
Chapter 2

Coalition Formation Games with

Separable Preferences

2.1 Introduction

Many of the models used to study coalition formation explore two related questions: which coalitions will

form, and how will each coalition share the bene…ts generated by cooperation? In order to focus solely

on the …rst of these questions, we restrict our attention to the purely hedonic games of Banerjee, Konishi,

and Sönmez (2001) and Bogomolnaia and Jackson (1998).1 In this setting, individuals’ preferences are

completely determined by the composition of the coalition they belong to, and so the structure of the

cooperative game becomes very simple. A feasible allocation consists of a partition of individuals into

coalitions. There is no bargaining over a choice of alternatives available to a given coalition or over a

choice of payo¤ distributions among the members of a given coalition, and there is no transferable good

that could be exchanged among the members of the coalition or across di¤erent coalitions. In e¤ect,

each coalition has exactly one payo¤ vector as a feasible payo¤ allocation and there are no spillovers

among coalitions.2 Matching models represent instances of hedonic games, even though they only admit

a limited subset of coalitional structures.

Despite the simplicity of the model, the existence of stable coalitional structures proves to be a major

problem in hedonic situations. Banerjee, Konishi, and Sönmez (2001) …nd that there are many natural
1 The terms hedonic game and hedonic coalition structures have been introduced by Bogomolnaia and Jackson (1998)

and were borrowed from Drèze and Greenberg (1981), where the hedonic aspect of coalition formation indicates that the

utility that agents derive from belonging to a given coalition might also depend on the membership of the coalition itself.
2 Hedonic games can be easily thought of as the “reduced form” of more complex coalition formation games where, for

every coalition, one can foresee which is the feasible alternative that the coalition will choose and how the gains arising

from cooperation will be divided. We direct the reader to Bogomolnaia and Jackson (1998) for additional motivation.
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settings that do not guarantee the existence of core-stable partitions, that is of partitions for which there

is no group of individuals who can all bene…t by moving out of their current coalitions and constitute a

new (deviating) coalition. In particular, they consider the assumption of additively separable preferences

coupled with symmetry that are generally seen as bene…cial in ruling out cyclical coalitional deviations.

Additive separability means that each player is endowed with a utility function with which he ranks

every other player in society. Then each player’s valuation of a given coalition to which he belongs is

simply the sum of the individual utilities separately assigned by that player to the other members of the

coalition. Moreover, additively separable preferences are symmetric if the utilities can be chosen so that

the valuations that each pair of individuals assign to each other are the same. Banerjee et al. (2001)

provide counterexamples showing that these properties are not su¢cient to guarantee the non-emptiness

of the core of a hedonic game. Bogomolnaia and Jackson (1998) investigate stability concepts that only

involve individual movements and they show that additively separable and symmetric preferences always

guarantee the existence of a Nash-stable coalition partition. Nash-stability requires that no individual

would choose to disrupt the partition by abandoning his (possibly singleton) coalition for a di¤erent one,

whose members need not welcome his addition.3

Inspired by these …ndings, we initially focus our attention on symmetric additively separable prefer-

ences. Are there natural additional assumptions guaranteeing that core-stable partitions exist? If so, will

the methods of proof suggest ways to relax the already strong assumption of symmetric additive separa-

bility? We introduce a decomposition of the utility vectors representing symmetric additively separable

preferences into two components, namely the cardinal component and the alternating component. It turns

out that these components have di¤erent implications for stability. When the alternating component is

the only one present, we show (by means of a counterexample involving 14 players) that the core might

be empty. But when the cardinal component stands alone, stability is guaranteed. If agents’ preferences

are purely cardinal, it is as if each agent were assigned a cardinal weight, i.e. a real number, which

represents the …xed contribution this agent brings to the relationship with any other agent. Therefore,

the sum of two agents’ intrinsic weights coincides with the increment (or decrement) each contributes to

the utility of the other by their joint membership in a coalition. One of our main results is that, when

agents’ preferences are restricted to be purely cardinal, there always exists a coalition structure which

is both core and Nash-stable. If preferences are not required to be strict, then such a stable coalition

structure need not be unique.

Implicit in purely cardinal preferences are individual weights that induce a ranking of agents, which

is such that players with higher weights come above those with lower ones. This ranking plays a dual

role. First, it may be thought of as a preference ordering over individuals that is common to all agents
3 If this requirement is weakened so that it only applies when all members of the new coalition welcome the addition of

the moving individual, the resulting notion is individual stability. It is implied both by Nash stability and by core stability.
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in society, so that the players with the highest weights are unanimously preferred to players with lower

weights. This condition is reminiscent of the ones introduced in Farrell and Scotchmer (1988) and in

Banerjee, Konishi and Sönmez (2001), where a common ranking of coalitions is imposed in order to get

non-emptiness of the core of a coalition structure. Nevertheless, we must draw a contrast here with the

assumptions made in the works we have just mentioned. Our common relative ranking of individuals does

not extend to a common ranking over coalitions, because individuals typically di¤er as to which other

individuals they like to associate with, in an absolute sense rather than in comparison with others. For

instance, consider three players, a; b and c; having individual weights of 10, 1 and ¡5 respectively. Then,

player a prefers fa; b; cg to fa; bg while player b prefers fa; bg to fa; b; cg : Secondly, as an individual’s

weight decreases, not only does his desirability to all others decrease correspondingly, but his degree

of desire for associating with others decreases as well. An individual’s weight thus serves as a sort of

congestion parameter that helps set the absolute size of the coalition that such individual most prefers

belonging to. Notice that stability is unlikely if there exists some individual who desires to associate with

many others but who is not considered desirable by many others. Hence, a degree of agreement between

desire and desirability is necessary in some form. Purely cardinal preferences are ones for which this

agreement is complete.

We also prove that precisely the same results concerning the existence of core and Nash-stable coalition

partitions hold under a weaker set of requirements, that we call Descending Separable (or DS) Preferences.

The properties in this set preserve some of the qualitative features of purely cardinal preferences and

fall into several types (weakened, ordinal versions of additive separability, of symmetry, of descending

desirability of individuals, and of descending desire of individuals). The existence of a common ranking

of individuals is still an important feature of this class of individuals’ preferences.

Very similar assumptions have already been studied in the literature. Weak forms of additive separa-

bility date back at least as far as de Finetti’s seminal work in mathematical psychology (1931 and 1937),

but also see Kraft, Pratt and Seidenberg (1959) and Fishburn (1986). Such assumptions have played a

key role in matching theory, see for example Roth and Sotomayor (1990), or Dutta and Massò (1997) and

Martínez, Massò, Neme and Oviedo (2000). Banerjee, Konishi and Sönmez (2001) consider mutuality,

an ordinal weakening of symmetry.

Intuitively, there is a simple process by which both purely cardinal preferences and DS preferences

lead to stable coalitional structures. Suppose that the top-ranked individual, agent a, is entitled to form

his coalition within the partition. Agent a proposes to each of the other agents in turn, in descending

order. He starts with the second-ranked agent and asks her whether or not she prefers joining her coalition

to remaining alone. If she joins, he proceeds down the ranking, terminating the process once he reaches

the …rst agent who does not wish to be added to the growing coalition. A coalition is then set, which

we call the top segment coalition, and all the remaining agents are singletons. If agents’ preferences are
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all strict, this coalition partition then seems to represent the unique subgame perfect equilibrium of the

non-cooperative game of group formation that we have just described.

There seems to be a wide variety of economic, social and political situations in which agents can be

naturally ordered according to some attribute or characteristic. For instance, consumers might be ranked

according to their willingness to pay for a particular good or service, workers are ordered according to

some objective measure of their ability, …rms that compete on the same output market might be ranked

according either to the quality or to the location of the product sold, and so on. The idea has been

shown to yield interesting results in a framework somewhat di¤erent from the one we use here. Among

others, Greenberg and Weber (1986), Farrell and Scotchmer (1988), Demange and Henriet (1991) and

Demange (1994) study the process of coalition formation when coalitions have to choose from among a

set of feasible alternatives and there is a single attribute that orders agents’ preferences. In these models,

the existence of core-stable coalitional structures is guaranteed under the following basic assumptions:

(i) individuals are ranked according to some parameters that order their preferences; (ii) individuals’

preference orderings satisfy the intermediate preference property;4 (iii) the game satis…es some form of

monotonicity.5 Not only do these assumptions ensure the existence of core-stable coalitional structures,

but they also determine the qualitative features of stable structures. All coalitions in a stable partition

are consecutive, in the sense that, if two distinct individuals are members of the same coalition, then all

the players that lie between them (according to the given ordering of players) are also members of that

coalition. Thus, as in our model, stable coalitional structures have the property that individuals with

similar attributes tend to cluster together. Monotonicity does not seem to apply at all to our context,

and the form of intermediate preference property that holds under purely cardinal preferences may fail

under the more relaxed assumptions of Descending Separable preferences.

The structure of the paper is as follows. Section 2.2 describes the model and introduces the notation

and the de…nitions we will be working with. Section 2.3 describes several related decompositions of

additively separable preferences, which we think may have their own interest, with attention mainly

devoted to the symmetric case. The examples in Section 2.3.1 are quite compelling, allowing the reader

who wishes to skip Section 2.3.2 and go directly to Section 2.4, where the stability properties of symmetric

additively separable preferences are examined. In Section 2.5 we present the DS set of properties, which

is weaker than purely cardinal preferences but yields the same qualitative results. In the last two sections

we also examine the connections between our set of conditions and other properties appearing in the

literature.
4 This means that for any three distinct agents, if the two extreme agents (according to the ranking of players) agree as

to their preference ordering of two alternatives, then the agent who is in between also does.
5 When a coalition increases in size it may widen, but never narrow, its set of feasible alternatives. In this sense, a

growing coalition can only improve its prospects.
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2.2 Notation and De…nitions

Consider a …nite society composed of N = f1; 2; ::::; ng members. A coalition C is an element of 2N , i.e.

a subset of individuals that belong to society. A coalition partition or coalition structure is a partition of

N and it will be denoted as ¼ = fChgH
h=1, where H is a positive integer with N ¸ H. Thus, ¼ consists

of an exhaustive collection of non-empty, pairwise disjoint coalitions Ch µ N .

Agents’ preferences are de…ned over the set of all coalition structures in N; which is denoted by ¦(N) :

Throughout, we will assume that each individual i 2 N has preferences that are purely hedonic: each

agent’s preferences over partitions are completely characterized by his preferences over the coalitions

that he belongs to in each partition. Therefore, each agent i is endowed with a preference ordering ºi

(a re‡exive, complete and transitive preference relation) over the set Ci (N) ´
©
C 2 2N j i 2 C

ª
which

satis…es that

¼ ºi ¼0 () C¼ (i) ºi C¼0 (i) ; (2.1)

where C¼ (i) denotes the coalition in ¼ to which agent i belongs. We denote by Âi the strict preference

relation.

De…nition 1 A hedonic coalition formation game is a pair ¡ = [N; fºign
i=1] ; where N is the …nite set

of players or members of society and preference pro…les fºign
i=1 satisfy condition (2.1).

We consider the solution concepts arising from core-stability and Nash-stability, with formal de…nitions

as follows.

De…nition 2 A coalition partition ¼ is core-stable (or is in the core of a coalition structure) if @S µ N;

with S =2 ¼; such that S Âi C¼ (i) for all i 2 S:

De…nition 3 A coalition partition ¼ is Nash-stable if, for all i 2 N and for all Ch 2 ¼; C¼ (i) ºi

Ch [ fig.

It is straightforward to check that neither type of stability implies the other. A necessary condition

that every partition ¼ has to satisfy in order to be either core-stable or Nash-stable is individual rationality.

De…nition 4 A coalition partition ¼ is individually rational for player i if C¼ (i) ºi fig and is

individually rational if , for every agent i 2 N; it is individually rational for player i.

Let us now turn to some properties that preference pro…les might satisfy.

De…nition 5 A pro…le of agents’ preferences (º1;º2; :::;ºn) satis…es separability if , for every i; j 2 N

and every coalition C such that C 2 Ci (N) and j =2 C;

fi; jg ºi fig , C [ fjg ºi C and fi; jg Âi fig , C [ fjg Âi C:
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Preferences are separable if the e¤ect of a given player on another player’s preferences is consistently

positive, negative, or neutral, regardless of which coalition the latter player is a member of. Hence, there

is no complementariness among players belonging to a given coalition. It is rather as if each player divided

the remaining players in three disjoint sets: the set of good agents, the set of bad agents and the set of

neutral agents. Adding a good agent to a coalition always makes the coalition better, adding a bad agent

always makes it worse, whereas adding a neutral agent never changes it.

De…nition 6 A pro…le of agents’ preferences (º1;º2; :::;ºn) satis…es additive separability (or is ad-

ditively representable) if, for every i 2 N; there exists a real-valued function vi : N ¡! R such that

C ºi C
0 ,

X

j2C

vi (j) ¸
X

j2C0
vi (j)

for all C;C
0 2 Ci (N) :

Thus, additively separable preferences are such that every individual attaches a value to each other

individual in society and the utility that an agent receives from being in a given coalition is simply the

sum of the values that the agent assigns to the other members of the coalition. Note that vi (j) stands

for the cardinal utility assigned by player i to player j, which is the contribution that players j makes to

the total utility that individual i obtains from membership in any coalition containing both players. The

value that player i assigns to himself has no e¤ect on his ranking, and so it is commonly set at vi (i) = 0.

Additive separability is a stronger requirement than separability.

A pro…le of additively separable preferences satis…es symmetry if it can be represented by a vector v

= (v1; v2; :::; vn) satisfying that agents assign the same reciprocal value to each other, i.e. vi (j) = vj (i)

for every i; j 2 N . In the symmetric case, we will use v (i; j) to denote the common value of vi (j) and

vj (i) :

A pro…le of preferences, satis…es mutuality if

fig ºi fi; jg () fjg ºj fi; jg and fi; jg Âi fig () fi; jg Âj fjg : (2.2)

For additively separable preferences, this is equivalent to saying that the pro…le can be represented by

cardinal utilities satisfying vi (j) ¸ 0 , vj (i) ¸ 0 and vi (j) > 0 , vj (i) > 0 for all i; j 2 N:6

It is already known that there are basic problems in …nding stable coalition partitions in the con-

text of purely hedonic situations, even when domain restrictions on individual preferences are imposed.

Banerjee, Konishi and Sönmez (2001) showed that the set of core-stable coalition partitions can be empty

when preferences are additively separable and satisfy symmetry. Nonetheless, Bogomolnaia and Jackson

(1998) prove that under the same restrictions, i.e. if individuals’ preferences are additively separable and

symmetric, Nash-stable partitions always exist. In particular, any partition that maximizes the sum of

all agents’ utilities is Nash-stable.
6 Therefore, symmetry implies mutuality.
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2.3 Vector Decompositions of Additively Separable Preferences

The purpose of this section is to show that any assignment v = (v1; v2; :::; vn) of utilities representing

additively separable preferences may be thought of as a vector in an appropriate …nite-dimensional vector

space. We introduce a sequence of decompositions that break this vector v into components. The various

components then have di¤erent implications for the existence of stable solutions for the corresponding

hedonic coalition formation game.

Let agents’ preferences be additively separable, but not necessarily symmetric, and let such preferences

be represented by the vector v = (v1; v2; :::; vn). Given that vi (i) = 0 for all i 2 N; and that each agent

assigns a real-number utility to the other n ¡ 1 players in society, the utility pro…le v may be considered

as a vector in the space Rn(n¡1): This fact will allow us to associate a certain labeled graph to any vector

v = (v1; v2; :::; vn) representing additively separable preferences.

De…nition 7 A directed graph G consists of a …nite set N of vertices together with a set E of directed

edges, each of which is an ordered pair (i; j) of vertices satisfying i 6= j; depicted as an arrow from vertex

i to vertex j, and denoted by ei!j : The complete directed graph K¡! (N) on the vertex set N is the

directed graph that includes all possible directed edges.

In the present context, the vertices of a complete directed graph correspond to the players in N and

each edge ei!j directed from player i to player j has some weight associated to it, which represents the

utility vj (i) that agent i contributes to agent j. The utility vi (j) ; which is generically di¤erent from

vj (i) ; can be represented as the weight on the opposite edge ej!i.

In the following Section 2.3.1, we will present an extended example as an introduction to these ideas.

In the next Section 2.3.2, we will sketch the history of, and …ll in the general theory behind, some of the

unproved assertions appearing in Section 2.3.1.

2.3.1 An Extended Example

Let N = f1; 2; 3; 4g and let agents’ preferences be depicted by the complete graph in Figure 2.1. The 12

edge weights of this …gure are the 12 components of the vector of utilities v = (v1; v2; :::; v4) representing

players’ additively separable preferences. For example, the edge e1!2 directed from vertex 1 to vertex 2

has weight 7, so v2(1) = 7 is the utility agent 1 contributes to agent 2 whenever 1 is in 2’s coalition. The

utility v1(2) = 5 is di¤erent, and appears as the edge weight on the opposite edge e2!1:

Any vector v can be decomposed into a symmetric component vS; satisfying vS
i (j) = vS

j (i) for each

i and j, and an antisymmetric component vA; satisfying vA
i (j) = ¡vA

j (i) for each i and j. It is easy to

compute vS and vA from any vector of utilities v, as follows

vS
i (j) =

vi (j) + vj (i)
2

(2.3)
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and

vA
i (j) =

vi (j) ¡ vj (i)
2

: (2.4)

Moreover this decomposition is unique, in that there is only one way to write v as the sum v = vS + vA

Figure 2.1: An asymmetric vector v of utilities

of a symmetric vector and an asymmetric vector, where two vectors are added (which in Rn is done by

adding corresponding components) by adding the weights on corresponding edges. Notice that vector v

is itself symmetric if and only if v = vS (equivalently, if and only if vA = 0) and is antisymmetric if and

only if v = vA (equivalently, if and only if vS = 0).

Consider the two vectors vS and vA appearing in Figure 2.2. Notice that vS is indeed symmetric

and that vA is antisymmetric. Furthermore, the vectors vS and vA are orthogonal to each other in the

sense that vS ¢ vA = 0, where the inner or dot product v ¢ u of any two vectors v and u is computed by

multiplying weights on corresponding directed edges, and then adding these products7

v ¢ u =
X

fvi (j)ui (j) j i; j 2 N and i 6= jg : (2.5)

If we let V = V (N) be the vector space of all possible utility assignments (of agents in the set N to

each other), S = S(N) be the subset of V containing all the symmetric vectors, and A = A(N) be the
7 To make this inner product agree with the one introduced later for symmetric vectors, we would need to de…ne

v ¢ u = 1
2

X
fvi (j)ui (j) j i; j 2 N; with i 6= jg

but this scale factor of 1
2 is of little account.
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Figure 2.2: Decomposition of v from Figure 2.1 as v = vS + vA

subset of V containing all the antisymmetric vectors, it is easy to see that A and S are subspaces of V ,

and in fact are orthogonal complements in V , with V being the direct sum decomposition of A and S

V = S © A:

Thus, formula (2.3) used to …nd vS is actually calculating the orthogonal projection of v onto S, while

(2.4) calculates the orthogonal projection vA of v onto A.

The representations of the components vS and vA that appear in Figure 2.2 can be simpli…ed by

eliminating the redundant information in the edge weightings. In the case of vS; the two edges connecting

any pair of vertices always receive the same weight, so the vS information may be conveyed by assigning

this common weight to a single, undirected edge between the pair. For vA these two edges also receive

the same weight, but with opposite signs, so we arbitrarily discard one from each pair of directed edges,

while saving the other directed edge with its weight. Because our main concern in this paper will be

with the symmetric component, we will use the term edge weighting to refer to a weighting of edges of a

complete undirected graph. Thus an edge weighting is the same as a symmetric vector or assignment of

a real number utility v (i; j) to each unordered pair or edge fi; jg (with i 6= j) in the complete undirected

graph K (N).

In Figure 2.3 we consider a further decomposition of the symmetric part vS of our example into a

cardinal component and an alternating component

vS = vCARD + vALT :
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This second decomposition is similarly based on a direct sum decomposition of S

S = SCARD © SALT

into two orthogonal and complementary subspaces, with the components vCARD and vALT being the

orthogonal projections of vS onto these subspaces. Here, the appropriate inner product is exactly what

one might expect, i.e.

v ¢ u =
X

fv (i; j)u (i; j) j fi; jg µ N and i 6= jg : (2.6)

To explain this decomposition, we begin by exploring some properties of the components.

Figure 2.3: Decomposition of vS into vCARD and vALT

What characterizes the cardinal component in the decomposition of Figure 2.3? Any assignment w

of real number weights to the vertices of a graph induces a corresponding edge weighting, as follows. To

…nd the weight on any edge, sum the two vertex weights on the vertices joined by that edge (we will refer

to such a sum as an edge sum). The cardinal component vCARD of a vector is always induced as the edge

sums of some vertex weighting, and SCARD is de…ned to be the linear subspace of all edge weightings

induced, via edge sums, by some vertex weighting. But how do we compute the decomposition

v = vCARD + vALT

for an arbitrary edge weighting (symmetric utility assignment) v?
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De…nition 8 For each vertex i of the (undirected and complete) graph K (N), the load on i is the sum
Pfvi(j) j i 6= jg of all edge weights on edges incident to i, and the load o¤ i is the sum

Pfvk(l) j k < l

and k; l 6= ig of all edge weights on edges not incident to i. The average load on i is the average value

1
(n ¡ 1)

X
fvi(j) j i 6= jg

of all edge weights on edges incident to i, and the average load o¤ i is the average value

1
(n ¡ 1) (n ¡ 2)

X
fvk(l) j k < l and k; l 6= ig

of all edge weights on edges not incident to i.

Let the quantity w (i) be de…ned by

w (i) ´ [average load on vertex i] ¡ 1
2
[average load o¤ vertex i]; (2.7)

then w (i) gives the vertex weights that induce, via edge sums, the component vCARD. For example, if

we take v to be the vector vS in Figure 2.2, then

w (1) =
(6 + 4 ¡ 2)

3
¡ 1

2
(14 ¡ 4 + 0)

3
= 1:

Figure 2.4 provides the vertex weighting that induces the vCARD of Figure 2.3.

Figure 2.4: vCARD induced as the edge sum of a vertex weighting

As far as a formula for computing the alternating component vALT , the simplest approach is to use

vALT = v ¡ vCARD:
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Along the same lines, the subspace SALT that alternating components belong to could be de…ned as the

orthogonal complement, within the space S, of SCARD. However, we seek a more useful characterization

of the part of a utility vector that is not cardinal. In Figure 2.5, we show that vALT can be expressed as

a linear combination of two basic alternating cycles

vALT = ®1 + 2®2;

where ®1 and ®2 are the edge weightings that appear on the right side of Figure 2.5. More generally, SALT

may be characterized as the linear span of all alternating cycles. Before we introduce some de…nitions in

order to make these notions precise, notice one additional feature of vALT in Figure 2.5: the net load on

each vertex is zero. In fact, this property also characterizes membership in SALT .

8 Our graphs are complete, so a cycle automatically satis…es the requirement that the graph contains an edge from il to

il+1 for each l:
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Figure 2.5: vALT as a linear combination of alternating cycles

De…nition 9 A cycle of length m in the (undirected and complete) graph K (N) is a sequence i1; i2; ::

:; im+1 of vertices such that there is an edge from il to il+1 for each i = 1; 2; :::;m;8 where il = im+1 and

the vertices i1; i2; :::; im are all distinct from each other.

The length of a cycle thus coincides with the number of distinct vertices or edges in the cycle.
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De…nition 10 An even cycle is a cycle of even length m. The basic alternating cycle (i1; i2; :::; im)

corresponding to the even cycle C = i1; i2; :::; im+1 is the vector v given by

v (a; b) =

8
<
:

(¡1)l if fa; bg = fil; il+1g is an edge in cycle C

0 if fa; bg is an edge that does not belong to cycle C
:

A scalar multiple of a basic alternating cycle is called an alternating cycle. We can now de…ne SALT

to be the linear span of the set of all basic alternating cycles. Equivalently, a vector v is an element of

SALT if and only if v is a sum of alternating cycles.

Notice that in our example there are alternating cycles other than the ®1 and ®2 appearing in Figure

2.5. In fact, any other such cycle is a linear combination of ®1 and ®2. We will show in the next section

that when n = 4, the dimension of SALT is equal to 2, so that any two linearly independent alternating

cycles, such as ®1 and ®2, serve as a basis for SALT .

2.3.2 History and General Theory of Vector Decompositions

The two decompositions discussed in the previous section are

V = S © A (2.8)

and

S = SCARD © SALT : (2.9)

In fact, there is a third decomposition that completes the picture, which is

A = ABORDA © ACY CLE: (2.10)

This means that we may take any vector v 2 V (N) and write it uniquely as the sum of the four mutually

orthogonal components

v = vS + vA = (vCARD + vALT ) + (vBORDA + vCY CLE):

There is a loose but important analogy between the last two decompositions: decomposition (2.9) is to

graphs as decomposition (2.10) is to directed graphs.

Historically, decomposition (2.10) arose …rst, under a di¤erent terminology. Essentially, it is the

decomposition induced by the boundary map of homology theory (a branch of algebraic topology) in

the one-dimensional case (see, for example, Giblin [1977]). This decomposition has had some interesting

applications. In the study of electric circuits, a ‡ow of current in a complex circuit may be decomposed

into the part arising from sources and sinks of current, and the part consisting of cycling currents.

This analysis serves as the algebraic basis for the well known Kircho¤’s Laws in circuit theory. The
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decomposition has also been applied to social choice theory. Imagine that the vertices of our directed

graph are the candidates in a multicandidate election, and that the “‡ow” in the “wires” indicates net

preferences for these candidates among the electorate, given some particular pro…le of preferences. So,

for example, a ‡ow of 14 units on the edge from candidate i to candidate j indicates that the number

of voters preferring j to i is greater, by a margin of 14, than the number who prefer i to j. When one

applies decomposition (2.10), one of the components corresponds to the sequence of total scores awarded

to each candidate in a Borda count election applied to the pro…le, and the other component represents

the underlying tendency for a Condorcet cycle (paradox of voting) for the pro…le given. This idea has

been applied in Zwicker (1991) to …nd necessary and su¢cient conditions for transitive outcomes, and

more recently it has been applied in a variety of ways by Saari (2000).

At the moment, this decomposition seems less useful to the study of stability in hedonic coalition

formation games, because the entire antisymmetric component has strongly negative implications for

stability. Consider, for example, the case of two agents, a and b, with va(b) = 1 and vb(a) = ¡1. It is

easy to see that the partition ffa; bgg is not core-stable, while the only alternative partition ffag; fbgg
is not Nash-stable. We have not, however, studied games based on utilities that have both a non-

zero symmetric component and also a non-zero antisymmetric component, and it remains possible that

decomposition (2.10) will play a role in the analysis of such games.

Decomposition (2.9) is of much more recent vintage. It was used in work of Bolker (1979) on the

rigidity of structures, as well as in Zaslavsky (1982), Bouchet (1983), Khelladi (1987), and may have been

anticipated by Edmonds, as reported in Lawler (1976). However, it appears most explicitly in Grossman

et al. (1994), and this is the reference we recommend to the interested reader.9

As far as we know, our work here represents the …rst application of decomposition (2.9) to the social

sciences. As with decomposition (2.10), however, this application is solely concerned with the special case

of complete graphs, while the earlier literature focuses on graphs that are not complete. With complete

graphs, as we might expect, more can be said and some things can be said more simply. This explains

why our Theorem 12 below looks somewhat di¤erent in content, as well as in terminology, from what

appears in Grossman et al. (1994). One important di¤erence is that for complete graphs, alternating

cycles alone su¢ce to span the orthogonal complement of SCARD, while for graphs in general one needs

to add other vectors (called odd handcu¤s) to the alternating cycles. For these reasons, our discussion of

decomposition (2.9), and the proof of Theorem 12, are self-contained.

Decomposition (2.8) appears to be new, although it is clearly related to familiar ideas with a long
9 We are indebted to Thomas Zaslavsky for pointing out the parallels between our work on decomposition

(2.9) and this earlier literature. Comments on the papers we cite here, and on other related work, can

be found on Zaslavsky’s excellent “Mathematical bibliography of signed and gain graphs and allied areas”, at

http://www.math.binghamton.edu/zaslav/Bsg/index.html.
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history. It is also a very simple decomposition, and so we outline its basic properties in the following

theorem, while leaving the routine proof to the reader.

Theorem 11 Let N = f1; 2; :::; ng be a …nite set and V = V (N) denote the vector space of all as-

signments v of real number weights to the edges of the complete directed graph K¡!(N) on the vertex set

N. If V is endowed with the standard inner product10 then V (N) is a Hilbert space satisfying the fol-

lowing properties. (1) The dimension of V is (n)(n ¡ 1): (2) The subset S = S(N) consisting of all

symmetric edge-weight assignments, satisfying v(ei!j) = v(ej!i) for all i and j; forms a subspace of

V having dimension 1
2(n)(n ¡ 1): (3) The subset A = A(N) consisting of all antisymmetric edge-weight

assignments satisfying v(ei!j) = ¡v(ej!i); for all i and j, forms a subspace of V having dimension
1
2(n)(n ¡ 1): (4) The subspaces S and A are orthogonal complements in V , from which it follows that

V = S © A: (5) The symmetric and antisymmetric components of any vector v 2 V (N) are given by

vS(ei!j) = 1
2 (v(ei!j) + v(ej!i)) and vA(ei!j) = 1

2 (v(ei!j) ¡ v(ej!i)).

Let us now move to consider decomposition (2.9). There is another characterization of the cardinal

component vCARD, equivalent to the one presented in Section 2.3.1, that will be useful. Let us de…ne

the star ¤i on vertex i to be the edge weighting that assigns weight 1 to each edge incident to vertex

i and weight 0 to each edge not incident to i. Stating that the cardinal component vCARD of any

vector v is induced, via edge sums, from some vertex weighting is equivalent to saying that vCARD is a

linear combination of stars, and the coe¢cients in this linear combination are equal to the vertex weights

inducing vCARD. In particular, for the vCARD of Figure 2.3, we have

vCARD = 1 ¤1 +7 ¤2 +4 ¤3 ¡6 ¤4 :

Thus, an equivalent de…nition of the linear subspace SCARD is that it is the linear span of the stars.

Also, the claim that formula (2.7) for w (i) is correct may be rephrased as

vCARD = w (1) ¤1 +w (2) ¤2 +::::: + w (n) ¤n :

which is the form we prove it in, in what follows.

Theorem 12 Let N = f1; 2; :::; ng be a …nite set and S = S(N) denote the vector space of all assignments

v of real number weights to the edges of the complete (undirected) graph K(N) on the vertex set N . Endow

S with the standard inner product11 so that it becomes a Hilbert space. Let SCARD denote the linear span

of f¤i j i 2 Ng and SALT denote the linear span of all the alternating cycles. Then the following

properties hold. (1) The dimension of S is 1
2(n)(n ¡ 1): (2) SCARD is a subspace of S of dimension n.

(3) SALT is a subspace of S of dimension 1
2(n)(n ¡ 1) ¡ n = 1

2(n)(n ¡ 3). (4) The subspaces SCARD

10 See condition (2.5) in Section 2.3.
11 See condition (2.6) in Section 2.3.
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and SALT are orthogonal complements in S, from which it follows that S = SCARD © SALT . (5) An

element v of S is a member of SCARD if and only if every alternating cycle sum of v is zero (to form an

alternating cycle sum of v, choose any even cycle i1; i2; :::; i2k in K(N) and form the sum of all terms

of form (¡1)jv(fij ; ij+1g) for i = 1; 2; :::; 2k; where i2k+1 = i1). (6) An element v of S is a member of

SALT if and only if the load on each vertex is zero. (7) The cardinal component of any vector v 2 S is

given by vCARD = w (1) ¤1 +w (2) ¤2 +::: + w (n) ¤n, where each coe¢cient w (i) is determined by (2.7).

Proof. It is clear that S has dimension 1
2(n)(n ¡ 1) and that SCARD is a subspace of S. It is easy

to check that f¤i j i 2 Ng is a linearly independent set and thus forms a basis for SCARD, which must

therefore have dimension n.12 It is also routine to check that for every element v of SCARD and element

u of SALT , v ¢u = 0, so that SCARD and SALT are orthogonal in S. It will follow that SCARD and SALT

are orthogonal complements in S if we can show that the dimension of SALT is at least 1
2 (n)(n ¡ 3),

because then the sum 1
2(n)(n ¡ 3) + n = 1

2(n)(n ¡ 1) of the dimensions of the orthogonal subspaces

SCARD and SALT is equal to that of the space S. We accomplish this by producing, for each n, a linearly

independent set Tn of 1
2(n)(n ¡ 3) basic alternating cycles, each of length 4, in S(f1; 2; ::; :; ng).13 It

follows immediately that the dimension of SALT is exactly 1
2 (n)(n ¡ 3). The construction of Tn is by

induction on n ¸ 3: The base step for n = 3 is immediate, as the quantity 1
2(n)(n ¡ 3) is equal to zero

when n = 3: Assume that Tn is a set of 1
2 (n) (n ¡ 3) linearly independent basic alternating cycles, each

of length 4, in S(f1; 2; :::; ng). Let Tn+1 = Tn [ Sn where

Sn = f(1; n + 1; 2; 3); (2; n + 1; 3; 4); :::; (n ¡ 2; n + 1; n ¡ 1; n); (n ¡ 1; n + 1; n; 1); (n; n + 1; 1; 2)g:

Note that

jTn+1j = jTnj + jSnj =
1
2
(n)(n ¡ 3) + n =

1
2

[(n + 1)((n + 1) ¡ 3)] ;

which is what we desire. It is routine to check that Tn+1 is a set of linearly independent, basic alternating

cycles, each of length 4, in S(f1; 2; :::; n + 1g). Now that (4) is con…rmed, parts (5) and (6) follow as

instances of the general fact that a vector lies in the orthogonal complement of a subspace if and only if

it is orthogonal to all elements of a spanning set of that subspace, and so these are polished o¤ as well.

It remains to prove (7). Let v be a vector in S. As v = vCARD + vALT , and vALT contributes 0 to each

of the loads appearing in the formula for w (i), it su¢ces to assume v 2 SCARD and prove that v = u,

where

u ´ (w (1) ¤1 + w (2) ¤2 +::: + w (n) ¤n) 2 SCARD:

12 But note that f¤i j i 2 Ng is not an orthonormal basis or even an orthogonal basis.
13 Note that the set of all basic alternating cycles does not form a basis for SALT . Indeed, SALT appears to lack a natural

basis.
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As the ¤i span SCARD, it then su¢ces to prove that v ¢ ¤i = u ¢ ¤i for each i = 1; 2; :::; n.

We begin with the special case N = f1; 2; 3; 4g and prove that v ¢ ¤1 = u ¢ ¤1. Then we sketch the

general case. Let v be given by the edge weights appearing in Figure 2.6. Notice that, for each i and j

in this special case,

¤i ¢ ¤j =

8
<
:

1 if i 6= j;

3 if i = j:

Thus,

u ¢ ¤1 = w (1) ¤1 ¢ ¤1 + w (2) ¤2 ¢ ¤1 + w (3) ¤3 ¢ ¤1 + w (4) ¤4 ¢¤1 = 3w (1) + w (2) + w (3) + w (4) :

The …rst term is such that

3w (1) = 3
·
1
3
(v1 + v2 + v3) ¡ 1

2

·
1
3
(v4 + v5 + v6)

¸¸
:

This is a linear combination of the vi, whose coe¢cients appear as the …rst row of the table below; the

other terms, w (2), w (3) and w (4), are likewise given by the coe¢cients of rows 2, 3 and 4 respectively.

v1 v2 v3 v4 v5 v6

3w (1) = 1 1 1 ¡1
2 ¡1

2 ¡1
2

w (2) = 1
3 ¡1

6 ¡1
6

1
3

1
3 ¡1

6

w (3) = ¡1
6

1
3 ¡1

6 ¡1
6

1
3

1
3

w (4) = ¡1
6 ¡1

6
1
3

1
3 ¡1

6
1
3

u ¢ ¤1 = 1 1 1 0 0 0

The coe¢cients of u ¢ ¤1 (as a linear combination of the vj) are then obtained by summing the columns

of this table, so that u ¢ ¤1 = v1 + v2 + v3, the total load on vertex 1. As v ¢ ¤1 is clearly also such that

v ¢ ¤1 = v1 + v2 + v3, we see that v ¢ ¤1 = u ¢ ¤1, as desired.

Now consider the more general case, wherein N = f1; 2; :::; ng, and we are proving that v ¢ ¤i = u ¢ ¤i.

Note that in this case,

¤i ¢ ¤j =

8
<
:

1 if i 6= j

n ¡ 1 if i = j
;

and the table corresponding to that above has n rows. If we consider a typical column in the table,

there are two cases to consider: (i) if the column corresponds to an edge joining vertex i to some other

vertex j, then it is straightforward to show that the entries are 1 from row i, 1=(n ¡ 1) from row j and

¡1=(n ¡ 1)(n ¡ 2) from each of the (n ¡ 2) other rows, which sums to 1; (ii) if the column corresponds

to an edge joining vertex s to a di¤erent vertex t, with s 6= i and t 6= i then the entries are ¡1=(n ¡ 2)
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from row i, 1=(n ¡ 1) from row s and row t and ¡1=(n ¡ 1)(n ¡ 2) from each of the (n ¡ 3) other rows,

which sums to 0. This leads, as above, to

u ¢ ¤i = total load on vertex i = v ¢ ¤i;

as desired.

Figure 2.6: The edge weights in the proof of Theorem 12

2.4 Stability under Symmetric Additively Separable Preferences

What does the decomposition S = SCARD © SALT tell us about hedonic coalition formation games?

De…nition 13 Given a pro…le (º1;º2; :::;ºn) of purely hedonic preferences, we say that such pro…le

is purely cardinal if there exists a utility vector v 2 SCARD that represents it. Similarly, a pro…le

(º1;º2; :::;ºn) of agents’ preferences is purely alternating if there exists a utility vector v 2 SALT

that represents it.

Note that either condition implies that the preference pro…le (º1;º2; :::;ºn) is both additively sepa-

rable and symmetric. We show that when preferences are purely cardinal very stable solutions exist, but

when preferences are purely alternating the core of a coalition structure might be empty.
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2.4.1 Purely Cardinal Preferences

When agents’ preferences are purely cardinal, the common value that two players contribute to each

other’s utility when they belong to the same coalition is given by the sum of two real numbers. These

numbers are the weights that function w (¢) ; as de…ned in (2.7), assigns to each individual in society. We

might interpret each such weight as the …xed worth that an agent brings to the relationship with any

other agent.

Theorem 14 Let agents’ preferences be purely cardinal. Then, there always exist coalition structures

that are both core-stable and Nash-stable.

We claim that the following algorithm provides a coalition partition that is both core-stable and

Nash-stable.

Consider the permutation p : N ¡! N which renames individuals from p1 to pn in non-decreasing

order of their weights. Individuals with the same weight are ordered arbitrarily. Hence, w (i) > w (j)

implies pi > pj while w (i) ¸ w (j) might result in either pi > pj or pj > pi:

Then construct the top segment partition ¼¤ according to the following two steps.

Step 1. De…ne the top segment coalition T ¤ with the following iterative procedure. The …rst player

in the ordering p1 belongs to the top segment coalition. If the next player p2 strictly prefers being alone

to joining p1; i.e. if fp2g Âp2 fp1; p2g, then the top segment coalition is completed and T ¤ = fp1g: If

however fp1; p2g ºp2 fp2g; then add p2 to the top segment coalition and move on to p3: Continue to add

players from left to right until a player is reached who is denoted as pl+1 and who strictly prefers staying

alone to joining the growing coalition (or until everyone joins, if such an agent pl+1 is never reached).

Therefore, the top segment coalition is represented by T ¤ = fp1; p2; :::; plg:

Step 2. Let agents from pl+1 until pn each form a one-member coalition.

The top segment partition contains the top segment coalition and all remaining players as singletons

and it is given by ¼¤ = fT ¤; fpl+1g; ::; fpngg.
For the proof of Theorem 14 see Corollary 41 to Theorem 35 in Section 2.5.2.

Remark 15 Note that we could have de…ned the top segment coalition by admitting agents to T ¤ as long

as they strictly prefer joining it to staying alone (as opposed to weak preference). It is easy to construct an

example in which a player is indi¤erent between joining T ¤ and remaining alone. This alternate de…nition

then yields a slightly di¤erent version of the top segment partition ¼¤; that has all the same qualitative

features as the original one. In particular it is both Nash and core-stable. Also, by varying the random

ordering of agents who have the same weight, it is clearly possible to generate other stable variants of ¼¤:

Let us now consider the relationships between purely cardinal preferences and some of the other

properties that have been shown to a¤ect the non-emptiness of the core of games in coalition structure.
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De…nition 16 (Demange [1993]) Agents’ preferences satisfy the intermediate preference property

if it is possible to order the individuals in such a way that for any three individuals i; j; k and any two

coalitions S; T with i > j > k and i; j; k 2 S \ T if it is true that T Âi S and T Âk S; then T Âj S:

Proposition 17 Let agents’ preferences be purely cardinal. Then, the intermediate preference property

is satis…ed.

Proof. Given that preferences are purely cardinal as represented by the weight function w (¢), let us

order individuals from p1 to pn in non-increasing order of their weights. Consider then any three agents

pi > pj > pk and two coalitions S and T with pi; pj ; pk 2 T \ S that satisfy conditions T Âi S and

T Âk S. Such preference relations can be rewritten as

(jT j ¡ jSj)w (pi) +
X

px2T

w (px) ¡
X

px2S

w (px) > 0 (2.11)

and

(jT j ¡ jSj)w (pk) +
X

px2T

w (px) ¡
X

px2S

w (px) > 0 (2.12)

respectively. Suppose …rst that (jT j ¡ jSj) > 0: Then inequality (2.12) and the fact that w (pj) ¸ w (pk)

imply that

(jT j ¡ jSj)w (pj) +
X

px2T

w (px) ¡
X

px2S

w (px) > 0, (2.13)

which in turn yields T Âj S: In the case in which (jT j ¡ jSj) < 0, inequality (2.11) together with

w (pi) ¸ w (pj) lead us back again to condition (4.3) and …nally, even when (jT j ¡ jSj) = 0, agent pj

prefers coalition T to coalition S , because expression (4.3) reduces to
P

px2T w (px) >
P

px2S w (px) in

this case.

In Section 2.5, we will show that the intermediate preference property need not hold when agents’

preferences are required to satisfy a weaker version of pure cardinality.14

De…nition 18 (Banerjee, Konishi, and Sönmez [2001]) (a) A game satis…es the top coalition property

if for any V µ N with V 6= ; there exists a non-empty subset S µ V such that, for any i 2 S and for

any T 2 Ci (V ) ; S ºi T: (b) Given any V µ N with V 6= ;; a non-empty subset S µ V is a weak top

coalition of V if it has an ordered partition fS1; :::; Slg such that: (i) for any i 2 S1 and for any T µ V

with i 2 T we have S ºi T; and (ii) for any k > 1, any i 2 Sk and for any T µ V with i 2 T we have

T Âi S ) T \ ([m<kSm) 6= ;: A game satis…es the weak top coalition property if for any non-empty

set of players V µ N there exists a weak top coalition of V .
14 Greenberg and Weber (1986) have a di¤erent version of the intermediate preference property, which seems less well-

suited to our context. Indeed, it might fail to hold when preferences are purely cardinal and some agents have negative

weights.
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Proposition 19 The assumption of purely cardinal preferences does not imply the weak top coalition

property (and so it does not imply the top coalition property).

Proof. Let N = f1; 2; 3; 4; 5; 6; 7g and let players’ preferences be purely cardinal with weights w (1) =

6; w (i) = 1 for i = 2; 3 and w (j) = ¡2 for j = 4; 5; 6; 7. For each player, the utility of the remaining

players to him is represented by the following table

1 2 3 4 5 6 7

v1 0 7 7 4 4 4 4

v2 7 0 2 ¡1 ¡1 ¡1 ¡1

v3 7 2 0 ¡1 ¡1 ¡1 ¡1

v4 4 ¡1 ¡1 0 ¡4 ¡4 ¡4

v5 4 ¡1 ¡1 ¡4 0 ¡4 ¡4

v6 4 ¡1 ¡1 ¡4 ¡4 0 ¡4

v7 4 ¡1 ¡1 ¡4 ¡4 ¡4 0

:

We will show that there does not exist a weak top coalition of N: The only candidates are coalition N;

which is the coalition on top of player 1’s preferences, coalition f1; 2; 3g which is the best coalition for

both agents 2 and 3 and …nally f1; jg; the best possible coalition for agent j with j = 4; 5; 6; 7. Now, the

grand coalition cannot be a weak top coalition of itself as coalition f4g would be strictly preferred to N

by player 4 and, regardless of the ordered partition of N; coalition f4g is clearly disjoint from those sets

in the ordered partition that do not contain 4 as a member. Coalition f1; 2; 3g cannot be a weak top

coalition of N since player 1 strictly prefers coalition T = f1; 4; 5; 6; 7g to f1; 2; 3g and thus cannot be

put in the necessary ordered partition of f1; 2; 3g. By the same token, coalition f1; jg cannot be a weak

top coalition of N because player 1 strictly prefers f1; 2; 3g to the former and thus cannot be put in the

ordered partition of f1; jg:

2.4.2 Purely Alternating Preferences

Proposition 20 Let agents’ preferences be purely alternating. Then, the set of core-stable partitions

might be empty.

Proof. Let n = 14 and let players’ preferences be summarized by table 2.14.15 Notice that the sum

of utilities in any single row is zero, implying that players’ preferences are indeed purely alternating.

Agents’ preferences can be described as follows. Imagine that players are located on a circle from 1 to 14

in clockwise order. All agents prefer their neighbours to distant players and players can be divided into

two di¤erent categories (namely odd players and even players) according to their preferences. Odd players
15 An example with n = 14 is the smallest we could …nd with an empty core under purely alternating preferences.
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like the individual immediately following them the most, they like all players that are at a distance not

greater than 2 from them, and they also like the odd players that are opposite to them on the circle; they

dislike all remaining agents. Even players, on the contrary, like the individual immediately preceding

them the most, better than the individual immediately following them, they like even players that are at

distance greater than 2 from them, and dislike all other agents.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

v1 0 9 3 ¡13
4 ¡4 ¡13

4 2 ¡5 2 ¡13
4 ¡4 ¡13

4 3 7

v2 9 0 7 ¡6 ¡13
4 5 ¡13

4 2 ¡5 2 ¡13
4 5 ¡13

4 ¡6

v3 3 7 0 9 3 ¡13
4 ¡4 ¡13

4 2 ¡5 2 ¡13
4 ¡4 ¡13

4

v4 ¡13
4 ¡6 9 0 7 ¡6 ¡13

4 5 ¡13
4 2 ¡5 2 ¡13

4 5

v5 ¡4 ¡13
4 3 7 0 9 3 ¡13

4 ¡4 ¡13
4 2 ¡5 2 ¡13

4

v6 ¡13
4 5 ¡13

4 ¡6 9 0 7 ¡6 ¡13
4 5 ¡13

4 2 ¡5 2

v7 2 ¡13
4 ¡4 ¡13

4 3 7 0 9 3 ¡13
4 ¡4 ¡13

4 2 ¡5

v8 ¡5 2 ¡13
4 5 ¡13

4 ¡6 9 0 7 ¡6 ¡13
4 5 ¡13

4 2

v9 2 ¡5 2 ¡13
4 ¡4 ¡13

4 3 7 0 9 3 ¡13
4 ¡4 ¡13

4

v10 ¡13
4 2 ¡5 2 ¡13

4 5 ¡13
4 ¡6 9 0 7 ¡6 ¡13

4 5

v11 ¡4 ¡13
4 2 ¡5 2 ¡13

4 ¡4 ¡13
4 3 7 0 9 3 ¡13

4

v12 ¡13
4 5 ¡13

4 2 ¡5 2 ¡13
4 5 ¡13

4 ¡6 9 0 7 ¡6

v13 3 ¡13
4 ¡4 ¡13

4 2 ¡5 2 ¡13
4 ¡4 ¡13

4 3 7 0 9

v14 7 ¡6 ¡13
4 5 ¡13

4 2 ¡5 2 ¡13
4 5 ¡13

4 ¡6 9 0

(2.14)

There are over 190 million distinct partitions of a 14-element set. However, candidate core-stable

partitions contain only coalitions that are individually rational and have no deviating subcoalitions – the

internally stable coalitions. Professor Davide Cervone wrote an algorithm, implemented in TCL/TK, to

check the example. His algorithm …rst reduces the list of 16;383 nonempty coalitions to the 252 that are

internally stable, and then uses these to build subpartitions, which are partitions of a subset M of N

(because if a subpartition has a deviating coalition S contained in M , then the same S is deviating for

any extension of the subpartition to a partition of N). The rotational symmetries of the example allow us

to further restrict our attention to those subpartitions for which the largest coalition (or tied for largest)

contains agent 1, agent 2, or both, and this brings the number of subpartitions actually checked down to

34;928. Each of these was found to have a deviating coalition (and, in fact, it was enough to consider as

potentially deviating only those coalitions that are internally stable). As a check, we ran the algorithm

on an earlier, unsuccessful 10-agent example that was found (by hand calculation) to have a core-stable

partition; the algorithm identi…ed that partition as the unique (up to symmetry) core-stable partition of

29



the example.

The example was constructed to have a number of cyclical coalitional deviations. For example,

consider the coalition structure ¼1 = f1; 2; 3 j 5; 6; 7 j 11; 12; 13 j C1g where the set C1 ´ f4; 8; 9; 10; 14g
might consist of a single coalition, or might be partitioned as f8; 9 j 4; 10; 14g or f9; 10 j 4; 8; 14g : A

pro…table deviation is represented by f7; 8; 9g, which leads to coalition structure ¼2 = f1; 2; 3 j 7; 8; 9 j
11; 12; 13 j C2g; where C2 ´ f4; 5; 6; 10; 14g, which again might consist of a single coalition or might

itself be partitioned as f4; 5 j 6; 10; 14g or f5; 6 j 4; 10; 14g : A pro…table deviation is now represented by

f3; 4; 5g, which leads to ¼3 = f3; 4; 5 j 7; 8; 9 j 11; 12; 13 j C3g; with C3 ´ f1; 2; 6; 10; 14g : Coalition

f13; 14; 1g blocks partition ¼3 and this yields coalition structure ¼4 = f13; 14; 1 j 3; 4; 5 j 7; 8; 9 j C4g
where C4 ´ f2; 6; 10; 11; 12g : Now, agents in f9; 10; 11g …nd it bene…cial to deviate and thus partition

¼5 = f13; 14; 1 j 3; 4; 5 j 9; 10; 11 j C5g is formed, with C5 ´ f2; 6; 7; 8; 12g and f5; 6; 7g being the blocking

coalition. This leads to the partition ¼6 = f13; 14; 1 j 5; 6; 7 j 9; 10; 11 j C6g; with C6 ´ f2; 3; 4; 8; 12g
and with coalition f1; 2; 3g deviating, which yields partition ¼7 = f1; 2; 3 j 5; 6; 7 j 9; 10; 11 j C7g; where

C7 ´ f4; 8; 12; 13; 14g : The incentive to deviate comes from coalition f11; 12; 13g and this leads back to

partition ¼1:

It seems plausible that if a pro…le of symmetric and additively separable preferences (v1; :::; vn) is

such that the purely alternating component is su¢ciently small as compared to the purely cardinal

component, then core-stable partitions might always be found. By this we mean that the magnitude of

all the components of vector vALT has to be signi…cantly smaller than the magnitude of the corresponding

components of vCARD in such a way that a common ordering of individuals is still preserved. It is this

consideration that motivates the following section.

2.5 Stability under Descending Separable Preferences

Our goal in this section is to isolate, in the form of a set of properties, termed DS preferences for

Descending Separable preferences, those features of purely cardinal preferences that appear to be actually

necessary in proving the existence of Nash and core-stable partitions (Theorem 14). The elements of

this package fall into roughly four types. The properties of the …rst two types, descending desirability of

players that is common to other players (named CRI below) and descending desire of players for other

players, require that we assume the existence of a strict linear reference ranking of individuals,

p1 > p2 > ::: > pn (2.15)

When agents’ preferences are purely cardinal, this ranking is generated by the descending cardinal weights

associated to each player (where players of equal weight are ordered arbitrarily). Properties of the third

type are weak forms of additive separability, and thus entail a relationship between the original ranking
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(2.15) of players and the preference rankings that players have over coalitions. Finally, the property of

the fourth type is a weak form of symmetry.

2.5.1 Descending Separable Preferences

In the list of properties that follows, each player pi is assumed to have a preference ordering ºpi over

Cpi (N) ; that is over the collection of subsets of N which include pi: The properties we call conditions in

what follows actually enter in the de…nition of DS preferences while these presented as de…nitions appear

only for comparison purposes.

Condition 21 Common Ranking of Individuals (CRI) For any three distinct players pi; pj and

pk, if pj > pk then fpi; pjg ºpi fpi; pkg.

Property CRI states that the relative desirability of various individuals to any …xed player weakly

decreases as we move to the right in the reference order; that is, players share a roughly common ranking

over the other players. Recall that this condition does not imply the same absolute distinction between

good and bad individuals, and hence does not imply a common ranking of coalitions.

Condition 22 Descending Desire (DD). For any pair pi; pj of distinct players with pi > pj and for

any coalition X containing neither player pi nor pj, if fpjg [ X ºpj fpjg then fpig [ X ºpi fpig and if

fpjg [ X Âpj fpjg then fpig [ X Âpi fpig.

Property DD states that the absolute appeal of any …xed coalition to various players weakly decreases

as we move to the right in the reference order.

De…nition 23 Separable Preferences (SP). For any two distinct players pi and pj and any coalition

X such that pj =2 X and pi 2 X; we have fpi; pjg ºpi fpig if and only if fpjg[X ºpi X and fpi; pjg Âpi

fpig if and only if fpjg [ X Âpi X:

Property SP states that the e¤ect of an absolutely desirable (respectively, undesirable) individual pj on

a player’s preferences remains positive (respectively, negative), regardless of which additional individuals

belong to the player’s coalition. A useful consequence of separability of preferences is the following.

De…nition 24 Iterated Separable Preferences (ISP). Let pi be any player and let X and Y be two

coalitions such that X \ Y = ; and pi 2 X: If fpi; yg ºpi fpig for every y 2 Y , then X [ Y ºpi X, and

if fpi; yg Âpi fpig for every y 2 Y , then X [ Y Âpi X.

To derive Condition 24 from separable preferences, add the members of coalition Y to X in a step-

by-step fashion, applying de…nition SP at each step.
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Condition 25 Group Separable Preferences (GSP). For any player pi and for any two disjoint

coalitions X and Y with pi 2 XnY , if fpig[Y ºpi fpig then X [Y ºpi X and if fpig[Y Âpi fpig then

X [ Y Âpi X.

Property GSP states that the e¤ect of an absolutely desirable coalition Y on a player’s preferences re-

mains positive, regardless of which additional individuals belong to the player’s coalition. This particular

form of group separability does not imply SP because it does not require that an undesirable coalition

have a consistently negative e¤ect in the presence of others.

Condition 26 Responsive Preferences (RESP). For any triple of players pi; pj ; pk and any coalition

X such that pj ; pk =2 X and pi 2 X; fpi; pjg ºpi fpi; pkg if and only if fpjg [ X ºpi fpkg [ X and

fpi; pjg Âpi fpi; pkg if and only if fpjg [ X Âpi fpkg [ X:

Property RESP states that the relative appeal of two given players to a third player is the same,

regardless of which additional players belong to the coalition containing such a third player. Note that

responsiveness does not imply separability.

Conditions CRI and RESP together imply the following property.

De…nition 27 Right-Shifted Coalitions. For any two coalitions X and Y both containing player pi,

if X ¸SRS Y then X ºpi Y:

Here X ¸SRS Y means that coalition Y is a simple right-shift of X. Either Y = X or coalition Y is

obtained from X by replacing one or more members pj of X with members pk to their right (i.e. such

that pj > pk) not already in the coalition. Thus X ¸SRS Y implies jXj = jY j.16 Hence, the condition

above says that the appeal of a shifting coalition to a given player weakly decreases as the coalition shifts

to the right. In order to derive De…nition 27 from properties 21 and 26, replace members of coalition X

by those of Y in a step-by-step fashion, working from right to left (that is starting with the player with

highest index). For example, let X = fp1; p3; p4; p7g and Y = fp1; p4; p8; p9g. Then we obtain that, for

agent p1 2 X \ Y , the following preference ordering holds

fp1; p3; p4; p7g ºp1 fp1; p3; p4; p9g ºp1 fp1; p3; p8; p9g ºp1 fp1; p4; p8; p9g;

thus implying that X ºpi Y:

De…nition 28 Mutual Preferences: For any pair pi; pj of distinct players, fpi; pjg ºpi fpig if and

only if fpi; pjg ºpj fpjg and fpi; pjg Âpi fpig if and only if fpi; pjg Âpj fpjg.

One player …nds another player desirable if and only if the latter …nds the former desirable.
16 In the standard version of the right-shift order, a right shift Y of X is obtained by replacement together with additions,

so that jXj · jY j: We use the quali…er “simple” to distinguish the version we intend.
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De…nition 29 Descending Mutual Preferences. For any pair pi; pj of distinct players with pi > pj,

if fpi; pjg ºpj fpjg then fpi; pjg ºpi fpig and if fpi; pjg Âpj fpjg then fpi; pjg Âpi fpig.

The latter condition describes a weaker form of mutuality because possibly pi likes pj but pj dislikes

pi when pj is to the right of pi.

Condition 30 Replaceable Preferences (REP): For any pair pi; pj of distinct players with pi > pj

and for any coalition X containing neither player pi nor pj, if fpi; pjg[X ºpj fpjg then fpi; pjg[X ºpi

fpig and if fpi; pjg [ X Âpj fpjg then fpi; pjg [ X Âpi fpig.

Condition REP implies descending mutual preferences (simply take coalition X to be the empty set)

and through this connection is the sole member of our …nal package containing a measure of symmetry.

However, REP also bears a resemblance to DD, leaving some doubt over the extent to which the roles of

symmetry and of descending desire can be disentangled in the proof of Theorem 35.

De…nition 31 A pro…le (º1;º2; :::;ºn) of agents’ preferences is said to be descending separable

(DS) if there exists a reference ordering (2.15) under which Conditions 21 (CRI), 22 (DD), 23 (SP), 25

(GSP), 26 (RESP), and 30 (REP) all hold.

Let us provide an example in order to show how the conditions previously stated interact with each

other and with other properties appearing in the literature.

Example 32 Let players be N = f1; 2; 3; 4; 5g and let each agent’s preferences over the remaining players

in society be summarized by the following pro…le, satisfying CRI and descending mutuality.

1 : f2g Â1 f3g Â1 f4g Â1 f5g Â1 ;; (2.16)

2 : f1g Â2 f3g Â2 f4g Â2 ; Â2 f5g ;

3 : f1g Â3 f2g Â3 ; Â3 f4g Â3 f5g ;

4 : f1g Â4 ; Â4 f2g Â4 f3g Â4 f5g ;

5 : ; Â5 f1g Â5 f2g Â5 f3g Â5 f4g :

Thus, the underlying linear ordering of players according to their desirability is 1 > 2 > ::: > 5: Players’

preferences over coalitions to which they belong must then be related to the ordering 2.16 through the

conditions SP,GSP, RESP, DD, and REP.
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Such a preference pro…le can be described as in (2.17) below

1 : f1; 2; 3; 4; 5g Â1 f1; 2; 3; 4g Â1 f1; 2; 3; 5g Â1 f1; 2; 3g Â1 f1; 2; 4; 5g Â1

f1; 3; 4; 5g Â1 f1; 2; 4g Â1 f1; 2; 5g Â1 f1; 3; 4g Â1 f1; 2g Â1 f1; 3; 5g Â1

f1; 3g Â1 f1; 4; 5g Â1 f1; 4g Â1 f1; 5g Â1 f1g ;

2 : f1; 2; 3; 4g Â2 f1; 2; 3g Â2 f1; 2; 4g Â2 f1; 2g Â2 f2; 3; 4g Â2

f1; 2; 3; 4; 5g Â2 f2; 3g Â2 f2; 4g Â2 f1; 2; 3; 5g Â2 f1; 2; 4; 5g Â2 f2g Â2

f2; 3; 4; 5g Â2 f1; 2; 5g Â2 f2; 3; 5g Â2 f2; 4; 5g Â2 f2; 5g ;

3 : f1; 2; 3g Â3 f1; 3g Â3 f2; 3g Â3 f1; 2; 3; 4g Â3 f3g Â3 f1; 3; 4g Â3

f2; 3; 4g Â3 f1; 2; 3; 5g Â3 f1; 2; 4; 3; 5g Â3 f3; 4g Â3 f3; 5g Â3

f1; 3; 4; 5g Â3 f1; 3; 5g Â3 f2; 3; 5g Â3 f2; 3; 4; 5g Â3 f3; 4; 5g ;

4 : f1; 4g Â4 f1; 2; 4g Â4 f4g Â4 f1; 3; 4g Â4 f1; 4; 5g Â4 f2; 4g Â4

f1; 2; 3; 4g Â4 f3; 4g Â4 f1; 2; 4; 5g Â4 f2; 3; 4g Â4 f4; 5g Â4

f2; 4; 5g Â4 f1; 3; 4; 5g Â4 f1; 2; 3; 4; 5g Â4 f3; 4; 5g Â4 f2; 3; 4; 5g ;

5 : f5g Â5 f1; 5g Â5 f2; 5g Â5 f3; 5g Â5 f4; 5g Â5 f1; 2; 5g Â5 f1; 3; 5g Â5

f1; 4; 5g Â5 f2; 3; 5g Â5 f1; 2; 3; 5g Â5 f2; 4; 5g Â5 f3; 4; 5g Â5

f1; 2; 4; 5g Â5 f1; 3; 4; 5g Â5 f2; 3; 4; 5g Â5 f1; 2; 3; 4; 5g :

(2.17)

We conclude with two propositions that point to the extent to which the assumption of DS preferences

is weaker than that of purely cardinal preferences.

Proposition 33 The descending separable preference property neither implies nor is implied by the prop-

erty of additive separability.

Proof. It is straightforward to construct a four-agent preference pro…le satisfying symmetric additive

separability with the property that two of the agents di¤er in their ranking of the other two. Clearly,

there is no common ranking of individuals, so such preferences do not satisfy DS.

The pro…le of preferences (2.17) in Example 32 satis…es all conditions which de…ne DS preferences

but agents’ preferences are not additively separable. Indeed, let us consider the preference ordering of

agent 1: He strictly prefers coalition f1; 3; 4; 5g to f1; 2; 4g and at the same time he would be strictly

better-o¤ in f1; 2g rather than in f1; 3; 5g : Thus, were player 1’s preferences additively representable, we

would need both v1 (f1; 3; 4; 5g) > v1 (f1; 2; 4g) ; which would imply v1(3)+v1 (5) > v1 (2) ; and v1 (f1; 2g)
> v1 (f1; 3; 5g) ; which would instead lead to v1(3) + v1 (5) < v1 (2) : Obviously, there does not exist a

real-valued function v1 satisfying both inequalities at the same time.

Recall that purely cardinal preferences always satisfy the intermediate preference property, perhaps

suggesting a link between our results and some of the earlier results from the literature that provide

su¢cient conditions for stable coalitional structures. However, the following proposition suggests that

any such link may be weaker than it …rst appears to be.
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Proposition 34 Let agents’ preferences satisfy the descending separable preference property. Then, the

intermediate preference property need not hold.

Proof. Consider N = f1; 2; :::; 7g and the pro…le of purely cardinal preferences generated by the

following individual weighs: w (1) = 3; w (2) = 2; w (3) = 1; w (4) = ¡200; w (5) = ¡300; w (6) = ¡400

and w (7) = ¡500: Notice that agents 1; 2 and 3 are each indi¤erent between coalitions f1; 2; 3; 4; 7g and

f1; 2; 3; 5; 6g. Now modify slightly these agents’ preferences in such a way that

f1; 2; 3; 5; 6g Â1 f1; 2; 3; 4; 7g and f1; 2; 3; 5; 6g Â3 f1; 2; 3; 4; 7g;

whereas

f1; 2; 3; 4; 7g Â2 f1; 2; 3; 5; 6g;

The resulting preference pro…le is no longer purely cardinal, it satis…es the DS preference property but

it does not satisfy the intermediate preference property.

2.5.2 Stability of the Top Segment Partition

The existence of coalition partitions with desirable properties is guaranteed when agents have DS pref-

erences.

Theorem 35 Consider a hedonic coalition formation game and let agents’ preferences be descending

separable. Then, there always exists a coalition structure that is both core-stable and Nash-stable.

The proof will proceed by constructing a coalition structure via the same technique used in Section

2.4.1 and showing, through a sequence of lemmata, that it is both core-stable and Nash-stable.

For a given linear ordering of players p1 > p2 > ::: > pn; construct the top segment partition ¼¤

according to the same steps as in Section 2.4.1. Recall that the top segment partition is represented

by ¼¤ = fT ¤; fpl+1g; ::; fpngg; where T ¤ is called the top segment coalition and is formed by the …rst l

players in the ordering.

The proof that ¼¤ is core-stable follows immediately from Lemmata 36 through 40.

Lemma 36 Every coalition C 2 2N which is individually rational contains at most l members.

Proof. By construction of the top segment coalition, agent pl+1 is such that fpl+1g Âpl+1 T ¤[fpl+1g :

By the right-shifted coalitions property, any right-shift C of coalition T ¤ omitting player pl+1 must satisfy

that T ¤ [ fpl+1g ºpl+1 C [ fpl+1g : Then coalition C [ fpl+1g ; which contains exactly l + 1 members, is

not individually rational for agent pl+1. Now, by descending desire, fpl+sg Âpl+s C [ fpl+sg for every

individual pl+s < pl+1 with pl+s =2 C; implying that no coalition of size l+1 is individually rational. The

same conclusion holds for coalitions of size greater than l + 1.
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Lemma 37 Partition ¼¤ is individually rational.

Proof. It su¢ces to prove that coalition T ¤ is individually rational. Consider agents pl and any

individual pi 2 T ¤n fplg. By construction, pl weakly prefers T ¤ to fplg, and so by replaceable preferences

T ¤ ºpi fpig, which says that pi at least as well o¤ being a member of T ¤ as being alone.

Since for pl (the last player included in the top segment coalition) T ¤ ºpl fplg holds, it must be

the case that there exists some player pi 2 T ¤n fplg for whom fpl; pig ºpl fplg: Why? Suppose that

for every pi 2 T ¤n fplg we have fplg Âpl fpl; pig: Then iterated separable preferences would imply that

fplg Âpl T ¤, contradicting the individual rationality of the top segment partition. Now, each agent

pi 2 T ¤n fplg for whom fpl; pig ºpl fplg satis…es that fpl; pig ºpi fpig, by descending mutuality. Hence,

the set of all agents pi > pl who consider player pl to be a good player is non-empty.

By DD this set forms an initial segment T ¤¤ ´ fp1; p2; :::; pfg of players contained in T ¤, where player

pf > pl is the member of T ¤n fplg with the highest index for whom fpl; pfg ºpf fpfg still holds. It is

easy to show that members of coalition T ¤¤ rank the top segment coalition in the same way.

Lemma 38 For each of the players in T ¤¤ = fp1; p2; :::; pfg ½ T ¤; coalition T ¤ is top ranked among

individually rational coalitions (or tied for top). Therefore, if ¼¤ is not in the core of a coalition structure,

no deviating coalition C can contain any of the players in T ¤¤.

Proof. Let pi be any player such that pi 2 T ¤¤ and let D be any individually rational coalition

containing pi. By left-shifting D to the greatest possible extent while keeping pi as a member, we form a

coalition C which is such that C ºpi D (and such that C is a subset of T ¤ by Lemma 36). Now, any player

pj 2 T ¤nfpig is good to agent pi; (that is, fpi; pjg ºpi fpig), because fpi; plg ºpi fpig for all members

of T ¤¤ and either pj = pl or pj > pl, in which case fpi; pjg ºpi fpi; plg by CRI. If coalition C omits any

such players pj 2 T ¤nfpig; then SP implies that fpjg [ C ºpi C and adding in the remaining members

of T ¤nfpig continues to give a coalition that is at least as good as C to pi. Hence, T ¤ ºpi C ºpi D, as

desired.

Lemma 39 Let C be any non-empty coalition such that C 6½ T ¤: Assume that all agents pi 2 C \ T ¤

are such that C Âpi T ¤ and all agents pj 2 CnT ¤ are such that C Âpj fpjg. Then fplg is not the sole

member of C \ T ¤ and all members of C \ T ¤ strictly prefer C \ T ¤ to C.

Proof. For each agent pi 2 C \ T ¤; coalition C is strictly preferred to T ¤, so by Lemma 38, none of

the players p1; p2; :::; pf forming coalition T ¤¤ are in C. This implies that each agent pi 2 C \ T ¤nfplg
has preferences such that fpig Âpi fpi; plg; and by CRI this leads to fpig Âpi fpi; psg for all ps < pl. In

particular, we have that fpig Âpi fpi; pjg for each agent pj 2 CnT ¤: Therefore expanding C \ T ¤ to C;

by adding in the members of CnT ¤ one at a time, strictly decreases the appeal of the coalition to pi at
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each step. Hence, pi strictly prefers C \ T ¤ to C. To handle the case pi = pl, …rst note that by CRI and

iterated separable preferences, our assumption that all agents pj 2 CnT ¤ are such that C Âpj fpjg rules

out the possibility that pl is the sole member of C \T ¤. It cannot be for ps 2 CnT ¤ that fpl; psg ºpl fplg
else choose any pi 2 C \ T ¤nfplg and it would follow by DD that fpi; psg ºpi fpig, contradicting what

we just showed above. Hence fplg Âpl fpl; psg for all ps 2 CnT ¤, and we may conclude, as above, that

pl also strictly prefers C \ T ¤ to C.

Lemma 40 Let C be any coalition containing at least two players such that C ½ T ¤ and let pc denote

the leftmost member of C. Then agent pc weakly prefers coalition T ¤ to C.

Proof. Let coalition A consist of the members of T ¤nC who lie to the left of pc according to the

reference ranking of players and let coalition B be formed by those members of T ¤nC who lie to the right

of pc. Therefore, coalitions A, B and C are all disjoint and T ¤ = A [ B [ C.17

There are two possible cases to consider.

Case (1) Assume that B = ;: Subcase (1a) Assume that, for each individual pi such that pi > pc,

fpc; pig ºpc fpcg holds. Condition ISP implies then that pc weakly prefers T ¤ to C; because coalition

T ¤nC is formed by players that are all good to pi. Subcase (1b) : Assume that, for some pi such that

pi > pc, it happens that fpcg Âpc fpc; pig. It then follows that fpcg Âpc fpc; pjg for each pj 2 C as

pi > pj and CRI applies. Property ISP implies now that pc strictly prefers being alone to being a

member of C. But pc weakly prefers T ¤ to fpcg by Lemma 37, hence transitivity of preferences yields

that pc strictly prefers T ¤ to C.

Case (2) Assume that B 6= ; and let pb denote the rightmost member of B. Subcase (2a) Assume that

pb weakly prefers fpb; pcg to fpbg. Then, since pc > pb by construction, decreasing mutuality leads to

fpb; pcg ºpc fpcg, from which it follows that pc weakly prefers being paired with any individual in A [B

to staying alone. And by property ISP we obtain once again that pc weakly prefers T ¤ to C. Subcase

(2b) Assume that pb is such that fpbg Âpb fpb; pcg: Then pb strictly prefers staying alone to being paired

with any member of C. Condition ISP implies that pb has the following preference ordering

A [ B [ fpcg Âpb A [ B [ C = T ¤ ºpb fpbg:

As pb strictly prefers A [ B [ fpcg to being alone, pc strictly prefers A [ B [ fpcg to fpcg because of

property REP. Finally, it follows that pc strictly prefers A [ B [ C = T ¤ to C because A [ B is a good

coalition and condition GSP applies.18

Let us now go back to the proof of the main theorem.
17 Either coalition A or coalition B might be empty, but not both, otherwise C = T ¤, contradicting the premises of the

Lemma.
18 Notice that we used condition GSP in the proof of this lemma, whereas condition SP su¢ced in all preceeding Lemmata.
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Proof of Theorem 35. Consider the facts established in Lemmata 36 through 40. If there is a

coalition C that defects from ¼¤ then: (i) C contains members from both T ¤ and NnT ¤, or (ii) C is a

proper subset of T ¤, or (iii) C is disjoint from T ¤. Lemma 39 says that if the deviating coalition is such

that (i) holds, then it triggers another deviation for which (ii) holds. But Lemma 40 says that (ii) never

happens as no deviating coalition could be a proper subset of the top segment coalition. It is easy to see

that DD rules out (iii). Being immune to all possible coalitional deviation, partition ¼¤ is thus in the

core of a coalition structure.

It remains to check that DS preferences imply Nash stability of the top segment partition ¼¤. First,

¼¤ is immune to unilateral deviations of individuals in NnT ¤. No player outside of T ¤ would be weakly

better o¤ by joining T ¤ than by staying alone, because we have fpl+1g Âpl+1 T ¤ [fpl+1g by construction.

Descending desire in turn yields that all players that lie to the right of pl+1 also have this preference.

Moreover, pl+1 is such that fpl+1g Âpl+1 fpl; pl+1g : Properties DD and CRI then imply that for any

two distinct individuals pi and pj lying to the right of pl, fpig Âpi fpi; pjg. Therefore, no two players

outside of T ¤ would …nd it pro…table to merge. As for agents in T ¤, Lemma 37 says that each individual

pi 2 T ¤ weakly prefers belonging to T ¤ to being by himself. Lemma 38 then tells us that for all members

of coalition T ¤¤ = fp1; p2; :::; pfg the top segment coalition T ¤ is top-ranked among individually rational

coalitions (or tied for top). This means that individuals in T ¤¤ weakly prefer staying in T ¤ to joining any

of the singletons fpsg with ps < pl. Players pj 2 T ¤nT ¤¤ such that pj < pf strictly prefer fpjg to fpj ; plg
by de…nition of player pf , and so by condition CRI we have fpjg Âpj fpj ; psg for any such individual pj

and any ps < pl. Transitivity of preferences then leads to T ¤ Âpj fpj ; psg for all pj 2 T ¤nT ¤¤ and all

ps < pl: This completes the proof of Nash stability of the partition ¼¤.

The results established in the lemmata and in Theorem 35 also hold in the case in which agents’

preferences are purely cardinal.

Corollary 41 Let individuals’ preferences be purely cardinal. Then, there always exist coalition partitions

that are both Nash-stable and in the core of a coalition structure.

Proof. It is easy to check that each of the conditions CRI, SP, GSP, RESP, DD and REP that make

up DS follows from the assumption of purely cardinal preferences, so that the premises of Theorem 35

hold and its results follow.
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