bursts for 

endogenous reasons in any period prior to 𝑡. The third term is the expected payoff 

obtained if the bubble bursts after a synchronized event88,89. Finally, the last term is the 

                                                            
87 That is, the bubble does not burst endogenously or due to a synchronized event. 
88 
𝑠−𝜏𝜅

𝜔
 is the probability that a trader, who observe the public signal, has a capital lost when there is a 

successful synchronized attack to the bubble;  𝜔 = {
𝜏     𝑖𝑓 𝑠 − 𝜏𝜅 ≤ 𝜏 ≤ 𝑠
𝑠      𝑖𝑓 𝑠 < 𝜏 ≤ 𝑁       

 is the number of traders who 

pretend to get the portfolio of safe assets in the period immediately after the public signal; and  𝑠 − 𝜏𝜅 ≥ 0 
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value of the option to re-buy the risky portfolio and to ride the bubble after the first 

observed failed endogenous burst attempt at period 𝑧.  The previous equation can also 

be written as 

 

(𝐸𝑥𝑝. 𝑃)𝑡 =
𝑃𝑡

(1+𝑟)𝑡
[1 − 𝛱(𝑡 − 1|𝑡𝑖)][1 − 𝛤(𝑡 − 2|𝑡𝑖)]. 

 + ∑
𝐹𝑉𝑧

(1+𝑟)𝑧
𝑡−1
𝑧=𝑇∗−1(∙) 𝜋(𝑧|𝑡𝑖)[1 − 𝛤(𝑧 − 1|𝑡𝑖)] +    ∑ [1 − 𝛱(𝑧 − 1|𝑡𝑖)]𝛾(𝑧 −

𝑡−1
𝑧=𝑡𝑖

1|𝑡𝑖)∑ ∑ [
(1−

𝑠−𝜏𝜅
𝜔
)𝑃𝑧+(

𝑠−𝜏𝜅
𝜔
)𝐹𝑉𝑧

(1+𝑟)𝑧
]

𝜙(𝑡0|𝑡𝑖)

1−𝛷(𝑡𝑖−𝜏𝜅|𝑡𝑖)
𝑧+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

+ 𝑉(𝑡𝑖) . 

 

Therefore, the expected payoff of selling out the portfolio of risky assets at period 

𝑡 + 1 is:  

 

(𝐸𝑥𝑝. 𝑃)𝑡+1 = {(𝐸𝑥𝑝. 𝑃)𝑡 −
𝑃𝑡

(1+𝑟)𝑡
[1 − 𝛱(𝑡 − 1|𝑡𝑖)][1 − 𝛤(𝑡 − 2|𝑡𝑖)]} +

𝐹𝑉𝑡

(1+𝑟)𝑡
𝜋(𝑡|𝑡𝑖)[1 − 𝛤(𝑡 − 1|𝑡𝑖)]  +

𝑃𝑡+1

(1+𝑟)𝑡+1
[1 − 𝛱(𝑡|𝑡𝑖)][1 − 𝛤(𝑡 − 1|𝑡𝑖)] +

[1 − 𝛱(𝑡 − 1|𝑡𝑖)]𝛾(𝑡 − 1|𝑡𝑖)∑ ∑ [
(1−

𝑠−𝜏𝜅
𝜔

)𝑃𝑡+(
𝑠−𝜏𝜅
𝜔

)𝐹𝑉𝑡

(1+𝑟)𝑡
]

𝜙(𝑡0|𝑡𝑖)

1−𝛷(𝑡𝑖−𝜏𝜅|𝑡𝑖)
𝑡+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

    

 

then, 

 
(𝐸𝑥𝑝. 𝑃)𝑡+1 = (𝐸𝑥𝑝. 𝑃)𝑡 +  

𝑃0[1 − Π(𝑡|𝑡𝑖)][1 − Γ(𝑡 − 1|𝑡𝑖)] (
1+𝑔

1+𝑟
)
𝑡+1

{1 + (
1+𝑟

1+𝑔
)
(𝑡+1−𝑇𝑒

∗−1(𝑡)) π(𝑡|𝑡𝑖)

[1−Π(𝑡|𝑡𝑖)]
−

(
1+𝑟

1+𝑔
)
[1−Π(𝑡−1|𝑡𝑖)]

[1−Π(𝑡|𝑡𝑖)]

[1−Γ(𝑡−2|𝑡𝑖)]

[1−Γ(𝑡−1|𝑡𝑖)]
+  

(
1+𝑟

1+𝑔
)
[1−Π(𝑡−1|𝑡𝑖)]

[1−Π(𝑡|𝑡𝑖)]

𝛾(𝑡−1|𝑡𝑖)

[1−Γ(𝑡−1|𝑡𝑖)]
∑ ∑ [1 −

𝑠−𝜏𝜅

𝜔
(1 − (

1+𝑟

1+𝑔
)
(𝑡−𝑇𝑒

∗−1(𝑡))
)]

𝜙(𝑡0|𝑡𝑖)

1−Φ(𝑡𝑖−𝜏𝜅|𝑡𝑖)
𝑡+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

}  

 

Since the term 𝑃0[1 − Π(𝑡|𝑡𝑖)][1 − Γ(𝑡 − 1|𝑡𝑖)] (
1+𝑔

1+𝑟
)
𝑡+1

 is always positive, if the 

expression inside curly brackets is negative then trader 𝑡𝑖 does not have incentives to 

continue with the portfolio of risky assets until period 𝑡 + 1.  

Therefore, given ℎ(𝑡|𝑡𝑖) =
π(𝑡|𝑡𝑖)

1−Π(𝑡|𝑡𝑖)
, ℎ̃(𝑡|𝑡𝑖) =

𝛾(𝑡|𝑡𝑖)

[1−Γ(𝑡|𝑡𝑖)]
, 𝜙(𝑡0|𝑡𝑖) =

𝒫−𝑁[1−𝒫]

𝒫−𝑁−1
 and  

𝜃 =
(1+ℎ(𝑡|𝑡𝑖))ℎ̃(𝑡−1|𝑡𝑖)

1−Φ(𝑡𝑖−𝜏𝜅|𝑡𝑖)
 we obtain after some algebraic operations that if 

 

                                                                                                                                                                              
is the number of traders who could not get the portfolio of safe assets in the period immediately after the 

public signal. 
𝜙(𝑡0|𝑡𝑖)

1−Φ(𝑡𝑖−𝜏𝜅|𝑡𝑖)
 is the conditional probability mass function of 𝑡0 such that 𝑡0 ≥ 𝑡𝑖 − 𝜏𝜅, 

𝜙(𝑡0|𝑧) is the conditional probability mass function of 𝑡0. 1 − Φ(𝑡𝑖 − 𝜏𝜅|𝑡𝑖) is the probability that 𝑡0 ≥
𝑡𝑖 − 𝜏𝜅 (i.e. 1 −Φ(𝑡𝑖 − 𝜏𝜅|𝑡𝑖) = ∑ ∑ 𝜙(𝑡0|𝑡𝑖)𝑧+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

).  
89 Notice two things: (1) if 𝑠 > 𝜏𝜅 the 𝜔 traders who bought the safe asset immediately after the public 

event only receives a convex combination between the pre-crash and post-crash price [(1 −
𝑠−𝜏𝜅

𝜔
)𝑃𝑧 +

(
𝑠−𝜏𝜅

𝜔
)𝐹𝑉𝑧]; and (2) the sum operator begins in 𝑧 = 𝑡𝑖 because for 𝑧 < 𝑡𝑖, trader 𝑡𝑖 does not observe the 

synchronized event. 
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ℎ(𝑡|𝑡𝑖) (1 − (
1+𝑟

1+𝑔
)
(𝑡−𝑇𝑒

∗−1(𝑡))
) + 𝜃 ∑ ∑ [

𝑠−𝜏𝜅

𝜔
(1 −𝑡+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

(
1+𝑟

1+𝑔
)
(𝑡−𝑇𝑒

∗−1(𝑡))
)]

𝒫−𝑁[1−𝒫]

𝒫−𝑁−1
>  

𝑔−𝑟

1+𝑟
                                                               (Condition A3) 

  

the risk neutral trader 𝑡𝑖 does not have incentives to have the portfolio of risky assets.  

 

Following a similar reasoning we obtain that if 

 

ℎ(𝑡|𝑡𝑖) (1 − (
1+𝑟

1+𝑔
)
(𝑡−𝑇𝑒

∗−1(𝑡))
) + 𝜃 ∑ ∑ [

𝑠−𝜏𝜅

𝜔
(1 −𝑡+𝑠−𝜏𝜅=𝑡0

𝜏
𝑠−𝜏𝜅=0

(
1+𝑟

1+𝑔
)
(𝑡−𝑇𝑒

∗−1(𝑡))
)]

𝒫−𝑁[1−𝒫]

𝒫−𝑁−1
<  

𝑔−𝑟

1+𝑟
                                                               (Condition A4) 

 

the risk neutral trader 𝑡𝑖 has incentives to have the portfolio of risky assets.  

 

Second step: (𝜏∗∗defines a symmetric equilibrium). Notice that each trader 𝑡𝑖 ′𝑠 
posterior about 𝑡0 at 𝑇𝑒(𝑡𝑖) exactly coincides with the posterior she had at 𝑇(𝑡𝑖) in a 

setting without synchronizing events90. Therefore, the hazard rate is also the same at the 

time trader 𝑡𝑖 sells in either setting ℎ(𝑡|𝑡𝑖) = ℎ(𝑡𝑖 + τ|𝑡𝑖) =
[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
. Now, define 

 

𝜑(𝜏) =
𝑔 − 𝑟

1 + 𝑟
−

[1 − 𝒫]
𝒫

1 − (𝒫)𝜏𝜅
(1 − (

1 + 𝑟

1 + 𝑔
)
(𝜏+𝜏𝜅)

)

− 𝜃 ∑ ∑ [
𝑠 − 𝜏𝜅
𝜔

(1 − (
1 + 𝑟

1 + 𝑔
)
(𝜏+𝜏𝜅)

)]𝜙(𝑡0|𝑡𝑖)

𝑡0=𝑡𝑖+𝜏−1+𝑠−𝜏𝜅

𝜏

𝑠−𝜏𝜅=0

 

 

For equilibrium τ∗∗ it is necessary that91 𝜑(τ∗∗)⌊≥⌋0. We argue that there is a τ∗∗ 

such that 𝜑(τ∗∗)⌊≥⌋0 is (i) unique and (ii) exists. Notice that 

[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
 is constant across 

equilibrium τ∗∗. However, (1 − (
1+𝑟

1+𝑔
)
(τ∗∗+𝜏𝜅)

) is strictly increasing in τ∗∗, 𝜙(𝑡0|𝑡𝑖) =

(𝒫)−𝑁[1−𝒫]

(𝒫)−𝑁−1
 is the same, and the upper bound of the second sum operator is increasing in 

τ∗∗. Thus, 𝜑(τ∗∗) is strictly increasing in equilibrium τ∗∗. Uniqueness follows directly.   

In a responsive equilibrium, immediately after a synchronizing event at 𝑡𝑒 ≥ 𝜏𝜅 each 

trader who observes this event is assumed to sell the portfolio of risky assets. Therefore, 

for each trader’s point of view, a bubble bursts with strict positive probability at each 

𝑡𝑒 ≥ 𝜏𝜅 in the equilibrium. Given this belief, it is always optimal that each trader who 

observes the synchronized event at 𝑡𝑒 ≥ 𝜏𝜅 sells the portfolio of risky assets at this time. 

To fully specify all relevant strategies, it only remains to consider continuation 

strategies after a failed burst attempt due to a synchronized event. More specifically, 

                                                            
90 That is, in any symmetric equilibrium the support of 𝑡0 at 𝑇𝑒(𝑡𝑖) is also [𝑡𝑖 − 𝜏𝜅, 𝑡𝑖] 
91 Remember that the operator ⌊≥⌋ means the minimum integer value of 𝜏∗∗ that satisfies the 

inequality. 
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after this failed burst attempt, traders learn that fewer than 𝜏𝜅 traders have observed the 

synchronizing event (i.e. 𝑡0 > 𝑡𝑒 − 𝜏𝜅). Since all other traders who did not observe the 

synchronizing event only sell the portfolio of risky assets at 𝑡𝑖 + τ∗∗, all traders who 

observed the synchronizing event at 𝑡𝑒 > 𝜏𝜅 can rule out the possibility that the bubble 

bursts prior to 𝑡𝑒 − τ∗∗ provided that no new synchronizing event occurs92.  

Therefore, in any responsive equilibrium all traders who sold the portfolio of risky 

assets after the last synchronizing event will re-buy the portfolio of risky assets after a 

failed burst attempt and sell this portfolio again exactly when the “first” trader, who did 

not participate in this common attempt, sells the portfolio of risky assets. Notice that 

after 𝑡 = 𝑡𝑒 − τ∗∗, the analysis coincides with a setting without a synchronizing event at 

𝑡𝑒. At this point all traders who had participated in the failed sell and subsequently re-

buy the portfolio of risky assets, sell this portfolio again. 

 

Third step: (Since 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
𝜏̅ <

[1−𝒫]

𝒫

1−(𝒫)𝜏𝜅
 then the bubble always bursts for endogenous 

reasons). Assume traders would buy the portfolio of safe assets at 𝑡𝑖 + 𝜏̃
𝐸𝑋 if they 

believe that the bubble would burst for exogenous reasons. However, this is a 

contradiction because Condition A4 is violated. In particular, notice that the term 

𝜃 ∑ ∑ [
𝑠−𝜏𝜅

𝜔
(1 − (

1+𝑟

1+𝑔
)
(𝜏+𝜏𝜅)

)]
𝒫−𝑁[1−𝒫]

𝒫−𝑁−1𝑡0=𝑡𝑖+𝜏−1+𝑠−𝜏𝜅
𝜏
𝑠−𝜏𝜅=0

 is always positive an 

increasing in 𝜏.   Therefore, we can follow a procedure similar to step 3 of proposition 1 

to show that condition A4 is violated for each trader who sells the portfolio of risky 

assets only at 𝑡𝑖 + 𝜏̃
𝐸𝑋. In conclusion, the bubble always bursts for endogenous reasons 

(i.e. 𝑇(𝑡0, 𝜏𝜅) < 𝑡0 + 𝜏̅)
 93 

 

Fourth step: (Uniqueness). In equilibrium, for traders aware in period 𝑡𝑖 ≥ 𝜏𝜅, we 

have 𝑇(𝑡𝑖) = 𝑡0 + 𝑡𝑖 + 𝜏
∗∗ (i.e. they have the same 𝜏𝑡𝑖) and for traders aware in period 

𝑡𝑖 < 𝜏𝜅, we have  𝑇(𝑡𝑖) = 𝑇(𝜏𝜅) = 𝑡0 + 𝜏𝜅 + 𝜏
∗∗.  

 

(a) Minimum and maximum of 𝜏𝑡𝑖 coincide for traders aware in period 𝑡𝑖 ≥ 𝜏𝜅: 

Remember, Lemma 1 implies that 𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) ≥ 𝑡𝑖 − 𝜏𝜅. However, 𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) > 𝑡𝑖 − 𝜏𝜅 

can be excluded since trader 𝑡𝑖 would be strictly better off by getting the portfolio of 

safe assets at 𝑇(𝑡𝑖) + 1. Hence, given that 𝑡0
𝑠𝑢𝑝𝑝

(𝑡𝑖) = 𝑡𝑖 − 𝜏𝜅 we get 

ℎ(𝑇(𝑡𝑖)|𝑡𝑖 , 𝑇
∗(𝑡0) ≥ 𝑇(𝑡𝑖)) =

[1−𝒫]

𝒫

1−(𝒫)
(𝑇(𝑡𝑖)−𝑇

∗−1(𝑇(𝑡𝑖))−𝜏)
 which is increasing in 𝑡𝑖. Let two 

traders 𝑡𝑖 ∈ argmin{𝜏𝑡𝑖} and  𝑡𝑖 ∈ argmax{𝜏𝑡𝑖} and suppose that max 𝜏𝑡𝑖 > min 𝜏𝑡𝑖, 

                                                            
92 Note that the bubble will not bursts for exogenous reasons prior to te − τ∗∗, since the endogenous 

bursting time t0 + τκ + τ∗∗ occurs strictly before t0 + τκ + τ∗ < t0 + τ̅. The bubble might only burst prior 

to te − τ∗∗ if a new synchronizing event occurs. 
93 Similarly, notice that the statement of step 3 implies directly 𝜏∗∗ < 𝜏̃𝐸𝑋 because the hazard rate at 

𝜏∗∗ under the assumed condition is always greater than the benefit cost ratio at 𝜏̃𝐸𝑋. 
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then ℎ (𝑇 (𝑡𝑖) |𝑡𝑖 , 𝑇
∗(𝑡0) ≥ 𝑇 (𝑡𝑖)) < ℎ (𝑇(𝑡𝑖)|𝑡𝑖 , 𝑇

∗(𝑡0) ≥ 𝑇(𝑡𝑖)) 94 However, 

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏𝑡𝑖

)
≥

𝑔−𝑟

1+𝑟

1−(
1+𝑟

1+𝑔
)
(𝜏𝜅+𝜏𝑡𝑖

)
.  

 

Furthermore,  

 

𝜃 ∑ ∑ [
𝑠 − 𝜏𝜅
𝜔

(1 − (
1 + 𝑟

1 + 𝑔
)
(𝑇𝑒( 𝑡𝑖)−𝑡0)

)]𝜙(𝑡0|𝑡𝑖)

𝑇𝑒( 𝑡𝑖)+𝑠−𝜏𝜅−𝑡0=0

𝜏

𝑠−𝜏𝜅=0

< 𝜃 ∑ ∑ [
𝑠 − 𝜏𝜅
𝜔

(1 − (
1 + 𝑟

1 + 𝑔
)
(𝑇𝑒( 𝑡𝑖)−𝑡0)

)]𝜙(𝑡0|𝑡𝑖)

𝑇𝑒( 𝑡𝑖)+𝑠−𝜏𝜅−𝑡0=0

𝜏

𝑠−𝜏𝜅=0

 

 

In conclusion, conditions A3 and A4 cannot be satisfied for both traders 𝑡𝑖 and 𝑡𝑖 , a 

contradiction. 

 

(b) For traders aware in period 𝑡𝑖 < 𝜏𝜅, 𝑇(𝑡𝑖) = 𝑇(𝜏𝜅): Since at least 𝜏𝜅 traders are 

needed to burst the bubble, then no 𝑡𝑖 should sell the portfolio of risky assets prior to 

𝑇(𝜏𝜅) and by corollary 1 will sell this portfolio at 𝑇(𝜏𝜅).                                                 
 

  

                                                            
94 Given that 𝑡0

𝑠𝑢𝑝𝑝
(𝑡𝑖) = 𝑡𝑖 − 𝜏𝜅 we get π(𝑡𝑖 − 𝜏𝜅|𝑡𝑖 , 𝑇

∗(𝑡0) ≥ 𝑇(𝑡𝑖)) =
(𝒫)−𝜏𝜅[1−𝒫]

(𝒫)−𝜏𝜅−1
 which is 

independent of 𝑡𝑖, and Π (𝑇 (𝑡𝑖) |𝑡𝑖 , 𝑇
∗(𝑡0) ≥ 𝑇 (𝑡𝑖)) =

[1−𝒫]

𝒫

1−(𝒫)
𝜏𝑡𝑖
<

[1−𝒫]

𝒫

1−(𝒫)
𝜏
𝑡𝑖
= Π (𝑇(𝑡𝑖)|𝑡𝑖 , 𝑇

∗(𝑡0) ≥

𝑇(𝑡𝑖)) 
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1.7 Appendix B1: Instructions95 
 

Thank you for participating in this experiment on the economics of investment 

decision making. If you follow the instructions carefully and make good decisions, you 

might earn a considerable amount of money. The way your earnings are determined is 

explained at the end of the instructions. The experiment will take around 2 hours. 

You are going to participate in transaction rounds 50 times in succession. In every 

round you will participate with 24 different computer agents, these agents will change 

from round to round. The computer agents are going to follow a predetermined strategy, 

which remain consistent throughout the experiment, but unknown to you.  

Note that: 

 

 You are NOT participating in each round with the same set of computer agents. 

 You are NOT participating in the same round with other human participants in the 

room. Therefore, your earnings are NOT affected by the decisions they are taking or 

by the rounds in which they are participating. 

 

All participants in each transaction round (i.e. you and the 24 computer agents) are 

named traders. In this experiment, traders are not trading to each other. However, the 

decisions taken by other traders (i.e. the computer agents) can affect your own earnings 

and your decisions can affect the earnings of them. Your goal in each transaction round 

is to maximize your own earnings (similarly, the goal of each computer agent is to 

maximize her respective earnings). 

 

 

How to participate in each transaction round 
 

Each transaction round is composed by many periods. In every period, depending on 

your decision in the previous period, you will have a portfolio of private assets or a 

portfolio of public assets.  

The price of each kind of asset has a stock market value and a true value. These 

values are determined in the following way (Figure B1.1): 

 

 The stock market value of the public assets is always equal to its true value and both 

grow every period at a rate of 1%. 

 From period 0 until period 𝑡0 − 1 the stock market value of the private assets is 

always equal to its true value and both grow every period at a rate of 10%. On the 

other hand, from period 𝑡0 until the end of each round the stock market value of the 

private assets is different from its true value, in particular: (1) the true value of the 

private assets grows every period at a rate of 1%, and (2) the stock market value of 

the private assets grows every period at a rate of 10%, except in the last period of 

every transaction round when this value falls until to catch up its true value. 

 

Traders do not know exactly in which period begins the divergence between the true 

value and the stock market value of the private assets (i.e. traders do not know exactly 

what period is period 𝑡0). However, they know that since the first period, there is a 
                                                            

95  Translated from Spanish into English 
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probability of 5% that in each period the divergence between the true and the stock 

market value of the private assets begins (i.e. in each period there is a probability of 5% 

that period 𝑡0 happens). 

In addition, they know that the following rule works in every transaction round: “In 

period 𝒕𝟎 one of the traders is aware (when she receives a private warning 

message) that the true value of the private assets is different from its stock market 

value. In period 𝒕𝟎 + 𝟏 a new trader is aware (when she receives a private warning 

message) that the true value of the private assets is different from its stock market 

value. This process continues sequentially until period 𝒕𝟎 + 𝟐𝟒 in which all traders 

have already been aware that the true value of the private assets is different from 

its stock market value (i.e. in period 𝒕𝟎 + 𝟐𝟒 all traders have already received their 

respective warning message)”.  

 

Figure B1.1 
 

 

 

 
 

  
Note: The number of dots in these figures are only for expositional purposes and are not related to the 

dynamic of the transaction rounds. 

 

The order in which traders become aware of the bubble is randomly assigned in 

every round. Therefore, when you receive the warning message, some traders may have 

already received it, and some might not have received it yet. All the warning messages 

are private, so you do not know when other traders receive the warning message and 

they do not know when you receive your warning message (besides, a computer agent 

does not recognize when another computer agent receive the warning message). 

However, you are always informed in all periods about the period of the transaction 

round in which you are participating and about the number of periods that has elapsed 

since you receive your warning message (Figures B1.2 and B1.3). 

You always begin each transaction round with a portfolio of private assets and you 

will be forced to maintain this portfolio until the period in which you are warned about 
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the divergence between the true and the stock market value of this portfolio (i.e. you are 

forced to maintain this kind of portfolio until a period that is greater or equal to t0 and 

lower or equal to 𝑡0 + 24). Since in the first periods of each transaction round you do 

not take any decision, then the first screen that appears in your computer corresponds to 

the period in which you are warned about the divergence between the true value and the 

stock market value of the private assets. From this period and in all the consecutive 

periods you have to decide if you want to maintain or to change your kind of portfolio. 

More specifically, during each period if you have a portfolio of private assets you have 

to decide if you want to change this portfolio to obtain a portfolio of public assets in the 

next period (Figure B1.2); on the other hand, if you have a portfolio of public assets you 

have to decide if you want to change this portfolio to obtain a portfolio of private assets 

in the next period (Figure B1.3). 

The above are the only decisions that all traders have to take during the experiment. 

Every period finishes after you take a decision (i.e. after you click with the mouse the 

button that has your choice). 

 

Note:  In this experiment traders cannot diversify their portfolio (i.e. in each period 

each trader has a portfolio of only private assets or a portfolio of only public assets). 

Therefore, the value of your portfolio will grow each period at the same rate that 

grows the stock market value of the kind of assets that you have in your portfolio. For 

instance, if in a specific period you have a portfolio of public assets, then the value of 

your portfolio will grow in this period at 1%. 

 

Figure B1.2 

 
 

Each transaction round finishes when the stock market value of the private assets falls 

until it catches up its true value. This situation happens if one of the following two 

conditions is satisfied: 
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1. In the same period at least 15 traders decided to have portfolios of public assets 

(endogenous ending).   
 

Warning:  In an endogenous ending no more than 15 traders can have in the same 

period a portfolio of public assets. Therefore, if more than 15 traders want to have a 

portfolio of public assets in the same period, then some of the traders who wanted to 

get the portfolio of public assets in the last period cannot do it, in this case the 

traders that cannot change the portfolio are randomly chosen. 

 

Figure B1.3 

 
 

Table B1.1  

(Endogenous Ending) 

 
 

2. The period 𝑡0 + 100 is reached, even though fewer than 15 traders have 

portfolios of public assets (exogenous ending).  

To better understand how both kind of endings work, analyze Tables B1.1 and B1.2.  

Period

Private Asset:                       

True Value ≠ Stock Market 

Value

Number of periods since (for 

the private asset):                        

True Value ≠ Stock Market 

Value

Number of traders 

with portfolios of 

public assets

t0-2 NO -

t0-1 NO -

t0 YES 0 Less than 15

t0+1 YES 1 Less than 15

t0+2 YES 2 Less than 15

t0+3 YES 3 Less than 15

t0+4 YES 4 Less than 15

… YES … Less than 15

… YES … Less than 15

t YES Greater or Equal than 15 15

t+1 Endogenous Ending
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Note: In the last page of these instructions there are two examples that can help you to 

understand how evolve the value of your portfolio depending on your decisions. 
 

 Table B1.2  

(Exogenous Ending) 

 
 

 

Public Message96
 

 

All traders know that the following message: 

 

 
 

appears with a probability of 5% to all traders that already know that there is a 

divergence between the true value and the stock market value of the private assets. 

 

 

Final Comments 
 

In period 0 the value of the portfolio of all traders is the same and has been randomly 

assigned in a value unknown to all traders.  However, when you are informed about the 

divergence between the true value and the stock market value of the private assets (i.e. a 

period that is greater or equal to t0 and lower or equal to 𝑡0 + 24) the value of your 

portfolio has been normalized at 1 ECU (experimental currency unit).  

In addition, take into account two things: (1) in the screen of your computer you are 

always notified about the current value of your portfolio and (2) during each transaction 

round the traders never know the current value of the portfolio of the other traders. 

However, at the end of each transaction round in the screen of your computer you will 

be informed about the value of your portfolio, the three highest portfolio values 

obtained by the computer agents and the earnings that you obtained in the respective 

transaction round. 

On the other hand, at the end of each transaction round one of following three 

messages will appear in the screen of your computer: 

                                                            
96 This section only appears in the sunspot sessions 

Period

Private Asset:                       

True Value ≠ Stock Market 

Value

Number of periods since (for 

the private asset):                        

True Value ≠ Stock Market 

Value

Number of traders 

with portfolios of 

public assets

t0-2 NO -

t0-1 NO -

t0 YES 0 Less than 15

t0+1 YES 1 Less than 15

t0+2 YES 2 Less than 15

t0+3 YES 3 Less than 15

t0+4 YES 4 Less than 15

… YES … Less than 15

t0+98 YES 98 Less than 15

t0+99 YES 99 Less than 15

t0+100 Exogenous Ending
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The last message appears if in the last period you try to change the portfolio of 

private assets to get a portfolio of public assets but unfortunately there is an endogenous 

ending in which you are not selected to do the change. 

 

 

Your Earnings 
 

At the end of the experiment you will be paid in cash and in private according to the 

earnings obtained in all transaction rounds and you will also obtain a show-up fee. The 

conversion rate that we will use is 1 𝐸𝐶𝑈 = 0.05€. 

By participating in this experiment you have already earned 100 𝐸𝐶𝑈𝑠 (i.e. 5€). In 

addition, in every transaction round your earnings are calculated using the following 

equation: 

 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑖𝑛 𝐸𝐶𝑈𝑠 =  
𝐹𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦𝑜𝑢𝑟 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

𝐹𝑖𝑛𝑎𝑙 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑓 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑎𝑠𝑠𝑒𝑡𝑠
− 1 

  

This equation implies that to obtain high earnings is needed that the final value of 

your portfolio in each round will be high. In addition, note that in every period your 

earnings in ECUs are always higher or equal to zero because the final value of your 

portfolio is always higher or equal than the true value of the portfolio of private assets.  

Remember that during your participation in each transaction round the final value of 

your portfolio grows at 10% if you have private assets or at 1% if you have public 

assets. Therefore, the value of your portfolio at the end of each transaction round is 

always higher than the true value of the portfolio of private assets (that grows at 1%) 

and only is equal if the transaction round ends and you already have a portfolio of 

private assets. 

 

Important: if a transaction round ends and you already have a portfolio of private 

assets then your earnings will be zero during this round because at the end of any 

transaction round the stock market value of the private assets is equal to its true value 

(remember Figure B1.1). However, you can obtain higher earnings if you maintain 

during more periods a portfolio of private assets because during the time in which you 

participate in each transaction round (before its ending) the stock market value of the 

private assets grows at 10% while the stock market value of the public assets grows at 

1% (remember Figure B1.1) 

 

Before the beginning of the experiment check the test of understanding that is 

attached to these instructions. Please, focus in your experiment, do not talk to other 

people in this room and remember that your earnings are NOT affected by their 

decisions or by the rounds in which they are participating.  

 

ARE THERE ANY QUESTIONS? 
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Test of Understanding 
 

Read the instructions again yourself, try to answer the following questions (the 

answers are after the last question). If you believe that you already understand how the 

experiment works, please begin the experiment.   

 

1. Look at Figure B1.2, 

a) What will be the kind of portfolio you have in the next period if you choose YES?  

b) What will be the kind of portfolio you have in the next period if you choose NO? 

2. Look at Figure B1.3,  

a) What will be the kind of portfolio you have in the next period if you choose YES?  

b) What will be the kind of portfolio you have in the next period if you choose NO? 

3. You are participating in the same transaction rounds with other people in the room: 

 True 

 False  

4. The true value of the private assets is always equal to its stock market value: 

 True 

 False  

5. The true value of the public assets is always equal to its stock market value: 

 True 

 False  

6. The transaction rounds are designed such that all traders receive at different 

sequential periods the warning message that the true value of the private assets 

differs from their stock market value: 

 True 

 False  

7. A transaction round end once 15 traders have in the same period a portfolio of 

public assets: 

 True 

 False  

8. How many computer agents participate in each transaction round? 

___________________________________________________________________

___________________________________________________________________ 

9. A trader can recognize exactly when another trader has received the warning 

message that the true value of the private assets is different from is stock market 

value 

 True 

 False  

10. The earnings that you obtain in each transaction round are always greater or equal 

than zero: 

 True 

 False  
 

Answers: (1) a) a portfolio of public assets, b) a portfolio of private assets; (2) a) a portfolio of 

private assets, b) a portfolio of public assets; (3) false; (4) false; (5) true; (6) true; (7) true; (8) 24; (9) 

false; (10) true. 
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Examples 
 

Example: Assume you have in period t a portfolio of public assets of 2 ECUs. What is 

the value of your portfolio in t+1?  

 

Answers: There are three cases: 

1. If you change to the portfolio of private assets (i.e. if you click YES in period t) and 

the transaction round does not end in period t then the value of your portfolio in t+1 

is 2*(1+10%) =2*(1+0.1) =2*1.1= 2.2 ECUs  

2. If you change to the portfolio of private assets (i.e. if you click YES in period t) and 

the transaction round ends in period t then the value of your portfolio in t+1 falls to 

the true value of the portfolio of private assets. 

3. If you decide to continue with the portfolio of public assets (i.e. if you click NO in 

period t) the value of your portfolio in period t+1 is 2*(1+1%) = 2*(1+0.01) = 

2*1.01 = 2.02 ECUs 

 

Example: Assume you have in period t a portfolio of private assets of 2 ECUs. What is 

the value of your portfolio in t+1? 

 

Answers: There are three cases: 

1. If you change to the portfolio of public assets (i.e. if you click YES in period t) the 

value of your portfolio in t+1 is 2*(1+1%)=2*(1+0.01) =2*1.01=2.02 ECUs 

Note: If in period t there is an endogenous ending then there exist the possibility that 

your change of portfolio is not allowed, in this particular case the value of your 

portfolio in period t+1 falls to the true value of the portfolio of private assets 

2. If you continue with the portfolio of private assets (i.e. if you click NO in period t) 

and the transaction round does not end in period t then the value of your portfolio in 

period t+1 is 2*(1+10%) = 2*(1+0.1) =2*1.1 = 2.2 ECUs 

3. If you continue with the portfolio of private assets (i.e. if you click NO in period t), 

and the transaction round ends in period t then the value of your portfolio in period 

t+1 falls to the true value of the portfolio of private assets. 

 

At the end of the experiment the participants also answered a questionnaire in order 

to get more information about them and about the decisions taken by them in the 

experiment.  
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1.8 Tables 
 

 

 

Table 1.1 

t-tests of the delays (omitting the right censored delays) 

 
 

 

 

Table 1.2 

t-tests of the delays (recoding the right censored delays) 

 
 

 

 

Table 1.3 

Behavior of the traders in the experiment when there is a sunspot message97 

 
 

 

 

Table 1.4 

Number of buybacks in the baseline session98 

 
 

                                                            
97 Notice that given the randomness process of the sunspot message, it does not appear in all games in 

the sunspot session. 
98 In appendix A1 𝑇∗(𝑡0) is defined as the bursting time of the bubble for a given realization of 𝑡0. 

Therefore, the table 1.4 differentiates the cases in which the traders have not or have enough time to apply 

the optimal delay. 

Observations Mean
Standard 

Error

Standard 

Deviation

ti < t T(ti)= t + t* 28 74 21.35 0.86 7.39 19.64 23.06

ti ≥ t t* 13 190 9.07 0.41 5.69 8.25 9.88

ti < t T(ti)= t + t** 22 84 14.85 0.62 5.72 13.60 16.09

ti ≥ t t** 7 175 4.59 0.33 4.42 3.93 5.25

Experiment Result
Theoretical 

Equilibrium Value
VariableCaseSession

Baseline

Sunspot

[95% Conf. Interval]

Observations Mean
Standard 

Error

Standard 

Deviation

ti < t T(ti)= t + t* 28 78 22.31 0.94 8.30 20.44 24.18

ti ≥ t t* 13 210 10.68 0.51 7.36 9.68 11.68

ti < t T(ti)= t + t** 22 90 15.72 0.68 6.44 14.37 17.07

ti ≥ t t** 7 197 6.54 0.49 6.90 5.57 7.51

Session Case Variable
Theoretical 

Equilibrium Value

Experiment Result

[95% Conf. Interval]

Baseline

Sunspot

Safe Risky Total

Safe 31 1 32

Risky 25 16 41

Total 56 17 73

Safe 71 5 76

Risky 47 41 88

Total 118 46 164

< 15

≥ 15

Range of periods in which the 

trader receive the sunspot message
Type of portfolio

Next type of portfolio

Observations Mean
Standard 

Error

Standard 

Deviation

- 475 0.74 0.07 1.51 0.60 0.87

T*(t0) < ti + t* 187 0.36 0.06 0.82 0.25 0.48

T*(t0) ≥ ti + t* 288 0.98 0.10 1.78 0.78 1.19

Experiment Result

[95% Conf. Interval]
Session Case Variable

Theoretical 

Equilibrium 

Value

0

Number of times agents 

buyback to get the 

portfolio of risky assets

Baseline
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Table 1.5 

Number of buybacks to get again the portfolio of risky assets  

 
*In the baseline session, the trader that has 8, 9, 10 buybacks are the same (in addition, this is the only 

trader that always had buybacks). On the other hand, in this session two traders never had buybacks.  

 

 

Table 1.6 

Choices of portfolios in the sunspot session  

after the appearance of a sunspot message that  

does not implied a bursting of the bubble 

 
 

 

Table 1.7a 

 
 

 

Table 1.7b 

 
  

0 1 2 3 4 5 6 7 8 9 10

324 71 35 18 5 10 4 5 1 1 1

68.21% 14.95% 7.37% 3.79% 1.05% 2.11% 0.84% 1.05% 0.21% 0.21% 0.21%

18 16 10 5 3 3 2 2 1 1 1

94.74% 84.21% 52.63% 26.32% 15.79% 15.79% 10.53% 10.53% 5.26% 5.26% 5.26%

340 78 35 13 3 5 1 0 0 0 0

71.58% 16.42% 7.37% 2.74% 0.63% 1.05% 0.21% 0.00% 0.00% 0.00% 0.00%

19 14 13 6 3 3 1 0 0 0 0

100.00% 73.68% 68.42% 31.58% 15.79% 15.79% 5.26% 0.00% 0.00% 0.00% 0.00%

Session

Baseline*

Sunspot

Number of 

games

Number of 

traders

Number of 

games

Number of 

traders

Number of Buybacks

Safe Risky Total

Safe 47 13 60

Risky 9 17 26

Total 56 30 86

Type of portfolio
Next type of portfolio

Dependent Variable

Variables /Sessions Baseline Sunspot Baseline Sunspot

Periodti(g) 0 0 0 0

Periodcburst(g-1) 0 0 0 0

Goodtiming(g-1) 0 0 0 0

Periodtime(g-1) 0 0 0 0

Regret(g-1) 0 0 0 0

Game(g) 0 0 0 0

Sunspot(g) Negative Negative

Succ_attack(g-1) 0 0

Database: Periodti(g) ≥15 <15

FirstChoice(g) FirstChoiceC(g)

Dependent Variable

Variables /Sessions Sunspot

Periodti(g) 0 0 0

Periodtime(g) 0 0 0

Periodcburst(g-1) 0 0 0

Goodtiming(g-1) 0 0 0

Periodtime(g-1) 0 0 0

Regret(g-1) 0 0 0

Game(g) 0 0 0

Sunspotsum(g) Positive

Succ_attack(g-1) 0

Database: Periodtime(g) <13 ≥13 All

Numberattacks(g)

Baseline
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Table 1.8a 

Fixed effects models  

 
                                 Control variable: Periodtime(g). Robust standard errors in  

                                 parentheses. Significance levels: *p<0.1, **p<0.05, ***p<0.001 

 

 

Table 1.8b 

Conditional fixed effects Poisson panel models  

 
                                          Notes: Robust standard errors in parentheses.  

                                          Significance levels: *p<0.1, **p<0.05, ***p<0.001 

Dependent Variable

Variables /Sessions Baseline Sunspot Baseline Sunspot

Periodti(g) -0.0252 -0.02 0.731*** 0.644***

(0.187) (0.013) (0.207) (0.162)

Periodcburst(g-1) 0.00232 0.00403 0.0137 -0.0019

(0.014) (0.009) (0.022) (0.022)

Goodtiming(g-1) -1.02 0.372 1.79 1.83

(0.941) (0.532) (1.678) (1.158)

Periodtime(g-1) 0.286*** -0.0437 -0.0007 0.0398

(0.096) (0.064) (0.190) (0.119)

Regret(g-1) -0.223** 0.0636 0.098 0.207

(0.123) (0.140) (0.229) (0.284)

Game(g) 0.0836* -0.0433** 0.0268 0.0166

(0.042) (0 .017) (0.062) (0.368)

Sunspot(g) -1.35** -1.43**

(0.423) (0.616)

Succ_attack(g-1) 0.476 0.459

(0.449) (1.034)

Constant 0.108  4.5*** 15.7*** 6.41***

(2.844) (0.986) (5.082) (2.592)

R2_adj 0.195 0.193 0.517 0.434

Number of observations 282 255 70 80

Number of groups 19 19 19 18

Database: Periodti(g)

FirstChoice(g) FirstChoiceC(g)

≥15 <15

Dependent Variable

Variables /Sessions Baseline Baseline Sunspot

Periodti(g) 0.006 0.001 0.000

(0.006) (0.002) (0.002)

Periodcburst(g-1) -0.004 0.000 0.000

(0.005) (0.002) (0.002)

Goodtiming(g-1) -0.005 0.093 0.176

(0.359) (0.183) (0.176)

Periodtime(g-1) -0.016 -0.006 -0.023

(0.035) (0.016 ) (0.017)

Regret(g-1) -0.002 0.001 0.045

(0.051) (0.023) (0.035)

Game(g) -0.006 -0.008 0.001

(0.012) (0.007) (0.006)

Sunspotsum(g) 0.152**

(0.062)

Succ_attack(g-1) -0.065

(0.104)

Periodtime(g) 0.139*** .0486*** 0.073***

(0.040) (0.011) (0.007)

Log Likelihood -118.51 -294.41 -440.93

Number of observations 162 276 456

Number of groups 16 19 19

Database: Periodtime(g) <13 ≥13 All

Numberattacks(g)
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Table 1.9 

Fixed effects models+ 

 
Notes: Robust standard errors in parentheses. Significance levels: *p<0.1, **p<0.05, ***p<0.001 

+ Sunspot: t≥15 (g) is a dummy variable equal to one if the human trader receives at least one sunspot 

message at or after period 15 in game g 

 

 

Table 1.10 

Conditional fixed effects Poisson panel models  

 
                                      Notes: Robust standard errors in parentheses 

                                      Significance levels: *p<0.1, **p<0.05, ***p<0.001 

 
 

 
  

Dependent Variable

Variables /Sessions

Game(g) -0.0493** -0.0502** 0.00055 -0.0067 0.00402 0.00862 0.00712 0.0166

(0.019) (0.089) (0.027) (0.030) (0.011) (0.011) (0.031) (0.030 )

Periodti(g) 0.0169* -0.481*** 0.00438 -0.602***

(0.010) (0.141) (0.008) (0.100)

Sunspot: t≥15 (g) -1.43*** -1.46*** -1.08 -1.06*

(0.177) (0.170) (0.715) (0.584)

Constant 8.45*** 7.86*** 8.69*** 13.3*** 4.56*** 4.26*** 6.98*** 12.3***

(0.491) (0.584) (0..689) (1.559) (0.293) (0.385) (0.758) (1.231)

R2_adj 0.055 0.0687 -0.007 0.168 0.0818 0.0846 0.0032 0.216

Number of observations 567 567 150 150 535 535 155 155

Number of groups 19 19 19 19 19 19 19 19

Database: Periodti(g)

Convergence (g)

≥15

Baseline

<15

Sunspot

≥15 <15

Dependent Variable

Variables /Sessions

Game(g) -0.005*** -0.005***

(0.002) (0.0018)

Periodtime(g) 0.0612***

(0.0038)

Log Likelihood -1267.45 -1130.43

Number of observations 950 950

Number of groups 19 19

Numberattacks(g)

Baseline
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1.9 Figures 
Figure 1.1 

 

  

 

 

 

Figure 1.2 

Histogram+ (baseline session): Periods in which traders that were informed about the 

bubble before period 15 sell their portfolio of risky assets99,100,101 
 

 
  + The width of each column depends on the percentage of traders that at least in one game sells in the 
respective range of periods. The range of the yellow column measures approximately 0.5 standard 
deviations respect to the mean of the variable used in this figure. 

 

 

 

 
                                                            

99 M means missing. That is, these traders have not sold the portfolio of risky assets before the 

bursting of the bubble. 
100 In this histogram we are only considering the first time the traders decide to sell the portfolio of 

risky assets. 
101 In each block the first number represents the percentage of games in which all human traders 

behave as an irrational, risk averse, risk neutral or risk lover trader; and the second number represents the 

percentage of human traders that behaves at least once as an irrational, risk averse, risk neutral or risk 

lover trader 
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Figure 1.3 

Histogram+ (baseline session): Delays in which traders that were informed about the 

bubble at or after period 15 sell their portfolio of risky assets50,51,52 

 
+ The width of each column depends on the percentage of traders that at least in one game sells in the 
respective range of delays. The range of the yellow column measures approximately 0.8 standard 
deviations respect to the mean of the variable used in this figure. 

 

 

Figure 1.4 

Positive time effect when human traders are informed about the bubble before period 15 

 
 

 

Figure 1.5 

Two examples of the behavior of the variable 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 in the experiment  
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Chapter 2 
 
MULTIPLE SOURCES OF INFORMATION 
AND STRATEGIC BEHAVIOR 
 

 

2.1. Introduction 
 

Mackowiak and Wiederholt (2009) built a rational inattention macroeconomic model 

in which price setting firms face a trade-off between paying attention to aggregate 

conditions and paying attention to idiosyncratic conditions; the firms have to decide the 

amount of attention they pay to both kinds of conditions.  

This model is useful to explain some characteristics of the US empirical data1. These 

explanations are possible due to the following two theoretical results obtained in the 

model (Mackowiak and Wiederholt, 2009, p. 770):  

 

1. When idiosyncratic conditions are more variable or more important than aggregate 

conditions, firms pay more attention to idiosyncratic conditions than to aggregate 

conditions.  

In their model firms adjust prices in every period, but nonetheless impulse responses 

of prices to shocks are sticky and delayed relative to the impulse responses under 

perfect information. The extent of stickiness in a particular impulse response depends 

on the amount of attention allocated to that type of shock. If firms pay more attention to 

idiosyncratic conditions than to aggregate conditions then prices respond strongly and 

quickly to idiosyncratic shocks, but only weakly and slowly to aggregate shocks.  

                                                            
1 More specifically, it explains two empirical findings: (1) why the price level responds slowly to 

monetary policy shocks, despite the fact that individual prices change fairly frequently and by large 

amounts, and (2) why sectoral prices respond quickly to sector-specific shocks and slowly to monetary 

policy shocks (e.g. look at also the empirical research of Boivin, Giannoni and Mihov (2009)).  

In addition, Mackowiak, Moench and Wiederholt (2009) using US real data compare the results 

obtained from the standard Calvo model, the sticky information model built by Mankiw and Reis (2002) 

and the rational inattention model proposed by Mackowiak and Wiederholt (2009). According to the 

empirical data in the median sector 100 percent of the long-run response of the sectoral price index to a 

sector-specific shock occurs in the month of the shock. The standard Calvo model and the standard 

sticky-information model can match this finding only under extreme assumptions concerning the profit-

maximizing price. The model of Mackowiak and Wiederholt (2009) can match this finding without these 

extreme assumptions. Furthermore, according to the empirical data there is little variation across sectors 

in the speed of response of sectoral price indexes to sector specific shocks. The rational inattention model 

matches this finding, while the Calvo model predicts too much cross-sectional variation. 
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2. There are interaction effects (feedback effects) because firms track endogenous 

variables2. 

The interaction effects happen when the aggregate variables are affected by the 

choices of agents that have information constraints, and through this way the individual 

choices of the rest of agents are also affected by these constraints3. More specifically, 

the information constraints imply an overreaction (or underreaction) of the aggregate 

and individual variables respect to a scenario in which there are not (or less) information 

constraints. For instance, in Mackowiak and Wiederholt (2009) when other firms pay 

limited attention to aggregate conditions, the price level responds less to a nominal 

shock than under perfect information. In addition, if prices are strategic complements 

then each firm has even less incentive to attend to aggregate conditions. The price level 

responds even less to a nominal shock, and so on.  

 

The above two theoretical results are not easy to analyze using field data because it is 

difficult to observe directly the amount of attention that people (or firms) pay to all 

relevant sources of information that they have; therefore, it is hard to categorize how 

important and variable are these different sources of information for them. In addition, 

if at least one of the sources of information is endogenous to the decision process, 

sometimes using field data you cannot control how much interaction there is between 

the people (or firms) who are interacting in this context.  

On the other hand, in a lab experiment you can: control the number of sources of 

information, predetermine in certain contexts the quality of the information that these 

sources provide4, and manipulate the amount of information that the participants have. 

In addition, in a lab experiment you can control the level of endogeneity that the 

different variables have, so you can better analyze how the interaction between the 

agents is.  

We propose a lab experiment to analyze the two theoretical results obtained by 

Mackowiak and Wiederholt (2009); our analysis is the first one that uses a lab 

experiment to study this paper. It is important to clarify that we do not propose an 

experimental design that follows closely the model of Mackowiak and Wiederholt 

(2009) because they did not build a model that can be tested directly in a lab 

experiment. We propose a simple theoretical model in which we can reach the same two 

theoretical results obtained in their paper but that can be easily implementable in a lab 

experiment.  

                                                            
2 Mackowiak and Wiederholt (2009) use the expression “feedback effects” instead of “interaction 

effects”; however, in economics is more common the use of the second expression instead of the use of 

the first expression when one tries to explain the kind of phenomenon that Mackowiak and Wiederholt 

describe, so in the rest of the paper we will continue using the last expression instead of the first one. 
3 Mackowiak and Wiederholt (2015) also propose a model that has interaction effects. In this paper 

they explain the interaction effects of their model using several examples, for instance: “Let us explain 

the interaction effects by focusing on monetary policy shocks. To begin, suppose that only a single firm is 

subject to rational inattention, while all other firms and all households have perfect information (this is 

the case with the interaction effects are switched off). The profit-maximizing price response of this single 

firm to a monetary policy shock is several times larger in absolute terms than in the baseline economy 

(where all other firms and households also have limited attention). As a result, this single firm chooses to 

allocate five times more attention to monetary policy than in the baseline economy” Mackowiak and 

Wiederholt (2015, p. 1526) 
4 For instance, the information that a particular source of information provides about a random 

variable has better quality if the information of this source reduces the volatility of the variable more than 

another source or if it explains a higher part of the value of the variable. 
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Mackowiak and Wiederholt (2009) assume that the aggregate conditions are taken as 

given by the firms5. This assumption is helpful to find a unique solution in their model; 

however, it is quite restrictive in terms of the analysis of the interaction effects because 

it avoids the presence of strategic behavior; then, in the last part of the model and in the 

biggest part of the experiment we will allow the presence of this kind of behavior to 

better analyze the implications of the interaction effect.  

The rest of the chapter is organized as follows. Section 2.2 explains our theoretical 

model. Section 2.3 presents the experimental design. Section 2.4 shows the results 

obtained in the experiment. Finally, section 2.5 presents the conclusions of the chapter. 

 

 

2.2. Model 
 

In our model the goal of each agent 𝑖 is to take a choice, about a variable 𝑞𝑖, to 

maximize her utility function; therefore, in this section we firstly explain the main 

characteristics of the optimization problem that each agent solves. In particular, we 

assume that the utility function of each agent 𝑖 is directly affected by the distance 

between 𝑞𝑖 respect to some aggregate terms and respect to an idiosyncratic term. One of 

the aggregate terms that affects the utility function of the agents is the average choices 

of all the agents in the economy; this term is helpful to analyze how the interaction 

effect works.  

Remember that the main goal of the chapter is to analyze the two theoretical results 

obtained by Mackowiak and Wiederholt (2009). The first theoretical result is clearer 

and easier to understand if we eliminate the interaction effect from the optimization 

problem of the agents. Therefore, in section 2.2.1 we use a version of our model which 

is an individual choice problem that does not include, in the utility function of the agent, 

the average choices of all the agents in the economy.  

The second theoretical result obtained by Mackowiak and Wiederholt (2009) is 

analyzed in sections 2.2.2 and 2.2.36. Since in both sections we are analyzing the 

interaction effect, we retake again the most general version of our model in which the 

utility function is also affected by an aggregate variable that depends on the choices of 

all agents in the economy. The main difference between the models in section 2.2.2 and 

2.2.3 is that in the last one the agents have uncertainty about the choices of the other 

agents; however, in the first one we assumed a commitment mechanism that force the 

agents to reveal the choices that they will take. 

The agents in Mackowiak and Wiederholt (2009) solve an infinite horizon discrete 

time optimization problem. However, in their model, the two results that we want to 

analyze are obtained in each period independently of what happens in other periods. 

Therefore, we propose a static model in which there is an economy with 𝑁 > 1 agents; 

                                                            
5 More specifically, Mackowiak and Wiederholt (2009) assume that there is a continuum of firms that 

take as given the aggregate and idiosyncratic conditions. In their model the idiosyncratic conditions and 

almost all the aggregate conditions (except the price level) follow exogenous stochastic processes. The 

individual prices are optimally chosen by the respective firms, the price level is the weighted sum of all 

individual prices and it is taken as given by the firms when these decide the individual prices, so their 

model does not give the opportunity to analyze the strategic behavior in the individual price decision. 
6 In both sections we also explain in which way the first theoretical result of Mackowiak and 

Wiederholt (2009) is taken into account. 
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the goal of each agent 𝑖 is to choose the value of the variable 𝑞𝑖 that maximizes the 

following utility function7: 

 

max
𝑞𝑖

𝑈𝑖 = 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏(𝑞𝑖 − 𝑙𝑖)

2 +
1

2
𝑐 (𝑞𝑖 −

∑ 𝑞𝑗
𝑁
𝑗=1

𝑁
− 𝑣)

2

]   ∀ 𝑖 = 1,2, … ,𝑁  . 

 

subject to 𝑏 > 0 and 𝑐 > 0; where 𝑋𝑖 and 𝑊𝑖 are predetermined positive parameters. 

Therefore, the utility of each agent 𝑖 is lower if the distances of the variable 𝑞𝑖 respect to 

her idiosyncratic term 𝑙𝑖 and to the aggregate term 
∑ 𝑞𝑗
𝑁
𝑗=1

𝑁
+ 𝑣 increase, where the ratios 

𝑏

𝑏+𝑐
 and 

𝑐

𝑏+𝑐
 are the relative weights that each agent 𝑖 gives to the square of these two 

distances. The aggregate term in the utility function is composed by two elements: (1) 

the average choices of all agents in the economy (i.e. 
∑ 𝑞𝑗
𝑁
𝑗=1

𝑁
) and (2) a variable 𝑣 that 

affects all agents but that is independent of agent choices. The idiosyncratic term 𝑙𝑖 only 

affects directly the utility of the agent 𝑖, is independent of agent choices and is 

uncorrelated with the idiosyncratic terms of the other agents8. Since our model is static, 

then 𝑙𝑖 and 𝑣 are predetermined real numbers. 

The optimization problem that we have proposed above is standard in many areas of 

the economic analysis. For instance, this kind of problem appears when the firms have 

to establish the price of their products using as reference information obtained from 

their respective markets and from the whole market (e.g. the aggregate price index and 

other macroeconomic conditions). Similarly, this kind of problem is solved by any firm 

when it has to determine the quality of its product using as reference its niche market, 

the quality choices of its competitors and additional conditions that can affect the whole 

economy, In addition, our optimization problem can also represents a government that 

has to take a choice about any policy action taking into account the characteristics of its 

own country, the choices of the governments of other countries and additional 

characteristics that affect the world context. Finally, this problem is also solved by the 

members of any household or club when their decisions have to take into account not 

only personal interests, but also the decision of the other members and exogenous 

elements that are not controlled by any of the members of their group.  

Notice that in the optimization problem of agent 𝑖, the variables 𝑞𝑖 and 𝑞𝑗≠𝑖 are 

strategic complements where the size of this complementarity is decreasing respect to 

                                                            
7 Similar functions have been used in other papers of experimental economics; for instance, look at the 

experiment of Cornand and Heinemann (2014). The purpose of this kind of functions is to represent a 

decision environment that is easier to understand by the participants in an experiment than the more 

complex decision environment of the original model; however, these functions should incorporate all the 

elements that are necessary to understand the problem that the experimenter wants to study. In particular, 

the most important characteristic of our utility function is that it shows an agent 𝑖 that faces a trade-off 

between choosing a 𝑞𝑖 closer to her idiosyncratic condition or closer to the aggregate conditions. 
8 In our model, the main difference between an idiosyncratic term and an aggregate term is that and 

idiosyncratic term only directly affects the utility of a particular agent (e.g. 𝑙𝑖 affects 𝑈𝑖 but not 𝑈𝑗 for all 

𝑗 ≠ 𝑖). On the other hand, an aggregate term directly affects the utility of all agents. We are considering 

two kind of aggregate terms, one that can be directly affected by the choices of any agent (e.g. 
∑ 𝑞𝑗
𝑁
𝑗=1

𝑁
) and 

one that cannot be directly affected by the choice of a particular agent (e.g. 𝑣) 
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the number of agents and increasing respect to 𝑐9. This strategic complementarity is 

crucial to understand the behavior of the agents in the model and to better understand 

the behavior of the participants in our lab experiment.   

Let 𝑧𝑖 represents the part of the aggregate term in the utility function that is not 

directly affected by 𝑞𝑖; that is, in the optimization problem of agent 𝑖 we have 𝑧𝑖 =
∑ 𝑞𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
+ (

𝑁

𝑁−1
) 𝑣 where ∑ 𝑞𝑗≠𝑖

𝑁
𝑗=1 ≡ ∑ 𝑞𝑗

𝑁
𝑗=1 − 𝑞𝑖. In addition, to simplify notation, 

assume the constant term 𝑎 = 𝑐 (
𝑁−1

𝑁
)
2
, then our optimization problem can be 

expressed as:  

 

max
𝑞𝑖

𝑈𝑖 = 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏(𝑞𝑖 − 𝑙𝑖)

2 +
1

2
𝑎(𝑞𝑖 − 𝑧𝑖)

2]  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑁               (2.1)10 

 

subject to 𝑏 > 0, . 𝑎 > 0  

Equation (2.1) represents the deterministic version of our model. Therefore, the next 

step is to introduce the rational inattention characteristics to this model.  We assume that 

the agents do not have enough time or capacities to process all relevant information, 

then each agent 𝑖 has to optimally choose the amount of information she processes in 

order to approach to the real value of 𝑙𝑖 and 𝑧𝑖.   
We will analyze three versions of the model. In the first one there is no interaction 

between the agents (section 2.2.1); in the second there is interaction between the agents 

through a commitment mechanism11 that forces each agent 𝑖 to choose a freely 

predetermined value of 𝑞𝑖 such that the interaction between the agents does not give the 

opportunity to strategic behavior12 (section 2.2.2) ; finally, in the last one there is 

interaction between the agents and they are not forced to set a predetermined value of 

𝑞𝑖, so in this version we consider the presence of strategic behavior (section 2.2.3).  

In all versions of the model, each agent 𝑖 has to solve the following optimization 

problem that is the stochastic version of the problem presented in equation (2.1), 

 

max 
𝑞𝑖

 𝐸𝑖(𝑈𝑖| ∗) = 𝑋𝑖 −𝑊𝑖 {
1

2
𝑏𝐸𝑖[(𝑞𝑖 − 𝑙𝑖)

2| ∗] +
1

2
𝑎𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2| ∗]}                    

 

where 𝑖 = 1,2, … , 𝑁 and 𝑏 > 0, . 𝑎 > 0. 𝐸(𝑥| ∗) is the expected value of 𝑥 given some 

information constraints represented by the moment by the symbol “∗”. 

 

 

                                                            
9 Mathematically the strategic complementarity between these variables in our model is represented 

by  
𝜕𝑈

𝜕𝑞𝑖𝜕𝑞𝑗≠𝑖
= 𝑊𝑖𝑐

(𝑁−1)

𝑁2
> 0. Therefore, if 𝑁 → ∞ or 𝑐 → 0 then the level of complementarity between 𝑞𝑖 

and 𝑞𝑗≠𝑖 approaches to zero. 

10 In this new specification the strategic complementarity is represented by 
𝜕𝑈

𝜕𝑞𝑖𝜕𝑞𝑗≠𝑖
= 𝑊𝑖

𝑎

𝑁−1
> 0. 

Therefore, the strategic complementarity between 𝑞𝑖 and 𝑞𝑗≠𝑖  increases when 𝑎 increases. 
11 This mechanism can be a contract, a law, an institution, a technology or any other mechanism that 

can bind the agents to respect some predetermine agreements. 
12 In this version, 𝑞𝑖 is freely determined by each agent 𝑖; however, all agents publically know in 

advance the unmodified values of all 𝑞𝑖. It implies that 𝑄 = ∑𝑞𝑖 is taken as given as it happens with the 

price level in the model of Mackowiak and Wiederholt (2009). 
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2.2.1. Without interaction. An individual decision making 

approach 
 

In this version of the model we assume that the optimization problem of agent 𝑖 is 

not affected by the average choices of all agents in the economy. That is, the term 
∑ 𝑞𝑗
𝑁
𝑗=1

𝑁
 

doesn’t affect the utility function 𝑈𝑖, and consequently the aggregate term in the utility 

function is only represented by 𝑣13. Remember that 𝑧𝑖 represents the part of the 

aggregate term in the utility function that is not directly affected by 𝑞𝑖; therefore, in this 

version of the model each agent 𝑖 has to solve the following optimization problem 

 

max 
𝑞𝑖

 𝐸𝑖(𝑈𝑖| ∗) = 𝑋𝑖 −𝑊𝑖 {
1

2
𝑏𝐸𝑖[(𝑞𝑖 − 𝑙𝑖)

2| ∗] +
1

2
𝑎𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2| ∗]}                    

 

where 𝑏 > 0, 𝑎 > 0 and 𝑧𝑖 = 𝑣. Respect to this optimization problem, we have to 

clarify one thing; in the previous section we assumed that 𝑎 is a positive parameter 

proportional to the positive parameter 𝑐. Therefore, to avoid to use to many expressions 

in our explanation of the model, we assume without loss of generality that 𝑎 = 𝑐. 

Notice that in the model of this section is not possible to analyze the interaction 

effect. However, we can analyze directly a version of the first result obtained by 

Mackowiak and Wiederholt (2009): “When 𝑙𝑖 is more variable or more important than 

𝑧𝑖, the agent 𝑖 pays more attention to 𝑙𝑖 than to 𝑧𝑖. Similarly, if 𝑧𝑖 is more variable or 

more important than 𝑙𝑖 the agent 𝑖 pays more attention to 𝑧𝑖 than to 𝑙𝑖”. That is, in this 

version of the model agent 𝑖 has to solve two individual decision making problems: (1) 

she has to choose if she pays more attention to 𝑙𝑖 or to 𝑧𝑖, and (2) she has to choose if 𝑞𝑖 
is closer to 𝑙𝑖 or closer to 𝑧𝑖. 

Until now, we have not explained in detail the kind of uncertainty that the agents 

face. We will assume, as it was assumed by Mackowiak and Wiederholt (2009), a 

rational inattention structure. Therefore, agent 𝑖 has to solve a rational inattention 

problem in two stages. In the first stage agent 𝑖, given her own information processing 

capacity constrain 𝜅, must decides the optimal amount of attention she would pay to the 

unknown expressions 𝑙𝑖 and 𝑧𝑖14. Finally, in the second stage each agent 𝑖 has to solve 

the following optimization problem: 

 

max 
𝑞𝑖

 𝐸𝑖(𝑈𝑖|𝐼𝑇(𝑧𝑖); 𝐼𝑉(𝑙𝑖)) = 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏𝐸𝑖[(𝑞𝑖 − 𝑙𝑖)

2|𝐼𝑉(𝑙𝑖)] +
1

2
𝑎𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2|𝐼𝑇(𝑧𝑖)]]     (2.1′) 

 

where 𝑏 > 0, . 𝑎 > 0. 𝐸𝑖[(𝑞𝑖 − 𝑥)
2|𝐼(𝑥)] is the expected value of (𝑞𝑖 − 𝑥)

2 given 𝐼(𝑥), 
where 𝐼(𝑥) is the optimal amount of attention paid by agent 𝑖 to reduce the entropy (i.e. 

the uncertainty) of variable 𝑥  

In section 2.2.1.1 we explain the main considerations that each agent 𝑖 has to take 

into account to solve the first stage of the problem. In section 2.2.1.2 we explain the 

                                                            

13 The problem that that the agents solve is not one in which 𝑁 = 1, it is one in which 
∑ 𝑞𝑗
𝑁
𝑗=1

𝑁
 does not 

enter in the utility function (i.e. the choices of the agents 𝑗 ≠ 𝑖 does not affect 𝑈𝑖)) 
14 Appendix A2 summarizes the maximum levels of the information processing capacity constraints 

assumed in different papers 
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second stage of the problem and we integrate both stages to explain the optimal 

behavior of agent 𝑖 in the model. Finally, in section 2.2.1.3 we reveal how our model 

obtains the first result of Mackowiak and Wiederholt (2009).   

 

 

2.2.1.1. The first stage. 
 

To solve the first stage of our rational inattention problem we need to explain: (1) the 

characteristics of the information the agents have to process in order to approach to the 

exact value of the random variables 𝑙𝑖 and 𝑧𝑖; (2) how we measure the amount of 

uncertainty that each agent 𝑖 has about the random variables 𝑙𝑖 and 𝑧𝑖; and (3) how each 

agent 𝑖 decides the optimal amount of attention she spends to process the information 

about both unknown variables.  

 

 

Characteristics of the information that the agents do not know 

about 𝑙𝑖 and 𝑧𝑖 
 

The agents do not know the exact value of the variables 𝑙𝑖 and 𝑧𝑖. In particular, they 

have an initial prior about each variable15, these priors are represented by the variables 

𝑙𝑖0 and 𝑧𝑖0. Given the prior, then the agent 𝑖 has to process many pieces of information 

in order to approach to the exact values of 𝑙𝑖 and 𝑧𝑖. A priori the agents do not know 

these pieces but they know their statistical distribution. Given these distributions and 

given their own processing capacity constraints, each agent 𝑖 has to decide what and 

how much information she will process16.  

As we do in the lab experiment that we explain in section 2.3, we assume that in 

order to know the exact values of 𝑙𝑖 and 𝑧𝑖, agent 𝑖 has to process “one” piece of 

information in each case. This assumption has the empirical advantage that that the first 

theoretical result of Mackowiak and Wiederholt (2009) can be analyzed directly17.  

Therefore, we are assuming that the exact values of the variables 𝑙𝑖 and 𝑧𝑖 are 

represented by: 

                                                            
15 For instance, in a dynamic model, the prior of a variable can be represented by the value of the 

variable in the previous period or by the expected value of the variable given some known information. 
16 Some rational inattention models explain the information constraint in term of signals. For instance, 

the agents cannot observe the exact value of a determine variable, but they can observe signals about this 

variable. When the information constraint decreases, it means an improvement in the quality or the 

quantity of the signals they are processing, where this improvement implies that the agents have a better 

approach to the real value of the unknown variable. In our model when the information constraint 

decreases, the agents can get new pieces of information that were not previously available, so they can 

also have a better approach to the real value of the unknown variable. 
17 In addition, this assumption makes the experiment easier and faster to understand and play, and it 

also makes the experiment more controllable. However, this assumption has the theoretical weakness that 

the agent can only pay full attention to the aggregate or to the idiosyncratic conditions, but she cannot pay 

partial attention to any of them. Therefore, in Appendix B2 we explain a model in which in order to know 

the exact values of 𝑙𝑖 or 𝑧𝑖, agent 𝑖 has to process “three” pieces of information in each case; this is the 

simplest version of our model in which we can get a clear example in which an agent optimally (given her 

processing capacity constraint) decides to: (1) pay full attention only to the aggregate conditions, (2) pay 

full attention only to the idiosyncratic conditions or (3) pay partial attention to the aggregate and 

idiosyncratic conditions. 
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𝑙𝑖 = 𝑙𝑖0 + 𝜀𝑖   𝑤ℎ𝑒𝑟𝑒  𝜀𝑖 ∈ {−𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖}, 𝑟𝑙𝑖 > 0, 𝑙𝑖0 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛                         (2.2) 

 

Prob(𝜀𝑖 = −𝑟𝑙𝑖) = Prob(𝜀𝑖 = 0) = Prob(𝜀𝑖 = 𝑟𝑙𝑖) =
1

3
    and  

 

𝑧𝑖 = 𝑧𝑖0 + 𝜇𝑖  𝑤ℎ𝑒𝑟𝑒  𝜇𝑖 ∈ {−𝑟𝑧𝑖 , 0, 𝑟𝑧𝑖},   𝑟𝑧𝑖 > 0, 𝑧i0 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛                            (2.3) 

 

Prob(𝜇𝑖 = −𝑟𝑧𝑖) = Prob(𝜇𝑖 = 0) = Prob(𝜇𝑖 = 𝑟𝑧𝑖) =
1

3
. 

 

The random variables 𝜀𝑖 and 𝜇𝑖 represent the pieces of information that the agent 𝑖 
does not know about 𝑙𝑖 and 𝑧𝑖, where the parameters 𝑟𝑙𝑖 and 𝑟𝑧𝑖 are the dispersion of 𝜀𝑖 

and 𝜇𝑖 respectively. Notice that we have assumed that 𝜀𝑖 and 𝜇𝑖 have a discrete uniform 

independent distribution, then 𝑙𝑖 and 𝑧𝑖 also have a discrete uniform independent 

distribution.  

 

 

Entropy of  𝑙𝑖 and 𝑧𝑖 
 

In information theory, entropy is a measure of the uncertainty about a random 

variable. In particular, depending on the level of uncertainty about 𝑙𝑖 we have in our 

model two levels of entropy: 

 

(1) If 𝜀𝑖 is unknown, then 𝜀𝑖 ∈ {−𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖} where 𝑃𝑟𝑜𝑏𝜀𝑖(−𝑟𝑙𝑖) = 𝑃𝑟𝑜𝑏𝜀𝑖(0) =

𝑃𝑟𝑜𝑏𝜀𝑖(𝑟𝑙𝑖) =
1

3
 . Then, in this case the entropy about 𝑙𝑖 is:  𝐻0(𝑙𝑖) = −3 (

1

3
log2

1

3
) =

1.585 bits 

(2) If 𝜀𝑖 is known , then the entropy about 𝑙𝑖 is: 𝐻1(𝑙𝑖) = 1 log2 1 = log2 1 = 0 bits 

(i.e. there is no uncertainty about 𝑙𝑖) 
On the other hand, given the probabilistic distribution of 𝜇𝑖, and using the same 

procedure that we used with 𝑙𝑖, we get: 𝐻0(𝑧𝑖) = 1.585 bits and 𝐻1(𝑧𝑖) = 0 bits. 

 

 

Solution to the first stage of the rational inattention optimization 

problem 
 

Let 𝐼𝑡(𝑓) = 𝐻𝑋(𝑓) − 𝐻𝑋+𝑡(𝑓) be defined as the amount of attention that an agent 

has to spend to reduce the entropy of variable 𝑓 from 𝐻𝑋(𝑓) to 𝐻𝑋+𝑡(𝑓) where 𝐻𝑋(𝑓) 
represents the initial level of entropy of the variable 𝑓 and 𝑡 represents the number of 

pieces of information that are known in 𝐻𝑋+𝑡(𝑓) but are unknown in 𝐻𝑋(𝑓). Table 2.1 

summarizes the amounts of attention that agent 𝑖 has to spend if she wants to reduce her 

entropy from 𝐻0(𝑧𝑖) and 𝐻0(𝑙𝑖) to 𝐻1(𝑧𝑖) and 𝐻1(𝑙𝑖) respectively. That is, if agent 𝑖 
wants to know both terms 𝜇𝑖 and 𝜀𝑖 (i.e. if she pays full attention to both variables such 

that at the end these variables are completely known), then she has to spend 3.17 bits of 

attention (i.e. 𝐼1(𝑙𝑖)+𝐼1(𝑧𝑖)). If agent 𝑖 wants to know  𝜇𝑖 or 𝜀𝑖 but not both terms, then 

she has to spend 1.58 bits of attention (i.e. 𝐼1(𝑙𝑖) or 𝐼1(𝑧𝑖)). On the other hand, if she 

does not pay attention to any variable then she spends 0 bits of attention.     
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[Table 2.1] 

 

In the first stage of our rational inattention problem, agent 𝑖 chooses the amount of 

attention she pays to each random variable such that the utility obtained in the second 

stage is the highest possible. However, her choice is affected by the information 

processing capacity constrain 𝜅 that this agent has18. For instance, if 𝜅 = 3 , then from 

Table 2.1 we know that the agent 𝑖 only can choose the amount of attention she pays 

from the set:  𝐴(𝑧𝑖 , 𝑙𝑖) = {(𝐼0(𝑧𝑖), 𝐼1(𝑙𝑖)), (𝐼1(𝑧𝑖), 𝐼0(𝑙𝑖)), (𝐼0(𝑧𝑖), 𝐼0(𝑙𝑖))}. That is, the cell 

of Table 2.1 that belong to the set 𝐴𝐶(𝑧𝑖 , 𝑙𝑖) = {(𝐼1(𝑧𝑖), 𝐼1(𝑙𝑖))} are not available to her. 

 

 

2.2.1.2. The second stage 
 

When agent 𝑖 minimizes equation (2.1’) subject to equations (2.2) and (2.3), then the 

optimal value 𝑞𝑖
∗ chosen by agent 𝑖 is  

 

𝑞𝑖
∗ =

𝑏

𝑏+𝑎
𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) +

𝑎

𝑏+𝑎
𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖))   ∀ 𝑇, 𝑉 ∈ {0,1}                                         (2.4) 

 

According to the equation (2.4), 𝑞𝑖
∗ is the sum of two terms: (1) the relative weight 

that 𝑙𝑖 has in the utility function times the expected value that agent 𝑖 has about this 

variable, and (2) the relative weight that 𝑧𝑖 has in the utility function times the expected 

value that agent 𝑖 has about this variable. Another way to write the equation (2.4) is   

 

𝑞𝑖
∗ =

𝑏

𝑏 + 𝑎
(𝑙𝑖 − ∆𝑙𝑖) +

𝑎

𝑏 + 𝑎
(𝑧𝑖 − ∆𝑧𝑖) = 𝑞𝑖

∗(𝐶𝐼) − [
𝑏

𝑏 + 𝑎
∆𝑙𝑖 +

𝑎

𝑏 + 𝑎
∆𝑧𝑖]         (2.4′) 

 

where ∆𝑙𝑖 and ∆𝑧𝑖 are deviations of 𝑙𝑖 and 𝑧𝑖 respect to 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) and 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖)) 

respectively, and 𝑞𝑖
∗(𝐶𝐼)

 is the optimal value of 𝑞𝑖 when she does not face any 

information constraint19. Therefore, the optimal utility of agent 𝑖 is20: 

 

𝑈𝑖
∗ = 𝑋𝑖 −𝑊𝑖 [

𝑎𝑏(𝑧𝑖−𝑙𝑖)
2

2(𝑏+𝑎)
+

𝜉2

2(𝑏+𝑎)
] = 𝑈𝑖

∗(𝐶𝐼) −
𝑊𝑖𝜉

2

2(𝑏+𝑎)
           ∀ 𝑖 = 1,2, … ,𝑁 .            (2.5) 

 

where  𝜉 = 𝑏∆𝑙𝑖 + 𝑎∆𝑧𝑖= 𝑏(𝑙𝑖 − 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) ) + 𝑎 (𝑧𝑖 − 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖))). In equation 

(2.5), the expression inside the square brackets is the optimal losses of agent 𝑖 where the 

first term shows the optimal losses of agent 𝑖 given by the distance between 𝑧𝑖 and 𝑙𝑖 
(i.e. if 𝑧𝑖 is close to 𝑙𝑖 then the optimal losses are low), and the second term shows the 

amount of the optimal loss of agent 𝑖 that is due to the lacks of information about 𝑙𝑖 and 

                                                            
18 In Appendix A2 there is a table that summarizes the maximum value of the information processing 

capacity constrain assumed in different papers that use rational inattention in their models. For instance, 

Mackowiak and Wiederholt (2009) most of the time assume that 𝜅 = 3 bits; however sometimes they 

consider values of 𝜅 that goes from 1 to 5 bits.  
19 More specifically, in this version of the model 𝑞𝑖

∗(𝐶𝐼) =
𝑏

𝑏+𝑎
𝐸𝑖(𝑙𝑖|𝐼1(𝑙𝑖)) +

𝑎

𝑏+𝑎
𝐸𝑖(𝑧|𝐼1(𝑧)) = 

     
𝑏

𝑏+𝑎
𝑙𝑖 +

𝑎

𝑏+𝑎
𝑧      ∀ 𝑖, 𝑗 = 1,2, … , 𝑁.  

20 Equation (2.5) is obtained by replacing equation (2.4) or equation (2.4’) into equation (2.1). 
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𝑧𝑖. Therefore, equation (2.5) implies that the highest utility of agent 𝑖 happens when this 

agent does not have information constraints. Finally, notice that the amount of the 

optimal loss of agent 𝑖 that is due to the lacks of information about 𝑙𝑖 and 𝑧𝑖 depends on: 

(1) the weights that 𝑙𝑖 and 𝑧𝑖 have in the function (i.e. 𝑏 and 𝑎 respectively), (2) the 

deviation of 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) respect to 𝑙𝑖 (i.e. ∆𝑙𝑖) and (3) the deviation of 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖)) 

respect to 𝑧𝑖 (i.e. ∆𝑧𝑖). Therefore, if there is an unexpected shock, or more precisely, a 

shock that has not been processed by agent  𝑖, then the optimal utility of agent 𝑖 is lower 

due to the information constraint that this agent has.  

 

 

2.2.1.3. How our model gets the first result obtained by 

Mackowiak and Wiederholt (2009)?   
 

Table 2.2 uses the equations (2.2), (2.3) and (2.5) to get the losses of agent 𝑖 that are 

due to the information constraints (i.e. (𝐿𝑖
𝐼𝐶)

[𝐼T(𝑧);𝐼T(𝑙𝑖)]
=

𝑊𝑖𝜉
2

2(𝑏+𝑎)
); that is, this table 

shows the losses of agent 𝑖 depending on the different levels of attention that she pays to 

𝑙𝑖 and 𝑧𝑖. The lowest value of 𝐿𝑖
𝐼𝐶  is (𝐿𝑖

𝐼𝐶)
[𝐼1(𝑧𝑖);𝐼1(𝑙𝑖)]

 and the highest value is 

(𝐿𝑖
𝐼𝐶)

[𝐼0(𝑧𝑖);𝐼0(𝑙𝑖)]
; that is, when agent 𝑖 has full information about both variables there are 

no losses due to the lacks of information and these losses are the highest when she does 

not have any information about both variables. Proposition 1 summarizes the main 

results obtained from Table 2.2.  

 

[Table 2.2] 

 

Proposition 1: In our model we get the following results:  

 

1. (𝐿𝑖
𝐼𝐶)[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)] < (𝐿𝑖

𝐼𝐶)[𝐼𝑇′(𝑧𝑖);𝐼𝑉′(𝑙𝑖)] if  𝑇 > 𝑇′ and 𝑉 ≥ 𝑉′. That is, the losses of agent 

𝑖 are lower if she pays more attention to 𝑧𝑖 and at least the same attention to 𝑙𝑖. 
 

2. (𝐿𝑖
𝐼𝐶)[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)] < (𝐿𝑖

𝐼𝐶)[𝐼𝑇′(𝑧𝑖);𝐼𝑉′(𝑙𝑖)] if  𝑉 > 𝑉′ and 𝑇 ≥ 𝑇′. That is, the losses of agent 

𝑖 are lower if she pays more attention to 𝑙𝑖 and at least the same attention to 𝑧𝑖.  
 

Proof: It is direct from Table 2.2                                                                                  

 

In the rational inattention literature there is not a consensus about the maximum 

value of the information processing capacity constraint that the agents have. Proposition 

2 shows in our model what are the optimal choices of attention depending on the value 

of 𝜅.  

 

Proposition 2: In our model, given 𝜅, the optimal choices of attention of agent 𝑖 are  

 

 [𝐼1(𝑧𝑖); 𝐼1(𝑙𝑖)] 𝑖f 𝜅 ∈ [3.17,+∞)  

 [𝐼1(𝑧𝑖); 𝐼0(𝑙𝑖)] 𝑖f 𝜅 ∈ [1.58,  3.17) and [𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
 

 [𝐼0(𝑧𝑖); 𝐼1(𝑙𝑖)] 𝑖f 𝜅 ∈ [1.58,  3.17) and [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
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 [𝐼0(𝑧𝑖); 𝐼0(𝑙𝑖)]  𝑖f 𝜅 ∈ (−∞, 1.58) 
 

Proof: It is direct from Tables 2.1 ad 2.2                                                                    

 

Therefore, in Proposition 2 for each value of 𝜅 we have arrived to a conclusion 

equivalent to the theoretical result obtained by Mackowiak and Wiederholt (2009): 

“When 𝑙𝑖 is more variable or more important than 𝑧𝑖 (i.e. 𝑎𝑟𝑧𝑖 < 𝑏𝑟𝑙𝑖), the agent 𝑖 pays 

more attention to 𝑙𝑖 than to 𝑧𝑖. Similarly, if 𝑧𝑖 is more variable or more important than 

𝑙𝑖 (i.e. 𝑎𝑟𝑧𝑖 > 𝑏𝑟𝑙𝑖), the agent 𝑖 pays more attention to 𝑧𝑖 than to 𝑙𝑖”.  

 

 

2.2.2. With interaction through a commitment mechanism 
 

In this version of the model there is interaction because we assume 𝑧𝑖 =
∑ 𝑞𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
+

(
𝑁

𝑁−1
) 𝑣, then the choices of each agent 𝑖 are affected by the choices of the other 𝑁 − 1 

agents. In the rest of this section, we will assume without loss of generality that 𝑁 = 2, 

therefore 𝑧𝑖 = 𝑞𝑗 + 2𝑣. 

If we assume that the rationality of all agents, the shape of the utility functions, the 

set 𝑙 = {𝑙1, 𝑙2} and the parameter 𝑣 are common knowledge; then, the Nash equilibrium 

in this economy is determined by the pair of choices (𝑞1
∗(𝐶𝐼)

, 𝑞2
∗(𝐶𝐼)

)21 where22 𝑞𝑖
∗(𝐶𝐼)

=
𝑏+𝑎

𝑏+2𝑎
𝑙i +

𝑎

𝑏+2𝑎
𝑙𝑗 +

𝑎

𝑏
2𝑣  ∀𝑖 and it can be reached without any communication between 

the agents.  

However, if it is common knowledge that the only element of the set 𝑙 that can be 

known directly by each agent 𝑖 is her respective 𝑙𝑖, then the Nash equilibrium choices 

(𝑞1
∗(𝐶𝐼)

, 𝑞2
∗(𝐶𝐼)

) can also be obtained using a particular commitment mechanism. The 

goal of this commitment mechanism is that each agent 𝑖 reveals through her choice of 𝑞𝑖 

all information she has about her respective idiosyncratic market 𝑙𝑖. This mechanism has 

three steps. First, before taking a definitive choice about 𝑞𝑖 each agent 𝑖 is free to 

choose any preliminary value of 𝑞𝑖 (denoted by 𝑞̂𝑖)
23, all agents publicly observe the 

preliminary values chosen by the other agents and they can choose new preliminary 

values 𝑞̂. This process continues until no one decides to choose new values of 𝑞̂𝑖. 
Second, each agent 𝑖 is committed to choose a 𝑞𝑖 that is equal to the last preliminary 

value chosen of this variable (i.e. 𝑞𝑖 = 𝑞̂𝑖(𝐿𝑎𝑠𝑡)). Third, there is a penalty enough high to 

the respective agent 𝑖, to avoid that her final choice differs from her respective best 

response function 𝑞𝑖
∗ =

𝑏

𝑏+𝑎
𝑙𝑖 +

𝑎

𝑏+𝑎
(𝑞𝑗 + 2𝑣)24. The second and third steps ensures 

                                                            
21 The superscript 𝐶𝐼 means “complete information”  
22 Remember from the beginning of section 2.2, that the goal of each agent 𝑖 is: 

max 
𝑞𝑖

 𝑈𝑖 = 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏(𝑞𝑖 − 𝑙𝑖)

2 +
1

2
𝑎(𝑞𝑖 − 𝑧𝑖)

2] 

23 The 𝑞̂𝑖 are free of cost. 
24 When the strategy of agent 𝑗 is to choose her best response function 𝑞𝑗

∗, then agent 𝑗 is revealing 𝑙𝑗 

to agent 𝑖; then, the choice of 𝑞𝑖 that maximizes 𝑈𝑖 is 𝑞𝑖
𝑀𝐴𝑋 =

(𝑏+𝑎)2

(𝑏+𝑎)2+𝑎𝑏
𝑙𝑖 +

𝑎𝑏

(𝑏+𝑎)2+𝑎𝑏
𝑙𝑗 +

2𝑎2

(𝑏+𝑎)2+𝑎𝑏
𝑣 
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that at the equilibrium (𝑞1
∗, 𝑞2

∗) = (𝑞1
∗(𝐶𝐼)

, 𝑞2
∗(𝐶𝐼)

), and the communication structure of 

the first step ensures the convergence to this equilibrium. 

On the other hand, if there is a rational inattention problem such that variables 𝑙𝑖 and 

𝑧𝑖 are not perfectly observed and the agents have processing capacity constraints. Then, 

the problem that each agent solves is: 

 

max 
𝑞𝑖

 𝐸𝑖(𝑈𝑖|𝐼𝑇(𝑧𝑖); 𝐼𝑉(𝑙𝑖)) = 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏𝐸𝑖[(𝑞𝑖 − 𝑙𝑖)

2|𝐼𝑉(𝑙𝑖)] +
1

2
𝑎𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2|𝐼𝑇(𝑧𝑖)]]    

 

In this problem, we assume that the random variables 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) = 𝐸𝑖(𝑙𝑖0 +

𝜀𝑖|𝐼𝑉(𝑙𝑖)) and 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖)) = 𝐸𝑖(𝑧𝑖0 + 𝜇𝑖|𝐼𝑇(𝑧𝑖)) have the same characteristics 

proposed in section 2.2.1.1; in addition, we also assume that the statistical distribution 

of 𝜀𝑖 and 𝜇𝑖 is common knowledge. Therefore, at the equilibrium the best response 

function of agent 𝑖 is25:  

 

𝑞𝑖
∗ =

𝑏

𝑏+𝑎
𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) +

𝑎

𝑏+𝑎
𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖))   ∀ 𝑖, 𝑗 = 1,2;  𝑇, 𝑉 ∈ {0,1} .                  (2.6)

26 

 

Notice that 𝑞𝑖
∗ is the sum of two terms: (1) the relative weight that the idiosyncratic 

term has in the utility function times the expected value that agent 𝑖 has about this 

variable, and (2) the relative weight that the aggregate variable has in the utility function 

times the expected value that agent 𝑖 has about this variable. Therefore, you can 

appreciate that the best response function already includes the main forces that 

Mackowiak and Wiederholt (2009) found in their model: (a) the importance of the 

aggregate and the idiosyncratic terms in the function that the agents are optimizing (i.e. 

𝑎 and 𝑏 respectively), (b) the variability of the aggregate and idiosyncratic terms (this 

variability appears implicitly in the randomness of 𝑙𝑖 and 𝑧𝑖, that is included in 

𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) and 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖))) and (3) the interaction effect which is due to the 

presence of the variable 𝑧𝑖 = 𝑓({𝑞𝑗≠𝑖}) in the equation. Another way to write the best 

response function is  

 

𝑞𝑖
∗ =

𝑏

𝑏 + 𝑎
(𝑙𝑖 − ∆𝑙𝑖) +

𝑎

𝑏 + 𝑎
(𝑧𝑖 − ∆𝑧𝑖)                                                                           (2.6′) 

 

where ∆𝑙𝑖 and ∆𝑧𝑖 are deviations of 𝑙𝑖 and 𝑧𝑖 respect to 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) and 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖)).  

Therefore, at the equilibrium we have 

 

                                                                                                                                                                              

which differs from 𝑞𝑖
∗(𝐶𝐼)

. That is, the pair of choices (𝑞1
∗, 𝑞2

∗)  is not a Nash equilibrium unless we impose 

a penalty enough high to the agents to avoids deviations from this equilibrium. 
25 Notice that the best response function in the case with rational inattention differs from the best 

response function when there is not a rational inattention problem; then the penalty imposed in the third 

step of the commitment mechanism has to take into account these differences. More specifically, it has to 

take into account the amount of information that each agent has about her idiosyncratic and aggregate 

variables.  
26 From equations (2.2) and (2.3) you can see that the terms 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) and 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖)) can take 

many potential values depending on the choices of agent 𝑖 in the first stage of the problem. That is, 

depending on the decision of agent 𝑖 about the amounts of attention 𝐼𝑉(𝑙𝑖) and 𝐼𝑇(𝑧𝑖) that she pays given 

her capacity constraint. 
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𝑈𝑖
∗ = 𝑋𝑖 −𝑊𝑖 [

𝑎𝑏(𝑧𝑖
∗(𝐶𝐼) − 𝑙𝑖)

2

2(𝑏 + 𝑎)
+

𝜉2

2(𝑏 + 𝑎)
] = 𝑈𝑖

∗(𝐶𝐼) −
𝑊𝑖𝜉

2

2(𝑏 + 𝑎)
    ∀ 𝑖 

 

where 𝜉 = 𝑏∆𝑙𝑖 + 𝑎∆𝑧𝑖= 𝑏(𝑙𝑖 − 𝐸𝑖(𝑙𝑖|𝐼𝑉(𝑙𝑖)) ) + 𝑎 (𝑧𝑖 − 𝐸𝑖(𝑧𝑖|𝐼𝑇(𝑧𝑖))). Notice that 

this utility function is similar to the utility function obtained in the previous section. 

Then, using the same argument we can prove the first result obtained by Mackowiak 

and Wiederholt (2009). In particular, since 𝑙𝑖 represents the idiosyncratic conditions and 

𝑧𝑖 represents the aggregate conditions, in our model, as it happens in Mackowiak and 

Wiederholt (2009): “When idiosyncratic conditions are more variable or more 

important than aggregate conditions (i.e. 𝑎𝑟𝑧 < 𝑏𝑟𝑙), firms pay more attention to 

idiosyncratic conditions than to aggregate conditions”. Similarly, if aggregate 

conditions are more variable or more important than idiosyncratic conditions (i.e. 

𝑎𝑟𝑧 > 𝑏𝑟𝑙), firms pay more attention to aggregate conditions than to idiosyncratic 

conditions. 

 

 

How our model gets the second result obtained by Mackowiak 

and Wiederholt (2009)? 
 

Respect to the second theoretical result obtained by Mackowiak and Wiederholt 

(2009), in our model, the interaction effect can be explained using the following 

proposition.  

 

Proposition 3: Assume that all the 𝑁 agents behave optimally, then if at least one 

agent 𝑖 has incomplete information about 𝑙𝑖 or 𝑧𝑖, then there is an overreaction or under 

reaction of the choices of the other agents in the economy respect to the situation in 

which the information is complete. In addition, there is an overreaction or under 

reaction of the variable 𝑄 ≡ ∑ 𝑞𝑖
𝑁
𝑖=1  respect to the case in which all agents have 

complete information.  

 

Below I will present the proof for the case in which 𝑁 = 2, the proof for the more 

general case in which 𝑁 ≥ 2 is in Appendix C2. 

  

Proof (when 𝑵 = 𝟐): If there are two agents, then we have the following three 

cases: 

 

(1) If both agents have complete information, then the solution to the optimization 

problem proposed in equation (2.1) is: 

 

𝑞𝑖
∗(𝐶𝐼)

=
𝑏+𝑎

𝑏+2𝑎
𝑙i +

𝑎

𝑏+2𝑎
𝑙𝑗 +

𝑎

𝑏
2𝑣   ∀𝑖, 𝑗 = 1,2 and 

 

𝑄∗(𝐶𝐼) ≡ ∑ 𝑞𝑖
∗(𝐶𝐼)2

𝑖=1 = ∑ 𝑙i
2
𝑖=1 +

𝑎

𝑏
4𝑣. 
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Notice that with complete information, the optimal choice of agent 𝑖 is affected 

by her own idiosyncratic conditions, the idiosyncratic condition of the other agent 

and the aggregate conditions. 

 

(2) If one agent has incomplete information (e.g. agent 1) and the other (e.g. agent 2) 

has complete information we have (the symbol “~” means that one agent has 

complete information and the other agent has incomplete information):  

 

𝑞̃1
∗ =

𝑏+𝑎

𝑏+2𝑎
𝑙1 +

𝑎

𝑏+2𝑎
𝑙2 +

𝑎

𝑏
2𝑣 −

𝑏+𝑎

𝑏+2𝑎
(∆𝑙1 −

𝑎

𝑏
∆𝑧1) = 𝑞1

∗(𝐶𝐼)
−

𝑏+𝑎

𝑏+2𝑎
(∆𝑙1 +

𝑎

𝑏
∆𝑧1), 

 

𝑞̃2
∗(𝐶𝐼)

=
𝑏+𝑎

𝑏+2𝑎
𝑙2 +

𝑎

𝑏+2𝑎
𝑙1 +

𝑎

𝑏
2𝑣 −

𝑎

𝑏+2𝑎
(∆𝑙1 +

𝑎

𝑏
∆𝑧1) = 𝑞2

∗(𝐶𝐼)
−

𝑎

𝑏+2𝑎
(∆𝑙1 +

𝑎

𝑏
∆𝑧1)  

 

and 

𝑄̃∗ ≡ 𝑞̃𝑗
∗(𝐶𝐼)

+ 𝑞̃𝑖
∗ = ∑ 𝑙i

2
𝑖=1 +

𝑎

𝑏
4𝑣 − (∆𝑙1 +

𝑎

𝑏
∆𝑧1) = 𝑄

∗(𝐶𝐼) − (∆𝑙1 +
𝑎

𝑏
∆𝑧1). 

 

Notice that the agent with incomplete information has a higher deviation in 𝑞̃𝑖 

respect to 𝑞𝑖
∗(𝐶𝐼)

 than the agent with complete information. Finally, notice that the 

aggregate deviation due to the information constraint is higher than the individual 

deviations. 

 

(3) If both agents have incomplete information, then: 

 

𝑞𝑖
∗ =

𝑏+𝑎

𝑏+2𝑎
𝑙𝑖 +

𝑎

𝑏+2𝑎
𝑙𝑗 +

𝑎

𝑏
2𝑣 −

1

(𝑏+2𝑎)
((𝑏 + 𝑎)∆𝑙𝑖 + 𝑎∆𝑙𝑗) −

𝑎

𝑏(𝑏+2𝑎)
((𝑏 + 𝑎)∆𝑧𝑖 + 𝑎∆𝑧𝑗).  

 

That is, 𝑞𝑖
∗ = 𝑞𝑖

∗(𝐶𝐼)
− [

𝑏+𝑎

𝑏+2𝑎
(∆𝑙𝑖 +

𝑎

𝑏
∆𝑧𝑖) +

𝑎

𝑏+2𝑎
(∆𝑙𝑗 +

𝑎

𝑏
∆𝑧𝑗)], and 

 

𝑄∗ ≡ ∑ 𝑞𝑖
∗2

𝑖=1 = ∑ 𝑙i
2
𝑖=1 +

𝑎

𝑏
4𝑣 − (∑ ∆𝑙𝑖

2
𝑖=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
2
𝑖=1 ) = 𝑄∗(𝐶𝐼) − (∑ ∆𝑙𝑖

2
𝑖=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
2
𝑖=1 ). 

 

Notice that the agents are more affected by her own information constraint than the 

information constraint of the other agent. We also have again that the aggregate 

deviation due to the information constraints is higher than the individual deviations.  

Since there are differences between 𝑞𝑖
∗(𝐶𝐼)

 respect to 𝑞𝑖
∗, 𝑞̃1

∗ and 𝑞̃2
∗(𝐶𝐼)

, and between 

𝑄∗(𝐶𝐼) respect to 𝑄̃∗ and 𝑄∗ then our proposition has been proved.                                   

 

It means that if at least one agent has incomplete information, then there is an 

overreaction or underreaction of the choices of all agents in the economy respect to the 

situation in which the information is complete. In addition, there is an overreaction or 

underreaction of the aggregate variable respect to the case in which all agents have 

complete information. In other words, there is an interaction effect like the situation 

found by Mackowiak and Wiederholt (2009) in their model27.  

                                                            
27 Another way to explain the interaction effect is: from the proof of Proposition 3, notice that when 

𝑎

𝑏
 

is higher (i.e. when the strategic complementarity is higher) the losses that each agent faces due to “∆𝑧𝑖 

and ∆𝑧𝑗” are more important and consequently the agents are more inclined to pay more attention to their 
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In addition, notice that even with complete information about all the idiosyncratic 

conditions the agents do not internalize all the interaction that exist in the economy. For 

instance, assume that the utility of a social planner is equal to the sum of the utilities of 

all agents and to make the explanation faster assume that 𝑊𝑖 = 𝑊  ∀𝑖, then in the case 

of two agents we have that the optimal choice of the social planer is 𝑞𝑖
𝑆𝑃 =

𝑏+2𝑎

𝑏+4𝑎
𝑙𝑖 +

2𝑎

𝑏+4𝑎
𝑙𝑗 which is different to the value of  𝑞𝑖

∗(𝐶𝐼)
 obtained above.28  

Finally, notice in the proof of proposition 2 that if 𝑎 → 0 (i.e. if the strategic 

complementarity goes to zero) then the interaction effect is lower (i.e. the effect of the 

information constraints in the individual choices of the agents and in the aggregate 𝑄 

decreases). Similarly, observe that lim
𝑎→0

𝑞𝑖
𝑆𝑃 = lim

𝑎→0
𝑞𝑖
∗(𝐶𝐼)

 because the size of the 

externalities that were not internalized by agents is lower. 

 

 

2.2.3. With interaction and without any commitment mechanism29 
 

In the previous sections, as it was assumed in Mackowiak and Wiederholt (2009), we 

considered scenarios in which the choices of the agents are not affected by the strategic 

behavior of the other agents, and we arrived to the same two theoretical results obtained 

in their paper. However, in many decision-making situations, the agents confront not 

only uncertainty about future states of nature, but also uncertainty about actions that 

other agents will take30. Then, in these situations the agents have to take into account 

their beliefs about other agents’ behavior; agents’ beliefs about other agents’ beliefs 

about other agents’ behavior, agents’ beliefs about other agents’ beliefs about other 

agents’ beliefs about other agents’ behavior, and so on. That is, the strategic behavior is 

an important element that affects the interaction between the agents in the economy; so 

that, it is an important factor to take into account in the analysis of the interaction effect. 

For that reason, we propose a change to the model of the previous section to 

introduce the strategic behavior into the analysis. In the new model there is not a 

commitment mechanism that forces the agents to choose any particular value of 𝑞. It 

means that the final value of 𝑧𝑖 is never known with certainty before the moment at 

which all agents decide their final 𝑞. To avoid misunderstandings in the explanation of 

this version of the model, we will assume without loss of generality that 𝑣 = 0, so we 

will assume during the rest of this section that 𝑧𝑖 =
∑ 𝑞𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
.  

Now, let us assume for the moment that each agent 𝑖 does not have inattention 

constraints respect to the value of 𝑙𝑖 and respect to the preliminary chosen values of all 

                                                                                                                                                                              
respective aggregate conditions. Thanks to Mirko Wiederholt for making me aware about this 

explanation. 
28 In the more general case in which 𝑁 ≥ 2, we have 𝑞𝑖

𝑆𝑃 =
𝑏(𝑁−1)+2𝑎

𝑏(𝑁−1)+2𝑎𝑁
𝑙𝑖 +

2𝑎

𝑏(𝑁−1)+2𝑎𝑁
∑ 𝑙𝑗≠𝑖
𝑁
𝑗=1 +

[2 − 𝑁]
𝑎

𝑏
(
𝑁

𝑁−1
) 𝑣 which is clearly different to the value of 𝑞𝑖

∗(𝐶𝐼)
 obtained in Appendix C2. 

29 This section was written for the case in which 𝑁 ≥ 2, then it is directly implementable for the 

special case in which 𝑁 = 2 
30 For instance, in industries with a small number of dominant firms the price-setting behavior of a 

single firm can have an important impact on the profits of its competitors. Similarly, the decision of a 

household member most likely affects the decisions of the other household members.  
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𝑞𝑗31 (i.e. all 𝑞̂𝑗 are known). Since in this section we have assumed that the agents are 

not forced to choose any particular value of 𝑞, then the optimization problem that each 

agent 𝑖 solves when she chooses the final value of 𝑞𝑖 is 

 

max 
𝑞𝑖

 𝐸𝑖(𝑈𝑖| ∗) = 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏(𝑞𝑖 − 𝑙𝑖)

2 +
1

2
𝑎𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2| ∗]] where 𝑖 = 1,2, … ,𝑁,  

 

𝑏 > 0, . 𝑎 > 0 and 𝑧𝑖 =
∑ 𝑞𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
. Therefore, to solve this optimization problem each 

agent 𝑖 has to build her own beliefs respect to the behavior of the aggregate conditions 

𝑧𝑖, where the symbol " ∗ " means any kind of information that can help agent 𝑖 to build 

her beliefs about the value of 𝑧𝑖. As soon as this agent establishes her own belief about 

𝑧𝑖 then her best response function is 

 

𝑞𝑖
∗ =

𝑏

𝑏+𝑎
𝑙𝑖 +

𝑎

𝑏+𝑎
𝐸𝑖(𝑧𝑖| ∗). 

 

That is, this equation represents the optimal choice of agent 𝑖 given what she believes 

the other 𝑁 − 1 agents are doing. Notice that if the agents do not have the option to 

interact before they take their choice about 𝑞𝑖, then in our model the only information 

that each agent has to help her to solve the optimization problem is her own 

idiosyncratic condition, so she has to build her belief about 𝑧𝑖 using an uninformative 

prior.  

However, since we are adopting the same assumption of the previous section in 

which before taking a definitive choice about 𝑞𝑖, the agents can choose many 

preliminary values of this variable (𝑞̂) that do not have any cost and are not binding. 

Then, the agents can use these preliminary values as messages in a two-way cheap talk 

communication environment in which all agents are at the same time senders and 

receivers of information.  

The literature about cheap talk usually has used models simpler than our model. 

However, from this literature we can get some insights to better understand how the 

interaction of the agents is affected by the introduction of this pre-play non-binding 

communication mechanism32. In the cheap talk models, the equilibria depend on the 

way the cheap talk affects the beliefs that the agents have about the behavior of the 

other agents (i.e. the equilibria depend on the kind and the amount of information that 

the agents can get by using the cheap talk). For instance, in all cheap talk models there 

is always a babbling equilibrium. In our model this babbling equilibrium happens when 

all agents believe that all 𝑞̂𝑖 are uninformative about 𝑞𝑖, then in this context the optimal 

choice of each agent 𝑖 is to use an uninformative prior about 𝑧𝑖.  
However, even recognizing that the babbling equilibrium always exists, many 

models conclude that a cheap talk communication environment can be meaningful and 

                                                            
31 Remember from the previous section that the presence of a commitment mechanism implies that 

without rational inattention each agent 𝑖 always knows 𝑙𝑖 and the final value of 𝑧𝑖, then the unique Nash 

equilibrium value 𝑞𝑖
∗(𝐶𝐼)

can be achieved even when the agents are not informed directly about the 

idiosyncratic values that the other agents face. 
32 In particular, we are more interested in papers that assume situations in which: (1) the agents are at 

the same time senders and receivers of information, (2) the agents can interact many times in the cheap 

talk period and (2) nobody has perfect information (so they probably have something to learn in the cheap 

talk pre-play period). 
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informative. For instance, the first paper about cheap talk was written by Crawford and 

Sobel (1982), in the context of one sender and one receiver they conclude that more 

communication can occur through cheap talk when the players' preferences are more 

closely aligned33. So in our model, we should expect that the set of 𝑞̂ values reveals 

more about the 𝑞 values when the strategic complementarity of the choices of the agents 

is high because the agents are more interested to coordinate their choices34. Rabin 

(1994) in a game with perfect information and where all agents are senders and 

receivers of information shows that when there are enough rounds of talk, in every 

plausible equilibrium each player gets an expected payoff at least as great as he would 

get in the other player's favorite Nash equilibrium. That is, in our model by using the 

cheap talk the agents can expect to get a result better than the result obtained in the 

babbling equilibrium. Similarly, Aumann and Hart (2003) show that more outcomes 

preferred by both players are obtained if they have a long conversation than by a single 

message. In our model, it implies that if the agents interact by choosing many 𝑞̂ values 

before they take their choice about 𝑞, then the result obtained by them is preferred than 

the one in which they only have the opportunity to choose only one 𝑞̂ before they take 

their final choice about 𝑞. Park (2002) found that in his model a sequential cheap talk is 

better to get coordination than simultaneous cheap talk. In our model, we have not 

restricted the order and the moment at which the agents choose their 𝑞̂ values, so we are 

more open to see in the lab experiment the kind of dynamic that the participants 

implement. Finally, some papers like Goltsman and Pavlov (2014) have found that in 

their models is necessary to introduce at least simple mechanisms like a mediator to 

allow the cheap talk messages to be informative. In our lab experiment we did not 

introduce any of these mechanisms; however, in the experiment we found that the 

interaction of the participants during the cheap talk time was not uninformative.35  

Now, assume that the agents have rational inattention constraints respect to 𝑙𝑖 and 

𝑧̂𝑖 =
∑ 𝑞̂𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
. In particular, assume that the information problem due to rational 

inattention is similar to the problem explained in section 2.2.1.1 where the uncertainty 

about 𝑙𝑖 is represented by 𝑙𝑖 = 𝑙𝑖0 + 𝜀𝑖, the uncertainty about 𝑧̂𝑖 is represented by 𝑧̂𝑖 =
𝑧̂𝑖0 + 𝜇𝑖 and the statistical distribution of 𝜀𝑖 and 𝜇𝑖 is the same explained in section 

2.2.1.1 (as it happens in section 2.2.2, we maintain the assumption that the statistical 

distribution of 𝜀𝑖 and 𝜇𝑖 is common knowledge). The optimization problem that the 

agents are solving is:  

 

                                                            
33 But, perfect communication cannot occur unless the players' preferences are perfectly aligned. 
34 In other words, the agents have incentives to send messages to the other agents that works as 

coordination devices 
35 On the other hand, there are some papers that have used lab experiments to analyze cheap talk 

situations, some lessons obtained from these are: Cooper, DeJong, Forsythe and Ross (1989) who 

analyzed the role of pre-play communication in symmetric battle of the sexes game found that many 

rounds of talk will yield more coordination than one round. Duffy and Feltovich (2002) in an experiment 

that uses as reference three simple but famous games (the prisoner’s dilemma, stag hunt and chicken 

games) found that cheap talk and the observation of the behavior of the participants in the experiment in 

previous games make cooperation and coordination more likely and increase payoffs. If you want to 

know more about different lab experiments that use communication via cheap talk you can read Crawford 

(1998). 
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max 
𝑞𝑖

 𝐸𝑖 (𝑈𝑖| ∗, 𝐼𝑉(𝑙𝑖), 𝑧̂𝑖(𝐼𝑇(𝑧̂𝑖)))

= 𝑋𝑖 −𝑊𝑖 [
1

2
𝑏𝐸𝑖[(𝑞𝑖 − 𝑙𝑖)

2|𝐼𝑉(𝑙𝑖)] +
1

2
𝑎𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2| ∗, 𝐸𝑖(𝑧̂𝑖|𝐼𝑇(𝑧̂𝑖))]] 

 

where = 1,2,… ,𝑁, 𝑏 > 0, . 𝑎 > 0, 𝑧𝑖 =
∑ 𝑞𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
 and 𝑧̂𝑖 =

∑ 𝑞̂𝑗≠𝑖
𝑁
𝑗=1

𝑁−1
. Therefore, we always 

have a babbling equilibrium in which 𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)
2| ∗, 𝐸𝑖(𝑧̂𝑖|𝐼𝑇(𝑧̂𝑖))] = 𝐸𝑖[(𝑞𝑖 − 𝑧𝑖)

2| ∗] 

and consequently the agents only pay attention to 𝑙𝑖 because 𝑧̂𝑖 is uninformative about 

the value of 𝑧𝑖. Notice that this equilibrium also validates the first theoretical result of 

Mackowiak and Wiederholt (2009) because in this equilibrium there is only one valid 

source of information “𝑙𝑖”, the other source does not say anything about 𝑧𝑖, so it must be 

completely ignored. Respect to the second theoretical result, in the babbling equilibrium 

there is not an interaction effect due to rational inattention about the aggregate variable 

because 𝑧̂𝑖 and 𝐸𝑖(𝑧̂𝑖|𝐼𝑇(𝑧̂𝑖)) do not communicate anything about 𝑧𝑖. However, the 

interaction effect does not disappear because the utility function still depends on 𝑧𝑖.  
On the other hand, if we assume that all agents get full information about 𝑧𝑖 by 

observing 𝑧̂𝑖. Then our analysis is equivalent to the analysis presented in section 2.2.136. 

However, the cheap talk models that have assumed agents that are at the same time 

senders and receivers of information37 consider that the full information equilibrium is 

not possible due to the strategic behavior of the agents38.  

Therefore, in our experiment, during the cheap talk time, each participant 𝑖 has to 

deal with a dual problem. On the one hand, she has to decide how much truthful 

information she reveals about 𝑞𝑖 such that there is a positive interaction that can help 

her. But, on the other hand, she has to decide how much false information about 𝑞𝑖 she 

sends in order to take advantage of the strategic behavior. 

 

 

2.3. Experimental Design 
 

We have prepared an experiment divided in four stages where each stage is divided 

in many rounds. The stages of the experiment are summarized in Table 2.3. The first 

two stages (i.e. the decision making stages) are based in the version of the model 

proposed in section 2.2.1 and the last two stages (i.e. the interaction stages) are based in 

the version of the model proposed in section 2.2.3.39  

 

                                                            
36 More specifically, in the proof of proposition 3 we showed that with a commitment mechanism 

(which is equivalent to a cheap talk environment with full information revelation) the equilibrium 

happens when 𝑞𝑖 = 𝑞𝑖
∗(𝐶𝐼)

 if there is not the inattention constraint or the equilibrium happens when 𝑞𝑖 =

𝑞𝑖
∗ if there is an inattention constraint. 

37 For instance, Rabin (1994) and Goltsman and Pavlov (2014) 
38 In particular, remember that if one agent gets full information before the other agents during the 

cheap talk time, then she is not interested to reveal new relevant information about her in order to take 

advantage of her better strategic situation. 

39 We did not prepare stages to analyze the version of the model presented in section 2.2.2 because of 

two reasons: (1) the two conclusions of Mackowiak and Wiederholt (2009) can be analyzed using only 

the versions of the model of sections 2.2.1 and 2.2.3, and (2) as we explained in section 2.2.3, the 

presence of the strategic behavior enriches the analysis of the interaction effect. 
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[Table 2.3] 40 

 

The experiment has been programmed in z-tree, 24 subjects were recruited from the 

UPF Leex Lab to participate in one of three identical sessions and no subject appeared 

in more than one session. The subjects were seated at computer terminals and given a 

set of instructions, which were then read aloud by the experimenter before the beginning 

of each stage. A copy of the instructions appears in Appendix D2. To ensure that the 

subjects understood each stage, some questions of understanding were prepared before 

the beginning of each stage.  

To get more information in the experiment and to see clearer the consequences of the 

strategic behavior in the interaction process, in the interaction stages we only prepared 

experiment sessions in which 𝑁 = 2. More specifically, in the first two stages the 

participants know that they are playing in a decision making experiment that is 

independent on the decisions of the other players. However, in stages 3 and 4, all 

participants know that in each round they have been randomly matched with another 

participant; they will not get to know with whom they are matched, each participant 

knows that her final choices affect the earnings of the person who has been matched 

with her and she also knows that her earnings are affected by the final choices of the 

person who has been matched with her. In addition, to make the experiment easier to 

play and to explain, we have assumed that 𝑎 + 𝑏 = 1.  

In section 2.3.1 we will explain how our model has been parameterized; in section 

2.3.2 we will give more details about the experiment and in section 2.3.3 we compare 

our lab experiment with other lab experiments (mainly with the experiment proposed by 

Cornand and Heinemann, 2014)  

 

 

2.3.1. Parameterization 
 

The earnings of the participants in the experiment depend positively on the utility 

they individually get in each round41. In particular, in the rounds of the first two stages 

the utility function that the participants are solving is:  

 

𝑈𝑖 = 2000 −𝑊𝑖 [
1

2
𝑏(𝑞𝑖 − 𝑙𝑖)

2 +
1

2
𝑎(𝑞𝑖 − 𝑧𝑖)

2]                                                          (2.7A) 

 

and in the rounds of the last two stages the utility function that the participants are 

solving is42: 

 

                                                            
40 It is important to emphasize that in the experiment the agent 𝑖 does not have complete information 

about the idiosyncratic conditions or aggregate conditions of the other agents. This characteristic is not 

relevant in the decision making stages; however, it is quite relevant in the interaction stages.  
41 The participant 𝑖 knows that her total earnings are the sum of the earnings she gets in the 50 rounds 

of the experiment. In each round, these earnings depend on the utility they get in the round.  
42 In sections 2.2.2 and 2.2.3 we have shown that the imperfect information about the aggregate terms 

𝑧𝑖 and 𝑧𝑗 is responsible of the presence of the interaction effects. This situation happens even in the case 

in which there is not uncertainty about 𝑣. Therefore, in order to make the experiment simpler to the 

participants we have decided to take the case in which 𝑣 = 0 (i.e. 𝑧𝑖 = 𝑞𝑗).   
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𝑈𝑖 = 2000 −𝑊𝑖 [
1

2
𝑏(𝑞𝑖 − 𝑙𝑖)

2 +
1

2
𝑎(𝑞𝑖 − 𝑧𝑖)

2]  where 𝑧𝑖 = 𝑞𝑗                                  (2.7B) 

 

The parameters 𝑎 ∈ (0,1) and 𝑏 ∈ (0,1), in the rounds of stages 3 and 4, are always 

known by the participants and are randomly chosen for each couple of participants at 

the beginning of every round such that 𝑎 + 𝑏 = 1. All couples know that both members 

have the same parameters 𝑎 and 𝑏. In the rounds of stages 1 and 2, the parameters 𝑎 ∈
(0,1) and 𝑏 ∈ (0,1) are always known by the participants and are randomly chosen for 

each participant at the beginning of every round such that 𝑎 + 𝑏 = 1.  

Let the indicator parameters 𝕝2&4, 𝕝2 and 𝕝4 mean: 𝕝2&4 ∈ {0,1} in the rounds of 

stages 2 and 4 and 𝕝2&4 = 0 otherwise, 𝕝2 ∈ {0,1}  in the rounds of stage 2 and 𝕝2 = 0 

otherwise, and 𝕝4 ∈ {0,1}  in the rounds of stage 4 and 𝕝4 = 0 otherwise; where we 

assume 𝕝2&4 ∈ {0,1} necessarily implies 𝕝2 = 0 and 𝕝4 = 0 (and 𝕝2 = 0 or 𝕝4 = 0 

necessarily implies 𝕝2&4 ∈ {0,1}). Then the problem that the participants solve at the 

beginning of the incomplete information rounds (i.e. the rounds in stages 2 and 4) can 

be parameterized in the following way: using the information about 𝑎, 𝑙𝑖0 − 𝕝2&4𝑟𝑙, 𝑙𝑖0, 

𝑙𝑖0 + 𝕝2&4𝑟𝑙  and 𝑧𝑖0 − 𝕝2𝑟𝑧, 𝑧𝑖0 ,𝑧𝑖0 + 𝕝2𝑟𝑧 in stage 2 or 𝑧̂𝑖0 − 𝕝4𝑟𝑧, 𝑧̂𝑖0, 𝑧̂𝑖0 + 𝕝4𝑟𝑧 in 

stage 4; each participant has to choose if she wants to know with certainty (i.e. to pay 

full attention to) 𝑙𝑖 or 𝑧𝑖 in stage 2, and 𝑙𝑖 or 𝑧̂𝑖 in stage 4.  

In the experiment, the variable 𝑙𝑖 follows the same theoretical structure proposed to 

this variable in section 2.2. That is, in the rounds of stages 1 and 3, 𝑙𝑖 = 𝑙𝑖0 where 𝑙𝑖0 ∈
[−200,200] is a parameter randomly chosen for each participant 𝑖 at the beginning of 

every round and all participants know their respective 𝑙𝑖. On the other hand, in the 

rounds of stages 2 and 4 the participants know that 𝑙𝑖 ∈ {𝑙𝑖0 − 𝕝2&4𝑟𝑙 , 𝑙𝑖0, 𝑙𝑖0 +

𝕝2&4𝑟𝑙}  where  𝑃𝑟𝑜𝑏(𝑙𝑖 = 𝑙𝑖0−𝕝2&4𝑟𝑙) = Prob(𝑙𝑖 = 𝑙𝑖0) = Prob(𝑙𝑖 = 𝑙𝑖0 + 𝕝2&4𝑟𝑙) = 
1

3
, 

the parameters 𝑟𝑙 ∈ [0,20] and 𝑙𝑖0 ∈ [−200,200] were randomly chosen and implicitly 

revealed to each participant 𝑖 at the beginning of every round.  

Similarly, the variable 𝑧𝑖 follows the theoretical structure proposed to this variable in 

the models of section 2.2. That is, in the rounds of stage 1, 𝑧𝑖 = 𝑧𝑖0 where 𝑧𝑖0 ∈
[−200,200] is a parameter randomly chosen for each participant 𝑖 at the beginning of 

every round and all participants know their respective 𝑙𝑖. On the other hand, in the 

rounds of stage 2 the participants know that 𝑧𝑖 ∈ {𝑧𝑖0 − 𝕝2𝑟𝑧, 𝑧𝑖0, 𝑧𝑖0 + 𝕝2𝑟𝑧} where 

Prob(𝑧𝑖 = 𝑧𝑖0 − 𝕝2𝑟𝑧) = Prob(𝑧𝑖 = 𝑧𝑖0) = Prob(𝑧𝑖 = 𝑧𝑖0 + 𝕝2𝑟𝑧) =
1

3
; the parameters 

𝑟𝑧 ∈ [0,20] and 𝑧𝑖0 ∈ [−200,200] were randomly chosen and implicitly revealed to 

each participant 𝑖 at the beginning of every round. To summarize, in the stages 1 and 2 

there is not a structural difference between 𝑙𝑖 and 𝑧𝑖.  
In contrast, in the rounds of stage 3, 𝑧̂𝑖 = 𝑞̂𝑗 where this value is continuously updated 

to the participant 𝑖 every time the participant 𝑗 chooses a new 𝑞̂𝑗 (the participant 𝑗 is the 

participant who has been matched with participant 𝑖 in a specific round of the stages 3 

and 4). In the rounds of stage 4, 𝑧̂𝑖 = 𝑞̂𝑗 ∈ {𝑧̂𝑖0 − 𝕝4𝑟𝑧, 𝑧̂𝑖0, 𝑧̂𝑖0 + 𝕝4𝑟𝑧} where Prob(𝑞̂𝑗 =

𝑧̂𝑖0 + 𝕝4𝑟𝑧) = Prob (𝑞̂
𝑗
= 𝑧̂𝑖0) = Prob (𝑞̂

𝑗
= 𝑧̂𝑖0 + 𝕝4𝑟𝑧) =

1

3
, the parameter 𝑟𝑧 ∈ [0,20] 

was randomly chosen and implicitly revealed to each couple of participants at the 

beginning of every round. If the participant 𝑖 is paying full attention to 𝑧̂𝑖 (or similarly, 

𝑞̂𝑗) then this value is continuously updated to the participant 𝑖 every time the participant 

𝑗 chooses a new 𝑞̂𝑗, but if the participant 𝑖 is not paying full attention to 𝑧̂𝑖 then their 
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three potential values are continuously updated to the participant 𝑖 every time the 

participant 𝑗 chooses a new 𝑞̂𝑗.  

Finally, the parameter 𝑊𝑖 was randomly chosen for each participant at the beginning 

of every round such that the maximum utility that all participants can get per round is 

inside the interval [100,2000]. 
 

 

2.3.2. How does the experiment work? 
 

In each round of stages 1 and 2 the participants have 60 seconds (in each round of 

stages 3 and 4 the participants have 90 seconds) to choose all integer numbers they 

reach or they want to choose in a line named Real Value, this line is bounded by two 

integer numbers43. The participants know that depending on the “last number” they 

choose they will obtain a utility (Note: score is the name given to the utility in the 

experiment). Figure 2.1 shows the maximum score (i.e. the maximum utility) they can 

get per round44. To get the maximum score the participant 𝑖 knows that in every round 

her last chosen number (i.e. 𝑞𝑖) has to be close to 𝑙𝑖 and 𝑧𝑖
45.   

 

[Figure 2.1a]  

 

[Figure 2.1b] 

 

Figures 2.2a to 2.2d show examples of the kind of screens that the participants 

observe during the rounds of each stage. In the Real Value line, the variable 𝑙𝑖 is 

represented by a purple number and the term 𝑧𝑖 is represented by a red number (both 

numbers are symbolized by squares of the same color); the white squares are the bounds 

of the line. It implies that in the rounds of Stages 3 and 4 any prior that the participants 

built about 𝑧𝑖 (i.e. 𝑞𝑗) must take into account that it has to be inside the range limited by 

the white squares. The participants know that in all rounds the range of integer numbers 

inside the white squares always include the number that has the maximum utility; but, it 

also includes numbers with negative utilities. In the Real Value line, the last number 

                                                            
43 We could also use a line with an unbounded range of integer numbers. However, we consider that 

the dynamic of the experiment is more interesting if we consider a bounded line because in this case is 

clearer to the agents how to create uninformative priors about 𝑧𝑖 using as reference the bounds of the line. 
44 This figure appears in the instructions of the experiment 
45 Notice that they know from Figure 2.1a that the maximum utility they can get per round is a value 

inside the interval [100, 2000] and that their utility is lower if they finish the round with a number farther 

away from the number with the highest possible utility. They are not informed about the maximum utility 

and the number that has this utility; however, they know from Figure 2.1b that at the left hand side 

(similarly, at the right hand side) of the number that has the maximum utility the difference in utility 

between two equidistant numbers is lower if these numbers are nearer to the number that has the 

maximum utility. For instance, in the Figure 2.1b you can appreciate that 𝐴2 − 𝐴1 = 𝐴3 − 𝐴2 = 𝐴4 − 𝐴3 

but 𝑃2 − 𝑃1 > 𝑃3 − 𝑃2 > 𝑃4 − 𝑃3. Therefore, in the experiment the participants are implicitly informed 

that the utility function is quadratic.  

In the experiment we did not want to evaluate explicitly the mathematical abilities that the participants 

have to solve a particular equation. Therefore, we did not give directly to the participants the 

mathematical shape of the utility function that they were maximizing (i.e. they did not see directly the 

equations (2.7a) and (2.7b)) only the graphical representation of Figure 2.1 and the values of 𝑎 and 𝑏 

(these values change randomly from one round to the next) 
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chosen by the participant during a round (i.e. 𝑞̂𝑖𝑡) is symbolized by a black square as it 

appears in the Figures 2.2a to 2.2d. 

 

[Figure 2.2a] 

 

[Figure 2.2b] 

 

[Figure 2.2c] 

 

[Figure 2.2d] 

 

Each participant knows that the way to get a high utility is to finish each round with a 

𝑞𝑖, that is at the same time very close to the red and the purple numbers (𝑧𝑖 and 𝑙𝑖 
respectively). In addition, each participant knows that in some rounds they will get a 

higher utility if 𝑞𝑖 is closer to 𝑧𝑖 than to 𝑙𝑖 and in others the opposite happens. For 

instance, at the bottom of Figures 2.2a to 2.2d there is a paragraph that says:  

 

 
 

That is, in this particular round 𝑎 = 0.37 and 𝑏 = 0.6346.  

Notice in Figures 2.2b and 2.2d that during the rounds of stages 2 and 4 the 

participants do not observe in the Real Value line the red or the purple number (and its 

respective square). Instead, in these rounds the participants observe a line named 

“Potential Values”. This line tells the participants, using numbers symbolized by circles, 

the three probable values that the red and purple numbers (i.e. 𝑧𝑖 and 𝑙𝑖 in Figure 2.2b or 

𝑧̂𝑖 and 𝑙𝑖 in Figure 2.2d) can take in the Real Value line. They know that the numbers of 

the same color have the same probability and that the distances between these numbers 

(i.e. 𝑟𝑧 and 𝑟𝑙) always remain constant during each round.  

On the other hand, at the beginning of each round of the stages 2 and 4 the 

participants have to choose which of the numbers (red or purple) they want to know 

exactly in the Real Value line. In order to do a good choice, the participants are 

informed about: (a) the Potential Values line they will face during the round (i.e. they 

know 𝑙𝑖0 − 𝑟𝑙, 𝑙𝑖0 and 𝑙𝑖0 + 𝑟𝑙, and 𝑧𝑖0 − 𝑟𝑧, 𝑧𝑖0 and 𝑧𝑖0 + 𝑟𝑧 in Stage 2 or 𝑧̂𝑖0 − 𝑟𝑧, 𝑧̂𝑖0 

and 𝑧̂𝑖0 + 𝑟𝑧 in Stage 4) and (b) the values of 𝑎 and 𝑏.  

The participants know that in the rounds of stages 1 and 2 all numbers (red and 

purple) that appear in the Real Value and Potential Values lines remains constant. The 

same happens with the purple numbers in the rounds of stages 3 and 4. The red numbers 

do not remain constant in the rounds of stages 3 and 4; each participant knows that in 

these rounds her red number is equal to the last number chosen by the person who is 

matched with her (similarly, she knows that the last number chosen by her is 

symbolized by the red number that appears in the Real Value line of the person who is 

matched with her).  

                                                            
46 Remember that in stages 3 and 4, each participant knows that she and the person who is matched 

with her have the same values of 𝑎 and 𝑏. 
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In the rounds of stages 1 and 3 each participant knows that every time she chooses a 

number, according to the information that is available to her, she is informed about the 

utility that she can get if she finishes the round with this number. In the rounds of stage 

3 the utility is automatically updated every time the person who is matched with her 

chooses a new number. On the other hand, in the rounds of stages 2 and 4 each 

participant knows that every time she chooses a number, according to the information 

that is available to her, she is informed about the maximum and minimum utility that 

she can get if she finishes the round with this number. In the rounds of stage 4 the 

maximum and minimum utility are automatically updated every time the person who 

has been matched with her chooses a new number.  

In all rounds, each participant has access to a table that record: (i) the numbers 

chosen by the participant during the round, and (ii) the utility (or the maximum and 

minimum utilities) that were reported when the participant chooses these numbers (e.g. 

look at the table that is at the right hand side of Figures 2.2a to 2.2d). This table is not 

updated in the rounds of stages 3 and 4 as soon as the person who is matched with the 

participant chooses new numbers.  

To summarize, in the rounds of stages 1 and 2 the agents have enough information to 

know directly the optimal value of 𝑞𝑖 (i.e. the number that gives them the maximum 

utility given the level of information that they have); however, they can use the 60 

seconds (mainly in the first rounds of stage 1) to better familiarize with the structure of 

the experiment by choosing many preliminary values of 𝑞𝑖 (remember that the last 

chosen value is the only value that will determine their payoffs). On the other hand, 

notice that in the rounds of stages 3 and 4, the participants can use their 90 seconds to 

interact with the other participant by choosing many 𝑞̂𝑖 that are always publically 

observed. They also know that the last value of 𝑞̂𝑖 chosen by her during this 90 seconds 

is equal to 𝑞𝑖 , so this value is her only chosen value that will affect the payoff of both 

players during the round. In particular, notice that in the rounds of these stages the 

participants are interacting in a cheap talk environment; therefore, if a participant wants 

to take strategic advantage with respect to the other participant, then she will be tempted 

to choose 𝑞𝑖 during the last 2 seconds of the round because during this time the other 

player does not have enough time to react to this choice. 

 

 

2.3.3. Comparison with other lab experiments  
 

Our lab experiment is the first one that analyzes the main results obtained in the 

model of Mackowiak and Wiederholt (2009). In the literature, there are other lab 

experiments that study different rational inattention topics and models47, or cheap talk 

environments48 but none of them looks like the experiment that we propose and none of 

them analyzes the topics that we are studying in our experiment.  

Our experimental design has some similarities with the lab experiment proposed by 

Cornand and Heinemann (2014); they propose a lab experiment based on a model (or 

more precisely a game) built by Morris and Shin (2002) which is not a rational 

inattention or a cheap talk model. If we use the same notation that we used in section 

                                                            
47 For instance, Pinkovskiy (2009), Martin (2012), Caplin and Martin (2013), Caplin and Dean 

(2013a, b and 2015) and Cheremukhin, Popova, and Tutino (2015). 
48 For instance, look at the literature referenced in the footnote 35. 



72 
 

2.2, then the goal of the participant 𝑖 in the experiment of Cornand and Heinemann 

(2014), is to maximize the following utility function 

  

𝑈𝑖 = 𝑋 − 𝕝𝐴𝐶𝐷𝐷(𝑞𝑖 − 𝑣)
2 − 𝕝𝐵𝐶𝐹𝐹(𝑞𝑖 − 𝑞𝑗)

2
                                                                   (2.8) 

 

where 𝑣 and 𝑞𝑗 are unknown terms (notice that in this utility function there are not 

idiosyncratic terms and that 𝑣 is a term common to both participants). The other terms 

that appear in equation (2.8) are parameters that satisfy the following properties:   

 

𝑋 = {
100  𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵
200 𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐶                
400  𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 𝐷 𝑎𝑛𝑑 𝐹

,  𝐷 = {
3 𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐷
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

, 𝐹 = {
3 𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐹
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

, 

 

 𝕝𝐴𝐶𝐷 = {
1 𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 𝐴, 𝐶 𝑎𝑛𝑑 𝐷
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

, 𝕝𝐵𝐶𝐹 = {
1 𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 𝐵, 𝐶 𝑎𝑛𝑑 𝐹
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

 

 

In this experiment, in the rounds of all treatments, each participant was randomly 

matched with one of the other participants in the experiment. The participants received a 

common and a private hint number about 𝑣49. The common and private hint numbers 

are randomly selected from the interval [𝑣 − 10, 𝑣 + 10]. The utility function is 

perfectly known by the participants in the experiment (i.e. they observe equation 2.8), 

then each participant 𝑖 chooses only one value of 𝑞𝑖 and according to this value she gets 

the utility obtained during the round. In the theory behind this experiment it is not 

complicated to construct the beliefs about the behavior of the other player because the 

agents have enough information to do it (the private hint number, the statistical 

distribution of the two hint numbers and the statistical distribution of 𝑣), so they do not 

need to include additional assumptions. The authors also consider another treatment 

(Treatment E) in which the utility function is:  

 

𝑈𝑖 = 100 − (𝐸𝑖(𝑣) − 𝑣)
2 − (𝐸𝑖 (𝐸𝑗(𝑣)) − 𝐸𝑗(𝑣))

2

 

 

In this treatment the participant 𝑖 chooses 𝐸𝑖(𝑣) and 𝐸𝑖 (𝐸𝑗(𝑣)) and according to 

these values she gets the utility obtained during the round. More specifically, Cornand 

and Heinemann (2014) ran the following five types of sessions: 

 

Type of Sessions Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

First 
 

 

Treatment A 

(5 rounds) 

 

 

Treatment B 

(10 rounds) 

Treatment C 

(30 rounds) 

Treatment E 

(5 rounds) 
- Second 

Treatment D 

(30 rounds) 

Third 
Treatment F 

(30 rounds) 

                                                            
49 In this experiment, 𝑣 is always an unknown variable but it has a uniform discrete random 

distribution in the interval [50,450] 
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Type of Sessions Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Fourth 
 

Treatment A 

(5 rounds) 
Treatment E’ 

(5 rounds)50 

Treatment B’ 

(10 rounds)51 Treatment C 

(20 rounds) 

Treatment B 

(10 rounds) 
Fifth 

Treatment B’’ 

(10 rounds)52 

 

They found that the participants attach larger weights to public than to private signals 

(i.e. the private hint numbers) if they have a motive to coordinate their actions (i.e. if 

𝕝𝐵𝐶𝐹𝐹 > 𝕝𝐴𝐶𝐷𝐷). However, these weights were smaller than in equilibrium and closer to 

level-2 reasoning of a cognitive-hierarchy model.  

The main differences between this experiment and our experiment are:  

(1) In the utility function we include an idiosyncratic term that has a different value for 

each participant and that is never known by the other participant, in Cornand and 

Heinemann (2014) there are no idiosyncratic terms.  

(2) In the utility function of Cornand and Heinemann (2014) there is only one uncertain 

exogenous and static variable that is common for both players, in our experiment we 

do not have this kind of variable. 

(3) At the beginning of the rounds of stages 2 and 4 we allow the participants to 

improve the precision of one of our two unknown variables53. This option is not 

present Cornand and Heinemann (2014); however, they send to each participant a 

signal to help them to improve their choices. 

(4) In our experiment, during each round of the stages 3 and 4, there is a continuous 

interaction between the participants, so they can form endogenously a prior about 

the behavior of the other participant through a cheap talk environment54. In Cornand 

and Heinemann (2014) the participants do not interact continuously during the 

round, they make only one decision per round, so they have to use their own signal 

to form their priors. 

 

 

2.4. Results 
 

In section 2.4.1 we will analyze the decisions of the participants in the experiment 

when they had to decide, at the beginning of the rounds of stages 2 and 4, if they wanted 

to receive during the round perfect information about the purple number (i.e. 𝑙𝑖) or 

about the red number (i.e. 𝑧𝑖 in stage 2 or 𝑧̂𝑖 in stage 4). In particular, we will analyze 

how the results of our experiment approach to the conclusions obtained in the model of 

                                                            
50 In this treatment the authors use two separate score functions:  𝑈𝑖 = 100 − (𝐸𝑖(𝑣) − 𝑣)

2  and   𝑈𝑖 =

100 − (𝐸𝑖 (𝐸𝑗(𝑣)) −𝐸𝑗(𝑣))
2

instead of one unified. 
51 This is the same Treatment B except that the participants in the experiment only receive the 

common signal. 
52 This is the same Treatment B except that the participants in the experiment only receive the private 

signal. 
53 Remember that, in each round of our experiment, each participant chooses if she wants to know 

with certainty 𝑙𝑖 or 𝑧𝑖 in stage 2, and 𝑙𝑖 or 𝑧̂𝑖 in stage 4.  
54 There are other lab experiments that have used cheap talk environments. However, as far as we 

know, there is not another lab experiment using this kind of environment to analyze the kind of problem 

that we propose, so our experiment is a novelty respect to this point. 
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the previous section and what elements were taking into account by the participants in 

the experiment when they took their choice.  

In section 2.4.2 we will study the behavior of the participants during the rounds of 

stages 3 and 4. In particular, we are interested to determine if the preliminary choices of 

the participants during the cheap talk time moments and their final chosen values are in 

concordance with the results obtained in the theoretical model. We are also interested to 

see what information of the experiment can help us to better understand the interaction 

effect. In this section, all 𝑞̂𝑖 will be named as 𝑞̂𝑖𝑡 where 𝑡 = 1, 2, … , 𝑙𝑎𝑠𝑡 represent the 

order of the choices done by the participant 𝑖. Therefore, the last 𝑞̂𝑖 will be named as 

𝑞̂𝑖𝑙𝑎𝑠𝑡 or as 𝑞𝑖 because in the experiment 𝑞̂𝑖𝑙𝑎𝑠𝑡 = 𝑞𝑖.
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2.4.1. Choice vs. Optimal Choice 
 

From the results obtained at the beginning of the Stage 2 of the experiment we can 

analyze how our experiment behaves with respect to the first theoretical result obtained 

by Mackowiak and Wiederholt (2009). In general terms, we can say that the results 

obtained in the experiment were close to the results predicted by the theoretical model. 

In particular, 84% of the times the choices of the participants in this stage were 

according to the results predicted by our model; that is, most of the time they chose to 

know perfectly the red number when [𝑎𝑟𝑧]
2 > [𝑏𝑟𝑙]

2 and to know perfectly the purple 

number when [𝑎𝑟𝑧]
2 < [𝑏𝑟𝑙]

2.  

In addition, from the choices compiled at the beginning of the Stage 4, we know that 

participants in the experiment believed that they could get some useful information 

from the cheap talk communication interval. For instance, remember that in a babbling 

equilibrium the optimal choice of the agents always is to know perfectly 𝑙𝑖; however, in 

our experiment on average in 52% of the rounds of this stage the participants decided to 

know perfectly 𝑙𝑖 and on average in 48% of the rounds they decided to know perfectly 

𝑧̂𝑖. In addition, we got an interesting heterogeneity between the choices of the 

participants in the experiment because there were participants who decided to know 

perfectly 𝑙𝑖 in 90% of the rounds and there were similarly other participants who 

decided to know perfectly 𝑧̂𝑖 in 90% of the rounds.  

In order to better understand these results, we ran some logit regressions that are 

reported in Table 2.4. According to these regressions, in Stage 2 when the participants 

decided between paying attention to 𝑙𝑖 or to 𝑧𝑖, they effectively took into account the 

relative importance in the utility function and variability of both variables; however, 

they did not use exactly the same specification predicted by the theoretical model (look 

at the second regression of Table 2.4). On the other hand, in stage 4 when the 

participants decided between paying attention to 𝑙𝑖 or 𝑧̂𝑖, they also took into account the 

differences 𝑎 − 𝑏 and 𝑟𝑧 − 𝑟𝑙, so the participants considered that they could get some 

useful information about 𝑧𝑖 by paying more attention to 𝑧̂𝑖 when the variables 𝑎 and 𝑟𝑧 
were relatively higher than variables 𝑏 and 𝑟𝑙 respectively. 

 

 

                                                            
55 Notice that in this section we do not pay any special emphasis to understand the behavior of the 

participants in the stage 1 of the experiment. It happens because the main purpose of this stage was to 

familiarize the participants with the kind of experiment they were participating.  
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2.4.2. The interaction between the participants in the experiment 
 

The cheap talk interaction that happened during the rounds of stages 3 and 4 reveals 

many interesting patterns; a few examples are represented in Figures 2.3a to 2.3f. In 

these figures, the solid symbols correspond to the choices of two participants that 

belong to the same group during a specific round (i.e. the solid symbols are the 𝑞̂𝑖’s and 

𝑞̂𝑗’s) where the last solids symbols are their respective final choices (i.e. the last solid 

symbols are 𝑞𝑖 and 𝑞𝑗); in addition, in these figures you can see two hollow symbols 

near to the 𝑞 values, each symbol correspond to the best choice of the participant given 

the last choice of the other participant (i.e. the hollow symbols are 𝑞𝑖
∗ given 𝑞𝑗 and 𝑞𝑗

∗ 

given 𝑞𝑖); it means, that the distance between the last solid symbol and the hollow 

symbol corresponds to losses due to mistakes in the beliefs of the participants given the 

final choice of the other participant; notice that these distances were very low in some 

figures, in most of these figures it means that the participants got reliable information 

during the cheap talk time about the final choice of the other participant. 

 

[Figure 2.3a] 

 

[Figure 2.3b] 

 

[Figure 2.3c] 

 

[Figure 2.3d] 

 

[Figure 2.3e] 

 

[Figure 2.3f] 

 

In Figure 2.3a the optimization problem that both participants face has a high 

strategic complementarity between 𝑞𝑖 and 𝑞𝑗 (𝑎 = 0.94), so the participants had 

incentives to use the cheap talk time to coordinate such that their 𝑞 values were close to 

each other; however, the interaction between both participants favored more the blue 

participant than the black participant because the 𝑞 values chosen by both participants 

were closer to 𝑙(𝑏𝑙𝑢𝑒) than to 𝑙(𝑏𝑙𝑎𝑐𝑘). In particular, in Figure 2.3a the strategy of the blue 

participant was to choose her 𝑞̂(𝑏𝑙𝑢𝑒)𝑙𝑎𝑠𝑡 near to 𝑙(𝑏𝑙𝑢𝑒) when there were still more than 

50 seconds before the end of the round, and she stayed there during the rest of the 

round, so 𝑞(𝑏𝑙𝑢𝑒) was close to 𝑙(𝑏𝑙𝑢𝑒), and 𝑞(𝑟𝑒𝑑) was attracted to this idiosyncratic value 

due to the strategic complementarity incentives. However, a high strategic 

complementarity does not imply necessarily that both agents have to coordinate their 𝑞 

such that these are close to one of the 𝑙𝑖’s. For instance, in Figure 2.3b we have that 𝑎 =
0.85 and none of the 𝑙𝑖 values seem to be a clear dominant attractor as it happened in 

Figure 2.3a. In Figure 2.3b, the participants interact repetitively during the cheap talk 

period and many times they chose 𝑞̂𝑡 values that were close to the current best response 

function value, so the attraction to the idiosyncratic values was not so strong. Finally, 

notice that in Figures 2.3a and 2.3b both participants could coordinate quite well to 

choose a 𝑞𝑡 near to the 𝑞𝑡 of the other participant because at the beginning of these 
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rounds they decided to pay perfect attention to 𝑞̂𝑡 and they took advantage of the cheap 

talk time to implicitly discuss the coordination.  

The strategic complementarities in the rounds represented in Figures 2.3c to 2.3e are 

lower than in the rounds represented in Figures 2.3a and 2.3b. However, the main 

characteristics of the behavior of the participants during the cheap talk time of these 

rounds are not the same. In Figure 2.3c during the first 50 seconds the black participant 

only chose one 𝑞̂(𝑏𝑙𝑎𝑐𝑘)𝑡 and after this period she chose many 𝑞̂(𝑏𝑙𝑎𝑐𝑘)𝑡; on the other 

hand, the blue participant chose only a few 𝑞̂(𝑏𝑙𝑢𝑒)𝑡 at the beginning of the round and 

stopped when there were still more than 60 seconds before the end of the round; finally, 

notice that both participants acted strategically choosing the 𝑞𝑖 values in the last two 

seconds of the round not giving the opportunity to the other player to react to these 

values. In Figures 2.3d and 2.3e all participants were very active during all the cheap 

talk time; in both figures, the black participants choose the 𝑞(𝑏𝑙𝑎𝑐𝑘) when there were still 

some seconds to the end of the round and the blue participants took advantage of this 

time to choose a better 𝑞(𝑏𝑙𝑢𝑒)56. The main difference is that in Figure 2.3e both 

participants always chose values of 𝑞̂𝑡 inside a clear interval; on the other hand, in 

Figure 2.3d the blue participant a few times chose extreme values of 𝑞̂𝑡 but it seems the 

negative potential utilities that were reported to her if she finished the round with these 

values convinced her to changed immediately to continue choosing 𝑞̂(𝑏𝑙𝑢𝑒)𝑡 values in a 

more normal range.  

Finally, in Figure 2.3f, the strategic complementarity is the lowest (𝑎 = 0.02), so the 

optimal strategy of both participants was to choose a 𝑞𝑖 very close to their own 𝑙𝑖, but 

during the cheap talk time they had a babbling behavior because sometimes they chose 

𝑞̂𝑖 values far from 𝑙𝑖. In particular, notice that in the last seconds of the cheap talk time 

both participants sent non-credible messages where the 𝑞̂𝑖 values were far from their 

respective 𝑙𝑖 and suddenly in the last second they chose 𝑞𝑖 = 𝑙𝑖 .  
One interesting characteristic in the stages 3 and 4 is that 39% of the times the agents 

chose 𝑞𝑖 in the last two seconds of the rounds. Similarly, in 34% of the times they chose 

the 𝑞𝑖 when there were still 10 or more seconds before the end of the round. So, there 

were many rounds in which the agents tried to take advantage of the strategic behavior, 

but there were also others in which it does not happen. Also, respect to this point, there 

was not a significant difference if the participant was in a round of stage 3 or stage 4.  

From section 2.2.3 we know that the best strategy of the agent 𝑖 in the rounds of 

stages 3 and 4 is to choose 𝑞𝑖 such that it satisfies her best response function given 𝑙𝑖 
and her beliefs about 𝑞𝑗. Similarly, from sections 2.2.1 and 2.2.2 we know that best 

choice of the agent in the rounds of stages 1 and 2 is to apply her best response function 

respect to 𝑧𝑖 and 𝑙𝑖. Therefore, in Table 2.5 we ran some regressions to test what 

elements affect the distance between 𝑞𝑖 and her best response value 𝑞𝑖
𝐵𝑅𝐹 (taken 𝑞𝑗 as 

given in the case of stages 3 and 4). We obtained some interesting results:  

1. Before the experimental sessions, a pilot experiment with 20 subjects about stage 1 

was done in order to test if the graphical way in which the experiment was proposed 

works. We obtained, as it happened later in the experimental sessions, that 

practically since the first rounds, the distance between 𝑞𝑖 and 𝑞𝑖
𝐵𝑅𝐹 was zero or close 

to zero. It means that stage 1 works quite well as a training stage to face the other 

                                                            
56 For instance, notice that in Figure 2.3d  𝑞(𝑏𝑙𝑢𝑒) = 𝑞𝑏𝑙𝑢𝑒

∗  given 𝑞(𝑏𝑙𝑎𝑐𝑘) 
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stages of the experiment. Therefore, it is not strange that Table 2.5 reports that in 

stage 1 there is not a particular factor that affect the size of the variable |𝑞 − 𝑞𝐵𝑅𝐹|.  
2. In stage 2, before the beginning of the rounds, the participants who took a choice 

that was according to the predictions of our model (i.e. to pay more attention to 𝑙𝑖 if 

[𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
 and to pay more attention to 𝑧𝑖 if [𝑎𝑟𝑧𝑖]

2
> [𝑏𝑟𝑙𝑖]

2
) obtained a 𝑞𝑖 

closer to 𝑞𝑖
𝐵𝑅𝐹, notice that this choice does not have an statistical effect in the rounds 

of stage 4 because when there is interaction there are different forces that are 

working during the cheap talk period as we discussed in section 2.2.3.  

3. In stage 2, if the variable that suffers the lack of attention has a high variability (i.e. 

if 𝑟𝐼𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is high) then the distance between 𝑞𝑖 and 𝑞𝑖
𝐵𝑅𝐹 is high, notice that this 

variable does not has an important statistical effect in stage 4 because of the same 

reason commented above.  

4. Finally, when there is interaction then the distance between 𝑞𝑖 and 𝑞𝑖
𝐵𝑅𝐹 is higher. In 

addition, in stages 3 and 4 (i.e. in the interaction stages) the distance between both 

variables increases if there is a higher strategic complementarity between the 

choices of the agents (i.e. |𝑞 − 𝑞𝐵𝑅𝐹| is higher when 𝑎 is higher). 

 

[Table 2.5] 

 

Remember that when the strategic complementarity is high, the agents have more 

incentives to coordinate their 𝑞𝑖 such that these values can be closed to each other. For 

instance, in Figure 2.4a and Figure 2.4b you can appreciate that a higher strategic 

complementarity implies a lower value of |𝑞𝑖 − 𝑞𝑗|; similarly, in the regression of Table 

2.6 you can see that an increase of 𝑎 in 0.1 units implies a decrease of the distance 

|𝑞𝑖 − 𝑞𝑗| on average in 2.7 units.  

 

[Figure 2.4a]  

 

[Figure 2.4b]  

 

[Table 2.6] 

 

In the experiment, as it happens in the theoretical model, we also found that a higher 

strategic complementarity also implies a higher level of distortions in the economy (i.e. 

a higher interaction effect). More specifically, we found in stages 3 and 4 that the 

distance between 𝑞𝑖 and 𝑞𝑖
∗(𝐶𝐼)

 (i.e. |𝑞𝑖 − 𝑞𝑖
∗(𝐶𝐼)|) is higher when the strategic 

complementarity between the choices of the participants is higher as it is reported in the 

regression in Table 2.757. The same result can also be observed in Figure 2.5 in which 

we compare the cumulative distribution function of |𝑞𝑖 − 𝑞𝑖
∗(𝐶𝐼)| during four different 

ranges of 𝑎 in the interaction stages of the experiment. In particular, notice that the 

C.D.F when 𝑎 ≥ 0.75 is always below the other ones (i.e. when 𝑎 ≥ 0.75   the distance 

|𝑞𝑖 − 𝑞𝑖
∗(𝐶𝐼)| is higher).  

                                                            
57 It was not reported in the chapter, but the same situation happens when we compare 𝑞𝑖 with the 

optimal choice of a social planner. That is, a higher strategic complementarity increases the distance 

between both variables. 
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[Figure 2.5] 

 

[Table 2.7] 

 

From the regressions in Table 2.7 you can appreciate that there is a positive 

correlation between 𝑞𝑖 and 𝑞̂𝑖(𝐿𝑎𝑠𝑡−1), it implies that the information exchanged during 

the cheap talk communication time is not irrelevant58. In addition, from the Figures 2.3a 

to 2.3f you can observe that most of the time 𝑞̂𝑖𝑡 and 𝑞̂𝑖𝑡−1 are close to each other. 

Therefore, it seems interesting to see if there are differences between the elements that 

determine the distances |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1| where 𝑡 ≠ 𝑙𝑎𝑠𝑡 respect to the elements that 

determine the distance |𝑞𝑖 − 𝑞̂𝑖𝑙𝑎𝑠𝑡−1|. From the regressions of Table 2.8 we can 

appreciate that the distances |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1| and |𝑞𝑖 − 𝑞̂𝑖𝑙𝑎𝑠𝑡−1| (or similarly |𝑞̂𝑖𝑙𝑎𝑠𝑡 −
𝑞̂𝑖𝑙𝑎𝑠𝑡−1|) exhibit an autoregressive behavior. As we commented above, this 

autoregressive behavior was already observed in the results of Table 2.7 and in the 

Figures 2.3a to 2.3f. In addition, there is not any other statistically significant element 

that affect |𝑞𝑖 − 𝑞̂𝑖𝑙𝑎𝑠𝑡−1|. However, it is interesting to appreciate that there are other 

elements that affect the distance |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1|. For instance, the distance |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1| is 

lower when the range of numbers the agents can choose during the round is narrower; 

this result is not strange because the wide of this range limits the maximum value that 

this distance can have. The distance |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1| is lower when 𝑡 increases (i.e. the 

volatility of 𝑞̂𝑖𝑡 decreases during the round); in other words, the messages that were sent 

by the agents stabilized during the round. Finally, notice that a higher strategic 

complementarity increases de distance |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1|, this result is not strange because 

with a low strategic complementarity the main reference point is 𝑙𝑖 which never moves, 

however when the strategic complementarity is high the main reference point is 𝑞̂𝑗𝑡 that 

can move many times during the round.  

 

[Table 2.8] 

 

 

2.5. Conclusions  
 

We have built model and done a lab experiment to analyze the main theoretical 

results obtained by Mackowiak and Wiederholt (2009). Their model does not consider 

the possibility of strategic behavior.  

Therefore, we also introduced the possibility of this kind of behavior in our model to 

better analyze the interaction effect. Our lab experiment validates the results obtained 

by Mackowiak and Wiederholt (2009); that is, the agents pay more attention to the 

sources of information that are more important and variable, and the interaction between 

agents that have incomplete information affects the choices of the other agents (i.e. 

there is an interaction effect). In addition, we also found that the strategic 

complementarity between the choices of the participants in the experiment is quite 

important to explain the main implications of the interaction effect. For instance, when 

the strategic complementarity is higher, the choices of agents with incomplete 

                                                            
58 A simple correlation test shows that the correlation between both variables in the interaction stages 

of the experiment is higher than 80%. 
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information are farther away from their optimal values with complete information59 and 

on average the potential earnings that these agents miss60 are also higher. These 

divergences can be explained by the following fact: when the strategic complementarity 

is low the agents prefer to choose a 𝑞𝑖 closer to 𝑙𝑖 which is a fix parameter that is at least 

partially known. However, when the strategic complementarity is high the agents prefer 

to choose a 𝑞𝑖 closer to 𝑞𝑗 which is a mobile value, that is potentially unknown and that 

is subject to strategic behavior. 

  

                                                            
59 That is, the choices of the participants are farther away from the unique equilibrium that the model 

has in the complete information scenario. 
60 Taken as given the choices of the other agents. 
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2.6. Appendix A2: Highest information processing capacity value 

(in bits) “” used in some papers*: 
 

Paper  Calibration (Methodology) 

Sims (2003) 
0.641, 0.111, 0.21, 

0.269, 0.71, 0.72, 3.56 

There is not any methodology. The values are 

only used as examples. 

Peng (2005) 0.1, 2, 10 
There is not any methodology. The values are 

only used as examples. 

Peng and 

Xiong (2006) 
Endogenous 

𝜅 ∈ [0.449,0.857]. In this paper there is a 

complex equation according to which 𝜅 is 

affected by: (1) the return variance amplifica-

tion of the different factors that form the divi-

dends61, (2) an investor’s overconfidence para-

meter and (3) the discount rate. 

Sims (2006b) Endogenous 
He assumes a shadow price of information in 

utility units. 𝝀 = 0.5 

Sims (2006a) Endogenous 

He assumes 𝜆 = 0.5 in the case of the log 

utility function (it implies 𝜅 = 0.88) Later, he 

assumes 𝜆 = 2 in the case of the CRRA utility 

function because in this case 𝜅 = 0.85 (i.e. its 

value is close to the value obtained in the log 

utility function). In other examples he assumes 

𝜆 = 0.03  and 1. 

Kasa (2006) 0.073, 0.114 

He starts by fixing the detection error bound62. 

Given this, he uses the relationships between 

detection errors, mutual information and 

channel capacity to infer the highest capacity 

constraint under the assumption that the 

channel is being fully utilized. 

Luo (2008)63  

 

Many values between 

0 and  

There is not any methodology. The values are 

only used as examples. 

Tutino (2008) Endogenous 

She assumes 𝜆 = 0.02 in the case of the log 

utility function (it implies 𝜅 = 2.08). Later, she 

assumes 𝜆 = 0.08 in the case of the CRRA 

utility function because in this case 𝜅 = 2.13 

(i.e. its value is close to the value obtained in 

the log utility function).  In other examples she 

assumes 𝜆 = 0, 0.2, 2 and 3. Finally, she also 

uses many combinations of parameters such 

that 𝜅 = 2.03, 1.99, 1.87, 1.7,1.41, 1.20, 0.86,   
 0.78, 2.5 and  0.88. 

                                                            
61 The dividend for the 𝑗𝑡ℎ firm in the 𝑖𝑡ℎ sector is equal to a market factor plus a common factor for 

sector 𝑖 plus a firm specific factor for the 𝑗𝑡ℎ firm in the 𝑖𝑡ℎ sector. 
62 He establishes priors about what constitutes a reasonable detection error probability. He uses as 

reference Kailath (1969) and Evans (1974).  
63 This row also applies to Luo and Young (2009, 2010 and 2014) 
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Paper  Calibration (Methodology) 

Mackowiak 

and 

Wiederholt 

(2009) 

1, 2, 3, 4, 5 

They choose the parameter that bounds the 

information flow such that the firms set prices 

that are close to the profit-maximizing prices. 

Based on this reasoning, they set 𝜅 =  3. The 

other values are used as examples. 

Endogenous 

They consider that the conclusions of their 

model continue to hold if 𝜆 is determined by an 

increasing, strictly convex cost function. 

However, in this paper they did not solve the 

model using this assumption. 

Woodford 

(2009) 
Endogenous He assumes 𝜆 = 0, 0.05, 0.5, 5, 50 and ∞ 

Lewis (2009) 0.5, 1, 2, 4 

The value of  = 4 represents in his model an 

example at which the choices of the agents are 

very close to the case at which there is not a 

rational inattention problem. The other values 

are only used as examples 

Van 

Nieuwerburgh 

and Veldkamp 

(2009) 

1.64, 11.11 and 30.86 
There is not any methodology. The values are 

only used as examples 

Mondria 

(2010) 
 ∈ (0.1,0.5) 

There is not any methodology. The values are 

only used as examples 

Dworczak 

(2011) 
Endogenous 

The marginal cost of processing information 

and the marginal welfare cost of information 

were chosen such that the technology shock is 

consistent with the empirical evidence. As a 

result, the author uses many values of 𝜅 in the 

interval [0,1]. 

Tutino (2011) Endogenous 

She assumes 𝜆 = 0.2 and 2. 𝜅 in the first case 

is equal to 1.08 and in the second case is equal 

to 0.73.  Other values of 𝜆 are 0 and 0.02. 

Saint-Paul 

(2011) 
1.2, 1.3, 1.4, 1.5, 1.6 

There is not any methodology. The values are 

only used as examples. 

Matějka and 

McKay (2012) 
Endogenous They assume 𝜆 ∈ [1,3,5] 

Paciello 

(2012)  
Endogenous 

 is chosen to match the speed of inflation 

adjustment to a technology and monetary 

policy shocks estimated by Paciello (2011) on 

U.S. data from 1980 to 2006. He finally uses 

 ∈ [3.5, 3.2, 0.37, 0.22] 

Woodford 

(2012) 

0, 0.01, 0.25,0.5, 0.75, 

1, 1.25, 1.5, 2.5, 3.5, 

4.5,   

There is not any methodology. The values are 

only used as examples. 

Mackowiak 

and 
Not reported 

They choose a value of  such that the posterior 

variance of the optimal action in normal times 
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Paper  Calibration (Methodology) 

Wiederholt 

(2014) 

equals 0.0164 

Melosi (2014) Not reported 

There is an algorithm to solve the DSGE model 

that he proposes. Inside this algorithm  is cho-

sen such that the average profit losses due to 

sub-optimal price setting in his imperfect co-

mmon knowledge model is 60% compared to 

those in an estimated Calvo model. 

 

Paciello and 

Wiederholt 

(2014) 

 

Endogenous 
They assume different values for 

𝜆

𝜔
 (e.g. 

10−4, 10−5, 0.9 × 10−4, 2 × 10−4, 4 × 10−4,
1) where 𝜔 is the constant in the price setters’ 

objective function that determines the profit 

loss in the case of a deviation of the actual 

price from the profit-maximizing price65.  

Cheremukhin, 

Restrepo-

Echavarria and 

Tutino (2015) 

Endogenous 
They assume many values of 𝜆 in the interval 
[0.84,5] 

Cheremukhin 

and Tutino 

(2015) 

 

Endogenous 

 

They assume 𝜆 ∈ [0,0.01,0.05] 

Mackowiak 

and 

Wiederholt 

(2015) 

Endogenous 𝜆𝐹𝑖𝑟𝑚𝑠 is equal to 0.1 percent of the firm’s 

revenue in the non-stochastic steady-state and 

𝜆𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠 is equal to 0.1 percent of the 

household’s steady-state consumption 

Matějka 

(2015) 

Static Model: 1, 2  

Extreme Values: 0,  

There is not any methodology. The values are 

only used as examples. 

Dynamic Model: 1,  

 

(𝑡) =
𝑡

10
   ∀t ∈ {0…10} 

 
(𝑡)
= 1 + 𝑋(𝑡)  log 𝑋(𝑡) + (1
− 𝑋(𝑡) )  log (1 − 𝑋(𝑡) ) 
 

Where  𝑋(𝑡) = 0.5 −
0.05𝑡  ∀t ∈ {0…10} 

1. There is not any methodology. These values 

are only used as examples. 

2. No sequence of signals across periods is 

considered, just one signal, which gets tighter 

in latter periods. 

3. 𝑋(𝑡) is a noise level decreasing in 𝑡, which 

models knowledge refinement.  

With increasing time, there is a higher proba-

bility that agents receive the correct signal 

Matějka and 

McKay (2015) 
Endogenous They assume 𝜆 ∈ [0,0.4] 

Luo and 

Young (2016) 
0.2, 0.3, 0.5, 0.6, 1 

There is not any methodology. The values are 

only used as examples. 

                                                            
64 This value means that thinking about the optimal action in normal times reduces the variance of that 

action by a factor of 100. 
65 They interpret the shadow cost 𝜆 as an opportunity cost. If someone is paying more attention to the 

price setting decision means she is paying less attention to some other activity. 
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Paper  Calibration (Methodology) 

Kacperczyk, 

Van 

Nieuwerburgh 

and Veldkamp 

(2016) 

Unskilled 

investors: 𝜅 = 0 

Skilled Investors: 𝜅 =
1 (or 0.5, or 2 in some 

examples) 

There is not any methodology. The values are 

only used as examples.  

Endogenous 

They propose a numerical exercise using two 

functional cost functions: 𝑐1𝑒
𝜆 and 𝑐2𝜆

𝜓. How-

ever, they choose 𝑐1 and 𝑐2 such that on avera-

ge 𝜅 = 1, because they want to compare their 

new results with the case in which 𝜅 is exoge-

nous 

Matějka 

(2016) 

0.5, 1, 2 There is not any methodology. The values are 

only used as examples.  
*The papers reported in this table are: 

CHEREMUKHIN, Anton; RESTREPO-ECHAVARRIA, Paulina and TUTINO, Antonella “A Theory of 

Targeted Search” Working Paper (February, 2015); 54 p 

CHEREMUKHIN, Anton and TUTINO, Antonella “Information Rigidities and Asymmetric Business 

Cycles” Working Paper (December, 2015); 61 p  

DWORCZAK, Piotr. “Fiscal Policy under Rational Inattention” Working Paper (August, 2011); 39 p. 

KACPERCZYK, Marcin, VAN NIEUWERBURGH, Stijn and VELDKAMP, Laura. “A Rational Theory 

of Mutual Funds' Attention Allocation” Econometrica, Vol. 84, No.2 (March, 2016); p. 571-626. 

KASA, Kenneth. “Robustness and Information Processing” Review of Economic Dynamics, Vol. 9, Issue 

1, (January, 2006); p. 1–33. 

LEWIS, Kurt. “The Two-Period Rational Inattention Model: Accelerations and Analyses” Computational 

Economics, Vol. 33, No. 1 (February, 2009); p. 79-97. 

LUO, Yuley. “Consumption dynamics under information processing constraints” Review of Economic 

Dynamics Vol. 11, No. 2 (April, 2008); p.366–385. 

LUO, Yuley and YOUNG, Eric “Rational Inattention and Aggregate Fluctuations” The B.E. Journal of 

Macroeconomics (Contributions), vol. 9, No.1, (2009); Article 14. 

LUO, Yuley and YOUNG, Eric “Risk-Sensitive Consumption and Savings under Rational Inattention” 

American Economic Journal: Macroeconomics, vol. 2, No.4, (October, 2010); p. 281-325. 

LUO, Yuley and YOUNG, Eric “Signal Extraction and Rational Inattention” Economic Inquiry, Vol. 52, 

No. 2 (April, 2014); p. 811-829. 

LUO, Yuley and YOUNG, Eric “Induced Uncertainty, Market Price of Risk, and the Dynamics of 

Consumption and Wealth” Journal of Economic Theory, Vol.163 (May, 2016); p. 1-41.  

MAĆKOWIAK, Bartosz and WIEDERHOLT, Mirko. “Optimal Sticky Prices under Rational Inattention” 

American Economic Review, Vol. 99, No. 3 (June, 2009); p. 769-803. 

MAĆKOWIAK, Bartosz and WIEDERHOLT, Mirko. “Inattention to Rare Events”, Working Paper 

(December, 2014); 48 p.  

MAĆKOWIAK, Bartosz and WIEDERHOLT, Mirko. “Business Cycle Dynamics under Rational 

Inattention”, Review of Economic Studies, Vol. 82, No. 4 (October, 2015); p. 1502–1532. 

MATĚJKA, Filip. “Rigid Pricing and Rationally Inattentive Consumer” Journal of Economic Theory, 

Vol. 158, Part B (July, 2015); p. 656-678. 

MATĚJKA, Filip. “Rationally Inattentive Seller: Sales and Discrete Pricing” The Review of Economic 

Studies, Vol. 83, No. 3 (July, 2016); p. 1156-1188. 

MATĚJKA, Filip and McKAY, Alisdair. “Simple Market Equilibria with Rationally Inattentive 

Consumers” American Economic Review, Vol. 102, No. 3 (May, 2012); p. 24-29 

MATĚJKA, Filip and McKAY, Alisdair. “Rationally Inattention to Discrete Choices: A New Foundation 

for the Multinomial Logit Model” American Economic Review, Vol. 105, No. 1 (January, 2015); 

p. 272-298. 

MELOSI, Leonardo. “Estimating Models with Information Frictions” American Economic Journal: 

Macroeconomics, Vol. 6, No.1 (January, 2014); p. 1-31. 

MONDRIA, Jordi. “Portfolio Choice, Attention Allocation, and Price Comovement” Journal of 

Economic Theory, Vol. 145, No. 5 (September, 2010); p. 1837-1864 
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Inattention” Journal of Money, Credit and Banking, Vol. 44, No. 7 (October, 2012); p. 1375–1399.  

PACIELLO, Luigi and WIEDERHOLT, Mirko. “Exogenous Information, Endogenous Information and 

Optimal Monetary Policy” The Review of Economic Studies, Vol. 81, No. 1 (January, 2014); p. 

356-388. 

PENG, Lin. “Learning with Information Capacity Constraints” Journal of Financial and Quantitative 

Analysis, Vol. 40, No. 2 (June, 2005); p. 307-329. 

PENG, Lin and XIONG, Wei. “Investor attention, overconfidence and category learning” Journal of 

Financial Economics Vol. 80, No. 3 (June, 2006); p. 563-602. 

SAINT-PAUL, Gilles “A Quantized Approach to Rational Inattention” Working Paper (September, 

2011); 42 p. 

SIMS, Christopher. “Implications of rational inattention” Journal of Monetary Economics, Vol, 50, No.3 

(April, 2003) p. 665–690 

SIMS, Christopher. “Rational Inattention: A Research Agenda”, Working Paper (March, 2006a), 22 p. 

SIMS, Christopher. “Rational Inattention: Beyond the Linear-Quadratic Case”, American Economic 

Review Vol. 96, No. 2 (May, 2006b), p.158-163. 

TUTINO, Antonella. “The Rigidity of Choice. Lifecycle Savings with Information-Processing Limits” 

Finance and Economics Discussion Series, No. 2008-62 (2008); 65 p. 

TUTINO, Antonella. “Rationally Inattentive Macroeconomic Wedges” Journal of Economics Dynamics 

and Control, Vol. 35, Issue 3 (March, 2011); p. 344–362 

VAN NIEUWERBURGH, Stijn and VELDKAMP, Laura. “Information Immobility and the Home Bias 

Puzzle” The Journal of Finance, Vol. 64, No. 3 (June, 2009); p. 1187-1215 

WOODFORD, Michael. “Information-Constrained State-Dependent Pricing” Journal of Monetary 

Economics, Vol. 56, Supplement (2009); p. S100-S124.  

WOODFORD, Michael. “Inattentive Valuation and Reference-Dependent Choice” Working Paper (May, 
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2.7. Appendix B2: The model without interaction and with three 

unknown pieces of information.  

 
The agent 𝑖 does not know the exact value of 𝑙𝑖 and 𝑧𝑖. In particular, she has an initial 

prior about each variable, these priors are represented by 𝑙𝑖0 and 𝑧𝑖0. Given the prior, 

then the agent 𝑖 has to process “three” pieces of information in order to approach to the 

exact values of 𝑙𝑖 or 𝑧𝑖66. A priori the agent does not know these pieces but she knows 

their statistical distribution. Given these distributions and given their own processing 

capacity constraints, agent 𝑖 has to decide what and how much information she will 

process.  

We assume that the exact values of the variables 𝑙𝑖 and 𝑧𝑖 are represented by: 

 

𝑙𝑖 = 𝑙𝑖0 + 𝜀𝑖1 + 𝜀𝑖2 + 𝜀𝑖3   𝑤ℎ𝑒𝑟𝑒  𝜀𝑖𝑗 ∈ {−𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖}, . 𝑟𝑙𝑖 > 0, . 𝑙𝑖0 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛            (2.2′) 

 

Prob(𝜀𝑖𝑗 = −𝑟𝑙𝑖) = Prob(𝜀𝑖𝑗 = 0) = Prob(𝜀𝑖𝑗 = 𝑟𝑙𝑖) =
1

3
    and  

 

𝑧𝑖 = 𝑧𝑖0 + 𝜇𝑖1 + 𝜇𝑖2 + 𝜇𝑖3  𝑤ℎ𝑒𝑟𝑒  𝜇𝑖𝑠 ∈ {−𝑟𝑧𝑖 , 0, 𝑟𝑧𝑖},   𝑟𝑧𝑖 > 0, . 𝑧i0 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛        (2.3′) 

 

Prob(𝜇𝑖𝑠 = −𝑟𝑧𝑖) = Prob(𝜇𝑖𝑠 = 0) = Prob(𝜇𝑖𝑠 = 𝑟𝑧𝑖) =
1

3
. 

 

The random variables 𝜀𝑖𝑗 and 𝜇𝑖𝑠 represent the pieces of information that the agent 𝑖 

does not know about 𝑙𝑖 and 𝑧𝑖
67,68, where the parameters 𝑟𝑙𝑖 and 𝑟𝑧𝑖 are the dispersion of 

𝜀𝑖𝑗 and 𝜇𝑖𝑠 respectively. We have assumed that 𝜀𝑖𝑗 and 𝜇𝑖𝑠 have a discrete uniform 

                                                            
66 This assumption has the theoretical advantage that this is the simplest version of our model in which 

we can get a clear example in which an agent optimally (given her processing capacity constraint) decides 

to: (1) pay full attention only to the aggregate conditions, (2) pay full attention only to the idiosyncratic 

conditions or (3) pay partial attention to the aggregate and idiosyncratic conditions. 
67 Therefore, the aggregate terms ∑ 𝜀𝑖j

3
𝑗=1  and ∑ 𝜇is

3
𝑠=1  represent the amounts of information that each 

agent 𝑖 does not know about 𝑙𝑖 and 𝑧𝑖 respectively. 
68 You can increase or decrease the number of unknown pieces of information in the model (i.e. the 

number of the terms represented by 𝜀𝑖𝑗 and 𝜇𝑖𝑠), but the main results of the model do not change. In this 

appendix, we are not assuming a more general version of the model in which there is an undetermined 

number of unknown pieces of information because we could not find a way to generalize the equations 

that determine the entropy level of the variables 𝑙𝑖 and 𝑧𝑖: 
 

𝐻W(𝑙𝑖) = −∑ {[Prob
𝑙𝑖0+∑ 𝜀𝑖𝑗

J
j=1

(Eventw)] log2 [Prob𝑙𝑖0+∑ 𝜀𝑖𝑗
J
j=1

(Eventw)]}
# of Events
w=1    and 

𝐻D(𝑧𝑖) = −∑ {[Prob𝑧i0+∑ 𝜇𝑖𝑠
S
s=1

(Eventd)] log2 [Prob𝑧i0∑ 𝜇𝑖𝑠
S
s=1

(Eventd)]}
# of Events
𝑑=1 ) 

 

such that these equations can be compared with the equations (2.4) or (2.5). The main problem with 

the generalization is that in the equation of 𝐻W(𝑙𝑖) [and something similar happens in the equation of 

𝐻D(𝑧𝑖)] there are different combinations of 𝜀𝑖𝑗 [or 𝜇𝑖𝑠 in the case of 𝐻D(𝑧𝑖)] that represent the same 

Eventw = 𝑙𝑖0 +∑ 𝜀𝑖𝑗
J
j=1  where 𝜀𝑖𝑗 ∈ {−𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖} (e.g. the event 𝑙𝑖 = 𝑙𝑖0 can be represented in many 

different ways like [𝑙𝑖0 + 𝑟𝑙𝑖 − 𝑟𝑙𝑖 + ∑ 0
J
j=3 ] or [𝑙𝑖0 +∑ 0

J
j=1 ] among others).  
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independent distribution; however, given our priors, notice that the distributions of the 

variables 𝑙𝑖 and 𝑧𝑖 are discrete but not uniform69. 

 

Depending on the level of uncertainty about 𝑙𝑖 we have in our model four levels of 

entropy: 

 

(1) If 𝜀𝑖1, 𝜀𝑖2 and 𝜀𝑖3 are unknown, then 

     (𝜀𝑖1 + 𝜀𝑖2 + 𝜀𝑖3) ∈ {−3𝑟𝑙𝑖 , −2𝑟𝑙𝑖 , −𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖 , 2𝑟𝑙𝑖 , 3𝑟𝑙𝑖}; where 

     𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(−3𝑟𝑙𝑖) = 𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(3𝑟𝑙𝑖) =
1

27
;  𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(−2𝑟𝑙𝑖) =. 

     𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(2𝑟𝑙𝑖) =
3

27
 ; 𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(−𝑟𝑙𝑖) = 𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(−𝑟𝑙𝑖) =

6

27
  and  

    𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2+𝜀𝑖3(0) =
7

27
. 

 

Therefore, in this case the entropy about 𝑙𝑖 is: 

     𝐻0(𝑙𝑖) = −2 (
1

27
log2

1

27
+

3

27
log2

3

27
+

6

27
log2

6

27
) −

7

27
log2

7

27
= 2.526 bits70 

 

(2) If 𝜀𝑖1 and 𝜀𝑖2 are unknown, then (𝜀𝑖1 + 𝜀𝑖2) ∈ {−2𝑟𝑙𝑖 , −𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖 , 2𝑟𝑙𝑖}; where 

   𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2(−2𝑟𝑙𝑖) = 𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2(2𝑟𝑙𝑖) =
1

9
 ; 𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2(−𝑟𝑙𝑖) =

   𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2(−𝑟𝑙𝑖) =
2

9
; 𝑃𝑟𝑜𝑏𝜀𝑖1+𝜀𝑖2(0) =

3

9
. 

 

Then, in this case the entropy about 𝑙𝑖 is:  𝐻1(𝑙𝑖) = −2 (
1

9
log2

1

9
+
2

9
log2

2

9
) −

3

9
log2

3

9
= 2.197 bits 

 

(3) If 𝜀𝑖1 is unknown, then 𝜀𝑖1 ∈ {−𝑟𝑙𝑖 , 0, 𝑟𝑙𝑖} where 𝑃𝑟𝑜𝑏𝜀𝑖1(−𝑟𝑙𝑖) = 𝑃𝑟𝑜𝑏𝜀𝑖1(0) =

𝑃𝑟𝑜𝑏𝜀𝑖1(𝑟𝑙𝑖) =
1

3
  

 

Then, in this case the entropy about 𝑙𝑖 is:  𝐻2(𝑙𝑖) = −3 (
1

3
log2

1

3
) = 1.585 bits 

 

(4) If all the elements 𝜀𝑖𝑠 are known , then the entropy about 𝑙𝑖 is: 𝐻3(𝑙𝑖) = 1 log2 1 =
log2 1 = 0 bits (i.e. there is no uncertainty about 𝑙𝑖) 
 

On the other hand, given the probabilistic distribution of the three unknown pieces of 

𝑧𝑖, and using the same procedure that we used with 𝑙𝑖, we get: 𝐻0(𝑧𝑖) = 2.526 bits, 

𝐻1(𝑧𝑖) = 2.197 bits, 𝐻2(𝑧𝑖) = 1.585 bits and 𝐻3(𝑧𝑖) = 0 bits. 

                                                            
69 More specifically: 𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0−3𝑟𝑙𝑖

= 𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0+3𝑟𝑙𝑖
=

1

27
;  𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0−2𝑟𝑙𝑖

= 𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0+2𝑟𝑙𝑖
=

3

27
 ; 

𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0−𝑟𝑙𝑖
= 𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0+𝑟𝑙𝑖

=
6

27
 𝑎𝑛𝑑 𝑃𝑟𝑜𝑏𝑙𝑖=𝑙𝑖0 =

7

27
 . Similarly, 𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0−3𝑟𝑧𝑖

= 𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0+3𝑟𝑧𝑖
=

1

27
;  𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0−2𝑟𝑧𝑖

= 𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0+2𝑟𝑧𝑖
=

3

27
; 𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0−𝑟𝑧𝑖

= 𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0+𝑟𝑧𝑖
=

6

27
 𝑎𝑛𝑑 𝑃𝑟𝑜𝑏𝑧𝑖=𝑧𝑖0 =

7

27
 . 

70 In information theory, the level of entropy is usually measured in terms of bits, nats, or bans. To 

better understand the meaning of one bit, consider the event in which you throw a fair coin (i.e. the 

probability of heads is the same as the probability of tails; that is ½); therefore, 𝐻(𝑐𝑜𝑖𝑛) = −2 log2
1

2
= 1 

bit, it means that once you have thrown the coin and you have learnt its outcome, then you have gained 

one bit of information (i.e. your uncertainty has been reduced by one bit). 
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Table B2.1 summarizes the amounts of attention that agent 𝑖 has to spend if she 

wants to reduce all or part of her entropy from 𝐻0(𝑧𝑖) and 𝐻0(𝑙𝑖) to any other level. For 

instance, if agent 𝑖 wants to know the terms 𝜇𝑖3 and 𝜀𝑖3, then she has to spend 0.66 bits 

of attention (i.e. 𝐼1(𝑧𝑖)+𝐼1(𝑙𝑖)). In addition, if she pays full attention to both variables 

such that at the end these variables are completely known then she needs to spend 5.05 

bits of attention; on the other hand, if she does not pay attention to any variable then she 

spends 0 bits of attention.     

 

Table B2.1 

Amounts of attention used by agent 𝑖 to reduce the entropy of 𝑙𝑖 and 𝑧 

from  [𝐻0(𝑧𝑖); 𝐻0(𝑙𝑖)] to [𝐻0+𝑆1(𝑧);𝐻0+𝑆2(𝑙𝑖)] where 𝑆1, 𝑆2 ∈ {0,1,2,3} 

𝐼(𝑧𝑖) + 𝐼(𝑙𝑖) 𝐼3(𝑧𝑖) 𝐼2(𝑧𝑖) 𝐼1(𝑧𝑖) 𝐼0(𝑧𝑖) 
𝐼3(𝑙𝑖) 5.05 bits 3.47 bits 2.86 bits 2.53 bits 

𝐼2(𝑙𝑖) 3.47 bits 1.88 bits 1.27 bits 0.94 bits 

𝐼1(𝑙𝑖) 2.86 bits 1.27 bits 0.66 bits 0.33 bits 

𝐼0(𝑙𝑖) 2.53 bits 0.94 bits 0.33 bits 0 bits 

 

In the first stage of her rational inattention problem, agent 𝑖 chooses the amount of 

attention she pays to each random variable such that the utility obtained in the second 

stage of the problem is the highest possible, where her choice is affected by the 

processing capacity constrain 𝜅 that this agent has71.  

 

Table B2.2 uses the equations (2.2’), (2.3’) and (2.5) to get the losses of agent 𝑖 that are 

due to the information constraints (i.e. (𝐿𝑖
𝐼𝐶)

[𝐼T(𝑧);𝐼T(𝑙𝑖)]
=

𝑊𝑖𝜉
2

2(𝑏+𝑎)
); that is, this table 

shows the losses of agent 𝑖 depending on the different levels of attention that she pays to 

𝑙𝑖 and 𝑧𝑖. When agent 𝑖 has full information about both variables there are no losses due 

to the lacks of information (i.e. (𝐿𝑖
𝐼𝐶)

[𝐼3(𝑧𝑖);𝐼3(𝑙𝑖)]
= 0) and these losses are the highest 

when she does not have any information about both variables (i.e. (𝐿𝑖
𝐼𝐶)

[𝐼0(𝑧𝑖);0(𝑙𝑖)]
=

𝑊𝑖

𝑏+𝑎
[𝑎2𝑟𝑧𝑖

2 + (
2

3
) 𝑏2𝑟𝑙𝑖

2]). Proposition 1’ summarizes the main results from Table B2.2.  

 

Table B2.2 

Losses of Agent 𝑖 that are due to the Lacks of Information: (𝐿𝑖
𝐼𝐶)

[𝐼T(𝑧);𝐼T(𝑙𝑖)]
 

 𝐼3(𝑧𝑖) 𝐼2(𝑧𝑖) 𝐼1(𝑧𝑖) 𝐼0(𝑧𝑖) 

𝐼3(𝑙𝑖) 0 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑎2𝑟𝑧𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
2

3
) 𝑎2𝑟𝑧𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[𝑎2𝑟𝑧𝑖

2] 

𝐼2(𝑙𝑖) 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑎2𝑟𝑧𝑖

2 + (
1

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
2

3
) 𝑎2𝑟𝑧𝑖

2 + (
1

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[𝑎2𝑟𝑧𝑖

2 + (
1

3
) 𝑏2𝑟𝑙𝑖

2] 

𝐼1(𝑙𝑖) 
𝑊𝑖

𝑏 + 𝑎
[(
2

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑎2𝑟𝑧𝑖

2 + (
2

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
2

3
) 𝑎2𝑟𝑧𝑖

2 + (
2

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[𝑎2𝑟𝑧𝑖

2 + (
2

3
) 𝑏2𝑟𝑙𝑖

2] 

𝐼0(𝑙𝑖) 
𝑊𝑖

𝑏 + 𝑎
[𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑎2𝑟𝑧𝑖

2 + 𝑏2𝑟𝑙𝑖
2] 

𝑊𝑖

𝑏 + 𝑎
[(
2

3
) 𝑎2𝑟𝑧𝑖

2 + 𝑏2𝑟𝑙𝑖
2] 

𝑊𝑖

𝑏 + 𝑎
[𝑎2𝑟𝑧𝑖

2 + 𝑏2𝑟𝑙𝑖
2] 

                                                            
71 For instance, if 𝜅 = 3 , then from Table B2.1 we know that the agent 𝑖 only can choose the amount 

of attention she pays from the set:  𝐴(𝑧𝑖 , 𝑙𝑖) = {(𝐼0(𝑧𝑖), 𝐼0(𝑙𝑖)), (𝐼0(𝑧𝑖), 𝐼1(𝑙𝑖)), (𝐼1(𝑧𝑖), 𝐼0(𝑙𝑖)), (𝐼1(𝑧𝑖), 𝐼1(𝑙𝑖)),  

(𝐼0(𝑧𝑖), 𝐼2(𝑙𝑖)), (𝐼2(𝑧𝑖), 𝐼0(𝑙𝑖)), (𝐼2(𝑧𝑖), 𝐼1(𝑙𝑖))(𝐼1(𝑧𝑖), 𝐼2(𝑙𝑖)), (𝐼2(𝑧𝑖), 𝐼2(𝑙𝑖))(𝐼0(𝑧𝑖), 𝐼3(𝑙𝑖)), (𝐼3(𝑧𝑖), 𝐼0(𝑙𝑖)),    

(𝐼3(𝑧𝑖), 𝐼1(𝑙𝑖)), (𝐼1(𝑧𝑖), 𝐼3(𝑙𝑖)), (𝐼2(𝑧𝑖), 𝐼2(𝑙𝑖))}. That is, the cells of Table 2.1 that belong to the set 

𝐴𝐶(𝑧𝑖 , 𝑙𝑖) = {(𝐼3(𝑧𝑖), 𝐼3(𝑙𝑖)),(𝐼2(𝑧), 𝐼3(𝑙𝑖)), (𝐼3(𝑧𝑖), 𝐼2(𝑙𝑖))} are not available to her. 
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Proposition 1’: In our model we get the following results:  

 

1. (𝐿𝑖
𝐼𝐶)[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)] < (𝐿𝑖

𝐼𝐶)[𝐼𝑇′(𝑧𝑖);𝐼𝑉′(𝑙𝑖)] if  𝑇 > 𝑇′ and 𝑉 ≥ 𝑉′. That is, the losses of agent 

𝑖 are lower if she pays more attention to 𝑧𝑖 and at least the same attention to 𝑙𝑖. 
 

2. (𝐿𝑖
𝐼𝐶)[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)] < (𝐿𝑖

𝐼𝐶)[𝐼𝑇′(𝑧𝑖);𝐼𝑉′(𝑙𝑖)] if  𝑉 > 𝑉′ and 𝑇 ≥ 𝑇′. That is, the losses of agent 

𝑖 are lower if she pays more attention to 𝑙𝑖 and at least the same attention to 𝑧𝑖.  
 

3. (𝐿𝑖
𝐼𝐶)

[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)]
< (𝐿𝑖

𝐼𝐶)
[𝐼𝑇−𝑀(𝑧𝑖);𝐼𝑉+𝑁(𝑙𝑖)]

 if  [𝑎𝑟𝑧𝑖]
2
>

𝑁

𝑀
[𝑏𝑟𝑙𝑖]

2
  

(𝐿𝑖
𝐼𝐶)

[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)]
> (𝐿𝑖

𝐼𝐶)
[𝐼𝑇−𝑀(𝑧𝑖);𝐼𝑉+𝑁(𝑙𝑖)]

 if  [𝑎𝑟𝑧𝑖]
2
<

𝑁

𝑀
[𝑏𝑟𝑙𝑖]

2
 where 

𝑇 ∈ {0,1,2};  𝑉 ∈ {1,2,3};  𝑀 ∈ {1,2,3};  𝑁 ∈ {1,2,3}; (𝑉 + 𝑁) ≤ 3 𝑎𝑛𝑑 (𝑇 − 𝑀) ≥ 0 

4. (𝐿𝑖
𝐼𝐶)

[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)]
< (𝐿𝑖

𝐼𝐶)
[𝐼𝑇+𝑀(𝑧𝑖);𝐼𝑉−𝑁(𝑙𝑖)]

 if  [𝑎𝑟𝑧𝑖]
2
<

𝑁

𝑀
[𝑏𝑟𝑙𝑖]

2
  

(𝐿𝑖
𝐼𝐶)

[𝐼𝑇(𝑧𝑖);𝐼𝑉(𝑙𝑖)]
> (𝐿𝑖

𝐼𝐶)
[𝐼𝑇+𝑀(𝑧𝑖);𝐼𝑉−𝑁(𝑙𝑖)]

 if  [𝑎𝑟𝑧𝑖]
2
>

𝑁

𝑀
[𝑏𝑟𝑙𝑖]

2
 where 

𝑇 ∈ {1,2,3};  𝑉 ∈ {0,1,2};   𝑀 ∈ {1,2,3};  𝑁 ∈ {1,2,3}; (𝑉 − 𝑁) ≥ 0 and (𝑇 + 𝑀) ≤ 3. 
 

Proof: It is direct from Table B2.2                                                                               

 

Proposition 2’ shows in our model what are the optimal choices of attention 

depending on the value of 𝜅.  

 

Proposition 2’: In our model, given 𝜅, the optimal choices of attention of agent 𝑖 are  

 

 [𝐼3(𝑧𝑖); 𝐼3(𝑙𝑖)] 𝑖f 𝜅 ∈ [5.05,+∞)  

 [𝐼3(𝑧𝑖); 𝐼2(𝑙𝑖)] 𝑖f 𝜅 ∈ [3.47,  5.05) and [𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
 

 [𝐼2(𝑧𝑖); 𝐼3(𝑙𝑖)] 𝑖f 𝜅 ∈ [3.47,  5.05) and [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
 

 [𝐼3(𝑧𝑖); 𝐼1(𝑙𝑖)] 𝑖f 𝜅 ∈ [2.86,  3.47) and [𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
 

 [𝐼1(𝑧𝑖); 𝐼3(𝑙𝑖)] 𝑖f 𝜅 ∈ [2.86,  3.47) and [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
 

 [𝐼3(𝑧𝑖); 𝐼0(𝑙𝑖)]𝑖f 𝜅 ∈ [2.53,  2.86) and [𝑎𝑟𝑧𝑖]
2
> 2[𝑏𝑟𝑙𝑖]

2
 

 [𝐼2(𝑧𝑖); 𝐼2(𝑙𝑖)] 𝑖f 𝜅 ∈ [2.53,  2.86) and 
1

2
[𝑏𝑟𝑙𝑖]

2
< [𝑎𝑟𝑧𝑖]

2
< 2[𝑏𝑟𝑙𝑖]

2
 

 [𝐼0(𝑧𝑖); 𝐼3(𝑙𝑖)] 𝑖f 𝜅 ∈ [2.53,  2.86) and [𝑎𝑟𝑧𝑖]
2
<

1

2
[𝑏𝑟𝑙𝑖]

2
 

 [𝐼2(𝑧𝑖); 𝐼2(𝑙𝑖)] 𝑖f 𝜅 ∈ [1.88,  2.53) 

 [𝐼2(𝑧𝑖); 𝐼1(𝑙𝑖)] 𝑖f 𝜅 ∈ [1.27,  1.88) and [𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
 

 [𝐼1(𝑧𝑖); 𝐼2(𝑙𝑖)] 𝑖f 𝜅 ∈ [1.27,  1.88) and [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
 

 [𝐼2(𝑧𝑖); 𝐼0(𝑙𝑖)] 𝑖f 𝜅 ∈ [0.94,  1.27) and [𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
 

 [𝐼0(𝑧𝑖); 𝐼2(𝑙𝑖)] 𝑖f 𝜅 ∈ [0.94,  1.27) and [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
 

 [𝐼1(𝑧𝑖); 𝐼1(𝑙𝑖)] 𝑖f 𝜅 ∈ [0.66,  0.94) 

 [𝐼1(𝑧𝑖); 𝐼0(𝑙𝑖)] 𝑖f 𝜅 ∈ [0.33,  0.66) and [𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
 

 [𝐼0(𝑧𝑖); 𝐼1(𝑙𝑖)] 𝑖f 𝜅 ∈ [0.33,  0.66) and [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
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 [𝐼0(𝑧𝑖); 𝐼𝑜(𝑙𝑖)]  𝑖f 𝜅 ∈ (−∞, 0.32) 
 

Proof: It is direct from Tables 2.1’ ad 2.2’72                                                                

 

Therefore, in Proposition 2’ for each value of 𝜅 we have arrived to a conclusion 

equivalent to the theoretical result obtained by Mackowiak and Wiederholt (2009): 

“When 𝑙𝑖 is more variable or more important than 𝑧𝑖 (i.e. 𝑎𝑟𝑧𝑖 < 𝑏𝑟𝑙𝑖), the agent 𝑖 pays 

more attention to 𝑙𝑖 than to 𝑧𝑖. Similarly, if 𝑧𝑖 is more variable or more important than 

𝑙𝑖 (i.e. 𝑎𝑟𝑧𝑖 > 𝑏𝑟𝑙𝑖), the agent 𝑖 pays more attention to 𝑧𝑖 than to 𝑙𝑖”.  

For instance, if 𝜅 = 3 then the optimal levels of attention are [𝐼3(𝑧𝑖); 𝐼1(𝑙𝑖)] if 

[𝑎𝑟𝑧𝑖]
2
> [𝑏𝑟𝑙𝑖]

2
and [𝐼1(𝑧𝑖); 𝐼3(𝑙𝑖)] if [𝑎𝑟𝑧𝑖]

2
< [𝑏𝑟𝑙𝑖]

2
. That is, if  [𝑎𝑟𝑧𝑖]

2
> [𝑏𝑟𝑙𝑖]

2
  

then agent 𝑖 pays full attention to 𝑧𝑖 and partial attention to 𝑙𝑖73. On the other hand, if 

 [𝑎𝑟𝑧𝑖]
2
< [𝑏𝑟𝑙𝑖]

2
  then agent 𝑖 pays full attention to 𝑙𝑖 and partial attention to 𝑧𝑖74  

Finally, notice in Proposition 2’ that when the processing capacity constraint of agent 

𝑖 is 𝜅 ∈ [2.53,  2.86), then she can: pay full attention to 𝑧𝑖, pay full attention to 𝑙𝑖 or partial 

attention to 𝑧𝑖 and 𝑙𝑖 
  

                                                            
72 In addition, notice from Table B2.2 that [𝐼3(𝑧𝑖); 𝐼0(𝑙𝑖)] is always a better (worse) choice than 

[𝐼0(𝑧𝑖); 𝐼3(𝑙𝑖)] when [𝑎𝑟𝑧]
2 > [𝑏𝑟𝑙]

2 ([𝑎𝑟𝑧]
2 < [𝑏𝑟𝑙]

2). 
73 In this case agent 𝑖 only pays attention to 𝜀𝑖1, 𝜇i1, 𝜇2 and 𝜇i3 (i.e. 𝜀𝑖3 and 𝜀𝑖2 remain unknown) 
74 In this case agent 𝑖 only pays attention to 𝜇i1, 𝜀𝑖1, 𝜀𝑖2 and 𝜀𝑖3 (i.e. 𝜇i3 and 𝜇i2 remain unknown). 
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2.8. Appendix C2: Proof of Proposition 3  
 

We have the following three cases: 

 

1. If all agents have complete information, then the solution to the optimization 

problem proposed in equation (2.1) is: 

 

𝑞𝑖
∗(𝐶𝐼)

=
𝑏(𝑁−1)+𝑎

(𝑏+𝑎)(𝑁−1)+𝑎
𝑙𝑖 +

𝑎

(𝑏+𝑎)(𝑁−1)+𝑎
∑ 𝑙𝑗≠𝑖
N
j=1 +

𝑎

𝑏
(
𝑁

𝑁−1
) 𝑣   ∀𝑖, 𝑗 = 1,2, …𝑁  and 

 

𝑄∗(𝐶𝐼) ≡ ∑ 𝑞𝑖
∗(𝐶𝐼)𝑁

𝑖=1 = ∑ 𝑙i
𝑁
𝑖=1 +

𝑎

𝑏
(
𝑁2

𝑁−1
) 𝑣.  

 

Notice that even with complete information, the optimal choice of agent 𝑖 is 

affected by her own idiosyncratic conditions, the idiosyncratic conditions of the 

other agents and the aggregate conditions. 

 

2. If 𝑛 agents have incomplete information (e.g. the first 𝑛 agents) and the rest have 

complete information (e.g. the last 𝑁 − 𝑛 agents) we have (the symbol “~” means 

that some agents have complete information and the others have incomplete 

information):  

 

𝑞̃𝑖
∗ =

𝑏(𝑁−1)+𝑎

𝑏(𝑁−1)+𝑎𝑁
𝑙𝑖 +

𝑎

𝑏(𝑁−1)+𝑎𝑁
∑ 𝑙𝑗≠𝑖
𝑁
𝑗=1 +

𝑎

𝑏
(
𝑁

𝑁−1
) 𝑣 −

𝑏(𝑁−1)+𝑎

𝑏(𝑁−1)+𝑎𝑁
(∆𝑙𝑖 +

𝑎

𝑏
∆𝑧𝑖) −

𝑎

𝑏(𝑁−1)+𝑎𝑁
(∑ ∆𝑙𝑗≠𝑖

𝑛
𝑗=1 +

𝑎

𝑏
∑ ∆𝑧𝑗≠𝑖
𝑛
𝑗=1 ), then 

 

𝑞̃𝑖
∗ = 𝑞̂𝑖

∗(𝐶𝐼)
−

𝑏(𝑁−1)+𝑎

𝑏(𝑁−1)+𝑎𝑁
(∆𝑙𝑖 +

𝑎

𝑏
∆𝑧𝑖) −

𝑎

𝑏(𝑁−1)+𝑎𝑁
(∑ ∆𝑙𝑗≠𝑖

𝑛
𝑗=1 +

𝑎

𝑏
∑ ∆𝑧𝑗≠𝑖
𝑛
𝑗=1 ),  

 

𝑞̃𝑖
∗(𝐶𝐼) =

𝑏(𝑁−1)+𝑎

𝑏(𝑁−1)+𝑎𝑁
𝑙𝑖 +

𝑎

𝑏(𝑁−1)+𝑎𝑁
∑ 𝑙𝑗≠𝑖
𝑁
𝑗=1 +

𝑎

𝑏
(
𝑁

𝑁−1
) 𝑣 −

𝑎

𝑏(𝑁−1)+𝑎𝑁
(∑ ∆𝑙𝑖

𝑛
𝑗=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
𝑛
𝑗=1 ), then 

𝑞̃𝑖
∗(𝐶𝐼) = 𝑞𝑖

∗(𝐶𝐼)
−

𝑎

𝑏(𝑁−1)+𝑎𝑁
(∑ ∆𝑙𝑖

𝑛
𝑗=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
𝑛
𝑗=1 )  and 

𝑄̃∗ ≡ 𝑞̃𝑗
∗(𝐶𝐼)

+ 𝑞̃𝑖
∗ = ∑ 𝑙i

𝑁
𝑖=1 +

𝑎

𝑏
(
𝑁2

𝑁−1
) 𝑣 − (∑ ∆𝑙𝑖

𝑛
𝑗=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
𝑛
𝑗=1 ) = 𝑄∗(𝐶𝐼) −

 (∑ ∆𝑙𝑖
𝑛
𝑗=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
𝑛
𝑗=1 ). 

 

Notice that the choices of all agents are affected by all information constraints. 

Finally, notice that the aggregate deviation due to the information constraints is 

higher than the individual deviations. 

 

3. If all agents have incomplete information, then: 
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𝑞𝑖
∗ =

𝑏(𝑁−1)+𝑎

𝑏(𝑁−1)+𝑎𝑁
𝑙𝑖 +

𝑎

𝑏(𝑁−1)+𝑎𝑁
∑ 𝑙𝑗≠𝑖
𝑁
𝑗=1 +

𝑎

𝑏
(
𝑁

𝑁−1
) 𝑣 −

1

𝑏(𝑁−1)+𝑎𝑁
[(𝑏(𝑁 − 1) +

𝑎)∆𝑙𝑖 + 𝑎∑ ∆𝑙𝑗≠𝑖
𝑁
𝑗=1 ] − 

𝑎

𝑏[𝑏(𝑁−1)+𝑎𝑁]
[(𝑏(𝑁 − 1) + 𝑎)∆𝑧𝑖 + 𝑎∑ ∆𝑧𝑗≠𝑖

𝑁
𝑗=1 ], then 

𝑞𝑖
∗ = 𝑞𝑖

∗(𝐶𝐼)
− [

𝑏(𝑁−1)+𝑎

𝑏(𝑁−1)+𝑎𝑁
[∑ ∆𝑙𝑗≠𝑖

𝑁
𝑗=1 +

𝑎

𝑏
∆𝑧𝑖] +

𝑎

𝑏(𝑁−1)+𝑎𝑁
[∆𝑙𝑗≠𝑖 +

𝑎

𝑏
∑ ∆𝑧𝑗≠𝑖
𝑁
𝑗=1 ]] and 

 

𝑄∗ ≡ ∑ 𝑞𝑖
∗𝑁

𝑖=1 = ∑ 𝑙i
𝑁
𝑖=1 +

𝑎

𝑏
(
𝑁2

𝑁−1
) 𝑣 − (∑ ∆𝑙𝑖

𝑁
𝑖=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
𝑁
𝑖=1 ) = 𝑄∗(𝐶𝐼) −

(∑ ∆𝑙𝑖
𝑁
𝑖=1 +

𝑎

𝑏
∑ ∆𝑧𝑖
𝑁
𝑖=1 ).   

 

Notice that the choice of each agent is affected by her own information constraint 

and the information constraints of the other agents. However, each agent is more 

affected by her own information constraint. We also have again that the aggregate 

deviation due to the information constraints is higher than the individual deviations. 

 

Since there are differences between 𝑞𝑖
∗(𝐶𝐼)

 respect to 𝑞𝑖
∗, 𝑞̃i

∗ and 𝑞̃𝑖
∗(𝐶𝐼)

, and between 

𝑄∗(𝐶𝐼) respect to 𝑄̃∗ and 𝑄∗ then our proposition has been proved                                    
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2.9. Appendix D2: Instructions75 
 

Before we begin, there are two important rules. First, please do not speak to any 

other participant during the experiment. Second, please do not use the computer for any 

activity other than interacting with the software (e.g. email, or web-surfing). The reason 

for these two rules is that we are interested in how you make decisions on your own. 

Talking to other people or using the computer for other activities makes it harder for us 

to learn about your decision making.  

If you follow these instructions and think carefully you can earn a good amount of 

money. This will be paid to you in cash at the end of the experiment.  

 

How does the experiment work? 
 

The experiment is divided in four stages, the first one includes 5 rounds, the second 

one 15, the third one 10 and the fourth one 20 (i.e. you will participate in 50 rounds 

during the experiment). Your main goal in each round is to get the highest possible 

score. Your earnings (in €) in each round are equal to the score that you obtain in 

the round divided by 1000 (i.e. 1000 points =1€). In all rounds you can get positive or 

negative scores. Therefore, in each round try to make the best decisions to ensure 

positive earnings. To avoid big losses, if in a specific round you get a score lower than -

2000 points then at the moment of calculating your earnings we will assume that your 

score has been -2000 points. Therefore  

 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 =  ∑ 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑖𝑛 𝑟𝑜𝑢𝑛𝑑 𝑗40
𝑗=1 = [∑

𝑚𝑎𝑥{−2000,𝑆𝑐𝑜𝑟𝑒 𝑖𝑛 𝑟𝑜𝑢𝑛𝑑 𝑗}

1000

40
𝑗=1 ] €  

 

At the end of each round you will be informed about your score in the round. 

 

Before the beginning of each stage of the experiment, I will read the instructions of 

the stage aloud in order to ensure you have a good comprehension of the stage. All 

stages in the experiment are quite similar. Therefore, I will spend a considerable amount 

of time explaining the Stage 1 such that the other stages will be easier to understand.  

Read this page again, if you have a question of any sort raise your hand and wait 

until I give you the word. 

 

 

STAGE 1 (Rounds 1 to 5) 
 

In each round you will see a line named “Real Value” that represents a range of 

integer numbers (for instance, in Figure C2.1 this line represents the integer numbers 

that are higher or equal to 19 and lower or equal to 62), the white squares symbolize the 

numbers that bound this line. Inside the Real Value line there are two numbers, the red 

one and the purple one, which are symbolized by a red square and a purple square 

respectively (in Figure C2.1, these two numbers are 28 and 43). The numbers 

symbolized by the white, red and purple squares are different in each round and are not 

the same for all the participants in the experiment. 

                                                            
75  Translated from Spanish into English 
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Figure C2.1. Real Value Line 

 
 

In each round you have 60 seconds to choose all integer numbers you reach or you 

want to choose (later I will give you details about the way you can choose numbers); 

however, take into account that the score you get in each round “only” depends on the 

last chosen number during the round. More specifically, in a specific round you will 

get a high score if your last chosen number is at the same time a number close to 

the red and to the purple numbers of the Real Value line. In some rounds you will 

get a higher score if you chose a number closer to the red number than to the purple 

number and in others the opposite happens (later I will give you more details about it). 

During the course of each round your last chosen number will be symbolized by a black 

square in the Real Value line (e.g. in Figure 1 the last number chosen by the participant 

is the number 30).  

Figure C2.2 shows the scores you can get in each round depending on your last 

chosen number. In particular, note the following: 

 

(1) The Maximum Score you can get in each round is generally a score between 100 

and 2000 (Figure C2.2a). The Maximum Score and the number with this score 

won’t be revealed to you, these are different for each participant and change 

randomly from one round to the other. 

(2) Your score will be lower if your last chosen number is further from the number with 

the Maximum Score. For instance, from the four numbers that are explicitly 

referenced in Figure C2.2b, the number with the highest score is 𝐴4 and the number 

with the lowest score is 𝐴1.   

(3) At the left hand side (similarly, at the right hand side) of the number that has the 

Maximum Score the difference in the score between two equidistant numbers is 

lower if these numbers are nearer to the number that has the Maximum Score (e.g. 

in Figure 2b you can appreciate that 𝐴2 − 𝐴1 = 𝐴3 − 𝐴2 = 𝐴4 − 𝐴3 but 𝑃2 − 𝑃1 >
𝑃3 − 𝑃2 > 𝑃4 − 𝑃3) 

 

Figure C2.2a.  

Scores you can get in each round 

Figure C2.2b.  

Example: 𝐴2 − 𝐴1 = 𝐴3 − 𝐴2 = 𝐴4 − 𝐴3  

but 𝑃2 − 𝑃1 > 𝑃3 − 𝑃2 > 𝑃4 − 𝑃3 
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Notice that in Figure C2.2 we do not specify the range in which you can choose 

numbers (i.e. in the figure you cannot see the numbers symbolized by the white squares 

that bound the line in Figure 1). However, do not worry because in all rounds the range 

of integer numbers which you can choose always includes the number that has the 

Maximum Score; but, be careful because this range also includes numbers with 

negative scores. 

During the rounds of Stage 1 of the experiment you will see a screen similar to the 

screen that appears in Figure C2.3. Remember that in each round you have 60 seconds 

to choose all integer numbers you reach or you want to choose (do not forget that your 

score in each round depends “only” in your last chosen number; however, the rest 

of chosen numbers can be useful to do a better choice); in the top at the right hand side 

of the screen you are informed about the number of seconds you have before the end of 

the round (e.g. in Figure C2.3 the participant has 35 seconds before the end of the 

round). 

The way you choose the numbers in each round is the following: Type every chosen 

number in the cell that appears in the middle of the screen besides the tag “Your 

Number” and every time you type a number press the button  (if you do not 

press this button then the typed number won’t be taken into account).  

 

Figure C2.3. Example of the kind of screen you will see during the Stage 1 

 
 

 

What happens every time you press the button ? 
 

Three things happen:  

 

1. The last typed number will appear symbolized by a black square in the Real Value 

line. 
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2. The last typed number and its corresponding score will be reported below the cell 

where you typed it (e.g. in Figure C2.3 the last typed number was 30 and the score 

that corresponds to that number is 994)  

3. The last typed number appears at the bottom of the table that is at the right hand side 

of the screen. This table presents the history of the numbers chosen by you during 

the round and the score that correspond to each number (e.g. the numbers chosen, in 

order from the first to the last, by the participant in Figure C2.3 were 31, 25, 50, 40 

and 30).  

 

Finally, notice that at the bottom of the screen you will be informed how your score 

is affected depending on the proximity of your chosen number respect to the red and 

purple numbers. For instance, at the bottom of Figure C2.3 there is a message that says: 

 

 
 

These percentages remain constant during the round, change from one round to the 

other and are different for each participant. 

Please, read the instructions of this stage again. If the instructions are not clear to 

you, or you have a question of any sort, please raise your hand and sit quietly until I 

come by to listen to your question. Do not hesitate to ask for help because if you are 

confused or make a mistake, it could reduce your earnings. The answer to your question 

might also be helpful for others to hear; if it is, I will repeat your question out loud, and 

the answer, so everyone can hear them. 

 

 

STAGE 2 (Rounds 6 to 20) 
 

The instructions of this stage are the same of Stage 1 except that you only will know 

exactly the red or the purple number of the Real Value line (the other number will be 

known with some uncertainty). More specifically, at the beginning of each round you 

will see a screen similar to the screen that appears in Figure C2.4. In this screen you 

have to choose (pressing with the mouse the corresponding button) which of the two 

kinds of numbers that appear in the Real Value line you want to know exactly. 

In order to make a good choice notice that in Figure C2.4 you are informed about: 

 

1. The “Potential Values” line: this line tells you using numbers symbolized with 

circles the three probable values that the red and purple numbers can take in the 

Real Value line. All numbers of the same color have the same probability (e.g. in 

Figure 4 the Potential Values line specifies that the purple number in the Real Value 

line can be 80, 100 or 120 and the probability of each value is 33%). 

2. How is affected your score depending on the proximity, in the Real Value line, of 

your chosen number respect to the red and purple numbers. For instance, at the 

bottom of Figure C2.4 there is a message that says: 
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These percentages remain constant during the round, change from one round to the 

other and are different for each participant.  

 

Figure C2.4. Example of the kind of screen that  

appears at the beginning of the rounds in Stage 2 

 
 

If you press the button that says “red” then a screen similar to the screen that appears 

in Figure C2.5 appears. Notice that this screen is similar to the screens that appeared in 

Stage 1, except for the following: The Real Value line doesn’t show the purple number; 

instead you can see the Potential Values line reporting the three probable values that the 

purple number can take in the Real Value line. Remember that these numbers have the 

same probability (i.e. the probability of each value is 33%) and notice that these 

numbers are the same numbers that appeared previously in the screen of Figure C2.4. 

Since you do not know exactly the purple number of the Real Value line then the 

software does not tell you the exact score you can get per chosen number (as it 

happened in Stage 1).  

However, for each chosen number, the software automatically tells you the 

maximum and minimum scores that correspond to such number, it uses as sources of 

information: 

1. the Maximum Score you can get in the round,  

2. the distance of your chosen number respect to the number that you decided to 

exactly know in the Real Value line (e.g. in Figure C2.5 the participant chose to 

know the red number so in this case this distance is |50 − 2| = 48) and  

3. the distances of your chosen number respect to the three probable values that has the 

number that you did not decided to exactly know in the Real Value line (e.g. in 
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Figure C2.5 the participant chose not to know the purple so in this case these 

distances are |50 − 80| = 30, |50 − 100| = 50 and |50 − 120| = 70). 

 

Figure C2.5. Example of the kind of screen you will see during the Stage 2 

 
 

Notice that:  

 

 The maximum and minimum scores of your last chosen number are reported below 

the cell where you typed it, and  

 the history of chosen numbers in the current round and their corresponding 

maximum and minimum scores are reported in the table at the right hand side of the 

screen. 

 

 Finally, I have to clarify that if your chosen number at the beginning of each round 

was the purple one instead of the red one, the explanation of the previous paragraphs is 

very similar and practically you only have to change the word purple with red and vice 

versa. 

Please, read the instructions of this stage again. If the instructions are not clear to 

you, or you have a question of any sort, please raise your hand and sit quietly until the 

experimenter comes by to listen to your question. Do not hesitate to ask for help 

because if you are confused or make a mistake, it could reduce your earnings. The 

answer to your question might also be helpful for others to hear; if it is, I will repeat 

your question out loud, and the answer, so everyone can hear them. 

 

 

STAGE 3 (Rounds 21 to 30) 
 

The instructions of this Stage are the same of Stage 1 except for the following:  
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You are 8 persons participating in this experiment. In each round you will be 

randomly matched with one of the other 7 participants. You will not get to know with 

whom you are matched. 

In the rounds of Stage 1 the red and the purple numbers that appeared in the Real 

Value line remained constant. The same happens with the purple number in the rounds 

of Stage 3. However, the red number does not remain constant; in these rounds your red 

number is equal to the last number chosen by the person who is matched with you as 

soon as she presses . Similarly, the red number that appears in the Real Value 

line of the person who is matched with you is equal to the last number chosen by you as 

soon as you press . You and the person who is matched with you will have the 

same Real Value line (i.e. both lines will be bounded by the same white squares); 

however, the most likely is that the purple numbers are different and the red numbers 

may differ because they move following the mechanism that was explained above.  

During the rounds of this stage you will see a screen similar to the screen that 

appears in Figure C2.6. Notice that this screen is the same kind of the screen that 

appeared in the rounds of Stage 1 except for the last line at the bottom of the screen. 

That is, the last paragraph that appears in the screen is the same paragraph that has the 

person who is matched with you and it is different for each couple of participants. 

 

Figure C2.6. Example of the kind of screen you will see during the Stage 3 

 
 

Take into account that your reds number are equal to the numbers chosen by the 

person who is matched with you, then your score changes as soon as the person who is 

matched with you chooses new numbers. If you want to know all the time how is 

affected the score of your last chosen number, look at the information that appears 

below the tag “Your Number” (this information is updated every time the person who 

is matched with you chooses a new number). In addition, be careful because the 

information that is at the right hand side of the screen NEVER is updated. This table 

only reports the score of your chosen numbers at the moment you press . 
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Finally, another difference between the rounds of this Stage respect to the rounds of 

Stage 1 is that now the rounds last 90 seconds. 

Please, read the instructions of this stage again. If the instructions are not clear to 

you, or you have a question of any sort, please raise your hand and sit quietly until I 

come by to listen to your question. Do not hesitate to ask for help because if you are 

confused or make a mistake, it could reduce your earnings. The answer to your question 

might also be helpful for others to hear; if it is, I will repeat your question out loud, and 

the answer, so everyone can hear them. 

 

 

STAGE 4 (Rounds 31 to 50) 
 

The instructions of this stage are the same of Stage 3 except that you only will know 

exactly the red or the purple number of the Real Value line (the other number will be 

known with some uncertainty). More specifically, at the beginning of each round you 

will see a screen similar to the screen that appears in Figure C2.7. In this screen you 

have to choose (pressing with the mouse the corresponding button) which of the two 

kinds of numbers that appear in the Real Value line you want to know exactly. 

 

Figure C2.7. Example of the kind of screen that  

appears at the beginning of the rounds in Stage 4 

 
 

Look at the paragraph that appears at the bottom of Figure C2.7:  the percentages of 

this paragraph remain constant during the round, change from one round to the other 

and are different for each couple of participant.  

If you choose to know exactly the red number, a screen similar to the screen of 

Figure C2.8 appears. On the other hand, if you choose to know exactly the purple 

number, a screen similar to the screen of Figure C2.9 appears.  

During the experiment, keep in mind the following: 
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 The red number in your Real Value line is equal to the last number chosen by the 

person who is matched with you as soon as she presses . The same kind of 

situation happens to the person who is matched with you. 

 One of three red numbers that appear in your Potential Values line is always equal 

to the red number in your Real Value line. In addition, every time the person who is 

matched with you chooses a new number, then the red numbers of the Potential 

Values line change. However, the distance between these numbers remains 

constant during the round, changes from one round to the other and is different 

for each couple of participants. For instance, the distance between the red numbers 

of the Potential Values line in Figures C2.7 and C2.9 is the same (i.e. 14). 

 

Figure C2.8. Example of the kind of screen you will see during 

the Stage 4 if you had chosen to know exactly the RED number 

 
 

 The purple number in your Real Value line remains constant during each round, 

changes from one round to the other and is different for each participant. Remember 

that one of the three numbers in the Potential Values line is always equal to purple 

number in the Real Value line. The purple numbers of the Potential Values line 

remain constant during each round. 

 

Please, read the instructions of this stage again. If the instructions are not clear to 

you, or you have a question of any sort, please raise your hand and sit quietly until the 

experimenter comes by to listen to your question. Do not hesitate to ask for help 

because if you are confused or make a mistake, it could reduce your earnings. The 

answer to your question might also be helpful for others to hear; if it is, I will repeat 

your question out loud, and the answer, so everyone can hear them. 
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Figure C2.9. Example of the kind of screen you will see during  

the Stage 4 if you had chosen to know exactly the PURPLE number 
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2.10. Tables 
 

 

Table 2.1 

Amounts of attention used by agent 𝑖 to reduce the entropy of 𝑙𝑖 and 𝑧 

from  [𝐻0(𝑧𝑖); 𝐻0(𝑙𝑖)] to [𝐻0+𝑆1(𝑧);𝐻0+𝑆2(𝑙𝑖)] where 𝑆1, 𝑆2 ∈ {0,1} 

𝐼(𝑧𝑖) + 𝐼(𝑙𝑖) 𝐼1(𝑧𝑖) 𝐼0(𝑧𝑖) 
𝐼1(𝑙𝑖) 3.17 bits 1.58 bits 

𝐼0(𝑙𝑖) 1.58 bits 0 bits 

 

 

Table 2.2 

Losses of Agent 𝑖 that are due to the Lacks of Information: (𝐿𝑖
𝐼𝐶)

[𝐼T(𝑧);𝐼T(𝑙𝑖)]
 

 𝐼1(𝑧𝑖) 𝐼0(𝑧𝑖) 

𝐼1(𝑙𝑖) 0 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
)𝑎2𝑟𝑧𝑖

2] 

𝐼0(𝑙𝑖) 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑏2𝑟𝑙𝑖

2] 
𝑊𝑖

𝑏 + 𝑎
[(
1

3
) 𝑎2𝑟𝑧𝑖

2 + (
1

3
) 𝑏2𝑟𝑙𝑖

2] 

 

 

Table 2.3. 

Stages of the experiment 

 Decision Making Interaction 

Complete Information 
Stage 1 

(Rounds 1 to 5) 

Stage 376 

(Rounds 21 to 30) 

Incomplete Information 
Stage 2 

(Rounds 6 to 20) 

Stage 4 

(Rounds 30 to 50) 

 

 

Notation 

 

In the tables that are below there are only regressions. In these regressions we will use 

the following notation: 

 

 𝑳. 𝑿: The value of variable 𝑋 in the previous round. 

 

Variables in alphabetical order: 

 

 𝒂: Weight of 𝑧𝑖 in the utility function 

 𝒂 − 𝒃: 𝑎 minus 𝑏 

 |𝒂 − 𝒃|: Distance between 𝑎 and 𝑏.  

 [𝒂𝒓𝒛]
𝟐 − [𝒃𝒓𝒍]

𝟐: In stage 2 if this difference is higher than zero the theoretical 

model says that the agent 𝑖 prefers to pay more attention to 𝑧𝑖, otherwise she prefers 

to pay more attention to 𝑙𝑖 

                                                            
76 Remember that in section 2.2.3 (and also in this stage) each agent 𝑖 have complete information about 𝑧̂𝑖, 
but not about 𝑧𝑖 due to the strategic behavior context. 
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 𝑨𝒕𝒕𝒆𝒎𝒑𝒕𝒔 : Number of  𝑞̂𝑡 values chosen in the round until the participant 

chooses 𝑞𝑡. This variable does not include  𝑞̂𝑡 values that are equal to  𝑞̂𝑡−1 because 

these values do not update the available information; in other words, in stages 3 and 

4 these repeated choices cannot be observed by the other participant and do not 

affect the earnings of the participants.  

 𝒃: Weight of  𝑙𝑖 in the utility function  

 𝑪𝒉𝒐𝒊𝒄𝒆: Dummy variable. 𝐶ℎ𝑜𝑖𝑐𝑒 = 1 if a participant chooses to know exactly 𝑧𝑖 
in Stages 1 and 2 or 𝑧̂𝑖 in Stages 3 and 4. 𝐶ℎ𝑜𝑖𝑐𝑒 = 0 if a participant chooses to 

know exactly 𝑙𝑖. 

 𝑫𝒖𝒎𝒎𝒚 𝑺𝒊𝒈𝒏 | |: Variable equal to 1 if the differences  𝑞̂𝑖(𝐿𝑎𝑠𝑡−1) − 𝑞𝑖
(𝐶𝐼)∗

 and 

𝑞𝑖 − 𝑞𝑖
(𝐶𝐼)∗

 have the same sign. 

 𝑬𝒙𝒑𝒆𝒓𝒊𝒆𝒏𝒄𝒆: This variable is a dummy equal to 1 if: (1) the player chooses to pay 

perfect attention to 𝑧𝑖 in stage 2 (or 𝑧̂𝑖 in Stage 4) and she obtains a high utility 

relative to the optimal one; or (2) the player chooses to pay perfect attention to 𝑙𝑖 
and she obtains a low utility relative to the optimal one. 

 𝑰𝒏𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏: Dummy variable equal to 1 in stages 2 and 4 and equal to 0 in stages 

1 and 3. 

 𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏: Dummy variable equal to 1 in the interaction stages and equal to 0 in 

the decision making stages (i.e. this variable is equal to 1 in stages 3 and 4 and equal 

to 0 in stages 1 and 2). 

 𝑳𝒂𝒔𝒕 𝑴𝒐𝒗𝒆𝒎𝒆𝒏𝒕: Dummy variable. In Stages 3 and 4 𝐿𝑎𝑠𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 1 if the 

participant chose her  𝑞𝑖 later than the other participant, otherwise  
𝐿𝑎𝑠𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 0  

 |𝒍𝒊 − 𝒍𝒋|: In stages 3 and 4 this is the distance between the idiosyncratic values of the 

two participants. 

 |𝒒̂𝒊(𝑳𝒂𝒔𝒕−𝟏) − 𝒒𝒊
∗(𝑪𝑰)|: In the rounds of stages 3 and 4 this distance refers to the 

distance of 𝑞̂𝑖𝑡 respect to 𝑞𝑖
∗(𝐶𝐼)

 before the participant chooses 𝑞𝑖. Similar definitions 

(but making reference to a different variables) have the distances |𝑞̂𝑖𝑡 − 𝑞̂𝑖𝑡−1|, 
|𝑞̂𝑖𝑡−1 − 𝑞̂𝑖𝑡−2|, |𝑞𝑖 − 𝑞̂𝑖𝑙𝑎𝑠𝑡−1| and |𝑞̂𝑖𝑙𝑎𝑠𝑡−1 − 𝑞̂𝑖𝑙𝑎𝑠𝑡−2|. 

 |𝒒 − 𝒒𝑩𝑹𝑭|: In the rounds of stages 1 and 2 (i.e. when there is not interaction) this 

variable measures the distance between the last choice of the participant and her 

optimal choice. In the stages 3 and 4 (i.e. when there is interaction) this variable 

measures the distance between the last choice of the participant and her optimal 

choice given the last choice of the other participant. 

 𝒓𝑰𝒏𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏: In stages 2 and 4 this is the dispersion 𝒓 of the variable that the 

participant decided not to pay attention at the beginning of the round. 

 𝑹𝒂𝒏𝒈𝒆: In the real value line, this is the distance between the two white squares. 

 𝑹𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝑻𝒊𝒎𝒆: Remaining time before the end of the round. 

 𝑹𝒐𝒖𝒏𝒅: Number of the round 

 𝒕: Subscript of 𝑞̂𝑖𝑡 
 𝑻𝒉𝒆𝒐𝒓𝒚_𝒄𝒉𝒐𝒊𝒄𝒆: In the rounds of stage 2, 𝑇ℎ𝑒𝑜𝑟𝑦𝑐ℎ𝑜𝑖𝑐𝑒 = 1 if the choice of 

attention of the participant at the beginning of the round is the same choice predicted 

by the theory and 𝑇ℎ𝑒𝑜𝑟𝑦𝑐ℎ𝑜𝑖𝑐𝑒 = 0  otherwise. In the rounds stage 4, 

𝑇ℎ𝑒𝑜𝑟𝑦𝑐ℎ𝑜𝑖𝑐𝑒 = 1  if the choice of attention of the participant follows the same 
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pattern that the theory says is the optimal in the rounds of stage 2 and 

𝑇ℎ𝑒𝑜𝑟𝑦𝑐ℎ𝑜𝑖𝑐𝑒 = 0 otherwise. 

 

Table 2.4 

Logit: Dependent Variable (𝐶ℎ𝑜𝑖𝑐𝑒) 

 Stage 2 Stage 4 

 Odd Ratio Odd Ratio Odd Ratio Odd Ratio 

[𝒂𝒓𝒛]
𝟐 − [𝒃𝒓𝒍]

𝟐 1.025 *** 0.997   1.020 *** 1.004   

 (0.006)   (0.003)   (0.005)   (0.004)   

𝒂 − 𝒃     72.325 ***     13.753 *** 

     (55.765)       (10.244)   

𝒓𝒛 − 𝒓𝒍     1.341 ***     1.141 *** 

     (0.048)       (0.038)   

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 0.643   0.882   4.323   6.278   

 (0.806)   (1.300)   (5.331)   (7.812)   

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 345   345   440   440   

𝑳𝑳 -

146.06   -115.77   

-

181.60   -168.34   
Notes: Dummies per session and per subject. Robust standard errors in parentheses. Standard 

errors are clustered at the subject level. Significance levels: * p<0.05; **p<0.01; ***p<0.001. 

Other control variables included in the regressions are: 𝑅𝑜𝑢𝑛𝑑, 𝑅𝑎𝑛𝑔𝑒, 𝐿. 𝐶ℎ𝑜𝑖𝑐𝑒 and 

𝐿. 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒.  
 

 

Table 2.5 

Dependent Variable |𝑞 − 𝑞𝐵𝑅𝐹| 

 All Stage 1 Stage 2 Stage 3 Stage 4 

 Coefficient Coefficient Coefficient Coefficient Coefficient 

𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 3.298 **                 

 (1.070)                   

𝑰𝒏𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 1.753  *                 

 (0.694)                   

𝒂 2.594 *** 0.698   -0.855   6.074  *** 4.327 ** 

 (0.572)   (0.586)   (0.881)   (1.535)   (1.161)   

𝑻𝒉𝒆𝒐𝒓𝒚_𝒄𝒉𝒐𝒊𝒄𝒆        -2.741 ***     -0.152   

        (0.562)       (1.039)   

𝒓𝑰𝒏𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏        0.187 **     0.124   

        (0.051)       (0.095)   

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 -0.254  4.632 *** 7.333 *** -0.752   1.371   

 (0.910)   (1.530)   (1.862)   (5.412)   (2.841)   

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 1200   120   360   240   480   

𝑹𝟐 0.11   0.34   0.17   0.13   0.04   

Notes: Dummies per session and per subject. Robust standard errors in parentheses. Standard errors are clustered 

at the subject level.  Significance levels: *p<0.05; **p<0.01; ***p<0.001. Other control variables included in all 

or in some regressions are: 𝑅𝑎𝑛𝑔𝑒, 𝑅𝑜𝑢𝑛𝑑, |𝑎 − 𝑏|, 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒, 𝐿𝑎𝑠𝑡_𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 , |𝑙𝑖 − 𝑙𝑗|, 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠.  
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Table 2.6 

Dependent Variable |𝑞𝑖 − 𝑞𝑗| 
 

 

 

 

Table 2.7 

Dependent Variable |𝑞𝑖 − 𝑞𝑖
(𝐶𝐼)∗| 

 Stage 3 Stage 4 
 Coefficient Coefficient 

|𝒒̂𝒊(𝑳𝒂𝒔𝒕−𝟏) − 𝒒𝒊
(𝑪𝑰)∗| 0.269 ** 0.442 *** 

 (0.080)   (0.090)   

𝑫𝒖𝒎𝒎𝒚 𝑺𝒊𝒈𝒏 | | 4.401 ** 3.778 * 

 (1.290)   (1.410)   

𝒂 14.331 *** 11.736 *** 

 (2.927)   (1.894)   

𝑪𝒉𝒐𝒊𝒄𝒆     4.200 ** 

     (1.439)   

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 -0.798   -17.187 ** 

 (5.537)   (5.140)   

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 239   467   

𝑹𝟐 0.51   0.52   
Notes: Dummies per session and per subject. Robust standard errors in 

parentheses. Standard errors are clustered at the subject level.  Significance 

levels: *p<0.05; **p<0.01; ***p<0.001. Other control variables included 

in the regressions are: 𝑅𝑎𝑛𝑔𝑒, 𝑅𝑜𝑢𝑛𝑑, 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠, 𝑟𝐼𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, |𝑙𝑖 − 𝑙𝑗|, 

𝐿𝑎𝑠𝑡 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡, 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  𝑇𝑖𝑚𝑒 

 

 

 

 

 

 

 

 

Stages 3 and 4 Coefficient 

𝑰𝒏𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 0.021   

 (1.157)   

𝒂 -27.785 *** 

 (2.623)   

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 33.573 *** 

 (1.238)   

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 720   

𝑹𝟐 0.19  
Notes: Dummies per session and per subject. Robust 

standard errors in parentheses. Standard errors are 

clustered at the subject level. Significance levels: 

*p<0.05; **p<0.01; ***p<0.001.   
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Table 2.8 

Regressions in the Interaction stages 

Dependent variable: |𝒒̂𝒊𝒕 − 𝒒̂𝒊𝒕−𝟏| |𝒒𝒊 − 𝒒̂𝒊𝒍𝒂𝒔𝒕−𝟏| 
 Coefficient Coefficient 

|𝒒̂𝒊𝒕−𝟏 − 𝒒̂𝒊𝒕−𝟐| 0.395 ***     

 (0.026)       

|𝒒̂𝒊𝒍𝒂𝒔𝒕−𝟏 − 𝒒̂𝒊𝒍𝒂𝒔𝒕−𝟐|     0.624 *** 

     (0.048)   

𝑹𝒂𝒏𝒈𝒆 0.026 ** 0.020   

 (0.009)   (0.014)   

𝒕 -0.104 **     

 (0.029)       

𝑨𝒕𝒕𝒆𝒎𝒑𝒕𝒔     -0.128   

     (0.088)   

𝒂 2.015 * -1.688   

 (0.746)   (1.692)   

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 1.416   0.327   

 (1.648)   (1.937)   

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 7999   695   

𝑹𝟐 0.20   0.46   
Notes: Dummies per session and per subject; Robust standard errors in 

parentheses. Standard errors are clustered at the subject level. 

Significance levels: *p<0.05; **p<0.01; ***p<0.001. Other control 

variables included in all or in some the regressions: 𝐼𝑛𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, 

𝑅𝑜𝑢𝑛𝑑, 𝑃𝑒𝑟𝑖𝑜𝑑, |𝑙𝑖 − 𝑙𝑗|, 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒  
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2.11. Figures 

 
 
 

Figure 2.1a.  
Utility the participants can get in each round 

Figure 2.1b.  
How the utility is affected by the chosen number? 

  

 
 
 
 

Figure 2.2a  

Example of the kind of screen the participants see during the rounds of Stage 1 
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Figure 2.2b 

 Example of the kind of screen the participants see during the rounds of Stage 2 

 
 

Figure 2.2c 

Example of the kind of screen the participants see during the rounds of Stage 3 
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Figure 2.2d  

Example of the kind of screen the participants see during the rounds of Stage 4 

 
 

Figure 2.3a Figure 2.3b 

  
Continuous line: Idiosyncratic value of the blue 

participant (circles) = 81.  

Dashed line: Idiosyncratic number of the black 

participant (diamonds) = -11.  

Round of Treatment 4.  

Both Participants know perfectly the red number. 

𝑎 = 0.94 

Continuous line: Idiosyncratic value of the blue 

participant (circles) = 40  

Dashed line: Idiosyncratic value of the black 

participant (diamonds) = 93  

Round of Treatment 4.  

Both Participants know perfectly the red number. 

𝑎 = 0.85 
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Figure 2.3c Figure 2.3d 

  
Continuous line: Idiosyncratic value of the blue 

participant (circles) =-2.  

Dashed line: Idiosyncratic value of the black 

participant (diamonds) = 53.  

Round of Treatment 3, 

 𝑎 = 0.20 

Continuous line: Idiosyncratic value of the blue 

participant (circles) = 9.  

Dashed line: Idiosyncratic value of the black 

participant (diamonds) = 29.  

Round of Treatment 3,  

𝑎 = 0.24 

 
 
 

Figure 2.3e. Figure 2.3f. 

  
Continuous line: Idiosyncratic value of the blue 

participant (circles) = 34 

Dashed line: Idiosyncratic value of the black 

participant (diamonds) = 67 

Round of Treatment 3 .  

𝑎 = 0.58 

Continuous line: Idiosyncratic value of the blue 

participant (circles) = 102 

Dashed line: Idiosyncratic value of the black 

participant (diamonds) = 43 

Round of Treatment 4.  

Both Participants know perfectly the purple 

number.   

𝑎 = 0.02 
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Figure 2.4a 

Scatterplot between  |𝑞𝑖 − 𝑞𝑗| and 𝑎* 

 
*The red line represents the fitted value between |𝑞𝑖 − 𝑞𝑗| and 𝑎 

 

Figure 2.4b 

Boxplot between  |𝑞𝑖 − 𝑞𝑗| and 𝑎* 

 
                                    *To build this figure, the variable 𝑎 was rounded to its closest  

                                     one decimal digit number. In each box the top of the box is the  

                                     75th percentile, the horizontal line is the median and the bottom  

                                     of the box is the 25th percentile 
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Figure 2.5 

Cumulative distribution of  |𝑞𝑖 − 𝑞𝑖
(𝐶𝐼)∗|* in the interaction stages 
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Chapter 3 
 
GLOBAL GAMES WITH ENDOGENOUS 
POLICY INTERVENTION: AN EXPERIMENT 
 

 

3.1. Introduction 
 

 

There are many macroeconomic and socioeconomic issues that have been analyzed 

using global games; for instance, bank runs1, currency attacks2, debt crises3, debt 

pricing4, effect of media in political regime change5, investment dynamics6, liquidity 

crashes7, merger waves8, party leadership9, and securitization booms10.  

A global game is an incomplete information game in which a small uncertainty about 

payoffs implies a significant failure of common knowledge11. The global games 

methodology usually has been used to build strategic environments with incomplete 

information that are rich enough to consider the important role of higher-order beliefs in 

economic settings, but simple enough to allow tractable analysis (Morris and Shin 2003; 

Morris 2008). Another appealing characteristic of global games is that the complete 

information games that include coordination problems and self-fulfilling beliefs 

generally arrive to multiple Nash equilibria. However, the standard global games ensure 

the equilibrium uniqueness by relaxing the assumption of common knowledge12. 

                                                            
1 For instance, the papers written by Rochet and Vives (2004), Goldstein (2005), Goldstein and 

Pauzner (2005) and Cañon and Margaretic (2014) 
2 For instance, the papers written by Morris and Shin (1998), Corsetti, Dasgupta, Morris and Shin 

(2004), Cukierman, Goldstein and Spiegel (2004), Goldstein and Pauzner (2005), Guimarães and Morris 

(2007), Frankel (2012) and Fujimoto (2014) 
3 For instance, the papers written by Corsetti, Guimarães and Roubini (2006) and Zwart (2007) 
4 For instance, the paper written by Morris and Shin (2004b) 
5 For instance, the paper written by Edmond (2013) 
6 For instance, the papers written by Chamley (1999), Heidhues and Melissas (2006), Dasgupta (2007) 

and Sákovics and Steiner (2012) 
7 For instance, the paper written by Morris and Shin (2004a) 
8 For instance, the paper written by Toxvaerd (2008) 
9 For instance, the paper written by Dewan and Myatt (2007) 
10 For instance, the paper written by Jin (2011)  
11 The global game methodology was firstly proposed by Carlsson and van Damme (1993) in a two-

player, two-action game structure. It was extended by Morris and Shin (2003) to games that assume a 

continuum of players and by Frankel, Morris and Pauzner (2003) to supermodular games. 
12 This equilibrium uniqueness is robust when we assume a two-player, two-action structure or a 

continuum of players’ game. But, in other contexts sometimes we need additional assumptions to get it. 
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Some recent papers have revealed that multiple equilibria may reemerge once the 

endogeneity of the information structure is taken into account. This endogeneity can be 

modeled using different kinds of mechanisms that are commonly observed in real life, 

such as: the signaling of policy interventions13, the aggregation of information through 

prices14 and learning in dynamic settings15.  

Angeletos and Pavan (2013) propose a general global game model of regime change 

in which the information is endogenous due to the signaling role of the actions of a 

policy maker. Using this model, the authors have shown that the global games 

methodology also brings useful predictions when the endogeneity of information does 

not lead to a unique equilibrium. In particular, they arrive to the following testable 

predictions (Angeletos and Pavan, 2013, p. 885): (1) weaker types of policy makers face 

a higher probability of regime change, (2) the probability of policy intervention is 

higher when the policy maker is neither too strong nor too weak, (3) the probability of 

policy intervention is lower when  the precision of the agents’ information increases, 

and (4) if the policy maker could commit to a particular policy before observing his 

type, then he could also guarantee a unique equilibrium16.  

The model proposed by Angeletos and Pavan (2013) has two appealing 

characteristics. First, in real life there are many situations in which the policy makers 

cannot isolate themselves from their choices, so it is useful to have models that take into 

account this kind of conflict. Second, the testable predictions proposed by the model are 

important to better understand how the policy interventions are affected by the 

particular interests of the policy maker and how the agents react when this kind of 

conflict exists. In this chapter we propose a lab experiment to analyze the first three 

testable predictions proposed by Angeletos and Pavan (2013)17. The main problem that 

we faced in our research is that their model is quite general to be used directly in a lab 

experiment; therefore, in the next section we explain briefly the version of their model 

that we used in our experiment, but we left most of the technical details to the 

Appendixes A3 and B3. In section 3.3 we present the experimental design. In section 

3.4 we analyze the results obtained in the experiment; we do not only analyze the three 

testable predictions of the model, we also examine how was the behavior of the 

participants in the experiment and how the probability of the agents attacking the status 

                                                                                                                                                                              
For instance, Frankel, Morris and Pauzner (2003) show that in a game with many players and many 

actions, to get limit uniqueness (i.e. a situation in which as the noise in the global game becomes 

arbitrarily small, there is a unique strategy profile that survives iterative elimination of strictly dominated 

strategies) is necessary to assume at least that the strategies of the players are strategic complements and 

the presence of dominant regions (i.e. regions in which there are strictly dominant actions); on the other 

hand, to get  noise independent selection (i.e. as the noise goes to zero, the equilibrium played, for a given 

realization of the payoffs, is independent of the distribution of the noise) is necessary to have a local 

potential game (i.e. a game in which each player’s payoffs are quasiconcave in her own action). 
13 A model that introduce this mechanism was built by Angeletos, Hellwig and Pavan (2006). 
14 Some papers that include this mechanism inside their models are Angeletos and Werning (2006), 

Hellwig, Mukherji and Tsyvinski (2006) and Ozdenoren and Yuan (2008) 
15 Some papers that consider this mechanism are Angeletos, Hellwig and Pavan (2007) and Chassang 

(2010) 
16 However, the policy maker can prefer such commitment over discretion only insofar as he expects 

his type to be strong 
17 The fourth testable prediction implies the introduction of additional characteristics to the 

experimental design that makes each session of the experiment longer and more complex to implement. 

Therefore, we did not include these characteristics to the experiment and we prefer to focus in the 

analysis of the other predictions and in the analysis of the behavior of the participants in the experiment. 
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quo changes when the precision of the agents’ information change. Finally, in section 

3.5 we present some final comments. 

 

 

3.2. Model. 
 

This part of the chapter is divided in two sections. In section 3.2.1 we explain general 

characteristics of the model. In section 3.2.2 we explain the equilibrium strategies 

followed by the individuals in the model and how these strategies imply the predictions 

that we want to test.  

 

 

3.2.1. General characteristics. 
 

Consider a game that represents a society in which there are two possible regimes: 

the status quo and an alternative to the status quo. At the beginning of the game the 

prevalent regime is the status quo; however, the kind of regime at the end of the game 

depends on the choices of the participants in the game. The participants are one policy 

maker and two agents indexed by 𝑖. The payoffs obtained in this game will depend on 

the choices of the participants and the established regime at the end of the game.  

Let 𝜃 ∈ ℝ denotes the type of policy maker18, the policy maker knows his type and 

establishes a policy 𝑟 ∈ [0, +∞). The only condition that this policy has is that it entails 

a cost to all individuals in the economy; however, under certain conditions it can 

discourage the agents to attack the status quo19. The agents observe the policy, have 

incomplete information about the type of policy maker and have to choose individually 

if they attack the status quo or abstain from attacking. The variable 𝑎𝑖 ∈ {0,1} 
represents the choice of agent 𝑖, where 𝑎𝑖 = 1 if agent 𝑖 attacks the status quo and 𝑎𝑖 =
0 if agent 𝑖 refrains from attacking. The percentage of agents attacking the status quo is 

denoted by 𝐴. In this model, if 𝜃 > 𝐾𝐴 the policy maker always maintains the status 

quo and if 𝜃 ≤ 𝐾𝐴 the policy maker always allows the defeat of the status quo (i.e. 

there is a regime change), where 𝐾 is a positive finite parameter that regulates how 

much important is the pressure of the agents when they attack the status quo (i.e. if 𝐾 is 

higher, then the probability of regime change increases)20. Therefore, 𝐾𝐴 can be 

interpreted as the size of the attack.  

The goal of the policy maker is to choose the policy 𝑟 that maximizes her utility 𝑈(∙) 
according to the following optimization problem21:  

 

max
𝑟≥0

𝑈(𝜃, 𝑟, 𝐾𝐴) = {
𝑊(𝜃, 𝑟, 𝐾𝐴) = 𝜃 − 𝐾𝐴 − 𝑐𝑟   𝑖𝑓 𝜃 > 𝐾𝐴

𝐿(𝑟) = −𝑐𝑟                                  𝑖𝑓 𝜃 ≤ 𝐾𝐴  
                                  (3.1) 

                                                            
18 The type of policy maker represents her motivation or ability to maintain the status quo. 
19 Therefore, more than a policy per se, 𝑟 represents the cost of a policy measure that the policy maker 

may decide to implement in order to discourage the agents to attack the status quo. However, to make the 

explanation of the model easier and clearer we will refer to 𝑟, in most of the chapter, as the policy 

implemented by the policy maker. 
20 In the lab experiment, this variable is also useful to calibrate the payoffs of the participants in the 

experiment. 
21 Therefore, the payoff of the policy maker is directly represented by the utility she obtains in the 

game. 
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In equation (3.1) notice that the policy 𝑟 is not free of cost to the policy maker, the 

parameter 𝑐 ∈ (0,1] regulates the size of this cost. The problem represented in equation 

(3.1) can be interpreted in the following way: it measures how able (or how willing) is 

the policy maker of type 𝜃 to defend the status quo due to the costs that she incurs by 

implementing a policy 𝑟 and by facing an attack to the status quo of size 𝐾𝐴. If the 

status quo survives, then the utility of the policy maker is given by 𝑊(∗), otherwise it is 

given by 𝐿(∗)22.  

On the other hand, the goal of each agent 𝑖 is to choose the action 𝑎𝑖 that maximizes 

her utility 𝑢𝑖(∙) according to the following problem23: 

 

max
𝑎𝑖∈{0,1}

𝑢𝑖(𝑟) = {
𝑎𝑖(𝑦 − 𝑟 − 𝑏) 𝑖𝑓 𝜃 ≤ 𝐾𝐴

𝑎𝑖(−𝑟 − 𝑏)    𝑖𝑓  𝜃 > 𝐾𝐴 
                                                                        (3.2) 

 

where 𝑦 > 𝑏 > 0 . In this equation (𝑦 − 𝑏) represents the maximum utility that each 

agent 𝑖 can get when the regime changes and (𝑟 + 𝑏) is her opportunity cost of 

attacking the status quo (i.e. her cost of choosing 𝑎𝑖 = 1). The agents cannot observe 𝜃, 

but each agent 𝑖 receives a private signal represented by 

 

𝑥𝑖 = 𝜃 + 𝜎𝜗𝑖                                                                                                                              (3.3)  
 

where 𝜎 > 0 parameterizes the quality of the private signal24 and 𝜗𝑖~𝑁(0,1) is an 

idiosyncratic noise which is independently and identically distributed across agents and 

independent of 𝜃, with absolutely continuous p.d.f  𝜓 and c.d.f  Ψ. We will assume that 

the noise distribution 𝜓 is normal; however, Angeletos and Pavan (2013, p. 910) 

demonstrate that whatever log-concave distribution works25. The problem represented in 

equation (3.2) can be interpreted in the following way: it measures the utility of each 

agent given her choice and the choices of the other individuals; if she does not attack the 

status quo then her utility is equal to zero irrespective of the choices of the other 

individuals; however, if she attacks the status quo then her utility decreases if the policy 

chosen by the policy maker increases and if the joint attack of the agents is not high 

enough to defeat the status quo. 

The timing of the game is: (1) the policy maker learns his type 𝜃 and sets the policy 

𝑟; (2) the agents decide simultaneously and individually to attack or abstain from 

                                                            
22 The equation (3.1) satisfies the conditions that Angeletos and Pavan (2013, p. 889) impose to the 

policy maker’s utility function: a) policy interventions (i.e. when the policy maker chooses a policy 𝑟 >
0) are always costly to her; b) if the status quo is maintained (i.e. if 𝜃 > 𝐾𝐴), the policy maker prefers a 

smaller attack (i.e. a smaller 𝐾𝐴); c) if setting the policy in 𝑟 = 0 leads to a change of regime (and 

consequently a policy maker’s utility of 𝐿(0) = 0) while setting the policy to some level 𝑟 = 𝑠 where 𝑠 >
0 leads to 𝐾𝐴 = 0 < 𝜃 ∈ (0,+∞) (and consequently a policy maker’s utility of 𝑊(𝜃, 𝑟, 0) = 𝜃 − 𝑐𝑟), 

then higher types of policy maker have stronger incentives to raise the policy than lower types of policy 

maker; and d) the policy maker would not prefer to see the regime collapse when it survives (i.e. the 

policy maker prefers 𝑊(𝜃, 𝑟, 𝐾𝐴) than 𝐿(𝑟) if 𝜃 > 𝐾𝐴). 
23 Therefore, the payoff of each agent is directly represented by the utility she obtains in the game. 
24 The precision of the signal that each agent receives is defined by the standard deviation 𝜎, where 

the precision increases when 𝜎 decreases and  lim
𝜎→0

𝑥𝑖 = 𝜃. 

25 Some examples of log-concave distributions are the normal distribution, the multivariate normal 

distribution, the exponential distribution, the uniform distribution over any convex set, the logistic 

distribution, the extreme value distribution, the Laplace distribution, the chi distribution and the Subbotin 

distribution. 
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attacking the status quo after observing the policy 𝑟 and the idiosyncratic private signal 

𝑥𝑖; and (3) the final regime is determined.  

Finally, Angeletos and Pavan (2013; p. 891) assume that an agent who expects a 

regime change finds it optimal to choose 𝑎 = 1 at least insofar as the policy maker does 

not play a dominated action; therefore, an agent who expects a regime change, even in 

the worst case scenario, finds it optimal to choose 𝑎 = 1 when the policy maker does 

not play a dominated action (i.e. if  𝑦 − 𝑏 −
𝐾

𝑐
> 0 then the Angeletos and Pavan’s 

assumption is always satisfied)26. In addition, we also assume that 𝑦 > 2𝑏 to ensure that 

the semiseparating equilibria of the model exist27.    

 

 

3.2.2.Equilibrium 
 

The equilibrium characteristics of the model are explained in detail in the 

Appendixes A3 and B3. We have followed the same line of reasoning proposed by 

Angeletos and Pavan (2013). In this section we will explain directly the strategies that 

the individuals follow at the different equilibria of the model. We will also explain how 

the equilibrium characteristics of the model determine the predictions that will be tested 

in the lab experiment. 

Note that the model combines two kinds of games: (1) a signaling game where the 

policy maker is the sender and the agents are the receivers; and (2) a global game played 

                                                            
26 When an agent expects a regime change, it means that she at least expects 𝜃 ≤ 𝐾 (notice that if 𝜃 >

𝐾 a regime change cannot occur even if all agents coordinate on the attack). From equation (3.2) notice 

that when an agent chooses 𝑎 = 1 is because she expects 𝑦 − 𝑏 − 𝑟 ≥ 0, where the LHS of the inequality 

represents the utility of an agent when there is a regime change and the agent chooses 𝑎 = 1, and the RHS 

of the inequality represents the utility of an agent when there is a regime change and the agent 

chooses 𝑎 = 0.  

If 𝜃 ≤ 0, then a regime change is the unique possible regime outcome, it implies that the utility 

obtained by the policy maker is necessarily 𝐿(𝑟) = −𝑐𝑟. Since 𝐿(0) = 0 > −𝑐𝑠 = 𝐿(𝑠) when 𝑠 > 0, 

then all policies 𝑟 = 𝑠 are strictly dominated by the policy 𝑟 = 0 when 𝜃 ≤ 0. On the other hand, given 

any policy 𝑟, when 𝜃 ∈ (0, 𝐾] the best scenario to the policy maker is when no agents attack (i.e. when 

the size of the attack is 0, then the status quo survives and consequently her utility is 𝑊(𝜃, 𝑟, 0) = 𝜃 −
𝑐𝑟) while the worst scenario is when all agents attack (i.e. when the size of the attack is 𝐾, then the 

regime changes and consequently her utility is 𝐿(𝑟) = −𝑐𝑟). Therefore, the maximal level of 𝑟 that is not 

dominated by 𝑟 = 0 is the highest policy 𝑟 that solves the inequality 𝑊(𝜃, 𝑟, 0) ≥ 𝐿(0); that is 𝑟 =
𝜃

𝑐
. 

Consequently, when there is a regime change the worst scenario to the agents, given that the policy maker 

does not choose dominated strategies, is when the policy maker is the highest that cannot avoid a regime 

change (i.e. when 𝜃 = 𝐾) and she chooses 𝑟 =
𝐾

𝑐
.  

27 In Appendix B3 we explain that in the set of semiseparating equilibria the optimal strategy to the 

policy maker is to choose the policy 𝑟 = 𝑠 in the cases in which the policy 𝑟 = 0 is not the optimal 

policy. In addition, in the Propositions B4 and B5 of Appendix B, we identify two variables that are 

important to determine any semiseparating equilibrium in the model, these variables are 𝑥𝑠
∗(𝜎) and 

𝜃𝑠
∗∗(𝜎). Both variables depend on the following inverse normal c.d.f  𝛹−1 (1 −

𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
)). It implies that 

one necessary condition to the existence of 𝑥𝑠
∗(𝜎) and 𝜃𝑠

∗∗(𝜎) is that the inequality 1 >
𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
) is 

satisfied. In the previous footnote we have seen that in the set of semiseparating equilibria the maximal 

level of the policy 𝑟 that is not dominated by the policy 𝑟 = 0 is 𝑟 =
𝐾

𝑐
. Then the inequality 1 >

𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
) 

at the equilibrium is always satisfied for all 𝜃 if 𝑦 > 2𝑏.  
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when the agents have to independently decide if they attack or not attack the status quo 

given the imperfect information that they have. Therefore, the equilibrium concept used 

in the model is perfect Bayesian equilibrium. It implies that at the equilibrium the 

individuals are sequentially rational and at the equilibrium path the agent’s beliefs are 

defined by Bayes’ rule. In the model, for any 𝜎, we can identify two kinds of equilibria: 

(1) a unique pooling equilibrium and (2) a set of semiseparating equilibria. In section 

3.2.2.1 we will explain the characteristics of the pooling equilibrium and in section 

3.2.2.2 we will explain the characteristics of the set of semiseparating equilibria. In both 

kinds of equilibria, since all positive policies imply a cost to the policy maker, then at 

the equilibrium the policy maker only chooses a policy 𝑟 = 𝑠 > 0 when, by 

implementing this policy, the policy maker can guarantee the survival of the status quo 

and that the cost of implementing the policy (to the policy maker) is lower than the cost 

of receiving an attack. 

 

 

3.2.2.1. The pooling equilibrium. 
 

The propositions about the existence, uniqueness and characteristics of the pooling 

equilibrium are enunciated and proved in Appendix A3 at the end of the chapter. The 

main characteristics of this unique pooling equilibrium are: the policy makers always 

choose the same policy, so this policy is uninformative about 𝜃. Therefore, the agents 

do not use the information of the policy 𝑟 to updates their beliefs about the type of 

policy maker. It implies that in the first stage of the game, the policy maker infers that 

all policies 𝑟 > 0 are strictly dominated by the policy 𝑟 = 028, and consequently she 

always chooses the policy 𝑟 = 0 at the pooling equilibrium. On the other hand, when 

the agents observe the policy 𝑟 = 0, then they play a coordination game in which they 

use a symmetric trigger strategy that has as threshold the unique signal 𝑥#(𝜎). It implies 

that all individuals may infer that a regime change happens if and only if the type of 

policy maker is 𝜃 ≤ 𝜃# where 𝜃# is a unique threshold type of policy maker.  

In the pooling equilibrium, after observing the policy 𝑟 = 0, the agents follow the 

trigger strategy: 𝑎 = 1 if 𝑥 ≤ 𝑥#(𝜎) and 𝑎 = 0 if 𝑥 > 𝑥#(𝜎) where 𝑥#(𝜎) =

𝜎𝛹−1 (
𝑦−𝑏

𝑦
) + 𝐾 (

𝑦−𝑏

𝑦
). On the other hand, the policy maker infers that the threshold 

type 𝜃# is determined by 𝜃# = 𝐾 (
𝑦−𝑏

𝑦
) 29. Notice from the equations of 𝑥#(𝜎) and 𝜃# 

that it is not complex to conclude that both values are unique. In addition, notice that the 

distance between 𝑥#(𝜎) and 𝜃# depends on the precision of the signal; that is, if the 

precision increases (i.e. if 𝜎 is lower) then 𝑥#(𝜎) approaches to 𝜃#.  

In the pooling equilibrium we can check directly how the first testable prediction of 

Angeletos and Pavan (2013) appears. When 𝜃 is lower, the average size of the signals 

decreases30, it implies that the probability that the agents receive signals 𝑥 ≤ 𝑥#(𝜎) 
increases, so the probability that an agent chooses 𝑎 = 1 increases, then the probability 

that the status quo collapses is higher. The other two testable predictions cannot be 

                                                            
28 Remember that a higher 𝑟 implies a higher cost 𝑐𝑟 to the policymaker 
29 Notice that the assumption 𝑦 > 2𝑏 implies that 𝑥#(𝜎) > 𝜃# >

𝐾

2
 

30 Remember that 𝑥𝑖 = 𝜃 + 𝜎𝜗𝑖 
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analyzed in the pooling equilibrium because these predictions require that sometimes at 

the equilibrium the policies are 𝑟 > 0. 

 

 

3.2.2.2. The set of semiseparating equilibria. 
 

The propositions about the existence and characteristics of the set of semiseparating 

equilibria are enunciated and proved in Appendix B3 at the end of the chapter. The main 

characteristics of the set of semiseparating equilibria are: in any equilibrium, in the first 

stage of the game, the policy maker chooses the policy 𝑟 = 0 or a policy 𝑟 > 0. Any 

type of policy maker who chooses a policy 𝑟 > 0 does so by selecting the least costly 

policy among those policies that are favorable to the survival of the status quo31. Let 

𝑟 = 𝑠 (where 𝑠 > 0) to be the least costly policy that does not imply a regime change. 

So, it means that at the equilibrium path the policy maker always chooses 𝑟 = 0 or 𝑟 =
𝑠. Therefore, in the second stage of the game, if the agents observe a policy 𝑟 = 𝑠, then 

this policy signals them that there won’t be a regime change and thus induces them to 

choose 𝑎 = 0. On the other hand, if the agents observe a policy 𝑟 = 0, then they use a 

symmetric trigger strategy such that they choose 𝑎 = 1 if  𝑥 < 𝑥𝑠
∗(𝜎) and they choose 

𝑎 = 0 if  𝑥 > 𝑥𝑠
∗(𝜎)32  where the threshold signal 𝑥𝑠

∗(𝜎) exists and is unique.  

Let 𝜃𝑠
∗ represents the “lowest” type of policy maker who prefers the policy 𝑟 = 𝑠 in 

which there are no attacks to the status quo to the policy 𝑟 = 0 in which there is a 

coordinated attack that implies the defeat of the status quo. Therefore, since the 

implementation of any policy has a cost equal to 𝑐𝑟, then any type of policy maker 𝜃 ≥
𝜃𝑠
∗ who wants to implement a policy 𝑟 > 0 will choose the policy 𝑟 = 𝑠. It implies that 

at any equilibrium the policy makers 𝜃 ≥ 𝜃𝑠
∗ can always guarantee the survival of the 

status quo by choosing the policy 𝑟 = 𝑠. That is, in the set of semiseparating equilibria 

the status quo always survives if the type of policy maker is higher than 𝜃𝑠
∗.  

Notice that for “sufficiently low” types of policy makers33 all policies 𝑟 > 0 are 

strictly dominated by the policy 𝑟 = 0 and a regime change always happens; therefore, 

the agents iteratively find that 𝑎 = 1 is the dominant strategy for “sufficiently low” 

signals when they observe 𝑟 = 0. Then the dispersion of information initiates a 

contagion effect in which, conditional on seeing 𝑟 = 0, the agents find iteratively 

dominant to choose 𝑎 = 1 for higher and higher signals, then the regime change 

happens for higher and higher 𝜃. In the limit, this contagion effect guarantees that the 
                                                            

31 It happens because according to equation (3.1): [1] the policy 𝑟 = 0 strictly dominates any policy 

𝑟 > 0 when the regime changes (so, the policy 𝑟 = 0 is not a useful policy to signal the survival of the 

status quo), [2] the survival of the status quo is the minimum requirement that a policy maker has to get a 

positive utility and [3] any policy 𝑟 > 0  always implies a cost 𝑐𝑟 to the policy maker. Therefore, if two 

different policies 𝑟 > 0 can ensure the survival of the status quo, then the policy maker prefers the policy 

that is less costly to implement. 
32 More specifically, the semiseparating equilibria are sustained by the following strategy profile 

followed by the agents:  

 For 𝑟 = 0, each agent implements the trigger strategy 𝑎(𝑥, 𝑟) = 1 if and only if 𝑥 <  𝑥𝑠
∗(𝜎) and 

𝑎(𝑥, 𝑟) = 0 if and only if 𝑥 >  𝑥𝑠
∗(𝜎). 

 For any 𝑟 ∈ (0, 𝑠), 𝑎(𝑥, 𝑟) = 1 irrespective of 𝑥 

 For any 𝑟 ≥ 𝑠, 𝑎(𝑥, 𝑟) = 0 irrespective of 𝑥  

However, given 𝜃, remember that any policy 𝑟 ∈ (0, 𝑠) or 𝑟 > 𝑠 is dominated by the policy 𝑟 = 0 or 

by the policy 𝑟 = 𝑠. So, in the equilibrium path we won’t see any policy 𝑟 ∈ (0, 𝑠) or 𝑟 > 𝑠. 
33 For example, for types of policy makers 𝜃 ≤ 0. 
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regime change happens for all type of policy makers 𝜃 < 𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#}. However, one of 

the propositions of Appendix B3 shows that the set of semiseparating equilibria only 

exist when 𝜃𝑠
∗ ≤ 𝜃#34; it implies that at these equilibria the regime change always 

happens for all type of policy makers 𝜃 < 𝜃𝑠
∗.  

Let 𝜃𝑠
∗∗(𝜎) denotes the “highest” type of policy maker 𝜃 ≥ 𝜃𝑠

∗ who finds it optimal to 

choose the policy 𝑟 = 𝑠 > 0 in which there are no attacks to the status quo instead of 

the policy 𝑟 = 0 in which there is an attack that does not imply the defeat of the status 

quo35. Then, the policy 𝑟 = 𝑠 dominates any other policy if the type of policy maker 

𝜃𝑠 ∈ (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] and the policy 𝑟 = 0 dominates the policy 𝑟 = 𝑠 if the type of policy 

maker 𝜃𝑠 ∉ (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)]. Therefore, in the set of semiseparating equilibria the policy 

chosen by the policy maker 𝜃𝑠 is 𝑟 ∈ {0, 𝑠}, where the policy 𝑟 = 0 is chosen when 𝜃𝑠 ∉
(𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)] and the policy 𝑟 = 𝑠 is chosen when 𝜃𝑠 ∈ (𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)]. In Appendix B3 we 

show that the values and the bounds of all variables at the set of semiseparating 

equilibria are: 

 

Table 3.1 

Variable Value Bounds 

𝑠 𝑠 (
𝐾

2𝑐
,
𝜃#

𝑐
] 

𝜃𝑠
∗ 𝑐𝑠 (

𝐾

2
, 𝜃#] 

𝜃𝑠
∗∗(𝜎) 𝜎 [𝛹−1 (1 −

𝜃𝑠
∗

𝐾
(

𝑏

𝑦 − 𝑏
)) − 𝛹−1 (

𝜃𝑠
∗

𝐾
)] + 𝜃𝑠

∗ (𝜎𝛹−1 (
2𝑦 − 3𝑏

2𝑦 − 2𝑏
) +

𝐾

2
, 𝜃#] 

𝑥𝑠
∗(𝜎) 𝜎𝛹−1 (1 −

𝜃𝑠
∗

𝐾
(

𝑏

𝑦 − 𝑏
)) + 𝜃𝑠

∗ (𝜎𝛹−1 (
2𝑦 − 3𝑏

2𝑦 − 2𝑏
) +

𝐾

2
, 𝑥#(𝜎)] 

 

where 𝜃# and 𝑥#(𝜎) are the same threshold values commented in the previous section. 

In Table 3.1, notice that for each type of policy maker 𝜃𝑠 corresponds one value of 𝜃𝑠
∗, 

𝜃𝑠
∗∗(𝜎) and 𝑥𝑠

∗(𝜎) in the table. The bounds that appear in the table are useful to compare 

the behavior of the participants in the experiment with the behavior of the individuals in 

the theoretical model. Additionally, notice that when 𝑠 approaches to its upper bound 
𝜃#

𝑐
 

then the multiple semiseparating equilibria collapse into the pooling equilibrium36.  

Finally, notice that when the precision of the signal increases then at the limit (i.e. when 

𝜎 approaches to zero) we get lim
𝜎→0

𝜃𝑠
∗ = lim

𝜎→0
𝜃𝑠
∗∗(𝜎) =  lim

𝜎→0
𝑥𝑠
∗(𝜎) = 𝑐𝑠 

                                                            
34 For instance, in the Table 3.1 that is below notice that 𝜃𝑠

∗ ≤ 𝜃#.  
35 In Appendix B3 we use a contagious argument to get 𝜃𝑠

∗∗(𝜎). Any policy 𝑟 > 0 is dominated by the 

policy 𝑟 = 0 if 𝜃 is “sufficiently high” (a type of policy maker 𝜃 ≥ 𝜃𝑠
∗ is sufficiently high when the 

expected attack, after observing 𝑟 = 0 and given the signal threshold 𝑥𝑠
∗(𝜎), is lower than 𝑐𝑠 and 

consequently is lower than 𝜃) then the agents find iteratively dominant to choose 𝑎 = 0 for “sufficiently 

high” 𝑥, conditional on observing 𝑟 = 0. Then the dispersion of information initiates a contagion effect in 

which, conditional on seeing 𝑟 = 0, the agents find iteratively dominant to choose 𝑎 = 0 for lower and 

lower signals, then the status quo survives for lower and lower 𝜃. In the limit, this contagion guarantees 

that all 𝜃 > 𝜃𝑠
∗∗(𝜎) are able to avoid regime change without choosing 𝑟 > 0, and they obtain a higher 

utility by choosing the policy 𝑟 = 0 and facing an attack than by choosing the policy  𝑟 = 𝑠 and facing no 

attack.   
36 That is, lim

𝑠→𝜃# 𝑐⁄
𝜃𝑠
∗ = lim

𝑠→𝜃# 𝑐⁄
𝜃𝑠
∗∗(𝜎) = 𝜃# and lim

𝑠→𝜃# 𝑐⁄
𝑥𝑠
∗(𝜎) = 𝑥#(𝜎) 
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In the set of semiseparating equilibria we can check directly how the first three 

testable predictions of Angeletos and Pavan (2013) appear: (1) When 𝜃 is lower, the 

average size of the signals decreases, it implies that the probability that the agents 

receive signals 𝑥 ≤ 𝑥𝑠
∗(𝜎) increases, so the probability that an agent chooses 𝑎 = 1 

when she observes 𝑟 = 0 increases, then the probability that the status quo collapses is 

higher; (2) the equilibrium strategy of the policy maker is to set 𝑟 = 0 when 𝜃 ∉
(𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)] and 𝑟 = 𝑠 > 0 for all 𝜃 ∈ (𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)], then the second prediction of the 

model is satisfied; (3) finally, when 𝜎 decreases (i.e. when the precision of the agents’ 

information increases) we have that 𝜃𝑠
∗∗(𝜎) decreases and 𝜃𝑠

∗ remains the same, so the 

range (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] is smaller and consequently the probability that 𝑟 > 0 (i.e. the 

probability of policy intervention) decreases. 

 

 

3.3. Experimental Design 
 

The experiment is based in the theoretical model commented in the previous section. 

The software used in the experiment was z-tree. 27 subjects were recruited from the 

UPF Leex Lab to participate in the experiment. There were three sessions and no 

subject appeared in more than one session. At the beginning of each session the 

participants were randomly divided in three groups of three people. In each group one 

member always was the policy maker and the other two always were the agents. The 

roles were randomly assigned at the beginning of each session and the participants 

belong to the same group during the 60 rounds of the experiment. Each round replicates 

the game explained in the previous section37. The only difference between the rounds 

and the sessions was the standard deviations 𝜎 as it appears in Table 3.2. That is, the 

standard deviation of the first half of rounds was different to the standard deviation 

during the second half of rounds. Additionally, in some sessions the standard deviations 

were lower at the first half of the experiment than in the second half, and in other 

sessions the opposite happens. 

 

Table 3.2 

Groups 
Standard Deviation (𝝈) 

Rounds 1 to 30 Rounds 31 to 60 

1 to 3 10 15 

4 to 6 15 10 

7 to 9 15 20 

  

At the beginning of each session, the subjects were seated at computer terminals and 

given a set of instructions, which were then read aloud by the experimenter.  A copy of 

the instructions appears in Appendix C3. To ensure that subjects understood the game 

structure, some examples and some questions of understanding were administered at the 

                                                            
37 That is, the timing of each round of the experiment is: (1) Policy maker stage: The policy maker 

learns his type 𝜃 and sets the policy 𝑟; (2) Agents stage: The two agents decide simultaneously and 

individually whether to attack the status quo after observing the policy 𝑟 and the idiosyncratic private 

signals 𝑥𝑖. Consequently, at the end of this stage we can establish if the status quo survives or if there is a 

regime change; and (3) Payoff stage: The participants get their earnings depending on their particular 

choices and the kind of regime that stay at the end of the round.  
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end of the instructions. The subjects received a recruitment fee of 5€; additionally, six 

rounds were randomly selected at the end of the experiment to pay them the average 

utility they individually got in these rounds.  

The types of policy makers 𝜃 and the signals 𝑥𝑖 were randomly selected in each 

round and for each participant (or group) according to the considerations that appear in 

the theoretical model38. The calibration of the other parameters was: 𝑦 = 220, 𝑏 = 70, 

𝐾 = 100 and 𝑐 = 0.739. Therefore, the equilibrium thresholds of the sessions were: 

 

 In the pooling equilibrium: 𝜃# = 68.18, 𝑥#(10) = 72.91, 𝑥#(15) = 75.27, 

𝑥#(20) = 77.64.  

 In the semiseparating equilibria: 𝑠 ∈ (71.43, 97.40], 𝜃𝑠
∗ ∈ (50, 68.18], and 

depending on 𝜎 and 𝜃𝑠
∗ , we have:  

 

o 𝜃𝑠
∗∗(10) ∈ (57.28, 68.18],𝜃𝑠

∗∗(15) ∈ (60.92, 68.18], 𝜃𝑠
∗∗(20) ∈ (64.56, 68.18],  

 

o 𝑥𝑠
∗(10) ∈ (57.28, 72.91], 𝑥𝑠

∗(15) ∈ (60.92, 75.27], 𝑥𝑠
∗(20) ∈ (64.56, 77.64]. 

 

 

3.4. Results 
 

This part of the chapter is divided in five sections in the following way. In section 

3.4.1 we compare the strategies followed by the participants in the lab experiment with 

the equilibrium strategies predicted by the model. Given the differences that there are 

between the behavior of the subjects in the experiment and in the model, then in 

sections 3.4.2 to 3.4.4 we analyze if the predictions proposed by Angeletos and Pavan 

(2013) remain valid; more specifically, in each section using the values of 𝜃 and 𝑥𝑖 used 

in the experiment, we first explain how these predictions appear when the participants 

behave as the theory says, then we analyze if the real behavior of the participants in the 

experiment also implies the same predictions. Finally, in section 3.4.5 we analyze how 

the choices of the agents in the experiment are affected but changes in the precision of 

the private signals. 

 

 

3.4.1.The strategies taken by the participants in the experiment 
 

According to the theoretical model, in the pooling equilibrium the policy maker 

always chooses the policy 𝑟 = 0, and in the set of semiseparating equilibria she always 

chooses the policy 𝑟 = 𝑠 > 0 if 𝜃𝑠 ∈ (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] and the policy 𝑟 = 0 otherwise. In 

Figure 3.1a, for all values of 𝜎 used in the experiment, we represent the pooling 

                                                            
38 To be more precise, the idiosyncratic noise 𝜗𝑖 was randomly selected to each participant in each 

round such that this noise satisfies the properties specified in equation (3.3). Then, from the values of 𝜃, 𝜎 

and 𝜗𝑖, each value of 𝑥𝑖 was specified. 
39 Notice that 𝑦 − 𝑏 −

𝐾

𝑐
> 0 and 𝑦 > 2𝑏 
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equilibrium. On the other hand, in Figure 3.1b we represent the semiseparating 

equilibrium for the case in which 𝑠 = 71.44 and 𝜎 = 2040.  

 

 

Figure 3.1a 

Theoretical Model:  

Pooling Equilibrium  

Figure 3.1b. 

 Theoretical Model:  

Semiseparating Equilibrium.  

Example: 𝑟 ∈ {0.00, 71.44} and 𝜎 = 20 

  
 

In the figures of Appendix E3, given different types of policy makers 𝜃 and groups, 

you can see the policies chosen by the policy makers in the experiment, the size of the 

attacks and the values of 𝜃 in which (during the experiment) the status quo survived or 

was defeated. In these figures, the two vertical lines delimit the potential range of types 

of policy makers who at the set of semiseparating equilibria choose a policy 𝑟 > 041. 

Therefore, according to the model, at the equilibrium at least all policies at the right 

hand side and at the left hand side of this range must be 𝑟 = 0. On the other hand, in the 

figures of Appendix E3, the two horizontal lines delimit the potential range that the 

policy 𝑟 = 𝑠 > 0 has in the set of semiseparating equilibria42. Therefore, according to 

the model, the equilibrium policies between the two vertical lines must be 𝑟 = 0 (i.e. to 

be at the bottom of the rectangle B) or 𝑟 = 𝑠 (i.e. to be inside the rectangle A)43. 

In Appendix D3 and in the Figures of Appendix E3 you can appreciate that one-third 

of the policy makers (i.e. the policy makers of the groups 1, 3 and 4) adopted, or almost 

adopted, a pooling equilibrium strategy in which 𝑟 = 0 for all 𝜃. In contrast, the policy 

makers of the other groups adopted strategies in which the policy 𝑟 took many values; 

in general, these strategies were different to the semiseparating equilibrium strategies. 

However, in the groups 5, 6 and 9 the policy makers chose the policy 𝑟 = 0 for all types 

𝜃 ≤ 5044; that is, the policy makers of these groups, as it happens in the theoretical 

                                                            
40 Remember, from section 3.3, that in our experiment a policy 𝑟 = 𝑠 > 0 can take any value in the 

interval (71.43, 97.40]. Therefore, for each value of 𝑠 we can draw a graph like the one that appears in 

Figure 3.1b, where the main differences between the different graphs are: the level of 𝑟 = 𝑠 and that the 

interval (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] shrink and moves to the left until (68.18, 68.18] while 𝑠 approaches to 97.40. 
41 Using the information of section 3.3 you can see that in the experiment this range is (50, 68.18] 
42 Remember that in the experiment this range is (71.43, 97.40] 
43 To be more precise, the policies 𝑟 = 𝑠 > 0 must be located in a triangle inside the rectangle A. 

From the information of section 3.3 we know that the base of this triangle is (𝜃71.73
∗ , 𝜃71.43

∗∗ (𝜎)] =
(50, 𝜃71.43

∗∗ (𝜎)] and the range (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] shrinks to (68.18, 68.18] while 𝑠 approaches to 97.40  
44 With a few exceptions in Group 9 
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model, chose a policy 𝑟 = 0 when the agents did not need to coordinate an attack to 

defeat the status quo.  

In the experiment, we found two interesting patterns of behavior in almost all cases 

in which the policy makers choose a policy 𝑟 > 0. First, they chose policies 𝑟 > 0 more 

times than it was predicted by theoretical model45. Second, they usually chose policies 

lower than the theoretical lower bound of 𝑠 (i.e. policies lower than 71.43); so the policy 

makers generally did not choose enough credible policies to avoid attacks to the status 

quo. However, in the experiment there was a policy maker who at least in some rounds, 

given her chosen policies, could avoid attacks by the agents. More specifically, in the 

figures of Appendix E3 you can see that the policy maker of group 8 many times 

adopted policies 𝑟 = 𝑠 higher than the policies adopted by the other policy makers; in 

particular, when 𝜎 = 15 she chose policies 𝑟 = 𝑠 close to the policies predicted by the 

theoretical model (but in a different range of 𝜃)46; therefore, these policies worked as 

policy thresholds to the agents as you can see in Appendix F347,48.  

In the figures of Appendix F3 you can see how was the behavior of the agents in the 

experiment given the policy chosen by the policy maker and the private signal that they 

received (notice that in the figures above the symbols you also have the round in which 

the decision was taken). In addition, in each figure the shadow area and the dashed line 

correspond to the signal thresholds 𝑥𝑠
∗(𝜎) and 𝑥#(𝜎) respectively, obtained from the 

theoretical model. From the figures of Appendix F3, we can appreciate that most of the 

time, the participants in the experiment adopted, or almost adopted, a signal threshold 

strategy in which they chose 𝑎 = 1 if the signal was lower than a threshold and 𝑎 = 0 

otherwise. However, we can also appreciate that most of the time these thresholds seem 

to be higher than the thresholds obtained in the theoretical model. Therefore, in order to 

compare the signal thresholds obtained in the experiment with the thresholds of the 

theoretical model we will use two methodologies.  

The first methodology is an adaptation of a methodology proposed by Szkup and 

Trevino (2015). The first step in this methodology consists in to find the individual 

signal thresholds per variance. An individual signal threshold is the average, per subject, 

between the highest value of the signal for which a participant chooses 𝑎 = 1 and the 

lowest value of the signal for which she chooses  𝑎 = 049. This information is reported 

in the Figures 3.2a to 3.2c; notice that these figures also show the theoretic 

threshold  𝑥#(𝜎)50.  The information of Figures 3.2a to 3.2c was classified depending if 

the policy makers played or not played pooling strategies and depending if the agent 

                                                            
45 For instance, look at Table 3.5 in section 3.4.3 
46 In the questionnaire at the end of the experiment, this policy maker expressed that she chose 𝑟 = 0 

when she considered that 𝜃 was too low or too high. 
47 Look at the Figures of the agents 23 and 24 of group 8 when 𝜎 = 15 
48 But, this policy maker when 𝜎 = 20 reduced the size of the positive policies and consequently these 

stopped being credible. 
49 When we computed the individual signal thresholds we did a wise adjustment in which if the 

highest value of the signal for which a participant chooses 𝑎 = 1 (or the lowest value of the signal for 

which she chooses 𝑎 = 0) was an atypical choice taken in the first five periods of the experiment, then to 

find the individual threshold we took the second highest value of the signal for which a participant 

chooses 𝑎 = 1 (or the second lowest value of the signal for which she chooses 𝑎 = 0). This adjustment 

was done in ten cases (when 𝜎 = 10 to the subjects 5, 6, 12, 15 and 17; when 𝜎 = 15 to the subjects 5, 

12, 23 and 24; and when 𝜎 = 20 to the subject 27) 
50 Do not forget that 𝑥#(𝜎) is also equal to the upper bound of 𝑥𝑠

∗(𝜎) 
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was following (or almost following) a signal threshold51 (e.g. in Figure 3.2c we compile 

all cases in which the agents seem not following signal thresholds). 

 

Figure 3.2a* 

Individual Signal Thresholds when the Policy 

Makers Played Pooling Strategies and the 

Agents Played Signal Threshold Strategies 

Figure 3.2b* 

Individual Signal Thresholds when the Policy 

Makers DID NOT Played Pooling Strategies 

and the Agents Played Threshold Strategies 

  
 

Figure 3.2c* 
Individual Signal Thresholds when the Agents 

DID NOT Played Signal Threshold Strategies 

 

 

* The labels in the figures correspond to the 

participants that had the role of agents in the 

experiment as they are referenced in Appendix F. 

The red triangles correspond to the individual 

signal thresholds when 𝜎 = 10, the blue dots 

correspond to individual signal thresholds when 

𝜎 = 15 and the green squares correspond to the 

individual signal thresholds when 𝜎 = 20. 
 

 

 

From Figures 3.2a and 3.2b notice that all individual signal thresholds were higher than 

the signal thresholds predicted by the theoretical model. In the second step of the first 

methodology we define the mean individual signal threshold per 𝜎 “MEST(𝜎)” as the 

average of all the individual signal thresholds per 𝜎; in Table 3.3 you can see the value 

of this statistic.  

The second methodology was proposed by Heinemann, Nagel and Ockenfels (2004), in 

this methodology we fit a logistic distribution to get the thresholds for the cases 

                                                            
51 From the figures of Appendix F3 you can differentiate the cases in which the agents followed (or 

almost followed) signal thresholds strategies from the cases in which the agents did not followed signal 

thresholds strategies. 
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reported in the Figures 3.2a and 3.2b52. More specifically, Heinemann, Nagel and 

Ockenfels (2004) says that if the cumulative logistic distribution is given by 

 

𝑝𝑟𝑜𝑏(𝑎 = 1) =
1

1 + 𝑒(𝛼−𝛽𝑥𝑖(𝜎))
 

 

where 𝑎 is the action of the agent given the private signal 𝑥𝑖(𝜎), then −
𝛼

𝛽
 is the mean 

threshold and its standard deviation −
𝜋

𝛽√3
 is a measure of coordination that reflects 

variation within a group; in Table 3.3 you can see that the signal thresholds using this 

methodology are not far from the signal thresholds obtained using the other 

methodology. 

 

Table 3.353 

Estimated Signal Thresholds and Equilibrium Signal Thresholds* 

 𝝈 = 𝟏𝟎 𝝈 = 𝟏𝟓 𝝈 = 𝟐𝟎 All 𝝈  

Figure 3.2a:     

MEST 91.47 92.94 - 92.20 

 (9.57) (5.86)  - (7.96)  

Logit 89.80 91.88 - 90.74 

 (9.43) (6.38) - (8.19) 
% of observations per 𝜎 41.67% 27.78% 0.00% 27.78% 

Figure 3.2b:     

MEST 96.91 100.62 103.30 100.99 

 (17.08) (16.95) (7.18) (14.74) 

Logit  92.12 101.59 103.67 100.41 

 (20.61) (17.89) (9.78) (16.59) 
% of observations per 𝜎 16.67% 50.00% 83.33% 44.44% 

𝑥𝑠
∗(𝜎) ∈ (∗, 𝑥#(𝜎)] (57.28, 72.91] (60.92, 75.27] (64.56, 77.64] (57.28, 77.64] 

* The standard deviations are reported in parenthesis 

 

Finally, at the top of the Figures of Appendix E3 and in the Table G3.1 of Appendix 

G3, notice that most of the time the status quo only survives for values of 𝜃 that are 

higher than the values predicted by the theoretical model54. It happens because the 

agents in the experiment acted more aggressive than the agents in the theoretical model. 

In part, this aggressive behavior was because, as we saw at the beginning of this section, 

the positive policies chosen by the policy makers were not enough credible to help to 

the survival of the status quo.  

Until now we have shown that the individual strategies of the participants in the 

experiment have some differences respect to the equilibrium strategies predicted by the 

                                                            
52 That is, to fit the logistic distribution we use all the information that appears in Appendix F3 except 

(1) the cases reported in the Figure 3.2c and (2) the first four periods of each session of the experiment to 

avoid the atypical values commented previously in the footnote 49. 
53 In this table we did not include the information of Figure 3.2c because in these cases the agents are 

not playing signal threshold strategies. Therefore, in each column the sum of the percentage of 

observations per 𝜎 is always lower than 100%. 
54 Remember that in the theoretical model the status quo survives, given the equilibrium strategies 

played by the individuals, if 𝜃 < 𝜃𝑠
∗ (in the figures of Appendix E do not forget that 𝜃𝑠

∗ is any of the types 

of policy makers delimited by the dashed vertical lines) 
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theoretical model and that these differences affect the kind of regime that remains at the 

end of each round. However, we have not analyzed if the predictions obtained by 

Angeletos and Pavan (2013) are enough strong to survive the differences that the 

strategies of the participants in the experiment have respect to the strategies of the 

theoretical agents. This will be our purpose in the following three sections55.  

 

 

3.4.2. First prediction: when the type of the policy maker is low 

there is a higher probability of regime change 
 

As we explained in the experimental design, the types of policy makers and signals 

were randomly selected in all rounds and in all groups. Therefore, given the private 

signals and the policy chosen by the policy maker, the agents decide if they attack or not 

attack the status quo. In Table 3.4, for the different types of policy makers and signals 

used in the experiment, we compare the final regimes that we got in the experiment with 

the final regimes that we would obtain if all individuals behave as the theory says. Since 

in the theoretical model there are multiple equilibria, then the pair of values that appear 

in the second and third columns of Table 3.4 correspond to the cases in which 𝜃𝑠
∗ is 

equal to its lower bound and its upper bound values respectively (i.e. when  𝜃71.43
∗ = 50 

and 𝜃97.40
∗ = 𝜃# = 68.18 respectively).  

 

Table 3.4 

Percentage of times the status quo survives (and percentage of times  

there is a regime change) given the values of 𝜃 used in the experiment 

*In these two columns we are taking into account that in the experiment 𝜃𝑠
∗ ∈ (50, 68.18]; therefore, 

inside the parenthesis we are showing two examples: (1) when 𝜃𝑠
∗ = 50 and (2) when 𝜃𝑠

∗ = 𝜃# = 68.18 

 

For instance, in the cases in which the type of policy maker 𝜃 ∈ (60 , 80]56 the 

theory predicts that if 𝜃𝑠
∗ = 50, then 92.92% of the times the status quo survives (i.e. 

7.08% of the times there is a regime change) but if 𝜃𝑠
∗ = 𝜃# = 68.18, then 56.64% of 

the times the status quo survives (i.e. 43.36% of the times there is a regime change). 

Nevertheless, in the experiment (i.e. the fourth and fifth columns of Table 3.4) when the 

                                                            
55 But do not forget that these predictions, as was commented by Angeletos and Pavan (2013), happen 

with some probability. It means that even when the subjects play equilibrium strategies the predictions 

may not happen perfectly. 
56 And given the choices of the theoretical agents who are using the private signals of the experiment 

𝜽 

Theory* Experiment 

Status quo  

survives 

There is a 

Regime Change 

Status quo 

survives 

There is a 

Regime Change 
(−∞ , 0] (0.00% - 0.00%) (100.00% - 100.00%) 0.00% 100.00% 

(0 , 20] (0.00% - 0.00%) (100.00% - 100.00%) 1.89% 98.11% 

(20 , 40] (0.00% - 0.00%) (100.00% - 100.00%) 1.79% 98.21% 

(40 , 60] (58.11% - 9.46%) (41.89% - 90.54%) 0.00% 100.00% 

(𝟔𝟎 , 𝟖𝟎] (92.92% - 56.64%) (7.08% - 43.36%) 17.70% 82.30% 

(80 , 100] (100.00% - 91.38%) (0.00% - 8.62%) 65.52% 34.48% 

(100,+∞) (100.00% - 100.00%) (0.00% - 0.00%) 100.00% 0.00% 

𝑻𝒐𝒕𝒂𝒍 (60.93% - 45.74%) (39.07% - 54.23%) 33.89% 66.11% 



128 
 

type of policy maker 𝜃 ∈ (60 , 80] we got that 82.30% of the times the status quo 

collapses and in only 17.70% of the times the status quo remains. This result is not 

strange because, as we explained in section 3.4.1, the participants in the lab experiment 

behave more aggressive than the agents in the theoretical model.  

If we analyze only the punctual values of each row of Table 3.4, then we appreciate 

significant differences between the results obtained in the experiment and the results 

when the individuals behave optimally. However, if we analyze the Table 3.4 as a 

whole, we can appreciate that we got in the experiment almost the same prediction 

obtained by Angeletos and Pavan (2013): when 𝜃 decreases the probability of survival 

of the status quo also decreases57. This conclusion is also in concordance with the 

predicted logit probabilities represented in Figure 3.3. In this figure notice that the 

probability of regime change is always lower in the theory than in the experiment, but 

all curves show the same pattern: a lower 𝜃 implies a lower probability of the survival 

of the status quo. 

 

Figure 3.358 

Probabilities of regime change* 

    
   *A gray dot equal to 1 means that there is a regime change and a gray dot equal to 0 means that the 

status quo survives. These dots are the same dots reported at the top of the last figure of Appendix E3. 

 

 

3.4.3.Second prediction: the policy chosen by the policy maker is 

greater than zero when the type of policy maker is neither 

too high nor too low 
 

In our experiment, for each value of 𝑟 = 𝑠 ∈ (71.43, 97.40] and 𝜎 ∈ {10,15,20}, we 

can specify the range at which the policy makers, according to the set of semiseparating 

equilibria, choose the policy 𝑟 = 𝑠 (i.e. we can specify the range (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)]. On the 

other hand, in the pooling equilibrium the policy maker always chooses 𝑟 = 0.  

In the second and third columns of Table 3.5 we show, given the values of  𝜃 used in 

the experiment, the percentage of times the theoretical model predicts that the policy 

                                                            
57 In the Table G3.2 of Appendix G3 you can see that the same conclusion is obtained if we use a 

more disaggregated classification of 𝜃 
58 The information used to do this figures can be observed at the top of the figures in Appendix E3 

(notice that in all these figures, you can also appreciate directly that the probability of the survival of the 

status quo is lower when the type of policy maker is low) 
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makers choose a policy 𝑟 = 0 and a policy 𝑟 = 𝑠 ∈ (71.43, 97.40]. For instance, if 𝜃 ∈
(30 , 40], then the theoretical model says that the policy maker always chooses the 

policy 𝑟 = 0. However, if 𝜃 ∈ (50 , 60] or if 𝜃 ∈ (60 , 70], in the set of semiseparating 

equilibria we expect that some policy makers choose a policy 𝑟 ∈ (71.43, 97.40]. 
Therefore, in the second and third columns of Table 3.5 we observe that when 𝜃 ∈
(50 , 60] or when 𝜃 ∈ (60 , 70] then on average the percentage of times a theoretical 

policy maker chooses a policy 𝑟 = 0 is lower or equal than 100% and on average the 

percentage of times a theoretical policy maker chooses a policy 𝑟 ∈ (71.43, 97.40] is 

higher or equal than 0%. Therefore, in this table (and also in the example used in Figure 

1b) you can appreciate that, according to the theoretical model, a positive policy 𝑟 is 

chosen when the type of policy maker is neither too high nor too low. That is, if the 

agents behave as the theory says then the second prediction of Angeletos and Pavan 

(2013) works. 

 

Table 3.5 
Percentage of choices 𝑟 > 0 and 𝑟 = 0 given the 𝜃 values used in the experiment 

𝜽 
Theory59 Experiment 

𝒓 = 𝟎 𝒓 ∈ (𝟕𝟏. 𝟒𝟑, 𝟗𝟕. 𝟒𝟎] 𝒓 = 𝟎 𝒓 > 0 

(−∞ , 0] 100.00% 0.00% 84.13% 15.87% 

(0 , 10] 100.00% 0.00% 80.00% 20.00% 

(10 , 20] 100.00% 0.00% 64.29% 35.71% 

(20 , 30] 100.00% 0.00% 87.50% 12.50% 

(30 , 40] 100.00% 0.00% 75.00% 25.00% 

(40 , 50] 100.00% 0.00% 80.00% 20.00% 

(𝟓𝟎 , 𝟔𝟎] ≤100.00% ≥0.00% 75.00% 25.00% 

(𝟔𝟎 , 𝟕𝟎] ≤100.00% ≥0.00% 47.62% 52.38% 

(70 , 80] 100.00% 0.00% 56.00% 44.00% 

(80 , 90] 100.00% 0.00% 54.17% 45.83% 

(90 , 100] 100.00% 0.00% 38.24% 61.76% 

(100,+∞) 100.00% 0.00% 60.16% 39.84% 

𝑻𝒐𝒕𝒂𝒍 ≤100.00% ≥0.00% 71.85% 28.15% 

 

On the other hand, from the last two columns of Table 3.5 we cannot appreciate 

clearly the same prediction obtained by Angeletos and Pavan (2013). However, in the 

Figures of Appendix E3, leaving aside the groups in which the policy makers were 

following (or almost following) the pooling equilibrium strategy (i.e. the figures of the 

groups 1, 3 and 4), you can appreciate that 33% of the other policy makers followed the 

policy 𝑟 > 0 when the type of policy maker was neither too high nor too low. To be 

more precise, most of the time when the type of policy maker was too low, the 

participants chose a policy 𝑟 = 060; however, when the type of policy maker was too 

high we observe that 33% of the policy makers, who did not follow the pooling 

                                                            
59 Remember that in the experiment the lowest value of 𝜃𝑠

∗ is 𝜃71.43
∗ =50 and the highest value of 

𝜃𝑠
∗∗(𝜎) is 𝜃97.40

∗∗ (𝜎) =68.18 
60 The only policy maker that did not follow this premise was the policy maker of Group 2. 
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equilibrium strategy, establishes a policy 𝑟 = 061. To summarize, the second theoretical 

prediction proposed by Angeletos and Pavan (1993) was only partially observed in the 

experiment. 

 

 

3.4.4.Third prediction: The probability of a policy greater than 

zero decreases when 𝜎 is lower.  
 

In the semiseparating equilibria this prediction happens because, given  𝜃𝑠
∗, then the 

distance 𝜃𝑠
∗∗(𝜎) − 𝜃𝑠

∗ = 𝜎 [𝛹−1 (1 −
𝜃𝑠
∗

𝐾
(

𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝜃𝑠
∗

𝐾
)] decreases when 𝜎 is lower62. 

On the other hand, if the subjects always play the pooling equilibrium strategies, then 

the policy makers choose the policy 𝑟 = 0  irrespective of the size of 𝜎.  

In the experiment the values of 𝜃 in all rounds and in all groups were randomly 

selected; therefore, using these values and assuming that the policy makers follow the 

semiseparating equilibrium strategy predicted by the theoretical model, then we may 

obtain that in some groups the number of rounds in which the policy maker is choosing 

a positive policy is higher when 𝜎 is lower (however, on average we expect the opposite 

result). For instance, assume that all policy makers in the experiment are following the 

semiseparating equilibrium at the lower bound of 𝜃𝑠
∗ (i.e. 𝜃71.43

∗ = 50 ); the red 

diamonds in Figure 3.4 represent these policy makers. Notice in this figure that the 

policy makers of the groups 4 and 5 chose more times positive policies in the rounds in 

which 𝜎 was lower and in the other seven groups the opposite happens. That is, if the 

policy makers behave as the theory says then, on average, we have the third prediction 

proposed by Angeletos and Pavan (2013). 

In the previous sections we have shown that, in our experiment, only in some rounds 

the policy makers chose policies equal to zero when the type of policy maker was too 

high63; it means, that the variable 𝜃𝑠
∗∗(𝜎) (and consequently, the range  (𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)]) 

was not clearly established in the lab sessions. Therefore, the argumentation that we 

used above, to explain how the size of 𝜎 affects the probability of a positive policy, does 

not work here.  However, it does not mean that the precision of the signals does not 

affect the policies chosen by the policy makers. The blue dots in Figure 3.3 represent 

the percentage of times the policy makers of each group choose a positive policy for 

each 𝜎64. We ran some regressions to analyze if the size of 𝜎 affects the size of the 

policy 𝑟 or affects the probability of choosing a policy higher than zero, but we did not 

find a robust statistical effect (look at for example the Table G3.3 in Appendix G3)65. It 

                                                            
61 Those are the policy makers of the groups 5 and 6. Since the policy makers of the groups 1, 3 and 4 

chosen the pooling equilibrium strategy, then the policy makers of the groups 2, 7, 8 and 9 did not choose 

the policy 𝑟 = 0 when the type 𝜃 was too high.   
62 Remember that the equilibrium strategy of the policy maker in the set of semiseparating equilibria is 

to choose the policy 𝑟 = 𝑠 inside the range (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] and 𝑟 = 0 otherwise 
63 However, do not forget that as it happens in the theoretical model, most of the time the policy 

makers also chose policies equal to zero when the type of policy maker was too low. 
64 From Table 3.1, remember that in the experiment the first half of the rounds in each session had a 

different 𝜎 respect to the second half of the rounds. 
65 However, we found that a higher type of policy maker has a slightly higher probability of choosing 

a policy greater than zero. 
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means that in the experiment we have not validated the prediction formulated by 

Angeletos and Pavan (2013).  

 

Figure 3.4 

Percentage of times the policy makers  

of each group choose policies 𝑟 > 0 *66 

  
                                     *Theory: Red diamonds (Case: 𝜃𝑠

∗ = 𝜃71.43
∗ ). Experiment:  

                                               Blue dots. The labels in the figure correspond to the group  

                                               of the policy maker. The solid line is a 45 degrees line.          

 

 

3.4.5.A new prediction: When the agents apply trigger strategies, 

the probability that an agent attacks the status quo 

increases when 𝜎 is higher.  
 

In section 3.2 we have seen that an increase in 𝜎 affects positively the size of the 

thresholds  𝑥𝑠
∗(𝜎) and 𝑥#(𝜎). When a threshold increase, then the probability of getting 

a private signal lower than the threshold increases and consequently increases the 

probability of the agents choosing 𝑎 = 1 when 𝑟 = 0. In section, 3.4.1 we have seen 

that many agents in our lab experiment played individual thresholds strategies. Then, 

we have run a logit regression to analyze in our lab experiment how the changes in the 

size of 𝜎 affect the probability of attacking the status quo (look at Table G3.4 in 

Appendix G3). Remember that in each session of the experiment the first half of rounds 

has a different value of 𝜎 respect to the last half of rounds, then the variable Dummy of 

Order is equal to 1 in the first half of rounds and zero otherwise. In addition, in the 

regression we have also included one dummy variable per  𝜎, except when 𝜎 = 15 (we 

excluded this variable, because from Table 3.2 we know that all individuals in the 

experiment interacted when 𝜎 = 15  but not when  𝜎 = 10  or  𝜎 = 20 ).  

In Table G3.4 we can see that the probability of the agents choosing  𝑎 = 1 

decreases when the signal and the policy are higher67. On the other hand, the probability 

                                                            
66 In this figure we are not considering the first four periods of each session to avoid the atypical 

values commented previously in the footnote 49. However, if we consider these values, the conclusions of 

this section do not change. 
67 It is clear that a higher signal has a higher probability of been higher than the signal threshold and 

consequently is higher the probability that the agent who receives the signal chooses 𝑎 = 0. On the other 
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of choosing  𝑎 = 1 is lower when 𝜎 = 10 than when 𝜎 = 15, and is also lower when 

𝜎 = 15 than when 𝜎 = 20. That is, the probability that any agent chooses  𝑎 = 1 

increases with 𝜎. This conclusion is in concordance with the information of Figure 3.5 

(notice that this figure is another way to represent the information of the Figures 3.2a-

3.2c68 or the information of Table 3.3).  

 

Figure 3.5 

Individual signal thresholds  

of each agent in the experiment+ 

 
                                                                 + The label in each dot corresponds to a different agent  

                                         (look at Appendix F3). The solid line is a 45 degrees line. 

 

 

3.5. Conclusions 
 

In our research we have found some discrepancies between the behavior of the 

participants in the lab experiment and the equilibrium strategies predicted by the model. 

This result is not strange because the model combines a global coordination game with 

a signaling game. Therefore, the equilibrium strategies of the model require the 

elimination of dominated strategies (from below and from above), an adequate system 

of beliefs and that the player’s strategies are sequentially rational. Previous papers have 

shown that these kinds of requirements are not easy to obtain in a lab experiment69.  

Notice that the last requirement was continuously violated by the policy makers in 

the experiment because their choices were not affected by the precision of the signals70, 

                                                                                                                                                                              
hand, when the policy implemented by the policy maker is higher, then the agents have less incentive to 

choose 𝑎 = 1 because the choice of this action implies a cost affected positively by 𝑟. 
68 Remember that the agents 20 to 27 are the only ones that interacted with 𝜎 = 15  and 𝜎 = 20. The 

others interacted with 𝜎 = 10  and 𝜎 = 15 
69 For instance, Cabrales, Nagel and Armenter (2007) and Heinemann, Nagel, and Ockenfels (2007) 

have found that a complete elimination of dominated strategies is not a behavior easy to obtain even in 

experiments simpler than ours. Similarly, Kübler, Müller and Normann (2008), in a lab experiment that 

uses as benchmark a job-market signaling model, found some discrepancies in the strategies followed by 

the participants in the experiment respect to the equilibrium strategies predicted by the model, they argue 

that it happens because the participants in the experiment did not adopt the same equilibrium system of 

beliefs obtained in the model. 
70 So, they did not take into account that changes in the precision of the signals affect the equilibrium 

strategy of the agents. In particular, remember that in the model 𝜎 affects positively the value of the 

signal thresholds of the agents. 
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and because when they implemented positive policies, these were not high enough to 

discourage the agents to attack the status quo. In addition, the policy makers did not 

apply properly the process of elimination of dominated strategies, so they could not 

correctly identify the range of types of policy makers for which was optimal to apply 

positive policies. Therefore, it seems that most of the time the policies chosen by the 

policy makers in the experiment were not revealing reliable information about the 

variable 𝜃 to the agents. Respect to the behavior of the agents, we got that usually they 

applied signal threshold strategies; however, they attacked the status quo more often 

than the theory says, even in the groups in which the policy makers followed pooling 

equilibrium strategies, as you could see in the Figures 3.2a to 3.2c. 

These divergences in the behavior of the participants in the experiment respect to the 

equilibrium strategies gave us the opportunity to test, using the data of the lab 

experiment, how much strong were the predictions found by Angeletos and Pavan 

(2013). That is, in the chapter we tested if their predictions remained valid even when 

the participants in the experiment did not play exactly the same equilibrium strategies 

predicted by the model. The prediction that better behaves in the experiment was that 

the low types of policy makers have a higher probability of regime change. This result 

is in concordance with the facts that (1) any policy (or measure, or rule) has a higher 

probability of being modified when the policy maker (or any other political or 

socioeconomic agent in charge of the policy) is less able or less willing to defend the 

policy, and (2) the speculators (or any other agents that can get benefits if the policy is 

defeated) have higher incentives of attacking a policy when the policy maker in charge 

of the policy is less able or less willing to defend the policy.  

On the other hand, in the experiment, in concordance with the results obtained in the 

model, we got that the probability that the agents attack the status quo decreases when 

the precision of the private signals is higher. In the model this result happens because 

when the policy maker chooses the policy 𝑟 = 0 then the earnings that the agents can 

get by choosing 𝑎 = 1 are sufficiently high respect to the losses of choosing 𝑎 = 171, 

such that the agents include a positive risk premium to the signal threshold that 

increases when the precision of the signal decreases72. In the experiment, since the 

information that the agents could obtained about 𝜃 from the policy chosen by the policy 

makers seems unreliable or uninformative, then agents applied almost always trigger 

strategies, and we can use the same argument commented previously in the theoretical 

model to justify the increment on the attacks to the status quo when the precision of the 

private signals increases.  

 

 

 

  

                                                            
71 Remember that we have assumed 𝑦 > 2𝑏.  
72 Remember that in the model the signal thresholds are 𝑥#(𝜎) = 𝜎𝛹−1 (

𝑦−𝑏

𝑦
) + 𝜃# and 𝑥𝑠

∗(𝜎) =

𝜎𝛹−1 (1 −
𝜃𝑠
∗

𝐾
(

𝑏

𝑦−𝑏
)) + 𝜃𝑠

∗. Then the risk premium of the signal threshold in the pooling equilibrium is 

represented by 𝜎𝛹−1 (
𝑦−𝑏

𝑦
) and in the semiseparating equilibria is represented by 𝜎𝛹−1 (1 −

𝜃𝑠
∗

𝐾
(

𝑏

𝑦−𝑏
)). 
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Appendix A3: The pooling equilibrium 
 

In this section we will show the propositions and elements that are more relevant to 

explain the characteristics of the pooling equilibrium of the model. This appendix is 

based entirely in Angeletos and Pavan (2013). For that reason, if you want to read a 

more complete explanation of the pooling equilibrium you can read directly their paper. 

In their paper they use functions that are more general than the functions that we are 

using; therefore, at some points it can be difficult to visualize their arguments. On the 

other hand, since we are using specific functions, in our approach we arrive to the close 

form solutions that we use to analyze the results of the lab experiment.  

At the pooling equilibrium the policy makers of all types always choose the same 

policy, so this policy is uninformative about the type of policy maker 𝜃. Therefore, the 

agents do not use the information of the policy 𝑟 to updates their beliefs about the type 

of policy maker. It implies that in the first stage of the game, the policy maker infers 

that all positive policies are strictly dominated by the policy 𝑟 = 0, and consequently 

she always chooses the policy 𝑟 = 0 at the equilibrium. In the second stage the agents 

play a coordination game in which, when they observe 𝑟 = 0, they use a symmetric 

trigger strategy that has as threshold the unique signal 𝑥#(𝜎). It implies that all 

individuals may infer that a regime change happens if and only if the type of policy 

maker is 𝜃 ≤ 𝜃# where 𝜃# is the unique threshold type of policy maker. 

In propositions A1 and A2 we obtain the exact form of the thresholds 𝑥#(𝜎) and 𝜃#. 
In proposition A3 we show that both thresholds are unique. In proposition A4 we show 

that the pooling equilibrium exists and is unique. In particular, we show that that there 

exists a strategy profile for the agents and the policy maker, and a system of supporting 

beliefs for the agents that sustain this equilibrium 

Before explaining the propositions we have to introduce a few concepts: Let 𝜇(𝜃#|𝑥) 
denotes the posterior probability of regime change for an agent who receives a signal 𝑥, 

who considers that the policy 𝑟 is uninformative about 𝜃, and who believes that there is 

regime change if and only if 𝜃 ≤ 𝜃#; then 𝜇(𝜃#|𝑥) = 1 − 𝛹 (
𝑥−𝜃#

𝜎
)73. In the model, the 

policy maker is the only individual who knows 𝜃, so she knows that there is a regime 

change when her type is lower or equal than 𝜃# = 𝐾𝛹 (
𝑥#(𝜎)−𝜃#

𝜎
) where 𝐾𝛹 (

𝑥#(𝜎)−𝜃

𝜎
) 

is the aggregate size of the attack that happens when the policy maker’s type is 𝜃 and 

the agents attack if and only if  𝑥 <  𝑥#(𝜎)74.  

                                                            
73 From equation (3.3) remember that 𝑥𝑖 = 𝜃 + 𝜎𝜗𝑖 where 𝜗𝑖~𝑁(0,1) is an idiosyncratic noise which 

is independently and identically distributed across agents and independent of 𝜃, with absolutely 

continuous p.d.f 𝜓 and c.d.f Ψ. It implies that 𝜃 = 𝑥𝑖 − 𝜎𝜗𝑖, then: 

 

 𝐸(𝜃|𝑥𝑖) = 𝐸(𝑥𝑖|𝑥𝑖) − 𝜎𝐸(𝜗𝑖|𝑥𝑖) = 𝑥𝑖 
 𝑉𝑎𝑟(𝜃|𝑥𝑖) = 𝐸((𝑥𝑖 − 𝜎𝜗𝑖)

2|𝑥𝑖) − [𝐸(𝜃|𝑥𝑖)]
2 = 𝐸(𝑥𝑖

2 − 2𝑥𝑖𝜎𝜗𝑖 + 𝜎
2𝜗𝑖

2|𝑥𝑖) − 𝑥𝑖
2 = 

                              𝐸(𝑥𝑖
2|𝑥𝑖) − 2𝜎𝐸(𝑥𝑖𝜗𝑖|𝑥𝑖) + 𝜎

2𝐸(𝜗𝑖
2|𝑥𝑖) − 𝑥𝑖

2 = 𝑥𝑖
2 + 𝜎2 − 𝑥𝑖

2 = 𝜎2  

 

That is, when the agent 𝑖 receives the signal 𝑥𝑖, she updates her beliefs about 𝜃 such that 

(𝜃|𝑥𝑖)~𝑁(𝑥𝑖 , 𝜎
2). So, the posterior probability that the agent 𝑖, after observing the signal 𝑥𝑖 and ignoring 

the policy 𝑟, gives to the type of policy maker 𝜃 ≤ 𝜃# is: 𝜇(𝜃#|𝑥) = 𝑃𝑟𝑜𝑏(𝜃 ≤ 𝜃#|𝑥𝑖) = 𝛹 (
𝜃#−𝐸(𝜃|𝑥𝑖)

𝑆𝐷(𝜃|𝑥𝑖)
) 

= 𝛹 (
𝜃#−𝑥𝑖

𝜎
) = 1 − 𝛹 (

𝑥𝑖−𝜃
#

𝜎
). Notice that she uses a Bayesian updating process.  

74 Using the previous footnote, we can easily infer that: 



135 
 

 Proposition A1: Let 𝑥#(𝜎) be any signal 𝑥 at which, given 𝜎, an agent who believes 

that a regime change happens if and only if 𝜃 ≤ 𝜃#, is indifferent between choosing 

𝑎 = 1 and 𝑎 = 0 when she observes 𝑟 = 0. So, 𝑥#(𝜎) = 𝜎𝛹−1 (
𝑦−𝑏

𝑦
) + 𝜃#.  

 

Proof: By definition, 𝑥#(𝜎) is determined from [1 − 𝛹 (
𝑥#(𝜎)−𝜃#

𝜎
)] (𝑦 − 𝑏) −

𝛹 (
𝑥#(𝜎)−𝜃#

𝜎
) 𝑏 = 075. The LHS of this equation is the posterior expected utility of the 

agent from choosing 𝑎 = 1 and the RHS is the expected utility of the agent from 

choosing 𝑎 = 0. Then we can obtain directly that 𝑥#(𝜎) = 𝜎𝛹−1 (
𝑦−𝑏

𝑦
) + 𝜃#.76            

 

Proposition A2: Let 𝜃# denotes a threshold such that, in any such equilibrium, there 

is regime change if and only 𝜃 ≤ 𝜃# (i.e. 𝜃# is the solution to  𝜃# = 𝐾𝛹 (
𝑥#(𝜎)−𝜃#

𝜎
) 77).  

Then, 𝜃# = 𝐾 (
𝑦−𝑏

𝑦
). 

 

Proof: If we replace in  𝜃# = 𝐾Ψ (
𝑥#(𝜎)−𝜃#

𝜎
)  the value of 𝑥#(𝜎) obtained in 

Proposition A1, we get 𝜃#  = 𝐾Ψ(
𝜎Ψ−1(

𝑦−𝑏

𝑦
)+𝜃#−𝜃#

𝜎
) = 𝐾 (

𝑦−𝑏

𝑦
)                                    

 

Proposition A3: 𝑥#(𝜎) and 𝜃# are unique values. 

 

Proof: Remember that, 𝜃# = 𝐾 (
𝑦−𝑏

𝑦
) and 𝑥#(𝜎) = 𝜎𝛹−1 (

𝑦−𝑏

𝑦
) + 𝜃#. It implies 

that  𝑥#(𝜎) = 𝜎𝛹−1 (
𝑦−𝑏

𝑦
) + 𝐾 (

𝑦−𝑏

𝑦
).  Therefore, the uniqueness of 𝑥#(𝜎) and 𝜃# are 

directly obtained because 𝛹(∙) is a normal c.d.f and 𝐾, 𝑏, 𝑦, and 𝜎 are predetermined 

parameters                                                                                                                          

 

                                                                                                                                                                              
 𝐸(𝑥𝑖|𝜃) = 𝐸(𝜃|𝜃) + 𝜎𝐸(𝜗𝑖|𝜃) = 𝜃 and  

 𝑉𝑎𝑟(𝑥𝑖|𝜃) = 𝐸((𝜃 + 𝜎𝜗𝑖)
2|𝜃) − [𝐸(𝑥𝑖|𝜃)]

2 = 𝐸(𝜃2 + 2𝜃𝜎𝜗𝑖 + 𝜎
2𝜗𝑖

2|𝜃) − 𝜃2 = 𝐸(𝜃2|𝜃) + 

                             2𝜎𝐸(𝜃𝜗𝑖|𝜃) + 𝜎
2𝐸(𝜗𝑖

2|𝜃) − 𝜃2 = 𝜃2 + 𝜎2 − 𝜃2 = 𝜎2   

 

That is, when a policy maker observes that her type is 𝜃, she updates her beliefs about 𝑥𝑖 such that  
(𝑥𝑖|𝜃)~𝑁(𝜃, 𝜎

2).  Since all individuals know that the trigger equilibrium strategy of each agent 𝑖 is to 

choose 𝑎𝑖 = 1 if 𝑥𝑖 < 𝑥
#(𝜎); thus the posterior probability that the policy maker 𝜃, after observing her 

type, gives to 𝑎𝑖 = 1 is: 𝑃𝑟𝑜𝑏(𝑥𝑖 < 𝑥
#(𝜎)|𝜃) = 𝛹 (

𝑥#(𝜎)−𝐸(𝑥𝑖|𝜃)

𝑆𝐷(𝑥𝑖|𝜃)
) = 𝛹 (

𝑥#(𝜎)−𝜃

𝜎
). Therefore, the size of 

the attack is 𝐾∑
𝑎𝑖𝑃𝑟𝑜𝑏(𝑥𝑖<𝑥

#(𝜎))

2

2
𝑖=1 = 𝐾∑

𝛹(
𝑥#(𝜎)−𝜃

𝜎
)

2

2
𝑖=1 = 𝐾𝛹 (

𝑥#(𝜎)−𝜃

𝜎
). And consequently, she knows 

that there is a regime change if and only if 𝜃 ≤ 𝜃# = 𝐾𝛹 (
𝑥#(𝜎)−𝜃#

𝜎
). 

75 That is,  𝜇(𝜃#|𝑥#(𝜎))(𝑦 − 𝑏) − [1 − 𝜇(𝜃#|𝑥#(𝜎))]𝑏 = 0 
76 In the next proposition we will show that 𝜃# exists. Therefore, notice that 𝑥#(𝜎) exists because we 

have assumed 𝑦 > 𝑏 > 0 

77 Since the expected size of the attack is 𝐾𝛹 (
𝑥#(𝜎)−𝜃

𝜎
). Then the definition of 𝜃# implies that 𝜃# =

𝐾𝛹 (
𝑥#(𝜎)−𝜃#

𝜎
). 
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Proposition A4: For any 𝜎, our pooling equilibrium exist and is unique. 

 

Proof: Assume any 𝜎. Then, to get the equilibrium policy of the policy maker we 

have to establish a strategy profile for the agents and a system of supporting beliefs such 

that no type of the policy maker finds it optimal to choose a policy 𝑟 = 𝑠 > 0. Consider 

the following  

strategy profile
for the agents

: 

{
 
 

 
 for 𝑟 = 0 {

 𝑎 = 1  if and only if 𝑥 <  𝑥#(𝜎)

 𝑎 = 0  if and only if 𝑥 >  𝑥#(𝜎)
       

for any 𝑟 ∈ (0,
𝐾

𝑐
] , 𝑎 = 1 irrespective of 𝑥         

for any 𝑟 >
𝐾

𝑐
, 𝑎 = 0 irrespective of 𝑥                

. 

 

where 𝑥#(𝜎) is the unique threshold obtained in the previous propositions. Now we 

have to show that, given this profile, for any policy maker of type 𝜃 the best policy for 

her is to choose the policy 𝑟 = 0 (and receive an attack of size 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
) ∈ [0, 𝐾]) 

than to choose any policy  𝑟 ∈ (0,
𝐾

𝑐
] (and receive an attack of size 𝐾) or any policy 𝑟 >

𝐾

𝑐
 (and receive an attack of size 0)78: 

 

a. If  𝜃 ≤ 0: For these types of policy makers, irrespective of the policy 𝑟 and 

irrespective of the size of the attack, there is always a regime change and 

consequently the utility of the policy maker is always  𝐿(𝑟) = −𝑐𝑟. Therefore, any 

policy 𝑟 = 𝑠 > 0 is strictly dominated by the policy 𝑟 = 0 because we always have 

𝑈(𝜃, 𝑠,∗) = 𝐿(𝑠) = −𝑐𝑠 < 0 = 𝐿(0) = 𝑈(𝜃, 0,∗).  
 

b. If  𝜃 ∈ (0, 𝐾]: For these types of policy makers we will check separately what 

happen when 𝑟 ∈ (0,
𝐾

𝑐
] and 𝑟 >

𝐾

𝑐
: 

 Given the strategy profile of the agents, a policy 𝑟 ∈ (0,
𝐾

𝑐
] > 0 means that all 

agents choose 𝑎(𝑥, 𝑟) = 1, the size of the attack is 𝐾 and there is always a 

regime change, so the utility of the policy maker is always  𝑈(𝜃, 𝑟, 𝐾) = 𝐿(𝑟). 

The policy 𝑟 ∈ (0,
𝐾

𝑐
] > 0 is strictly dominated by the policy 𝑟 = 0 because we 

always have one of the following two situations: 

i. If the policy 𝑟 = 0 implies a regime change (i.e. 𝜃 ≤ 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)), 

then:  𝐿(𝑟) = −𝑐𝑟 < 0 = 𝐿(0) = 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) . 

ii. If the policy 𝑟 = 0 implies that the status quo survives (i.e. 𝜃 >

𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)), then: 𝐿(𝑟) = −𝑐𝑟 < 0 < 𝜃 − 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
) = 

                                                            

78 That is, we will show that for any value of 𝜃 we always have  𝑈(𝜃, 𝑟, 𝐾) < 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) 

for the case in which 𝑟 ∈ (0,
𝐾

𝑐
] and 𝑈(𝜃, 𝑟, 0) < 𝑈 (𝜃, 0, 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
)) for the case in which 𝑟 >

𝐾

𝑐
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𝑊(𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) = 𝑈 (𝜃, 0, 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
))  

To summarize, 𝑈(𝜃, 𝑟, 𝐾) < 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) when 𝑟 ∈ (0,

𝐾

𝑐
] and 𝜃 ∈ (0, 𝐾] 

 Given the strategy profile of the agents, a policy 𝑟 >
𝐾

𝑐
 means that all agents 

choose 𝑎 = 0, the size of the attack is 0 and the status quo always survives, so 

the utility of the policy maker is always 𝑈(𝜃, 𝑟, 𝐾) = 𝑊(𝜃, 𝑟, 0). The policy 𝑟 >
𝐾

𝑐
 is strictly dominated by the policy 𝑟 = 0 because we always have one of the 

two following situations:   

i. If the policy 𝑟 = 0 implies a regime change (i.e. 𝜃 ≤ 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)), 

then: 𝑊(𝜃, 𝑟, 0) = 𝜃 − 𝑐𝑟 < 𝜃 − 𝐾 ≤ 0 = 𝐿(0) = 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
))79  

ii. If the policy 𝑟 = 0 implies that the status quo survives (i.e. 𝜃 >

𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)), then: 𝑊(𝜃, 𝑟, 0) = 𝜃 − 𝑐𝑟 < 𝜃 − 𝐾 ≤ 𝜃 − 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
) =

𝑊 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) = 𝑈(𝜃, 0, 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
)) 80 

To summarize, 𝑈(𝜃, 𝑟, 𝐾) < 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) when 𝑟 ∈ (0,

𝐾

𝑐
] and 𝜃 ∈ (0, 𝐾] 

 

c. If 𝜃 > 𝐾:. For these types of policy makers, irrespective of the policy 𝑟 and 

irrespective of the size of the attack, the status quo always survives and 

consequently the utility of the policy maker is always  𝑊(𝜃, 𝑟,∗).  Now, we will 

check separately what happen in this case when 𝑟 ∈ (0,
𝐾

𝑐
] and 𝑟 >

𝐾

𝑐
. 

 Given the strategy profile of the agents, a policy 𝑟 ∈ (0,
𝐾

𝑐
] means that all agents 

choose 𝑎 = 1, the size of the attack is 𝐾, so the utility of the policy maker is 

always  𝑈(𝜃, 𝑟, 𝐾) = 𝑊(𝜃, 𝑟, 𝐾). The policy 𝑟 ∈ (0,
𝐾

𝑐
] is strictly dominated by 

the policy 𝑟 = 0 because we always have  𝑊(𝜃, 𝑟, 𝐾) = 𝜃 − 𝑐𝑟 − 𝐾 < 𝜃 − 𝐾 ≤

𝜃 − 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
) = 𝑊 (𝜃, 0, 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
))81 

To summarize, 𝑈(𝜃, 𝑟, 𝐾) < 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) when 𝑟 ∈ (0,

𝐾

𝑐
] and 𝜃 > 𝐾 

 Given the strategy profile of the agents, a policy 𝑟 >
𝐾

𝑐
 means that all agents 

choose 𝑎 = 0, the size of the attack is 0, so the utility of the policy maker is 

always  𝑈(𝜃, 𝑟, 0) = 𝑊(𝜃, 𝑟, 0). The policy 𝑟 >
𝐾

𝑐
 is strictly dominated by the 

                                                            
79 The inequalities follow from the fact that we are assuming 𝜃 ∈ (0, 𝐾] and 𝑟 >

𝐾

𝑐
. Therefore, 𝜃 −

𝑐𝑟 < 𝜃 − 𝐾 ≤ 0 
80 The inequalities follow from the fact that we are assuming 𝑟 >

𝐾

𝑐
 and that Ψ is a normal c.d.f (i.e. 

Ψ ∈ [0,1]) 
81 The first inequality follows from the fact that 𝑟 ∈ (0,

𝐾

𝑐
]. The last inequality follows from the fact 

that we are assuming that Ψ is a normal c.d.f (i.e. Ψ ∈ [0,1]). 
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policy 𝑟 = 0 because we always have 𝑊(𝜃, 𝑟, 0) = 𝜃 − 𝑐𝑟 < 𝜃 − 𝐾 ≤ 𝜃 −

𝐾Ψ (
𝑥#(𝜎)−𝐾

𝜎
) < 𝜃 − 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
) = 𝑊 (𝜃, 0, 𝐾Ψ (

𝑥#(𝜎)−𝜃

𝜎
))82 

To summarize, 𝑈(𝜃, 𝑟, 𝐾) < 𝑈 (𝜃, 0, 𝐾Ψ (
𝑥#(𝜎)−𝜃

𝜎
)) when 𝑟 >

𝐾

𝑐
 and 𝜃 > 𝐾 

  

Therefore, at the pooling equilibrium, there exists a unique strategy profile for the 

policy maker in which she always chooses the policy 𝑟 = 0.  

To complete the proof, we have to show that the strategy profile of the agents83 can 

be supported by an appropriate system of beliefs: 

 

a. When 𝒓 = 𝟎: In this case, for any type of policy maker 𝜃, the posterior beliefs of 

the agents are represented by 𝜇(𝜃| 𝑥, 0) = 1 − 𝛹 (
𝑥−𝜃

𝜎
)84. In proposition A1 we 

showed, given these beliefs, that choosing 𝑎 = 1 if and only if 𝑥 < 𝑥#(𝜎) is 

sequentially optimal for the agents when they observe 𝑟 = 0.   

 

b. When 𝒓 = 𝒔 ∈ (𝟎,
𝑲

𝒄
]: In proposition B2 we define 𝜃𝑠

∗ as the lowest type of policy 

maker who prefers to implement the policy 𝑟 = 𝑠 and face no attack to implement 

the policy 𝑟 = 0 and suffer a coordinated attack that implies a regime change. In 

addition, remember from the end of section 3.2.1 that we are assuming that an agent 

chooses 𝑎 = 1 if she expects  𝑢(∗) ≥ 0 85. Now, let 𝜇(𝜃| 𝑥, 𝑠) be any beliefs that 

assign probability 1 to the event in which the type of policy maker is 𝜃 ∈ [𝜃𝑠
∗, 𝐾]86, 

irrespective of 𝑥. Because for any 𝜃 ∈ [𝜃𝑠
∗, 𝐾] there is a regime change, then these 

beliefs satisfy 𝑦 ∫ 𝑑𝜇(𝜃̃| 𝑥, 𝑠)
𝐾

𝜃𝑠
∗ − 𝑏 − 𝑠 ≥ 0 for all 𝑥. It implies that any agent 𝑖 

who expects that the other agent chooses 𝑎𝑗 = 1  when 𝑟 = 𝑠 finds it optimal to 

choose 𝑎𝑖 = 1 when 𝑟 = 𝑠, irrespective of 𝑥.   

 

c. When 𝒓 = 𝒔 >
𝑲

𝒄
: Let 𝜇(𝜃| 𝑥, 𝑟) be any beliefs that assign probability 1 to 𝜃 >

𝐾

2
, 

irrespective of 𝑥𝑖. Therefore, these beliefs imply that any agent 𝑖 who expects that 

the other agent chooses 𝑎𝑗 = 0 when 𝑟 = 𝑠 finds it optimal to choose 𝑎𝑖 = 0 when 

𝑟 = 𝑠, irrespective of 𝑥𝑖.                                                   
 

                                                            
82 All the inequalities follow from the fact that we are assuming 𝑟 >

𝐾

𝑐
 , 𝜃 > 𝐾 and Ψ is a normal c.d.f 

83 Remember that the strategy profile of the agents is 

{
 
 

 
 for 𝑟 = 0 {

 𝑎 = 1  if and only if 𝑥 <  𝑥#(𝜎)

 𝑎 = 0  if and only if 𝑥 >  𝑥#(𝜎)
     

for any 𝑟 ∈ (0,
𝐾

𝑐
] , 𝑎 = 1 irrespective of 𝑥      

for any 𝑟 >
𝐾

𝑐
, 𝑎 = 0 irrespective of 𝑥             

 

84 These beliefs were updated using the Bayes’ rule as you can check in the footnote 73. 
85 Remember that this assumption is equivalent to assume that an agent who expects a regime change 

finds it optimal to choose 𝑎 = 1 at least insofar as the policy maker does not play a dominated action. 
86 Remember that if 𝜃 > 𝐾, then the status quo always survives, so it is never optimal for the agents to 

choose 𝑎 = 1 in this situation. 
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Therefore, in our pooling equilibrium the strategy profile of the agents can be 

supported by a correct system of beliefs. Finally, notice that at this profile when  𝑟 = 0  

there is a unique threshold 𝑥#(𝜎)  as it was shown in the proposition A3.                       
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Appendix B3: The set of semiseparating equilibria 
 

In this section we will show the propositions and elements that are more relevant to 

explain the characteristics of the set of semiseparating equilibria of our model. This 

appendix is based entirely in Angeletos and Pavan (2013). For that reason, if you want 

to read a more complete explanation of this equilibrium you can read directly their 

paper. In their paper they use functions that are more general than the functions that we 

are using; therefore, at some points it can be difficult to visualize their arguments. On 

the other hand, since we are using specific functions, in our approach we arrive to the 

close form solutions that we use to analyze the results of the lab experiment. 

The more relevant characteristics of the propositions that we present below are:  

 

 Proposition B1: This proposition argues that, in any equilibrium of the set of 

semiseparating equilibria, when the policy maker of type 𝜃 chooses a policy 𝑟 >
0, she selects the least costly policy among those policies that are favorable to 

the survival of the status quo87. Assume that this policy is 𝑟 = 𝑠, then the agents 

choose 𝑎 = 0 when they observe 𝑟 = 𝑠.  

 Proposition B2: This proposition shows that 𝜃𝑠
∗ = 𝑐𝑠 ≥

𝐾

2
. 

 Proposition B3: This proposition shows that the semiseparating equilibria does 

not exist when 𝜃 < 𝑐𝑠 for all 𝜃88. In addition, it also shows that at the 

equilibrium no type of policy maker  𝜃 > 𝜃𝑠
∗ experiences a regime change 

 Propositions B4 and B5: These propositions show that 𝜃𝑠
∗∗(𝜎) = 𝜎 [𝛹−1 (1 −

𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝑐𝑠

𝐾
)] + 𝑐𝑠, 𝑥𝑠

∗(𝜎) ≡ 𝑋(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) = 𝜎𝛹−1 (1 −
𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) +

𝑐𝑠89, and demonstrate that lim
𝜎→0

𝜃𝑠
∗∗(𝜎) =  lim

𝜎→0
𝑥𝑠
∗(𝜎) = 𝜃𝑠

∗ = 𝑐𝑠90.   

 Proposition B6: This proposition uses a contagion argument91 to delimit from 

above the range of types (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] at which the policy maker always chooses 

𝑟 = 𝑠 > 0 in the set of semiseparating equilibria. More specifically, this 

proposition shows that any policy 𝑟 > 0 is dominated by the policy 𝑟 = 0 if 𝜃 is 

sufficiently high92, then it shows that the agents find iteratively dominant to 

choose 𝑎 = 0 for sufficiently high 𝑥, conditional on observing 𝑟 = 0. Therefore, 

it presents a contagion effect argument in which the agents choose 𝑎 = 0 for 

                                                            
87 From equation (3.1), notice that, when the regime change, all policies 𝑟 > 0 are strictly dominated 

at the equilibrium by the policy 𝑟 = 0. Therefore, the survival of the status quo is the first requisite that a 

policy maker needs to satisfy to implement an equilibrium policy  𝑟 > 0 that is not strictly dominated by 

the policy 𝑟 = 0. 
88 The policy maker of type 𝜃 never chooses a policy 𝑟 = 𝑠 in which 𝜃 < 𝑐𝑠 because in this case the 

policy 𝑟 = 0 strictly dominates the policy 𝑟 = 𝑠. Therefore, at the equilibrium the policy makers of type 

𝜃 < 𝜃𝑠
∗ never chooses the policy 𝑟 = 𝑠. 

89 Notice that one necessary condition to ensure the existence of 𝜃𝑠
∗∗(𝜎) and 𝑥𝑠

∗(𝜎) is that in any 

equilibrium 1 >
𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
). And we are ensuring that this restriction is always satisfied with the assumption 

that 𝑦 > 2𝑏 as we explained in the footnote 27 
90 The last part is easily obtained from the equations of  𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎) and 𝑥𝑠

∗(𝜎). 
91 As the arguments usually used to analyze standard global games 
92 A type of policy maker 𝜃 ≥ 𝜃𝑠

∗ is sufficiently high when the expected attack, after observing 𝑟 = 0 

and given the signal threshold 𝑥𝑠
∗(𝜎), is lower than 𝑐𝑠 and consequently is lower than 𝜃. 



141 
 

lower and lower 𝑥. In the limit, this contagion converges to 𝜃𝑠
∗∗(𝜎), guaranteeing 

that all 𝜃 > 𝜃𝑠
∗∗(𝜎): (i) are able to avoid regime change without intervening, and 

(ii) obtain a higher utility by choosing the policy 𝑟 = 0 and facing an attack than 

by choosing the policy 𝑟 = 𝑠 and facing no attack.  

 Proposition B7: In this proposition, the fact that choosing any policy 𝑟 > 0 is 

dominated for sufficiently low 𝜃, along with the fact that for these types, regime 

change is inevitable, implies that the agents find it iteratively dominant to 

choose 𝑎 = 1 for sufficiently low 𝑥 as long as they do not observe 𝑟 > 0. The 

dispersion of information then initiates a contagion effect such that, conditional 

on seeing 𝑟 = 0, agents find it iteratively dominant to choose 𝑎 = 1 for higher 

and higher 𝑥, in which case regime change occurs for higher and higher 𝜃. In the 

limit, this contagion effect guarantees that regime change occurs for all 𝜃 <

𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#}in any equilibrium in which the chosen policy is 𝑟 = 𝑠93.  

Later, in proposition B9 we will show that a semiseparating equilibrium 

exists only if the equilibrium policy 𝑠 ∈ (
𝐾

2𝑐
,
𝜃#

𝑐
], this implies that  

𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#} = 𝜃𝑠

∗; so in proposition B10 we show that in a semiseparating 

equilibrium, in which the equilibrium positive policy is established in the range 
(𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)], a regime change happens only if 𝜃 < 𝜃𝑠

∗ and the status quo 

survives only if 𝜃 > 𝜃𝑠
∗. 

 Propositions B8 to B11: These propositions show that the set of semiseparating 

equilibria characterized by the strategies explained in section 3.2.2.2 exist if and 

only if 𝑠 ≤
𝜃#

𝑐
. 

Before explaining the propositions, we have to introduce a few concepts and 

variables:  The variable  ∆𝑈(𝑈(∗)1, 𝑈(∗)2) ≡ 𝑈(∗)1 − 𝑈(∗)2 represents the utility that 

the policy maker gets if the situation 1 happens minus the utility that the policy maker 

gets if the situation 2 happens (these situations are determined by the choices of the 

policy maker and the regime status at the end of the game)94. In the propositions, we 

will show that at the equilibria when the policy maker chooses a policy 𝑟 = 0 then the 

optimal trigger strategy of the agents is to choose 𝑎 = 1 if and only if 𝑥 <  𝑥∗(𝜎) and 

𝑎 = 0 otherwise; so at the equilibria the size of the attack can be represented by 

                                                            
93 The last result is obtained by comparing the agents’ incentives to choose 𝑎 = 1 after observing 𝑟 =

0 with the corresponding incentives when they expect at the equilibrium 𝑟 = 0 for all 𝜃. Because the 

observation of 𝑟 = 0 is most informative of regime change when all types of policy maker who 

experience regime change set 𝑟 = 0, while some of the types of policy maker who are spared from regime 

change raise the policy to 𝑟 > 0, the size of the attack when setting 𝑟 = 0 is necessarily larger in any of 

the equilibria in which some types of policy maker are expected to raise the policy to 𝑟 = 𝑠 than in the 

pooling equilibria where all types of policy maker are expected to set 𝑟 = 0. Hence any type 𝜃 < 𝜃# who 

does not raise the policy to 𝑟 = 𝑠 necessarily experience regime change in equilibrium. Because choosing 

the policy 𝑟 = 𝑠 is dominated for all 𝜃 < 𝜃𝑠
∗, this implies that regime change occurs for any 𝜃 <

𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#} in any equilibrium of our set of semiseparating equilibria. 

94 For instance, ∆𝑈(𝑊(𝜃, 𝑟′, 𝐾𝐴), 𝐿(𝑟′′)) ≡ 𝑊(𝜃, 𝑟′, 𝐾𝐴) − 𝐿(𝑟′′) where in the first situation the 

policy maker has chosen 𝑟′ ≥ 0 and there was no regime change and in the second situation the policy 

maker has chosen 𝑟′′ ≥ 0  and there was a regime change. Similarly, we can also have 

∆𝑈(𝑊(𝜃, 𝑟′, 𝐾𝐴),𝑊(𝜃, 𝑟′′, 𝐾𝐴)) ≡ 𝑊(𝜃, 𝑟′, 𝐾𝐴) −𝑊(𝜃, 𝑟′′, 𝐾𝐴) or ∆𝑈(𝐿(𝑟′), 𝐿(𝑟′′)) ≡ 𝐿(𝑟′) − 𝐿(𝑟′′) 
among others. 
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𝐾𝛹 (
𝑥∗(𝜎)−𝜃

𝜎
) when the type of policy maker is  𝜃95. Finally, as was assumed by 

Angeletos and Pavan (2013, p. 888), we will assume that in the equilibrium, the policy 

maker does not face uncertainty about regime outcomes. 

 

Proposition B1: In any equilibrium in which a policy maker of type 𝜃 decides a 

policy 𝑟 > 0, there exists a single policy 𝑟 = 𝑠 > 0 such that at the equilibrium this 

policy is chosen when 𝑟 = 𝑠 is not dominated by the policy 𝑟 = 0. Furthermore, 

when  𝑟 = 𝑠, all agents decide 𝑎 = 0 for all 𝜃.   

 

Proof: Since the policy maker does not have uncertainty about the size of the attack; 
then, she can predict with complete certainty when there is a regime change. Therefore, 

any type of policy maker who chooses an equilibrium policy 𝑟 > 0 must be waiting that 

the status quo survives, because otherwise she would be strictly better off by setting 𝑟 =
0.96 It implies that at the equilibrium if the agents observe the equilibrium policy 𝑟 > 0, 

then this policy signals them that there won’t be a regime change and thus induces each 

agent to choose 𝑎 = 0 no matter what her signal 𝑥 is.  

For that reason, any type of policy maker 𝜃 can always obtains a higher utility by 

choosing the less costly policy 𝑟 > 0 among those that are played in equilibrium. 

Therefore, in any equilibrium in which the policy maker of type 𝜃 chooses a policy 𝑟 >
0, there exists a single policy 𝑠 > 0 such that this is the policy chosen when the policy 

𝑟 = 0 does not dominate all policies 𝑟 > 0. Then, when the chosen policy is 𝑟 = 𝑠 all 

agents decide 𝑎 = 0 for all 𝜃.                                                                                   

 

Proposition B2: Let 𝜃𝑠
∗ denotes the lowest type of policy maker who prefers to rise 

the policy to 𝑟 = 𝑠 and face no attack to leave the policy at 𝑟 = 0 and suffer a 

coordinated attack that implies a regime change. Therefore, 𝜃𝑠
∗ = 𝑐𝑠 ≥

𝐾

2
.   

 

Proof: For any {𝜃, 𝑠}, 𝜃𝑠
∗ = 𝑖𝑛𝑓 {𝜃 ≥

𝐾

2
| ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) ≥ 0}. Therefore, given 

the definition of 𝑈(∙) in equation (3.1) we get 𝜃𝑠
∗ = 𝑖𝑛𝑓 {𝜃 ≥

𝐾

2
| 𝜃 − 𝑐𝑠 ≥ 0} = 𝑐𝑠 ≥

𝐾

2
 . 

The lower bound of 𝜃𝑠
∗ is due to the fact that when the type of policy maker is higher 

than 
𝐾

2
, then the agents need a coordinated attack to get a regime change.                        

 

Proposition B3: For any 𝑠 > 0, if our set of semiseparating equilibria exists, then 

there exists a type of policy maker 𝜃 ≥
𝐾

2
 such that ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) ≥ 0 (i.e. 𝜃 ≥

                                                            
95 In the first part of the footnote 74 we already explained that when a policy maker observes that her 

type is 𝜃, she updates her beliefs about 𝑥𝑖 such that  (𝑥𝑖|𝜃)~𝑁(𝜃, 𝜎
2).  Therefore, when the policy maker 

at the equilibrium chooses a policy 𝑟 = 0, then the posterior probability that the policy maker 𝜃 gives to 

𝑎𝑖 = 1 is: 𝑃𝑟𝑜𝑏(𝑥𝑖 < 𝑥
∗(𝜎)|𝜃) = 𝛹 (

𝑥∗(𝜎)−𝐸(𝑥𝑖|𝜃)

𝑆𝐷(𝑥𝑖|𝜃)
) = 𝛹 (

𝑥∗(𝜎)−𝜃

𝜎
). Therefore, the expected size of the 

attack is 𝐾∑
𝑎𝑖𝑃𝑟𝑜𝑏(𝑥𝑖<𝑥

∗(𝜎))

2

2
𝑖=1 = 𝐾∑

𝛹(
𝑥∗(𝜎)−𝜃

𝜎
)

2

2
𝑖=1 = 𝐾𝛹 (

𝑥∗(𝜎)−𝜃

𝜎
). 

96 Notice that choosing a policy 𝑟 > 0 when there is a regime change implies a utility to the policy 

maker that is lower than the utility obtained if the policy is equal to zero. More specifically, 𝐿(𝑟) =
−𝑐𝑟 < 0 = 𝐿(0). 
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𝑐𝑠 ≥
𝐾

2
). In addition, any equilibrium in our set of semiseparating equilibria is such that 

there is no regime change for all 𝜃 > 𝜃𝑠
∗.   

 

Proof: First we will prove that for any  𝑠 > 0 a semiseparating equilibrium does not 

exist when ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) < 0 for all 𝜃 (i.e. this kind of equilibrium does not 

exist when 𝜃 < 𝑐𝑠 ∀𝜃). It happens because the utility that the type of policy maker 𝜃 

obtains by choosing the policy 𝑟 = 0 is always strictly higher than the utility the same 

type obtains by choosing the policy 𝑟 = 𝑠 > 0. More specifically, we always have one 

of the following situations97: 

 

1. 𝑈(𝜃, 0,0) = 𝑊(𝜃, 0,0) =  𝜃 > 𝜃 − 𝑐𝑠 = 𝑊(𝜃, 𝑠, 0) = 𝑈(𝜃, 𝑠, 0) , 
2. 𝑈(𝜃, 0,0) = 𝑊(𝜃, 0,0) = 𝜃 > 0 > −𝑐𝑠 = 𝐿(𝑠) = 𝑈(𝜃, 𝑠, 0) 98, 

3. 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑥−𝜃

𝜎
)) = 𝑊 (𝜃, 0, 𝐾𝛹 (

𝑥−𝜃

𝜎
)) = 𝜃 − 𝐾𝛹 (

𝑥−𝜃

𝜎
) > 0 > −𝑐𝑠 = 𝐿(𝑠) =

𝑈(𝜃, 𝑠, 0) 99, 

4. 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑥−𝜃

𝜎
)) = 𝑊 (𝜃, 0, 𝐾𝛹 (

𝑥−𝜃

𝜎
)) = 𝜃 − 𝐾𝛹 (

𝑥−𝜃

𝜎
) > 0 > 𝜃 − 𝑐𝑠 =

𝑊(𝜃, 𝑠, 0) = 𝑈(𝜃, 𝑠, 0) 100, 

5. 𝑈(𝜃, 0,∗) = 𝐿(0) = 0 > −𝑐𝑠 = 𝐿(𝑠) = 𝑈(𝜃, 𝑠, 0) and 

6. 𝑈(𝜃, 0,∗) = 𝐿(0) = 0 > 𝜃 − 𝑐𝑠 = 𝑊(𝜃, 𝑠, 0) = 𝑈(𝜃, 𝑠, 0)  
 

To summarize, when ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) < 0 (i.e. when 𝜃 < 𝑐𝑠) we got that 

𝑈(𝜃, 0,∗) > 𝑈(𝜃, 𝑠, 0) always happens irrespective whether choosing the policy  𝑟 = 0 

leads to or not to a regime change and irrespective of the size of the attack when 𝑟 = 0.  

Therefore, consider the policies 𝑟 = 𝑠 > 0 for which there exists a type of policy 

maker 𝜃 ≥
𝐾

2
 such that ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) ≥ 0 (i.e. consider the policies 𝑟 = 𝑠 for 

which  𝜃 ≥ 𝜃𝑠
∗ = 𝑐𝑠 ≥

𝐾

2
). From proposition B1 we know that at the equilibrium when 

the established policy is 𝑟 = 𝑠 > 0, then all agents decide 𝑎 = 0 for any 𝜃. It implies 

that at the equilibrium any policy maker of type 𝜃 > 𝜃𝑠
∗, by choosing the policy 𝑟 = 𝑠, 

ensures a utility higher than the utility she obtains by setting the policy 𝑟 = 0 and 

experiencing a regime change (i.e. 𝑈(𝜃, 𝑠, 0) = 𝑊(𝜃, 𝑠, 0) = 𝜃 − 𝑐𝑠 > 0 = 𝐿(0)). For 

that reason, at the equilibrium no type of policy maker  𝜃 > 𝜃𝑠
∗ experiences a regime 

change.                                                                                                                                
 

                                                            
97 Observe than in all situations we only compare 𝑈(𝜃, 𝑠, 0) with different specifications of (𝜃, 0,∗) , it 

happens because from Proposition B1 we know that at the equilibrium when the established policy is 𝑟 =
𝑠 > 0, then all agents decide 𝑎 = 0 for any 𝜃.  

98 The first inequality happens because the utility 𝑊(∗) implies that there is not regime change, so it 

means that at least the condition 𝜃 > 0 must be satisfied. 

99 The first inequality happens because the utility 𝑊(𝜃, 0, 𝐾𝛹 (
𝑥−𝜃

𝜎
)) implies that there is not a 

regime change, so 𝜃 > 𝐾𝛹 (
𝑥−𝜃

𝜎
). 

100 The first inequality happens because the utility 𝑊(𝜃, 0, 𝐾𝛹 (
𝑥−𝜃

𝜎
)) implies that there is not a 

regime change, so 𝜃 > 𝐾𝛹 (
𝑥−𝜃

𝜎
). The second inequality happens because we are assuming 𝜃 < 𝑐𝑠. 
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Proposition B4: Let 𝜃𝑠
∗∗(𝜎) denotes the highest type of policy maker 𝜃 ≥ 𝜃𝑠

∗ who 

finds it optimal to choose the policy 𝑟 = 𝑠 > 0 and face no attack when the policy 𝑟 = 0 

leads to an attack of size 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
) where 𝑥𝑠

∗(𝜎) ≡ 𝑋(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) = 𝜃𝑠
∗∗(𝜎) +

𝜎𝛹−1 (
𝜃𝑠
∗

𝐾
) = 𝜃𝑠

∗ + 𝜎𝛹−1 (1 −
𝜃𝑠
∗

𝐾
(

𝑏

𝑦−𝑏
)) is the unique solution to  [1 − 𝛹 (

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)] (𝑦 − 𝑏) −

[𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)] 𝑏 = 0.  Then,  𝜃𝑠

∗∗(𝜎) = 𝜎 [𝛹−1 (1 −
𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝑐𝑠

𝐾
)] + 𝑐𝑠, and 

lim
𝜎→0

𝜃𝑠
∗∗(𝜎) =  lim

𝜎→0
𝑥𝑠
∗(𝜎) = 𝜃𝑠

∗ = 𝑐𝑠.  

 

Before proving this proposition, we need to explain better the way 𝑥𝑠
∗(𝜎) is deter-

mined and why 𝑥𝑠
∗(𝜎) is unique. Assume an agent who believes that: (1) the regime 

change happens when 𝜃 ≤ 𝜃𝑠
∗ and (2) the policy makers’ type is 𝜃 ∉ [𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)]. 

Therefore, when an agent observes 𝑟 = 0, she is indifferent between choosing 𝑎 = 1 or 

𝑎 = 0 if [
1−𝛹(

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)

1−𝛹(
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)+𝛹(

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)
] (𝑦 − 𝑏) − [

𝛹(
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)

1−𝛹(
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)+𝛹(

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)
] 𝑏 = 0101. The 

LHS of this equation is the expected utility that an agent has from choosing 𝑎 = 1  after 

observing the policy 𝑟 = 0 and the private signal 𝑥𝑠
∗(𝜎), and the RHS of the equation is 

the expected utility that an agent has from choosing 𝑎 = 0  after observing 𝑟 = 0 (from 

equation (3.2) remember that 𝑢𝑖(∗) is always zero if  𝑎𝑖 = 0).  Therefore, we have 

[1 − 𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)] (𝑦 − 𝑏) − [𝛹 (

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)] 𝑏 = 0.  

 

Proposition B5: Let 𝐾𝐴(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) ≡ 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
) denotes the aggregate 

size of the attack when the policy maker’s type is 𝜃𝑠
∗∗(𝜎) and the agents attack if and 

only if 𝑥 < 𝑥𝑠
∗(𝜎). Therefore, 𝐴(𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎); 𝜎) is increasing in 𝜎 with 

lim
𝜎→0

𝐾𝐴(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) = {
0  𝑖𝑓 𝜃𝑠

∗∗(𝜎) > 𝜃𝑠
∗ 

𝜃# 𝑖𝑓 𝜃𝑠
∗∗(𝜎) = 𝜃𝑠

∗ where 𝑥𝑠
∗(𝜎) is the unique 𝑥 that solves 

the equality [1 − 𝛹 (
𝑥−𝜃𝑠

∗

𝜎
)] (𝑦 − 𝑏) − [𝛹 (

𝑥−𝜃𝑠
∗∗(𝜎)

𝜎
)] 𝑏 = 0 and 𝜃# = 𝐾 (

𝑦−𝑏

𝑦
) is the 

same value obtained in Proposition A2. 

 

Proof: From the identity that appears in the proposition we obtain 𝑥𝑠
∗(𝜎) =

𝜎𝛹−1(𝐴) + 𝜃𝑠
∗∗(𝜎). Therefore, if we replace this equation in [1 − 𝛹 (

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)] (𝑦 − 𝑏) −

[𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)] 𝑏 = 0  we get (𝑦 − 𝑏) [1 − 𝛹 (𝛹−1(𝐴) +

𝜃𝑠
∗∗(𝜎)−𝜃𝑠

∗

𝜎
)] − 𝑏𝐴 = 0. Note that 

the LHS of this equation is: (1) decreasing in 𝐴, and (2) increasing in 𝜎.  

                                                            
101 From the footnote 73, remember that when the policy is uninformative (as it happens in the 

semiseparating equilibria inside the range in which all policy makers choose 𝑟 = 0 or in the pooling 

equilibrium in which 𝑟 = 0 is always chosen) then when the agent 𝑖 receives the signal 𝑥𝑖, she updates 

her beliefs about 𝜃 such that (𝜃|𝑥𝑖)~𝑁(𝑥𝑖 , 𝜎
2). Therefore, the posterior probability that the agent 𝑖, after 

observing her private signal, gives to 𝜃 ≤ 𝜃𝑠
∗ is: 𝑃𝑟𝑜𝑏(𝜃 ≤ 𝜃𝑠

∗|𝑥𝑖) = 𝛹 (
𝜃𝑠
∗−𝐸(𝜃|𝑥𝑖)

𝑆𝐷(𝜃|𝑥𝑖)
) = 𝛹 (

𝜃𝑠
∗−𝑥𝑖

𝜎
) = 1 −

𝛹 (
𝑥𝑖−𝜃𝑠

∗

𝜎
). Similarly, 𝑃𝑟𝑜𝑏(𝜃 > 𝜃𝑠

∗∗(𝜎)|𝑥𝑖) = 𝛹 (
𝑥𝑖−𝜃𝑠

∗∗(𝜎)

𝜎
) is the posterior probability that the agent 𝑖, 

after observing her private signal, gives to 𝜃 > 𝜃𝑠
∗∗(𝜎); and consequently 𝑃𝑟𝑜𝑏(𝜃 ∉ [𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)]|𝑥𝑖) =

1 − 𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
) + 𝛹 (

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
) is the posterior probability that the agent gives to  𝜃 ∉ [𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎)]. 

In the equation linked to this footnote, notice that the posterior probabilities were updated using the 

Bayes’ rule. 
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Therefore, given 𝜃𝑠
∗ and  𝜃𝑠

∗∗(𝜎), the first property of the equation guarantees that 

there is a unique solution for 𝐴 and consequently the equation [1 − 𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)] (𝑦 −

𝑏) − [𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)] 𝑏 = 0 admits a unique solution for 𝑥𝑠

∗(𝜎). The second property 

of the equation and the implicit function theorem imply that 𝐴(∙) is also increasing in 𝜎. 

In addition, the results obtained in this proposition imply that102 

 lim
𝜎→0

𝐴(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) = {
0      𝑖𝑓 𝜃𝑠

∗∗(𝜎) > 𝜃𝑠
∗ 

𝑦−𝑏

𝑦
 𝑖𝑓 𝜃𝑠

∗∗(𝜎) = 𝜃𝑠
∗ , and consequently we conclude that  

lim
𝜎→0

𝐾𝐴(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) = {
0  𝑖𝑓 𝜃𝑠

∗∗(𝜎) > 𝜃𝑠
∗ 

𝜃# 𝑖𝑓 𝜃𝑠
∗∗(𝜎) = 𝜃𝑠

∗                                                                    

 

Proof of Proposition B4: The uniqueness of 𝑥𝑠
∗(𝜎) ≡ 𝑋(𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎); 𝜎) was already 

proved in proposition B5.  Now, by definition of 𝜃𝑠
∗∗(𝜎) we have  𝜃𝑠

∗∗(𝜎) = 𝑚𝑎𝑥{𝜃̇𝑠, 𝜃𝑠}103 

where  𝜃̇𝑠 = 𝑠𝑢𝑝 {𝜃 ≥ 𝜃𝑠
∗| 𝑊(𝜃, 𝑠, 0) = 𝑊 (𝜃, 0, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃;𝜎)−𝜃

𝜎
)) 𝑎𝑛𝑑 𝜃 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃;𝜎)−𝜃

𝜎
)} 104 

and 𝜃𝑠 ≡ 𝑠𝑢𝑝 {𝜃 ≥ 𝜃𝑠
∗|  𝜃 = 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃;𝜎)−𝜃

𝜎
)} 105. Then,  

𝜃𝑠
∗∗(𝜎) = 𝑚𝑎𝑥 {𝜃 ≥ 𝜃𝑠

∗|𝜃, 𝜃 =  𝑋(𝜃𝑠
∗, 𝜃; 𝜎) − 𝜎𝛹−1 (

𝜃𝑠
∗

𝐾
)} = 𝑥𝑠

∗(𝜎) − 𝜎𝛹−1 (
𝜃𝑠
∗

𝐾
) ≥ 𝜃𝑠

∗. Now, 

if we replace 𝜃𝑠
∗∗(𝜎) in [1 − 𝛹 (

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗

𝜎
)] (𝑦 − 𝑏) − [𝛹 (

𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
)] 𝑏 = 0 we get 

𝑥𝑠
∗(𝜎) = 𝜎𝛹−1 (1 −

𝜃𝑠
∗

𝐾
(
𝑏

𝑦−𝑏
)) + 𝜃𝑠

∗. Then, 𝜃𝑠
∗∗(𝜎) = 𝜎 [𝛹−1 (1 −

𝜃𝑠
∗

𝐾
(

𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝜃𝑠
∗

𝐾
)] + 𝜃𝑠

∗.  

Since, 𝜃𝑠
∗ = 𝑐𝑠, then 𝜃𝑠

∗∗(𝜎) = 𝜎 [𝛹−1 (1 −
𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝑐𝑠

𝐾
)] + 𝑐𝑠 and 

 𝑥𝑠
∗(𝜎) = 𝜎𝛹−1 (1 −

𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) + 𝑐𝑠106 

Finally, we will prove that lim
𝜎→0

𝜃𝑠
∗∗(𝜎) =  lim

𝜎→0
𝑥𝑠
∗(𝜎) = 𝜃𝑠

∗ = 𝑐𝑠. The proof is direct 

from: [1] 𝑥𝑠
∗(𝜎) = 𝜎𝛹−1 (1 −

𝜃𝑠
∗

𝐾
(

𝑏

𝑦−𝑏
)) + 𝜃𝑠

∗ , [2] 𝜃𝑠
∗∗(𝜎) = 𝑥𝑠

∗(𝜎) − 𝜎𝛹−1 (
𝜃𝑠
∗

𝐾
) and 

[3] 𝜃𝑠
∗ = 𝑐𝑠                                                                                                                         

 

Proposition B6: For any 𝑠 > 0, if our set of semiseparating equilibria exists then 

there exists a type of policy maker 𝜃𝑠 ≥ 𝜃𝑠
∗ who finds it optimal to chose the policy 𝑟 =

                                                            
102 Do not forget that 𝛹(+∞) = 1 because 𝛹 is a normal c.d.f 
103 𝜃̇𝑠 ≥ 𝜃𝑠

∗ represents the highest type of policy maker who is indifferent between the policies 𝑟 = 0 

or 𝑟 = 𝑠, where the policy 𝑟 = 0  implies an attack that does not imply a regime change. 𝜃̂𝑠 ≥ 𝜃𝑠
∗ 

represents the highest type of policy maker who experience a regime change higher or equal than 𝑐𝑠 when 

she chooses the policy  𝑟 = 0.  
104 That is, 𝜃̇𝑠 = 𝑠𝑢𝑝 {𝜃 ≥ 𝜃𝑠

∗| 𝑐𝑠 = 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃;𝜎)−𝜃

𝜎
)  𝑎𝑛𝑑 𝜃 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃;𝜎)−𝜃

𝜎
)} = 𝑠𝑢𝑝 {𝜃 ≥ 𝜃𝑠

∗| 𝜃𝑠
∗ =

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃;𝜎)−𝜃

𝜎
)  𝑎𝑛𝑑 𝜃 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃;𝜎)−𝜃

𝜎
)}. Then, 𝜃̇𝑠 = 𝑠𝑢𝑝{𝜃 ≥ 𝜃𝑠

∗| 𝜃 > 𝜃𝑠
∗} = 𝜃 ≥ 𝜃𝑠

∗ 

105 That is,  𝜃̂𝑠 = 𝑠𝑢𝑝 {𝜃| 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃;𝜎)−𝜃

𝜎
) ≥ 𝜃𝑠

∗} = 𝑠𝑢𝑝 {𝜃| 𝑋(𝜃𝑠
∗, 𝜃; 𝜎) − 𝜎𝛹−1 (

𝜃𝑠
∗

𝐾
) ≥ 𝜃} , then  

𝜃̂𝑠 = 𝑋(𝜃𝑠
∗, 𝜃̂𝑠; 𝜎) − 𝜎𝛹

−1 (
𝜃𝑠
∗

𝐾
) 

106 Notice that one necessary condition to ensure the existence of 𝜃𝑠
∗∗(𝜎) and 𝑥𝑠

∗(𝜎) is that in any 

equilibrium 1 >
𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
). And we are ensuring that this restriction is always satisfied with the assumption 

that 𝑦 > 2𝑏 as we explained in the footnote 27. 
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𝑠 > 0 and face no attack when the policy 𝑟 = 0 leads to an attack of size 

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
) 107. Furthermore, any equilibrium in our set is such that the 

equilibrium policy 𝑟 = 𝑠 is chosen only if 𝜃𝑠 ∈ [𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)].  
 

Proof:  Consider a sequence {𝜃𝑛}𝑛=0
∞  that that has the following two characteristics:  

 

1) 𝜃0 ≡ 𝑖𝑛𝑓{𝜃 ≥ 𝜃𝑠
∗| ∆𝑈(𝑊(𝜃, 𝑠, 0),𝑊(𝜃, 0, 𝐾)) < 0 𝑎𝑛𝑑 𝜃 > 𝐾108} = 

𝑖𝑛𝑓{𝜃 ≥ 𝜃𝑠
∗| 𝜃𝑠

∗ > 𝐾 𝑎𝑛𝑑 𝜃 > 𝐾} = 𝜃𝑠
∗ > 𝐾. That is, 𝜃0 is the lowest type of policy 

maker higher or equal than 𝜃𝑠
∗ who prefers to choose the policy 𝑟 = 0 in which all 

agents choose 𝑎 = 1 (but that does not imply a regime change) than to choose the 

policy 𝑟 = 𝑠 in which all agents choose 𝑎 = 0 (and consequently the regime 

survives). 

2) For any 𝑛 ≥ 1 and 𝜃𝑛−1 ≥ 𝜃𝑠
∗, let 

𝜃𝑛 ≡ 𝑖𝑛𝑓 {𝜃 ≥ 𝜃𝑠
∗ |𝑈(𝜃, 𝑠, 0) − 𝑈 (𝜃, 0, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
)) < 0} where 𝑋(𝜃𝑠

∗, 𝜃𝑛−1; 𝜎) 

is the unique signal 𝑥 that solves [1 − 𝛹 (
𝑥−𝜃𝑠

∗

𝜎
)] (𝑦 − 𝑏) − [𝛹 (

𝑥−𝜃𝑛−1

𝜎
)] 𝑏 = 0109. That 

is, 𝜃𝑛 is the lowest type of policy maker greater or equal than 𝜃𝑠
∗ who prefers a 

policy 𝑟 = 0 that implies an attack of size 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
) 110 to a policy 𝑟 = 𝑠 

that implies that no agent attacks. Notice that 𝜃𝑛 requires that 𝑈(𝜃, 𝑠, 0) =

𝑊(𝜃, 𝑠, 0) = 𝜃 − 𝑐𝑠 because we are assuming 𝜃 ≥ 𝜃𝑠
∗ = 𝑐𝑠 > 0 and consequently the 

status quo always survives; in addition, 𝜃𝑛 also requires that 

𝑈(𝜃, 0, 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
)) = 𝑊 (𝜃, 0, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
)) because 𝑊(𝜃, 𝑠, 0) − 𝐿(0) < 0 

implies 𝜃 < 𝑐𝑠 which contradicts the fact that 𝜃𝑛 requires 𝜃 ≥ 𝜃𝑠
∗ = 𝑐𝑠. Therefore, 

the element 𝜃𝑛 requires that in the sequence the status quo always survives, that is; 

𝜃 > 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
) ≥ 0. Then,  

𝜃𝑛 = 𝑖𝑛𝑓 {𝜃 ≥ 𝜃𝑠
∗ |𝑊(𝜃, 𝑠, 0) −𝑊 (𝜃, 0, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
)) < 0 𝑎𝑛𝑑 𝜃 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
)}. 

And consequently,  

𝜃𝑛 = 𝑖𝑛𝑓 {𝜃 ≥ 𝑐𝑠 |𝐾𝛹 (
𝑋(𝑐𝑠, 𝜃𝑛−1; 𝜎) − 𝜃

𝜎
) < 𝑐𝑠  𝑎𝑛𝑑 𝜃 > 𝐾𝛹 (

𝑋(𝑐𝑠, 𝜃𝑛−1; 𝜎) − 𝜃

𝜎
)} = 

𝜃 ≥ 𝜃𝑠
∗ > 𝐾𝛹 (

𝑋(𝑐𝑠,𝜃𝑛−1;𝜎)−𝜃

𝜎
) 111. That is 𝜃𝑛 ∈ [𝜃𝑠

∗, 𝜃0].  

 

Notice, that the sequence {𝜃𝑛}𝑛=0
∞  is nonincreasing112. Therefore, the way this 

sequence helps us to delimit from above, in the set of semiseparating equilibria, the 

                                                            
107 That is, 𝜃𝑠 satisfies (1) 𝑊(𝜃𝑠, 𝑠, 0) = 𝑊 (𝜃𝑠, 0, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
)) and 𝜃𝑠 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
)  (i.e. 𝜃𝑠 >

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
) = 𝑐𝑠) or (2) 𝜃𝑠 = 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
) 

108 That is, the type of policy maker 𝜃0, irrespective of the size of the attack, never faces a regime 

change.  
109 Notice that the LHS of this equality is positive if 𝑥 is sufficiently low and negative if 𝑥 is 

sufficiently high. 
110 Notice that this attack resembles the behavior of agents who has the threshold signal in 

𝑋(𝜃𝑠
∗, 𝜃𝑛−1; 𝜎). 

111 Notice that 𝜃0 ≥ 𝜃1 because 𝛹 is a c.d.f 
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range of policy makers that choose the policy 𝑟 = 𝑠 is by using the following contagion 

argument: From the definition of the sequence, we know that in any semiseparating 

equilibrium in which the policy maker only chooses the policies 𝑟 = 0 or 𝑟 = 𝑠, no type 

of policy maker 𝜃 ∉ [𝜃𝑠
∗, 𝜃0] chooses the policy 𝑟 = 𝑠. Subsequently, an agent who 

expects: (1) that a regime change happens if and only if 𝜃 < 𝜃𝑠
∗ and (2) that the 

equilibrium policy is 𝑟 = 0 if and only if 𝜃 ∉ [𝜃𝑠
∗, 𝜃0], finds it optimal to choose 𝑎 = 1 

if and only if she observes a signal 𝑥 < 𝑋(𝜃𝑠
∗, 𝜃0; 𝜎) when the chosen policy is 𝑟 = 0. It 

implies that an agent who expects: (1) the survival of the status quo for all 𝜃 ≥ 𝜃𝑠
∗ (but 

possible also for some 𝜃 < 𝜃𝑠
∗) and (2) that the equilibrium policy is 𝑟 = 0 for all 𝜃 ∉

[𝜃𝑠
∗, 𝜃0] (but possible also for some 𝜃 ∈ [𝜃𝑠

∗, 𝜃0]), never finds it optimal to choose 𝑎 =
1 for a signal 𝑥 > 𝑋(𝜃𝑠

∗, 𝜃0; 𝜎). Knowing this, a policy maker who expects that the 

other agent chooses 𝑎 = 0 for 𝑥 > 𝑋(𝜃𝑠
∗, 𝜃0; 𝜎) never finds it optimal to choose the 

policy 𝑟 = 𝑠 for any 𝜃 > 𝜃1. Knowing this, all agents find it optimal to choose 𝑎 = 0 

for any 𝑥 > 𝑋(𝜃𝑠
∗, 𝜃1; 𝜎) when they observe the policy  𝑟 = 0, and so on. If we follow 

this argument iteratively we approach to 𝜃𝑠
∗∗(𝜎)113.      

Therefore, if our set of semiseparating equilibria exists, we have established that any 

type of policy maker 𝜃𝑠 who belongs to the range [𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] finds it optimal to choose 

the policy 𝑟 = 𝑠 > 0 and face no attack when the policy 𝑟 = 0 leads to an attack of size 

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
)                                                                                                   

 

Proposition B7: For any 𝑠 > 0 if our set of semiseparating equilibria exists, then 

any equilibrium in this set is such that there is regime change for any  𝜃 < 𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#}. 

In addition, 𝜃𝑠
∗ > 𝜃# if and only if 𝑠 >

𝐾

𝑐
(
𝑦−𝑏

𝑦
)  

 

Proof: Since 𝜃𝑠
∗ = 𝑐𝑠 and 𝜃# = 𝐾 (

𝑦−𝑏

𝑦
); then, we can prove directly that 𝜃𝑠

∗ > 𝜃# if 

and only if 𝑠 >
𝐾

𝑐
(
𝑦−𝑏

𝑦
). On the other hand, to prove take at the equilibrium there is 

regime change for any  𝜃 < 𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#} consider the sequence {𝜃𝑛, 𝑥𝑛}𝑛=0

∞  that is 

constructed in the following way:  

  

1) Assume that 𝜃0 ≡
𝐾

2
 and that 𝑥0 is the unique signal 𝑥 that solves [1 − 𝛹 (

𝑥−
𝐾

2

𝜎
)] (𝑦 −

𝑏) − [𝛹 (
𝑥−

𝐾

2

𝜎
)] 𝑏 = 0; then, [1 − 𝛹 (

𝑥0−
𝐾

2

𝜎
)] 𝑦 = 𝑏, so 𝑥0 = 𝜎𝛹

−1 (
𝑦−𝑏

𝑦
) +

𝐾

2
. That is, 

                                                                                                                                                                              
112 The proof is by contradiction; take any 𝑠 > 0 for which there exists a 𝜃 ≥ 𝜃𝑠

∗ = 𝑐𝑠 (i.e. 

∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) ≥ 0). Now we will use a contradictory argument, assume that there exists an 𝑛 ≥ 1 

such that 𝜃𝑛 > 𝜃𝑛−1. Without loss of generality, consider that 𝑛 is the first step in this sequence. The 

definition of the sequence implies that for any 𝜃 > 𝜃𝑛−1, we have 𝜃 ≥ 𝑐𝑠 > 𝐾𝛹 (
𝑋(𝑐𝑠,𝜃𝑛−2;𝜎)−𝜃

𝜎
) (i.e. there is 

no regime change). Because 𝜃𝑛−1 ≤ 𝜃𝑛−2 and because 𝑋(𝑐𝑠,∗; 𝜎) is increasing, this in turn implies that 

for any 𝜃 > 𝜃𝑛−1, we have 𝜃 ≥ 𝑐𝑠 > 𝐾𝛹 (
𝑋(𝑐𝑠,𝜃𝑛−1;𝜎)−𝜃

𝜎
) (i.e. 𝑊(𝜃, 𝑠, 0) −𝑊 (𝜃, 0, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑛−1;𝜎)−𝜃

𝜎
)) < 0). 

By the definition of 𝜃𝑛, this means that 𝜃𝑛 ≤ 𝜃𝑛−1, so we have a contradiction and consequently the 

sequence {𝜃𝑛}𝑛=0
∞  is nonincreasing.                                                                                                                                                    

113 Remember that 𝜃𝑠
∗∗(𝜎) denotes the highest type of policy maker 𝜃 ≥ 𝜃𝑠

∗ who finds it optimal to 

raise the policy to 𝑟 = 𝑠 and face no attack when choosing the policy 𝑟 = 0 leads to an attack of size 

𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
) 
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when the type of policy maker is 𝜃0 ≡
𝐾

2
 , and the agent observes the policy 𝑟 = 0 

and receives the signal 𝑥0, then her expected utility of choosing 𝑎 = 1 is equal to 

her expected utility of choosing 𝑎 = 0. 

2) For any 𝑛 ≥ 1, assume that 𝜃𝑛 ≡ 𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃𝑛

′ } where 𝜃𝑛
′  solves 𝜃𝑛

′ = 𝐾𝛹 (
𝑥𝑛−1−𝜃𝑛

′

𝜎
), 

where 𝑥𝑛 is the unique signal 𝑥 that solves [1 − 𝛹 (
𝑥−𝜃𝑛

′

𝜎
)] 𝑦 = 𝑏 (i.e. 𝑥𝑛 =

𝜎𝛹−1 (
𝑦−𝑏

𝑦
) + 𝜃𝑛

′ ). Then, 𝜃𝑛
′ = 𝐾𝛹 (𝛹−1 (

𝑦−𝑏

𝑦
) +

𝜃𝑛−1
′ −𝜃𝑛

′

𝜎
) and  𝑥𝑛 = 𝜎𝛹−1 (

𝑦−𝑏

𝑦
) +

𝐾𝛹 (𝛹−1 (
𝑦−𝑏

𝑦
) +

𝜃𝑛−1
′ −𝜃𝑛

′

𝜎
)).  

 

The way this sequence helps us to define, in the semiseparating equilibria, the lowest 

type of policy maker who does not face a regime change is by using the following 

contagion argument114: from the sequence, you can see that an agent who (1) observes 

𝑟 = 0, (2) believes that at the equilibrium 𝑟 = 0 for all 𝜃 and (3) believes that the other 

agent chooses 𝑎 = 0115 finds it optimal to choose 𝑎 = 1 if and only if 𝑥 ≤ 𝑥0. It implies 

that an agent who expects that the other agent chooses 𝑎 = 0 and that the equilibrium 

policy is 𝑟 = 0 for all 𝜃 < 𝜃𝑠
∗ inevitably finds it optimal to choose 𝑎 = 1 for any 𝑥 <

𝑥0. This conclusion is obtained because the observation of the policy 𝑟 = 0 is most 

informative about regime change when all types of policy makers for whom regime 

change happens set the policy 𝑟 = 0, while some of the types of policy makers for 

whom regime change does not happen raise the policy above 𝑟 = 0. But, if both agents 

choose 𝑎 = 1 to any 𝑥 < 𝑥0, the regime change happens for all 𝜃 < 𝜃1. Then there 

exists a signal 𝑥1 > 𝑥0 such that an agent who (1) expects that the other agent chooses 

𝑎 = 1  if 𝑥 < 𝑥0116 and (2) believes that at the equilibrium 𝑟 = 0 for all 𝜃, necessarily 

finds it optimal to choose 𝑎 = 1 for all 𝑥 < 𝑥1. It implies that an agent who expects the 

equilibrium policy 𝑟 = 0 for all < 𝜃𝑠
∗ , but possibly an equilibrium policy 𝑟 > 0  for 

some 𝜃 > 𝜃𝑠
∗, necessarily finds it optimal to choose 𝑎 = 1   for any 𝑥 < 𝑥1 and so on. 

From the propositions of appendix A3, we know that 𝑥# = 𝜎𝛹−1 (
𝑦−𝑏

𝑦
) + 𝜃# and 𝜃# =

𝐾 (
𝑦−𝑏

𝑦
) are the unique solutions to 𝑥′ = 𝜎𝛹−1 (

𝑦−𝑏

𝑦
) + 𝜃′ and 𝜃′ = 𝐾𝛹 (

𝑥′−𝜃′

𝜎
), then 

our sequence convergence to 𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#}117. Then, there is a regime change for all 𝜃 <

𝑚𝑖𝑛{𝜃𝑠
∗, 𝜃#}                                                                                                                

 

Proposition B8: For any 𝜎, and any 𝑠 ∈ (
𝐾

2
,
𝜃#

𝑐
] there exists at least one type of 

policy maker 𝜃𝑠 that satisfies  𝜃𝑠 = 𝐾𝛹 (
𝑋(𝑐𝑠,𝜃𝑠;𝜎)−𝜃𝑠

𝜎
) ≥ 𝜃𝑠

∗ where 𝑋(𝑐𝑠, 𝜃𝑠; 𝜎) is the 

unique 𝑥 that solves [1 − 𝛹 (
𝑥−𝑐𝑠

𝜎
)] (𝑦 − 𝑏) − [𝛹 (

𝑥−𝜃𝑠

𝜎
)] 𝑏 = 0.118  

 

                                                            
114 Notice that {𝜃𝑛}𝑛=0

∞  is increasing and bounded from above, therefore it necessarily converges. 
115 In which case regime change happens if and only if 𝜃 ≤

𝐾

2
 

116 So a regime change happens for all 𝜃 ≤ 𝜃1 
117 By definition of 𝜃𝑠

∗, the elements of our sequence cannot be higher than 𝜃𝑠
∗ 

118 This threshold identifies the unique signal 𝑥 at which an agent who believes that 𝜃 ∉ [𝜃𝑠
∗, 𝜃𝑠] and 

that the regime change happens if and only if 𝜃 ≤ 𝜃𝑠
∗ is indifferent between choosing 𝑎 = 0 and 𝑎 = 1 

when observing 𝑟 = 0 
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Proof: Notice that for any policy 𝑠 ∈ (
𝐾

2
,
𝜃#

𝑐
], there is at least one policy maker that 

by choosing the policy 𝑟 = 𝑠 in which there is no regime change obtains a utility that is 

higher than the utility that the same policy maker obtains by choosing the policy 𝑟 = 0 

in which there is a regime change119. Next, since 𝑋(𝜃, 𝜃; 𝜎) is the unique signal 𝑥 that 

solves [1 − 𝛹 (
𝑥−𝜃

𝜎
)] (𝑦 − 𝑏) − [𝛹 (

𝑥−𝜃

𝜎
)] 𝑏 = 0 (that is 𝑋(𝜃, 𝜃; 𝜎) = 𝜎𝛹−1 (

𝑦−𝑏

𝑦
) + 𝜃), 

then the unique type of policy maker at which 𝜃 = 𝐾𝛹 (
𝑋(𝜃,𝜃;𝜎)−𝜃

𝜎
) is 𝜃 = 𝐾 (

𝑦−𝑏

𝑦
) = 𝜃#. 

It implies that there is regime change when 𝜃 ≤ 𝜃# and there is not regime change when 

𝜃 > 𝜃#.    

Because the equation 𝜃 = 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃;𝜎)−𝜃

𝜎
) is continuous in 𝜃 and 𝐾 >

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝐾;𝜎)−𝐾

𝜎
), then there always exists a 𝜃𝑠 ≥ 𝜃𝑠

∗ (with strict inequality when 𝜃𝑠
∗ <

𝜃#) that satisfies 𝜃𝑠 = 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠,𝜎)−𝜃𝑠

𝜎
).                                                                

 

Proposition B9: The set of semiseparating equilibria exists if and only if 𝑠 ∈ (
𝐾

2𝑐
,
𝜃#

𝑐
].  

 

Proof: The proof consists in to show that the range (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] of types of policy 

makers that can sustain the multiple semiseparating equilibria is not well defined when 

𝑠 ∉ (
𝐾

2𝑐
,
𝜃#

𝑐
] but is well defined when 𝑠 ∈ (

𝐾

2𝑐
,
𝜃#

𝑐
]  

When 𝒔 ≤
𝑲

𝟐𝒄
: Then 𝜃𝑠

∗ = 𝑐𝑠 ≤
𝐾

2
  which contradicts the fact that 𝜃𝑠

∗ >
𝐾

2
 so the range 

(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] is not well defined  

When 𝒔 >
𝜽#

𝒄
: Assume that 𝜃𝑠

∗ exists, that is 𝜃𝑠
∗∗(𝜎) = 𝑐𝑠 > 𝜃# = 𝐾 (

𝑦−𝑏

𝑦
). Now we 

well prove that a type of policy maker 𝜃𝑠
∗∗(𝜎) ≥ 𝜃𝑠

∗(𝜎) does not exist when 𝑠 >
𝜃#

𝑐
. 

Remember from Proposition B4 that 𝜃𝑠
∗∗(𝜎) = 𝜎 [𝛹−1 (1 −

𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝑐𝑠

𝐾
)] + 𝑐𝑠; 

therefore 𝜃𝑠
∗∗(𝜎) < 𝜃𝑠

∗ when 𝑠 >
𝜃#

𝑐
120. It implies that if 𝑠 >

𝜃#

𝑐
 then the range 

(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] is not well defined. 

When 𝒔 ∈ (
𝑲

𝟐𝒄
,
𝜽#

𝒄
]: Remember that 𝜃𝑠

∗ = 𝑖𝑛𝑓 {𝜃 ≥
𝐾

2
| ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) ≥ 0} = 𝑐𝑠, 

so 𝜃𝑠
∗ is well defined in the range (

𝐾

2𝑐
, +∞). In addition, since 𝜃𝑠

∗∗(𝜎) = 𝜎 [𝛹−1 (1 −

𝑐𝑠

𝐾
(
𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝑐𝑠

𝐾
)] + 𝑐𝑠, then 𝜃𝑠

∗∗(𝜎) > 𝜃𝑠
∗ when 𝑠 ∈ (

𝐾

2𝑐
,
𝜃#

𝑐
] ,  so 𝜃𝑠

∗ is also well 

defined. Therefore, the range (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] of types of policy makers that can sustain the 

multiple semiseparating equilibria is well defined when 𝑠 ∈ (
𝐾

2𝑐
,
𝜃#

𝑐
].        

                                                            
119 That is, the set {𝜃 ≥

𝐾

2
| ∆𝑈(𝑊(𝜃, 𝑠, 0), 𝐿(0)) ≥ 0} = {𝜃 ≥

𝐾

2
| 𝜃 ≥ 𝑐𝑠} exists 

120 If 𝑐𝑠 > 𝐾 (
𝑦−𝑏

𝑦
) (i.e. if 𝑐𝑠 > 𝜃#), then 1 <

𝑐𝑠

𝐾
[(

𝑦

𝑦−𝑏
)] =

𝑐𝑠

𝐾
[(

𝑏

𝑦−𝑏
) + 1] =

𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
) +

𝑐𝑠

𝐾
, then 1 −

𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
) <

𝑐𝑠

𝐾
. 

Consequently, since 𝛹 is a normal c.d.f, we have  [𝛹−1 (1 −
𝑐𝑠

𝐾
(

𝑏

𝑦−𝑏
)) − 𝛹−1 (

𝑐𝑠

𝐾
)] < 0, then 𝜃𝑠

∗∗(𝜎) < 𝜃𝑠
∗. 
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In addition, notice that when 𝑠 ∈ (
𝐾

2𝑐
,
𝜃#

𝑐
] then ∆𝑈 (𝑈(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (

𝑥𝑠
∗(𝜎)−𝜃

𝜎
))) ≥ 0 

for all 𝜃 > 𝜃𝑠
∗; more specifically: 

   

I. For any 𝜃 ∈ (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)], notice that 𝑈(𝜃, 𝑠, 0) = 𝑊(𝜃, 𝑠, 0) because all agents are 

choosing 𝑎 = 0, then  

 ∆𝑈 (𝑈(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃

𝜎
))) = ∆𝑈 (𝑊(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (

𝑥𝑠
∗(𝜎)−𝜃

𝜎
))) ≥ 0121. 

II. For any 𝜃 > 𝜃𝑠
∗∗(𝜎) , notice that 𝑈(𝜃, 𝑠, 0) = 𝑊(𝜃, 𝑠, 0) because all agents are 

choosing 𝑎 = 0; then 

 ∆𝑈 (𝑈(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃

𝜎
))) = ∆𝑈 (𝑊(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (

𝑥𝑠
∗(𝜎)−𝜃

𝜎
))) ≤ 0122.   

 

Proposition B10: Any equilibrium in our set of semiseparating equilibria is such that 

there is regime change only if  𝜃 < 𝜃𝑠
∗ and the status quo survives if 𝜃 > 𝜃𝑠

∗ 

 

Proof: It is direct from the first part of Proposition B9 and the Propositions B3 and 

B7                                                                                                                                       

 

Proposition B11: For any 𝜎 and any 𝑠 ∈ (
𝐾

2𝑐
,
𝜃#

𝑐
], there exists an equilibrium in 

which 𝑟(𝜃) = 𝑠 for all 𝜃 ∈ (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] and 𝑟 = 0 otherwise. 

 

Proof: We will show that this equilibrium exists at least for the following strategy 

profile for the agents: 

                                                            
121 Notice that: 

∆𝑈 (𝑊(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
))) = {

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
) − 𝑐𝑠  𝑖𝑓 𝜃 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠

∗∗(𝜎);𝜎)−𝜃

𝜎
) 

𝜃 − 𝑐𝑠     𝑖𝑓 𝜃 ≤ 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
)                              

. 

Therefore,  

i. The inequality holds when 𝜃 ≤ 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎2
)  because 𝜃 ∈ (𝑐𝑠, 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠

∗∗(𝜎);𝜎)−𝜃

𝜎2
)] 

(i.e. 𝜃 ≥ 𝑐𝑠).  

ii. The inequality also holds when 𝜃 > 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
). In particular, remember that 𝜃𝑠

∗∗(𝜎) =

𝑋(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) − 𝜎𝛹−1 (
𝑐𝑠

𝐾
). Therefore 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠

∗∗(𝜎);𝜎)−𝜃

𝜎
) − 𝑐𝑠 = 𝐾𝛹 (𝛹−1 (

𝑐𝑠

𝐾
) +

𝜃𝑠
∗∗(𝜎)−𝜃

𝜎
) − 𝑐𝑠 ≥ 𝐾𝛹 (𝛹−1 (

𝑐𝑠

𝐾
) +

𝜃𝑠
∗∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
) − 𝑐𝑠 = 0, where the inequality happens because 

we are assuming 𝜃 ∈ (𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)] and remember that 𝛹 is a c.d.f. 
122 Notice that: 

    ∆𝑈 (𝑊(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
))) = {

𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
) − 𝑐𝑠  𝑖𝑓 𝜃 > 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠

∗∗(𝜎);𝜎)−𝜃

𝜎
) 

𝜃 − 𝑐𝑠     𝑖𝑓 𝜃 ≤ 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
)                              

. 

Therefore,  

 

i. The inequality holds when 𝜃 ≤ 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎2
)  because 𝜃 > 𝜃𝑠

∗∗(𝜎) ≥ 𝜃𝑠
∗ = 𝑐𝑠  

ii. The inequality also holds when 𝜃 > 𝐾𝛹 (
𝑋(𝜃𝑠

∗,𝜃𝑠
∗∗(𝜎);𝜎)−𝜃

𝜎
). In particular, remember that 𝜃𝑠

∗∗(𝜎) =

𝑋(𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎); 𝜎) − 𝜎𝛹−1 (
𝑐𝑠

𝐾
). Therefore 𝐾𝛹 (

𝑋(𝜃𝑠
∗,𝜃𝑠

∗∗(𝜎);𝜎)−𝜃

𝜎
) − 𝑐𝑠 = 𝐾𝛹 (𝛹−1 (

𝑐𝑠

𝐾
) +

𝜃𝑠
∗∗(𝜎)−𝜃𝑠

∗∗(𝜎)

𝜎
) −

𝑐𝑠 ≤ 𝐾𝛹 (𝛹−1 (
𝑐𝑠

𝐾
) +

𝜃𝑠
∗∗(𝜎)−𝜃

𝜎
) − 𝑐𝑠 = 0. where, the inequality happens because we are assuming 

𝜃 > 𝜃𝑠
∗∗(𝜎) and remember that 𝛹 is a c.d.f. 
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strategy profile
for the agents

: 

{
 

 for 𝑟 = 0 {
 𝑎 = 1  if and only if 𝑥 <  𝑥𝑠

∗(𝜎)

 𝑎 = 0  if and only if 𝑥 >  𝑥𝑠
∗(𝜎)

 

for any 𝑟 ∈ (0, 𝑠), 𝑎 = 1 irrespective of 𝑥   
for any 𝑟 ≥ 𝑠, 𝑎 = 0 irrespective of 𝑥          

 where  𝑥𝑠
∗(𝜎) ≡  𝑋(𝜃𝑠

∗, 𝜃𝑠
∗∗(𝜎); 𝜎) 

 

Since all agents chooses 𝑎 = 1 when the policy is 𝑟 ∈ (0, 𝑠) then the policy 𝑟 = 0 

strictly dominates any policy 𝑟 ∈ (0, 𝑠)123. Similarly, since all agents chooses 𝑎 = 0 

when the policy is 𝑟 ≥ 𝑠, then the policy 𝑟 = 𝑠 dominates any policy 𝑟 > 𝑠124. In 

addition, notice that the policy 𝑟 = 0 is dominant for any type of policy maker 𝜃 ≤
𝐾

2
125. 

On the other hand, for the type of policy maker 𝜃 >
𝐾

2
 the utility from choosing the 

policy𝑟 = 𝑠 is 𝑊(𝜃, 𝑠, 0) = 𝜃 − 𝑐𝑠 while the utility from choosing the policy 𝑟 = 0 is 

𝑈 (𝜃, 0, 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃

𝜎
)). At the end of Proposition B9 we showed that if 𝑠 ∈ (

𝐾

2𝑐
,
𝜃#

𝑐
] then 

we have ∆𝑈 (𝑈(𝜃, 𝑠, 0), 𝑈 (𝜃, 0, 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃

𝜎
))) ≥ 0 for all types of policy maker 

𝜃 > 𝜃𝑠
∗; therefore, given the definitions of 𝜃𝑠

∗ and 𝜃𝑠
∗∗(𝜎), we have that choosing the 

policy 𝑟 = 𝑠 is optimal if and only if 𝜃 ∈ [𝜃𝑠
∗, 𝜃𝑠

∗∗(𝜎)]. To summarize, we have 

established the optimality of the policy maker’s strategy.  

On the other hand, given the strategy profile of the agents, we have the following 

situation:  

When 

{
 
 
 

 
 
 𝑟 = 0, {

there is regime change if and only if 𝜃 ≤ 𝜃𝑠
the status quo survives if and only if 𝜃 > 𝜃𝑠

      

𝑟 ∈ (0, 𝑠), {
there is regime change if and only if 𝜃 ≤ 𝐾
the status quo survives if and only if 𝜃 > 𝐾

𝑟 ≥ 𝑠, {
there is regime change if and only if 𝜃 ≤

𝐾

2

the status quo survives if and only if 𝜃 >
𝐾

2

         

 , where 𝜃𝑠 is the 

threshold type of policy maker 𝜃 that solves 𝜃 = 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃

𝜎
).  

Therefore, for an agent is optimal to follow the equilibrium strategy if and only if her 

beliefs satisfy the following conditions: 

 

                                                            
123 Notice that in this case for any type of policy maker 𝜃 ≤ 𝐾 there is always a regime change, then 

choosing the policy 𝑟 ∈ (0, 𝑠) implies a utility 𝐿(𝑟) that is lower than the utility obtained when the policy 

is 𝑟 = 0 (i.e. 𝐿(𝑟) = −𝑐𝑟 < 0 = 𝐿(0)). On the other hand, for any type of policy maker 𝜃 > 𝐾 the status quo 

always survives, then choosing the policy 𝑟 ∈ (0, 𝑠), implies a utility 𝑊(𝜃, 𝑟, 𝐾) that is lower than the uti-

lity obtained when the policy is 𝑟 = 0 (i.e. 𝑊(𝜃, 𝑟, 𝐾) = 𝜃 − 𝑐𝑟 − 𝐾 < 𝜃 − 𝐾𝛹 (
𝑥𝑠
∗(𝜎)−𝜃

𝜎
) = 𝑊 (𝜃, 0, 𝐾 (

𝑥𝑠
∗(𝜎)−𝜃

𝜎
)) 

124 We know that the policy 𝑟 ≥ 𝑠 ∈ (
𝐾

2
,
𝜃#

𝑐
] implies that there is not any attack; therefore, choosing 

the policy to 𝑟 > 𝑠 implies a utility that is always lower than the utility when the policy is 𝑟 = 𝑠 (i.e. 

𝑈(𝜃, 𝑟, 0) < 𝑈(𝜃, 𝑠, 0)). 
125 Remember that for any type of policy maker 𝜃 ≤ 𝐾 there is always a regime change, then choosing 

the policy 𝑟 ∈ (0, 𝑠) implies a utility 𝐿(𝑟) that is lower than the utility obtained when the policy is 𝑟 = 0 

(i.e. 𝐿(𝑟) = −𝑐𝑟 < 0 = 𝐿(0)). Now, if the policy is 𝑟 ≥ 𝑠 and the type of policy maker is 𝜃 ≤
𝐾

2
, then 

there is not a regime change, but we obtain 𝑊(𝜃, 𝑟, 𝐾) = 𝜃 − 𝑐𝑟 < 0 because the policy 𝑟 ≥ 𝑠 ∈ (
𝐾

2𝑐
,
𝜃#

𝑐
]. 
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when 

{
  
 

  
 
𝑟 = 0, {

𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 0)
𝜃̂𝑠
−∞

≥ 𝑏  if 𝑥 < 𝑥𝑠
∗(𝜎) and

𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 0)
𝜃̂𝑠
−∞

< 𝑏 if 𝑥 ≥ 𝑥𝑠
∗(𝜎)

      

𝑟 ∈ (0, 𝑠), 𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)
𝐾

−∞
≥ 𝑟 + 𝑏 for all 𝑥         

𝑟 ≥ 𝑠, 𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)
𝐾

2
−∞

≤ 𝑟 + 𝑏 for all 𝑥               

 where the posterior beliefs 

𝜇(𝜃| ∗) are always established  using the  Baye’s rule.  

 

Thus, we have to analyze the following two cases: 

1. When 𝑟 = 0: the beliefs of the agents are 

  𝜇(𝜃|𝑥, 0) =

{
 
 

 
 

1−𝛹(
𝑥−𝜃

𝜎
)

1− 𝛹(
𝑥−𝜃𝑠

∗

𝜎
)+𝛹(

𝑥−𝜃𝑠
∗∗(𝜎)

𝜎
)
 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜃 ≤ 𝜃𝑠

∗       

1−𝛹(
𝑥−𝜃𝑠

∗

𝜎
)

1− 𝛹(
𝑥−𝜃𝑠

∗

𝜎
)+𝛹(

𝑥−𝜃𝑠
∗∗(𝜎)

𝜎
)
𝑓𝑜𝑟 𝑎𝑛𝑦 𝜃 ∈ (𝜃𝑠

∗, 𝜃𝑠)

.  

From proposition B5, remember that once the agents observe the policy 𝑟 = 0, 

then 𝑥𝑠
∗(𝜎) is the unique signal at which they are indifferent between choosing 𝑎 =

1 and 𝑎 = 0. Therefore, the beliefs 𝜇(𝜃|𝑥, 0) satisfy 

{
𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)

𝜃̂𝑠
−∞

≥ 𝑏  𝑖𝑓 𝑥 < 𝑥𝑠
∗(𝜎)

𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)
𝜃̂𝑠
−∞

< 𝑏  𝑖𝑓 𝑥 ≥ 𝑥𝑠
∗(𝜎)

 . 

2. When 𝑟 = 𝑠: the beliefs of the agents are 𝜇(0|𝑥, 𝑠) = 0. Then, the condition 

𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)
0

−∞
≤ 𝑟 is evidently satisfied. 

3. When 𝑟 ∉ {0, 𝑠}, there are many kinds of out-of-equilibrium beliefs that satisfy 

𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)
𝐾

−∞
≥ 𝑟 + 𝑏 when 𝑟 > 𝑠 and 𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)

𝐾

2
−∞

≤ 𝑟 + 𝑏 when 𝑟 ∈

(0, 𝑠). For instance,  

 When 𝑟 ∈ (0, 𝑠): Let 𝜇(𝜃| 𝑥, 𝑠) be any beliefs that assign probability 1 to 𝜃 ∈
[𝜃𝑠
∗, 𝐾], irrespective of 𝑥. Because for any 𝜃 ∈ [𝜃𝑠

∗, 𝐾] where 𝑟 ∈ (0, 𝑠) there is a 

regime change, then these beliefs satisfy 𝑦 ∫ 𝑑𝜇(𝜃̃| 𝑥, 𝑟)
𝐾

𝜃𝑠
∗ ≥ 𝑟 + 𝑏 for all 𝑥. It 

implies that any agent 𝑖 who expects that the other agent chooses 𝑎𝑗(𝑥, 𝑠) = 1 

finds it optimal to choose 𝑎𝑖(𝑥, 𝑠) = 1, irrespective of 𝑥.  

 When 𝑟 > 𝑠: Let 𝜇(𝜃| 𝑥, 𝑟) be any beliefs that assign probability 1 to 𝜃 >
𝐾

2
, 

irrespective of 𝑥𝑖. Therefore, these beliefs imply that any agent 𝑖 who expects 

that the other agent chooses 𝑎𝑗(𝑥, 𝑠) = 0 finds it optimal to choose 𝑎𝑖(𝑥, 𝑠) = 0, 

irrespective of 𝑥𝑖; that is, for this agent 𝑦 ∫ 𝑑𝜇(𝜃̃|𝑥, 𝑟)
𝐾

2
−∞

≤ 𝑟 + 𝑏  

 

Therefore, given the optimality of the agents’ strategy and the optimality of the 

policy maker’s strategy we have proved the proposition                                                   
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Appendix C3: Instructions126 
 

 

General information 
 

Thank you for your participation in this experiment. If you make good decisions you 

may be able to earn a considerable amount of money, which will be paid to you 

privately at the end of the experiment. We ask you not to communicate with each other 

from now on, as well as to turn off your mobile phones.  

Communication between participants is absolutely forbidden during the 

experiment! Not obeying this rule will lead to immediate exclusion from the 

experiment and all payments. If you have a question during the experiment, please raise 

your hand and I will answer your question directly at your desk. 

The experiment is divided in two parts. Both parts consist of 30 independent and 

identical rounds. In this experiment you will be randomly paired with two persons in the 

room, and you will remain matched with them throughout the 60 rounds of the 

experiment. That is, you will be in the same group of three people during all the 

experiment. In each group we have randomly assigned two different kinds of roles (𝑨 

and 𝑩), the members of your group will maintain the same role during all the 

experiment. More specifically, in each group one of the members always has role 𝑨 

(𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨) and the other two always have role 𝑩 (𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩).  

In this experiment we will use a virtual currency called token. The amount of tokens 

you have at the end of each round (i.e. 𝒚𝒐𝒖𝒓 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕 in the round) will depends 

on your choices and the choices of the other members of your group during the round. 

At the end of the experiment, we will randomly select six of the rounds that you 

played and you will be privately paid an amount that depends directly on the average 

amount of tokens you have at the end of those specific rounds. In the last section of the 

instructions I will give you more details about how your earnings in Euros will be 

determined.  

 

 

Initial budgets assigned to the three members of each group 
 

At the beginning of every round: 

 

 the two 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 will always have 150 tokens each one, and 

 

 the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 will always have a random amount of tokens that can be 

positive or negative. The 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 (i.e. the amount of tokens that the 

𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 has at the beginning of every round) is always different from one 

round to the other. 

 

At the beginning of each round the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 always will be informed about 

her initial budget. The 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 won’t know the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨; 

                                                            
126  Translated from Spanish into English. Case when 𝜎 = 10 in the first half of rounds and 𝜎 = 15 in 

the last half of rounds 
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however, they will receive a private clue about it, this clue is different for each 

𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩.  

The clue that the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 receive about the  𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨.  

The clue that each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 receives about the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇𝑨 is a 

private number “𝒙” given in the form of  

 

𝒙 = (𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒕𝒈𝒆𝒕 𝒐𝒇 𝑨) + 𝒏 

 

where “𝒏” is a normally distributed random variable, independently for each 

𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩, with an average value of 𝟎 and a standard deviation of 𝟏𝟎.  Therefore, 

if you are a 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩, take into account that on average, your private number 

𝒙 accurately reflects the value of the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕  𝒐𝒇 𝑨, because the value of 

the random variable 𝒏 is zero on average. However, in any given situation, your 

private number 𝒙 can differ from the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨. In particular: 

 

 There is approximately a probability of 𝟔𝟖% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 

lies within the interval  𝒙 − 𝟏𝟎  and 𝒙 + 𝟏𝟎. 

 There is approximately a probability of 𝟗𝟓% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 

lies within the interval  𝒙 − 𝟐𝟎  and 𝒙 + 𝟐𝟎. 

 There is approximately a probability of 𝟗𝟗. 𝟕% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 

lies within the interval  𝒙 − 𝟑𝟎  and 𝒙 + 𝟑𝟎. 

 

Example: You receive a private number of 24.5 (i.e. 𝑥 = 24.5). Then: 

 

 There is approximately a probability of 68% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 lies 

between 14.5 and 34.5. 

 There is approximately a probability of 95% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 lies 

between 4.5 and 44.5. 

 There is approximately a probability of 99.7% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 lies 

between −5.5 and 54.5. 

  

In the second part of the experiment we will change the standard deviation of the 

private number. As soon as you finish the last round of the first part we will give you 

more indications about it. 

 

 

Decisions in each round 
 

All rounds of the experiment will consist of two sequential stages: Stage 1 and Stage 

2. In Stage 1 only participates the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 and in Stage 2 only participate the 

two 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩.  

 

 

Stage 1  

In this stage the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 will be informed about her initial budget and she 

has to choose how many tokens must be disposed by THE OTHER members of her 
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group (i.e. the two 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩). We will use the letter “𝒓” to identify the choice 

of the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨. The value of 𝒓 must be higher or equal than zero (and it must 

have two decimals at most). Therefore, as soon as the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 takes her choice 

about 𝒓 then the budget of each of the other two participants in her group decreases the 

quantity 𝒓 and the Stage 2 automatically begins. 

 

IMPORTANT RULE: In Stage 1 the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 also has to dispose 0.7 ∗ 𝒓 

tokens from her own budget. For instance, if the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 chooses that 𝒓 = 𝟏𝟎, 

then the budget of each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 automatically decreases 10 tokens and the 

budget of the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 decreases 7 tokens.  

 

In Stage 1 the two 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 have to wait quiet in front of their computers 

until Stage 2 begins. 

 

 

Stage 2  
 

In this stage each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 is informed about  

 

(1) the choice of the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 (i.e. 𝒓), 

(2) her 𝒖𝒑𝒅𝒂𝒕𝒆𝒅 𝒃𝒖𝒅𝒈𝒆𝒕 (i.e. 𝟏𝟓𝟎 minus 𝒓), and 

(3) her clue about the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 (i.e. her private number 𝒙) 

 

Each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 has to choose independently only one of two actions: 

𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 or 𝑨𝒄𝒕𝒊𝒐𝒏 𝒘:  

 

 If a 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 chooses 𝑨𝒄𝒕𝒊𝒐𝒏 𝒘 then her 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕 in this specific 

round will always be 𝟎. This is independent of the choice of the other members of 

her group (i.e. the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 and the other 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩). 

 If both 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 choose 𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 then the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 must dispose 

100 additional tokens. If only one 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 chooses 𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 then the 

𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 must dispose 50 additional tokens. If none of the 

𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 choose 𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 then 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 must not dispose any 

additional token. We will use letter “𝒁” to denote the aggregate amount of tokens 

that the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 choose that 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 must dispose. That is, 𝒁 can 

only be equal to: 0, 50 or 100.  

 

IMPORTANT RULE (1): The 𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝒕𝒉𝒆 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 cannot be 

lower than – 𝟎. 𝟕 ∗ 𝒓 tokens. This rule always applies, no matter the value of 𝒁 (that 

depends on the joint choice of both  𝑩 ) and the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨. 

 

IMPORTANT RULE (2): If 𝒁 < 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 and a 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 has 

chosen 𝑨𝒄𝒕𝒊𝒐𝒏 𝒛, then this 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 has to dispose 220 additional tokens (i.e. 

in this specific case her 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕 in the round will be necessarily negative. In 

particular, it will be equal to: 𝟏𝟓𝟎 − 𝟐𝟐𝟎 − 𝒓 = −(𝟕𝟎 + 𝐫) tokens).  
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In Stage 2 the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 has to wait quiet in front of her computer until the 

round finishes. The round is finished once both 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕𝒔 𝑩 have chosen between 

𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 and 𝑨𝒄𝒕𝒊𝒐𝒏 𝒘. 

 

 

Final budgets per round 
 

The information of the previous section is summarized below. 

Participant A: The 𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 in each round depends on 

her initial budget, her choice about 𝒓 and the amount of tokens that the other two 

participants in her group have chosen she has to dispose (i.e. 𝒁). More specifically:  

 

𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨  
𝒊𝒇 (𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨)  ≤  𝒁 – 𝟎. 𝟕 ∗ 𝒓 

𝒊𝒇 (𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨) >  𝒁 (𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨) −  𝒁– (𝟎. 𝟕 ∗ 𝒓) 
 

Participants B: The 𝑭𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝒆𝒂𝒄𝒉 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 will depend on her 

individual choice (i.e.  𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 or 𝑨𝒄𝒕𝒊𝒐𝒏 𝒘), the amount of tokens the 

𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 had chosen that each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 has to dispose (i.e. 𝒓), and the 

size of the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 relative to the aggregate amount 𝒁. More 

specifically, the 𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝒆𝒂𝒄𝒉 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 is determined according to 

the following combinations: 

 

𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 
if she chooses 

𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 𝑨𝒄𝒕𝒊𝒐𝒏 𝒘 

and 
(𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨)  ≤  𝒁 𝟏𝟓𝟎 − 𝒓 𝟎 

(𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨) >  𝒁 −(𝟕𝟎 + 𝒓) 𝟎 

 

 

The screens 
 

Stage 1: During Stage 1, the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 always sees a screen that looks like the 

screen that appears in Figure C3.1. 

If you are a 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 you have to type your choice in the cell that is available 

to do it in the middle of the screen. Notice, that before you take a final choice, you can 

try (by pressing the button ) different values of 𝒓 to see how 

much will be 𝒚𝒐𝒖𝒓 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕 in the round depending on your choice and the 

choices of the other two members of your group (this information will appear in the 

table that is at the bottom of the screen and will be automatically updated every time 

you choose a new value of 𝒓 and press the button ).  

When you already have taken a decision about 𝒓 press the button  . 

 

Stage 2: During Stage 2, each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 always sees a screen that looks like 

the screen of Figure C3.2. If you are a 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 you have to take your choice by 

pressing one of the two buttons that are at the bottom of the screen.  Notice that in the 
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screen there is a table that summarizes the 𝒑𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕𝒔 you can get 

during the round depending on the different combinations.  

 

 

Information provided at the end of each round 
 

After each round the 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 will be informed about: 

 

- Her initial budget 

- Her choice (i.e. 𝒓) 

- The private number that each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 received (i.e. the 𝒙 numbers)   

- The value of 𝒁 

- Her 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕. 
 

Figure C3.1* 

 
* In this figure notice that  𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 is 87.43 and 0.7 ∗ 𝑟 = 0.7 ∗ 15.50 =
10.85. Therefore, depending on the value of 𝒁, the 𝑭𝒊𝒏𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 is:  87.43-0-

10.85= 76.58 if 𝒁 = 𝟎; 87.43-50-10.85= 26.58 if 𝒁 = 𝟓𝟎; or -10.85 if 𝒁 = 𝟏𝟎𝟎. 

 

After each round each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 will be informed about: 

 

- The true value of the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨.  

- Her clue about the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 (i.e. her private number 𝒙), 

- The choice of 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑨 (i.e. 𝒓) 

- Her choice (i.e. 𝑨𝒄𝒕𝒊𝒐𝒏 𝒛 or 𝑨𝒄𝒕𝒊𝒐𝒏 𝒘) 

- The value of 𝒁, 

- Her 𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕. 
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Figure C3.2* 

 
* In this figure 𝑟 = 12.53. Then, 150-r=150-12.53=137.37 and –(70+r) = – (70+12.53) = –82.53 

After a round is over, you will proceed to the next round and you will face the same 

decision problem. Remember that the values of the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 are 

randomly and independently determined from one round to the other, so a high (or low) 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 in one round does not imply anything about the likely value of 

the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 for the next rounds. 

 

 

Payoffs 
 

As you may notice, the number of tokens you get in each round will depend on your 

choice, on the choice of the people you have been matched with, and on chance.  

When you reach the end of the experiment, six of the rounds that you have played 

will be randomly selected. More specifically, the first chosen round will be randomly 

selected from the first 10 rounds you played; the second chosen round will be randomly 

selected from the second 10 rounds you played; the third chosen round will be randomly 

selected from the third 10 rounds you played; the fourth chosen round will be randomly 

selected from the fourth 10 rounds you played; the fifth chosen round will be randomly 

selected from the fifth 10 rounds you played; and the sixth chosen round will be 

randomly selected from the sixth 10 rounds you played.  

Then, we will average the number of tokens you obtained in these particular rounds 

(i.e. we will average 𝒚𝒐𝒖𝒓𝒇𝒊𝒏𝒂𝒍 𝒃𝒖𝒅𝒈𝒆𝒕𝒔 during these rounds). This average number 

will be converted to Euros and will be paid to you in cash. The conversion rate that we 

will use is 6 tokens are equivalent to 1€. You will also receive a show up fee of 5 euros.  

Finally, notice that the six rounds that are used to determine your final earnings will 

be randomly chosen, then every round you participate in the experiment can determine 

your final earnings.  
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Please, read the instructions again and pay special attention to the details. If the 

instructions are not clear to you, or you have a question of any sort, please raise your 

hand and sit quietly until the experimenter comes by to listen to your question. The 

answer to your question might also be helpful for others to hear; if it is, I will repeat 

your question out loud, and the answer, so everyone can hear them. 

 

 

When the round 30 was over all participants received the following additional 

instructions that were read loudly: 

 

 

From this Round Until the Last Round of the Experiment There is 

a Small Change in the Instructions 
 

As you know, in the experiment the clue that each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩 receives about 

the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇𝑨 is a private number “𝒙” given in the form of  

 

𝒙 = (𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒕𝒈𝒆𝒕 𝒐𝒇 𝑨) + 𝒏 

 

where “𝒏” is a random variable, chosen independently for each 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩.  

 

Until now we have assumed that 𝒏 is normally distributed with an average value of 𝟎 

and a standard deviation of 𝟏𝟎.  

From now on, and until the end of the experiment we will assume that 𝒏 is normally 

distributed with an average value of 𝟎 and a standard deviation of 𝟏𝟓. Therefore, if you 

are a 𝑷𝒂𝒓𝒕𝒊𝒄𝒊𝒑𝒂𝒏𝒕 𝑩, take into account that on average, your private number 𝒙 will 

continue accurately reflecting the value of the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨, because the 

value of the random variable 𝒏 is zero on average. However, in any given situation, 

your private number 𝒙 can differ from the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨. In particular, 

 

 There is approximately a probability of 𝟔𝟖% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 

lies within the interval  𝒙 − 𝟏𝟓  and 𝒙 + 𝟏𝟓 

 There is approximately a probability of 𝟗𝟓% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 

lies within the interval  𝒙 − 𝟑𝟎  and 𝒙 + 𝟑𝟎. 

 There is approximately a probability of 𝟗𝟗. 𝟕% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 

lies within the interval  𝒙 − 𝟒𝟓  and 𝒙 + 𝟒𝟓. 

 

Example: You receive a private number of 24.5 (i.e. 𝑥 = 24.5). Then,  

 

 There is approximately a probability of 68% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 lies 

between 9.5 and 39.5. 

 There is approximately a probability of 95% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 lies 

between −5.5 and 54.5. 

 There is approximately a probability of 99.7% that the 𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑩𝒖𝒅𝒈𝒆𝒕 𝒐𝒇 𝑨 lies 

between −20.5 and 69.5. 

 

The rest of the instructions of the experiment will remain the same.   
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Appendix D3: Number of times all policies 𝑟 were chosen by 

each group in the experiment 
 

Groups Groups 

r 1 2 3 4 5 6 7 8 9 r 1 2 3 4 5 6 7 8 9 

0.00 59 10 54 60 44 15 35 34 40 13.00 0 0 0 0 0 0 1 0 0 

0.50 0 0 0 0 2 0 0 0 0 13.14 0 0 0 0 0 0 0 0 1 

0.60 0 1 0 0 0 0 0 0 0 13.44 0 0 0 0 0 0 1 0 0 

0.69 0 0 0 0 0 37 0 0 0 14.00 0 0 0 0 0 0 1 0 0 

1.00 0 4 3 0 0 0 0 0 1 14.50 0 0 0 0 0 0 1 0 0 

1.50 0 1 0 0 2 0 0 0 0 15.00 0 1 0 0 0 1 1 0 0 

1.60 0 1 0 0 0 0 0 0 0 16.00 0 0 0 0 0 0 0 0 1 

2.00 0 4 2 0 1 0 0 0 1 17.00 1 0 0 0 0 0 0 0 0 

2.30 0 1 0 0 0 0 0 0 0 18.00 0 1 0 0 0 0 0 0 0 

2.40 0 1 0 0 0 0 0 0 0 20.00 0 1 0 0 0 3 0 0 1 

2.50 0 3 0 0 0 0 0 0 0 25.00 0 1 0 0 0 0 0 0 0 

2.80 0 1 0 0 0 0 0 0 0 30.00 0 1 0 0 1 1 0 5 0 

3.00 0 2 0 0 2 0 0 0 1 36.00 0 1 0 0 0 0 0 0 0 

4.00 0 1 0 0 0 0 0 0 0 40.00 0 0 0 0 0 0 0 0 2 

5.00 0 1 1 0 6 0 6 0 0 46.01 0 0 0 0 0 0 0 0 1 

5.40 0 1 0 0 0 0 0 0 0 46.19 0 0 0 0 0 0 0 0 1 

6.00 0 1 0 0 0 0 0 0 0 47.00 0 0 0 0 0 0 0 0 1 

6.50 0 1 0 0 0 0 1 0 0 50.00 0 1 0 0 0 1 0 0 1 

6.90 0 1 0 0 0 1 0 0 0 51.00 0 0 0 0 0 0 0 1 0 

7.45 0 1 0 0 0 0 0 0 0 54.00 0 0 0 0 0 0 0 0 1 

8.59 0 0 0 0 1 0 0 0 0 59.00 0 0 0 0 0 0 0 0 1 

8.90 0 0 0 0 0 0 1 0 0 60.00 0 0 0 0 0 1 0 6 1 

9.29 0 1 0 0 0 0 0 0 0 60.89 0 0 0 0 0 0 0 0 1 

10.00 0 4 0 0 1 0 7 4 1 69.00 0 1 0 0 0 0 0 0 0 

10.36 0 1 0 0 0 0 0 0 0 70.00 0 0 0 0 0 0 0 8 1 

10.50 0 1 0 0 0 0 0 0 0 80.00 0 0 0 0 0 0 0 2 0 

11.00 0 2 0 0 0 0 1 0 0 85.00 0 1 0 0 0 0 0 0 0 

11.25 0 0 0 0 0 0 1 0 0 100.00 0 1 0 0 0 0 0 0 0 

11.50 0 1 0 0 0 0 0 0 0 150.00 0 0 0 0 0 0 0 0 1 

12.00 0 2 0 0 0 0 2 0 0 151.00 0 1 0 0 0 0 0 0 0 

12.07 0 0 0 0 0 0 1 0 0 180.00 0 1 0 0 0 0 0 0 0 

12.15 0 0 0 0 0 0 0 0 1 Total 60 60 60 60 60 60 60 60 60 

 

  



161 
 

APPENDIX E3: Figures (policy maker policies, size of the 

attacks and final regimes) 
 

Policies 𝒓 chosen in the experiment per type of policy maker 𝜽, group and variance 

𝝈: In the following figures the vertical lines delimit the range 𝜃 ∈ (50.00,68.18) and 

the horizontal lines delimit the range 𝑟 ∈ (71.43, 97.40]. In the figures the red triangles 

(), the blue dots (o), and the green squares () correspond to the policies 𝑟 chosen in 

the rounds in which  𝜎 = 10, 𝜎 = 15 and 𝜎 = 20 respectively.  

Size of the attacks 𝑲𝑨 and final regime obtained in the experiment, per type of 

policy maker 𝜽, group and variance 𝝈: The two kind of symbols that are the top of all 

figures tell us for the different types of policy makers and groups in which cases the 

status quo survives (+) and in which cases there were a regime change (x). In addition, 

notice that the symbols “+” and “x” are divided depending on the size of the attack 

𝐾𝐴 ∈ {0, 50, 100} 
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Group 2127 
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Group 4 

 

   

 
 

 

    

 

                                                            
127 Note: There are two red triangles (𝜃, 𝑟) that were not included in the Figure: (-7.78, 180) and (-

11.38,151) 
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Group 5 Group 6 

 

   

 
 

 

Group 7 

    

 

Group 8 

 

   

 
 

 

Group 9128 

    

 

All Groups129 

 

   

 
 

  

                                                            
128 Note: There is one green square (𝜃, 𝑟) that were not included in the Figure: (-4.59,150) 
129 Note: There are two red triangles (𝜃, 𝑟) that were not included in the Figure: (-7.78,180) and (-

11.38, 151). There is one green square (𝜃, 𝑟) that were not included in the Figure: (-4.59, 150) 
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Appendix F3: Figures (choices of the agents, size of the attacks 

and final regimes) 

 
Choices of the agents in the experiment per policy, signal, round and 𝝈: In the 

figures of this section, given the policy 𝑟 taken by the policy maker and the private 

signal 𝑥𝑖 the choices of the agents per round are represented by the following symbols:  

 A red dot “o” means that the agent has chosen  𝑎 = 1 , and  

 A blue triangle “” means that the agent has chosen 𝑎 = 0  

Above each symbol you can see the round in which the choice was taken. In 

addition, given 𝜎, in all figures you can also see the threshold of the pooling equilibrium 

(i.e. 𝑥#(𝜎)) represented by a dashed line and the threshold of the semiseparating 

equilibria (i.e. 𝑥𝑠
∗(𝜎)) represented by the shadow area.  

Size of the attacks 𝑲𝑨 and final regimes in the experiment per signal, agent and 

variance 𝝈: The two kind of symbols that are the top of all figures tell us for the 

different types of signals and agents in which cases the status quo survives (+) and in 

which cases there were a regime change (x). Furthermore, notice that the symbols “+” 

and “x” are divided depending on the size of the attack 𝐾𝐴 ∈ {0, 50, 100} 
 

Group 1 - Participant 2 - 𝜎 = 10 Group 1 - Participant 2 - 𝜎 = 15 
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Group 2 - Participant 5 - 𝜎 = 10130 Group 2 - Participant 5 - 𝜎 = 15 

  
 

 

 

Group 2 - Participant 6 - 𝜎 = 10131 

 

 

 

Group 2 - Participant 6 - 𝜎 = 15 

  
 

 

 

Group 3 - Participant 8 - 𝜎 = 10 

 

 

 

Group 3 - Participant 8 - 𝜎 = 15  

  
  

 

 

 

 

 

 

 

 

 

 

                                                            
130 Note: There are two red circles (𝑥𝑖 , 𝑟, 𝑝𝑒𝑟𝑖𝑜𝑑) that were not included in the Figure: (-5.47, 180,8) 

and (-17.000,151,4) 
131 Note: There are two red circles (𝑥𝑖 , 𝑟, 𝑝𝑒𝑟𝑖𝑜𝑑) that were not included in the Figure: (1.82, 180,8) 

and (-3.13,151,4) 
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Group 3 - Participant 9 - 𝜎 = 10 Group 3 - Participant 9 - 𝜎 = 15 

  
 

 

Group 4 - Participant 11 - 𝜎 = 10 

 

 

Group 4 - Participant 11 - 𝜎 = 15 

  
 

 

 

Group 4 - Participant 12 - 𝜎 = 10 

 

 

 

Group 4 - Participant 12 - 𝜎 = 15 
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Group 5 - Participant 14 - 𝜎 = 10 Group 5 - Participant 14 - 𝜎 = 15 

  
 

 

 

Group 5 - Participant 15 - 𝜎 = 10 

 

 

 

Group 5 - Participant 15 - 𝜎 = 15 

  
 

 

Group 6 - Participant 17 - 𝜎 = 10 

 

 

Group 6 -  Participant 17 - 𝜎 = 15 
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Group 6 - Participant 18 - 𝜎 = 10 Group 6 - Participant 18 - 𝜎 = 15 

  
 

 

 

Group 7 -  Participant 20 - 𝜎 = 15 

 

 

 

Group 7 - Participant 20 - 𝜎 = 20 

  
 

 

 

Group 7 - Participant 21 - 𝜎 = 15 

 

 

 

Group 7 - Participant 21 - 𝜎 = 20 
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Group 8 - Participant 23 - 𝜎 = 15 Group 8 - Participant 23 - 𝜎 = 20 

  
 

 

 

Group 8 - Participant 24 - 𝜎 = 15 

 

 

 

Group 8 - Participant 24 - 𝜎 = 20 

  
 

 

 

Group 9 - Participant 26 - 𝜎 = 15 

 

 

 

Group 9 - Participant 26 - 𝜎 = 20132 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
132 Note: There is one red circle (𝑥𝑖 , 𝑟, 𝑝𝑒𝑟𝑖𝑜𝑑) that were not included in the Figure: (24.46,150,46) 
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Group 9 - Participant 27 - 𝜎 = 15 Group 9 - Participant 27 - 𝜎 = 20133 

  

 

  

                                                            
133 Note: There is one red circle (𝑥𝑖 , 𝑟, 𝑝𝑒𝑟𝑖𝑜𝑑) that were not included in the Figure: (-25.47,150,46) 
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Appendix G3: Other tables 
 

 

Table G3.1 

Policies chosen by the policy makers, choices of the agents  

and final regimes per 𝜎 and 𝜃 

  𝒓 = 𝟎 𝒓 > 𝟎 𝒂 = 𝟎 𝒂 = 𝟏 

  

Regime 

Change 

Status Quo 

Survives 

Regime 

Change 

Status Quo 

Survives 

Regime 

Change 

Status Quo 

Survives 

Regime 

Change 

Status Quo 

Survives 

  𝜽 ≤ 𝟎 

𝝈 = 𝟏𝟎 80.00% 0.00% 20.00% 0.00% 38.67% 0.00% 61.33% 0.00% 

𝝈 = 𝟏𝟓 85.19% 0.00% 14.81% 0.00% 34.57% 0.00% 65.43% 0.00% 

𝝈 = 𝟐𝟎 90.91% 0.00% 9.09% 0.00% 33.33% 0.00% 66.67% 0.00% 

  𝜽𝝐(𝟎,𝟓𝟎] 

𝝈 = 𝟏𝟎 65.00% 0.00% 35.00% 0.00% 35.00% 0.00% 65.00% 0.00% 

𝝈 = 𝟏𝟓 75.00% 1.32% 22.37% 1.32% 32.89% 2.63% 64.47% 0.00% 

𝝈 = 𝟐𝟎 100.00% 0.00% 0.00% 0.00% 33.33% 0.00% 66.67% 0.00% 

  𝜽𝝐(𝟓𝟎,𝟕𝟎] 

𝝈 = 𝟏𝟎 45.45% 12.12% 42.42% 0.00% 29.29% 10.10% 58.59% 2.02% 

𝝈 = 𝟏𝟓 52.83% 0.00% 47.17% 0.00% 33.33% 0.00% 66.67% 0.00% 

𝝈 = 𝟐𝟎 76.19% 0.00% 23.81% 0.00% 33.33% 0.00% 66.67% 0.00% 

  𝜽𝝐(𝟕𝟎, 𝟏𝟎𝟎) 

𝝈 = 𝟏𝟎 23.08% 43.59% 17.95% 15.38% 13.68% 46.15% 27.35% 12.82% 

𝝈 = 𝟏𝟓 26.92% 19.23% 26.92% 26.92% 17.95% 32.69% 35.90% 13.46% 

𝝈 = 𝟐𝟎 17.65% 5.88% 41.18% 35.29% 19.61% 27.45% 39.22% 13.73% 

  𝜽 ≥ 𝟏𝟎𝟎 

𝝈 = 𝟏𝟎 0.00% 67.44% 0.00% 32.56% 0.00% 83.72% 0.00% 16.28% 

𝝈 = 𝟏𝟓 0.00% 51.61% 0.00% 48.39% 0.00% 86.02% 0.00% 13.98% 

𝝈 = 𝟐𝟎 0.00% 72.22% 0.00% 27.78% 0.00% 85.19% 0.00% 14.81% 
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Table G3.2 

Percentage of times the status quo survives (and percentage of times  

there is a regime change) given the values of 𝜃 used in the experiment  

     *In these two columns we are taking into account that in the experiment 𝜃𝑠
∗ ∈ (50, 68.18]; therefore, 

inside the parenthesis we are showing two examples: (1) when 𝜃𝑠
∗ = 50 and (2) when 𝜃𝑠

∗ = 𝜃# = 68.18 

 

 

Table G3.3 

                                                            
134 This dummy is equal to 1 in the first half of the rounds and 0 otherwise. 

𝜽 

Theory* Experiment 

Status quo  

survives 

There is a 

Regime Change 

Status quo 

survives 

There is a 

Regime Change 
(−∞ , 0] (0.00% - 0.00%) (100.00% - 100.00%) 0.00% 100.00% 

(0 , 10] (0.00% - 0.00%) (100.00% - 100.00%) 4.00% 96.00% 

(10 , 20] (0.00% - 0.00%) (100.00% - 100.00%) 0.00% 100.00% 

(20 , 30] (0.00% - 0.00%) (100.00% - 100.00%) 0.00% 100.00% 

(30 , 40] (0.00% - 0.00%) (100.00% - 100.00%) 4.17% 95.83% 

(40 , 50] (0.00% - 0.00%) (100.00% - 100.00%) 0.00% 100.00% 

(50 , 60] (97.73% - 15.91%) (2.27% - 84.09%) 0.00% 100.00%  

(60 , 70] (90.48% - 41.27%) (9.52% - 58.73%) 6.35% 93.65% 

(70 , 80] (96.00% - 76.00%) (4.00% - 24.00%) 32.00% 68.00% 

(80 , 90] (100.00% - 79.17%) (0.00% - 20.83%) 41.67% 58.33% 

(90 , 100] (100.00% - 100.00%) (0.00% - 0.00%) 82.35% 17.65% 

(100,+∞) (100.00% - 100.00%) (0.00% - 0.00%) 100.00% 0.00% 

𝑻𝒐𝒕𝒂𝒍 (60.93%-45.74%) (39.07%-54.23%) 33.89% 66.11% 

Dependent Variable 𝑫𝒖𝒎𝒎𝒚 (𝒓 > 0) 𝒓 

 Odds Ratio Coefficient 

𝜽 1.018 *** 0.106  

 (0.006)  (0.069)  

𝑷𝒆𝒓𝒊𝒐𝒅 0.972  -0.348  

 (0.06)  (0.176)  

𝑫𝒖𝒎𝒎𝒚 (𝝈 = 𝟏𝟎) 0.850  -0.582  

 (0.540)  (2.298)  

𝑫𝒖𝒎𝒎𝒚 (𝝈 = 𝟐𝟎) 0.152 * 3.444  

 (0.119)  (0.315)  

𝑫𝒖𝒎𝒎𝒚 𝒐𝒇 𝒐𝒓𝒅𝒆𝒓134 3.711  1.418  

 (3.157)  (3.262)  

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 0.646  12.656 * 

 (0.286)  (3.966)  

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 336  336  

Notes:  Robust standard errors in parentheses. Standard errors are clustered by 

group. Significance levels:  +p<0.10 *p<0.05; **p<0.01; ***p<0.001. In these 

regressions we did not use the information of the groups that followed the 

pooling equilibrium strategies (i.e. the groups 1, 3 and 4). 
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Table G3.4 

Dependent Variable: 𝑎 

 Odds Ratio Odds Ratio 

𝒓 0.975 ** 0.975 ** 

 (0.009)   (0.009)  

𝒙 0.934 *** 0.934 *** 

 (0.009)   (0.009)  

𝝈 1.142 **   

 (0.048)    

𝑫𝒖𝒎𝒎𝒚 (𝝈 = 𝟏𝟎)   0.531 *** 

   (0.098)  

𝑫𝒖𝒎𝒎𝒚 (𝝈 = 𝟐𝟎)   2.052 + 

   (0.866)  

𝑫𝒖𝒎𝒎𝒚 𝒐𝒇 𝒐𝒓𝒅𝒆𝒓 0.853  0.840  

 (0.156)  (0.186)  

𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 165.158  1190.64  

 (118.815)  *** (901.044) *** 

𝑶𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔 1080  1080  

𝑳𝑳 -301.94  -301.92  

Notes:  Robust standard errors in parentheses. Standard errors are clustered 

at the subject level. Significance levels: +p<0.10 *p<0.05; **p<0.01; 

***p<0.001. 
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