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Los rasgos de pigmentación humana son los rasgos físicos más visibles y diferenciables

entre individuos. La pigmentación basal es un rasgo de carácter poligénico con alta

heredabilidad, influenciada por factores ambientales, genéticos y endocrinos. La

exposición solar estimula la síntesis de melanina mediante la activación de las rutas de

pigmentación humana, con el objetivo de proteger la piel de los efectos nocivos de la luz

solar. La incidencia del cáncer de piel revela una clara relación entre los rasgos de

pigmentación y los daños causados por la exposición solar, mostrando una mayor

susceptibilidad a cáncer aquellos individuos con piel clara, ojos claros, cabello rojo o

rubio, un elevado número de nevus o efélides, y que se broncean con dificultad. Además,

estudios recientes muestran una diferencia tanto en las características de pigmentación así

como en la prevalencia e incidencia de melanoma entre sexos, lo que sugiere que existe

un factor relacionado con el sexo que contribuye a las diferencias observadas entre

hombres y mujeres. Por lo tanto, el objetivo principal de esta tesis doctoral es ampliar el

conocimiento actual sobre las bases moleculares de la pigmentación humana y la

predisposición a cáncer de piel, especialmente a melanoma cutáneo.

Los resultados incluidos en esta tesis doctoral se organizan en cuatro capítulos, tres de

ellos publicados en revistas científicas internacionales indexadas. En el capítulo 1, se

realiza un análisis de asociación en una población de origen español con el objetivo de

identificar las posibles diferencias entre hombres y mujeres en la pigmentación y el riesgo

a melanoma. Los resultados revelan la existencia de efectos genéticos que influyen en la

pigmentación humana según el sexo, con efectos mayores para rasgos de pigmentación

más oscura en las mujeres en comparación con los hombres, así como para el riesgo de

melanoma.

En el capítulo 2, mediante el análisis de varios genes de pigmentación en una población

española, se buscó esclarecer la disparidad sexual en la epidemiología del melanoma, así
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como en las diferencias en la capacidad de bronceado y la sensibilidad de la piel a la

exposición solar observada entre sexos. Los resultados sugieren la existencia de

diferencias en la capacidad de bronceado y sensibilidad a la luz solar entre mujeres y

hombres en las poblaciones caucásicas. Un meta-análisis integrando datos de estudios

previamente publicados confirmó nuestros resultados. Además, nuestros resultados

sugieren que las diferencias en el fototipo de la piel entre sexos deberían ser en parte

causadas por los efectos genéticos de gen MC1R y sus variantes.

En el capítulo 3, se investiga el impacto de polimorfismos localizados en la región 3’UTR

en la pigmentación humana y en la sensibilidad solar. Dos SNPs en los genes MLPH y

WNT3A mostraron una interesante asociación con número de nevus y con presencia de

lentigos solares, respectivamente. A continuación, se analizaron los efectos de estas dos

variantes génicas en la unión de microARNs mediante herramientas de predicción online.

Los resultados de predicción obtenidos se validaron al confirmar que los microARNs que

se unen a MLPH y WNT3A influyen en rutas relacionadas con la pigmentación humana y

cáncer de piel: vía de señalización Wnt, vía de señalización MAPK, y carcinoma

basocelular.

En el último capítulo (capítulo 4), se investiga si la herencia sinérgica de mutaciones en

los genes CDKN2A y MC1R sensibiliza a los melanocitos frente a los efectos dañinos de

la radiación ultravioleta (UV), aumentando así la posibilidad de su transformación

maligna a melanoma. Como los melanocitos portadores de mutaciones en CDKN2A

mostraron un comportamiento in vitro normal, podrían ser necesarias alteraciones

genéticas y epigenéticas adicionales para transformar dichos melanocitos.
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Human pigmentation traits are some of the most visible and differentiable human

characteristics. Basal cutaneous pigmentation is a polygenic quantitative trait with high

heritability, being influenced by genetic, environmental and sex-endocrine factors.

Ultraviolet (UV) exposure stimulates the synthesis of melanin in melanosomes via

activation of human pigmentation pathways, with the aim of protecting skin from the

harmful effects of sunlight. Skin cancer incidence reveals a clear relationship between

genetically controlled pigmentation traits and sunlight damage, showing greater cancer

susceptibility in those individuals with fair skin, lightly-coloured eyes, red and blond hair,

high naevus count, freckles, and inability to tan. Besides, recent findings showing sexual

disparity in skin pigmentation and melanoma incidence and outcome suggest that there is

a sex-related factor contributing to the observed differences between males and females.

Therefore, the general objective of this thesis is to expand the current knowledge on the

molecular bases of human pigmentation and predisposition to skin cancer, mainly

cutaneous melanoma.

The results included in this thesis are organized in four chapters, three of them having

been published in indexed international scientific journals. In chapter 1, we perform an

association analysis in a Spanish melanoma case-control population with the aim of

shedding some light on the putative sex-related genetic differences in pigmentation

phenotypes as well as in melanoma risk. Our results suggest that there are indeed sex-

specific genetic effects in human pigmentation, with larger effects for darker

pigmentation in females compared to males, as well as for melanoma risk.

In chapter 2, by analysing several pigmentation genes in a Spanish population, we try to

clarify the presumed sex disparity in melanoma epidemiology, and the differences in

tanning ability and skin sensitivity to UV-light exposure observed between sexes. Our

results suggest that there are differences in tanning ability and sensitivity to sunlight
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between females and males in Caucasian populations. These findings were validated by

performing a meta-analysis with the results of several previously published studies. In

addition, our study suggested that the sex-specific differences in skin phototype might be

partly caused by sex-specific genetic effects mediated by the MC1R gene and its variants.

In chapter 3, we investigate the impact of 3’UTR SNPs in human pigmentation and

response to sunlight. Two SNPs in the MLPH and WNT3A genes showed an interesting

association with high naevus count and the presence of solar lentigines, respectively. The

effects of these two SNPs in microRNA binding were then modelled using web-based

prediction tools. To validate our prediction results, the microRNAs predicted to bind to

both MLPH and WNT3A were confirmed through identification of their target

pigmentation-related pathways: ‘Wnt signalling’, ‘MAPK signalling’ and ‘basal cell

carcinoma’.

In the last chapter (chapter 4), we investigated if the co-inheritance of germline mutations

in CDKN2A and MC1R synergistically sensitizes melanocytes to the damaging effects of

UV, and thus increases the chance for malignant transformation to melanoma. As p16-

mutated melanocytes showed normal in vitro behaviour, additional somatic genetic or

epigenetic changes may be needed to transform melanocytes.
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1. THE BIOLOGY OF HUMAN SKIN PIGMENTATION

1.1. The architecture of human skin

The skin is the largest organ of the human body, accounting for around 16% of the body’s

weight, and with a surface area of 1.5-2 m2. As the outer covering of the human body, the

skin plays an essential role in providing protection against damaging exogenous

influences, such as ultraviolet (UV) radiation, toxicants, microorganisms or mechanical

injuries, which may disturb the physiological status of the individual enclosed by the skin

(1). In addition to this protecting function, the skin seems also to be involved in the

regulation of the body temperature through transpiration, as well as in the synthesis of

Vitamin D, an essential hormone needed for stable composition of bones and teeth,

immune regulation, intestinal absorption of calcium, and for insulin secretion (2). The

human skin consists of three layers: the epidermis, the layer in direct contact with the

external environment; the dermis, the layer composed by connective tissue below the

epidermis; and the hypodermis, the deeper skin layer consisting of fatty tissue that

connects the dermis to musculoskeletal components (Figure 1).

1.1.1. Epidermis

The epidermis, the outermost layer of the human skin, is composed of distinct cell

populations organized in four stratums (Figure 1). Regarding pigmentation, the main

constituents of the epidermis are melanocytes and keratinocytes (whose specific role will

be discussed below). Melanocytes, known as the pigment-producing cells, are located in

the basal stratum of the epidermis. Keratinocytes, the predominant cell type in the

epidermis, migrate towards the surface of the epidermis during their differentiation
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process. Thus, the epidermis is composed of four functionally distinct stratums of

keratinocytes at different differentiation stages. Other cell populations found in the

epidermis are Merkel cells, essential cells for touch sensation transmission; and

Langerhans’ cells, antigen-presenting immune cells residing in the basal and suprabasal

skin stratums (3). This cell population plays a critical role in immunological adaptive

reactions and therefore in the protection against infections from pathogens and hazardous

substances (4).

Figure 1. Structure of the human skin. The three different skin layers and components are schematically

represented. The four epidermal layers are displayed in the box, showing the organization of the main cell

populations within the epidermis. Figure retrieved and modified from http://author.webset-

lms.com/repository/4431/0fcd5720-88de-44e0-8c09-9f03143bc201.jpg. Epidermal cross-section retrieved

from https://s-media-cache-ak0.pinimg.com/originals/f7/e6/42/f7e6424a8e611f176cc33a1ac004d074.jpg.

1.1.2. Dermis

Lying below the epidermis is the dermis, a thick layer of connective tissue – made mostly

of collagen, elastin and fibrillin – that provides flexibility and strength to the skin. The
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dermis is mainly made up of fibroblasts, which are required to produce collagen, elastin

and structural proteoglycans. This layer also hosts cells of the immune system such as

macrophages and mast cells. Accommodated within fibrous dermal tissue are blood and

lymphatic vessels, nerve endings, sweat and sebaceous glands, and hair follicles.

Together with providing protection from mechanical injury, the main function of the

dermis is to support the epidermis by bringing nutrients and oxygen, as well as by

removing waste products from cell metabolism. It also assists in thermal regulation and

includes receptors of sensory stimuli that transmit sensations of pain, irritation and

pressure to the brain for interpretation (3).

1.2. The epidermal melanin unit

The epidermal melanin unit is a functional and structural biological complex within the

epidermis denoting the symbiotic interaction between a melanocyte and a surrounding

population of keratinocytes (5). It is now clear that the basic mechanism for human

pigmentation and photoprotection involves the melanin synthesis within melanosomes,

the transfer of these pigmented melanosomes from each melanocyte to its associated

keratinocytes, and the distribution of these melanosomes into keratinocytes.

1.2.1. Melanocytes: the melanin producing cells

Melanocytes are specialized dendritic cells derived from the neural crest that reside in the

basal stratum of the skin epidermis. These cells play an essential role in human

pigmentation via their ability to produce melanin (6). Melanin, an irregular light-

absorbing biopolymer, is the main determinant of skin, hair and eye colour. The two forms
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of cutaneous melanin are eumelanin, an insoluble black-brown polymer, and

phaeomelanin, a red-yellow polymer of benzothiazine units that is mostly responsible for

red hair and freckles (7). Melanin is produced and enclosed within melanosomes,

lysosome-related organelles that are transferred from melanocytes to keratinocytes

through the latter’s dendrites (8). All human races appear to have approximately the same

amount of epidermal melanocytes, indicating that racial diversity in skin pigmentation

depends on the amount and type of melanin within melanosomes, as well as on the

number, size, and distribution of melanosomes in the epidermis (9).

1.2.1.1. Melanosome biogenesis, transport and transfer

Once established in the epidermal-dermal junction, melanocytes start producing

melanosomes, extremely organized membrane-bound organelles wherein melanin

synthesis occur. The development and maturation process of the melanosome takes place

in the Golgi and endoplasmic reticulum, where it receives all enzymatic and structural

proteins required for melanogenesis (Figure 2). Melanosomes are typically divided into

four maturation stages (I–IV) depending on their structure and the quantity, nature, and

disposition of the melanin produced (10). The type of melanin produced determines the

appearance of mature melanosomes, with eumelanosomes being large and ellipsoidal and

phaeomelanosomes small and spherical. This is because only eumelanosomes progress to

maturation stages III and IV, while phaeomelanosomes are probably arrested in stage II

having minimal tyrosinase activity – a critical enzyme in the synthesis of eumelanin (11).

As soon as they mature, melanosomes are trafficked away toward the periphery of the

cell within the dendrites. The molecular complex required for melanosome intracellular

transport from microtubules to actin filaments at the cell periphery consists of Rab27a,
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melanophilin and MyosinVa. Mutations in any one of these genes result in

hypopigmentation of the skin and hair due to the accumulation of melanosomes at the

perinuclear region of the melanocyte (12).

Figure 2. Schematic representation of melanosome biogenesis and maturation during melanin

production by a melanocyte. The biochemical pathway of melanin synthesis is displayed in the box

showing the principal enzymes involved. Figure based on and modified from Costin and Hearing, 2007

(11). Melanogenesis pathway in the box from Braasch and col, 2007 (13).
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Mature melanosomes are finally packed in clusters enclosed by the melanocyte plasma

membrane, and are known as pigment globules. These pigment globules containing

multiple melanosomes are released into the extracellular space from various areas of the

melanocyte dendrites, and then uptaken by keratinocytes via microvillus-associated

phagocytosis. Once incorporated into keratinocytes, pigment globules are degraded and

the multiple melanosomes are disseminated around the perinuclear area (8). In fair skin,

melanosomes tend to cluster above keratinocyte nuclei, while heavily pigmented

melanosomes in dark skin are distributed uniformly within the cells (Figure 3).

Figure 3. Variation in human skin pigmentation. The relative skin colouration depends on

eumelanin/phaeomelanin ratio produced by melanocytes, the amount of melanosomes taken up by basal

keratinocytes, and the distribution of melanosomes and melanin particles within keratinocytes in the outer

skin layer. Figure retrieved and modified from https://opentextbc.ca/anatomyandphysiology/wp-

content/uploads/sites/142/2016/03/504_Melanocytes.jpg.
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1.2.1.2. Melanogenesis: melanin pigment production

Human pigmentation is a consequence of the enzymatic processes involved in the

synthesis of melanin, and therefore it is mainly explained by the presence of melanin in

epidermis, iris and hair (9,14). Melanogenesis consists of a series of reactions involving

various melanocyte-specific enzymes (Figure 2). Both eumelanin and phaeomelanin

derive from 3,4 di-hydroxyphenylalanine (L-DOPA). The hydroxylation of tyrosine to

DOPA and subsequent oxidation to dopaquinone are the rate-limiting steps in

melanogenesis catalysed by tyrosinase – a copper-containing membrane-bound protein

located in melanosomes (15). The remaining eumelanin-producing reactions are catalysed

by the tyrosine-related proteins 1 (TYRP1) and 2 (TYRP2, also known as dopachrome

tautomerase, DCT).

The biochemical synthesis of phaeomelanin involves the production of cysteinyl-DOPA,

via condensation of dopaquinone and the amino acid L-cysteine, followed by its oxidation

to phaeomelanin. Melanogenesis produces mixtures of eumelanin and phaeomelanin at

different mixed ratios. The eumelanin/phaeomelanin ratio is determined by tyrosinase

activity, which is in fact dependent both on pH levels within melanosomes and L-cysteine

concentration (16). The wide range of different skin colours is mainly explained by the

type and levels of melanin in the epidermis, since the density of melanocytes in all types

of skin is similar and constant (11). Therefore, individuals with melanocytes that

synthetize more phaeomelanin than eumelanin tend to have lighter skin.

Additionally, several melanosome membrane proteins have been involved in the

synthesis of melanin (17). For example, an active uptake of tyrosine by the

transmembrane protein OCA2 is required for the activation of tyrosinase within

melanosomes. Furthermore, the coupling of H+, Na+, Ca2+ and K+ transport, which is
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essential for controlling pH within melanosomes and thus for tyrosinase activity, is

mediated by the V-ATP complex, SLC45A2, SLC24A5 and TPCN2 (see below for

additional information).

1.2.2. The involvement of keratinocytes in human pigmentation

As previously discussed, the epidermal melanin unit is a biological complex within the

epidermis consisting of two cell types: melanocytes and keratinocytes. The melanocyte-

keratinocyte complex is able to respond to a wide range of environmental stimuli, often

in paracrine and/or autocrine manners. After exposure to UV radiation, keratinocytes

produce and release several factors involved in stimulating melanocyte growth,

melanogenesis and melanin transfer to keratinocytes by melanocytes (11). Among these

keratinocyte-derived factors, melanocyte-stimulating hormone (α-MSH) and

adrenocorticotropic hormone (ACTH) have a pivotal role in melanogenesis and/or

melanocyte dendrite formation (18). Both hormones bind to a melanocyte-specific

receptor (melanocortin-1 receptor, MC1R) that switches on the cAMP signalling

pathway, leading to the phosphorylation and activation of cAMP response element

binding protein (CREB) through protein kinase A (PKA). CREB later binds to the cAMP

response element (CRE) present in the promoter of the microphthalmia-associated

transcription factor (MITF) gene. MITF ultimately up-regulates TYR, TYRP1 and TYRP2

gene expression, required for melanin synthesis (19,20). The agouti signalling protein

(ASIP) acts as the antagonist of α-MSH for MC1R. The presence of ASIP impedes the

binding of α-MSH to MC1R, promoting thus the production of phaeomelanin instead of

eumelanin (21).
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The melanocytic developmental process involves other keratinocyte-derived factors

including prostaglandin E2 (PGE2), endothelin-1 (ET-1), basic fibroblast growth factor

(bFGF), steel factor (SLF), stem cell factor (SCF), leukaemia inhibitory factor (LIF),

hepatocyte growth factor (HGF), nerve growth factor (NGF), and granulocyte-

macrophage colony-stimulating factor (GM-CSF) (9). Therefore, human melanocyte

proliferation and differentiation require the cross-talking of cAMP/PKA, protein kinase

C (PKC), and mitogen-activated protein kinase (MAPK) signalling pathways (Figure 4).

The keratinocyte-melanocyte crosstalk in human epidermis is fundamental in regulating

cutaneous pigmentation in response to numerous intrinsic and extrinsic factors.

Figure 4. Schematic representation of keratinocyte-melanocyte crosstalk within the epidermal

melanin unit. Keratinocyte-derived factors stimulate human melanocyte proliferation and differentiation,

melanogenesis and dendrite formation via activating signalling pathways after binding to the corresponding

receptor on the melanocyte surface (11).
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2. FACTORS CONTRIBUTING TO HUMAN SKIN

PIGMENTATION

Basal pigmentation seems to be mostly genetically determined, being altered by

numerous intrinsic and extrinsic factors affecting the epidermal melanin unit network

(22). The focus of this section is to describe some of the most important or well-studied

factors that modulate human skin pigmentation, including ethnicity and gender

differences, variable hormone-responsiveness, genetic variations within genes controlling

pigmentation pathways, and sunlight exposure.

2.1. Genetics of human pigmentation

Genetic variations in the genes encoding proteins involved in the human pigmentation

pathway have been associated with phenotypic differences in skin, hair and eye colour,

freckling, tanning ability and sunlight sensitivity, but also with the risk of developing skin

cancer (9,23). Pigmentation traits appear to follow a complex polygenic inheritance

model, that is, they are influenced by many genes with relatively small effects, with a few

major genes (24).

The genetic basis explaining pigmentation diversity between individuals has been the

subject of intense research. Pigmentation-related genes were initially discovered by

performing comparative genomics of candidate genes related to congenital pigmentation

disorders, such as oculocutaneous albinisms (OCA). Genetic polymorphisms in TYR

(linked to OCA type I, OMIM #203100), OCA2 (responsible for OCA type II, OMIM

#203200), TYRP1 (related to OCA type III, OMIM #203290) and SLC45A2 (linked to

OCA type IV, OMIM #606574) have been largely associated with normal variation in
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skin, hair and eye colour. Other major genes affecting constitutive pigmentation are

SLC24A5, MC1R, ASIP, KITLG, HERC2, SLC24A4, IRF4, TPCN2, LYST, and BNC2

(23). Complementing early candidate gene studies, specific allele and/or genome wide

association approaches in individuals with a well-defined phenotype have resulted in the

establishment of a growing list of single nucleotide polymorphism (SNP) markers that

contribute to variation in pigmentation phenotypes seen in human populations (25–31).

A list of all known loci influencing pigmentation is available at www.espcr.org/micemut

(32), which currently lists 378 loci described in mice and their human and zebrafish

homologues.

2.1.1. Melanocortin-1 receptor

The melanocortin-1 receptor (MC1R) gene encodes a seven-pass transmembrane G-

protein coupled receptor that is usually located in the cell surface of cutaneous and follicle

melanocytes (Figure 5). Activation of human MC1R by its ligands (α-MSH and ACTH)

leads to the activation of the cAMP signalling pathway, which in turn leads to a

stimulation of melanogenesis and a switch from the synthesis of phaeomelanins to the

production of eumelanins (33). However, the binding of its antagonist ligand (ASIP)

switches back to phaeomelanin production.

Genetic variation within the MC1R gene is the main contributor to the diversity of human

pigmentation (34). Sequencing of the gene encoding this receptor has allowed the

identification of more than 100 non-conservative allelic variants in Caucasians (35). Most

of its variants are relatively rare, but their frequencies vary among populations, being

more common in European populations (36). Six of these MC1R variants have been

traditionally associated with fair skin, red hair and freckling phenotype (RHC alleles):
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D84E, R142H, R151C, I155T, R160W and D294H (37,38). Functional analyses have

demonstrated that several MC1R genetic variants reduce the stimulation of the

pigmentation pathway due to incomplete binding between the receptor and its ligand (α-

MSH), resulting in an increased synthesis of phaeomelanin (instead of eumelanin) in

melanocytes (24,33,39). In addition, three other frequent variants (V60L, V92M and

R163Q), not found to be associated with the RHC phenotype (known as non-RHC

alleles), have been shown to influence melanoma risk in darkly-pigmented Caucasian

populations, such as Italians, Greeks and Spaniards (35,40).

Figure 5. Two-dimensional structure of the MC1R protein and location of genetic variants. Loss-of-

function variants of MC1R, both red hair colour (RHC) and non-RHC alleles, are indicated by arrows. TM,

transmembrane domain. Figure based on and modified from Hepp and cols., 2015 (41).

The MC1R gene has been the subject of intense research because of its clear and direct

association with melanoma and non-melanoma skin cancer (9,29,42,43). The risk for
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melanoma attributable to the MC1R genotype may be determined by the ability to

response to UV exposure (burning versus tanning). However, in addition to its influence

on human pigmentation and on susceptibility to different types of skin cancer, MC1R

variants also appear to modify the penetrance of mutations in the CDKN2A gene – the

major genetic locus implicated in familial melanoma (44,45).

2.1.2. Agouti signalling protein

The agouti signalling protein (ASIP) gene encodes a 32-aminoacid paracrine-signalling

peptide that acts as an antagonist of α-MSH precluding its binding to MC1R, and thus

leading to a down-regulation of eumelanogenesis and an up-regulation of

phaeomelanogenesis (21). Contrary to MC1R, non-synonymous genetic variations in the

ASIP gene are unusual. A polymorphism located in the 3'-untranslated region of the gene

(A8818G) has been significantly associated with dark hair, brown eyes and dark skin

(46,47). Functional studies have shown that carrying the G allele decreases agouti protein

levels compared to the ancestral allele, via mRNA instability and premature degradation

of the peptide. Consequently, the inhibitory effect of agouti is diminished, promoting the

synthesis of eumelanin and thus favouring dark pigmentation (48).

2.1.3. Tyrosinase

Tyrosinase is a copper-dependent enzyme that catalyses the first two steps of

melanogenesis (see Figure 2). As explained above, the generation of eumelanin occurs

after an increase in the tyrosinase activity. It has been shown that melanocytes derived

from dark individuals display a tenfold increased enzymatic activity of tyrosinase,
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although the amount of this enzyme within the melanosomes appears to be similar in

white- and black-skin melanocytes (49).

Mutations in the TYR gene have been related to variations in normal pigmentation of eye,

hair and skin colour, as well as to pigmentation disorders. At least 36 mutations in TYR

cause oculocutaneous albinism type 1 (OCA1) (50), an autosomal recessive disorder

characterized by the absence of melanin in skin, hair and eyes. Two non-synonymous

variants in the TYR locus (S192Y and R402Q) have been linked with fair pigmentation,

sensitivity to sunlight, and susceptibility to melanoma and non-melanoma skin cancer

(51). These genetic variants encode a form of tyrosinase with a reduced catalytic activity

compared to the wild-type protein (52).

2.1.4. Tyrosinase-related proteins

Tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are melanosomal proteins

involved in the production of eumelanin, but not phaeomelanin (see Figure 2). Mutations

in TYRP1 are responsible for oculocutaneous albinism type III (OCA3), a

hypopigmentation disorder in southern African populations characterized by having

bright red-copper colouration of hair and skin and brown iris colour (53). In European

populations, the polymorphic variant rs1408799 has been consistently associated with

variation in iris pigmentation, as well as with risk of cutaneous melanoma (54–56).

Besides, a cysteine-to-arginine change in TYRP1 seems to be responsible for the high

prevalence of blond hair in Melanesian populations, which differs from the general trend

of darker skin and hair pigmentation in populations living near the equator with higher

UV radiation (57). Genetic variations in the TYRP2 locus seems also to be correlated with

eye colour diversity in Caucasians (55).
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2.1.5. OCA2 Melanosomal Transmembrane Protein

Another gene with a major contribution to human pigmentation is the oculocutaneous

albinism II (OCA2) gene. OCA2 encodes the P protein, a transmembrane protein involved

in the transport of tyrosine, the precursor to melanin synthesis, to the inside of the

melanosome. Abnormalities in this gene result in oculocutaneous albinism type II (the

most common form of albinism), as well as with some cases of ocular albinism (58).

In European populations, OCA2 is a highly polymorphic gene influencing pigmentation

traits, particularly eye colour. OCA2 has been defined as the major human iris colouration

gene, since its genotype appears to explain up to 75% of eye colour variation in Europeans

(59). The derived allele of rs12913832, a variant located upstream of the OCA2 promoter

within an intron of the contiguous HERC2 gene, shows an association with blue eye

colour attributable to a silencing of OCA2 expression (60). Interestingly, a missense

mutation (rs1800401, R305W) in the OCA2 gene seems to modulate the penetrance of

MC1R RHC variants (61). On the other hand, several studies focused on determining the

susceptibility to cutaneous cancer according to the OCA2 genotype have shown that

carriers of certain variants, such as R419Q, have a significantly higher risk for melanoma

and basal cell carcinoma (26,54).

2.1.6. Potassium-dependent sodium/calcium exchangers

The SLC24A4 and SLC24A5 genes (solute carrier family 24, members 4 and 5) encode

two potassium-dependent sodium/calcium exchanger proteins located in the

melanosomal membrane. These ion transporters are involved in the regulation of the

melanosome environment and may contribute to the melanosome maturation process.
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Variations in the SLC24A4 and SLC24A5 genes have also been significantly associated

with variation in human pigmentation and sun sensitivity traits. SLC24A5 is considered

one of the major human pigmentation genes since its A111T variant (rs1426654) accounts

for about 25-40% of the difference in skin colour between Europeans and Africans. The

ancestral allele (A) of this polymorphism is largely fixed in populations of African origin,

whereas the derived allele (G) is extremely common in fair-skinned European individuals.

Thus, carriers of AG or GG genotypes present a fairer skin colour, because of lower

eumelanin levels, compared to homozygous individuals for the ancestral allele (62,63).

The SNP rs12896399 in the SLC24A4 gene has been associated with eye and hair colour,

skin sensitivity to sunlight, as well as susceptibility to malignant melanoma (31,54,64).

Besides, interactions between HERC2 and SLC24A4 may also affect determination of

blue eye colour (65).

2.1.7. Membrane-Associated Transporter Protein

Another melanosomal transmembrane solute carrier involved in the pigmentation

pathway includes SLC45A2 (solute carrier family 45, member 2), also known as MATP

(membrane-associated transporter protein). This protein may be involved in arranging

melanogenic enzymes during melanosome maturation. In humans, pathogenic mutations

in the SLC45A2 gene cause oculocutaneous albinism type IV (OCA4), where both

tyrosinase processing and post-Golgi enzyme trafficking are disrupted (66,67). Other

variants, located in both the promoter region and the coding region of the SLC45A2 gene,

have been significantly associated with dark pigmentation in hair, epidermis and iris and

with protection against melanoma in southern European populations (28,68).
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2.1.8. Interferon regulatory factor 4

The interferon regulatory factor 4 is a transcription factor that negatively regulates

signalling via Toll-like receptors – a key process for activation of the innate and adaptive

immune system response. It has been shown that IRF4 interacts with MITF, which in turn

regulates the expression of the melanogenic enzymes and several differentiation factors

(69). A polymorphism located in the intronic region of IRF4 (rs12203592) has been

associated with hair, skin and eye colour, naevus number, freckling and tanning ability

after sunlight exposure (27,31,61). This variant seems to be only polymorphic in

European-origin populations, showing a north-south gradient across Europe (70).

Interestingly, the T allele of rs12203592 has been recently associated with hair greying

in Latin Americans (71).

2.1.9. Other pigmentation-related genes

Apart from the major pigmentation-related genes listed above, other genes have also been

involved in normal variation of pigmentation traits. The KITLG gene encodes the ligand

of the tyrosine-kinase receptor encoded by the KIT locus. After binding to its receptor,

KITLG promotes migration, survival and proliferation of melanocytes. Although no non-

synonymous polymorphisms have been found in the KITLG gene of different human

populations, this ligand is expressed at significantly higher levels in keratinocytes of

Africans than Europeans (72). Two polymorphisms in the upstream region of KITLG

(rs12821256 and rs642742) have been shown to contribute to normal variation to

pigmentation (31,73), perhaps via regulatory changes in gene expression.
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The BNC2 (basonuclin 2) gene encodes a potential transcriptional regulator specific for

skin keratinocytes. In humans, variants in BNC2 have been associated with freckling (74),

and with skin colour (75). Recently, a polymorphism (rs62543565*C) located 30 kb

upstream from this gene has been significantly associated with facial pigmented spots

independently of skin colour (30).

Association studies performed in the last years have suggested other candidate genes

associated with human pigmentation traits, including TPCN2 (two-pore segment channel

2), LYST (lysosomal trafficking regulator) or UGT1A (UDP glucuronosyltransferase 1

family, polypeptide A complex), among others (27,56,75). However, larger association

studies in different populations should be needed to validate the significance of these

observations. Besides, functional analysis of these genes would elucidate the role of their

genetic variants in pigmentation variability.

2.2. Sunlight influence on human pigmentation

Cutaneous pigmentation is the main photoprotective mechanism against sun-induced

damage. UV radiation received at the surface of the Earth from the sun is divided in UVA

(320-400nm), which can penetrate deeply into the basal layer of the epidermis, and UVB

(280-320 nm), with less depth but greater damaging potential (76). UVB produces

photochemical damage to DNA by creating cyclobutylpyrimidine dimers (CPDs) and (6–

4) photoproducts, and it also generates reactive oxygen species (ROS) by peroxidation of

lipids from cellular membranes (77).

The skin responds to UV radiation by creating a melanin coating in the epidermal layer

of the skin, with the aim of absorbing UV radiation and thus impeding UV-induced injury.
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The photobiological response that increases skin pigmentation over the basal constitutive

level is called tanning (78,79). This protective mechanism is orchestrated by both the

melanocyte and the surrounding keratinocytes of the epidermal melanin unit. After

exposure to UV radiation, keratinocytes increase production of ET-1, nitric oxide (NO)

and proopiomelanocortin (POMC; precursor of α-MSH and ACTH), which act as

paracrine factors activating melanogenesis in melanocytes (Figure 6). Tanning involves

increased number of melanocytes and keratinocytes in the epidermis, as well as increased

levels of TYR activity, increased production of melanosomes, and higher number of

melanosomes transferred to surrounding keratinocytes (80,81). It is shown that tanning

ability has genetic determinants and is generally more noticeable in individuals with

darker constitutive pigmentation. Furthermore, eumelanin presents higher

photoprotective properties than phaeomelanin because of its resistance to

photodegradation and its ability to scavenge ROS (82,83). Therefore, individuals with

light skin colour and poor tanning ability, who are skin phototype I-II according to the

Fitzpatrick classification, are more susceptible to UV-induced damage, having higher risk

of skin cancer, both melanoma and non-melanoma (9).
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Figure 6. Mechanisms involved in UV-induced pigmentation. The tanning response is orchestrated by

both melanocytes and surrounding keratinocytes, the two cell populations forming the epidermal melanin

unit (11).

2.3. The action of oestrogens on skin pigmentation

Pigmentation can be modulated by oestrogens and androgens through the regulation of

melanin synthesis. In fact, cutaneous hyperpigmentation (tanning, dark spots, linia nigra

and/or melasma/chloasma) is common in pregnant women (84,85). It has been shown that

pregnancy-related hormones – oestrogen, progesterone and α-MSH – induce the

activation and expression of genes involved in melanin synthesis in melanocytes (84),

while androgens inhibit tyrosinase activity (86). Besides, the use of oestrogen-containing

oral contraceptives, certain cosmetics and oestrogen-progesterone therapies have also

been associated with hyperpigmentation (11).
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2.4. Human pigmentation diversity

Natural variation in skin colouration depends on both geographical location and ethnic

origin, suggesting that genetic adaptation to the intensity and duration of solar radiation

play a very important role in the historical evolution of the variation in cutaneous

pigmentation (87). The most widespread evolutionary hypothesis for skin colour variation

among populations suggests that skin pigmentation is determined by a balance between

the amount and intensity of UV radiation received, which induces melanogenesis as a

protective mechanism to avoid photodamage; and the necessity of absorbing UV for

adequate synthesis of vitamin D in the skin (88). Conversely, dark skin in UV-intense

regions is needed to avoid the destruction of folates and other micronutrients (flavine,

tocopherol, carotenoids) by photodegradation. Consequently, dark skin colouration is

observed in latitudes near the equator where solar radiation is more intense, while fair-

skinned individuals would have a biological advantage over dark-skinned individuals in

regions distant from the equator where solar radiation levels are lower (Figure 7) (89).

Thereby, historical migration of human populations from Africa to other regions at higher

latitudes seems to provide the basis of human genetic adaptation, according to local levels

of solar radiation. That is, the frequency of genetic variants clarifying skin colour

increased in Europeans in order to ensure the UV absorption needed for vitamin D

synthesis (90).
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Figure 7. Worldwide distribution of human skin colouration. World map showing that darker skin

colours are found predominantly between 20º north and south of the equator (23).

3. BENIGN HYPERPIGMENTED LESIONS

Hyperpigmentation of the skin occurs commonly in a variety of different forms.

Hyperpigmentation is typically a harmless condition in which zones of the skin become

darker than the normal surrounding skin areas. This darkening results from an increased

deposit of melanin in the skin, arising either from increased melanin synthesis in existing

melanocytes or from increased number of active melanocytes. In this section, I will focus

on explaining those benign hyperpigmented lesions induced or exacerbated by sun

exposure, including ephelides (freckles), solar lentigines, melasma, and melanocytic

naevi (moles) (Figure 8) (11,91–93).
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Figure 8. Pictures of common benign hyperpigmented lesions. A) Ephelides on the face. Image retrieved

and modified from https://upload.wikimedia.org/wikipedia/commons/e/ea/Vesnuschki.jpg. B) Solar

lentigines on the face. Image retrieved and modified from http://doctorv.ca/wp-

content/uploads/2013/04/14458735194e471006f37ec1347571610060-e1365028691357.jpg). C) Melasma

found on the cheeks and upper lip of a pregnant woman. This picture was retrieved from

http://www.britishskinfoundation.org.uk/Portals/0/melasma.JPG. D) Melanocytic naevi. Image retrieved

from http://images.digopaul.com/wp-content/uploads/related_images/2015/09/08/naevi_2.jpg.

3.1. Ephelides

Ephelides (also known as freckles) are small, flat, pale-brown spots commonly observed

in fair-skinned and/or red-haired individuals (Figure 8A). Ephelides appear early in

childhood, then increase during adolescence and partly disappear with age. The formation

of these hyperpigmented spots can be triggered by exposure to sunlight through increased

melanin production by melanocytes. That is, ephelides become more pigmented, and

therefore more visible, during summertime (93). At the histological level, it is shown that

freckled areas present highly pigmented melanocytes with large melanosomes (identical
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to those found in dark-skinned individuals), while adjacent non-freckled areas exhibit

poorly pigmented melanocytes with smaller melanosomes (94). This suggests regional

differences in the activation of pigmentation pathways that lead to pigmented spots rather

than hypopigmented skin (93).

The presence of ephelides is largely genetically determined. The MC1R gene seems to be

the major contributor to the formation of freckles in European-origin individuals

(34,37,95). Carriers of one or more RHC MC1R variants usually have a high number of

ephelides. Nevertheless, individuals with no mutations in the MC1R gene sometimes also

display freckles. Accordingly, other genes have been shown to contribute to ephelides

formation, including IRF4, ASIP, TYR and BNC2 (31,56,74).

3.2. Lentigines

Solar lentigines are round, flat, irregular, brown-pigmented macules ranging in size from

millimetres to centimetres in diameter (Figure 8B). They are commonly found on chronic

sun-exposed skin (mostly on the face and back of the hands), and typically appear during

middle-age and increase in number with age (93). Compared with unaffected surrounding

skin areas, both melanocytes and keratinocytes proliferate excessively in solar lentigo

lesions. Besides, there is an increase in the production of ET-1 by keratinocytes,

stimulating melanocytes to produce melanin due to higher tyrosinase activity (96).

Solar lentigines are mostly environmentally determined, as they are a clear sign of

accumulated photodamage in the skin. However, some of the pigmentation-related genes

have also been implicated in the formation of solar lentigines. Loss-of-function MC1R

alleles has been associated with the presence of solar lentigines, suggesting that
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melanocytes with reduced MC1R activity are expected to form these benign

hyperpigmented lesions (37,97). Genetic variants in the SLC45A2 gene have also been

found to be implicated in solar lentigines development (98), although this correlation was

not found in a GWAS study using Caucasian individuals (30). This high-powered GWAS

study demonstrated significant associations between variants in four pigmentation-related

genes (IRF4, MC1R, ASIP and BNC2) and facial pigmented spots, including solar

lentigines among others (30).

3.3. Melasma

Melasma is an acquired hypermelanosis of the skin characterized by symmetrical dark-

to light-brown patches (Figure 8C). It typically occurs on the face, particularly on the

forehead, temples, cheeks and/or upper lip. Melasma is primarily associated with

pregnancy, although other factors can exacerbate this hyperpigmented condition

including UV exposure, oral contraceptives, certain cosmetics and drugs, endocrine

dysfunction, or genetic influences (92). Melasma pigmentation normally improves in the

winter and aggravates in summertime, where melanogenesis is stimulated by sunlight

exposure. As stated above, pregnancy-related hormones lead to increased expression of

tyrosinase and thus melanin production by melanocytes (11,84).

Genetics also appears to have an influence on melasma. Melasma is more prevalent in

people with dark skin types (Fitzpatrick skin types III-V) (92). Besides, genetic alterations

related to the stimulation of melanin production have been recently described.

Upregulation of genes related to melanogenesis (TYR, TYRP1, TYRP2 and MITF) and a

subset of Wnt-pathway modulators, which play a critical role in melanocyte development,
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have been detected in melasma lesions (99). Besides, several keratinocyte-related factors

(ET-1, SCF, c-KIT and GM-CSF) are more highly expressed in skin with melasma

compared with adjacent skin areas (100,101), stimulating the epidermal-melanin unit in

the hyperpigmented areas. The basal membrane in skin areas with melasma appears

disrupted and disorganized due to down-regulation of genes related to lipid metabolism,

highlighting the key role of epidermal-dermal cross-talk in this pigmentation disorder

(102).

3.4. Melanocytic naevi

The term melanocytic naevi refers to a group of non-malignant melanocytic cells formed

by clonal proliferation (Figure 8D) (103). The development of melanocytic naevi is a

multifactorial and heterogeneous biologic process in which basal skin pigmentation,

genetics, sex and UV radiation have been shown to have an influence on. It has been

unequivocally demonstrated that UV radiation is a triggering agent in the development of

acquired naevi (104). In this regard, some studies have suggested an association between

childhood sunburns and larger number and size of naevi (105–107). Naevi seem to be

concentrated on the face and neck in males, compared with the upper arms and thighs in

females (106). These sex differences seem to be explained by sociological reasons, and

not by sex-differentiated genetic effects (108). Additionally, the variation in naevus count

between individuals appears to be determined by genetic factors (109). Individuals with

fair skin, a tendency to sunburn and poor tanning ability have increased number of

melanocytic nevi (110), which in turn has been shown to be a risk factor for cutaneous

melanoma, since up to 30% of melanomas arise from pre-existing naevi (111). Recent

GWAS approaches have identified several germline variants associated with naevus
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count in European populations (112,113), although validation of these naevus-

susceptibility loci in larger studies is required.

4. SKIN CANCER

Skin cancer is one of the more common neoplasms worldwide, especially in Caucasian

populations (114). Skin cancers are classified in two main categories: cutaneous

melanoma (CM), which initiates via the malignant transformation of melanocytes; and

non-melanoma skin cancer (NMSC), which arises from other epidermal cells, principally

keratinocytes. According to the epidermal layer of origin, non-melanoma skin cancers

can also be subdivided into basal cell carcinoma (BSC) and squamous cell carcinoma

(SCC) (Figure 9). The principal aetiological factors associated with the predisposition to

skin cancer include environmental (such as the geographic location and sunlight

exposure) and genetic factors (inherited germline variants that influence in pigmentation-

related phenotype diversity) (115,116).

4.1. Non-melanoma skin cancer

Non-melanoma skin cancer (NMSC) is one of the most common malignancies among

white-skinned populations although, given its benign nature, it does not usually present

clinical complications. Basal cell carcinoma, which accounts for 80-85% of all NMSC,

rarely metastasizes to other organs. Although squamous cell carcinoma is more likely to

invade other tissues, its mortality is very low (117).
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Figure 9. Types of skin cancer depending on the cell population from which the neoplasm arises.

Image retrieved from http://healthlifemedia.com/healthy/wp-content/uploads/2016/05/EC3356125-001-

0.jpg.

The primary cause of NMSC is exposure to UV radiation, since malignant lesions usually

appear in sun-exposed areas of the body such as the face, neck or back of the hands and

arms, and are more prevalent in outdoor workers (118). Epidemiologic studies

demonstrate that the total amount of sunlight received over the years, particularly sunburn

episodes, is the most important risk factor associated with NMSC (119). The harmful

effects of UV radiation in the skin are caused by direct cell damage and impaired immune

function, leading to erythema (inflammatory cutaneous lesion caused by sunburn),

immunosuppression, genetic mutations and oxidative stress (120).

Genetically determined phenotypic characteristics that increase sensitivity to UV

radiation are known to increase risk of NMSC (121). Burning and tanning response of

skin (Fitzpatrick skin phototype) is essential in determining NMSC risk, since darker-

skinned individuals with highly tolerance to sunlight exposure present a lower incidence
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of NMSC (23,89,114). Polymorphism in the MC1R gene associated with fair skin and red

hair independently contribute to the risk of NMSC (122). Other susceptibility genes for

NMSC are involved in DNA repair, defence against oxidative stress and immune

modulation (116,123,124).

4.2. Cutaneous melanoma

Cutaneous melanoma (CM), a malignancy arising from melanocytes, is one of the most

malignant cancers among Caucasian populations (125). Although Spain has one of lowest

melanoma incidence and mortality rates in Europe, melanoma incidence is currently

increasing faster than that of any other malignancy in our country (1). Genetic, phenotypic

and environmental factors contribute to melanoma predisposition, denoting that

melanoma displays a complex aetiology.

As stated above, UV radiation is the leading environmental factor implicated in the

development of skin cancer. Historically, incidence rates of CM in white populations have

been inversely correlated with geographic latitude, being highest in equatorial regions

and reducing with increasing distance from the equator (126,127). Nevertheless, the

contribution of recurrent sun exposure in CM remains unclear. Melanoma appears more

frequently in sporadically (rather than chronically) sun-exposed areas of the body, those

that are usually covered by clothing. This seemingly paradoxical fact is attributable to

injuries caused by an intermittent pattern of intense and acute sun exposure, which is

associated with recreational and vacation activities (128). Accordingly, epidemiological

studies reveal that outdoor workers, who are continuously exposed to UV radiation, have

lower melanoma rates than those of indoor workers, supporting the role of intermittent
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sunlight exposure in melanoma causation (129). Besides, melanoma incidence within

Europe is lower in Mediterranean countries than in Nordic populations, even though these

countries are at higher latitudes, having low UV radiation incidences over the year

(excluding summer holidays) (130).

Sex-differences have also been consistently observed regarding CM. Females exhibit

lower incidence, lower risk of metastases and significantly longer survival rates than

males (130,131). Sex differences in pigmentation traits, tanning ability, and skin

sensitivity to sunlight exposure may explain the sex disparity described in melanoma

epidemiology (108,131,132). Additionally, individuals who are immunosuppressed, for

example after an organ transplantation, are at higher risk of melanoma (133). However,

smoking (a common carcinogen) has not been independently associated with melanoma

(134).

Although the majority of genetic alterations triggering melanoma development occur as

randomly-acquired mutations within melanocytes, the presence of inherited germline

variants is an important factor in melanoma susceptibility (115). Melanoma

predisposition is lower in dark-skinned individuals who tan easily and never burn

(Fitzpatrick skin types III and IV) than in fair-skinned, blond or red-haired individuals

who seldom tan and always burn (Fitzpatrick skin types I and II), suggesting that the

genes determining skin colour are the primary genetic determinants of melanoma

susceptibility (115,135). This fact is clearly observed in the USA, where European-origin

Americans present up to 10 times higher incidence of melanoma compared to African-

origin Americans (136). Frequent general-population polymorphisms in several

pigmentation genes may confer low-to-moderate melanoma risk, including MC1R (42),

ASIP (137), TYR (51), SLC45A2 (51), IRF4 (138), and OCA2 (139).
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The presence of naevi is a well-known phenotypic risk factor for CM, since sometimes

they develop from a pre-exiting naevi (140). Individuals with familial atypical multiple

mole and melanoma syndrome (FAMMM; OMIM #606719) or dysplastic naevus

syndrome (DNS; OMIM #155600) present an almost guaranteed lifetime risk of CM. As

described before, phenotypic naevi differences in count and density are in part genetically

determined, and genetic variants predisposing to naevi are postulated to be low-to-

medium penetrance susceptibility genes for CM (141–144). Additionally, several studies

have focused on analysing the impact of genes involved in UV-induced DNA

photoproduct repair (145,146). Individuals with Xeroderma pigmentosum – a genetic

disorder in which nucleotide excision DNA repair (NER) machinery is impaired – are

prone to develop melanoma as a result of having a genetic inability to repair UV-induced

DNA damage and a propensity to accumulate somatic mutations (147).

Generally, a family history of melanoma appears to increase risk of melanoma.  The major

susceptibility gene implicated in familial melanoma is the cyclin-dependent kinase

inhibitor 2A (CDKN2A) gene, a tumour suppressor gene that negatively regulates cell

cycle progression and promotes cellular senescence (115). Germline mutations in

CDKN2A have been implicated in melanoma susceptibility and are present in

approximately 40% of melanoma families (148). These loss-of-function mutations may

restrict the preventing melanomagenesis function of CDKN2A. Although CDKN2A

mutations confer substantial risk for melanoma, not all carriers of CDKN2A mutations

develop melanoma, suggesting that other host, environmental and genetic factors modify

melanoma risk in mutation carriers. For instance, penetrance of CDKN2A mutations is

found to significantly differ depending on geographical location, likely correlating with

sunlight exposure (148). Rarely inactivating mutations in high-risk susceptibility genes

(CDK4 and BAP1) have also been found in melanoma-prone families (149).
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In addition to the evident impact of loss-of-function mutations within the CDKN2A gene,

germline variants in the 3’-untranslated region (3’UTR) of CDKN2A gene have been

associated with increased susceptibility for melanoma (150,151). The 3’UTR region plays

a crucial role in regulating gene expression at posttranslational level. It is well-known that

microRNAs (small non-coding RNAs) bind to the 3’UTR of the target gene modulating

its expression by repressing mRNA translation or by destabilizing/degrading mRNAs in

the cytoplasm. Therefore, natural mutations in the binding sequences of the target genes

may affect the pathogenesis of melanoma (150,152). Recent studies have also shown an

alteration in the expression pattern of miRNAs in melanoma samples compared to healthy

melanocytes, altering several well-known oncogenic pathways and cellular processes

(153).
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This thesis aims to investigate the following hypotheses:

1. Females are more protected against melanoma than males, and this is attributable

to increased skin pigmentation and decreased sensitivity to sunlight exposure

(even in people of both sexes sharing the same genotype). This difference could

be explained by sex-differences in the genetic effects of polymorphisms located

on pigmentation- and melanoma-associated genes.

2. Genetic variations in the 3’UTR of genes associated with pigmentation and

melanoma could have a potential role in the genesis of melanoma by modifying

cutaneous pigmentation and tanning response.

3. Co-inheritance of loss-of-function germline mutations in CDKN2A and MC1R

genes synergistically sensitizes melanocytes to the damaging effects of UV

radiation, and thus increases the chance for malignant transformation to

melanoma.
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The general objective of this thesis is to expand the current knowledge of the molecular

bases of human skin pigmentation and predisposition to cutaneous melanoma.

Specific objectives addressed

1. Asserting sex as a factor that influences the phenotypic differences in

pigmentation between different individuals of the Spanish population, even

though these individuals share the same genotypes (Chapter 1 and 2).

2. Identification of possible sex-specific genetic effects in human pigmentation

explaining the differences in pigmentation phenotype, as well as in melanoma

risk, between sexes in the Spanish population (Chapter 1 and 2).

3. Discovery of genetic variations in the 3'UTR regions of pigmentation and

melanoma-associated genes involved in the genesis of melanoma by modifying

the ability of microRNAs to target genes, resulting in differential gene expression

(Chapter 3).

4. Investigation of the ability of primary cultures of human melanocytes with

different CDKN2A and MC1R genotypes to proliferate and undergo stress-

induced senescence, as a result of both serial passages in culture and UV exposure

(Chapter 4).



Chapter 1
Sex-specific genetic effects associated with pigmentation, sensitivity

to sunlight and melanoma in a population of Spanish origin

Hernando B, Ibarrola-Villava M, Fernandez LP, Peña-Chilet M, Llorca-Cardeñosa M, Oltra

SS, Alonso S, Boyano MD, Martinez-Cadenas C, Ribas G.

Biology of Sex Differences. 2016 March, 7:17. doi: 10.1186/s13293-016-0070-1.
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1.1. INTRODUCTION

Human pigmentation traits are some of the most visible and differentiable human

characteristics. Pigmentation in human tissue is attributable to the number, size and

cellular distribution of melanosomes produced, and the type of melanin synthesised (the

black-brown coloured eumelanin or the red-yellow coloured phaeomelanin), while the

number of melanocytes is usually unchanged (23).

The type of melanin synthesised is influenced by sun exposure and is genetically

controlled (14). Ultraviolet (UV) exposure plays a key role in the evolutionary selective

pressure on human pigmentation. Geographic distribution of human skin pigmentation

reflects an adaptation to latitude-dependent levels of UV radiation (87,154). The linear

relationship between worldwide skin pigmentation variation, latitude and UV radiation

levels is thought to result from the physiological role of melanin type in UV-mediated

vitamin D synthesis, UV-induced photolysis of folate, and in the protection from exposure

to UV, which can cause sunburn and skin cancer (89). However, the physiological role

for eye and hair colour variations still remains unknown.

Variation in genes implicated in human pigmentation has been associated with

phenotypic characteristics such as skin colour, hair colour, eye colour, freckling and

sensitivity to sunlight (31), but also with the risk of various types of skin cancer

(24,26,29,54,68,155–158). The proteins encoded by these genes have effects at various

stages of the pigmentation pathway, ranging from melanogenesis, the stabilization and

transport of enzymes in the melanin production pathway, the production and maintenance

of melanosomes and the melanosomal environment, and the switch between the

production of eumelanin and phaeomelanin. Other pigmentation-related proteins code for

intrinsic factors that help in the regulation of pigmentation, such as factors produced by
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fibroblasts in the dermis that affect overlying melanocytes and keratinocytes, endocrine

factors from the blood supply, as well as neural factors and inflammation-related factors

(27,31,159).

Melanin synthesis is also modulated, in part, by oestrogens and androgens (85).

Physiological hyperpigmentation in various forms (tanning, dark spots, chloasma, linia

nigra and/or melasma) is commonly seen in pregnant females due to an increase of the

levels of pregnancy-related hormones (85). The increase of pregnancy-related hormones

– oestrogen, progesterone and melanocyte-stimulating hormone (α-MSH) – during

gestation induces the activation and expression of genes involved in melanin synthesis in

melanocytes (84), while it has also been shown that androgens inhibit tyrosinase activity

(86). In addition to sex-endocrine factors, the use of oestrogen-containing oral

contraceptives, certain cosmetics and oestrogen-progesterone therapies has also been

associated with hyperpigmentation (11).

Biological and behavioural gender differences likely contribute to the sexual disparity in

skin aging, pigmentation and melanoma incidence and outcome (160,161). Recent studies

point to Caucasian females having slightly darker eye colour (162,163) and skin colour

(25) than Caucasian males. Regarding melanoma, females show lower melanoma

predisposition and incidence, lower risk of metastases and longer melanoma-specific

survival rates than males (130,131). Anatomic location of melanoma indeed tends to be

different between sexes, being most commonly on the lower leg, hip, and thigh in females,

and on the back, abdomen, and chest in males (130).

In order to reveal possible sex-related differences in pigmentation phenotype as well as

in melanoma association, we investigated the influence of 363 polymorphisms from 65

gene regions — previously associated with pigmentation traits, congenital pigmentation
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genetic syndromes, and/or skin cancer — in a melanoma case-control population of

Spanish origin.

1.2. MATERIAL AND METHODS

1.2.1. Study Subjects and Data Collection

In this study, a total number of 599 females (316 melanoma cases and 283 cancer-free

controls) and 458 males (234 melanoma cases and 224 cancer-free controls) were

collected at several Spanish hospitals. We carefully selected all cases and controls

included in the current study to account for confounding variables. All individuals were

Caucasians of Spanish origin where, according to a previous work by Laayouni and cols,

there is no evidence of genetic heterogeneity within different Spanish geographical

regions (164). Controls were frequency-matched to the cases by age and place of birth.

A standardised questionnaire was used to collect information on sex, age, pigmentation

characteristics (eye colour, hair colour, skin colour, number of naevi and presence of solar

lentigines), history of childhood sunburns, Fitzpatrick’s skin type classification, and

personal and family history of cancer, to classify individuals as previously described (28).

Forty melanoma cases from our previous work were excluded in the current analysis due

to the absence of sex details.

All individuals gave written informed consent and the study was approved by the Ethics

Committee of the Gregorio Marañon Hospital (Madrid, Spain) and the Biomedical

Research Institute - INCLIVA (Valencia, Spain).
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1.2.2. Gene, SNP Selection and Genotyping

Gene and SNP selection was performed as previously described (28). Sixty-five gene

regions were included in this study. They covered a broad range of biological processes,

mostly related to pigmentation. We genotyped a total number of 384 tag-SNPs from the

selected genes ranging from the hypothetical promoter area (approximately 10 kb

upstream) until approximately 5 kb downstream of the gene. SNP codes, locations, and

frequencies were obtained from NCBI (www.ncbi.nlm.nih.gov/SNP), HapMap

(www.hapmap.org) and Illumina databases. A minor allele frequency (MAF) threshold

of 0.05 in the HapMap CEU population and an ‘Illumina score’ not lower than 0.6 (as

recommended by manufacturer) were established to ensure high genotyping success rate

of the SNPs selected.

SNP genotyping was done using the Golden Gate Assay according to manufacturer’s

protocol (Illumina, San Diego, CA, USA), as previously described (28).

1.2.3. Statistical Analysis

Quality control processes and allelic and genotypic association tests were performed

using the SNPator software (www.snpator.com). Additional statistical analyses and plots

were conducted using the R statistical framework. All genetic analyses were performed

estimating the effect of the minor allele in the Spanish population.

For all polymorphisms studied, Fisher’s exact test was used both to test for deviations

from Hardy-Weinberg equilibrium (HWE) between sexes and to compare allele counts
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between female and male individuals. Bonferroni correction was applied and P-values

higher than 1.37x10-4 were considered in HWE.

Associations between the genotyped SNPs and various pigmentation and sun sensitivity

traits were assessed via logistic regression, coded additively for each copy of the minor

allele. This was done for males and females separately, with eye colour (blue/green versus

brown/black), hair colour (brown/black versus blond/red), skin colour (fair versus dark),

number of naevi (≥50 versus <50), presence of lentigines (yes versus no) and childhood

sunburn (yes versus no) as the outcome variables. Genotype-related Odds Ratios (ORs),

their corresponding 95% confidence intervals (CIs) and associated P-values were

estimated. Results of the association analysis were represented using volcano plots,

mapping significance (-log10 P-value) versus fold-change (log2 OR) for the comparison

between individuals for eye colour, hair colour, skin colour, presence of lentigines,

childhood sunburns and naevi number separately. P-values were two sided and those

lower than 0.01 were considered statistically significant (since six pigmentation traits

were studied separately, statistical significant threshold of P-value < 0.05/6 = 0.01).

In order to have an overview of all the significant estimates obtained in the sex-specific

logistic regression analyses, we evaluated the differences in the number of

polymorphisms associated both with protective and risk phenotypes between sex groups

(P-values < 0.05), using 2x2 contingency tables and performing a Fisher’s exact test.

Logistic regression was performed to re-assess associations between genotypes and

melanoma risk done previously (28), but separating individuals by sex in order to estimate

sex-specific ORs, 95% CIs and P-values. As mentioned above, the minor allele was also

modelled under an additive model. Using the same criteria as in the analysis of
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pigmentation traits, two-sided P-values lower than 0.01 were considered to constitute

evidence of association.

Finally, we performed a sex-differentiated regression estimate test for each SNP for all

phenotypic traits. We tested for equality of sex-specific allelic effects with the aim of

obtaining sex-differentiated P-values (165), and a statistical significance threshold of sex-

differentiated P-value < 0.05 was used. Briefly, for each sex-specific association test, sex-

specific beta coefficients (log ORs) and the corresponding standard errors were evaluated

using a Chi-square test with one degree of freedom. Then, a Chi-square test with two

degrees of freedom was performed for each SNP, in which the previously calculated

female-specific and male-specific Chi-square statistics were added up.  Finally, a test of

heterogeneity of allelic effects between males and females using a Chi-square test with

one degree of freedom was conducted. A significant sex-specific and sex-differentiated

P-value is required to verify a potential significance in allelic effect by sex, following the

same criteria used by Kocarnik and cols. (166). Manhattan plots were used to display the

strength of significant differences between male-only and female-only associated effects

(-log10 sex-differentiated P-value) for each trait tested.

1.3. RESULTS AND DISCUSSION

Our sample set included 599 females and 458 males of Spanish ancestry. Median age was

45 years (range 18–92) for females and 47 years (range 18–92) for males. Regarding

control individuals, mean age was 42 years (range 18–91) for females and 45 years (range

18–90) for males. Melanoma cases presented a median age of 52 years (range 18–92) for
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females and 53 years (range 18–92) for males. Since age differences were not observed

between sample subsets (P-value > 0.05), association analyses were not adjusted by age.

From an initial list of 384 tag-SNPs selected, 21 SNPs (5.4%) were discarded due to failed

genotyping (no PCR amplification, insufficient intensity for cluster separation or poor

cluster definition). All 363 remaining SNPs were in HWE after Bonferroni correction

(Table S1.1). Minor allele frequencies estimated for each SNP were almost identical for

females and males, with a remarkable linear correlation (R2) of 0.982 (Figure S1.1).

1.3.1. Association with phenotypic characteristics by sex

In a previous study published by our group, the association of some genes with phenotypic

characteristics was reported (28). However, analyses were performed without taking into

account sex data. In the current study, samples were additionally stratified by sex to

evaluate differences in pigmentation and sun response between males and females.

Thirty four SNPs showed association with at least one pigmentation trait, and 42 SNPs

were associated with at least one sun response trait studied (P < 0.01) (Tables S1.2 and

S1.3). Each of these polymorphisms displayed a moderate effect on pigmentation in our

Spanish population dataset. Our results showed apparent differences in the direction of

the association with the pigmentation characteristics, with variants showing ORs below

1.0 correlated with dark pigmentation and/or good tolerance to sunlight, and variants with

ORs above 1.0 associated with light pigmentation and/or poor tolerance to sunlight.

Variants in these genes most likely play important roles in the differences in pigmentation

and tanning response among individuals of the Spanish population, and subsequently also

in skin cancer risk (167).
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Figure 1.1. Volcano plots showing significance (-log10 P-value) versus fold change (log2 OR) for

pigmentation and sun sensitivity traits separated by sex. Red dots indicate SNPs with a significant fold

change (P-values < 0.01).

Representations of -log10 P-values versus log2 ORs comparing 599 female individuals

to 458 males for eye colour, hair colour, skin colour, presence of lentigines, childhood

sunburns and naevi number are shown in Figure 1.1. Detailed information on rs numbers,
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genes, chromosome locations, minor alleles, ORs, 95% CIs, and P-values for

pigmentation and sun response characteristics are summarised in Tables S1.2 and S1.3.

Sex-specific analyses in this study showed significant differences in the pattern of

association with pigmentation and tanning response traits between male and female

individuals. Out of all SNPs with significant sex-specific associations, we found

significantly more SNPs associated with dark pigmentation or sun protection in female

than in male individuals (107 vs. 75; P = 2.32x10-6), the latter being more commonly

associated with light pigmentation and poor sun tolerance – traits highly associated with

melanoma predisposition (26) (Figure 1.2). The percentage of SNPs associated with both

dark eye and dark hair colour in females was higher than in males (72.72% vs. 40.74%,

P=0.025; 78.57% vs. 48.28%, P = 0.018, respectively). This association pattern was also

observed for skin colour, but without significance (66.67% vs. 41.94%, P = 0.068). In

addition, female individuals presented more SNPs associated with both ≤50 naevi and

absence of childhood sunburns than males (65.38% vs. 36.67%, P = 0.032; 61.11% vs.

36.11%, P = 0.034; respectively). On the other hand, a similar percentage of SNPs

associated with absence of lentigines was observed in both female and male individuals

(56.00% vs. 43.33%, P = 0.35). A representation of the distribution/count of

polymorphisms associated with phenotype groups for each trait studied, separated by sex,

is displayed in Figure 1.2.



Chapter 1. Sex-specific genetic effects in pigmentation

58

Figure 1.2. Distribution of the SNPs associated with pigmentation and sun sensitivity traits separated

by sex. The percentage of each phenotype (protection or risk) is calculated taking into account the total

number of significant SNPs associated in males and females (P-values<0.05). Percentages are represented

by bars of the corresponding colour. The number on the top of each bar represents the count of associated

SNPs in each category.
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It is important to note that these associations do not reflect differences in the allelic

frequencies of these pigmentation genes between males and females. These results

basically indicate that, for a given genotype, the allelic effects on the phenotypic traits are

shown to be significantly different in both sexes.

Additionally, sex-differentiated analysis was performed in order to test for equality

between male-specific and female-specific regression estimates. Sex-differentiated P-

values are represented in Figure 1.3. A significant sex-specific and sex-differentiated SNP

association is required to establish a potential difference in effect for each polymorphism

by sex. Three SNPs showed a strong potential sex-difference in eye colour effect, 10

SNPs in skin colour effect, 3 SNPs in hair colour effect, 4 SNPs in sunburns effect, 5

SNPs in lentigines effect, and 5 SNPs in naevi effect (P < 0.01). Among these SNPs,

PLDN SNP rs12909221, GPR143 SNP rs2521667, POMC SNP rs6734859, AP3M2 SNP

rs7009632, BCL2 SNP rs1462129 and TYRP1 SNP rs10809828 were associated with light

pigmentation and poor sun tolerance in males. Only one polymorphism, rs2521578 on the

GPR143 gene, showed a high association with poor sun tolerance in females (Tables S1.2

and S1.3).

Promising differences in allelic effect by sex were also observed for TYR SNP rs1042602.

Females and males showed statistically significant effects in opposite directions for this

SNP, and this difference in effect by sex would remain hard to discriminate from chance.

Indeed, a sex-differentiated P-value of 1.30x10-3 was estimated for rs1042602, as shown

in Figure 1.3.
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Figure 1.3. Manhattan plots displaying the strength of significant differences between male-only and

female-only associated effects (-log10 sex-differentiated P-value) for pigmentation and sun sensitivity

traits. Darker dots of the corresponding colour indicate SNPs with a significant fold change (sex-

differentiated P-values < 0.01).

Polymorphisms showing potential differences in allelic effect by sex are located on genes

that have functions related to melanocyte development, melanosome formation,

maturation and transportation, as well as to skin cancer (26–28,31,54,56,158,168–170).

Interestingly, we also found associations between pigmentation phenotypes and several
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genes – CDKN2A, GNA11, NRA and WNT3A – involved in the up-regulation of

melanogenic genes, the activation, survival and proliferation of the melanocyte, and/or

the processes leading to carcinogenesis.

1.3.2. Associations with melanoma risk by sex

In a previous study published by our group, the association of 65 gene regions with

melanoma risk was reported (28). However, at that time no sex stratification was applied

to perform the association analysis. In this work, we have carried out an analysis of

association between genotypes and melanoma risk for female and male individuals

separately.

Sixteen SNPs located in 10 genes showed consistent male- or female-specific association

with melanoma risk. Eleven of those SNPs showed potential differences in effect by sex,

since P-values obtained in the sex-differentiated regression estimate test were lower than

0.05. Detailed information on rs numbers, genes, chromosome locations, minor alleles,

ORs, 95% CIs and P-values for melanoma risk are summarised in Table 1.1.

Among these 11 SNPs, we found six SNPs located in 4 genes showing a strong difference

in melanoma risk effect when samples were stratified by sex – sex-specific and sex-

differentiated P-values lower than 0.01. F2RL1 SNP rs2242991, GPR143 SNPs

rs2521667 and rs2732872, and TYR SNP rs5021654 increased melanoma predisposition

in males as opposed to females. Additionally, a strong melanoma protective effect was

displayed by rs2069398 on CDK2/SILV in females only. These SNPs were also associated

with pigmentation and sun tolerance in opposite directions in males (ORs > 1, melanoma

risk traits) versus females (ORs < 1, melanoma protective traits), supporting lower
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melanoma predisposition and incidence in females than in males. Oppositely, rs1042602

on the TYR gene showed a melanoma protective effect in males compared to females.

Therefore, these results are in accordance with the association between rs1042602 and

dark pigmentation and good sun tolerance in males but not in females (Tables S1.2 and

S1.3).

These genes with potential differences in melanoma risk effect by sex are graphically

represented in Figure S1.2. The F2RL1/PAR2 gene, expressed in keratinocytes but not in

melanocytes, is a G-protein coupled receptor involved in melanosome transfer (171), and

changes in its expression pattern are correlated with skin cancer progression (172). The

GPR143 gene, located in the X chromosome, encodes for a G-protein coupled receptor

Table 1.1. SNPs highly associated with melanoma risk in sex-stratified analysis

Melanoma

Female Male Sex-diff

Gene SNP ID Chr mA P-value OR P-value OR P-value

AP3B1 rs11742673 5 A 0.0020 1.43 (1.14-1.80) 0.88 0.98 (0.75-1.28) 0.0210

CDK2/SILV rs2069398 12 A 3.03E-4 0.47 (0.31-0.71) 0.06 0.60 (0.35-1.03) 0.0016

F2RL1 rs2242991 5 G 0.56 0.92 (0.68-1.22) 0.0076 1.61 (1.13-2.29) 0.0067

GPR143 rs2521667 X G 0.46 0.89 (0.67-1.20) 7.04E-4 1.89 (1.30-2.74) 7.85E-4

rs2732872 X C 0.78 0.96 (0.73-1.27) 8.43E-4 1.81 (1.27-2.57) 0.0052

KIT rs6554198 4 G 0.46 0.92 (0.73-1.15) 0.0027 0.67 (0.51-0.87) 0.07

MYO7A rs3758708 11 A 0.20 1.30 (0.87-1.95) 4.12E-4 2.38 (1.46-3.90) 0.0480

RAB38 rs524121 11 C 0.0086 0.51 (0.30-0.85) 0.36 1.32 (0.73-2.38) 0.0210

RGS20 rs6981243 8 C 0.38 0.90 (0.71-1.14) 0.0021 0.66 (0.51-0.86) 0.0490

SLC45A2 rs35414 5 T 0.03 0.77 (0.61-0.97) 0.0018 0.66 (0.51-0.85) 0.39

rs35415 5 A 0.03 0.78 (0.62-0.97) 0.0080 0.70 (0.54-0.91) 0.35

TYR rs1042602 11 A 0.35 1.11 (0.89-1.40) 0.0047 0.68 (0.53-0.89) 0.0081

rs12270717 11 C 0.60 1.07 (0.82-1.40) 0.0032 1.56 (1.16-2.09) 0.09

rs17793678 11 T 0.32 1.14 (0.88-1.49) 0.0036 1.55 (1.15-2.08) 0.26

rs2186640 11 G 0.39 0.90 (0.71-1.15) 9.20E-4 1.57 (1.20-2.05) 0.0380

rs5021654 11 C 0.47 0.92 (0.72-1.16) 2.03E-4 1.66 (1.27-2.17) 0.0014

SNP, single nucleotide polymorphism; Chr, Chromosome; mA, Minor Allele; OR, Odds Ratio per minor allele; CI,
Confidence Interval;  Sex-diff, sex-differentiated meta-regression estimate test.
Bold indicates statistically significant results.
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for tyrosine, L-DOPA and dopamine localised on melanosomal membranes, and plays an

important role in melanosome biogenesis, organization and transport. Ocular albinism

type 1 (OA1; MIM300500) is caused by mutations in GPR143, and is transmitted as an

X-linked trait. The TYR gene codes for another melanosomal membrane-bound enzyme

involved in the rate-limiting steps of melanogenesis. Mutations in the TYR gene are

associated with light pigmentation, freckling and sun sensitivity – well-recognised

melanoma risk factors – as well as with melanoma (28,51). The CDK2 gene, which

overlaps with the melanocyte-specific gene SILV, is also important for melanoma growth

and proliferation (173). SILV melanosomal matrix protein represents a melanoma

specific antigen recognised by tumour infiltrating cytotoxic T lymphocytes (174).

A recent study is worth mentioning in this respect. According to Kocarnik and cols.

(2014), SLC45A2 SNP rs16891982, the non-synonymous mutation F374L located in exon

5, influenced melanoma risk differently by sex, with higher melanoma risk for males than

females, probably through alterations in melanogenesis and pigmentation (166). In our

study, two SNPs on the SLC45A2 gene (rs35414 and rs35415) displayed associations with

melanoma in both female-only and male-only analysis, although they do not present

significant sex-differentiated P-values. It is important to note that the minor allele of these

two SNPs showed a protective effect for melanoma, and that the allele frequencies for

these protective minor alleles, causing a darker pigmentation, are actually quite common

in the Spanish population, as opposed to Northern European populations. Subsequently,

this association was stronger in males (rs35414: OR = 0.66, 95% CI 0.51-0.85, P =

0.0018; and rs35415: OR = 0.70, 95% CI 0.54-0.91, P = 0.008) than in females (rs35414:

OR = 0.77, 95% CI 0.61-0.97, P = 0.026; and rs35415: OR = 0.78, 95% CI 0.62-0.97, P

= 0.029). In the male-only but not in the female-only analysis, rs35414 and rs35415

tended to be also associated with dark pigmentation and the absence of childhood
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sunburns (P < 0.05). It is important to state here that in the work by Kocarnik and cols.,

it was the major allele – in the Caucasian population – of the SLC45A2 SNP that was in

fact modelled as the purposed risk allele for melanoma, while in this study it is the minor

alleles of the two SLC45A2 SNPs that were actually used as reference to perform the

analyses. Therefore, the genetic effect shown by the SLC45A2 gene in our study exhibits

the opposite direction that the one displayed by the Kocarnik and cols. work.

We are aware of the limitations of the current work. Firstly, the sample size was relatively

restricted after dividing by sex the complete sample set, probably resulting in limited

statistical power to detect modest effects for additional SNPs. Unfortunately, there are

not previously published genome-wide studies presenting data stratified by sex, hindering

chances of enlarging the sample size. Secondly, the subjective nature of the attributes

considered may be another reason for misclassification. Thirdly, we presented two-sided

unadjusted P-values for the associations considered; and the level of statistical

significance considered was lower than the threshold required to declare unequivocally

positive results. However, the results of this work – as well as other previous studies

(162,163,166) – show that there is a strong tendency showing sex-differentiated genetic

effects in pigmentary traits. Therefore, we believe that the work presented here is

nonetheless reporting very interesting findings. For all these limitations, replication of

our findings is essential before venturing on drawing firmer conclusions.

The results of this study suggest that there are indeed sex-specific genetic effects in

human pigmentation, with larger effects for darker pigmentation in females compared to

males. A plausible cause might be the differentially expressed melanogenic genes in

females due to higher oestrogen levels. These sex-specific genetic effects would help

explain the presence of darker eye and skin pigmentation in females, as well as the well-

known higher melanoma risk displayed by males.
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1.4. CONCLUSIONS

Overall, the results of this work reveal the presence of sex-specific effects in human

pigmentation that might be important not only in skin colour and sensitivity to sunlight,

but also in the higher incidence of melanoma described in males. These findings also

show that, at times, sex-stratified analyses enrich genetic association studies with

valuable information and knowledge.

1.5. SUPPLEMENTARY MATERIAL

- Table S1.1. List of 363 successfully genotyped SNPs, minor allele frequencies for all

samples, males and females, and HWE P-values

- Table S1.2. List of SNPs associated with pigmentation traits in females and males

- Table S1.3. List of SNPs associated with sun response traits in females and males

- Figure S1.1. Comparison of minor allele frequencies, female versus male individuals

- Figure S1.2. A selection of genetic factors affecting pigmentation and sun sensitivity

in human
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Table S1.1. List of 363 successfully genotyped SNPs,  Minor allele frequencies for all samples, males and females, and HWE P-values

All samples Males Females

Gene SNP rs# Chr Position on
Chr (bp) Location in Gene mA MAF HWE P-value MAF HWE P-value MAF HWE P-value

ADAM17 rs12473402 2 9550169 intron C 0.370 0.34 0.374 0.28 0.366 0.97
ADAM17 rs12475630 2 9551832 intron T 0.325 0.61 0.327 0.49 0.327 0.18
ADAM17 rs12992105 2 9581324 intron C 0.165 0.13 0.169 0.84 0.162 0.09
ADAM17 rs17524425 2 9543455 3' downstream G 0.213 0.76 0.202 0.78 0.221 0.74
ADAM17 rs4258773 2 9588663 intron G 0.462 0.82 0.471 0.34 0.453 0.44

ADAMTS20 rs1510521 12 42193473 intron G 0.342 0.90 0.321 0.72 0.356 0.82
ADAMTS20 rs17093450 12 42221612 intron A 0.121 0.76 0.120 0.42 0.121 0.74
ADAMTS20 rs2048348 12 42215388 intron A 0.105 0.89 0.123 0.98 0.092 0.81
ADAMTS20 rs2062731 12 42227223 intron C 0.091 0.86 0.094 0.63 0.087 0.57
ADAMTS20 rs275630 12 42227033 intron T 0.305 0.43 0.294 0.37 0.310 0.57
ADAMTS20 rs3764467 12 42105989 intron T 0.093 0.94 0.084 0.46 0.099 0.68
ADAMTS20 rs7297057 12 42117952 intron T 0.187 0.34 0.207 0.91 0.177 0.16
ADAMTS20 rs7960952 12 42212399 intron C 0.420 0.94 0.407 0.88 0.431 0.61
ADAMTS20 rs9634256 12 42226764 intron G 0.432 0.40 0.435 0.07 0.431 0.76

AP3B1 rs10514134 5 77355203 intron A 0.094 0.96 0.098 0.93 0.090 0.79
AP3B1 rs10805919 5 77628680 5' upstream C 0.237 0.72 0.258 0.27 0.218 0.69
AP3B1 rs11742673 5 77535322 intron A 0.435 0.54 0.419 0.20 0.452 0.76
AP3B1 rs11746090 5 77375602 intron A 0.249 0.91 0.230 0.97 0.261 0.91
AP3B1 rs12657894 5 77537609 intron A 0.372 0.76 0.379 0.33 0.361 0.29
AP3B1 rs13172957 5 77611135 intron G 0.329 0.72 0.330 0.22 0.324 0.56
AP3B1 rs17191796 5 77444232 intron G 0.109 0.76 0.112 0.69 0.105 0.94
AP3B1 rs2636986 5 77421437 intron T 0.215 0.41 0.223 0.81 0.210 0.34
AP3B1 rs34436 5 77394844 intron G 0.106 0.97 0.109 0.88 0.107 0.70
AP3B1 rs389110 5 77408005 intron A 0.215 0.36 0.223 0.81 0.211 0.28
AP3B1 rs4703747 5 77340718 intron G 0.191 0.91 0.197 0.88 0.185 0.95
AP3B1 rs6453373 5 77460784 coding exon A 0.075 0.61 0.073 0.88 0.077 0.73
AP3B1 rs6453374 5 77543915 intron A 0.290 0.82 0.282 0.42 0.294 0.60
AP3D1 rs10413398 19 2057696 intron C 0.201 0.43 0.204 0.42 0.197 0.75
AP3D1 rs17604954 19 2062382 intron A 0.117 0.63 0.124 0.25 0.113 0.60
AP3D1 rs2238599 19 2091009 intron C 0.460 0.65 0.474 0.29 0.449 0.16
AP3D1 rs2240655 19 2066790 intron T 0.132 0.05 0.134 0.36 0.131 0.07
AP3D1 rs3786971 19 2092209 intron T 0.438 0.19 0.428 0.91 0.447 0.15
AP3D1 rs7256735 19 2120121 5' upstream G 0.086 0.89 0.088 0.70 0.088 0.72
AP3M2 rs2070713 8 42164812 3' downstream T 0.417 0.61 0.423 0.45 0.408 0.93
AP3M2 rs7009632 8 42127343 5' upstream G 0.422 0.14 0.423 0.27 0.421 0.19
AP3M2 rs7823824 8 42117935 5' upstream A 0.433 0.48 0.447 0.24 0.424 0.75
AP3M2 rs8178890 8 42154511 3' downstream T 0.082 0.91 0.071 0.71 0.088 0.59

ASIP rs6142129 20 32283532 5' upstream G 0.334 0.46 0.324 0.91 0.338 0.62
ASIP rs819133 20 32333975 intron T 0.126 0.60 0.135 0.69 0.124 0.73
BCL2 rs1462129 18 59131851 intron T 0.467 0.91 0.480 0.27 0.460 0.19
BCL2 rs1564483 18 58945634 3' UTR T 0.253 0.86 0.154 0.74 0.241 0.93
BCL2 rs4987852 18 58944901 3' UTR C 0.069 0.74 0.057 0.88 0.077 0.56
BCL2 rs4987853 18 58944635 3' UTR C 0.256 0.43 0.264 0.54 0.245 0.72
BCL2 rs949037 18 59129993 intron A 0.437 0.59 0.445 0.76 0.432 0.15

BCL2A1 rs11636338 15 78032645 3' downstream C 0.337 0.03 0.344 0.94 0.331 0.03
BCL2A1 rs17215263 15 78043311 intron G 0.314 0.26 0.323 0.89 0.303 0.14
BCL2A1 rs6495460 15 78044410 intron C 0.128 0.57 0.141 0.37 0.120 0.93

BLOC1S3 rs7253652 19 50372974 5' upstream C 0.097 0.45 0.106 0.48 0.089 0.78
CDH1 rs11075699 16 67360288 intron G 0.419 0.79 0.398 0.45 0.438 0.44
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CDH1 rs16260 16 67328535 5' upstream A 0.296 0.56 0.302 0.75 0.290 0.62
CDH1 rs1801552 16 67414942 coding exon T 0.369 0.77 0.320 0.15 0.411 0.79
CDH1 rs2276329 16 67420815 intron C 0.055 0.60 0.066 0.25 0.047 0.71
CDH1 rs2902186 16 67319398 5' upstream G 0.097 0.55 0.110 0.74 0.090 0.25
CDH1 rs7188750 16 67400396 intron A 0.153 0.73 0.168 0.97 0.142 0.69
CDH1 rs7203904 16 67420442 intron C 0.218 0.53 0.242 0.23 0.200 0.04
CDH1 rs8059139 16 67402468 intron G 0.061 0.85 0.068 0.98 0.056 0.76
CDH1 rs8061932 16 67420098 intron C 0.174 0.27 0.197 0.96 0.158 0.10
CDH3 rs11075692 16 67239293 intron G 0.378 0.35 0.370 0.30 0.387 0.69
CDH3 rs1124770 16 67263914 intron G 0.150 0.54 0.153 0.93 0.146 0.49
CDH3 rs1886700 16 67243406 intron T 0.128 0.37 0.130 0.70 0.127 0.14
CDH3 rs3114398 16 67264434 intron G 0.283 0.69 0.291 0.96 0.277 0.71
CDH3 rs3118230 16 67266860 intron T 0.093 0.46 0.103 0.97 0.087 0.32
CDK4 rs2069502 12 56430932 intron T 0.237 0.85 0.253 0.42 0.235 0.73
CDK4 rs2270777 12 56431423 non-coding exon C 0.469 0.97 0.490 0.33 0.459 0.51

CDKN2A rs11515 9 21958199 3' UTR G 0.170 0.46 0.170 0.81 0.170 0.30
CDKN2A rs2518719 9 21960427 intron G 0.158 0.43 0.175 0.84 0.146 0.53
CDKN2A rs3731239 9 21964218 intron G 0.317 0.21 0.308 0.55 0.324 0.36
CDKN2A rs3731257 9 21956221 3' downstream A 0.299 0.57 0.294 0.38 0.299 0.85
CDKN2B rs1063192 9 21993367 3' UTR G 0.357 0.20 0.365 0.50 0.354 0.20
CDKN2B rs2811712 9 21988035 3' downstream G 0.117 0.45 0.122 0.96 0.114 0.40
CDKN2B rs3218009 9 21988757 3' downstream C 0.085 0.88 0.077 0.93 0.087 0.73
CDKN2B rs3218020 9 21987872 5' upstream A 0.442 0.77 0.429 0.97 0.446 0.52
CDKN2B rs495490 9 22000412 5' upstream G 0.108 0.85 0.115 0.63 0.105 0.48

CLIP1 rs7388 12 121322137 intron A 0.225 0.93 0.226 0.96 0.224 0.73
CNO rs10937751 4 6762957 5' upstream A 0.287 0.28 0.282 0.42 0.289 0.43
CNO rs3172604 4 6769676 3' UTR G 0.355 0.57 0.353 0.78 0.351 0.57
CNO rs4689527 4 6771878 3' downstream G 0.366 0.20 0.360 1.00 0.365 0.09

CTNNBIP1 rs11828 1 9909594 3' downstream C 0.187 0.32 0.186 0.40 0.185 0.54
CTNNBIP1 rs12128766 1 9859628 intron C 0.423 0.60 0.399 0.76 0.435 0.44
CTNNBIP1 rs1220392 1 9829390 3' downstream A 0.150 0.24 0.155 0.99 0.144 0.15
CTNNBIP1 rs2379107 1 9833878 intron G 0.167 0.63 0.149 0.41 0.179 0.83
CTNNBIP1 rs4846104 1 9900834 intron G 0.064 0.78 0.060 0.92 0.063 0.69

DCT rs2031527 13 93921918 intron T 0.194 0.20 0.207 0.28 0.186 0.56
DCT rs3782972 13 93901047 intron C 0.165 0.21 0.163 0.70 0.167 0.13
DCT rs3782973 13 93900698 intron G 0.165 0.21 0.162 0.82 0.169 0.10
DCT rs9301959 13 93908106 intron C 0.451 0.55 0.455 0.90 0.447 0.32
DCT rs9516418 13 93909510 intron C 0.374 0.39 0.384 0.29 0.368 0.71
DCT rs9524493 13 93899790 intron G 0.460 0.07 0.451 0.12 0.464 0.39

EDNRB rs11149080 13 77365761 3' downstream G 0.424 0.45 0.425 0.86 0.421 0.30
EDNRB rs3027110 13 77377230 intron C 0.072 0.67 0.075 0.88 0.071 0.47
EDNRB rs3027129 13 77384402 intron T 0.060 0.84 0.051 0.96 0.068 0.77
EDNRB rs3818416 13 77372469 intron A 0.281 0.58 0.298 0.61 0.267 0.81
EDNRB rs4885491 13 77368351 3' UTR A 0.160 0.48 0.165 0.62 0.157 0.61
F2RL1 rs2242991 5 76150615 5' UTR G 0.183 0.13 0.171 0.16 0.191 0.33
F2RL1 rs2243004 5 76152873 intron G 0.174 0.80 0.177 0.74 0.172 0.89
F2RL1 rs2243010 5 76153524 intron T 0.158 0.48 0.166 0.60 0.151 0.39
F2RL1 rs2243051 5 76161558 intron G 0.449 0.38 0.459 0.96 0.441 0.19
F2RL1 rs639342 5 76148625 5' upstream A 0.165 0.71 0.163 0.97 0.168 0.73
GNA11 rs10407783 19 3066124 intron T 0.345 0.13 0.347 0.69 0.339 0.10
GNA11 rs1104737 19 3047788 intron T 0.385 0.10 0.376 0.04 0.389 0.66
GNA11 rs2238625 19 3055652 intron C 0.456 0.97 0.456 0.41 0.452 0.50
GNA11 rs308039 19 3046927 intron T 0.175 0.54 0.178 0.77 0.173 0.27
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GNA11 rs308054 19 3056987 intron A 0.429 0.11 0.427 0.13 0.435 0.37
GNA11 rs3746069 19 3065864 intron T 0.161 0.90 0.158 0.96 0.164 0.85
GNA11 rs3786947 19 3065229 intron A 0.389 0.21 0.392 0.37 0.383 0.31
GNA11 rs404632 19 3065545 intron T 0.122 0.25 0.120 0.57 0.123 0.23
GNA11 rs4806907 19 3044163 5' upstream C 0.393 0.90 0.379 0.23 0.404 0.39
GNAQ rs10781468 9 79690225 intron T 0.256 0.15 0.249 0.59 0.261 0.15
GNAQ rs10869977 9 79647096 intron A 0.443 0.19 0.447 0.42 0.439 0.33
GNAQ rs11145647 9 79801980 intron C 0.201 0.69 0.204 0.69 0.200 0.50
GNAQ rs12686139 9 79681047 intron C 0.463 0.81 0.466 0.57 0.462 0.79
GNAQ rs1328533 9 79674282 intron G 0.341 0.51 0.340 0.77 0.342 0.58
GNAQ rs1328534 9 79674191 intron T 0.242 0.80 0.239 0.44 0.245 0.68
GNAQ rs1410552 9 79691494 intron T 0.291 0.34 0.289 0.24 0.294 0.79
GNAQ rs17724885 9 79659385 intron G 0.069 0.98 0.068 0.80 0.070 0.82
GNAQ rs17786974 9 79733027 intron T 0.083 0.80 0.086 0.93 0.081 0.83
GNAQ rs2296937 9 79696407 intron C 0.120 0.98 0.122 0.53 0.119 0.75
GNAQ rs3780302 9 79576374 intron T 0.121 0.88 0.129 0.89 0.117 0.87
GNAQ rs3858119 9 79524896 3' UTR C 0.300 0.06 0.303 0.14 0.296 0.35
GNAQ rs4237275 9 79724578 intron C 0.254 0.49 0.262 0.16 0.251 0.80
GNAQ rs4745672 9 79688048 intron T 0.489 0.39 0.491 0.37 0.486 0.82
GNAQ rs7028873 9 79717352 intron T 0.290 0.33 0.288 0.13 0.292 0.99
GNAS rs12625436 20 56878608 intron A 0.424 0.58 0.433 0.05 0.420 0.33
GNAS rs13831 20 56908586 3' UTR A 0.254 0.18 0.246 0.29 0.261 0.38
GNAS rs2145288 20 56877604 intron C 0.297 0.31 0.293 0.44 0.303 0.09
GNAS rs234623 20 56922359 3' downstream A 0.478 0.14 0.483 0.87 0.473 0.06
GNAS rs234627 20 56920375 3' downstream T 0.266 0.25 0.277 0.12 0.255 0.99
GNAS rs6026561 20 56860527 5' upstream C 0.386 0.42 0.401 0.21 0.377 0.99
GNAS rs6026574 20 56889890 intron T 0.304 0.55 0.289 0.57 0.318 0.66
GNAS rs6064714 20 56847535 5' upstream G 0.131 0.19 0.139 0.97 0.127 0.10
GNAS rs6092704 20 56901873 intron C 0.086 0.86 0.083 0.57 0.087 0.74
GNAS rs6100269 20 56912671 intron T 0.107 0.94 0.104 0.99 0.108 0.84
GNAS rs6123832 20 56851466 intron T 0.422 0.70 0.425 0.12 0.421 0.51
GNAS rs919197 20 56914328 intron T 0.468 0.28 0.477 0.43 0.461 0.05
GNAS rs965808 20 56841821 5' upstream C 0.255 0.27 0.247 0.73 0.263 0.15

GPR143 rs11095519 X 9667373 intron A 0.141 *** 0.141 *** 0.140 0.52
GPR143 rs2521578 X 9655630 intron T 0.135 *** 0.165 *** 0.112 0.92
GPR143 rs2521667 X 9690838 intron G 0.167 *** 0.155 *** 0.179 0.22
GPR143 rs2732872 X 9688521 intron C 0.197 *** 0.179 *** 0.213 0.86
GPR143 rs5979160 X 9650197 3' downstream C 0.168 *** 0.163 *** 0.164 0.72
GPR143 rs6654731 X 9666637 intron C 0.047 *** 0.044 *** 0.044 0.96

HPS1 rs1061135 10 100179128 intron G 0.488 0.21 0.485 0.72 0.461 0.32
HPS1 rs10786422 10 100194717 intron T 0.276 0.35 0.287 0.90 0.270 0.27
HPS1 rs10883094 10 100178096 intron A 0.208 0.46 0.219 0.42 0.204 0.72
HPS1 rs12242431 10 100179066 intron C 0.113 0.66 0.103 0.78 0.122 0.83
HPS1 rs1739 10 100166329 3' UTR A 0.315 0.08 0.319 0.15 0.316 0.22
HPS1 rs17535384 10 100184592 intron G 0.140 0.83 0.133 1.00 0.143 0.67
HPS1 rs1886728 10 100183669 intron C 0.444 0.46 0.439 0.49 0.448 0.53
HPS1 rs3750605 10 100165644 3' downstream T 0.202 0.41 0.218 0.51 0.193 0.50
HPS1 rs7075080 10 100202364 intron G 0.408 0.86 0.404 0.96 0.414 0.77
HPS1 rs7921146 10 100176591 intron A 0.209 0.41 0.225 0.56 0.199 0.45
HPS4 rs16982145 22 25191721 intron C 0.038 0.93 0.030 0.52 0.046 0.72
HPS4 rs17401652 22 25198490 intron T 0.104 0.66 0.104 0.82 0.099 0.55
HPS4 rs1894707 22 25189086 intron C 0.372 0.71 0.362 0.72 0.376 0.80
HPS4 rs3213583 22 25191545 intron A 0.109 0.45 0.105 0.29 0.111 0.82



Chapter 1. Sex-specific genetic effects in pigmentation

69

HPS4 rs3747129 22 25192041 coding exon A 0.145 0.21 0.135 0.61 0.154 0.24
HPS4 rs9608491 22 25200985 intron G 0.187 0.98 0.204 0.68 0.174 0.58
HPS4 rs9613187 22 25205370 intron T 0.112 0.98 0.123 0.98 0.104 0.90
HPS5 rs12218 11 18247897 coding exon C 0.483 0.62 0.495 0.67 0.465 0.81
HPS5 rs2049129 11 18261909 intron C 0.165 0.60 0.162 0.84 0.166 0.64
HPS5 rs2305564 11 18274034 intron A 0.496 0.37 0.481 0.34 0.480 0.68
HPS5 rs4353250 11 18280093 intron T 0.309 0.44 0.300 0.82 0.311 0.46
HPS5 rs4757637 11 18264151 intron C 0.363 0.58 0.347 0.62 0.373 0.50
HPS5 rs7131332 11 18252099 3' downstream G 0.318 0.25 0.314 0.05 0.320 0.97
HPS6 rs3737243 10 103815737 coding exon A 0.102 0.41 0.097 0.42 0.107 0.71
HPS6 rs3816 10 103817727 3' UTR G 0.220 0.81 0.233 0.64 0.212 0.32
HPS6 rs6584475 10 103796783 intron C 0.381 0.45 0.366 0.75 0.384 0.24
HRK rs10507275 12 115778887 3' downstream A 0.158 0.96 0.161 0.86 0.158 0.99
HRK rs1112700 12 115790588 intron A 0.139 0.92 0.143 0.71 0.138 0.79
HRK rs4767462 12 115781956 3' UTR G 0.065 0.95 0.076 0.66 0.060 0.62
HRK rs884378 12 115792581 intron A 0.261 0.57 0.270 0.96 0.258 0.47

HTR2B rs10194776 2 231688263 intron T 0.396 0.99 0.391 0.38 0.399 0.61
HTR2B rs17619600 2 231684704 intron C 0.090 0.72 0.093 0.98 0.087 0.74
HTR2B rs2161891 2 231662335 intron G 0.345 0.79 0.330 0.77 0.357 0.84
HTR2B rs4973377 2 231690236 intron A 0.172 0.43 0.173 0.92 0.175 0.30

KIT rs1008658 4 55294193 intron T 0.356 0.97 0.361 0.71 0.350 0.86
KIT rs11735550 4 55283476 intron C 0.134 0.28 0.129 0.43 0.136 0.55
KIT rs13135792 4 55247087 intron C 0.355 0.15 0.348 0.48 0.355 0.25
KIT rs2213180 4 55296084 intron G 0.184 0.78 0.166 0.94 0.198 0.82
KIT rs2237025 4 55236636 intron T 0.457 0.72 0.465 0.88 0.455 0.63
KIT rs2298976 4 55283293 intron G 0.128 0.89 0.144 0.75 0.112 0.92
KIT rs4864920 4 55285378 intron T 0.211 0.86 0.223 0.50 0.199 0.76
KIT rs6554198 4 55216917 5' upstream G 0.425 0.94 0.423 0.32 0.427 0.57
KIT rs759083 4 55232238 intron G 0.370 0.30 0.365 0.37 0.368 0.76

KITLG rs10858753 12 87434601 intron T 0.051 0.87 0.053 0.93 0.050 0.89
KITLG rs10858758 12 87468649 intron G 0.232 0.27 0.231 0.78 0.228 0.16
KITLG rs11104903 12 87407546 3' downstream G 0.131 0.49 0.130 0.95 0.128 0.36
KITLG rs11610915 12 87426172 intron A 0.014 0.94 0.016 0.95 0.013 0.99
LYST rs11810173 1 233899178 intron T 0.170 0.96 0.163 0.42 0.176 0.66
LYST rs17714318 1 234105797 intron A 0.071 0.92 0.069 0.74 0.073 0.85
LYST rs3754230 1 233893206 intron A 0.114 0.97 0.114 0.99 0.111 0.90
LYST rs3768051 1 233926337 intron T 0.127 0.95 0.110 0.29 0.138 0.52
LYST rs6429238 1 233921363 intron T 0.347 0.96 0.354 0.86 0.346 0.66
LYST rs6699717 1 233888473 3' downstream T 0.500 0.43 0.495 0.26 0.497 0.93
LYST rs7541057 1 233926963 intron C 0.491 0.78 0.498 0.45 0.487 0.79

MCAM rs2249466 11 118686380 coding exon T 0.314 0.35 0.327 0.35 0.308 0.81
MCAM rs2511837 11 118684217 3' downstream T 0.476 0.92 0.469 0.38 0.476 0.38
MCAM rs6589732 11 118690557 intron A 0.407 0.83 0.398 0.40 0.407 0.48

MCOLN3 rs10518327 1 85260108 intron A 0.272 0.99 0.259 0.64 0.279 0.71
MCOLN3 rs10782537 1 85257061 3' UTR C 0.218 0.54 0.223 0.78 0.220 0.50
MCOLN3 rs10873682 1 85270400 intron A 0.434 0.44 0.429 0.68 0.438 0.57
MCOLN3 rs12030837 1 85291971 5' upstream T 0.125 0.87 0.127 0.89 0.125 0.80
MCOLN3 rs12735211 1 85262088 intron A 0.076 0.51 0.074 0.49 0.075 0.94
MCOLN3 rs2304641 1 85285986 intron T 0.173 0.80 0.184 0.93 0.168 0.89
MCOLN3 rs6674050 1 85288762 5' upstream C 0.222 0.29 0.213 0.53 0.224 0.39
MCOLN3 rs7522239 1 85256954 3' UTR A 0.143 0.52 0.137 0.75 0.150 0.50

MITF rs11128152 3 70049623 intron T 0.185 0.55 0.188 0.53 0.186 0.89
MITF rs13072665 3 70076003 intron A 0.090 0.86 0.079 0.97 0.096 0.75
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MITF rs2131025 3 70098337 3' UTR C 0.070 0.96 0.076 0.87 0.069 0.96
MITF rs3821364 3 70094111 intron C 0.246 0.36 0.266 0.30 0.235 0.75
MITF rs7623610 3 70087971 intron G 0.480 0.19 0.487 0.04 0.481 0.97

MLANA rs1056796 9 5899152 3' UTR T 0.310 0.72 0.306 0.87 0.320 0.70
MLANA rs10758717 9 5874281 5' upstream C 0.244 0.91 0.247 0.53 0.249 0.51
MLANA rs10815300 9 5874564 5' upstream T 0.177 0.96 0.180 0.96 0.180 0.96
MLANA rs10815303 9 5891100 intron T 0.115 0.59 0.118 0.53 0.115 0.81
MLANA rs10815304 9 5898217 intron C 0.221 0.95 0.217 0.93 0.227 0.99
MLANA rs10975339 9 5885586 intron T 0.327 0.54 0.316 0.95 0.334 0.36
MLANA rs2150702 9 5883861 intron G 0.461 0.89 0.457 0.27 0.466 0.72
MLANA rs7872509 9 5893555 intron C 0.186 0.98 0.189 0.74 0.187 0.86
MLPH rs10173589 2 238239684 intron G 0.159 0.48 0.161 0.28 0.152 0.97
MLPH rs13011946 2 238225025 intron T 0.048 0.92 0.050 0.96 0.047 0.93
MLPH rs13383648 2 238229295 intron C 0.122 0.78 0.115 0.82 0.128 0.67
MLPH rs2292881 2 238216249 coding exon T 0.087 0.84 0.082 0.98 0.091 0.66
MLPH rs729389 2 238207118 intron A 0.129 0.79 0.130 0.76 0.128 0.97
MLPH rs7606177 2 238176913 5' upstream C 0.237 0.62 0.242 0.29 0.235 0.88
MLPH rs880931 2 238178741 intron A 0.101 0.36 0.109 0.55 0.095 0.44

MUTED rs2743989 6 8009034 intron A 0.393 0.36 0.398 0.30 0.391 0.80
MUTED rs2748376 6 7960128 3' UTR T 0.409 0.85 0.409 0.96 0.415 0.77
MUTED rs2815155 6 8010229 5' upstream C 0.427 0.75 0.420 0.91 0.425 0.32
MUTED rs3734591 6 7960820 3' UTR C 0.171 0.70 0.177 0.45 0.173 0.73
MUTED rs9328451 6 7963071 intron T 0.190 0.96 0.192 0.72 0.190 0.80
MYO7A rs11237123 11 76600594 coding exon A 0.189 0.71 0.210 0.45 0.173 0.87
MYO7A rs11605022 11 76550062 intron G 0.424 0.62 0.432 0.87 0.419 0.30
MYO7A rs12793189 11 76598738 intron G 0.488 0.36 0.465 0.41 0.493 0.60
MYO7A rs12793619 11 76599006 intron A 0.264 0.56 0.286 0.96 0.248 0.60
MYO7A rs3740760 11 76531649 intron C 0.252 0.94 0.260 0.85 0.246 0.98
MYO7A rs3740763 11 76551268 intron T 0.422 0.80 0.420 0.76 0.422 0.67
MYO7A rs3758708 11 76572111 intron T 0.109 0.90 0.112 0.92 0.108 0.85
MYO7A rs7105374 11 76541520 intron A 0.410 0.37 0.426 0.93 0.403 0.32
MYO7A rs7123925 11 76598363 intron G 0.450 0.61 0.442 0.74 0.454 0.74
MYO7A rs762667 11 76546020 coding exon C 0.329 0.55 0.327 0.72 0.331 0.21
MYO7A rs883223 11 76602522 intron A 0.331 0.58 0.333 0.63 0.327 0.84
MYO7A rs885442 11 76597686 non-coding exon T 0.434 0.51 0.444 0.68 0.425 0.53
MYO7A rs948962 11 76597126 coding exon A 0.472 0.90 0.467 0.65 0.476 0.63
MYO7A rs948970 11 76563049 intron G 0.464 0.87 0.465 0.66 0.465 0.44

NF1 rs1013948 17 26554835 intron G 0.144 0.93 0.131 0.84 0.149 0.96
NF1 rs10438801 17 26717911 intron G 0.362 0.77 0.351 0.36 0.369 0.68
NF1 rs2953014 17 26520021 intron G 0.218 0.35 0.219 0.70 0.217 0.17
NF1 rs2953016 17 26518819 intron G 0.196 0.25 0.200 0.24 0.192 0.59

NRAS rs14804 1 115051366 3' UTR A 0.229 0.40 0.224 0.82 0.237 0.46
NRAS rs8453 1 115061122 5' upstream T 0.113 0.99 0.115 0.99 0.111 0.90
NRAS rs926938 1 115041339 5' upstream G 0.476 0.70 0.468 0.19 0.477 0.36
NRAS rs969273 1 115058192 intron G 0.344 0.25 0.351 0.98 0.346 0.09
PAX3 rs12620338 2 222773012 3' UTR A 0.203 0.50 0.212 0.95 0.196 0.56
PAX3 rs12623857 2 222870133 coding exon A 0.145 0.41 0.160 0.43 0.131 0.82
PAX3 rs13405641 2 222869850 intron A 0.261 0.27 0.286 0.07 0.239 0.99
PAX3 rs16863657 2 222872762 5' upstream G 0.127 0.93 0.108 0.86 0.140 0.73
PAX3 rs2033806 2 222777323 intron T 0.087 0.53 0.075 0.90 0.094 0.70
PAX3 rs2276630 2 222866283 intron A 0.103 0.93 0.087 0.53 0.118 0.89
PAX3 rs3770210 2 222871006 intron A 0.088 0.92 0.080 0.62 0.096 0.74
PAX3 rs7559271 2 222776530 intron G 0.394 0.52 0.390 0.22 0.398 0.71
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PCNA rs17349 20 5047516 intron A 0.130 0.82 0.130 0.94 0.130 0.87
PCNA rs3729558 20 5043321 3' downstream G 0.434 0.81 0.426 0.97 0.438 0.90
PLDN rs12909221 15 43690071 3' downstream C 0.440 0.68 0.458 0.82 0.422 0.50
PLDN rs16945097 15 43667414 intron T 0.134 0.70 0.118 0.89 0.146 0.60
POMC rs1866146 2 25234077 3' downstream G 0.331 0.04 0.336 0.17 0.326 0.09
POMC rs6734859 2 25233412 3' UTR T 0.148 0.87 0.149 0.69 0.146 0.74
POMC rs7565877 2 25239568 intron G 0.112 0.69 0.111 0.40 0.113 0.94
POMC rs934778 2 25242728 intron G 0.356 0.08 0.351 0.72 0.358 0.03

PRKAR1A rs11651687 17 64029901 intron A 0.190 0.40 0.190 0.13 0.193 0.96
PRKAR1A rs4968898 17 64017451 5' upstream G 0.201 0.81 0.204 0.42 0.202 0.70
PRKAR1A rs8066131 17 64016614 intron G 0.295 0.66 0.292 0.36 0.296 0.92
PRKAR1A rs8076465 17 64024620 intron A 0.317 0.83 0.305 0.79 0.323 0.71
PRKAR1A rs8905 17 64039397 3' UTR G 0.151 0.65 0.142 0.69 0.159 0.87

PTCH1 rs16909865 9 97247123 3' UTR G 0.071 0.79 0.077 0.86 0.064 0.90
PTCH1 rs2297087 9 97282746 intron G 0.201 0.10 0.208 0.40 0.199 0.20
PTCH1 rs4448343 9 97306191 intron G 0.281 0.49 0.288 0.92 0.281 0.45
PTCH1 rs473902 9 95335790 intron G 0.095 0.62 0.085 0.67 0.100 0.83
PTCH1 rs574688 9 95318745 intron G 0.300 0.26 0.288 0.74 0.306 0.19
PTCH2 rs3795719 1 45061114 intron G 0.137 0.44 0.137 0.57 0.137 0.13
PTCH2 rs7554177 1 45077697 intron A 0.309 0.40 0.315 0.52 0.301 0.37

RAB27A rs1007912 15 53360818 intron A 0.082 0.54 0.071 0.64 0.089 0.61
RAB27A rs1061824 15 53283255 3' UTR C 0.184 1.00 0.177 0.80 0.192 0.72
RAB27A rs11071175 15 53347717 intron G 0.482 0.19 0.479 0.14 0.482 0.88
RAB27A rs11855084 15 53368975 intron A 0.067 0.86 0.076 0.87 0.061 0.95
RAB27A rs12050885 15 53345916 intron G 0.170 0.94 0.196 0.47 0.147 0.47
RAB27A rs16976177 15 53296552 intron G 0.155 0.004 0.150 0.01 0.161 0.01
RAB27A rs16976194 15 53307051 intron T 0.435 0.89 0.454 0.71 0.423 0.75
RAB27A rs17238192 15 53302238 intron T 0.108 0.21 0.115 0.49 0.106 0.27
RAB27A rs7167572 15 53362172 intron T 0.359 0.05 0.363 0.10 0.359 0.33
RAB27A rs7496857 15 53342428 intron T 0.253 0.74 0.273 0.56 0.237 0.91
RAB27A rs9920165 15 53291631 intron G 0.113 0.86 0.101 0.87 0.122 0.68
RAB38 rs1027027 11 87486711 3' UTR A 0.240 0.59 0.252 0.97 0.231 0.61
RAB38 rs11602163 11 87548841 5' upstream G 0.323 0.78 0.326 0.77 0.315 0.70
RAB38 rs12295107 11 87548384 5' upstream A 0.077 0.80 0.081 0.79 0.074 0.94
RAB38 rs12576251 11 87521837 intron G 0.335 0.68 0.336 0.78 0.328 0.57
RAB38 rs302646 11 87548096 coding exon A 0.110 0.85 0.103 0.66 0.115 0.83
RAB38 rs524121 11 87487215 intron C 0.053 0.55 0.051 0.57 0.054 0.74
RAB38 rs9144 11 87486405 3' UTR T 0.408 0.74 0.422 0.85 0.392 0.61
RAB38 rs9666730 11 87547390 intron T 0.159 0.75 0.166 0.76 0.155 0.75

RABGGTA rs3940231 14 23818203 5' upstream T 0.403 0.75 0.395 0.26 0.406 0.30
RABGGTA rs941505 14 23803112 3' downstream T 0.080 0.40 0.071 0.72 0.088 0.42

RGS1 rs10921202 1 190813675 intron T 0.054 0.72 0.045 0.72 0.058 0.79
RGS1 rs1359062 1 190808095 5' upstream G 0.181 0.60 0.188 0.99 0.177 0.35
RGS1 rs1923949 1 190814333 intron G 0.273 0.93 0.276 0.19 0.273 0.35
RGS1 rs2816306 1 190814668 intron C 0.111 0.50 0.112 0.53 0.113 0.60

RGS20 rs10958392 8 54917377 intron T 0.429 0.91 0.425 0.49 0.437 0.36
RGS20 rs1123133 8 54942667 intron G 0.034 0.76 0.031 0.86 0.035 0.81
RGS20 rs11783652 8 55021047 intron A 0.359 0.51 0.353 0.18 0.359 0.78
RGS20 rs11783925 8 54933413 intron T 0.239 0.57 0.246 0.74 0.232 0.59
RGS20 rs2220093 8 54963880 intron C 0.104 0.89 0.114 0.83 0.100 0.99
RGS20 rs4738519 8 55031026 intron C 0.138 0.76 0.140 0.38 0.137 0.81
RGS20 rs6473895 8 54925457 5' upstream A 0.063 0.66 0.062 0.83 0.067 0.68
RGS20 rs6981243 8 55029044 intron C 0.423 0.81 0.444 0.95 0.404 0.83
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RGS20 rs7824575 8 54984872 intron A 0.238 0.47 0.238 0.54 0.240 0.69
SILV rs10783775 12 54625812 intron G 0.195 0.86 0.185 0.63 0.198 0.68
SILV rs2069398 12 54647143 5' upstream A 0.079 0.83 0.067 0.99 0.089 0.77
SILV rs2291615 12 54621417 intron A 0.248 0.51 0.265 0.99 0.240 0.36

SLC45A2 rs35401 5 33977113 3' downstream G 0.365 0.17 0.376 0.28 0.357 0.65
SLC45A2 rs35403 5 33979349 3' downstream C 0.473 0.97 0.496 0.64 0.459 0.81
SLC45A2 rs35405 5 33981515 intron T 0.455 0.32 0.457 0.24 0.450 0.68
SLC45A2 rs35414 5 34005385 intron T 0.409 0.15 0.417 0.31 0.408 0.36
SLC45A2 rs35415 5 34008288 non-coding exon A 0.429 0.04 0.438 0.54 0.427 0.05
SLC45A2 rs3756464 5 34005451 intron A 0.438 0.46 0.428 0.94 0.446 0.29
SLC45A2 rs7718382 5 34004647 intron A 0.197 0.83 0.196 0.62 0.199 0.64

SNAI2 rs1992375 8 50000397 5' upstream A 0.492 0.62 0.483 0.98 0.477 0.48
SNAI2 rs2735455 8 49992695 3' downstream T 0.075 0.72 0.074 0.69 0.075 0.93
SNX10 rs13222190 7 26102101 5' upstream A 0.338 0.41 0.320 0.37 0.353 0.69
SNX10 rs1406754 7 26362723 intron T 0.369 0.05 0.362 0.30 0.377 0.05
SNX10 rs1468286 7 26385234 3' downstream T 0.429 0.35 0.436 0.79 0.429 0.17
SNX10 rs2699808 7 26175747 intron C 0.470 0.65 0.487 0.58 0.455 0.29
SNX10 rs3801890 7 26159394 intron C 0.349 0.99 0.343 0.89 0.347 0.94
SNX10 rs7782538 7 26174753 intron T 0.192 0.77 0.189 0.90 0.200 0.61
SOX10 rs139879 7 36689052 3' downstream T 0.386 0.49 0.394 0.41 0.381 0.99
SOX11 rs17362772 2 5748369 5' upstream G 0.106 0.84 0.091 0.84 0.113 0.74
SOX11 rs3922853 2 5748050 5' upstream A 0.175 0.85 0.155 0.69 0.191 0.97
SOX11 rs4371338 2 5788628 3' UTR A 0.387 0.74 0.369 0.70 0.401 0.59
SOX11 rs4669779 2 5795648 3' downstream C 0.422 0.78 0.406 0.84 0.435 0.99
SOX11 rs6432221 2 5746153 5' upstream T 0.392 0.45 0.405 0.47 0.373 0.52

TYR rs1042602 11 88551344 coding exon A 0.459 0.75 0.452 0.34 0.470 0.26
TYR rs11018535 11 88591995 intron C 0.050 0.89 0.041 0.79 0.058 1.00
TYR rs12270717 11 88551838 intron C 0.259 0.77 0.272 0.14 0.245 0.62
TYR rs17174064 11 88619139 intron C 0.069 0.56 0.068 0.76 0.071 0.63
TYR rs2186640 11 88615811 intron G 0.377 0.57 0.392 0.18 0.362 0.11
TYR rs5021654 11 88550237 5' upstream C 0.373 0.48 0.386 0.21 0.361 0.10

TYRP1 rs10809828 9 12697861 intron G 0.275 0.64 0.281 0.70 0.264 0.82
TYRP1 rs11791497 9 12677872 5' upstream C 0.056 0.48 0.061 0.71 0.052 0.70
TYRP1 rs17346161 9 12695162 intron T 0.053 0.83 0.047 1.00 0.060 0.76
TYRP1 rs683 9 12699305 3' UTR C 0.411 0.70 0.424 0.69 0.396 0.99

WNT1/WNT10B rs3782353 12 47645147 3' downstream A 0.427 0.81 0.421 0.46 0.431 0.53
WNT1/WNT10B rs7311091 12 47669474 3' downstream T 0.079 0.47 0.071 0.85 0.084 0.39
WNT1/WNT10B rs833820 12 47634086 3' downstream C 0.404 0.46 0.402 0.36 0.405 0.99
WNT1/WNT10B rs833839 12 47653157 5' upstream T 0.468 0.31 0.464 0.18 0.470 0.90

WNT3A rs697763 1 226259245 5' upstream C 0.332 0.83 0.321 0.08 0.340 0.33
WNT3A rs708122 1 226283620 intron A 0.356 0.55 0.365 0.45 0.350 0.17
WNT3A rs766972 1 226311447 intron G 0.298 0.33 0.284 0.07 0.310 0.80
WNT3A rs947631 1 226290170 intron C 0.398 0.42 0.378 0.04 0.413 0.74

Chr, Chromosome; mA, Minor Allele; MAF, minor allele frequency; HWE, Hardy-Weinberg equilibrium
Bold indicates statistically significant results. * P-value significant after Bonferroni correction. *** SNPs located in chromosome X
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Table S1.2. List of SNPs associated with pigmentation traits in females and males

Eye Colour Skin Colour Hair Colour

Female Male Female Male Female Male

Gene SNP #rs Chr mA P-value OR P-value OR P-value OR p-value OR P-value OR P-value OR

ADAM17 rs12473402 2 C 0.22 1.26 (0.86-
1.85) 0.27 1.26 (0.83-

1.90) 0.45 1.30 (0.66-
2.56) 0.76 1.09 (0.63-

1.86) 0.54 0.92 (0.71-
1.19) 0.027 0.72 (0.54-

0.97)

rs12992105 2 C 0.39 0.86 (0.61-
1.22) 0.022 1.54 (1.07-

2.24) 0.81 0.89 (0.36-
2.20) 0.47 1.17 (0.77-

1.77) 0.63 1.11 (0.73-
1.70) 0.56 1.18 (0.68-

2.05)

rs4258773 2 G 0.45 1.17 (0.78-
1.76) 0.048 1.34 (1.00-

1.80) 0.62 0.94 (0.73-
1.20) 0.14 0.72 (0.47-

1.11) 0.13 1.54 (0.89-
2.68) 0.25 1.43 (0.79-

2.60)
ADAMTS2

0 rs1510521 12 C 0.025 1.36 (1.04-
1.78) 0.24 1.27 (0.85-

1.90) 0.18 0.70 (0.42-
1.17) 0.19 1.29 (0.88-

1.90) 0.19 1.26 (0.89-
1.78) 0.081 1.60 (0.94-

2.72)

rs275630 12 A 0.012 1.42 (1.08-
1.87) 0.73 0.88 (0.44-

1.77) 0.15 0.66 (0.37-
1.16) 0.53 0.81 (0.42-

1.57) 0.35 1.18 (0.83-
1.68) 0.21 1.28 (0.87-

1.88)

rs7297057 12 T 0.030 0.67 (0.46-
0.97) 0.69 0.81 (0.27-

2.37) 0.26 0.49 (0.14-
1.75) 0.42 0.87 (0.62-

1.22) 0.051 0.61 (0.37-
1.02) 0.37 0.81 (0.50-

1.30)

AP3B1 rs10514134 5 A 0.46 0.83 (0.51-
1.36) 0.25 1.32 (0.82-

2.12) 0.43 0.49 (0.08-
2.96) 0.54 0.48 (0.04-

5.34) 0.36 0.76 (0.41-
1.41) 0.048 1.86 (1.03-

3.38)

rs11742673 5 A 0.16 0.75 (0.51-
1.11) 0.077 1.61 (0.95-

2.73) 0.54 0.93 (0.72-
1.18) 0.45 1.23 (0.73-

2.07) 0.23 1.42 (0.81-
2.48) 0.022 1.56 (1.06-

2.30)

rs11746090 5 A 0.41 0.86 (0.59-
1.24) 0.023 1.47 (1.05-

2.05) 0.15 0.60 (0.30-
1.20) 0.30 1.61 (0.65-

3.97) 0.19 1.28 (0.88-
1.85) 0.1 1.42 (0.94-

2.15)

rs12657894 5 A 0.12 1.23 (0.95-
1.59) 0.027 0.63 (0.42-

0.95) 0.75 1.06 (0.75-
1.51) 0.62 1.10 (0.74-

1.65) 0.41 1.15 (0.82-
1.61) 0.27 0.74 (0.44-

1.26)

rs13172957 5 G 0.068 1.41 (0.97-
2.06) 0.012 0.60 (0.40-

0.89) 0.37 0.78 (0.46-
1.33) 0.55 0.89 (0.60-

1.31) 0.08 1.54 (0.94-
2.52) 0.38 0.79 (0.47-

1.33)

rs17191796 5 G 0.60 0.88 (0.56-
1.40) 0.15 1.38 (0.89-

2.16) 0.43 0.49 (0.08-
2.96) 0.29 0.32 (0.03-

3.11) 0.65 0.88 (0.50-
1.54) 0.028 1.93 (1.09-

3.42)

rs2636986 5 A 0.61 0.91 (0.62-
1.33) 0.29 0.58 (0.21-

1.63) 0.41 0.73 (0.34-
1.55) 0.59 0.78 (0.32-

1.92) 0.021 0.60 (0.38-
0.95) 0.15 0.71 (0.44-

1.14)

rs389110 5 A 0.61 0.91 (0.62-
1.33) 0.29 0.58 (0.21-

1.63) 0.52 0.78 (0.37-
1.65) 0.59 0.78 (0.32-

1.92) 0.035 0.63 (0.40-
0.99) 0.15 0.71 (0.44-

1.14)

rs6453374 5 A 0.27 0.81 (0.56-
1.17) 0.072 1.34 (0.97-

1.84) 0.72 0.94 (0.67-
1.32) 0.89 0.97 (0.66-

1.43) 0.017 2.34 (1.20-
4.57) 0.3 1.24 (0.83-

1.87)

AP3D1 rs10413398 19 C 0.17 0.77 (0.30-
1.98) 0.032 1.45 (1.03-

2.03) 0.038 0.40 (0.17-
0.97) 0.55 1.31 (0.54-

3.17) 0.08 0.24 (0.03-
1.83) 0.34 1.23 (0.81-

1.89)

rs17604954 19 A 0.29 0.78 (0.50-
1.24) 0.2600 1.27 (0.84-

1.90) 0.019 0.63 (0.43-
0.93) 0.41 1.18 (0.80-

1.75) 0.45 0.81 (0.46-
1.42) 0.96 0.98 (0.53-

1.84)

rs7256735 19 G 0.46 0.84 (0.52-
1.34) 0.32 1.31 (0.77-

2.22) 0.0058 0.53 (0.34-
0.83) 0.5 1.18 (0.73-

1.90) 0.69 0.88 (0.46-
1.67) 0.81 0.92 (0.48-

1.79)

ASIP rs819133 20 T 0.26 0.78 (0.50-
1.21) 0.058 0.66 (0.43-

1.01) 0.046 0.70 (0.49-
0.99) 0.23 0.79 (0.53-

1.17) 0.11 0.65 (0.37-
1.13) 0.012 0.46 (0.23-

0.89)

BCL2 rs1462129 18 T 0.17 0.84 (0.65-
1.08) 0.52 1.10 (0.82-

1.47) 0.42 1.17 (0.80-
1.70) 0.30 1.27 (0.80-

2.03) 0.014 0.45 (0.22-
0.89) 0.50 1.24 (0.67-

2.26)

rs1564483 18 A 0.11 1.27 (0.95-
1.69) 0.30 1.24 (0.83-

1.85) 0.11 1.26 (0.95-
1.67) 0.13 0.49 (0.19-

1.26) 0.021 2.55 (1.21-
5.39) 0.66 1.12 (0.66-

1.88)

rs949037 18 T 0.2 0.85 (0.65-
1.09) 0.16 1.43 (0.88-

2.34) 0.18 1.28 (0.89-
1.85) 0.075 1.56 (0.95-

2.54) 0.0083 0.39 (0.18-
0.84) 0.21 1.49 (0.81-

2.74)

BCL2A1 rs11636338 15 C 0.0021 0.56 (0.39-
0.81) 0.87 0.95 (0.52-

1.75) 0.38 0.89 (0.68-
1.16) 0.25 0.71 (0.39-

1.28) 0.81 0.94 (0.58-
1.52) 0.17 1.67 (0.83-

3.38)

rs17215263 15 G 0.033 0.71 (0.52-
0.98) 0.89 0.98 (0.72-

1.33) 0.0023 0.36 (0.18-
0.70) 0.37 0.75 (0.39-

1.42) 0.85 1.04 (0.71-
1.52) 0.37 0.79 (0.46-

1.33)

BLOC1S3 rs7253652 19 C 0.61 0.87 (0.52-
1.46) 0.22 1.31 (0.85-

2.03) 0.24 1.30 (0.84-
2.02) 0.034 1.60 (1.03-

2.48) 0.54 0.81 (0.41-
1.60) 0.020 2.04 (1.14-

3.66)

CDH1 rs1801552 16 T 0.72 0.95 (0.71-
1.27) 0.39 0.83 (0.54-

1.27) 0.16 0.76 (0.51-
1.11) 0.44 1.13 (0.82-

1.56) 0.69 0.90 (0.53-
1.52) 0.012 1.71 (1.13-

2.58)

CDK2 rs2069398 12 A 0.023 0.56 (0.32-
0.97) 0.6 0.86 (0.48-

1.53) 0.42 0.83 (0.53-
1.30) 0.79 1.08 (0.62-

1.86) 0.72 0.93 (0.51-
1.67) 0.19 0.57 (0.24-

1.38)

CDKN2A rs2518719 9 G 0.11 1.33 (0.94-
1.87) 0.65 0.92 (0.63-

1.33) 0.81 1.04 (0.74-
1.45) 0.0006 1.87 (1.29-

2.69) 0.63 1.12 (0.72-
1.74) 0.52 1.17 (0.74-

1.84)

rs2811712 9 G 0.077 0.22 (0.03-
1.71) 0.54 0.88 (0.57-

1.35) 0.35 1.23 (0.80-
1.89) 0.0044 0.52 (0.33-

0.82) 0.26 0.73 (0.41-
1.29)

rs3218020 9 T 0.27 1.29 (0.82-
2.03) 0.1 1.27 (0.95-

1.69) 0.7 1.05 (0.82-
1.35) 0.14 1.36 (0.91-

2.05) 0.029 1.46 (1.04-
2.06) 0.059 1.75 (0.96-

3.20)

CDKN2B rs495490 9 C 0.29 1.24 (0.83-
1.84) 0.088 0.67 (0.42-

1.07) 0.11 1.44 (0.91-
2.26) 0.017 1.75 (1.10-

2.79) 0.65 1.15 (0.64-
2.06) 0.21 0.67 (0.35-

1.28)

CNO rs4689527 4 G 0.50 1.22 (0.69-
2.14) 0.048 1.34 (1.00-

1.80) 0.80 1.06 (0.65-
1.74) 0.38 1.18 (0.81-

1.73) 0.32 1.32 (0.76-
2.30) 0.56 1.12 (0.76-

1.66)

CTNNBIP1 rs11828 1 G 0.31 0.60 (0.22-
1.66) 0.54 0.89 (0.63-

1.28) 0.11 0.75 (0.52-
1.07) 0.079 0.43 (0.16-

1.14) 0.77 0.83 (0.24-
2.87) 0.036 0.53 (0.29-

0.98)
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rs12128766 1 C 0.14 1.35 (0.90-
2.02) 0.0049 0.43 (0.23-

0.80) 0.047 0.64 (0.42-
0.99) 0.0001 0.34 (0.19-

0.60) 0.4 0.81 (0.49-
1.32) 0.035 0.66 (0.44-

0.98)

rs2379107 1 G 0.38 1.19 (0.81-
1.75) 0.3 0.82 (0.55-

1.21) 0.41 0.63 (0.21-
1.90) 0.24 0.52 (0.17-

1.58) 0.49 0.84 (0.50-
1.40) 0.024 0.52 (0.28-

0.96)

rs4846104 1 G 0.029 0.54 (0.30-
0.97) 0.62 0.86 (0.48-

1.56) 0.68 0.90 (0.54-
1.50) 0.78 0.92 (0.53-

1.62) 0.67 0.85 (0.40-
1.79) 0.17 0.54 (0.21-

1.39)

EDNRB rs3818416 13 T 0.15 0.57 (0.25-
1.27) 0.14 1.35 (0.90-

2.01) 0.78 0.91 (0.47-
1.77) 0.28 1.18 (0.88-

1.58) 0.16 0.46 (0.14-
1.53) 0.004 0.12 (0.02-

0.92)

F2RL1 rs2243010 5 T 0.17 1.32 (0.89-
1.97) 0.035 0.64 (0.42-

0.98) 0.43 0.55 (0.12-
2.47) 0.23 0.38 (0.07-

1.99) 0.44 1.22 (0.73-
2.04) 0.64 0.88 (0.52-

1.50)

GNA11 rs10407783 19 T 0.12 0.59 (0.29-
1.19) 0.017 2.08 (1.14-

3.80) 0.49 1.13 (0.80-
1.60) 0.67 0.94 (0.70-

1.25) 0.26 1.32 (0.81-
2.15) 0.16 1.48 (0.85-

2.56)

rs2238625 19 C 0.92 1.01 (0.78-
1.32) 0.28 1.27 (0.82-

1.97) 0.39 1.22 (0.78-
1.91) 0.62 0.94 (0.72-

1.22) 0.094 1.59 (0.91-
2.79) 0.031 1.94 (1.03-

3.63)

rs308039 19 T 0.55 0.90 (0.65-
1.26) 0.016 0.58 (0.37-

0.91) 0.88 0.98 (0.72-
1.33) 0.16 1.29 (0.90-

1.86) 0.040 0.57 (0.32-
0.99) 0.3 0.77 (0.46-

1.29)

rs3786947 19 T 0.24 0.72 (0.41-
1.27) 0.062 1.32 (0.99-

1.78) 0.91 0.98 (0.69-
1.40) 0.81 0.97 (0.65-

1.45) 0.06 1.40 (0.99-
1.98) 0.0021 2.52 (1.35-

4.70)

rs404632 19 T 0.24 0.77 (0.49-
1.20) 0.027 0.60 (0.37-

0.96) 0.39 1.17 (0.82-
1.66) 0.16 1.40 (0.87-

2.25 0.094 0.60 (0.32-
1.12) 0.28 0.72 (0.38-

1.34)

GNAQ rs10781468 9 T 0.57 1.21 (0.64-
2.28) 0.43 1.18 (0.79-

1.75) 0.77 1.04 (0.80-
1.36) 0.0018 0.29 (0.13-

0.67) 0.088 1.36 (0.96-
1.93) 0.26 1.34 (0.80-

2.26)

rs17786974 9 T 0.71 0.91 (0.55-
1.51) 0.71 0.91 (0.55-

1.51) 0.92 0.98 (0.61-
1.56) 0.29 1.24 (0.83-

1.85) 0.014 0.38 (0.16-
0.90) 0.17 0.61 (0.28-

1.30)

rs2296937 9 G 0.15 1.33 (0.90-
1.97) 0.038 1.64 (1.03-

2.61) 0.66 0.73 (0.18-
2.96) 0.0048 0.32 (0.14-

0.74) 0.89 0.96 (0.57-
1.63) 0.13 1.56 (0.90-

2.71)

rs3780302 9 T 0.49 0.85 (0.54-
1.34) 0.87 0.97 (0.63-

1.48) 0.35 1.20 (0.82-
1.77) 0.021 0.57 (0.35-

0.92) 0.72 1.10 (0.66-
1.83) 0.65 1.14 (0.66-

1.95)

rs3858119 9 G 0.91 1.04 (0.53-
2.01) 0.28 0.65 (0.30-

1.45) 0.38 0.86 (0.61-
1.21) 0.0007 0.27 (0.12-

0.61) 0.28 1.30 (0.81-
2.09) 0.67 1.12 (0.66-

1.89)

rs4745672 9 T 0.22 0.85 (0.65-
1.10) 0.084 0.64 (0.39-

1.07) 0.23 1.27 (0.86-
1.87) 0.0029 0.31 (0.13-

0.70) 0.47 0.82 (0.49-
1.39) 0.49 0.81 (0.45-

1.45)

GNAS rs12625436 20 A 0.48 1.10 (0.85-
1.42) 0.67 1.13 (0.65-

1.96) 0.022 1.33 (1.04-
1.70) 0.65 0.94 (0.70-

1.25) 0.064 1.64 (0.96-
2.82) 0.18 0.59 (0.26-

1.34)

rs13831 20 T 0.35 0.84 (0.58-
1.21) 0.29 0.84 (0.61-

1.16) 0.24 1.47 (0.77-
2.81) 0.015 2.69 (1.16-

6.23) 0.73 0.87 (0.36-
2.13) 0.3 1.24 (0.83-

1.85)

rs234623 20 G 0.17 1.21 (0.92-
1.59) 0.74 1.05 (0.79-

1.39) 0.5 1.09 (0.85-
1.41) 0.012 0.56 (0.35-

0.88) 0.39 1.27 (0.72-
2.24) 0.54 0.82 (0.43-

1.55)

rs6026561 20 C 0.53 0.84 (0.49-
1.45) 0.42 1.26 (0.72-

2.19) 0.0031 0.58 (0.41-
0.84) 0.95 0.99 (0.66-

1.48) 0.0010 0.45 (0.28-
0.73) 0.32 0.82 (0.55-

1.21)

rs6092704 20 C 0.36 0.79 (0.48-
1.31) 0.057 0.58 (0.32-

1.03) 0.024 0.62 (0.41-
0.94) 0.64 1.13 (0.68-

1.86) 0.14 0.62 (0.32-
1.21) 0.21 0.62 (0.29-

1.36)

rs6123832 20 T 0.49 0.84 (0.52-
1.37) 0.038 0.63 (0.41-

0.97) 0.016 0.64 (0.44-
0.92) 0.71 1.08 (0.71-

1.64) 0.023 0.67 (0.47-
0.95) 0.35 0.77 (0.45-

1.33)

GPR143 rs2521667 X G 0.54 1.13 (0.76-
1.68) 0.86 0.95 (0.54-

1.67) 0.17 0.55 (0.24-
1.29) 0.062 1.66 (0.97-

2.86) 0.1 0.68 (0.43-
1.10) 0.0014 2.80 (1.53-

5.13)

rs2732872 X C 0.022 0.29 (0.09-
0.98) 0.80 0.94 (0.55-

1.58) 0.26 0.84 (0.63-
1.13) 0.5 1.09 (0.85-

1.40) 0.26 0.47 (0.11-
2.02) 0.004 1.57 (1.17-

2.11)

HPS1 rs1061135 10 T 0.65 0.91 (0.61-
1.36) 0.38 1.23 (0.78-

1.95) 0.015 0.62 (0.42-
0.91) 0.38 0.82 (0.52-

1.28) 0.11 0.66 (0.40-
1.09) 0.1 0.74 (0.51-

1.07)

rs1739 10 C 0.12 0.61 (0.32-
1.17) 0.65 1.15 (0.62-

2.12) 0.13 0.66 (0.38-
1.14) 0.18 0.66 (0.37-

1.21) 0.49 0.75 (0.33-
1.73) 0.0046 0.19 (0.05-

0.82)

rs1886728 10 C 0.08 1.49 (0.96-
2.32) 0.13 0.66 (0.38-

1.15) 0.36 0.82 (0.53-
1.25) 0.027 0.56 (0.34-

0.94) 0.54 1.18 (0.69-
2.02) 0.094 0.63 (0.37-

1.08)

rs7921146 10 A 0.3 0.60 (0.22-
1.65) 0.85 1.03 (0.74-

1.44) 0.017 0.64 (0.45-
0.92) 0.69 1.07 (0.78-

1.46) 0.17 0.70 (0.42-
1.18) 0.27 0.78 (0.50-

1.23)

HPS4 rs17401652 22 T 0.0001 0.36 (0.20-
0.63) 0.31 1.27 (0.80-

2.02) 0.72 0.92 (0.60-
1.41) 0.85 0.95 (0.58-

1.56) 0.47 0.79 (0.42-
1.50) 0.35 0.71 (0.35-

1.47)

rs3747129 22 A 0.33 1.20 (0.83-
1.73) 0.8 1.06 (0.69-

1.61) 0.31 0.83 (0.57-
1.20) 0.040 1.58 (1.02-

2.46) 0.74 1.09 (0.66-
1.81) 0.23 1.42 (0.81-

2.49)

rs9608491 22 G 0.014 1.53 (1.09-
2.14) 0.23 0.55 (0.20-

1.53) 0.26 0.54 (0.19-
1.59) 0.033 0.65 (0.44-

0.97) 0.72 1.10 (0.67-
1.80) 0.84 0.88 (0.25-

3.07)

HPS5 rs12218 11 G 0.64 0.91 (0.61-
1.36) 0.46 1.19 (0.75-

1.88) 0.0061 0.55 (0.36-
0.85) 0.19 0.75 (0.48-

1.16) 0.33 1.19 (0.84-
1.67) 0.11 1.61 (0.91-

2.83)

rs2049129 11 G 0.84 1.04 (0.70-
1.55) 0.11 1.36 (0.93-

1.98) 0.14 1.32 (0.91-
1.93) 0.43 1.16 (0.80-

1.68) 0.64 0.90 (0.56-
1.43) 0.013 1.80 (1.14-

2.83)

rs2305564 11 A 0.88 0.98 (0.75-
1.27) 0.12 1.44 (0.91-

2.26) 0.24 0.86 (0.67-
1.10) 0.35 0.82 (0.54-

1.25) 0.33 1.31 (0.75-
2.28) 0.030 1.88 (1.08-

3.27)

rs7131332 11 G 0.51 0.88 (0.61-
1.28) 0.19 1.49 (0.83-

2.68) 0.0069 1.61 (1.14-
2.28) 0.52 0.88 (0.60-

1.29) 0.14 0.52 (0.20-
1.34) 0.033 2.16 (1.10-

4.24)

HPS6 rs3737243 10 A 0.22 0.74 (0.46-
1.20) 0.40 0.80 (0.47-

1.35) 0.55 1.13 (0.75-
1.70) 0.47 1.19 (0.74-

1.94) 0.047 0.51 (0.26-
0.99) 0.64 1.17 (0.61-

2.24)

rs3816 10 G 0.091 2.28 (0.89-
5.84) 0.030 0.63 (0.42-

0.96) 0.19 1.96 (0.69-
5.59) 0.19 0.58 (0.26-

1.32) 0.28 0.77 (0.47-
1.26) 0.65 0.91 (0.59-

1.40)

rs6584475 10 C 0.19 1.42 (0.85-
2.39) 0.020 1.63 (1.08-

2.48) 0.24 1.36 (0.81-
2.28) 0.23 1.19 (0.90-

1.58) 0.45 1.30 (0.67-
2.49) 0.2 1.28 (0.88-

1.87)

HRK rs884378 12 T 0.49 0.77 (0.37-
1.63) 0.39 0.87 (0.63-

1.20) 0.55 1.09 (0.83-
1.43) 0.41 1.36 (0.65-

2.86) 0.032 0.64 (0.42-
0.98) 0.19 0.75 (0.48-

1.16)
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KIT rs1008658 4 A 0.24 0.80 (0.55-
1.16) 0.89 1.04 (0.58-

1.88) 0.24 1.37 (0.80-
2.33) 0.0210 2.01 (1.10-

3.68) 0.44 0.74 (0.34-
1.62) 0.63 1.20 (0.57-

2.53)

rs13135792 4 C 0.74 1.09 (0.65-
1.83) 0.57 1.12 (0.75-

1.68) 0.66 1.06 (0.82-
1.35) 0.38 1.29 (0.73-

2.29) 0.075 1.76 (0.97-
3.21) 0.013 1.60 (1.11-

2.32)

rs2237025 4 A 0.16 0.75 (0.51-
1.12) 0.33 0.78 (0.47-

1.29) 0.35 1.20 (0.82-
1.74) 0.43 0.89 (0.68-

1.18) 0.36 0.75 (0.40-
1.42) 0.0057 0.46 (0.27-

0.79)

rs2298976 4 C 0.088 0.68 (0.43-
1.07) 0.62 0.89 (0.57-

1.40) 0.96 1.01 (0.68-
1.50) 0.020 1.68 (1.08-

2.61) 0.059 0.55 (0.29-
1.06) 0.72 1.10 (0.66-

1.82)

rs4864920 4 T 0.047 0.68 (0.46-
0.99) 0.31 1.55 (0.68-

3.54) 0.38 1.51 (0.60-
3.79) 0.29 1.19 (0.86-

1.65) 0.06 0.65 (0.41-
1.04) 0.53 1.40 (0.50-

3.89)

rs6554198 4 G 0.79 0.95 (0.64-
1.40) 0.46 1.17 (0.77-

1.79) 0.18 1.28 (0.89-
1.84) 0.077 0.65 (0.40-

1.05) 0.026 0.43 (0.19-
0.97) 0.008 0.35 (0.15-

0.84)

rs759083 4 G 0.45 1.11 (0.85-
1.45) 0.36 0.75 (0.40-

1.40) 0.52 0.85 (0.52-
1.39) 0.63 1.10 (0.74-

1.63) 0.016 1.52 (1.08-
2.14) 0.054 1.45 (0.99-

2.13)

KITLG rs10858753 12 T 0.62 1.16 (0.65-
2.06) 0.092 1.70 (0.92-

3.15) 0.022 0.53 (0.30-
0.91) 0.15 1.58 (0.84-

2.96) 0.32 0.66 (0.28-
1.57) 0.097 1.92 (0.92-

4.04)

LYST rs6429238 1 T 0.024 0.65 (0.45-
0.95) 0.21 0.68 (0.37-

1.26) 0.62 1.14 (0.67-
1.96) 0.33 0.75 (0.43-

1.33) 0.49 0.85 (0.53-
1.36) 0.66 1.09 (0.75-

1.58)

rs6699717 1 A 0.041 0.65 (0.43-
0.98) 0.26 1.31 (0.81-

2.12) 0.44 1.16 (0.79-
1.72) 0.85 0.96 (0.61-

1.51) 0.76 1.09 (0.63-
1.88) 0.22 1.27 (0.87-

1.85)

rs7541057 1 C 0.043 0.66 (0.44-
0.98) 0.37 0.81 (0.50-

1.30) 0.35 1.20 (0.82-
1.76) 0.78 0.96 (0.73-

1.27) 0.51 1.16 (0.67-
2.00) 0.15 0.76 (0.52-

1.11)

MCAM rs2249466 11 T 0.42 1.19 (0.79-
1.79) 0.0014 1.67 (1.22-

2.31) 0.019 0.45 (0.23-
0.88) 0.18 1.32 (0.88-

2.00) 0.17 1.45 (0.85-
2.47) 0.45 1.23 (0.71-

2.13)

rs2511837 11 T 0.32 1.14 (0.88-
1.47) 0.020 0.71 (0.53-

0.95) 0.94 1.02 (0.68-
1.52) 0.018 0.71 (0.54-

0.94) 0.087 1.64 (0.91-
2.93) 0.68 0.92 (0.64-

1.35)

rs6589732 11 A 0.59 0.87 (0.53-
1.43) 0.11 0.79 (0.58-

1.06) 0.41 1.11 (0.87-
1.42) 0.019 0.71 (0.53-

0.95) 0.052 0.47 (0.22-
1.02) 0.53 1.25 (0.63-

2.49)

MCOLN3 rs10782537 1 C 0.73 0.86 (0.35-
2.09) 0.30 0.61 (0.24-

1.59) 0.21 1.70 (0.73-
3.99) 0.025 0.37 (0.15-

0.92) 0.51 1.42 (0.52-
3.91) 0.25 0.77 (0.49-

1.22)

rs12030837 1 T 0.045 0.63 (0.41-
0.98) 0.69 0.72 (0.14-

3.74) 0.063 5.24 (0.64-
42.93) 0.27 0.80 (0.53-

1.19) 0.57 0.84 (0.47-
1.52) 0.84 0.95 (0.55-

1.64)

rs12735211 1 A 0.28 1.32 (0.80-
2.19) 0.46 1.21 (0.73-

2.01) 0.23 1.35 (0.82-
2.23) 0.31 1.30 (0.78-

2.15) 0.67 1.15 (0.60-
2.21) 0.029 1.93 (1.10-

3.41)

rs2304641 1 A 0.76 0.94 (0.63-
1.41) 0.56 0.71 (0.22-

2.30) 0.0027 9.93 (1.29-
76.46) 0.38 0.86 (0.60-

1.21) 0.45 1.69 (0.46-
6.29) 0.087 0.61 (0.34-

1.09)

rs6674050 1 A 0.087 1.91 (0.92-
3.98) 0.036 1.42 (1.02-

1.97) 0.38 0.85 (0.60-
1.21) 0.054 1.37 (0.99-

1.90) 0.11 2.08 (0.89-
4.82) 0.019 1.63 (1.09-

2.44)

MITF rs11128152 3 T 0.016 0.61 (0.41-
0.92) 0.87 1.03 (0.71-

1.49) 0.54 1.37 (0.50-
3.75) 0.58 0.89 (0.60-

1.33) 0.32 0.77 (0.46-
1.30) 0.49 0.84 (0.51-

1.38)

MLANA rs1056796 9 T 0.23 0.68 (0.35-
1.30) 0.73 0.88 (0.44-

1.78) 0.58 1.08 (0.83-
1.40) 0.026 1.55 (1.05-

2.28) 0.043 1.44 (1.01-
2.05) 0.76 1.08 (0.64-

1.83)

rs10758717 9 C 0.79 1.04 (0.77-
1.42) 0.74 1.05 (0.77-

1.45) 0.19 1.26 (0.89-
1.78) 0.030 1.54 (1.04-

2.27) 0.41 1.50 (0.59-
3.81) 0.48 1.21 (0.72-

2.03)

rs2150702 9 C 0.66 0.91 (0.61-
1.37) 0.32 1.15 (0.87-

1.51) 0.67 1.10 (0.72-
1.68) 0.012 1.71 (1.12-

2.62) 0.16 0.78 (0.55-
1.10) 0.058 1.79 (0.96-

3.36)

rs7872509 9 C 0.17 0.76 (0.51-
1.13) 0.11 1.32 (0.94-

1.87) 0.28 1.22 (0.85-
1.76) 0.15 1.29 (0.92-

1.81) 0.87 0.96 (0.58-
1.59) 0.035 1.77 (1.05-

3.00)

MLPH rs10173589 2 G 0.66 0.90 (0.60-
1.36) 0.52 0.86 (0.55-

1.35) 0.37 0.86 (0.61-
1.20) 0.18 1.28 (0.89-

1.84) 0.016 0.49 (0.27-
0.91) 0.43 1.21 (0.76-

1.92)

rs13383648 2 C 0.33 1.24 (0.81-
1.88) 0.88 1.04 (0.64-

1.68) 0.41 1.19 (0.79-
1.78) 0.029 0.62 (0.40-

0.96) 0.73 0.92 (0.55-
1.52) 0.97 1.01 (0.57-

1.80)

MUTED rs2743989 6 T 0.68 0.95 (0.72-
1.24) 0.14 1.37 (0.90-

2.08) 0.28 0.77 (0.47-
1.24) 0.086 1.41 (0.95-

2.10) 0.023 0.41 (0.17-
0.98) 0.31 1.21 (0.84-

1.74)

rs2748376 6 T 0.41 1.19 (0.74-
1.93) 0.17 0.75 (0.49-

1.13) 0.032 0.61 (0.38-
0.96) 0.038 1.34 (1.01-

1.78) 0.11 1.31 (0.94-
1.84) 0.16 1.61 (0.85-

3.06)

rs2815155 6 C 0.45 1.20 (0.75-
1.93) 0.55 0.92 (0.69-

1.22) 0.21 1.26 (0.88-
1.83) 0.003 0.46 (0.27-

0.77) 0.31 0.71 (0.36-
1.40) 0.034 0.66 (0.45-

0.98)

MYO7A rs762667 11 C 0.43 0.86 (0.60-
1.25) 0.13 1.64 (0.87-

3.10) 0.035 0.57 (0.34-
0.96) 0.18 1.54 (0.81-

2.93) 0.44 0.74 (0.34-
1.62) 0.055 1.46 (0.99-

2.15)

rs948970 11 G 0.13 0.74 (0.50-
1.09) 0.25 0.75 (0.46-

1.24) 0.57 0.89 (0.59-
1.34) 0.86 0.98 (0.74-

1.28) 0.010 0.43 (0.22-
0.87) 0.11 0.57 (0.28-

1.16)

NF1 rs1013948 17 G 0.032 1.47 (1.04-
2.08) 0.25 1.27 (0.85-

1.91) 0.34 1.21 (0.82-
1.78) 0.14 1.39 (0.89-

2.18) 0.41 1.21 (0.77-
1.88) 0.055 0.53 (0.27-

1.05)

rs10438801 17 G 0.51 1.09 (0.84-
1.43) 0.032 1.56 (1.04-

2.35) 0.84 0.97 (0.76-
1.25) 0.0220 1.38 (1.05-

1.83) 0.88 1.03 (0.73-
1.45) 0.89 0.95 (0.44-

2.04)

rs2953016 17 G 0.078 1.33 (0.97-
1.82) 0.54 1.31 (0.57-

3.02) 0.33 1.16 (0.86-
1.58) 0.069 1.35 (0.97-

1.87) 0.28 1.25 (0.84-
1.85) 0.011 0.47 (0.25-

0.87)

NRAS rs14804 1 T 0.054 2.05 (1.00-
4.21) 0.71 1.06 (0.76-

1.48) 0.083 1.96 (0.89-
4.32) 0.093 1.32 (0.95-

1.82) 0.0013 3.77 (1.76-
8.05) 0.12 1.39 (0.92-

2.11)

PAX3 rs12623857 2 A 0.021 1.55 (1.07-
2.23) 0.30 0.36 (0.04-

3.09) 0.39 0.85 (0.60-
1.22) 0.0007 0.51 (0.34-

0.76) 0.52 1.17 (0.73-
1.88) 0.88 0.96 (0.54-

1.69)

rs16863657 2 G 0.2 0.77 (0.52-
1.15) 0.46 1.20 (0.74-

1.95) 0.68 0.92 (0.62-
1.36) 0.019 0.60 (0.38-

0.92) 0.079 0.62 (0.35-
1.09) 0.067 1.75 (0.98-

3.15)
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PLDN rs12909221 15 C 0.36 0.88 (0.67-
1.16) 0.0026 2.00 (1.26-

3.18) 0.63 0.89 (0.55-
1.44) 0.018 0.56 (0.35-

0.91) 0.11 1.66 (0.91-
3.02) 0.17 1.50 (0.82-

2.75)

POMC rs934778 2 C 0.48 1.15 (0.79-
1.67) 0.12 1.39 (0.92-

2.10) 0.17 1.28 (0.90-
1.82) 0.005 0.66 (0.49-

0.88) 0.31 1.29 (0.79-
2.11) 0.43 1.24 (0.73-

2.12)

PRKAR1A rs8066131 17 G 0.033 1.93 (1.06-
3.50) 0.48 0.75 (0.33-

1.68) 0.30 1.39 (0.75-
2.57) 0.24 1.21 (0.88-

1.65) 0.073 1.96 (0.97-
3.93) 0.25 1.36 (0.81-

2.30)

PTCH2 rs3795719 1 G 0.12 0.69 (0.44-
1.10) 0.25 0.78 (0.51-

1.20) 0.88 1.03 (0.68-
1.56) 0.010 0.56 (0.36-

0.88) 0.41 1.26 (0.73-
2.17) 0.88 0.96 (0.55-

1.66)

RAB27A rs11071175 15 G 0.17 0.75 (0.50-
1.13) 0.16 0.70 (0.42-

1.16) 0.0058 0.71 (0.56-
0.91) 0.58 0.92 (0.70-

1.22) 0.30 0.76 (0.46-
1.27) 0.12 0.58 (0.29-

1.19)

rs17238192 15 T 0.37 0.81 (0.50-
1.30) 0.69 1.09 (0.72-

1.66) 0.0095 0.60 (0.41-
0.89) 0.46 1.16 (0.78-

1.75) 0.44 0.78 (0.41-
1.48) 0.26 1.35 (0.81-

2.24)

rs7167572 15 T 0.13 1.54 (0.89-
2.64) 0.073 0.55 (0.28-

1.08) 0.015 1.39 (1.06-
1.81) 0.18 0.66 (0.36-

1.21) 0.22 1.54 (0.79-
2.98) 0.41 1.38 (0.65-

2.92)

rs7496857 15 T 0.66 0.92 (0.63-
1.34) 0.23 0.63 (0.28-

1.38) 0.011 0.38 (0.18-
0.82) 0.42 0.85 (0.58-

1.25) 0.84 0.95 (0.59-
1.54) 0.83 0.96 (0.63-

1.44)

RAB38 rs1027027 11 A 0.3 1.17 (0.87-
1.58) 0.41 1.39 (0.64-

3.02) 0.012 2.78 (1.18-
6.56) 0.27 1.55 (0.71-

3.38) 0.018 2.76 (1.25-
6.07) 0.29 1.32 (0.79-

2.22)

rs9666730 11 T 0.16 1.28 (0.91-
1.80) 0.58 1.36 (0.46-

3.99) 0.78 0.95 (0.64-
1.39) 0.4 1.17 (0.82-

1.67) 0.026 3.54 (1.25-
10.02) 0.33 1.26 (0.80-

2.00)

RABGGTA rs3940231 14 A 0.29 0.81 (0.56-
1.19) 0.14 0.81 (0.61-

1.08) 0.73 0.96 (0.75-
1.23) 0.0059 0.57 (0.38-

0.85) 0.12 1.51 (0.89-
2.56) 0.55 0.85 (0.50-

1.44)

RGS1 rs1359062 1 G 0.54 0.73 (0.26-
2.04) 0.74 0.94 (0.65-

1.35) 0.011 0.30 (0.11-
0.80) 0.47 0.86 (0.57-

1.29) 0.025 3.19 (1.23-
8.27) 0.4 0.81 (0.50-

1.33)

RGS20 rs10958392 8 T 0.10 1.40 (0.93-
2.11) 0.10 1.51 (0.92-

2.49) 0.89 1.03 (0.71-
1.49) 0.19 1.20 (0.91-

1.57) 0.065 1.66 (0.95-
2.91) 0.049 1.86 (1.02-

3.37)

rs11783925 8 T 0.34 1.50 (0.66-
3.41) 0.022 0.67 (0.47-

0.95) 0.47 0.88 (0.62-
1.25) 0.14 0.50 (0.20-

1.28) 0.64 0.75 (0.22-
2.57) 0.091 0.63 (0.37-

1.09)

rs6981243 8 C 0.054 0.77 (0.58-
1.01) 0.081 1.55 (0.95-

2.52) 0.020 0.57 (0.35-
0.91) 0.66 0.90 (0.56-

1.45) 0.32 1.29 (0.78-
2.15) 0.16 0.76 (0.52-

1.12)

rs7824575 8 A 0.18 1.29 (0.89-
1.86) 0.58 0.79 (0.33-

1.86) 0.29 1.17 (0.88-
1.56) 0.051 0.43 (0.18-

1.03) 0.056 1.59 (0.99-
2.55) 0.015 1.92 (1.13-

3.25)

SLC45A2 rs35414 5 T 0.30 0.82 (0.56-
1.20) 0.075 0.76 (0.57-

1.03) 0.20 0.79 (0.54-
1.13) 0.015 0.70 (0.53-

0.94) 0.27 0.82 (0.58-
1.17) 0.0078 0.49 (0.29-

0.82)

rs35415 5 A 0.19 1.38 (0.86-
2.22) 0.21 0.83 (0.62-

1.11) 0.51 0.92 (0.71-
1.19) 0.022 0.72 (0.54-

0.95) 0.41 0.76 (0.38-
1.49) 0.024 0.54 (0.32-

0.91)

SNAI2 rs1992375 8 A 0.86 0.96 (0.64-
1.45) 0.056 0.76 (0.57-

1.01) 0.20 1.28 (0.88-
1.88) 0.0048 0.68 (0.51-

0.89) 0.34 0.75 (0.41-
1.37) 0.048 0.57 (0.33-

0.99)

rs2735455 8 A 0.91 0.97 (0.60-
1.58) 0.1 1.56 (0.92-

2.65) 0.059 1.57 (0.97-
2.54) 0.0054 2.15 (1.23-

3.75) 0.90 1.04 (0.55-
1.99) 0.085 1.80 (0.94-

3.45)

SNX10 rs1406754 7 T 0.087 0.60 (0.33-
1.10) 0.15 1.35 (0.89-

2.04) 0.024 0.55 (0.33-
0.93) 0.044 1.50 (1.01-

2.22) 0.76 0.95 (0.66-
1.36) 0.53 1.19 (0.69-

2.03)

rs2699808 7 C 0.17 1.38 (0.87-
2.17) 0.33 0.80 (0.52-

1.25) 0.022 1.68 (1.06-
2.67) 0.65 0.94 (0.72-

1.22) 0.81 1.08 (0.59-
1.95) 0.14 0.65 (0.38-

1.13)

SOX11 rs17362772 2 G 0.16 0.72 (0.46-
1.15) 0.064 1.61 (0.98-

2.65) 0.56 0.88 (0.58-
1.34) 0.75 1.08 (0.68-

1.72) 0.031 0.52 (0.27-
0.99) 0.22 1.45 (0.81-

2.59)

rs6432221 2 T 0.042 0.68 (0.47-
0.98) 0.28 1.17 (0.88-

1.57) 0.27 0.82 (0.57-
1.17) 0.86 1.04 (0.69-

1.55) 0.22 0.80 (0.56-
1.15) 0.65 1.09 (0.75-

1.60)

SOX4 rs9368326 6 G 0.011 0.21 (0.05-
0.92) 0.41 0.59 (0.16-

2.21) 0.31 1.20 (0.84-
1.73) 0.0017 5.00 (1.08-

23.10) 0.33 1.22 (0.82-
1.83)

TYR rs1042602 11 A 0.30 0.81 (0.54-
1.21) 0.0062 0.47 (0.26-

0.83) 0.61 1.03 (0.81-
1.32) 0.056 0.62 (0.38-

1.02) 0.095 1.58 (0.93-
2.68) 0.52 0.80 (0.40-

1.60)

rs12270717 11 C 0.37 1.15 (0.85-
1.54) 0.037 1.53 (1.02-

2.29) 0.43 1.15 (0.81-
1.63) 0.1 1.30 (0.95-

1.79) 0.26 0.76 (0.47-
1.23) 0.24 1.29 (0.85-

1.95)

rs17793678 11 T 0.35 1.15 (0.86-
1.55) 0.025 1.45 (1.05-

2.01) 0.42 1.15 (0.81-
1.64) 0.087 1.32 (0.96-

1.82) 0.39 0.81 (0.50-
1.32) 0.18 1.34 (0.88-

2.03)

rs2186640 11 G 0.66 1.10 (0.66-
1.84) 0.025 1.62 (1.06-

2.49) 0.87 0.99 (0.77-
1.27) 0.2 1.20 (0.91-

1.60) 0.42 0.82 (0.51-
1.32) 0.15 1.51 (0.85-

2.67)

rs5021654 11 C 0.71 1.10 (0.66-
1.84) 0.018 1.67 (1.09-

2.56) 0.94 0.99 (0.78-
1.27) 0.12 1.37 (0.92-

2.04) 0.49 0.89 (0.63-
1.25) 0.19 1.45 (0.83-

2.55)

TYRP1 rs10809828 9 G 0.024 0.39 (0.16-
0.95) 0.56 0.91 (0.67-

1.24) 0.61 1.08 (0.82-
1.42) 0.13 1.66 (0.83-

3.32) 0.53 1.13 (0.78-
1.63) 0.40 1.44 (0.63-

3.28)

WNT3A rs708122 1 T 0.11 0.74 (0.51-
1.07) 0.55 0.88 (0.59-

1.33) 0.3 1.35 (0.77-
2.37) 0.85 1.04 (0.70-

1.53) 0.010 0.27 (0.08-
0.89) 0.45 0.82 (0.49-

1.38)

Chr, Chromosome; mA, Minor Allele; OR, Odds Ratio per minor allele; CI, Confidence Interval.
Bold indicates statistically significant results
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Table S1.3. List of SNPs associated with sun response traits in females and males

Sunburns Lentigines Naevi

Female Male Female Male Female Male

Gene SNP ID Chr mA P-value OR P-value OR P-value OR P-value OR P-value OR P-value OR

ADAM17 rs12473402 2 C 0.74 1.05 (0.80-
1.36) 0.75 1.10 (0.60-

2.03) 0.26 0.71 (0.40-
1.28) 0.14 1.38 (0.90-

2.13) 0.0063 0.64 (0.46-
0.89) 0.23 1.33 (0.83-

2.12)

rs17524425 2 G 0.022 1.52 (1.06-
2.18) 0.24 0.81 (0.58-

1.15) 0.061 1.37 (0.98-
1.92) 0.0004 0.52 (0.35-

0.75) 0.14 1.30 (0.92-
1.83) 0.26 0.80 (0.53-

1.19)

rs4258773 2 G 0.96 0.99 (0.77-
1.28) 0.40 1.23 (0.76-

2.00) 0.25 0.85 (0.64-
1.12) 0.094 1.51 (0.93-

2.43) 0.0063 0.44 (0.24-
0.83) 0.11 1.53 (0.91-

2.58)

ADAMTS20 rs1510521 12 C 0.43 0.81 (0.48-
1.37) 0.36 1.15 (0.86-

1.54) 0.52 0.91 (0.68-
1.22) 0.077 1.88 (0.92-

3.86) 0.043 0.72 (0.52-
0.99) 0.19 0.74 (0.48-

1.16)

rs2048348 12 A 0.56 0.50 (0.05-
5.54) 0.035 0.64 (0.41-

0.97) 0.26 1.32 (0.81-
2.15) 0.047 0.63 (0.40-

1.00) 0.37 1.28 (0.75-
2.17) 0.54 0.85 (0.50-

1.45)

rs2062731 12 G 0.03 0.59 (0.36-
0.96) 0.82 1.05 (0.67-

1.66) 0.69 1.11 (0.66-
1.87) 0.23 0.71 (0.40-

1.25) 0.16 1.44 (0.87-
2.38) 0.69 0.90 (0.53-

1.52)

rs7960952 12 C 0.43 0.84 (0.54-
1.30) 0.14 1.23 (0.93-

1.63) 0.29 0.80 (0.53-
1.21) 0.099 1.60 (0.91-

2.84) 0.036 0.73 (0.54-
0.98) 0.075 0.66 (0.42-

1.04)

AP3B1 rs10514134 5 A 0.74 1.07 (0.71-
1.63) 0.0066 1.98 (1.20-

3.28) 0.27 0.40 (0.07-
2.19) 0.16 1.46 (0.86-

2.48) 0.61 0.87 (0.52-
1.47) 0.48 1.22 (0.71-

2.11)

rs10805919 5 C 0.12 0.75 (0.52-
1.07) 0.58 0.91 (0.67-

1.25) 0.35 0.83 (0.55-
1.24) 0.31 0.80 (0.53-

1.23) 0.045 0.64 (0.41-
0.99) 0.63 0.80 (0.31-

2.04)

rs11742673 5 A 0.79 1.05 (0.72-
1.54) 0.41 1.25 (0.74-

2.13) 0.023 1.74 (1.07-
2.83) 0.56 1.19 (0.66-

2.12) 0.023 1.78 (1.09-
2.90) 0.73 0.92 (0.57-

1.48)

rs11746090 5 A 0.16 1.28 (0.90-
1.83) 0.0083 3.57 (1.28-

9.95) 0.47 1.12 (0.82-
1.52) 0.11 1.33 (0.93-

1.91) 0.17 1.71 (0.81-
3.60) 0.42 0.65 (0.21-

1.96)

rs12657894 5 A 0.016 1.56 (1.09-
2.23) 0.35 1.31 (0.74-

2.32) 0.26 1.36 (0.79-
2.34) 0.29 0.71 (0.38-

1.33) 0.09 1.63 (0.94-
2.82) 0.63 1.12 (0.70-

1.78)

rs13172957 5 G 0.057 1.41 (0.99-
2.01) 0.4 1.32 (0.69-

2.55) 0.42 0.78 (0.43-
1.42) 0.83 0.97 (0.70-

1.33) 0.019 1.44 (1.06-
1.96) 0.59 1.13 (0.72-

1.77)

rs2636986 5 A 0.01 0.62 (0.43-
0.89) 0.024 3.08 (1.09-

8.71) 0.055 0.72 (0.52-
1.01) 0.13 2.18 (0.76-

6.26) 0.0054 0.58 (0.39-
0.87) 0.61 0.90 (0.62-

1.33)

rs34436 5 G 0.089 0.69 (0.45-
1.06) 0.014 0.54 (0.33-

0.89) 0.53 1.17 (0.71-
1.93) 0.058 0.63 (0.39-

1.02) 0.79 1.07 (0.63-
1.82) 0.56 1.15 (0.71-

1.86)

rs389110 5 A 0.01 0.62 (0.43-
0.89) 0.024 3.08 (1.09-

8.71) 0.036 0.38 (0.15-
0.97) 0.13 2.18 (0.76-

6.26) 0.005 0.58 (0.39-
0.87) 0.61 0.90 (0.62-

1.33)

rs4703747 5 G 0.051 0.72 (0.52-
1.00) 0.32 1.20 (0.84-

1.72) 0.15 0.74 (0.49-
1.11) 0.41 1.65 (0.49-

5.60) 0.014 0.56 (0.35-
0.90) 0.63 1.10 (0.74-

1.64)

rs6453373 5 A 0.047 0.61 (0.37-
1.00) 0.015 0.52 (0.31-

0.90) 0.41 1.28 (0.71-
2.34) 0.17 0.67 (0.38-

1.19) 0.86 0.95 (0.52-
1.73) 0.12 1.56 (0.91-

2.67)

rs6453374 5 A 0.35 1.18 (0.83-
1.68) 0.022 2.49 (1.10-

5.61) 0.068 1.83 (0.94-
3.57) 0.26 1.21 (0.86-

1.71) 0.019 2.20 (1.18-
4.09) 0.49 0.88 (0.61-

1.27)

AP3D1 rs2240655 19 T 0.93 1.02 (0.68-
1.52) 0.24 1.31 (0.84-

2.06) 0.34 0.81 (0.53-
1.24) 0.072 0.64 (0.40-

1.04) 0.89 1.03 (0.65-
1.65) 0.031 0.56 (0.32-

0.96)

rs3786971 19 TT 0.67 0.92 (0.63-
1.35) 0.25 0.78 (0.51-

1.19) 0.44 0.90 (0.68-
1.18) 0.088 0.67 (0.42-

1.06) 0.032 1.75 (1.06-
2.87) 0.80 1.08 (0.61-

1.90)

AP3M2 rs7009632 8 G 0.54 1.16 (0.73-
1.85) 0.64 1.14 (0.67-

1.94) 0.41 0.84 (0.56-
1.27) 0.35 1.31 (0.74-

2.29) 0.52 1.10 (0.82-
1.50) 0.0045 2.29 (1.31-

4.02)

rs7823824 8 A 0.47 1.18 (0.75-
1.87) 0.77 1.05 (0.78-

1.40) 0.18 0.75 (0.50-
1.14) 0.68 1.12 (0.65-

1.93) 0.75 1.05 (0.78-
1.41) 0.0021 1.91 (1.12-

3.28)

ASIP rs6142129 20 G 0.57 0.85 (0.48-
1.50) 0.052 0.53 (0.27-

1.02) 0.26 1.25 (0.84-
1.86) 0.0041 0.53 (0.35-

0.82) 0.64 0.90 (0.59-
1.38) 0.4 1.16 (0.83-

1.61)

BCL2 rs1462129 18 T 0.39 1.19 (0.80-
1.75) 0.76 1.08 (0.67-

1.72) 0.067 0.64 (0.39-
1.03) 0.0075 1.93 (1.19-

3.14) 0.19 0.70 (0.41-
1.20) 0.06 0.58 (0.33-

1.04)

rs949037 18 T 0.61 0.89 (0.57-
1.38) 0.73 1.09 (0.67-

1.78) 0.16 0.70 (0.42-
1.16) 0.013 1.78 (1.13-

2.81) 0.069 0.60 (0.33-
1.06) 0.11 0.77 (0.56-

1.06)

CDH1 rs11075699 16 G 0.19 0.74 (0.48-
1.16) 0.37 1.30 (0.75-

2.27) 0.69 0.94 (0.71-
1.25) 0.47 1.25 (0.68-

2.27) 0.50 0.86 (0.55-
1.34) 0.031 1.43 (1.03-

1.98)

rs2276329 16 G 0.87 1.05 (0.58-
1.90) 0.039 1.96 (1.02-

3.75) 0.48 1.29 (0.64-
2.59) 0.13 1.59 (0.86-

2.93) 0.20 0.59 (0.26-
1.37) 0.58 0.56 (0.06-

4.85)

CDH3 rs1124770 16 A 0.82 0.96 (0.67-
1.38) 0.69 1.08 (0.74-

1.57) 0.038 0.65 (0.44-
0.98) 0.56 1.36 (0.32-

5.77) 0.57 1.14 (0.72-
1.82) 0.15 0.28 (0.03-

2.18)

rs1886700 16 A 0.25 1.22 (0.86-
1.73) 0.096 0.21 (0.02-

1.77) 0.032 1.52 (1.03-
2.26) 0.72 1.08 (0.70-

1.69) 0.74 0.93 (0.61-
1.42) 0.57 0.56 (0.06-

4.83)

CDK2 rs2069398 12 A 0.028 0.61 (0.39-
0.95) 0.5 0.83 (0.47-

1.44) 0.031 0.59 (0.36-
0.96) 0.27 0.73 (0.40-

1.31) 0.64 0.86 (0.45-
1.65)

CDK4 rs2069502 12 A 0.090 0.73 (0.51-
1.05) 0.013 1.52 (1.09-

2.13) 0.063 0.74 (0.53-
1.02) 0.37 0.82 (0.54-

1.26) 0.57 0.88 (0.57-
1.36) 0.64 0.86 (0.45-

1.65)

rs2270777 12 G 0.12 0.73 (0.50-
1.09) 0.037 1.61 (1.03-

2.53) 0.037 0.74 (0.56-
0.98) 0.59 0.88 (0.55-

1.40) 0.15 0.80 (0.59-
1.08) 0.70 1.11 (0.67-

1.84)

CDKN2A rs3218020 9 T 0.012 1.65 (1.12-
2.43) 0.16 1.44 (0.86-

2.40) 0.12 0.68 (0.42-
1.10) 0.11 0.64 (0.37-

1.10) 0.81 0.94 (0.55-
1.60) 0.88 0.96 (0.53-

1.72)

rs3731239 9 C 0.58 0.85 (0.47-
1.52) 0.28 0.68 (0.33-

1.37) 0.021 1.58 (1.07-
2.34) 0.60 1.22 (0.58-

2.55) 0.85 1.09 (0.55-
2.15) 0.61 1.22 (0.58-

2.55)

CDKN2B rs495490 9 C 0.31 0.50 (0.12-
2.01) 0.049 0.64 (0.41-

1.00) 0.57 1.62 (0.29-
8.94) 0.24 0.75 (0.47-

1.21) 0.54 0.84 (0.49-
1.46) 0.9 0.97 (0.59-

1.59)

CLIP1 rs7388 12 A 0.27 1.18 (0.88-
1.59) 0.0063 1.58 (1.13-

2.21) 0.094 1.33 (0.95-
1.85) 0.2 1.25 (0.88-

1.78) 0.065 1.49 (0.98-
2.27) 0.097 1.46 (0.93-

2.29)
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CTNNBIP1 rs11828 1 G 0.041 0.72 (0.52-
0.99) 0.31 1.24 (0.82-

1.89) 0.27 0.79 (0.53-
1.20) 0.087 0.42 (0.15-

1.16) 0.3 0.79 (0.50-
1.24) 0.31 0.78 (0.48-

1.26)

rs12128766 1 C 0.2 0.85 (0.66-
1.09) 0.75 1.05 (0.79-

1.39) 0.86 0.96 (0.58-
1.57) 0.086 0.60 (0.34-

1.08) 0.033 0.62 (0.40-
0.96) 0.37 1.24 (0.77-

1.99)

rs2379107 1 G 0.068 1.42 (0.97-
2.07) 0.51 0.86 (0.55-

1.34) 0.0021 0.09 (0.01-
0.68) 0.13 1.37 (0.91-

2.07) 0.17 2.28 (0.73-
7.12) 0.25 1.28 (0.84-

1.94)

EDNRB rs11149080 13 G 0.81 0.94 (0.59-
1.51) 0.58 1.08 (0.82-

1.43) 0.020 0.56 (0.34-
0.91) 0.43 1.20 (0.76-

1.88) 0.69 1.06 (0.79-
1.43) 0.1 1.31 (0.95-

1.81)

rs2242991 5 G 0.67 1.20 (0.53-
2.73) 0.51 1.15 (0.76-

1.76) 0.20 1.31 (0.86-
2.00) 0.038 1.63 (1.02-

2.59) 0.17 0.73 (0.46-
1.15) 0.06 1.45 (0.99-

2.12)

rs2243010 5 T 0.088 0.20 (0.02-
1.71) 0.034 0.65 (0.43-

0.97) 0.39 0.84 (0.57-
1.25) 0.020 0.60 (0.39-

0.93) 0.34 0.80 (0.50-
1.28) 0.33 2.16 (0.48-

9.82)

rs2243051 5 G 0.21 0.85 (0.65-
1.10) 0.45 0.90 (0.68-

1.19) 0.53 1.15 (0.75-
1.75) 0.036 0.72 (0.53-

0.98) 0.84 0.96 (0.60-
1.51) 0.0015 1.91 (1.14-

3.19)

rs639342 5 A 0.68 1.08 (0.74-
1.59) 0.86 0.96 (0.63-

1.47) 0.18 0.77 (0.53-
1.13) 0.16 1.40 (0.87-

2.24) 0.35 1.21 (0.81-
1.78) 0.0058 0.52 (0.32-

0.85)

GNA11 rs308039 19 T 0.012 0.61 (0.42-
0.90) 0.48 0.88 (0.61-

1.27) 0.2 0.80 (0.57-
1.13) 0.091 0.68 (0.43-

1.07) 0.61 0.91 (0.62-
1.33) 0.56 1.13 (0.75-

1.70)

rs404632 19 T 0.018 0.60 (0.39-
0.92) 0.27 0.77 (0.47-

1.23) 0.32 0.53 (0.15-
1.89) 0.49 0.54 (0.09-

3.26) 0.62 0.88 (0.53-
1.47) 0.17 1.39 (0.88-

2.19)

GNAQ rs11145647 9 C 0.43 1.45 (0.54-
3.86) 0.28 1.20 (0.86-

1.68) 0.19 0.45 (0.13-
1.55) 0.011 1.79 (1.14-

2.80) 0.24 0.79 (0.54-
1.17) 0.026 1.52 (1.05-

2.19)

rs3858119 9 G 0.19 1.26 (0.89-
1.79) 0.45 0.76 (0.37-

1.56) 0.0081 1.69 (1.14-
2.50) 0.82 1.05 (0.69-

1.60) 0.22 1.30 (0.85-
1.98) 0.54 0.90 (0.63-

1.28)

rs4745672 9 T 0.009 0.57 (0.38-
0.87) 0.72 1.09 (0.68-

1.75) 0.30 0.78 (0.49-
1.25) 0.74 0.91 (0.54-

1.54) 0.20 0.72 (0.43-
1.21) 0.068 1.62 (0.97-

2.70)

GNAS rs234623 20 G 0.50 0.87 (0.58-
1.30) 0.072 1.52 (0.96-

2.41) 0.37 1.22 (0.79-
1.89) 0.17 1.42 (0.86-

2.36) 0.53 0.86 (0.54-
1.38) 0.046 1.70 (1.00-

2.92)

rs6064714 20 G 0.76 1.19 (0.39-
3.58) 0.79 0.83 (0.22-

3.15) 0.51 0.67 (0.20-
2.22) 0.025 1.64 (1.05-

2.56) 0.92 1.07 (0.29-
3.95) 0.74 0.92 (0.55-

1.54)

rs6092704 20 C 0.0014 0.46 (0.29-
0.75) 0.12 0.66 (0.38-

1.12) 0.81 0.94 (0.56-
1.57) 0.019 0.50 (0.28-

0.90) 0.52 1.19 (0.70-
2.04) 0.24 0.69 (0.37-

1.30)

GPR143 rs2521578 X A 0.0077 1.77 (1.15-
2.72) 0.22 0.85 (0.65-

1.11) 0.37 0.80 (0.50-
1.30) 0.54 1.09 (0.82-

1.46) 0.21 0.71 (0.40-
1.23)

rs2521667 X G 0.26 0.80 (0.55-
1.17) 0.54 1.09 (0.83-

1.43) 0.021 0.28 (0.09-
0.89) 0.80 0.93 (0.52-

1.66) 0.082 0.33 (0.08-
1.41) 0.0004 1.68 (1.27-

2.22)

HPS1 rs12242431 10 C 0.28 1.23 (0.84-
1.79) 0.0056 0.51 (0.31-

0.83) 0.21 0.75 (0.48-
1.17) 0.11 0.64 (0.38-

1.10) 0.82 1.05 (0.66-
1.68) 0.67 0.90 (0.53-

1.50)

rs17535384 10 G 0.094 1.40 (0.94-
2.09) 0.020 1.61 (1.07-

2.43) 0.74 1.08 (0.69-
1.67) 0.59 0.88 (0.54-

1.42) 0.44 0.89 (0.66-
1.20) 0.12 1.48 (0.90-

2.43)

HPS4 rs1894707 22 C 0.32 0.88 (0.68-
1.13) 0.18 1.31 (0.88-

1.95) 0.34 1.31 (0.75-
2.31) 0.07 1.48 (0.97-

2.27) 0.36 1.15 (0.85-
1.57) 0.0094 2.29 (1.24-

4.23)

rs9608491 22 G 0.28 0.55 (0.18-
1.67) 0.0078 0.63 (0.45-

0.89) 0.11 1.40 (0.92-
2.11) 0.17 0.78 (0.55-

1.12) 0.68 0.92 (0.62-
1.37) 0.18 0.77 (0.52-

1.14)

rs9613187 22 T 0.71 0.75 (0.17-
3.39) 0.025 0.61 (0.40-

0.95) 0.37 1.25 (0.77-
2.01) 0.15 0.69 (0.42-

1.14) 0.18 0.71 (0.42-
1.19) 0.52 0.84 (0.49-

1.44)

HPS6 rs3737243 10 A 0.40 1.21 (0.78-
1.87) 0.021 0.55 (0.33-

0.92) 0.95 1.02 (0.62-
1.67) 0.55 0.84 (0.48-

1.47) 0.17 0.81 (0.60-
1.10) 0.62 0.86 (0.48-

1.55)

HRK rs4767462 12 G 0.51 0.84 (0.50-
1.41) 0.15 1.48 (0.87-

2.53) 0.020 0.52 (0.29-
0.91) 0.39 0.78 (0.44-

1.38) 0.3 0.70 (0.35-
1.40) 0.17 1.48 (0.85-

2.59)

HTR2B rs10194776 2 T 0.031 0.76 (0.59-
0.98) 0.034 1.56 (1.03-

2.37) 0.40 0.80 (0.48-
1.34) 0.39 1.21 (0.78-

1.89) 0.84 0.94 (0.54-
1.67) 0.14 1.43 (0.89-

2.31)

rs17619600 2 C 0.077 0.65 (0.41-
1.05) 0.71 0.91 (0.54-

1.53) 0.27 0.74 (0.44-
1.26) 0.062 1.68 (0.97-

2.94) 0.9 0.97 (0.58-
1.61) 0.018 1.95 (1.13-

3.35)

rs2161891 2 G 0.021 0.73 (0.56-
0.96) 0.20 1.50 (0.80-

2.80) 0.52 0.91 (0.68-
1.21) 0.25 1.29 (0.84-

1.97) 0.21 1.47 (0.82-
2.66) 0.055 1.56 (0.99-

2.48)

rs4973377 2 A 0.033 1.42 (1.03-
1.97) 0.14 0.38 (0.10-

1.47) 0.28 1.21 (0.85-
1.73) 0.010 0.17 (0.04-

0.80) 0.65 0.92 (0.63-
1.34) 0.22 0.76 (0.48-

1.19)

KIT rs1008658 4 A 0.029 0.55 (0.32-
0.95) 0.56 1.19 (0.67-

2.12) 0.012 0.69 (0.52-
0.92) 0.19 1.50 (0.81-

2.80) 0.69 0.94 (0.69-
1.28) 0.16 1.57 (0.84-

2.92)

rs13135792 4 C 0.030 1.74 (1.05-
2.87) 0.049 1.49 (1.00-

2.21) 0.23 1.39 (0.81-
2.38) 0.54 1.14 (0.75-

1.75) 0.63 0.86 (0.46-
1.61) 0.26 1.20 (0.87-

1.65)

rs4864920 4 T 0.074 0.75 (0.55-
1.03) 0.13 0.73 (0.49-

1.10) 0.066 0.68 (0.46-
1.03) 0.028 2.90 (1.05-

8.05) 0.23 0.79 (0.53-
1.17) 0.39 0.82 (0.52-

1.30)

rs6554198 4 G 0.011 0.54 (0.33-
0.87) 0.02 0.55 (0.33-

0.92) 0.064 1.69 (0.96-
2.98) 0.12 1.41 (0.91-

2.20) 0.49 1.17 (0.74-
1.84) 0.49 0.90 (0.66-

1.22)

KITLG rs10858758 12 G 0.64 0.92 (0.64-
1.31) 0.066 1.45 (0.98-

2.16) 0.64 1.09 (0.77-
1.53) 0.35 0.64 (0.24-

1.65) 0.35 1.19 (0.83-
1.72) 0.036 0.61 (0.38-

0.98)

LYST rs11810173 1 T 0.032 0.69 (0.49-
0.97) 0.93 1.02 (0.70-

1.47) 0.18 1.28 (0.89-
1.85) 0.020 0.19 (0.04-

0.93) 0.23 1.32 (0.84-
2.09) 0.052 0.64 (0.41-

1.02)

rs7541057 1 C 0.68 0.92 (0.61-
1.38) 0.19 0.83 (0.62-

1.10) 0.4 0.82 (0.52-
1.30) 0.017 1.46 (1.07-

2.01) 0.16 0.39 (0.09-
1.70) 0.54 1.18 (0.69-

2.00)

MCAM rs2249466 11 T 0.51 1.26 (0.64-
2.46) 0.19 1.56 (0.80-

3.06) 0.18 1.25 (0.90-
1.73) 0.13 1.40 (0.90-

2.18) 0.87 0.97 (0.68-
1.38) 0.0039 2.03 (1.25-

3.32)

rs2511837 11 T 0.044 1.53 (1.01-
2.31) 0.40 0.83 (0.53-

1.29) 0.14 1.40 (0.89-
2.22) 0.19 0.71 (0.43-

1.18) 0.062 0.65 (0.41-
1.02) 0.96 0.99 (0.60-

1.63)

rs6589732 11 A 0.48 1.18 (0.74-
1.89) 0.013 0.50 (0.28-

0.87) 0.4 0.89 (0.68-
1.17) 0.034 1.61 (1.04-

2.51) 0.28 1.27 (0.81-
2.00) 0.38 0.75 (0.39-

1.44)

MCOLN3 rs10518327 1 A 0.56 1.11 (0.78-
1.58) 0.38 0.70 (0.32-

1.55) 0.53 1.26 (0.61-
2.60) 0.87 0.97 (0.70-

1.35) 0.34 1.44 (0.69-
2.99) 0.049 2.24 (1.02-

4.91)
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rs10782537 1 C 0.06 0.75 (0.55-
1.01) 0.75 1.14 (0.49-

2.66) 0.57 0.89 (0.60-
1.33) 0.27 0.78 (0.51-

1.21) 0.44 0.66 (0.22-
1.97) 0.045 0.62 (0.39-

1.00)

rs12030837 1 T 0.021 0.63 (0.43-
0.94) 0.78 1.06 (0.71-

1.59) 0.59 0.88 (0.55-
1.41) 0.84 1.05 (0.67-

1.63) 0.79 1.07 (0.65-
1.76) 0.34 0.77 (0.45-

1.33)

rs7522239 1 A 0.0012 0.55 (0.38-
0.80) 0.58 1.12 (0.76-

1.65) 0.33 0.80 (0.51-
1.26) 0.69 1.09 (0.71-

1.66) 0.82 0.95 (0.58-
1.53) 0.45 0.83 (0.49-

1.39)

MITF rs13072665 3 A 0.41 1.19 (0.79-
1.78) 0.036 1.85 (1.03-

3.32) 0.57 1.14 (0.72-
1.79) 0.0043 2.49 (1.29-

4.78) 0.73 1.10 (0.65-
1.85) 0.73 1.11 (0.60-

2.04)

MLANA rs10975339 9 T 0.60 1.15 (0.68-
1.94) 0.24 1.27 (0.86-

1.87) 0.42 0.85 (0.58-
1.26) 0.49 0.89 (0.65-

1.23) 0.0044 0.33 (0.14-
0.78) 0.49 1.17 (0.75-

1.83)

rs2150702 9 C 0.16 0.75 (0.50-
1.12) 0.09 1.45 (0.94-

2.22) 0.80 0.94 (0.59-
1.51) 0.064 0.62 (0.38-

1.03) 0.025 0.53 (0.29-
0.95) 0.064 1.61 (0.96-

2.70)

MLPH rs10173589 2 G 0.67 1.09 (0.74-
1.61) 0.33 1.24 (0.80-

1.92) 0.13 1.34 (0.91-
1.97) 0.38 0.81 (0.51-

1.29) 0.0014 1.89 (1.29-
2.78) 0.43 1.58 (0.52-

4.84)

rs2292881 2 T 0.011 2.01 (1.16-
3.47) 0.95 0.99 (0.60-

1.63) 0.2 0.71 (0.43-
1.19) 0.44 1.24 (0.73-

2.09) 0.24 1.42 (0.80-
2.52)

rs729389 2 A 0.48 0.60 (0.14-
2.53) 0.075 0.69 (0.46-

1.04) 0.29 1.29 (0.80-
2.06) 0.017 0.59 (0.38-

0.91) 0.091 1.50 (0.94-
2.41) 0.020 0.55 (0.32-

0.94)

rs7606177 2 C 0.29 1.55 (0.68-
3.51) 0.75 1.13 (0.54-

2.34) 0.16 0.52 (0.21-
1.30) 0.023 0.69 (0.50-

0.95) 0.14 1.37 (0.90-
2.10) 0.2 0.79 (0.55-

1.14)

rs880931 2 T 0.25 0.40 (0.08-
2.06) 0.53 0.86 (0.53-

1.39) 0.5 1.18 (0.72-
1.93) 0.035 0.62 (0.39-

0.97) 0.27 1.32 (0.81-
2.13) 0.066 0.61 (0.35-

1.06)

MUTED rs2748376 6 T 0.15 0.71 (0.45-
1.13) 0.53 0.84 (0.50-

1.43) 0.81 0.94 (0.57-
1.56) 0.35 1.15 (0.85-

1.56) 0.038 1.37 (1.02-
1.84) 0.27 1.30 (0.81-

2.10)

MYO7A rs11605022 11 G 0.0077 1.40 (1.09-
1.79) 0.56 1.09 (0.82-

1.44) 0.1 1.25 (0.96-
1.64) 0.81 0.96 (0.71-

1.31) 0.51 1.19 (0.71-
2.02) 0.25 0.83 (0.60-

1.14)

rs12793189 11 A 0.21 1.17 (0.91-
1.49) 0.075 0.65 (0.40-

1.05) 0.52 1.16 (0.74-
1.80) 0.036 0.59 (0.35-

0.97) 0.021 1.72 (1.09-
2.70) 0.31 0.75 (0.43-

1.31)

rs7105374 11 AA 0.64 1.09 (0.76-
1.57) 0.023 1.39 (1.04-

1.85) 0.56 1.09 (0.83-
1.43) 0.010 1.47 (1.08-

2.01) 0.51 1.19 (0.71-
2.02) 0.32 0.89 (0.62-

1.28)

rs7123925 11 G 0.30 0.82 (0.56-
1.20) 0.12 0.80 (0.60-

1.06) 0.38 0.88 (0.67-
1.16) 0.17 0.81 (0.60-

1.10) 0.0049 0.53 (0.34-
0.82) 0.27 0.84 (0.61-

1.15)

rs762667 11 C 0.016 1.37 (1.06-
1.77) 0.54 0.89 (0.60-

1.31) 0.12 1.24 (0.94-
1.64) 0.78 0.96 (0.69-

1.32) 0.84 0.97 (0.72-
1.31) 0.58 0.91 (0.65-

1.27)

NF1 rs2953014 17 C 0.42 1.35 (0.64-
2.85) 0.002 0.18 (0.05-

0.64) 0.37 0.86 (0.62-
1.19) 0.35 0.84 (0.58-

1.21) 0.12 1.40 (0.91-
2.13) 0.038 1.61 (1.03-

2.52)

rs2953016 17 G 0.013 0.30 (0.11-
0.84) 0.052 1.39 (0.99-

1.95) 0.69 0.92 (0.61-
1.38) 0.93 1.02 (0.71-

1.45) 0.32 0.56 (0.16-
1.91) 0.37 0.81 (0.50-

1.30)

NRAS rs8453 1 A 0.15 0.33 (0.07-
1.65) 0.36 1.22 (0.79-

1.87) 0.5 0.60 (0.13-
2.69 0.68 1.11 (0.66-

1.86) 0.13 3.61 (0.72-
18.13) 0.025 0.52 (0.28-

0.95)

PAX3 rs12620338 2 A 0.14 0.76 (0.52-
1.10) 0.05 0.67 (0.44-

1.00) 0.017 0.23 (0.06-
0.86) 0.23 0.79 (0.54-

1.16) 0.14 0.75 (0.50-
1.11) 0.21 1.34 (0.85-

2.11)

rs13405641 2 A 0.07 1.31 (0.98-
1.76) 0.64 1.16 (0.61-

2.21) 0.013 0.67 (0.48-
0.92) 0.15 0.80 (0.58-

1.09) 0.35 1.17 (0.84-
1.64) 0.83 1.04 (0.74-

1.45)

rs16863657 2 G 0.0033 0.57 (0.38-
0.83) 0.89 1.03 (0.67-

1.59) 0.27 0.79 (0.52-
1.20) 0.28 1.30 (0.80-

2.11) 0.0053 0.50 (0.30-
0.84) 0.69 1.11 (0.68-

1.81)

rs7559271 2 G 0.076 1.27 (0.97-
1.64) 0.38 0.79 (0.47-

1.33) 0.014 1.42 (1.07-
1.89) 0.22 0.71 (0.41-

1.23) 0.082 1.65 (0.95-
2.86) 0.86 1.05 (0.59-

1.88)

PCNA rs17349 20 T 0.62 0.90 (0.60-
1.36) 0.66 0.90 (0.57-

1.42) 0.55 0.88 (0.59-
1.33) 0.43 1.20 (0.76-

1.88) 0.029 0.58 (0.35-
0.97) 0.66 1.11 (0.70-

1.77)

rs3729558 20 G 0.023 0.75 (0.58-
0.96) 0.13 0.67 (0.40-

1.13) 0.42 1.23 (0.75-
2.02) 0.29 0.74 (0.43-

1.29) 0.44 1.20 (0.75-
1.89) 0.21 0.68 (0.37-

1.26)

PLDN rs12909221 15 C 0.58 1.15 (0.70-
1.89) 0.022 1.66 (1.07-

2.56) 0.25 1.19 (0.89-
1.59) 0.27 1.18 (0.88-

1.60) 0.58 1.13 (0.72-
1.77) 0.12 1.53 (0.90-

2.59)

POMC rs1866146 2 C 0.42 0.87 (0.61-
1.23) 0.077 1.32 (0.97-

1.79) 0.026 1.42 (1.04-
1.95) 0.32 0.70 (0.34-

1.42) 0.05 1.39 (1.00-
1.92) 0.72 0.87 (0.41-

1.85)

rs6734859 2 T 0.13 0.76 (0.53-
1.08) 0.0095 1.79 (1.15-

2.79) 0.082 1.47 (0.95-
2.27) 0.83 1.05 (0.68-

1.61) 0.055 1.56 (1.00-
2.44) 0.42 0.55 (0.12-

2.57)

rs7565877 2 G 0.37 0.83 (0.55-
1.25) 0.78 0.94 (0.59-

1.48) 0.38 0.81 (0.50-
1.30) 0.65 0.89 (0.55-

1.46) 0.078 0.63 (0.37-
1.08) 0.024 0.51 (0.28-

0.94)

PRKAR1A rs4968898 17 G 0.23 1.22 (0.89-
1.67) 0.2 1.25 (0.89-

1.77) 0.022 1.54 (1.06-
2.24) 0.42 1.51 (0.55-

4.19) 0.42 0.85 (0.58-
1.26) 0.13 0.70 (0.43-

1.12)

rs8066131 17 G 0.14 0.82 (0.63-
1.07) 0.20 0.59 (0.27-

1.33) 0.0093 0.60 (0.40-
0.88) 0.69 0.92 (0.60-

1.40) 0.77 0.94 (0.62-
1.43) 0.016 2.67 (1.22-

5.81)

PTCH1 rs2297087 9 G 0.32 0.67 (0.31-
1.48) 0.016 1.66 (1.10-

2.50) 0.17 0.80 (0.57-
1.11) 0.16 0.52 (0.21-

1.30) 0.032 1.60 (1.05-
2.45) 0.25 1.30 (0.83-

2.05)

rs4448343 9 G 0.48 1.14 (0.79-
1.65) 0.013 1.70 (1.12-

2.59) 0.14 0.79 (0.57-
1.08) 0.35 1.18 (0.83-

1.69) 0.026 1.66 (1.06-
2.59) 0.1 1.34 (0.94-

1.92)

RAB27A rs1061824 15 G 0.048 1.45 (1.00-
2.11) 0.074 1.39 (0.97-

2.00) 0.61 1.10 (0.77-
1.56) 0.5 1.14 (0.78-

1.68) 0.27 1.71 (0.68-
4.29) 0.67 0.90 (0.56-

1.45)

rs16976177 15 G 0.089 1.41 (0.95-
2.09) 0.028 1.48 (1.04-

2.12) 0.98 0.99 (0.64-
1.54) 0.14 1.45 (0.88-

2.38) 0.54 1.12 (0.78-
1.62) 0.56 1.32 (0.52-

3.34)

rs16976194 15 T 0.49 0.92 (0.72-
1.17) 0.23 1.30 (0.85-

2.00) 0.022 1.81 (1.08-
3.03) 0.022 1.72 (1.08-

2.76) 0.40 0.83 (0.54-
1.28) 0.17 1.42 (0.86-

2.36)

RAB38 rs1027027 11 A 0.59 1.08 (0.81-
1.44) 0.35 1.45 (0.67-

3.14) 0.14 1.27 (0.93-
1.74) 0.42 0.87 (0.62-

1.22) 0.019 1.49 (1.07-
2.07) 0.78 0.94 (0.60-

1.47)

rs11602163 11 G 0.19 0.79 (0.56-
1.13) 0.20 1.52 (0.80-

2.88) 0.37 0.74 (0.38-
1.43) 0.078 1.33 (0.97-

1.85) 0.009 0.57 (0.38-
0.87) 0.15 1.65 (0.84-

3.25)

rs12576251 11 G 0.45 1.25 (0.70-
2.24) 0.27 1.42 (0.76-

2.68) 0.82 0.97 (0.72-
1.30) 0.06 1.36 (0.99-

1.88) 0.037 0.71 (0.51-
0.98) 0.09 1.80 (0.93-

3.49)
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rs524121 11 C 0.21 0.70 (0.40-
1.23) 0.65 1.16 (0.62-

2.15) 0.010 0.40 (0.20-
0.83) 0.31 0.70 (0.35-

1.39) 0.32 0.70 (0.34-
1.45) 0.36 1.34 (0.72-

2.52)

rs9144 11 C 0.26 1.32 (0.81-
2.14) 0.13 1.47 (0.89-

2.45) 0.41 0.80 (0.47-
1.37) 0.021 1.42 (1.05-

1.92) 0.072 0.76 (0.56-
1.03) 0.035 1.80 (1.05-

3.07)

RGS1 rs1359062 1 G 0.1 1.37 (0.94-
2.00) 0.53 1.12 (0.79-

1.60) 0.017 3.91 (1.11-
13.83) 0.50 0.66 (0.20-

2.21) 0.093 1.37 (0.95-
1.96) 0.30 0.78 (0.48-

1.26)

RGS20 rs1123133 8 G 0.59 0.82 (0.40-
1.70) 0.35 1.47 (0.66-

3.28) 0.16 1.76 (0.78-
3.99) 0.47 0.73 (0.31-

1.70) 0.14 1.79 (0.84-
3.78) 0.32 1.55 (0.67-

3.59)

rs2220093 8 G 0.41 0.50 (0.09-
2.74) 0.13 0.71 (0.45-

1.12) 0.56 1.14 (0.74-
1.76) 0.22 0.27 (0.03-

2.58) 0.42 1.21 (0.76-
1.92) 0.022 0.51 (0.28-

0.93)

rs6473895 8 A 0.35 1.28 (0.76-
2.17) 0.82 0.93 (0.52-

1.66) 0.026 2.12 (1.07-
4.21) 0.37 1.30 (0.73-

2.31) 0.26 1.46 (0.76-
2.78)

rs7824575 8 A 0.18 0.60 (0.28-
1.29) 0.029 2.50 (1.06-

5.90) 0.44 0.72 (0.32-
1.63) 0.27 1.67 (0.66-

4.24) 0.075 0.38 (0.11-
1.27) 0.31 0.79 (0.50-

1.24)

SLC45A2 rs35405 5 T 0.23 1.17 (0.91-
1.50) 0.45 1.18 (0.76-

1.84) 0.55 0.86 (0.54-
1.39) 0.018 1.75 (1.10-

2.79) 0.12 0.79 (0.58-
1.07) 0.29 1.19 (0.86-

1.65)

rs35414 5 T 0.71 0.93 (0.64-
1.35) 0.02 0.61 (0.40-

0.93) 0.068 1.46 (0.97-
2.20) 0.40 0.78 (0.44-

1.39) 0.24 1.31 (0.83-
2.06) 0.054 0.72 (0.52-

1.01)

SNAI2 rs1992375 8 A 0.23 0.86 (0.67-
1.10) 0.51 1.14 (0.72-

1.81) 0.59 0.89 (0.58-
1.37) 0.19 0.82 (0.61-

1.10) 0.0017 0.41 (0.22-
0.75) 0.39 0.80 (0.49-

1.32)

rs2735455 8 A 0.0096 1.89 (1.16-
3.09) 0.16 1.45 (0.86-

2.47) 0.72 0.89 (0.49-
1.64) 0.46 1.23 (0.71-

2.13) 0.42 0.78 (0.41-
1.46)

SNX10 rs1406754 7 T 0.21 1.27 (0.88-
1.82) 0.65 1.15 (0.62-

2.13) 0.73 1.07 (0.72-
1.60) 0.22 0.76 (0.50-

1.18) 0.29 1.18 (0.86-
1.62) 0.039 1.42 (1.02-

1.99)

rs1468286 7 T 0.67 0.91 (0.57-
1.43) 0.03 1.36 (1.03-

1.79) 0.25 1.27 (0.85-
1.91) 0.87 0.96 (0.56-

1.63) 0.18 0.82 (0.61-
1.10) 0.58 1.09 (0.80-

1.49)

rs2699808 7 C 0.19 0.84 (0.65-
1.09) 0.49 0.86 (0.55-

1.33) 0.52 1.15 (0.75-
1.76) 0.032 1.73 (1.04-

2.89) 0.23 0.76 (0.49-
1.18) 0.12 0.78 (0.58-

1.07)

SOX11 rs17362772 2 G 0.034 0.65 (0.43-
0.97) 0.53 1.18 (0.71-

1.95) 0.56 0.87 (0.54-
1.39) 0.44 1.23 (0.72-

2.11) 0.24 0.73 (0.43-
1.25) 0.26 0.71 (0.39-

1.30)

TYR rs1042602 11 A 0.62 0.90 (0.59-
1.37) 0.20 0.72 (0.44-

1.19) 0.033 1.68 (1.04-
2.71) 0.0082 0.66 (0.48-

0.90) 0.46 1.20 (0.74-
1.95) 0.031 0.70 (0.50-

0.97)

rs17174064 11 C 0.7 1.10 (0.67-
1.82) 0.21 0.69 (0.39-

1.23) 0.28 0.74 (0.44-
1.27) 0.86 1.06 (0.57-

1.95) 0.47 0.80 (0.43-
1.48) 0.040 1.87 (1.04-

3.34)

rs2186640 11 G 0.37 0.80 (0.49-
1.31) 0.3 1.34 (0.77-

2.35) 0.081 0.70 (0.47-
1.05) 0.13 1.28 (0.93-

1.75) 0.19 1.45 (0.84-
2.53) 0.015 1.50 (1.08-

2.09)

rs5021654 11 C 0.40 0.81 (0.50-
1.32) 0.18 1.47 (0.83-

2.60) 0.12 0.73 (0.49-
1.08) 0.062 1.35 (0.98-

1.87) 0.19 1.46 (0.84-
2.55) 0.019 1.77 (1.09-

2.87)

TYRP1 rs10809828 9 G 0.18 0.82 (0.62-
1.10) 0.062 1.94 (0.95-

3.95) 0.19 0.81 (0.60-
1.10) 0.0004 1.82 (1.29-

2.57) 0.09 0.43 (0.15-
1.25) 0.23 1.31 (0.84-

2.05)

rs11791497 9 C 0.21 0.70 (0.40-
1.23) 0.026 2.05 (1.08-

3.91) 0.41 0.77 (0.40-
1.45) 0.54 0.81 (0.41-

1.61) 0.78 0.91 (0.48-
1.75)

rs683 9 C 0.1 0.81 (0.63-
1.05) 0.17 1.41 (0.86-

2.33) 0.40 0.84 (0.56-
1.26) 0.018 1.97 (1.12-

3.47) 0.26 0.84 (0.62-
1.14) 0.027 1.84 (1.08-

3.13)

WNT3A rs697763 1 C 0.0086 1.61 (1.13-
2.30) 0.60 0.90 (0.61-

1.33) 0.052 1.47 (1.00-
2.18) 0.23 1.30 (0.85-

1.98) 0.5 0.87 (0.57-
1.32) 0.017 0.58 (0.37-

0.91)

rs708122 1 T 0.0003 0.60 (0.46-
0.80) 0.14 1.56 (0.86-

2.83) 0.042 0.53 (0.29-
0.98) 0.49 0.90 (0.67-

1.21) 0.80 1.06 (0.69-
1.62) 0.15 1.27 (0.91-

1.76)

rs766972 1 G 0.039 1.45 (1.02-
2.07) 0.59 0.83 (0.43-

1.63) 0.0054 1.74 (1.17-
2.57) 0.12 1.40 (0.92-

2.14) 0.32 2.15 (0.51-
9.16) 0.036 0.62 (0.39-

0.97)

rs947631 1 C 0.0026 1.77 (1.22-
2.57) 0.16 1.46 (0.86-

2.47) 0.13 1.37 (0.91-
2.05) 0.072 1.49 (0.96-

2.29) 0.35 0.81 (0.52-
1.26) 0.15 0.79 (0.58-

1.09)

Chr, Chromosome; mA, Minor Allele; OR, Odds Ratio per minor allele; CI, Confidence Interval.
Bold indicates statistically significant results
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Figure S1.1. Comparison of minor allele frequencies, female versus male individuals. Minor allele

frequencies were not significantly different between females and males after Bonferroni correction was

applied.

Figure S1.2. A selection of genetic factors affecting pigmentation and sun sensitivity in humans. Graph

showing a selection of genes involved in melanocyte development, melanin synthesis, and melanosome

biogenesis, transport and transfer.
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2.1. LETTER TO THE EDITOR

Human skin acts as a biological active barrier to the external environment, including

exposure to UV radiation – clearly the major risk factor for melanoma. Sex differences

are well-known regarding melanoma, with females presenting lower incidences, less

metastases and better survival rates than males (131).

Both genetics and sex hormones contribute to sexual differences in skin aging,

pigmentation, UV-light sensitivity, and melanoma incidence and outcome (11).

Oestrogens accelerate wound healing, improve inflammatory disorders, increase skin

thickness, protect from skin photoaging, and induce the activation and expression of

genes involved in melanin synthesis (85).

Basal skin pigmentation, via melanin synthesis, darkens in response to sunlight, thus

fulfilling its protective role against further irradiation-induced damage (11). Therefore,

sex disparity in melanoma epidemiology might be explained by sex differences in tanning

ability and skin sensitivity to UV-light exposure.

With the purpose of shedding some light on these questions, we evaluated a total of 1,112

individuals (515 males and 597 females) of Spanish origin for pigmentary traits related

to tanning ability and sun sensitivity – skin phototype, history of sunburns, presence of

solar lentigo and number of naevi. A brief summary of the materials and methods used in

this work is available in the Supplementary Material.

When these phenotypic traits were analysed according to sex, the percentages of skin

phototypes and naevus numbers appeared to be significantly different between the two

sexes (Table S2.1). The percentage of phototypes I-II was notably higher in females than

in males (48.06% vs. 38.17%, P = 8.35x10-3). Regarding naevus number, the percentage
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of naevi was remarkably lower in females than in males (68.34% vs. 59.03%, P =

1.25x10-3). No significant differences between the sexes were observed for history of

sunburns and presence of lentigines.

A meta-analysis was performed to compare our results to previously published data

(Figure 2.1). The guidelines followed to perform the meta-analysis are briefly explained

in the Supplementary Material. We searched for studies conducted in Caucasian

populations presenting phenotypic data stratified by sex ((31,61,106,175–178). When all

individuals included in these studies were analysed together, the difference between

females and males was extremely significant for both skin phototype (OR = 0.75, 95%

CI: 0.68-0.83, P = 1.90x10-9) and naevi (OR = 1.42, 95% CI: 1.30-1.55, P = 1.11x10-15).

The results obtained in this Spanish study were concordant with the results of the meta-

analysis.

Our results are consistent with earlier anthropological studies indicating that females have

less tanning ability, and therefore lower phototypes, than males in most populations, as

males show greater pigmentation contrast between exposed and unexposed skin regions

(61,87). Furthermore, Jacobs and cols. (2015) showed that females presented a much

higher prevalence of facial sun spots than males, suggesting that females are more

severely affected by sun exposure than males independently of genotype (30). These

differences could be the result of socio-cultural reasons, as males tend to spend more time

outdoors; physiological reasons, as males have thicker skin and increased number of

blood vessels; differential tanning, as no sex difference in basal skin pigmentation has

been shown; and hormonal factors, as oestrogens stimulate pigmentation while androgens

have an inhibitory effect on melanocytes (61,87).
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Figure 2.1. Sex-specific meta-analysis of (a) skin phototype and (b) naevus number in different

Caucasian populations. Since femaleness was set as the reference, the results show male ORs. Diamond

shapes represent odds ratio in each study and in the pooled analysis (Total). Diamond size is proportional

to the number of individuals, and error bars represent 95% confidence intervals. Bold on P-values denotes

statistically significant results. N refers to the total individuals analysed in each study. Total: results attained

by taking into account all populations.

An elevated naevi number, a major predictor factor for melanoma occurrence, is directly

correlated with high levels of sun exposure (106). As expected, females present fewer

naevi than males. These results might be in apparent conflict with those obtained for skin

phototype, since naevus prevalence has been significantly associated with the propensity

to burn slightly and tan lightly (179). However, tanning degree – the difference between

unexposed and exposed skin colour – has also been positively associated with naevus

count (106). This inconsistency might arise as a consequence of the individual perception

of overall darkness of tan when self-reported questionnaires are used to collect
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information on pigmentation characteristics. As a result, this naevus count sex-specific

difference might be attributable to higher acquired sun exposure levels in males than

females, and not to genetic effects.

Previous studies have evidenced sex-differentiated genetic effects for anthropometric

traits, serum metabolite concentrations, human pain inhibition, human pigmentation, and

melanoma risk (162,163,166,180–183).

Considering the importance of genetics in UV-light response, we focused on identifying

a possible genetic cause explaining phenotypic differences between sexes. We genotyped

five SNPs involved in human pigmentation pathways: rs12913832 (located in the

HERC2/OCA2 region), rs1800407 (OCA2 gene), rs16891982 (SLC45A2 gene),

rs1393350 (TYR gene), and rs12203592 (IRF4 gene). The coding region of MC1R gene

was also studied by direct sequencing, classifying MC1R functional variants as RHC (red

hair colour) and non-RHC associated variants.

Genotype association analyses were performed via logistic regression for each SNP as

well as for sex. To assess for possible confounding effects, regression estimates were

adjusted by executing a multivariate logistic regression. After adjustment, skin

phototypes I-II were significantly associated with MC1R RHC variants at Bonferroni-

corrected level (P = 2.96x10-4), but were also moderately associated with female sex (P

= 2.11x10-2). No association was observed between naevi number and any of the genetic

variants studied. However, being male remained significantly associated with having ≥25

naevi (P = 1.12x10-2), meaning that male sex might be a factor contributing to high naevus

count (Table 2.1A).
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Table 2.1

A) Genotypic association with phenotypic traits
Skin Phototype I/II Naevus number ≥25

Non-adjusted Adjusteda Non-adjusted Adjusteda

Gene SNP ID Allele/Factor P-value OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

P-value OR (95%
CI)

HERC2 rs12913832 C 0.89
1.02 (0.81-

1.27)
0.57

1.07 (0.84-
1.37)

0.44
1.07 (0.89-

1.28)
0.76

1.03 (0.85-
1.25)

OCA2 rs1800407 T 0.24
1.23 (0.87-

1.73)
0.59

1.11 (0.76-
1.63)

0.47
0.90 (0.68-

1.19)
0.54

0.91 (0.67-
1.24)

TYR rs1393350 T 3.32E-02
1.32 (1.02-

1.69)
0.06

1.29 (0.98-
1.68)

0.34
0.90 (0.73-

1.12)
0.31

0.89 (0.72-
1.11)

SLC45A2 rs16891982 C 0.16
1.31 (0.90-

1.90)
0.35

1.21 (0.81-
1.78)

0.41
1.13 (0.85-

1.50)
0.33

1.15 (0.89-
1.54)

IRF4 rs12203592 A 0.82
0.97 (0.72-

1.30)
0.75

1.05 (0.76-
1.46)

0.72
1.05 (0.81-

1.35)
0.89

0.98 (0.75-
1.28)

MC1R RHC variants RHC 3.00E-06*
2.00 (1.49-

2.69)
2.96E-04*

1.89 (1.34-
2.69)

0.61
1.07 (0.83-

1.38)
0.34

1.14 (0.87-
1.48)

Sex Male 8.57E-03 0.67 (0.49-
0.90)

2.11E-02 0.65 (0.45-
0.94)

1.28E-03* 1.37 (1.05-
1.78)

1.21E-02 1.45 (1.08-
1.93)

Skin Colour Fair/Pale 6.11E-07*
2.20 (1.61-

3.00) 1.36E-04*
2.03 (1.41-

2.96) 5.98E-03
1.42 (1.11-

1.83) 2.33E-02
1.40 (1.05-

1.88)
Sunburn
History

Yes 5.12E-07*
2.32 (1.67-

3.22)
5.10E-05*

2.20 (1.50-
3.24)

4.32E-13*
2.67 (2.05-

3.48)
1.46E-12*

2.94 (2.18-
3.97)

B) Sex differences in skin phototype within MC1R genotype

MC1R Wild-type MC1R RHC variants

Skin phototypeb Skin phototypeb

Sex III-IV I-II OR P-valuec III-IV I-II OR P-valuec

Male 65.70 % 34.30 % reference 51.20 % 48.80 % reference

Female 58.00 % 42.00 %
1.39 (0.97-

1.98)
0.071 34.80 % 65.20 % 2.20 (1.13-

4.29) 0.029

Abbreviations: SNP, single nucleotide polymorphisms; OR, Odds Ratio; CI, Confidence Interval; RHC, red hair colour
RHC variants include both homozygotes and heterozygotes
Bold indicates statistically significant results

* P-value significant at Bonferroni-corrected threshold of 0.05/9 = 0.0055
a Multivariate logistic regression analysis. Results adjusted by including all the potential risk factors in the model,

considering as risk factors all six SNPs, sex, skin colour and history of sunburns
b Percentages of the all individuals in each subgroup
c P-values for Fisher’s exact test, estimating sex differences in skin phototype within each MC1R genotype

The protein encoded by the MC1R gene functions as a receptor for α-MSH, a hormone

produced in the pituitary gland that depends on oestrogen levels. Interestingly, MC1R

RHC variants presented differences in genetic effects by sex, with greater effects in skin

phototype in females than in males (Table 2.1B). That is, females carrying an RHC variant

tended to exhibit significant lower phototypes than males with the same MC1R genotypes

(OR = 2.20, P=0.029). In a previous study, MC1R genotype revealed a significant greater

influence on analgesia from pentazocine in females than in males (182). Furthermore,
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mutations in another gene of the melanocortin receptor family, MC4R, presented about

twice as stronger effect on body mass index in females than in males (180).

In summary, this study supports previous evidence that sex might be a factor explaining

variations in tanning ability and sensitivity to sunlight between females and males in

Caucasian populations. Additionally, we suggest that MC1R genetic effects might

contribute to these sex-specific differences in skin phototype.

2.2. SUPPLEMENTARY MATERIAL

2.2.1. Material and Methods

Phenotypic traits were collected using a standardised questionnaire, under the supervision

of a professional. All individuals were randomly selected and gave written informed

consent. This study was approved by the Ethics Committee of the Biomedical Research

Institute - INCLIVA (Valencia, Spain).

R statistical framework was used to conduct the quality control processes and statistical

analyses. For all phenotypic traits, Fisher’s exact test was used both to compare

phenotypic frequencies between female and male individuals and to test for deviations

from Hardy-Weinberg equilibrium (HWE) between sexes. Correction for multiple

hypothesis testing was carried out using the Bonferroni method.

Then, we performed a fixed effect inverse-weighted meta-analysis to compare our results

to previously published data. A literature search was carried out using PubMed and the

terms ‘skin phototype’ or ‘moles/naevi’ and ‘sex’ or ‘gender’. Additional articles were

identified from cited references. After a full revision, we included those studies that were
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conducted in Caucasian populations, permitted quantitative assessment of the association,

and presented phenotypic data stratified by sex.

Study-specific association estimates were calculated and then combined to achieve

overall effect estimates, setting female as the reference group. A Cochrane Q test was

used for evaluating heterogeneity among all studies included. No evidence of

heterogeneity was observed between studies. The methodological quality of the studies

included in the meta-analysis was not assessed, but all of them account for environmental

factors, age, sex as well as population stratification. Since each of these studies used a

different dataset, the inherent sampling error variability among them was assumed.

Nonetheless, the methodological approach followed in this work is in general accordance

with MOOSE (Meta-analyses of Observational Studies in Epidemiology) group

guidelines (184).

Finally, we analysed a possible genetic cause explaining phenotypic differences between

sexes. Genotyping reactions were performed using Kaspar technology (KBiosciences,

Hoddesdon, UK). For rs16891982, TaqMan technology was used (Applied Biosystems,

Foster City, USA). Associations between the genotype and phenotypic traits were

assessed via logistic regression, coded additively for each copy of the minor allele. The

coding region of MC1R gene was analysed by direct sequencing using BigDye

Terminator Cycle Sequencing kit and an ABI 3700 automated DNA sequencer (Applied

Biosystems, Foster city, CA, USA) according to the manufacturer’s instructions. All

genotyped polymorphisms were in Hardy-Weinberg equilibrium after Bonferroni’s

correction (P-values < 0.0083). Genotype association analyses were performed via

logistic regression for each SNP as well as for sex. To assess for possible confounding

effects, regression estimates were adjusted by executing a multivariate logistic regression.
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Table S2.1. Phenotype frequenciesa by sex among sampled Spanish individuals

Sex

Trait Phenotype Total Male Female P-valueb

Skin Phototype I/II 43.27 % 38.17 % 48.06 % 8.35E-03

III/IV 56.73 % 61.93 % 52.04 %

Naevi number <25 35.97 % 59.03 % 68.34 % 1.25E-03

≥25 64.03 % 41.07 % 31.76 %

Presence of
Solar Lentigines

No 44.35 % 42.23 % 46.10 % 0.20

Yes 55.65 % 57.77 % 53.90 %

History of
Sunburns

No 46.51 % 47.11 % 46.00 % 0.72

Yes 53.49 % 52.89 % 54.00 %

Bold indicates statistically significant results
a Frequencies are presented as the percentages of total individuals in each subgroup (total, male and female)
b P-values for Fisher’s exact test
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3.1. INTRODUCTION

Cutaneous melanoma incidence is increasing rapidly among white-skinned populations

(185). Melanoma incidence reveals a clear relationship between pigmentation traits and

sunlight damage, with individuals with fair skin, green and blue eyes, red and blond hair,

high naevus count, freckles, and inability to tan showing greater melanoma susceptibility

(9). These phenotypic traits has been shown to be genetically determined by genes

implicated in pigmentation and tanning ability (23,31), and genetic variations in these

genes have been associated with the susceptibility to melanoma

(26,28,29,54,68,157,168). Factors that are mainly involved in the aetiology of melanoma

are not only of pigmentary/genetic nature, but also of environmental nature (186).

Chronic sun exposure thus plays a key role in causing melanoma through DNA damage

(120).

Ultraviolet (UV) exposure stimulates the synthesis of melanin in melanosomes via

activation of human pigmentation pathways, with the aim of protecting skin from the

harmful effects of sunlight (81). Gene expression can be regulated by a wide range of

mechanisms. Recently, posttranscriptional regulatory processes – specifically controlled

by mRNA-binding factors – have emerged as a fundamental and effective cellular

mechanism to regulate gene expression, and alterations in these processes can cause

numerous pathologies including immunological disease (187), neurodegeneration (188),

and tumour development (189,190). Therefore, differential gene expression may be as

important for disease susceptibility as non-synonymous coding changes.

Among the mRNA-binding factors, microRNAs (miRNAs) – short non-coding RNA

molecules (22-24 nt) encoded by intronic or intergenic sequences – act as key gene

regulators by repressing mRNA translation or by destabilizing/degrading mRNAs in the
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cytoplasm, via perfect or imperfect binding to their complementary base pair sequence in

the 3’untranslated region (3’UTR) of the mRNA target (191). Therefore, the 3’UTR

region is emerging as critically important in regulating gene expression (189), and

polymorphisms in the miRNA-binding sites of the 3’UTR of genes may alter the binding

efficiency and miRNA-mRNA gene expression regulation. In support of this hypothesis,

recent studies have identified variants in the 3’UTR of genes that increase the

susceptibility for melanoma (150), lung (192), colorectal (193) and ovarian cancer (194)

by affecting the ability of miRNAs to bind. In particular, two sequence changes in the

3’UTR of the CDKN2A gene have been significantly correlated with melanoma risk

(195), but also with a shorter progression time from primary to metastatic melanoma

(196).

Here, we hypothesise that differences identified in nucleotide composition of 3’UTRs

SNP sites of genes previously associated with pigmentation and/or skin cancer can be a

reason for causing differences in human pigmentation, sensitivity to sunlight, and thus in

melanoma susceptibility. In the current study, we describe the role of 38 different 3’UTR

polymorphisms from 38 different candidate pigmentation and melanoma susceptibility

genes in a population of Spanish origin. Additionally, we use miRNA binding prediction

tools to identify variants affecting putative miRNA-binding sites, and to predict their

impact on miRNA-mRNA interaction.
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3.2. METHODS

3.2.1. Study subjects and data collection

A total of 526 melanoma cases and 343 cancer-free controls were included in this study.

Melanoma cases were recruited at the Departments of Dermatology of four Spanish

hospitals: Gregorio Marañon General University Hospital (Madrid), La Paz University

Hospital (Madrid), Ramon y Cajal University Hospital (Madrid) and Castellon Province

Hospital (Castellon). Volunteer cancer-free control samples were recruited from the

Madrid College of Lawyers, Gregorio Marañon Hospital, Valencia Clinic Hospital and

Castellon Province Hospital. We carefully selected all cases and controls included in the

current study to account for confounding variables. As far as it was possible, controls

were frequency-matched to the cases by age, sex and place of birth. All individuals were

Caucasians of Spanish origin with the same genetic background, since there is evidence

of high genetic homogeneity within different Spanish geographical regions (164).

Each participant completed a standardised questionnaire to collect information on sex,

age, pigmentation characteristics (eye colour, hair colour, skin colour, number of naevi

and presence of solar lentigines), history of childhood sunburns, and personal and family

cancer history.

Genomic DNA from cases and controls was isolated from peripheral blood lymphocytes

using the traditional saline method or the DNAzol procedure (Invitrogen, Eugene, OR,

USA) or the MagNA Pure LC Instrument according to the manufacturer’s protocol

(Roche Molecular Biochemicals AQ2, Mannheim, Germany). DNA concentration was

quantified in samples before genotyping by using a Nanodrop 2000 spectrophotometer or

Quant-iT PicoGreen dsDNA Reagent (Invitrogen, Eugene, OR, USA). Genomic DNA



Chapter 3. Implication of 3’UTR SNPs in pigmentation

98

was amplified using the GenomiPhi DNA Amplification Kit (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden). Samples were diluted to a final solution of 50 ng/ml and

stored at -20ºC.

The study was approved by the Ethics Committee of the Biomedical Research Institute -

INCLIVA (Valencia, Spain). Written informed consent was obtained from all

participants.

3.2.2. SNP Selection

Previous literature and information of public databases were used to perform our

candidate gene list. We selected genes previously associated with pigmentation pathways

and/or melanoma risk (28,157,168,197,198), preferably including direct targets of

functional miRNA that happen to be deregulated in melanoma. Ensembl BioMart

(http://www.ensembl.org/biomart/martview) was used to retrieve germline variants from

all genes selected. Filters were used to ensure that all SNPs were located within the

3’UTRs. SNP codes, locations, minor and ancestral alleles and their frequencies, were

obtained from the NCBI (www.ncbi.nlm.nih.gov/SNP), HapMap (www.hapmap.org) and

Ensembl Variation (www.ensembl.org/info/genome/variation) databases. From the data

retrieved, Haploview v4.2 was used to identify tag-SNPs that optimally capture allelic

variation among SNPs, using a pairwise SNP approach with a minimum r2 threshold of

0.8 (199). To ensure a high genotyping success rate, a minor allele frequency (MAF)

threshold of 0.1 in the Caucasian population from the International 1000 Genomes Project

(http://www.1000genomes.org/) was established in the SNP selection process. Forty-five

tag-SNPs were finally selected.
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3.2.3. Genotyping

SNPs genotyping was conducted by the Spanish National Genotyping Centre (CeGen-

PRB2, Santiago de Compostela) as a contract service using the iPLEX Gold

MassARRAY technology, according to manufacturer’s protocol (Sequenom, San Diego,

CA, USA). All assays were performed in 384-well plates, including a negative control

and a trio of Coriell samples (Na10860, Na10861 and Na11984) for quality control.

Genotyping specificity was assessed by adding three DNA duplicates (two intra-assays

and one inter-assay) per plate, yielding 100% consistent replication results. In addition,

cases and control samples were always included in the same run. SNPs with a genotyping

rate lower than 90% (10% missing data) were excluded for further analysis.

3.2.3. Identification of potential microRNA binding sites

The potential effect of 3’UTR polymorphisms on miRNA binding was examined using

MirSNP (http://cmbi.bjmu.edu.cn/mirsnp) (200) and miRNASNP

(http://www.bioguo.org/miRNASNP/) (201).

MirSNP employs the miRanda target prediction algorithm

(http://www.microrna.org)(202), with stringent 7-nt seed site pairing as major criteria for

prediction consistency. To increase precision, we only considered target sites with an

alignment score cutoff ≥ 140, energy cutoff ≤ −10 kcal/mol, and miRSVR score ≤ −0.1.

MiRNASNP uses two miRNA target prediction tools: TargetScanHuman

(http://www.targetscan.org/) (203) and miRanda (202). MiRNASNP also incorporates

RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid) (204) to quantify the
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binding energy changes in the interaction of miRNAs with the wild-type target sequence

compared to the derived 3’UTR sequence. Only the duplexes with hybridization free

energy ≤ −20 kcal/mol were chosen (205).

3.2.4. Identification of validated pathways targeted by in silico predicted

microRNAs

In order to further investigate the miRNAs predicted to bind to the two 3’UTR SNPs

highly associated with phenotypic traits (hsa-miR-149-5p, hsa-miR-892b, hsa-miR-185-

3p and hsa-miR-762), we used DIANA-miRPath v2.0

(http://www.microrna.gr/miRPathv2) to identify the miRNA targeted pathways. The

output provides intuitive heat maps and enriched KEGG pathway visualizations for easier

inspection (206).

3.2.5. In silico quantitative analysis of tissue-specific expression

Data from the Genotype-Tissue Expression (GTEx) project (dbGaP accession No.

phs000424.v6.p1) was used for external validation and to evaluate differential tissue-

specific gene expression regarding 3’UTR SNP genotypes

(http://www.gtexportal.org/home/).



Chapter 3. Implication of 3’UTR SNPs in pigmentation

101

3.2.6. Statistical Analysis

For each polymorphism studied, Fisher’s exact test was used both to check for deviations

from Hardy-Weinberg equilibrium (HWE) among controls and to compare differences in

allele counts between cases and controls. In order to account for differences between

populations, allele frequencies of our Spanish population were compared to those of both

a North European population (CEU) and a Southern one from Tuscany (TSI) using

Fisher’s exact test.

Associations between the genotyped genes and various pigmentation characteristics were

assessed via logistic regression. Association analyses were done for all samples pooled,

with eye colour (blue/green versus brown/black), hair colour (brown/black versus

blond/red), skin colour (fair versus brown), number of naevi (≥50 versus <50), presence

of lentigines (yes versus no), and childhood sunburns (yes versus no) as the outcome

variables. This was performed for four different patterns of inheritance: dominant (major

homozygotes versus heterozygotes plus minor homozygotes), over-dominant (major

homozygotes plus minor homozygotes versus heterozygotes), recessive (major

homozygotes plus heterozygotes versus minor homozygotes), and additive (counting

additively for each copy of minor allele). Genotype-related odds ratios (ORs), their

corresponding 95% confidence intervals (CIs) and associated P-values were estimated.

Association analyses with phenotypic traits were adjusted by sex, since sex-differentiated

allelic effects for pigmentation traits, sensitivity to sunlight and melanoma have been

previously shown (132,162,163).

In order to assess associations among genotypes and melanoma risk, genotype-related

ORs, their corresponding 95% CIs and associated P-values were estimated via

unconditional logistic regression. Multivariate logistic regression was also carried out
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combining sex and all significant risk factors revealed in Table S3.1. This was also done

for all four patterns of inheritance.

Statistical analyses and plots were conducted using R statistical framework

(http://www.R-project.org). All genetic analyses were performed estimating the effect of

the minor allele in the Spanish population. Unknown and missing values were excluded

at each specific analysis. All P-values were two-sided, and those less than 0.05 were

considered statistically significant.

3.3. RESULTS

The role of 38 polymorphisms in as many pigmentation and melanoma susceptibility

genes was initially investigated. No evidence of departure from HWE for any of the 38

SNPs was found. Two 3’UTR polymorphisms revealed differences in minor allele

frequencies (MAFs) between cases and controls: ADAMTS20 rs6582463 and HOXB7

rs15689. We did not observe differences in MAFs between cases and controls for any

other SNP (Table S3.2).

We compared Spanish allele frequencies to those of CEU and TSI subjects, using the

1000 Genomes Project (phase 3) allele counts as the reference (Table S3.2). Spanish

MAFs differed significantly from CEU frequencies in three SNPs (7.89%): rs4733967

(ADAM9), rs3212369 (MC1R), and rs1690916 (MDM2). Seven SNPs presented different

allele frequencies from those reported in TSI population data: rs6582463 (ADAMTS20),

rs742106 (DTNBP1), rs12952 (EXOC2) rs8022 (KIT), rs995030 (KITLG), rs14983

(MMP7), and rs1551306 (TPCN2). In spite of these differences, allele frequencies in

Spain were very similar to those from both a North European population (CEU) and a
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Southern one (TSI), with a high correlation (R2) of 0.916 and 0.913, respectively (Figure

S3.1).

3.3.1. Association analysis

Evidence of association with phenotypic characteristics for the thirty-eight 3’UTR SNPs

was assessed. Considering a P-value threshold of 0.05, 17 SNPs were associated with at

least one sun response trait, and 11 SNPs showed association with at least one

pigmentation trait (Figure 3.1). Among them, we further investigated the 7 SNPs that

presented the most potential allelic effects for phenotypic traits in the Spanish population

(P-value < 0.01). The rs2325813 SNP, located in the MLPH gene, was correlated with

the presence of more than 50 naevi (P=8.97x10-4). Two SNPs, HOXC8 rs4142680 and

WNT3A rs752107, correlated with the presence of lentigines (P=6.57x10-3 and

P=4.53x10-4, respectively); while LYST rs6696123 showed association with an absence

of lentigines (P=2.56x10-3). Two more SNPs, rs10270 in the CLIP1 gene and rs4980113

in the KCNMA1 gene, were associated with dark hair colour (P=1.44x10-3 and

P=2.67x10-3, respectively). Finally, KIT rs8022 was correlated with light eye colour

(P=8.88x10-3) (Table 3.1).

Likewise, we carried out an association analysis between genotypes and melanoma risk.

Five SNPs showed a tendency to correlate with melanoma susceptibility in the Spanish

population. Among them, three SNPs (HOXB7 rs1589, MARCKS rs28558559 and

ADAM9 rs4733967) showed a melanoma protective effect (OR<1). On the other hand,

PTCH2 rs41269085 and ADAMTS20 rs6582463 displayed a melanoma risk effect

(OR>1) (Table S3.3).
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Figure 3.1. Manhattan plots display the significance of associated allelic effects (-log10 P-values) for each

phenotypic trait. (A) naevus count, (B) solar lentigines, (C) childhood sunburns, (D) skin colour, (E) hair

colour, and (F) eye colour. Each dot represents one of the 38 3’UTR SNPs genotyped. Black dots indicate SNPs

with a significant fold change (P-values < 0.05). All rs numbers of polymorphisms highly associated with

phenotypic traits are displayed next to the corresponding dot. All values displayed are from the most significant

pattern of inheritance.
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Table 3.1. 3'UTR variants highly associated with phenotypic traits in the Spanish population (P-value <
0.01)

Trait Gene SNP rs# Genotype

Protective
phenotype

Risk
phenotype Inheritance

mode OR (95% CI) P-value
N (%) N (%)

Naevi MLPH rs2325813 TT 591 (82.3) 75 (69.4) Additive 2.03 (1.36-3.02) 8.97E-04

CT 121 (16.9) 29 (26.9) 0 / C / CC

CC 6 (0.8) 4 (3.7)

Lentigines WNT3A rs752107 CC 196 (56.2) 216 (45.3) Over-dominant 1.66 (1.25-2.21) 4.53E-04

CT 118 (33.8) 218 (45.7) CC+TT / CT

TT 35 (10.0) 43 (9.0)

Lentigines LYST rs6696123 TT 100 (28.6) 182 (38.1) Additive 0.73 (0.60-0.90) 2.56E-03

CT 184 (52.6) 231 (48.3) 0 / C / CC

CC 66 (18.9) 65 (13.6)

Lentigines HOXC8 rs4142680 TT 138 (39.4) 160 (33.6) Over-dominant 1.47 (1.11-1.94) 6.57E-03

CT 143 (40.9) 240 (50.4) TT+CC / CT

CC 69 (19.7) 76 (16.0)

Hair colour CLIP1 rs10270 GG 328 (46.1) 83 (56.8) Over-dominant 0.55 (0.37-0.80) 1.44E-03

AG 321 (45.1) 45 (30.8) GG+AA / AG

AA 63 (8.8) 18 (12.3)

Hair colour KCNMA1 rs4980113 GG 182 (25.5) 47 (32.2) Over-dominant 0.57 (0.40-0.83) 2.67E-03

CG 377 (52.9) 57 (39.0) GG+CC / CG

CC 154 (21.6) 42 (28.8)

Eye colour KIT rs8022 GG 416 (73.5) 229 (80.9) Over-dominant 0.62 (0.43-0.89) 8.88E-03

GT 139 (24.6) 48 (17.0) GG+TT / GT

TT 11  (1.9) 6 (2.1)

SNP, single nucleotide polymorphism; N, number of individuals; %, percentage of individuals per group among the total; OR, odds ratio
per minor allele; CI, confidence interval

For the association results to be adjusted by the confounding variables, we performed a

multivariate analysis including phenotypic risk factors (hair colour, solar lentigines and

the presence of childhood sunburn) and sex as covariates. Polymorphisms located in

HOXB7, MARCKS, ADAM9 and PTCH2 remained significant after the adjustment, with

no substantial changes in allelic effects, confirming the putative role of these variants in

melanoma susceptibility. Additionally, KCNMA1 rs4980113 and IRF4 rs9391997 were

marginally associated with melanoma protection (Table S3.3).
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3.3.2. Variants affecting microRNA binding sites in human

pigmentation

All 3’UTR polymorphisms that presented association with phenotypic characteristics

and/or melanoma were analysed by two specialized web-based programmes for

predicting miRNA-binding sites in the 3’UTR.

Cross-prediction was required for verifying the predicted target sites. After applying all

sequential filtering steps, eight of all 3’UTR polymorphisms evaluated had at least one

miRNA predicted to bind (Table 3.2). Three 3′UTR variants interrupted miRNA-mRNA

interaction or reduced miRNA-mRNA interaction by increasing the free energy of the

corresponding duplexes after the minor allele introduction in the target sequence.

Conversely, three variants created new miRNA target sequences or enhanced miRNA

binding efficiency by decreasing hybridization free energy. Two variants both

disrupted/decreased and created/enhanced multiple miRNA target sequences in the

sequences studied (Table 3.2).

Once miRNAs of interest were identified using binding prediction tools, we used an in

silico approach to identify pathways that are under the regulation of the predicted miRNA

signature. The four selected miRNAs and the targeted KEGG (Kyoto Encyclopaedia of

Genes and Genomes) pathways are displayed in Figure 3.2. Among all the significant

targeted KEGG pathways, we identified three of them involved in pigmentation and skin

cancer: “Wnt signalling pathway-hsa04310” (P=4.24x10-5), “MAPK signalling pathway-

hsa04010” (P=1.07x10-4) and “Basal cell carcinoma-hsa05217” (P=2.52x10-3). Figure

S3.2 represents in detail these three KEGG pathways, highlighting the specific target

genes of the selected miRNAs.
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Table 3.2. Candidate microRNAs predicted to bind to 3'UTR SNPs showing association with pigmentation
traits, sensitivity to sunlight and melanoma susceptibility

Gene 3'UTR SNP
rs#

Allele
change

miRNA predicted to
bind to the target site ¹

Effect on
miRNA
binding ²

Free energy of
miRNA-mRNA
binding for WT
(kcal/mol) ³

Free energy of
miRNA-mRNA
binding for MA
(kcal/mol) ³

Energy
change
(kcal/mol) 4

DTNBP1 rs742106 G==>A hsa-miR-1293 decrease -26.40 -23.80 -2.60

G==>A hsa-miR-4782-5p create 0.00 -21.30 21.30

E2F1 rs3213180 C==>G hsa-miR-1182 break -31.30 0.00 -31.30

FOXO3 rs9400241 A==>C hsa-miR-2115-5p break -28.40 0.00 -28.40

A==>C hsa-miR-22-3p create 0.00 -24.10 24.10

KIT rs8022 G==>T hsa-miR-548as-3p create 0.00 -20.80 20.80

MLPH rs2325813 T==>C hsa-miR-185-3p enhance -29.00 -31.70 2.70

T==>C hsa-miR-762 enhance -28.80 -31.50 2.70

MYO5A rs7176482 A==>G hsa-miR-198 break -25.70 0.00 -25.70

A==>G hsa-miR-525-5p break -21.90 0.00 -21.90

SOX9 rs1042667 A==>C hsa-miR-1181 create 0.00 -23.60 23.60

WNT3A rs752107 C==>T hsa-miR-149-5p decrease -29.90 -27.60 -2.30

C==>T hsa-miR-892b decrease -30.50 -28.20 -2.30

SNP, single nucleotide polymorphism; 3'UTR, 3’untranslated region; WT, wild-type target allele; MA, minor allele target allele

¹ The prediction of miRNA-binding sites was performed using MirSNP and miRNASNP

² The effect of the SNP on miRNA binding was given by MirSNP. These effects can be classified following four categories: a) decrease –
reduction of the binding efficacy, b) enhance – increase of the binding efficacy, c) break – disruption of the binding site, or d) create – creation
of a new binding site.

³ The free energy value of miRNA-mRNA binding was obtained from miRNASNP
4 Energy change (kcal/mol) indicates difference in minimum free energy of binding before and after introduction of the minor allele

We further evaluated the association between the genotype of both MLPH rs2325813 and

WNT3A rs752107 and the gene expression levels in sun-exposed skin by using the GTEx

portal. Individuals carrying rs752107*T allele, which was predicted to decrease miRNA-

mRNA binding efficiency, seem to present increased expression of WNT3A in sun-

exposed tissue (Figure S3.3). No changes in MLPH expression regarding genotype were

observed.
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Figure 3.2. Heat map of selected miRNAs versus pathways. Darker colours represent higher significance.

The attached dendrograms on both axes represent hierarchical clustering results for miRNAs (by exhibiting

similar pathway targeting patterns) and pathways (by related miRNAs). Arrows indicate pathways involved

in pigmentation and skin cancer.

3.4. DISCUSSION

In the current study, 38 tag-SNPs located in the 3’UTRs of pigmentation-related genes

were successfully genotyped in 869 individuals from Spain, with the intention of

detecting novel genetic variants with putative phenotypic implications. Since 3’UTRs are

critical regulatory elements in gene expression (207), polymorphisms located in this

region of genes associated with pigmentation pathways may contribute to pigmentation

characteristics and sensitivity to sunlight, as well as to melanoma susceptibility.

This study allowed us to observe interesting associations between genotypic and

phenotypic traits in our population. Despite detecting several candidate 3’UTR SNPs with

a potential implication in pigmentation and sensitivity to sunlight, we could not validate
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them since associations did not reach genome-wide nor candidate gene levels of statistical

significance. Perhaps our restricted sample size resulted in limited statistical power to

detect unequivocal associations for these SNPs. Replication of our findings in a larger

study is therefore essential before drawing any firm conclusion. It is noted that adjusting

analyses by sex has conferred strength to our results, excluding bias from the sexual

disparity in pigmentation and melanoma incidence and outcome observed in previous

studies (25,131,132,162,163).

The first interesting finding was the reasonably strong association of rs2325813, located

in the 3’UTR of the MLPH gene, with high naevus count. The human MLPH gene (OMIM

#606526) has been shown to be involved in mature melanosome transport within

melanocyte before being transferred to keratinocytes. MLPH gene encodes a member of

the exophilin subfamily of Rab effector proteins known as melanophilin, which acts as a

link between the small GTPase melanosome-bound RAB27A and the actin-associated

motor protein MYO5A (208). This protein complex plays a crucial role in the

melanosome motility in melanocytes, and aberrations in any of the complex components

has been shown to result in perinuclear localization of melanosomes and therefore failure

to transfer mature melanosomes to adjacent keratinocytes, eventually causing

hypopigmentation (209). Human individuals homozygous for a pathogenic MLPH

mutation (c.102C>T; p.R35W) display Griscelli syndrome type 3, a pigmentary disorder

characterized by a hypopigmented phenotype (209–211). The naevus-associated SNP in

this work, rs2325813, is predicted to disrupt a binding site of two miRNAs (hsa-miR-

185-3p and hsa-miR-762). The presence of the minor allele in the target sequence

enhances miRNA binding efficiency, repressing mRNA translation of MLPH, and

ultimately limiting the formation of RAB27A/Melanophilin/Myosin-5a complex. Thus,

reduction of MLPH gene expression may cause an abnormal accumulation of mature
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melanosomes around the nucleus of melanocytes, resulting in light pigmentation and poor

tolerance to sunlight. Interestingly, our results are consistent with the well-known

correlation between melanocytic naevus number, a main risk-prediction factor for

melanoma incidence, and the propensity to burn, rather than tan, of light-skinned

individuals (212). Therefore, genes implicated in functions related with melanosome

trafficking, especially the RAB27A/Melanophilin/Myosin-5a membrane transport

pathway, would be relevant candidates for additional investigation in further

pigmentation and melanoma studies.

WNT/β-catenin signalling has a pivotal role in the formation of melanocytes, since this

pathway has been implicated in promoting the development of neural crest-derived

melanocytes (213,214). In humans, the WNT pathway is significantly up-regulated in

solar lentigines, suggesting that overstimulation of melanocytes proliferation and

differentiation play a crucial role in the pathogenic mechanism of solar lentigines (215).

Interestingly, in this work we identify a polymorphism, rs7352107, located in the 3’UTR

of the WNT3A gene that is strongly associated with the presence of solar lentigines.

WNT3A (OMIM #606359) encodes a WNT ligand that acts through the WNT/β-catenin

pathway promoting melanocyte differentiation, and may promote melanoma

differentiation as well (213). Furthermore, the minor allele of rs7352107 is predicted to

decrease the binding efficiency to the 3’UTR gene region of two microRNAs (hsa-miR-

149-5p and hsa-miR-892b), leading to a weaker miRNA-mRNA interaction and therefore

a higher level of secreted WNT3A ligand. This probably enhances the activation of the

WNT/β-catenin signalling and subsequently the proliferation of melanocytes. These

observations, together with the results from Yamada and cols. (2014) (215), suggest that

abnormal regulation of melanogenesis via gene expression changes is expected to be

involved in several pigmentary disorders and in melanoma risk phenotypes. Thus, studies
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focusing on the regulation of WNT/β-catenin signalling could potentially clarify the

causal mechanisms of pathogenic hyperpigmentation and hypopigmentation conditions.

The miRNAs predicted to bind to MLPH rs2325813 (hsa-miR-185-3p and hsa-miR-762)

and to WNT3A rs7352107 (hsa-miR-149-5p and hsa-miR-892b) seem to target genes

involved in pigmentation mechanisms and skin cancer. Remarkably, out of all significant

pathways, “Wnt signalling pathway” and “MAPK signalling pathway” were the only ones

targeted by three of the four miRNAs. Furthermore, “Basal cell carcinoma” pathway was

also targeted by hsa-miR-185-3p and hsa-miR-762. These observations may corroborate

the importance of these miRNAs in both human pigmentation and skin cancer pathways.

Based on GTEx project data, genes encoding for these miRNAs, except for hsa-miR-

892b, are expressed in sun-exposed skin (Figure S3.3), confirming the expression of these

miRNAs in skin tissue, and suggesting a possible role of these miRNAs in skin regulation

and function.

Additionally, five polymorphisms displayed a notable statistical association with

phenotypic characteristics. Among these SNPs, we would like to highlight that the variant

rs4142680, located in the 3’UTR of HOXC8, displays an interesting predisposition

tendency towards sun-damaged phenotypes. The HOXC8 gene has been shown to be

massively up-regulated in melanoma cancerous cells as a consequence of diminished

miR-196a levels, leading to an aggressive melanoma phenotype via the overexpression

of several tumorigenic target genes (216). Curiously, the web-based miRNA binding

prediction analysis in this work showed an intermediate free energy (-16.60 kcal/mol) for

binding hsa-miR-4509 to the 3’UTR sequence containing the rs4142680*T allele, and

predicted that presence of the C allele may break the putative binding site. Thus, the

association between rs4142680*C and the presence of solar lentigines may be the result
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of increased HOXC8 expression that could be possibly promoting melanocyte

proliferation.

In summary, we analysed the potential implications of 3’UTR polymorphisms in

pigmentation, sensitivity to sunlight and skin cancer. A plausible cause of the action of

these 3’UTR SNPs in the appearance of different sun-related benign pigmented skin

lesions might be the differential gene expression attained by disrupting putative miRNA-

binding sites. Specifically, we detected two potential associations with well-recognised

skin cancer risk traits that modify miRNA-mRNA interactions: rs2325814 in the 3’UTR

of the MLPH gene and rs752107 in the 3’UTR of the WNT3A gene. Future functional

studies will be needed to determine the exact implications of these polymorphisms. In

addition, we detected five genes that might contribute to pigmentation variation in our

population. The fact that MLPH, LYST and CLIP1 functions have been related to

intracellular membrane trafficking and pigment disorders reinforces the need to explore

more deeply the role of melanosome transport pathways in pigmentation and tanning

ability. Similarity, the study of genes that are at least partially involved in melanocyte

proliferation and differentiation, such as WNT3A, KCNMA1, KIT and HOXC8, may allow

for the detection of novel low-penetrance genes involved in human pigmentation and in

susceptibility to skin cancer.
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3.5. SUPPLEMENTARY MATERIAL

Table S3.1. Classification of the Spanish individuals studied by age, sex and phenotype

Controls
(N=343)

Cases
(N=526) P-value¹

N % N %

Age Mean ± SD 52.45 ± 15.95 52.63 ± 15.63 0.269

< Mean 144 41.98 239 45.44

> Mean 143 41.69 280 53.23

Unknown 56 16.33 7 1.33

Sex Female 172 50.15 270 51.33 0.780

Male 167 48.69 251 47.72

Unknown 4 1.17 5 0.95

Eye Colour Dark 239 69.68 337 64.07 0.102

Light 101 29.45 183 34.79

Unknown 3 0.87 6 1.14

Skin Colour Dark 151 44.02 228 43.35 0.887

Fair/Pale 185 53.94 287 54.56

Unknown 7 2.04 11 2.09

Hair Colour Dark 308 89.80 406 77.19 4.60E-06

Light 33 9.62 113 21.48

Unknown 2 0.58 7 1.33

Lentigines No 180 52.48 170 32.32 1.76E-12

Yes 131 38.19 347 65.97

Unknown 32 9.33 9 1.71

Naevi number ≤ 50 271 79.01 447 84.98 0.395

> 50 38 11.08 72 13.69

Unknown 34 9.91 7 1.33

Childhood
sunburns

No 220 64.14 170 32.32 6.64E-27

Yes 91 26.53 347 65.97

Unknown 32 9.33 9 1.71

N, number of individuals; %, percentage of individuals per group among the total
¹ Fisher’s exact test P-value excluding unknown values at each specific analysis.
Significant results are presented in bold
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Table S3.2. Minor allele frequencies in different European populations and Spanish cases and controls

Gene SNP #rs Chr mA
Spanish population CEU population TSI population

HWE P-value MAF Controls MAF Cases P-value¹ MAF P-value² MAF P-value²

ADAM9 rs4733967 8 T 0.364 0.234 0.209 0.234 0.146 0.017 0.262 0.164

ADAMTS20 rs6582463 15 C 0.411 0.270 0.317 0.038 0.389 0.155 0.243 0.006

BNC2 rs7035049 9 A 0.652 0.401 0.382 0.42 0.404 0.701 0.346 0.234

CLIP1 rs10270 12 A 0.896 0.290 0.320 0.917 0.318 0.691 0.322 0.759

DCT rs17791924 14 G 0.326 0.449 0.447 0.961 0.465 0.652 0.439 0.827

DTNBP1 rs742106 6 A 1.000 0.359 0.389 0.222 0.354 0.536 0.299 0.024

E2F1 rs3213180 20 C 0.577 0.050 0.069 0.102 0.091 0.127 0.051 0.650

E2F2 rs3820028 4 G 0.829 0.469 0.485 0.554 0.520 0.293 0.477 1.000

EDN1 rs9296344 6 C 0.363 0.061 0.048 0.229 0.071 0.321 0.070 0.338

EXOC2 rs12952 6 G 0.414 0.273 0.292 0.384 0.273 0.803 0.383 0.004

FOXO3/FKHRL2 rs9400241 6 C 0.328 0.329 0.324 0.875 0.273 0.148 0.364 0.281

GNA11 rs397454 19 T 1.000 0.124 0.113 0.542 0.101 0.559 0.126 0.736

HOXB7 rs15689 17 G 1.000 0.284 0.237 0.028 0.247 0.863 0.210 0.156

HOXC8 rs4142680 15 C 0.658 0.426 0.395 0.21 0.394 0.190 0.425 0.482

HRK rs10507275 12 A 0.102 0.159 0.163 0.841 0.136 0.412 0.131 0.275

IRF4 rs9391997 6 G 0.157 0.459 0.483 0.349 0.500 0.499 0.472 1.000

KCNMA1 rs4980113 10 C 0.589 0.496 0.533 0.128 0.490 0.454 0.490 0.169

KIT rs8022 5 T 0.815 0.134 0.128 0.769 0.131 1.000 0.079 0.037

KITLG rs995030 12 A 1.000 0.219 0.204 0.507 0.192 0.581 0.131 0.007

LYST rs6696123 13 C 0.187 0.426 0.399 0.294 0.429 0.595 0.430 0.607

MARCKS rs28558559 6 C 0.272 0.146 0.126 0.219 0.116 0.579 0.126 0.831

MC1R rs3212369 16 G 1.000 0.187 0.195 0.064 0.146 0.040 0.206 0.929

MCAM rs7914 11 A 1.000 0.224 0.240 0.451 0.263 0.378 0.201 0.302

MCL1 rs878471 22 G 0.269 0.424 0.446 0.373 0.424 0.762 0.421 0.662

MDM2 rs1690916 12 A 0.489 0.374 0.360 0.574 0.515 0.001 0.327 0.291

MLPH rs2325813 1 C 1.000 0.093 0.110 0.295 0.131 0.225 0.117 0.555

MMP7 rs14983 11 A 0.640 0.224 0.227 0.525 0.212 0.593 0.168 0.037

MYO5A rs7176482 9 G 0.573 0.400 0.412 0.88 0.343 0.108 0.472 0.056

NF1 rs1801052 17 G 0.063 0.254 0.246 0.734 0.308 0.085 0.262 0.677

NFAT5 rs7359387 16 G 1.000 0.150 0.137 0.513 0.101 0.391 0.140 0.143

PAX3 rs12620338 2 A 0.309 0.200 0.197 0.902 0.192 0.925 0.215 0.587

PTCH2 rs41269085 2 T 0.437 0.168 0.165 0.947 0.162 0.920 0.168 0.923

PTEN rs701848 10 C 0.207 0.379 0.399 0.421 0.348 0.249 0.402 0.767

RGS20 rs72614663 8 G 0.269 0.140 0.143 0.888 0.101 0.127 0.187 0.082

SLC24A4 rs11160072 14 G 0.552 0.163 0.149 0.788 0.162 0.678 0.107 0.101

SOX9 rs1042667 11 C 0.653 0.394 0.386 0.801 0.394 0.939 0.336 0.137

TPCN2 rs1551306 11 A 0.829 0.465 0.448 0.49 0.465 0.821 0.542 0.017

WNT3A rs752107 11 T 0.897 0.295 0.300 0.829 0.293 0.935 0.290 0.874

SNP, single nucleotide polymorphism; Chr, chromosome; mA, minor allele; MAF, minor allele frequency; CEU, Northern
Europeans form Utah; TSI, Southern Europeans from Tuscany; HWE, Hardy-Weinberg equilibrium
¹ Fisher's exact test P-values for the comparison of minor allele frequencies between Spanish cases and controls
² Fisher’s exact test P-values for the comparison of Spanish minor allele frequencies obtained from our sample to CEU and TSI
frequencies
Significant results are presented in bold
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Table S3.3. Association analysis between SNPs and melanoma susceptibility in the Spanish population

Non adjusted Adjusted ¹

Gene SNP rs# mA OR (%95 CI) P-value OR (%95 CI) P-value

ADAM9 rs4733967 T 0.34 (0.17-0.70) 0.0024 0.26 (0.10-0.63) 0.0026

ADAMTS20 rs6582463 C 1.25 (1.01-1.54) 0.0390 1.16 (0.91-1.48) 0.2389

BNC2 rs7035049 A 0.77 (0.53-1.13) 0.1884 0.66 (0.42-1.04) 0.0732

CLIP1 rs10270 A 1.15 (0.93-1.42) 0.1857 1.18 (0.66-2.09) 0.5735

DCT rs17791924 G 1.14 (0.86-1.49) 0.3618 0.74 (0.50-1.09) 0.1312

DTNBP1 rs742106 A 1.14 (0.93-1.39) 0.2126 1.16 (0.91-1.47) 0.2332

E2F1 rs3213180 C 1.42 (0.94-2.16) 0.0906 1.41 (0.86-2.32) 0.1652

E2F2 rs3820028 G 1.06 (0.88-1.29) 0.5283 0.99 (0.78-1.24) 0.9091

EDN1 rs9296344 C 0.78 (0.51-1.17) 0.2360 0.79 (0.46-1.36) 0.3961

EXOC2 rs12952 G 1.11 (0.89-1.38) 0.3580 1.11 (0.85-1.44) 0.4415

FOXO3 rs9400241 C 0.91 (0.60-1.40) 0.6783 0.84 (0.66-1.07) 0.1576

GNA11 rs397454 T 0.87 (0.62-1.22) 0.4240 0.68 (0.45-1.01) 0.0593

HOXB7 rs15689 G 0.78 (0.63-0.97) 0.0264 0.77 (0.59-1.00) 0.0483

HOXC8 rs4142680 C 0.83 (0.62-1.10) 0.1971 0.82 (0.65-1.04) 0.0968

HRK rs10507275 A 0.44 (0.19-1.05) 0.0602 0.45 (0.18-1.12) 0.0826

IRF4 rs9391997 G 1.29 (0.92-1.80) 0.1422 0.67 (0.48-0.93) 0.0152

KCNMA1 rs4980113 C 0.86 (0.71-1.04) 0.1220 0.79 (0.62-1.00) 0.0462

KIT rs8022 T 0.85 (0.62-1.19) 0.3474 1.63 (0.48-5.58) 0.4228

KITLG rs995030 A 0.92 (0.72-1.16) 0.4719 0.84 (0.60-1.17) 0.3104

LYST rs6696123 C 0.82 (0.61-1.09) 0.1655 0.85 (0.67-1.08) 0.1745

MARCKS rs28558559 C 0.32 (0.11-0.93) 0.0300 0.23 (0.06-0.81) 0.0164

MC1R rs3212369 G 1.06 (0.83-1.35) 0.6679 1.32 (0.59-2.95) 0.5016

MCAM rs7914 A 1.14 (0.87-1.51) 0.3498 1.21 (0.86-1.69) 0.2695

MCL1 rs878471 G 1.20 (0.84-1.72) 0.3238 1.30 (0.85-2.00) 0.2261

MDM2 rs1690916 A 0.83 (0.56-1.24) 0.3688 0.90 (0.72-1.14) 0.4006

MLPH rs2325813 C 1.20 (0.87-1.66) 0.2556 0.65 (0.15-2.85) 0.5742

MMP7 rs14983 A 1.37 (0.73-2.57) 0.3240 1.36 (0.64-2.88) 0.4216

MYO5A rs7176482 G 1.13 (0.79-1.62) 0.5110 1.15 (0.75-1.75) 0.5168

NF1 rs1801052 G 0.92 (0.56-1.50) 0.7274 0.82 (0.45-1.50) 0.5239

NFAT5 rs7359387 G 0.87 (0.62-1.20) 0.3880 1.06 (0.72-1.55) 0.7821

PAX3 rs12620338 A 0.68 (0.35-1.34) 0.2656 0.47 (0.20-1.06) 0.0710

PTCH2 rs41269085 T 2.29 (1.00-5.39) 0.0421 0.66 (0.46-0.95) 0.0263

PTEN rs701848 C 1.26 (0.96-1.65) 0.0998 1.04 (0.82-1.31) 0.7560

RGS20 rs72614663 G 2.15 (0.70-6.65) 0.1587 3.14 (0.79-12.46) 0.0818

SLC24A4 rs11160072 G 0.87 (0.65-1.17) 0.3649 0.86 (0.59-1.23) 0.4043

SOX9 rs1042667 C 0.96 (0.72-1.27) 0.7573 0.87 (0.69-1.10) 0.2360

TPCN2 rs1551306 A 0.86 (0.61-1.20) 0.3748 0.84 (0.59-1.20) 0.3419

WNT3A rs752107 T 1.14 (0.71-1.82) 0.5913 0.72 (0.51-1.00) 0.0500

SNP, single nucleotide polymorphism; mA, minor allele; OR, odds ratio per minor allele; CI, confidence interval

Bold indicates significant P-values and their Odds Ratio according to the most significant model (dominant, over-
dominant, recessive or additive)

¹ Adjusted for childhood sunburns, hair colour, lentigines and sex, via multivariate logistic regression
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Figure S3.1. Comparison of minor allele frequencies between our Spanish sample and two different

European populations
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Figure S3.2. Enriched KEGG pathways involved in pigmentation and skin cancer risk that are

targeted by miRNAs predicted to interact with highly-associated 3’UTR pigmentation SNPs
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Figure S3.3. Box plot showing WNT3A expression according to SNP rs752107 genotype
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Figure S3.4. Expression in different tissues of the four miRNAs predicted to interact with highly-

associated 3’UTR pigmentation SNPs
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4.1. INTRODUCTION

Gene-environment interactions play a significant role in melanoma susceptibility.

Random somatic mutations resulting mainly from exposure to solar ultraviolet radiation

(UV-signature mutations) in key genes within melanocytes act as triggers that initiate

sporadic melanoma and promote its progression (104). Additionally, the presence of

heritable germline variations in high- and low-penetrance susceptibility genes is a well-

known risk factor associated with both familial – which accounts for about 10% of all

melanoma cases – and sporadic cutaneous melanoma (217). Therefore, germline

mutations in these susceptibility genes may impact on the sensitivity of human

melanocytes to solar UV and on the malignant transformation to melanoma.

To date, the major genetic locus implicated in familial melanoma is the cyclin-dependent

kinase inhibitor 2A (CDKN2A), located on chromosome 9p21. The CDKN2A locus codes

for two important tumour suppressor proteins, p16INK4A (p16) and p14ARF (p14), which

are transcribed from different reading frames (115). In response to DNA damage induced

by chronic exposure to sunlight, p16 delays cell proliferation through inhibition of cyclin-

dependent kinases 4 and 6 (CDK4 and CDK6) and cyclin D1 (CCND1), thus preventing

the phosphorylation of the retinoblastoma protein (Rb) and blocking cell cycle

progression from G1 to S phase (115,149). This cell cycle arrest allows cells to repair

DNA damage before resuming cell division. In addition, p16 induces cellular senescence

– the acquired phenomenon whereby a proliferation-competent somatic cell undergoes

inability to divide in response to stressful stimuli (218). Recently, p16 has been reported

to play a role in counteracting intracellular oxidative stress in a manner independent of

cell cycle arrest (219). Taking all these functions together, p16 prevents melanomagenesis

by activating multiple innate mechanisms that enable melanocytes to evade malignant
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transformation. p14 also restricts cell proliferation by stabilizing p53, which in turn

induces the expression of p21Cip1 (p21). This cyclin-dependent kinase inhibitor, encoded

by the CDKN1A gene, inhibits cell cycle progression both through inhibition of CCND1

and CDK4/6, as well as CDK2 and cyclin E1 (CCNE1). Thus, both the p16/Rb and the

p14/p53/p21 tumour suppressor pathways have been implicated in cell growth arrest,

although in melanocytes the p16/Rb pathway seems to be the dominant senescence driver

(220,221).

The CDKN2A gene is mutated, deleted or silenced in a wide range of human cancers

(222). Germline mutations in CDKN2A have been implicated in melanoma susceptibility

and are present in approximately 40% of melanoma families (148). Mutations occurring

in p16 are predominantly loss-of-function missense mutations, with the V126D, G101W

and 32ins24 mutations being the most common in familial melanoma pedigrees in North

America (223). In rare instances, a germline CDKN2A promoter mutation (−34G>T),

which causes a novel initiation codon that initiates translation of an aberrant protein, and

decreases translation from the wild-type start codon, has also been identified in British-

origin melanoma-prone families (223,224).

Despite other known high penetrance genes having been described in the literature up to

now, the genetic basis for predisposition remains unexplained for a large percentage of

familial melanoma cases. Indeed, the penetrance of CDKN2A mutations was found to

vary among carriers, revealing that genetic backgrounds, host characteristics, and/or sun

exposure may also contribute to melanoma risk (45,225). In this setting, it has been

suggested that skin cancer is a polygenic mechanism of inheritance that includes multiple

low-penetrance risk alleles, such as variants of the melanocortin-1 receptor (MC1R) gene.

The MC1R gene encodes a seven-pass transmembrane G-protein coupled receptor that is

expressed on the cell surface of cutaneous and follicle melanocytes (33). Stimulating of
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human MC1R by its ligands (α-MSH and ACTH) leads to the activation of cAMP

signalling pathway, which in turn triggers a wide range of responses in human

melanocytes, including synthesis of eumelanin, melanocyte proliferation, reduction of

UV-induced oxidative stress, and enhancement of DNA repair (33,34,226,227). The

MC1R gene is highly polymorphic in populations of European ancestry, with more than

100 non-synonymous variants identified (35,40). These MC1R genetic variants are major

determinants of human pigmentation diversity and, especially, sun sensitivity and tanning

ability (34). Epidemiological studies have provided compelling evidence for the

association of red hair colour (RHC) MC1R variants (R151C, R160W and D294H) with

melanoma risk (43). The expression of one MC1R RHC allele was also reported to

increase the risk for UV-signature somatic mutations (228), which underscores the

significance of MC1R as a melanoma predisposition gene.

There is a strong epidemiological evidence that MC1R RHC variants, as well as certain

non-RHC variants (V60L, V92M and T314T), significantly increase melanoma risk in

CDKN2A mutation carriers of melanoma families, suggesting that these two genes

interact synergistically to increase melanoma susceptibility (225,229–231). However, the

molecular mechanisms by which mutations in these two genes interact to drive the

malignant transformation of melanocytes remain unknown.

Stress-induced melanocyte senescence response may be the link between CDKN2A and

MC1R, since melanocytes depleted of p16 exhibit extended replicative lifespan in the

presence of replication-associated DNA damage (220), and chronic activation of the

cAMP pathway enhances replicative senescence in melanocytes (232). Together, these

findings raised the biological question of whether the co-expression of loss-of-function

mutations in these two genes synergistically exacerbate the risk of melanoma
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development by reducing the ability of UV-irradiated melanocytes to undergo

senescence.

Other plausible mechanisms for overstated melanoma risk in carriers of both p16 and

MC1R mutations may be a reduced capacity to repair DNA damage and to initiate

antioxidant responses. Loss of p16 impairs cells to repair UV-induced DNA damage

(233), and is associated with increased oxidative stress (219). Also, activation of MC1R

prevents the generation of reactive oxygen species (ROS) and enhances repair of DNA

photoproducts and oxidative DNA damage in human melanocytes, while loss-of-function

MC1R compromises NER and sustains oxidative stress (226,234,235).

To date, there are no studies on the dual action of p16 and MC1R mutations on the

maintenance of genomic stability of human melanocytes and their response to the

damaging effects of UV exposure. Using primary cultures of human melanocytes with

different p16 and MC1R genotypes, which were established from skin biopsies of

melanoma-prone family members, we have investigated the ability of these melanocytes

to proliferate and undergo stress-induced senescence, as a result of both serial passages

in culture and UV exposure.

4.2. MATERIALS AND METHODS

4.2.1. Primary melanocyte cultures

Primary human melanocyte cultures were established from discarded neonatal foreskins

or adult skin from anonymous donors undergoing plastic surgery procedures. The

protocol for obtaining these skin samples was considered exempt from approval by the
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Institutional Review Board of the University of Cincinnati. Melanocyte cultures were also

established from skin biopsies obtained from patients of the Melanoma Clinic at the

Huntsman Cancer Institute, University of Utah, after informed consent. The p16-deficient

melanocyte cultures from two rare individuals worldwide, carrying mutations in both

copies of the CDNK2A locus, were obtained from St. George’s Hospital Medical School

(London, United Kingdom). All primary melanocyte cultures included in this study are

described in Table 4.1.

Melanocytes were grown in a humidified atmosphere at 37 ºC with 5% carbon dioxide.

All cell cultures, except p16-deficient melanocytes, were maintained in MCDB-153

media (Sigma-Aldrich, San Luis, MO, USA) supplemented with foetal bovine serum

(FCS, 2%), insulin (5 μg/ml), hydrocortisone (0.5 μg/ml), penicillin/streptomycin (PS,

1%), human basic fibroblast growth factor (bFGF, 1 ng/ml), endothelin-1 (1 nM), and

bovine pituitary extract (BPE, 28 μg/ml). Due to p16-deficient melanocytes having more

stringent requirements for proliferation than p16 wild-type or heterozygous melanocytes

(220), these primary cultures were maintained in our routine melanocyte growth medium

enriched with 10% foetal bovine serum, twice the concentration of BPE, and 10 nM

endothelin-1 (ET-1). For media comparison experiments, at least three weeks before

performing all the experiments, routine growth medium was replaced by the modified

melanocyte growth medium, or vice versa.
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Table 4.1. List of primary human melanocyte cultures used in the current study

HM strains Age Sex CDKN2A genotype MC1R genotype

1n 54 F
Homozygotes for

266_244del19 (236)
ND

2d 23 – M53T / D108N (237) ND

3vw 28 M V126D / + + / +

4vw 20 F V126D / + + / +

5vR 42 M V126D / + R160W / R151C

6vR 35 F V126D / + R160W / +

7vR 31 F V126D / + D294H / +

8vR 18 M V126D / + D294H / +

9uR 21 M -34G>T / + R160W / +

10uR 18 M -34G>T / + R160W / +

11uR 24 M -34G>T / + D294H / +

12ur 22 M -34G>T / + V60L / +

13iR 32 F 32ins24 / + R160W / V60L

14iR 22 M 32ins24 / + R160W / +

15wR 23 F + / + R151C / +

16wR – F + / + V92M / R151C

17wR – M + / + R151C / R151C

18wR 43 F + / + R160W / +

19wR 13 M + / + R160W / R160W

20wR 26 F + / + D294H / +

21wR 35 F + / + D294H / +

22wR – M + / + D294H / V92M

23wr – – + / + V92M / R142T

24ww – F + / + + / +

25ww 28 F + / + + / +

26ww 43 F + / + + / +

27ww Neonatal – + / + + / +

28ww Neonatal M + / + + / +

29ww Neonatal M + / + + / +

Strains name:
Digit refers to cell strain order
First letter refers to CDKN2A genotype (n, p16-null; d, p16-deficient; v, V126D carrier; u, -34G>T
5’UTR carrier; i, 32ins24 carrier; w, wild-type)
Second letter refers to MC1R genotype (R, RHC carrier; r, non-RHC carrier; w, wild-type)

Abbreviations: HM, human melanocyte; F, female; M, male; +, wild-type allele; –, no data; ND, not
determined



Chapter 4. Impact of CDKN2A and MC1R on melanoma risk

129

4.2.2. Irradiation of human melanocytes with UV

Melanocytes were irradiated with a dose of 75 mJ/cm2 using a bank of FS20 lamps with

peak emission at 313 nm wavelength, with 75% UVB and 25% UVA emissions. A

Kodacel filter was used to block UVC rays (Eastman Kodak, Rochester, NY, USA).  Prior

to irradiation, the culture medium was replaced by PBS. After UV exposure, PBS was

removed and fresh medium was added.

4.2.3. Western blot analysis

Western blotting was carried out to compare protein expression of the human melanocyte

strains with different genotypes. Protein extracts derived from melanocytes were obtained

by using RIPA buffer supplemented with a combination of protease and phosphatase

inhibitors, including sodium vanadate, microcystin, sodium fluoride,

phenylmethylsulfonyl fluoride, leupeptin and aprotinin (Sigma-Aldrich). Protein

concentration was quantified using the Pierce BCA Protein Assay kit (ThermoFisher

Scientific), employing serial dilutions of bovine serum albumin (BSA) to generate the

protein assay standard curve. Total protein of 50 μg from each sample was mixed with

protein loading buffer and denatured using heating block at 95°C for 5 min. Then, proteins

were resolved on 10% SDS-polyacrylamide gels and transferred onto nitrocellulose

membranes (Bio-Rad, Hercules, CA, USA). After blocking of membranes in 5% skim

milk for 1 hour at room temperature, primary antibodies against the following proteins

were used: p16 (ab201980, 1:500 dilution, Abcam, Cambridge, UK), phospho-Rb

Ser807/811 (#8516, 1:1000 dilution, Cell Signaling Technology, Danvers, MA, USA),

Rb (#9313S, 1:1000 dilution, Cell Signaling Technology), phospho-p53 Ser15 (#92845,
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1:500 dilution, Cell Signaling Technology), p53 (sc-126, 1:500 dilution, Santa Cruz), p21

(#05-655, 1:2000 dilution, EMD Millipore, Billerica, MA, USA), phospho-JNK

Thr183/Tyr185 (#9251, 1:1000 dilution, Cell Signaling Technology), JNK (#9252,

1:1000 dilution, Cell Signaling Technology), phospho-p38 Thr180/Tyr182 (#9211,

1:1000 dilution, Cell Signaling Technology), and p38 (#9212, 1:1000 dilution, Cell

Signaling Technology).  The membranes were incubated overnight at 4ºC, and washed

three times for 5 min each with 0.1% TBST. Subsequently, the membranes were

incubated with the appropriate HRP-conjugated anti-rabbit or anti-mouse

immunoglobulin G (EMD Millipore) for 2 hours at room temperature. Following

washing, as above, the membranes were exposed to Protoglow ECL (National

Diagnostics, Atlanta, GA, USA) and bands were detected with the Molecular Imager

VersaDoc System (Bio-Rad). Then, band densities were quantified by Image Lab

software (Bio-Rad) and normalized to the loading control. As loading controls, antibodies

against actin (#sc-1615) and vinculin (#sc-25336) were used (1:10000 dilution, Santa

Cruz Biotechnology). Relative protein expression in UV-irradiated samples was

calculated based on the signal intensity of the untreated (control) sample.

4.2.4. Determination of melanocyte proliferation

Melanocytes were seeded on 60 mm dishes at a density of 0.5x106 cells/dish. On days 3,

5, 7, 9, 11, and 13 after seeding and/or UV exposure, human melanocytes were detached

with trypsin, harvested, and counted in triplicates using the Z1 Brekman Coulter Counter

(Brekman Coulter, Pasadena, CA, USA) to generate growth curves. Then, doubling times

were calculated from the growth rate.
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4.2.5. Detection of senescence-associated β-galactosidase activity

Cultured cells were seeded at a density of 2x104 cells/well in 8-well chamber slides. After

2-3 days, β-galactosidase activity was detected using Senescence β-Galactosidase

Staining Kit (#9860, Cell Signaling), following manufacturer’s recommendations.

Briefly, melanocytes were washed with PBS and fixed with Fixative Solution for 15

minutes at room temperature. Then, the cells were rinsed twice with PBS before

incubating with X-gal Staining Solution for overnight at 37°C. Fluoromount G was used

as a mounting medium (Southern Biotechnology, Birmingham, AL, USA). Melanocytes

were examined under microscope for blue staining, and photographs were acquired using

Spot Imaging software. Quadruplicate samples per cell line were evaluated, and data was

expressed as the mean value ± SEM. At least 500 cells were analysed per group. Neonatal

cell cultures were used as a negative control, while senescent cultured melanocytes gave

a positive control.

4.2.6. Determination of melanocyte apoptosis

Forty-eight hours after UV irradiation, melanocytes were harvested and stained with

APC-Annexin V (BD Pharmingen, San Diego, CA) and propidium iodide (PI; Sigma-

Aldrich) following the recommended procedure. Samples were analysed on a Coulter

EPICS XL flow cytometer (Beckman Coulter, Miami, FL, USA). Triplicate samples were

included per group, and 10,000 events were analysed per sample. The following control

groups were used to set up flow cytometry analysis: unstained cells (negative control),

cells stained with PI only (necrotic) and cells stained with Annexin only (early stage of

apoptosis).
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4.2.7. Cell cycle analysis

Cultured cells were seeded on 60 mm dishes at a density of 0.3x106 cells/dish. Two days

after plating, melanocytes were either untreated (control) or irradiated with UV75,

harvested, and fixed after 0, 24, 48 and 72 h. Cell fixation was performed in ice-cold with

1% paraformaldehyde for 15 min followed by fixation in 70% cold ethanol for 1 hour.

Cells were exposed to 10 μM 5-bromo-2-deoxyuridine (BrdU; Sigma-Aldrich) for 2

hours before the appropriate time point. Melanocytes were permeabilized and DNA

denatured with PBS containing 0.5% Triton X-100 and 2N HCl for 30 min at room

temperature. Nonspecific binding sites were blocked with 0.8 % foetal serum albumin

(FSA) in PBS for 1 hour at room temperature. Then, cells were stained with anti-BrdU

antibody (1:200 dilution, Cell Signalling Technology) for 1 hour at room temperature,

followed by incubation with goat anti-mouse Alexa Fluor 488 IgG secondary antibody

(1:200 dilution, ThermoFisher Scientific) for 45 min. Melanocytes were suspended in 1

mg/ml RNase and 5 μg/ml propidium iodide in PBS and analysed by flow cytometry.

Triplicate samples per group were evaluated, and 10,000 events were collected per

sample. BrdU-unstained cells were used as negative control.

4.2.8. Statistics analysis

Student’s t-test was used to compare the effects of treatment/conditions on each

individual melanocyte cultures. The responses to different treatment/conditions of

melanocyte cultures with different genotypes were compared using ANOVA, followed

by Tukey's test for pairwise comparisons.
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4.3. RESULTS AND DISCUSSION

Twenty-nine primary cultures of human melanocytes with known p16 and MC1R

genotypes were established from skin biopsies of individuals (Table 4.1). Individuals with

the p16 mutations V126D, -34G>T, or 32ins24 were members of melanoma-prone

families. Additionally, we tested two melanocyte cultures homozygous for p16 mutations,

one with a specific 19-pb deletion in exon 2 of the CDKN2A locus (266_244del19, also

known as p16-Leiden), resulting in a severely truncated p16 protein (236); and the other

being a compound heterozygote, carrying a different single base change in each copy of

the gene (M53T and D108N). Although both point mutations impair p16 function, D108N

variant presented some capacity for binding to CDK4/6, while the binding affinity was

completely absent for M53T (237). Since familial melanoma patients are predominantly

heterozygous for a p16 mutation, these two cultures served as an ideal control for the

remaining cultures harbouring one mutant p16 allele.

4.3.1. Effect of p16 genotype on melanocyte growth and senescence

Firstly, p16 basal expression was investigated by western blot in the established

melanocyte cultures (Figure 4.1). Except for the strains established from donors carrying

two p16 mutant alleles (1n and 2d), all cultures were maintained under identical growth

conditions, and proteins were extracted at the same time. All cultures, regardless of

genotype, were found to express p16 at different levels, with the exception of strain 1n,

which showed no expression of p16 – confirming that these melanocytes are certainly

p16-null. For the two melanocyte cultures established from 32ins24 carriers, the detection

of a higher molecular weight band representing the aberrant protein confirmed the
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expression of the mutant allele of the gene. No correlation between expression levels of

p16 and MC1R genotype were observed.

Figure 4.1. Basal protein level comparison of different tumour suppressor proteins in a panel of

cultured human melanocytes with different CDKN2A and MC1R genotypes. Actin was used as loading

control

Additionally, we examined the basal expression of other tumour suppressor proteins

(Figure 4.1). Higher levels of phospho-Rb (p-Rb), an indicator of cell cycle progression,

were observed in the most proliferative melanocyte cultures (6vR and 20wR), and were

also correlated with the low p16 levels observed in these strains. Diploid p16-deficient

melanocytes (2d) showed high levels of both p16 and p-Rb, suggesting that p16 was not

functional in this cell strain, although some residual activity may remain as described

previously (237). As expected, absence of p16 in p16-null melanocytes (1n) resulted in a

hyperphosphorylation of Rb. The lower expression of p-Rb observed in V126D, 32ins24

and -34G>T heterozygous melanocytes, as well as those homozygous for the wild-type

allele, suggested that p16 was functional in all these strains. All these cultures expressed
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p53 at different levels, although the lowest p53 expression was found in the two wild-

type melanocyte cultures (25ww and 26ww). The expression of p21 did not correlate with

the levels of p53, suggesting that p21 expression is not entirely p53-dependent. Indeed,

strains with high p21 expression (1n, 2d, 9uR, 11uR, 23wr, and 6vR) showed variable

cell proliferation rates (Table 4.2). These results did not show a clear role for p21 in the

arrest of cell growth, although it is possible that p21 expression is a compensatory

mechanism for loss or reduced p16 function.

Table 4.2. Comparison of doubling times in days of human melanocyte cultures expressing different
CDKN2A and MC1R genotypes at different passages

CDKN2A Genotype Cell Strain MC1R Genotype Cell Passage Doubling Time (days)

V126D / + 4vw + / + P4 3.01

P9 10.03

3vw + / + P5 5.32

P11 NG

8vR D294H / + P3 3.18

P8 9.51

7vR D294H / + P6 6.07

P12 19.04

6vR R160W / + P4 4.49

P10 9.14

5vR R160W / R151C P5 7.00

-34G>T / + 12ur V60L / + P4 13.41

11uR D294H / + P4 2.76

P9 10.47

9uR R160W / + P4 7.31

P9 15.54

32ins24 / + 13iR R160W / V60L P5 NG

14iR R160W / + P4 10.60

+ / + 18wR R160W / + P2 3.71

19wR R160W / R160W P7 12.31

15wR R151C / + P7 7.22

16wR V92M / R151C P3 9.12

17wR R151C / R151C P9 11.31

20wR D294H / + P9 3.98

25ww + / + P5 9.08

26ww + / + P3 7.01

29ww + / + P6 4.44

28ww + / + P9 3.86

Abbreviations: +, wild-type allele; P, cell passage number; NG, inability to growth (cell numbers remained the same
throughout the course of the experiment)
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We next compared the proliferation rates of early-passage melanocyte cultures to the late-

passage cultures in all melanocyte strains (Table 4.2). The strains expressing one p16

mutant allele showed an increase in the doubling time with passage in culture, suggesting

that those melanocytes may undergo a senescence-like proliferation arrest in culture,

known as replicative senescence. This behaviour differs from that of melanocytes from

hemizygous mice (CDKN2A+/–), which showed some deceleration of growth but did not

senesce in culture (238). The proliferation rate of melanocytes from different donors

varied widely, and did not correlate with the age of the donor. For example, primary

cultures established from a 42-year old donor (5vR) presented the same doubling time

than melanocytes from a 21-year old donor (9uR) and less proliferation rate than

melanocytes from a 28-year old donor (25ww) at comparable passage number. Indeed,

some adult melanocyte cultures even presented lower doubling time than neonatal

melanocytes. Our results also revealed that proliferation rates were not affected by V126D

and -34G>T mutations – other than 12ur –, regardless of MC1R genotype. However, the

32ins24 mutation resulted in a prolongation of the doubling time at early passages, with

a notable growth arrest in the 13iR strain. Under the same growth conditions as the other

melanocyte cultures, 1n and 2d had a very low proliferation rate, as previously reported

(220). Despite lack of growth in our regular melanocyte growth media, cells did not look

senescent (small, bipolar, and not or barely pigmented) (Figure 4.2B). In agreement with

our results, senescence was absent in mouse fibroblasts and melanocytes homozygous for

the same CDKN2A locus deletion (238,239).

In parallel with cell proliferation analysis, acidic β-galactosidase activity – a senescence

biomarker also referred to as senescence-associated β-galactosidase (SA-β-Gal) – was

determined in melanocytes over passage in culture (Figure 4.2). In accordance with

growth rates, a significantly increased number of cells with SA-β-Gal activity at late
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passage was found, as compared to early passage (Figure 4.2A). This was observed in all

adult melanocyte cultures tested, with the exception of p16-null (1n) and p16-deficient

(2d) strains. Despite their null growth rate, these strains had even a slightly lower

percentage of SA-β-Gal positive cells than neonatal melanocytes, which were used as a

negative control due to their high proliferation rate (Figure 4.2B). As a positive control,

we used two melanocyte cultures (21wR and 22wR) that were in growth arrest for months,

and those presented more than 90% of the melanocytes with an intense blue stain

associated with SA-β-Gal activity. All together, these results support the critical role of

p16 in melanocyte senescence, and confirm why CDKN2A is considered a melanoma

suppressor gene (240).
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Figure 4.2. Senescence-associated β-galactosidase activity in melanocytes with different CDKN2A and MC1R

genotypes at different cell passages. A) Quantification of the percentage of SA-β-Gal positive melanocytes over

passage in culture. Each bar represents the mean ± SEM of at least 500 melanocytes counted in four determinations.

*P-value < 0.01 vs. early passage. # P-value < 0.01 vs. wild-type neonatal strain. B) Light-microscopy images of the

melanocyte cultures stained for detecting SA-β-Gal activity. Pictures were performed at 20x magnification.
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Figure 4.3. Comparison of the proliferation rates of A) p16-null and B) p16-deficient melanocyte

cultures in regular versus modified melanocyte growth medium (MGM). The growth curves were

generated by counting melanocytes every other day for a total of 13 days. Cells were plated at a density of

0.5x106 cells/dish. Each data point represents the mean of three determinations. All standard deviations

were less than 10%.

As stated earlier, 1n and 2d melanocytes had a very poor proliferation rate in the

melanocyte culture medium routinely used, so they had to be grown in our enriched

growth medium in an effort to enhance their proliferation. These melanocytes’ growth

improved dramatically in the enriched medium, showing a drastic reduction in their

doubling time with remarkably short values at passages 14 and 17 (Figure 4.3). When

high-passage melanocytes, with a poor proliferation capacity and prolonged doubling
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time, were maintained in this enriched medium during at least 2-3 weeks, we observed

formation of colonies denoting clonal expansion, reduction in doubling time, and

decrease in the number of SA-β-Gal positive cells. However, no change in the percentage

of SA-β-Gal positive cells was observed in strains failing to overcome their quiescent

state in the enriched medium (Figure 4.4). These results provide evidence for the presence

of a subpopulation of melanocytes that are in a state of reversible senescence caused by

suboptimal growth conditions (241). Another possible explanation would be that a

component of the enriched medium is causing melanocytes to become transformed,

leading to senescence surpassing, an event needed to produce a progressively growing

lesion as a melanoma (242).

Figure 4.4. Comparison of the percent of senescence-associated β-galactosidase positive melanocytes

maintained in regular (RMGM) versus modified melanocyte growth medium (MMGM). Each bar represents

the mean ± SEM of at least 500 melanocytes counted in four determinations. * P-value < 0.01 vs. RMGM.
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4.3.2. Effect of p16 genotype on melanocyte response to UV

It is well-known that p16 is a cycling-dependent kinase inhibitor. In order to determine

whether or not expression of V126D, -34G>T, or 32ins24 mutations prevents

melanocytes from undergoing cell cycle arrest following irradiation with UV, we

compared the doubling time and cell cycle profiles of UV-irradiated versus non-irradiated

melanocytes. Irradiation with 75 mJ/cm2 UV, a dose that did not induce significant

apoptosis (Figure S4.1), resulted in a transient cell cycle arrest, which in turn led to a

prolonged doubling time (Figure 4.5A). This is due to an induction of G1 and G2/M cell

cycle arrest in response to UV irradiation, as cell cycle analyses show (Figure S4.2). We

did not detect any difference between melanocytes heterozygous for one of the above p16

mutations, and absence or co-expression of a RHC MC1R variant, as compared to wild-

type melanocytes. Exposure to UV also resulted in a prolongation of doubling times, and

therefore causing cell cycle arrest, in melanocytes from donors carrying two p16 mutant

alleles (Figure 4.5B).
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Figure 4.5. Effect of UV exposure on the proliferation rates of human melanocytes with different

CDKN2A and MC1R genotypes. A) Bars show doubling times of UV-irradiated versus non-irradiated

melanocytes. These cell strains were maintained in regular medium. B) Growth curves of UV-irradiated versus

non-irradiated p16-null melanocytes (1n), which were maintained in modified melanocyte growth medium.

Proliferation rates are expressed as doubling times, which represent the mean of three determinations. All

standard deviations were less than 10%.

We further investigated the activation of the cellular transcriptional responses involved

in cell cycle arrest. An accumulation of the cell cycle regulator p53 and its activated form
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p-p53 was found at 6 h after UV exposure, and the effect was sustained for 24 h (Figure

4.6A and 4.6B). Phosphorylation of Rb, a tumour suppressor protein, was markedly

decreased by 24 h post-UV. These results were in agreement with the cell cycle arrest

induced on melanocytes by UV, regardless of the genotype (Figure 4.5 and S4.2).

However, there was no significant up-regulation of p16 following irradiation with UV,

casting doubts on the importance of p16 in the UV-induced DNA damage response.

Western blotting indeed showed that irradiation of melanocytes rapidly resulted in the

phosphorylation, hence activation, of stress-induced MAP kinases JNK and p38 –

upstream activators of p53 involved in photoprotection against UV-induced DNA

photoproducts via activation of nucleotide excision repair (NER) (Figure 4.6C and 4.6D).

Minimal changes in the total protein levels of JNK and p38 were observed after UV

irradiation, suggesting that UV affects phosphorylation, rather than synthesis or stability

of these proteins, as previously shown (243) (Figure 4.6C). Levels of Gadd45a, a protein

induced by p53-dependent and p53-independent mechanisms implicated in many

biological processes related to maintenance of genomic stability and apoptosis, were

significantly increased at 6 h and 24 h post-UV (Figure 4.6A and 4.6B). The activation

of the DNA damage response following exposure to UV irradiation was observed in wild-

type and p16 heterozygous melanocytes, as well as in p16-null melanocytes. According

to this, an alternative compensatory mechanism may cause cell cycle arrest in response

to UV-induced DNA damage. In this regard, previous works suggest that the p53/p21

pathway may provide a secondary form of melanocyte senescence when p16 is

dysfunctional or silenced (220,221). Additionally, the combined disruption of Rb/p16 and

p53 pathways, but not the single loss of each protein function, accelerated tumorigenic

growth in human fibroblasts (244).
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Taken together, our results suggest that the increased melanoma risk seen in CDKN2A

mutation carriers, regardless of MC1R genotype, is not the result of significant intrinsic

abnormalities in melanocytes. These p16-mutated melanocytes showed normal in vitro

behaviour probably due to additional mechanisms of checkpoint control. Since

carcinogenesis is driven by accumulating genetic alterations, additional somatic genetic

or epigenetic changes may be needed to transform melanocytes. The spontaneous

inactivation of p16 via small deletions, point mutations, promoter methylation or loss of

heterozygosity is frequently observed in melanomas (245,246). Melanocytes derived

from melanoma-prone individuals carrying CDKN2A mutations may be more susceptible

to malignant transformation by activating mutations since only the spontaneous somatic

inactivation of the remaining wild-type CDKN2A allele would be needed to overcome

replicative senescence. Accordingly to this assumption, Ras-induced melanomas arising

in p16 heterozygous mice exhibited a complete loss of heterozygosity for CDKN2A (247).

Additionally, acquired somatic mutations in key melanoma driver genes, such as BRAF

or NRAS, may cooperate with p16 inactivation to facilitate melanomagenesis (248,249).

This is in line with data reporting that telomerase activation is sufficient to immortalize

p16-null melanocytes but not normal human melanocytes (220,240), and with

observations reporting the necessity of a combination of genetic alterations in human

melanocytes (NRAS activation, telomerase expression and p16/Rb pathway ablation) to

produce melanoma-like neoplasias (250).

4.4. CONCLUSION

Although germline mutations in the CDKN2A gene are the strongest melanoma risk

factors identified to date, not all carriers develop melanoma. The different outcomes
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observed in CDKN2A mutation carriers suggest that other genetic and environmental

factors modulate melanoma risk in different family members even with a common high-

risk genetic background. As a p16-deficient environment appears to be insufficient for

melanoma development, better knowledge of spontaneous somatic mutations leading to

clonal proliferation and immortalization will be helpful in increasing our understanding

of melanomagenesis, as well as in designing targeted therapies.

4.5. SUPPLEMENTARY MATERIAL

Figure S4.1. Percentage of apoptotic cells after irradiation with 25, 50, 75, 90 and 105 mJ/cm2 UV.

Annexin staining was performed 48h post-irradiation. Data show that the UV dose selected for irradiating

melanocytes at all experiments (75 mJ/cm2) did not induce significant apoptosis in human melanocyte

strains. Bars represent the mean ± SEM of three samples. Ten thousand events were collected per sample.
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Figure S4.2. Cell cycle analysis of melanocytes with different CDKN2A and MC1R genotypes under

control conditions or after UV irradiation. Bars represent the mean ± SEM of three samples. Ten

thousand events were collected per sample.
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1. Sex might be a factor explaining variations in human pigmentation traits, tanning

ability and sensitivity to sunlight between females and males in Caucasian

populations. These differences could be the result of socio-cultural reasons, as males

tend to spend more time outdoors; physiological reasons, as males have thicker skin

and increased number of blood vessels; differential tanning, as no sex difference in

basal skin pigmentation has been shown; and hormonal factors, as oestrogens stimulate

pigmentation while androgens have an inhibitory effect on melanocytes.

2. There is a strong evidence for sex-differentiated genetic effects in pigmentation

traits. After stratifying all individuals by sex, the genotypic analysis reveals more

polymorphisms associated with dark pigmentation and good sun tolerance in females

than in males, who were instead associated with lighter pigmentation and poor sun

tolerance.

Additionally, RHC variants of the MC1R gene presented greater effects in skin

phototype in females than in males. Therefore, MC1R genetic effects might contribute

to the sex-specific differences described in skin phototype.

3. There is a potential implication of two 3’UTR SNPs (rs2325813 in the MLPH gene

and rs752107 in the WNT3A gene) in the appearance of different sun-related

benign pigmented skin lesions. In silico analyses show that these two SNPs disrupt

a miRNA-binding site, possibly resulting in a differential gene expression through the

disruption of putative miRNA-binding sites.
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4. The increased melanoma risk seen in CDKN2A mutation carriers, regardless of

MC1R genotype, is not the result of significant intrinsic abnormalities in

melanocytes. These p16-mutated melanocytes showed normal in vitro behaviour, in

terms of response to UV-induced damage and replicative senescence, probably due to

additional mechanisms of checkpoint control.

We propose that melanocytes derived from melanoma-prone individuals carrying

CDKN2A mutations may be more susceptible to malignant transformation by

activating mutations, since only the spontaneous somatic inactivation of the remaining

wild-type CDKN2A allele would be needed to overcome replicative senescence.
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