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Chapter 1

Introduction

This introductory chapter is devoted to set the problems we are going to deal with, and
to introduce the main concepts involved that will be systematically used throughout the
text. The general framework is about the dynamics in chaotic zones of low dimensional
conservative systems. For concreteness we will restrict ourselves to the analytical context.
In what follows, S' = R/Z, unless otherwise stated. More specifically, we will consider

1. 2D symplectic maps. More precisely, we will deal with real analytic diffeomorphisms
F : Q — Q under which the usual area form dz Ady is preserved: F*(dzAdy) = dzAdy.
Here © will be the 2-torus T? = S' x S!, but lifts of F' to the cylinder S! x R or the
whole plane R? may also be considered. These maps preserve both orientation and
area, that is, det DF'(x,y) = 1, for all (x,y) € 2, where DF denotes the differential
matrix of F'. We will refer to these maps simply as area-preserving maps, or APM.

This kind of maps typically arise as Poincaré maps in a fixed energy level of 2 degrees
of freedom (dof) Hamiltonian systems, and also as symplectic discretisations of 1 dof
Hamiltonian systems.

2. 3D volume preserving maps. We will consider real analytic diffeomorphisms G : © — ©
such that det DG(x,y,z) = 1 for all (z,y,z) € ©. Here again the usual domain of
definition will be a torus, © = T? = S' x S' x S!, but we may lift G either to the
cylinder T? x R or to the full space R?® depending on our needs. For shortness we will
refer to these maps as VPM.

This kind of maps arises, for instance, as suitable discretisations of divergence free
vector fields.

1.1 Notation and definitions

There are three concepts that are central in this thesis: the distinction between regular
and chaotic orbits, the stickiness effect and anomalous diffusion. These two last (related)
phenomena take place in zones in the phase space that can be considered as chaotic. All
these concepts are introduced in this section.

In order to perform a proper study of stickiness and diffusion in the phase space, we need
to set an adequate context. Roughly speaking, we need to have some regular component
embedded in a compact seemingly fully chaotic phase space. This will be clarified in Sect. 2.6l

11
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In the 2D case, it will come for free by considering the Chirikov standard map -or simply
standard map- in T? (I.I3)) in a special range of the parameter it depends on. This map and
some of its main dynamical features will be introduced in Sect[I.2l Concerning the VPM
case, as far as we are aware of, there are no analogous models, so a proper one should be
constructed in Sect. 5.2 By this we mean the following:

1. The variables of the standard map can be understood as an action and an angle. In
the VPM setting we will deal with 1-action and 2-angle maps.

2. The standard map depends on a single parameter k£ such that, for & = 0, the phase
space is foliated by horizontal invariant curves of the form {y = const}, and the
dynamics on each of them is conjugated to a rigid rotation. In the VPM case we will
require the dependence on a parameter € such that for ¢ = 0 the phase space is foliated
by horizontal invariant tori of the form {z = const}, where also the dynamics on each
torus is conjugated to a rigid rotation.

The situation described for £ = 0 and € = 0 in the APM and VPM cases, respectively, is
what we will refer to as integrable, see Def. [l

In what follows, we will deal with both 2D and 3D cases simultaneously to stress the
similarities that these two settings have and those that we will try to mimic.

1.1.1 Integrable systems and perturbations

Typically, conservative systems are neither integrable nor fully chaotic, but exhibit a mixed
phase space. In the systems we are going to deal with one of the variables can be interpreted
as an action and the others as angles.

In the 2D symplectic case, the notion of integrability is inherited from the Arnol’d-
Liouville sense in Hamiltonian system! all orbits lie on tori and the dynamics of the map
restricted to each torus is conjugated to a rigid rotation. The notion of integrability we
are going to use in the VPM case is analogous to this one. For l-action 2-angle maps, we
will consider integrable maps to be those that almost all orbits lie on 2D tori, and that the
dynamics of the VPM on each torus is conjugated to a rigid rotation. This concept can be
put together as follows.

Definition 1. A conservative map with 1-action and d-angles is said to be integrable if it
1s topologically conjugated to the normal form

@
HY 1% [0,1] > T x [0,1],  H®: (i) - <9+g (7’)>, (1.1)

r
where g (r) : [0,1] — T

Here d = 1,2 correspond to the APM and VPM cases, respectively.
We are going to consider maps that are area or volume preserving one-parameter pertur-
bations of integrable systems as (1)) of the following form:

HY T4 % [0,1] — T x [0, 1],
)77 () 0

(1)
T

L An n-dof Hamiltonian system is said to be integrable in the Arnol’d-Liouville sense if there exist n
invariants functionally independent almost everywhere and in involution.

>

=3
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where

1. The functions fl(d) : T? x [0,1] — T¢ and f, : T¢ x [0,1] — [0,1] are analytic and
1-periodic in 0 € T¢,

2. The vector ( fl(d), f2) is normalized in such a way that has some norm equal to 1, and

3. The function f, has zero average, [., f2(6,7)df = 0. This is the so-called zero-flux

condition. It implies that each torus intersects its image under Y.

Definition 2. A vector of irrational frequencies p = (p1,...pn) € R™ is said to be a (C,T)-
Diophantine number, C > 0, 7 > n, if it satisfies the following infinitely many inequalities:
forallk = (ky, ..., k,) € Z"\ {(0,.™.,0)}, ko € Z,

C
k,p)—ko| > —
‘( 7p) 0‘— |k|7_7

where |k| = |ki| + -+ -+ |kn| and (-, -) denotes the usual scalar product in R"™. We will denote
by D(C, 1) the set of (C, T)-Diophantine numbers.

Let us restrict ourselves to p € (0,1). One can represent p in continued fraction expansion
form:

p=——-"7—=:[a1,a9,...],
art—T
where a;, j > 1 are positive integer numbers, called quotients. In case p € (0,1) N Q, p can
be represented in this way with finitely many quotients, in two equivalent ways:

p=lai,as,...,a,] = [a1,a9,...,a, —1,1].

And if p € (0,1) N (R\ Q), one needs infinitely many quotients. If p = [ay, a9, ..., ap,.. ],
one can consider the successive truncations of the continued fraction expansion. We obtain
a sequence of irrational numbers called approximants:

Pn
q— = [al,ag, .. .,an].
n

It is important to remark the following, see [72].

Remark 1. 1. The sequence p,/q, tends to p as n — oo,

2. |p _pn/Qn| < |p _pn—l/Qn—1| fOT alln > 0.

3. (p—n/@)(p — Pn1/dn-1) <0, that is, successive approrimants lie on different sides
of p.

The phase space of Héd) is rather simple. Each level set M, = {(6,7) : r = a} is

invariant under Héd), and the restriction of the dynamics of Héd) on M, Ho(f/)\/tav is a rigid

rotation @ + 0+ ¢g(¥(a). In this case, M, are homotopically equivalent to {(£,0) : & € T?}.

We are going to refer to these kind of tori as rotational, or simply RIC (rotational invariant
curves) in the 2D case and RIT (rotational invariant tori) in the 3D case.

Each of these RIC or RIT are characterized by their rotation numbers. For maps of the
circle it is defined as follows
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Definition 3. Let f : St — St be a homeomorphism of the circle. The rotation number of
f s defined as the limit

p(f) = lim = (f"(x) —z), (1.3)

where f is a lift of f to R.

This limit exists for all € S! and does not depend on the z or lift of f chosen. It
measures the average rate of rotation of orbits along the circle.

This concept is transferable to APM and to VPM, but the corresponding limit (I.3]) of
either case can exist or not. Namely, if F': T x [0,1] — T% x [0,1] is a conservative map,
d=1,2, F: R x [0,1] = R? x [0,1] a lift of £, and 7, is the projection onto the torus T¢,
the rotation number or vector of an orbit starting at (6y,7¢) is the limit (if it exists)

p= tim 700 m0) — 6 (1.4)

n—00 n

where 7y denotes the projection onto R?. If this limit exists, it does neither depend on the
choice of the initial point on the orbit nor on the choice of the lift of F. For APM, p € T! in
(I4)) can either be rational or irrational, and for VPM p € T? is a 2-component vector whose
entries can be both rational or irrational, or a rational and an irrational number. These
distinctions give rise to different kinds of orbits. Note that, for the integrable maps (L),
the rotation number is given by ¢®(r), but in this case all orbits lie on RIC or RIT.

Generically, in the twist APM case, RIC have irrational rotation number and can be
represented as graphs of a continuous function [94]. But the converse is not necessarily true,
since there are invariant sets of twist APM with irrational rotation number that are topo-
logically a Cantor set, see Sect. [[LT.2.

Effect of a small perturbation. One expects some of this structure to be preserved once
e > 0, but some extra hypotheses apart from the smallness of € have to be considered.
Namely

- In the APM case, Moser’s twist theorem [108], [124] asserts that if \%| >K >0
(twist condition) and gV(a) = p € [0,1) is (C,7)-Diophantine, then HY has an
invariant curve with rotation number p, provided ¢ is sufficiently small. Of course, the
better twist condition (larger K') and better Diophantine condition (larger C', smaller
T), the larger € can be in the perturbation. The best (C,7)-Diophantine condition is
that for the golden mean number, w = (v/5—1)/2, for which C is asymptotically 1/1/5
and 7 = 1.

- In the VPM case, we have an analogous result [24 [147]: for small enough e, one
can establish the existence of invariant 2D-tori provided the vector of frequencies
g®(a) = p €]0,1)% is (C, 7)-Diophantine, the rotation vector is non-degenerate, that
is rank D,g® = 1 and the twist condition det(D,g?, D?¢®) # 0 holds.

These results are KAM-like, where KAM stands for Kolmogorov-Arnol’d-Moser theory.
Classical examples of this theory are the results for circle maps [4], twist APM [124], Hamil-
tonian systems [2], symplectic maps [6] and VPM [24], 147]. All of them essentially consist
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in performing a sequence of changes of variables in such a way that, if we start with a
perturbation of size e, after k steps we have an approximation of the invariant torus under
study with an error O(a”k), v € (1,2), that is, we want to converge to the solution close to
quadratically, as it happens for the Newton method, but in a functional space in the present
case. To do so, the main requirements usually are

1. The Diophantine frequency. This is required to get rid of the dominant part of the
perturbation in each change of variables, to avoid small divisor problems.

2. A non-degeneracy condition. This allows to slightly change the actions to recover the
initial frequency using the implicit function theorem.

3. The smallness of the perturbation. This allows to use the implicit function theorem and
to always stay in the complex strip of actions we started with. At each inductive step,
the width of this strip decreases in a controlled way so that in the limit it does not
shrink to zero.

In both cases the theorem asserts that the measure of the set of invariant tori that exist
for € > 0 small, tends to be total as € — 0. That is, the majority of orbits lie on invariant
tori. But there is an important difference between these two results. In the 2D symplectic
case one has one action and its corresponding angle. After each change of variables we
can slightly change the actions to recover the initial frequency we are working with due to
the twist (non-degeneracy) condition. Hence in this context it makes sense to talk about
persistence of invariant curves. This also holds for general symplectic maps in any (even)
dimension [6]. In the volume preserving case [24, 147, [76] since the map has more angles
than actions, it is difficult to control the rotation frequencies of any prescribed torus: if the
non-perturbed system Hé2) has an invariant torus with rotation vector p € (0,1)?% it can
not be predicted if H® has an invariant torus with rotation vector p, even if it satisfies a
Diophantine condition, see Def.[2l In the VPM case we only have a free parameter and hence
we can not recover all frequencies but only those on a line among the frequencies we are
dealing with. Hence, it only asserts that for any arbitrarily small perturbation size ¢, in a
neighborhood of where there used to be an invariant 2D torus with a given frequency p, there
appear other invariant 2D tori with Diophantine frequencies, but it can not be determined
if the torus with frequency p reappears.

So, once € > 0 the measure occupied by rotational invariant tori is no longer total and the
topology of the phase space drastically changes. Namely, the measure of the complement of
the phase space not occupied by KAM tori is O(v/¢), see [116]; and if one considers families
of Lagrangian tori appearing in a neighbourhood of a simple resonance, one can improve it
to O(e), [96], that agrees with the conjecture in [7], that KAM tori leave a set of measure
O(g). The most fragile invariant tori upon perturbation are those called resonant.

Definition 4. [6] The resonant module associated to p € R is the sub-lattice of 7
L(p)={kez: (kp) €7} (1.5)
Resonant RIC or RIT are those whose rotation vector p = ¢'¥(a) have rank £ > 0.

In the case of twist area preserving maps, resonant RIC are those with rational rotation
number p/q € Q, (p,q) = 1. According to the Poincaré-Birkhoff theorem [I6], they are
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generically destroyed under perturbation giving rise to a pair of elliptic and hyperbolic
orbits with this same rotation number, resembling a chain of ¢ penduli encircling the torus
along the angle variable. These hyperbolic orbits have invariant manifolds that generically
intersect transversally. This implies the loss of integrability [I51] [33]. If the gth power of the
map is close to the identity in a suitable annular region containing the separatrices and has a
limit Hamiltonian with a homoclinic connection, the splitting angle between these invariant
manifolds is bounded from above, as ¢ — 0, by an exponentially small quantity of the form
Aexp(—B/log(\)), where A > 0 is a constant, B > 0 is a constant related to the distance
to the real axis of the singularities of the homoclinic solution in complex time of the limit
interpolating Hamiltonian, and A is the dominant eigenvalue of D( 51))‘1 of the hyperbolic
orbit, see [47]. It turns out that the area of the lobes created by the invariant manifolds is
of the same order of magnitude of the splitting angle [26], 115, [135], see Fig. [[.2

Inside the chaotic zone that includes the lobe area, a suitable power N of Hg(l) has an
invariant hyperbolic Cantor set, a Smale horseshoe [I138]. The restriction of the dynamics
of (Hg(l))N to this Cantor set is topologically conjugate to a Bernoulli shift. In particular, it
has positive topological entropy [6]. Hence, one expects orbits with unpredictable dynamics
(meaning sensitive dependence with respect to initial conditions), although having zero mea-
sure. Actually, when performing numerical simulations, in the scale of the map, this whole
lobe area is usually detected as chaotic, in a sense that we will explain in Subsect. [LT.3l But
if we take a closer look via suitable return models near the just splitted separatrices, one
can prove that there are elliptic periodic points inside these lobes [132], and moreover that
they appear in positive measure sets of parameters [136]. So, in general, one can not assert
that this zone is fully chaotic.

In fact the positive metric entropy conjecture remains still open. It asserts that in
symplectic maps, KAM tori coexist with ergodic components of positive measure [114]. In
practice, we are going to consider fine grids on regions of the phase space and distinguish
between regular and chaotic orbits as we will explain in Subsect. [LT.3l This may lead to
the visualization of connected positive measure regions that are seemingly fully chaotic, but
there may be still islands of stability smaller than the pixel size. Namely, the orientation
preserving Hénon map is obtained as a universal return map model for quadratic tangencies
in area preserving maps, see for instance [59} 60, 61]. This phenomenon gives rise to periodic
points of high period that exhibit a positive measure domain of stability but this region is
extremely small. A related result is the one of Duarte [38], where it is proven that, for the
standard map (I.13)), there is a residual set of parameters (for large enough k) for which any
point in the phase space is close to such a stability island, and that the distance between them
tends to 0 as the parameter increases. Despite these facts, in our numerical experiments,
the effect of tiny islands of stability is averaged out. And this is checked by performing the
same experiments with different precision and checking that they strongly agree. Hence, we
are going to deal with those regions that we detect as positive measure chaotic zones as if
they were positive measure and chaotic.

In the 3D volume preserving case, we will refer to the case dim L£(p) = 1 as simply
resonant or rank-one resonant and dim £(p) = 2 as doubly resonant or rank-two resonant.

In the simply resonant case, in a proper basis of L(p) the frequencies can be written as
having a rational and an irrational component, p = (p/q, po), p,q € Z, ¢ # 0, po € [0,1). If
po satisfies a D(C, ) condition, there is a volume-preserving change of variables in a region
around the resonant torus that decouples the fast angle dynamics py and the remaining angle
and its related action. This is done up to any order in an unfolding parameter that measures
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the distance to the exact resonance. A truncation of this map is a decoupled skew product
of an APM that describes the dynamics around the resonance in a long time scale but, of
course, it has a remainder. There are two main cases, where this APM is either a twist or
non-twist version of the Chirikov Standard map (LI3]).

In the double resonant case, again one has to choose a proper basis of L(p). It can be
done in such a way that, in this basis, p = (n1/k1,n2/ks) where k; divides ky. One can
perform an averaging procedure to the koth power of the map. After this, one obtains a
near identity map that depends on an unfolding parameter that also measures the distance
to the resonance that, in first approximation, is a periodically forced version of the standard
map, with two angles and an action. The dynamics of the action variable is the identity
plus a forcing that is periodic in the two angles. Hence in this case the phase space is still
3-dimensional. See [41].

1.1.2 The Aubry-Mather theorem, Cantori and Turnstiles

We have just introduced the problem of the persistence of invariant tori of integrable 2D
and 3D conservative maps, provided they satisfied some twist or non-degeneracy condition.
A natural question that arises in this context is if it is possible to establish the existence
of orbits with a prescribed rotation number. In the area-preserving setting the answer is
affirmative. It is fundamental result in the so-called Aubry-Mather theory [8, 93]. Namely,
the existence of such orbits can be asserted in some interval of rotation numbers.
Consider an APM of the annulus F' : S' x [0,1] — S x [0, 1] satisfying a twist condition,

F
om (z,y) > K >0, for all z € S' x [0, 1].

Assume that F' preserves the boundaries {y = i}, ¢ = 0,1. Denote by F; = Fy,—; the
restriction Fj(z) = F(x,i), i = 0,1, and assume that py and p; are the rotation numbers of
Fy and F respectively. Since K > 0, pg < p;. Recall that

Definition 5. A set M is is said to be monotone if for any (x,y), (z',y') € M,
Wl(za y) < 7Tl(l’,a y,) = 7Tle(:L’a y) < 71-1]_7’(‘7:'/a y,)a
where the projection is considered on the lift R of St.

Theorem 1. [8, [93] For each p such that py < p < p1, there ezists a monotone invariant
set under F', M,, whose rotation number is p.

Note that theorem [I] was originally stated for homeomorphisms of the annulus satisfying
the monotone twist condition:

mF(x,y) >mF(x,z), if y>z

We can consider p to be either rational or irrational. The rational case is actually the well
known Poincaré-Birkhoff theorem [16]: for each rational p = p/q such that py < p < py,
there are at least two period-q orbits such that for each point in the orbit, it turns p times
around the annulus before coming back to it. This periodic orbits are usually called Birkhoff
periodic orbits.
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In case p € R\ Q, it can either be a RIC or a Cantor set. These last are usually referred
to as Cantori (or simply Cantorus in singular). We refer to the original papers [8, 93] and
to the review [98] for further explanations.

The remarkable fact about this theory is that it is not perturbative, but it has a huge
impact in the perturbative setting. For the map 7Y as in ([C2), let p € R\ Q such that
po < p < p1. If pis D(C, 7)-Diophantine, then Moser’s twist theorem asserts that there exists
g9 > 0 such that for all 0 < € < g( there exists an invariant curve with rotation p. But it may
still exist for larger values of € that can not be predicted by perturbative arguments. One
expects that this invariant curve exists until some critical value of the parameter, c.; > &g
and it does no longer exist as a curve for € > .. There are examples where these broken
invariant curves reappear, see [22, 01 [49]. After the breakdown of the invariant curve,
Theorem [I] ensures the existence of a monotone invariant Cantor set of rotation number p,
that is usually understood as a 'remnant’ of the RIC that existed for € < £¢;.

There are several proofs of this theorem. The original ones rely on a variational principle.
But there are more geometrical proofs, see [70, [98]. These consist in constructing monotone
sets with irrational rotation number p as limit of monotone sets with rational rotation number
p;/q; such that p;/q; — p as j — oo. This stresses out the strong connection between
periodic orbits and Cantori. Other remarkable results that also rely in this connection are,
for instance:

1. Greene's conjecture [63], 43| [82], that relates the loss of stability of elliptic periodic orbits
with rotation number p;/q; — p with the transition from RIC to Cantorus. This was
partially justified in [82] [43].

2. The obstruction criterion of Olvera and Simé [112] [7§], that gives geometrical conditions
for the nonexistence of RIC based on the relative position of the invariant manifolds
of hyperbolic periodic orbits, and

3. The Greene-MacKay renormalisation theory [83] 80], that also deals with the existence
and nonexistence of RIC based on the relative position of some special families of
periodic orbits. These concepts will be introduced with more detail in Chap. (4l

As an example, we illustrate in Fig. [L.Tlthe transition from RIC to Cantorus of the mono-
tone orbit with the golden mean w = (y/5—1)/2 as rotation number for the Chirikov Standard
map (LI3)), by following the two Birkhoff periodic orbits (hyperbolic and elliptic/reflection-
hyperbolic) with rotation number 2584/4181, which is an approximant of w. This map
will be introduced in Sect. [L2l In this figure, we see the monotone set M, for the val-
ues of the parameter 27k = 0.971(0.001)1.1. The breakdown occurs approximately at
kg = 0.971635.../(27). In this picture one can observe how the points in the periodic
orbit tend to approach each other once k > k¢, giving rise to gaps, and that the size of the
largest gap increases as k increases.

Turnstiles and Mather’s AW

In [95], Mather gave a rigorous criterion for the nonexistence of RIC of a prescribed rotation
number, based on a variational principle. The criterion states that a certain RIC exists if
and only if some quantity, that he named AW, vanishes. This quantity can be explicitly
related to transport, since it is the area that is transported across a monotone orbit per
iterate, [86].
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Figure 1.1: Sequence of magnifications in the marked boxes of the two Birkhoff periodic orbits
with rotation number 2584 /4181 of the standard map (LI3)) for 2rk = 0.971(0.001)1.1. For
ko = 0.971/(27) they approximate a RIC while for all the other values of k& shown they
approximate a Cantorus with w = (/5 — 1)/2 as rotation number. The first and last values
of k shown, kg and k; = 1.1/(27), are labelled in the bottom right plot.

Let F : S'x[0,1] — St x [0, 1] be a twist APM of the annulus, and let F' a lift to R x [0, 1].
We can consider the following generating function G(x, ") of F', defined as,

0G(x,x") _0G(z,2')

F(r,y)=(2y) o y= “or = 0G(z,2"), o' = o = —0,G(x,2'),

that takes values in the set
B={(r,2)€R* : F(r,0) <2’ < F(z,1)}.

Of course, the generating function G determines F' uniquely and F' determines G up to an
additive constant. It is easy to check that {(z;,%:)}:, i € Z is an orbit of I (note that
we also consider the pre-images), if and only if the bi-infinite sequence of angles {z;}; (also
called configurations) satisfies

82G(x2-_1, 1172) —+ 81G(xi, $i+1) = 0.

Such configurations are called equilibrium sequences. Consider a finite configuration with

q > 0 elements, z = {zg,1,...,2,1}. For p € Z, define the periodic action on z as
q—2
Wy o(2) = G(x4—1,20 +p) + Z G(xi, Tiy1)- (1.6)

1=0
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There exists a finite maximizing equilibrium sequence z,, of W, ,, provided p/q € (po, p1),
that is, the rotation number lies between the rotation number interval defined by the rota-
tion numbers of the boundaries, see [§]. And since any integer translate 2’ = {zo + j, x; +
JsovosTgo1+ 7}, J € Z, of x also maximizes W), ,, one can use a minimax principle to estab-
lish the existence of another equilibrium sequence z,,,,, that is a minimax orbit [95]. Note
that these equilibrium sequences again correspond to the Birkhoff p/g-periodic orbits. More-
over, maxima of AW, , correspond to hyperbolic orbits and minimax equilibrium sequences
correspond to periodic orbits that are either elliptic or reflection hyperbolic [85].
In [95], Mather defined the quantity

AWpg =Wy a(@p) = W g(@pr)- (1.7)
And he proved the following result:

Theorem 2. In the setting described above, let {p;/q;}; a sequence of rational numbers such
that p;/q; — p € R\ Q as i — co. Then,

1. The sequence {AW,, ,,}i has a non-negative limit AW, as i — oo, and

2. The APM F has a RIC of rotation number p if and only if AW, = 0.

AW, as area. For each p,q € Z, ¢ > 0, the p/q periodic orbits define a partial barrier for
vertical transport. And the rate of transport, also called the flux or area per iterate that
crosses these orbits can be explicitly related to AW,.

More concretely, consider any curve C' that interpolates the maximal and minimax orbits
with rotation number p/q. This curve divides the cylinder. Fix a point in the maximal orbit,
say (xo,%o), and the one in its orbit that is closest to it to the right, (x;,v;) = F*(zo, %),
where 7 is a Bézout coefficient in ip + jg =1, j € Z.

The image F(C) of C also interpolates z,, and z,,,,. Generically, F9(C') does not
coincide with C' but on z,, and z,;,,. In the segment from (xg,yo) to (x;,y;), the curves
F1(C) and C enclose a region R. If I satisfies the zero-flux condition@, the area of the part
of R that is above C' is the same as the area of the part of R that is below C. Moreover,
this is the area that crosses C' per iterate; and the structure that define F7(C') and C' acts
as if it was a revolving door or turnstile. And in [86] the authors proved that this area is,
precisely, AW, ,, and that it does not depend on the choice of the curve C. Moreover, from
Theorem [2] we can take limits on sequences of periodic orbits converging to some irrational
number p to get the transport rate across Cantori.

We will illustrate this fact and provide further insight on the kind of orbits and the phase
space structure inside the region that defines the area AW, , at the end of Subsect. [[.2] for
the fixed points (with rotation number 0/1) of the Chirikov Standard map.

1.1.3 Regular and Chaotic orbits

Throughout the whole text, the lack of integrability or the amount of chaos in a system is
measured as the amount of points (taken in a fine grid) that belong to orbits which we can
consider that are chaotic, as we will define in this section. This will be done by considering
an approximation of the maximal Lyapunov exponent, A.

2Recall that in our case this is guaranteed since the function f; in (ILZ2) has zero average.
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The Lyapunov exponents are the generalisations of characteristic exponents of periodic
orbits to general orbits, and measure the exponential rate of increase or decrease of the
distance between nearby orbits. In our context, let F' : R® — R" be a volume preserving
map, that is, det DF'(x) = 1 for all z € R™. To avoid technicalities, we are going to assume
that

sup{||DF(z)|| : x € R"} < o0,

where || - || is any norm.

Definition 6. Let xg € R", and F?(xo) = x; = F(x;_1). The Lyapunov exponent associated

to o and the vector § € R™, ||&l| = 1 (here || - || is any norm in R™) is the limit, if it exists,
1 13~

A0;&0) = lim = log || DFY (zo)&|| = lim = > log | DF(z)&]l (18)
Jj—00 g Jj—00 g p

where gj = DF(ZL’J’_1>£J'_1.

The limit (L8] exists for almost every zy € R™ and &, € R™. All points of the same orbit
have the same Lyapunov exponent. For a given xg, the limit A(xq; &) takes only finitely many
values I} < ly < --- <l,,, m <n, and each of them occurs respectively with multiplicity k;,
where ki 4+ ko +- - -+ k,;, = n, see Chap. 1 in [13]. We will denote by A(zg) = l,, the maximal
Lyapunov exponent. Moreover, volume preservation further implies that either [,, > 0 or
l, =0, and Y ", kil; =log(det DF) =0 .

The existence of positive Lyapunov exponents implies sensitive dependence with respect
to initial conditions, and linear stability around invariant objects of the system requires
A(z) = 0 for each x in this invariant object. It is important to remark that there are exam-
ples of maps with zero Lyapunov exponent that exhibit sensitive dependence with respect
to initial conditions [52], but this does not happen, generically, in our setting.

From a practical point of view, assuming k,, = 1, for each initial condition x(, regardless
of the initial vector {, chosen, {; tend to the maximal expanding direction with probability
1. So, the approximation of the limit (L8] starting with a randomly chosen &, will give the
maximal Lyapunov exponent A(zg) with probability 1. For a faster evaluation of A(zg), it
is convenient to proceed as follows [126]

o Set 1 = DF(x0)&, so = log ||ml|, & = m/|m]||, and

o Forj>1,n; = DF(x;-1)&-1, s = log|njll + sj-1, & = ni/lIn;ll,
and to compute an approximation of the limit
8 .
A(xg) = lim . (1.9)
Jj—oo )
We will refer to the quantities s; as Lyapunov sums. When dealing with concrete examples,
we will consider grids in regions of the phase space under study. Each initial condition in
this grid xp, and its orbit, will be considered to be regular if we can assume that the limit
(L) is zero up to a reasonable threshold (that depends on the number of iterates of the
map performed to approximate A(xg)), and chaotic otherwise.
Note that in most cases it will be enough to study the growth of s; instead of approxi-
mating the limit to guess if we can consider it to be either positive or not.
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For faster evaluations of the maximal Lyapunov exponent one can also use the so-called
fast Lyapunov indicators (FLI), see the review [137], or the mean exponential growth factor
of nearby orbits (MEGNO), see [23].

1.1.4 Stickiness

The stickiness problem is, roughly, that of measuring the time that chaotic orbits can spend
near invariant objects of the system, where transport rates are expected to be slowed down.
For Hamiltonian systems with 3 or more dof that are perturbations of Liouville-Arnol’d
integrable systems, we have Nekhoroshev-like bounds: under steepness conditions, that refer
to being unblocked at some order in resonance according to [125], it takes exponentially long
times of the form O (¢ exp (c2/e%)), ¢1,c9,c3 > 0, in the distance-to-integrable parameter
e to vary the actions by a quantity O(1). See [110, 56 57]. Namely, in this situation, if
one changes the small parameter to be the distance to an invariant KAM torus, put 9, the
speed of the diffusion close to this torus has super-exponential upper bounds of the form
O (exp(—exp(1/0))), see [107]. This kind of drift of the action variables is the so-called
Arnol’d diffusion and was first introduced in [3]. In this cited article, Arnol’d introduced
the diffusion mechanism of transition chains: for a given Hamiltonian system, let ¢; denote
its flow. The mechanism of transition chains consists in finding a sequence of invariant
tori 11,...,T, such that for each + = 1,...,n, the unstable invariant manifold of 7T;, W*

7
intersects the stable manifold of T;,;, W, transversally. In this case, one can assure that

if £ € W and n € W, for any neighbourhood U of £ and V' of 7, the flow ¢; connects both
neighbourhoods, that is, Uysqp,U NV # 0.

An illustrative example of exponentially long trapping times is [53], where the authors
introduced a methodology to study the region in the phase space around a totally elliptic fixed
point in a Hamiltonian system where invariant KAM tori are prominent. This methodology
was based in the usage of normal forms and rigorous bounds. Around a totally elliptic fixed
point, they were able to establish lower bounds for the diffusion time in this zone: they
found that initial conditions taken in a poly-disk of radius Ry were confined in a poly-disk
of radius 0 Ry, o > 1 for exponentially long times.

But the setting we are dealing with differs essentially from this one since in our case
stability can be established via KAM theory, since in either the 2D symplectic or 3D vol-
ume preserving (2-angle l-action) cases invariant curves and 2D tori, respectively, are co-
dimension 1 manifolds: total barriers to transport since they separate space. Hence, the
stickiness problem has to be understood outside the region where these confining invariants
of the system exist. Hence, despite being a different problem it is related to the effective
stability of KAM tori in Hamiltonian systems in 3 or more dof.

The very first problem to deal with is what Chirikov called the structure of “the chaos bor-
der” [27], the boundary between regular and chaotic motion. Despite being an old problem
it is highly intricate and yet unsolved and makes the stickiness problem extremely difficult
to be approached in an analytic way. In the 2D setting there are intricate structures that co-
exist whose description is based on different renormalisation schemes. For instance, around
a stability island one has the Hierarchical Island-Around-Island structure, that consists in
partitioning the phase space using Cantori that are around either the main island or around
satellites (and satellites of satellites, and so on), and that is conjectured to scale somehow
[149]; and in turn, the destruction of each of these invariant curves and their evolution as
Cantori can be explained via the Greene-MacKay renormalisation theory, see Sect. [3.5.0
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The 3D setting presents similar difficulties, but there is much less understanding on the
geometry of the most prominent objects around 2D invariant tori. Yet it is a promising and
interesting field of research that is being approached nowadays by several authors. See [40]
in the conservative context, and [I8, [19] 20 21] in the dissipative setting.

In both 2D and 3D cases, one is lead to deal with this problem in a numerical way. In
both cases, we will iterate maps defined on a torus T?*! that can be lifted to T xR, d = 1, 2.
So, when we are on tori, it makes sense to consider an adequate compact neighbourhood K
of a sticky object and K¢ = T4\ K, its complement to the torus. Then, diffusion properties
are measured by studying, once either in K or K¢ the probability to leave it after ¢ iterates.
To fix notation, let zy € T4*! be an initial condition and we iterate it under a conservative
map F : T4 — T Fi(gg) = 5,

o If for some iterate i > 0, z;_; € K¢ but x; € K, then Z(t) measures the trapping
statistics, that of being trapped in K for t consecutive iterates:

I(t):PI'Ob(I'] ek, jg=41i+1,....0+t T 1, Tire1 GKC). (110)

e And conversely, if for some iterate ¢ > 0, z; 1 € K but x; € K¢ we will denote by
Z¢(t) the probability to remain outside K for ¢ consecutive iterates

Ic(t> :PI'Ob(SL’J EKC, j:Z,Z+1,,Z—|—t, Ti—1, Lijyrt1 EK) (111)

In the 2D case there is a general agreement that Z(t) ~ t~°, where the symbol ~ refers
to this behaviour as being asymptotic. Usually in the literature people deal with

I(t) = /t T () ds ~ 0

the cumulative distribution function (cdf from now on) of the trapping statistics. The very
first numerical studies available were those of Karney et al. [69], who studied the stickiness
effect of the main island of stability of the Hénon map (in a version that will be introduced in
Chap. 2)), where the authors found that I(t) ~ ¢~'45. Later, Chirikov and Shepelyanski [30]
performed a study of the stickiness effect of the last invariant curve of the Chirikov Standard
map, where they asserted I(t) ~ t~%3*. The key fact is that both numerical simulations,
that were independently performed, gave rise to statistics whose pdf is, asymptotically, a
power law with 2 < b < 3. Note that this fact implies that Z(¢) has bounded average but
unbounded variance and, in turn, gives rise to anomalous diffusion, see Sect.

Later on, Meiss and Ott [103] built a theory of stickiness around islands of stability
that relied on the fact that there exist a hierarchical island-around-island structure and
that the main obstruction to transport is the one caused by Cantori. Moreover, the leakage
across these objects is given by Mather’s AW [05], the flux or area in the phase space that
crosses the Cantorus per iterate [86]. In this context, they interpreted the chaotic accessible
zone close to islands as if it was partitioned by Cantori and the dynamics in it could be
explained as a Markov process. The transition probabilities between neighbour states were
the flux across these Cantori. For this model, if one considers hypotheses that arise from the
Greene-MacKay renormalisation theory [80, 83], they found I(t) ~ ¢~% which still satisfies
2 < b < 3 as before. It is worth noting that this model is the only one available that takes
into account both Cantori and the Hierarchical Island-Around-Island structure.
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In [32] it was conjectured that there exists a universal asymptotic exponent b, based on
results for a Markov tree model, where the transition probabilities present random scaling
factors. The authors give numerical evidence of this exponent in a 2-parametric family of
cubic area-preserving maps with an elliptic fixed point, and compare it with the statistics in a
simulated Markov model with random transition probabilities, where they get b ~ 2.57+0.03.

Concerning the 3D case, there is little literature on stickiness, from which we want to
highlight the papers [I09] where the authors detect an algebraic decay of Z(t) (measured as
the time needed to escape from a zone that contains a 2-torus) in the Kiippers-Lortz state
(as a volume preserving flow), and [I41], where the authors place initial conditions near 2D
tori and find exponentially long trapping times.

1.1.5 Anomalous diffusion

In a context where orbits can eventually become unbounded, one can study transport prop-
erties via the growth of the variance of trajectories. In the two cases we are going to deal
with, we are going to consider lifts to the cylinders T¢ x R of maps initially defined on the
tori T4, d = 1,2. So in either case we are going to have a 1-dimensional observable ¢ € R
(the action variable) that will diffuse.

To give an explicit account on transport properties, we are going to compute the variance
of a sample as

Var, = ((A"€)%) — (A"¢)?

where A"¢ = &, — & is the difference of the observable after n iterations and its initial
value, and (-) means ensemble average, taken among a large number of initial conditions. In
practice, the quantity Var, will also depend on the parameters of the system under study
and on n.

Under symmetric random walk hypotheses, one expects a behaviour such as Var, ~
nY, v = 1. That is, after n > 1 iterates, one expects a set of values of ¢ initially distributed
in any way, to become eventually distributed as a Gaussian, having as mean (A™), that
in the limit has to be 0; and variance Var,, that grows linearly in the number of iterates
performed. In other words, an initial ensemble of orbits distributed according to a pdf
f = f(&, n) will evolve according to the heat equation

02 f . Var,
8—527 D = lim s (112)

n—oco N

of _ 1
on 2

where n > 1 is considered a continuous variable and D is the so-called diffusion coefficient.
We will refer to this situation as diffusive.

The term anomalous diffusion refers to the cases where Var, ~ n? vy # 1. In the
literature, the case v < 1 is referred to as sub-diffusive, and v > 1 as super-diffusive.
This last case is what we will deal with in chapters [3] and Bl Note that, Var, ~ n?,v > 1
implies the divergence of D in (L12).



1.2. THE CHIRIKOV STANDARD MAP 25

1.2 The Chirikov standard map

The main 2D example we are going to deal with in this thesis is the Chirikov (or Taylor-
Chirikov) standard map [26] 27]. We are going to consider it in the following representation:

oL M2 2 v A T\ _ rT+y
forow (D)o ()=(,urih ) o

We will denote by M, and M, its lifts to the cylinder S! x R and the plane ER2, respectively.
Note that in the literature it is common to use the the scaled version & = 27k of the
parameter, and sin(x) instead of sin(27x), that is, with the angle defined in ' = R/27Z.

The main reasons to use M} as key example are

1. Its dynamics for different ranges of the parameter k£ provides a proper context where
to study the two main problems we are going to deal with. First, for £ > 1 one can
study the effect of an island of stability in the statistical properties of the orbits in the
chaotic zone (chapters 2l and B]) and for k near kg ~ 0.156 one can study the effect of
a ’single’ Cantorus in the transport rates across it.

2. It will serve as inspiration to construct a proper model for the study of the same
problems in the 3D context (see chapter [).

The map M, is one of the so-called standard-like maps also defined on the 2-torus T2,
(z,y) = (2,9) = (x + 7,y + kV(2)), (1.14)

where V(z) is an even 1-periodic function with zero average. Instead of taking V(z) =
sin(27x) one can consider other examples giving rise to different phenomena. See [9], 22} [91].
In this memoir we will only focus on the classical standard map with V(z) = sin(27x). It is
worth noting that it is a paradigmatic example as it appears in many contexts. For instance

1. Tt is a first order approximation of the dynamics around a generic (p, q) resonant chain
of islands in area preserving maps, see |26} [135],

2. It describes the dynamics both relatively far from the separatrix and around simple res-
onances in some return map models. The dynamics in a fundamental domain around
the separatrices which emanate from a hyperbolic fixed point P of an area preserv-
ing map F' can be described (in the simplest and symmetric case) by the Chirikov’s
Separatrix Map [26]

A z\ ([ z+a+bloglh -
Sa’b'(h)H<h)_( h + sin(27x) ) b= —1/log(|Al)

where (z,h) € S' x [—h, h] are adapted coordinates. The variable 2 moves along a
fundamental interval of W#*(P) (between two consecutive homoclinic points on the
same orbit) and h measures the distance from W#(P) in a suitable action variable.
This action is not preserved under iteration of F' due to the splitting between W?*(P)
and W"(P). In the integrable case, this action can be understood as an energy that
is zero along the separatrices (which coincide), and in such a case the dynamics on h
would simply be h = h.
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In the given formulation, h has been scaled by the splitting size so that his O(1). The
parameter a is a necessary shift to have all iterates inside this fundamental domain,
and b = —1/log(|\|), where A is the dominant eigenvalue of DF(P) [17].

To derive Sg, it is assumed that the first harmonic in the splitting function dominates.
Furthermore, as we already said, it is assumed that the fixed point P is hyperbolic.
The term log |h| actually comes from the passage close to this point. For parabolic
points with invariant manifolds see [92].

If we are relatively far from the separatrix, take h = hy+ s in S, ;, where |ho| > 1 and
expand the log term. If we consider k = |ho|/b and y = a + blog |hg| + ks we recover
M, + O(|ho|™2), see [142, 135).

We also recover the standard map by linearising around values h = h, where blog(h,) =
r € Z, see [26], 27].

3. It is a conveniently scaled version the map obtained as a one step integration of the
simple pendulum using a symplectic method of integration. Indeed, if we consider the
equations

1
H:§772+COS€> 5277’ ﬁ:Sin€>

the map obtained by a single step of integration using the symplectic Euler method

with stepsize € gives
S E\ _ [ &+en
P€‘<n 7\ 5 )T ntesine )

If we re-scale P. via C'(&,n) = (2n¢,2mn/¢e) = (z,y), we get
M,=CoP.oC™1,
where k = £2/(27).

The overall dynamics of Mk as a function of k, k > 0 (the case k < 0 is exactly the same
by means of k — —k) is fairly well known. At k& =0, My is integrable. In fact it is of the
form (L2), Hél) with ¢(r) = r, and in this case the phase space is foliated by horizontal
RIC. Once k > 0 some of this structure persists in virtue of Moser’s twist Theorem, and
the last RIC to be destroyed is the one with the golden mean w = (v/5 — 1)/2 as rotation
number, and it happens at the value of the parameter kg ~ (27)7'0.9716354061062. . .,
called Greene’s value of the parameter [63]@. For k > k¢ the RIC is a Cantor set, according
to Aubry-Mather theory [93, [§]. The actual value is rigorously bounded by 0.9716/(27) <
ke < 63/(64 - 2m). The lower bound is a recently obtained value in [45], where the authors
proved using computer assisted techniques that the golden mean invariant curve exists. The
upper bound was provided in [88] where the authors did a computer assisted proof (CAP)
for the nonexistence of any RIC in the standard family (LI3).

Since here RIC separate space, they do not permit vertical drift, but they do once de-
stroyed. Taking this into account, we consider three main ranges of £ > 0, according to the
geometry of the phase space:

3The first approximation of this value is due to Greene, kg ~ 0.971635/(27), but we will use the refined
value of MacKay given in [30] [83]
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o If 0 < k < kg, orbits of any point under M, are always bounded. It is remarkable that
the measure of detectable chaos as a function of k for Mj, (in the torus) is intimately
related to the measure of the splitting of the invariant manifolds of the fixed point at
the origin. The transversality of these invariant manifolds, including an asymptotic
expansion of the splitting function, was rigorously obtained in [54]. In Fig. we can
see a comparison between the relative measure of the set of points with chaotic orbit
(detected by computation of the Lyapunov exponent) and a multiple of the splitting
angle of the manifolds of the hyperbolic fixed point, computed at the homoclinic point
lying on the line 2 = 1/2. The agreement is good, even for large values close to k = kg
of the parameter k, and it is specially accurate for small values of k.

0

2t/

0.04 0.08 0.12 0.16
Figure 1.2: Fraction of points with chaotic orbit (line with points) and 50 times the splitting
angle of the hyperbolic fixed point for the standard map (continuous line). Horizontal
variable: the parameter k, see (LI3). In the vertical line the natural logarithms of the
values are displayed.

e For kg < k < 0.903, the nonexistence of RIC allows orbits to become unbounded under
iteration of M}, (now in the cylinder). But there is still some moderate regular area due
to islands of stability, being the one around the fixed elliptic point the main source.
In Fig. we show the fraction of pixels in a fine grid (see the caption for detailed
information) that are not visited by chaotic orbits, as a function of the parameter k.
On the left we see that right after & = 0.7, less than a 2% of the pixels are not visited.
Near k£ = 0.9 it seems that the regular area drops down to zero. But on the right we
show a magnification of an region surrounding k£ = 0.9, that we recomputed in a finer
grid. The value of the parameter for which we got the minimum fraction of non-visited
pixels was for k = 5.675/(27) ~ 0.903. For these value, after a total of 10'? iterates,
only 3471 out of 2?8 pixels were non-visited, that is, we detect a measure of regular
area below 0.001% of the phase space. We remark that this detected area is not due
to the satellites of the main elliptic island, but to other tiny elliptic periodic points.

e The case k > 0.903, corresponds to a range of the parameter where one expects that
most of the phase space will be detected as fully chaotic. But still some moderate size
islands appear. This case will be treated with detail in the next chapter.

In Fig. [[L4 one can see an example of how does the phase space of (ILI3) look like from
the point of view of regular-chaotic orbits. To generate them, we computed the Lyapunov
exponent A of each initial condition (in an equispaced 2048 x 2048 grid, keeping track on
the pixels visited), and we plot them in light grey if we could assert, after 108 iterates, that
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Figure 1.3: Fraction of pixels that correspond to orbits confined in islands as a function of
kin (LI3) in a N x N equispaced grid in the torus T? that have not been visited by ic
initial conditions iterated 7" times. Left: N = 21 ic = 100 and 7' = 10%. Right: N = 24,
ic = 1000 and T = 10°. The stepsize in k is, in both plots, 1073/(27). The reason for the
sudden decreases is explained in Sect. See also Fig. for a related example.

A > 0. Roughly speaking, if one performs 7T iterates of an initial condition, one can consider
it to belong to a chaotic orbit if one gets an approximation of A > O(T~'). On top left, we
plot the case k = 0.5/(27) ~ 0.0796, where as commented above, the main source of chaotic
orbits is due to the splitting of the invariant manifolds of the origin. Of course there is more
chaotic area, but it is below pixel size. The picture on the top right is a magnification of the
top left, where chaotic zones due to high period resonances are visible. In the bottom left,
we plot the case k = 0.9716/(27) ~ 0.155, right before the breakdown of the golden invariant
Cantorus. Here we can see a complicated mixture of regular and chaotic orbits. The chaotic
zone occupies approximately half of the phase space. There is numerical evidence that the
relative size of the chaotic zone close to the breakdown of the last RIC is similar in larger
family of standard-like maps (LI4), see [91]. Finally, on the bottom right we display the
case k = 2/m, exactly at the period-doubling bifurcation of the main elliptic island. Here
most of the phase space can be considered chaotic, and one expects it to become seemingly
fully chaotic once k£ > 1. In this case, there are still plenty of elliptic islands in the phase
space [38], but they are always below pixel size in the actual scale of the plot.

An example of turnstile area: AW,

Consider the map My, defined on the cylinder S* x R. We are interested in the rate of escape
of orbits from T' = S! x [0, 1] through the line {y = 0} (or {y = 1}, by symmetry). We called
this line C' in the discussion in page Note that the hyperbolic and elliptic/reflection-
hyperbolic fixed points of the standard map M}, are located at (0,0) and (0.5, 0), respectively,
for all values of k. These points have rotation number 0/1, that is, they are still fixed even
if one considers lifts M;, of M} to the plane R2.

The orbits starting at (x,y) € T that escape this set in one single iterate are those that
satisfy

y + ksin(2rz) < 0.

That is, all points with y > 0 that are below the curve —ksin(27wx). One can also think
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Figure 1.4: Distinction between regular and chaotic orbits in the phase space of (LI3)) for
k = 0.5/(2m) (top, the right plot is a magnification of the left one), k = 0.9716/(27) (bottom
left) and k = 2/7 (bottom right). Light grey pixels correspond to regular orbits while white
pixels correspond to chaotic orbits.

in terms of escaping sets: all points escaping through {y = 0} are those bounded by the
pre-image of this line M, '({y = 0}) = {y = —ksin(27z)} and the line {y = 0} itself. First,
we consider the case k < 1. The area of this set, that we are going to denote by A is simply

! k
A= / —ksin(2rx) = —.
0.5 m
From the point of view of Mather’s AW}, we have to consider the generating function of
the standard map. One can easily check that it is, up to a constant, of the form

1 k
Gi(x,2') = —5(37’ —z)%+ Dy cos(2mx).
The (0, 1) periodic action is Wy 1(z) = Gk(z, z) where z = {z} is a finite sequence with one
element, and the equilibrium sequences corresponding to the fixed points are constant equal
to 0 and 0.5, that correspond to the fixed points at (0,0) and (0.5, 0), respectively. Hence,
k k k
AWhq = o cos(0) — o cos(2m0.5) = —= A,
That is, the turnstile area AW, grows linearly in k for £ < 1. Since we are restricting
ourselves to the set 7', for k > 1 (for k = 1, y = —ksin(2nz) is tangent to {y = 1} at
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x =3/4), AWy, in T will increase slower than linearly with slope 1/7. In the case k > 1 the
part of the domain between {y = —ksin(27x)} and {y = 0} which is on top of y = 1 must
be skipped. Let z* € (0.5,0.75) be such that —ksin(27z*) = 1. Then the value of A will be
twice the sum of the integral of —k sin(27z) between 0.5 and z* plus 0.75 — z*. This gives

1 (k B \/ﬁ) N 1 arcsin(l/k)'

s 2 s
This behaves as % — ﬁ + O(k™3) for k large and, hence we obtain

) 1
g, Ao =3
Here we want to stress the fact that in the area AW, ; we are including that occupied by
points confined in islands (that can be either regular or chaotic) and points that are non-
confined in stability islands. The islands of stability that can be included in the escaping set
whose area is AW ; are essentially the main central island around the fixed point (0.5, 0)
and its satellites. This leads to the following considerations:

> 0.06
0.3 R c
, AWO,l
P // 0.04 |-
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Figure 1.5: Turnstile area of the fixed points of the standard map (LI3)). Top left: AW,
(purple) and AW as a function of k. Top right: AW, as a function of k. Bottom: phase
space of M, for k = 0.9716/(27) (left) and k = 2/7 (right). The light gray pixels correspond
to regular orbits, while those in white are chaotic. The area of the union of the red an blue
regions is AWy 1, the red (resp. blue) pixels being regular (resp. chaotic).
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1. For each p,q € Z, q¢ # 0 such that we can assure that there exists a p/g-periodic orbit,
the turnstile area AW, , can be written as the sum

AW,y = AWE, + AW

p,q’

where the superscript ¢ stands for ‘confined in an island’ and nc for ‘non-confined in
an island’.

2. Since AW} can only consist in points whose rotation number in S! x R is p/q, we are
lead to define the following set.

Definition 7. The domain of stability of rotation number p/q of an APM F of the
cylinder St x R is the set of points

DS(p/q) = {(x,y) cS'xR : lim mPNzy) -z _ Z_’},

n—oo n q

where m denotes the projection onto the first component.

Note that DS(p/q) not only contains the periodic orbits and regular points around the
elliptic or reflection hyperbolic ones, but also chaotic confined points, satellite islands,
and stable invariant manifolds.

Back to the example about the computation of AWj ;, for the standard map, the quan-
tities AW, and AWg{. In Fig. [L.3 top, we show AW ; as a function of k. On the left one
can see both AW, ; and AW'{. We indicated also the slope 7! to show the good agreement
with the predicted behaviour. On the right, we show AWg,. On the bottom of Fig. we
show the phase space of My for k = 0.9716/(27) (left) and k = 2/7 (right). The union
of the red and blue regions are the turnstile. The red part are regular initial conditions,
while the blue region is formed of chaotic ones. It is important to remark that we will deal
with transport in the chaotic zone. Hence, the rates of transport across periodic orbits will
not be given by the relative area AW, , but by the relative area AW, both understood in
adequate regions of the phase space, see Sect. 311

1.3 Accelerator modes

Accelerator modes are a special kind of orbits that appear in maps F(x, z) of the cylinder
T¢xR! to itself, where x are angles and z are actions, that are periodic in the action variables.
In such a case, F' analytically projects onto the torus T4, and we shall denote it as F.

Definition 8. A ¢-periodic point (g, z0) € T¢xT" under such a map F, F(xy, z) = (0, 20)
1s an accelerator mode if under iteration of the lifted map to the cylinder the action variables
change by an integer quantity:

F(xq, z0) = (20,20 + 1), n e Z\ {0}.

In this section we present a simple way to generate area and volume preserving maps
having accelerator mode orbits. Furthermore if we consider maps in this form, the stability
of the accelerating orbits when we consider maps on the corresponding torus (when they
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become fixed or periodic points), can be effectively computed, so that we can choose proper
models in such a way that these associated orbits give rise to stable area or volume around
them.

The structure around the stable accelerator modes is going to be the responsible for
anomalous diffusion in the maps we are going to deal with.

1.3.1 Area-preserving maps as compositions of shears

The easiest way to generate area-preserving maps is by composing shears. The simplest
nontrivial (in the sense of the dynamics) case corresponds to composing one shear in the x
direction and another one in the z direction. Let S; and S be shears represented as

s (D) (7). s (D) () 0

Since det(DS;(z,2)) = 1, the shears preserve both area and orientation. Two conjugate
maps can be generated by composing them, 51053 and S5 0.5;. To fix ideas, let us consider
the choice F' = S; o Sy, which has the form

()= (0) = () @16

Maps of this form include Chirikov’s standard map ([.I3]), non-twist standard maps (for
instance taking g,(z) = z — z?), the Harper Map, Arnold’s cat map, linked twist maps, etc.
Note that these kind of maps are those with generating function
/ /
G(z,?') =z2' + 51(2) — go(), z = %, 7 = %, (1.17)
where ¢; is a primitive of g;, + = 1, 2.

Suppose that F as in (LI6) is an analytic map on the torus, T?; in this case the shear
functions g; should be analytic maps of the circle S!, or circle maps; without loss of generality,
we can assume that each one is 1-periodic. An orbit of F is periodic if a lift F : R? — R2? of
f has orbits that return to some integer translate of its initial condition after a fixed number
of steps, i.e., if F(x,z) = (x +m, z +n), for some m,n € Z and q € N. Denoting points on

an orbit by (x4, z;) = F*'(xg, 20) periodicity implies that

m:ZGl(zt), n:ZGg(zt), (1.18)

where each G, is a lift of the corresponding g; to R.

Such (m,n, q)-periodic orbits have different interpretations depending upon the degree
of the circle maps g; and upon the physical interpretation of the phase space variables. For
example, for standard-like maps, = represents a physical angle and z a momentum. In this
case g1 has degree-one—for Chirikov’s case g1(z) = z mod 1—representing a twist, while
go represents a force and has degree zero. In this case, the map can be partially lifted to
the cylinder S! x R, and on this phase space it has zero net flux: the net area that crosses
any non-contractible loop upon iteration, is zero. As commented above, the zero net flux
condition is also necessary if one wants F' to have any invariant curves that encircle the
cylinder, and is a requirement of KAM theory for preservation of such circles.
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For this case, orbits with n = 0, correspond to periodic orbits on the cylinder, while
those with n # 0, have momenta that grow (or decrease) linearly in time, that is, they are
accelerator modes.

The simplest case corresponds to period one, ¢ = 1, where (II8]) becomes

Gi(z+n)=m, Gy(z)=n, n,m € 7. (1.19)
Consequently, the set of fixed points,
A ={(z,2) € T* : Gi(z+n) =m and Ga(z) =n},

is the intersection of the level sets of the lifted shear functions. .
The linear stability of a period-q orbit of an area-preserving map F' is determined by the
characteristic polynomial of DF?(x, zo):

p2(A) = A —7A+ 1, where 7 = tr(D f(z0, 20)).

Hence, the multipliers A; and A, depend only on 7: if |7| < 2, \; = Ay € C and have modulus
one, if 7 = 42 then \; = Ay = &1 and if |[7| > 2 then \; = A\;! with the sign of 7. For the

form (.16,
> _ T+ a(Z)g(z) §i(z')
DF(z,z) = ( e 1 )
where we denote ¢(&) = dg/d¢. Thus

tr(Df) =24 g1(z +m)ga(x) = 2+ §1(2)g2(2), (1.20)

due to periodicity.
Suppose, e.g., that Ga(x) = kp(z), where k € R, p(z) is periodic, and ||p||oc = 1. Then
the condition (.19) is equivalent to,

p(z) = % (1.21)

that only has solutions when k > |n|.

The period-one accelerator modes obtained from ([2I)) are born at k& = |n|, that is, at
an extremum of p(x). Hence, at this bifurcation, g»(z) = 0, so that 7 = 2. Consequently,
the parameter k, unfolds generically an elliptic-hyperbolic bifurcation as it crosses |n|.

Accelerator modes of Chirikov’s standard map

Probably the most well-studied example with accelerator modes is Chirikov’s standard map,
M, (L13)), that has the form (LI6) where

91(z) =2z mod 1, go(x) = ksin(2mz).

Let us restrict ourselves to £ > 0. In this case,

= i (™Y
Amm,l—{x—%rsm <k>,z—m n}. (1.22)

Upon projection to the torus, one can set n = m without loss of generality.
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For each value of n € Z # 0 (.22)) only makes sense when k > |n|. So accelerator modes
appear for kK = n, at (1/4,0) jumping upwards and at (3/4,0) jumping downwards. Their
stability is determined by (L20) with

T =2+ 27k cos(2mx).

A pair of accelerator modes are born at x = i and r = % with 7 = 2 when k = |n|.

As k grows, generically, two branches emanate from each point, giving rise to hyperbolic
and elliptic accelerator modes. Their position depends on the value of k, but they evolve
along y = 0. Further details on the evolution of these accelerator modes as a function of k
will be given in Chap. 2l

1.3.2 Volume preserving maps as compositions of shears

A natural higher-dimensional version of (I.I6]) corresponds to a map on T¢ x T! with d-angles
T1, T, ..., 2 and [ momenta z1, 2o, . . ., 2, to be lifted to T¢ x R'. This map is automatically
volume and orientation preserving, det Df = 1. The map is symplectic only if d = [ and
each shear is a gradient, g; = VT'(2) and go = VV/ (), and again in this case the map f can
be written similarly to (LIT) as coming from a generating function and the map is near the
identity if g; and g, are small.

Alternatively one can consider shears S; along a single direction, that is, if w € T¢, then
S; i T4 — T4, let S;(w) = w + e;9;(w) where e; is the ith vector in the canonical basis of R¢
as a vector space. If g; is independent of the i component w;, each shear is again volume
and orientation preserving. Thus any map f = S, 0S;,0...08;,, i1,42,...,1; € {1,2,...,d}
is as well.

We are interested in the dynamics of a three-dimensional case, using angles (x,y) € T?
and one action z € R. So the shears in these two directions will be periodic functions of
their arguments. And we assume, as for the standard maps, that the vertical shear is a
periodic function in (z,y) with zero average, and hence it can be projected to the torus,
T3. This implies, again, the possibility of periodic orbits on T® that may not be periodic
on T? x R: the lifted z variable may linearly increase or decrease by an integer amount for
suitable (z,y).

Mimicking the procedure of [[.3.1l we consider the composition of three shears, one in
each direction

T r+ g1y, 2) x T
Si: |y | — Yy .S y | — y+go(z,2) |, (1.23)
z z z z
x x
Ss:l y | — Yy (1.24)
z z 4+ g3(x,y)

There are two sets of conjugate maps formed by composition of these three shears in some
order, but the families are equivalent under permutations of the labels. To fix ideas, we take
F = 5505, 0853, which gives

Z Z z+ g1y, )
F:ly |~ |V = y+ g2, ) . (1.25)
2 z 2+ g3(z,y)
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As done above, we are going to consider intersections of the level sets {g; = n}, n € Z,
i = 1,2,3. These are 2D-manifolds obtained by the corresponding level set times [0, 1] on
the missing variable.

Here we could deal with g—periodic accelerator modes, but we will restrict ourselves with
fixed accelerator modes, ¢ = 1. Denote the intersection of the level sets by

Apin ={g1=m}N{g =1} N{gs =n}, m,l,n € Z.

If (z,v,2) € Amin, F(z,y,2) = (2,9, 2) and when we lift it to T> x R, F(z,y,2) = (z,y, 2+

We can also perform a similar analysis as for the 2D case concerning the linear stability
of accelerator modes, when they appear. For a period-q point of a volume and orienta-
tion preserving map F', (2*,y%, 2*) = F9(z*,y*, z¥), its linear stability is determined by the
characteristic polynomial of DF?(x*, y*, z*),

p3s(N) = =N+ 702 — o\ + 1, (1.26)

where 7 = tr(DF9(z*,y*, 2*)) is the trace of the differential matrix at the periodic point
and o = 1(72 — tr((DF9(z*,y*, 2*))?)) is the second trace. The configurations of the three
multipliers A, Ay and A3 are generically in 8 regions in the 7 — ¢ plane shown in Fig. [L.6l

Under the periodicity conditions on g1, g> and g3, we can determine the linear stability
of accelerator modes when they appear. The values of the first and second trace are:

2) (2 2) (1 1) (1 2) (1) (2
m o= 340797 0705 + 91 0 + 91795 057

2) (2 2) (1 1 1) (2 (1
o = 3+079" + 979" + 919" — 91797 95",

where () means the derivatives with respect to the ith position, i = 1,2. If we write

gs(z,y) = eP(x,y), where P(x,y) is a zero-average periodic function with ||P|| = 1, the

condition g3(z,y) = eP(z,y) = n only makes sense once € > |n|. Again, the equality € = |n|

is attained at extrema of g3. Hence gél) = géz) = 0 at the birth of accelerator mode orbits,

and then 7 = o0 = 3 + g§1)g§1). The configuration of the multipliers is on the saddle node
line A; = 1, so that AgA3 = 1, as well. In practice, we are going to consider that, at ¢ = |n|,

g§1) gél) = 0, so a local parameter k = ¢ — |n| unfolds a Hopf-Saddle-Node bifurcation, see

Chap.

1.4 Objective and structure of the thesis

The main goal of this thesis is to contribute to the knowledge on how does the presence of
some regular component affect the dynamics of a chaotic zone. The approach is to analyse
the geometry of the phase space by means of the theoretical frameworks available. This is
used to construct suitable models to explain the experimental data obtained via long-term
and massive simulations. These simulations allow to check the feasibility of the hypotheses
made, and to estimate parameters in the models.

Throughout the whole text, special emphasis is made on understanding and describing
the geometry of the invariant objects that play a role, and on linking the previous results
and predictions to the variation of their geometry as the parameters of the system vary.

More concretely,
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Figure 1.6: General stability diagram of periodic points of volume-preserving 3D maps, see
[79]. The highlighted points have coordinates A = (—1,—1) and B = (3,3). A Hopf-zero
bifurcation occurs along the red segment, where 7 = o € [—1, 3]. The blue lines correspond
to pairs 7,0 for which two eigenvalues Ay = Ay = A (solutions of (I.26])) collide. They are
solutions of the algebraic equation 473 +403 — 7202 — 1870 +27 = 0. The lines 7 — o = 0 and
T+40 = —2 correspond to saddle-node (one of the eigenvalues A = 1) and to a period-doubling
(one of the eigenvalues A = —1) bifurcations, respectively.

1. In the Area-Preserving case, we will

(a)

Describe the most prominent objects of the phase space of the Standard map
(LI3) for large values of the parameter k, from the point of view of the area that
they occupy in the phase space of Mj, and also from the point of view of finding
adequate models that describe their dynamics in some suitable compact domains
containing them.

Probe the stickiness effect of some of these objects as k varies to detect in which
ranges of this parameter this effect is visible. When stickiness is detectable,
under the hypotheses suggested by simulations, we give lower bounds on the
mean squared displacement of some observable that ensures anomalous diffusion
in the standard map.

This last part motivates to look for explicit quantitative information of transport
rates across Cantori in APM. To do so, we will explore also the Standard map,
for values k > kg but close to kg, that is, right after the destruction of the
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golden Cantorus. These transport rates will be explained (always giving adequate
theoretical models) via the geometry of the zone surrounding this Cantorus, which
can be predicted using the Greene-Mackay renormalisation theory. This theory
predicts that the mean transport rate across the Cantorus, that we will denote as
(Ng) in Chap [l is such that (Ny) (k—kg)?, where B ~ 3 tends to be 1-periodic as
k — kg in a suitable logarithmic scale. Despite being predicted, here we give the
first evidence of the shape of this periodic behaviour. We also give some insight
on the causes of this effect: namely on how it is related to the area AW and to
the lobes defined by the invariant manifolds of hyperbolic periodic orbits whose
rotation number are consecutive approximants of the golden mean.

2. And in the Volume-Preserving case, we will

(a) Set up a problem where accelerator modes appear, so that a similar analysis of
1.(a) and 1.(b) above can be performed.

(b) Select a relevant example and show the rich geometry of the stable region that
this case presents. Special emphasis is made on the role each of these objects
have on recurrence statistics. It turns out that there can be anomalous diffusion
in the action also in this case.

1.4.1 Summary of the contents by chapters

Apart from this introductory chapter, the contents of the thesis is splitted among four more
chapters. Chapters [2, Bl and [ deal with the planar case, while chapter [l deals with the 3D
volume preserving case. More specifically,

* In Chap. 2] we start by considering conservative quadratic Hénon maps (both orienta-
tion preserving and orientation reversing cases). First, we study the main features of
the domain of stability of these two maps, mainly from the point of view of the area
that they occupy, and how it does evolve as parameters change. To be as exhaustive
as possible, we review the theory that allows to explain what one can observe in the
phase space of these maps.

We finish the chapter by considering the Chirikov standard map (ILI3) in the 2-torus T?
for large values of the parameter, £ > 1. The most prominent sources of regular area in
this setting are accelerator modes that appear periodically in k, and scaled somehow.
We give numerical evidence of such a scaling, and guided by the experimental evidence,
we derive limit representations for the dynamics in some compact set containing these
islands, which turn out to be conjugated to the orientation preserving quadratic Hénon
map or conjugated to the square of the orientation reversing quadratic Hénon map.

Some of these islands are the accelerator modes we checked that appeared in Sect. [L.3l
This motivates the following chapter.

* Chap. Blis devoted to study the role of these islands of stability that jump’ when the
standard map is considered in the cylinder. The stability domain of these islands is
determined and studied independently from the standard map M} in Chap. 2| and
is recovered in some regions in the phase space of M under suitable scalings. We
focus in two main observables: the squared mean displacement of the action under
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iteration of M} and the trapping time statistics. We study them both in an adequate
range of the parameters, where we can see the effect of considering more and more
iterations and the fact that we change parameters and the size of the gaps of a Cantorus
change. We provide evidence of the fact that the trapping time statistics behave as
the superposition of the effect of two distinctive phenomena: the one of the stickiness,
detected as power-law statistics, and the one of the outermost Cantorus, detected as
bumps. These bumps change their position in the time axis accordingly to the change
of the size of the largest gap in the Cantorus.

First, assuming that the stickiness effect gives rise to power law statistics with a certain
value of the exponent, and under some other mild conditions (that also are suggested
by the simulations), we are able to give a lower bound on the growth of the mean
squared displacement of the actions. This is the way these two phenomena are related
to each other in this context.

Then, the fact that we can identify the source of the bumps as being due to the effect
of the outermost Cantorus, motivates the topic of the next chapter: studying this effect
by its own in a proper context.

In Chap. (4] we return to the Chirikov standard map, but for values of the parameter
close to the destruction of the last RIC, that is, for value of the parameter close but
larger than kg and approaching it from above. In this setting, we study escape rates
across this Cantorus, and we deal with this problem from two different points of view.

First, as k& decreases to kg. In this setting, it is known that the mean escape ratio
across the Cantorus, that we will denote as (N ), behaves essentially as (k—kg) ™2, B ~
3. The Greene-MacKay renormalisation theory, and the interpretation of AW as an
area justify that, in fact, (N;) (k — kg)? should eventually be periodic in a suitable
logarithmic scale, as k — kg. In this chapter we give the first evidence of the shape
of this periodic behaviour, and perform a numerical study of a region surrounding the
Cantorus that allows to give a first (partial) explanation of it.

Second, we consider a problem related to the previous topic but for each fixed value of
k: the probability that an orbit crosses the Cantorus in a prescribed time. We explain
how to compute these statistics, and we show that in logarithmic scale in the number
of iterates, as k — kg, they seem to behave the same way, but shifted in this log-scale
in time.

Finally, Chap.Blis devoted to study the stickiness problem in the 3D volume preserving
setting. To do so, a map inspired in the Standard map is constructed following the
scheme in Sect. [[.L3. This map depends on various parameters, one of them, say &,
being a distance-to-integrable one. The map is considered in such a way that

1. Invariant tori subsist until moderate values of ¢, and

2. At integer values of the parameter the origin becomes an accelerator mode, and
that exactly at integer values it undergoes a Hopf-Saddle-Node bifurcation, giving
rise to a stability bubble.

The normal form of the unfolding of this bifurcation justifies that, in fact, there are just
two relevant parameters (since it is a co-dimension 2 bifurcation). An analysis inspired
in that of Chap.[3lis performed by fixing one of them. Also in this case one can observe
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a power law decay of the trapping time statistics, but with slightly different values of
the exponent in different ranges of the number of iterates. Preliminary results of more

massive simulations seem to indicate that the effect decreases as the number of iterates
increases.
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Chapter 2

From the Hénon conservative map to
the Chirikov standard map for large
parameter values

In this chapter we present a study of some dynamical properties of orientation-preserving and
orientation-reversing quadratic Hénon maps concerning the stability region, the size of the
chaotic zones, its evolution with respect to parameters and the splitting of the separatrices
of fixed and periodic points plus its role in the preceding aspects.

Then the phase space of the standard map, for large values of the parameter, k, is studied.
There are some stable orbits which appear periodically in k£ and that present scalings in a
way that depends on k. Using this scaling, we show that the dynamics around these stable
orbits is the one of above Hénon maps plus some small error, which tends to vanish as
k — oo.

We finish the chapter considering lifts of the Standard map to the cylinder, Mj, and
studying the dynamics of these stable orbits under M. This will motivate the study pre-
sented in the next chapter.

The content of this chapter is already published in [105].

2.1 Introduction

The universal character of the Hénon map (2.1)) is well-known since, in particular, it appears
as a return map close to a quadratic tangency in the dissipative setting [I11, 113]. Later
the conservative orientation-preserving Hénon map (2.I]) was obtained as a universal return
map for quadratic tangencies of conservative maps preserving orientation, see, for instance,
[55, [61]. Recently, it has been proved that the orientation-reversing Hénon map also appears
as a universal return map in non-orientable cases, either for maps defined in non-orientable
manifolds or for hyperbolic points with eigenvalues A and p such that Ay = —1, see [62].
On the other hand, in [36] the authors consider non-transversal heteroclinic cycles for re-
versible maps having symmetric saddle fixed points, and they show that the corresponding
return map can be written as the composition of either two orientation-preserving or two
orientation-reversing Hénon maps.

In this chapter we investigate both orientation-preserving and orientation-reversing cases.
Several properties concerning the stability region, the size of the chaotic zones, the splitting
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of separatrices of the fixed /periodic points, etc, are presented in Sections 2.2] and 2.3

In Section 2.4 we perform an extensive numerical exploration of the relative regular area
of the phase space of Chirikov’s standard map [26] for large values of the parameter, by
means of the computation of Lyapunov exponents. This allows us to detect stable islands
appearing periodically in the parameter that show some scaling properties.

In Section we analyse the properties of such little islands, which are of period 1, 2
and 4. More concretely, we focus on the renormalisation properties of these islets and we
derive suitable limit maps. It turns out that the obtained limit maps correspond to the
orientation-preserving Hénon map, the composition of two of these and the composition of
two orientation-reversing Hénon maps, respectively. The results obtained fit within the same
spirit of previous results in [26], [69].

2.2 The Hénon conservative orientation-preserving map

In 1969 M. Hénon [65] started the study of quadratic area preserving maps in R%. He proved
that quadratic maps with constant Jacobian can be reduced to the form

F:(x,y) = (1—az®+y,bx) (2.1)

for some constants a,b € R, with minors exceptions. If b = —1 the map is area and
orientation-preserving. If b = 1 it is area preserving and orientation-reversing. The case
b = —1 has a very simple geometric interpretation as the composition of two maps. The first
one is (z,y) — (x,y + 1 — ax?), one of the so-called “de Jonquieres” maps, while the second
is just a rotation by an angle of —7/2.

However, in what follows, we use another representation of the case b = —1 given by:

HPC:<:;)_><x+2y+§(1—(x+y)2)>’ (2.2)

y+5(1—(x+y)?)

where it is enough to consider ¢ > 0. We name it HP which stands for Hénon orientation-
preserving map. This representation is obtained from a minimal modification of the version
given in [134]: F.: (x,y) — (c(1—2?)+2z+y, —x) after the change (X,Y) = (z—y, z+y)/2,
and renaming (X,Y’) as (z,y). The subscript ¢ in these maps is introduced to stress that
they depend on this parameter. The map (Z2) has two fixed points. One of them, H, is
located at (—1,0) and it is hyperbolic for all ¢ > 0. The other one, E, located at (1,0), is
elliptic for 0 < ¢ < 2, parabolic for ¢ = 2 and reflection hyperbolic for ¢ > 2.

2.2.1 Symmetries, reversors, limit flow and rotation number

The inverse map can be expressed as HP, ! = S o HP,. o S, where S is the symmetry given
by S(x,y) = (x,—y). Defining R = S o HP,, which is clearly an involution like S, we have
HP.= So R and HP,! = Ro S. Both S and R are called reversors. We can consider the
sets, Fix(S) and Fix(R), of fixed points of both reversors, i.e., either points z = (z,y) such
that S(z) = z (which are the points with y = 0) or points such that R(z) = z, which belong
to a parabola.

A reversor like S plays an important role to locate periodic points on Fix(S). If for a
point p € Fix(S) there exists m € N such that HP™(p) € Fix(S), then p is periodic, of
period m if p = HP™(p) and of period 2m if p # HP"(p). Furthermore, for any of these
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periodic points, if it is hyperbolic, the image under S of the unstable manifold W*(p) is the
stable one W*(p). Similar properties hold for the reversor R.

For a preliminary study of the dynamics of an arbitrary map F', provided it is close to the
identity map, it is quite useful to look for the existence of some ODE such that the time-1
map associated with the flow gives a good approximation to F. In the case of (2.2]) this can
be done by introducing the new variables (£,7n) = (x,2y/+/c). Then, in the (£, n) variables,
HP, differs from Id by O(y/c). A scaling of time also by /c leads to:

d§ dn 2
- @ (2:3)
an ODE which is Hamiltonian with H(&,n) = %n2 — &+ %53. The solutions are contained
in the level curves of H and the main features are shown in the elementary Figure 2.1] left.
It has also H = (—1,0) and E = (1,0) as fixed points, of hyperbolic and elliptic type
respectively. The level H'(2/3) contains the separatrix. Points inside the domain bounded
by the separatrix belong to a foliation of periodic solutions. In the right side plot we show
some confined orbits for HP,, as well as the right branches of the invariant manifolds of the
hyperbolic fixed point. They seem to be coincident but, of course, they are not (see Section
[2.2.4)). For this small value of ¢ the main difference between both plots is the change in the
y variable by a factor y/c/2 when going from the left plot to the right one.

0.4

-0.4

Figure 2.1: Left: the phase portrait of system (Z3]). Fixed points are shown in blue, as are
the invariant manifolds of the hyperbolic point. The periodic orbits are shown in red. Right:
the right branches of the invariant manifolds of the hyperbolic point and (part of) the orbits
of several initial points under HP,, for ¢ = 0.2.

An extremely relevant parameter is the rotation number (L4]). If we consider the time-/c
map associated to the flow, the rotation number corresponding to a periodic orbit of period
T is p = \/c/T. It decreases monotonically from /c/(v/27) to 0 when going from E to H.
The values agree very well with the corresponding rotation numbers for HP,, for ¢ small,
when p is defined, i.e., on the curves invariant under HP..

For increasing values of ¢ the rotation number, when it is defined, gives a very good
information on the dynamical properties. Figure tells us about the value of p on the
(¢, z)-plane, when the initial point to compute p is in Fix(S5), i.e., of the form (z,0). For
the places in white the iteration of an initial point (z,0), under HP,, leads to escape. In
particular, for c=3/2, for which value the E point has as eigenvalues —1/24iv/3/2, all other
points on the z-axis, with x > —1, escape (unless they belong to some stable manifold).
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0 0.5 1 15 2
Figure 2.2: The plot shows, as a function of ¢ (horizontal variable), the values of = (vertical
variable) for points in Fix(S) for which p has been computed. The dots in red correspond to
points for which there is good evidence that p ¢ Q. For p = m/n, n = 3,5,9 and 11 we used
magenta, green, pale blue, yellow and black, respectively. Other rational values are shown
in blue. See the text for details.

To compute p we have used a topological method based on the order of the iterates
on the curve, see, e.g., the Appendix in [123]. The tolerance used to stop the compu-
tation of p is 1071°. Then, if the value of p can be identified, with this tolerance, as
a rational m/n with n < 10%, it is decided to consider p € Q and, hence, they be-
long to islands with a period equal to the denominator. Otherwise we consider p ¢ Q.
Points in light grey in Figure are considered to have p irrational. Points with p of
the form m/n, with n € {3,5,7,9,11} are shown in black, while points with other ra-
tional values of p are shown in grey. The wedges in black, from left to right, have p =
1/11,1/9,1/7,2/11,1/5,2/9,3/11,2/7,1/3,4/11,2/5,3/7,4/9 and 5/11, the last five show-
ing up for ¢>3/2. We note that all denominators are odd. A similar plot, but taking initial
points in Fix(R) would give even values for n, see [133].

We remark that most of the wedges associated with islands reach x = 1, but they are
extremely narrow; below the pixel resolution. As rational numbers are dense, the light grey
domains on the figure have, in fact, a Cantor-like structure. Furthermore, some of the island
domains in the figure do not emerge from z=1. They are related to satellites (and satellites
of satellites, and so on) of the main islands. In some sense, the structure around each island
and around its satellite islands repeats the structure of the full set, as a fractal object. This
can be checked by magnifying the black domains in Figure 2.2

2.2.2 Measure of the set of regular and chaotic confined orbits

In Figure 2.3 we show the measure, p(c), of the set of bounded orbits as a function of ¢ for the
map HP,, as given in (Z2)). Note that u(c) also includes the measure of chaotic orbits within
the island of stability that are bounded due to the existence of invariant curves that confine
them. So, pu(c) is larger than the set of orbits whose Lyapunov exponent can be considered to
be zero. We should stress that there are many other more general conservative models (e.g.,
Hamiltonian systems with two or three degrees of freedom, such as the Restricted Three-
Body Problem, or traveling waves of some PDE, such as the Michelson system [129, 42])
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which have many features in common with what we display for the Hénon conservative map.

To produce Figure 23] we compute the Lyapunov maximal exponent, A(p), for initial
points p and for many values of ¢ and a narrow grid of points. A typical spacing in the
coordinates x and y for the grid is 0.0005. In most of the cases we first compute a transient
of 108 iterates before starting to compute A(p). In this way we detect most of the points
which escape. A simple escaping criterion follows from the fact that if some forward iterate
of p has x-component with < —1, it will escape. A number of iterates m = 10° is also used
to produce an estimate of A(p). If the value obtained is below 2 x 107°, the orbit of p is
considered to be regular and, hence, bounded. Otherwise it is considered to be chaotic. In
the latter case, we continue with additional iterations (up to 10® and in some cases up to 10'°)
to check if we can consider the chaos as confined or if the orbit of p is finally escaping. The
measure (c) is the fraction of points in the grid that are detected as regular and confined
chaotic times the area of the rectangle where all bounded orbits of HP, lie.
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Figure 2.3: Left: measure u(c) of the set of confined points as a function of ¢. Right: a
magnification in the range ¢ € [0.77,0.97] to provide evidence of the self-similar properties

of pu(c).

Note the sudden decrease of u(c) at some values of c. Going from right to left one can
see a first decrease near ¢ = 1.5, a fact already mentioned in the discussion after Figure 2.2
The small confined area for ¢ = 1.5 is due to the existence of tiny period-3 islands, that at
¢ = 1.5 surround a 3-periodic orbit exactly at period-doubling, see [134]. Later on we see a
sequence of sudden changes in p(c) which correspond to the destruction of all the invariant
curves surrounding the islands of periods 4, 5, 6 and so on.

The magnification shown in Figure 2.3] right, provides strong evidence of what happens
with islands of a higher period and displays the self-similar properties of i(c). As an example,
the large jump near ¢ = 0.91 corresponds to the breakdown of invariant curves around the
islands of rotation number 2/9, while the jump shortly after ¢ = 0.96 corresponds to the
breakdown of invariant curves around the islands of rotation number 3/13. It is not difficult
to identify all the jumps shown in these plots. The reason for the sudden decreases in
confined area is that these broken invariant curves used to surround and hence confine some
chaotic region, and once these invariant curves are broken, orbits in this region can eventually
escape.

Among the points with bounded orbit there are, however, some which display chaotic
behaviour. The Lyapunov exponent allows us to detect them. A natural question is, hence,
how does the measure of this set change as a function of the value of ¢. This is shown in Figure
2.4l The plot shows quite a sharp change in its behaviour. This is to be expected, because
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of the infinitely many chains of islands in the system (there are for any p € QN (0,1/2],
except for the case p = 1/3, see Appendix 7 in [5]). Each chain of islands has an associated
hyperbolic periodic orbit, the splitting of whose invariant manifolds generates some amount
of chaos. It is confined until the invariant curves, that surround these chaotic orbits, break
down. Even considering that the computations shown in Figure 2.4] have been done with
a 1073 step in ¢, a careful examination of the data allows us to detect several hundreds of
peaks. See Sections 2.2.3 and 2.2.4] for details on the splitting properties.
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Figure 2.4: Measure of the set of confined points with chaotic dynamics as a function of c.

In Figure we show three magnifications, computed with step 10=% in ¢. They corre-
spond to what happens before the breakdown of the invariant curves around the islands of
periods 6, 5 and 4, respectively. For the moment, we do not consider the small jumps on
these curves; just a kind of average or, better, a curve fitting the successive minima. For
the left plot, for instance, this averaged shape is produced by the change in the size of the
chaotic zone created by the homoclinic points associated to the period-6 hyperbolic orbit.
But this orbit has been created at ¢ = ¢! /6= 0.5, while the destruction of all the invariant
curves around the islands of rotation number p = m/n = 1/6 occurs for a critical value
Cmn = 176 ~ 0.6204. Hence, why does it take so long to see that the size of this zone is
relevant? The answer will be give in Section 2.2.4l Similar things occur for the other two
plots. The respective creation of islands and destruction of all the surrounding invariant
curves occur, for period 5, at ¢ = 0(1)/5 = 1 —cos(27/5) = 0.690983 and ¢ = ¢1/5 =~ 0.7649,
and, for period 4, at ¢ = 09/4 =1and ¢ = ¢14 = 1.0141.
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Figure 2.5: Magnification of Figure 2.4] corresponding to the breakdown of the invariant
curves which surround the islands of period 6 (left), period 5 (centre) and period 4 (right).

The differences between an averaged behaviour of the rate of increase and the true be-
haviour in Figure is due to the role of other minor islands. For instance, the jump seen
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in the left plot shortly after ¢ = 0.61 corresponds exactly to the same kind of phenomenon,
created by the periodic orbit of rotation number p = 3/19. The measure of the chaotic zone
associated with this periodic orbit has to be added, in some sense, to the largest chaotic
zone due to the period-6 orbit.

2.2.3 Splitting of the invariant manifolds of the hyperbolic fixed
point

For their intrinsic interest and to compare with the behaviour in Section 2.2.4] we shall
consider now a measure of the lack of coincidence of the unstable and stable manifolds,
Wi, Wi of the hyperbolic fixed point. As a suitable measure we will use the splitting
angle, that is, the angle between the manifolds, computed at the symmetric homoclinic
point found on the first intersection with y = 0,2 > 1. Let us denote the angle as o(c). A
useful parameter to present the results is h(c), defined as follows. Let A(¢) be the dominant
eigenvalue at H, which is equal to 1+c++v/2¢ + ¢? for HP,.. Then we define h(c) as log(A(c)).
We note that h(c) = v2c + O(c). If in the limit vector field (23) we scale time by an
additional factor v/2 then the map HP, will be well approximated by the h(c)-time map of
(23). It is easy to check that the separatrix of the flow has the closest singularities to the real
axis of the time, located at a distance 7 = 7 of that axis. According to [46] [47], for any n > 0,
there exists N(n) such that the splitting angle is bounded by N (n)exp(—2x (T — n)/h(c)).
This type of result is true for general analytic area preserving maps close to the identity
map. Formulas of the form Ac? exp(—ctant/\(c)) refer to the dominant part of the splitting
function. See [54], and [55] for additional examples.
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Figure 2.6: Different representations of the splitting angle o(c) between the manifolds at
the first intersection with y = 0,2 > 1. Left: ¢ as a function of ¢, showing that o seems
negligible for ¢ < 0.2. Right: log(o) as a function of log(c), which allows to see how small
o(c) is for ¢ approaching zero.

For HP,. we have computed o(c) for many small values of ¢ and the following formula fits
the numerically computed data:

21%
h(c)

the factor Q(h), or correcting factor, being of the form wy+O(h). Using a local representation
of W to order 400 and 500 decimal digits in the computations it is possible to compute o(c)
and, hence, to derive from (2.4]) values of 2(h) and to look for a formal expansion in powers
of h%: Q(h) = >, ~owamh®™. See more details in [I28, B5], but in contrast to [55], in the
present case we have computed the splitting angle instead of the homoclinic invariant and

o(c) = g x 10572h(c) "% exp (— ) x Q(h), (2.4)
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derived the coefficients in 2(h) using finite differences instead of polynomial fitting. The
package PARI/GP [14] is useful for these simple problems.

As a result, the first digits of wy are 2.4893128029367119625065982560123949997046 and,
furthermore, there is a strong numerical evidence that the formal series is, in fact, a divergent
one. However, the related series Y . w,,,h*™/(2m)! (i.e., the Borel transform of Q(h)) seems
to be convergent. In Figure 2.7 left, we plot logq(warm (2702)%™/(2m + 6)!) as a function of m
up to m = 375, i.e., up to the power A", The values seem to tend to a constant, a strong
evidence of the Gevrey-1 character of {2(h) and of the fact that its Borel transform seems to
have radius of convergence equal to 27%. If we assume that, despite the divergent character
of Q(h), a good approximation is obtained for small A, if we truncate the expansion at the
smallest term (in absolute value), the relative errors are shown in Figure 2.7 right. They
are acceptably small, even for h = 1.
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Figure 2.7: Left: log;(wam (272)*™/(2m + 6)!) as a function of m, which gives evidence of
the Gevrey-1 character of Q(h). Right: the relative errors €,.(h)/Q2(h) — 1 as a function
of h, with step 0.01, where €2,.(h) denotes the formal power series truncated at its smallest
term, m = m*. Note that this is achieved for different m* = m*(h) depending on the value
of h. The different pieces shown, from right to left, correspond to values of m*(h) equal to
4,5.6,. ...

If we compare the left plot in Figure 2.3 with Figure we check that up to ¢ = 0.35 the
behaviour of p(c) just follows from the measure of the domain bounded by the separatrix
in Figure 2] and the change of scale. It is proportional to y/c. No sign of the effect of the
splitting seen on Figure shows up. But this has to be expected, because all the points
with chaotic orbits created by the splitting of W;;® escape to infinity. In contrast, recall the
case of the standard map, where there is no escape. In Fig. we compared the relative
measure of the set of chaotic points and a multiple of the splitting angle of the invariant
manifolds of the origin, and the agreement was very good, even for relatively large values of
the parameter.

2.2.4 Splitting of the invariant manifolds of periodic hyperbolic
points

Consider a map F' having an elliptic fixed point Fy. Under generic conditions there is a
domain of stability D surrounding Fy. Inside D the phase space has different Birkhoff
resonant chains of islands of stability, located in an annular domain around E,. Generically,
these stability islands have a pendulum-like phase space structure formed by the invariant
manifolds of the hyperbolic periodic points. Hence, for a concrete island, one can consider two
“main” splittings of separatrices, geometrically related to the upper and lower separatrices of
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the classical pendulum. We refer to the inner/outer splittings according to the distance to Ey
of the separatrices of the pendulum structure. It turns out that both splittings are generically
different, being the outer one the largest [134]. Hence, the size of the confined chaotic zone
is expected to grow, essentially, proportionally to the outer splitting of the separatrices of
the main chain of islands inside the stability domain. And the distance between the main
island of stability and the satellite stability islands is expected to behave also proportionally
to the amplitude of the inner splitting. So, it has to be taken into account when dealing
with transport rates and the stickiness effect.

In Figure 2.8 we show the behaviour of the outer splitting of separatrices of the islands
with p = 1/6, 1/5 and 1/4 as the parameter ¢ of the Hénon map (2.2)) changes. Consider
that the periodic orbit with rotation number p is created at the value ¢ = cg (see Section
2.2.2)). The fact that the invariant manifolds do not coincide creates a bounded chaotic region
around the islands. However, the splitting of separatrices behaves in an exponentially small
way in (maybe a power of) v = ¢ — cg. This means that the size of the splitting becomes
large enough to be observable for relatively large values of v. Then, the effect of the chaotic
zone around the island of rotation number p contributes in a significant way to the total size
of the confined chaotic region only for v values for which the splitting can be observed. The
Figure 2.8 shows the value of the splitting, for period 6, 5 and 4, from left to right, starting
at the creation of the periodic island. Note the agreement with the Figure The values
of ¢ at which the splitting starts to be seen in Figure 2.8 agree very well with the ranges

shown in Figure
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Figure 2.8: Behaviour of the outer splitting of the separatrices of the islands of period 6
(left), period 5 (centre) and period 4 (right). Compare with Figure

The fact that the range in ¢, from the creation of the periodic islands of a given rotation
number p, at ¢ = cg, till the destruction of the surrounding invariant curves, at ¢ = c,,
becomes shorter when p increases (as observed in Figure 2.8 for p = 1/6,1/5 and 1/4) has
an easy explanation. The islands travel “faster” across the confined domain around the point
E because, when increasing ¢, the twist condition becomes weaker. A simple computation
of the normal form around F shows that p changes from having the maximum at E to have
a local minimum at E for ¢ = 5/4.

2.2.5 The mechanism of destruction of invariant curves and the
associated Cantor sets
The destruction of invariant curves can be seen, from an analytical point of view, as the lack

of convergence of the sequence of iterations to obtain a conjugation between the dynamics
on a candidate to be an invariant curve and a rigid rotation, with Diophantine rotation



50 CHAPTER 2. FROM THE HENON MAP TO THE CHIRIKOV STANDARD MAP

number, in S!, following the KAM approach (see e.g. [6]). There are also criteria based on
the blow-up of Sobolev norms of the hull functions, see [22].

Another approach, from a geometrical point of view, is the obstruction method [112].
We will illustrate this last approach with an example. The invariant curves surrounding
period-6 islands are destroyed for ¢ = ¢;/5 ~ 0.6204, as said in Section 2.2.21 In Figure 2.9
some orbits are shown. The period-6 islands would be found to the right of the displayed
orbits.

In the left plot, to improve visibility, we skip some of the invariant curves around the
elliptic periodic orbits of rotation number 3/19 (with one point on y = 0) and 4/25 (without
points on y = 0 in the displayed domain). Beyond many other chains of little islands, some
invariant curves (according to the value of the rotation number, using the criterion explained
in Section [2.2.1]) are found passing close to the point (—0.138,0). In the right plot one can
see again the islands of rotation numbers 3/19 and 4/25. Furthermore, the large dots on
the plot show the location of some of the points in the related periodic hyperbolic orbits
(with the same rotation numbers than the elliptic ones). We also show part of the manifolds
of these hyperbolic periodic orbits. On the points shown the unstable manifolds leave the
points with positive slope. It is easy to see that Wy, (blue) intersects Wj ;5 (green) (and,
symmetrically, Wy, (magenta) intersects Wj),s (red)). Hence, due to these heteroclinic
intersections, there is no room for invariant curves with p € (3/19,4/25).

A description of the destruction of invariant curves can also be found in [131].

0.2 0.2
[
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-0.22 -0.18 -0.14 -0.1 -0.3 -0.25 -0.2 -0.15 -0.1

Figure 2.9: Several relevant orbits on the left part of the period-6 islands for values close to
the destruction of the invariant curves around these islands. Left: Plot for ¢ = 0.618 < ¢ .
Right: Plot for ¢ = 0.63 > ¢;/6. The colored manifolds are Wi‘/%, 17255 W?j‘/lg and W§/19 in
red, green, blue and magenta, respectively. See the text for details.

It can seem strange that we must go to ¢ = 0.63 to discover the existence of these
heteroclinic intersections, while we claimed before that the destruction has been found for
c = c16 ~ 0.6204. Plots similar to Figure 2.9 right, for ¢ = 0.625 or ¢ = 0.628 do not
provide evidence of the existence of heteroclinic points. The reasons of this are simple:

1) The arc length of the part of the manifolds shown in the figure is short. Much longer
parts will show heteroclinic points for values slightly larger than 0.6204.

2) Beyond the hyperbolic periodic orbits with p = 3/19,4/25 there are infinitely many
other hyperbolic periodic orbits with intermediate values of p. It would be possible to
find a long chain of heteroclinic connections between the ones we consider here.
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The “gaps” produced by the heteroclinic intersections on the candidate to invariant
object are the responsible for its Cantor-like structure. Therefore, the points with chaotic
dynamics that were confined when the invariant curve still existed, can escape when the
curve is destroyed and it is replaced by a Cantor set. If the gaps of that set are rather small,
however, it will take a long time for the iterates to find their way to escape. We will deal
with this problem in Chap. 4l

2.2.6 Explaining the birth and death of islands

In the previous subsections we presented some elements which allow to have a fairly good
understanding of the changes in the measure of the set of confined points under iteration by
HP,.. We give here the main items concerning the fate of the islands.

1) For small values of ¢ the map HP, has a dynamics quite similar to the flow (2.3)). The
measure of the confined orbits is very close to the measure in the case of (2.3), scaled
by v/c/2. Periodic orbits of rotation number p € Q and the corresponding islands are

born at E for ¢ = cg = 1 — cos(2mp) and travel away from E when increasing c.

2) Simultaneously the hyperbolic periodic orbits with the same p go also away from F,
the splitting o,(c) of their manifolds creates first tiny chaotic domains which, later
on, increase with ¢ as o,(c) increases. Finally the invariant curves surrounding the
islands of a given p are destroyed due to the existence of heteroclinic intersections of
the manifolds of hyperbolic periodic orbits of slightly smaller p and the confined chaotic
domains can escape. The islands still exist for a while, until their central elliptic point
becomes reflection hyperbolic.

3) For larger values of ¢ the mechanism of creation of islands is different. The value of p
at E is a local minimum for ¢ > 5/4. Then, periodic orbits of a given p are created in
pairs (two of elliptic type and two of hyperbolic type) near some place, away from E,
close to a local maximum of the rotation number. This is related to the loss of the twist
condition for a nearby integrable model and to the creation of the so-called meandering
curves, see, e.g., [127]. When ¢ increases, one of the periodic islands approaches £ and
the other approaches the boundary of the domain of confined orbits. As an example,
for p = 4/13 the couple of periodic islands is created for ¢ &~ 1.345. One of them ends
at E for ¢ ~ 1.3546, while the other has surrounding invariant curves until ¢ ~ 1.369
and, finally, the island is destroyed near ¢ = 1.391.

To see the evolution of the set of confined orbits as a function of ¢, details on the evolution
of an island and on the changes in the set of chaotic confined orbits the reader can have a
look at some movies, available in http://www.maia.ub.es/dsg/QuadraticAPM.

2.3 The Hénon conservative orientation-reversing map

For our purposes, to study the islands in the standard map, it is also relevant to consider
the Hénon conservative map, but with orientation-reversing, HR,, which is given (using a
setting similar to the one in (2.2))) by

e () (), 25)
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where, again, it is enough to consider ¢ > 0. We name it HR which stands for Hénon
conservative-reversing map. It has two fixed points, H., located at (£1,0), hyperbolic for
all ¢. Because of the orientation-reversing character, they have a positive and a negative
eigenvalue, given by A\t = FcF V2 + 1, A} = Fc £+ V? + 1. Note that the absolute value
of the unstable eigenvalues, coincides. Furthermore, it has a period-2 periodic orbit, whose
points F are located at (0,+1). They are elliptic for ¢ € (0, 1), with limit rotation number
p(c) = cos™H(1 — 2¢2)/(27), parabolic for ¢ = 1 and reflection hyperbolic for ¢ > 1.

The map HR, has a reversor S, defined by S(z,y) = (—z,y) and, hence, an additional
reversor B = S o HR,. Both of them are involutions and satisfy similar properties to the
HP, case. In particular SoHR.0oS = HR: ', quite useful to obtain stable manifolds from
unstable ones.

The square of the map can be approximated by a limit flow. No scaling of the variables
is needed now. Only a scaling of time by a factor 2c. The reason to select this scaling will
be given later. Letting ¢ go to zero we obtain the limit flow

dr 1 9 dy

7 (1 — 2 g2
1-2"~y9), —

i =z, (2.6)

whose Hamiltonian is H = y(1 — 2? — y*/3)/2. The separatrices are given by y = 0 and
1—a2?—y?/3=0. It is immediate to check that the separatrix going from x = —1 to z = 1
on y = 0 has a singularity for ¢ = im, while the other separatrices, upper and lower, going
from (1,0) to (—1,0) along 2% 4 4?/3 = 1, with extremal values |y| = v/3, have singularities
for t = im/2. The Figure 210 shows the flow of (2.6) and several iterates of HR,. for ¢ = 0.2.
In the right part of the figure, the upper points (on top of what seems to be a connection
between the saddles, close to y = 0) are mapped by HR,. to the lower ones, and reciprocally.
As in the case of HP., shown in Figure 2.1 for small ¢ the dynamics of the map is rather
close to the one of the flow. No trace of chaotic behaviour is seen at the resolution level of
the plot.

. . . . . -2 . . . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 2.10: Left: Phase portrait of the limit flow given by (2.6]). Right: Some orbits of HR,
for ¢ = 0.2, which seem to correspond to an integrable map. The invariant manifolds of the
hyperbolic fixed points Hy seem to be coincident.

However, there exist transversal heteroclinic points in Wg N Wy, (near the line y = 0)

and in the upper and lower branches of Wy, N Wy . Due to the symmetry S it is easy
to locate these points on = 0. In Figure 2ZI1] we use as parameter h(c) = log((\*)?) =
2log(c + v+ 1) = 2c+ O(c?). The reason to use the square is the fact that we are doing
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the computations with the map HR?. Furthermore, the fact that the dominant term in h(c)
is 2¢ is what justifies the time scaling done to obtain (2.6).

-10 +

-15

0.2 0.4 0.6 0.8 1
Figure 2.11: Values of the splitting angle for the separatrices in the case of HR.. Here we
plot log(o(c))h(c) as a function of h(c). The upper curve corresponds to the separatrix in
the upper part of Figure 2.10, right, and the lower one to the separatrix near y = 0. For
the separatrix in the lower part of Figure P.10] right, the values are close to the ones in the
upper part. See the text for details.

The splitting of the invariant manifolds has been measured by computing the splitting
angle o(c) on z = 0, both at the heteroclinic point in W N Wj , that we denote as oo(c),
and at the one in the upper branches of Wy, N Wy , that we denote as 0 (c). Assuming
a behaviour similar to the one in (Z4), i.e., of the form o(h) = AhB exp(—C/h)(1 + O(h)),
for suitable constants A, B, C, suggests to plot log(o(c))h(c) as a function of h(c). This is
done in Figure 2.I1] the upper curve corresponding to o, (c) and the lower one to og(c). A
fit of the data gives values for the constant C' in the exponential term which clearly tend to
7% and 272, when the data used are restricted to domains in the left part of the plot (i.e.,
smaller values of h(c)). This is in perfect agreement with the location of the singularities of
the separatrices of the vector field in (2.6).

Finally, as we did in the HP, case in Section [2.2.2] we plot a measure of the set of confined
points as a function of ¢ in Figure One can check that the limit value, for ¢ — 0, is
7/3, in agreement with the flow case in Figure 210, left. For ¢ = v/3/2, corresponding to
elliptic fixed points with limit rotation number 1/3, the measure goes to zero. It is easy
to detect jumps near ¢ = 0.709, 0.608,0.538,0.487, .. ., corresponding to the destruction of
invariant curves surrounding the islands of period 4,5,6,7, . . ., respectively, under HR?, both
in the upper and lower part.

The behaviour of the measure of the set of confined chaotic points, the mechanism of

destruction of invariant curves, etc, under the map HR? are similar to the ones described for
HP.,.

2.4 The standard map for large parameter values

In this Section we consider Chirikov’s standard map ([I3) in the 2-torus T2, M. As
commented in Sect. [.2] for large enough values of k one would expect the chaotic sea to
fill the whole phase space. When dealing with the problem of the relative measure of the
stochastic zone, Chirikov and Izraelev in [28] and [26] proved the existence of some special
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Figure 2.12: Measure of the set of confined points for HR,. as a function of c.

stable fixed points and 2-periodic orbits in the torus T? appearing near integer values of k,
named by them as islets of stability. They also suggested that such orbits should scale both
in area as 1/k? and in the range of the parameter where they existed as 1/k.

In Section 2.4.1] we give numerical evidence of the fact that these islets appear to be the
largest islands in the phase space for large enough k, and that such scalings hold. Moreover,
a similar structure is observed near half-integer values of the parameter, with similar scaling
properties.

2.4.1 Measure of the set of regular points

In order to detect some regular area in the phase space of the standard map Mj, we have
computed on a fine grid (typically with step 5 x 107 both in z and y) the measure of the
set of points in the phase space which are regular, the ones for which we can consider the
Lyapunov exponent to be zero [126] as a function of the parameter k, say A,(k). Note that
it is a lower bound on the total regular area, since one could find other islands, islands below
the pixel size, or even below the machine precision used. See [132] and [136].

In Figure one can see the regular area of M; as a function of k in the range k €
[1.75,10.75]. In this figure one observes that the area seems to vanish everywhere but near
integer and half-integer values of k, where some peaks show up. Moreover, the non-vanishing
area seems to decrease as a negative power of k. The same seems to happen concerning the
range in the parameter where these peaks appear.

In fact, it is easy to check that My has, when considered on T?, the following remarkable
orbits:

e If k = n € Z it has 4 fixed points on the line y = 0: x = 0,1/2 are hyperbolic and
reflection hyperbolic respectively, and z = 1/4,3/4 are unstable parabolic. In fact
they are on an elliptic-hyperbolic (EH) bifurcation, where a fixed hyperbolic and a
fixed elliptic point are born. These four fixed points and the two which are born at
integer values of k lie on y = 0 as k varies. It also has a 2-periodic parabolic orbit
at (1/4,1/2) <» (3/4,1/2) at a period-doubling (PD) bifurcation. These points lie on
symmetry lines of M, (see [63]), y = 2z and y = 2z — 1 respectively.
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Figure 2.13: Relative measure A, (k) in the phase space of M;, of the number of points with
zero Lyapunov exponent as a function of the parameter k£ = 1.75(0.00005)10.75.

Let us denote these points as pi = (1/4,0), p? = (3/4,0) and p, = (1/4,1/2) when
dealing with k£ near integer. The subscript denotes the period.

o If k =m+1/2, m € Z the map M, has a parabolic 4-periodic orbit at a PD bifurcation
(1/4,1/2) — (1/4,0) — (3/4,1/2) — (3/4,0). The points on y = 1/2 lie on y = 2z as
k evolves, and the other two points remain on y = 0.

Let us denote py = (1/4,1/2) when dealing with k£ near to half-integer. Again the
subscript denotes the period.

Remark 2. Near half-integer values of k, there is another stable J-periodic orbit of M), near
ps, but contrary to this last, its position in the phase space depends on the value of k. In
Section [2.5.1 we are going to justify that, due to a symmetry, the structure and evolution of
such orbit can be obtained directly from the study of the dynamics around py.

Concerning the parameter, numerical continuation of some of these orbits suggests that
the range in k where the islands evolves scales as 1/k, as predicted by Chirikov [26]. Namely,

e the island around p, is born at k ~ n — 2/(n7?), in an EH bifurcation, and passes
through PD at k =n, n € Z,

e the islands of pi’2 are born simultaneously at k£ = n and have their PD at £ =~ n +
2/(nm?), n € Z, and

e all islands of the orbit of py are born at k &~ m+1/2—1/(27%(m+1/2)) where they have
a degenerate saddle-centre bifurcation (see [136]), also referred as ‘0-4’-bifurcation in
[36]), and have their PD at k = m + 1/2, m € Z.

All these items are summarized in Table 2.1

In Figure[2.14l we have plotted magnifications near such values and we have superimposed
them scaled as we have just suggested: we have plotted n?A, (k) as a function of n(k — n),
where n is integer or half-integer. These plots show that these islands scale as predicted, and
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Position Period k-EH kE-PD
pi = (1/4,0) 1 n % n+2/(nr?)
_— P :(1(%4,1(/))2) 1 n * n+2/(nn?)
p2—(3/4:1/2) 2 n —2/(nm?) n %
Pa = (1/47 1/2)
neZ+1/2 (?E}Z/ljl’l%) 4 n' —1/(2n'7?) n' *
(3/4,0)

Table 2.1: Position, period and values of the parameter for which the orbits have elliptic-
hyperbolic bifurcation (EH) and period-doubling bifurcation (PD). The inputs in the table
labelled with x mean that it happens exactly at these particular values of k.

the larger is k, the better these scalings fit. This suggests the existence of a limit behaviour
for k — oo, which is the contents of Section 2.5

In the left plot in Figure 214 one can see that the fixed points and the 2-periodic orbit
coexist in some range of the parameter close to integer, and that the evolution seems to
repeat. This is to be clarified in Section 2.5.Il Moreover, a rougher version of each of them
was previously computed by Karney et al. in [69], where the author study the effect of these
islands in the overall diffusion of the standard map in the presence of noise.

0.012 — : : : : 0.012
0.008 | 0008 | |
0.004 | 0.004
ol— : : : : ol : : :
02 01 0 01 02 03 -0.04 -0.02 0

Figure 2.14: Superimposed scaled areas n?A,.(k) as a function of the scaled parameter n(k—n)
near: Left: n =2,3,...,10. Right: n = 2.5,3.5,...,10.5.

2.5 Relating the islands in the standard map to the
Hénon map

The numerical results of the previous section suggest that the islands appearing near each
integer and half-integer value of k for M, (LI3)) scale in the x and y variables, and in the
range of the parameter k where they subsist as 1/k, and that this scaling becomes more
exact as k increases. In contrast with usual cases where the limit map is derived from a
return map including a passage of the orbits near a homoclinic tangency, see, e.g., [I11], now
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it is obtained directly: no points of the relevant orbits come close to any saddle of the initial
map.

In Section R.5.1] we prove the existence of a limit behaviour of the dynamics around
p}’z,pg and py as k — oo, and that such limits are, in fact, Hénon maps with a suitable
reparametrisation. In Section we compare the numerical results for the Hénon map
given in Sections and 2.3 and the ones in Section 2.4.1] for the standard map, using the
scalings of Proposition [II

2.5.1 Theoretical results
The contents of this subsection is summarized in the following

Proposition 1. There exist a limit behaviour of the dynamics around p}’z and py (resp. py)
under scalings in x,y and k by 1/n for n € Z (resp. n — 0.5 € Z). Moreover, these limit
maps are conjugated to area preserving orientation-preserving (resp. composition of two or
more orientation-reversing) Hénon maps, depending on a suitably scaled parameter.

Proof of proposition [I] part I: Limit maps

In this subsection we derive limit maps for the dynamics around pi’2, p2 and py by expanding
M ¢ (after a suitable scaling) in Taylor series around each p,, where v denotes its period.
The symmetries of the standard map are used to reduce computations and to simplify the
limit maps, but in any case one can obtain them without its aid. Let us introduce

e:()~ ().

where we will set n* =n € Z for v = 1,2 and n* = m+1/2,m € Z for v = 4. Consider also
the translation and central symmetry

x x — x —z
T : .S .
“’y‘”(y)H(y—yo) <y>H<—y>

Let us start with & close to n € Z and set n* = n. Consider a new parameter k' = n(k—n),
which controls the scaled distance to the closest integer.

1. Near p} = (1/4,0), consider the change of variables

Ly = EoTy) 0 Mk o T(I/14,0) o B~ L.

This gives

()~

:c/n+1/4)

( /44 (x+y)/n+ (K /n+n)sin(2r(z/n+ 1/4)) )
y/n+ (K'/n+n)sin(2r(x/n + 1/4))
1/4+ (x+y+ K —2n%2?)/n _3
( (y + K —2n%2%) /n ) + 0(™)

I 2,.2
r+y+ Kk —2rx )+O(n‘2),
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where (i) is the map T(I/l4 0) o1, (ii) corresponds to M,, and (iii) is the map EoT{(/4,).
Then, near p; and for £ near integer we have the following behaviour:

Ly<§>b>(§>=<y+§fg%¥>+omﬁy (2.7)

The map around p? is the same as L;, but composed with S.

2. Near py = (1/4,1/2), if we perform the following change of variables
L2 :EOT(1/4’1/2) OSOMkOT_l OE_l

(1/4,1/2)
we obtain

(1) (1) (L Btk v

Here we have taken S o M instead of M2. This fact allows us to deal with a quadratic
map instead of a quartic one. To obtain this expression one has to mimic the previous
computation of L.

Now consider n* = m + 1/2,m € Z. Here k' = (m + 1/2)(k — m — 1/2) is the new
parameter to be used.

3. Near py, = (1/4,1/2), the change of variables
L4:EOT(1/4,1/2)OSOM,?OT_1 o Bt

(1/4,1/2)
X
Ly —>
! (y) (

where sy = k' — 27%2% and s, = k' — 27*(z + y + s0)*>. Here we have also used S o M?
instead of M}!. This allows to reduce the degree of the limit map from 16 to 4.

gives

): (‘x_y_%+g) +Om), (2.8)

—Y —So— 51
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Proof of proposition [l part II: L;, L, and L, are Hénon maps

To find the conjugacies which relate our limit maps to a Hénon map HP, or HR, we shall just
move their symmetry lines to y = 0 for HP, and to x = 0 for HR,.., and to make the position
in the phase space of some particular orbits not to depend on the parameter. After these
changes, a new parameter is going to be defined, plus some scalings in the (z,y)-variables,
which coincide in all cases and depend on the new parameter. The results in Table
summarize the suitable scalings and reparametrisations.

Concerning the second 4-periodic orbit near p; (see Remark [2)), it corresponds to the
2-periodic orbit of the orientation-reversing Hénon map HR.. Such 4-periodic orbit can be
found on the symmetry lines of M, {y = 22} — {y =0} = {y = 2z — 1} — {y = 0}. Its
position depends on the value of the parameter, but its distance to the 4-periodic orbit of
py scales as 1/k in distance measured on the symmetry lines.

With these results, up to terms of the order of 1/k? for both integer and semi-integer
values of the parameter, the scalings predicted by Chirikov and Izraelev in [28] and [26] are
fully justified. Moreover, since the bifurcations of fixed points of conservative Hénon maps
are well known, this allows to identify, up to some controlled error, the bifurcations of the
orbits of p}’z, po and py.

This ends the proof of Proposition [I1
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‘ Map ‘ Sym. line ‘ Hénon map ‘ New parameter ‘ Scaling ‘

Ly y=20 HP, c=mv2k V27 /e
L, Yy =2x HP. ¢ =4+ 2k'7? \/§7T/c
Ly | y=2z (HR.)? | c=+1+2k72| 27%/c

Table 2.2: Hénon maps to which L;, L, and L, are conjugated. The new parameter and
scalings in x and y are given in the last two columns.

Bounds for the remainders of the limit maps in proposition [J

The proof of this result follows from considering suitable Taylor expansions in x, y and k of
M, around the orbits and values of the parameter in Table 21 labelled with *, using suitable
scalings for k near an integer (or half-integer) value n. Concretely, in the case of p} for period
v = 1 in Table ZT] we introduce new variables X, Y defined by z = 1/4+ X/n,y = Y/n and
a new parameter k' by k = n + k’/n. Expanding (L.I3]) we obtain a limit map L; (Z7)) plus
a remainder R. In (2.7) we use again z,y instead of X,Y to denote the phase variables,
while we keep the name of the new scaled parameter as k' to stress out that it measures the
scaled distance to the nearest integer.

Taking into account that the confined points under (27) are contained in a compact set,
the remainder R has a bound of the form |R| < B/n?, where B depends on k’. This follows
immediately from the Taylor expansions and from the alternating character of the series.

For a given value of £ we have estimated, numerically, the set of non-escaping points
under L using a fine grid. Given n € N we compute k = n + k'/n, as said before. For
each one of these points, the image under M, (using the above mentioned scalings) has been
computed and compared to the one given by L;. The value R is taken as a measure of the
error and when multiplied by n?, it gives a bound for B. It is checked that this bound is
essentially independent of the value of n.

For values of k' such that the corresponding value of ¢ (see Table 2.2)) belongs to [0, 1]
(i.e., up to the value of ¢ for which the 1:4 resonance appears) one can take B = 0.004; for
¢ € [1,1.5] (i.e., up to the 1:3 resonance) one can take B = 0.02, and up to ¢ = 2 (period
doubling) one can take B = 0.05 (except, perhaps, at some tiny islands far away from the
main confined domain). Higher bounds of B (up to 0.085) have to be taken at the end of
the period doubling cascade. But this is quite irrelevant due to the tiny size of the islands.

The case of p? is identical to pi via a rotation of angle m around the point (1/2,0). For
the case py of period v = 2 one can introduce new variables X;,Y; around (1/4,1/2) by
r=1/44+X1/n,y=1/24Y1/n and X,, Y, around (3/4,1/2) by x=3/4—X5/n,y=1/2-Y,/n.
As before, we introduce k' by k = n-+k /n. Then the image of (X1, Y;) under M, is expressed
in the (X, Y3) variables as given by (2.8) plus a remainder R and the same happens for the
image of (X3, Y2) expressed in the (X7, Y]) variables. In (2.8)) we also rename the phase space
variables as x,y. The bounds of the remainder are identical to the ones in the v =1 case.

For v = 4 let us denote as py),j = 1,2,3,4, the points which appear in Table 2.1 in
the order given there. It turns out that the passage from a vicinity of pfll) to a vicinity of
pf) under M? is described by the map given in (Z8) plus a remainder R. The value of |R]|
is bounded, similar to the above cases, by B/(n)?, where n’ is the closest element to & in
Z+1/2. We assume n’ > 3/2. The same expression is found for the passage from a vicinity

of ¥ to a vicinity of p{") under M2.



60 CHAPTER 2. FROM THE HENON MAP TO THE CHIRIKOV STANDARD MAP

To this end we introduce new variables (X1,Y7), (X5, Y3), (X3,Y3) around pfll), pf), pf’),
respectively, by « = 1/4 + X /n'y = 1/2+ Y1 /n/, then x = 1/4 + Xy /n/, y = Y, /n’ and,
finally, * = —1/4 — X3/n/, y = 1/2 — Y3/n’. We also introduce a new parameter k' given
by k = n' + k' /n’. The passage from (X1,Y7) to (X3,Y3) is the one given in (2.8), again
using (z,y) for the variables, plus the remainder R. In the range of interest of &', from
the elliptic-hyperbolic bifurcation at —1/(27?) till the end of the period-doubling cascade at
~ 0.00778 one can take the bound B < 0.0251.

Remark 3. Karney et al. in [69] used the fact that the fized point py® was in its EH-
bifurcation to derive an approrimate mapping to describe its dynamics, which they truncated
at order 2. In this paper the authors also give the relation of such a map with HP,., and give
the scalings for Ly as in Table[2.2, but there is no justification for the suppression of higher
order terms in the limit k — oo.

Remark 4. The same procedure applies exactly for Zaslavsky’s web map [150] whose most
studied version is the so-called four-fold web map, which has the form

W’*‘(Z)H (Z): (—x—kiin(%ry))' (29)

Here again, we consider (2.9) in the torus T?. For values of k near an integer there are two
fized points at (1/4,1/4) and (3/4,3/4) and a 2-periodic orbit (1/4,3/4) <> (3/4,1/4), and
for k near a half-integer, there is a 4-periodic orbit (1/4,1/4) — (1/4,3/4) — (3/4,3/4) —
(3/4,1/4). Again, the dynamics around these orbits near integer and half-integer values
of k is a quadratic area-preserving Hénon map, which can be easily found with the aid of
the symmetries of this map, y = x and y = —x and using exactly the same scalings as in
Proposition 1.

Remark 5. As seen in item [2 in the enumeration of page [23, far from the separatriz, by
setting y = yo + S, Yo > 1 in the separatriz map model

| x T\ ([ xz+a+blog|yl
SM,, ( ' ) - ( ' ) _ ( ey, (2.10)
the standard map (L13) is recovered, depending on k = b/|yo|, with an error O(yy?) (see
[135]). The 2-periodic and 4-periodic stable islands of this section appear in the phase space
of SM,y for b large enough (then the SM,y is a good model of a close to integrable area-

preserving map F, provided b/y is small enough), see [1306]. In particular the j4-periodic
islet was shown to be born at a degenerate saddle-centre bifurcation, see Fig. [210.

We also would like to note that in [122], both accelerator modes and ballistic modes are
studied for the standard map and for the models in (Z9) and (ZI0) related to the fixed and
period-2 points.

2.5.2 Comparing numerical results

Proposition [ tells us that the limit maps around p%’z, po and p4 are Hénon maps (or com-
positions of Hénon maps) except for a controllable error. With the aid of the data in Table
we can recover the plots of the scaled regular area for the standard map as a function of
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Figure 2.15: Evolution of the relative confined area of: Top: Left: HP,, Right: HR.. Bottom:
Left: Ly, Ly. The resulting actual area in the phase space of M, is the addition of these two.
Right: L,. These last two figures are obtained from the evolution of the non-escaping points
of the area preserving Hénon maps plus the scalings in Table Compare the bottom plots
with Fig. 2.141

the scaled parameter from the numerical study we did for the Hénon maps in Sections
and This is the contents of Figure 2.15l

From the expression of the limit maps L; (271) and Ly (Z8)) one can easily see that the
relative regular area around the elliptic fixed point is the same, but shifted in the parameter.
We have plotted the corresponding scaled relative regular area for both limit maps in Figure
215, bottom left. Note further that to recover the actual relative regular area (non-scaled)
as in Figure one has also to take into account that near integer values of the parameter
there are two fixed points p! and p? and that p, is 2-periodic. Near half-integer values of the
parameter there are two 4-periodic islands.

2.6 Dynamics of islets in lifts to the cylinder

We finish this chapter by considering the dynamics of the orbits of p}’z, po and py, once we
lift M, to the cylinder S' x R, M. Consider the data in Tab. 21l If we iterate the positions
of p%’z and py under M,,, n € Z, we get

pi o+ (1/4,0) = (1/4n) = (1/4,2n) =
pr o (1/4,1/2) o (3/4,1/2+n) — (1/4,1/2).

And if we iterate p, under M, /2, n € Z, we get

pe: (1/4,1)2) = (1/4n+1) — (3/42n+1+1/2) —
— (3/4,n+1) — (1/4,1/2).
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There are 2 types of behaviours. According to the notation of [122], p, and p, are ballistic
orbits, since despite travelling along the cylinder in the course of iteration, they return back
to their initial position, and hence are bounded; while p%’z are accelerator modes, recall
Def. 8 Note that these are precisely those we found in Sect. the orbits of (1/4,n) and
(3/4,n), n € Z are not bounded under the iteration of M. In fact, since when we consider
the dynamics on the torus, a local parameter k&’ = k — n unfolds a saddle-center bifurcation,
they hence show some bounded area surrounding them (and by this we mean both the main
island and any satellites surrounding it). When lifted to the cylinder all points inside this
area also behave in the same way: the momenta of any of them become unbounded by
growing or decreasing linearly in the number of iterates.

What is also remarkable, is that this also happens for orbits not confined by (non-
rotational) invariant curves. Orbits that get stuck around this structure also jump with the
whole island. This suggests to detect orbits that got stuck around these islands by keeping
track on the values of their momenta, y, after a long number of iterates.

As we commented in Sect. [LT.5 in a phase space without any regular component, an
ensemble of initial conditions (initially distributed in any way) in the chaotic zone and not
confined in islands would tend to be Gaussian as we iterate, but the stickiness effect (if any)
may destroy this behaviour.

Note that, since ps and p4 are ballistic, orbits stuck around the islands of stability sur-
rounding them would behave also as if they were ballistic for some number of iterates. So,
unlike the orbits stuck around p}’2 that would jump in the y direction, being stuck around
either py or py prevents to do so. Hence, we expect super-diffusive effects when dealing with
pi’Q and sub-diffusive effects due to p, and p4, recall Subsect. [[LT.5

As is visible in Fig. 215, bottom left, the islands of stability around p;* and p, have
positive measure in a compact neighbourhood of k = n. For small positive values of k — n,
the islands of py are already in the period doubling cascade, and in case the islands of p}’z
affect the diffusive properties, this last effect is the dominant one.

As a final remark, we want to stress that this setting is ideal in the following sense: we
have a seemingly fully chaotic phase space only affected by a single regular zone (there are
actually two islands that evolve simultaneously and, according to the zero-flux condition,
the area they occupy has to be identical). In this situation, if we want to study the effect of
these islands, we only have to take initial conditions making sure that they lie in the chaotic
zone outside a neighbourhood of the island. Choosing them close to the island may give
rise to spurious data because the time spent inside strongly depends on the initial position.
So if we take them outside the islands, all the initial conditions will be equally statistically
relevant.

We will deal with this problem in Chap. Bl Namely, it will be devoted to a clarification
of the effect of the islands in the statistical properties of the Chirikov map, for values of the
parameters where the islands surrounding pi’Q play a key role.



Chapter 3

Effect of islands in the diffusive
properties of the standard map, for
large parameter values

In this chapter we review, based on massive, long term, numerical simulations, the effect of
islands on the statistical properties of the standard map for large parameter values. Different
sources of discrepancy with respect to typical diffusion are identified. We relate them to the
geometrical dynamical structures. The individual roles of them are compared and explained
in terms of available limit models.

The content of this chapter is already published in [106].

3.1 Introduction

One of the main goals of Dynamical Systems is the description, explanation and prediction
of the properties of the orbits of a given system. In some cases the individual orbits behave
in a seemingly random way, with different properties in different domains of the phase space.

This occurs already in simple models, like area preserving maps. One of the typical
models which displays many of the general properties of this class of maps is the Chirikov
standard map [26]. For large enough values of the parameter the behavior of the orbits seems
like a diffusive process. But this is far from being true for some ranges of the parameter,
as noticed by many authors in the past. See, for instance [26] 118 69, [68] and [149] and
references therein.

The purpose of the present chapter is to present the results of massive simulations for
large sets of values of the parameter and to explain the different phenomena that lead to
the destruction of the diffusive character. This is done using quantitative and qualitative
approaches. The results are compared to some limit theoretical models which deal with
several of the involved phenomena.

In Section B.3] we consider simple approaches to the diffusive properties of the standard
map: the quasi-linear approximation and the Fourier methods to take into account the
correlation effects. These methods are useful for many of the values of the parameter when
it is large enough.

Section 3.4 is devoted to methods and results obtained from massive simulations. After
looking at the problem for a large set of values of the parameter, we consider narrower and
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narrower ranges to focus on the main difficulties. A scaling effect shows up and, hence,
details on the dynamics in a narrow parameter domain allow us to understand the behavior
at all the other places where the standard diffusion is no longer valid.

Quantitative and qualitative explanations of the numerical results, as well as a compar-
ison with limit renormalisation schemes are the contents of Section 3.5 The main result
concerns the behaviour of the standard deviation of the iterates of points, initially in a given
ensemble in the chaotic domain, as a function of the number of iterates 7'. While for a
typical diffusive process it behaves as the square root of 7', for some intervals, in the do-
main of large parameter values, it behaves as a larger power of T, whose exponents range,
approximately, between 0.7 and 1.

A description of what the orbits do, which explains the main features of the plots which
summarize the numerical results, is presented at the end of Section B.5.71

The contribution of this chapter has to be seen as an attempt to find quantitative ex-
planations to the results of a large number of simulations, so that one could find the main
theoretical reasons which allow to predict, accurately, which should be the observed be-
haviour of the diffusive properties of the standard map for some special ranges, near integer
values, when the parameter is large.

3.2 On the destruction of rotational invariant curves

Before starting to deal with diffusive phenomena of M, it is important to do some remarks
on how invariant curves are destroyed, since once destroyed, in the form of Cantori, they are
one of the objects that play a key role in diffusion, since they can slow this process down
due to the small size of their gaps. To do so, we are going to use as example, the island of
stability around the accelerator mode that is born at (1/4,0) for k = 1.

In Figures B.1] and 3.2l we show how the distribution of invariant curves around islands
evolves as the parameter changes. We have estimated the values of the pairs (z,k) of z
at the right hand side of the hyperbolic periodic point and of parameter k& for which there
are invariant curves. For the 1/4 hyperbolic periodic point in Figure Bl (see Figure
right for a sketch of the phase space near these parameter values) and for the 3/13 and 2/9
hyperbolic periodic points in Figure .2l In the last case the points are taken to the left of
the corresponding periodic hyperbolic point.

We have proceeded as follows: for a fixed value of k, we consider a grid of points with
spacing 107% on the y = 0 line. For each of these points, we have computed an approximation
of the Lyapunov exponent. If considered zero, it was a candidate to invariant curve so its
rotation number was approximated via the method explained in the appendix of [123]. If it
could be considered irrational, we plotted this pair (x, k).

In these figures we observe black bands emanating from the horizontal axis. The white
strips in these bands correspond to islands which are perfectly identifiable. In the black
bands, one can see “tongues” which, when zooming, reach the z axis: they correspond to
instability zones produced by the splitting of the separatrices of hyperbolic periodic points.

For k = 1.051, at the bottom of Figure B.I] one can observe relatively large gaps in the
Cantor structure of invariant curves. They correspond to the existence of islands. The
rightmost gap, for x € [0.314050,0.314312], corresponds to a rotation number p = 10/41,
while the leftmost one, for z € [0.309577,0.309634], corresponds to p = 30/121. The rotation
numbers of the islands in the largest gaps are of the form 25/(8j 4+ 1),j = 5,...,15. Due to
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Figure 3.1: Initial conditions in the (x, k) plane taken on y = 0 for which there exist rotational
invariant curves surrounding the accelerator mode island. The right plot is a magnification
of the box in the left plot. Computations for values of the parameter after the 1 /4 resonance.
The parameter k in the right plot is related to k by k =k —1.051225.

the symmetry properties of My, islands with p of the form p/q with p even appear to the
right of the fixed point, while if p is odd they appear to the left.

Furthermore, to the right of the displayed domain for £ = 1.051 an island with p = 8/33
appears for x € [0.315087,0.315453] and one to the left, with p = 32/129, is found for
x € [0.309386, 0.309443].

It is also easy to identify some periodic hyperbolic points, which are born close to
the destruction of nearby invariant curves. For instance, for the approximate values x =
0.309508, 0.313708 and 0.314701 periodic orbits with p = 31/125, 11/45 and 9/37, respec-
tively, are found.

For each elliptic periodic point, one can see that there are 2 invariant curves, one to the
right and one to the left, surrounding a chain of islands. They both have similar rotation
number, but their destruction is not simultaneous. In particular, the continued fraction ex-
pansion of the rotation numbers of the two highest tips which are shown in the magnification
of Figure 3] are

[4,14,1,1,1,1,1,.. ] and [4,13,1,1,1,1,1,.. ],

for the tips located near x = 0.3125 and x = 0.3129 respectively.

Finally, we note the quadratic shape of the envelope of the purple points in the Figures 3.1
and This can be explained as follows. To study the dynamics in the chaotic zone between
the 1/4-periodic island surrounding the accelerator mode island and the last invariant curve
(if exists) one can use a separatrix map model, see [26] [I135]. At some (fixed) distance yq
from the separatrices bounding the 1/4 islands, the separatrix map can be approximated by
a standard map Mj with k ~ 1/|ye|. This explains why the boundary of the black points
in Figures B.1] and resembles the critical function of the standard map M. We recall
that the critical function (also referred as fractal diagram) relates the frequency w with the
value of k = k(w) for which the invariant curve with frequency w breaks down. In our plots
we represent z instead of w as the z-coordinate, but there is a one-to-one correspondence
guaranteed by the non-vanishing twist property. As we will see in Chap. 4], the breakdown
of invariant curves can be investigated using a renormalisation scheme approach, see [89).
The renormalisation scheme implies that the locally most robust invariant curves correspond
to noble rotation numbers. Hence the maxima observed in the figures are related to noble
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Figure 3.2: Initial conditions in the (x, k) plane taken on y = 0 for which there exist a
rotational invariant curve with respect to the accelerator mode. Computations for values of
the parameter after the: Left: 2/9 resonance. Right: 3/13 resonance.

numbers, as was noticed above for the two highest tips. Moreover, for the golden rotation
number g the corresponding renormalisation operator implies that the distance Aw to the
nearby noble numbers scales as

Ak ~ —|Aw|",

where 1 = |log(d)/(2log(g))| =~ 0.5063, see [89]. Here o refers to the inverse of the conver-
gence ratio of the renormalisation scheme, see (3.6 in Sect. B5.7 See Sect. See also
related comments in [90]. Moreover, a similar behaviour is expected for any noble number.
This implies that each of the tips shown is expected to have (locally) a quadratic shape
again. We remark that the renormalisation process gives local information around the most
robust noble in a given interval. Nevertheless, in the figures one observes that the quadratic
shape has a more global character (although the considered range of x is relatively small).

3.3 Elementary approaches to the diffusion properties

We start here with simple approaches to the diffusion properties of the standard map M,
the lift to the cylinder S' x R of (ILI3) for large k. In fact these approaches provide a good
idea of the diffusion for most of the values of the parameters if they are sufficiently large.
Then we shall compare with a better measure of the properties of the dynamics. Concrete
details and explanations will be given in the next sections.

We consider here the diffusion in the y variable for M. The main conclusion will be that
there are ranges of the parameter where the behaviour is not of diffusive type, even starting
in the chaotic domain. But the width of these ranges tends to zero as k — oo.

3.3.1 The quasi-linear approximation

For large k the statistical description of the dynamics in the chaotic zone, assuming that the
measure of the regular zone is negligible in front of the one of the chaotic zone, can be done
via the simplest (homogeneous) diffusion equation [27]

or _ O°f

1
% ~ 3 ( )8—3;2’ (3.1)
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where f = f(y,t) is the density of points, ¢t denotes the number of iterations and y is the
momentum. The transition density of a Brownian motion starting at 0 with variance o? = 1
satisfies the previous heat equation, that is, the infinitesimal generator of the underlying
Feller process is %%. Note that this approach assumes that the effect of the angles x
averages properly, and then the diffusion equation describes the dynamics in the y direction.
An improvement to take into account the influence of x will be given in Section [3.3.4]

Let us denote as (x;,y;) = Mg(xo,yo) the values of the successive iterates of a point
(z0,y0) € S' x R'. Let Aly = y; — yo be the difference in actions after j iterates. The

average diffusion rate for My, D(k), can be evaluated as the limit

((Amy)?)
D(k) = nh_)rglo — (3.2)
where () stands for the ensemble average. It is worth stressing that the value of D(k)
strongly depends on k, and that for each value of k, it is a constant in (3.I)). Note that in
this definition the mean ((A™y)) is assumed to be zero, so it is not included in (3.2]). Despite
this fact holds true in our setting, when we compute D(k) or some variant of it, to obtain
the variance we include that missing term: o2 = ((A"y)2) — ((A"y))?.

Under the assumption that we can average out the effect of the angles in My, and no
accelerator modes show up in the phase space, the mean value of D(k) after one single
iteration is

]{72
Dah) = [ (=) ds = [ (ksin(zm))?ds = . (33

which is usually referred to as the quasi-linear value. If we normalize (3.3)), to skip the effect
of k, one should obtain the normalized value D, n = 1/2, where the subscript N refers to
this value as being normalized.

3.3.2 Selecting initial points

An important point, for this section and for the rest of similar massive numerical simulations
in this thesis, is the selection of initial points to be iterated under M}, to measure the
diffusion properties. We want to make sure that these points are taken on the “chaotic sea”,
i.e., outside any island. To this end we have used the following method to select initial
points:

a) Compute an approximation of the unstable manifold Wy, of some periodic hyperbolic
orbit of period p. This can be done in an efficient way via the parametrisation method
(see [126]) at some high order (typically between 20 and 50). Except in the case p =1
(i.e., for the hyperbolic fixed point) one has to compute first the Taylor expansion of
MY around the chosen point.

b) Let z be a parameter of the manifold and g(z) the corresponding point in Wy! . The
invariance condition reads M} (¢g(z)) = g(Az), where A is the dominant eigenvalue at
the chosen point and z has been normalized so that the linear term in g(z) has modulus
1. Select a fundamental domain in U = [/, 2o| in which the invariance condition is
satisfied with a prescribed tolerance (typically 1072°).

c) Choose points in U, e.g. with uniform step in log scale, and iterate them ng times
under M as a transient. These will be the selected initial points.
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3.3.3 Results and interpretation

An idea on the goodness of the quasi-linear approximation Dy y(k) can be obtained by
computing the first term ((Aly)?) in the limit (3.2) via the method just described. We have
used p = 1 in subsection a), N = 250,000 points in U and have done T = 10° iterates.
Note that, since we recorded Aly and (Aly)? at each iterate, assuming uncorrelation, it is
equivalent to take just one initial point and iterating it 7' = 2.5 x 10! times.

We have considered the values of the parameter & = 0.72(0.001)6.1, for which the phase
space is filled with what seems to be a chaotic sea, except for the islands appearing near
integer and half-integer values of the parameter studied in Section 2.4l After skipping the
effect of k, the obtained approximation Dy, (k) of Dy (k) differs from 1/2 by less than
2 x 1075 for most values of k.

However, there are parameters for which the computed value Dy, (k) differs in a signif-
icant way from 1/2 and it is below the expected value. The parameters k for which this
occurs are seen to coincide with the ones for which islands are detected for My, as described
in Section

In Figure B3 we display the values of 1/2 — Dy, (k) as a function of k in the range
mentioned above. Compare the left plot with Figure 2213] in Section 2241l Further details
can be seen on the right plot, with & € [1.87,2.13]. No differences have been observed if
we replace the unstable manifold of the fixed point by unstable manifolds of other periodic
hyperbolic orbits to select the initial conditions.

0.001 +
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0 h Mw l | M N 0
1 2 3 4 5 6 1.9 2 2.1
k k

Figure 3.3: Values of ADy = 1/2 — Dy ,(k), where Dy (k) is the numerically estimated
average one step diffusion rate, as a function of k. Left: results for k € [0.72,6.1]. Right: a
magnification for k € [1.87,2.13].

There is an easy interpretation to the results. The places where some islands are located,
according to Section [24] are close to = 1/4 and x = 3/4. The iterates of points in the
chaotic zone can not enter into them. Hence, as in these domains the value of (Ay)? is,
approximately, equal to k2 and close to maximal, the contribution to the average is missing.
This produces a decrease in the value of Dql,n(k) roughly proportional to the size of the
island.

Note that this first term in the limit (3.2)) is significantly different form all other terms.
When one considers more than one single iterate, the value of ((A"y)?) can not be easily
averaged since functions like ksin(27(x + y + ksin(2n(z + ---)))) appear. This kind of
expressions are typically expanded in k£ by sums of Bessel functions as will be done in the
next Section, producing larger oscillations, as noted in [27].
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3.3.4 A first improvement

A first improvement with respect to the quasi-linear approximation consists in taking into
account the effects of the correlations between successive iterates. A nice description can be
found in [75] and references therein. These effects can be studied using Fourier techniques.
A simple correction factor, adapted to the notation and normalisations we use in this work,
follows from formula (5.5.21) in [75] and the comments that follow after that formula. See
also [102] and [144].

Hence, we should expect a corrected value for the normalized average diffusion rate given
by

D..(k) = % [1— L2rk) + (J2(27k))?] (3.4)

where D, stand for “correlation corrected” and .J, denotes the second Bessel function. The
values of D,.(k) —1/2 tend to 0 as k~'/2 when k — oo with sinusoidal oscillations around 0.
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Figure 3.4: For a range of values of k, as horizontal variable, and using a large step in k, we
show the values of the estimated diffusive properties of M, after 10%,10* and 10° iterates
(in red, green and blue, respectively), for a sample of 10° initial conditions. The magenta
curve shows the values of D.(k) as given by ([34). Here D simply denotes the values for the
different number of iterates including the normalization mentioned at the end of subsection

B.3.11

In Section B4 we provide a method to estimate the true diffusive properties of M;,.
We shall see that the results depend on the number of iterates, T, after the transient.
Explanations for these results will be provided in Section For the moment being we
display, in Figure 3.4 the comparison between the results using a sample of 10° initial
conditions and values of T" equal to 103,10 and 10° (in red, green and blue, respectively)
and the ones using (B.4]) (in magenta). Even taking into account that we have used the
values of k = 0.8(0.1)10.1, one can observe big differences, mainly near 1 and 2, depending
on the value of T'. In fact, these differences appear shortly after every integer value of &
in domains which become narrower as 1/k when k increases. Outside these domains, to be
discussed in next section, the approximation provided by (8.4]) is quite good. The two peaks
seen in Figure B4 are just a preliminary indication of the richness that in subsection
will be shown to exist. This is one of the main motivations of this work.



70 CHAPTER 3. EFFECT OF ISLANDS IN THE STANDARD MAP

3.4 Numerical evidences on the real diffusion proper-
ties

To have a correct estimate of the diffusive properties of M, we should take into account how
the “diffusion” depends on time, that is, on the number of iterates 7" and check that it is
essentially independent on the size of the sample N, i.e. the number of initial points which
are iterated under the map.

It is well-known that in a diffusive process, with constant diffusion coefficient, a sample
of N points starting at a given value of y (or nearby values) after T iterates has a standard
deviation or which behaves as vT. Hence, when dividing o by VT it should tend to a
constant, the diffusion coefficient, when 7" increases and, to minimize the effect of N, when
the size of the sample also increases.

Consider a given initial value of y, say yo after the transient and reducing it to T2, that
is 0 < yp < 1 (or, equivalently, —1/2 < yo < 1/2). Let yp the value after T iterates, without
any further reduction to T2, that is, using M. The standard deviation can be measured for
the jump in y: ATy = yr — 0.

0.5
Yy 0.04
Y
0 ot
N
-0.04 |
-0.5 k& o L . ’ L I
0 5 . 0.26 0.3 0.34
T T

Figure 3.5: For k = 1.05123 the left plot shows an orbit of an initial point in the chaotic
zone, reducing y to the range [—1/2,1/2). Two domains, around fixed points of My, are seen
to be non accessible. The right plot shows details on the dynamics around the fixed points
on the “left” island.

A typical orbit of a point in the chaotic zone is shown, reducing it to T?, in Figure
left. We see that it avoids a couple of islands located, approximately, around (0.3,0) and
(0.8,0), where there are fixed points of M. The value used for the figure is k = 1.05123
and reasons for that choice of k£ will be given later. Compare also with the results shown
in Figure B.Il The right plot in Figure shows a detail on the dynamics near the left
fixed point. As points near the fixed point jump up by an amount close to one unit under
iteration by My, we call it “the positive island”. In a similar way, the island on the right
side of Figure left will be denoted “the negative island”. Accordingly, the fixed points
inside these islands will be denoted as E, and E_, respectively. Around the fixed point one
can see several KAM curves, then a hyperbolic periodic orbit of period 4, the related islands
of period 4 and, as given by the evidence in Figure 3.1l there are still invariant curves around
these period-4 islands.

According to Figure B.1] right, these curves persist until a value of k = k.14 located in
the range (1.05123,1.05124). Hence, the iterates of initial points in the chaotic domain can
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not enter inside the islands, because of the existence of these invariant curves.

The reason why we have selected values of k near the destruction of the invariant curves
around the period-4 islands, as it can be seen in the details shown in Figure 3.9, relies on the
measure of the confined chaotic domains for the Hénon map, see Figure 2.4lright. For period
4 it turns out that this measure is one of the largest ones. See more details in Figure 2.5
However, a detailed inspection of the diffusive properties shortly after the destruction of the
last invariant curve around islands with other rotation numbers (like 1/5, 1/6, 1/7,...,2/9,
2/11, ...,3/13,...) shows the same properties that will be described for rotation number 1/4.
But to go deeply into some of the details of the phenomena for these rotation numbers the
number of iterations has to be increased.

The results of the computations of o7/ VT show a strong dependence in T when period-1
islands exist, independently of the size of NV if this one is large enough to provide a good
estimate of op. The methods used (some of them to be used also in Section [3.5.2]) and which
kind of data are recorded, are presented in Section [3.4.1], with results shown in Section 3.4.2

3.4.1 Methods

As mentioned in Section we have used initial data in T? after a transient of ng = 10°
starting in a fundamental domain of the unstable manifold W}',. Most of the results have
been checked using also starting points in Wy',, having an excellent agreement.

After the transient every initial point is iterated 7' times. The current values of yp for
different values of T' (typically for powers of 2) are stored. At the end of the computation,
for each selected value of k and each value of T', one has the standard deviation of a sample
of N initial points, which is scaled by the current value of v/T' and also by k to obtain
a normalized value, as described in Section B3Il Concretely, if a value or(k) has been
obtained as standard deviation, we record the value

o = or(k)/(W2T),  ot(k) = ((ATy)?*) - ((ATy))" (3.5)

The additional v/2 has been introduced to allow for comparisons with the normalized quasi-
linear value Dy .

It has been checked that the iterates of initial points can remain close to the islands for
many iterations. Suitable explanations are given in Section 3.5l

One of the quantitative questions to decide is how to give a concrete meaning to the
sentence “to remain close to the islands”. This has been used for the computations whose
results are shown in Figure[3.9 i.e., for a very narrow range of values of k. Looking at Figure
right we decide to consider as “close to the islands” points which pass at a distance less
than some amount 7, (fixed as 0.0775 for the data shown in Figure B.9) from either E, or
E_. But it is clear that there are points in the chaotic zone that enter this domain. Hence,
to consider that the orbit of a point passes close to, say, the positive island, we require to be
at a distance less than r, from E for, at least n;, consecutive iterates. As suitable value for
ny we have taken 27. The set of points where these two conditions are satisfied (proximity
and permanence) will be denoted as “the vicinity of the island” and represented as Wg,
or Wg_. We will say that the iterates of an initial points are temporarily captured by the
island if they spend at least 27 consecutive iterates either in Wg, or in Wg_.

This will allow us to have average estimates on the “trips” of the different initial points,
that is, how many iterates they spend in the chaotic domain, how many close to the positive
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or negative islands, the probability to pass from the chaotic domain to Wg, UWg_ and the
mean time spent in these vicinities. All these data will be useful to understand the global
dynamics, as described in Section

Note that after the transient of 10? iterates it can happen that some point is already in
We, or in Wg_. This really does happen but the fraction of points in each one of these
vicinities is below 1.5%.

3.4.2 Results

FigureB.6lshows the results for o7, for T=2'% a sample size N =250, 000 and k& = 0.8(0.001)
10.1. Beyond the oscillations around 0.5, already observed in Figure [3.4] sufficiently well
modeled by the values in (3.4]), we see some wild behavior with several large peaks shortly
after integer values of k. The size of the peaks and also the width of the ranges where this
occurs behave, approximately, like 1/k. A similar type of results can be found in [144].

1 3 5 7 9

k

Figure 3.6: For k£ = 0.8(0.001)10.1 as horizontal variable, we represent the values of the
estimates of op, as vertical variable. See the text for the values of 7" and N.

Note that these ranges correspond to part of the intervals in £ where M), has fixed points
(in T?), but not to the ranges where period-2, period-4 and several other periodic islands
are found, recall Sect. 2.6l The reason for this different behavior is elementary and will be
given in Sect.

In Figure[3.7we show a detailed view of the previous result shortly after k = 1 and k = 4.
Similar results have been obtained for many other ranges of k following integer values. The
corresponding values have been obtained using N = 10% and for 7" = 2/, = 16, 18,20 are
displayed in different colors. The values of o7, increase with T'.

Both parts of Figure B.7] are quite similar, except by the different scaling in both the
horizontal and vertical variables and minor details. The peaks are almost gone for k near
1.06 in the left plot and for k& near 4.015 in the right one. For these values the elliptic fixed
points of My have rotation number close to 1/3. According to the study of the standard
map islands, and based on the properties of the Hénon map presented in Section 2.2], the
islands around E, have a negligible size.
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Figure 3.7: Details on the behavior of o7 near k = 1 (left) and k = 4 (right) for three
increasing values of T'. The concrete ranges of k are 1(0.0001)1.24 and 4(0.00003)4.06. See
the text for the values of N and the different values of 1" used in the computations.

In Figure B.8 we restrict our attention to the k intervals [1,1.06] and [4,4.015]. As
expected, both plots are quite similar. The values of N and the steps in k are the same as
before, but the values used for T are now 27,5 = 18,20,22. Comparing with the parts of
Figure [3.7] corresponding to the same intervals, we realize that the peaks have, roughly, the
double value when T increases by a factor 4.
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Figure 3.8: Further details on o7y in narrower ranges near k = 1 (left) and k£ = 4 (right).
The values used for T' have been increased by a factor 4 with respect to Figure B.71

Each one of the peaks seen in Figure occurs shortly after the breakdown of all the
outermost invariant curves surrounding the islands around E, and E_ with a given rotation
number, p, which occurs for a critical value to be denoted as k.,. Approximate values of
the location of the peaks in that figure and the corresponding rotation numbers are given in
Table 311

107(k—1) [ 514 | 465 | 419 | 392 [ 208 [ 260 | 198 | 146 | 115 | 94| 80 | 69 | 61
P 1/4 [3/13] 2/9 |3/14| 1/5 [2/11| 1/6 | 1/7 | 1/8 |1/9|1/10]1/11[1/12

Table 3.1: A sample of the values of k for which large peaks appear in Figure 3.8l For each value
of k we give the rotation number of the islands such that the outermost invariant curve surrounding
them has been destroyed for a nearby, smaller, value of k, that we rename as k. ,.

From now on we concentrate on the vicinity of the largest peak in Figure using a
large number of iterates. That is, for k around k. /4. A similar behavior has been observed
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for other major peaks. It is apparent that the peak that we consider is the largest one for
all £ > 1.

100 T T T T 500

80 400 -

60 - 300 |
40 + 200 |

20 | 100

8051 1.6512 1.6514 1.6516 1.0‘518 1.052 190512 1.05125 1.0‘513 1.05‘_)135 1.6514 1.05145 1.0515
k k

Figure 3.9: A sample of results near the largest peak in Figure B.§ for large values of T". In

the left plot the values of T go up to 2% and in the right one they reach 23°. See the text

for additional details.

In Figure the results in narrow domains around k£ = 1.0514 are shown. In the
left plot the number of initial points is N = 10° while the values of o7, are shown for
T = 27,5 = 20(1)25. We have used k£ = 1.051(107°)1.052. In the right plot one has used
N = 10° and the values of T'= 27, j = 25(1)30. The step in k is the same as in the left plot,
but the range is reduced to [1.0512,1.0515].

The upper curve in the left plot, which reaches a value slightly larger than 92, can be
identified with the lower one that can be seen in the right plot. The upper one in the right
plot reaches a value slightly larger than 483. The ratio of these values is 5.25, a little bit
below the square root of the ratio of the number of iterates (7' = 23° on the right, T = 2%
on the left).

We can summarize the observed results near a peak of o, related to the breakdown of
the invariant curves around an island of rotation number p as follows. Recall that o) =
or(k)/(kvV2T) so we already scaled it by v/T. Hence, in a diffusive setting one expects o7
to behave as constant times the periodic corrections in (B.4]). But

1. The maximal value of o7, for a given T', occurs for values of k = k(T'), where k(T') is
a decreasing function which tends to k., as T" — oo.

2. The values of o7 1) tend to scale as VT. That is, the non-scaled standard deviation
or(k), see ([B.3]), reaches a linear dependence in T', at least selecting the values of k
in a way which depends on 7. This implies that the dynamics in y is not Gaussian
and the diffusion coefficient diverges. Otherwise, o would have finite limit. This is
related to the fact that the escape time distribution from the stickiness region around
the accelerator modes has infinite variance, see related comments in Section At
the end of Section we return to this key point, and in Section B.5.7 we will give
a theoretical justification of it.

Note also that for large T" the effect of little islands starts to be visible, see Figure [3.9]

To check the role of the arithmetics on the computations we have reproduced, using
quadruple precision, the results in a sub-interval of Figure left. Concretely, we have
taken a reduced set of values of the parameter k = 1.0512(2 x 107°)1.0516, a number of
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Figure 3.10: Comparison of the results for 7' = 2™ m = 20(1)25 and a reduced set of values
of k using double precision (in red, part of Figure B9 with a sample of 10° points) and
quadruple precision (in blue, with a sample of 2 x 10° points).

iterations of the form 7" = 2™, m = 20(1)25 and a smaller size of the sample, N = 2 x 10°.
The results, displayed in Figure [3.10, show a good agreement with the ones that have been
produced with double precision.

3.5 Qualitative and quantitative approaches to the in-
terpretation of the numerical results

In this section we first comment on the role that different invariant objects have on the
statistical properties. Then we provide additional numerical information, mainly extracted
from the computations leading to Figure To compare with this information we include
a study of the breakdown of the last rotational invariant curve (the one with golden rotation
number) at the Greene’s critical value of the parameter. After a presentation of some the-
oretical limit renormalisation results, we are in condition to explain the shapes seen in the
previous figures, concerning the behavior of the standard deviation as a function of 7" and .

3.5.1 The role of different objects and phenomena

i) The accelerator modes.

For k integer the fixed point F, of My, located at (1/4,0), jumps k units up under
M;,. Despite starting at the chaotic sea, when entering Wg, the orbit can mimic the
behavior of E, for many iterates. Going away from y = 0 it will produce a major
contribution to the standard deviation. The same is true for points entering Wg_, or
even if an orbit visits Wg, for a while, then it visits Wg_ (or, perhaps, Wg, again)
and successive visits to both domains are produced.

As we expected and explained in Sect. 2.6, the situation is different when an orbit
approaches the islands of period 2 or 4 (or higher periods). After visiting the vicinity of
an island going up, the orbit visits the vicinity of one island going down in next iterate,
having close to zero average (after 2 or 4) iterations. This explains the qualitative
differences between Figures 213 and

ii) The Cantor sets.
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Consider, first, & < k174, that is a value such that there still exist invariant curves
around the period-4 islands. Orbits in the chaotic sea can not cross these curves to
become trapped by the island. But when they break down, they are replaced by Cantor
sets, the iterates can penetrate inside the domain that was bounded by the previous
invariant curves, approach the period-4 islands, spend some time near tiny islands,
even entering the narrow chaotic channels between the main island and the period-4
islands, created by the very small inner splitting [134], where they can spend many
iterates. Eventually, they leave the domain through the gaps of the Cantorus.

If k > k.14 the size of the gaps increases with the difference k—k. /4. It becomes easier
“to enter”, but also the residence time in that domain decreases. This phenomenon is
repeated at different scales around all the tiny islands visited by the iterates. In Chap.[l
we will study the escape rates across a golden Cantorus, with special emphasis on the
change of statistics as one tends to the breakdown, and hence the gaps of the Cantorus
become narrower.

The effects can be seen on the “bumps” presented in Figure .11l and, in a cleaner way,
in Figure [3.12]

The stickiness.

In fact one should not only consider the breakdown of the last invariant curve around
the period-4 islands. For k < k. /4 there are other curves, inside and outside, which
were broken before. See Figures3.Iland 3.2l For k > k. /4, before penetrating through
the narrow gaps of the “last created” Cantor set, they should enter the previously
created Cantor sets, spend some time around the remnant islands, etc. This collective
phenomenon, which is the geometrical meaning of stickiness in this setting, tells us
that it is difficult to approach an island from outside: there are several gaps to cross.
But when the orbit is inside it can remain there for a long time. Upper bounds on the
speed of diffusion go back to the pioneer work of Nekhorosev [I10], where the author
assumed that no channels of dynamics blocked at resonance exist, a requirement which
is formulated in terms of a steepness condition. Similar bounds, based on estimates
of the remainder of the normal form around a totally elliptic fixed point with an
application to the triangular Lagrangian points can be found in [53]. For multiple
examples, discussions on fast and slow escape and many illustrations on the dynamics,
see [31].

These collective effects can be seen in the linear behavior (in log,, — log;, scale) of part
of the plot shown in Figure B.11]

3.5.2 Trapping time statistics around accelerator modes

From the last numerical simulations in Section 3.4l more concretely, the ones illustrated in
Figure B.9, for N = 10° and 7" = 2%, we can extract valuable additional information. We
have collected data on the “trips” of the IV initial points. In particular the trapping time
Z(t) in the domains Wg, and Wg_. Recall Sect. [LI.4l That is, when we have detected that
an iterate approaches, say, the positive island (see end of Section B.4.Tl), we count for how
many iterates, m, it remains in Weg, until leaving it. We introduce some intervals, of the
form [; = [29/2,20+1/2) j = 14,...,60, and if m € I; we add one unit to a counter C;. At
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the end of the computations we collect the counts in each box. This gives an estimate of the
average “residence time” in the vicinity of the islands.

The results are shown in Figure B.11] left. In it we plot all the curves corresponding to
data for k£ = 1.0512(107°)1.0515 simultaneously (a total of 31 curves). For the data in each
counter C; we display, on the horizontal axis, the value of log;((2//2) and on the vertical
axis the final value of log,,(C};), adding the visits to Wg, and Wg_. For instance we can
read, from the left upper corner of the plot, that for all used values of k, the number of visits
with a stay between 128 and 181 consecutive iterates exceeds the value of 10%. Note that
in very few cases the length of the stays exceeds the value 22° and they occur, mainly, for
k =1.05125 and k = 1.05126.

2 4

log1o(27/2)
Figure 3.11: Left: number of times that the iterates visit Wy, U Wg_ with a stay in the
range [; as a function of 2/2. For both variables the log,, scale has been used. All the values
of k= 1.05120(107°)1.05150 are plotted simultaneously. Right: A measure of the size of the
bumps in the left plot. See the text for details.

In the plot we see two distinctive phenomena: First, on top left, some monotonous
decrease until a value of 7 which depends of k. The smaller the value of k is, the larger the
value of j up to which the decrease holds. And second, for a each value of k& shown, after
the monotonous, close to linear, decrease until some value of j, one can see a “bump” in the
value of log,((C;). These two effects are related to each other, namely as items ii) and iii)
in the enumeration in Subsect. [3.5.1] but they seem to be visible in different scales of time.

3.5.3 Power law statistics

Here we want to do a simple remark to clarify the numerical results in Fig. B.IT] left. In this
picture, we can clearly see that the histogram of the trapping times behaves as a power law,
and that for all the parameter values shown it seems to be a limit of the value of the slope
as the appearance of the bumps move right (that is, it goes outside the range where we can
detect it). Actually these bumps only show up for k£ > 1.05126.

For each value of k, the behaviour in log-log scale seems to be linear up to some value j.
of j. If we do a linear fit of the data for j € [14, j.|, for decreasing values of k from 1.05150
to 1.05127, the approximate values of the slopes decrease monotonically from -1.11 to -1.21.
But we expected a power-law behaviour Z(t) ~ t~°, with 2 < b < 3. This is what we actually
get. If what we observed followed such a power law, in each bin I; = [2//2,2U+1D/2) we expect
C; to be a multiple of the probability that the length of a stay m € I;, namely

264072 227 =1
—b g _ J/2
/2 ol dt - (272 .
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Hence, in a log-log plot, a histogram of a power law Z(t) ~ t~° where the lengths of the
bins are equispaced in logarithmic scale is seen as a straight line with slope 1 — b. Hence,
the power law we see in Fig. B.I1l left, has actually an exponent b ranging between 2.11 and
2.21.

3.5.4 The shape of the bumps

To analyze the bumps seen in Figure [3.11] left, we proceed as follows. For each value of k,
we subtract from the counts C; the values predicted by the linear fit for j > j. explained
above in Subsect. [3.5.3] The results are shown in Figure B.ITright. Again in log,, scale for
both variables, we plot in the horizontal direction the value of 27/2 and in the vertical one
the difference between the value of C; and the one predicted by the fit. This is a way to
obtain a nice representation of the behaviour of the bumps in the left plot.

Note that for larger values of £ the height of the bumps is larger. This is natural, because
they remain for less iterates in the “linear” regime of Figure B.11] left, before entering into
the bump.

The study of the source of the bumps is actually the contents of Chap. 4l But a brief
explanation on our approach to study this effect is added here both to have a self-contained
chapter and to motivate the next one. To investigate the shape seen in Figure 3.1 right, we
place our study in a different range of values of k for the My, concretely around the destruc-
tion of the last rotational invariant curve (RIC) for Greene’s value kg ~ 0.9716354061062
[80, 83]. The parameter in classical formulations of the standard map is denoted as k, which
is related to the parameter k we use in this work as k = 27k.

The last RIC appears for a rotation number p = w := (/5 —1)/2 and, by symmetry, also
for 1 —w = (3 —v/5)/2. Let us denote them as the upper W, and lower W, last RIC. For
values k < k¢ global diffusion is impossible. For k > k¢, close to k¢, initial points located
on a strip between W, and W, can move away.

The method given in Section has been used to generate initial points in the unstable
manifold of the period-2 hyperbolic orbit. Then these points are iterated until they “escape”
from the previous strip. To detect the escape several methods can be used. The simplest
one is to check if, in the formulation M} of the standard map, they cross either y = 0 or
y = 1. Another method looks for an approximate representation of W, and then this curve
is slightly shifted up (down for W,). When an iterate crosses some of these shifted curves it
is considered as escaped. Both methods agree very well for parameters close to the critical
one.

For a decreasing set of values of k tending to kg we have taken 107 initial points, for
every value of k, and performed up to 10 iterates of each of them until escape is detected.
From the more than 2 x 10? initial points tested for many values of k, only 46 have not yet
escaped for 10' iterates.

The Figure shows some statistics of escapes for & = 0.98(0.005)1.04. To this end
we count, in a similar way to what has been described to obtain Figure B.1Il how many
points, C;, escape after a number of iterates T in the interval I; = [10%0%7 100020+D) 4 =
100, ...,500. The top left plot in Figure [3.12 displays the values of C; as a function of 0.02;.
Obviously, the closer k is to k¢, the larger the number of iterates is. In the top right plot
the representation is similar, but instead of C; we display log,,(C;). From one side, it is
remarkable to see that, beyond a shift and a small deformation, the curves are very similar.
On the other hand there is a strong similitude between the top right plot and the one that
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Figure 3.12: Statistics concerning the number of iterates to escape from an initially confined
strip when the parameter k becomes larger than the critical Greene’s value k¢. In the top
left and right plots the horizontal scale is log,,(T"). The data on the left are represented in
true scale and in the top right in log,, scale. Bottom: total number of iterates nit to have
escape of all initial points (upper set) and maxima M of the previous plots (lower set), both
in log,, scale, as a function of log,,(k — kg). Both sets have a behavior close to linear in
these scales. For these plots we have used k = 0.980(0.001)1.200. See the text for additional
details. For values of k closer to kg from above, the histograms on the top appear shifted
to the right. See Sect. 5.3

we have seen in Figure [3.11] right. This shows that the bumps in Figure 3.11] are due to the
effect of the Cantori gaps surrounding the stability regions of E, and E_. See Section [3.5.7]
for further details.

To complete the information displayed in FigureB.12], top, we can display, as a function of
log,o(k — k¢), both the total number of iterates to have escape of (essentially) all the points,
and the location of the maxima in the previous two plots, both numbers in log,, scale. This
is shown in Figure bottom. The straight lines show the corresponding linear fits. The
slope for the upper data (iterates) is & —3.05 while the one for the lower data (maxima) is
~ —3.13. They are in good agreement with the expectations from renormalization theory
around the golden rotation number curve breakdown, see Section B.5.7 specially with (B.6]).
To get these slopes we fitted all the data displayed in Fig. B.12, bottom. But if we get closer
values to kg we expect it to change. In Sect. we revisit this problem and give more
accurate values of these slopes.

For completeness we have also computed, from the data shown in Figure[3.12] the average
and standard deviation of the number of iterates to escape, as a function of k. We found
a good agreement with a power law of the form (k — kg)™?, for the value of 8 in (B.6),
both for the mean and for the standard deviation. Furthermore, as it is well-known from
renormalisation theory [83], these two values tend to coincide when k tends to kg and the
numerical computations show this tendency.
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3.5.5 Some additional numerical results

We return now to M, for k slightly greater than 1, with the same set of values of k used in
Figure right and in Figure B.111

The probability to enter the islands zone. As mentioned in Section [3.4.1] we can count
how many times a temporary capture, i.e., entrance in Wg, U Wg_, is produced. This can
be divided by the total number of iterates (10° x 23° for each value of k). This gives an
estimate of the probability that a point in the chaotic domain is temporary captured by an
island. The results are represented in Figure [3.13] top left as a function of k.

The fraction of time spent in the islands zone. On the other hand we can check how
many iterations are spent in these temporary captures. The results are shown in Figure [3.13]
top middle. Note, however, that for the contribution to the standard deviation op for the
present T' = 2% it is not just the total number of iterates in Wy, UWpg_ what matters, but
how long are the “stays” near the islands. A stay 10° units long counts as much as 100 stays
105 units long. Furthermore, to check that what really matters are the iterates and “stays”
in Wg, UWg_, for the set of values of £ used in Figure[3.13, we have computed the standard
deviation looking only to the stays in Wg, U Wg_. Concretely, if some initial point has
visited m times Wg, and m_ times Wg_, it contributes as m_  —m_ to the computation of
the standard deviation. All the iterates in the chaotic domain are discarded. The values of
the opj, computed in that way have a relative error below 0.0005 with respect to the correct
values for £ = 1.05120(0.00001)1.05150.

The growth of the diffusion coefficient as we iterate. Finally we plot at the top right
part of Figure B.13] the evolution of the estimated value of the non-normalized standard
deviation or(k), see (B.H), as a function of T" for the values of k used to produce Figure
right. We use log;, scales. Globally one can see that up to 7'~ 10* the behavior is close to
linear, with a slope larger than 1/2. Concretely, it is close to 0.63, due already to the effect
of the points near the islands. From that value of T on, there is a change and the values
of o (k) lie between two lines of slopes 0.7 and 1, say the lower and the upper lines. If we
look at the individual behavior of the lines for the different values of k, see the details in the
magnification shown in the bottom plot, it is checked that up to £ = 1.05123 the curves stay
near the lower line. For k£ = 1.05124 the curve ends in the middle of the lower and upper
lines, with o7 (k) ~ 107 for T = 23°. For k = 1.05126 it reaches the upper line at the end of
the T" domain. From that value of k£ on, the curve has a tangency with the upper line, for
values of T" which decrease as k increases (compare with Figure B.I1), and then it decreases
approaching the lower curve. The curves shown with thick blue lines illustrate this behavior.

Up to this point we have commented on the numerical results obtained. These results
show that for a generic area-preserving map with a divided phase space the diffusion prop-
erties are far from trivial. Despite of the difficulties, and motivated by the interest in ap-
plications, many authors have investigated the diffusive properties both from numerical and
theoretical points of view. Next subsection relates the numerical results obtained with the
available theoretical approaches to the diffusive properties in the different regimes observed.
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Figure 3.13: Top left: Number of temporary captures t. in the Wg, UWg_ domains divided
by the total number it; of iterates of all the initial points. Top middle: total lengths t1 of the
stays near islands divided by the same quantity. Both data are represented as a function of k.
Top right: For all the k values of the previous plots the standard deviation ¢ is represented
as a function of the number nit of iterates in log,, scale. Bottom: A magnification of the
top right plot for nit between 22° and 2% with the lines for k£ = 1.0512(0.0001)1.0515 shown
as thick blue lines. For reference two straight lines with slopes 0.7 and 1, mentioned as lower
and upper lines in the text, are also shown.

3.5.6 Available theoretical frameworks from renormalisation
schemes

In what follows we briefly present the theoretical frameworks that either support or even
explain some of the numerical results shown.

Concerning the power law statistics. The correlation function is related to the proba-
bility Z(t), the recurrence time in some fixed region of the phase space. To fix ideas, consider
the accelerator mode islands of M. The probability Z() relative to these islands was shown
in Figure B.I1] left. First we note that in a purely diffusive regime the correlation function
decays exponentially in time, see [75] and references therein (“time” here means “number of
iterates of the map”). That would mean that the points can escape from the chaotic region
easily as time evolves. However, we observed a power-law decay of Z(t) for the region. Sim-
ilar results were obtained in many other works, see [27] 29, 30} 68] for example. This means
that trajectories are expected to be for a large number of iterates in the neighbourhood of
the accelerator mode island, as confirmed by the numerical experiment in Section B4l See
also [50], [51] for more recent computations on the statistics of the Poincaré recurrences using
the Ulam method.

What causes the power-law decay and the stickiness effect has been analysed from differ-
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ent points of view. The analysis performed in [27] derived a power-law behaviour in terms
of the non-homogeneous diffusion coefficient D(y) of the separatrix map. The analysis of
self-similar solutions of the diffusion equation (which was suggested to include a suitable
exponent «) lead to the power-law probability distribution. This self-similarity was then
related with suitable scalings in time and space of the island-around-island structure, mean-
ing that for long-time evolution this hierarchy is the responsible of the behaviour of Z(t).
Further developments of this point of view were done by Zaslavsky and collaborators, giving
rise to a renormalisation approach related to the hierarchical islands, see [148]. Let us give
some details of this approach.

The presence of accelerator modes causes the divergence of the diffusion coefficient since
the variance of a power-law distribution grows to infinity. Assume that the density of prob-
ability is of the form fr ~ a/T®. For 2 < b < 3 the expected value exists but the variance
diverges. According to the Zaslavsky renormalisation scheme, see [I149], one has

log A,
b=1+ 2

log A\p’

where )\, is the corresponding scaling factor of the area of two consecutive islands in the
hierarchical structure and A7 is the scaling factor related to the period of the last invariant
curves of these islands. These scalings are assumed to hold approximately and obtained from
computations of the first islands in the structure. Several computations for the web map and
the standard map for different hierarchies of islands show that b ~ 2.2. It is worth noting
that the same factor was numerically observed in [97] for the Mather’s AW [94] measured in
different consecutive islands of a hierarchy (referred there by a class, see [97]), concretely it
was observed that AW, = AW._1¢~%, with ¢ = 2.2 and where p/q, p, q € Z is the frequency
of the periodic point of the class ¢ orbit. We refer to [149] and references therein for further
details. On the other hand, in [I49] it was also observed that the variance of the fractional
Fokker-Planck-Kolmogorov equation

or 1 o° <8°‘(Bf) 0B f)

o 20(—x)* \d(—zx)*  I(—z)*

behaves like t%/¢, which provides an explicit relation with the scalings A, and Ay of the
renormalisation scheme. Further discussions on scaling laws can be found in [145].

Concerning the bumps. In our experiments we also observed the stickiness effect of Can-
tori. To analyse this phenomenon MacKay in [80], and in an extended version in [83], defines
a renormalisation operator in a class of area preserving twist maps. Here we summarize an
extended version of the required explanation that can be found in Chap. 4l The nature of
all the constants that appear here will be clarified there.

Let w be an irrational number whose continued fraction expansion and rational conver-
gents are

w=ag+ 1/(a1+1/(ay+---)) = [ao, a1, a9,...], @;>1,i>0; p,/g.=]ao,-..,an].
Then p,/q, — w as n — oo. Let F, : (I,0) = (I,0) be a twist APM 1-periodic in § and

having a critical invariant circle of rotation number w for = 0, and R(I,0) = (1,60 — 1).
The results obtained suggest that there are scalings A,, such that the sequence
AJTEI RPhA,,

“57n
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converges to a universal map F*, where A,, ~ AA,,_1, A(z,y) = (ax, fy) and it does geomet-
rically with ratio 1/4. In particular he did computations for noble rotation numbers, that
is, for which a; = 1 for ¢ > ig,i9 > 0 obtaining

0 = 1.62795, o = —1.4148360, B = —3.0668882. (3.6)

The impact of these results in transport properties of the map in the vicinity of the just
broken invariant circle are worth noting. One of the consequences of these scalings is that
Mather’s AW (recall Sect.[[LT.2and Sect. [[.2)) scales as follows. If Ak is some small quantity,

AW, (k. + Ak/d) = AW, (k. + Ak)/(af),
so that there exists a 1-periodic universal function U(x) = U(z + 1) such that
AW, (k. 4+ Ak) =~ A(AK)PU (logs(Ak)), B = logs(af) ~ 3.0117220.

The quantity AW, ,, as is proved in [86] is exactly the flux, the area per iterate that
crosses through the gaps in a periodic orbit (as explained at the end of Sect. [[.2]), and AW/,
is the area that crosses through a Cantorus (when it is an invariant curve the flux is zero, as
expected). As a function of the parameter k in the case of M (L13), the time to cross an
invariant Cantor set (N) (k), conditioned to do it eventually, is related to the flux and the
accessible area A(k) via the Kac formula [99]

(N) (k) x AW (k) = A(k), (3.7)

where A(k) can be assumed to be bounded between two close positive constants for small
enough variations of k so that the time to cross an Aubry-Mather set, sufficiently close to

the breakdown, behaves as
1
N) (k) ~ —
(N) () ~ 55
where logs-periodic fluctuations are expected. Note that this law is exactly the same observed
by Chirikov in [26]. In order to be able to use this approach to the escape from an island, the

effects of islands-around-islands should be included, as in the Markov tree model in [103].

3.5.7 Comparing with limit theoretical predictions

Now we are in situation to explain the changes observed on the behavior of the standard
deviation, for different values of k,T" and N, at the light of the previous theoretical consid-
erations.

For a given initial point, located in the chaotic domain, there is some small probability,
say €1, to enter Wy, UWg_. This is illustrated in Figure 3.13] top left. Note that even for
k < k14 one has 1 > 0. The iterates can enter in Wg,, say, but can not cross the still
existing invariant curves. When increasing k, the value of €1 increases up to some saturation.
This is due to the fact that the gaps of the more external Cantori are larger.

For k < k14 the only contribution to or(k) is the “residence” in Wy, but outside the
invariant curves. Hence, the values of the standard deviation, either scaled or not, are not
so large, as illustrated in Figure (skip the effect of the small peaks). According to [149]
one should have a power law with exponent ~ —2.2 in the residence time inside Wg, . Our
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numerical results illustrated in Figure3.I1lare in very good agreement with these predictions,
as explained in Subsect. [3.5.3]

Now assume k> k. 1/4. Immediately after k. /4 the gaps on the Cantor set which replaces
the last invariant curve, are so small that they produce almost no effect. This can be seen,
both in Figure B.11] where the bumps displayed on the right start at k=1.05127, and in the
description of the bottom plot in Figure B.I3l

Further increase of k leads to an increased probability to enter inside the last Cantorus.
When inside, they remain there for an average number of iterates of the form c(k — k., /4)6
for some ¢ > 0 and [ as given in (3.6]). For a given T there exists a value of k, say k*(7)
such that the mean residence time inside the last Cantorus equals T'. In other words: some
points enter inside that Cantorus and for the full number of iterates they remain inside. The
final value of the jump ATy = y7 — 1, equals T. Even if the fraction of points is not so large,
there is a contribution to o7 (k) of the order of T.

Increasing k from k*(7T') on, should produce a decrease in or(k), because the probability
to enter the last Cantorus is larger, the mean residence time is less or much less than 7.
Hence, the “large contributions” to o7 (k) are no longer present. It is clear that the iterates
of a point which enter the last Cantorus and leave it, can reenter later (after many additional
iterations), but the global effect will be less important. One would need many more iterates
(i.e., a larger T') and this will decrease the slope in Figure bottom.

This reasoning also explains the tangencies mentioned concerning Figure B.13] bottom.
When k increases, the value of T' at the tangency decreases: the function k*(T") decreases if
T increases and tends to k.14 when T" — oo. This is also related to the fact that, in many
previous figures, using the scaled standard deviation, the maximum appears multiplied by a
factor v when T is increased by a factor 2.

Finally we can comment on the behaviour of o7(k), for a fixed k around k. 1,4 for very
large values of T', producing a lower bound of the standard deviation. We start by stating
several simplifying assumptions. For concreteness we denote the domain Wy, UWg_ as the
islands zone, and the complement as the chaotic zone.

Assumptions:

a) A point in the chaotic zone has a probability 1 — ¢ to remain there after one iteration,
and equal probabilities, €/2, to enter either Wy, or Wg_. Hence, the probability to
remain for m consecutive iterations in the chaotic zone and then to enter into the
islands zone, is (1 — €)™e. Both the average and standard deviation are 1/¢ + O(1).
According to the data in Figure top left, the values of ¢ for k around k,;/4 are
close to 5 x 107°.

b) A point inside the islands zone remains inside at least for my iterates. The probability
to go out after m > my iterates is of the form ¢/m® where ¢ > 0 and 2 < b < 3. From
the normalization, requiring f:; em~dm = 1, it follows ¢ = (b—1)mj ' (1+0(1)). The
distribution has average = %mo. The value of b can be estimated from Figure B.11]
to be around 2.2 and my can then be estimated from the average length of the stays in
the islands zone, which follows from the plots in Figure top, and the expression
above for the average. The values of my derived in this way range from 128 to 170,

approximately.
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The probability that the number of iterates in the islands zone exceeds a value M is
given by (mo/M)*~1. We recall, as already said, that the variance of this distribution
becomes unbounded.

c) We assume that the different events (remaining in the chaotic zone, entering one or the
other islands zones and remaining a given number of iterates in it) are independent.
As commented in subsection [B.3.4] and illustrated in Figure [3.4] this is not true, but
the correction factor obtained for the diffusion coefficient due to the correlation is not
too far from one, so this is a reasonable hypothesis.

Under the above assumptions one has the following

Proposition 2. The standard deviation of a sample of initial points after T iterations, with
T large enough, is bounded from below by T2~ (+1/0)/2

Proof. Let v > 0,6 > 0, to be selected during the proof. We consider the iteration of a given
initial point. Assume, first, that until an iterate such that the total number of iterates in
the chaotic zone is 77, all the entrances in the islands zones have lengths bounded by 7°
until a long stay entrance occurs.

From the central limit theorem applied to the distribution in the chaotic zone, one has
that the number of times that an iterate enters the islands zone is €77(1 + o(1)). The
probability that each of the lengths of the stays in the islands zone is bounded by 779, is

bounded by
ma b—1 eTY
[1 - (T—f;) } (1+o(1)),

that behaves like exp(—smg_lT“’_5(b_1)). This quantity is very close to 1, if we choose
v—9(b—1) <0, taking into account the ranges of £, mg, b that we are considering.

Now assume that a long stay in the islands zone occurs and the point remains there
for, at least, T iterates. The probability of such an event is (my/T)*~!, and it can happen
eT7(1 + o(1)) times. The computation is stopped as soon as the total number of iterates
exceeds T. If we assume that this long stay occurs in the positive island, even if the other
stays are in the negative one, and neglecting the contribution O(77/2) due to the stays on the
chaotic zone, the final value of |y| is bounded from below by T —2eT7T°(1+0(1)) > 0.9997T,
provided v+ 6 < 1.

From the two conditions we get for v and J, the optimal choice is attained if

1 1
vy=060b—-1) and ~+4+d6=1 < fy:l—g, 5:5'
Under these conditions, the contribution to the sum of squares of the changes in y is bounded
from below by

eT7(1+ o(1)) (%)H (0.999T)2. (3.8)

This gives as exponent of 7" in (B.8)) equal to 4 — b — 1/b. By the assumptions on the equal
probabilities to enter Wg, or Wg_, the average of y is negligible in front of this quantity
and the Proposition follows. O

Figure B.14l shows an illustration similar to Figure bottom, for k¥ = 1.0515, a number
of initial points N = 10* and a final number of iterations 7' = 2%°. For reference a line with
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Figure 3.14: The standard deviation o as a function of the number of iterates 1" for k =
1.0515, for large values of 7". Both variables shown in log,, scale.

slope 0.7 is also shown. We note that, assuming b = 2.2, the lower limit of the slope
predicted by proposition [2is ~ 0.673. The contributions of other stays in the islands zones
are responsible of the difference of limit slopes for T' very large. We should mention that
for T = 2% and T = 23 the results are below what we expected, while for T = 20 are a
little bit larger than expected. Looking at the behavior of the iterates of the initial points
one checks that for T' = 238 239 the largest values of |y| are slightly larger than 1.1 x 10%, a
little bit more than the value already reached for T = 237 iterates. On the other hand, for
T = 2% one of the points reaches y = 1.327 x 10'°. This single point gives half of the total
contribution to ¢. But this anomaly is nothing else than a consequence of the reduced size
of the sample.

Next chapter is devoted to the study of the role of a single Cantorus in the phase space:
we will extend the illustrative numerical results for the standard map for values of the
parameter close to Greene’s of Subsect. [3.5.4] and review the theory of Subsect. to give
an exhaustive explanation of which effects in diffusion should be attributed to Cantori. We
will be mainly focused in understanding and describing the geometry of the phase space in
a neighborhood of the Cantorus, for each fixed value of the parameter and as the parameter
evolves towards the breakdown of the curve. And all the assertions will be accompanied
with detailed massive numerical evaluations of escape rates.



Chapter 4

Escape times across a Cantorus

While RIC are complete transport barriers, Cantori have gaps that allow orbits to leak across
them. But the number of iterates to do so can be extremely large due to the small size of the
gaps. In this chapter we study escape rates across a golden Cantorus. As a main example, we
use the Chirikov standard map for values of the parameter close to Greene’s kg, where the
phase space shows self-similarity properties that can be explained via the Greene-MacKay
renormalisation theory for the golden mean RIC. More concretely, this self-similarity implies
that if we consider k > k¢ and we denote the mean to cross the Cantorus as (Ny), while
(N) — oo as k — kg, for a suitable B < 0, (N;) (k — kg)? is bounded. Moreover, it
is actually 1-periodic in a suitable logarithmic scale. In this chapter we are going to give
evidence of the shape of this periodic function and to interpret the results obtained for the
escape rates by analysing the role of stability islands close to the Cantorus.

4.1 Introduction

The prediction of the actual transport properties of chaotic orbits in area-preserving maps
(APM) requires the comprehension and description of the main invariant objects in the phase
space, their relative position and size and how do they interact with each other.

KAM curves in APM are co-dimension one and hence confine the dynamics. In a pertur-
bative setting, if the perturbation is large enough so that a RIC is destroyed, Aubry-Mather
theory (recall Sect. [[LT.2]) asserts that there exists a set in the phase space with the same
rotation number of the destroyed curve, in the form of a Cantor set. These sets are usually
referred to as Cantori. Since these Cantori have gaps, orbits can leak through, but one may
expect the transit time to be extremely large if these gaps are small. Recall that, apart from
these gaps, there are other phenomena that can play a leading role, such as the stickiness
effect or even the small chaotic channels between an island of stability and its satellites.

The purpose of this chapter is to study quantitatively the escape rates across a Cantorus
whose rotation number is the golden mean w = (v/5 — 1)/2. And this will be done by
studying the phase space of the Chirikov standard map (@) for values of the parameter
close to Greene’s kg, recall Sect. The standard map is a meaningful example since it
captures some relevant features of a universal 1-parameter family of maps that comes from
the so-called Greene-MacKay renormalisation theory.

In Sect. we review the main features of the Greene-MacKay renormalisation theory:
the definition and dynamics of the renormalisation operator for golden invariant curves in
APM.

87
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In Sect. [4.3] we link the renormalisation operator with the phase space of the standard
family of maps, and justify its choice as main example for our simulations. Here we will also
explain how to properly scale the phase space close to the golden Cantorus with the aid of
the position of periodic points whose rotation number is an approximant of the golden mean.

Sect. [4.4]is devoted to the study of the geometry of the phase space close to the Cantorus.
We pay special attention to the local dynamics of elliptic/reflection-hyperbolic periodic orbits
whose rotation number is an approximant of the golden mean, and to the area of the stability
domain that surrounds them, if any. We argue that these objects are key to explain the
transport rates across the Cantorus.

In Sect. we present a numerical study of escape rates based on massive simulations
inspired in those of the previous chapter. The available theoretical frameworks predict an
inverse potential behaviour of the escape rates in a parameter that measures the distance to
the breakdown Ak = k — kg, k > kg, plus some periodic fluctuations in logarithmic scale
of Ak. Note that this potential behaviour is of different nature as the one we studied in
Chap. Bl Here we show the shape of this periodic function and link it to the existence and
evolution of the islands of stability we dealt with in Sect. [4.4. We finish by studying the
probability law of the escape rates for each fixed value of k considered, with special attention
to the behaviour as k& — kg.

And finally, in Sect. [4.5.4 we summarize the results obtained and the future directions one
should consider that can lead to a better comprehension of the escape rates through Cantori.

In contrast to the chapters 2l and 3] in this chapter we will use the standard map in the
original scale for the parameter. So, when working in the torus, we shall consider

r L 2 2 v R T\ _ x+y
poror (D)o ()(,E )

And M, will denote the lift to S! x R. Throughout this section we are going to use kg ~
0.971635406.

4.2 Renormalisation for invariant curves. A review

Renormalisation in dynamical systems is a tool to deal with asymptotic self-similarity. In
the discrete context, this is done by studying the system in smaller scales, by considering a
conveniently scaled version of the original phase variables and in longer scales of time, by
considering an iterate of the map instead of the original map. Note that, in order to be able
to renormalise, we need the iterate of the map we have to consider to be a return map to a
region that is similar to the whole phase space.

Kadanoff and Shenker [67] were the first to introduce a renormalisation approach to deal
with RIC. Later, MacKay [83] [80] refined the idea by linking in a more precise way the
renormalisation operator and RIC, by taking into account the pioneering work of Greene
[63]. This approach is usually referred to as Greene-MacKay renormalisation theory.

It consists in the following: if p is the rotation number of the RIC under study, the idea
is to zoom in regions in the phase space chosen according to the relative positions of elliptic
and hyperbolic periodic orbits whose periods are p;/q; and pji1/gj+1, two consecutive ap-
proximants of p, and to consider the g;th iterate of the map in this region. Recall that from
the twist condition (that implies the vertical ordering of orbits according to their rotation
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number) and the fact that approximants alternate around p, the regions where the zoom is
applied always contain part of either a RIC or a Cantorus with rotation number p. This
procedure is inspired by the link between the linear stability of elliptic periodic orbits whose
rotation number is an approximant p;/q; and the existence of a RIC with rotation number
w as suggested by Greene in [63].

This section is a compendium of well known facts about the Greene-Mackay renormalisa-
tion theory for invariant curves in APM. The reader familiarized with this topic can skip this
section. We summarize the main properties which will be used in the forthcoming sections

in Subsubsect. [1.2.1].

Notation. In this chapter we will systematically deal with periodic orbits whose rotation
number is an approximant p;/g; of some irrational real number w € (0,1). From now on,
we will refer to elliptic or reflection-hyperbolic orbits with p;/q; as rotation number simply
as elliptic approximating orbits, and in case they were hyperbolic, we will refer to them as
hyperbolic approximating orbits. Moreover, we will refer to the stability domain DS(p;/g;)
(recall Def. [7]) surrounding elliptic approximating orbits as approximating islands.

4.2.1 Renormalisation for invariant curves

For an APM F : T2 — T2 satisfying a twist condition, assume that it has a RIC with
rotation number p and that (xg, yo) belongs to it. Denote the successive iterates under a lift
F of F to the plane, of the point (zo,0) € R? as F™(x0,v0) = (T, yn). If {n;/m;}; is any
sequence of rationals tending to w as j — oo, then

T F™ R (20, y0) = Ty, —nj — 0,

where 7 is the projection onto the first variable and R(x,y) = (z — 1,y). This suggests
that the study of the dynamics near the invariant curve can be approached by considering a
sequence of maps of the form AF™ R" A~', where A is a change of variables that is meant
to scale the phase space in a way that will be explained later on.

The setting introduced by MacKay [83],80] consists in embedding this sequence as iterates
of some operator in a suitable functional space. The dissipative case was solved by Rand in
[117] using the same techniques.

The renormalisation operator defined by MacKay [83] [80] is the following:

Rn(U,T) = AT, T"U)A, m € 7,

where we have used the notation A(A, B)A’ = (AAAN, ABA’). This is an operator acting on
commuting pairs of orientation-preserving diffeomorphisms: (U, T’) from R x R to ranges on
it, that commute where the compositions UT and T'U are defined. Note that if we apply R,
successively to a pair of commuting maps, where [;, ¢ > 0 are the integers of the continued
fraction expansion of an irrational real number w = [ly, [1,ls, . ..], we obtain the following:

le .. 'RIO(U, T) — Aj+1(quijv U‘lj+1TPj+1)Aj—_&1’

where Aj;4 is the composition of successive shifted scalings. This follows from properties of
continued fraction expansions.



90 CHAPTER 4. ESCAPE TIMES ACROSS A CANTORUS

Remark 6. 1. On the assumptions for the pair of commuting maps U and T. It is not
necessary to assume twist properties nor area-preservation for the definition of R,,.
MacKay in [8]|] proved the existence of invariant curves for infinitely renormalisable
commuting pairs (meaning those for which one can apply infinitely many times R,
for convenient m) without using any of these two assumptions. Bul usually area-
preservedness is implicit when using the generating functions of U and T instead of
the maps themselves, see [83, 159,140, (1, [75], for instance.

2. On the existence of a symmetry. The whole setting requires the existence of a preferred
symmetry line. Despite not being the most general setting, it is usually assumed to
hold. Note that the most common and paradigmatic examples of maps like the Hénon
map or the Chirikov standard map have such a symmetry.

The link between this setting and ours, that is, for area-preserving twist maps F' (now
with some symmetry line) is just to consider the pair (F, FR), where R(x,y) = (z — 1,y).
If, for example, we iterate this pair under R, since ' and R commute, we obtain

(F,FR) — A(FR, F?R)A[* — Ay(F?R, FPR)AS' v As(FPR? FPRH)A;--- (4.2)

where again A; means the composition of successive shifted scalings, which may change for
each iteration, and in some cases it may tend to a limit A. The existence of such a limit is a
necessary requirement for the existence of fixed points, and is a key feature in renormalisation
theory.

Observables related to orbits under renormalisation

One can easily translate the concepts of orbits, periodic orbits and invariant curves to
(proper) iterates of commuting pairs, see [83]. But we are mostly interested in the fol-
lowing quantities, that are either conserved or nicely transformed under the action of the
renormalisaton operator. We will not deal with commuting pairs but with twist APM F.
If we want to study the RIC with rotation number p = [ly,l1,ls,...] of F, we have to deal
with the nth iterate of F' under the renormalisation operator. It suffices to study the first
component of Ry, -+ Ry, (F, FR), AF™RP»A=t. If m > 0 is an integer, we will refer to the
first component of R, (F, FR) simply as R,,[F].
So, let m > 0 be an integer,

1. Rotation number. If a map F has an orbit with rotation number p = [lo, 1,3, .. .], then
Ri, -+ Ry, (F, FR) has an orbit with rotation number p’ = [l,,, l,41,...]. In particular,
if w=(v5-1)/2=[1,1,1,...], and p;/g; are its approximants, if F' has an orbit with
rotation number p;/q; then Rq[F] has an orbit with rotation number p;_1/g;_1, the
previous approximant; and if F' has a golden RIC (resp. Cantorus) then R,[F] has a
golden RIC (resp. Cantorus).

2. Linear stability of periodic orbits. For a ¢-periodic orbit for an APM F| its linear stability

is determined by the trace
T =trDF(xo,yo),

where (g, o) is any point in the orbit. Then, if F" has an orbit with rotation number
p = p/q with 7 as trace, then the corresponding periodic orbit with rotation number
o =1 /q of Ri[F] has also trace 7. This follows from the fact that R, consists in
iterating F' conveniently.
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4.2.2 Dynamics of the renormalisation operator

From now on, unless otherwise stated, the golden mean will be denoted as w = (v/5—1)/2 =
[1,1,1,...]. Recall that its approximants are quotients of successive Fibonacci numbers. We
will denote them as p;/q;, and by jth approximant we will refer to the element with subscript
J in the sequence

Gj+1 =4 + ¢j—1, Pj+1 =DP; + Pj-1, po=0, pi=q@=q=1

Since the continued fraction expansion of w is constant and has all the quotients equal to 1,
the study of golden invariant curves is done via the operator

R(U,T) = AT, TU)A™,

(recall that we choose U = F' and T = FR), where A : R*> — R? has the following form

()= (45)

being «, 5 € R the phase scaling factors, ¢ € R is a constant and p(x) is a real polynomial
that we shall consider to be of degree 3, see Sect. L.3.1l

The dynamics of the renormalisation operator R, was first studied in MacKay’s Thesis
[83, B0], where he described the most important features of its phase space. Some of them
have been already proven, but some essential questions that have a reasonable conjectural
solution remain still open, [7§].

Essentially, when acting on the area preserving zero flux class of maps, the most relevant
part of the phase space of R is characterized by the existence of two fixed points:

1. Ry, the trivial fixed point, which corresponds to an integrable linear shear

()7

Note that it is just a translation of the standard map for £k = 0. It is an attracting
fixed point in the area-preserving class of maps, see [83].

Furthermore, all the periodic orbits in the phase space of Ry are parabolic (7 = 2).

2. Ro, the critical fixed point, that is a map having a critical golden invariant curve.
In [83], MacKay computed it very convincingly (Rc and a l-parameter family that
travelled along W*(R¢)), and gave numerical evidence of the fact that it is a saddle,
with a single unstable eigenvalue §. The existence of R was finally proven in [I] by
Arioli and Koch and the fact that it was hyperbolic with a single unstable direction
with eigenvalue 0 was proven by Koch in [73].

All elliptic approximating orbits of Rc have the same trace, 7 = 7, see ({1).

MacKay conjectured that the dynamics in a neighborhood of these two fixed points was
as sketched in Fig. [l In this figure we also added in red the conjectured relative position
of the standard family in this functional phase space.

Note that W#¥(R¢) is a co-dimension 1 invariant manifold of maps with a critical golden
RIC, so locally separates maps with a golden RIC and maps with a golden Cantorus. Hence
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Figure 4.1: Sketch of the conjectured skeleton of R;.

W*(Re) \ {Rc} has two components. Denote the one that consists in maps with a golden
RIC as W*~(R¢), and the other component as W**(R¢). A conjecture related to Fig. 1]
that is still open is if W%~ (R¢) is a heteroclinic connection between Ry and Re, that is,
if this whole branch is contained in the basin of attraction of the trivial fixed point Ry. In
fact, it was the original motivation of the renormalisation operator: the goal was to prove
that all maps with a golden RIC converged to Ry under R;. For results in this direction
one can see, for instance, [64], 139, [140].

4.3 The standard family in the phase space of R,

All numerical experiments dealing with approximating periodic orbits of the golden RIC
carried out for the standard map suggest that this family of maps is close to W"(R¢),
as depicted in Fig. A1l Namely, the approximations of the phase space scalings o and (8
([@3) and the eigenvalue § given in [I} [73] in the proofs of the existence and hyperbolicity
of R¢ agree with the corresponding quantities found experimentally in the standard map
[67, 80, [83].

The constants «, § and ¢ are essential for the rest of the chapter. So it is worth recalling
how they were first obtained. Here we will use that all monotone elliptic periodic points in
the standard map (4.I]) have a point on the symmetry line {z = 1/2} [83]. Let k; denote the
value of the parameter at which the jth elliptic approximating orbit is at a period-doubling
bifurcation]. Let (1/2,y;) denote the position of the point of this orbit on the symmetry
line for k = k;. And if j is odd (resp. even), let x; be the z-coordinate of the point in the

'We will slightly change this notation in Sect. &4l



4.3. THE STANDARD FAMILY IN THE PHASE SPACE OF R, 93

jth hyperbolic approximating orbit closest to the right (resp. left) to {x = 1/2}. From the
symmetries of the standard map, the points in the hyperbolic orbit that are the closest to the
left or to the right to the symmetry line are exactly at the same distance to the symmetry
line.

1. The eigenvalue § was first approximated in [83] as the rate of convergence of the
sequence {k;};:
. kn - kn—l
lim —— = § =~ 1.62795006498458161676240425734986. (4.4)
n—00 kn-i—l —ky
The value we provide here in (£4]) is the one found by Koch in his proof [73], of the
hyperbolicity of Ro under R;.

2. The phase scaling 5 measures the rate of convergence to 0 of the relative distance
between consecutive elliptic approximating orbits on the symmetry line

lim 22— =1 5 & (—0.32606339662500148530812206358643) ", (4.5)

and « measures the rate of convergence to 0 of the relative distance between elliptic
and hyperbolic orbits of the same rotation number

lim (, —0.5) — (x,—1 — 0.5)

= a ~ (—0.70679566917963727816491731416) L. (4.6
n—oo (41 — 0.5) — (2, — 0.5) a )7 (46)

Again, these are the most accurate values of these constants available in the literature,
and can be found in [Il, [73]. Furthermore, they agree with the actual values for the
standard map [67, [83].

3. There are two other constants that is worth to take into account. MacKay in [83] [80]
noticed that, if we denote by tr;(k) = trace DM,”(1/2,y;(k)), where y;(k) is the
position on the symmetry line { = 1/2} of the jth elliptic approximating orbit at the
value of the parameter k, one gets the limit

lim tr;(kg) = 7" ~ 0.999644. (4.7)

n—oo

MacKay also approximated the convergence rate of the sequence {tr;(kq)};,

lim trn(k‘g) — trn_l(k‘g)

— ¢ ~ —(0.6108) "% 4.8
n—oo t1,41(kg) — trn(kg) ( ) -

Moreover, this is the dominant eigenvalue in W*(R¢), see [83] [80].

As a final remark, note that, despite the standard family captures the behaviour of
W"(R¢), the family of maps My, is not invariant under R,. Namely, if & > k¢ the orbit of
M, under Ry will have some iterates close to W**(R¢) due to the hyperbolic character of
R¢ in the functional space. And after some iterates, the maps one obtains behave as maps
with a seemingly fully chaotic phase space. If k& < kg then the iterates are conjectured to
tend to Rr. And if k = kg, since My, € W*(R¢), it will tend to R under iteration of R;.
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We strongly suggest [78] for a full and comprehensive explanation on the dynamics of R,
the open questions related to the renormalisation operator and its relationship with Greene’s
criterion [63] and with Olvera and Simé’s Obstruction criterion [112].

Note the scaling factors and eigenvalues «, 3,0 and ¢§’, and even 7% depend strongly on
the continued fraction of the rotation number of the RIC under study. Namely, for noble
rotation number the set of parameters we should eventually find are «, 3, ¢, 0" and 7*, but not
necessarily for metallic irrational numbers (those whose quotients in their continued fraction
expansion are equal or eventually equal to @ € N, a > 1). Moreover, if the corresponding
continued fraction expansion is n periodic, one expects the corresponding renormalisation
operator to have a critical n-periodic orbit and a set of n different values of 7*, and of course
different scalings. See [15].

4.3.1 Choice of the successive scalings A;

As commented above, the way the scalings A; are chosen is related to the positions of
the approximating periodic orbits. Approximating orbits are not generically on straight
horizontal lines, so one can not expect to find examples of maps where A; is a diagonal
scaling (that is, ¢ = 0 and p(x) = 0 for all z in (43))). But if we assume that we have a
preferred symmetry line where all elliptic monotone orbits have a point on, we can reduce
A; to be of the form (43]). Since in practice we will study elliptic periodic orbits in the
standard map, this symmetry line is {x = 1/2}. Hence ¢ = 0 in (£3]). And we are going to
use the coordinate £ = x — 1/2 instead of x.

Let us consider the jth approximant of w. The way to renormalise the domains around
the golden invariant curve or Cantorus between the orbits with rotation number p;/g; and
Dj+1/4+1 1s to consider scalings defined as follows:

1. Compute the following orbits and points:

1.1 The elliptic (or reflection-hyperbolic) orbit on the symmetry line with p;/q; as
rotation number. Call it P7.

1.2 If 7 is odd (resp. even), the point in the orbit of P/ closest to the right (resp.
left) of it. Call it Q7.

1.3 The elliptic (or reflection-hyperbolic) orbit on {z = 1/2} with p;;+;/¢;+1 as rota-
tion number. Call it P/*1. Tt can be either above or under P/, depending on the
parity of j.

1.4 The hyperbolic orbit with p;/g; as rotation nu}mbe. Call the points in this orbit
closest to PJ to the left and to the right as L] and R}, respectively.

2. Let p@(C) :‘sgj)g + sgj)cz + séj)@ the cubic interpolating polynomial of the 4 points
Ly, P!, Ry (2, after moving their abscissas —0.5, that is, in such a way that the z-

coordinate of P7 is 0.

3. Let dY) = max (|my(P7 — L)), |m (P! — R})|), and df) = |ma(PJ — PI*Y)|, where m
and 7y are the projections onto the first and second variable.

2This point has to be chosen in different sides of the symmetry line depending on the parity due to the
fact that two periodic orbits with consecutive approximants as rotation number lie on different sides of the
invariant curve or Cantorus.

3 In the case of the standard map (@I]), it can be found on the lines {y = 2z} or {y = 22 — 1}.
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After all these computations, consider the sequence of changes of variables obtamed as the
composition of, first, scaling around P’ by dY in the x direction and by d] in the y
direction, then subtracting p')(¢) in the second variable and finally shifting the coordinates
to translate P’ to the origin. This altogether reads (suppressing some dependencies on j to
lighten the notation)

(€ do€ +1/2 la
Aj . ( n ) = ( dyn+7T2(P6j) +81dx£+82(dx£>2+83(dx5)3 ) = ( y ) ) (49)

and transforms the rectangle [—1,1] x [0, 1], where the island is centered in the origin and
the next approximant is at (0, 1), into the variables of the standard map, see Figures[Z.2 and
for some examples. Before continuing, we must take into account the following.

Remark 7. 1. Concerning dy ), the symmetries of the standard map imply that, actually
| (PJ — L)) = |m(PJ — R])|. Hence in the box [~1,1] x [—1,1] we will have (—1,0)
and (1,0) as hyperbolic fized points and (0,0) as a fized elliptic or reflection-hyperbolic
fixed point.

2. The sequences d9) and déj) go to zero geometrically with rates o and (3, respectively.

3. The fact that the polynomial p(¢) has been chosen as cubic is enough [84, [73], since
there is numerical evidence that this condition guarantees that after q; iterates of points
in some compact domain around P return to the desired domain.

We want the renormalised domain close to n = 0 to be a map on a cylinder, that s,
to be able to identify the segments of points with coordinates (—1,n) and (1,7n) where
n € (—k,k), kK >0 but small. To do so, the right branches of the invariant manifolds
of (1,0) should be the same as the right branches of the invariant manifolds of (—1,0),
but horizontally shifted by 2 units. And we get this by imposing that Aj_l(Qg) also lies
onmn =0.

Symmetries of the Standard map. The cubic polynomial p¥)(() has a relationship
with the symmetries of the standard map. Recall the De Vogelaere decomposition of M}, in
involutions [63]:

[z —T+y |z —x .
Il<y))—)< y ), [2<y))_>(y—|—%SIH(27Tl’))’ M, =101,.

Since all the orbits we are dealing with are symmetric, they are their own reflection under
I, and I,. Moreover, we are dealing with points in invariant sets under I that are near the
set of fixed points of I, {z = 1/2}, and actually are closer by a factor o as we increase
j. Hence, in the limit j — oo the set of 4 points we are interested in should be on some
invariant of I,.

If we set y = g(z) = go + g1 + g2x® + g3z + - - - and impose that g(z) is invariant under
I, locally around = = 1/2, we get the following necessary conditions:

(2m)’

7!

2g; = (—1)"k~"5%  where i is even,
but this argument does not give any information on the odd coefficients. Since p'¥)(() is a
cubic polynomial, for each fixed value of k£ one gets

k ; 2
lim s(]) =5 lim séj) = —%k‘. (4.10)

Jj—00 Jj—00
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In Sect. 4.4l we will deal with some special sequences of values of the parameter k: we will
denote by k;(7) the value of the parameter for which P’ has trace 7. We will provide with
evidence that regardless of the value of 7 < 2, the sequence {k;(7)}; tends to kg. Hence, we
expect the polynomials pi)(¢) to have limit coefficients s, = kg /2, s3 = —%ng and some
value for s, that cannot be predicted from the symmetries of M. In Sect. 4.4l we will provide
with numerical evidence on the limit values of the coefficients s1, s, and s3 one obtains when
travelling along the sequence {k;(—1)};, see Tab. A1l

4.3.2 Iterating M; under R;. An example

Before studying with more detail how is the phase space around a Cantorus, it is worth
showing how do renormalised domains in the standard map look like. Here we show the part
of the phase space transformed under the changes of variables A; that we just outlined how
to derive.

In Fig. B2 and Fig. B3 we show the phase space of R][M;] = A o M oAjin (&) €
[—1,1] x [0,1.2]. We considered an equispaced 512 x 512 grid and we indicate in light
grey those pixels whose center can be considered regular by approximating the maximal
Lyapunov exponent. In black, we highlight the positions of the 0/1, 1/2 and 2/3-periodic
orbits of R][My]. More concretely,

1. In Fig. 4.2l we show how does R, act on My, for k = 0.9716. Recall that for this value
of the parameter the golden RIC exists, see [45]. Hence, as conjectured [80, 83] (recall
Fig. 1)) we expect the iterates under R; to tend to Ry. On top left, we can see the
domain defined between the original 1/2-periodic orbit (that appears as the fixed point
at the origin) and the original 2/3-periodic orbit (that appears as the 2-periodic orbit
at (0,1)). Recall that in this top left picture we are showing the dynamics around the
golden RIC under M?2. We have highlighted the points in the orbits that are going to
define the next domain where to zoom, and this zoomed phase space (M} between the
2/3 and the 5/8 periodic orbits of the original map My, and changing signs both in £
and 7) is shown on the right. We show 16 iterates of the map. The title in each picture
indicates the number of iterate. Note that, as we iterate, we tend to a more regular
phase space, as conjectured in [83]; in fact in the phase space of the 17th iterate (not
shown), in the resolution used for these plots, we do not detect a single chaotic orbit.

2. And in Fig. 4.3] we show how does R; act on My, for & = 0.98. The pictures are
produced exactly the same way as for £ = 0.9716. But here note that as we iterate
R1, the phase space seems to become more and more chaotic. This is the expected
behaviour once the golden RIC is destroyed, see Fig. A1l To reach a seemingly fully
chaotic phase space (in the resolution used here) for k& = 0.98 one only needs 11 iterates
(not shown in the figure).

4.4 The phase space near a Cantorus

In this section we want to describe the phase space around a broken invariant curve. It
turns out that the Greene-MacKay renormalisation theory allows to make predictions on the



4.4. THE PHASE SPACE NEAR A CANTORUS 97

it=1 it=2 it=3 it=4

it=9 it=10 it=11

it=13 it=14 it=15 it=16

Figure 4.2: Iterates of My, k = 0.9716 under R;. See the first item in the enumeration in
Subsect. 4.3.2] for further explanations.

relative position and relative size of the most prominent objects that play a leading role:
approximating islands.

We will study approximating islands of the standard map (4.1 numerically from two
different points of view.

1. First locally, by studying the linear stability of elliptic approximating orbits. For the
jth, it can be determined via the trace

trj(k) = trace DM} (xo, yo), (4.11)

where (zo, o) is any point in the periodic orbit. Also denote by k;(7) the value of
the parameter k for which the jth elliptic approximating orbit has tr;(k;(7)) = 7.
Recall that the multiplier v;(k) can be recovered by tr;(k) = 2cos(27mv;(k)), when
tI'j S [—2, 2]

This is actually the parameter we will use to study approximating islands, since it is
invariant under the renormalisation operator (in the sense of Subsubsect. L.2], item
3) and allows to relate all approximating islands to each other.
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it=5 it=6 it=7 it=8

Figure 4.3: Iterates of My, k = 0.98 under R;. See the second item in the enumeration in
Subsect. [£.3.2] for further explanations.

2. And second, in suitable fundamental domains containing a representative part of
DS(p;/q;) (see Def. M), we will measure

pi(k) = meas DS(p;/q;)/q;. (4.12)

Recall that DS(p;/¢;) does not only contain the main connected islands that surround
the elliptic or reflection-hyperbolic orbit, but also the whole island-around-island struc-
ture around them and tiny chaotic confined zones. It consists in ¢; pendulum-like struc-
tures whose regular zone has exactly the same measure. Note that the set DS(p;/q;)
also contains hyperbolic orbits and their stable invariant manifolds, but these have
ZEero measure.

We want to perform a simplified version of the analysis we did in Chap. 2] for the area
preserving quadratic Hénon maps, but for the approximating islands of the standard map.
Namely, we want to give numerical evidence that the traces tr; of elliptic approximating
orbits change monotonically in the parameter, and that there exists a limit behaviour of the
approximating islands as 7 — oo similarly to the accelerator modes in the standard map we
saw in Chap. 2l Here the scaling factors that will allow to relate the islands to each other
are the eigenvalues ¢ and ¢’ for the parameter and « and S for the phase variables.

4.4.1 Numerical study of the local dynamics of elliptic approxi-
mating orbits

In this subsection we will study numerically the dependence of the traces tr; on the value of
the parameter k. Here we will only deal with orbits whose trace is in tr; € [—2,2), that is
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we will only deal with elliptic periodic points, not beyond the period-doubling bifurcation.

We are interested in the ranges of the parameter k£ where elliptic islands evolve from
parabolic to the period-doubling bifurcation. The pioneering numerical studies of Greene [63]
suggested that the sequence {k;(—2)}; is monotonically decreasing with limit lim;_, k;(—2) =
kq. Here we will study numerically the behaviour of k;(7), both as a function of 7 and as a
sequence {k;(7)}; for each fixed value of 7 € [—2,2). First, the results we show in Fig. [£.4]
left, for k;(7), j =1,...,17 allow us to state the following:

Conjecture 1. The function k;(7) is strictly decreasing in T, for all j > 0.

j=1
7= 2 -—
15| K
ji=4
1 | E— e —————————— S |
\\\
05 |
T_ U‘ T+
T_ T+
) -30
2 1 0 1 2 2 ! 0 ! :

Figure 4.4: Left: Evolution of the value k;(7), for 7 € [-2,2) for j = 1,...,17. Right:
logs(k;(T7) — k) as a function of 7 € [—2,2) for j = 4,...,17. Here we only show values
of j that are visibly equispaced in some ranges of 7. See the text for the definition of the

highlighted values 7, and 7_, see (&.IG]).

This actually tells us that, for all 7, the multiplier of the jth elliptic approximating orbit
has a full passage through resonances. And in case Greene’s criterion holds, that the golden
RIC can not reappear after kg. We would not expect such monotonicity in cases where
RIC can reappear after their destruction, as happens, for instance, in standard-like maps
with two harmonics V(z) = k (asin(27x) 4+ bsin(4nz)) as in (LI4), where x measures the
distance-to-integrability and a® + b* = 1, see [43|, 44} 22| [91].

Back to Fig. 4.4l left, we can see that, as j increases, the graphs k;(7) tend point-wise
to be a constant function, and hence we can extend the numerical result of Greene to

lim k(1) = kg, if 7 <2, (4.13)
j—o0

The assertion (£I3) includes values of k£ where the golden RIC still exists, shown in Fig. 4]
left. Here we give evidence for 7 > —2, but we also have evidence for some values of 7 such
that 7 < —2. For these values, the sequence {k;(7)}; behaves as in the interval 7 € [—2, 7_],
see (4.10).

The convergence of {k;(7)}; to kg implies the convergence of the coefficients sgj ) and séj )
of the cubical change of variables (£.9]) to the limit values (4.I0). Consider, for a sequence

{a;}; that has limit a as j — oo, the following associated sequences:
2

a1 — a; Ajdj—o — ;3

ratej(a) = 42— a A !
Aj—9 — Qj—1

ait __
J

(4.14)

a; — QCLj_l + Aj—2
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The sequence {rate;(a)}; has, as limit, the rate of convergence of {a;}; to aw in case the
convergence is geometric. And the sequence {a;”“} — Uy as j — 00 but at a faster rate: it
is the Aitken accelerated sequence.

In Table 1] we show the numerically evaluated values of the three coefficients sl(-j ), 1=
1,2,3 along the sequence {k;(—1)};, that is, following the 1:3 resonances of approximating
elliptic points. To the right of each of these coefficients, we show the approximate rate of
convergence. The very last line corresponds to the last value (30th) of the values obtained
in each corresponding Aitken accelerated sequence. We show values of these coefficients and
rates for convergents j = 3,...,30, that is, from the 2/3 to the 832040/1346269 elliptic
periodic point. For the data shown in this table, the positions P’ and the values k;(—1)
were determined with 75 correct decimal figures. The same simulation has been carried out
for 7 = —2,0. The results obtained are extremely similar.

The results obtained suggest that sgj ) converges to kg /2 with ratio 0, that sgj ) has some
limit 0.130207 ... and the convergence rate seems to be 3/a? &~ 1.532095; and séj) converges
to —m?kg/3 with ratio 8/a® ~ 1.082878. Since this last is very close to 1 the convergence is
very slow, and one should go further in j to get values of sgj ) closer to the expected limit.

Moreover, all 3 numerically obtained sequences {k;(7)}; for 7 = =2, —1,0 seem to tend
to kg with converge rate §. Instead of these sequences, we will show the leading terms of a
sequence of values of k that converge to kg with a faster rate later on.

For different ranges of 7 the sequence {k;(7)},; appears to be either eventually increasing
or decreasing or alternating. In Fig.[4.4] left and right, we have added two vertical lines that
separate the regions where we can see different behaviours.

Concerning the convergence rate of these sequences, for 7 = —2, MacKay in [83] gave
numerical evidence that the convergence rate was ¢, the only unstable eigenvalue of DR, at
the critical fixed point Rc. To estimate numerically the convergence rate of the sequence
{k;(7)}, for all values of 7 considered, it is convenient to change the scale in the parameter
(ordinates in Fig. d.4] left) to be

k(1) = logs(k;(1) — kc).

This is precisely what we plot in Fig. [£.4], right, l;:j(T), for j =4,...,17. Hence, concerning
the convergence rate of these sequences, in each of the three ranges 7 € [-2,2) = [-2,7_) U
[7_, 74 ] U (74, 2) where 7% € [1_, 74],

1. If 7 € [-2,7-) U (74, 2) the graphs seem to be vertically equispaced by 1 unit, so in
this ranges the convergence rate of the sequence {k;(7)}; seems to be d, and

2. If 7 € [r_, 71| the sequence {k;(7)}; seems to alternate around kg and becomes even-
tually monotone, but it requires further detailed numerical investigations.

Let us introduce the following quantity. In Fig. [4.4] left, the graphs k;(7) are strictly
decreasing functions and seem to cross each other once. So, if k;(7) and ki(7), 1 < j <, let
us denote the intersection value of the trace

T =1, such that k;(7;,) = ki(7.). (4.15)
A closer look in Fig. [4.4] left allows to see that, actually,

T =134 = 0.836316630998899379064771402918493203122884569070177 ... (4.16)
Ty =To3 = 1.224105134257633758347076577736673021132619783370115. ..



Table 4.1: Values of the coefficients sl(-j ), i =1,2,3, and their approximate rates of convergence, evaluated along the sequence {k;(—1)};,
that is, at values of k where approximating elliptic points are exactly at the 1 : 3 resonance. The last line is the 30th coefficient of the

sequence

J sgj) rate;(sy) séj) rate;(sz) sgj) rate;(ss)
3 0.697659863315635 0.221326141020018 -4.188335267344281
4 0.609345784896336 0.058237119936942 -3.851346566856803
5 0.565289098639612 | 2.004555 || 0.173580338748888 | -1.413945 || -4.297385336445072 | -0.755514
6 0.531833289533581 | 1.316862 || 0.097543583254370 | -1.516940 || -3.946576187700749 | -1.271457
7 0.513486068491566 | 1.823481 || 0.148473166165693 | -1.492978 || -4.060221875905774 | -3.086867
8 0.502260376389276 | 1.634395 || 0.116066222805876 | -1.571563 || -3.849200903849310 | -0.538551
9 0.495719261233143 | 1.716174 || 0.137894977949387 | -1.484598 || -3.870601021185747 | -9.860739
10 0.491794333165289 | 1.666556 || 0.124199667062718 | -1.593885 || -3.746746265573998 | -0.172783
11 0.489444131744877 | 1.670039 || 0.133508783699062 | -1.471171 || -3.738553957951232 | 15.118421
12 0.488024703359202 | 1.655737 || 0.127704958690826 | -1.603962 || -3.661920959946125 | 0.106903
13 0.487163984334194 | 1.649119 || 0.131670420324641 | -1.463593 || -3.643398136155891 | 4.137220
14 0.486640548658096 | 1.644364 || 0.129203051818511 | -1.607162 || -3.592217094360501 | 0.361907
15 0.486321203980256 | 1.639093 || 0.130891098207180 | -1.461671 || -3.570712591753437 | 2.380015
16 0.486126140327378 | 1.637130 || 0.129839991352946 | -1.605970 || -3.533865724718989 | 0.583618
17 0.486006763067780 | 1.634010 || 0.130558194098780 | -1.463523 || -3.512566115675540 | 1.729931
18 0.485933660286107 | 1.633005 || 0.130109916058626 | -1.602136 || -3.484394449999408 | 0.756064
19 || 0.485888848021360 | 1.631311 || 0.130415382748912 | -1.467518 || -3.464680315636385 | 1.429008
20 || 0.485861368123777 | 1.630728 || 0.130224098052741 | -1.596921 || -3.442214916728004 | 0.877533
21 0.485844507584827 | 1.629835 || 0.130353999072141 | -1.472541 || -3.424594835706842 | 1.274988
22 0.485834160408368 | 1.629482 || 0.130272359925435 | -1.591160 || -3.406188639710572 | 0.957290
23 0.485827808598866 | 1.629012 || 0.130327599618011 | -1.477907 || -3.390744371084808 | 1.191781
24 || 0.485823908908457 | 1.628798 || 0.130292756080382 | -1.585364 || -3.375412843186684 | 1.007353
25 0.485821514330261 | 1.628550 || 0.130316247924068 | -1.483218 || -3.362027486622180 | 1.145395
26 || 0.485820043840145 | 1.628421 || 0.130301377945121 | -1.579816 || -3.349131197871720 | 1.037923
27 0.485819140751071 | 1.628289 || 0.130311369450145 | -1.488262 | -3.337606799505980 | 1.119042
28 0.485818586100744 | 1.628213 || 0.130305024277803 | -1.574662 || -3.326696478971233 | 1.056284
29 0.485818245436085 | 1.628141 || 0.130309274409527 | -1.492935 || -3.316813011423716 | 1.103896
30 || 0.485818036195133 | 1.628097 || 0.130306567247816 | -1.569958 || -3.307551929395354 | 1.067204
at 1 (0.485817703060594 | 1.628026 || 0.130307620635113 | -1.532588 || -3.169747244523398 | 1.083173

30

il see ({LI4). See text for further information.

SNHOLNVD V UVUN HOVdS 4SVHd HH.L 77

—_
o
—_



102 CHAPTER 4. ESCAPE TIMES ACROSS A CANTORUS

The values of 753 and 73 4 have been computed with 50 correct decimal figures.
From our numerical simulations we can assert the following concerning the convergence
of the sequences {k;(7)};.

Conjecture 2. For all values of the trace T € [=2,2), the sequence {k;(7)}; converges to
ko geometrically. If T = 7*, the convergence rate is &', and 0 otherwise. Furthermore,

1. If 7 € [=2,7_) the sequence {k;(T)}; is strictly decreasing,
2. If T € (14,2) the sequence {k;(T)}; is strictly increasing,

3. Ifr e [ro,m )\ {7}, if T < 7 it is eventually decreasing, if T > T it is eventually
increasing, and

If T = 7" it alternates around k. Moreover the sequence of pairs of points

{710 ki (T5-15)), (73540, K5 (T3.540)) 35
define domains around the limit point (7%, kg) that scale as 1/ in 7 and as §/6" in k.

Note that the fact that both the limit value of the parameter kg and the convergence rate
d of {k;(7)};, are the same for all 7 € [—2,2)\ {7*} makes perfect sense with renormalisation
theory. From Subsubsect. [4.2.1] the critical fixed point R is a map where all approximating
elliptic orbits have tr; = 7*, so as we approach R from the upper branch of W*(R¢) all the
values of these traces have to collapse to the limit value at the same rate 9. The standard
map inherits this behaviour. And the dynamics of the standard map in a length 1 interval
in k = logs(k — k¢) for values of k > kg but very close, has to be similar to the dynamics of
a one-parameter family of maps L, that is a fundamental domain of W*(R¢).

Further, note that the study of the sequences

2 5/
{To1y}ime = 7 and {Ej(Tj-1.4) bim2 P, kg (4.17)

does not rely on the knowledge of either of the limits. In fact, the right limit in (£I7) con-
verges faster than the sequence {k;(7)}; for fixed 7. Note that MacKay already suggested in
[83,180] to study the sequence {k;(7*)}; that converges to k¢ with ratio §/6’. But the numer-
ical study of this sequence depends on the value of 7*, and without a good approximation
of this value one can not go far in the sequence.

We used this method to approximate kg. We computed the pairs (7; 11, kj(7j,41)) for
7 all the way up to 35, that is, where at the elliptic periodic orbits with rotation number
9227465/14930352 and 14930352/24157817 the trace is the same. The computations have
been carried up to 50 decimal correct digits, but we only show the first relevant ones in
Table[4.2l Using the Aitken acceleration method we get the first 21 digits of kg and the first
12 digits of 7*

ke = 0.971635406047502179389 . .. (4.18)
= 0.999644540920. .. (4.19)

The first numerical support for Conjecture 2l we show deals with the character and the
convergence rate of {k;(7)};. We show it in Fig. 5] where the left column corresponds
to k;(7) and the right one to k;(7), for fixed 7 as a function of j. On top, middle and



J || ki(75541) k3 (541) rate; (k) Tjg+1 T rate; (1)

10 || 0.971579623947541 0.97163548906293571684861 -2.643591639 1.00705752 0.999563657806180 -0.619539046
11 || 0.971656408460215 0.97163537691356153647198 -2.650920873 0.99507268 0.999621800604375 -0.611791440
12 || 0.971627508716779 0.97163541145651967361861 -2.656927140 1.00243312 0.999632644782672 -0.614145492
13 || 0.971638373119950 0.97163540473595812007681 -2.660039671 0.99793497 | 0.999641192274422 | -0.611125489
14 || 0.971634291898006 0.97163540636276960286678 -2.662046641 1.00068818 | 0.999642841596845 | -0.612077818
15 || 0.971635824298498% 0.97163540598549375155581 -2.663286761 0.99900617 0.999644061428328 | -0.610927226
16 || 0.971635249069514 0.97163540606503364885326 -2.663983447 1.00003438 0.999644301175183 | -0.611297203
17 1| 0.971635464958773 0.97163540604448017229180 -2.664463190 0.99940628 | 0.999644473088878 | -0.610863230
18 || 0.971635383940866 0.97163540604845431623019 -2.664710398 0.99979005 | 0.999644507293241 | -0.611004552
19 || 0.971635414342801 0.97163540604735203532353 -2.664893129 0.99955563 | 0.999644531380433 | -0.610841673
20 || 0.971635402934868 | 0.97163540604755320627224 -2.664982007 0.99969884 | 0.999644536217867 | -0.610895220
21 || 0.971635407215436 | 0.97163540604749462387702 -2.665050985 0.99961136 | 0.999644539582657 | -0.610834251
22 11 0.971635405609270 | 0.97163540604750489180559 -2.665083207 0.99966480 | 0.999644540263673 | -0.610854452
23 || 0.971635406211934 | 0.97163540604750179582084 -2.665109100 0.99963216 | 0.999644540732907 | -0.610831666
24 || 0.971635405985804 | 0.97163540604750232280975 -2.665120846 0.99965210 | 0.999644540828525 | -0.610839268
2511 0.971635406070652 | 0.97163540604750215979502 | -2.665130530 0.99963992 | 0.999644540893893 | -0.610830761
26 || 0.971635406038815 | 0.97163540604750218694598 | -2.665134828 || 0.99964736 | 0.999644540907295 | -0.610833616
27 11 0.971635406050761 | 0.97163540604750217838424 | -2.66513R8441 0.99964281 | 0.999644540916395 | -0.610830442
28 1| 0.971635406046279 | 0.97163540604750217978690 | -2.665140018 || 0.99964559 | 0.999644540918272 | -0.610831514
29 {1 0.971635406047961 | 0.97163540604750217933802 | -2.665141364 || 0.99964389 | 0.999644540919538 | -0.610830330
30 || 0.971635406047330 | 0.97163540604750217941062 | -2.665141944 || 0.99964493 | 0.999644540919800 | -0.610830732
31 || 0.971635406047566 | 0.97163540604750217938712 | -2.665142444 || 0.99964430 | 0.999644540919977 | -0.610830290
32 |1 0.971635406047477 | 0.97163540604750217939088 | -2.665142658 || 0.99964468 | 0.999644540920013 | -0.610830441
33 || 0.971635406047511 | 0.97163540604750217938965 | -2.665142844 || 0.99964445 | 0.999644540920038 | -0.610830277
34 || 0.971635406047498 | 0.97163540604750217938985 | -2.665142922 || 0.99964459 | 0.999644540920043 | -0.610830333
35 1] 0.971635406047503 | 0.97163540604750217938978 | -2.665142991 || 0.99964450 | 0.999644540920046 | -0.610830272

Table 4.2: Approximation of the sequences {k;(7;;+1)}; and {7;,+1};, and their corresponding Aitken accelerated sequence and
approximate rate of convergence. The computations are carried out up to 50 decimal figures.
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bottom we show examples 7 € [-2,7_), 7 € (7_,74) and 7 € (74,2), respectively (see
the caption in Fig. for the actual values of 7 shown). On the left we clearly see the
decreasing, alternating and increasing character of the sequences predicted in Conj. On
the right we show logs(k;(7) — k¢) also as a function of j, where we added a piece of a
straight line corresponding to 67, to stress out the fact that the rate of convergence of all
the sequences shown is . In the middle right plot we highlighted the behaviour of the case
T = 2cos(m/3) = 1, the 1:6 resonance. Since this value of 7 is very close to 7% we checked
that the sequence increases once j > 19.

Concerning the second part of the conjecture, the numerical evidence is shown in Fig. 4.0k
these are just convenient magnifications of Fig.[4.4] left. The fact that these domains present
these scalings may be useful to eventually derive a limit approximation of the dynamics of
these islands of stability.

Numerical support of Greene’s criterion. Up to here we have been concerned about the
behaviour of k; as a function of 7. We want to stress that our results are not contradictory
with Greene’s criterion, since it deals with the converse: the behaviour of the traces tr; as
a function of k. In our plots, the evidence for this conjecture is recovered by fixing a value
of k = k* and considering the sequence of intersections of the horizontal line {k = k*} with
the graphs of k;(7) in Fig. 1.4l So, what we get is the following:

1. if k* < k¢, the sequence {tr;(k*)}, is bounded and tends to 2 (sub-critical case),
2. if k* = k¢, the sequence {tr;(k*)}; is bounded and tends to 7* (critical case),

3. and if k* > kg, the sequence {tr;(k*)}; tends to —oo (super-critical case).

We depict this behaviour in Fig. [£.7 for some approximants up to the 23th. Note also that
the behaviour of the first item implies the existence of an analytic RIC, see [43] [82].

Local behaviour of tr;(k) close to k¢. An interesting question is how does tr;(k) behave
locally around kg under small changes in k. Since for each value of —2 < 7 < 2, the sequence
{k;(1)},; converges to kg with ratio J, we expect the first derivative dtr;(k)/dk at kg to be
proportional to ¢7.

As above, let P/ be the coordinates of the elliptic approximating periodic point on {z =
1/2} for k = kg. Since we return exactly to z = 1/2, a formal Taylor expansion of the return
map around P’/ with respect to k and y is of the form

CL(]()Ay + amAk

M (P 0,007 = 22 (G T

) + O(Ay?, AK?).

Moreover aggAy + agi Ak = 0, giving a first order approximation of Ay = Ay(Ak). The
previous expansion can be computed numerically using symbolic manipulations, from which
we get concrete values of the parameters agg, g1, a1 and a;;. Namely, using Aitken’s accel-
eration method we get that

dor — 0.12060221802966 . . . as j — oo with rate ?
Qoo

Hence, we can compute tr;(kg + Ak) as a polynomial in Ak. We get a linear dependence

trj(kg + Ak) = 77 + ¢; Ak + O(AK?). (4.20)
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Figure 4.5: Left column: k;(7) as a function of j. Right column: k;(7) = logs(k; (1) —
kg) + logs(2m).  The values of the trace are 7 = 2cos(2wp/q). Top: p/q =
1/2,1/3,2/3,1/4,1/5,2/5,2/7,2/9, all of them give 7 € [-2,7_). Middle: p/q =
1/6,163/1000,164,/1000, 165/1000, 166 /1000, 167/1000, 168,/1000, 169,/1000, 170/1000, they
give 7 € (7, 74). Bottom: p/q =1/7,1/8,1/9,1/10,1/11,1/12,1/13,1/14,1/15, that give
T € (14,2)]

We have computed c; for the approximants for 2 < j < 31. The results can be seen in
Fig. A7, right. If we plot ¢; as a function of j in log-linear scale, we get what seems to be a
straight line, showing that there is some potential dependence ¢; = bexp(aj) < 0. The fact
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Figure 4.6: Magnifications of Fig. 4.4l left, 2nk;(7) for different values of j. The upper
left and lower right vertices of the inner box are of the form (7,41, 27kn(Tnnt1)) and
(Tn—1.ms 27k (Tn—1n)). The corresponding n and the j’s shown in each figure are: Top left:
n=2>5,45=3,...,17. Top right: n =7, 5 =5,...,17. Bottom left: n =9, j =7,...,17.
Bottom right: n =11, j=7,...,17.

that this constant is negative agrees with the behaviour shown in Fig. L4l A least squares
fit, done only with the data corresponding to j = 20,...,31, gives the value

a =0.4873220 £ 5- 107" hence exp(a) = 1.6279507 £8-1077, (4.21)

This is, as expected, the rate of convergence 9, the unstable eigenvalue of DR(R¢). This
means that locally around the periodic point, the changes in the trace scale as ¢7, if j is the
number of approximant we are dealing with.

4.4.2 The area of approximating islands

For the critical fixed point of Ry, R¢, all approximating islands have trace tr; = 7*. Recall
that, for the standard map, this is the limit trace of approximating elliptic periodic orbits at
k = kg trj(kg) — 7 as j — oco. But we are not interested in what happens in a prescribed
value of the parameter k, but on the evolution of the area of all the approximating islands
in the range where they are detectable.



4.4. THE PHASE SPACE NEAR A CANTORUS 107

Figure 4.7: Left: Trace tr;(k) as a function of n = [j/2] where [-] means flooring. We chose
ten equispaced values of k in [2kg — ka3(—2), ko3(—2)]. We plot in green odd values of j and
in purple even values of j. In black we show tr;(kg). We see that, if k < kg, tr; — 2 and
if & > kg, tr; = —oo. Right: Coefficient log(c;) as a function of j, see (£20). Red: odd
approximants. Green: Even approximants. Blue: fitted line y = az + b, see (£21)).

In the last Section we gave evidence of the fact that, if we choose a value of 7 < 2, then
the sequence k;(7) — k¢ as j — 0o, and this happens with ratio d. Despite all this evolution
collapses to kg, we expect that, if we scale conveniently the phase space, approximating
islands have a limit shape and area as j — oo. This is what we are going to investigate in
this section.

For the standard map, at £ = 0 there are no islands of stability, but they appear once
k > 0. For each approximant j, this area will be detectable (in some fine grid) up to
some value of k, call it l{;]f = k;(7y). Let l;;]f = log(;(kf — k¢). Here 74 is an upper bound
of the values of the trace where all approximating islands are no longer detectable (they
are deep in the period-doubling cascade). We will show that this value is far beyond the
period-doubling bifurcation. Namely up to the pixel resolution we will use here, it suffices
to consider 7y = —4.5. Note the difference, for instance, with the Hénon map (2.2)): no area
around the main elliptic island is detectable once ¢ > 2.3. Since the trace 7 = 2 — 2¢, then
no area is detectable for 7 < —2.6.

Since there is numerical evidence that the standard family is close to W*(R¢), we expect
the area of these approximating islands to scale as the phase space does: (a/3)~7 for the jth
approximant, if j is large enough.

Scaled areas. Here we will give numerical evidence of the fact that there is a limit shape of
the approximating islands, as j — oo. Each limit will be taken by fixing 7 € [-4.5,2). By
scaled area we will refer to the area that a single island in the chain occupies in the scaled
coordinates (£,n), see (£9). In this system of coordinates, we measure

- wi(k
Mj(k) = (]]-)( (3-)7 k= kj(7—>v (422>

recall ([£12) and Sect. 3.1 When k > kg, we can either consider ji to depend either on
k or k. We consider a 800 x 800 equispaced grid in (§,7n) € [—1,1] x [—0.6,0.6]. A pixel is
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considered to correspond to a point in DS(p;/q;) if it stays in [—1, 1] x [-0.6, 0.6] for at least
10% iterates. This includes both regular and confined chaotic orbits in the island. Note that,
an orbit that we consider to be confined actually remains stuck close to the whole island
chain of the standard map for at least 10° X ¢; iterates.

In Fig. .8 we show the evolution of the scaled areas ji;(k;(7)) as a function of the trace.
On the left we show the areas from j = 1 to 5 = 10, that is, from the main elliptic island
to those with period pip/q10 = 55/89. On the right we see a magnification where we have
labelled the period each area function corresponds to. Note that the area does not decrease
to a limit as we increase j, but it seems to alternate around the limit. As we commented
above, here we show that the period-doubling cascade of these islands seems to be no longer
detectable for some value of the trace close to —4.5, the leftmost value shown in the plot.

0.4

0.14 |
031 012 |
02| 01 P
01 0.08 |

Figure 4.8: Left: Confined scaled area fi;(k;(7)), 7 € [—4.5,2], around P? for j = 1,...9,
from the main island to an island with period 34/55, as a function of the trace, 7. The
vertical line corresponds to the limit value of the trace 7*. Right: Magnification of the left
plot, labelled. To generate the shown data we considered a 800 x 800 equispaced grid in

(&,n) € [-1,1] x [-0.6,0.6].

We also computed the corresponding turnstile area AW, /... To get it we first labelled
all pixels with n > 0 such that were mapped to some point with n < 0. Let us denote the
scaled values of AW as

s AWP]‘/Q]‘ AW +A p/qj
AWpf/qf_ d;j)déj) o d;j)déj) ! (4'23)

And similarly for AW¢ s/ and AW"C Recall that we defined these quantities in pages [I¢

and 26l In Fig. 4.9 we show, from left to right, AWpJ . AW”C Tas and AW respectlvely,
as a function of k. Comparing the left and middle plots we see that most of the turnstlle area
is AW"C Jq,» but there is still some part of the island that is included here AWP /q;- Compare
the rlght plot in Fig. [4.9 with the left plot in Fig. 4

Total area after k. To study escape rates across the golden Cantorus we need information
about the amount of area occupied by the approximating islands in the phase space once the
golden invariant curve is broken, that is, when k > kg. So, we will use again k as parameter,
instead of 7.
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Figure 4.9: We show, as a function of 7 € (—4.5,2), left: Aij/qj, middle: A ~;;C/qj and
right: AW;J_/%, see (£23).

In Subsect. 4Tl we saw that if 7 < 7_, then the sequence {k;(7)}; converges monotoni-
cally and geometrically to kg with ratio 6. So, if we plot the scaled areas fi; for large enough
4, as a function of k = logs(k — k¢) instead of k itself, we should see, as k — —oo (that
means approaching the breakdown from the right & — k¢) the same behaviour but shifted
by one unit in k. In the ranges of k£ we will investigate, the corresponding value of the trace
of all approximants will satisfy tr;(k) < 7*, that is, we are on the left of the vertical line of
Fig. A8 left, that corresponds to 7*.

We have recomputed the areas shown in Fig. L8, but in equispaced values of k < 0, that
is, for k > kg. We also used a 800 x 800 equispaced grid in (§,n) € [—1,1] x [-0.6,0.6], and
considered that a point in this region is non-escaping (and hence belongs to DS(p;/g;)) if it
remains in this box for, at least 10° iterations of the map Aj_1 o M} o Aj. The results can be

seen in Fig. M0l There we show ji;(k) for j = 2 (period 1/2) to j = 13 (period 233/377).
The 14th approximating island, that with rotation number 377/610 has no detectable area
surrounding it in the range of k shown in the used resolution. There are some distinctive
features of this plot that will be taken into account later on:

1. As said before, in this logarithmic scale of k, as k decreases, approximating islands
appear in values of k that are equispaced by 1 unit. In Fig.[1.10, approximating islands
seem to disappear near integer values of k, but we did not choose this normalisation.

2. As j increases the shape of the curves seems to get closer to a limit shape, as in Fig. A8
By this we mean that

lim |f;(k + 1) — fij1 (k)| = 0.

Jj—o0

3. For each j, as k decreases, the functions ji;(k) tend to the limit lim;_,__ fi;(k) =

fij(kc). And it seems that ji;j(k) start to behave as if they were a constant equal to
fij(kg). So, let v > 0 be a small value, and define k = k! = kl(v) in such a way

that |fi;(k) — fi;(kq)| < v for all k < 12:; Recall that at the beginning of Sect. 1.4.2]
we defined l%{ as the value of k for which the jth approximating island is no longer
detectable, in the resolution used. As j increases, the difference l%{ — l%; tends to a

constant. Note that 1%; depends on v but l;;]f does not. It only depends on the resolution
we use to measure the area of approximating islands.
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The fact that we detect a smooth approach to the limit is because as k— —oo, a
change by 1 unit in k represents an extremely narrow change §* in the original scale
of k, so we expect approximating islands to eventually change slowly in k.

4. This last item gives rise, for each value of k, to the distinction between 3 different
kinds of islands depending on the relative position of k with respect to k:]f and ké
(a) We will say that the jth approximating island is evolving if k € [lz:é, l;;]f ],
(b) That the jth approximating island is at its limit, if k< l%;, and

(c) That the jth approximating island is still invisible, if it has not appeared yet,
that is, & > /.

Moreover, since l;;]f — 1%; tends to be constant as j increases, for large enough j there is
a fixed finite number of evolving islands, m., a finite number of islands at their limit,
my, that increase by 1 unit every time k decreases by 1 unit, and countably infinitely
many that have not yet appeared. For the standard map, it is plausible to consider
me = 5, but to obtain an accurate value of m. one should get closer to kg.

Hence, concerning the area that approximating islands occupy in the original (z,y)
coordinates in the standard map, if we change k for k — 1, one of the invisible orbits
will become part of the m. evolving ones and one of these evolving islands will reach
their limit. Plus, the traces of each of the evolving islands at k are the same of those
islands present in the renormalised domain for k— 1; and the area that all these
m, islands occupy will be the same but scaled by af. Note that this behaviour is
1-periodic, that is, related to the dynamics in a fundamental domain of W**(R¢).

~ In Fig. 410/ we show the evolution of the scaled areas fi; for j = 3,...,13 in a range
k € [—12, —3] that corresponds to a range in the actual scale

k € [0.974521477288362, 1.20341583474535].

On top left of Fig. .10/ we can see that for each j, [Lj(l;:) seems to tend to a different limit
value as k — —oo. This is consistent with the results in Fig. [£.8 where we saw that the
scaled areas of consecutive approximants alternate around the limit.

Similar to Fig. [1.9] we plot the corresponding total, non-confined and confined turnstile
areas of the islands shown in Fig. in Fig. 111 These turnstile areas are those that
actually play a role in transport properties.

We illustrate the change of the shape of some scaled stability islands in Tab.[4.3lin a length
1 interval of k, k = [—10,—9). We plot the islands of rotation number 13/21 up to the ones
with rotation number 89/144 (a total of 5 approximants) for k = —9.125(—0.125) — 10.000.
We can see that the top one (the one with rotation number 13/21) does not change much
in this interval, while as we increase the period they do in a faster rate. Even the last one
shown (that with rotation number 89/144) disappears in this range of k. The scaled area
that these islands occupy can be seen in Fig. 10l Each column in Tab. corresponds to
a fixed value of k.

In Fig. A.10l we can see sudden decreases in the scaled confined area. From the displayed
evolutions in Tab. 3] we can guess to which satellite islands these correspond to. Recall
that the sudden decreases confined area are related to the breakdown of an invariant curve
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Figure 4.10: Scaled areas of approximating islands ji;(k), where k = logs(k — k¢) for j =
3,...,13. Some of the curves are labelled with the rotation number they correspond to. This
figure is related to Fig 4.8 Here k is used as parameter instead of 7, and only the data on
the left of 7 in Fig [4.8] left, is shown. Note that the value 7 = 7* will appear for k= —oo0.
See text for further explanations.

that allows previously chaotic confined region to escape from a compact set that contains
the whole island. At this global bifurcation satellite islands leave the connected component
of the domain of stability. We labelled some of the jumps in Fig. .10l as ps3, ps4, ps and pg
to refer to the effect of the breakdown of the invariant curves surrounding the islands of
rotation number 1/3, 1/4, 1/5 and 1/6, respectively.

4.4.3 Expectations for escape rates. Subsect. [3.5.6] revisited

In Subsect. we referred to renormalisation theory as explanation of the bumps that we
observed when dealing with trapping statistics in the vicinity of a stability island. The scaling
law for the quantity AW, when related to approximating islands gives a first explanation
of the power law and the expected 1-periodic fluctuations. After the numerical study just
performed, we can make sense on the contents of Subsect. 3.5.6] relating it to approximating
islands.

Fix a value of k* < —1. Let j be the number of approximant of the last evolving island,
meaning the one that for k* — 1 will be promoted to be at its limit.

According to transport theory, the main obstruction to cross the zone where the Cantorus
lies is the region of the phase space that has periodic orbits with the smallest AW possible.
A quantity that plays a relevant role is AW™. Consider the dynamics of R}[M}], where
the phase space looks like those in the first iterates shown in Fig. A3l Since there are only
me + my present chains of islands, we can assume that they define a partition of the zone
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Table 4.3: Evolution of the shape of approximating islands with rotation numbers 13/21,21/34, 34/55, 55/89 and 89/144 in the interval
k € [-10,—9). We show the shape of these islands for the eight values k = —9.125(—0.125) — 10.000. See text for further explanations.
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Figure 4.11: We show, as a function of k € [—12, =3], left: Aij/qj, middle: AWIZ‘;% and
right: AW;j/qj, see (4.23).

accessible to chaotic non-confined orbits, and the transport across this zone can be modelled
as a nearest neighbour Markov process where the transition probabilities between neighbour
regions are those given by

AW™ (KY),  i=4,....]+ me.

Piqi
In the region where there are only ’'invisible’ islands orbits are assumed to behave as if they
followed a diffusive process. Note that, since renormalisation applies, one has that the orders
of magnitude of these quantities satisfy
O(AW,e, (k) = O(AW, e (E)) @By ™, i=j+1,...,j+me,

Pi»qi Pj,q;

see Fig. [AT1] but since My, for k > kg has a golden Cantorus (beyond other Cantori that have
rotation number close to w), each iterate of M under R, has the origin (0,0) as fixed point
and one expects each iterate to have different decreasing values of the trace at the origin, and
a different value of AW. Hence one has to think of the set {AW;fqi(/%*), i=J,...,]+me},
as a whole. Let us refer to it as a configuration of transition probabilities. Recall the
construction of successive domains in Sect. FL.3.11 .

Now, if we shift k* — k* — 1, that is, we change kg + Ak to kg + Ak/6, if k* is negative
enough, and hence we are close enough to the limit, we would have an extremely similar
phase space, but scaled by (af). And the configuration of transition probabilities would be
awpe (k*—=1),i=j+1,...,5+1+m.}, but

7

AWRe (k= 1)~ AW (B (aB)Y, =g, e (4.24)

Pi+1,9i+1 i

Hence, according to the Kac formula (3.7), if we denote the mean time to cross the
Cantorus for & adl (N;), then we expect a mean value (Nj_,) = af (Nj) for k — 1.

Since the configurations are related to each other like in [#24)) for values of k at distance
1, the 1-periodic fluctuations U(log;(Ak)) can be explained as the different configurations of
transition probabilities that one has in an interval of the form [k* —1, k*) for negative enough
k*. Such an interval can be understood as a fundamental domain in the parameter such that
in the coordinates given by the change of scale A; one captures the leading dynamics around
the golden Cantorus. The study of such a fundamental domain requires the knowledge of
the limit dynamics of approximating islands of stability.

4This notation will be introduced in Subsect. @511
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4.5 Transport across a golden Cantorus

In this section we study escape rates across a golden Cantorus. In our context the Cantorus
under study is the remnant of a RIC that has been destroyed due to perturbation. Unlike
RIC, that are complete barriers to transport, Cantori have gaps that allow orbits to leak
across them. But the time to cross them can be extremely large. The size of these gaps
is exponentially small close to the breakdown. And we can make sense of this fact via
renormalisation and the Olvera-Simé criterion for the destruction of invariant curves.

Theorem 3. Olvera-Simd, [112]. If an APM F of the cylinder S' x R has two hyperbolic
periodic orbits o1 and os with rotation number my/ny > mo/ng, respectively, and the stable
invariant manifold of o1 intersects the unstable invariant manifold of os, then F' has no RIC
with rotation number p, p € (ma/na, my/ny).

This result gives a geometric connection between the existence of RIC for a prescribed
rotation number and the relative position of invariant manifolds. We are going to study
transport across Cantori, and this theorem allows to do some heuristic considerations on the
evolution of the size of their gaps.

Assume that, for the standard map at some value of k = kg + Ak the invariant manifolds
(IM) of the hyperbolic periodic orbits (HPO) with rotation number p;/q; and p;41/g;+1 have
an heteroclinic tangency, and that they do not intersect for any smaller value of k. Note that
this condition is impossible to be checked numerically. In practice one is lead to consider
moderate length pieces of the invariant manifolds. Then, if ¢ > j all IM of HPO with rotation
number p;/q; and p;y1/q;+1 cross transversally giving rise to lobes, but they do not intersect
for i < j.

The heteroclinic lobes bounded by the IM of the the points nearest to = 0.5 of the
HPO of rotation number p,+1/¢n+1 and p,12/g,12 have the largest size when projected onto
the = axis. Hence, the x projection of size of the largest gap in the Cantorus at k, Az(k) is
bounded from above by 24y +1), the distance between the points of the (7 + 1)th hyperbolic
approximating orbit closest to the symmetry line. Recall Subsect. 4311

Now consider k' = kg + Ak/J. Note that |logs(k — kg) — logs(k' — kg)| = 1. According
to the renormalisation scheme, if 7 > 1, we are close to a tangency between the IM of the
HPO of rotation number p;11/¢;j11 and p;i2/q;+2, and the largest gap now is bounded from

above by d¥™ ~ dY™ /. See [78]. Similarly to the escape rates, a reduction by a factor §
in Ak produces a re-scaling of the gap size by a factor «a, hence we expect

_ log(a)
log(0)

One expects the crossing rate across a Cantorus to be related to the area of these lobes
that impede the existence of RIC. One always has to take into account that other phenomena
like stickiness may play a leading role, see Chap. Bl Moreover, the routes to cross Cantori
are those that follow the invariant manifolds that impede the existence of RIC, and these
trajectories usually have passages close to saddles, that can also contribute to the slowdown
of the escape rates.

In this section we will continue to study the standard map for values of k > k¢, but close
to kg. The problem of escape rates will be considered from two points of view. First, we will
deal with the behaviour of the mean escape rate as k — kg, and to its standard deviation.

~ 0.712083498531404.

Ax(k) ~ (AK), v
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And these results will be crucial for the second point of view: the study of the probability
law that an initial condition in the chaotic zone escapes in a prescribed number of iterates,
conditioned to be able to escape.

4.5.1 Escape rates

Let us start by fixing our escaping rule and by explaining the way we will proceed to study
escape rates experimentally. As usual, denote the successive iterates of a point in the cylinder
(70,70) € S* x R under M, as

M]?('Ibu yO) = Mk(xn—lvyn—l) = (xnayn)

We will consider that an initial condition in S* x (0,1) but not confined in any island of
stability escapes after n iterations under Mj, if either y, > 1 or y, < 0, but y; € (0,1) for
all 0 <7 < n. The choice of the limits y, = 0,1 is done for simplicity. Instead of that, one
could choose a rotational curve above the RIC with rotation number w and another curve
below the RIC with rotation number 1 — w. In such a case, we obtain similar results.

Notation. From now on, we will denote Ak = k — k¢, for some k > 0; k = logs(Ak) =
logs(k — kg). By A(k) C St x (0,1) we will refer to the main zone in the phase space of the
standard map (4.J]) that can be considered to be chaotic. Here chaotic zones confined inside
islands of stability are excluded, as not being accessible from outside.

So, for all values of k considered, and for each initial condition chosen (zg,10) € S' x
(0,1) € St x R, we will compute the quantity

n(zo,yo) = min{m € N such that y,, > 1 or y,, < 0},

One of the main aims of this chapter is to study the probability of an orbit escaping in
a prescribed number of iterates, conditioned to be able to escape, or

Ni(m) = P (n(zo,y0) = m | (vo,0) € A(k)). (4.25)

In Sect. we will study the average and standard deviation of Ny, (Ny) and oy respec-
tively. In particular we will be mainly focused on how do these quantities change as we move
the parameter towards kg. More precisely, if we denote by U(k) the set of initial conditions
chosen as in Subsect. B.3.2] and by ic the number of initial conditions in U(k), then we will
study the behaviour of

No== 3 aw and  oP=— 3 (nw)?— (N>, (4.26)

1C 1cC
uel (k) uel (k)

Since we are restricting ourselves to k > kg, depending on our purpose, we will either
use k or k = logs(k — k¢), and this will be indicated in the subscripts (N;) and o7y,

In Subsect. [4.5.3] we will use the results for the observables (4.26) to motivate the candi-
dates to probability laws of Nj.

For all our experiments, we need to make sure that both the initial condition and values
of the parameter chosen are representative, hence



116 CHAPTER 4. ESCAPE TIMES ACROSS A CANTORUS

1. To study the statistics of escaping orbits, we will iterate a large number of initial con-
ditions chosen as is explained in Subsect. [3.3.2] until all of them escape. The way these
initial conditions are chosen guarantees that they are not inside islands of stability.
But the number of initial conditions considered for each value of k depends on how
close we are to the breakdown. Namely, one has to considerably reduce the number of
initial conditions ic as k — k¢, since the mean number of iterates one needs to escape
increases fast.

For our purposes, we can choose initial conditions on the unstable invariant manifold
of any point in a Birkhoff hyperbolic periodic orbit with rotation number between 1 —w
and w. In the standard map, they can be found either on y = 2z or y = 2z —1, see [83].
For our computations, we chose the 1/2-periodic orbit hyperbolic orbit (j = 2). This
orbit has a point on y = 2z. The region where initial conditions chosen in this way lie
is between the Cantori with rotation number 1 — w and w, and for a long number of
iterates they will be confined there (roughly the y component will be in [1 —w, w]). So
first, the main obstruction to escape will be these Cantori. Once crossed, we expect
the orbits to escape the region y € (0,1) in a much smaller number of iterates. This
has been checked numerically by using other values of y closer to the Cantori under
consideration instead of y = 0 and y = 1. The performed experiments do not show
any relevant difference.

2. The values of the parameter k will be chosen accordingly to the linear stability of the
critical fixed point R of Ry: since R¢ has only one unstable direction with eigenvalue
J, it is convenient to choose equispaced values of k in logs-scale.

Details on the data used. We have computed the mean escaping time for 1101 values of
the parameter k in an equispaced grid in logs-scale. We have considered k= —3(—0.01) —14.
Since we expect the mean escaping time to behave as a negative power law in k— k¢, we have
considered less initial conditions as we approached the breakdown value of the parameter kg.
Namely 10* initial conditions for & = —12(—0.01) — 14 (but for some of them in this range
up to 10%), 10° initial conditions for k = —9(—0.01) — 11.99, 10°® for k = —6(—0.01) — 8.99
and 107 for k = —3(—0.01) — 5.99.

4.5.2 Results for the mean escape rate and its standard deviation

Our results on the evolution of the mean (Vi) as a function of k can be seen in Fig. A12
There we show the same data in different scales. First, on top left, one can see the direct
results for the mean as k — kg. As expected, we observe substantial increase in the mean
escaping time as we approach kg (highlighted as a vertical line in this plot). There we
show (Ng) x 1072, The value of k closest to kg shown in Fig. 12, top left, corresponds
to k = 0.972724398546588 ~ kg + 6, being 671* ~ 1.089 - 1073. In average, for this
value of k each initial condition needs over 1.5 x 10'° iterates to leave y € [0,1]. And for
the closest value of k we have computed (Ny), k = kg + 671 ~ 0.972304340876959, being
671 ~ 0.669 - 1072 (not shown in Fig. A12)), the mean value exceeds 8 x 109 iterates.

As explained in Subsect. [3.5.6] from renormalisation and transport theories, we expect
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Figure 4.12: Statistics of (Ny), the mean escaping time of orbits of the Chirikov standard
map (AT)), for values of the parameter near kg. Top left: (N;) x 1079 as a function of k
(purple), {k = k¢} (black). Top right: logs (Ni) as a function of k (purple), and the slope
By, (black). Bottom left: (Ny) x (k—kg)™7, with B = By, (purple, top) and B = Byac
(green, bottom), as a function of k, see ([E:29). Bottom right: Detail of Bottom left. Compare
with Fig. 10 and Fig. 411l See text for further explanations.

the mean escape rate (Ny) to behave as an inverse power law in Ak. To fix notation, write

(N,) = A(AK)P, and taking logarithms log((Ny)) = Blog(Ak) + log(A). (4.27)

In Fig. B12] top right, we show the data in the left plot but in logs —logs scale to fit
[E2T7). Namely, we plot logs (N;). Recall that k = logs(Ak). Note that, as k — kg this
slope seems to change slightly. Some least squares fits of the data in different ranges of &
give

Interval B A
[—14,—12] | —3.0040.01 25+ 1 (4.28)
[—14,—11] | —2.978 £+ 0.005 28 +1 '
[—14,—10] | —2.978 £0.003 | 28.7 £ 0.5

In Fig. 4.12], top right, the slope shown is By,) = —3.00, the one corresponding to the
data of the interval k € [—14, —12]. This value has to be compared with theoretical one
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proposed in [83],
B = By = — logs(a8) ~ —3.01172189133849. (4.29)

Our numerical results show that, as we approach the breakdown, we seem to get closer to
the expected theoretical value Byjac.

In the large, the diffusive process seems to follow a power law, yet there are some visible
fluctuations. To study them, we have to subtract the fitted power law behaviour. In Fig.
bottom we show (N},) x (k — kg)~2, as a function of k. As labelled in the left figure, the
top graph corresponds to choosing B = By, ) while the one below corresponds to B = Byjac.
The right plot is a magnification of the leftmost oscillations of the left plot. The oscillations
in k € [—14, —12] are less smooth since we had to consider 10 times less initial conditions
than in k € [~12, —10).

After subtracting the power-law tendency, we are left with what seems to be a 1-periodic
behaviour as we approach the breakdown. See comments in Subsect. 3.5.6] where we referred
to this periodic behaviour as the existence of a 1-periodic function U (logs(k —k¢)). The fluc-
tuations far from k¢ (K > —6 in Fig. 12 bottom left) seem to be related to this 1-periodic
behaviour close to kg, but strongly deformed. As far as we are aware of, this is the first time
where the shape of these 1-periodic fluctuations is shown. The main goal of this chapter
is to interpret these fluctuations from the point of view of approximating periodic orbits.
The main candidates of their appearance are the shape and area of approximating islands
(see Fig. A.10), the turnstile area (see Fig. 4.I1] and compare it with Fig. 12k minima in
Fig. approximately correspond to maxima in Fig. [L.T1], left and middle), the area of the
lobes created by the invariant manifolds of hyperbolic approximating periodic orbits, and
stickiness effects due to stability islands.

In Fig. 413 we show that the standard deviation o} seems to behave similarly to the
mean. On the left of this figure, we plot o3 as a function of k, and on the right we plot
logs(o7) as a function of k£ and the slope By,). Compare with Fig. E12] top.

20 T T T T 50
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Figure 4.13: Statistics of oy, the standard deviation of (Nj). Left: o), x 1079 as a function
of k (purple), {k = kg} (black). Right: logs(c;) as a function of k (purple), and the slope
B<NE> (black)

Despite having a similar behaviour as k — kg, as an inverse power law in Ak with the
same power, the main difference between the two observables is the existence of peaks in
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0, that are much more prominent far from the breakdown. Namely, as one can observe in
Fig. B.13] right, despite we can see some small peaks near k ~ —10, the largest deviations
from the straight line appear for £ > —8.

To show the existence and nature of these peaks it is convenient to study how does the
standard deviation vary with respect to the mean. This is the contents of Fig. [£14] where
we plot o7/ (N;) as a function of k. On top left we see the behaviour in the whole range
considered, k € [—14, —3], while the other figures are magnifications of this first one. These
magnifications allow to see the actual shape of the peaks. In all the plots, we show a black
horizontal line that corresponds to oj,/ (N;) = 1. It is remarkable that besides the peaks, the
statistics of escape rates seem to have close values of the mean and the standard deviation.
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Figure 4.14: Top left: o/ (N;) as a function of k in k € [~14,—3]. The other plots are
magnifications in: top middle: [—14,—12], top right: [—12, —10], bottom left: [—10,—8],
bottom middle: [—8, —6] and bottom right: [—6, —4].

Interpretation of the results

So far we have presented the results of a massive evaluation of the mean escaping time across
the golden Cantorus of the standard map. Our numerical results fit within the available
theories of renormalisation and transport. Yet we show that there are still some open
questions concerning escape rates: there are phenomena playing a leading role that should
be taken into account. Here we enumerate and discuss the numerical results obtained.

1. The power law behaviour (N;) ~ (Ak)™PMac. As we first explained in Subsect.
and later in Subsect. 4.4.3] the interpretation of Mather’'s AW as an area and the
renormalisation theory justify that the escape rates have to behave like an inverse
power law in Ak. In our simulations we approached the breakdown by §=* ~ 0.00108
and got a difference between the theoretical value and our experimental approximation
| BMac — B<N§>| = (O(107?). This means that we are still far from the limit, but

computing representative statistics for values of k smaller than —14 is still far from
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practical. Note further that if we were close enough to the limit, the oscillations in
Fig. [4.12] should take place around a horizontal line. But we expect this to happen
closer to the limit, that is, as k — —o0.

. The tendency oj/ (N;) — 1 as k — —oo. This behaviour might suggest that the

transport rates behave as if they followed a Gamma distribution. Recall that the pdf
of a Gamma distribution has the form

K

G(z; Kk, \) = mx”_l exp(—Az), k > 1 (shape) , A >0 (rate) . (4.30)

This distribution has mean /A and standard deviation /k/\, so for values of k close
to one we would see such a behaviour. Note that if one chooses x = 1 in (4.30) one
recovers the pdf with exponential distribution with rate A. But in Sect. we will
argue that this is not the case for our actual statistics since the maximal value of the
numerically approximated pdf’s is not at x = 0. The determination of which is the
underlying probability law still requires clarification from the point of view of which is
the role of approximating islands. See also the comments at the end of Sect. [£.5.3]

The visible peaks in o;,/ (IN;) and the stickiness effect of islands of stability. In Fig. 4.14]
there are many visible peaks, that seem to be more prominent for k > —8. Their shape
resembles that of the effect of the accelerator modes in the standard map in Chap. Bl
Recall Figures 3.7, B.8 and 3.9, where we also show, for that problem, the behaviour of
the standard deviation relative to the mean. Note that in the range of k£ we are dealing
with there are always visible islands so it is more than plausible to notice their effect.

As shown in Chap. [ the power law behaviour of the trapping time statistics has
finite mean but unbounded variance. So, we expect N, to have a bounded mean,
regardless of the value of k. But (IV;) has to depend strongly on the effect of islands
of stability and the stickiness effect they produce. Furthermore, note that the way
initial conditions are chosen ensures that all of them will eventually escape. This
is one of the main differences between the experiments we did in Chap. [3] and the
ones in this chapter. Hence, despite the trapping statistics in islands have unbounded
variance, here o will be also bounded, but strongly dependent on the number of initial
conditions, o}, = ox(ic). In Fig. we show examples of this strong dependence: we
plot o7 (ic) for k € [=5,—3] and ic = 10°,5 x 10°,10%,5 x 10% and 107. Note that the
values of oj(ic) do not increase as ic does. Here, the initial conditions of the case
ic = 5 x 10° are those of ic = 10° plus 4 x 10° extra initial conditions, and so on. So,
we are adding initial conditions at each evaluation.

Coming back to Fig. E-14, for values of k < —8 we see that there is little effect due to
the stickiness of stability islands, if any. This is mainly due to the fact that the time
to cross the Cantorus is of an order of magnitude larger than the mean trapping time
in any of the islands that are present in the phase space. This means, in particular,
that as we get closer to kg the data obtained in simulations better reflects the effect
of a single Cantorus.

The limit 1-periodic oscillations U (logs(k — k¢)). The power-law behaviour comes from
the scaling in area and in parameter, but yet it needs to be clarified which are the
objects responsible for the actual transport probabilities. One expects the oscillations
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Figure 4.15: Left: o} x (k — kg)PMs as a function of k € [—5, —3], obtained for different
values of ic, see the key in the plots. Right: Magnification of the square in the left plot.

to be strongly related to the area of the heteroclinic lobes of intersecting IM of HPO and
the turnstile areas of approximating orbits. Namely, as k varies, the area in the phase
space that is accessible to orbits that can escape changes as the islands of stability
do, and not in a monotone way in k, but if we conveniently scale the phase space, the
area occupied by evolving islands varies in a periodic way, recall Sect. [£.4.2], and also

Figs. 10 and 111

Discussion on previous literature

The very first computations similar to the ones we present here were done by Chirikov in
[26]. In this review, he iterated 100 orbits starting at {y = 0} of (&I for at most 107
times, keeping track on the number of iterates needed to eventually cross the line {y = 0.5}.
By doing this, he obtained an approximation of Greene’s critical value kcpi = 0.989/(27).
Furthermore, he fitted the behaviour of the mean to

~ where AChi = 103, BChi = 2.55. (431)

The values of k£ Chirikov dealt with were from close to kcy; until almost k& = 2x. For the
largest values for which he computed the statistics, there are almost no visible stability
islands in the phase space, and in this situation D(k) grows as k?, recall Chap. Bl This may
be the reason why he got a value of A in ([£.27) almost 3 times larger than ours.

This power law behaviour was theoretically justified by MacKay, Meiss and Percival in
[86]. In this work, the authors fixed B = By, as theoretical value and fitted the value of A
in (A27) to be Apmp = 25, close to our results. See (4.28).

The last paper we want to mention here is that of Dana and Fishman [34]. There the au-
thors were the first to give numerical evidence of the predictions from renormalisation theory
[83, 80] and transport theory [86]. Namely, they looked for ranges in the parameter k where
the behaviour ([B.7) was good enough. They computed the diffusion coefficient D(k), aver-
aged among 5000 initial conditions. They restricted themselves to 1/(27) < k < 2.5/(27),
and in this range they were able to get satisfactory results for the exponent B = Bpp. In
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the whole range, they got Bpr = 3.24. In 1/(27) < k < 1.4/(27) they got Bpr = 3.16
and in 1.4/(2r) < k < 2.5/(2m) numerical simulations gave Bpr = 2.96, which is closer
both to theoretical result Bypyp and ours, By and B,. In this reference the authors gave no
information on the value of the constant A in (L.21).

As a final remark, we want to note that the computation of escape rates near Greene’s
critical values is still a hard computational issue. To obtain the results shown in Figures
and we had to perform over 8.33 x 10 iterations of the standard map (&1). And
the computations for the case k = —15, k = kg4 65 alone required over 8 x 10! iterations.
So, the sharpness of the results of the previous literature is remarkable.

4.5.3 The probability law of escape rates

In this subsection we deal with the probability law N, (25), for k& < —5. Recall that the
size of the samples (number of initial conditions we iterated) we are dealing with are 10°
for k = —9(—0.01) — 12.00 and k = —13, —14, —15, 10° for k = —6(—0.01) — 8.99, and 107
for K = —5(—0.01) — 5.99. Since we expect escaping times to be increasingly large as we
approach kg, to get an approximation of the probability density function (pdf) of Ny it is
convenient to compute histograms with bins of constant length in decimal logarithmic scale,
similar to what we did in Subsect. when dealing with trapping times of accelerator
modes.

More concretely, for each k, assume that we can set a time interval 7' = [to, t;] where we
can assure that most initial conditions will escape in a number of iterations that is contained
in 7. We say most because we expect, due to the results of Chap. Bl that if an orbit gets
trapped around a stability island, the escaping time for this orbit can become extremely large.
Then we consider n; sub-intervals I; = [toM, (oA ), where A = exp (log,o(t1/t0) log(10) /n;),
and a counter C; initially set to 0, j = 0,...,n; — 1. Each initial condition adds a unit to
C; if escapes in m iterates, where m € I;. To recover the pdf from the histogram we only
have to divide each counter by the length of the interval and by the total number of initial
conditions, ic, that is, to consider C;/((n; + 1)ic) instead of C; itself.

A sample of the pdf’s obtained can be seen in Fig. On the left we can see the pdf
N, in the actual scale time for k = —5(—0.5) — 12, and on the right we display these same
pdf’s, but in decimal logarithmic scale in time, that is, we plot

N} (&) = log(10)10° N, (10°). (4.32)

We have labelled some pdf’s according to the value of k they correspond to. In both plots,
left and right, one can follow N} for decreasing values of k by following the maximum of
each pdf from left to right. In the left plot, one observes that the pdf’s accumulate to 0
as k goes further apart from kg. To see what happens for £ — kg, the right plot is more
convenient. The pdf’s in log,,-scale in the number of iterates appear to be equispaced since
they correspond to equispaced values of k and (N,) ~ (Ak)Z. It is remarkable that in log,,
scale for the number of iterates, the pdf’s seem to go from a seemingly symmetric shape to
some asymmetric limit behaviour that resembles that of a gamma distribution (£.30)in log
scale in time.

In item 2 in the enumeration in page we commented on the possibility that the pdf’s
displayed in Fig. 2 followed a gamma distribution if the corresponding estimated value for
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Figure 4.16: Estimates of the probability density function (pdf) of the number of iterates
needed to escape, Ng, for different values of k. Left: Ni in the original scale of time. Right:
N} vs &, see (A32). Here we show the pdf’s for k = —5.0(—0.5) — 12.0.

the shape k, see ([A30), was close to one. That is, the behaviour is close to exponential,
but not exponential, since the maxima of the numerically computed pdf’s are not located at
x = 0 but increase as the mean escape rate does.

Again back to ([A30]), a rough estimation of both shape x and rate A parameters can be
done by taking into account the fact that the potential factor plays a leading role for small
values of the number of iterates, ¢, and that the exponential factor does for larger values of t.
Namely, for large t, one would expect an exponential decay of the pdf, that is detected as a
straight line in some range of ¢ in a log — log plot. See Fig. [A.16] right. The first estimation
of X\ allows to estimate the value of x. This procedure has been carried out for the results of
some of the values of the parameter shown, followed by a least squares fit to better adjust
the values of the parameters.

Despite we found that as k decreased, the agreement became better, the adjustment was
not completely satisfactory. A Kolmogorov-Smirnov test of adjustment was performed to see
if the experimental data followed the hypothetical gamma pdf with the adjusted parameters.
In all cases studied, the statistic D (the largest vertical distance between the experimental
cumulative distribution function (cdf) and the cdf of the theoretical distribution) was D ~
0.02. For ic = 10°, it is way larger than the minimum to accept that the data follows a
gamma distribution.

Hence, other means have to be adopted in order to study transport rates across Can-
tori. The previous study on approximating stability islands suggests to construct a nearest
neighbour Markov chain taking into account different layers. The corresponding transition
probabilities between different stages have to be related to the turnstile areas, [86]. This will
be done elsewhere.

4.5.4 Summary and remarks

In this chapter we have presented a detailed study of the escape rates in the standard map
(4.T)) for values of the parameter close but larger than k. We have first reviewed the Greene-
MacKay renormalisation theory and how does the dynamics of the renormalisation operator
for invariant curves explain the geometry of phase space of the standard map close to the
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golden RIC.

We have performed a detailed study of approximating islands, both from a local point of
view (around the elliptic/reflection hyperbolic orbit) and more globally in adequate compact
sets containing islands of stability. This study has lead to a classification of these islands that
allows to give an explanation of the periodic fluctuations around the mean inverse potential
behaviour of the escape rates one observes as k — kg. We have also given evidence of the
shape of the periodic function (Ny) (k — kg)? that has period 1 in log; scale.

We finished the chapter by addressing the problem of determining the probability law of
escape rates. We have given numerical evidence that a Gamma distribution can not fully
explain the shown behaviour. Instead of that, a nearest neighbour Markov process with dif-
ferent states (as many as relevant approximating islands appear near the Cantorus) has been
suggested. We will deal with this problem with more detail in forthcoming contributions.

We hope that the contents of this chapter contributes to the comprehension of the phase
space near the breakdown so that the probability laws of escape rates can be better under-
stood, by taking into account as many phenomena as possible. We have argued that one
only needs to study a conveniently scaled version of the phase space in a length 1 interval
in k. We have also explained how to properly scale the phase space and choose k to get
representative results.



Chapter 5

Stickiness effect due to a resonance
bubble emerging from a Hopf-zero
bifurcation in 3D volume preserving
maps

In this chapter we study the trapping statistics around a stability bubble that arises after a
Hopf-zero (or Hopf-Saddle-Center) bifurcation. We construct a proper 3D volume preserving
map on the 3-torus T® with accelerator modes, by mimicking some features of the Chirikov
standard map.

The results of preliminary massive numerical simulations (inspired in those performed in
Chap. B]) give evidence that the bubbles are responsible for anomalous diffusive properties
of lifts of the VPM model to the cylinder T? x R, and that the trapping statistics exhibit an
algebraic decay. We pay special attention to the geometry of the outermost invariant objects
in the bubble, as they are the main responsibles for the stickiness effect.

5.1 Introduction

While the geometry and relative position of invariant objects in twist APM is fairly well
understood, this is not the case in the VPM case, even if these maps satisfy the non-
degeneracy conditions of KAM-like results [24 147), recall Sect. [LT.Il From now on, we
will restrict ourselves to VPM such as H'” see, (51): maps depending on (6,r) where
6 € T? can be interpreted as angles and r € [0,1] as an action variable. That is, we will
consider 2-angles and 1-action maps. For convenience, let us recall the form of the VPM
that we are going to deal with:

H® T2 % [0,1] — T% x [0, 1],

()R () e

where f5 is going to be assumed to have zero average with respect to 6.

For this kind of maps, in the near-integrable case ¢ > 0 small, as we discussed with more
detail in page [I4] the dynamics near rank one and rank two resonances can be explained
via averaging theory [41]: near a rank one resonance, in some suitable region close to it the

=3
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dynamics can be approximated by the area-preserving twist or non-twist standard map times
some rotation; and near a double resonance the dynamics can be approximated by a “quasi-
periodic pendulum”. But in contrast to the twist APM setting, there is local analogue of the
Poincaré-Birkhoff theorem in the volume preserving case for invariant curves [25] but not for
periodic orbits [48]: one can not predict, a priori, which periodic orbits will be present in the
phase space by means of boundary conditions, for instance, as the existence and invariance
of two rotational 2D invariant tori (RIT) defining an invariant region in the phase space.
Moreover, despite there has been recent efforts to deal with the destruction of RIT, this
phenomenon is not yet completely understood: one does not know if there is a remnant of
these RIT after their breakdown, an analogue of Cantori for twist APM, and in case such
remnants exist, how is this set embedded in the phase space, see [100, [4§].

Concerning transport in chaotic regions, as usual, one expects them to be strongly affected
due to regular components in the phase space, recall Sect. [LT.4l It is surprising that, in
3D maps, there are examples for which there is numerical evidence that the trapping times
decay in different ways. First, algebraically, meaning that the statistics of stays in compact
sets containing some invariant object behaves as t=, b > 0 where ¢ denotes the number of
iterates, see [109]. This is the observed behaviour in the 2D setting (see Chap. [3). And
second, in other examples, this decay seems to behave in an exponential way, see [141].

In this chapter we are going to perform a preliminary study of the stickiness effect of a
stability bubble, see [18] 19, 20} 40], that arises from a Hopf-zero (or Hopf-Saddle-Center)
bifurcation in a family of VPM of the three-torus T®. The family of VPM that we will
use as example is going to be constructed in such a way that it mimics some features of
the standard map for large values of k, so that we can use the methods we introduced in
Chapter 3l

This chapter is organized as follows. Sect. is devoted to the construction of the family
of VPM we are going to use for our simulations, and to the study of the local dynamics around
some of the Hopf-zero bifurcations that occur for the constructed family. In Sect. we are
going to review the main known facts about the Michelson system, specially those concerning
the volume of bounded orbits. In particular, we will discuss on parameters to ensure that our
model exhibits bounded volume right after the Hopf-zero bifurcation. Finally, in Sect. [5.4]
we will deal with a case study. A proper choice of parameters will be done so that one can
observe the strong effect of the bubble in diffusive properties, and to give numerical evidence
of its trapping statistics.

This chapter has to be understood as a preliminary extension of the work performed in
the 2D AP setting. The goal is to show that the techniques can be easily transferred to the
VP case, where similar phenomena can be also expected. This is work in progress with J.
D. Meiss, C. Sim6 and A. Vieiro.

5.2 A family of maps of T°® with accelerator modes

In this section we motivate the choice of the model we are going to work with. Roughly
speaking, we want to consider a setting analogous to the one we dealt with in Chap Bt we
want to study the stickiness effect due to a bubble embedded in a seemingly fully chaotic
phase space. To do so, we will construct a family f. of VPM of T® such that, for large values
of e, its corresponding phase space is seemingly fully chaotic, but presents some moderate
bounded volume mainly due to bubbles that appear periodically in the parameter €. By
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bounded volume we refer to a set of orbits contained in a compact set K that never leave K
under iteration. Note that these orbits can be either regular or confined chaotic. Moreover,
this bubble is going to be an accelerator mode, so if one lifts f. to the cylinder T? x R, say f-,
the stickiness effect of the bubble will give rise to anomalous diffusion in the lifted variable.

More concretely, we are going to consider a family of VPM (2, ¢/, 2') = f.(z,y, z) where
(z,y) € T? are angles and z € R is an action. The map f. above is the projection of f. in the
3-torus. The family f. will be written as compositions of 3 shears, recall Sect. Since
the dynamics in the third component will be 2’ = z + fy(x,y), where f5 is periodic in = and
y and has zero average, we will be able to smoothly project the map to the three torus T3.
Note that we still only explicitly stress the dependence on a parameter ¢, which is going to
be the 'distance-to-integrable’ parameter, but f. will depend on more.

If we want to translate the setting that we dealt with in Chap. [3 to the 3D VPM case,
we should choose f. in such a way that it fulfills the following three main requirements:

R1 The map fy has to be integrable as defined in Def. [I], see page [0l This will be imposed
by choosing fy so that its phase space is foliated by horizontal RIT {z = const}.
Moreover, the restriction of the dynamics on each such 2-torus has to be conjugated
to a rigid rotation. Furthermore, we want some of this structure, that is, the existence
of RIT, to be preserved for small values of € > 0, but not too small, as happens in the
Chirikov standard map.

R2 For integer values of e = n € Z \ {0}, the origin P, = (0,0,0) is a fixed point of f,.
But for f,, P, is no longer fixed. It jumps upwards a distance n in the z variable per
iterate:

£4(0,0,m) = (0,0,m +nq), m € Z.

Hence, the origin is an accelerator mode, see Def. 8

R3 The local parameter x = £ —n unfolds a Hopf-zero (also known as Hopf-Saddle-Center)
bifurcation at P.. Moreover, for £ > 0 small, there appears some moderate bounded
volume around it. To fix ideas, we will define the family f. in such a way that the
Taylor expansion around Py for € =n+ k, n € Z \ {0} is locally conjugated to a map
that consists in a discretisation of the Michelson system (B.3)), see [104], plus higher
order terms that depend on n in such a way that they tend to vanish as n — oo, see
Prop. B

We aim to detect the effect of the orbits that get trapped around the bubble as anomalous
diffusion in the statistical behaviour of the z component of non-bounded chaotic orbits. Due
to the accelerating character of the whole bubble, we expect this effect to give rise to super-
diffusive phenomena, see Sect. in page 22

5.2.1 A choice of the shearing functions

First, concerning the first requirement R1, the KAM theorem in the VP setting [24] [147],
holds if the image of any 2-torus under the map intersects itself (intersection property) and
if the following twist condition holds

det (Drg(z), ng@)) #0, for all 7, see equation (G.1]). (5.2)
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Note that the intersection property is guaranteed by choosing f, with zero average with
respect to the angles (z,y).

Concerning the third requirement R3, we want the local dynamics around the origin near
integer values of € to be close to a discretisation of a flow in a suitable compact domain in
R3. Namely to be close to the so-called Michelson system

T =y
y = z ,  where a<0. (5.3)
= 1-2+ay

We are concerned about the set of bounded orbits of (5.3]). This set will be described in
Sect. 5.3l The flow (5.3) arises as the equation for travelling wave solutions of the Kuramoto-
Sivashinsky nonlinear PDE

1
ut—i_ummmm_'_uxx—i_?uizo, tZO, ZL’GR,
see [104] for the derivation of (B3] from the equation of the PDE. We will consider the

following discretisation of (B.3)):

u u U+ QU
Micpo: | v | = | ¢ | = v+ pu' (5.4)
w w’ w+<p<1—u2+§v)

Note that it is written as a composition of 3 shears as ([L25]) in page B2t first in w, then in
u and finally in v. We have changed the form of the coefficient in v in the representation of
w’ for aesthetic purposes that are going to be clarified in Prop. [3], see item 2l in Rem. [0

Taking these considerations into account, we can consider the following family of maps
of T? x R:

x x x + psin(2ry) + ¥(2')
fecly =1V = y + vsin(27z2’) , (5.5)
2 4 z + ¢ (cos(2mx) + bsin(27y))

w,v,e and b e R,

where ¢ is a 1l-periodic function in z. This map fulfills part of the requirement R1:
for ¢ = 0, all horizontal 2-tori {z = const} are invariant and have rotation vector w =
(¥(2),vsin(2mz)). This is true regardless of the term psin(27y) that appears in the first
component of f., since it is averaged out under iteration.

If (0) = 0, then R2 is also fulfilled, since if e =n € Z, f»(0,0) = n.

Concerning R3, if we impose that ¢’(0) = 0 and ¢”(0) = 0, then the local expansion of
f,, around P, can be conveniently scaled to recover, up to terms of order 2, the map (5.4,
see Prop. Bl

Remark 8. The intersection property is also a zero-flux condition. This implies that for
each upwards jumping accelerator mode f. has, there must exist another downwards jumping
accelerator mode. In our case, P, jumps upwards and the corresponding downwards jumping
accelerator mode is located at P— = (1/2,0,0).
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It only remains to choose the summand 1(z) in the first component. Mimicking the
standard map, ([LI3), we want 1 (2') ~ 2. All the requirements to be imposed to ¥(z),
beyond being 1(z) — z 1-periodic, are summarized as follows:

U(z) = —(=2), »(1)=1, ¢'(0)=0, "(0)=0, (5.6)

and ¥ (z) has to be close to the identity z near z = 1/2. Furthermore, we need ¢'(z) to be
non-vanishing in some ranges of z € [0, 1] so that the KAM theorem [24], [147] can be applied
and some RIT persist for small values of £ > 0.

A choice for ¥(z)

For our concrete example, we chose ¢ as follows. Consider for the moment a function
Y(z) = —z+c32”, defined on [0, 1]. If ¢ > 4 there is a unique z, < 1/2 such that m. = ¢’ (z.)
is the slope of the straight line between (z, % (z.)) and (1/2,0). The value z. is determined

as a solution of the cubic equation,

1;/(20)(1/2 — zc) + lz(zc) = 0.
Define the C! function

U(2) if z€]l0,z2),
Yext(2) = me(z—1/2) if 2z € [z,1— 2],
—p(1—2) if ze(l-z,1].
This is an odd function with zero average. We can consider an analytic approximation of
it via (a truncated) Fourier series, that will only contain sinus terms with coefficients a5 < 0.
Call such an approximation dext. We have chosen c3 = 872 and, for this value, it is enough
to take the first 7 harmonics to get a fairly good approximation of 1. That is,

7
z+ )\C@Eext(z) ~z+ A Z ag sin(27kz),
k=1

where A, = |diext (0)/dz| ™" is a correction factor to make sure that ¢/(0) = 0. For our map
f-, we chose

7

W(z) =2+ Zak sin(27kz), (5.7)
k=1
where
a; = —0.03172255262410020, a5 = —0.00394622128219923,
ay = —0.01500144672104500, ag = —0.00257376369649251,
az = —0.00909490284466739, a; = —0.00159954483407287.
ay = —0.00594357151581041,

In Fig. 5] we can see the graph of ¥(z) in [0,1] (left), and how much it differs from the
identity z (right). Note that for a 1-periodic map (z) as (B.1), the twist condition (5.2]) is
violated near z = 0,1/2. Indeed: for (5.5)), the corresponding ¢ (z) as in (B.) is ¢@(z) =
(¢(2),vsin(27z)) . Its second derivative is

7
D23 (z) = (—4%2 Z k*ay sin(2rkz), —4ny sin(27rz)> : (5.8)

k=1
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which vanishes identically at z = 0,1/2. Furthermore, (5.8)) is still small in [0, 1] \ {0,1/2}.
Hence, around {z = 0} and {z = 1/2} we expect the chaotic zone to be already prominent
for small values of € > 0.

1 \ 0.05
¥(2)
0.5 | 1 0
0 : -0.05
0 0.5 1 0 0.5 1

Figure 5.1: Left: function ¢(z) in (5.5), see (5.7). Right: ¢(z) — 2.

Concerning parameters, f. depends on £ and on three extra parameters, p,v and b. In
Prop. Bl we will prove that for all values of u,v and b, the local dynamics around P, for
kK =¢e—n > 0 small is close to the dynamics of the discrete Michelson system (5.4]) for some
suitable values of ¢ and a. For the purpose of this chapter, it is enough to study trapping
statistics by only varying the value of €, and to fix the other 3 parameters p, v and b. These
will be fixed in such a way that some RIT persist for a value of € as large as possible. To get
the most suitable model, we will fix them in a way that for Kk = e —n > 0 there appears a posi-
tive volume bubble and that it is as large as possible, with respect to the volume of T? x [0, 1].

Fixed points of f.. It is easy to locate the fixed points of f., and to compute their first
and second traces 7 and o, see Tab. 5.1l Once we fix the values for the parameters u, v, b
we can determine their stability for each value of € by locating their corresponding 7 and o
in any of the 8 zones of the diagram in Fig. in page 34l This will be used later on to
generate initial conditions for the diffusion experiments we are going to perform, again as
explained in Sect. in page [63l

‘ Position ‘ T ‘ o ‘
(1/4,0,0) | 3+ 4bm3cv | 3 + 4bn’ev + 8meuv
(1/4,1/2,0) | 3 — dbr’ev | 3 — 4br?er — 8mPepv
(3/4,0,0) |3+ 4br?ev | 3 + 4br’ev — 8mieuv
(3/4,1/2,0) | 3 — 4br?ev | 3 — 4br?cv + 8m3euv

Table 5.1: Fixed points of the map f. together with their first and second traces, 7 and o.

5.2.2 Local dynamics around accelerator modes

Let us restrict ourselves to ¢ > 0. The first accelerator mode of f. appears at ¢ = 1.
According to the stability analysis performed in Sect. [[.3.2] for ¢ = n € Z\ {0} the first and
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second traces of Df, at P, are

=3t =3
so 7 and o are on the line 7 = ¢ in the bifurcation diagram in Fig.[L6. In particular, D f,(P,)
has 1 as triple multiplier. Hence, it corresponds to the point B in Fig. Consider values
of ¢ of the form ¢ = n 4+ k, where xk > 0 is small. For these values of ¢, the origin ceases
to be fixed under f. and bifurcates into two other fixed points. These two fixed points
still lie on ¥y = 2z = 0, and their  component can be found by setting to zero the forcing
g(cos(2mx) + bsin(27x)), the coefficient in ¢ in the third component in (5.5). This equation
reads, in lowest terms,

(n+r)(1-2r%2°+0(z")) =n &
Y Y
x_iﬂ 2(n+/{)+0()wi7r\/ﬂ

+ O(k).

Hence, for small £ > 0, their distance is proportional to y/k. Moreover, for different values
of n, this distance scales as 1/y/n.

Now we are in position to relate explicitly the maps (5.4]) and (B.35) around the origin
near integer values of . For the purpose of the following result, it is convenient to also stress

the dependence of f. also on the parameter b, so throughout this section we are going to
denote the map (B.5)) as f.p. Let

E(x,y,2) = (azx, By,vz) = (u,v,w). (5.9)

Proposition 3. Given €,b, u and v, assume that for a suitable n € Z \ {0} we can express
ease =n+k/n, being 0 < k < ko with kg = O(1) (i.e., we are O(n™') close to the
birth of an accelerator mode, and k = kn measures the scaled distance to the bifurcation).
Denote b = b/n. There exists a phase scaling as (59) with scaling factors o = a(n, k),
B = B(n,k,pu,v) and v = y(n, k,p,v) that are O(n), such that the Taylor expansion T
(resp T_) of

Eof.;0E™ =Eo fuimymoE™

around Py = (0,0,0) (resp. P- =(1/2,0,0)) verifies that
T, = Mic,,+ Rem,, (resp. T_ = Mic, , + Rem,,), (5.10)

for suitable parameters ¢ = @(k, u,v) and a = a(v,b) that do not depend on n, where Rem,,
are terms O(n=?).

Proof. We are only going to perform the proof around P,. The proof around P_ works
exactly the same but after translating P_ to the origin.

The scaling F (5.9) relates the u,v and w variables with the x,y and z. The Taylor
expansion of E o f,44/npm o B~ around Py reads

U+ ap (2%%)
v = v+ By (27Tw7,) + Os(u,v,w), (5.11)

! k 2 b
v w+y|[n+— 1—27r2u——i-27r—E —n
n a? np
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where the —n summand in the z component in (5.11)) is due to the return to the torus, and
O3 denote terms of global order 3 in u, v and w.

If the scalings «, 8 and 7 are chosen to be O(n), the Taylor expansion 7'y (5.10) can be
written as T, = L, + Ry, where L, is a quadratic volume preserving map that does not
depend on n, and R, = O(n~?). In addition, these scalings can be chosen in such a way
that L, is exactly Mic, ,, for suitable values of ¢ and a that depend on p,v,b and £ in a
way that is going to be specified later on. We will first determine «, 5 and v in such a way
that L = Mic, 4, and then check that any other term in 7'y depends on a negative power
of n and hence can be included in R, .

The map L,: a choice of «,f and ~. Let us impose the leading terms of (5.11]) to be of
the form of those in (5.4]). Consider that n is large enough, so k = k/n < n: neglect for the
moment the monomial in kv and the monomial in ku? in the third component of (5.11)) not
in O3. After choosing «, f and v we will see that they can be included in R, .

If we equate the coefficients which are: linear in v in the first component, linear in w’ in
the second component and linear in &, linear in v and quadratic in «? in the third component,
we get, respectively, the following 5 equations which relate our target parameters «, (3,7,
and a with n, k, b, p and v:

2L 27 B vk a  27by 212yn
¥ = y Y= y Y=y T =0, Y=
B gl no o B

e (5.12)

We can solve (5.12) for a, 5 and ~:

9 1/2 A2 1/3 39,212 1/6
o = TN (E) , B = T <leuy) s v¥o= 7T’n,< /;51/) , (513)

that are obviously O(n). The parameters ¢ and a read, in the original parameters,

o = m(32u22k)°, @ = 4dbrw. (5.14)
Note that they do not depend on n, and a does not depend on k.

All terms not in L, are at least O(n~2). Now we have to deal with the rest of the
summands in the expansions we have considered. We will show that the coefficient of each
of them depends on a negative power of n.

First of all, let us consider the terms we did not take into account before: those in the
third component of (B.I1]) that are not included in the Osz(u,v,w). They read, from the

choice (5.13)),

27rb 2 128k504\ /0
" ke — 7T71c1L2:1<( 8 V) bv+(32k7,u21/2)1/6u2 .

n2p no2 n2 112

Concerning the O3 terms, those in v’ in the first component, and those in (w’)? in the
second component for odd j > 3 have the form (in absolute value), respectively,

(27)’

(2m)!
RTIT

= O(n_j+1)? 51/7‘7 .]' = O(n_j+1)7
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and similarly for all the terms in (w)? due to the expansions of the sinus functions contained
in ¢, that appear first at order 3, by construction. Finally, the absolute value of the coeffi-
cients of the terms in Oj in the third component have the form (for j > 4 even and ¢ > 3
odd)

(2m)" _
gl

Hence, the orders of magnitude in n of each of all terms in R, is n=2. O

(27T)i _ O(n_i_l).

(2m)’ _ —j

(27T)j —O(n_j+2), A
nad - j!

—i+1

There are some important aspects within the proof that are worth noting:
Remark 9. 1. In the expression of our limit map (5.4), ¢ = O(k'/°).

2. The reparametrisation a = 4bm’v does not depend on k. This is a crucial parameter
to take into account, as we are going to see in Subsect. [1.3. This is the reason why we
chose the third component in ([5.4) to be of the form w' = w + o — pu® + av/p.

3. Asn increases, the volume occupied by the bubble around Py scales as n~ 7171 = n=3.
4. Recall that in Prop. [1 (see page [53), we related the local dynamics around the fized
accelerator modes of the standard map at (1/4,0) and (3/4,0) near k =n € Z\ {0} to
the Hénon map near k =n € Z\{0}. We proved that, except for terms of order greater
than 3, the local dynamics was the same for all k = n € Z \ {0} by scaling the phase
variables and the translated parameter k' = k —n. In the present case, we also get the
same local map but we have to consider the map f_j; for decreasing values of b = b/n.
In practice, we are going to fix p,v and b and only vary €. Hence, for different values
of n, the local dynamics around the origin will be conjugated to that of Micy,, , where

¢ = m(32p°v* k)Y, a, = dbnm’v.

That is, for each n the corresponding value of a in the local dynamics increases by a
factor n, and hence is different, and the range in ¢ where the accelerator mode exhibits
some bounded volume around it is reduced by a factor 1/n.

Before dealing with the set of bounded orbits of the local model Mic,, , in the next section,
it is convenient to summarize the main features of f.. We have constructed a family of VPM
f- defined on the cylinder T? x R (53] that smoothly projects on the torus T3. We have
denoted such a projection as f.. The map f. is a VP perturbation of an integrable map,
in the sense that the phase space of fj is foliated by horizontal RIT, see Def. [Il in page [IQ.
Except around the tori z = 0,1/2 (where a necessary non-degeneracy condition is violated),
the VP version of the KAM theorem applies [24] [147] and some of these tori persist for small
values of . Moreover, the projection at integer values of n € Z\ {0}, f,, has P, = (0,0,0)
and P_ = (1/2,0,0) as fixed points, that are not fixed under f,. Their iterates become
unbounded:

£2(0,0,0) = (0,0,n5),  f7(1/2,0,0) = (1/2,0,—nj),  j >0, (5.15)

hence they are fixed accelerator modes, see Def. 8 in page 29 Moreover, we have proved
that, scaling suitably the phase variables and k = ¢ — n, with scaling factors that depend
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on n, the dynamics under f. around these fixed accelerator modes is that of Mic,, , for some
values of ¢, a specified in the proof of Prop.[3] plus a remainder that depends on n that tends
to vanish as n — co. Assume that under f., the points P, and P_ are surrounded by some
bounded volumdl. For any lift f. of f. to the cylinder T? x R, the z component of all such
bounded orbits either grows or decreases linearly in the number of iterates if they lie close to
P, or P_, respectively. We also expect that non-bounded chaotic orbits that get temporarily
stuck around the bubbles that emanate from either P, or P_, say for t consecutive iterates,
the z component would grow or decrease by a quantity nt, respectively. Recall the discussion
in Sect. 2.6l in page B

5.2.3 Other accelerator modes

Apart from P, and P_ at ¢ = n € Z \ {0}, f. may have other fixed accelerator modes.
If we look for points that jump upwards a distance n at ¢ = n (that can be found as the
intersection of level sets of the shearing functions), we find 2 isolated points, and from the
zero-flux condition, we deduce that there are 4 fixed accelerator modes. These may be taken
into account when doing any diffusion study. Note that there might also be higher periodic
accelerator modes, but we did not detect any in our numerical studies.

All upwards-jumping accelerator modes that are born at ¢ = n € Z\ {0} appear at some
point whose = coordinate is zero, and those that jump downwards are born at some point
with x = 1/2, at the same value of the parameter. The position in the phase space when
they are born can be found in the leftmost columns of Tab. 5.2

One can rewrite the proof of Prop. 3l around any of the points of Tab. 5.2l So, the local
dynamics around any of them is also close to the discrete version of the Michelson system
Mic,, o. In Tab. we show the corresponding values of the parameters ¢ and a obtained
after this procedure as a function of k,n,u,v and b. When redoing the proof, the only
difference we encounter with the original one are some changes of sign due to expanding
sinus terms around 7.

‘ Upwards ‘ Downwards ‘ ® ‘ a ‘
(0,0,0) | (1/2,0,0) T (32kp2?)V0 | dbm?y
(0,1/2,0) | (1/2,1/2,0) | —7 (32kp202)"° | —dbm2v

Table 5.2: Position of the accelerator modes at their birth at e € Z \ {0} together with the
relevant parameters they depend on, ¢ and a, see (5.14).

In the next section we will discuss parameters. We need to choose them so that after the
Hopf-zero bifurcation that occurs at P, and P_ for e = n € Z\ {0}, the approximated local
model (5.4) has bounded orbits. From the analysis in [40],accelerator modes will appear if
the corresponding value of a in the local map is negative. Hence, from Tab. 5.2] for any
choice of the parameters b and v, only a pair of accelerator modes will be surrounded by
bounded motion.

! By bounded volume we mean the set of orbits that do not escape a compact vicinity of P, or P_ under
iteration.
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5.3 Dynamics of the discrete Michelson map

In this subsection we discuss for which ranges of the parameters ¢ and a the family of VPM
Mic,, , presents some positive volume set of bounded orbits.

The local dynamics around accelerator modes has been chosen to be Mic, , mainly be-
cause it is a discretisation of the flow (5.3)), so when ¢ ~ 0 one can explain the shape and
evolution of the set of bounded orbits (if any) via (5.3)). The dynamics of the flow (5.3))
can be completely understood by means of a Poincaré map on a suitable surface of section.
Among the well known properties of the Michelson flow written in the form (B.3]) the most
straightforward are that

1. It preserves volume since it is divergence free,
2. It is reversible under (x,y, z) — (—x,y, —z) and the time reverse ¢t — —t, and

3. It has 2 fixed points located at (£1,0,0) which are both of saddle-focus type, and
dimW*(1,0,0) = dimW*(-1,0,0) = 2.

Besides that, if we choose as Poincaré section z = 0,y > 0, volume preservedness and
transversality of orbits to this surface imply the preservation of a measure whose density
is proportional to 1 — 22 4+ ay. This measure is absolutely continuous with respect to the
Lebesgue measure. Hence the dynamics of (5.3) can be explained as if it was an open
symplectic map of the plane (the Poincaré return map on z = 0,y > 0, call it P) times some
angle. This allows to explain the evolution of the whole set of bounded orbits phase space
as the parameter a varies as we did in Chap. 2l For instance, fixed or periodic points of P
correspond to periodic orbits of the flow, invariant curves to invariant tori, etc. In particular,
the destruction of 2D invariant tori of the flow can be explained by means of obstruction
arguments inherited from P. We refer to [42] and references therein for more details on
the Hopf-zero singularity. In this referenced work, the authors pay special attention to the
Michelson system (5.3)).

Movies of the evolution of the set of bounded motion of a scaled version of (B.3]) as a
function of the parameter a are available in http://www.maia.ub.es/dsg/moviehsn. One
can see some of the available pictures in Fig. 5.2l

It is important to remark that (5.4)) is conjugated to the map

£ ¢ £+
Ger,e0 - n = n = n+¢ (5.16)
¢ ¢ (+entea(—=1+8%)
via the change of scale and reparametrisation
ClEn Q) = (=& -1 ~a”) = (wow), p=q” a=ea (5.17)

The map (5.10) is a scaled version of a truncation of the normal form of a triple-one multiplier
[39], and its dynamics was studied, with special emphasis on bifurcations of invariant circles,
in [40]. In this article, the authors performed a normal form analysis and justified that there
is a set of positive volume of bounded motion when 0 < €; < €. and ey € [—4,0], that is,
for 0 < ¢ < ell3 and a = 4bnr?v € [—4,0]. The value of €., depends on the value of a, and
it can not be estimated a priori. This value €, has to be understood in a practical way as
follows: for any € > €, for some fixed pixel size, no bounded motion is detectable.



136 CHAPTER 5. STICKINESS EFFECT DUE TO A RESONANCE BUBBLE

—a® = 0.0130 —a® = 0.0155 —a® =0.0194 —a® = 0.0260
—a® =0.0131 —a® = 0.0156 —a® =0.0195 —a® = 0.0261

Figure 5.2: Sections of the bubble of the flow (5.3)) in z = 0, y < 0. The displayed variables
are y in the abscissas and x in the ordinates. In each plot we show the data for two different
values of the parameter, before (light gray, smaller value of a in absolute value) and after
(dark gray, larger value of a in absolute value) the breakdown of an outermost invariant 2D
torus (invariant curve in section). From left to right, in section, they confined 1:7, 1:6, 1:5
and 1:4 periodic islands. The breakdown of these 2-tori allows previously confined orbits to
escape to infinity. The corresponding values of the parameter a are displayed on top of each
figure.

5.3.1 The set of bounded orbits of g, .,

Despite all the computations in this section will be performed for the map g, e,, we will
refer to the volume of its set of bounded orbits as B,,. As usual, we will distinguish
between bounded orbits that are either regular or chaotidd. The measure of the set of
regular (resp. chaotic) bounded orbits will be denoted as By, , (resp. Bg ). So, in practice
By.=B,,+ B, Forall e, >0, B,, is contained in a compact set of R3. Moreover, this
set seems to tend to some limit shape when ¢ — 07. Also, g, ., is actually a scaled version
of a map of the quadratic family of VPM originally introduced in [39} [40]:

=/

T T+y
gq,ez : g = g = ?] + Z . (518)
z z Z — €+ e + AT? + Brj + Cy?

for A=1and B = C = 0. One recovers (5.16) from (5.I8)) via the change of scale T = ¢,£,
y = en, Z = (. The difference between these two versions is that g ., has, for all
€1 > 0, two fixed points located at (£1,0,0), while for ., ., these fixed points are located at
(%]e1]/v/A,0,0), provided A > 0.

In [40], the authors mostly restricted themselves to the case A =1 and B = C' = 0.5.
We do not expect major differences between this case and ours. In case the quadratic form
Az? + Bzy + Cy? is positive definite, one can prove that all bounded orbits of (5.I8) are
contained in a cube centered at the origin, see [79, [40]. Since Mic, , is conjugated to Ge, e,
with A =1 and B = C = 0, the corresponding quadratic form is not positive definite. Yet it

2Throughout this chapter, an orbit is considered to be chaotic if after N iterations of the map (N has
to be large enough, say, at least 10°), the numerically approximated maximal Lyapunov exponent is larger
than 5/N.

-0.45
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is easy to show that all bounded orbits of (5.16)) are still contained in a cube that is centered
at the origin, by mimicking the procedure introduced in [79].

As inherited from the Michelson system, for ¢ > 0 but close to 0, B, , mostly consists in
a Cantor family of nested 2D tori that are, in turn, enclosed by the 2D invariant manifolds
of the fixed points at (+1,0,0). In Fig. one can see, in the section ( = 0, n > 0, the
distinction between regular and chaotic orbits. Note that it resembles the aspect of the set
of bounded orbits of a stability island of an APM.

Back to B ,, the theoretical estimations for the compact set where all bounded orbits
lie are not practical, and it is convenient to perform a numerical exploration to get better
bounds. A rough numerical study suggest that they are all contained in the following box
and for the following ranges of parameters

Bprac = {(gﬁn? C) SuCh tha’t |€| < 32’ |77| < 457 |C| < 85}?
©® =€ €[0,0.60], € =ac[—4,0]. (5.19)

In Fig. 5.3 we plot the relative volumes B, , (top), B}, (bottom left) and B , (bottom
right), relative to the volume of By, for the values of the parameter in (5.19). To obtain
these plots, we used a 800 x 800 x 800 grid in By, and iterated each initial condition at
most 10° times. The initial conditions that did not escape from Bprac in 10° iterates were
classified, either as regular or chaotic using an approximation of the maximal Lyapunov
exponent. For a better visualisation of the results obtained, we plot @ in the abscissas and €2
in the ordinates, and the color of each pixel corresponds to the percentage of the volume in
Bprac that is occupied by the displayed quantity. In this plot, we see that the set of bounded
orbits for g, ., tends to some finite non-zero limit as e; — 0. This suggests that the volume
of the bubbles of f. that appear at ¢ = n € Z \ {0} grows as ¢®. The position of the
vertical lines in the top figure is going to be explained in Sect. 5.4l It is worth noting that
the practical set Bpyac 1s still a lot larger than the set of bounded orbits. This is the reason
why only at most 4.5% of By is occupied by bounded motion. Better estimates of this set
can be obtained by considering a larger number of iterates, but it can be time consuming
due to the larger total of iterations one should perform. It will be improved in forthcoming
contributions.

In Fig. we can see the whole picture of the evolution of bounded volume. As com-
mented above, in this chapter we will restrict ourselves to some fixed values of u,r and
b and vary €. From (5.I4]), this means that we will just deal with a bubble whose dy-
namics, in lowest terms, is described by Mic, , for some fixed value of a, and where ¢ is
allowed to vary. Namely, the choice we will justify in Sect. [5.41] corresponds to considering
a = a; = —0.115272, the rightmost vertical white line in Fig. 5.3 top.

It is interesting to show what happens for this value of a = a;. This will allow us to
compare with the actual bubble of f.. In Fig. [5.4] we show the evolution of the bounded
volumes for a = a;. As in the Michelson system of ode (5.3]), the orbits that are bounded
appear to cross ( = 0 transversally. We computed also the area of the intersection in
¢(=0,7>0,call it A,,. Again, we have distinguished those initial conditions that belong
to what seems to be a regular or a chaotic orbit. We denote the respective areas that these
sets occupy as A7, , and Af

Again, for a better V1suahzat10n of the results, and to be able to relate this data to the
correspondmg data for the actual accelerator mode, we plot €7 in the abscissas 1nstead of

= ¢®, the volumes B, By, , and Bg , are shown multlphed by a factor € = ©?, and the

areas Ay q, A7, , and AZ appear multlphed by a factor €2 = °.
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Figure 5.3: Fraction of the volume, relative to Byac, of: top, B, ,, bottom left, B;,a and

bottom right, By ,. In the abscissas we plot € = a and in the ordinates we plot €5 = ¢S,
The color of each pixel corresponds to the fraction of bounded orbits, corresponding to the
vertical color legend on the right of each plot. For further info on the vertical lines on the
top picture, see Sect. [5.4l

For this concrete value of a = a;, we could improve B, to
{(¢,n,¢) such that [¢] <3.2,|n] <3,[¢| <32}, ¢’ =e€[0,03],

and all bounded orbits intersected ( = 0,7 > 0in £ € [-1,1] and n € [0,2]. So in Fig. 54
we show volumes and areas relative to these sets.

In Fig. 5.4l top, we can see results for the bounded volume and in the bottom we see
results for the area in the section ¢ = 0, n > 0, relative to the boxes and squares given
just above. As in the 2D setting, in either case, it seems that some resonances occur in the
central periodic orbit (seen as a fixed point in the section) that give rise to chaotic area
inside the whole bounded region. As €; increases, some 2D invariant tori are destroyed and
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this volume is eventually released and orbits in it can become unbounded. This is seen in

the growth of the chaotic volumes and areas B, , and Ag , that appear as peaks, and the

eventual sudden decreases of the total bounded quantities.
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Figure 5.4: For a = ¢, = —0.115272, and as a function of £2: top left: Bounded volume of the

bubble 100 B, (purple), 100 By, (green) and 10*¢ B¢ , (blue). Top right: magnification
of the square in the top left plot. Bottom left: bounded area in the section ( = 0, n > 0.
We plot 100*3A,, (purple), 10%0*3 A7, (green) and 10%0** A (blue). Bottom right:
magnification of the square in the bottom left plot. To obtain these plots we considered an
orbit to be non-escaping if it remained bounded for 10° consecutive iterates. The stepsize
used in €? is, in all figures, 7.5 - 107°.

Despite not being equivalent, one is lead to compare the evolution of A, , and the evolu-
tion of the set of bounded area of the orientation preserving Hénon map in Fig. 2.3 page 43|
A remarkable difference is found in the evolution of the area of the set of chaotic confined
motion, A , versus the evolution displayed in Fig. 2.4l see page @4l As ¢ changes, it seems
that in some ranges, A7 , exhibits a large persistent set of chaotic confined motion that oc-
cupies a relatively large part of the whole set of bounded motion. Despite having increased
the maximal number of iterations to 10° to get rid of orbits that actually unbounded that
are stuck outside the bubble for long times, numerical evidence suggests that one has to
iterate up to 10° times in order to get rid of most of these orbits (this is what we have done
to generate the sections in Fig. [B.H). So we expect that these actually unbounded orbits
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that are trapped for long times give a non neglectable contribution to what is shown as B, ,
and Af, ,. But there is also a large measure of chaotic confined orbits that lies within the
structure of nested 2D tori.

In the 2D setting, the main source of chaotic confined orbits is due to the transversal
crossing of the invariant manifolds of hyperbolic periodic orbits that are born at the elliptic
point. In the 3D VPM setting, if the map has an invariant curve, we can think of two
rotation numbers: the longitudinal one wy, that is measured along the invariant curve, and
a transversal one wr. If we fix a and vary ¢, we expect these rotation numbers undergo
resonances. In [40] the authors discuss and classify these bifurcations. The VPM case is
much richer than the 2D case in the following sense: invariant curves can bifurcate either into
invariant curves (whose period does not need to be a multiple of the original invariant curve)
or into strings of bubbles as observed in the dissipative setting [18] and in the conservative
setting [40]. This first kind of bifurcations give rise, when looking at sections, to the typical
pattern of bifurcating pendulum-like structures related to the Poincaré-Birkhoff theorem.
But despite looking like a single periodic orbit, they can correspond to sections of periodic
normally elliptic invariant curves. The mixture of these two phenomena may be responsible
for the abundance of bounded chaotic motion.

In Fig. we show the sections of the set of bounded orbits in { = 0, n > 0 for some
values of €;. Regular pixels are shown in red, while chaotic confined orbits are shown in
blue. To produce these plots we have used a 1250 x 1250 grid in (£,7)[—1, 1] x [0, 2]. First,
we have detected if the center of each pixel was in a an orbit that did not escape after 10°
iterations. Let (i1,42) one of such pixels. If any pixel of the form (i; + j1,42 + j2), where
J1,J2 € {—2,—1,0,1,2} did escape in less than 10° iterations, we re-checked the center of
the pixel (i1, 49) for a larger number of iterates, up to 10° (and 10'° for the case €2 = 0.031).
After this process, for the initial conditions that were in orbits that we could consider to
be bounded, we approximated the maximal Lyapunov exponent. It is important to stress
that for €2 = 0.030, there are isolated blue spots in the outermost part of the section of the
bubble that do not seem to be confined by any 2D torus (curve in section). For £2 = 0.031, if
we only iterated at most 10° times, there was a cloud of blue spots surrounding the regular
motion. All these initial conditions correspond to unbounded motion that is trapped for
long times around the bubble. In order to get rid of this cloud, for €2 = 0.031, we had to
iterate up to 10'° times.

In section, the apparent similarity between the 2D and 3D cases is visible. We show two
pictures where there appear what seems to be a 7-periodic orbit (left), and two where there
seems to have a 5-periodic orbit (right). The investigation of whether what shows up in
section as islands of stability actually come from a single elliptic invariant curve or several
invariant curves (that are mapped periodically) [40] is left for future contributions.

As a final remark, we have to note that for low values of n, the dynamics of Mic,, , and
the real local dynamics of the accelerator modes that appear may differ substantially, due to
the summand Rem,, in (5.10). But the accelerator modes that are larger in the phase space
are those for smaller n (and hence are the most suitable for studies concerning trapping
statistics), since their volume decreases fast as n increases, namely as n=3, see Rem. [0
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€ =0.018 €2 =0.019

Figure 5.5: Sections of the bubble in ( = 0,7 > 0, in a 1250 x 1250 grid in (§,7n) €
[—1,1] x [0,2]. The red pixels correspond to regular orbits and the blue ones to chaotic
confined motion. Here by confined we mean that these points do not escape from Bpac in
10% (10'° for €2 = 0.031) iterations, see the text for further information on how we have
produced the figures. The corresponding values of ¢; are shown on top of each figure. On
the left one can clearly see what in section seem to be 7, 8 and 9-periodic islands of stability,
and on the right, the most prominent seem to be 5-periodic.

5.4 Diffusion in the presence of a bubble: a case study

The main goal of this section is to analyse the results of some preliminary massive numerical
simulations of chaotic orbits of f. to study the role of a moderate size bubble in a seemingly
fully chaotic phase space. Here we present the first steps of a larger forthcoming first sys-
tematic study on the role of bubbles in the diffusive properties in the z component in the
phase space of f. for large values of £, which is linked to stickiness phenomena. We are going
to proceed as we did in Chap. [3

For our purposes, it is enough to conveniently fix u,v and b, and allow € to vary. We
recall that near any integer value of e = n+k, n € Z\ {0}, k small, the relationship between
the parameters of f. and the local limit dynamics Mic, , is

16, a = 4bnrv.

© = 7(32nu*V°K)

Hence, if we fix all parameters of f. but e, we will fix the value of @ in the limit local map.
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This choice can be understood as studying the effect of a bubble along its evolution on single
straight vertical line in Fig. 5.3 as the white vertical segments depicted.

5.4.1 A choice of p,v and b

We have chosen the values of the parameters u, v and b in such a way that the value of ¢
for which the last RIT of f. is destroyed, say e.i, is maximal. This value is analogous to
Greene’s critical value kg for the standard map (LI3]). Recall that we have already fixed
the appearance of the first accelerator mode to be at ¢ = 1. We want to minimize the
distance in the parameter € between the destruction of the last RIT and the appearance of
the accelerator mode, so that the volume of bounded orbits around the origin right after the
Hopf-zero bifurcation is as large as possible.
After a fine exploration, we chose

p=001, v=024, b=-012, (5.20)

and for these values, we conjecture that €., € (0.093,0.094). We have determined this value
by iterating a relevant set of initial conditions in T? x [0, 1] (where there is evidence of the
existence of RIT) under f. for long times, say T, with 7" up to 2-107. Each initial condition
was classified first as either escaping or non-escaping from z € [0, 1], if for some number
of iterates t < T it escaped z € [0,1]. Those that did not escape were classified as either
chaotic or regular using an approximation of the Lyapunov exponent. And if they could be
considered to belong to a regular orbit, we checked whether they could be considered to be
on a 2D rotational invariant torus or not by iterating them and checking that, in the z,y
coordinates, they completely filled all the pixels on a 400 x 400 grid.

Note that the value of £, is approximately 1.65 times smaller than k¢, but it is far from
being negligible.

5.4.2 Bounded region around the actual accelerator mode

After fixing the values of the three parameters p, v, b to those in (5.20), for each n we get
different values of a in Mic,,,, since it does not depend on x. We represented the values a,,,
n =1,2,3 where

an, = € = dbnmv = —0.11527°n,

in Fig. 5.3 as vertical white lines. The following is worth noting.

Remark 10. 1. A necessary condition for a = €5 so that there might appear a bubble is
that it belongs to [—4,0], [{0]. Hence, for (5.20),

4

3
< Oatseaz © 0

ap,>—-4 < n

Hence, for the present choice of parameters, for n > 4, no fived accelerator modes will
have bounded volume around them.

2. Of course, the choice of the parameters could have been done in the opposite way: for
a given a = a* of interest, we could have chosen v and b so that 4bm*v = a*.
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3. Concerning other accelerator modes that may appear in the phase space. First, the
choice (2.20) implies that only 2 of the listed fixed accelerator modes in Tab. [5.2 can
appear since the corresponding value of a in the local dynamics Mic, , has to be con-
tained in [—4,0]. If this is not the case, we do not expect any bounded volume to show
up around them. Second, the dynamics around these accelerator modes is strongly af-
fected by a large remainder Rem,, (2.10) for small values of n. Our numerical studies
suggest that actually, for n = 1, only Py and P_ have some bounded motion around
them. But for n = 2, there seem to appear more bounded motion for f.. Namely, there
seems to appear a 2-periodic accelerator mode orbit that gives rise to some bounded
volume.

Since we want to study the effect of a single accelerator mode, it is convenient to deal
with values of € close to 1. Let us now compare the volumes of the set of bounded orbits
of the theoretically predicted limit map Mic,, and the actual accelerator mode. For f,
with € near 1, we studied the set of bounded orbits of the accelerator mode, but only in
the section z = 0,y < 0. In a 400 x 360 grid in (x,y) € [—-0.024,0.024] x [—0.12,0] we
iterated the centers of the pixels for a maximum number of times Ty = 10°,107,3 - 107,
and considered that we escaped if before reaching Ti,ax, either |z|, |y| or |z| were larger than
0.25. The range where we looked for bounded orbits was chosen accordingly to the position
of the fixed points of f. that bifurcate from the origin at ¢ = 1. We did this exploration for
e=1+k, k=107%(107%)0.0096. We show the results obtained in Fig.

0.1 F 0.03

0.05 0.025 |

NSRS,

0

0.02

1 e1 &2 1.003 €3 1.006

Figure 5.6: Evolution, as a function of ¢, of the area of bounded orbits around the ac-
celerator mode of f. that appears at ¢ = 1 in the section z = 0,y < 0 relative to
(z,y) € [—0.024,0.024] x [-0.12,0]. The colors indicate different maximal number of it-
erates: the red line corresponds to 10°, the green line to 10" and the blue one to 3 - 107.
Left: full range of k where an accelerator mode is detected. The labelled values 1, €9, €3 are
studied later in Sect. 5.4.61 Right: magnification of the box in the left figure. The sudden
decreases in bounded area correspond to the breakdown of an outermost invariant 2D torus

that allows previously confined motion to escape from a neighborhood of the bubble, recall
Fig.

We can see how much does Rem; affect the dynamics of the actual ball by comparing
Fig. 5.6 left and Fig. 5.4 bottom left. The perturbation does not only affect the shape and
evolution of the bubble, but also forces it to disappear a lot faster. In Fig. we see that

1.009 1.0026 1.0029 1.0032
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k € [0,0.009] and in Fig. 5.4l that €2 € [0,0.09]. Let us relate €; and . In Prop. Bl we proved
the local parameter x was related to that of the limit local dynamics ¢ as

S06

_ ~ 6

© = 7320V VORYS =
Note that in Fig. 5.4 we used €2 = 5 as parameter. Hence, we see that in case Rem; was
not present, the range of x for which the bubble presented bounded motion would be at least
56 times wider.
For n = 2, where 4 fixed accelerator modes show up, the terms in the remainder Rem,
affect the bubbles in a different way and the two pairs of bubbles that show up seem to be
completely different.

5.4.3 Diffusion in the chaotic zone: expectations

We have constructed a family of maps f. in a way that we can consider 3 main ranges of the
parameter concerning the possibility of vertical drift and the geometry of the phase space,
as we did in page For f.,

1. If 0 < e < egir =~ 0.093 there is no vertical diffusion due to the existence of homotopi-
cally nontrivial invariant 2D tori,

2. If et < € < 1 there is vertical diffusion but moderate sized regular components in
the phase space may still be present. If the size of these regular components is below
pixel size we would observe the statistics in the action variable z of orbits in the main
chaotic sea to tend to be uniformly distributed under iteration of f. (in T3). We have
numerically detected that this is is actually the case for values € > 0.2. To reach this
stage it could require a long transient of iterations.

3. If ¢ > 1, except from three intervals [1,1 + k1], [2,2 + k2], [3,3 + k3] that are related
to the ranges of parameter where bubbles around fixed accelerator modes appear, and
maybe except from other intervals due to the existence of higher period accelerator
modes, we expect that the z component of any chaotic orbit rapidly distributes close
to uniformly, because the phase space is seemingly fully chaotic. Note that we can not
assure, for any value of the parameter, the absence of other orbits that can strongly
affect the diffusive properties of f.;, like other smaller fixed or periodic bubbles. But
in the ranges we are interested in, we did not detect any of them.

We have numerical evidence that x; =~ 0.009, see Fig. [5.6] but recall that as we change n,
the volume of the bubble that appears scales as 1/n3 and the range of the parameter x for
which it appears scales as 1/n. Moreover, if we do not also scale b as 1/n, the parameter a
in the local dynamics around accelerator modes changes, so k1, ko and k3 cannot be a priori
related to each other.

Here we will investigate the behaviour in the interval € € [0.2,1.009] D [1,1 + k], that
contains the interval where first pair of fixed accelerator modes shows up.

As in the 2D case, outside the regime where the accelerator mode appears, if we assume
that the phase space is fully chaotic, we expect the diffusion in z to behave as the simplest
diffusion equation (recall Sect. [LT.5])

dp 1 0*p
E - §D(€,,U/,V,b)w,
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where p(z,t) is the density of points, z is the angle variable and ¢ the number of iterations.
Here D(e, p, v,b) is the diffusion coefficient. The 1-step coefficient, known as the quasi-linear
value can be easily evaluated as

DQl(Ea,u>Vab) :/

2
(2 —2)? = / (e(cos(2mx) + bsin(2my)))? = %(1 +b?). (5.21)
T2 T2
More accurate versions of D(e, u,v,b), obtained by taking into account the effect of the
correlations of more iterations, can not be obtained in a straightforward way. We tested the
so-called Fourier-paths technique [118] [75], but in this setting, the dependency of 2’ and 3’ of
simple trigonometric functions in z’ does not allow to obtain such paths in the corresponding
Fourier space. Despite that, we expect D(e, i1, v, b) to behave quasi-periodically due to effect
of more than one angle, but to determine this diffusion coefficient in a more precise way
other techniques should be used. We will not address this specific problem here.

It is not clear, though, what will happen inside [1, 1]. In Chap. B we dealt with the 2D
case with stability islands. Their Hierarchical Island-Around-Island structure gives rise to a
power-law behaviour of the lengths of stays which, in turn, gives rise to anomalous diffusion.
In contrast, it is not clear how the invariant objects of the bubble are organized according to
their rotation numbers w;, and wy. In next section we are going to give numerical evidence
that bubbles also give rise to anomalous diffusive properties in the dynamics along the z
variable of f..

5.4.4 Methods

We performed a similar massive simulation of orbits for some values of ¢ € [0.2,1.009]. For
each selected value of the parameter, we chose ic = 10° initial conditions accordingly to the
procedure explained in Sect. [3.3.2l. We used a linearisation of the 1D unstable manifold of
the fixed point (3/4,0,0), which is a fixed unstable saddle with a 1D unstable manifold and
a 2D stable manifold, in the ranges of parameters we are dealing with, see Tab. 5.1l The
initial conditions chosen are equispaced in log scale, at a distance from the fixed point that
is typically 1078 and even 107 in some cases. Recall that choosing initial conditions using
this procedure prevents them of being confined by sets with regular motion.

Each initial condition was iterated either 10® or 10° times, and in the course of the
iteration, we kept track mainly on

1/2
1. The standard deviation op = <<(ATz)2> — <ATZ>2> every 10° or 107 iterates, and

2. Captures into bubbles. We have kept track on the number of consecutive iterates that
an orbit has remained close to a bubble. By close to a bubble we mean to be in
the union of two boxes each containing one of the bubbles around P, and P_. Our
numerical experiments suggest that the bubbles are completely contained in

W = WLUW_, where
Wi = {(t,y,2) : |2] <0.024,|y[ <0.12,]2] <0.08}, and  (5.22)
W_ = {(z,y,2) : |[x—1/2| <0.024, |y| <0.12,]z] < 0.08}.

Note that the projection of W, onto z = 0, y < 0 is the region where we studied
the set of bounded orbits of the actual accelerator mode around P,. See Fig. 5.6
Furthermore, we have considered an orbit to be trapped in any of these two sets if it
did remain at least 128 consecutive iterates inside one of them.
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5.4.5 Results

Our main observable is the standard deviation or, and we are mostly interested in its
behaviour as T  increases. As explained in Sect. [LT.5] in a phase space that is seemingly fully
chaotic, if there are no accelerator mode orbits, we can travel either upwards and downwards
in z without restriction, and with equal probabilities. This gives rise to a process that
eventually tends to seem to be diffusive. In the presence of accelerator modes, this diffusive
behaviour might be destroyed. In case this happens one is lead to study the trapping
statistics Z(t) in the set W = W, UW-_. The upwards and downwards accelerator mode
bubbles have exactly the same shape and volume. So, the effect of both accelerator modes
in the standard deviation and the trapping statistics is the same, despite one jumps upwards
and the other one downwards. This is why we consider an orbit to be trapped for ¢ > 128
consecutive iterates around accelerator modes if either it has spent ¢ consecutive iterates in

W_|_ or W_ .

Evolution of o7 as a function of 7" in [0.2, 1.009]

Our numerical experiments suggest that the last RIT of f. breaks down near ¢ = 0.1. We
have numerically checked that close to e, approximately 2% of the phase space is occupied
by regular motion, and that in the range ¢ € [0.2,1] any regular component is below pixel
size. Hence, in this range of the parameter, o is expected to increase as /7. But a drastic
change in the statistics is expected for ¢ € (1,1.009].

In Fig. 5.7 we show some examples on how does o7 behave as we increase the number of
iterates. In the left plot we show the evolution for some values of € before the appearance of
the fixed accelerator modes. These display a growth that fits quite convincingly a behaviour
like const x T2, Moreover, the coefficient seems to grow in a roughly linear way in e,
accordingly to the dependency of D, (5.21]), but one can tell that the effect of correlations
(that we expect to be quasi-periodic due to the dependency of two angles) is strong. As
shown on Fig. .7 this is not the case for ¢ > 1, in the range where accelerator bubbles
exist. Namely one observes sudden and large increases in op. In some cases, they even seem
to fit a straight line for some time. Here we display the behaviour for 14 (non-equispaced)
values of € € [1.0005,1.0055], most of them in light gray. This behaviour is clearly non-
uniform in €, mainly due to random long trapping around the bubbles. We have numerical
evidence that the diffusive behaviour is recovered close to € = 1.0085.

Some examples of trapping statistics

Among all the values of € for which we have data of, we have observed a similar phenomenon.
To illustrate it, we have chosen the following three examples: ; = 1.0007,e, = 1.0015 and
g3 = 1.0040, see Fig. .6l These 3 values are those in blue, green and red in Fig. 5.7 right,
respectively.

The displayed results on the evolution of o7 show that in some ranges the standard
deviation grows faster than v/7. Namely linearly for long times. This suggests that the z
component of an average orbit grows linearly for some long number of iterates. Of course,
by the way we have constructed the family f., we expect this behaviour to be due to large
stays close to bubbles. It seems that once an orbit gets trapped in W (5.22)), it may be
difficult to escape from this set.
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Figure 5.7: Evolution of the standard deviation o7 as a function of the number of iterates
T. Left: ¢ = 0.2(0.1)0.9, where one observes a behaviour o =< T'2. The curves are
ordered vertically according to the value of € they correspond to. Right: Some values of
e € [1.0005,1.0040], mostly in light grey. The highlighted values plotted with lines and
points are €; = 1.0007 (blue), 2 = 1.0015 (green) and e3 = 1.0040 (red). We will give
further information of these 3 cases later on.

Denote by Z(t) the probability that an orbit spends ¢ consecutive iterates in W. If it
behaves as an inverse power-law Z(t) ~ t7° b > 0, a histogram of trapping times would
appear as a straight line in a log — log-scale plot. We have considered numbers of iterations
in the interval [to,t;) = [27,2%0) and a partition of this interval, in decimal logarithmic scale,
in 190 sub-intervals I; = [t;,t;41) where ;11 —t; = 0.1logy,(2), i = 70,260. For each interval,
we considered a counter C; initially set to 0. For each stay of length ¢, we added 1 to the
counter C; if ¢ = floor(0.11og,(t)). In Fig. 5.8 left, we can see the numerically approximated
non-normalized densities. By normalized we mean that its integral (sum, since we have
discretised it) is 1. The abscissas correspond to the center of each interval in log,,-scale, and
in the ordinates we plot the frequencies divided by the amplitude of each bin, 20-1(+1) — 20-1¢,
These have been obtained by iterating 10° initial conditions for 10® iterates.

In all non-normalized pdf’s shown, we observe several interesting phenomena. First, for
small values of ¢, we see some oscillations. These are related to the transversal rotation num-
ber of the outermost invariant 2D torus. Each oscillation is related to spending a multiple of
the inverse of this rotation number around the torus. That is, once trapped they correspond
to perform a complete turn around the outermost torus, then two, etc., before escaping from
a vicinity of the bubble. These oscillations become less prominent as € increases. For larger ¢,
after these oscillations, it is plausible to assume that the trapping times behave as an inverse
power law, but we observe that in different ranges we can fit lines with different slopes, the
first one being larger (smaller in absolute value) than the second one. On the right of each
histogram we display an example of orbit that got stuck around the bubble. In Fig. 59| top,
we display some points of these orbits close to z = 0 projected onto z = 0. In the bottom
plots of this figure we show also some points in regular orbits (inside the bubble) that are
close to z = 0, projected onto z = 0. See the caption in the figure for further information of
the width of the slices considered.

For £, = 1.0007, on top of Fig. 5.8, we observe two slopes in the histogram, —1.55 and
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—2.35, and since this value of ¢ is very close to the birth of the bubble (see Fig. [5.6]) we guess
that the typical trapped orbit entered close the stable 1D manifold of the leftmost fixed
point (that at (*,0,0) with * < 0), then followed a trajectory that seems to fill a 2D torus,
and then escapes following the 1D unstable manifold of the rightmost fixed point (that at
(2*,0,0) with z* > 0). This behaviour is also clear in Fig. 59 top left. In the middle, for
g5 = 1.0015, we find a similar situation, with slopes —1.83 and —2.84. Here we seem to be far
from the birth of the bubble, and we expect orbits to generically get trapped either around
an outermost 2D torus or smaller satellite tori. In the example shown in the middle right of
Fig. the orbit gets stuck around a satellite torus that lies outside the main bubble whose
transversal period (in section in z = 0, y > 0) seems to be 12. What we see is actually the
section of a 6-periodic invariant curve that is 2-periodic in section, see related comments in
This is seen in this plot as a region that is more dense in points. The central region,
where there is a smaller density of points, corresponds to those in the central channel, that
still seems to play a role for this value of the parameter, see Fig. [5.9] middle. And in the
bottom, for e3 = 1.0040, we are close to the complete destruction of the bubble, but still
we expect, as for €5, to get trapped around the main 2D torus or around satellite tori. In
Fig. 5.9 top right it seems that the example orbit got trapped around what in section is a
5-periodic orbit. What we see is actually the section of a single elliptic invariant curve.

5.4.6 Discussion

In Sect. B5.3] we argued that in the kind of histograms we show in Fig. B.8] if we detect a
slope —b+1 in double log scale, the pdf of the underlying probability law is an inverse power
law like Z(t) ~ t=°. Note that we have already divided each frequency by its corresponding
bin width, so the given exponent is —b.

As e changes, the shape of the bubble also does. In some cases, for instance after the
breakdown of an outermost 2D torus, the volume of the set of confined orbits suddenly
decreases, as seen in Fig. For small kK = € — n, the leading objects that rule stickiness
are the 2D invariant tori that are close to the 2D invariant manifolds of the two fixed points
that appear at the bifurcation. These invariant manifolds enclose the whole bubble, but they
do not coincide. The splitting of these manifolds (1D and 2D) is exponentially small in the
unfolding parameter, see [10, 1], 12 42]. Typically an orbit gets trapped into this zone by
following a trajectory close to the 1D stable manifold of the leftmost fixed point, and exits
following the 1D unstable manifold of the rightmost fixed point. Once trapped, these orbits
follow a trajectory that is close to an outermost 2D torus. So, at some point they have to
enter the small channel where the other branches of these 1D manifolds lie. The passage
through this channel affects the trapping time by slowing it down due to the passage close
to the two saddles. The top example in Fig. and its corresponding slice around z = 0 in
Fig. 5.9 top left, is an illustrative example of this situation.

As e grows, this small channel becomes larger but for some range may still play a role.
See Fig.[5.9, middle, that for e = 1.0015, where orbits do not only get stuck around a satellite
torus but also in a zone with larger volume. But if x is large enough this channel will no
longer play a role.

Concerning the fact that we see different slopes in different ranges of the number of
iterates, a first plausible conjecture to explain the results shown is that there are different
objects in the phase space that play a leading role in different time scales. For instance,
they may get stuck either around the main torus or around some satellite tori. Also, if we
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Figure 5.8: From top to bottom, results for ¢ = 1.0007,1.0015 and 1.0040. Left: trapping
statistics around the bubble. Right: example of an orbit that got trapped around the bubble,
for the corresponding value of € on the left. The height and depth (ranging typically —0.025
to 0.025) in the right pictures correspond to the z and z axes, respectively.

take into account the numerical evidence shown in Chap. Bl this change of slope may also
be due to a bump caused by the breakdown of an outermost invariant 2D torus. But in
the VP 3D setting we do not know the geometrical mechanism of destruction of these 2D
tori, so it may require further dedicated investigations. It is important to remark that in a
preliminary exploration with a larger number of initial conditions the discrepancy between
the visible slopes seems to be reduced.

Finally, concerning the obtained values of the slopes, since we have mimicked the setting
in the standard map for large values of k, under the hypotheses stated in Sect. B.5.7] that
can be translated into the present setting, we expect a result similar to Prop. 2l to still hold
true. This requires further investigations on the mean trapping time. The values of the
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Figure 5.9: For the values of the parameter ¢ above the pictures, top: points of the tem-
porarily trapped orbits in Fig. 5.8 right, whose z component lies within |z| < 0.01 (left and
middle) and |z] < 0.02 (right) projected onto z = 0. Bottom: points with |z| < r projected
onto z = 0 of regular orbits inside the bubbles (red, r = 10~*) and on escaping orbits (blue,
r = 107%). The black dots in the bottom middle plot indicate the intersection of a 6-periodic
invariant curves of f. with z = 0 (on a slice with » = 1077) that look like a 12-periodic
elliptic orbit in section (each of the 6 invariant curves intersects twice the plane z = 0).

slopes we showed in Fig. 5.8 correspond to exponents that are, in some cases, larger than —2
and smaller than —3. If the exponent is larger than —2, the underlying probability law has
unbounded mean. And if it is smaller than —3, both mean and variance would be bounded.
In both cases, it would still imply the divergence of the diffusion coefficient of f., and hence
give rise to anomalous diffusion. This suggests to study higher moments of the statistics in
the z variable, and how are they affected by trapping statistics that have some bounded or
unbounded momenta.

The remarks of this section give rise to many questions that deserve some specific atten-
tion. Some of them are going to be listed in Chap.



Chapter 6

Conclusions and future work

This last chapter is devoted to summarize and conclude the studies exposed in this thesis,
and to set the future directions of work that are derived from the presented studies.

6.1 Summary and conclusions

In Chap. [2 we have given a detailed and complete account of the dynamics of the well-
known quadratic orientation-preserving and conservative Hénon map, HP,. with emphasis on
the evolution of the measure of the set of bounded orbits, on the confined chaotic orbits and
on the splitting properties of the invariant manifolds of fixed and periodic points.

The paradigmatic character of HP., as a model for many other maps, and the fact
that it appears as a relevant model near quadratic tangencies of general APM allowed to
explain some features of the diffusion in the standard map for large values of the parameter
in Chap. [, and we hope that the work we presented here will be useful to explain other
features in many other maps.

Also, a shorter study of the quadratic orientation-reversing and conservative Hénon map
HR,. has been presented.

These two maps are key to understand the behaviour of the dominant islands of stability
that appear in the phase space of the Chirikov standard map My,

. . 2 x/ = :E—'_y,
My :TxR—TxR, Mk-(y)H(y/)_<y+ksin(2ﬂm))’

that smoothly projects to the 2-torus T? as M, for large values of the parameter, & > 1. We
presented both a theoretical approach that related HP. and HR,. with the local dynamics
around fixed points of M, for k = n € Z, as n — oo, and numerical evaluations in order
to compare the Hénon map and the local model found, that are in good agreement even for
k=~1.

In Chap. Bl we have presented several numerical massive experiments concerning the
anomalous diffusion properties of APM. Specifically we focused on the role of the islets
studied in Chap. @] in the standard map. Some of them are accelerator modes (periodic
orbits that are fixed for M; but whose momentum y increases linearly in the number of
iterates if done under My), and this fact was used to explore the role of the geometry of
the outermost structure of islands of stability in terms of trapping statistics, and how this
affected the dynamics in the Chirikov standard map when considered in the cylinder, M.

151
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Namely, the normal diffusive behaviour observed for most of the parameter values no
longer persists for ranges in which these sticky structures appear. In particular, we give
extensive numerical evidence that the probability of being trapped for some number of
iterates t around islands behave as an inverse power law Z(t) ~ t=°. Furthermore, a different
power-law decay in t, produced by the effect of the gaps of Cantori, was also detected for
some parameters, in the form of bumps in the statistics in a log — log scale. Both situations
have a theoretical framework that reasonably explain the results obtained. In fact, it is
possible to understand the numerical results in light of the limit cases described by the
available theories.

In Chap. B we motivated the need to understand the role of a single Cantorus in or-
der to make predictions of trapping times. Chap. [l has been devoted to perform an
extensive study of transport rates across a single golden Cantorus. For this study, we
have used again the Chirikov standard map as main example, but this time for values
of the parameter close to (and larger than) the breakdown of the golden invariant curve
ke ~ 0.1546405777555608265 . . .. There is a general agreement that the most robust invari-
ant curves are those whose rotation number is eventually golden (meaning that its continued
fraction expansion has eventually all quotients equal to 1). The study performed strongly
relies on the choice of the rotation number, and even for the standard map, for other rotation
numbers one could get substantially different results.

The twist condition implies the vertical ordering of orbits. In particular, it implies that
in the neighbourhood of the golden invariant curve one expects to find many periodic orbits.
The Greene-MacKay renormalisation theory relates both the position and local dynamics of
periodic orbits whose rotation number is an approximant (approximating periodic orbits) of
the rotation number of the curve under study. This is reduced to study of the dynamics of the
MacKay renormalisation operator for the golden mean invariant curve Ry, that acts in some
functional space. It is known to have 2 fixed points: Ry, the so-called trivial fixed point, that
is a linear shear, and R¢, the so-called critical fixed point. Its existence and hyperbolicity
were recently proven via computer-assisted techniques. Namely, it is an unstable saddle with
a 1D unstable invariant manifold with eigenvalue ¢.

We have used the theoretical framework of the Greene-MacKay renormalisation theory to
explore approximating periodic orbits that are elliptic, both locally and in suitable compact
sets containing the whole islands they may be surrounded with. This allowed us to give
explicit account on the consequences of the applicability of this theory for the standard
map. In particular, we have focused on describing the phase space close to the invariant
curve, from the point of view of which islands of stability appear, and what is the local
dynamics around the elliptic or reflection hyperbolic periodic orbit they surround. These
are the most prominent objects in the phase space and those who allegedly rule the diffusive
properties across Cantori. We have given numerical evidence of the local dynamics (that
varies when changing the approximant depending on the eigenvalue ¢) and shape of the
islands surrounding approximating elliptic periodic points (that scale according to some
universal quantities @ < 0 and 8 < 0 in the x and y coordinates, respectively) taking suitable
limits. We hope that this work contributes to the comprehension of the dynamics of the
renormalisation operator close and after the breakdown. In particular in the comprehension
of fundamental domain of W*(R¢).

Also, as an example, our numerical studies lead to a conjecture that allows to numerically
approximate Greene’s constant kg via periodic orbits in a faster rate than applying directly
Greene’s Conjecture. A similar and related method was already proposed by MacKay in
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his thesis, but it relied on the knowledge of some constants that can only be numerically
approximated and that only few digits of them were known. We got, using the accelerating
method of Aitken, that

2mke = 0.971635406047502179389 . . .

After having described the phase space near a Cantorus, we have dealt with massively
numerically evaluated escape rates across the golden Cantorus of the standard map. We have
given numerical evidence of the evolution of escape rates as a function of k as k approaches the
breakdown parameter kq. If (Vi) denotes the mean escape rate across a Cantorus for some
fixed value of k, the MacKay-Meiss-Percival transport theory together with renormalisation
theory implies that there exists B > 0 that depends exclusively on «, 8 and 9, such that,
(Ny) (k—kg)P is bounded. Moreover, this same theory predicts that in logs-scale, as k — kg,
(Ny) (k — kg)P is a l-periodic function. In this work we have given the first numerical
evidence of the shape of this periodic function. The study of the standard deviation of ()
also lead to the detection of the effect of islands of stability, and of ranges in k where they
could be neglected. Finally, this 1-periodicity has been again related to the islands around
approximating elliptic periodic orbits, that again lead to the study of a single fundamental
domain of W*(R¢).

We finished the chapter by dealing with which is the pdf of escape rates for a fixed value
of k. We gave evidence of the shape of these corresponding pdf’s and checked that the usual
hypothesis that they behave as a Gamma distribution fails. We concluded that one should
construct a Markov model taking into account the partition that chains of islands define and
to study escape rates.

Finally, in Chap. Bl we translated the setting where we dealt with the stickiness effect of a
stability island in 2D APM (Chap. [3)) to the volume preserving 3D context. We constructed
a 4-parameter family of volume preserving maps (VPM) f. of the 3-torus T® in such a way
that it mimicked the Chirikov standard map M,

1. The phase space of fq is foliated by horizontal 2D rotational invariant tori (RIT) and
for small e, some of this structure is preserved for f. in virtue of a KAM-like result,

2. For € = n € Z the origin is fixed and undergoes a Hopf-zero bifurcation,

3. And if f, is lifted to the cylinder T2 xR, the origin is no longer fixed but its z component
(that can be understood as a momentum) increases linearly in the number of iterates.

In this situation, we are again as in Chap. [3lwhere we studied the effect of fixed accelerator
modes in the destruction of the diffusive behaviour of the z variable under iteration of f. in
a seemingly fully chaotic phase space.

We have locally related the map f. for ¢ = n + k, kK > 0 small, around the origin with
a discretization of the Michelson system that is a quadratic VPM. This map is, in turn,
conjugated to the truncated normal form given by Dullin and Meiss. We proved that as
€ = n € Z tends to oo, the local dynamics around the origin is reduced to the chosen
discretization of the Michelson system.

We studied the Michelson system from the point of view of the set of the evolution of
bounded orbits, in order to compare it with the accelerator modes in our family f.. After
that, we performed a preliminary numerical study that gives numerical evidence in many
values of the parameter that the trapping statistics around bubbles also behaves as an inverse
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power law. These power laws are seen as straight lines in log — log plots. We found that in
different ranges of ¢ in log scale, one could fit different slopes.

6.2

Future work

Taking into account the work here presented, there are many open lines for future research
that are a natural continuation.
In the 2D setting,

1.

To perform a detailed study of the bumps in trapping statistics in order to explicitly
relate them with escape rates across the outermost Cantorus that plays a leading role.
This is related to study the interaction between the Greene-MacKay and the Zaslavsky
renormalisation approaches.

. When dealing with anomalous diffusion, to study higher moments of the displacement

in the momentum in order to identify further correlations.

To propose and test a model inspired in the Markov-Tree model of Meiss and Ott that
can effectively explain transport across a Cantorus.

To study the area of lobes defined by the invariant manifolds of hyperbolic periodic
points with consecutive approximants as rotation number and to test their role in the
transport rates across Cantori.

To consider different rotation numbers for invariant curves right after their break-
down. For instance, metallic numbers or numbers with n-periodic continued fraction
expansion.

To consider different APM, for instance standard-like maps and maps coming from
interesting 2 dof Hamiltonian systems.

And concerning the 3D setting,

1.

To perform a geometrical description of the main relevant invariant objects in the
proposed models and other related models.

To perform a detailed study of escape rates across broken RIT, and to relate these
rates with the rotation numbers of the just broken RIT.

To study diffusion coefficients in the presence and absence of accelerator modes, in
particular to study the effect of correlations in the quasi-linear approximation. Also
to investigate higher order moments of the displacement in the action.

To refine the study concerning trapping statistics. To identify the sources of the change
in slope or bumps, if any.
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