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1 Introduction

This memory consists of four independent essays on Social Choice Theory
and Mechanism Design. The Þrst two chapters are particularly related since
they share the common aim of relaxing an idea of the concept of solidar-
ity called replacement monotonicity or welfare-domination under preference-
replacement proposed in the literature by Moulin (1987) and Thomson (1993,
1995a, 1995b).1This property requires that whenever any individual changes
his preferences and this shifts the social choice, every other agent should
move in the same welfare direction, i.e., either all of them gain or all of them
lose with the change. Chapters 2 and 3 share the same basic model of public
good provision in which no monetary compensations are allowed. Agents are
assumed to have single-peaked preferences deÞned on a single unidimensional
good, and we try to investigate and overcome the limited number of Social
Choice procedures that are replacement monotonic within this setup.
Chapter 2 introduces a new property of solidarity in terms of reciprocity

for these environments. This property allows for a richer class of social choice
procedures than Thomson�s solidarity concept of welfare-domination under
preference-replacement. Our proposal reßects somehow an introspective con-
cept of solidarity. It requires that when somebody changes his preferences
and the social decision is altered, all the remaining agents can be sure that the
same agent who has actually changed would have been affected in a reciprocal
way if they had changed likewise. Characterizations of the rules satisfying
reciprocity in both a strong and a weak version are therefore provided.
Chapter 3 relaxes replacement monotonicity in a more direct way, under-

standing solidarity in the sense of the proportion of society gaining or losing
together when somebody changes his preferences. It is shown that solidarity
is in direct conßict with other fairness criteria. Actually, achieving centrist
or equitable outcomes leads to the minimal possible solidarity degree. In
Chapter 3, we propose reasonable measures of both concepts of solidarity
and rigidity of social choice procedures and use them to prove the existence
of such a trade-off. Characterizations of those rules with the highest lev-
els of solidarity and rigidity are offered and a menu of voting procedures is
proposed and classiÞed for consideration when society agree some feasible

1The references in this introduction can be found in the corresponding chapters.
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solidarity-rigidity level to hold.

Chapters 4 and 5 are concerned with the problem of Þnding interesting
strong incentive compatible mechanisms in two different production contexts
when compensations to induce truthful behavior are allowed, so we tackle a
problem of implementation in dominant strategies.
In Chapter 4 we deal with an implementation problem where the com-

pensation scheme is not part of the feasible alternatives, but discretional to
the planner. The incentive compatible compensation mechanisms we charac-
terize make complete sense in production economies in which, for example,
some divisions within a Þrm have to share some input available in a Þxed
amount or have to decide the level of some public input or service and infor-
mation about the individual technologies is private. Within this framework,
we assume that the planner or principal have the ability to partially design
the functional form of the divisions� Þnal payoffs to incentive their truthful
behavior in the contract offered to the divisions.
There are one important difference between our approach to the imple-

mentation problem in Chapter 4 and the mainstream in the implementation
literature: the treatment of the concept of alternatives or social states. Most
of the literature implicitly deÞne alternatives as everything that can be allo-
cated and is not Þxed or given by nature, and since the agents� types are the
private information given by nature, the type determines the Þnal payoff the
agent receives for each alternative, so any variable feature that can affect any
agent�s Þnal payoff given her type will be an alternative, and they are the
only way in which the planner can modify the agents� objective functions.
Besides, the planner�s objectives are deÞned on the set of alternatives for any
type of the agents. In this sense, our alternatives should include some set of
functional forms of the agents� Þnal payoffs with the additional restriction on
the planner�s preferences that she does not care about these functional forms.
Our approach, instead, deÞne alternatives as any variable feature that can af-
fect the planner�s objectives given the agents� types and, since the planner is
indifferent about the functional form of the agents� objectives for all types,
the set of relevant alternatives is reduced to a smaller set. This framework
implies that the new set of alternatives is no longer the only way an agent�s
objective function or Þnal payoff can vary given his type: the planner can ac-
tually affect the agents� payoffs in two ways: changing the alternative chosen
-which can change her own preferences too- and directly shifting the agents�
payoffs within some admissible bounds -leaving the planner unaffected-.
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Groves� mechanisms -see Groves (1973, 1975) and Green and Laffont
(1977)- for providing public goods or public inputs can be interpreted as a
restricted case of our framework.
In Chapter 5 we deal with the same problem of designing a contract

between the members of a complex productive organization -say the divi-
sions within a Þrm- to give incentives for truthful behavior in the presence
of private information about parts of the technologies, but now there is a
more important conßict of interests between the planner and the divisions.
In particular, we propose a simple task allocation model known in the net-
work programming literature as the Critical Path Method, CPM or PERT.
Divisions have to undertake time-consuming tasks that have to be allocated
in a network. The principal would like all tasks to be Þnished as soon as
possible, but informed divisions are all interested in delaying their own tasks
if they are not conveniently compensated. We prove the existence in this
environment of anonymous and strategy-proof mechanisms that are efficient
in the sense of minimizing the total amount of time employed in Þnalizing
the project and can also be balanced, so full efficiency is achieved. Moreover,
an impossibility result emerges if we require them further to be individually
rational in the sense of guaranteeing a minimum net payoff for every agent
in every circumstance.
Since the four chapters are quite independent, we have decided for the

sake of clarity of exposition to include the relevant bibliography and the main
conclusions and comments at the end of each one.
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2 SOLIDARITY INTERMSOFRECIPROCITY

2.1 Introduction

A solidarity principle applying to the fair allocation problem was introduced
by Thomson [12] under the name of replacement principle. The idea is the
following: every allocation problem can be described by some parameters or
data, such as the set of agents involved in the decision, the description of their
preferences or the possible amount of resources and their distribution among
the agents. The replacement principle imposes solidarity among agents in
the following sense. If some component of the data changes its value within
the admissible domain, every agent should be affected in the same direction:
either all of them improve their position or all of them lose. It is argued
that fair and acceptable social choice rules should fulÞll this equal treatment
property when facing exogenously given shocks. The replacement principle
has been widely explored in the literature in different contexts. When we
consider the population as the relevant variable parameter, Thomson�s [15],
[16] concept of population monotonicity is the accurate translation of the
replacement principle: every agent should lose when we add new agents to
those initially present, since the growth of the population can be seen as a
restriction of the opportunities available to society. This property was inves-
tigated by Moulin [7] in connection with strategy-proofness and by Thomson
[11], [15], [16] and Ching and Thomson [4] in the context of single-peaked
preferences. If we focus on a change on the amount of available resources,
then, the replacement principle takes the form of the resource monotonicity,
a property analyzed by Thomson [14].
The speciÞc version of the replacement principle we are going to dis-

cuss here applies when the preferences of some individuals change. It was
Þrst deÞned by Moulin [8] under the name of replacement domination and
later by many authors with the names replacement monotonicity or welfare-
domination under preference-replacement (WDUPR). It requires that if
somebody changes his preferences, and this shifts the social decision affect-
ing the remaining agents, then, they should all move in the same direction:
they should either all gain or all lose after the change. This property has
been analyzed in the two contexts of private and public goods economies in
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Thomson [17], [18] and [13] respectively -see Thomson [19] for a comprehen-
sive survey-.
We will consider here the provision of a public good, where there are

a continuum of alternatives described by an interval of the real line. It
has been shown by Thomson [13] that with single-peaked preferences, the
only replacement monotonic and efficient social choice functions are those
functions that choose a Þxed given point in the interval if it is Pareto optimal
and choose the nearest efficient point to this one if it is not.
The intuition is easy: let us Þrst remember that a preference relation is

single-peaked if there is a best preferred alternative and the further is an
alternative from this ideal, the worse it becomes. We can, then, imagine a
preference proÞle in which every individual allocates his best point at one
of the extremes of the interval, in such a way that all the people�s ideals
are polarized at both extremes. Suppose that the chosen alternative in this
situation is, for example, a. Let us think now of any other preference proÞle;
we can construct a sequence of proÞles just by iteratively changing each
agent�s preferences in the Þrst proÞle to the preferences in the second. Since
some individual will be best at each of both extremes in all the intermediate
proÞles -except perhaps in the last one-, the selected alternative in these
proÞles should be a to preserve replacement monotonicity, because otherwise
any change along the sequence would affect the others differently. The only
shift allowed can occur if a is not efficient -a is not contained in the interval
deÞned between the lowest and highest peak of preferences- and in this case,
it can be proved that efficiency requires to shift the chosen point from a to
the nearest efficient point to a, because any other choice will violate either
efficiency or WDUPR.
The above class of social choice functions constitutes a subclass of the

family of Generalized Condorcet winner solutions deÞned by Moulin [6], and
we feel that they are in fact very far from desirable. They are quite trivial
decision rules. They weight excessively an arbitrary status quo, so they are
very insensitive to individual preferences than other more ßexible procedures
one can think of.
The present chapter starts from this criticism and at the same time tries

to provide a reasonable alternative to Thomson�s principle of WDUPR. In
order to enlarge the class of procedures, a new and intuitive concept of sol-
idarity among agents -we call it reciprocity- is introduced in both a strong
and a weak version. The social choice functions and voting schemes that
preserve both reciprocity and anonymity are fully characterized.
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The alternative property proposed here tries to embody part of the sub-
stance of the original idea of WDUPR, but differs from this in the sense
that reciprocity can be considered as a somehow introspective conception of
solidarity. Let us think of the society just before deciding what social choice
function -from now on SCF- is going to be used in choosing the level of some
public good. People would like to accept a procedure that embodies some
idea of solidarity in the sense that this rule provides some form of protec-
tion for every individual against the possible shifts in choice caused by the
changes of preferences of others.
Thomson�s requirement ofWDUPR can be reinterpreted in this context.

The ex-ante social contract in the SCF guarantees that if any individual
changes his preferences, the new value of the function is such that everybody
moves in the same direction -all of them gain or all of them lose with the
change-.
Although WDUPR is a useful property, it turns out to be so strong that

only quasi-trivial and conservative SCFs are allowed. Our reciprocity condi-
tion can be seen as another type of insurance: agents are no longer treated
equally than the rest of individuals who maintain their original preferences,
but equally than the agent who changed his own. The idea is as follows:
people may now gain or lose when somebody changes, but if I lose, I want to
be sure that the agent who has caused my loss would be in the same situation
than me if I had changed likewise and shifted the social decision. He would
have been moved by my change in the same direction than I was moved by
him.
By considering such contracts before deciding the optimal rule for society,

people might be ready to accept this weaker and introspective concept of
solidarity. Moreover, its philosophy is very intuitive and can be heard in the
real world -people usually are much more permissive with the impositions
of others when they dislike them if they know that they would be treated
equally under similar situations-. The proposed property -in its weak version-
allows for a larger and more ßexible class of functions than those allowed
by Thomson�s WDUPR, although Thomson�s class of efficient, replacement
monotonic SCFs satisÞes reciprocity.
The structure of this chapter is as follows. We Þrst introduce the model

in Section 2. In Section 3, the reciprocity properties are proposed and results
are presented. It is shown that Thomson�s class is a narrow subset of our
class. We close with some comments and conclusions.
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2.2 The model

Consider a society deÞned by a set of agents or individuals: N = {1, ..., n} ,
indexed by i and sometimes by j, h and l. Society must make decisions from
some predetermined set of mutually exclusive alternatives, represented by
A, whose elements will be denoted by x, y, ... ∈ A. The set of alternatives
will sometimes be Þnite -representing discrete levels of the provision of some
public good- and sometimes inÞnite: a closed interval of the real line, nor-
malized for simplicity to the interval [0,M ] and standing for the continuous
amount of the public good or the location of some public utility.
Every individual i is endowed with a complete preference relation over

the set of alternatives denoted as Ri from some set of possible preferences
<. We will denote by Pi and Ii the asymmetric and symmetric factors of Ri.
The set of all possible strict orderings over the Þnite set of alternatives A is
denoted by ℘.
Frequently -when talking about the set of alternatives [0,M ]- we will

assume that the preference relations are single-peaked. A preference relation
Ri on [0,M ] is single-peaked if and only if there exits a unique number p(Ri) ∈
[0,M ] such that ∀x, y ∈ [0,M ] , if y < x ≤ p(Ri) or p(Ri) ≤ x < y, then,
xPiy. The number p(Ri) will be referred to as the peak of agent i0s preference
relation -exploiting this preferences� evident analogy with a mountain-, since
it is, by deÞnition, the most preferred alternative of agent i.
When working with A = [0,M ] and single-peaked preferences, continuity

of preferences is usually assumed. Preferences Ri ∈ < are continuous if
and only if for every alternative, both the upper and the lower contour sets
are closed, i.e., ∀x ∈ [0,M ] = A, {y ∈ A | yRix} and {y ∈ A | xRiy} are
closed. This is a natural assumption when dealing with inÞnite sets and it
is sufficient to guarantee that for every closed interval contained in [0,M ] ,
there exist a most-preferred alternative. Let <SP be set of all continuous and
single-peaked preference relations on A = [0,M ] .
An ordered list of preference relations for all the individuals will be called

a preference proÞle and denoted byR = (Ri)i∈N = (R1, ..., Rn). We will often
use the following notation: given a Þxed preference proÞle R = (R1, ..., Rn) ,
(R0,R−i) is the proÞle in which individual i takes preferences R0 and any
other agent j 6= i remains with the same preferences he had in proÞle R, i.e.,
Rj . The list (R0, R00,R−i−j) is the proÞle such that the preference relations of
agents i and j in proÞle R, have been replaced by preference relations R0 and
R00 respectively and the other agents� preferences are the same than those
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they had in proÞle R. Then, whatever preference relation is placed in the
Þrst component of some partitioned proÞle (., .,R−i−j) stands for the pref-
erence relation of agent i in that proÞle. Hence, the proÞle (R0, R00,R−j−i)
is intended to be the proÞle R when agent j has preferences R0 and agent
i is endowed with preferences R00. Moreover, our particular notation admits
that some agent�s new preference relation is the same preference relation of
that of some other agent in the original proÞle R, in which case we are al-
lowed to refer to that preference relation with its former subscript in order to
avoid notation; but notice that the subscript accompanying some individual
preference relation in our partitioned notation is not related with the agent
owning that preference relation in the actual proÞle, but with the agent that
had it in the original -or reference- proÞle. Let us illustrate this important
point with an example: The proÞle (Rj , R0,R−i−j) should be read in the
following way: �individual i has the same preference relation that individual
j had in proÞle R (Rj), agent j possesses the preference relation R0 and the
remaining agents are endowed with the same preference relations they had
in the reference proÞle R�.
When preferences are single-peaked, the associated vector of peaks will

be: p(R) = (p(Ri))i∈N ∈ [0,M ]n .
Now, we should model social objectives. A social choice function (SCF)

is a function which associates a chosen alternative to every economy -or
preference proÞle- and will be denoted by f : <n −→ A.
When we work with the set of alternatives [0,M ] and single-peaked pref-

erences, we will be interested in a special kind of SCFs called voting schemes.
Voting schemes only use information about the agents� peaks, so we can de-
Þne a voting scheme Π as a SCF in which the following holds:

∀R,R0 ∈ <n s.t. p(R) = p(R0) =⇒ Π(R) = Π(R0). (1)

Now we deÞne the properties we shall deal with:

DeÞnition 1 For each givenR ∈ <n, x is an efficient alternative if x ∈ A
and there is no x0 ∈ A with x0Rix ∀i ∈ N and x0Pix for some i ∈ N. The
set of efficient alternatives associated to proÞle R will be denoted by P (R)
A SCF f is efficient if it selects efficient alternatives for each preference

proÞle, i.e., ∀R ∈ <n, f(R) ∈ P (R).
In the case of Ri single- peaked for all i ∈ N and A = [0,M ], it is easy

to prove that f is efficient whenever ∀R ∈ <n,
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f(R) ∈ P (R) = [min {p(Ri) | i ∈ N} , max {p(Ri) | i ∈ N}] .

DeÞnition 2 A SCF f is manipulable by agent i ∈ N at proÞle R ∈ <n
via R0i ∈ <n if and only if f(R0,R−i)Pif(R).Whenever a SCF is manipulable
by some agent at some proÞle via a preference relation we say that the SCF
is manipulable.

DeÞnition 3 A SCF f is strategy-proof if and only if it is not manipulable.

This property constitutes a strong incentive compatibility requirement,
meaning that agents� lies about their true preferences cannot be in any case
proÞtable -whatever the declared preferences of others may be-. Strategy-
proofness may therefore be interpreted as requiring that revealing actual
preferences be a dominant strategy for all agents if the SCF is used to choose
alternatives based on the agents� reported preferences.

DeÞnition 4 A SCF f is anonymous if any permutation of the different
values of its arguments yields the same alternative -, i.e., for all one-to-one
mappings σ : N → N and all R ∈ <n, f(R1, ..., Rn) = f(Rσ(1), ..., Rσ(n)).

This property guarantees that no information about the individuals� names
is used in the decision rule.

DeÞnition 5 A SCF f satisÞes the property ofWelfare-domination un-
der preference-replacement (WDUPR)2 if ∀i ∈ N, ∀R ∈ <n, ∀R0 ∈
<, either f(R)Rjf(R0,R−i) ∀j ∈ N\ {i} or f(R0,R−i)Rjf(R) ∀j ∈ N\ {i} .

The change in the preferences of any individual makes that all the re-
maining agents move in the same welfare direction: either all of them gain
or all of them lose -in the weak sense-.
We now introduce two versions of the main condition in this paper. The

motivation for both versions is the same and they only differ in what they
require when agents are left indifferent when facing somebody�s change in
preferences. Although both versions are quite similar, the possibilities of
Þnding social choice functions are very different when we require each version
to hold, so the apparently slight difference is proved to be crucial in allowing
for positive results.

2This property has also been called �Replacement monotonicity� and �Replacement
domination�.
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DeÞnition 6 A SCF f satisÞes the property of strong reciprocity if
∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ <, ∀j ∈ N\ {i} , f(R0,R−i)Rjf(R) ⇒

f(R0,R−j)Rif(R).

When agent i changes his preferences - from Ri to R0 - and does not
affect negatively individual j, we require that if j were the one who changed
his preferences from the initial proÞle to the same agent i0s new preferences
-from Rj to R0-, and individual i would remain unchanged -with Ri-, i would
not lose with j0s change either -so f(R0,R−j)Rif(R) holds-. Symmetrically,
if such a change by individual i makes agent j be worse off -interchanging the
roles of Ri and R0 above-, the reasoning is the same, but individual i with
initial preferences R0 should now weakly lose -so that f(R0,R−j)Rif(R) holds
in this case too-.

DeÞnition 7 A SCF f satisÞes the property of weak reciprocity if
∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ <, ∀j ∈ N\ {i} , not [f(R)Pjf(R0,R−i)] ⇒

not [f(R)Pif(R
0,R−j)] .

In words, if agent i does not make me be (strictly) worse off by changing
his preference toR0, I should not be able to (strictly) damage him if I would be
the agent who changes to R0 and i will remain unchanged. Weak reciprocity
imposes a ban on perverse asymmetric feelings.
Notice that weak reciprocity implies the following statements: if some-

body makes me gain, I can either improve or not affect at all his position (a).
If the changing agent is damaging me, again I can either cause him a loss
or leaving him unaffected (b). Finally, if I am indifferent with i0s change -he
has not made me be (strictly) worse off-, the deÞnition applies and I should
not damage him: in my (reciprocate) turn, I should be able either to make
him gain or break even (c).

(a). f(R0,R−i)Pjf(R)⇒ f(R0,R−j)Rif(R).
(b). f(R)Pjf(R

0,R−i)⇒ f(R)Rif(R
0,R−j).

(c). f(R0,R−i)Ijf(R)⇒ f(R0,R−j)Rif(R) &
f(R0, Ri,R−i−j)R0f(R0,R−i).
Weak reciprocity relaxes strong reciprocity in just one sense. We must

take a short detour in order to explain the difference. It is not difficult to
check that strong reciprocity implies: ∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ <, ∀j ∈
N\ {i} ,
f(R0,R−i)Ijf(R)⇒ f(R0,R−j)Iif(R) & f(R0,R−i)I 0f(R0, Ri,R−i−j)
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In order to prove this, just note that the indifference on the left side in the
former statement is: f(R0,R−i)Rjf(R) and f(R)Rj f(R

0,R−i); by apply-
ing strong reciprocity to both expression, we get: ∀i ∈ N, ∀R ∈ <n, ∀R0 ∈
<, ∀j ∈ N\ {i} ,
f(R0,R−i)Rjf(R)⇒
⇒ f(R0,R−j)Rif(R) (1) & f(R0,R−i)R0f(R0, Ri,R−i−j) (2).
f(R)Rj f(R

0,R−i)⇒
⇒ f(R0, Ri,R−i−j)R0f(R0,R−i) (3) & f(R)Rif(Ri, R

0,R−i−j) (4).
And since f(Ri, R0,R−i−j) = f(R0,R−j) by deÞnition, (1) and (4) imply

f(R0,R−j)Iif(R)
and (2) and (3) imply f(R0,R−i)I 0f(R0, Ri,R−i−j), which means that

whenever a change from some i leaves an agent j indifferent -for instance,
when i0s change cannot shift the initial social choice-, the same change from j
should not affect i0s preferences. This is a stronger requirement than desired,
since there might be no reasons for forbidding i to strictly gain, while there
may be reasons for i to lose when j change -the reciprocate symmetry might
forbid �perverse� hypothetical effects, but there does not seem to be a strong
reason to maintain such a strong implication . Weak reciprocity eliminates
this requirement by allowing unaffected agents to improve i0s position, while
not letting him become worse off.3

Notice that strong reciprocity always implies weak reciprocity but the
converse is not true -(2) and (4) cannot be derived from weak reciprocity-.

DeÞnition 8 A SCF f is dictatorial if ∃i ∈ N such that ∀Ri ∈ <, ∀R−i ∈
<−i, f(Ri,R−i) ∈ {a ∈ A | aRib ∀b ∈ A} .

We will need this class of undesirable SCFs in some proofs.

DeÞnition 9 A SCF f is constant if ∃a ∈ A such that
∀R ∈ <n, f(R) = a.

DeÞnition 10 A SCF f is a Generalized Condorcet winner solution
3There is still other possibility of deÞning an even weaker concept of reciprocity, con-

sisting on not imposing any constraint at all on the behavior of the rule in indifference
situations -and allowing for the �perverse� effect in indifference situations-. The author
have explored this possibility but characterisations become much more complicated, al-
though our intuition is that the results obtained with our version would not change very
much.
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(GCWS(n + 1)) if ∃α = (α1,α2, ...,αn+1) ∈ [0,M ]n+1 , called phantom
voters or Þxed ballots, such that

f(R) = m (p(R1), p(R2), ..., p(Rn),α1,α2, ...,αn+1) . (2)

wherem stands for the median. Notice that GCWS(n+1) are voting schemes.

Moulin (1980) showed that when preferences are single-peaked on the
interval [0,M ] , the only anonymous and strategy-proof voting schemes on
[0,M ] are those belonging to the family of GCWS(n + 1). If efficiency is
additionally imposed, the resulting class is also the median, but with only
n− 1 phantom voters. We will refer to this family as GCWS(n− 1).4

DeÞnition 11 A SCF f is adjusted constant to a (a ∈ [0,M ]) if for all
R ∈ <n,

fa(R) =

 a if a ∈ P (R)
min {p(Ri) | i ∈ N} if a < min {p(Ri) | i ∈ N}
max {p(Ri) | i ∈ N} if a > max {p(Ri) | i ∈ N}

Denote by Φ the family of adjusted-constant SCFs f, namely
Φ = {fa | a ∈ [0,M ] and fa is adjusted-constant to a} .

Thomson [13] proved that class Φ ⊂ GCWS(n − 1) contains the only
efficient SCFs such that WDUPR holds when preferences are single-peaked
on [0,M ]. Notice that all the SCFs within class Φ are anonymous, but not
trivial and it is a subclass of the family GCWS(n − 1) where we have the
n− 1 phantom voters allocated to the same point.

2.3 Results

We will study the behavior of the reciprocity property under two different
domain assumptions. First, we characterize the anonymous and strong recip-
rocate SCFs in the unrestricted domain of every preference relation when the
set of alternatives is Þnite and we will obtain a result that establishes a close
relationship between strategy-proofness and both reciprocity and anonymity.
We will beneÞt from this property to prove the characterization result by

4The median for the case of n+ 1 phantom voters is deÞned as:
m (p(R1), p(R2), ..., p(Rn),α1,α2, ...,αn+1) ⇔
# {i | p(Ri) ≤ m}+# {i | αi ≤ m} ≥ n and
# {i | p(Ri) ≥ m}+# {i | αi ≥ m} ≥ n.
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means of the well-known Gibbard-Satterthwaite Theorem. The negative re-
sult shows the impossibility of Þnding strong reciprocate and anonymous
SCFs in this domain.
Secondly, we investigate the existence of anonymous, and strong/weak re-

ciprocate SCFs in contexts where preferences are restricted to satisfy single-
peakedness on the closed interval of the real line. We can use some theorems
related with strategy-proof SCFs with single-peaked preferences: Moulin�s
[6] characterization of strategy-proof voting schemes and the extensions of
this result to general SCFs: Barberà & Jackson [3], Barberà, Sonnenschein &
Zhou [2], that will allow us to use the relation between strategy-proofness and
reciprocity. The characterization theorems in this case results in an impossi-
bility for anonymous, efficient and strong reciprocate SCFs and the GCWS
voting schemes are shown to be the only anonymous, efficient and weak re-
ciprocate SCFs. Before establishing the main results in this section, we need
to prove two useful lemmata. Lemma 12, is interesting on its own, since it
shows that for any domain of preferences, weak reciprocity and anonymity
together imply that if someone�s change makes me strictly gain, I cannot
make him be strictly better in my turn, but if someone strictly worsens my
position, I can be sure that I would make him lose if I were the one who
changed. The second lemma, Lemma 13, has no an easy interpretation and
is intended to simplify some proofs.

Lemma 12 Assume f is a weak reciprocate and anonymous SCF. Then,
∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ <, ∀j ∈ N\ {i} ,

f(R0,R−i)Pjf(R)⇒ f(R0,R−j)Iif(R) & f(R0,R−i)P 0f(R0, Ri,R−i−j).

Proof. Take any i ∈ N, R ∈ <n, R0 ∈ < and j ∈ N\ {i} , and suppose
that f(R0,R−i)Pjf(R) (1). Since f is weak reciprocate, consider Þrst the
proÞle R = (Ri, Rj,R−i−j) and suppose that individual i changes his prefer-
ences from Ri to R0, reaching the proÞle (R0, Rj,R−i−j). By (1), individual j
strictly gains with i0s change, so by weak reciprocity, if it were individual j
who was suffering the same change instead of i, the latter individual would
not lose, so it holds that f(R0,R−j)Rif(R) (2). Now, consider that the ini-
tial proÞle is (R0,R−i) and agent i changes his preferences toRi - the converse
of the former shift -. By condition (1), individual j worsens his position, so by
weak reciprocity, if j were the agent who changed to preference Ri - abstract-
ing from the subscript - and i would remain unchanged, he would be weakly
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worsened likewise, so it also holds that f(R0,R−i)R0f(R0, Ri,R−i−j) (3).We
know till now that (2) and (3) hold, but there may be two possibilities in
each of those conditions: Each can be satisÞed with strict preference or with
indifference. We will denote every possibility as: (2P ), (2I), (3P ) and (3I),
i.e., f(R0,R−j)Pif(R) (2P ) f(R0,R−i)P 0f(R0, Ri,R−i−j) (3P )

f(R0,R−j)Iif(R) (2I) f(R0,R−i)I 0f(R0, Ri,R−i−j) (3I)

Now, we will check all the combined possibilities:
1- (2P ) and (3P ) :
Let us consider (2P ) and focus on the proÞle (R0,R−j) = (Ri, R0,R−i−j).

Now, imagine that individual j with preferences R0 changes to preferences Rj ,
so that the Þnal proÞle will be (Ri, Rj ,R−i−j) = R. Since we are assuming
that (2P ) holds, agent i would be worse off, so by weak reciprocity, if i would
had changed from preferences Ri in proÞle (Ri, R0,R−i−j) to Rj, i remaining
unchanged, he could not improve agent i0s situation. Hence,
f(Ri, R

0,R−i−j)R0f(Rj , R0,R−i−j) (4).Now, by anonymity, agents� names
do not matter, so, we have: f(Ri, R0,R−i−j) = f(R0, Ri,R−i−j) and
f(Rj , R

0,R−i−j) = f(R0,R−i), and we can write (4) as:
f(R0, Ri,R−i−j)R0f(R0,R−i).Notice that this last expression directly con-

tradicts (3P ), so the present possibility cannot appear.
2- (2P ) and (3I) :
Let us focus on (3I) and proÞle (R0,R−i) = (R0, Rj ,R−i−j) : Suppose

that individual j changes his preferences to Ri -agent i0s preferences in pro-
Þle R- so that the Þnal situation is (R0, Ri,R−i−j). (3I) implies, then, that
individual i with preferences R0 is indifferent about the shift, so by weak
reciprocity, if he were the one who changed to preferences Ri, he could not
have worsened individual j0s position with preferences Rj , which can be writ-
ten as: f(Ri, Rj,R−i−j) = f(R)Rjf(R0,R−i) = f(R0, Rj ,R−i−j) (5). Notice
that this statement contradicts directly the assumption (1), so this case is
impossible.
3- (2I) and (3I) :
This case cannot occur either, since it is identical to case 2 in the sense

that only (3I), when present, causes the contradiction with (1) whether the
case is (2P ) or (2I).
4- (2I) and (3P ) :
This turns out to be the only possibility allowed by both weak reciprocity

and anonymity, so the lemma is proved.
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Lemma 13 Assume f is a strong reciprocate and anonymous SCF. Then,
∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ < such that f(R0,R−i) 6= f(R)⇒
f(R0,R−i)I 0f(R0,R−j) ∀j ∈ N\ {i} .

Proof. Suppose any i ∈ N, R ∈ <n, R0 ∈ < such that f(R0,R−i) 6=
f(R). Then, let us take some individual other than the one who shifted
the decision (i), for example, agent j and Þnd out in what direction he
was affected by ith�s shift from Ri to R0. there are two possibilities: either
f(R0,R−i)Rjf(R) or f(R)Rjf(R0,R−i). We will distinguish both cases:
Case 1 : f(R0,R−i)Rjf(R) (1). Consider now the change of agent i

from preferences Ri to R0 : by assumption, j does not loose. We can use
strong reciprocity with respect to agent i and obtain: f(R0,R−j)Rif(R) (2).
Consider now the proÞle (R0,R−j) and suppose that agent j with prefer-
ences R0 changes to his original one (Rj). We come back to the proÞle
R. By expression (2), agent i weakly looses, and by strong reciprocity
f(Ri, R

0,R−i−j)R0f(RjR0,R−i−j) (3). But, by anonymity, any permutation
of the arguments of the SCF cannot modify its value, and the following will
hold: f(R0, Rj ,R−i−j) = f(Rj , R0,R−i−j). We can, then, rewrite expression
(3) in this way:
f(Ri, R

0,R−i−j)R0f(R0, Rj ,R−i−j) (30).
Let us focus now on proÞle (R0, Rj ,R−i−j) and imagine that agent i

changes preferences R0 to Ri -the converse of the initial change-. By hy-
pothesis (1), j should be in a worse position, so by strong reciprocity, indi-
vidual i should move in the same direction if j were the one who changed. In
other words, the following holds true: f(R0, Rj ,R−i−j)R0f(R0, Ri,R−i−j) (4).
Again by anonymity, permuting preferences of agents yields the same social
choice, and this holds: f(R0, Ri,R−i−j) = f(Ri, R

0,R−i−j). Expression (4)
can be expressed this way: f(R0, Rj ,R−i−j)R0f(Ri, R0,R−i−j) (40). State-
ments (30) and (40) are obtained from the assumptions, and both should
be simultaneously true, so in this case we conclude: f(R0, Rj ,R−i−j) =
f(R0,R−i)R0f(R0,R−j) = f(Ri, R0,R−i−j).
Case 2 : f(R)Rjf(R

0,R−i). We can follow the same steps as in case
1. The only difference is that every preference relation is inverted, and we
obviously reach the same conclusion as in case 1.

Corollary 14 Let A be a Þnite set of alternatives and < = ℘. If SCF f is
strong reciprocate and anonymous, then, f is strategy-proof.
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Proof. We prove it by contradiction: we suppose that f is not strategy-
proof but it is both strong reciprocate and anonymous, and we will Þnd a
contradiction. If f is not strategy-proof, then, there exist: ∃i ∈ N, ∃R ∈
<n, ∃R0 ∈ <, such that f(R0,R−i)Pif(R). This obviously implies that
f(R0,R−i) 6= f(R), so we can directly apply Lemma 13 and obtain

f(R0,R−i)I 0f(R0,R−j) ∀j ∈ N\ {i} (1). Since we are working with
strict orderings, it implies that

f(R0,R−i) = f(R0,R−j) ∀j ∈ N\ {i} . Consider now the change of in-
dividual j with preferences Ri in proÞle (R0,R−j) = (R0, Ri,R−i−j) to his
original preferences Rj , reaching proÞle (R0, Rj ,R−i−j). From (1), individual
i with preferences R0 remains indifferent with the change, so by strong reci-
procity and anonymity, we get f(R0,R−i) = f(R), contradicting our initial
assumption.

Corollary 15 Let A be a Þnite set of alternatives and < = ℘. There do not
exist anonymous and strong reciprocate SCFs. such that #(range(f)) ≥ 3.

The proof is obvious by usingCorollary 13 and the Gibbard-Satterthwaite
Theorem -Gibbard [5], Satterthwaite [9]-.

The former negative result leads us either to consider more restricted
domains of preferences or to focus on weak reciprocity. If we relax the reci-
procity condition to its weaker version, we can see that there exist efficient,
anonymous and weak reciprocate SCFs, even for quite rich domains, like the
one of strict orderings over alternatives. Let us consider n = 3, A = {a, b, c}
and the following class of SCFs.: ∀R3 ∈ <3 = ℘3,

fa(R) =

 a if a ∈ P (R)
b if a /∈ P (R) & D(b, c,R) > D(c, b,R)
c if a /∈ P (R) & D(b, c,R) < D(c, b,R)

where D(x, y,R) = # {i ∈ N s.t. xRiy} ∀x, y ∈ A, ∀R ∈ <3. It is not
difficult to prove that this SCF and its analogous are efficient, anonymous,
weak reciprocate and satisfy WDUPR. Unfortunately, they weight exces-
sively an arbitrary status quo, they are not strategy-proof and it is not clear
how they can be generalized to more than three alternatives or to domains
admitting indifference sets. Therefore, We will now consider other domains.
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In order to compare both versions of reciprocity with WDUPR, we focus
on the restricted domain of continuous, single-peaked preference relations on
A = [0,M ] . From now on, we should distinguish between both kinds of reci-
procity, which will be separately explored. We start with our main results
concerning strong reciprocity.

Theorem 16 Let < = <SP and n = 2. Then, there do not exist efficient,
strong reciprocate and anonymous SCFs.

Proof. Let us consider any proÞle R = (R1, R2) such that P (R1) = 0
and P (R2) = M. Suppose w.l.g. that f(R1, R2) ∈ [0,M) - otherwise, just
permute the names of the agents and the reasoning will be analogous -. Now,
consider any proÞle bR1 such that P ( bR1) ∈ (f(R1, R2),M ] and such that
∀x ≥ P ( bR1), x bR1y ∀y < P ( bR1). - Notice that there always exist admissible
single-peaked preferences for which that condition holds -. Now, suppose
that individual 1 in proÞle R changes his initial preferences R1 to prefer-
ences bR1, such that the new proÞle will be ( bR1, R2). Since there are just two
agents, efficiency requires that f( bR1, R2) ∈ hP ( bR1), P (R2)i , so f( bR1, R2) >
f(R1, R2) and single-peaked preferences makes agent 2 in proÞle R with pref-
erences R2 be strictly better off with i0s change, since f( bR1, R2)P2 f(R1, R2),
so by strong reciprocity, if agent 2 were the one who changed to prefer-
ences bR1 = bR2 while agent 1 would remain unchanged with R1, f(R1, bR2)R1
f(R1, R2). Hence, since P (R1) = 0, it must be that f(R1, bR2) ≤ f(R1, R2).
Now, let us consider proÞle (R1, bR2) and suppose that agent 2 with prefer-

ences bR2 changes to new preferences bbR2 = R2, the new proÞle being (R1, R2).
since we know from above that f(R1, bR2) ≤ f(R1, R2) = f(R1, bbR2), individ-
ual 1 with preferences R1 can either be indifferent with the change whenever
f(R1, bR2) = f(R1, R2) or strictly loose if the case is that of f(R1, bR2) <
f(R1,

bbR2) = f(R1, R2). Suppose Þrst that f(R1, bR2) < f(R1, R2) : this im-
plies that 1 loses with the change, and strong reciprocity requires that, if

he were the one who changed from R1 to
bbR1 = bbR2 = R2, agent 2 with

initial preferences bR2 in proÞle (R1, bR2) could never gain with the change.
Therefore,

f(R1, bR2) bR2f(bbR1, bR2) = f(R2, bR2). (3)
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Since, by anonymity, f(R2, bR2) = f( bR2, R2) = f( bR1, R2), the last expres-
sion can be rewritten as f( bR1, R2) bR2f( bR1, R2) ∈ hP ( bR1), P (R2)i . But by
deÞnition of bR1,

∀x ∈
h
P ( bR1), P (R2)i , x bP1y ∀y ∈ h0, P ( bR1)´ , so since bR2 = bR1 and

f(R1, bR2) ≤ f(R1, R2) < P ( bR1) ≤ P (R2) = M, f( bR1, R2) bP1f( bR1, R2), a
contradiction.
It remains to check the case in which f(R1, bR2) = f(R1, R2) and agent 1

is indifferent with 20s change from bR2 to bbR2 = R2. By strong reciprocity, 1
should leave agent 2 indifferent if he were the one who changed preferences,
so again by anonymity, it should hold that f( bR1, R2) = f(R1, bR2) < P ( bR1) ≤
P (R2), contradicting efficiency of f at f(

bbR1, bR2) = f(R2, bR2) = f( bR1, R2).
Theorem 17 Let < = <SP and n ≥ 3. Then, the only strong reciprocate
and anonymous social SCFs are constant.

Proof. We have to prove both implications:
Step 1 :( ⇒) < single-peaked, f is a strong reciprocate and anonymous

SCF with #N ≥ 3⇒ f is constant.
We will Þrst demonstrate that under the single-peakedness assumption

and #N ≥ 3, every strong reciprocate and anonymous SCF has to be
strategy- proof. It will be proved by contradiction: we Þrst suppose that
f is anonymous, manipulable and strong reciprocate and we will Þnd a con-
tradiction.
Let us consider only three ordered individuals to simplify the notation of

the proof, and let us call them 1, 2 and 3. The proÞle that is supposed to be
manipulated will be now the following: (R1, R2, R3) and let agent 1 -without
loss of generality- be the manipulator, changing to preferences R0.
We can now apply Lemma 13 for j = 2, 3 with the above change, so the

following statements are true: f(R1, R0, R3)I 0f(R0, R2, R3) (1) and
f(R1, R2, R

0)I 0f(R0, R2, R3) (10).
Consider now the change consisting of changing agent 1�s preferences

from R1 to R3 in the proÞle (R1, R2, R0), the Þnal preference proÞle being:
(R3, R2, R

0). By anonymity, this proÞle has the same value that: (R0, R2, R3).
By expression (10) both values are considered indifferent with preferences R0.
Hence, by strong reciprocity in the two directions with respect to agent 1,
the following holds true: f(R1, R2, R3)I1f(R1, R2, R0) (2).

21



Now, let us remember that, by the manipulability hypothesis at the orig-
inal proÞle, it is true that: f(R0, R2, R3)P1f(R1, R2, R3) (3) -in the notation
of Theorem 16 -. Notice that we assumed that we have at least three indi-
viduals, so (1) and (10) can be written:

f(R1, R2, R
0)I 0f(R1, R0, R3)I 0f(R0, R2, R3).

But notice that single- peaked preferences only allow for at most two
distinct indifference points, so only two possibilities can occur:
1- f(R0, R2, R3) = f(R1, R0, R3), -or f(R0, R2, R3)P1f(R1, R2, R0)- in which

case, using the analogous to expression (2) corresponding to the change
from R1 to R2 in the proÞle (R1, R0, R3), the Þnal preference proÞle being:
(R2, R

0, R3) : f(R1, R2, R3)I1f(R1, R0, R3) (4), and the following expression
will hold:
f(R1, R2, R3)I1f(R1, R

0, R3) = f(R0, R2, R3). This contradicts directly
the manipulability hypothesis -expression (1)-.
2- either f(R1, R0, R3) < f(R0, R2, R3) < f(R1, R2, R3) or
f(R1, R2, R3) < f(R

0, R2, R3) < f(R1, R0, R3) and always: f(R1, R2, R0) =
f(R1, R

0, R3). Because if f(R0, R2, R3) = f(R1, R2, R3), there is a contradic-
tion with the manipulability of the original proÞle, and it is the only possi-
bility for (4) to hold true due to the single-peakedness of preferences. Notice
that in this case we can consider proÞle: (R1, R0, R3) and suppose that agent
1 changes his preferences from R1 to R2, reaching the proÞle of preferences
(R2, R

0, R3). Let us examine the effect of the change on agent 2 -with pref-
erences R0-. As expression (1) holds and, by anonymity, f(R2, R0, R3) =
f(R0, R2, R3) - permuting agents� 1 and 2 preferences -, by reciprocity with
respect to 2 the following relation should be true:
f(R1, R

0, R3)I1f(R2, R1, R3) = f(R1, R2, R3) - by anonymity -.
Consider now the proÞle (R1, R2, R3) and suppose that agent 3 with pref-

erences R3 moves to preferences R0. The Þnal proÞle will be (R1, R2, R0),
and by (2), the effect on agent 1 will be: f(R1, R2, R3)I1f(R1, R2, R0). Using
strong reciprocity and anonymity we have:
f(R0, R2, R3) = f(R0, R2, R3)I3 f(R1, R2, R3) (5). But f(R1, R0, R3) is

strictly on the right or strictly on the left of f(R0, R2, R3) and f(R1, R2, R3)
and the peak of R3 is such that: p(R3) ∈ [f(R1, R2, R3), f(R0, R2, R3)] , so
single-peakedness will imply:
f(R0, R2, R3)P3 f(R1, R0, R3) = f(R1, R2, R0) (6) and
f(R1, R2, R3)P3 f(R1, R

0, R3) = f(R1, R2, R0) (7).
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We can construct the symmetric change (R2 moves to preferences R0) to
check the relation:
f(R0, R2, R3)P2 f(R1, R2, R0) = f(R1, R0, R3) (60) and
f(R1, R2, R3)P2 f(R1, R2, R

0) = f(R1, R0, R3) (70).
Let us remember that we are in the only case allowed by the single-

peakedness assumption in which: f(R1, R2, R0) = f(R1, R
0, R3). As both

proÞles achieve the same social choice, everybody will feel indifferent be-
tween them, and in particular, agents with preferences I 0 : f(R1, R2, R0)I 0

f(R1, R
0, R3). This can be written, by anonymity, in this way:

f(R1, R2, R
0)I 0 f(R1, R3, R0). Let us consider the Þrst proÞle in the rela-

tion and suppose that agent 2 changes his preferences from R2 to R3, obtain-
ing f(R1, R3, R0). By strong reciprocity with respect to agent 3, the following
will be true:
f(R1, R2, R3)I2 f(R1, R

0, R3) = f(R1, R3, R
0). But recalling expression

(60) and relation (5) for the symmetric case when agent 2 changes from pref-
erences R2 to R0 : f(R0, R2, R3)I2 f(R1, R2, R3) (6). From (60) and (70), it
should be true that:
f(R1, R

0, R3)I2 f(R1, R2, R3). But we have seen that the following is true:
f(R1, R2, R3)P2 f(R1, R

0, R3), and this is the contradiction we were look-
ing for.
We have proved till now that under our assumptions, every strong recip-

rocate and anonymous SCF has to be strategy-proof. Using now Moulin�s [6]
characterization of anonymous, strategy-proof voting schemes and the results
related for SCFs in the right direction, we obtain that such SCFs. should
belong to the class of voting schemes deÞned by Moulin as Generalized Con-
dorcet winner solutions (n+1). Now, it suffices to prove that the only voting
schemes belonging to the class of GCWS(n+ 1) that are strong reciprocate
are those that allocate all the phantom voters to the same point, i.e.,

{Π : <n → A | Π(R) = m (p(R1), p(R2), ..., p(Rn), a, a, ..., an+1)}

Suppose that we face a voting scheme from the GCWS(n + 1) family such
that there exist at least two phantom voters allocated in different points
in the interval: ∃αh,αl with αh 6= αl, αh < αl. Take, then any piece of
the interval [αh,αl] with no phantom voters in it and Þx any proÞle with
all the people�s peaks inside that interval. It is not difficult to check that
the social choice will coincide some of the agents� peaks, say individual i
(p(Ri) = m(x,α)). Consider that the agent which peak is closer to that of i
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-let�s call him j- changes his preferences to any other with peak in the open
interval between the initial peaks of i and j. It is straightforward that the
median cannot change, so everybody feels indifferent with both proÞles. By
strong reciprocity, if agent i would change to j0s new peak and j would be
the initial 1, i should be indifferent with both proÞles. But this is impossible,
since the new social choices changes and cannot jump over anybody�s peaks,
so j would strictly gain and the voting scheme is not strong reciprocate.
The only voting schemes allowed are, then those with all the n+1 phan-

tom voters located at the same point; but this is another expression for the
constant function.
Step 2. (⇐) Any constant SCF is strong reciprocate. This part is obvious

and follows directly from the deÞnition of strong reciprocity.

This result turns out to be even worse than expected, since constant
SCFs are far more undesirable that Thomson�s family Φ, which are at least
efficient, so we can fear about the possibilities of introspective solidarity
against WDUPR. Notice, however, that the apparently narrow behavior
of strong reciprocity is extremely sensitive to the unnecessary and strong
requirement that we have already seen hiding behind the deÞnition related
to the responsiveness of strong reciprocity when facing indifference situations.
In this line, we hope that weak reciprocity will yield better results than its
stronger version. The problem is that the last proof cannot be applied to the
weak reciprocity case because we have used the indifference features that are
not shared by weak reciprocity. The analysis can however be simpliÞed when
we impose the additional property of efficiency. In exchange, we can forget
about the minimal 3-agents size of society of the former result.

Theorem 18 Let < = <SP . The only weak reciprocate, anonymous and
efficient SCFs are those belonging to the class GCWS(n− 1).

Proof. As this is a characterization theorem, we must prove both direc-
tions:
⇒) First, we will prove that if f is a weak reciprocate, anonymous and

efficient SCF, it has to be strategy-proof. We will proceed by contradiction.
Suppose that f is not strategy-proof, but it is weak reciprocate, anonymous
and efficient and we will Þnd a contradiction.
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If f is not strategy-proof, we know that there exist: ∃l ∈ N, ∃R ∈
<n, ∃R0 ∈ <, such that f(R0,R−l)Plf(R). Since we suppose f to be anony-
mous, we can rename the individuals and the new SCF will be invariant,
so consider the following permutation of agents such that all are reordered
according to the following rule: ∀j, h ∈ N,
if f(R0,R−i) < f(R), σ(j) < σ(h)⇔ f(R0,R−i)−p(Rj) > f(R0,R−i)−

p(Rh).
if f(R0,R−i) > f(R), σ(j) > σ(h)⇔ f(R0,R−i)−p(Rj) < f(R0,R−i)−

p(Rh).
We can always construct the above permutation, which simply consists

in ordering the individuals in direct relation with the distance from his peak
to the extreme deÞned by the direction of the shift in the value of f due
to the considered manipulation. Hence, call i = σ(l) -the new name of the
agent manipulating the rule-, and suppose without loss of generality that
f(R0,R−i) < f(R) -all the argument can be easily replicated to the other
case-. Now, by efficiency, somebody in the manipulable proÞle R should
loose with the shift, and moreover, ∃h > i such that p(Rh) ≥ f(R), since
if not, f(R) would not be an efficient alternative for R -everybody�s peaks
would be strictly on the left of f(R)-, so take the agent with the highest
peak in proÞle R -if there are more than one, take any of them- and let us
call him j, so it holds that p(Rj) = max

h∈N
p(Rh). It holds for this individual

that f(R)Pjf(R0,R−i) (1). Since f is weak reciprocate and anonymous,
applying Lemma 12 to (1),-while inverting roles of Ri and R0- we know
that the following statements are true: f(R0,R−i)I 0f(R0, Ri,R−i−j) (2) and
f(R)Pif(Ri, R

0,R−i−j) (3). By linking the manipulability hypothesis with
(3), we get: f(R0,R−i)Pif(R)Pif(Ri, R0,R−i−j) (30), so the former three
proÞles yield different outcomes and, by the single-peakedness assumption,
only two possibilities can occur:

(i). f(Ri, R
0,R−i−j) = f(R0,R−j) < f(R0,R−i) < f(R).

Notice that in this case, it must be by (2) and (30) that
p(R0) ∈ (f(R0,R−j), f(R0,R−i)) , p(Ri) ∈ (f(R0,R−j), f(R))and
p(Rj) ≥ f(R). By efficiency of f(R0,R−j), there exists some other indi-

vidual h with preferences in R such that p(Rh) ≤ f(R0,R−j), so by single-
peakedness, f(R0,R−j)Phf(R0,R−i) (10). Now, consider the change of indi-
vidual i from preferences Ri in proÞle (Ri, R0,R−i−j) = (R0,R−j) to prefer-
ences Rj, such that the Þnal proÞle will be (Rj, R0,R−i−j). By anonymity,
f(Rj, R

0,R−i−j) = f(R0,R−i), and individual i gains with the change by (30),
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the Þrst proÞle being manipulable by i. Let us check the effect of the shift on
individual h : by (10), agent h strictly loses and, by reciprocity with respect to
h, it holds that f(Ri, R0, Rj ,R−i−j−h) = f(R0,R−h)Ijf(R0,R−i), (20), and
f(Ri, R

0,R−i−j) = f(R0,R−j)Pif(R0,R−h). Since f(R0,R−h) 6= f(R0,R−i)
by the assumption of manipulability and single-peakedness, it is true that
f(R0,R−h) > f(R0,R−i), and by (20) and the above restrictions on the peaks,
we know that p(Rj) ∈ (f(R0,R−i), f(R0,R−h)) and hence,
p(Ri), p(Rj), p(R

0) < f(R0,R−h). But, notice that by construction,
p(Rj) = max

g∈N
p(Rg), so it must be that

f(R0,R−h) > max

½
max
g∈N

p(Rg), p(R
0)
¾
, so f(R0,R−h) cannot be an

efficient alternative in proÞle (R0,R−h), a contradiction.

(ii). f(R0,R−i) < f(R) < f(Ri, R
0,R−i−j) = f(R0,R−j), so if both

extreme proÞles are considered indifferent by preferences R0 by expression
(2), since single-peaked indifferent sets have at most two points, it must
be that f(R)P 0f(R0,R−j) (4) and f(R)P 0f(R0,R−i) (40). Now, let us con-
sider the proÞle (Ri, R0,R−i−j); Notice that (4) and (3) respectively imply:
p(R0) < f(R0,R−j) and p(Ri) < f(R0,R−j), so by efficiency of f(R0,R−j),
∃j0 ∈ N, j0 6= j, such that p(Rj0) ≥ f(R0,R−j). Now, let us consider that
individual j with preferences R0 in proÞle (Ri, R0,R−i−j) changes to prefer-
ences Rj -his initial ones-, reaching the proÞle R. By expression (4), j with
preferences R0 strictly gains by declaring Rj , so we have found another ma-
nipulable proÞle. Moreover, agent j0 strictly looses with the change, so we
also know that: f(Ri, R0,R−i−j)Pj0f(R). Now, we are in the conditions of
applying Lemma 12 and repeating all the former steps again, where only the
case (ii) is to be considered, but now the role of preferences Ri is performed
by R0, the role of R0 is carried out by Rj and the one of Rj is for Rj0, so we
can always construct a sequence of proÞles of the form:

R(1) = (R1, R
0, R3, R4, R5, ..., Rn)

R(2) = (R1, R2, R
0, R4, R5, ..., Rn)

R(3) = (R1, R2, R3, R
0, R5, ..., Rn)

R(4) = (R1, R2, R3, R4, R
0, ..., Rn)

........................................
R(n−1) = (R1, R2, R3, R4, R5, ..., R0)

in which some agent can manipulate the rule by changing preferences to
another initially present in proÞle R and such that:
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f(R(1)) < f(R(2)) < f(R(3)) < f(R(4)) < ... < f(R(n−1)) and
∀h ∈ {1, ..., n− 1} , ∀l ∈ {1, ..., h} , f(R(h)) > p(R0) ≥ max

l
p(Rl).

Therefore, proÞle R(n−1) cannot be efficient, since there are no more in-
dividuals with preferences in R with peaks on the right of f(R(n−1)) and
every peak is strictly on the left of f(R(n−1)). This is a contradiction and f
has to be strategy-proof. Now, we can apply Barberà & Jackson [3] result:
the only strategy-proof SCFs must be voting schemes, and Moulin�s [6] re-
sult, which states that every anonymous, efficient and strategy-proof voting
scheme should belong to the family of GCWS(n− 1).
⇐) The implication: Π ∈ GCWS(n−1)⇒ Π is anonymous and efficient

is easy and is already proved in Moulin [6]. So, it is sufficient to prove that
every voting scheme in Moulin�s class is weak reciprocate, and the character-
ization will be complete.
Let us take any voting scheme Π ∈ GCWS(n − 1); That is, we Þx an

arbitrary distribution of phantom voters α = (α1,α2, ...,αn−1). We will
prove that the median of the peaks and phantoms gives us a voting scheme
that preserves the weak reciprocity property. The median is deÞned as
follows: m (p(R1), p(R2), ..., p(Rn),α1, ...,αn−1) ⇔ # {i | p(Ri) ≤ m} +
# {i | αi ≤ m} ≥ n and
# {i | p(Ri) ≥ m}+# {i | αi ≥ m} ≥ n.
Suppose any Þxed distribution of peaks p(R) = (p(R1), p(R2), ..., p(Rn)),

so that the social decision is m = m(p(R),α) and that somebody -let us call
him i- changes his peak -without loss of generality one whose peak is on the
left of the median (p(Ri) ≤ m)- to p(R0) 6= p(Ri) . The shift of the new
choice will depend on the allocation of agent i0s new peak. There are two
possibilities:

1- p(R0) ≤ m(p(R),α) :
We need to know how this change will affect the remaining agents, in

order to check the reciprocity of the voting scheme. Notice that in this case
the cardinality of the set of agents at both sides of the initial median will not
vary and the distribution of phantoms is always the same. By the deÞnition
of median, the new choice will be the same:

m(p(R0,R−i),α) = m0 = m = m(p(R),α).

Every individual will be then indifferent with both distributions of peaks
and, by weak reciprocity we should check that every agent with peak p(R0)
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should either not affect i or improve i0s position. Let us consider any j
such that p(Rj) ≤ m. If j changes to p(R0), the total number of peaks on
the left of the median will remain unchanged, so the median cannot vary:
m(p(R0,R−j),α) = m00 = m = m(p(R),α), so i does not loose. Now, let us
Þx any individual h with initial peak on the right of m : If he changes his
preferences to x0i, the left side of the median increases its weight relative to
the right side -which lose j0s vote- so, in the case of shifting the choice, it has
to be to the left of the initial median, so it is true that: m(p(R0,R−j),α) =
m00 ≤ m = m(p(R),α). But the change of just one individual cannot make
the median jump over anybody�s peak, so everybody with peaks strictly
on the left of the initial median -including agent i- should gain with the
change. The only remaining possibility is that of p(Ri) = m, but in this
case, whenever p(R0) ≤ m, if the initial change changes the rule�s choice, we
are in case 2, and if it does not, nobody can individually make the decision
shift to the left, so reciprocity holds in this case.
2- p(R0) ≥ m :
In this case, it is easy to prove that m0 ≥ m and every p(Rj) > m

implies p(Rj) ≥ m0. By single-peakedness, ∀j ∈ N such that p(Rj) ≥
m, m0Rjm, and weak reciprocity: m(p(R0,R−j),α)Rim should hold. Notice
that m(p(R0,R−j),α) ≤ m(p(R0,R−i),α), and by single-peakedness again it
will always be true that
m(p(R0,R−j),α)Rim. Let us see what happens with people on the left

of the initial mean: For p(Rj) ≤ m, everybody will be equal or worse off
than before: mRjm(p(R0,R−i),α); so, by weak reciprocity we will expect i to
weakly lose if some j such that p(Rj) ≤ m moves to p(R0). As p(R0) ≥ m, the
following medians will coincide: m(p(R0,R−j),α) = m(p(R0,R−i),α), and by
single-peakedness -or simply looking at the deÞnition of median above- i will
not improve his position and this holds: mRim(p(R0,R−j),α).

The last result establishes the characterization of the large set of SCFs
which are anonymous, efficient and weak reciprocate SCFs. As we said above,
introspective solidarity interpreted as weak reciprocity allows for a larger
set of procedures for making public decisions that the effective solidarity
requirement represented byWDUPR. The important role given to the status
quo when requiring the latter property along with efficiency disappears when
we require weak reciprocity, so the SCF can be made much more sensitive
and responsive to changes in the individuals� tastes.
Finally, it may be useful to comment the price we have to pay for this re-
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sult with respect to that of strong reciprocity. We have yet argued that weak
reciprocity is a weaker concept of solidarity than strong reciprocity, but it
makes more sense, so that strong reciprocity is undoubtedly too stringent at
a minimal conceptual cost. More interesting is the following question: since
the efficiency and anonymity requirements are both needed to get the last
theorem, we may wonder about what kind of weak reciprocate SCFs. are we
eliminating by imposing anonymity and efficiency together. Since anonymity
is implied by replacement monotonicity combined with efficiency, the effi-
ciency property is the crucial assumption in order to compare both solidarity
principles. We should then, expect both weak reciprocate and replacement
monotonic SCFs. to exist outside the efficiency environment. The problem
is that they may not be voting schemes and strategy-proof, so that the whole
preference relations of the agents may be relevant to determine the outcome.
This fact makes them too complex objects and difficult to implement. We
can only provide the reader with two families of SCFs. of this kind that lay
outside our analysis and they are anonymous, weak reciprocate and replace-
ment monotonic, but they lack efficiency -in fact, they hardly select efficient
alternatives and are manipulable-. The Þrst class contains no voting scheme:
Assume < = <SP and let us consider the family Ψ = {fa | a ∈ [0,M ]} . Given
a ∈ [0,M ] , let fa(R) be deÞned as: ∀R ∈ <, fa(R) =

=

(
argmax

x

S
i∈N
{x ∈ [0,M ] | xIia} iff ∀i ∈ N, # {x ∈ [0,M ] | xIia} > 1

M otherwise

This function is not difficult to understand: it simply Þnds the largest
point that is indifferent with the Þxed one a -or M if there does not exist
another one -for every individual- and then, selects the largest -the closest
one toM -. Notice that this SCF makes broad use of the information outside
the agents� peaks. Let us deÞne

bi(R) =

½
max {{x | xIia} , a} iff ∃x 6= a s.t. xIia.
M otherwise

∀R ∈ <.
Notice that any function in the class Ψ is replacement monotonic since

any shift in the function cannot jump over anybody�s bi(R) so that either
everybody gains or everybody looses. It is not strong reciprocate because
whenever fa(R) = bj , if agent i with bi(R) < bj(R) changes to preferences
such that b0i(R) = a, since b

0
i(R) < bi(R) < bj(R), the social choice does not

change, and leave all the others indifferent, but whenever agent j moves to
a, the social choice shifts and everybody gains, so i will not be indifferent.
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Notice that weak reciprocity holds in any case.
The second class are voting schemes, and they are anonymous, weak

reciprocate and replacement monotonic, but they are not efficient, strategy-
proof and strong reciprocate. Consider the class Σ = {fa | a ∈ [0,M ]} .
Given a ∈ [0,M ] , let fa(R) be deÞned as: ∀R ∈ <,

fa(R) =

½
p(R1) iff p(R1) = p(R2) = ... = p(Rn).
a otherwise

2.4 Conclusions

We have investigated in this work the introspective solidarity principles of
reciprocity in public goods environments when monetary compensations are
not possible.
In a Þrst step, we try to calibrate the power of the reciprocity property

combined with anonymity in a general context with a Þnite set of alternatives,
without imposing any domain restriction on the preference space. Theorem
15 offers us a negative result. It is shown that we cannot Þnd any anonymous
and reciprocate SCF within this unrestricted domain. We are, then, com-
pelled to impose some kind of structure on the space of preferences to obtain
a positive result. In order to compare reciprocity with welfare-domination
under preference-replacement, we move to the public good context with in-
Þnite alternatives deÞned into a closed interval on the real line, where the
single-peakedness restriction is quite a natural assumption.
Theorem 18 offers the answer within this new context and proves that

there exist efficient, anonymous and weak reciprocate SCFs. Moreover, all
of them are fully characterized and the class of functions that preserve both
properties turns out to coincide with Moulin�s class of Generalized Condorcet
winner solutions. This result can be considered in two different ways. First, it
is clear that we have achieved our goal of enlarging the small class of replace-
ment monotonic SCFs by allowing for procedures that are more sensitive to
individual preferences. Secondly and in a strategic context, we can consider
the result as some kind of reinforcement of the class of strategy-proof SCFs.
within the restricted domain of single-peakedness, since we show that they
also satisfy some introspective solidarity principle.
Theorem 17 explores the strong version of reciprocity in the public good

context and concludes that when there are three or more individuals, there
do not exist minimally responsive strong reciprocate and anonymous SCFs.
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and they are not compatible with efficiency either. The reason why strong
reciprocity is so much demanding than its weak version lies essentially on
the treatment of changes in preferences that do not alter the social decision.
Strong reciprocity is clearly overdemanding when it requires that when some-
body changes and the social decision does not move, nobody else can make
it shift with the other�s preferences.
Whatever interpretation of the result we may like best, it may be worth-

while to point out the close relations between strategy-proofness and the
reciprocity-anonymity condition in some restricted domains -not only that
of single-peakedness, but that of strict orderings too-. When talking about
reciprocate SCFs, we are imposing a fairness principle of equal treatment
among individuals when someone suffers a preference mutation. The fair-
ness principle in some of its usual forms may not make sense when people
can lie about their real preferences. But notice that reciprocity is consis-
tent even in this uncertain context of private information, and this concep-
tual consistency is obtained free from the implied strategy-proofness of the
anonymous-reciprocate SCF.
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3 A SOCIALCHOICETRADEOFFBETWEEN
ALTERNATIVE FAIRNESS CONCEPTS:
SOLIDARITY VERSUS RIGIDITY

3.1 Introduction

We have mentioned in the previous chapter that the replacement principle
was introduced by Thomson [8] as a general requirement of solidarity among
agents who jointly face a problem of fair allocation. In general terms, the
principle requires that the consequences of changes in the parameters deÞning
such a problem should affect agents in the same direction, except may be
those whose characteristics also change along with the parameters: all others
must gain, or all lose, relative to their situation before the change occurred.
The set of relevant parameters can vary from problem to problem. This

gives rise to different axioms, each of which embodies the general require-
ment of solidarity for a speciÞc environment. Population monotonicity re-
quires that population growth without an increase of resources should not
improve the share of those who were initially part of society. Here, the rel-
evant parameters are those describing which agents belong to society at a
given point in time. In contrast, resource monotonicity requires that when
the set of agents does not change, but the overall amount of resources varies,
then either all agents should lose, or all gain. In this paper we concentrate
in a third version of the general principle of solidarity, which applies when
the change in parameters involves a change in the preferences of some agent
in society. If this entails a change in the allocation, then all agents whose
preferences did not change should be affected in the same direction: either all
of them should gain, or all lose. This axiom was Þrst presented by Moulin [6]
under the name of replacement domination. It has also been referred to as re-
placement monotonicity or welfare domination under preference replacement
(WDUPR). Its consequences have been widely explored both for economies
with private and public goods -Thomson [13], [14], [9] and [15].
When the problem faced by society is that of deciding the amount to

provide of a pure public good, and the set of alternatives is viewed as an in-
terval in the real line, Thomson [9] proved that, if the preferences of agents are
single-peaked, the only efficient social choice functions satisfying WDUPR
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are those in a narrow subclass within the family of Generalized Condorcet
winner solutions deÞned by Moulin [4]. This subclass is characterized by a
status quo value in the interval, which will prevail as the outcome as long
as some agent�s ideal is above the status quo value in the interval, and some
other agent is below it. The outcome will only depart from the status quo
whenever all agents unanimously agree than a lower level is desirable, or all
would prefer a higher level. In these cases, the social outcome is the ideal of
that agent whose peak is closest to the status quo. Hence, full satisfaction of
the solidarity principle as expressed through theWDUPR axiom is obtained
at the cost of only admitting very rigid rules, which are barely responsive to
the preferences of the different agents.
Rather than insisting in an absolute trade-off between solidarity and rigid-

ity, we develop some measures of the degree of compliance of each one of these
desirable features, and then use them to classify different social decision rules
in terms of their respective abilities to satisfy each one of the two principles in
different degrees -in the spirit of Campbell and Kelly�s [2] Trade-off Theory.
In particular, a partial order among the set of rules is proposed to be able
to say what rule �unambiguously� dominates another in terms of solidarity
and in terms of decisional �rigidity�. The existence of a general trade-off
is proved in that the rules that turn out to dominate any other in terms of
solidarity -Thomson�s class- are those that are dominated by any other in
terms of rigidity and -to a large extent-, vice versa, the median voter rule
being the only social choice function that is dominated by any other in terms
of solidarity. When some stronger measures of both properties are deÞned
to measure the �degree� of both solidarity and rigidity, a quantiÞable trade-
off emerges within the class of Generalized Condorcet winner solutions, that
include both the median voter and Thomson�s [9] rule. Basically, our last
theorem proves that an appropriate generalization of the �qualiÞed majority�
of a voting rule can measure both the solidarity degree -the minimum num-
ber of voters that move in the same welfare direction when a voter changes
her preferences- and the rigidity degree- the minimum number of voters than
need to prefer a change of the social choice either to the right or to the left for
this change to take place. Therefore, any rule within the Generalized Con-
dorcet winner solutions can be classiÞed by its solidarity-rigidity degree, so
that given social preferences over the measures of both properties, a socially
optimal �qualiÞed majority� can be chosen in the constitutional stage.
The chapter proceeds as follows: in Section 2, the basic model and the

deÞnitions are established. Sections 3 and 4 are devoted to the deÞnitions
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and results regarding solidarity and rigidity respectively. Section 5 deals
with results in the restricted environment of Voting Schemes belonging to
the family of Generalized Condorcet winner solutions and Þnally, we conclude
with some comments.

3.2 The model

Consider a committee -the society- composed by a Þxed Þnite set of agents
or individuals N = {1, ..., n} , indexed by i, j, h and l. The committee must
choose the level of a public good -or the location of a public utility- in the
interval [0,M ] ⊂ E, where E denotes de real line.
Every individual i ∈ N is endowed with a complete preference pre-

ordering Ri -or preference relation- over the set of alternatives. The set
of possible preferences is <. We denote by Pi and Ii the asymmetric and
symmetric parts of Ri, standing for the strict and indifference relations as-
sociated with Ri.
The agents� preference relations are continuous and single- peaked. A

preference relationRi on [0,M ] is single-peaked if there exits a unique number
p(Ri) ∈ [0,M ] such that ∀x, y ∈ [0,M ] , if y < x ≤ p(Ri) or p(Ri) ≤ x < y,
then, xPiy. The number p(Ri) is the peak of agent i0s preferences and it is
obviously the most preferred alternative of agent i.
An ordered list of preference relations for all the individuals is a preference

proÞle and will be denoted by R = (Ri)i∈N = (R1, ..., Rn). We will frequently
use the well- known notation: R = (Ri, R−i) ∀i ∈ N. When preferences are
single-peaked, the associated vector of peaks will be: p(R) = (p(Ri))i∈N ∈
[0,M ]n .
Now, we model the social objectives. A social choice function (SCF) f

is a function which associates a chosen alternative to every preference proÞle
and it will be denoted by f : <n → [0,M ] .
We will be interested in a special class of SCFs, called voting schemes,

which only use information about the agents� peaks. Hence, a voting scheme
Π is a social choice function for which the following holds:

∀R,R0 ∈ <n s.t. p(R) = p(R0) =⇒ Π(R) = Π(R0).

DeÞnition 19 For each given R ∈ <n, x ∈ [0,M ] is an efficient alterna-
tive if there is no x0 ∈ [0,M ] with x0Rix ∀i ∈ N and x0Pix for some i ∈ N.
Let P (R) be the set of efficient alternatives, given R.
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A SCF f is efficient if it selects efficient alternatives for each preference
proÞle, i.e., ∀R ∈ <n, f(R) ∈ P (R).

Since preferences Ri ∈ < are single-peaked for all i ∈ N , it is easy to
prove that f is efficient whenever ∀R ∈ <n,

f(R) ∈ P (R) = [min {p(Ri) | i ∈ N} , max {p(Ri) | i ∈ N}] .

DeÞnition 20 A SCF f is anonymous if any permutation of the different
values of its arguments yields the same alternative, i.e., if for all one-to-one
mapping σ : N → N, f(R1, ..., Rn) = f(Rσ(1), ..., Rσ(n)) ∀R ∈ <n.

This property assures that no information about the individuals� names
is used in the decision rule.

DeÞnition 21 A SCF f satisÞes the property ofWelfare-domination un-
der preference-replacement (WDUPR)5 if:
∀i ∈ N, ∀R ∈ <n, ∀R0i ∈ <, then, either f(R)Rjf(R0i, R−i) ∀j ∈ N\ {i}

or f(R0i, R−i)Rjf(R) ∀j ∈ N\ {i} .

Any change in preferences of any individual move the welfare of the re-
maining agents in the same direction: either all of them gain or all of them
lose -in the weak sense-.

DeÞnition 22 A SCF f is a Generalized Condorcet Winner Solution-
(n−1) (GCWS(n− 1)) if ∃α = (α1, ...,αn−1) ∈ An−1, called phantom voters
or Þxed ballots such that for all R ∈ <n,

f(R) = m (p(R1), p(R2), ..., p(Rn),α1, ...,αn−1), where m stands for the
median6.

Moulin [4] proved that when preferences are single- peaked on the interval
[0,M ] , the only anonymous, efficient and strategy- proof voting schemes on
[0,M ] are those belonging to the family GCWS(n− 1).

5This property has also been called replacement domination and replacement mono-
tonicity.

6The median is deÞned as:
m (p(R1), p(R2), ..., p(Rn),α1,α2, ...,αn−1) ⇔
# {i | p(Ri) ≤ m}+# {i | αi ≤ m} ≥ n− 1 and
# {i | p(Ri) ≥ m} + # {i | αi ≥m} ≥ n − 1. Moreover, we assume that the phantom

voters are ordered such that α1 ≤ α2 ≤ ... ≤ αn−1.
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DeÞnition 23 Suppose n is odd. We call the Median Voter SCF to f ∈
GCWS(n − 1) such that α1 = α2 = ... = αn−1

2
= 0 and αn−1

2
+1 = ... =

αn−1 =M. (i.e., the median of the agents� revealed peaks).

The following deÞnition describes a family of solutions which only differ
by one parameter a ∈ [0,M ] .This rule plays a central role in Thomson [9].
Basically, it will choose a whenever it is efficient, and it will choose the peak
of the agent who is closest to a, otherwise.

DeÞnition 24 A SCF fa is adjusted constant to a ∈ [0,M ] if for all
R ∈ <n,

fa(R) =

 a if a ∈ P (R)
min {p(Ri) | i ∈ N} if a < min {p(Ri) | i ∈ N}
max {p(Ri) | i ∈ N} if a > max {p(Ri) | i ∈ N}

Let us de-

note by Φ the family of adjusted constant SCFs; namely Φ = {fa | a ∈ [0,M ]}
and fa is adjusted constant to a.

Notice that all the SCFs within class Φ are anonymous and strategy-proof
voting schemes and all of them belong to the family GCWS(n− 1) with the
n− 1 phantom voters located on the same point7

Thomson [9] proved that this subclass of the GCWS(n− 1) family is the
set of efficient social choice functions satisfying WDUPR.

3.3 Solidarity

We now deÞne two auxiliary functions which can be associated to any SCF
f . They will be useful in discussing milder requirements than the solidarity
axiom, but still in a similar spirit.

DeÞnition 25 The improvers associated to SCF f , preference proÞle R =
(R1, R2, ..., Rn), changed preferences R0 and agent i is the function: If :
<n+1 ×N → {0, 1, ..., n− 1} deÞned as:
If(R1, R2, ..., Rn, R

0, i) = # {j ∈ N\ {i} such that f(R−i, R0i)Rjf(R)} .
The improvers set associated to some agents� change from a given distri-

bution of peaks simply gives the number of agents who weakly gain with the
change.

7That is, α1 = α2 = ... = αn−1 = a.
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DeÞnition 26 The losers associated to SCF f , preference proÞle R =
(R1, R2, ..., Rn), changed preferences R0 and agent i is the function: Lf :
<n+1 ×N → {0, 1, ..., n− 1} deÞned as:
Lf(R1, R2, ..., Rn, R

0, i) = # {j ∈ N\ {i} such that f(R)Rj f(R−i, R0i)} .
Conversely, the losers associated to some agents� change from a given

preference proÞle is simply the number of agents who weakly lose with the
change.
Note that, for every social choice function f : ∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ <,

it holds that If(R1, R2, ..., Rn, R0, i) + Lf (R1, R2, ..., Rn, R0, i) + 1 ≤ 2n− 1.
We can now introduce a notion of the degree of solidarity associated to a

preference proÞle and to the change in preferences of some agent embodied
in a given social choice function.

DeÞnition 27 The solidarity degree associated to SCF f , agent i , pref-
erence proÞle R = (R1, R2, ..., Rn), when i�s preferences change to R0 is the
function: Sf : <n+1 ×N → {0, 1, ..., n− 1} deÞned as:
Sf(R1, R2, ..., Rn, R

0, i) =
= sup

©
If(R1, R2, ..., Rn, R

0, i), Lf(R1, R2, ..., Rn, R0, i)
ª
.

The solidarity degree associated to each preference proÞle and any indi-
vidual preference change is the maximum number of individuals who move
together in the same welfare direction, as a result of that change. Following
Thomson�s general concept of solidarity, it seems natural to say that, given
a change in somebody�s preferences, a SCF with a greater solidarity degree
than any other will behave better in solidarity terms. The problem that may
arise when proposing a relaxation of the degree of solidarity is that a func-
tion might have a greater degree of solidarity than other for some proÞle and
individual�s change but a smaller degree of solidarity for some other proÞle
and agent�s preferences change, so in order to make solidarity judgements
among different SCFs, society need to compare different solidarity behav-
ior in different situations. One possibility is to classify every SCF in terms
of solidarity using a pessimistic criterion: the minimum solidarity degree in
every circumstance can be the social utility level -or the aggregate measure
of solidarity- associated to a SCF, so that when society agree to use a SCF
based in solidarity considerations follow a maximin rule on the solidarity de-
gree functions of the admissible SCFs. Let us deÞne the solidarity degree of
a SCF:
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DeÞnition 28 We call solidarity degree associated to social choice func-
tion f and denote as SDf to the following number:

SDf = inf
©
Sf(R1, ..., Rn, R

0, i) | (R1, ..., Rn, R0, i) ∈ <n+1 ×N
ª
.

The solidarity degree is the minimal number of individuals who move
together in the same welfare direction when considering any possible con-
Þguration of peaks and any individual�s change, so it only depends on the
speciÞc SCF, and each one will have associated just one solidarity degree.
Note that every SCF in class Φ has the maximum possible solidarity degree,
i.e., SDfa = n− 1 ∀fa ∈ Φ.
Nevertheless, we should recognize that there is no strong reason for such

a pessimistic social preferences over SCFs. The only thing we can say about
social preferences on solidarity is that if a SCF has a higher degree of solidar-
ity than other -and strictly higher in some case- for every preference proÞle
and individual change, the former will be unambiguously socially preferred
to the latter when considering solidarity alone. Exploiting this dominance
relation over SCFs in terms of solidarity, we can deÞne the following:

DeÞnition 29 We say that SCF f is dominated in terms of solidarity
by SCF g if ∀i ∈ N, ∀R ∈ <n, ∀R0 ∈ < such that f(R) 6= f(R0i, R−i),

Sg(R1, ..., Rn, R
0, i) ≥ Sf (R1, ..., Rn, R0, i)

and ∃i ∈ N, ∃R ∈ <n, ∃R0 ∈ < such that f(R) 6= f(R0i, R−i) and
Sg(R1, ..., Rn, R

0, i) > Sf(R1, ..., Rn, R0, i).

A SCF that is not dominated in terms of solidarity by those belonging to
some class is said to be undominated within that class.

Notice that the domination relation established above is incomplete and
may generate cycles. Since we additionally impose the condition f(R) 6=
f(R0i, R−i) in the above deÞnition, it is possible that a SCF both dominates
and is dominated by another. Restricting attention to efficient SCFs8, there
is a maximal set of SCFs from the above dominance relation, i.e., a set of
functions that are not dominated by any other.

8We are implicitly assuming that efficiency is actually an essential admissibility require-
ment.
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Theorem 30 The only efficient SCFs that are undominated in terms of sol-
idarity among all efficient SCFs are the members of class Φ.

Actually, Theorem 30 above is a straightforward reformulation of Thom-
son�s [9] original result. Thomson proved that in this context, the only effi-
cient SCFs such thatWDUPR holds are those belonging to class Φ.However,
notice that, as we said above, it amounts exactly to showing that the only
efficient SCFs f with SDf = n − 1 are those in class Φ. But any SCF ex-
hibiting the highest solidarity degree has to be the only undominated SCFs
among all the efficient SCFs.
The problem with the SCFs within class Φ is that they amount exactly

to Þx an alternative as a status quo that will only be changed with strict
unanimity of all members of the committee, so the absolute solidarity is
achieved at the price of high decisional rigidity, which can be considered as
an additional fairness criterion and society will actually care about it.
We can now state the main results in the paper: Theorems 31, 37 and 40

motivate the paper and prove the existence of a trade-off between higher de-
grees of solidarity and low responsiveness -high rigidity- of SCFs. Moreover,
the greatest degree of solidarity -Thomson�s WDUPR- is associated to the
least responsive SCFs -class Φ- and the smallest possible solidarity level can
only be satisÞed by a much less rigid SCF in this context: the Median Voter
SCF. The results lead us to focus in a broader class of voting schemes that
include class Φ as well as the Median Voter SCF: the Generalized Condorcet
winner solutions. The solidarity degree is then used to classify every SCF
within this large class in Theorem 40, ranging from the one with the least
solidarity degree -the median- to that with the highest solidarity degree -class
Φ-. Moreover, a direct trade-off is proved between the solidarity degree and
the rigidity degree within that class.
Now, we prove our Þrst characterization theorem, which can be viewed as

a parallel to Thomson�s [9] Theorem 3.6 in the opposite side of the solidarity
spectrum:

Theorem 31 Suppose that n > 3 is odd. The only efficient SCF that is
dominated in terms of solidarity by all efficient SCFs is the Median Voter
SCF.

Proof. Necessity: Let us consider some SCF f , any preference proÞle
R ∈ <n and suppose that some agent, say i, change his preferences to R0 ∈ <
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and the change shifts the social decision (f(R) 6= f(R0i, R−i)); the smallest
possible solidarity degree for the SCF facing such a change when n is odd is
obviously Sf(R1, ..., Rn, R0, i) = n−1

2
, so if there would exist some set C of

efficient SCFs such that ∀R ∈ <n, ∀i ∈ N, ∀R0 ∈ <,

Sf(R1, ..., Rn, R
0, i) =

n− 1
2

whenever f(R) 6= f(R0i, R−i) (1),

they will obviously be dominated in terms of solidarity by any other SCF
not belonging to class C. We will show that the SCF f such that ∀R ∈
<n, f(R) = m {p(R1), ..., p(Rn)} is precisely the only efficient SCF in which
(1) holds, so it is dominated by any other. Suppose any R ∈ <n and any
efficient SCF g such that (1) holds. Consider any preference proÞle R =
(R1, R2, ..., Rn) such that the following holds: ∀i ∈ N such that p(Ri) =
m {p(R1), ..., p(Rn)} , Ri = Ri and ∀i ∈ N such that
p(Ri) 6= m {p(R1), ..., p(Rn)} , Ri is any preference relation such that

p(Ri) = m {p(R1), ..., p(Rn)} , so that the following holds: p(R1) = ... =
p(Ri) = ... = p(Rn) = m {p(R1), ..., p(Rn)} . By efficiency of g, it must
be that g(R) = m {p(R1), ..., p(Rn)} . If R = R, we are done. If R 6= R,
∃j ∈ N whose preferences in proÞle R have not the same peak of those
in proÞle R. Let us take all these individuals and suppose w.l.g. that
at least one of them is such that p(Rj) < p(Ri) ∀i ∈ N -if more than
one, take any of them-, and consider the proÞle (Rj, R−j). Notice that it
must be that g(Rj , R−j) = g(R) = m {p(R1), ..., p(Rn)} , since if not, the
n − 1 agents whose peaks lie on g(R) in proÞle (Rj , R−j) would lose and
therefore ∃j ∈ N, ∃Rj ∈ <, ∃R ∈ < with g(R) 6= g(Rj, R−j) such that
Sg(R1, ..., Rn, R

0, j) = n − 1 > n−1
2
. Now, consider proÞle (Rj, R−j). If

(Rj, R−j) = R, we are done. If not, two possibilities can occur: Case
1. ∀h ∈ N, p(Rh) ≤ m {p(R1), ..., p(Rn)} . In this case, we can itera-
tively change the preferences of all agents whose preferences in proÞle R
do not have the same peaks as those in proÞle R and the social choice cannot
change, since m {p(R1), ..., p(Rn)} coincides with the greatest peak in proÞle
R, so at least

n− 1
2

+ 1 individuals have their peaks in proÞle R located

in m {p(R1), ..., p(Rn)} . Finally, we will construct proÞle R from R and the
social choice remains the median of the peaks in R, so we are done. Case
2. ∃h ∈ N − {j} such that p(Rh) > p(Ri) ∀i ∈ N − {j} -if more than one,
take any of them-. Take that individual and notice that it has to be true
that g(Rj, Rh, R−j−h) = g(Rj, R−j) = g(R) = m {p(R1), ..., p(Rn)} , since if
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not, if g(Rj, Rh, R−j−h) < g(Rj , R−j), Sg(Rj , R−j , Rh, h) ≥ n − 2 > n− 1
2

when n > 3 and if g(Rj, R−j) < g(Rj , Rh, R−j−h), Sg(Rj , R−j , Rh, h) =

n − 1 > n− 1
2
. Now, let us focus on proÞle (Rj , Rh, R−j−h) and consider

any agent l ∈ N − {j, h} such that p(Rl) 6= p(Rl). Again, two possi-
bilities can occur: Case1. There does not exist such an agent. In this
case, (Rj, Rh, R−j−h) = R by construction of proÞle R from proÞle R, and
therefore, we have shown that m {p(R1), ..., p(Rn)} = g(R) = g(Rj , R−j) =
g(Rj , Rh, R−j−h) = g(R) and we are done. Case 2. ∃l ∈ N−{j, h} such that
p(Rl) 6= p(Rl). In this case, consider agent�s l change from his preferences
Rl in proÞle (Rj, Rh, R−j−h) to preferences Rl. if g(Rj , Rh, Rl, R−j−h−l) 6=
g(Rj , Rh, R−j−h), then, Sg(Rj, Rh, R−j−h, Rl, l) ≥ n+ 1

2
>
n− 1
2
, because,

by construction of proÞle R, it always holds for any individual change from
preferences in R to preferences in R that the median will be the same, i.e.,

m
©
p(R)

ª
= m

©
p(Rj , R−j)

ª
= m

©
p(Rj , Rh, R−j−h)

ª
=

= m
©
p(Rj , Rh, Rl, R−j−h−l)

ª
= ... = m {p(R)} , since, by def-

inition of the median, it holds that ∀S ⊆ {i ∈ N | p(Ri) < m {p(R)}} and
∀T ⊆ {i ∈ N | p(Ri) > m {p(R)}}

#S +#(N − {S ∪ T}) ≥ # {i ∈ N | p(Ri) ≤ m {p(R1), ..., p(Rn)}} ≥ n+ 1

2
,

(4)

and

#T +#(N − {S ∪ T}) ≥ # {i ∈ N | p(Ri) ≥ m {p(R1), ..., p(Rn)}} ≥ n+ 1

2
,

(5)

so if g(Rj , Rh, Rl, R−j−h−l) 6= g(Rj, Rh, R−j−h), Sg(Rj , Rh, R−j−h, Rl, l) ≥
n+ 1

2
>
n− 1
2

because the number of losers with l�s change (the number

of agents whose peaks in proÞle (Rj, Rh, R−j−h) are on m {p(R)} or on the
left ofm {p(R)} if g(Rj, Rh, Rl, R−j−h−l) > g(Rj , Rh, R−j−h) or the number of
agents whose peaks in the same proÞle are on the right ofm {p(R)} or exactly
in that median if g(Rj, Rh, Rl, R−j−h−l) < g(Rj, Rh, R−j−h)) cannot in any

case be smaller than
n+ 1

2
. By construction of proÞle R, we can reach proÞle

R by sequentially changing the preferences in proÞle R of one individual
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from the set S or T to his preferences in proÞle R until exhausting them.
When we move the last agent, and get a proÞle such that #S = #T = ∅ we
get proÞle R. Since in no such change the social choice can ever shift from
m {p(R)}, we get that necessarily, it must be that g(R) = m {p(R)} and we
can replicate the same argument for every R ∈ <n, so the only efficient SCF
with minimum solidarity degree is such that ∀R ∈ <n, g(R) = m {p(R)} ,
i.e., the Median Voter SCF, which can also be written as the member of the
class GCWS(n−1) that allocates half of the phantom voters at each extreme
of the interval -when n is odd-.
Sufficiency: Let us consider the SCF such that g(R) = m {p(R)} for

any proÞle R and notice that for any individual i ∈ N such that p(Ri) ≤
m {p(R)} , w.l.g, for all R0i such that p(R0i) ≤ m {p(R)} , it holds that g(R) =
g(R0i, R−i), since the median cannot change. The only possible shift in the
social choice comes from individual changes that jump over the median, i.e.,
R0i is such that p(R

0
i) > m {p(R)} and just one individual different from i

in proÞle R has the peak chosen by the median. In this case, the median
shifts to the next peak on the right of the initial choice among the peaks in

the vector p(R0i, R−i), so that
n− 1
2

agents - those on the left of m {p(R)}
included the agent whose peak coincide with m {p(R)} -with the exception
of i- lose for sure and

n− 1
2

agents -those strictly on the right of m {p(R)}-
gain for sure. A symmetric argument is used in the case that the individual
who changes his preferences -say i- has an initial peak on the right of the
median: p(Ri) ≥ m {p(R)} .
Whenever n > 3 is odd, Theorem 31 characterizes the only SCF which

embodies the least solidarity in Thomson�s sense, which also has the least
solidarity degree. It is not actually needed to characterize the SCFs for every
n -the cases with just three agents or when the median is not deÞned-, since
the logic of the proof makes the SCFs to approach the median. Notice that
we come back to the Voting Schemes in the GCWS(n−1) family, so the only
efficient SCF with the smallest solidarity degree is additionally an anonymous
and strategy-proof SCF, which is a generalization of simple majority voting
for a unidimensional set of alternatives. Furthermore, Theorem 31 suggests
a new conjecture within voting schemes in the family of GCWS(n − 1): if
the minimum solidarity degree of the unanimity rules -members of class Φ-
equals n− 1 -Theorem 30 - and the minimum solidarity degree of the simple

majority voting rule -the median, provided that n is odd- equals
n− 1
2

-
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Theorem 31 -, is it true that the minimum solidarity degree of a qualiÞed
majority voting rule amounts to be the required majority minus one?. It is
easy to check that this conjecture is true. A qualiÞed majority voting rule in
this context can be described as resulting from an accumulation of phantom
voters on the same point, when half of the remaining phantom voters are
located in each of the extremes of the interval. The solidarity degree for any
one of these SCFs equals the number of phantom voters in the accumulation
point minus one -the required qualiÞed majority-. This is not a surprising
result, since a change in the rule due to any individual change in preferences
can only take place when almost all the qualiÞed majority of voters prefer
other alternative to the status quo, for example, and a qualiÞed majority
implies that any change in the status quo should be supported by, at least,
the required majority of voters, which will always gain with the change. Note,
however, that these qualiÞed majority voting rules do not exhaust the whole
class of theGCWS(n−1) family, since others which would be associated with
a more disperse distribution of phantom voters could not be easily interpreted
as a qualiÞed majority to defeat a given status quo. Therefore, we know that
the whole range of solidarity degrees are represented by some -efficient- SCF
in the class of GCWS(n−1), and the larger and smaller minimum solidarity
degrees can only be found in that family.

3.4 Rigidity

Now we clarify what we understand by rigidity or relative ßexibility of a
SCF. We follow a similar approach to that used when deÞning solidarity. We
need some more deÞnitions: given SCF f and any R ∈ <n, let FCf (R) be
the set of �coalitions� S ⊆ N of agents that can impose a shift to the left on
the social choice by changing all from their original preferences in proÞle R
to some other preferences R0S and all of them strictly gain with the change.
In other words,

FCf(R) =

½
S ⊆ N such that ∃R0S ∈ <S such that f(R0S, R−S) < f(R)
and f(R0)P 0if(R) ∀i ∈ S

¾
To understand the intuition behind this property, consider an efficient

SCF f such that 0 < p(Ri) < M for all i ∈ N. It is clear that N ∈ FCf (R),
since ∃R0i such that p(R0i) = 0 for all i ∈ N such that 0 = f(R0) < f(R) and
f(R0)P 0if(R) for all i ∈ N. But to get a proÞtable change to the left maybe
not every agent need to change her preferences, so other smaller coalitions
may shift the SCF f to the left.
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DeÞnition 32 The Left coalition associated to SCF f and preference pro-
Þle R = (R1, R2, ..., Rn), is the function: F f : <n → {1, 2, ..., n} deÞned as:
∀R ∈ <n, F f(R) = infS⊆N #

©
S ⊆ FCf(R)ª .

Hence, this functions gives for each proÞle the minimum number of in-
dividuals that have to prefer a shift of the social decision to the left to be
implemented. Notice that whenever f(R) = 0, F f(R) = # {∅} = 0.
A symmetric argument gives us the coalition of agents that have to change

preferences preferring a shift to the right for this to occur: given SCF f and
any R ∈ <n,
GCf(R) =

½
S ⊆ N such that ∃R0S ∈ <S such that f(R0S, R−S) > f(R)
and f(R0)P 0if(R) ∀i ∈ S

¾
DeÞnition 33 The Right coalition associated to SCF f and preference
proÞle R = (R1, R2, ..., Rn), is the function: Gf : <n → {1, 2, ..., n} , deÞned
as: ∀R ∈ <n, Gf (R) = infS⊆N #

©
S ⊆ GCf(R)ª .

Again, this functions gives for each proÞle the minimum number of indi-
viduals that have to prefer a shift of the social decision to the right to take
place. Notice that for all R ∈ <n such that f(R) =M, Gf(R) = # {∅} = 0.
DeÞnition 34 We call rigidity degree associated to SCF f and proÞle
R ∈ <n and denote as Rf to the following number:

Rf(R) = sup
©
F f(R), Gf (R)

ª
.

The rigidity degree associated to a given proÞle is given by the greatest
between the left and the right coalition for that proÞle. Since a SCF can
show an asymmetric rigidity depending on the direction of the move -more
propensity to shift to the left, or in other words, less supporters required for
a change to the left, for example- we opt by taking the largest of them as a
measure of rigidity given a proÞle. However, other rules of determining the
degree of rigidity may be plausible, depending on the feelings of society and
the choice of one or another is somehow arbitrary in essence. The rigidity
degree is also a way to generalize the concept of qualiÞed majority in two-
issues voting procedures to the more general public goods economies.

DeÞnition 35 We call rigidity degree associated to SCF f and denote as
RDf to the following number:

RDf = inf
©
Rf(R1, ..., Rn) | R ∈ <n

ª
.
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Again, like in the case of the solidarity degree of a SCF, a pessimistic
criterion is proposed to get a single measure in terms of utility.
Now, we are in the conditions of deÞning a dominance relation based on

our measure of rigidity for a proÞle.

DeÞnition 36 We say that SCF g is dominated in terms of rigidity by
SCF f if ∀R ∈ <n,

Rf(R1, ..., Rn) ≥ Rg(R1, ..., Rn)

and ∃R ∈ <n such that

Rf(R1, ..., Rn) > R
g(R1, ..., Rn)

A class of SCFs is undominated in terms of rigidity within a broader class if
they are not dominated by any SCF within that broader class.

The above dominance relation unambiguously compare different SCFs
in terms of rigidity provided that society accepts the rigidity degree as a
plausible measure of the rigidity of a SCF for any proÞle. Like in the case of
solidarity, the above dominance relation is incomplete, but unlike the former,
this one is transitive and cannot generate cycles. Now, a maximal class can
be characterized among the efficient SCFs in terms of rigidity.

Theorem 37 The only efficient SCFs that are undominated in terms of
rigidity by any other efficient SCF are the members of class Φ.

Proof. It is easy to check that ∀f ∈ Φ, RDf = n, so f ∈ Φ cannot
be dominated by any other SCF. To show that they are the only efficient
SCFs such that RDf = n, let us assume that f is an efficient SCF such that
RDf = n (1). Choose any x ∈ [0,M ] and take any arbitrary R ∈ <n such
that p(Ri) = p(Rj) = x ∀i, j ∈ N. Let us call R(x) any such proÞle. Since
f is efficient, f(R) = x. First, we must note that for any two proÞles R and
R0 such that p(Ri) = p(Rj) = p(R0i) = p(R

0
j) = x ∀i, j ∈ N , Gf(R) = n ⇒

Gf(R0) = n and F f(R) = n⇒ F f(R0) = n.
Now, let us suppose, w.l.g. that Rf (R) = Gf(R); let us move sequentially

the preferences of the agents to any others R1, R2, ..., Rn such that p(Ri) =
p(Rj) > x ∀i, j ∈ N . Then, by (1), only when the sequence Þnish, for
proÞle R, f(R) can be different from x, and by efficiency again we know
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that f(R) = p(Ri) = p(Rj) > x ∀i, j ∈ N . Moreover, by construction,
Rf(R) = Gf(R), so Þx an arbitrary agent j ∈ N and move sequentially
any others� preferences to any others such that p( bRi) ≥ f(R) ∀i 6= j. By

(1), for any such proÞle, f(Rj , bR−j) = f(R) = minnp(Rj), p( bRi) ∀i 6= jo .
Hence, we have proved that ∀x ∈ [0,M ] such that Rf(R(x)) = Gf(R(x)),

x0 > x⇒ Rf (R(x0)) = Gf (R(x0)) and ∀ eR ∈ <n such that pi( eRi) > x ∀i ∈ N,
f( eR) = minnp( bRi) ∀i ∈ No (2). A symmetric argument gives us that ∀x ∈
[0,M ] such that Rf (R(x)) = F f(R(x)), x0 < x ⇒ Rf(R(x0)) = F f(R(x0))

and ∀ eR ∈ <n such that p( eRi) < x, f( eR) = maxnp( bRi) ∀i ∈ No (3). Now
we deÞne the sets:
x− =

©
x ∈ [0,M ] | Rf (R(x)) = F f(R(x))ª and

x+ =
©
x ∈ [0,M ] | Rf(R(x)) = Gf (R(x))ª . It is clear by (2) and (3)

that x− ∩ x+ has to be a singleton. Suppose not: ∃x, x0 ∈ x− ∩ x+, with
x < x0 w.l.g. Then, ∃R ∈ <n with x < p(R1) < p(R2) < ... < p(Rn) < x0

such that both f(R) = p(R1) by (2) and f(R) = p(Rn) by (3), a con-
tradiction. Hence, ∃bx ∈ [0,M ] (unique) such that ∀R ∈ Rn such that
p(Ri) > bx ∀i ∈ N ⇒ f(R) = max {p(Ri) ∀i ∈ N} and p(Ri) < bx ∀i ∈
N ⇒ f(R) = min {p(Ri) ∀i ∈ N} . To conclude the proof, we have to show
that for any other proÞle, the social choice is actually bx, i.e., ∀R0 ∈ Rn such
that ∃i, j ∈ N such that p(R0i) > bx and p(R0j) < bx ⇒ f(R0) = bx. Take
any proÞle R(bx) and change agent i0s preferences from Ri(bx) to R0i. Sincebx = x− ∩ x+, (1) implies that f(R0

i, R−i(bx)) = f(R(bx)) = bx. Now change
agent j0s preferences in proÞle (R

0
i, R−i(bx)) to R0j. Again, since bx = x− ∩x+,

(1) implies f(R
0
i, R

0
jR−i−j(bx)) = f(R

0
i, R−i(bx)) = f(R(bx)) = bx. Now, move

sequentially any other agent preferences (for h 6= i, j) to R0h, and by (1)
again, it has to be that f(R0) = f(R(bx)) = bx, so necessarily f ∈ Φ.
Proposition 38 If n > 3 is odd, the Median Voter SCF is such that F f(R) =

Gf(R) =
n+ 1

2
∀R ∈ <n, and hence has a rigidity degree equal to n+ 1

2
, i.e.,

RDMV =
n+ 1

2
.

Proof. Easy to check. Moreover, the proposition is an straightforward
corollary of Theorem 37.

Corollary 39 If n > 3 is odd, the Median Voter SCF is dominated by any
other SCF f ∈ Φ in terms of rigidity.
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The above corollary is straightforward from Proposition 38 and the deÞ-
nition of dominance in terms of rigidity.
Hence, the only efficient SCFs that are undominated in terms of both

solidarity and rigidity are the members of class Φ. Moreover, the only efficient
SCF that performs the worst in terms of solidarity -the Median Voter SCF-
possess an acceptable rigidity degree -much lower than those in family Φ.
Since society will in general prefer SCFs with as much solidarity as possible
and as less rigidity as possible, a fundamental trade-off is proved to exist.

3.5 Voting Schemes

Once we have proved the existence of the trade-off, we will investigate it in
detail, but unfortunately working with the whole set of efficient SCFs turns
out to be technically very complicated when we depart from the maximal
and minimal sets of solidarity and rigidity. From now on, we shall restrict
attention to Voting Schemes belonging to the class of GCWS(n − 1), the
reason being that both class Φ and the Median Voter SCF are included
within that class and that this family is proved to be particularly interesting.
Only those SCFs contained in GCWS(n − 1) are efficient, anonymous and
strategy-proof -see Moulin [4], Barberà & Jackson [1]-, so the family is favored
by both strategic properties (strategy-proofness) and other ethical require-
ments (anonymity). The question now is: can we classify all the members
of the class of GCWS(n − 1) by their inherent solidarity-rigidity degrees?.
In other words, can we Þnd the voting schemes Π belonging to the family of
GCWS(n− 1) such that SDΠ = k and RDΠ = k holds?. As this subfamily
of voting schemes is only parameterized by the vector of allocations of n− 1
phantom voters -α-, the question we are going to answer is simply which
condition we have to impose on the distribution of phantom voters in order
to SDm(p(R),α) = k and RDm(p(R),α) = k. Since we are dealing with Voting
Schemes, we will simplify notation considering that agents reveal only their
peaks: x = p(R) ∈ [0,M ]n . A vector of peaks will be x = (xS, x−S) ∀S ⊆ N.
Given a Voting Scheme belonging to the class of GCWS(n−1) and given

any phantom voter αi ∈ [0,M ] , the cumulative number of left phantoms is
the total number of phantom voters located in the same position or strictly
on the left of αi.:

N(α,αi) = # {j ∈ {1, 2, ..., n− 1} such that αj ≤ αi}
Notice that ∀α ∈ [0,M ]n−1 , it will always be true that N(α,αi+1) ≥
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N(α,αi) ∀i ∈ {1, ..., n− 1} and N(α,αn−1) = n − 1 . Similarly, we can
deÞne the symmetric concept:
Given a Voting Scheme belonging to the class of GCWS(n−1) and given

any phantom voter αi ∈ [0,M ] , the cumulative number of right phantoms is
the total number of phantom voters located in the same position or strictly
on the right of αi.:

R(α,αi) = # {j ∈ {1, 2, ..., n− 1} such that αj ≥ αi} .

Our main Þnding in this section is the following characterization result:

Theorem 40 Given a Voting Scheme m(x,α) ∈ GCWS(n−1), SDm(x,α) =
RDm(x,α) − 1 = inf

αi
sup {N(α,αi), (n− 1)−N(α,αi)} .

Proof. We Þrst prove9 that SDm(x,α) = RDm(x,α) − 1. To see this, Þrst
notice that, since m(x,α) ∈ GCWS(n− 1), for any x ∈ [0,M ]n , when only
one agent changes his preferences -say x0i 6= xi-, the social choice cannot jump
over anybody�s peaks, so if m(x0i, x−i,α) < m(x,α), everybody with peaks to
the left of m(x0i, x−i,α) will be strictly better off and everybody with peaks
to the right of m(x,α) will be strictly worse off, with nobody in the middle.
Moreover, the only way for any agent to change the social choice to, say to
the left, is by changing to preferences with peaks on the left of the initial
social choice, and every individual who can individually change the social
choice necessarily prefers the new choice with his new preferences. Now,
∀x ∈ [0,M ]n , let us deÞne the two numbers:
infQ⊆N #

½
Q ⊆ N | xi ≥ m(x,α) ∀i ∈ Q, x0i < m(x,α) s.t.

m(x0Q, x−Q,α) < m(x,α)

¾
= Q−(x),

and

infQ⊆N #
½
Q ⊆ N | xi ≤ m(x,α) ∀i ∈ Q, x0i > m(x,α) s.t.

m(x0Q, x−Q,α) > m(x,α)

¾
= Q+(x).

The following holds for every x ∈ [0,M ]n :
Fm(x,α)(x) =

= infS⊆N #
½

S ⊆ N | ∃x0 ∈ [0,M ]n such that
m(x0,α) < m(x,α) & m(x0,α)P 0im(x,α) ∀i ∈ S

¾
= k ⇔

⇔ Q−(x) + # {i ∈ N | xi ≤ m(x,α)} = k. Furthermore, for Gm(x,α)(x),
we obtain:

9Since this proof takes any Voting Scheme m(x,α) ∈ GCWS(n−1) as given, we denote
the function as m(x,α), m(x) or just m.

50



Gm(x,α)(x) =

= infS⊆N #
½

S ⊆ N | ∃x0 ∈ [0,M ]n such that
m(x0,α) > m(x,α) & m(x0,α)P 0im(x,α) ∀i ∈ S

¾
= k ⇔

⇔ Q+(x) + # {i ∈ N | xi ≥ m(x,α)} = k.
We are proving that RDm(x,α) = SDm(x,α)+1 and we proceed by contra-

diction:
Step 1: Let us suppose that RDm(x,α) > SDm(x,α) + 1. This means that

∃x, x0i ∈ [0,M ]n+1 such that SDm(x, x0i) + 1 = sup {Lm(x, x0i), Im(x, x0i)} +
1 < sup {Fm(x), Gm(x)} ∀x ∈ [0,M ]n . Now, two cases can occur:
Case 1: SDm(x, x0i) = L

m(x, x0i). Consider the following vector of peaks:
x = (x0i, x−i) ∈ [0,M ]n . If m(x0i, x−i) < m(x), Gm(x) = Lm(x, x0i) + 1 and
it is easy to check that Fm(x) ≥ Im(x, x0i) + 1 also because of the properties
of the members of the family GCWS(n − 1), so we have found a vector
x ∈ [0,M ]n such that sup {Fm(x), Gm(x)} > SDm(x, x0i) + 1 and we are
done. If m(x0i, x−i) > m(x), it happens that Fm(x) = Lm(x, x0i) + 1 and
Gm(x) ≥ Im(x, x0i) + 1 and the result holds true in this case as well.
Case 2: SDm(x, x0i) = I

m(x, x0i). Consider the following vector of peaks:
x = x ∈ [0,M ]n . If m(x0i, x−i) < m(x), Fm(x) = Im(x, x0i) + 1 and it is
easy to check that Gm(x) ≥ Lm(x, x0i) + 1 so again we have found a vector
x ∈ [0,M ]n such that sup {Fm(x), Gm(x)} > SDm(x, x0i) + 1 and we are
done. If m(x0i, x−i) > m(x), it occurs that Gm(x) = Im(x, x0i) + 1 and
Fm(x) ≥ Lm(x, x0i) + 1 and in Case 2 we are also able to Þnd that the
assumption in Step 1 cannot be true, so given any m(x,α) ∈ GCWS(n−1),
RDm(x,α) ≤ SDm(x,α) + 1.
Step 2: Let us suppose that RDm(x,α) < SDm(x,α) + 1. This means that

∃x ∈ [0,M ]n such that ∀x, x0i ∈ [0,M ]n+1 ,
SDm(x, x0i) + 1 = sup {Lm(x, x0i), Im(x, x0i)}+ 1 > sup {Fm(x), Gm(x)} .

Now, two cases can occur:
Case 1: Let us suppose that Rm(x) = sup {Fm(x), Gm(x)} = Fm(x)

and take any sequence of shifts of peaks such that xj ≥ m(x,α) to the left
hand side of m(x,α) : x0j < m(x,α) until one more change shifts the social
decision to m(x0S∪{i}, x−S,α) < m(x,α) and m(x

0
S, x−S,α) = m(x,α). Then,

∃x, x0i = (x0S, x−S, x
0
i) ∈ [0,M ]n+1 such that Im(x0S, x−S, x

0
i) = Fm(x) − 1

and Lm(x0S, x−S, x
0
i) ≤ Gm(x) − 1, entering into a contradiction with the

assumption in Step 2.
Case 2: Let us suppose now that Rm(x) = sup {Fm(x), Gm(x)} =

Gm(x) and take any sequence of peaks such that xj ≤ m(x,α) to the right
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hand side of m(x,α) : x0j > m(x,α) until the last peak changed shifts the
choice tom(x0S∪{i}, x−S,α) > m(x,α) andm(x

0
S, x−S,α) = m(x,α). Now, the

same argument in Case 1 applies now to the right: ∃x, x0i = (x0S, x−S, x0i) ∈
[0,M ]n+1 such that Im(x0S, x−S, x

0
i) = Gm(x) − 1 and Lm(x0S, x−S, x0i) ≤

Fm(x)−1, so the assumption motivating Step 2 cannot be true and together
Steps 1 and 2 imply the Þrst part of the inequality in Theorem 40.
Now, we prove that SDm(x,α) coincide with the last part of the equation

in Theorem 40.
The function can also be written as:
SD(m(x,α)) = inf

x,x0i
sup {I(x, x0i), L(x, x0i)} =

= inf
αi
sup {N(α,αi), (n− 1)−N(α,αi)} . We will need some lemmata:

Lemma 41 If m = m(x,α), ∀x, x0i ∈ [0,M ]n+1 such that # {i | xi ≤ m} +
N(α,m) > n and # {i | xi ≥ m}+R(α,m) > n⇒
⇒ sup {I(x, x0i), L(x, x0i)} = n− 1.
Proof. The median can be deÞned as follows: m(x,α) = m⇔
⇔ # {i | xi ≤ m} + N(α,m) ≥ n and # {i | xi ≥ m} + R(α,m) ≥ n.

Now, take any x and for all x0i it will always hold: # {i | xi ≤ m}+N(α,m) ≥
n+ 1 and # {i | xi ≥ m}+ R(α,m) ≥ n+ 1⇔ m = m0.
It is straightforward that if we subtract or add one unit to each side of

the above expressions, we can represent every change in the allocation of any
peak. Furthermore, by deÞnition of I(x, x0i) and L(x, x

0
i) and since m = m0,

we can write: I(x, x0i) = # {j ∈ N\ {i} | m(x−i, x0i,α)Rjm(x,α)} =
= # {j ∈ N\ {i} | m0Rjm} = # {j ∈ N\ {i} | mRjm} = n − 1, and the

same is true for L(x, x0i).
Hence, we have: I(x, x0i) = n − 1 and L(x, x0i) = n − 1, which implies:

S(x, x0i) = sup {I(x, x0i), L(x, x0i)} = sup {n− 1, n− 1} = n− 1.

Lemma 42 First, let us deÞne two given values to avoid large expressions:
α0 = 0 and αn =M. Values which should not be confused with the phantoms
α0s.
∀x ∈ [0,M ]n , ∀x0i ∈ [0,M ] ,
inf
x,x0i
sup {I(x, x0i), L(x, x0i)} ≥ inf

αi
inf
x,x0i
sup {I(x, x0i), L(x, x0i)}

x ∈ [αh,αt] i ∈ {0, 1, ..., n− 1} , x ∈ [αi,αi+1]
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Proof. Let us take an arbitrary x ∈ [0,M ]n , x0i ∈ [0,M ] and construct
another from it, deÞned as follows: y = (y1, y2, ..., yn), such that: ∀i ∈
N, yi = inf(m,m

0) + [sup(m,m0)− inf(m,m0)]
i

n+ 1
,

where m = m(x,α) and m0 = m(x, x0i,α).
Let us call: α = min

i
{αi | αi ≥ m,m0} and β = max

i
{αi | αi ≤ m,m0} .

Then, it is easy to see that: ∀i ∈ N, yi ∈
¡
β,α

¢
( open interval ). What we

have done with the construction is to partition the interval [m,m0] into n+1
pieces and, whenever m 6= m0, it holds that ∀i, j ∈ N, yi 6= yj.
Now, let us call m = m(y,α). Notice that the following will hold:
N(α,m) = N(α,m) and R(α,m) = R(α,m) (1). Furthermore, it will be

true that: ∃j ∈ N such that yj = m and: # {i | yi ≤ m}+N(α,m) = n and
# {i | yi ≥ m}+R(α,m) = n (2).
These last expressions mean that the properties that deÞne the median

hold with equality, and implies: sup {I(y, y0i,α), L(y, y0i,α)} ≤ n − 1, ∀y ∈
[0,M ]n , ∀y0i ∈ [0,M ] . Now, two things can happen:
1- # {i | xi ≤ m}+N(α,m) > n and # {i | xi ≥ m}+R(α,m) > n, in

which case, by Lemma 41 : sup {I(x, x0i), L(x, x0i)} = n− 1. And:
sup {I(y, y0i,α), L(y, y0i,α)} ≤ n− 1 = sup {I(x, x0i), L(x, x0i)} and this is

true ∀x ∈ [0,M ]n , ∀x0i ∈ [0,M ] , and, in particular:

inf
x,x0i,x∈[αh,αt]

sup {I(x, x0i), L(x, x0i)} ≥ inf
x,x0i
sup {I(x, x0i), L(x, x0i)}

2- # {i | xi ≤ m} + N(α,m) = n and # {i | xi ≥ m} + R(α,m) = n,
But we know that (1) and (2) hold, so: # {i | xi ≤ m} = # {i | yi ≤ m} and
# {i | xi ≥ m} = # {i | yi ≥ m} , and it is easy to prove that, by Lemma 41 :
∀x ∈ [0,M ]n , ∀x0i ∈ [0,M ] with m 6= m0 and ∃j ∈ N such that xj = m ⇒
{I(x, x0i), L(x, x0i)} = {# {i | xi ≤ m}− 1, # {i | xi ≥ m}− 1} , and, if ∃αj
such that αj = m with m 6= m0, it is easy to check that:
sup {I(x, x0i), L(x, x0i)} ≥ {# {i | xi ≤ m}− 1, # {i | xi ≥ m}− 1} , and

this implies:

sup {I(y, y0i,α), L(y, y0i,α)} ≤ sup {I(x, x0i,α), L(x, x0i,α)}
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∀x0i ∈ [0,M ] , ∀y0i ∈ [0,M ] . We have proved, then, that the following
statement is true:

inf
x,x0i
sup {I(x, x0i), L(x, x0i)} ≥ inf

αi
inf
x,x0i
sup {I(x, x0i), L(x, x0i)}

x ∈ [αh,αt] i ∈ {0, 1, ..., n− 1} , x ∈ [αi,αi+1]

∀h, t ∈ N, because ∀i ∈ N, yi ∈
¡
β,α

¢
and there does not exist αj ∈

¡
β,α

¢
.

Coming back to the main proposition, and recalling that if we have a
Þnite and countable set of real numbers K and divide it into m arbitrary
subsets - indexed by i -, called Ki, if xj ∈ E is a typical element of subset
Kj ⊂ K, it always hold that inf {x ∈ K} = infi {inf {xi ∈ Ki}} . But the
expression we are trying to prove was:
SDm(x,α) =
inf
αi
sup {N(α,αi), (n− 1)−N(α,αi)} = inf

h,t
inf
x,x0i
sup {I(x, x0i)), L(x, x0i)}

h, t ∈ [0, 1, ..., n] , x ∈ [αh,αt]
And this is true by Lemma 42 and because [α0,αn] =

S
h,t

[αh,αt] . This

last statement can be written as: inf
αi
inf
x,x0i
sup {I(x, x0i), L(x, x0i)}

i ∈ {0, 1, ..., n− 1} , x ∈ [αi,αi+1]
. Fur-

thermore, as we said above, the last expression coincides with ( for y0s peaks
proÞle of every interval without phantom voters):

inf
αi
inf
x,x0i
sup {# {i | xi ≤ m}− 1, # {i | xi ≥ m}− 1} = (∗)

i ∈ {0, 1, ..., n− 1} , x ∈ [αi,αi+1]
By deÞnition of the median in this interval: # {i | xi ≤ m}+N(α,m) = n

and # {i | xi ≥ m} + R(α,m) = n, and, since we are in an interval with no
phantom voters in it: N(α,m) + R(α,m) = n − 1 ⇒ R(α,m) = n − 1 −
N(α,m), and substituting above (∗), we have:

inf
αi
sup {n−N(α,m)− 1, n−R(α,m)− 1} =

i ∈ {0, 1, ..., n− 1}
= inf

αi
sup {n−N(α,m)− 1, n− (n− 1−N(α,m))− 1} =

i ∈ {0, 1, ..., n− 1}
= inf

αi
sup {N(α,m), R(α,m)} =

i ∈ {0, 1, ..., n− 1}
inf
αi
sup {N(α,m), (n− 1)−N(α,m)} =

i ∈ {0, 1, ..., n− 1}
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= inf
αi
sup {N(α,αi), (n− 1)−N(α,αi)} .

i ∈ {0, 1, ..., n− 1}
This last step is justiÞed be-

cause: N(α,m) = N(α,m) = N(α,αi) for some i and R(α,m) = R(α,m) =
R(α,αi) for some i (1).

The strategy of this proof is not difficult: we have shown that, given any
vector of peaks x in the whole interval [0,M ] , if any individual change his
peak to any other peak x0i, the solidarity degree cannot become smaller with
respect to a distribution of peaks inside some pair of contiguous phantoms.
Theorem 40 tells us that the solidarity degree we can expect from a Gen-
eralized Condorcet winner solution can be obtained this way: For any two
different phantom voters location, choose the supreme between the cumula-
tive number of phantoms at each side of the two extremes and then, take the
minimum of all of them.
It is interesting to remark that Thomson�s solution for the solidarity

degree n − 1 -WDUPR- is a particular case of functions such that the
SDf = n − 1 and it is easy to see that the only voting schemes belong-
ing to GCWS(n− 1) -in fact, the only SCFs- such that welfare-domination
under preference-replacement -joint with efficiency- hold (SDf = n− 1) are
those characterized by Thomson: The only way to get SDf = n − 1 with
the above restriction on the phantom�s distributions is to allocate all the
n−1 phantom voters on a given point of the interval, which will ensure that:
inf
αi
sup {N(α,αi), (n− 1)−N(α,αi)} = n − 1. with i ∈ {0, 1, ..., n− 1} .

Because there is only one allocation of phantoms, this expression can be writ-
ten: inf

αi
sup {N(α,αi), (n− 1)−N(α,αi)} .

i ∈ {0, 1, ..., n− 1}
= inf

αi
sup {n− 1, 0} = n− 1.

i ∈ {0, 1, ..., n− 1}
Although Thomson�s family Φ comes out when requiring WDUPR, the

median is not the only SCF in the class of GCWS(n−1) that has a solidarity
degree of

n− 1
2

when n is odd, since the maximin criterion assumed in the

deÞnition of the solidarity degree is less restrictive that requiring a SCF be
dominated by any other (i.e., requiring that for all changes in the rule due to
any individual�s change, the number of losers and winners will be the same).

Actually, there are a lot of SCFs such that SDf =
n− 1
2

-i.e., all of those

that allocate the n − 1 phantom voters in different places- and, of course,
dominate the Median Voter SCF in terms of solidarity.
Theorem 40 offers a feasibility constraint faced by society in its consti-
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tutional stage -when deciding the SCF to use to select alternatives-. But
when the ethical properties society cares about are measurable and society
agrees with the measures used, society may have different sensibility about
the degrees of fulÞllment of the different ethical properties. This preferences
deÞned over partial fulÞllment of desirable properties of SCFs can be repre-
sented by a social utility function deÞned on them. Let E be the real line and
C be a class of SCFs under consideration. Given a set of k ≥ 2 measurable
properties Xi : C → E, ∀i ∈ {1, ..., k} , we can deÞne the following:
DeÞnition 43 A Constitutional Social Welfare Function is a function
CW :

Qk
i=1Xi → E.

DeÞnition 44 A SCF f ∈ C is socially optimal at the constitutional
stage if CW (X1(f),X2(f), ..., Xk(f)) ≥ CW (X1(g), X2(g), ..., Xk(g)) ∀g ∈
C.

We can easily obtain results regarding social optimality at the consti-
tutional stage once we know the nature of the trade-off between different
properties. Applying the general setup to our problem and using Theorem
40, we can easily obtain different results that take the trade-off into account.

Corollary 45 Given C = GCWS(n − 1), k = 1, 2, X1 = SD(f), X2 =
RD(f) and CW = SD − RD, every f ∈ GCWS(n − 1) is socially optimal
at the constitutional stage.

Corollary 46 Given C = GCWS(n − 1), k = 1, 2, X1 = SD(f), X2 =
RD(f) and either CW = SD(n−RD) or CW = min {SD, (n−RD)} , the
Median Voter rule is the only SCF that is socially optimal at the constitutional
stage.

Corollary 47 Given C = GCWS(n − 1), k = 1, 2, X1 = SD(f), X2 =
RD(f) and either CW =

¡
SD − n−1

2

¢
(n−RD) or

CW = min
©¡
SD − n−1

2

¢
, (n−RD)ª , if 3

4
(n− 1) is an integer, the vot-

ing schemes such that
inf
αi
sup {N(α,αi), (n− 1)−N(α,αi)}

i ∈ {0, 1, ..., n− 1}
= 3

4
(n − 1) are the only f ∈ C

that are socially optimal at the constitutional stage.

The above approach has been used in the inequality measures literature
and in the Trade-off theory approach to Social Choice Theory due to Camp-
bell and Kelly [2]. The above corollaries are straightforward given Theorem
40.
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3.6 Conclusions

We have investigated in this chapter a direct relaxation of Thomson�s welfare-
domination under preference-replacement property that allows for the utility
of a given number of agents to move differently than that of others when
some agent changes his preferences. The solidarity degree associated to a
social choice function (SCF) is an index that allow us to classify different
SCFs according to the degree of solidarity they exhibit. Thomson�s family
Φ will appear when requiring the maximum possible solidarity degree. We
prove that, provided that the number of individuals is odd and not less than
4, there is a unique SCF that is efficient and is dominated in terms of sol-
idarity by any other -it has the smallest solidarity degree possible in every
circumstance according to our classiÞcation-. This SCF is the median of
the agents� revealed peaks, and it can be considered a much less rigid SCF
than those in family Φ. Moreover, members of class Φ are proved to be the
only efficient and undominated SCFs in terms of rigidity among all efficient
SCFs. Hence, a basic trade-off between solidarity and rigidity is pointed out:
more solidarity can only be obtained at the expense of less ßexibility of the
SCFs. SCFs covering the whole range of solidarity degrees can be found
within a specially interesting class of voting procedures, that of Generalized
Condorcet winner solutions. Therefore, we concentrate on studying the soli-
darity behavior of those Voting Schemes within this restricted context of the
GCWS(n− 1) family. A complete description of such functions is provided
in the last section. Theorem 40 gives us a simple condition that any voting
scheme belonging to GCWS(n− 1) should respect for having a speciÞc min-
imum solidarity and rigidity degree. This condition can be viewed as a Þlter
that allow us to classify every SCF of the family according to different soli-
darity degrees -in Thomson�s sense- and different rigidity degrees, obtaining
a solidarity-rigidity concepts menu which may help in the understanding of
the fairness of social decision procedures at their constitutional stage. This
paper can be also understood as an application of Campbell and Kelly�s [2]
view of Social Choice when different properties of SCFs can be relaxed and
measured.
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4 DOMINANT STRATEGIES IMPLEMEN-
TATIONWHENCOMPENSATIONSARE
ALLOWED: A CHARACTERIZATION

4.1 Introduction

Since the early 70�s, the problem of designing suitable incentive mechanisms
to achieve socially desirable alternatives has been a major concern in eco-
nomics. The initial negative results due to Gibbard [4] and Satterthwaite
[14] in the context of unrestricted domains of preferences proved the need to
impose domain restrictions to Þnd some possibility results -see Dasgupta et
al. [3] for a survey-. The Þrst successful attempt to Þnd a possibility result
in mixed economies -those combining some public good with a private one-
were due to Groves [6], [7] and [8], Clarke [2] and Green & Laffont [5].
We are interested in testing a regularity that emerges in many results

regarding implementability in dominant strategies of social choice rules. In
order to motivate our approach, let us consider three well-known results:
1. The Gibbard-Satterthwaite Theorem (Gibbard [4], Satterthwaite [14])
Let us consider a society in which a Þnite number n ≥ 2 of agents or

individuals, ordered in a set N = {1, ..., n} and indexed by i, j ∈ N choose
alternatives, social states or objects from some set K, #K > 1. These
objects may be levels of provision of some public or private goods, alloca-
tions of indivisible goods, candidates for being a boss, etc.-. Let k ∈ K
denote any alternative from that set. Each individual is endowed with some
private characteristic or type θi from a set Θi. A proÞle is an element in
the Cartesian product of the sets Θi ∀i ∈ N. Society can be described by a
possible proÞle θ = (θ1,..., θn) = (θi, θ−i) ∈

Qn
i=1Θi. We call here an econ-

omy to the tuple e = hN,K,Θi∀i ∈ Ni . Given an economy, society -or the
social planner- would like to select certain alternatives depending on which
are the individual characteristics, so social desirability is summarized by a
choice rule denoted by K∗ :

Qn
i=1Θi →→ K, called social choice corre-

spondence (SCC) that assigns a set of social states for each possible proÞle.
Any single-valued SCC will be a social choice function (SCF) and will be
denoted by f :

Qn
i=1Θi → K. A social welfare function (SWF) will be
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a real-valued function of the type: W : K ×Qn
i=1Θi → E, where E is the

real line. We will say that SCC K∗ is generated or represented by SWF W
iff W (K∗(θ), θ) ≥ W (k, θ) ∀k ∈ K, ∀θ ∈ Qn

i=1Θi, and W (K
∗) will be the

set of SWFs representing a given SCC K∗.10.Given an economy e, suppose
now that individual objectives given the type take the form of a preference
relation on the set of alternatives, denoted by Ri(θi), ∀θi ∈ Θi, that is,
Ri ∀i ∈ N is a mapping from the possible types to the set of all ordered
pairs of alternatives: Ri : Θi →→ K ×K.11 We say that the domain is un-
restricted iff every complete weak pre-ordering is admissible as a preference
relation. Assuming that each agent�s type is his own private information and
society - or the social planner - cannot directly observe the true individual
types, the rule has to be based on the revealed types rather than on the true
individual types. We are interested in SCFs such that each agent has no any
incentive to lie about his true type in any case - whatever types the rest of
agents report to the planner and whatever be the agent�s true type -. We
say that a SCF is strategy-proof iff

∀i ∈ N, ∀θ ∈
Yn

i=1
Θi, ∀θ0i ∈ Θi, f(θ)Ri(θi)f(θ0i, θ−i).

Gibbard [4] and Satterthwaite [14] proved that whenever the domain is un-
restricted and #range(f) ≥ 3, the only strategy-proof social choice functions
are dictatorial, i.e., ∃i ∈ N such that ∀θ ∈Qn

i=1Θi, f(θ) ∈ argmax Ri(θ)
s.t. k ∈ range(f)

.

2. Roberts� [13] Theorem.
Let us consider an economy e such that K is a Þnite set. We furthermore

assume that the agents� objectives are not deÞned by the preference ordering
on K associated to each type, but by a real-valued payoff of the kind:

∀i ∈ N, Pi : K × E ×Θi → E

Where Pi is quasi-linear with respect to the second argument, intended to
represent some out-the-model way to compensate the agent, so that we can
write agent i0s payoff function in the form: Pi(k, qi, θi) = vi(k, θi) + qi, ∀k ∈
10Notice that for every SCC K∗, the set W (K∗) is non-empty: the constant SWF

trivially represents every SCC.
11We are implicitly assuming that the economy is such that allow for the deÞnition of

individual preferences.
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K, ∀θi ∈ Θi, ∀qi ∈ E, where for all i, vi : K ×Θi → E is a real-valued func-
tion called the valuation function admitting every possible cardinal utility
scale on the set of (Þnite) alternatives. We say now that f is strategy-proof iff
there exist bounded compensation functions qi :

Qn
i=1Θi → E , ∀i ∈

N, such that12 ∀i ∈ N, ∀bθ ∈Qn
i=1Θi, ∀θi ∈ Θi,

vi(f(θi,bθ−i), θi) + qi(θi,bθ−i) ≥ vi(f(bθi,bθ−i), θi) + qi(bθi,bθ−i) (6)

Roberts proved that whenever range(f) = K, the only strategy-proof social
choice functions come from maximizing some weighted sum of the agents�
v0is, i.e.,
∃a1, ..., an ∈ E+,

Pn
i=1 ai = 1, such that ∀θ ∈

Qn
i=1Θi,

f(θ) ∈ argmax
Pn

i=1 aivi(k, θi) + F (k)
k ∈ K

where F : K → E is any

bounded real-valued function.
3. Groves-Clarke mechanisms. (Groves [6], [7] and [8], Clarke [2], Green

& Laffont [5]).
Let us consider an economy such that K is now some compact set in a

topological space. Let the real-valued bounded v0is in the above framework
for all θi ∈ Θi be the set of all bounded upper-semi-continuous or continu-
ous functions. The list of compensation functions (mechanism) {q1, ..., qn}
implements by revelation the SCC K∗ iff for every selection f from K∗, i.e.,
f(bθ) ∈ K∗(bθ) ∀bθ ∈Qn

i=1Θi, (1) holds.
13

Green & Laffont [5] proved that the only mechanisms that implement the
SCC K∗(θ) = argmax

Pn
i=1 vi(k, θi)

s.t. k ∈ K
are the Groves� mechanisms,

i.e., those mechanisms in which all the compensation functions take the form:

∀i ∈ N, qi(bθ) =X
j 6=i
vj(f(bθ),bθj) + hi(bθ−i), ∀f(bθ) ∈ K∗(bθ) (7)

where hi :
Q
j 6=iΘj → E is any real-valued function independent of bθi.

12There is no difference in the interpretation of Robert�s deÞnition of strategy-proofness
from the deÞnition above provided that we realise that there are now two ways in which
the planner can affect the agents� Þnal payoff (and hence their incentives): via the chosen
alternative (affecting the v0is) and by varying the compensations (that only depend on the
revealed proÞle), that is the direct way of changing the Þnal payoffs.
13Again, there is no difference between the notions of strategy-proofness in Roberts�

setup and the notion of mechanisms implementing by revelation a SCF.
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Later research (Green & Laffont [5], Walker [15] and Hurwicz & Walker
[11]) proved that any such mechanism cannot generically balance the budget,
that is, ∀ {q1, ..., qn} implementing by revelation the SCC above, ∀k ∈ E,Pn

i=1 qi(
bθ) 6= k ∀bθ ∈Qn

i=1Θi.
The three implementation scenarios described above share some common

properties:
(i). The domains of private characteristics are quite large in each model.
(ii). The incentive compatibility requirement is actually the same in all

cases and amounts to the existence of truth-revealing dominant strategies.
(iii). The implementable social choice rules or functions in the three cases

require that individuals� objectives are made somehow similar to social objec-
tives. Gibbard does not allow for extra-model compensations that can affect
the agents� objectives but not the planner�s utility -any SWF representing
the SCC-, so he obtains that implementability should make the social ob-
jectives be identiÞed with those of some Þxed agent -the dictator-. Roberts,
in his turn, allows for monetary or quasi-linear compensations in the mech-
anism design, but the only social choice functions that are implementable
come from the maximization of some linear combination of the individuals�
valuation functions -some quasi-linear or utilitarian social objectives-. Green
& Laffont actually work in the same framework of Roberts, but they are in-
terested in implementing the utilitarian social welfare function -the sum of
all the agents� valuation functions- and using quasi-linear individual objec-
tives. Notice that the Groves� compensation functions -the only mechanisms
working in that domain- somehow replicate the social objectives in the sense
that if the planner delegate the outcome selection in any agent, he would
actually pick up the same social alternatives that would be chosen by the
planner himself.
The analogies pointed out above give rise to a conjecture that might be

formalized as follows:

Conjecture 48 Truthful implementation in large domains of SCC K∗ re-
quires that ∀i ∈ N, for all admissible functions Pi : E2 → E, the following
holds: ∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj ,

Pi(vi(f(bθi,bθ−i), θi), qi(bθi,bθ−i)) = W (f(bθi,bθ−i), θi,bθ−i).
for any W ∈ W (K∗).
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It is not difficult to check that the three results summarized above are
particular cases of the above statement -or can be written in these terms-.
We will then raise the following questions: Is that a common feature of

all truthful implementation problems in large domains?. How far can this
conjecture be extended? Is it valid for every compensation scheme, even for
those not restricted to quasi-linear compensations?
We Þnd that there exists a requirement on the social choice rule called

individual decisiveness, under which truthful implementation demands
social and individual objectives to coincide in the above sense. This prop-
erty assumes a strong responsiveness of the social choices to changes on the
individual types. Examples will be provided later, but let us point out now
that individual decisiveness holds for the usual social choice rules when al-
lowing sufficiently rich domains. In particular, it holds and plays a crucial
role in environments admitting Groves� type mechanisms.
The main result obtained in this chapter shows the strong connection

between the speciÞc agents� payoff function structure and the individually
decisive social choice rules that can be truthfully implemented in dominant
strategies. In summary, the compensations allowed in any mechanism should
be such as to allow that the payoff function structure replicates some social
welfare function representing that social choice rule. In other words, we
should give to the agents exactly the same incentive scheme that the one
implied in the social welfare function; the objective function of agents and
that of society should somehow coincide.
The remainder of the chapter proceeds as follows: Þrst we introduce the

model with the deÞnitions, the main result is established in Section 3 and
Section 4 is devoted to applications in different environments. Conclusions
follow.

4.2 The model

We shall propose a general model, including the setups for the examples of the
preceding section as particular cases. Example 1 (the Gibbard-Satterthwaite
Theorem) occurs in a setup which is traditional in social choice theory: al-
ternatives are deÞned as those objects over which agents are assumed to have
preferences. Examples 2 and 3 (Robert�s and Groves-Clarke�s) refer to setups
where social states are described through two sets of variables: the levels of
variables in the Þrst set are interpreted as the result of a public decision; the
levels of others are interpreted as transfers of goods that may be interpreted
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as compensations to agents. Individual payoffs depend on the overall levels of
both types of variables. If we wanted to keep the conventions of social choice
we should reserve the term alternative to denote these combinations of levels,
since it is on them that agents have preferences. But it is more useful to keep
the distinction found in the other two models, and eventually to generalize
it. Hence, we distinguish between those parts of a decision which involve a
public decision (K) and those (q) which can be interpreted as compensations
for the agents. The agent�s valuations of the public decisions will be assumed
to be well deÞned as functions of their types, and the overall preferences of
agents over public decisions and compensation levels will be assumed to take
a not necessarily additive form. This will make our setup more general than
any of those mentioned above.
Let us consider any economy e. Given e, we deÞne the following:

DeÞnition 49 A compensation mechanism {P, q} is the tuple deÞned by
the following sets:
(i) P = {Pi, ∀i ∈ N} is the set of payoff functions14, where ∀i ∈

N, Pi : E
2 → E is a continuous upper-bounded real-valued function mono-

tonic in both arguments -and strictly monotonic in the second-, i.e.,
∀x, x0, y, y0 ∈ E, y > y0 ⇒ Pi(x, y) > Pi(x, y

0) and x > x0 ⇒ Pi(x, y) ≥
Pi(x

0, y).
(ii) q = {qi, ∀i ∈ N} is the list of compensation functions: ∀i ∈

N, qi :
Qn
i=1Θi → E, upper-bounded real-valued functions that serve the

planner to distribute utility among the agents based in the information con-
tained in the strategies.

Given a compensation mechanism, the Þnal payoff that any individual
gets from any strategy vector is always given by the following expression:

∀i ∈ N, πi(bθ, θi) = Pi(vi(g(bθ), θi), qi(bθ)).
Therefore the functional form of the Þnal payoff is partially given by the
mechanism and does not necessarily coincide with the valuation function, ex-
cept in the limit case of a mechanism such that ∀i ∈ N, ∀x, yi ∈ E, Pi(x, yi) =
14These functions stand for the payoffs that the agents get, given their types -be it a

production function, a utility function or a general arbitrary type of agent-, and some
individual real argument which can be used within the mechanism in order to compensate
the agent.

65



x, which is not strictly monotonic in the second argument. The speciÞc pay-
off function structure will allow us to classify every compensation mecha-
nism. In order to illustrate this point, it will be useful to think about a
production economy: e is such that N is a set of Þrms, divisions within
a Þrm or productive agents that produce a single homogeneous good, K
represents either feasible levels of a public input used by the agents or dis-
tributions of a private input; let us assume that the set of types determines
the feasible technologies available such that the valuation function will be
a production function. Consider the following examples of particular payoff
functions: ∀x, yi ∈ E, Pi(x, yi) = x, Pi(x, yi) = x + yi, Pi(x, yi) = xyi,
and Pi(x, yi) = yi. Those payoff functions imply Þnal payoffs of the form:
πi = vi(g(bθ), θi), πi = vi(g(bθ), θi) + qi(bθ), πi = vi(g(bθ), θi)qi(bθ), πi = qi(bθ)
respectively. The Þrst one represents the impossibility of compensating
agents. Agent i0s objective function is fully determined given by his own
private characteristic -or his produced output for given levels of the input-,
so it coincides with the usual implementation framework, where every possi-
ble compensation is modelled inside the set of feasible alternatives. We will
refer to this case as the compensation free payoff functions. In the second
example above, the productive agent sells his output at some given (unitary)
price and gets the proÞt, but the planner or principal can only set some tax
or subsidy to provide an incentive for truthful behavior. This will be called
the compensation by transfers case. The third example assumes the ability
of the planner to set the Þnal price of the produced good according to some
pre-speciÞed rule -compensation by prices-. Finally, in the last example the
agent has no property rights on the good produced, and he only receives a
wage that can depend on the information reported by all the agents. This
will be the full compensation case. Notice that all the above examples allow
for different compensation or surplus-sharing schemes and the possibility of
one or another may be made discretional to the planner in some contexts or
given by nature in others. Furthermore, the monotonicity property imposed
on the payoff functions establishes a speciÞc restriction on the functional form
of compensations, so that for any given allocation, the higher the compensa-
tion, the higher the Þnal payoff. A non-monotonic payoff function might be,
for example, the following one: Pi(x, y) = xy2i . This condition does not seem
to be too restrictive, since the speciÞc nature of the compensation requires a
clear guide to reward the agents.
Finally, notice that the compensation functions can also be viewed as part
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of the real alternatives, and we could deÞne an extended set of alternatives
as: K 0 = K×En, where compensations for all the agents are included within
the set of alternatives. Once the payoff function structure is Þxed, it amounts
exactly to the usual framework of compensation free payoff functions with the
agents� valuations re-deÞned to be: ∀i ∈ N, v0i(k0, θi) = Pi(vi(k, θi), yi) and
k0 = (k, y1, .., yn), so the approach followed in most of the implementation
literature -see, for example, Green and Laffont [5]- is a particular case of our
compensation mechanisms too.

Now we will deÞne the notion of truthful implementation that we will use,
together with some additional deÞnitions related to SCCs and mechanisms.

DeÞnition 50 Given an economy e and a SCC K∗, we say that a compen-
sation mechanism {P, q} is an incentive compatible mechanism for i if
the following condition holds for i : ∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj ,

Pi(vi(f(θi,bθ−i), θi), qi(θi,bθ−i)) ≥ Pi(vi(f(bθi,bθ−i), θi), qi(bθi,bθ−i)), (8)

and this for any selection f(bθ) from K∗(bθ).
A compensation mechanism which is incentive compatible for all i ∈ N is

said to be incentive compatible. If an incentive compatible mechanism exists
for some SCC we say that the mechanism implements by revelation that SCC.
The last deÞnitions are natural generalizations of those in Green and

Laffont [5].

DeÞnition 51 A SCC K∗ :
Q
i∈N Θi → K. is called individually decisive

for i if

∀θ−i ∈ Θ−i, ∀k ∈ K, ∃bθi ∈ Θi 3 k ∈ K∗(bθi, θ−i).
A SCC that is individually decisive for all i is individually decisive and

any SWF which represents some individually decisive SCC will be individually
decisive too.

This property means that individual i can force any alternative under
some circumstances to be in the choice set by declaring an appropriate char-
acteristic for any others� types.
It may be useful to illustrate the above deÞnitions with some examples

of both individually decisive and non-decisive SCCs.
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Example 52 Let the economy e be such that K is a compact set deÞned
in a topological space and ∀i ∈ N, Θi includes all the bounded, upper-
semi-continuous functions on K. Let us consider the utilitarian welfare
function: W =

Pn
i=1 vi(k, θi). The SCC that maximizes W on K, i.e.,

K∗(θ1, ..., θn) = argmax
Pn

i=1 vi(k, θi)
k ∈ K

, can be proved (see Proposition 66

later) to be individually decisive.

Example 53 The Pareto SCC is individually decisive when deÞned on a
large set of rich domains; ∀θ ∈Qi∈N Θi,
PO(θ) =

=

½
k ∈ K such that @k ∈ K such that ∀i ∈ N, vi(k, θi) ≥ vi(k, θi)

and vi(k, θi) > vi(k, θi) for some i ∈ N
¾
.

Consider the unrestricted domain on K : ∀i ∈ N, Θi is such that ∀k, l ∈
K (l 6= k), ∃bθi ∈ Θi such that vi(k,bθi) > vi(l,bθi) ⇒ ∀k ∈ K, ∃bθi ∈ Θi such
that: k ∈ PO(bθi, θ−i) = K∗(bθi, θ−i).
Example 54 Consider now the Pareto SCC in an economy such that N =
{1, 2} and the domain of all continuous, strictly monotonic and convex pref-
erence orderings over the 2-good commodity space E2+ when the set K is the
set of all feasible allocations of the 2 goods available in Þxed Þnite amounts
between the two agents (the Edgeworth Box). Take any θ2 ∈ Θ2 and any
feasible allocation z ∈ K. Construct the agent 2�s upper contour set on
z : C2(z, θ2) = {y ∈ K s.t. v2(y, θ2) ≥ v2(z, θ2)} , and Þnd, for example,
the value �a� ∈ E+ s.t. z ∈ argmax ax11 + x

1
2

x
s.t. x ∈ C2(z, θ2)

x ∈ K

. This value will al-

ways exist because of the convexity and monotonicity assumptions on Θ1 and
Θ2. Now, set bθ1 = a and deÞne v1(k,bθ1) = ax11+x12 ∀x11, x12. This is a convex,
strictly monotonic and continuous function, so bθ1 ∈ Θ1, and by construction,
z ∈ PO(bθ1, θ2) = K∗(bθ1, θ2).
Example 55 In an economy like that in Example 54, The Walrasian cor-
respondence with respect to some vector of initial endowments can be proved
to be an individually decisive SCC by using a similar argument.

Example 56 Let us assume an economy such that n ≥ 3 is odd, K is a
closed interval of the real line K = [0, 1] ⊂ E and the agents� types are such
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that the agents may have every continuous single-peaked valuation function,
i.e., ∀i ∈ N, Θi is such that ∀θi ∈ Θi, ∃k(θi) ∈ K s.t. vi(k(θi), θi) >
vi(k, θi) ∀k ∈ K\k(θi) & ∀k0, k00 ∈ K (k

0
> k

00
),

k(θi) ≥ k0 ⇒ vi(k
0
, θi) ≥ vi(k00 , θi) & k(θi) ≤ k00 ⇒ vi(k

0
, θi) ≤ vi(k00 , θi).

Consider the following SCC (the median voter SCC): ∀θ ∈Qn
i=1Θi, K

∗(θ) =
medi∈N

©
k(θi)

ª
, where the function �med� stands for the median of the re-

vealed peaks of the agents, i.e., the peak such that leaves the same number
of other peaks on the right and on the left. This is a well-known selection of
the Pareto correspondence in this economy -see, for example, Moulin [12]-.
It is easy to see that there exist situations where some individuals cannot
individually change the decision, for example, individual i cannot even affect
the decision for θ−i ∈ Θ−i such that k(θj) = k(θh) ∀j, h 6= i, so K∗ is not
individually decisive.

Example 57 Let us consider an economy e such that K = [0, 1] ⊂ E+
and ∀i ∈ N, Θi = E+, and vi(k, θi) = aik − 1

2
k2 ∀k ∈ K, ∀ai ∈ Θi. The

utilitarian SWF in Example 52 above is individually non-decisive, but it will
be individually decisive if the economy is enlarged to allow for types such that
Θi = E (actually, allowing for convex valuation functions). Notice that in
this cases, K∗(a1, ..., an) = 1

n

Pn
i=1 ai.

We can now address the main question we face: what kind of compen-
sation mechanisms, if they exist, should we use in order to implement by
revelation any individually decisive SCC?. We will provide a complete an-
swer to this question.

4.3 Main result

The results presented below are all of them valid for every given economy
e = hN,K,Θi ∀i ∈ Ni .

Theorem 58 The only incentive compatible compensation mechanisms {P, q}
that implement by revelation an individually decisive SCC K∗ are such that:
∀i ∈ N, ∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj,

Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) = W (g(bθi,bθ−i), θi,bθ−i),
for every selection g from K∗.
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In order to prove the theorem, we will make use of the following inter-
mediate results:

Lemma 59 Let {P, q} be an incentive compatible for i compensation mech-
anism implementing the SCC K∗, and take two -possibly the same- selections
from K∗ : g and bg. Then, ∀θi, θ0i ∈ Θi, ∀θ−i ∈ Qj 6=iΘj , s.t. g(θi, θ−i) =bg(θ0i, θ−i), it holds that qi(θi, θ−i) = qi(θ0i, θ−i).
Proof. Suppose the contrary, i.e., ∃θ−i ∈

Q
j 6=iΘj, ∃θi, θ0i ∈ Θi such that

both yield the same outcome with both selections: g(θi, θ−i) = bg(θ0i, θ−i) =
k, and one of them leads to a bigger compensation: θi w.l.g., then: qi(θi, θ−i) >
qi(θ

0
i, θ−i). Then, take type θ

0
i, and consider the payoffs:

Pi(vi(g(θi, θ−i), θ0i), qi(θi, θ−i)) and Pi(vi(bg(θ0i, θ−i), θ0i), qi(θ0i, θ−i)). By hy-
pothesis, the outcome will be the same: g(θi, θ−i) = bg(θ0i, θ−i) = k ⇒
⇒ vi(g(θi, θ−i), θ0i) = vi(bg(θ0i, θ−i), θ0i). Then, by monotonicity of the pay-

off functions structure, we should have:
Pi(vi(g(θi, θ−i), θ0i), qi(θi, θ−i)) > Pi(vi(bg(θ0i, θ−i), θ0i), qi(θ0i, θ−i)).⇒
For θ0i, ∃θi ∈ Θi, ∃θ−i ∈

Q
j 6=iΘj, ∃g(θi, θ−i) ∈ K∗(θi, θ−i) ∀θi ∈

Θi, ∀θ−i ∈
Q
j 6=iΘj, - a selection from K∗- deÞned as:

g(bθi, θ−i) = ( g(bθi, θ−i) iff bθi 6= θ0ibg(θ0i, θ−i) iff bθi = θ0i
such that by declaring the last one we are better than reporting the true

characteristic, i.e.,
Pi(vi(g(θi, θ−i), θ0i), qi(θi, θ−i)) > Pi(vi(g(θ

0
i, θ−i), θ

0
i), qi(θ

0
i, θ−i)), so the mech-

anism cannot be incentive compatible for i.15

Lemma 60 The only incentive compatible for i compensation mechanisms
{P, q} that implement by revelation any individually decisive for i SCC K∗

are such that: ∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj ,

Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) = W (g(bθi,bθ−i), θi,bθ−i),
for any selection g from K∗.

Proof. Necessity⇒)We suppose that {P, q} is an incentive compatible
for i compensation mechanism implementing by revelation some individually

15This lemma is a generalization of part of Green and Laffont�s [5] Theorem 3.
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decisive for i SCC K∗. Since K∗ is individually decisive for i, it is true
that ∀θ−i ∈ Θ−i, ∀k ∈ K, ∃bθi(k, θ−i) ∈ Θi 3 k ∈ K∗(bθi, θ−i). Hence, the
mapping bθi : K×Qj 6=iΘj →→ Θi is well-deÞned and for any selection θi from
that mapping, it holds that ∀k ∈ K, ∀θ−i ∈

Q
j 6=iΘj , k ∈ K∗(θi(k, θ−i), θ−i).

Now, let us deÞne the following mapping for individual i ∈ N : bqi : K ×Q
j 6=iΘj →→ E. deÞned as follows: ∀k ∈ K, ∀θ−i ∈

Q
j 6=iΘj,bqi(k, θ−i) = nqi(θi(k, θ−i), θ−i), for any selection θi from bθio . This map-

ping is well deÞned and has the following properties:
i) range(bqi) = range(qi).
ii) dom(bqi) = K ×Qj 6=iΘj .
iii) bqi is a real-valued function.
iv) ∀θi ∈ Θi, ∀θ−i ∈

Q
j 6=iΘj, bqi(g(θi, θ−i), θ−i) = qi(θi, θ−i), for any

selection g from K∗.
Property (i) is obvious by deÞnition: for any θi ∈ Θi, ∃k = g(θi, θ−i), so

qi(θi, θ−i) ∈ bqi(k, θ−i). (ii) holds because bθi is a well-deÞned mapping from
K ×Qj 6=iΘj. Property (iii) holds because we are in the conditions of apply-
ing Lemma 59 : Since {P, q} is an incentive compatible for i compensation
mechanism implementing the SCC K∗ by hypothesis, ∀θ−i ∈

Q
j 6=iΘj , ∀θi, θ0i

∈ Θi s.t. g(θi, θ−i) = bg(θ0i, θ−i) = k for two -possibly the same- selec-
tions from K∗ ⇒ qi(θi, θ−i) = qi(θ

0
i, θ−i). Thus, ∀θ−i ∈

Q
j 6=iΘj , ∀k ∈ K,

qi(θi(k, θ−i), θ−i) = qi(eθi(k, θ−i), θ−i) for any two arbitrary elections θi andeθi from bθi and hence a single real number is associated to each k ∈ K in the
function bqi(k, θ−i).
Finally, property (iv) is straightforward by deÞnition and (iii).
Now, we know by assumption that {P, q} is an incentive compatible com-

pensation mechanism for i, so that it holds that:
Pi(vi(g(θi, θ−i), θi), qi(θi, θ−i)) ≥ Pi(vi(g(θ0i, θ−i), θi), qi(θ0i, θ−i))
∀θi, θ0i ∈ Θi, ∀θ−i ∈

Q
j 6=iΘj and this for any selection g(θi, θ−i) ∈

K∗(θi, θ−i).
Now, using iv), we can state the following:
Pi(vi(g(θi, θ−i), θi), bqi(g(θi, θ−i), θ−i)) ≥
≥ Pi(vi(g(θ

0
i, θ−i), θi), bqi(g(θ0i, θ−i), θ−i)) ∀θi, θ0i ∈ Θi, ∀θ−i ∈

Q
j 6=iΘj

and for any selection g(θi, θ−i) ∈ K∗(θi, θ−i).
Then, since K∗ is individually decisive by hypothesis, we can choose the

following selection eg(θ0i, θ−i) from K∗: Given any θ−i ∈
Q
j 6=iΘj and any

θi ∈ Θi, ∀θ0i ∈ Θi,
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eg(θ0i, θ−i) = ½ k iff θ0i = θi(k, θ−i) & θ
0
i 6= θi

g(θ0i, θ−i) otherwise
, (2).

where θi(k) is any selection from bθi and g(θ0i, θ−i) is any arbitrary selection
from K∗. It holds for this selection that: ∀θi, θ0i ∈ Θi,
Pi(vi(eg(θi, θ−i), θi), bqi(eg(θi, θ−i), θ−i)) ≥
Pi(vi(eg(θ0i, θ−i), θi), bqi(eg(θ0i, θ−i), θ−i)). (3). But this is true for all θ0i ∈

Θi, which only affects the right hand side of the above inequality and, by
deÞnition of eg, {eg(θ0i, θ−i), ∀θ0i ∈ Θi} = K, so for each θi ∈ Θi,we can write
(3) in the following way: given any θi and θ−i, we can construct a selectioneg deÞned above and obtain:
Pi(vi(g(θi, θ−i), θi), bqi(g(θi, θ−i), θ−i)) ≥ Pi(vi(k, θi), bqi(k, θ−i)) ∀k ∈ K. (4).
But g(θi, θ−i) for each θi ∈ Θi is selected arbitrary fromK∗(θi, θ−i), while

the right hand side of the above inequality is the same for each selection
given θi and θ−i, so statement (4) holds for every selection from K∗(θi, θ−i).
Abusing notation, we can write (4) as follows:
∀θi ∈ Θi,
Pi(vi(K

∗(θi, θ−i), θi), bqi(K∗(θi, θ−i), θ−i)) ≥ Pi(vi(k, θi), bqi(k, θ−i)) ∀k ∈
K. (5).

Now, let us consider the following composed function bPi : K×Qn
i=1Θi →

E deÞned as: ∀k ∈ K, ∀θ ∈Qn
j=1Θj ,

bPi(k, θi, θ−i) = Pi(vi(k, θi), bqi(k, θ−i)),
(6), which is well-deÞned when K∗ is individually decisive. Notice that (5)
can be written -slightly abusing notation again- as:
∀k ∈ K, ∀θi ∈ Θi, ∀θ−i ∈

Q
j 6=iΘj, bPi(K∗(θi, θ−i), θi, θ−i) ≥ bPi(k, θi, θ−i).

But this last expression is the deÞnition of some SWF representing SCC
K∗. In other words, let us suppose that bPi /∈ W (K∗). This can only be
true when ∃θi ∈ Θi, ∃eθ−i ∈ Q

j 6=iΘj , ∃ek ∈ K such that bPi(ek, θi,eθ−i) >bPi(K∗(θi,eθ−i), θi,eθ−i) (7). But since K∗ is individually decisive for i, foreθ−i there exist ∃eθi ∈ Θi such that ek ∈ K∗(eθi,eθ−i). Substituting this into (7),
we have found a selection of K∗ such that, slightly abusing notation again,
∃eθi ∈ Θi (eθi 6= θi), ∃θi ∈ Θi, ∃eθ−i ∈Qj 6=iΘj , such thatbPi(K∗(eθi,eθ−i), θi,eθ−i) > bPi(K∗(θi,eθ−i), θi,eθ−i), and, which by (6) can be
written again as: Pi(vi(K∗(eθi,eθ−i), θi),eθ−i) > Pi(vi(K∗(θi,eθ−i), θi),eθ−i), and
this clearly contradicts mechanism {P, q} to be incentive compatible for i.
Hence, it has to be that bPi ∈W (K∗) and the existence is proved.

Sufficiency ⇐) Now we have to prove that every mechanism such that
∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj, can be written as Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) =
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W (g(bθi,bθ−i), θi,bθ−i), (1) is an incentive compatible for i compensation mech-
anism. Suppose, on the contrary, that ∃g ∈ K∗, ∃eθi ∈ Θi , ∃eθ−i ∈ Qj 6=iΘj
and ∃θ0i ∈ Θi such thatW (g(θ0i,eθ−i),eθi,eθ−i) > W (g(eθi,eθ−i),eθi,eθ−i) (3). But,
since W represents K∗, it must be that ∀θi ∈ Θi, ∀θ−i ∈

Q
j 6=iΘj , ∀k ∈

K, W (g(θi, θ−i), θi, θ−i) ≥W (k, θi, θ−i), and, in particular,
W (g(eθi,eθ−i),eθi,eθ−i) ≥ W (k,eθi,eθ−i) (4). take any k = g(θ0i,eθ−i) ∈ K,

and (3) and (4) imply:
W (g(θ0i,eθ−i),eθi,eθ−i) > W (g(eθi,eθ−i),eθi,eθ−i) ≥ W (g(θ0i,eθ−i),eθi,eθ−i), a

contradiction, so {P, q} is an incentive compatible compensation mechanism
for i and the lemma is proved.
Proof of Theorem 58:
Using Lemma 60 and applying it for all i, it holds trivially.

The implications of Theorem 58 are wide: It shows, for example, that
when the social objectives are ßexible enough, like the set of all continuous
preferences on some compact set of alternatives, and we are trying to im-
plement selections of the Pareto-optimal correspondence, which is clearly an
individually decisive SCC, we must make coincide social interest with every
individual�s to achieve a positive result. Notice that it is a generalization
of the well-known Groves� mechanisms: Green & Laffont�s [5] result can be
seen as a corollary of this one, and, moreover, it shows that the only restric-
tion on preferences that allow for efficient and strong incentive compatible
implementation are the quasi-linear domain.

4.4 Applications

In what follows, we will be concerned with different applications of Theorem
58 in different contexts that Þt their assumptions. We will show that a lot of
interesting economic environments match our general model and our result
will be very useful to characterize the mechanisms and social choice rules
that allow for implementability. We classify the different applications by the
compensation mechanism allowed.

4.4.1 Compensation-free schemes

Corollary 61 The only individually decisive for i SCCs that can be im-
plemented by means of compensation mechanism when the payoff function
structure is compensation-free is the dictatorial one.
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Proof. The compensation-free payoff function structure is not actually
monotonic, but we do not need monotonicity to hold in this special case. Fol-
lowing the reasoning in Theorem 58, it is easy to see that Lemma 59 is not
necessary to prove that Theorem 58 holds in this particular context, so the
only compensation mechanism that implements by revelation any individu-
ally decisive for i SCC is such that the following holds: ∀θi,bθi ∈ Θi, ∀bθ−i ∈Q
j 6=iΘj,

Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) = vi(g(bθi,bθ−i), θi) = W (g(bθi,bθ−i), θi,bθ−i)
for anyW ∈W (K∗). So we can only implement the SWF that represents the
characteristic of individual i, and whatever any other individual reports, the
SCC will be: K∗(θi, θ−i) = argmax vi(k, θi)

k
∀θ−i ∈ Θ−i, i.e., individual i

is a dictator.
Corollary 61 is a stronger version of Gibbard-Satterthwaite famous The-

orem since we are imposing additional restrictions on the SCC to get the
result -the SCC or SCF should be individually decisive for i-, which is a
much stronger assumption that Gibbard�s condition -the range of the func-
tion contains at least three elements-. It is related too with Barberà-Peleg�s
[1] version when considering continuous preferences and with Theorem 3.2
in Roberts [13], but the case of compensation-free payoff functions becomes
trivial in our framework16 and the reason for considering this case here is to
compare the gains from the possibilities of different compensation schemes
below with the radical result of not allowing any kind of compensation.

Corollary 62 Consider any economy where Θi, ∀i ∈ N are such that ∃i, j ∈
N, ∃θi ∈ Θi,∃θj ∈ Θj such that argmax vi(k, θi)

k
6= argmax vj(k, θj)

k
.

Then, there does not exist any individually decisive SCC that can be imple-
mented by revelation by a compensation-free mechanism.

Proof. Trivial: There cannot be more than one dictator when extending
Corollary 61 to more agents.
The compensation-free scheme is also interesting because usual mecha-

nisms in the literature do not allow for compensations that are not included in

16Note that Barberá & Peleg�s [1] proof of Gibbard-Satterthwaite Theorem consists of
proving that strategy-proofness alone in an unrestricted domain of preferences makes the
SCF either individually decisive for each agent or invariant to changes of his type.
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the set of feasible alternatives. If this is the case and the planner cares about
the whole payoff that the agents receive, our approach remains valid if we
restrict the analysis to the compensation-free scheme. Notice that Theorem
58 hold for the compensation-free case, and this will allow us to deal with the
problem of balance -omitted until now- and provide a partial answer to an
important question posed by Hurwicz &Walker [11]: Does an incentive com-
patible mechanism implementing the Pareto-optimal SCC exist for the mixed
economy -public and private goods- when we drop the quasi-linear payoffs
assumption?. In their own words, �First, there is no reason to believe that
[their result] depends upon the quasi-linearity of the individual�s preferences;
however, it is not clear how to obtain the result without the quasi-linearity
assumption.� The former authors could not directly face that problem be-
cause they used a characterization theorem due to Holmstrom which only
holds for those payoffs, but we will show in what follows that our previous
results are actually a powerful tool to deal with the general problem.

Let us consider a particular and simpliÞed 2-agents mixed economy. There
are two goods: one public and other private. Let Y =

£
y, y
¤
, 0 < y < y <

∞, be some compact interval on the real line representing the quantity pro-
vided of the public good and let X = Y × X1 × X2 be the consumption
space in the economy, standing for the public good and the private good
each individual can get. A particular element from X will be denoted by
x = (y, x1, x2) .We will identify X1 ≡ X2 ≡ E+ for simplicity and consider a
Þxed Þnite quantity x > 0 of the private good to be distributed among the
individuals. Let T = {(x1, x2) ∈ X1 ×X2 s.t. x1 + x2 ≤ x} be the feasibility
constraint on the private good, so assuming that both goods are technologi-
cally independent, the set of feasible alternatives will be: FA ≡ X∩ (Y × T )
. Both agents are endowed with preferences representable by a continuous
utility function: ui : Y ×Xi → E. for i = 1, 2, deÞned on his affective space
- in Hurwicz &Walker�s [11] terminology -. We will suppose the functions to
be strictly increasing in the quantity of the private good and not quasi-linear:
∀i = 1, 2, ∀y, by ∈ Y, ui(y, xi)−ui(by, xi) = ui(y, exi)−ui(by, exi)⇒ xi = exi. The
set of these admissible preferences will be Θi, i = 1, 2. The reason why we
completely exclude quasi-linear preferences on the domain is that Hurwicz
&Walker [11] proved a similar theorem only for this kind of preferences. If
we admit them into our new domain, the impossibility result becomes trivial
and has no interest.

Proposition 63 Consider the above economy. There does not exist any in-
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centive compatible compensation-free mechanism implementing the Pareto-
optimal correspondence.

Proof. First of all, notice that we do not need to focus on the whole
Pareto-optimal correspondence since incentive compatibility requires that
every selection correspondence must satisfy it. Let us take the following
selection correspondence of the Pareto-optimal rule:bK∗(θ1, θ2) = argmax v1(y, x1, θ1) + v2(y, x2, θ2)

x ∈ FA
. Now we will con-

sider a quite narrower subdomain of characteristics belonging to Θi ∀i =
1, 2, which will be denoted by bΘi ∀i = 1, 2. bΘi = {ai, bi ∈ E, ai > 0} and
vi(y, xi, θi) = aix

2
i y −

bi
2
y2. Notice that bΘi ⊂ Θi ∀i = 1, 2, since all of them

are continuous, strictly increasing on the private good and no quasi-linear.
Hence, incentive compatibility will hold within this subdomain too. But we
can prove that bK∗ is individually decisive for both agents. First, notice that
since the utility functions are strictly increasing in the private good, every al-
location in the whole Pareto-optimal SCC -and, of course, any selection from
this- distributes the total amount available of the good among the agents, so
if agent 1 can secure any y ∈ Y and any amount 0 < x1 < x for himself
by declaring an appropriate type, he can actually select some Pareto-optimal
alternative, since x2 = x− x1 in any efficient allocation. Thus, we will prove
the following, i.e., for individual 1, ∀y ∈ Y, x1 ∈ X1 & x1 ≤ x , ∀θ2 ∈bΘ2, ∃bθ1 ∈ bΘ1 3 (y, x1, x − x1) ∈ bK∗(bθ1, θ2) ∈ FA. We can easily Þnd
the bK∗ correspondence17 ∀(θ1, θ2) ∈ bΘ1 × bΘ2 : bx∗1 = µ

a2
a1 + a2

¶
x, bx∗2 =µ

a1
a1 + a2

¶
x, by∗ =

 max

½
a1a2x

2

(a1 + a2)(b1 + b2)
, y

¾
if (b1 + b2) > 0

y otherwise
Now, take individual 1: ∀a2 > 0, ∀b2 ∈ E, ∀x1 s.t. x > x1 > 0, ∀y ∈

Y, ∃ba1 = a2µx− x1
x1

¶
> 0,

∃bb1 = ba1a2x− (ba1 + a2)b2y
(ba1 + a2) ∈ E, s.t. bx∗1(ba1, a2) = x1 & by∗(ba1, a2,bb1, b2) =

y. The fact that agent Each agent cannot achieve the extremes - everything
17Note that PO(θ) in this case requires some positive amount of the private good to be

given to both agents, so that this SCC can be shown to be individually decisive for the set
K restricted to xi > 0 ∀i ∈ {1, 2} . To apply our result to the whole closed set K we need
some continuity assumptions, which is the problem we will deal with in the Appendix.
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or nothing - of the total endowment of the private good prevent it to be
individually decisive in the whole K, but it is clear that he can get quantities
of the private good as close as desired to both extremes and since we are
going to prove an impossibility.
Henceforth, applying Theorem 58 and taking into account that we only

admit compensation-free mechanisms, we have that agent 10s valuation func-
tion should be of the form: v1(g(bθ1,bθ2), θ1) = W (g(bθ1,bθ2), θ1,bθ2), ∀θ1,bθ1 ∈bΘ1, ∀bθ2 ∈ bΘ2, for any selection g from bK∗. Since v1(y, x1, θ1) + v2(y, x2, θ2)
is a twice differentiable function -and concave for large sets of parameters-,
the following equation has to hold for any W ∈ W ( bK∗) within those range
of parameters:

∂W (x1, y, a1, b1,bb1,bb2)
∂y

(x∗1, y
∗) = 0 =

∂v1(x1, y, a1, b1)

∂y
(x∗1, y

∗).

And some simple calculations show that
∂W (x1, y, a1, b1,bb1,bb2)

∂y
(x∗1, y

∗) =

a1x
∗2
1 − b1y∗ −bb2y∗
and

∂v1(x1, y, a1, b1)

∂y
(x∗1, y

∗) = a1x∗21 − b1y∗ 6= a1x∗21 − b1y∗ − bb2y∗ for allbb2 6= 0, so the impossibility is proved.
The former proposition provides strong evidence about the non-existence

of truthful revelation mechanisms for mixed economies that both generically
provide the efficient quantities of the public and private goods and balance
the budget when we limit ourselves to domains of preferences or characteris-
tics with some income effect, so the income effect cannot be generically used
to enforce strong implementation. Nevertheless, slightly different domains
might lead to different implementation results, so the general question of ex-
istence is still open. Notice, for example, that the former proof is not valid
with the additional restriction of concavity imposed on the preferences for
the public good.
Moreover, when more than 2 agents are present, we may Þnd that in some

contexts, the SCC is not individually decisive, but it is for some Þxed subset
of the feasible alternatives -for the individual consumption spaces, but not for
the others� consumptions-. In those cases, although we cannot directly apply
the results in the former section, we can reÞne them to get useful tools to
deal with those problems. For example, the following straightforward lemma
might be applied:
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Lemma 64 Let Ki, ∀i ∈ N, be a family of compact and convex sets. Let
vi : Ki×Θi → E be the continuous valuations for each individual and charac-
teristic and suppose K∗

i (θ1, .., θn) be the restriction of K
∗ :
Qn
i=1Θi → ∪ni=1Ki

on Ki. If K∗
i is individually decisive on Ki for some i, the only compensation-

free mechanism that implements K∗ should be such that: ∀θi,bθi ∈ Θi, ∀bθ−i ∈Q
j 6=iΘj, vi(gi(bθi,bθ−i), θi) = W (gi(bθi,bθ−i), θi,bθ−i), and for any selection g

from K∗. (where gi stands for the restriction of any g on Ki).

The proof of this lemma is omitted since it follows strictly the same
reasoning of that in Theorem 58 with the difference of considering Ki as the
whole set K in the proof.
We can explore now the efficient implementation problemwith compensation-

free mechanisms in the extreme cases of pure public goods and private goods.
Consider the public good case: depending on the admissible domain of char-
acteristic we may choose, we can easily check if the Pareto-optimal SCC is
individually decisive. For example, if we focus on the unrestricted domain
of characteristics -see Example 53 in the Þrst section-, we can apply Corol-
lary 62 to get a strong version of Gibbard-Satterthwaite impossibility result.
For the case of private goods, the strategy is similar: Let us consider, for
example, the 2-agents, 2-goods general environment in Example 54, which is
the classical Edgeworth Box economy, where the admissible characteristics
are all continuous, strictly monotonic and convex utility functions over the
2-goods commodity space E2+. If we want to implement the Pareto-optimal
SCC by means of compensation-free mechanisms, and it has been shown to
be an individually decisive SCC, we can apply Theorem 58 and get a similar
impossibility to that in Proposition 63 for the mixed economy close to that
of Hurwicz [10]. Nevertheless, there is a difference that we should point out:
Our work always assumes full implementation, since every selection of the
SCC has to yield every individual�s highest payoff, so when the set of possible
social choices is large -as in the case of private goods along the contract curve-
, it is easier to get an impossibility result and there might be selections of
the SCC that can be implemented by revelation in a partial implementation
framework-. As an example, consider the Pareto-optimal SCC when individ-
uals are endowed with single-peaked preferences in Example 55 �s economy
in Section 2 : The whole Pareto-optimal SCC with that domain is individu-
ally decisive, so it is easy to prove that there do not exist compensation-free
mechanisms implementing it, but there are selections from this characterized
by Moulin [12] -the SCF in the example is one of them- such that are not
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individually decisive and can be implemented by revelation.
Finally, we should note that the compensation mechanisms reproducing

social objectives can be useful even in the absence of individual decisiveness.
For some quasi-linear preferences in public goods environments, it is possible
to achieve complete efficiency in the mixed economy using some particular
Groves� mechanism if we restrict the domain even more. Groves and Loeb
[9] found that the quadratic family of valuation functions on some public
good in Example 57 in Section 2, joint with quasi-linear preferences on the
private good can be balanced with an appropriate Groves� mechanism, so that
the efficient choice of the public good can be implemented by revelation for
that domain. Notice, however, that this result does not contradict Corollary
61, since balanced implementation requires some appropriate compensation
functions (transfers) and only this selection of the Pareto-optimal rule is
implemented. Since a part of these transfers only depends on the others�
reported types, no individual can get any transfer irrespective of the others�
strategies, so the implementable Pareto-optimal selection is not individually
decisive in the part of the private good so Corollary 61 does not apply.

4.4.2 Full compensation scheme

Corollary 65 When the payoff function structure is that of full compensa-
tion, i.e., ∀x, yi ∈ E, Pi(x, yi) = yi, every SCC can be trivially implemented
by revelation by means of some compensation mechanism.

Proof. Consider an incentive compatible compensation mechanism with
full compensation payoff functions for every agent; it is easy to check that
these payoff functions are monotonic, so applying Theorem 58, every indi-
vidually decisive SCC implementable by revelation is such that: ∀i ∈ N,
∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj ,

W (g(bθi,bθ−i), θi,bθ−i)) = Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) = qi(bθi,bθ−i). Notice
that the implementable SWF admitted in the full compensation case cannot
depend on the real individual characteristics, so every SWF allowed is such
that: W (k, θ) = f(k) ∀θ ∈ Qn

i=1Θi, where f : K → E is any function.
But, what kind of SCCs are represented by such SWFs? The only class
is the following: ∃K ⊆ K such that ∀θ ∈ Qn

i=1Θi, K
∗(θ) = K. Even

though many members in that class are trivial undesirable SCCs like all the
cases where K is a singleton, the case K ≡ K includes every possible social
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choice function as a selection from K∗. Moreover, we can say more about the
form of the compensation functions: since qi(bθi,bθ−i) ∈ E ∀bθi ∈ Θi, ∀bθ−i ∈Q
j 6=iΘj, incentive compatibility implies the following: ∀θi,bθi ∈ Θi, ∀bθ−i ∈Q
j 6=iΘj, qi(θi,bθ−i) ≥ qi(bθi,bθ−i)⇒ qi(θi,bθ−i) ≥ rangenqi(bθi,bθ−i)o⇒
⇒ qi(θi,bθ−i) ≥ max qi(bθi,bθ−i)

(bθi,bθ−i) ∈Qn
i=1Θi

∀θi ∈ Θi,⇒ ∀θi,bθi ∈ Θi, ∀bθ−i ∈Q
j 6=iΘj,

qi(θi,bθ−i) = qi(bθi,bθ−i), or, in other words, ∀i ∈ N, ∀bθi ∈ Θi, ∀bθ−i ∈Q
j 6=iΘj, qi(bθi,bθ−i) = qi(bθ−i). The compensation mechanisms associated to

those compensation functions with the full compensation payoff function
structure are independent of the own reported type, so they are always in-
centive compatible and (trivially) implement every SCC -not only the indi-
vidually decisive SCCs-. Notice that for this trivial compensation functions,
Theorem 58 assigns the constant SWF, which trivially represents any SCC.

Notice that both the compensation-free and full compensation schemes
are extreme or polar compensation mechanisms with opposite implementa-
tion properties: The impossibility of compensations makes the agents� payoff
fully depending on their characteristics, so they are strongly interested in
exploiting their private information, while if the agents� payoff can be de-
signed completely independent of their types, any compensation scheme for
an agent such that makes no use of his reported private information works.
The reason is that in the full compensation case, the planner (or principal)
owns the total power to modify the agent�s payoff against changes in the
characteristics, while in the no compensation scheme he can only use his dis-
cretion about the selected alternative, and Þnally there will only be strong
implementation possibilities if the planner himself behaves as a dictatorial
agent. Nevertheless, this trivial case has a clearly undesirable property: the
agents have no incentives to lie, but they have not an incentive to tell the
truth either. For a discussion of a similar setup, see Groves [7].
The remainder will study some speciÞc intermediate cases between the

full compensation and the no compensation possibilities.
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4.4.3 Compensations with transfers

Proposition 66 Let K be some compact set in a topological space and Θi be
the set of all upper semi-continuous functions ∀i ∈ N, the only incentive com-
patible compensation mechanisms that implement the SWF W =

Pn
i=1 vi(k, θi)

are the following:
Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) =
= W

 argmax vi(k, θi) +
P

j 6=i vj(k,bθj)
k ∈ K

 .
∀i ∈ N, ∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj, where W is any SWF representing

the SCC in brackets.

Proof. It suffices to prove that under the above condition, the SWF W
is individually decisive.
Take any i ∈ N and any θ0−i ∈

Q
j 6=iΘj ; as every θ0j ∈ Θj ∀j ∈ N, is

bounded above by assumption, then, for any k ∈ K, take the following
type for individual i:

vi(k,bθi) = ½ −Pj 6=i vj(k, θ
0
j) + 1 if k = k

−Pj 6=i vj(k, θ
0
j) if k 6= k which is clearly upper

semi-continuous and it will be true that:
∀θ0−i ∈

Q
j 6=iΘj , W (k,bθi, θ0−i) = vi(k,bθi) +Pj 6=i vj(k, θ

0
j) > vi(k,bθi) +P

j 6=i vj(k, θ
0
j) =W (k,

bθi, θ0−i)
∀k 6= k ∈ K. This clearly implies that k ∈ K∗(bθi, θ0−i), so for any ∀k ∈

K ∀θ0−i ∈ Θ−i ∃bθi ∈ Θi s.t. k ∈ K∗(bθi, θ0−i), so the SWF is individually
decisive, because we can do the same for any i ∈ N.
Then, we are under the conditions of Theorem 58, so the only compen-

sation mechanisms implementing by revelation W is of the form described
above.

Proposition 67 LetK be some compact set in a topological space and the set
Θi be the set of all continuous functions ∀i ∈ N, the only incentive compatible
compensation mechanisms that implement the SWF: W =

Pn
i=1 vi(k, θi), are

the same of Proposition 66.

Proof. We has to show that the SWF W is individually decisive even
when we restrict the domain of types to be continuous. Consider, then, for
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any i ∈ N, and for any k ∈ K, given any θ0−i ∈
Q
j 6=iΘj, the following char-

acteristic: vi(k,bθi) = −z °°k − k°°−Pj 6=i vj(k, θ
0
j)− bε(k). z ∈ E+, & bε(k)

being any continuous function such that: bε(k) ≥ 0 ∀k ∈ K & bε(k) = 0.We
can prove that the SWF. with the proÞle (bθi, θ0−i) get a maximum on k = k :
W (k,bθi, θ0−i) = −Pj 6=i vj(k, θ

0
j)+

P
j 6=i vj(k, θj)−bε(k) = −bε(k) > −bε(k)−

z
°°k − k°° =
−Pj 6=i vj(k, θ

0
j) +

P
j 6=i vj(k, θ

0
j)−bε(k)− z °°k − k°° =W (k,bθi, θ0−i) ∀k ∈

K.
Notice that vi(k,bθi) is continuous since every vj(k, θ0j) ∀j 6= i are con-

tinuous, so we conclude as before, that W is individually decisive. Applying
Theorem 58, we can get the Generalized Groves� mechanisms again, being
this a second generalization of Green & Laffont�s results.

Proposition 68 Let K ⊂ Em be an open set endowed with the euclidean
metric for m ≥ 2 and the set Θi be the set containing all concave or strictly
concave and differentiable functions ∀i ∈ N ; the only incentive compatible
compensation mechanisms that implement the SWF W =

Pn
i=1 vi(k, θi) are

the same that those in Proposition 66.

Proof. We will show that W has to be individually decisive even when
the domain of characteristics is restricted to be every concave -or strictly
concave- and differentiable function: First, consider any i ∈ N, and for any
k ∈ K, given any θ−i ∈

Q
j 6=iΘj, since every vj(k, θj) ∀j ∈ N is a differ-

entiable function, the expression:
P

j 6=i(vj(k, θj)− vj(k, θj)) is differentiable,
so we know that there exists a vector l(k, θ−i) ∈ Em, −∞ < l(k, θ−i) <∞,
such that:

limkk−kk→0

¯̄̄P
j 6=i(vj(k, θj)− vj(k, θj))− l(k, θ−i)0(k − k)

¯̄̄
°°k − k°° = 0. Now,

let us construct a real number bh(k, θ−i) ∈ E deÞned as follows:bh(k, θ−i) =
= max
k ∈ K


¯̄̄P

j 6=i(vj(k, θj)− vj(k, θj))− l(k, θ−i)0(k − k)
¯̄̄

°°k − k°° if k 6= k.
0 if k = k

Again, this number will exist because all the vj(k, θj) are always
bounded above and the denominator is positive, so 0 < bh(k, θ−i) < ∞.
Finally, we can write the following by construction:
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bh(k, θ−i) ≥
¯̄̄P

j 6=i(vj(k, θj)− vj(k, θj))− l(k, θ−i)0(k − k)
¯̄̄

°°k − k°° ∀k ∈ K.
Rearranging the above inequality, we will have:bh(k, θ−i) °°k − k°° ≥ ¯̄̄Pj 6=i(vj(k, θj)− vj(k, θj))− l(k, θ−i)0(k − k)

¯̄̄
≥

≥Pj 6=i(vj(k, θj)− vj(k, θj))− l(k, θ−i)0(k − k). ⇒bh(k, θ−i) °°k − k°°−Pj 6=i vj(k, θj) ≥ −
P

j 6=i vj(k, θj)− l(k, θ−i)0(k − k)
∀k ∈ K, and Þnally, multiplying the inequality by −1, and rearranging

terms, we have:
P

j 6=i vj(k, θj) ≥ −bh(k, θ−i)°°k − k°° − l(k, θ−i)0(k − k) +P
j 6=i vj(k, θj)
∀k ∈ K. (1). So, we proved that ∀i ∈ N, ∀k ∈ K, ∀ θ−i ∈

Q
j 6=iΘj ,

∃bh(k, θ−i) < ∞ such that the last expression holds for all k ∈ K. Now,
deÞne the following characteristic for individual i:

vi(k,eθi) = −eh(k, θ−i)°°k − k°°− l(k, θ−i)0(k − k). Notice that vi(k,eθi) =
0 and it is easy to see that eθi ∈ Θi, since eh(k, θ−i) and l(k, θ−i) exist and it
is a differentiable function - it is the sum of two differentiable functions - and
is concave since the euclidean norm is strictly convex and the second term is
convex. (kλx+ (1− λ)yk ≤ kλxk+k(1− λ)yk = |λ| kxk+|(1− λ)| kyk ∀λ ∈
[0, 1] , ∀x, y ∈ K. ). Now, the only thing to do is interpreting expression
(1) as follows:
∀k ∈ K, ∀θ−i ∈

Q
j 6=iΘj , ∃eh(k, θ−i) < ∞, ∃l(k, θ−i) ∈ En, ∃eθi ∈

Θi such that: vi(k,eθi) +Pj 6=i vj(k, θj) = 0 +
P

j 6=i vj(k, θj) ≥
≥ −eh(k, θ−i)°°k − k°°− l(k, θ−i)0(k − k) +Pj 6=i vj(k, θj) =

= vi(k,eθi) +Pj 6=i vj(k, θj)

∀k ∈ K ⇒ vi(k,eθi)+Pj 6=i vj(k, θj) ≥ vi(k,eθi)+Pj 6=i vj(k, θj) ∀k ∈ K ⇒
∀i ∈ N, ∀k ∈ K, ∀θ−i ∈

Q
j 6=iΘj, ∃eθi ∈ Θi such that W (k,eθi, θ−i) ≥

W (k,eθi, θ−i)⇒ k ∈ K∗(eθi, θ−i).
So there exists some characteristic in the admissible domain such that

any individual can get any alternative for any others� characteristics, which
is the deÞnition of an individually decisive SCC. Applying Theorem 58, we
Þnd the same class of mechanisms as above.

Corollary 69 (Green & Laffont [5]). Let K be a compact set in a topological
space and Θi ∀i ∈ N contain any upper semi-continuous or continuous or
concave and differentiable valuation functions. The only compensation by
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transfers mechanisms that can implement by revelation the utilitarian SWF
are the Groves� mechanisms.

In any of the possible domains considered, the only compensation mecha-
nisms that can implement by revelation the utilitarian SWF are of the same
form using Propositions 66 to 68, i.e.,

Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) =W
 argmax vi(k, θi) +

P
j 6=i vj(k,bθj)

k ∈ K

 .
∀i ∈ N, ∀θi,bθi ∈ Θi, ∀bθ−i ∈Qj 6=iΘj, whereW is any SWF representing

the SCC in brackets.
Now, we are imposing an additional restriction to the compensation mech-

anisms allowed: we are only interested in compensations by transfers, i.e., the
payoff functions structure have the form: ∀x, yi ∈ E, Pi(x, yi) = x + yi, so,
applying Propositions 66 to 68:
Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) = vi(g(bθi,bθ−i), θi) + bqi(g(bθi,bθ−i),bθ−i) =
= W

 argmax vi(k, θi) +
P

j 6=i vj(k,bθj)
k ∈ K

 =
= vi(g(bθi,bθ−i), θi) + f(g(bθi,bθ−i),bθ−i)),
∀i ∈ N, ∀θi,bθi ∈ Θi, ∀bθ−i ∈ Q

j 6=iΘj, where f is some adequate

function, so it suffices to prove that
P

j 6=i vj(g(bθi,bθ−i),bθj) + hi(θ−i) =
= f(g(bθi,bθ−i),bθ−i)) ∀i ∈ N, ∀bθ ∈ Qn

i=1Θi, where hi(θ−i) is any real
valued function, which is the only functional form allowed -see Green &
Laffont [5]-.

Notice that the Groves� mechanisms are a particular case of those com-
pensation mechanisms in the case of interpreting the model as choosing some
vector of public goods. Notice that in Propositions 66 to 68, we did not as-
sume the quasi-linearity of the Þnal payoff function, which will be interpreted
in our context as allowing only for compensations by transfers, which is a
particular member of the family of payoff function structures, so this propo-
sitions are stronger than Green & Laffont�s Theorem in the sense that con-
cluding that the only form of the utility function on both private and public
goods that allows for the implementability of the utilitarian SWF is exactly
the domain imposed by the former authors, i.e., the quasi-linear preferences
without income effect. Notice, also, that only under this restriction on the
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domain of extended preferences the SWF as representing the Pareto optimal
SCC makes complete sense.
An important feature of the model that should be pointed out is that

Green and Laffont�s results, as well as ours, are extremely dependent on
the non-existence of a common Þxed bound on the types allowed in
the domain. Notice that if the planner possess the additional information
that the characteristics cannot be too high, the utilitarian SCC will not be
individually decisive. Suppose, for example, that the domain of types is
restricted to be all the bounded and continuous or upper semi-continuous
functions such that ∀i ∈ N, ∀θi ∈ Θi, ∃c, c ∈ E s.t. ∀k ∈ K, c ≤ vi(k, θi) ≤
c. With this new restriction, for some θ−i ∈

Q
j 6=iΘj , it is impossible to Þnd

feasible types θi ∈ Θi, s.t. ∀k ∈ K, k ∈ argmax
Pn

j=1 vj(k, θj)

k ∈ K
. Hence,

with this new domain, the utilitarian SWF is not individually decisive and
Theorem 58 cannot be applied. Take, for example, n = 3, c = 0, c = 1,

and ∀j 6= i, vj(k, θj) =
½
1 for k ≥ k.
0 otherwise.

Notice that for any θi ∈ Θi, the
following holds: W (bk, θi, θ−i) ≥ 2 > 1 ≥W (ek, θi, θ−i) ∀bk ≥ k, ∀ek < k.
4.4.4 Compensations by means of prices

Consider the following particular problem: N = {1, 2} ,
K =

©
(k1, k2) ∈ E2+ s.t. k1 + k2 = k

ª
, ∀θ1 ∈ Θ1, v1(k, θ1) is such

that: ∀(k1, k2), (k1,bk2) ∈ K, v1(k1, k2, θ1) = v1(k1,bk2, θ1) & ∀θi ∈
Θi, ∃(k1, k2) ∈ K such that: vi(k1, k2, θi) > 0, ∀i = 1, 2.
v1(k1, k2, θ1) is continuous and strictly increasing in the Þrst argument.

Agent 2�s characteristics will be of the same kind but permuting the argu-
ments of the set K.We will write them v1(k1, θ1) and v2(k2, θ2).

Proposition 70 The only incentive compatible compensation mechanisms
that implement by revelation the Nash SWF, i.e., W = v1(k, θ1)v2(k, θ2), are
such that: ∀i ∈ {1, 2} , ∀θi ∈ Θi, ∀θj ∈ Θj , (j 6= i),
Pi(vi(g(bθi,bθj), θi), qi(bθi,bθj)) =
= W (g(bθi,bθj)), θi,bθj) = W

·
argmax v1(k, θ1)v2(k, θ2)
k ∈ K

¸
, where W is

any SWF such that W ∈W (K∗).
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Proof. We are going to prove that in the above economy, the Nash
bargaining SWF is, in fact, individually decisive. We show this for individual
1 and the proof for the other agent is, of course, symmetric.
Suppose any admissible type for individual 2: θ2 ∈ Θ2, take any alterna-

tive from the range of the Nash SCC, i.e., the open set:bK =
©
(k1, k2) ∈ E2+ s.t. k1k2 6= 0 & k1 + k2 = k

ª
.

Notice that we cannot pick up alternatives with some zero component. Let us
call any of this bk = (bk1,bk2) = (bk1, k − bk1) ∈ bK. Now, consider the following
characteristic for individual 1: for any θ2 ∈ Θ2 declared by agent 2,
v1(k1,bθ1) = 2v1(bk1,bθ1) − v1(bk1,bθ1)

v2(bk2, θ2)v2(k − k1, θ2). v1(bk1,bθ1) being any
positive real number. Let us call bβ(bθ1, θ2) the absolute slope of the functionbβ(bθ1, θ2) = v1(bk1,bθ1)

v2(bk2, θ2) . Notice that this is an admissible type for individual
1, because it is decreasing on k2 (increasing on k1) when (k1, k2) ∈ bK, and
continuous since θ2 is continuous. By using this strategy, the outcome of the
SWF will be the set:
K∗(bθ1, θ2) = argmax W = v1(k1,bθ1)v2(k2, θ2)

k1, k2
s.t k1 + k2 ≤ k

. Suppose that (k∗1, k
∗
2) ∈

K∗(bθ1, θ2), it always holds that, if we deÞne bu∗1(k1) = v1(k1,bθ1), and u∗2(k2) =
v2(k2, θ2)
(bu∗1(k∗1), u∗2(k∗2)) = argmax W = bu1u2bu1, u2

s.t bu1 = 2v1(bk1,bθ1)− bβ(bθ1, θ2)u2
But the feasibility constraint is a linear function in the space (bu1, u2), so

the solution will be unique and the necessary and sufficient conditions that
hold in the optimum are the following:

i) bβ = bu1(k∗1)
u2(k

∗
2)
=
du1
du2

= bβ(bθ1, θ2) = v1(bk1,bθ1)
v2(bk2, θ2) (By deÞnition of the

slope).
ii) bu1(k∗1) = 2v1(bk1,bθ1)− bβ(bθ1, θ2)u2(k − k∗1).
Notice that by construction, the Þrst tangency condition can only be

fulÞlled in k∗ = bk, and the second holds for k∗1 = bk1 too. Therefore, agent
1 has always some admissible strategy so that he can get any alternative he
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wants with the exception of the extremes, but he can choose alternatives as
closed as desired to them (an alternative out of the range will make the slope
become inÞnity) and always any alternative in range(K∗), so the SWF is
individually decisive. Since the types are continuous functions, we can now
apply Theorem 58 and the conclusion is obvious.

This proposition posses its own interest since the above admissible domain
of characteristics can be interpreted as production sets of two Þrms that have
to share some Þxed amount of a common input. Both Þrms have private
information about his own technology and send their revealed technologic
characteristics to the planner or authority, which makes the sharing Þnal
decision. It shows that we can implement by revelation the Nash bargaining
solution even with lack of information if the authority can establish the prices
at which both Þrms sell their respective output. Therefore, we should use
some price payoff structure to get it.

Corollary 71 Suppose θ1, θ2 ∈ Θ1,Θ2. Every individually decisive SCC can
be trivially implemented by means of prices, i.e., when individual�s payoff
functions are of the type:
Pi(vi(g(θi, θ−i), θi), qi(θi, θ−i)) = vi(g(θi, θ−i), θi)qi(θi, θ−i).

Proof. Obvious: just consider the following compensation functions:
qi(θi, θ−i) = 0 ∀θi ∈ Θi, ∀θ−i ∈

Q
j 6=i θj.

4.4.5 Other types of compensations

Now, we may wonder what other SWFs the planner could be interested to
implement. Thinking on some ethical and efficient rules, we can investigate
if there exists a method to implement some kind of equal welfare among the
agents.

Proposition 72 Let K be a compact set in a topological space and Θi be the
set of continuous or upper semi-continuous bounded functions. There does
not exist any incentive compatible compensation mechanism implementing by
revelation the Rawlsian SWF, i.e.,W = min {v1(k, θ1), v2(k, θ2), ..., vn(k, θn)} .
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Proof. We prove that if the set of characteristics Θi ∀i ∈ N, are either
upper semi-continuous or continuous, the Rawlsian or egalitarian SWF rep-
resent an individually decisive SCC. Suppose any individual i, and any θ−i ∈Q
j 6=iΘj, set any k ∈ K, and consider the real number cj ∈ E be the lower

bound of each j 6= i, then, there exists the number bci = minj 6=i {cj} < ∞,
and, for any k ∈ K, take the following type for individual i:
vi(k,bθi) = ½ bci if k = kbci − 1 if k 6= k Notice that this is a bounded below,

upper semi-continuous function, and it holds by construction that:

min {v1(k, θ1), ..., vi−1(k, θi−1), vi+1(k, θi+1), ..., vn(k, θn)} ≥ min
j 6=i

{cj} = bci,
because every characteristic is bounded below by cj , so minj 6=i {vj(k, θj)} ≥bci ≥ vi(k,bθi) ∀k ∈ K. Consider now the problem:
max min

n
v1(k, θ1), ..., vi(k,bθi), ..., vn(k, θn)o

k ∈ K
= max vi(k,bθi)
k ∈ K

and observing the deÞnition of vi(k,bθi), vi(k, θi) ≥ vi(k,bθi) ∀k ∈ K, so
k ∈ K∗(k,bθi, θ−i), and we can generate some vi(k,bθi) for every k ∈ K, and
every θ−i ∈

Q
j 6=iΘj , so the Rawlsian SCC is individually decisive. The case

where Θi contains only continuous preferences does not differ very much
from this one: just consider instead of bθi ∈ Θi, the following characteristic:eθi ∈ Θi such that:
vi(k,eθi) = ½ bci − °°k − k°° for k s.t.

°°k − k°° ≤ 1bci − 1 otherwise.
And it is easy to

check that the function is continuous and individual i can get any alternative
he wants just by changing k, ∀k ∈ K.
Nowwe can apply Theorem 58 in both cases and obtain: ∀i ∈ N, ∀θi,bθi ∈

Θi, ∀bθ−i ∈Qj 6=iΘj,

Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) = W ((bθi,bθ−i), θi,bθ−i) =
f(min

n
vi(g(bθi,bθ−i), θi), v−i(g(bθi,bθ−i), θ−i)o), for any selection g fromK∗

and f being some function. But notice that the payoff function structure as-
sociated with the mechanism has to be the following: Pi(vi(k, θi), qi(k,bθ−i)) =
W
h
argmink

n
vi(k, θi), qi(k,bθ−i)oi , for any W ∈ W (K∗). But all these are

non-monotonic payoff functions: Suppose θ ∈Qn
i=1Θi such that ∃i ∈ N such
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that vi(k, θi) < vj(k, θj) ∀k ∈ K. Then, K∗(θ) = argmax vi(k, θi)
k ∈ K

and

the compensation cannot change. Suppose q ∈ E, bθi ∈ Θi such that:
q > vi(k,bθi), ∀k ∈ K, then, if we consider eq > q, eq > q > vi(k,bθi), and the
payoff remains the same: Pi(vi(k,bθi), θ) = Pi(vi(k,bθi),eθ) = vi(k,bθi), a con-
tradiction with the monotonicity assumption, so there cannot exist compen-
sation mechanisms implementing the Rawlsian SWF under all the conditions
above.

Corollary 73 The following compensation and non-monotonic mechanism
allows for implementation of the Rawlsian SCC in the above economy: ∀θi,bθi ∈
Θi, ∀bθ−i ∈Qj 6=iΘj,

Pi(vi(g(bθi,bθ−i), θi), qi(bθi,bθ−i)) =
= max

 −vi(g(bθi,bθ−i), θi), − max
j 6= i

n
vj(g(bθi,bθ−i),bθj)o

 .
Proof. Notice that the expression above can be written as:

= −min
 vi(g(bθi,bθ−i), θi), max

j 6= i

n
vj(g(bθi,bθ−i),bθj)o

 =

= −min
n
v1(g(bθ), θi), ..., vi(g(bθ), θi), ..., vn(g(bθ),bθn)o . -of course the as-

sociated mechanism is not monotonic-. Abusing notation, we can write:
Pi(vi(g(θi,bθ−i), θi), qi(θi,bθ−i)) =
−min

n
vi(g(θi,bθ−i), θi), v−i(g(θi,bθ−i),bθ−i)o ≥

≥ −min
n
vi(g(bθi,bθ−i),bθi), v−i(g(bθi,bθ−i),bθ−i)o =

= Pi(vi(g(bθi,bθ−i)), qi(bθi,bθ−i))
∀θi,bθi ∈ Θi, ∀bθ−i ∈ Q

j 6=iΘj, and this for any selection g(bθ) from
K∗(bθ), so the non-monotonic compensation mechanism implements the Rawl-
sian SCC.
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4.5 Concluding remarks

We have proved in this paper that when we are trying to implement by
revelation any SCC too sensitive to individual preferences, we have to rely
on individual compensation mechanisms that replicate the social objectives.
This is the reason why the well-known Groves� mechanism works in quasi-
linear domains of preferences, which can be viewed in terms of our model.
Hence, it is not by chance that the transfer any individual receives takes the
same functional form that the SWF we are trying to implement, but is a
general feature that can be extended to different social welfare criteria and
to different compensation schemes. Therefore, there exists a strong linkage
between the compensation structure we allow in each case and the social
welfare functions we can implement: Essentially, we need an additive trans-
fer scheme -like taxes or subsidies- to implement the utilitarian SWF, some
multiplicative prices scheme to get the bargaining Nash solution, and it is im-
possible within our assumptions to implement the egalitarian rule. When the
planner cannot make compensations, implementation by revelation requires
dictatorship or it is often impossible. In the opposite extreme, when the
planner can expropriate the part of the agents� objective functions affected
by the type and completely determine the Þnal payoff, every social choice
rule can be trivially implemented. It seems that diminishing the effect of the
agents� types on their own payoff considerably enlarge the set of rules that
can be implemented. We have abstracted thorough the paper the possible
costs the planner may face in choosing one or another contract structure -the
mechanism-, but if they exist, the planner might compare the implementation
gains with the costs associated to each contract. Moreover, one or another
social choice rule or compensation mechanism might be more appropriate in
different contexts: public good provision, production implementation, etc.,
but we are always constrained by the menu provided by Theorem 58.

4.6 Appendix

Although the dependence of Theorem 58 to the individually decisiveness
assumption is clear, we can slightly relax the class of admitted SCCs if we
restrict attention to continuous mechanisms (when both the compensation
functions and the payoff functions are continuous when considering the sup
norm). The following result provides the continuous mechanisms version of
Theorem 58., but, before we state it, we need one more deÞnition and a
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lemma.

DeÞnition 74 A SCC K∗ is called individually quasi-decisive if ∀i ∈
N, ∀θ−i ∈

Q
j 6=iΘj, ∀τ > 0, ∀k ∈ K, ∃bθi(τ , k, θ−i) ∈ Θi such that

k ∈ K∗(bθi(τ , k, θ−i), θ−i) ∈ K, k ∈ Bτ (k) & ∃ limτ→0bθi(τ , k, θ−i). (
where Bτ (k) stands for the open ball with center in k and radius τ using the
euclidean metric ).

This property means that everybody can obtain an alternative as close as
desired to any other by reporting an adequate type and is weaker than indi-
vidual decisiveness -every individually decisive SCC is always quasi-decisive,
but the converse is not true-.

Lemma 75 Suppose Θi contains only continuous functions for each i. Let
{P, q} be a continuous, incentive compatible for i compensation mechanism
implementing the SCC K∗, and take two -possibly the same- selections from
K∗ : g and bg. Then, ∀θi, θ0i ∈ Θi, ∀θ−i ∈Qj 6=iΘj , ∀φ > 0, ∃ρ > 0 such that
g(θi, θ−i) ∈ Bρ(bg(θ0i, θ−i))⇒ qi(θi, θ−i) ∈ Bφ(qi(θ0i, θ−i)).
Proof. By contradiction, suppose that ∀ρ > 0, ∃θi, θ0i ∈ Θi, ∃θ−i ∈Q

j 6=iΘj, ∃φ > 0, such that g(θi, θ−i) ∈ Bρ(bg(θ0i, θ−i)) &
qi(θi, θ−i) /∈ Bφ(qi(θ0i, θ−i)). Suppose w.l.g. that
qi(θi, θ−i)− qi(θ0i, θ−i) > φ. Then, take type θ0i, and consider the payoffs:
Pi(vi(g(θi, θ−i), θ0i), qi(θi, θ−i)) and Pi(vi(bg(θ0i, θ−i), θ0i), qi(θ0i, θ−i)). But,

by hypothesis, ∀ρ > 0, ∃θi, θ0i ∈ Θi, ∃θ−i ∈
Q
j 6=iΘj , such that g(θi, θ−i) ∈

Bρ(bg(θ0i, θ−i)), so we can choose θi, θ0i such that g(θi, θ−i) will be as close
to bg(θ0i, θ−i) as we want. Since Θi includes only continuous functions, we
can make vi(g(θi, θ−i), θ0i) as close as desired to vi(bg(θ0i, θ−i), θ0i) by choos-
ing θi, θ

0
i ∈ Θi. But Pi is continuous in both arguments and monotonic

so, by sufficiently choosing ρ > 0 and θi, θ0i ∈ Θi, we should have, since
qi(θi, θ−i)− qi(θ0i, θ−i) > φ :
Pi(vi(g(θi, θ−i), θ0i), qi(θi, θ−i)) > Pi(vi(bg(θ0i, θ−i), θ0i), qi(θ0i, θ−i)).⇒
For θ0i, ∃θi ∈ Θi, ∃g(θi, θ−i) ∈ K∗(θi, θ−i) ∀θi ∈ Θi, ∀θ−i ∈

Q
j 6=iΘj , -a

selection from K∗- deÞned as:

g(bθi, θ−i) = (
g(bθi, θ−i) iff bθi 6= θ0ibg(θ0i, θ−i) iff bθi = θ0i , such that by declaring θi ∈ Θi,

agent i will receive a greater payoff than reporting the truth (θ0i), i.e.,
Pi(vi(g(θi, θ−i), θ0i), qi(θi, θ−i)) > Pi(vi(g(θ

0
i, θ−i), θ

0
i), qi(θ

0
i, θ−i)), so the mech-

anism cannot be incentive compatible for i, a contradiction.
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Theorem 76 Suppose that ∀i ∈ N, Θi is restricted to contain continuous
functions and let K∗ be an individually quasi-decisive SCC. Then if {P, q}
is an incentive compatible and continuous compensation mechanism that im-
plement K∗, then it must be of the form of those in Theorem 58.

Proof. ⇒) First of all, notice that Lemma 59 applies to every com-
pensation mechanism implementing any SCC, so it holds now that ∀θi, θ0i ∈
Θi, ∀θ−i ∈

Q
j 6=iΘj, such that g(θi, θ−i) = g(θ

0
i, θ−i), it holds that: qi(θi, θ−i) =

qi(θ
0
i, θ−i).
Moreover, sinceK∗ is individually quasi-decisive, ∀i ∈ N, ∀θ−i ∈

Q
j 6=iΘj,

∀τ > 0, ∀k ∈ K, ∃bθi : E++ ×K ×Qj 6=iΘj →→ Θi such that

k ∈ K∗(bθi(τ , k, θ−i), θ−i) ∈ K & k ∈ Bτ (k). Let us now deÞne the
following correspondence: bqi : K ×Θ−i →→ E, such that: bqi(k, θ−i) =
= qi(limτ→0 bθi(τ , k, θ−i), θ−i) for all k ∈ K, ∀θ−i ∈Qj 6=iΘj .
This mapping is similar to the analogous one used in the proof of Theorem

58. Moreover, bqi(k, θ−i) always exist and is a continuous function on K.
Notice that ∀k ∈ K such that ∃θ0i ∈ Θi such that k = g(θ0i, θ−i) for some
selection g from K∗, bqi(k, θ−i) is a singleton following the same reasoning
in proving (ii) in Theorem 58 -using Lemma 59 for all i-, and the cases
where ∀θ0i ∈ Θi, k 6= g(θ0i, θ−i), individual quasi-decisiveness assures that the
limit exists. It remains to prove that the function is continuous for every
k ∈ K, so we will prove the following: ∀θ−i ∈

Q
j 6=iΘj, ∀k ∈ K, ∀ε >

0, ∃δ(k, ε) > 0 such that k ∈ Bδ(k) ⇒ bqi(k, θ−i) ∈ Bε(bqi(k, θ−i)). Suppose
the contrary: ∃θ−i ∈

Q
j 6=iΘj, ∃k ∈ K, ∃ε > 0, such that ∀δ > 0, ∃k ∈

Bδ(k) & bqi(k, θ−i) /∈ Bε(bqi(k, θ−i)). Then, choose any selection bq0i(k, θ−i) ∈bqi(k, θ−i), ∀k ∈ K, ∀θ−i ∈ Qj 6=iΘj and set any θ−i ∈
Q
j 6=iΘj; Now, take

any k ∈ K such that ∃θ0i ∈ Θi such that k = g(θ0i, θ−i) for some selection
g from K∗. Then, suppose that ∃k ∈ K such that ∃ε > 0 such that ∀δ >
0, ∃k(δ) ∈ Bδ(k) & bq0i(k, θ−i) /∈ Bε(bq0i(k, θ−i)).
First, since K∗ is individually quasi-decisive, we know that there exists

some selection g ∈ K∗ such that, for θ−i ∈
Q
j 6=iΘj , k, k(δ) ∈ K and ∀δ > 0,

These two conditions hold:
(i). ∀τ 0 > 0, ∃eθi ∈ Θi such that g(eθi, θ−i) ∈ Bτ 0(k).
(ii). ∀τ > 0, ∃θi ∈ Θi such that g(θi, θ−i) ∈ Bτ (k(δ)).
Moreover, by deÞnition of bθi(τ , k, θ−i), we know that:eθi ∈ Bτ 0(limτ 0→0bθi(τ 0, k, θ−i)) and θi ∈ Bτ (limτ→0bθi(τ , k(δ), θ−i)) so it

holds that ∀δ, τ , τ 0 > 0, ∃eθi, θi ∈ Θi such that g(eθi, θ−i) ∈ Bδ+τ+τ 0(g(θi, θ−i)).
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Furthermore, by continuity of the bounded compensation functions in
limτ→0 bθi(τ , k(δ), θ−i) and limτ 0→0bθi(τ 0, k, θ−i), it is true that ∀bε1,bε2 > 0,
∃bδ1(bε1),bδ2(bε2) > 0, such that
θi ∈ Bbδ1(bε1)(limτ→0bθi(τ , k(δ), θ−i)) and θ0i ∈ Bbδ2(bε2)(limτ 0→0bθi(τ 0, k, θ−i)),⇒

⇒ qi(θi, θ−i) ∈ Bbε1(qi(limτ→0 bθi(τ , k(δ), θ−i), θ−i)) and
qi(θ

0
i, θ−i) ∈ Bbε2(qi(limτ 0→0 bθi(τ 0, k, θ−i), θ−i)). Now, given any δ > 0, for

every bε1,bε2 > 0, we can take τ ≤ bδ1(bε1) and τ 0 ≤ bδ2(bε2) and there will existeθi, θi ∈ Θi with the above properties.
Finally, we can apply Lemma 75 for θ−i ∈

Q
j 6=iΘj , for bg = g and

for the above eθi, θi ∈ Θi to get: ∀φ > 0, ∃ρ > 0 such that g(θi, θ−i) ∈
Bρ(bg(θ0i, θ−i))⇒ qi(θi, θ−i) ∈ Bφ(qi(θ0i, θ−i)), whenever we choose δ,bε1,bε2 >
0 such that, for any given φ > 0, ρ(φ) ≥ δ + τ + τ 0. Then, by (i) and (ii),
it holds: ∃eθi, θi ∈ Θi such that g(θi, θ−i) ∈ Bρ(g(eθi, θ−i)), so ∀φ, δ,bε1,bε2 >
0, ∃eθi, θi ∈ Θi such that:
(1). qi(θi, θ−i) ∈ Bφ(qi(eθi, θ−i)),
(2). qi(θi, θ−i) ∈ Bbε1(qi(limτ→0 bθi(τ , k(δ), θ−i), θ−i)) and
(3). qi(eθi, θ−i) ∈ Bbε2(qi(limτ 0→0 bθi(τ 0, k, θ−i), θ−i)).
Now, choose φ,bε1,bε2 > 0 sufficiently small such that, for example, φ +bε1 + bε2 ≤ ε

4
, to observe that (1), (2) and (3) makes any ε > 0 such that

∀δ > 0, ∃k(δ) ∈ Bδ(k), bq0i(k, θ−i) /∈ Bε(bq0i(k, θ−i)) impossible, so we enter
into a contradiction and the function bq0i(k, θ−i) is continuous for all k ∈ K.
Now we will consider the same kind of composed function of Theorem 58 :bPi : K ×Qn

i=1Θi → E deÞned as: ∀k ∈ K, ∀θi ∈ Θi, ∀θ−i ∈
Q
j 6=iΘj,bPi(k, θi, θ−i) = Pi(vi(k, θi), bqi(k, θ−i)).We know now that, given any θ−i ∈Q

j 6=iΘj, this function is continuous in the whole K, since Θi are continuous
by hypothesis and we have proved yet that bqi are continuous functions. Hence
suppose, by contradiction, that the Theorem is not true: ∃i ∈ N, ∃θ−i ∈Q
j 6=iΘj, ∃θi ∈ Θi, ∃k ∈ K such that: bPi(g(θi, θ−i), θi, θ−i) < bPi(k, θi, θ−i)

for some selection g from K∗-note that in other case, bPi ∈ W (K∗)-, or in
other words, the following statements are true:
(i). ∃bε > 0 such that bPi(k, θi, θ−i)− bPi(g(θi, θ−i), θi, θ−i) = bε.
(ii). SinceK∗ is individually quasi-decisive, for k, θ−i and any τ > 0, there

exist a selection frombθi such that ∃k ∈ K such that k ∈ K∗(bθi(τ , k, θ−i), θ−i) ∈
K & k ∈ Bτ (k).
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(iii). Since given θi and θ−i, bPi is continuous in K, in particular for
k it is true that: ∀ε > 0, ∃δ(k, ε) > 0 3 k∈ Bδ(k) ⇒ Pi(k, θi, θ−i) ∈
Bε(Pi(k, θi, θ−i)).
First, using (iii), for k ∈ K, for bε > 0, ∃δ(k,bε) > 0 3 ek ∈ Bδ(k,bε)(k)

-by (b)- ⇒ bPi(ek, θi, θ−i) ∈ Bbε( bPi(k, θi, θ−i)). Now, let us set τ = δ(k,bε); by
(ii), for this τ there will exist eθi 3 ek ∈ K∗(eθi(δ(k,bε), k, θ−i), θ−i) ∈ K &ek ∈ Bδ(k,bε)(k). Finally, this last expression can be written as: for k ∈ K and
given θi and θ−i, ∃eθi(δ(k,bε), k, θ−i), ∃ek ∈ K∗(eθi, θ−i) ∈ K s.t.¯̄̄ bPi(k, θi, θ−i))− bPi(ek, θi, θ−i)¯̄̄ < bε and bPi(k, θi, θ−i))− bPi(g(θi, θ−i), θi, θ−i) =bε by deÞnition, so it has to be that for k ∈ K, θi ∈ Θi and θ−i ∈Qj 6=iΘj,

∃eθi(δ(k,bε), k, θ−i), ∃ek ∈ K∗(eθi, θ−i) ∈ K such that there exist the follow-
ing selection from K∗ :eg(θ) = ½ ek iff (θi, θ−i) = (eθi, θ−i)

g(θi, θ−i) otherwise
such thatbPi(eg(eθi, θ−i), θi, θ−i) > bPi(eg(θi, θ−i), θi, θ−i), which is the same that

Pi(vi(eg(eθi, θ−i), θi), qi(eθi, θi)) > Pi(vi(eg(θi, θ−i), θi), qi(θi, θ−i))
so the compensation mechanism fails to be incentive compatible for some i:
a contradiction.
⇐) The sufficiency condition is exactly the same that the one in Theorem

58.
Theorem 76 shows that our main result is robust even if we enlarge the set

of admissible social rules to individually quasi-decisive SCCs. The price to
pay is assuming the continuity of the compensation mechanisms, a property
that does not seem extremely restrictive when working with our complex set
of feasible alternatives. Nevertheless, we can say nothing about the set of
discontinuous mechanisms implementing individually quasi-decisive SCCs.
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5 DOMINANT STRATEGIES IMPLEMEN-
TATION OF THE CRITICAL PATH AL-
LOCATION IN THE PROJECT PLAN-
NING PROBLEM

5.1 Introduction

In this chapter we study the existence of dominant strategy mechanisms
in an incomplete information version of the Critical Path Method (CPM) or
Program Evaluation and Review Technique (PERT), a well-known solution to
a standard production network problem in the Operations Research literature
-see, for example, Bazawa and Jarvis [1], Derigs [2] and Deo and Pang [3] as
comprehensive introductions to the topic.
The PERT was Þrst developed and used, with great success, during the

late 1950s by the US Navy to control the progress of the construction of the
Polaris missiles, an extraordinary complex project carried out by different
production units. The CPM technique was found independently and applied
to virtually the same kind of problems, although the PERT was a little bit
more general since it allowed for some degree of uncertainty.
The simplest production network problem at which these techniques are

applied is very simple: A project consisting in a number of different ele-
mentary tasks has to be carried out. Each task constitutes a time-consuming
production activity -abstracting from any other economic resource employed-
necessary for the completion of the project. Tasks cannot generally be allo-
cated arbitrarily, since a particular task may need some others to be Þnished
before it starts, and maybe some of its preceding tasks are also preceded
by others, and this network structure is what generates the complexity of
the problem. Of course, for the problem to make sense some technological
restrictions must be introduced: cycles and loops of precedence are techno-
logically unfeasible. The CPM and the PERT are equivalent methods to
analyze the sequences of tasks such that the total amount of time needed
to Þnish all the tasks is minimized18. A critical path is a sequence of tasks

18There is an underlying assumption that the total cost of the completion of the project
to the planner or principal is increasing in the total amount of time needed.
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that are undertaken one after the other and such that the completion of the
sequence requires exactly the minimum amount of time needed to terminate
all tasks. The CPM and the PERT deÞne algorithms to identify the critical
paths and those tasks with some roominess -the tasks outside the critical
paths that can therefore be allocated at different starting times without af-
fecting the total (minimum) duration of the project-. It can be proven that
the whole allocation problem can be transformed into a linear programming
one and the operations research analysis is essentially one of computability.
The CPM and the PERT also assume that the planner knows all relevant
data about the technologies: tasks, time needed by each one and which are
the immediate preceding tasks of each. The PERT admits some uncertainty
about the duration of each task, but the probability distribution is always
known to the planner.
This paper explores the same task allocation problem but assumes that

each task is carried out by an economic agent19; as in many production prob-
lems, the agent responsible for each task can be a worker, supervisor, Þrm or
the people in charge of a sub-project or division within a Þrm, but the key
assumption is that she is better informed about the technological character-
istics of her particular task than the planner herself. In the limit, we assume
that the planner has to rely on the information reported by the agents in
each task to allocate the times and sequence of the tasks and the rest of
the agents do not need to know anything about a different task but their
own. The agents are rational and will exploit their informational advantage
if given the opportunity. Nevertheless, the planner is not completely unin-
formed: if some agents lie about the duration or precedence of their tasks
and they are allocated in an unfeasible way, they will be caught and pun-
ished hard enough to discourage any agent to lie in a potentially detectable
way. Notice, however, that there is still room enough for safe lies: reporting
longer duration times and declaring as preceding tasks more tasks that those
really needed are always undetectable when the planner is allocating tasks
by using the CPM or the PERT methods, and they are actually the only
lies that we will allow in this paper. We also assume that the agents, if not
compensated in other way, are interested in delaying the completion of their
own task as much as possible. This is justiÞed because each hour employed

19If the tasks are undertaken by machines or automata alone, the original task-machine
allocation problem still applies, but it seems unlikely that no worker (but the planner
herself) is involved in any task in real life problems.
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in carrying out the task requires a costly effort to be made by the agent and
agents prefer the same disutility to take place later than sooner. There is,
therefore, a fundamental conßict of interests between the planner or prin-
cipal -who is using the PERT with the information reported by the agents
and who tries to minimize the total cost of the project- and her agents, who
would prefer the project to be delayed forever. A simplifying and important
assumption we impose is that disutility of effort is known and the same for
everybody and is normalized to unity, but we still allow for differences in
the agents� relative impatience -their time discounts-. Of course, planning
the production network and the starting-Þnishing time of each task is not
the only way the planner has to inßuence the behavior of the agents. We
assume that the planner can design a transfer scheme depending on the re-
ported technologies that speciÞes the monetary payments that each agent
receives or has to pay -taxes- to the planner20. This rule is known by the
agents, who have committed to work in the project and cannot quit if they
think that they will not receive enough money and money enters additively
on the agents� payoffs. Our main aim is to analyze the possibility of design-
ing anonymous, strategy-proof transfer schemes, i.e., a payoff structure such
that no agent has an incentive to lie about her technology regardless of what
other agents report to the planner and whatever her own technology is. We
then examine two additional constraints imposed on the payments structure:
Þrst, we study the possibility of designing individually rational payments and
then we assume that the planner has agreed -or is payed- a total price for
the completion of the project, which is given in the problem and constitutes
a budget constraint for her. This budget has to be completely shared by the
agents, so that we are imposing a balance condition.
The chapter proceeds as follows: In Section 2 the formal model is intro-

duced and the deÞnitions properly stated. Section 3 deals with the results
and we conclude with some comments.

5.2 The model

Let N be a potential Þnite set of productive agents and N = {1, ..., n} ⊆ N
be a subset of agents indexed by i, j, k, l, z ∈ N. The total number of agents
in set N is n ≥ 2. Each agent has to perform a task for the completion of

20We assume that the transfers are implemented before the task allocation starts. There-
fore, in period �0� the agents report their technologies and the transfers are made.
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a project. We do not allow in this model for multi-task agents to simplify
the problem and we are not concerned with the matching allocation problem
between agents and tasks. Hence, we assume that each agent either is the
only -or the best- agent capable to perform a particular task or that the
matching or allocation of tasks to agents took place in an earlier stage and is
given. Therefore, there is no reason to deÞne a separate set of tasks and we
identify the set of tasks with the set of agents N . Each task -or alternatively
from now on, each agent- is characterized by its belonging to a network
such that a given task cannot be undertaken before some other tasks are
Þnished. Moreover, carrying out each task is a time-consuming process and
some work effort -or maybe some cost of capital- has to be invested in order
to be successfully completed. Given any task i ∈ N, we denote as Pi ∈ 2N
the set of preceding tasks of task i. For the problem to make sense, we
need to impose some minimal structure to the admissible sets of preceding
tasks for all tasks. In particular, the following constraints should hold in any
well-deÞned problem: we say that a project is technologically feasible if the
following conditions hold:
(i). Temporal irreßexivity: ∀i ∈ N, i /∈ Pi.
(ii). Temporal asymmetry: ∀i, j ∈ N, i 6= j, i ∈ Pj −→ j /∈ Pi.
(iii). Temporal transitivity: ∀i, j, k ∈ N, i 6= j 6= k, i ∈ Pj & j ∈ Pk −→

k /∈ Pi.
Condition (i) establish that no task is ever preceded by itself. Condition

(ii) prevents two different tasks to precede each other and (iii) rules out cycles
of precedence. Given the linear structure of time, the meaning of the above
properties become obvious.
Furthermore, the technology requires the use of costly time for undertak-

ing each task. For simplicity, we assume time to be discrete -measured in
any relevant unit-. Henceforth, time intervals might be hours, minutes or
days, but let us call them hours-. Let E be the real line and Z+ be the set
of non-negative integers -time structure considering that 0 stands for now-
and Z++ be the set of positive integers. Ti ∈ Z++ is the minimum number
of hours that task i needs to be terminated, given the optimal use of the
resources available and given that preceding tasks -and preceding tasks of
its preceding tasks and so on- have been done before. We assume that each
hour employed by the agent to the completion of his task entails a disutility
of effort -or some depreciation of the use of capital-. Moreover, agents dis-
count future effort with respect to effort now at time 0 -when the allocation
has to be decided-, but they will not have any cost until their own task has
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to be performed. For instance, if agent i´s task lasts -efficiently done- Ti
hours and it is allocated to start at time t0i ∈ Z+, the disutility of the agent
performing the task is -measured in some monetary unit- −Pt=t0i+Ti−1

t=t0i
βti

, where the time discount applied by each agent (βi, with 0 < βi < 1) is
a function of the intrinsic difficulty of the task and of the laziness of the
workers, which is part of their private information.21We further assume that
disutility of effort done in period 0 (now) of any agent is known to the plan-
ner and equal to 122. We call a project planning economy to a tuple of the
form: e = hN,Pi, Ti,βi ∀ii = {N, e1, ..., ei, ..., en} , provided that the project
is technologically feasible23. Let PPE be the set of all project planning
economies. Given an economy e ∈ PPE, a feasible allocation -or simply, an
allocation-, denoted by x, y, z ∈ Z2(#N)+ is a vector that assigns a pair of times
to each task or agent, x = (t01, t

1
1, t

0
2, t

1
2, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) with the following

properties:
(a). ∃i ∈ N such that t0i = 0.
(b). ∀i ∈ N, t1i − t0i ≥ Ti.
(c). ∀i, j ∈ N, i ∈ Pj −→ t0j ≥ t1i .
An allocation establishes a technologically feasible plan for the tasks to

be carried out on time: t0i stands for the planned starting time of task i
and t1i denotes the date after the termination date of task i. (a) means that
some task should be initiated in period 0 (when the allocation is decided),
(b) establish that no task should be allocated a working time smaller than
the minimum time required to be done and (c) requires that no task can be
started before all its preceding tasks have been completed. Let FA(e) be
the set of feasible allocations for economy e. Given an economy e ∈ PPE, a
critical path allocation (CPA) is an allocation x = (t01, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) ∈

FA(e) such that maxi∈N t
1
i ≤ maxi∈N t1i ∀x = (t01, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) ∈

21Note that the discount used by task i, βi may also be interpreted as the cost -
depreciation, funding cost,...- of the capital used in that task.
22This is partly a simplifying assumption. For our results to hold it is needed that the

planner either know the (possibly different) agents� disutility of effort or at least know
that there is some common upper bound on every agent disutility of effort, which does not
seem to be an unreasonable assumption. In that case, the mechanism we propose should
be properly re-scaled.
23Our deÞnition of an economy includes the set of agents, that is allowed to vary within

the range of admissible economies. Mechanisms that work for some set of PPE have to
take into account that the number of agents could be different. The identity of agents and
tasks makes the problems consistent.
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FA(e), i.e., an allocation such that the period of time until the last task
is Þnished is as small as possible within all the feasible allocations. Let us
denote by CPA(e) the set of CPAs for an economy e. An efficient CPA
or CPA+(e) is a critical path allocation such that no agent can be better
off in any other critical path, i.e., x = (t01, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) ∈ CPA(e) is

efficient24 iff −Pt=t
1
i−1

t=t
1
i−Ti

βti ≥ −
Pt=t1i−1

t=t1i−Ti β
t
i ∀ x = (t01, t11, ..., t0i , t1i , ..., t0n, t1n) ∈

CPA(e). Notice that under our assumptions, CPA+(e) is a singleton for each
economy.
There are several ways to Þnd the efficient CPA for a given economy.

The optimization problem can be formulated as one of linear programming
or different algorithms can be applied to reach the solution. In what follows,
we will use the following strings CPA+ algorithm: given any economy e, the
set of CPA+(e) comes from following the steps:
Step 1 : Take tasks 1 to n. Assign the negative integers z0i and z

1
i ∈ Z−:

z1i = 0, z
0
i = −Ti.

Step 2 : Take task i = 1, ...n successively. In each sub-step i, do: ∀j ∈ Pi,
redeÞne z1j = z

0
i and z

0
j = z

1
j − Ti.

Step 3 : Repeat Step 2 until no new change emerges.
Step 4 : ∀i ∈ N, redeÞne t0i = z0i + mini∈N z

0
i and t

1
i = z1i + mini∈N z

0
i .

x = (t
0
1, t

1
1, ..., t

0
i , t

1
i , ..., t

0
n, t

1
n) = CPA

+(e).
REPEAT STEPS 1 TO 4 UNTIL NO FURTHER CHANGE OCCURS.
STOP.
Given any economy e ∈ PPE, we will be interested in those tasks that are

critical. We call a critical string associated to the CPA(e) to a sequence of
subsets of tasks

©
S1(e), S2(e), ..., Sk(e)

ª
, with Sh(e) ⊆ N and Sh(e)∩Sl(e) =

∅ ∀h, l that can be found with the following algorithm using the CPA+(e)
allocation:
Step 1 : Take any i ∈ N such that t0i = 0. i belongs to the Þrst set of

tasks in the sequence: i ∈ S1.
Step 2: Take any j ∈ N such that t0j = t

1
i for any i ∈ S1 and i ∈ Pj . j

belongs to the second: j ∈ S2.
....
Step k : Take any i ∈ N such that t0i = t

1
j for any j ∈ Sk−1 and j ∈

Pi. i belongs to the kth set (we assume that there are k(e) ∈ {1, ..., n}
24We assume that every task is efficiently performed and whenever more time than

needed is provided in the allocation, only the last Ti hours will be used, and hence achieving
the smaller possible disutility.
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subsets). Let us call S(e) the union of the tasks belonging to any critical
string associated to the CPA+(e), i.e., S(e) =

Sk
h=1 S

h(e).
Notice that under our assumptions both algorithms work in selecting the

unique CPA+(e) and the critical strings that deÞne the minimum period of
time needed for all the tasks -the project- to be Þnished. Moreover, since it
always hold that ∀e ∈ PPE, ∀h ∈ {1, ..., k(e)} ,∀i, j ∈ Sh(e), Ti = Tj, we
denote by TSh = Ti = Tj to the generic duration of every task in Sh (omitting
the reference to a given e for simplicity). In what follows, we focus on imple-
menting the CPA+(e). This is justiÞed because that selection is the only one
that maximizes the total welfare of the agents subject to the planner achiev-
ing her total time-minimising objective -assuming that the planner receives
a payoff strictly increasing in the total duration of the project-. Moreover,
other selections from the CPA(e) like that which allocates tasks not belong-
ing to the critical path to start as early as possible are even more difficult
to implement because that rules defy more directly the agents� incentives by
imposing an inefficient cost on them -starting early-.
A Project Planning function (PPF ) is a function that assigns a feasible

alternative to every admissible economy, i.e., ϕ : PPE −→ FA(e). We say
that a PPF is a critical path PPF if and only if ∀e ∈ PPE, ϕ(e) ∈ CPA(e).
An efficient critical path PPF is a PPF such that ∀e ∈ PPE, ϕ(e) =
CPA+(e). Given an economy e ∈ PPE and a PPF ϕ, ∀i ∈ N, ϕ0i (e) will
denote the component function relative to the starting time of agent i0s task
and ϕ1i (e) denotes the component function giving the allocation of the end
of agent i�s task.
The overall interest of the organization is modeled as the objectives of

the planner or principal. We are assuming all along the paper, following
the traditional PERT literature, that the cost of the project to the princi-
pal is proportional to the maximum amount of time spent for its comple-
tion. Let us assume that the planner wants to minimize the length of the
project by selecting always CPA allocations. If the planner is perfectly in-
formed about the relevant economy e, it should not be difficult for him to
apply the PERT techniques or the linear programming version of them to
Þnd the CPA allocations. But we are not concerned in this paper about
how to Þnd this allocations, but about the possibility for the planner to
achieve those outcomes when she is not informed about the technologies. We
assume that each agent is better informed about the characteristics of his
own task than the planner -or even any other agent-, so both the minimum
duration of the task, Ti, the set of preceding tasks, Pi, and the time dis-
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count βi are agent i´s private information (ei = (Ti, Pi, βi)). The planner
can only decide the Þnal allocation based on the reported technologies, de-
noted as bei = (bTi, bPi, bβi) of each agent. Therefore, the planner is interested
in designing a direct revelation mechanism25 such that the agents will have
no incentive to lie about their true technologies. However, the planner still
knows some information about the relevant set of agents or tasks involved
in the project, N , and the consistency of the whole project -e ∈ PPE-.
Hence, we will assume that, given an economy e, the Þnal allocation given
the agents� reported technologies has to be technologically feasible, i.e., the
planner can always Þnd a lie if when the project is not technologically feasi-
ble, some task cannot be undertaken by an agent given his reported bei. We
assume that any detected lie can be heavily punished in such a way that
no agent is ever interested in reporting a set bPi ⊂ Pi.

26Using an identical
reasoning, no agent can ever use a lie such that bTi < Ti.

27 Notice that the
agents can still lie by using bPi ⊃ Pi and bTi > Ti -trying to delay the comple-
tion of the project in order to avoid early costs- if they are not given other
additional incentives. We allow for monetary transfers to the agents based
on the agents� reported technologies, but we assume that the total amount
to be transferred to the agents is a Þxed quantity -the price of the project-.
Now, we deÞne the concept of an incentive compatible mechanism in this
setting. Given two economies e = hN,Pi, Ti, βi ∀ii = {N, e1, ..., ei, ..., en}
and e0 = hN,P 0i , T 0i , β 0i ∀ii = {N, e01, ..., e0i, ..., e0n} , we write e0i ⊂ ei when-
ever P 0i ⊆ Pi and T 0i ⊆ Ti and e0 ⊂ e when e0i ⊂ ei ∀i ∈ N. We shall
also make use of the following well-known notation to avoid large expres-
sions: e = (N, e) = (N, eS, e−S), ∀S ⊆ N, and in particular, for S = {i},
e = (N, ei, e−i). 28

DeÞnition 77 A mechanism M is a set of transfer functions {wi ∀i ∈ N}
of the kind wi : PPE −→ E for every set of agents N ⊆ N.
Notice that the above deÞnition entails that mechanisms are direct: the

only information used by the planner to allocate transfers are the agents�

25A direct revelation mechanism asks the agents about their types.
26Notice that actually any agent that reports a narrower set of preceding tasks, either

leads to her detection or cannot change the allocation, so it is not individually rational to
do so and we can therefore eliminate all those irrelevant strategies.
27Basically, we are assuming that the planner can monitor when the agents start their

tasks and when they Þnish.
28This deÞnitions hold irrespective of βi ∀i ∈ N .
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revealed technologies -their types-.

DeÞnition 78 A mechanism M = {wi ∀i ∈ N} implements an efficient
critical path PPF ϕ if the following holds:
∀e ∈ PPE, ∀i ∈ N, ∀e0i ⊃ ei,

wi(e)−
Xt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti ≥ wi(N, e0i, e−i)−

Xt=ϕ1i (N,e
0
i,e−i)−1

t=ϕ1i (N,e
0
i,e−i)−Ti

βti

We also say that these mechanisms are strategy-proof.

A mechanism implements the efficient critical path PPF iff any agent, by
reporting a different technology cannot improve her net payoff -the transfer
received minus the disutility of effort-, and this whatever her true technol-
ogy is and regardless the others� reported technologies. Therefore, we are
interested in a strong incentive compatibility property.

DeÞnition 79 Given any positive number C > 0, a mechanism
MC = {wi ∀i ∈ N} is balanced if ∀e ∈ PPE,

Pn
i=1wi(e) = C.

This property imposes that the transfer or reward scheme designed by
the planner has to be balanced -the whole budget coming from the project
should be distributed among the agents that are involved in it-.

DeÞnition 80 A balanced mechanism MC = {wi ∀i ∈ N} is invariant to
the project size if ∀e = (N,Pi, Ti, βi) ∈ PPE, ∀λ > 0, if e0 = (N,Pi,λTi,βi),
MλC = {wi(e0) ∀i ∈ N} = {λwi(e) ∀i ∈ N} .
A balanced mechanism is invariant to the project size if the transfers are

proportionally affected by a proportional re-scaling of the project; for exam-
ple, doubling the tasks minimum durations joint with the project value C
should double every agent transfers. This property may be desirable because
it introduces some fairness criterion to the sharing rule when the project is
re-scaled: the agent�s relative payoffs do not change when we measure the
resource �time� in hours, minutes, days or months.

DeÞnition 81 Given any reservation utility U ∈ Z, a mechanism M =
{wi ∀i ∈ N} implementing PPF ϕ is individually rational if
∀e ∈ PPE, ∀i ∈ N,

wi(e)−
Xt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti ≥ U
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Individual rationality requires the payoffs to be designed such that for
every economy no agent gets a too small payoff that might lead the agent
to leave the project is possible. An implicit simplifying assumption is that a
net utility of U constitutes the common agents� reservation utility threshold
for project acceptance.

DeÞnition 82 Given a PPF ϕ, a mechanism M = {wi} is innovation-
monotonic if the following holds:
∀e ∈ PPE, ∀i ∈ N, ∀e0i ⊃ ei,

wi(e)−
Xt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti ≥ wi(N, e0i, e−i)−

Xt=ϕ1i (N,e
0
i,e−i)−1

t=ϕ1i (N,e
0
i,e−i)−T 0i

βti

A mechanism is innovation-monotonic iff an innovation that makes any
agent more efficient cannot make him be worse off. Notice that every mecha-
nism that implements the critical path PPF has to be innovation monotonic
given the efficient critical path PPF . This property constitutes an additional
justiÞcation for both implementing the efficient critical path PPF and using
strategy-proof mechanisms.

DeÞnition 83 A PPF ϕ is anonymous if for all N ⊆ N, e ∈ PPE and
any permutation σ(N) of the agents, the following holds: ϕki (N, ei, e−i) =
ϕkσ(i)(N, eσ(i), e−σ(i)), for k = {0, 1} and for all i ∈ N.

This requirement is an obvious fairness property that excludes PPFs that
take into account the agents� names and not only their technology. Notice
that the efficient critical path PPF are anonymous.

DeÞnition 84 A mechanism M = {wi} is anonymous if for all N ⊆ N,
e ∈ PPE and any permutation σ(N) of the agents, the following holds:
wi(N, ei, e−i) = wσ(i)(N, eσ(i), e−σ(i)) for all i ∈ N.

Again, anonymity establish that the information about the agents� names
is not used to allocate the transfers.
Now, we will proceed with the main results in the paper.
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5.3 Results

Our Þrst possibility result proves the existence of anonymous and balanced
mechanisms implementing the efficient critical path PPF. To prove the the-
orem, we still need some deÞnitions.
Let us call a string associated to agent i ∈ N and economy be ∈ PPE,

denoted as Ri(be), to the set of agents obtained with the following algorithm:
Step 1: take a single j ∈ bPi. j ∈ Ri(be). If there is no such an agent,

Ri(be) = ∅ and the process stops.
Step 2: take a single k ∈ bPj . k ∈ Ri(be). If there is no such an agent, the

process stops.
Step 3: take any h ∈ Pk. h ∈ Ri(be). If there is no such an agent, the

process stops.
........
Eventually, since N is Þnite and technologies are feasible, the algorithm

stops and it is clear that any stringRi(be) ⊆ N\ {i} .Now, take the union of all
the strings associated to agent i ∈ N and declared technology be ∈ PPE, i.e.,
the set of agents with tasks that should necessarily precede i. Let us denote
as ri(be) the total number of agents belonging to any string associated to agent
i ∈ N and technology be ∈ PPE, i.e., ri(be) = #SRi(be) ∀i ∈ N, ∀be ∈ PPE.
Notice that ri(be) = 0 if and only if bPi = ∅. Let us call terminal agents to
the set of agents such that have not declared to have any preceding task and
let us denote them as S(be), i.e., ∀be ∈ PPE, S(be) = ni ∈ N s.t. bPi = ∅o, or
identically, S(be) = {i ∈ N s.t. ri(be) = 0} . Notice also that there exist always
at least one terminal agent for every feasible technology. Now, we state our
main result in this chapter:

Theorem 85 There exist anonymous, balanced and invariant to the project
size mechanisms implementing the efficient critical path PPF.

Proof. Let us consider the following mechanism: ∀be ∈ PPE, ∀N ∈
N, ∀i ∈ N, wi(N, be1, ..., ben) = C

n
+
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

−(ri(be) + 1)bTi if i /∈ S(be) and #S(be) > 1P
j /∈S(be)(rj(be) + 1)bTj

#S(be) − bTi + Pj∈S(be)/{i} bTj
#S(be)− 1 if i ∈ S(be) and #S(be) > 1

−(ri(be) + 1)bTi + Pj∈S(be) bTj
n− 1 if i /∈ S(be) and #S(be) = 1P

j /∈S(be)(rj(be) + 1)bTj − bTi if i ∈ S(be) and #S(be) = 1
In words, starting from an equal sharing of C, this mechanism tax every

agent that has declared to have at least one preceding task to pay her own
declared duration ri(be) + 1 times. The agents that have declared not to have
any preceding task share equally the total tax paid by the formers, pay a
quantity equal to their total declared duration time and receive a positive
transfer equal to the total tax paid by her partners in S(be) divided by#S(be)−
1. If just one terminal agent exist, her bTi tax is distributed evenly among the
non-terminal agents.
It is easy to check that this is an anonymous mechanism: any permutation

of the names of the agents only permute their payoffs and no information
about the agents� names is used in the mechanism. It is also an invariant to
the project size mechanism, since every agent transfer in every circumstance
is proportional to both any project size C and the reported duration of the
agents. Moreover, it is always balanced: for any reported be ∈ PPE, adding
up the agents� transfers yields:

Xn

i=1
wi(N, be1, ..., ben) =

=
X

i/∈S(be)
·
C

n
− (ri(be) + 1)bTi¸+

+
X

i∈S(be)
"
C

n
+

P
j /∈S(be)(rj(be) + 1)bTj

#S(be) − bTi + Pj∈S(be)/{i} bTj
#S(be)− 1

#
= C if there

are at least two terminal agents andXn

i=1
wi(N, be1, ..., ben) =X

i/∈S(be)
"
C

n
− (ri(be) + 1)bTi + bTk

n− 1

#
+

+

·
C

n
+
P

j /∈S(be)(rj(be) + 1)bTj − bTk¸ = C if just one agent -k- is terminal.

To prove that it implements the efficient critical path PPF, we will compare
the payoff each agent obtains by both reporting the truth and lying for any
possible be−i.
Case 1: i /∈ S(ei, be−i). We have to distinguish two cases:
Case 1.1.: #S(ei, be−i) > 1.
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In this case, reporting a technologically feasible task duration longer
than the true one Ti, say bTi > Ti will not affect her classiÞcation as i /∈
S(bei, be−i), since bPi = Pi 6= ∅ and ri(ei, be−i) = ri(be). Hence, agent i ∈ N,
by reporting the truth Ti, would obtain the following payoff: wi(N, eibe−i)−Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,eibe−i)−Ti βti =
C

n
− (ri(be) + 1)bTi −Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,ei,be−i)−Ti βti
By declaring bTi = Ti + 1, agent i is enlarging the critical path in 1 hour

and, given its true βi, can save
Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,ei,be−i)−Ti
¡
βti − βt+1i

¢
= β

ϕ1i (N,eibe−i)−Ti
i −

β
ϕ1i (N,eibe−i)
i > 0 (1) monetary units. The cost of obtaining that ben-
eÞt is 1 monetary unit, but notice that the beneÞt can never outweight
its cost. Now, notice that by declaring bTi = Ti + 2, the beneÞt will bePt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,ei,be−i)−Ti
¡
βti − βt+2i

¢
=
Pt=ϕ1i (N,eibe−i)−1

t=ϕ1i (N,ei,be−i)−Ti
¡
βti − βt+1i

¢
+

+
Pt=ϕ1i (N,eibe−i)

t=ϕ1i (N,ei,be−i)−Ti+1
¡
βti − βt+1i

¢
< 2, which is the cost of declaring the

task to be 2 hours longer, and so on, so ∀bTi > Ti, agent i -actually, any agent-
can never Þnd that lying is more proÞtable than saying the truth.
By reporting a technologically feasible preceding tasks set bPi ⊃ Pi, agent

i ∈ N cannot change neither her non-terminal category nor the fact that
S(bei, be−i) > 1, so it holds that ∀ bPi ⊃ Pi, i /∈ S(ei, be−i) ⇒ i /∈ S(bei, be−i)
and she can get a beneÞt of at most a delay of

P
j∈ bPi bTj −Pj∈Pi

bTj ≥ 0. By
reporting bPi = Pi∪ {k} , for any k ∈ N\ {i} , agent i ∈ N cannot in any case
get a direct beneÞt as large as bTi -see the argument above-, and this only in
the case of being part of the critical path after the lie -and maybe before the
lie-, in which case ri(be) ≥ ri(ei, be−i)+1. Notice that both arguments are valid
for possible lies that mix both declaring longer duration time and a larger
preceding tasks set.
Finally, revealed bβi�s do not enter into the deÞnition of the mechanism, so

there is no point in lying about it. Notice, however, that no mechanism im-
plementing the efficient CPA can make non-trivial use of information about
the revealed β�s.
Case 1.2.: #S(ei, be−i) = 1. In this case, no lie of any form: bTi > Ti

or bPi ⊃ Pi can change the facts of i /∈ S(bei, be−i) and #S(bei, be−i) = 1, so

a transfer of the form: wi(N, be1, ..., ben) = C

n
− (ri(be) + 1)bTi + P

j∈S(be) bTj
n− 1

is unavoidable. The third term is independent of the reported lie, so an
identical reasoning to that of Case 1.1. applies to this case and there are no
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incentives to lie.
Case 2: i ∈ S(ei, be−i).
In this case, if agent i is terminal for that technology, any lie consisting

in declaring a larger duration bTi > Ti cannot neither change her terminal
status nor alter the set S(ei, be−i) = S(bei, be−i), but can at most delay the
project at most τ = bTi−Ti hours. The beneÞt for one hour delay is given by
(1) and the same reasoning ensures that no such lie can ever yield a direct
beneÞt of min {τ , Ti} monetary units. In both cases of #S(ei, be−i) > 1 or
{i} = S(ei, be−i), since both rj(be) and bTj for all j ∈ N\ {i} cannot change
with any technologically admissible lie, the cost of the lie is exactly bTi > Ti
monetary units -see the payoff function-, which is always bigger than the
cost.
If agent i ∈ N declares to have some preceding tasks, she will always

change her own terminal status to non-terminal, so ∀ bPi ⊃ Pi = ∅, i ∈
S(ei, be−i)⇒ i /∈ S(bei, be−i). There are again two possibilities here:
Case 2.1.: {i} = S(ei, be−i).
If S(ei, be−i) is a singleton -i.e., i is the only terminal agent for ei andbe−i-, there is no technologically feasible lie available to agent i by declaring

a non-empty bPi, since for any k ∈ N such that k ∈ bPi, there will necessarily
be a sequence of tasks j, l, z ∈ N such that j ∈ bPk, l ∈ bPj , ... z ∈ bPi and we
get a cycle, so there is no possibility in this case of getting the non-terminal
agents payoff.
Case 2.2.: #S(ei, be−i) > 1. In this case, agent i may get a non-terminal

agent status by declaring bPi 6= ∅ and bPi ⊆ S(ei, be−i)\ {i} . There are two
possibilities now:
Case 2.2.1.: #S(bei, be−i) > 1. In this case, observe that for every possiblebe ∈ PPE, the total payoff of any terminal agent is always bigger than that

of any non-terminal agent, i.e., the following holds:
C

n
+

P
j /∈S(be)(rj(be) + 1)bTj

#S(be) − bTi +Pj∈S(be)/{i} bTj
#S(be)− 1 >

C

n
− (ri(be) + 1)bTi. (2).

Notice that, although the Þrst term is cancelled in both sides, since ri(be) ≥ 1
for any non-terminal agent, the second term is always at least bTi monetary
units bigger on the right than on the left -in absolute terms-, while the third
term on the left is always positive, so by lying declaring a non-empty bPi,
the cost in terms of the transfer is always bigger than ri(be)bTi. On the other
hand, the direct beneÞt of getting a delay of at most

P
j∈ bPi bTj -the maxi-
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mum possible for some be−i- is again always bounded by minnPj∈ bPi bTj, Tio
monetary units, and the loss in terms of the transfer will be -as was argued
above- bigger than ri(be)bTi, so since ri(be)bTi > minnPj∈ bPi bTj , Tio for bTi > Ti,
true terminal agent i has no incentive to declare to be non-terminal.
Case 2.2.2.: #S(bei, be−i) = 1. In this case, agent i lies in the following

way: there are other terminal agent initially and by reporting this agent
to precede herself makes this agent the only terminal agent after the lie.
Henceforth, agent i changes status from terminal to non-terminal and gets
an additional bonus by getting a share of the terminal agent tax -see Figure
1 below-. Agent i will not have an incentive to lie if, for every be ∈ PPE and
ei, the transfer obtained by reporting her true technology -left hand side of
inequality (3) below- exceeds the transfer obtained by lying plus the maxi-
mum possible direct gain from lying, i.e., Ti -in brackets below- as we have
seen above, so if the new terminal agent is k ∈ N, i ∈ N will not lie if:

C

n
+

P
j /∈S(be)(rj(be) + 1)bTj

2
− bTi + bTk ≥ C

n
− (ri(be) + 1)bTi + bTk

n− 1 + [Ti] .
(3).
If n = 2, expression (3) is true when −bTi+ bTk ≥ −2bTi+ bTk+Ti ⇒ bTi ≥ Ti,

which is always true by assumption. If n > 2, for any be ∈ PPE, the left
hand side of (3) becomes bigger as the second term is positive and the right
hand side becomes smaller as the second term can only amount to either
−2bTi or less -until reaching a minimum of −(n− 1)bTi-. Moreover, the third
term on the right hand side becomes always smaller as the number of agents
increase. Obviously, expression (3) holds for every possible economy and lie
compatible with the case.
Since we have checked that in every possible economy no lie can be ever

proÞtable, the mechanism is strategy-proof and the proof is complete.

Given the above possibility result, the next obvious step is to reÞne the
set of desirable mechanisms by imposing additional properties and test the
robustness of the above result to the introduction of other desirable prop-
erties in this context. We opt for individual rationality since it is likely to
be important in real-life situations. Our next result proves the impossibil-
ity of designing anonymous, balanced and individually rational mechanism
implementing the efficient critical path PPF.

Theorem 86 There does not exist anonymous, balanced and individually
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Figure 1:

rational mechanisms implementing the efficient critical path PPF for any C
and U .

Proof. Let us Þx any reservation utility threshold U ∈ Z and any project
size C > 0. Let us call g(x) ∈ Z ∀x ∈ E to the function that assigns the
minimum integer between the two closest integers to any real number -the
smallest integer between the two closest-. We assume that a mechanism
is balanced, anonymous and strategy-proof and will prove that no such a
mechanism can ever be individually rational as well. Now, we consider two
cases:

Case 1:
C

2
< U + 1. In this case, consider the following admissible

economy (N, e): N = {1, 2} , Pi = ∅, and Ti = 1 ∀i = 1, 2, regardless of the
agents� β�s. By anonymity and balance, wi(N, e) =

C

2
, so the total payoff

each agent receive is
C

2
− 1, which is strictly smaller than U by assumption,

so individual rationality is violated in this case.

Case 2:
C

2
> U + 1. We have to prove that within that range of the

parameters C and U, we can Þnd an economy such that individual rationality
is violated, provided that we work within anonymous, balanced and strategy-
proof mechanisms. Let us consider the following economy (N, e) : N =
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{1, 2} , Pi = ∅, Ti = g(C−2U) and βi sufficiently close to 1 ∀i = 1, 2. Notice
that since

C

2
> U + 1 within the assumption, Ti ≥ 2 and is an admissible

integer duration, so e ∈ PPE. Now, let us consider any economy (N, e0)
such that the only change with respect to e ∈ PPE is T 01 being very large
-tending to inÞnity-. This economy is also feasible. Observe now that agent
1 in the true economy e will lie and declare T 01 if the total payoff obtained
by agent 1 after the transfer is made in e0 ∈ PPE is greater than her total
payoff in economy e, and since we assume the mechanism to be strategy-
proof, we have to impose the following condition to hold: wi(N, e0i, e−i) −Pt=ϕ1i (N,e

0
i,e−i)−1

t=ϕ1i (N,e
0
i,e−i)−Ti

βti ≤ wi(e)−
Pt=ϕ1i (e)−1

t=ϕ1i (e)−Ti
βti. Note that since β1 is sufficiently

close to 1 and T1 <∞ but still T 01 is inÞnitely longer than T1 by construction,
the expression above can be written as follows for some appropriate selection
of both T 01 and β1 :

w1(N, T
0
1, ∅, e2)− ε1 ≤

C

2
− T1 − ε2

for some ε1, ε2 > 0 but as close to 0 as desired, so there exist admissible
economies such that strategy-proofness, anonymity and balance require some

w1(N, T
0
1, ∅, e2)− ε1 to be smaller than

C

2
− T1. Substituting T1, we obtain:

w1(N, T
0
1, ∅, e2)− ε1 ≤

C

2
− g(C − 2U) < C

2
− (C − 2U). Finally, notice that

the right hand side of the last inequality can be written as
·
U − C

2

¸
+ U,

which is always smaller than U − 1 under our assumptions, so the following
holds: w1(N, T 01, ∅, e2)− ε1 < U. But notice that w1(N, T 01, ∅, e2) still applies
if the true economy was e0, in which case the direct cost of undertake the
true task T 01 on the left hand side of the last inequality will be much larger
than the negligible ε1, so for that true economy the net agent 1�s payoff will
be much smaller than U, so no mechanism can be individually rational for
any U and any C > 0.

5.4 Concluding Remarks

In this chapter we have explored the possibility of designing strong incentive
compatible mechanisms in a particular production setup: the well-known
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network production problem, and to the solutions deÞned by methods like
the CPM and the PERT when transfers to the agents are possible. Although
the problem is quite similar to other environments like the public goods prob-
lem, the opportunities for exploiting the asymmetry on the distribution of
the private information is very different in this context, and it is not sur-
prising that we get different results of those of Groves and Clarke -see, for
example, Groves [4] and Groves [5]- in the public goods problem. Assum-
ing that the agents� payoffs are quasi-linear on the part of the transfers,
we Þnd simple strategy-proof, anonymous and invariant to the project size
mechanisms implementing the PERT that are balanced as well, so complete
efficiency is achieved provided that we include the planner in the deÞnition
of Pareto-optimality. Furthermore, if we add other plausible mechanism fea-
sibility property like individually rational payoffs, we obtain an impossibility
result. The possible ways-out in this case include imposing constraints on
the domain of possible economies or relaxing the equilibrium concept used,
although perhaps the most promising approach to escape from the impossi-
bility could be imposing reasonable bounds on the technologies allowed to
be considered by the planner, like some maximum time for any task to be
completed. The nature of the proofs -and this also includes the Groves-
Clarke mechanism in the public goods provision problem- points to this lack
of bounds as the key factor.
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