
 
 
 

 
 
 
 
 

 

 
 
 
 
 

 
 
 

 
Environment matters: the impact of urea  

and macromolecular crowding on proteins 
 

Michela Candotti  
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
CompartirIgual  4.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – CompartirIgual  
4.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0. Spain License.  
 



UNIVERSITAT DE BARCELONA

Facultat de Biologia

Doctorat en Biomedicina

Environment matters: the impact of 
urea and macromolecular crowding on 

proteins

Michela Candotti

November 2015





UNIVERSITAT DE BARCELONA

Facultat de Biologia

Doctorat en Biomedicina

Memòria presentada per Michela Candotti per optar al grau de 
doctora per la Universitat de Barcelona

Environment matters: the impact of 
urea and macromolecular crowding on 

proteins

Tutor i Director:

Modesto Orozco Lopez

Doctoranda:

Michela Candotti



Acknowledgments

This work would not have been possible without the help of many peo-
ple, starting from my supervisor, Prof. Modesto Orozco, who have always 
trusted me and gave me freedom. The entire lab, which has changed so 
much during these years, has been an incredible source of help and friend-
ship. A special thanks goes to Adam and Jose that have always found the 
time to sort out my informatic-doubts. A mention of honor for La Fede 
& Palbo, that, beside all the good-laughs, are a great reference in the lab; 
Ivan for his Balkan humor and for all the shared links (some of them even 
useful) and Antonija for inspiring well-crafted work (in the lab and in the 
kitchen) and for all the philosophical conversation (with a vermut). To 
all the people that I have met in the lab: Pedro, Agusti, Hansel, Nacho, 
Oscar, Nadine, Rima, Floriane, Rosana, Guillem, Antonella, Annalisa and 
Marga... it has been an enriching experience to spend these years with 
all of you. IRB has been almost a second home for me thanks to all the 
wonderful people that I’ve met here and the good friends that I’ve found. 
A big thanks also to the entire administration department at IRB Barce-
lona, that I’ve visited often and where I always felt listened. At IRB I also 
had the chance to work with many inspiring people: prof. Salvatella for a 
fruitful collaboration; Santi for the good brainstormings; the PhD Sym-
posium Committee and the Student Council for being such cool teams. 

Un agraïment a tot l’equip de Tempesta per ser la font de tantes espe-
rances i idees! Ed infine un grazie speciale anche a tutti quei fili che mi 
mantengono  connessa  a casa (Cinzia parlo sopratutto di te!) e, banale ma 
vero, alla mia famiglia per l’appoggio constante e l’infinita comprensione!



iContents

Overview
2	 Thesis organization

Ch. 1 Proteins as flexible structures
5	 The working class of the cell
6	 The bricks of protein structure: the aminoacids
9	 The determination of the protein structure 
11	 Protein folding
14	 Architects of ordered structures
17	 Optimized patterns in nature
18	 Super-motifs, tertiary and quaternary structure
19	 Protein classification
20	 Embracing chaos: disorder in proteins
23	 Structures in motion
25	 Solvent and protein stability

30     Objectives

Ch. 2 Theory and modeling: MD simulations
38	 Molecular modeling
39	 MD simulation as a computational microscope
39	 From QM to MM: principles of molecular dynamics 
42	 The potential energy function
45	 Force-fields: the wikiHow of MD simulations
48	 Protein solvation
50	 Moving through the conformational space: the algorithm

Ch. 3 Little handbook for the analysis of MD simulations
60	 Observables of protein structure
67	 Observables of protein dynamics
70	 Protein and the solvent 
74	 Comparison with experimental observables

CONTENTS



ii Contents

Ch. 4 Protein unfolding in urea-aqueous solution
86	 The urea-denatured state of ubiquitin ( Publication 1)
100	 The early stages of the chemical unfolding (Publication 2)

Ch. 5 Macromolecular crowding and the physiological en-
vironment of proteins.
136	 Crowding and protein landscapes (Publication 3)

Ch. 6 Summary of the results and general discussion 
167	 Summary of the results
169	 General discussion

177	C onclusions



iiiContents

List of Figures

Figure 1.1. The variety of protein types.  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   7

Figure 1.2. The protein aminoacids .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      8

Figure 1.3.  The protein energy landscape. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  12

Figure 1.4.  The forces in protein folding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   15

Figure 1.5.  Secondary structure elements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  17

Figure 1.6.  Ramachandran plot .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        18

Figure 1.7.  Example of tertiary structure for the protein ubiquitin .  .  .  .  .  .      19

Figure 1.8.  Energy landscape for IOP and IDP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                20

Figure 1.9.  The SCOP classification.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                     21

Figure 1.10.  Structure in motions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                       23

Figure 1.11.  Timescale of protein motions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 25

Figure 1.12.  The three co-solvents. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                      27

Figure 1.13.  Schematic organization of the three projects. .  .  .  .  .  .  .  .  .  .         31

Figure 2.1. Wire-model for macromolecules.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                 38

Figure 2.2. Principles of MD simulations.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                   40

Figure 2.3. Interactions energies in MD simulation .  .  .  .  .  .  .  .  .  .  .  .  .  .              43

Figure 2.4. The periodic boundary conditions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                45

Figure 2.5. Urea and PEG chemical structures  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  48

Figure 2.6. Frames of dynamic motions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                    51

Figure 2.7. MD sampling of the energy landscape  .  .  .  .  .  .  .  .  .  .  .  .  .  .              53

Figure 3.1. Calculation of SASA .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        62

Figure 3.2. The contact map of protein ubiquitin .  .  .  .  .  .  .  .  .  .  .  .  .  .  .               64

Figure 3.3. Structure Index and unfolding  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  65

Figure 3.4. Contact dynamics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        68

Figure 3.5. Bond critical points. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        72

Figure 4.1. The unfolding sigmoidal curve .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  81

Figure 4.2. The chemical structure of urea.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                  82

Figure 4.3. Overview of the two projects on urea-induced unfolding  .   .   .   .  83

Figure 4.4. Schematic overview of the Urea-UBQ project.  .  .  .  .  .  .  .  .  .  .          87



iv Contents

Figure 4.5. Schematic overview of Urea-MoDEL .  .  .  .  .  .  .  .  .  .  .  .  .  .   101

Figure 4.6. The route of urea to enter the protein core.  .  .  .  .  .  .  .  .  .  . 102

Figure 5.1. The composition of a bacterial cell  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132

Figure 5.2. Representations of the crowded cytoplasm  .  .  .  .  .  .  .  .  .  .  .134

Figure 5.3. Schematic overview of the project .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .136

List of Tables

Table 2.1 Urea models. .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  49 

Table 3.1 Criterias for secondary structure assignments in STRIDE.  .   .   .   .   .  63

Table 5.1 Crowding effects on protein stability. .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135

Abbreviations

AIM  Atoms in Molecules

BB Backbone

CC Contact Coefficient 

CM Contact Map

CROW proteic crowding

DoF Degree of Freedom 

EM Electron microscopy 

FRET Fluorescence Resonance Energy 
Transfer 

FSS First Solvation Shell 

HB, H-bond  Hydrogen Bond

HW Hot Water

IDP Intrinsically Disordered Protein

IOD Intrinsically Ordered Protein 

MD Molecular Dynamics

MG Molten Globule

MM Molecular Mechanics

MSD Mean Square Displacement

NMR Nuclear Magnetic Resonance

NOE Nuclear Overhauser Effect

PBC Periodic Boundary Conditions

PC Protein Core

PDB Protein Data Bank

PEG Polyethyleneglycol

PME Particle Mesh Ewald 

QM Quantum Mechanics

RDC Residual Dipolar Coupling 

Rgyr Radius of Gyration

RMSD Root Mean Square Deviation 

RMSF Root Mean Square Fluctuation

SASA Solvent Accesible Surface Area

SAXS Small-angle X-ray scattering

SC Sidechains

SCOP  Structural Classification of Proteins

SI Structure Index

SS Secondary Structure

UBQ Ubiquitin

VdW Van der Waals Interactions



1OVERVIEW

Life is all about adaption to the different environment. Proteins, similar-
ly to the organisms they belong to, should function under ever-changing 
conditions. Their flexibility and structural multiplicity promote adjust-
ment to the versatile context. This work aims to understand analytically 
the impact of two diametric opposite environments on protein structure 
and dynamics and compared them to the most common solvent on earth: 
water. 

The first environment is a traditional denaturing solution (urea 8M), 
which has served for years in protein science laboratories to investigate 
protein stability. The second environment instead moves towards a more 
physiological representation of proteins: the crowded cell cytoplasm. De-
spite years of work, the nature of proteins in these two conditions is still 
unclear, which limits our knowledge of the solvent-dependent polymor-
phism of proteins. 

The presented work aims to overcome this lack of knowledge and it 

OVERVIEW

“One day I will find the right words, and they will 
be simple” 

Jack Kerouac, The Dharma Bums
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offers a comparative study of the most general systems: an assorted spec-
trum of proteins folds, several stages along the reaction path (early stages 
or end-point) and/or various protein force-fields. Our primary objective 
was to challenge the specific experimental settings and, when possible, 
determine the standard pattern and general rules valid at proteome level. 

Here we focus on three major aspects of proteins: the structure, the dy-
namic and the interactions with the solvent molecules – studied at both 
global (molecular level) as well as local (atomic level). Molecular dynamics 
(MD) simulation is a suitable tool to study such properties thanks to its 
powerful capability to: i) analyze proteins at a broad range of resolutions 
(from single atom to single-molecule); ii) access the direct time-resolved 
dynamic of the system; and iii) dissect the specific interactions that arise 
in the new environmental settings.

1.1. Thesis organization

This thesis is a compilation of three published (or in the process of pub-
lication) works; the first two investigate proteins in urea-aqueous solution 
while the last one focuses on macromolecular crowding. They are present-
ed following the chronological order of publication, and the trend follows 
an increased in the system resolution (single protein, many folds, many 
protein types). In all of them the analyses are anchored on three aspects 
of proteins: structure, dynamic and interactions with the solvent; however 
the specific relevance given to each of these features depends on the proj-
ect. Given the essentiality of these three aspects, Chapter 1 introduces 
the central concepts related to proteins that are relevant to understand 
this work. Chapter 2 moves into the realm of the methodology employed 
here, MD simulations, presenting its theoretical framework within the 
field of computational biophysics and molecular modeling. Chapter 3 is 
a handbook that aims to facilitate the understanding of the many analysis 
employed in this work, most common to all the three projects while some 
exclusive to one. The handbook is supposed to be read alongside with the 
results section (see later) and, therefore, it contains cross-references to 
the figures in the publications, where the analysis is applied. All together 
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this information should provide a solid ground to understand better the 
details and the relevance of the three publications, included in Chapter 
4 (urea-related) and Chapter 5 (crowding-related). A brief synopsis con-
textualizes each work and specifies the objectives for that project; each 
article then has its introduction, methodology, results, discussion and sup-
plementary information sections following the structure dictated by the 
journal. A summary of the major results is presented in Chapter 6  which 
also contains a general discussion that connects and compares the three 
projects, leading, then, to the main conclusions of this work.  
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 CHAPTER 1 

“He said science was going to discover the basic 
secret of life some day”
“Didn’t I read in the paper the other day 
where they’d finally found out what it was?’ 
“I missed that”, I murmured.
“I saw that,” said Sandra. 
“About two days ago.”
“That’s right”, said the bartender.
“What is the secret of life?” I asked.
“I forget”, said Sandra.
“Protein” the bartender declared. 
“They found out something about proteins.”

Kurt Vonnegut - The Cat’s Craddle

Proteins as flexible structures

This chapter introduces proteins and their three features that are the 
leitmotif through all my research: their structure, dynamics and interac-
tions with the solvent. Since the primary aim here is to provide a back-
ground for the study at hand, only relevant topics are addressed. For a 
more comprehensive view, the reader is referred to specific books, such 
as  [1], [2].

1.1. The working class of the cell

When I imagine a cell, I picture in my mind a busy city filled with 
strange inhabitants. I imagine the cell landscape dominated by a large 
dome-like building; a temple? A library? It stores all the available knowl-
edge that is carefully read, transcribed and interpreted by dedicated lit-
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erates. Outside, the noisy streets are filled with a chaotic crowd – a het-
erogeneous group of tireless hard-workers of all kinds: bulky globules, 
elongated elastic structures and even some amorphous ones that change 
shape definitely too often. All together they represent the working class at 
the basis of the cell hierarchy. Possibly the Swedish chemist Berzelius had 
a similar view when, in 1838, he was looking for an appropriated name for 
those industrious creatures that populate the cell. He called them proteins 
from Greek protos, meaning “the first” or “of primary importance”.

To sustain the work of a complex system such a cell, proteins need to 
exert an enormous variety of function: transport, regulation, message 
delivery, product manufacture, waste cleanup, etc. But how can proteins 
achieve such a broad array of duties? As engineers or industrial designers 
would say, a look at the structure of a machine gives a first glimpse into 
what it is capable of. Similarly, in biology the many functions of proteins 
are intimately linked to their incredibly complicated and precisely detailed 
structure - some examples of which can be found in Figure 1.1. Despite 
the complexity, the 3D structure relies on few principles of its essential 
building unit: the amino-acids. Frederick Sanger gave chemical dignity 
to proteins when he identified the sequence of insulin [3]; however it was 
Kaj Ulrick Linderstrøm-Lang who in 1951 classified their structural fea-
tures in a clear and practical scheme, ubiquitously used in every biology 
textbook [4]. In the next sections, I will follow his bottom-up classifica-
tion (from primary to quarterly); first in the list: the primary structure.

1.2. The bricks of protein structure: the aminoacids

Proteins are linear chains (polymers) build by an ordered sequence of 
amino acids. Only 20 amino acids are available in nature but the num-
ber that hardly frustrate the protein variety; after all even our language 
doesn’t suffer from scarcity with only twenty-one letters available. For 
example 2010 possible sequences of 100 amino acids exist, with each se-
quence uniquely defining a protein. In each of the 20 amino acids we can 
distinguish two parts Figure 1.2:

•	 The discriminatory side-chain, often identified as –R and responsible 



7INTRODUCTION

Figure 1.1. The variety of protein types. The structural representation of four  
proteins representing four different classes - from the RCSB PDB Molecule of 
the Month feature by David Goodsell.

Prion 
Disordered protein

Actin
Fibrous protein

Calcium Pump
Membrane protein

Hydrogenase
Globular protein
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for the peculiar physicochemical properties of each amino-acid. For 
the purpose of this thesis I will classify them according to their chem-
ical polarity - the tendency to be attracted or repelled by electrical 
charges due to the asymmetrical charge distribution. Low polarity 
is typical of apolar residues, followed by polar ones and taken to the 
extreme by charged residues

•	 The backbone, common to all the aminoacids and responsible for 
linking adjacent units via a covalent peptide bond between the carbon 

APOLAR

VVALINE

FPHENILALANINE WTRYPTOPHAN YTYROSINE DASPARTIC ACID EGLUTAMIC ACID RARGININE HHISTIDINE

PPROLINECCYSTEINEQGLUTAMINENASPARAGINETTHREONINESSERINEKLYSINE

AALANINE GGLYCINE IISOLEUCINE MMETHIONELLEUCINEANAME

Chemical
Structure

COLOR CODE POLAR CHARGED SPECIAL

SIDE CHAINS (-R)

BACKBONE

HN  C  C  OH
R

HN  C  C  OH
H H O H H O

+
Peptide bond R

Residue
Aminoacid

s id e c h ai n

sid
echain

s i d e c h ai ns i d e c h ai n

 θ   ω

Figure 1.2. The protein aminoacids. On top: sidechains grouped according 
to the polarity; on the bottom the chemical structure of the backbone on the 
left, on the right the 3D rearrangements of the two dihedral planes.
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C and nitrogen N atoms, releasing a water molecule H2O.
Two covalently bound residues –the portion of the free amino acid that 

remains after the polymerization- create a planar unit due to the partial 
double bond character of the peptide bond. This formation arises from 
the delocalization of the electron cloud covering the C-N bond atoms 
that prevent any rotations around the covalent bond. Such planarity se-
verely constrains the backbone flexibility, allowing only rotations of the 
peptide planes around the adjacent bonds. The related degrees of free-
dom are quantitatively described by two dihedral (torsional angles) θ,ω 
that capture the position of atomic groups about the peptide bond. In 
the circular range [–180º, +180º] of θ,ω values, few combinations prevent 
steric clashes between atoms. The allowed ones are generally reported on 
a two-dimensional map, the Ramachandran plot (named after the scien-
tists that introduced it), the shape of which can vary with specific features 
of each residues and, as we will see later, not all the allowed regions in the 
Ramachandran plot are equally likely [5].

1.3. The determination of the protein structure 

We generally accept that a protein spontaneously self-assemble in a 
process called folding and reach a unique functional structure, known as 
native structure [6]. Unique refers to a structure in which each atom can 
be represented at high resolution (Å) in an average position over an en-
semble of small fluctuations. These structures are often derived by physi-
cal methods such as nuclear magnetic resonance (NMR) spectroscopy or 
X-ray crystallography and collected in a large database, the protein data 
bank (PDB; available online at www.rcsb.org). 

The first explosion of available protein structures was driven by a meth-
od invented by Max Perutz, the heavy atom replacement that allowed, in 
principle, solving structure for any protein that could be crystallized [7]. 
X-ray crystallography determines the mean position of atoms and their 
chemical bonds based on the diffraction of a beam of X-rays by a single 
crystal into many specific directions. Multiple two-dimensional images 
taken at different rotations allow reconstructing the three-dimensional 
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model of the electron density within the crystal, but its resolution de-
pends on, among other factors, the quality of the crystal. Indeed over 
expressing a protein and obtaining a crystal is extremely challenging and 
it still poses considerable difficulties in the case of flexible systems or 
membrane proteins. 

Later, in the 1980s, when enough powerful equipment and techniques 
were available, NMR started to be applied to protein structure determi-
nation, thanks to pioneers such as Kurt Wuthrich [8]. From the PDB 
statistics, the 5% of all the newly deposited protein structures are solved 
by NMR spectroscopy. NMR method for protein determination is based 
on the magnetic features of atomic nuclei possessing a nuclear spin. The 
chemical environment of those nuclei gives rise to a set of observables 
such as the Nuclear Overhauser Effect (NOE) and the chemical shift 
and its derivative spin-spin coupling ( J-Coupling), both extremely useful 
in structure determination. NOEs quantitatively describe the intensity 
enhancement experienced by protons when another spatially close proton 
is saturated or inverted. The strength of the NOE signal then depends 
only on the spatial proximity of protons and it can be used to originate 
distance restraints between atoms within 1.8 Å and 6 Å. Angles restraints 
instead can be obtained from J-coupling between active spin nuclei (such 
as 13C and 15N usually employed in NMR experiments) but only for 
atoms linked by 2-3 covalent bonds. Therefore, they can estimate the two 
torsional angles θ, ω of the protein backbone. The intrinsically low sensi-
tivity of NMR and the high complexity of obtained spectra also hamper 
its application to protein over 40-60 kDa.

Overall such information defines well the rigid or semi-rigid elements 
of the protein structure, while information on the dynamics up to the 
millisecond range became accessible only later with the development of 
special NMR techniques. Among them residual dipolar coupling (RDC) 
stand out as a resource for both structural information at the long distance 
and dynamical information on the time scales slower than a nanosecond, 
as we will see in Section 1.10 .  

For tricky systems, other techniques can help to define structural details, 
despite at a lower resolution. Electron microscopy (EM), and particularly 
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the cryo-EM, can be combined with the single-particle reconstruction 
method to define large macromolecular complexes difficult to crystallize 
[9]; electron crystallography is primarily used for membrane proteins 
[10]; Small-angle X-ray and neutron scattering (SAXS and SANS) are 
applied to structures in solution [11], and lastly homology modeling ex-
ploits the structure details of a homologue proteins with an high sequence 
identity [12]. 

1.4. Protein folding

The capabilities of NMR and X-ray crystallography had biased the re-
solvable structures; the information collected in the past 50 years represent 
mainly a specific subset of proteins: globular proteins, soluble in water and 
with a well-ordered structure that facilitate its isolation and characteriza-
tion. These proteins, to which I will refer as intrinsically ordered proteins 
(IOPs), have been so well characterized for years that they have become 
the stereotype of protein structure. However, as we will see in Section 1.9 
, disorder in proteins exists at physiological conditions. Despite elusive to 
experiments for long, a new class of protein, the intrinsically disordered 
proteins IDPs, has become prominent in the last 10 years. That said, here I 
will concentrate on basic principles of protein structure and folding found 
by pioneering studies on IOPs. Some of those principles extend to all pro-
tein types while others, that I will punctually stressed, apply only to IOPs.

In the 60s Christian B. Anfinsen made a discovery that nowadays puz-
zle for its simplicity [13]. He proved that a protein, the IOP ribonuclease 
A, could refold back into its native functional structure, lost during a pro-
cess known as denaturation. The reversibility  of folding had one strong 
implication: it is the sequence of the protein (the primary structure) that 
encodes all the necessary information to adopt the native conformation 
and manifest the functional structural feature. 

The spontaneous folding of an IOP into a single structure puzzled 
Cyrus Levinthal [14]. He described it as a paradox of nature: a polypep-
tide can assume a vast number of conformations, so large that it would be 
impossible to adjust randomly to the correct one on a micro/millisecond 
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timescale –the typical folding time for an IOP. A quantitative perspec-
tive: if we assume that each θ,ω dihedral has three torsions options, then 
each peptide unit can access up to nine conformers. For an average pro-
tein of 100 residues, it would result in 9100 or 1095 possibilities to explore. 
Even considering an ultra fast sub-picosecond timescale for each torsion-
al change, it would take an incommensurable time to go through each of 
these conformations and pick the native one. This simple paradox is a viv-
id demonstration that IOPs attain their native state by a guided research 
instead of a random chaotic exploration. Anfinsen proposed a thermo-
dynamic hypothesis to solve the Levinthal paradox: proteins follow the 

Free 
Energy

 DoF 1
        

DoF 2 Native 

Unfolded 

Native IOP

Smooth Rugged 

Native IOP

Mis-folded

Aggregation

- +

Conformational 
entropy

Hydrophobic 
Effect 

Interactions

Net Free Energy

-T∆S

-T∆S

∆H
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b)a)

c)

Figure 1.3.  The protein energy landscape. a) Example of a smooth 3D ener-
gy landscape; b) The energetic balance in the protein folding; c) The cross-sec-
tion of two schematic energy landscapes. In the rugged landscapes, the over-
lap between the yellow and magenta surface represent species that can lead 
to aggregation.
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principle of minimum energy [15]. They inevitably reach the native struc-
ture that bears the minimum in energy through distinct intermediates 
states through a folding pathway, which underline the non-randomness 
of the process. A new theoretical view about folding emerged later with 
the application of statistical mechanics models. These models consider 
each macroscopic state of a protein (folded, unfolded, intermediated) as a 
distribution or an ensemble of conformations. Folding can follow multi-
ple unpredictable routes passing many intermediates conformations. The 
new view then replaces the sequential folding pathway with broader con-
cepts: the energy landscape and the folding funnel. 

An energy landscape summarizes all the conformations accessible to a 
protein as a function of its free energy.  Each point on the surface asso-
ciates the energy, quantified in the vertical axis, with the conformation, 
defined by its degree of freedom (DoF -  i.e. the backbone dihedrals) col-
lected in the many lateral axes (for clarity restricted to two in the example 
in Figure 1.3). 

The horizontal section of the energy surface at a given depth then iden-
tifies the conformational entropy at that energy and proportional to the 
accessible configuration. High-energy conformations stand on top of hills 
in the energy landscape; more favorable ones instead rest in valleys. The 
kinetic of folding then seems, as described by Ken A. Dill, like “a rolling 
ball on this energy surface, following a trajectory winding through the 
hills and the valleys”: from high-energy starting points the protein can 
following many routes (changes in conformations) to reduce its energy 
[16].  For IOPs, the energy landscape is modeled as a funnel in which 
a protein, while moving energetically downhill, it narrows its accessible 
conformational space until it falls into the native state (the energy mini-
mum or the spout) [17]

Energy landscapes vary the features to reflect different folding behavior 
(Figure 1.3c). A minimally frustrated landscape with few unwanted traps 
or local minima (smooth landscape) leads a protein to quickly fold into its 
functional structure; instead a more rugged and heterogeneous one allows 
many competing folding pathways, which should anyway inevitably fall 
into the unique minimum [16]. In that scenario the folding process can 
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be difficult and potentially dangerous: an energy landscape riddled with 
several deep local minima enhance the chances to be trapped in misfold-
ed structures, which in turn could even lead to aggregation [18]. Protein 
landscapes can deviate from the traditional funnel shape: when they have 
multiple wide minima, separated by low energy barrier, the protein can 
quickly fluctuate between several conformations. That’s the case for IDPs 
and molten globules (MGs), as we will see in the following Section 1.9 

The shape of the energy landscape ultimately depends on the primary 
sequence of a protein, while the quantification of the free energy of each 
conformation, at stable temperature and pressure, can be calculated as 
Gibbs free energy: 

where H is the enthalpy of the system, T the fix temperature and S the 
entropy; this relationship fundamentally links structure (H, enthalpy as 
interactions), dynamics (S as the arrangements that a system assumes) 
and function (G). As just discussed, during folding the protein conforma-
tional entropy of an IOP decreases unfavorably. To undergo to favorable 
changes in Gibbs free energy (∆G), a protein then needs to counterbal-
ance the entropy loss with contribution from the entropy (- T∆S) and en-
thalpy (∆H) of the entire system, composed by the protein in the solvent 
at a specific temperature. In the following section I will review the major 
contribution to protein stability (Figure 1.3c): the formation of internal 
non-covalent interactions and the hydrophobic effect. However, solva-
tion, the subject of  Section 1.11 , is essential in the final energy account. 
The vertical extent of the energy landscape, in fact, can be modified with 
changes in the solvent.

1.5. Architects of ordered structures

Here I will briefly introduce the main non-covalent interactions that 
a protein can form (Figure 1.4), while Chapter 2 will describes how to 
express them quantitatively according to the classical mechanics.
•	 Van der Waals interactions (VdW) are universal forces that occur be-
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tween any pair of atoms. They take their name after the Dutch scien-
tists who first described them in 1873 in the attempt to explain the 
deviation of a real gas from the ideal one.  Van der Waals interactions 
result from a balance between two terms: the attraction that occurs at 
large distances due to the instantaneous charge fluctuation induced by 
nearby particles (also known as London or dispersion forces); and the 
repulsion that occur at smaller distances due to the overlap of electron 
shells (due to Pauli exclusion principle). The related binding energy is 
one to three orders of magnitude smaller than the covalent ones.

•	 Electrostatic interactions occur at a longer distance compared to dis-
persion and are related to the repulsion or attraction between charges 
or permanent multi-poles. They arise when atoms in a covalent bond 
share electrons non-uniformly, creating a dipole, which in a complex 
molecule will arrange in multi-poles. The strength of such interactions 

UNFOLDED FOLDED

charged
polar
apolar

hydrophobic effect
Van der Waals
electrostatic
hydrophobic core

Figure 1.4.  The forces in protein folding. Schematic overview of the forces 
based on the polarity of the residues involved. The protein is represented as a 
chain of balls.
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is then dependent on the electronegativity of the atoms involved.  A 
particular type of attractive electrostatic interaction is the hydrogen 
bond. This relationship invariably occurs when a hydrogen atom H- 
covalently bound to an electronegative one (often oxygen or nitrogen) 
approach another electronegative atom. The atom are listed as hydro-
gen donor (D), the one to which the H- is covalently bound, and hy-
drogen acceptor (A). The strength of the hydrogen bond is sensitive to 
atoms orientations and distance. The ideal, strongest hydrogen bond 
–stronger than any other non-covalent interactions (2-10 kcal/mol)- 
needs the linearity between D-H:::A and it stands change of  ~30 ˚ in 
the angle formed with the donor atom. 

Besides the protein interactions, another force that favors the compac-
tion of the protein arises from the surrounding environment - often a 
water solution.  In solution, water molecules avoid mixing with oil-like 
or apolar substances, from there called hydrophobic. At the interface with 
apolar moieties i.e. hydrocarbons, the water molecules are forced into an 
ordered network that limits their rotations and translations. To avoid such 
a high price in entropy, the unfavorable interface between apolar residues 
and water needs to be minimized. Proteins in water then prefer a com-
pact structure (less exposed surface) with non-polar side chains buried in 
the protein interior – forming a hydrophobic core. This phenomenon is 
referred as the hydrophobic effect or imprecisely as hydrophobic bonds - 
even if preferential interactions between hydrophobic residues don’t exist 
as such. As we will see in the following sections, hydrophobic effect is 
affecting the protein disorder too: a protein rich in charged residues has 
no need to form a core, neither to fold.
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1.6. Optimized patterns in nature

“I didn’t have any molecular model with me in Oxford but I took a sheet of 
paper and sketched the atoms with the bonds between them and then folded 
the paper to bend one bond at the right angle - what I thought it should be 
relative to the other - and kept doing this, making a helix, until I could form 
hydrogen bonds between one turn of the helix and the next turn of the helix, 
and it only took a few hours of doing that to discover the alpha-helix.”

Linus Pauling 

As beautifully explained by Linus Pauling, few specific backbone motifs 
effectively satisfy the constraints imposed by the planarity of the peptide 
bond and simultaneously optimize the intra-molecular hydrogen bonds 
[19]. Such intuition guided him, together with Corey and Branson, to 
correctly model the two most common secondary structures in proteins 
shown in Figure 1.5 : i) the alpha-helix in which the amino -NH group 
of a residue (i+4) forms a hydrogen bond with the carbonyl -C=O group 
four residues earlier (i+4→i ); and ii) the beta-sheets (parallel or antipar-
allel depending on the orientation) with hydrogen bonds between facing 
polypeptide portions. Similarly the most common regions in the Ram-
achandran plot correspond to dihedral combination typical of these two 
structures: around (-60, 50) for alpha helices and around (-130, +120) for 
beta sheets (Figure 1.6). 

i

i+4

Alpha-helix Beta-sheets
parallel

anti-parallel

3.6 
residues
(5.4 Å)

SECONDARY STRUCTURE

Figure 1.5.  The two most common secondary structure elements. Intra 
molecular hydrogen bonds are marked in red.
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While the repeated i+4 →i hydrogen bonding pattern defines the alpha 
helix, other helical patterns are possible, even if less frequent. For example, 
they include a i+3 →i pattern typical for the 310 helix - usually of short-
er length and tighter than the alpha helix; and a i+5 →i pattern typical 
of pi-helix. Not every protein residues adopt secondary structure; unor-
dered portions exist even for the most structure IOP (sometimes called 
turn, bridge, coil…). The unordered regions often lie at the protein surface 
where they interact with the solvent; indeed they contain mainly hydro-
philic residues, in line with the hydrophobic effect described previously.

1.7. Super-motifs, tertiary and quaternary structure

According to the scheme by Linderstrøm-Lang, the secondary struc-
ture of the proteins is followed, unsurprisingly, by the tertiary structures. 
The logic of its name is, however, more than adequate since it refers to the 
exact topological 3D arrangement in space of the protein motifs. At this 
level, all the forces discussed previously come into play: the optimization 
of interactions, the compaction of the structure, the hydrophobic effect, 
and the apparent steric hindrance. Together they are responsible for the 

Figure 1.6.  Ramachandran plot. The dihedral values found in proteins are 
shown as blue areas and often correspond to some of the most typical second-
ary structures of proteins (dots).
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uniqueness of the native tertiary structure that ultimately depends on the 
protein sequence and the environmental conditions.

Some folding patterns are redundant in proteins: super-secondary 
structures are relatively simple i.e. the β-hairpin in Figure 1.7; instead do-
mains involve larger portions and behave independently from the rest of 
the structure. Proteins can also be composed of multiple, independently 
folded, chains bound together - often in a symmetric way. The network 
of interactions that keep them together have the same nature of the pre-
viously described ones, and it was logically named quaternary structures. 

1.8. Protein classification

Beside globular, proteins were traditionally classified also in used to fi-
brous, and membrane proteins (see Figure 1.1). While the latter are the 
ones inserted into the apolar cellular membrane, the fibrous ones are 
elongated structures that provide structural support to cells and tissues. 
However, both differ from the globular ones for their water-insolubility, 
which complicated their structural characterization. Indeed one of the 
most used classification schemes, SCOP - Structural Classification of 

Alpha-helix

Beta-sheets

TERTIARY STRUCTURE

Beta-hairpin

Figure 1.7.  Example of tertiary structure for the protein ubiquitin (PDB: 
1UBQ). Helices are represented as coils, beta-sheets as arrows.
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Proteins (scop.mrc-lmb.cam.ac.uk/scop ) - proposed by Murzin and col-
leagues in 1995, heavily relies on globular proteins [20]. SCOP organized 
proteins according to their structural and evolutionary relationships in a 
tree-like hierarchy. The highest level (most general) divide proteins into 
classes that cluster them into common global topologies of secondary 
structure. The classes all-α and all-β display mainly one type of secondary 
structure in their core (see 1OPC and 1CQY in Figure 1.9) while α/β and 
α+β mix them (for example 1KTE). 

1.9. Embracing chaos: disorder in proteins

The need for a new classification method arose from the evidence that 
some proteins don’t fit the one-fold description and lack a defined core. 
These exotic molecules, known as intrinsically disordered proteins (IDPs), 
are better represented by an ensemble of conformations that dynamically 
interchange [22]. Their rugged energy landscape allows several minima 
that represent the variety of conformations among which the protein can 
fluctuate. A simple description based on the average position of each atom 
will condense their complexity into a meaningless structure (Figure 1.8).

Shreds of evidence about IDPs emerged already at the beginning of the 
50s but they have been neglected until recently [23]. Even today they re-

Native IOP
Ensemble of structure for IDP

Figure 1.8.  Energy landscape for an IOP vs IDP. One-dimensional cross sec-
tion through two examples of energy landscapes which illustrate the difference 
between an IOP (one-fold) and a IDP (multiple conformations).
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1CQY

1OPC

1KTE

Class:  All alpha  
Fold:     DNA/RNA-binding 3-helical bundle 
core:     3-helices; bundle
Superfamily: C-terminal effector domain of the bipartite 
response regulators binds to DNA and RNA polymerase; 
the N-terminal, receiver domain belongs to the CheY family 
Family:  PhoB-like  
Protein:  OmpR  
Species:   Escherichia coli 

Class:  Alpha and beta (a/b) 
Fold:  Thioredoxin fold
Core:  3 layers, a/b/a; mixed beta-sheet of 4 strands
Superfamily: Thioredoxin-like 
Family:  Thioltransferase 
Protein:  Glutaredoxin (Grx, thioltransferase) 
Species:  Pig (Sus scrofa)

Class: All beta 
Fold:    Prealbumin-like 
core:     sandwich; 7 strands in 2 sheets
Superfamily:   Starch-binding domain-like 
Family: Starch-binding domain 
Protein:  beta-amylase 
Species: Bacillus cereus  

SCOP DATABASE

Figure 1.9.  The SCOP classification: the top-down hierarchy for the three 
proteins (PDB code on the left) that are selected to represent each SCOP class 
(see Section 4.2 ). 

main a challenge in biophysics due to the need to collect high-resolution 
data for an ensemble of conformations and at relevant time scales [24]. 
However, an explosion of interest started in the 90s thanks to the ad-
vances in techniques suited to study dynamic systems. For example small 
angle X-ray scattering (SAXS) can quantify the collapse of a protein[25]; 
fluorescence resonance energy transfer (FRET) can single out each con-
formation unpacking the information in ensemble average [26]; NMR 
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can describe the relative positioning of atoms and MD simulations can 
follow their dynamic behavior over several time scales [27]. Nowadays in- 
cell NMR experiments represent one of the most unique environments to 
characterize disorder under near physiological conditions [28].

The distinction between IDPs and IOPs already starts at the primary 
structure: the IDPs sequence is enriched in polar, charged residues and 
prolines resembling regions at the surface of IOPs: the lack of hydropho-
bic residues limits the chances to form a compact hydrophobic core and 
keep the protein into a non-rigid structure. However each IDP shows 
a specific pattern of flexibility and compaction - from molten globule 
forms  (collapsed and with secondary structure elements) to random coils 
(extended and purely disorder) [29]. This distinction is encoded, similarly 
to IOPs, in the protein sequence and depends on the charge distribution: 
extended conformations tend to have a net charge randomly distribut-
ed along the sequence while collapsed conformations possess clusters of 
opposite charges that allow a degree of compaction. The understanding 
of these features, along with others, has encouraged the development of 
algorithms to predict the degree of disorder based solely on the protein 
sequence i.e. PONDR, the predictor of natural disorder regions [30].  A 
collection of disordered proteins along with their features can be found in 
a dedicated database (www.disprot.org [31]). These predictions estimate 
that the human proteome contains between 35% and 50% of disordered 
regions – a data that will convince even the most reluctant to embrace 
them as functional entities inside the cell [32].  IDPs adapt several func-
tions that would be hardly covered by their ordered counterparts: thanks 
to the conformational interchange they adapt to various situations, bond 
several partners and sense environmental changes. Indeed IDPs are gen-
erally involved in signaling, regulation and control - complementing the 
functions of IOPs that are dedicated for example to catalysis, binding of 
small ligands or transport across membrane [32].
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1.10. Structures in motion

IDPs were the ultimate example to demonstrate the naiveté of the 
classic structure-function paradigm, bringing to an extreme freedom the 
conformational interchange. However many biological processes rely on 
changes in the structure of proteins, which amplitude in time and space 
are usually proportional [33], [34]. In this thesis, words like “dynamics” 
and “flexibility” refer to such time-dependent changes in the structure 
that ultimately are related to the concerted and thermally driven move-
ments of the atoms. 

Protein flexibility is related with the exploration of the protein energy 
landscape [34]. The transition between minima (at the actual condition) 
provides the protein with an asset of different conformations, selected and 
designed to exert a mechanism [23].  The transition can take place at local 
level i.e. a rearrangement of a secondary structure element (ns-microsec-
ond timescale) or at global level i.e. a large domain motions (milli- or 
seconds) - see Figure 1.11. The motor protein myosin, responsible of the 
muscle contraction, is an example of the latter. Myosin uses ATP-cleav-
age to adopt a bend and flex conformation; the new form grabs the actin 
filament and allows the protein to climbs, like an arm along, an actin 

Figure 1.10.  Example of a structure in motions: the two conformations of 
myosin. When ATP is cleaved, the straight “rigor” form, as shown on the right 
myosin (PDB entry 2mys) adopts a bent, flexed form, like in the structure on the 
left (PDB entry 1br1). Image credit to PDB.
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filament (Figure 1.10). 
Less evident changes but equally essential can occur during enzyme 

catalysis, protein-protein binding or ligand-recognition. To understand 
how a protein exerts its function then, a single structure provides a lim-
ited hint – in a similar way that a static sculpture of a nutcracker fails 
to explain its utility. A comprehensive view instead should complement 
structural details with information about the motion of the system. From 
small amplitude vibrations to large-scale domain rearrangements, mod-
ern protein biophysics should not neglect any of them. 

Protein dynamics is so ubiquitous and persistent that even X-ray crys-
tallography, which provides a frozen picture of an energetically mini-
mized conformation under the crystallization conditions, contains infor-
mation about it [35], [36]. Occasionally, large structural rearrangements 
are captured in two crystals of the same protein i.e. open/close or apo/
holo conformations (alone or in complex with a ligand) and before/after 
ATP cleavage as in the case of myosin (see Figure 1.10). More often, the 
dynamic information is reduced to the amplitude of the atomic fluctua-
tions that attenuate the X-ray scattering signal (B-factor - quantitative 
described in Section 3.2 ). Lastly, the mere absence of a region from the 
X-ray spectra classifies it as highly flexible and possibly disordered.

A more detailed view on protein flexibility at different scale, both tem-
poral and spatial, was possible thanks to the development of Molecular 
Dynamics (MD) simulations in the 70s [37] and the application of NMR 
in the 80s [38]; and later confirmed by more recent techniques such as 
time-resolved crystallography y, FRET or neutral scattering.

Thanks to the large variety of experimental setting and observables, 
NMR covers a rich time scale of protein movements, from picoseconds 
(spin-relaxation) up to seconds (amide proton exchange saturation or re-
al-time NMR) [39]. Among the several NMR-observables, residual di-
polar coupling (RDC) provide both structural information at the long 
distance and information on the dynamics slower than a nanosecond. 
RDCs are obtained in special field-oriented NMR and provide spatially 
and temporally averaged information about an angle between the exter-
nal magnetic field and a bond vector in a molecule. Rather than distance 



25INTRODUCTION

restraints (as NOEs) they can provide orientational constraints about the 
relative orientation of parts of the molecule, even when they lie far apart. 
However, two issues complicate the data interpretation: first, the defini-
tion of the ever-changing tensor that describes the alignment of a flexible 
molecule with respect to the laboratory field; and secondly, the decoding 
of the information packed into ensemble averages, which often requires 
the support of theoretical models to be transformed into atomic positions 
[40], [41].  

MD simulations instead provide a direct gateway to protein flexibility 
over several time scales (up to micro-millisecond, Figure 1.11) and most 
importantly without sacrificing the atomic resolution [42]. As crucial 
method utilized in this work, MD simulation deserved an entirely dedi-
cated chapter (Chapter 2).

1 fs 1 ps 1 ns 1 μs 1 ms 1 s TIME

Folding

Whole domain movements

Helix-Coil transition

Concerted motion of structural elements

Individual atoms vibrations

Side chain rotations

Loop motions

Diffusion across E.coli

LOCAL
FLEXIBILITY

GLOBAL
MOTIONS

Time coverage of 
MD simulatons

ns

ps

 μs - ms

ps

Figure 1.11.  Timescale of protein motions. Local (smaller amplitude) and 
global (large amplitude) motions timescales are shown on the right; on the left 
a schematic representation of the associated barriers in the energy landscape.

1.11. Solvent and protein stability

As flexible entities, proteins modulate their architectures to accommo-
date the ever-changing environment. Beside the internal forces reviewed 
so far, the context in which protein operates equally influence their shape. 
The majority of proteins exert their function inside the cell: a crowded 
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aqueous phase with a temperature of ~300K, a pressure of ~1 bar, pH 
between 6-8 and ionic strength between 100 – 200 mM KCl or NaCl. 
Laboratory and simulated conditions both mimic the physiological en-
vironment with water -awkwardly called aqueous solution- and carefully 
stabilize all the other factors. Alteration in any of the involved variables 
creates a new milieu affecting the energetic balance and consequently the 
structural equilibrium of proteins. This work focuses on one of these: the 
solvent composition.

Opposite to the “aqueous solution” that contains only water and ions, 
non-aqueous solvents are still based on water, the portion of which can 
vary. Water is rarely totally excluded from the protein environment be-
cause of its fundamental role as “lubricant of life”. Other molecules, 
named co-solvents, act then as companions for water. At microscopic 
level the protein solvation consists of i) the formation of interactions be-
tween the protein and the solvents; and ii) the change in the interactions 
between the solvent molecules due to the cavity created to accommodate 
the protein. The kind of interactions in the solvation shell, composed of 
the solvent molecules in the protein surrounding, have the same nature of 
the ones inside the protein and described in Section 1.5 . Ultimately the 
protein structure arises from a complex interplay of enthalpic and entro-
pic contributions from protein-protein, protein-solvent, and solvent-sol-
vent interactions. Clearly a small change in these forces can tip the ener-
getic balance towards other structures.  Small organic molecules, known 
as osmolytes, perfectly exemplify the concept. When added as co-solvent 
to water, they can push the folded/unfolded equilibrium of IOP towards 
opposite directions: protecting osmolytes favor the native state, where-
as denaturing osmolytes the unfolded one. Protecting osmolytes such as 
trimethylamine N-oxide (TMAO), glycine, glycerol and others are ubiq-
uitous in nature because they contribute to stabilizing proteins against 
adverse conditions. On the contrary, urea, a denaturing osmolyte found 
in mammalian kidney, is a crucial reagent employed in protein stability 
studies. 

Indeed, urea and crowding agents, natural or synthetic, are the three 
co-solvents protagonists of this thesis. Their effect on protein stability 
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is addressed in Chapter 4 and 5; while here I will only briefly introduce 
them (Figure 1.12).

Urea is highly soluble in water, generally used in concentration between 
8 to 10 M; its high solubility in water reflects its ability to form an ex-
tensive network of hydrogen bonds with water. Overall urea molecules 
integrate well into water structure, showing only a minimal tendency for 
self-aggregation [43]–[45]. The structural perturbations on the solvent 
constitution are then excluded as driving force for protein unfolding; in-
stead the direct interactions between urea and the protein appear as better 
candidates. The latter will be investigated in Chapter 4. 

Crowding agents, natural or synthetic macromolecules, are used as 
co-solvents to fill the void and mimic the crowding effect of the cyto-
plasm. When macromolecules as co-solvents occupy at least 20-30% of 

UREA 
8M

PROTEINS
up to 300 g/L

PEG 
200 g/L

WATER CO-SOLVENT

+ ; ;

UREA PROTEIN PEG 500

Figure 1.12.  The three co-solvents. Each cosolvent is added to the normal 
water solution to reach the desired concentration. For each of them, the molec-
ular structure and an example of a unit box is shown. The structure of PEG 500 
(dodecaethylene glycol) is taken from the PDB: 2XP6.



28 INTRODUCTION

the volume, they cause several restrictions on the solution, for example in 
the volume accessible to the protein structure and in the mobility of water 
[46]–[48].

Synthetic crowding agents, such as poly(ethylene glycol) (PEG), poly-vi-
nylpyrolidone (PVP), dextran and Ficoll, are generally employed thanks 
to their “inert “character, meaning their inability to interact specifical-
ly with proteins, which correctly mimics the excluded-volume. Among 
them, PEG, also known as PEO (polyethylene oxide), is the most con-
troversial. Its structure, a water-soluble chain of ethylene oxide (–CH2–
CH2–O–) which adopt an helical elongated shape PEG [49], is however 
less “inert” than expected and suffer of attractive interactions with proteins 
[50]. However PEG is still used as a reference agent for macromolecular 
crowding [51], [52].  Proteins instead represent the most common natu-
ral crowders and they might also exert their influence beyond the general 
volume-exclusion: a network of nonspecific intermolecular interactions, 
which alters protein stability with unexpected consequences on protein 
structure and dynamics. The latter are the main subjects of Chapter 5. 

Once defined these environments, we can move on to adress the main 
objectives of the present thesis. 
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The main aim of this thesis is to extract rules valid at proteome lev-
el about the repercussions of two co-solvents, namely the urea-aqueous 
solution and a crowded environment, on three major aspects of proteins: 
structure, dynamics and solvent interactions. To accomplish such aim we 
employed MD simulation on three system systems strategically selected 
to addressed a specific objective (Figure 1.13):

	
1. To understand the nature of the urea-induced unfolded state. Com-

bining MD simulations and available NMR data we aimed to: i) 
define the unfolded state ensemble of the model protein ubiqui-
tin, (ii) understand the energetics stabilizing unfolded structures in 
urea, and (iii) describe the differential nature of the interactions of 
the fully unfolded proteins with urea and water.

1. To understand the early stages of urea-induced unfolding.  Per-
forming a vast number of simulations on a representative dataset of 
folded proteins (representing the major folds of globular proteins) 
we aimed to:  i) identify common patterns on the early staged of the 
unfolding reaction; ii) challenge at proteome level the observations 
related to the solvent/protein interactions derived from the previous 
project, and iii) investigate the kinetic role of urea in triggering pro-
tein unfolding. 

1. To understand the effect of effect of crowding in protein structure, 
dynamics and interaction properties. Analyzing a variety of crowd-
ing conditions on different proteins we aimed to: i) understand the 
general effect of synthetic (polyethyleneglycol; PEG) and natural 
(proteins) crowded agents in the structure and dynamics of folded 
proteins, and ii) understand the differential effect of crowding in 
folded, versus unfolded and molten globule proteins.

OBJECTIVES
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Figure 1.13.  Schematic organization of the three projects. Each project is 
classified according to the co-solvent used, the proteins (solute) under study 
and the spatio-temporal definition of the system; and have a different degree 
of generalisation (single protein, many folds, many protein types). In all of them 
the analyses are anchored on three aspects of proteins (structure, dynamic and 
interactions with the solvent), adressed by means of MD simulations.
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 CHAPTER 2 

“Art is the lie that helps tell the truth”
Pablo Picasso

Theory and modeling: MD 
simulations

When people hazard a question about my research field I provide a 
large list of synonyms: computational structural biology, in silico biophys-
ics, molecular modeling…  usually the list goes on until I recognize a 
receptive (or scared) expression in my interlocutor’s face. It’s difficult to 
contain a discipline in few keywords but here I will try to briefly review 
them and correctly place the present work in its field. This chapter is, 
then, intended as a broad and conceptual introduction to the theoretical 
framework of the main method used here: molecular modeling and, more 
specifically, MD simulations. Further technical details regarding the spec-
ifications of each project can be found in the related method section of 
each publication.



38 INTRODUCTION

2.1. Molecular modeling

“Building a model of a small protein is like doing a three-dimensional jigsaw 
puzzle with thousand pieces. It is painful, slow work but at the end you really 
know the molecule. You also so want to computerize it!”

Michael Levitt, Nobel prize Lecture 2013

Molecular modeling is the study of the behavior of molecules through 
model building that rationalizes the properties of a biological system 
through the laws of physics (biophysics). Despite a model remains a sim-
plified reproduction of the complexity of life, simplifications and approxi-
mations are needed to rationalize quantities, discern patterns and add in-
sights otherwise difficult to observe. In other words it helps to grasp and 
make sense of the complexity. Nowadays we rarely use wire hand-built 
model - as James Watson and Francis Crick did for the double helices or 
John Kendrew for the myoglobine (Figure 2.1) – instead we handle larger 
set of variables exploiting the capabilities of computers (from here the 
expression in silico). In general computational models are appropriately 
developed for a variety of issues, from the motions of galaxies to econom-
ical modeling and many more. In structural biophysics the obvious focus 
is the structure and, as already stressed out in Chapter 1, the dynamics of 
macromolecules. 

Figure 2.1. Wire-models for macromolecules. From the left: John Kendrew 
and its wire model, hand-built to fit the electron density for the protein myoglo-
bine (153 aminoacids and over 2600 atoms); the double helices model for the 
DNA molecule built by James Watson and Francis Crick.
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Molecular models differ mainly in resolution: quantum mechanics pro-
vide the most accurate results however it is limited to short time scale and 
to systems with few atoms.  For macromolecules such as DNA or proteins 
methods based on classical mechanics are more suitable; they can handle 
millions of atoms and reach longer timescale (micro/millisecond) relevant 
in biology. Among those techniques, MD simulation is probably the most 
widely used; it provides the time-resolved dynamic of the system at such 
high resolution that once was defined the “computational microscope” 
for molecular biology [1]. In 2013 the Nobel Prize in Chemistry to A. 
Warshel, M. Karplus, and M. Levitt praised their pioneering work on 
“multiscale models for chemical systems”, which started the rise of MD 
simulations.

2.2. MD simulation as a computational microscope

MD simulations apply first principle physics to model the motions of 
atoms in complex systems i.e. macromolecule immerse in a specific en-
vironment. The first MD simulation of a protein (BPTI), published in 
1977, covered a simulation time of 8.8 picoseconds (ps)  [2]. Nowadays 
the exponential progresses in computational power gave access to larg-
er timescale - several orders of magnitude longer (micro-milli second)- 
but the basic principles of those first simulations remain fully effective. 
This chapter is a overview of such principles (Figure 2.2): I will review 
the assumptions that allows treating atoms as particles under the laws of 
classical physics and the forces acting on these particles that guide their 
evolution in time. The expression of these forces together with a set of 
parameters are the tool-kit to run MD simulations and they come nicely 
packed inside the so-called force fields. Finally I will very briefly describe 
the logic (aka the algorithm) used to sample among conformation.

2.3. From QM to MM: principles of molecular dynamics 

According to quantum mechanics, the only accurate description of mo-
lecular behavior at sub-atomic level implies to resolution of the time-de-
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Figure 2.2. Principles of MD simulations. MD simulations rely on three pillars: 
the approximations used to described molecules (in the yellow box from top 
to bottom: Born-Oppenheimer, classical, pair-wise additivity and  transferability 
approximation) - see Section 2.3; a force-field (box in magenta) - see Section 
2.5; and an algorithm to calculate the movements - see Section 2.7.
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pendent Schrödinger equation. With apparent simplicity, this equation 
relates the structures of electrons and nuclei to the 3D structure, energies 
and many other associated properties of molecules. In practice the direct 
solution of Schrödinger equation for macromolecules is so expensive that 
it is simply unfeasible. Luckily several approximations can drastically re-
duce the complexity of the energy models and the related computational 
effort:

1. The Born-Oppenheimer approximation separates the electronic 
and nuclear degrees of freedom and assumes that electrons follow 
instantaneously the nuclear motion. This is generally a good approx-
imation because the nuclei—much heavier than the electrons—are 
typically fixed on the timescale of electronic vibration

1. Once atoms are simplified as nuclei, the molecule can be regarded as 
a classical mechanical body formed by masses centered at the nuclei 
(atoms) connected by springs (bonds). In the classical approxima-
tion then the time-dependent Schrodinger equation, which domi-
nates quantum mechanics, is replaced by the Newton’s equations of 
motion, typical of classical mechanics.

1. The molecule, as a mechanical body, stretches, bends, and rotates 
about those bonds in response to inter and intra molecular forces. 
According to the pair-wise additivity approximation, these forces 
calculated for each pair of atoms in the system can be summed up 
with an energy function that provides the energy of the system.

1. The transferability approximation implies that the energy function 
developed on a small set of molecules applies to a wider range of 
molecules with similar chemical groups. If the energy parameters 
are not dependent on the local environment, a relatively small num-
ber of atom types derived from small molecules should be enough 
to describe whatever macromolecule.

In summary, MD simulations provide a reasonable compromise between 
accuracy and computational efficiency and their correctness depends on 
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the validity of these assumptions.

2.4. The potential energy function

Once agreed that a molecule can be treated as a mechanical body, the 
forces acting on every particle of the system can be expressed through 
computationally manageable functions (Figure 2.3). Forces can be clas-
sified as:

1.	 Short-range between bonded atoms, in particular

•	 	 vibrations of the bond lenght r (two adjacent atoms) and the 
bond angle α  (two adjacent bonds) that account for small-scale de-
viations; bonds and angles are considered as an elastic or spring body 
described  by an harmonic potentials based on the Hooke’s equation:

 According to this equations angles and bonds, when displaced from 
the equilibrium values (r0 and α0contained in the forcefield parametri-
zation), experience a restoring force proportional to the displacement 
and to a constant factor k characteristic for the stiffness of each bond 
or angle, depending on the atoms involved.

•	 	 torsion of each dihedral ω, formed by two bonded atoms and the 
two atoms adjacent to them. Dihedral terms cannot be described by a 
harmonic term because of their periodicity; instead they are expressed 
by a trigonometric term; for example: 	

where the parameters depending in the atoms involved are the tor-
sional barrier Vtor, the periodicity n and the phase angle γ.
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Figure 2.3. Interactions energies in MD simulation. The energy functions 
(equations in the middle, form on the right) used to describe the interactions 
between atoms, schematically illustrated on the left. From top to bottom: 
bond-stretching, bond-angle vibrations, dihedral torsions, Van der Waals and 
Coulomb interactions.

2.	 Long-range between non-bonded atoms:
•	 	 Van der Waals interactions between all pairs of atoms and ex-

pressed by a two-terms potential [12-6] to take into account: i) the 
attraction that arise at great distance when electronic clouds don’t 
overlap; it is expressed by the London’s attraction term that weakens 
with a factor of (1 ⁄ r ) 6 where r is the distance between the centers of 
the two atoms involved;  ii) the repulsion between orbitals that bear 
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already a pair of electrons when their electron clouds overlap at low-
er distance. The repulsive term counterbalanced the attractive term 
and has been approximated by Lennard–Jones using a proportion to   
(1 ⁄ r )m where m=12 mainly for computational convenience.                   

Since the overall interaction fall off quickly with the distance they are 
generally evaluated only for nearby pairs of atoms (within a certain 
cutoff ). 

•	 Electrostatic interactions between two particles i, j with partial 
charges qi and qj are modeled by Coulomb’s law:		

where ε is the dielectric constant of the medium and rij the inter-
atomic distance. Columbic attraction also describe hydrogen bonds as 
attractions between the partial negative charge of the A atom and the 
partial positive charge of H.

Among all the interactions the electrostatic ones require the most time 
consuming calculation:  unlike the van der Waals one, the Columbic term 
decay slower with the distance and therefore includes a large subset of 
atoms. To handle them efficiently a common method used is the parti-
cle mesh Ewald (PME) that separates the electrostatic energy into two 
terms: a short-range potential calculated in the real space and a long-
ranged potential evaluated on a discrete interlaced Fourier space. Both 
terms converge quickly when evaluated in their respective spaces and cut-
offs can be used safely without sacrificing accuracy. However the methods 
requires the periodic symmetry of the system. In MD simulations this 
can be deliberately attained by periodic boundary conditions: the entire 
system (biomolecules and solvent molecules) is placed inside a unit cell 
and infinitely replicated, creating a repeating pattern similar to the ones 
formed by azulejos tiles (Figure 2.4).

In each of the replicated units, the periodic image of each atom will 
move exactly the same way as the original one in the central box. When 
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an atom leaves the central box, its image will enter through the opposite 
face – thus the central unit still contain all the information to track the 
entire system. The system, then, can only adopt shape that full fill the sur-
rounding space with translational copies of itself.  This unit cells can be a 
cuboid, a dodecahedron, or a truncated octahedron and are usually large 
enough to avoid that the protein atom are too close to the box boundary 
(minimum distance 1.5 nm).

Figure 2.4. The periodic boundary conditions. Schematic illustration in two 
dimensions of the periodic unit (in magenta) which contains all the information 
about the system. On the right an example of a pattern from azulejos tiles.

2.5. Force-fields: the wikiHow of MD simulations

Force-fields provide the simulation software with two main tools: 
•	 a recipe to evaluate the energies expressed by the energy function in 

which the terms described so far are summed together to give the 
potential energy of the system:

•	  the ingredients that need to be mix to reproduce a specific system – 
expressed by a set of parameters that model each atom type in the 
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system. As we have seen, each term of the energy function contains 
several variables that depend on the atoms involved; for example hy-
drogen H and oxygen O surely have a different partial charge q  or 
stiffness of bond stretching k . Current force-fields further distinguish 
subcategories (atom types) that depend on the molecular environ-
ment (e.g., aromatic carbon in a nitrogenous base) and/or hybridiza-
tion state (e.g., sp2 or sp3 ).

No universal force-field for proteins exists and the used parameters are 
at the service of that energy function and shouldn’t be regarded as an 
intrinsic property of proteins. However all the energy functions in the 
current forcefields are almost the same as the one conveniently devised in 
the seminal work of Lifson and coworkers [3] . The parameters instead are 
constantly improved to reproduce more precise properties of molecules, 
leading to several updated versions of the same forcefield. For example 
the first force fields were parameterized to reproduce mainly structur-
al properties and vibrational spectra of sample molecules and they were 
tested primary in gas-phase simulations and with quantum mechanics 
calculations. Later parameterization instead included liquid phase prop-
erties (densities, heats of vaporization) and ab-initio quantum mechanical 
calculations. An extensive review on the topic can be found in [4], while 
here I will briefly go through the versions of the force fields used in the 
present work:
•	 AMBER (Assisted Model Building with Energy Refinement) - ver-

sion parm99 [5] , parm99SB [6] with improved torsional angles for 
the backbone and parm99SB-ILDN with improved side-chain tor-
sion potential [7].

•	 OPLS-AA (Optimized Potentials for Liquid Simulations – All 
Atom) [8]; the only force field born with the specific purpose of cor-
rectly fit experimental properties of liquids;

•	 CHARMM (Chemistry at HARvard Macromolecular Mechanics) 
- versions CHARMM22 [9] and its dihedral potential corrected vari-
ant CHARMM22/CMAP [10]. CHARMM force field still enforces 
neutral charge groups (of adjacent atoms must have zero net charge).
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In the past, many efforts have been done by our group to accurately eval-
uate the performance of available force fields through systematic analyses 
of a large data set of simulations (MoDEL)[11] . The study concluded 
that current force fields yield to reasonable consensus when used to sim-
ulate native structures and they correctly reproduced experimental data 
available at that time [12]. Recent studies on long-timescale simulations 
further confirmed such conclusion [13]. Despite the encouraging results, 
improvements in current force fields are expected, especially concerning:
•	 	 The bias towards the native structure of IOPs – that misrep-

resents the disorder of IDPs [14], [15]. The reason for this bias is 
quite simple: historically parameters were tuned employing data from 
IOPs and consequently current force-fields tend to hyper-stabilize 
secondary structures forms (i.e helices) and collapsed structure. Im-
proved solvent models has been recently employed to recover the cor-
rect compactness of IDPs [16], [17].

•	 	 The lack of polarization to correctly redistribute the electronic 
cloud around each atom in response of changes in environment, an 
essential feature to model bond breakings or metal binding. Current 
force-fields instead assume a fixed partial charge q assigned to each 
atom type [18].

•	 	 The lack of other quantum effects (charge transfer among others) 
that imply a change in the intrinsic properties of atoms, even of the 
topology of the system depending on the environment.

Bearing in mind these caveats is fundamental to discern the relevant con-
clusion that can be extracted from MD simulation and discard others. 
In general comparative studies that focus on qualitative trends; employ 
several force fields or complement experimental data can overcome these 
issues.
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2.6. Protein solvation

Beside the obvious importance for protein parameters, other funda-
mental entities need to be treated explicitly – solvent and ions. Two pos-
sibilities exist to treat solvent and ions in MD simulations: i) implicit 
representations using models derived from continuum electrostatic theo-
ry and ii) explicit representations where solvent and ions are represented 
at the same level of detail than protein atoms. I will limit the explanation 
here to explicit solvent models, those that have been used in this thesis.

Efforts have been made to accurately parametrize water, the most com-
mon and important solvent. Two of the most common model have been 
introduced in the early 80s (SPC [19] and TIP3P [20]). Both models 
posses three interaction points corresponding to the three atoms of the 
water molecule, very similar fixes charges and the same OH equilibrium 
bond length but they differ in the Lennard-Jones parameters and equi-
librium HOH angle. In my studies I employed the model TIP3P (trans-
ferable intermolecular potential 3P), compatible and included in all the 
used force fields. 

Parameters for non-standard solvents, such as urea or polyethylene 
glycol (PEG), are unlikely to be part of the standard package of force-
fields; however scientific literature offers several references to correctly 
parametrize those molecules, the selected parameters were then adapted 
to the force-field format (Figure 2.5).

Urea parameters: several models for urea molecule exist; in this work 
we selected three models, one for each forcefield family that we have 

C OH
NH NH

O

H
C

C
O

n

PEGUREA

Figure 2.5. Urea and PEG chemical structures. In the structure,the atoms and 
bonds whose parameters are necessary to correctly described the two mole-
cules in force-fields.
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used.  In OPLS we implemented the parameters developed by Smith 
and coworkers using the Kirkwood-Buff (KB) theory for solution [21]; 
in PARM99 the Caflish -Karplus parameters derived in analogy with the 
amide of asparagine and glutamine sidechains [22]; and in CHARMM 
the parameters developed by Caballero-Herrera & Nilsson, again in anal-
ogy of asparagine sidechain and fitted to the non empirical intermolecu-
lar potentials for urea-water systems [23], [24].

The three models differ mainly on the charged distribution and conse-
quently on the dipole moment, as shown in Table 2.1.

PEG parameters: PEG is a water-soluble straight chain polymer com-
posed of repeating ethylene oxide monomeric units (Ch2-Ch2-O). We 

Partial Charge PARM99 CHARMM OPLS

O -0.510 -0.502 -0.390

C 0.510 0.142 0.142

N -0.620 -0.569 -0.542

H 0.310 0.333 / 0.416 0.333

Dipole Moment 4.85 D 5.27 D 4.65 D

Table 2.1 Urea models. Partial charges and related dipole moments for the 
three urea models used in this work.

chose to use the Fischer et al. TraPPE-UA parameters since they were 
already successfully tested in the PARM99 forcefield and GROMACS 
[25], [26]. We treated the beginning and end hydrogen atoms like meth-
yl/methylene groups, with a +0.25 electric charge and the equivalent 
non-bonded parameters for a hydroxyl hydrogen from the TraPPE-UA 
forcefield (Transferable Potentials for Phase Equilibria)[27]. PEG pa-
rameters are often derived from those of dimethoxyethane (DME), since 
both molecules share a common backbone of C – O – C and C – C – O 
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bonds. The DME parameters were optimized to reproduce the experi-
mentally observed backbone torsional conformations in aqueous solution.

As we have seen before, the periodic boundary condition imposed a unit 
cell of the system with a box shape, often a cuboid or a dodecahedron. The 
solvation consists on placing the protein structure inside the box and fills 
it with solvent molecules or with the solvate module. The solvate module 
is a smaller box filled only with solvent molecules at the desired condi-
tions, i.e. concentration; for example the modules used here are the urea 
aqueous solution at 8M and the PEG solution at 200 g/l. Ions, usually in 
the form of sodium chloride, are also added to preserve the neutrality of 
the system.

2.7. Moving through the conformational space: the algo-
rithm

Force fields allow calculating the forces acting on each atom given a 
structure with atomic position x, since the force F is the negative gradient 
of the potential energy E:

However this static picture becomes alive only when velocities come 
into play; initially they can be randomly assigned from a Maxwell-Boltz-
mann distribution that depends on the temperature. The movement of 
the atoms can,then, be simulated by numerically solving the Newton’s 
law of motions:

where v and x  are the velocities and the positions at time t while m are 
the masses. An iterative, step by step numerical integration is used to ob-
tain an approximate solution: the integration is broken down into many 
small stages, each separated by a fixed interval of time ∆t, the simulation 
timestep, during which the forces are assumed to remain constant. A re-
view on the major algorithm employed nowadays can be find here [28] 
and a more extensive explanation, together with further details, can be 
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found in textbooks such as [29], [30]. Here I simply the topic stressing 
only that the repetition of this step form a trajectory along time, similarly 
to a moving picture composed by several still images. When frames are 
visualized together, the outlook reminds of the high-speed photography 
developed in the 50s by Harold Eugene Edgerton using the stroboscope 
(Figure 2.6). 

While MD simulation uses the integrations of velocities at each time 
step, the “strobe” uses brief repetitive flashes of light that freeze subse-

Figure 2.6. Frames of dynamic motions. High-speed photography, devel-
oped by Edgerton, creates still images of a motion (for example, the jump rope 
on the left). Similarly, MD alghoritm calculates the movements of a protein in a 
step-wise manner (on the right).

quent still images. In both cases the frequencies of recorded frames affects 
the final image: when a vibrating object is observed at its vibration fre-
quency (or a multiple), it appears stationary. Thus the fast vibrations limit 
the resolution of both stroboscope and MD simulations. In the context 
of molecules the fastest motion (under the femtosecond) occur in bonds 
involving hydrogen. Those bonds vibration are irrelevant at biological lev-
el hence they can be frozen by means of specific restrained algorithms 
among which we can recall SHAKE [31], its modification RATTLE 
[32] and LINCS [33], all of them based on the use of Lagrange multipli-
ers. Longer timesteps (2 femtosecond) then can be applied enhancing the 
time reachable by MD simulation. 

By integrating the Newtonian equations of motion, energy is conserved 
producing a microcanonical ensemble, where, the number of particles N, 
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the volume V, and the total energy E are kept constant (NVE ensemble). 
Experiments on the other hand are often conducted at constant tem-
perature and/or constant pressure. Therefore MD simulations are often 
performed in other ensembles such as the canonical ensemble (NVT), 
where the temperature is kept constant while the total energy can vary, or 
the isothermal–isobaric ensemble (NPT), where both temperature and 
pressure are kept constant and allowing the volume to change. Again for 
a deeper overview on the most common thermostat and barostat used 
in MD simulations the reader is referred to [28]. Most of the technical 
details depends on the software used to perform the MD simulation. In 
this work I employed several programs: the open sources codes NAMD  
(Nano scale Molecular Dynamics) [34] and GROMACS (GROningen 
Machine for Chemical Simulation) [35]; and the licensed package Ace-
MD [36]- a counterpart of NAMD compatible with graphics processing 
units (GPUs). For the exact specification on each project we referred to 
the method section of each publication (Chapter 4 and 5).

The solvated, electroneutral system is not yet suited as starting structure 
for MD simulation. The structure extracted from PDB might suffer from 
steric clashes or bond-angle deformations and the addition of solvent 
molecules and ions might have introduced further van der Waals over-
laps. The system is generally relaxed through an energy minimization. 
As we have seen, the energy landscape of an IOP has a funnel like shape 
with a global minimum and a very large number of local minima. Given 
a starting configuration, it is possible to find the nearest local minimum 
that can be reached by systematically moving down the steepest local gra-
dient of the energy [37].  Following minimization, the system still needs 
some refinement: it has to reach the desire conditions (temperature and 
pressure) and it can still contain unphysical arrangements due to the in-
correct solvent placement around the protein. An equilibration run, then, 
is usually performed prior to the actual production run for data collection. 
At this phase position restrains are applied to the protein structure allow-
ing the solvent molecules to re-orient and move to find a more natural 
positions with respect to one another, and to the protein. Once the sys-
tem is well-equilibrated at the desired conditions, the position restraints 
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are released and the MD run for data collection can begin, following 
the iteration steps described in the previous section. During an MD run, 
the protein is exploring a portion of its energy landscape depending on 
the starting position (where the ball is placed in the landscape) and the 
assigned velocities (the push). Indeed copies of the same structure that 
differ only in the starting velocities might lead to different trajectories. 
When many possibilities exist for the starting conformation, as is in the 
case of an ensemble of structure, calculations can be performed in paral-
lel using a variety of starting structures (See Section 4.1 ). Despite there 
are many sophisticated methods to enhance the sampling, such as repli-
ca-exchange molecular dynamics or metadynamics [38], in the second 
project (Section 4.2 ) we simply enhance the sampling abilities of MD 
simulations by employing a mildly higher temperature, which has the ef-
fect to lower the barrier between minima and encourage conformational 
exchange (see Figure 2.7).

energy
minimization

MD sampling

MD sampling

High-temperature effect

MD sampling of the energy landscape

Figure 2.7. MD sampling of the energy landscape. The sampling of a sin-
gle MD simulation on the energy surface (cross-section) is represented by a 
magenta line, and the starting conformation as a ball on the surface. While 
minimization will inevitably make it fall to the closest local minimina, MD can 
cross certain barriers. The stochastic nature of simulation can lead the sampling 
towards different sides of the energy landscape (on the right). On the bottom: 
high temperatures smooth the energey barriers and can be use to increased 
the sampling capabilities of simulations.
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 CHAPTER 3 

 Little handbook for the analysis 
of MD simulations

“Definition belongs to the definers, not to the 
defined”

 Toni Morrison, Beloved

The outcome of an MD simulation is a trajectory with the positions 
and velocities of every atom of the system available at each time step. This 
enormous set of data needs a careful data mining, which relies on relevant 
observables  and suitable descriptors for the given objectives. In the case 
of this thesis, which focus on changes in the protein features that depend 
on the environment, several tools were used, first, to define a control state 
and, second, to approach and quantify the change in i) protein structure; 
ii) protein dynamics and ii) interactions with the solvent. In this section I 
will review the main analysis, which are often common to all the projects.
When possible I will point to a specific figure in the publications (#P1 
for Publication 1, Section 4.1; #P2 for Publication 2, Section 4.2; and 
#P3 for Publication 3, Section 5.1)
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3.1.  Observables of protein structure

RMSD – Root Mean Square Deviation 
RMSD quantifies the structural difference of a structure X with respect 
to a reference structure X0. To appropriately calculate the RMSD the two 
conformations X and X0 need to undergo to a structural superposition. 
This can be done via a simple least-squares fitting algorithm that finds 
the optimal rotations R and translations T to minimizing the sum of the 
squared distances among all structures. Subsequently the RMSD can be 
calculate according to:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = min
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where xi and xi
0 are the coordinates of each of the N selected atom re-

spectively in conformation X and in the reference structure X0. RMSD 
efficiently condense the behavior of a structure and it can be applied in 
several ways: i) RMSD values calculated over time and against a single 
reference structure (i.e. the starting structure or PDB) can identify ther-
mal fluctuations  (within 3 Å) or conformational changes (larger values). 
For the latter i.e. folding/unfolding transition, the RMSD calculated for 
backbone atoms is mostly relevant; (#P1 Fig 1A and 1B; #P2 Fig 1, 3, S1, 
S2, Tab S1, S2, #P3 Fig S4) ii) the average RMSD calculated in shorter 
time windows (time lag i.e. from 2 ns up to 200 ns) and using the first 
structure in that window as reference instead gives insight on protein 
mobility on shorter timescales (#P2 Fig S4B); iii) the all-against-all dis-
tribution of RMSD values (pairwise RMSD) calculated for an ensemble 
of structures can quantify the structural diversity and be employed in the 
clustering  of structures (#P1 Fig S5).

TM Score – Template Modeling Score
The TM-score [1] captures similarity between proteins with different ter-
tiary structure, measuring the global similarity and relying less on local 
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structural variations. Therefore it offers a more accurate measure for large 
conformational changes of the same protein (i.e. folding / unfolding tran-
sition) than RMSD.

TM-score =
1
𝐿𝐿

1
1 + 𝑑𝑑!!/𝑑𝑑!!

!!"#

!!! !"#

	
  

where L and Lali are the lengths of the target protein and the aligned 
region respectively; di is the distance of the i-th pair of residues between 
the two structures; the ‘max’ implies the procedure that maximize the su-
perposition matrix; and d0  is defined as 𝐿𝐿 − 15! − 1.8	
    to normalize the 
average TM-score to become independent on the size of the protein. In 
this way the TM-score assumes values between (0,1] where 1 indicates a 
perfect match between two structures. Generally scores below 0.20 cor-
responds to randomly unrelated structures whereas score higher than 0.5 
assume structures with the same fold (#P2 Fig 1, 3, S1, Tab S1, S2) [1]

RGYR – Radius of Gyration
The radius of gyration gives a rough measure for the level of compaction 
in the structure. It can be calculated using the distances between each 
atom and the center of mass:

𝑅𝑅! =
𝑟𝑟!!! ∙   𝑚𝑚!
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where mi is the mass of atom i and ri the position of atom i with respect 
to the center of mass of the molecule. For examples see #P1 Fig 1C; #P2 
Fig 1, 3, S1, Tab S1.

SASA - Solvent Accessible Surface Area
As clearly stated by its name, the SASA is the portion of the surface 
area of a biomolecule that is accessible to the solvent. SASA was first 
described by Lee & Richards in 1971 and is traditionally calculated us-
ing the ‘rolling ball’ algorithm [2]. Indeed one of the software used here 
(NACCESS [3]) uses a probe of given radius rolled around the surface 
of the molecule, the path traced out by its center is the accessible surface 
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(Figure 3.1). Typically, the probe has the radius of a water molecule (1.4 
Angstroms) and hence it is referred as solvent  ASA. Thin slices through 
the 3D molecular volume are used to calculate the accessible surface of 
individual atoms, the thinner the slices the higher the accuracy (#P2 Fig 
1-3, S1, S3). A more computationally efficient procedure is implemented 
in the standard analysis package of GROMACS (g_sas) and it computes 
hydrophobic, hydrophilic and total solvent accessible surface area using 
the double cubic lattice method [4] (#P3 Fig 3).

PROBESolvent 
Accesible 
Surface

Protein
SurfaceProtein

Atoms 

Figure 3.1. Calculation of SASA. The solvent accessible surface (blue line) de-
fined by a probe (in magenta in two sample positions) rolling over the molecule 
atoms (yellow).

SS - Secondary Structure detection
Computational algorithms can apply the same logic used by Linus Paul-

ing (Section 1.6 ) to predict the secondary structure of a protein based on 
its atomic coordinates. Two software packages are widely used to assign 
SS, DSSP and STRIDE, the latter has been selected here because its 
assignments are based on both the detection of hydrogen pattern and the 
values of the backbone dihedrals [5], instead DSSP rely solely on hydro-
gen bonding pattern [6]. The assignment function in STRIDE has an 
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hydrogen-bond term containing a Lennard-Jones like 8-6 distance-de-
pendent potential and two angular dependence factors reflecting the pla-
narity of the optimized hydrogen bond geometry  and a more detailed 
explanation of the method is available in [5]. The output of STRIDE as-
sign each residue to one of, the main SS categories are described in Table 
3.1. In addition, if a helix or sheet is too short, the residues involved are 
designated as turns or bridges, respectively. Everything that doesn’t fit in 

HB Dihedrals {φ,ψ} Minimum length

Alpha helix i+4→i −60, −50 4

310 helix i+3→i −50, − 25 3

PI-helix i+5→i −60, +125 5

Beta-sheets Between strands
−120, +115 or 

−140, +135
2

Table 3.1 Criteria for secondary structure assignments in STRIDE. Hydro-
gen bond (HB) connectivity for the i-th residue; its backbone dihedrals; and the 
minimum number of subsequent residues needed to form a structural element.

the categories above is designated as random coil. 
The assignment of SS in a MD trajectory can be visualize in a plot time vs 
sequence in which each SS element has a specific color code, however for 
long trajectory the delivered information becomes cryptic and confusing. 
Therefore here I often summarized the SS data either in tables or in a plot 
sequence vs frequency, in which for each residue the frequency in which 
it adopts a SS element is reported. Values are generally grouped together 
for each type of helix and each type of beta-sheets to allow a direct com-
parison of the two main types of SS (#P1 Fig 3A; #P2 Tab S3; #P3 Fig 
S8). The low resolution of such representation however hides important 
details such as the effective length of helices. For example, it is possible to 
resolved such information calculating for each helical element its length 
and starting residue.

CM – Contact Maps
The contact map is a powerful tool to detect the local rearrangements of 
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a protein: it visualizes the pairwise distances between residues (intra-pro-
tein or inter-protein in the case of protein complexes) either through 
a binary code (1 contact, 0 no contact, see #P2 Fig 6, #P3 Fig S1) or 
through a color code proportional to the frequency in which two residues 
are found in contact -the latter is mostly used with MD trajectories or 
ensemble of structures. In this work two residues are defined in contact 
when the distance between their C-alpha is smaller than 10 Å (#P1 Fig 
4, #P2 Fig 6, #P3 Fig 2, S1, S6, S7 and for inter-protein contacts #P3 Fig 
S9, S10). In the case of IOPs the specific network of contacts between 
proteins residues creates a unique and reduced representation of the na-
tive structure (Figure 3.2). For example from the contact map some of 
the secondary elements are already recognizable: helices are identified by 
strips directly adjacent to the diagonal while beta-sheets appear as parallel 
or perpendicular (anti-parallel) lines to the diagonal. More interestingly, 
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CM provides a direct, coarse-grained, and robust picture of the global 
fold of the protein, which is especially useful to characterize large confor-
mational changes. 

The definition of native features in IOPs 
The concept of native structure applies exclusively to IOPs and it is tra-

Figure 3.2. The contact map of the protein ubiquitin. Each structural ele-
ment (B for beta strand, H for alpha helix, h for 310 helix) is shown along the 
protein sequence, its position in the 3D structure and in the 2D contact map.
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ditionally defined as the structure (atomic coordinates, contact and sec-
ondary structure elements) determined experimentally and deposited in 
PDB. However the frozen picture of the native structure obtained from 
PDB can be improved adding information about the fluctuations around 
that structure, which are defined by MD simulations starting from the 
PDB reference structure. According to this dynamic definition of native 
structure:
•	 The native contacts and native secondary structure are defined as 

those present more than 80% of the time in the control simulation.  

•	 The native protein core is defined by residues that exhibit a stable 
“buried” pattern in the control simulation: only residues with an aver-
age SASA and a standard deviation below the threshold of 10 Å2 are 
part of the protein core, regardless of their hydrophobic nature (#P2 
Fig 4A). 

The definition of such reference features is essential to make the right 
comparison. For example the protein native contacts can be lost during 
large protein transition i.e. the protein unfolding; CMs visualize where 
these rearrangements are located but for a more precise description a defi-
nition of lost contacts is needed. Here I defined a lost contact when it 
faces a reduction greater than 30% of the total simulated time - compared 
to the control simulation (#P2 Fig 6, S4A). 

In studying large transition, i.e. protein unfolding, a suitable coordinate 
to follow the progress is the fraction of native structure that persists at 
each time frame.  In this work the selected coordinate was the Structure 
Index SI defined as the sum of the existing fraction of native secondary 
structure S2 and the sum of existing native contacts S3 as in [7] (Figure 

% native contacts (S3)

% native 
SS (S2)

time (ns)

Structure Index (S2 + S3)
Evolution of unfolding

1000

500

0
0 40 80
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Figure 3.3. SI and unfolding. Both compo-
nents of the Structural Index decrease  along 
the unfolding simulation of a protein (PD-
B:1CQY). 
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3.3 and #P2 Fig 1, 3). This metric is extremely useful to compare the de-
gree of unfolding experiences by different protein because it is indepen-
dent on the size and the structural features of each system.
Bi-dimensional map to overview the protein sampling 
When analyzing a large ensemble of structurally different conformations 
of the same protein, i.e. IDPs or conformational changes of IOPs, we 
need an appropriate visualization of the explored portion of the energy 
landscape (sampling). Here I often employed bi-dimensional maps that 
project two variables over time or according to their contingent frequen-
cy. In each case the observables should be carefully chosen to discern the 
relevant features of the dynamic ensemble under study. For example a plot 
with the Rgyr/SASA resolves the compactness of the explored structures 
(#P1 Fig 2, S6); the ∆SASA/SI  plot allows to follow the opening of the 
structure during several unfolding transition  (#P2 Fig 2); similarly to 
the plots with Rgyr/RMSD and SASA/SASA-Polar, which allowed to 
compare the outcome of simulations of the same protein but in different 
environments (#P3 Fig 3, Fig S5). Two variables related to the relative 
3D positioning of helices were also used to follow the sampled structural 
arrangements in different environments (#P3 Fig S3)

Clustering
Clustering method can distill the salient structural feature while reducing 
the dimensionality of the trajectory and are very useful to condense struc-
tural information obtained in complex trajectories. Clustering detects 
easily the most common conformations and the rare ones that otherwise 
would be difficult to discern from average values. For example gromos [8], 
the algorithm used in this work, divide the conformations, regardless of 
when and where they occur, in sub-groups (clusters) based on their struc-
tural similarity - measured by the RMSD. The pair-wise RMSD of all 
the conformations is used to create a neighbors network: two structures 
are neighbors if their RMSD is below some user-defined cutoff. The con-
formation with the largest number of neighbors is the central member, 
or centroid, of the cluster whose properties are assumed to represent the 
entire group. All of its neighbors are then removed and the iteration is re-
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peated for the remaining structures in the pool. The number of centroids 
that the clustering returns is sensitive to the RMSD cutoff: the larger the 
value, the fewer the identified clusters. For example in one of the proj-
ects presented here I used a two-steps clustering: first a cutoff of 1.5 Å 
was applied on separated trajectories and later a 3.5 Å cutoff on a joint 
ensemble of several trajectory with the aim to recognized commonalities 
(#P3 Fig 1, S2). The time-resolved output of a clustering can be used also 
to monitor conformational changes, as explained in the following section.

3.2. Observables of protein dynamics

Local Level

RMSF - Root Mean Square Fluctuation
The RMSF quantifies local changes along the protein chain: it gives the 

average fluctuations (deviations of the position) over time for each atom 
–RMSD instead gives the time resolved average over all the particles. For 
each atom i:

𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹!   =
1
𝑇𝑇 𝑥𝑥! 𝑡𝑡 − 𝑥𝑥! !

!

!!!

  

	
  

 
where T is the overall trajectory time, t is the selected time frame, xi is 

the position of atom i after superposition on the reference structure, and 
<xi> is the average reference position over time T. Usually in a protein 
the tails (N- and C-terminal) fluctuate more than any other part while 
secondary structure elements tend to be more rigid than the unstructured 
parts. The RMSF of the protein can also be correlated with the experi-
mental x-ray B-factor (or temperature or Debye-Waller factors) via the 
equation: 

𝐵𝐵   =   8𝜋𝜋!
𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹!

3 	
  

Similarly to RMSF, B-factors are defined as a measure of spatial fluctu-
ations of atoms around their average position. They can be obtained not 
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only from MD simulations, but also from crystal data. However, exper-
imental values include effects of noise due to refinement errors, lattice 
defects, crystal contacts, and rigid-body motions and an exact correspon-
dence between simulated and experimental values should not be expected 
(#P2 Fig 6, S4D). As for RMSD, the group of atoms used for the super-
imposition and for the RMSF calculation can differ. For example, during 
large transition that critically affect the backbone a protein superimposi-
tion will fail to grasp local motion – in this work I instead calculated the 
RMSF of each side-chain after aligning the structures based solely on the 
backbone atoms of the same residue (#P2, page 4, line 12; #P3 Fig S6, S11 
and Tab S1). This metric allows quantifying the local motion experienced 
by each residue, independently from the global structure rearrangements.

Contact disruption and exploration
Contacts experience fluctuation in the form of brief opening events. Here 
the inter-atomic distance is used to distinguish two conformations:  open 
when the minimum distance between two heavy atoms is larger than 5 Å 
and closed when it is smaller than 4 Å. In this work the focus was on the 
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Figure 3.4. Contact dynamics. The distance between two residues is used to 
define when the contact is open (> 5 Å) or closed (<4 Å), marked by the blue 
and the magenta lines, respectively. The bold blue line on top defined the time 
interval where the contact is considered as open. 
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average opening time, the moonlight zone between 4 and 5 Å is consid-
ered a neutral area in which the contact assume the conformation of the 
previous frame to avoiding over detection of fast noise movements [9]
(#P2 Tab 2, Fig S4C ). 
It is useful in the context of trajectories involving large conformational 
changes to evaluate the portion of all the possible intra-protein contacts 
that have been explored during the MD simulation. Here I simply de-
fined a contact as explored, when it is present for more than a frame in 
the trajectory. The amount of the explored contacts among all the possi-
ble ones (n2-n , with n the number of residues) can be used to quantify 
the conformational plasticity that a protein experience. It is also related 
to the fuzziness observed in the contact maps: the larger the amount of 
contacts explored, the fuzzier the contact-plot, which imply a prevalence 
of transient contacts and a larger structural plasticity (#P3 Fig 6, S11 and 
Table S1).

•	 Global Level

Conformational entropy
The conformational entropy is associated with the number of conforma-
tions explored by a biomolecule and depends on the complete energy 
landscape of a molecule and it is defined in terms of probabilities of to 
occupy an individual conformation of a molecule (microstate). The con-
formational entropy is:

𝑆𝑆  ! = −𝑘𝑘! 𝑝𝑝!
!

ln 𝑝𝑝! 	
  

where kB is the Boltzmann constant and pi is the probability of occupancy 
of each microstate. Entropy cannot be calculated as a simple average from 
an MD simulation but it needs an extensive sampling of all the degrees 
of freedom. However a reasonably long MD trajectory can be used to 
estimate the upper limit for the configurational entropy SC for conforma-
tion C. One of the most widely used methods is the quasi-harmonic ap-
proximation [10], which assumes that atomic fluctuations have a Gauss-
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ian distribution. This is the best bet because it has the highest entropy 
among all the statistical models with the same variance. A mechanical 
model that reproduced Gaussian-distributed coordinate displacements is 
the harmonic oscillator .Within this approach potentials are fitted on the 
observed coordinated covariance σ, smoothing over any anharmonicity:

𝑆𝑆  !   =
1
2   𝑛𝑛𝑘𝑘! +  

1
2  𝑘𝑘!   ln[ 2𝜋𝜋

!𝜎𝜎]    

	
  
The input data is the covariance matrix σ of atomic fluctuations extracted 
from the Cartesian coordinates of an MD simulation trajectory . For each 
of the 3N Cartesian coordinates, where N is the number of considered 
atoms, the individual elements in the (3N,3N) covariance matrix are:

𝜎𝜎!,! =    (𝑥𝑥! −  𝑥𝑥!)(𝑥𝑥! −  𝑥𝑥!) =   
(𝑥𝑥!" − 𝑥𝑥!)(𝑥𝑥!" − 𝑥𝑥!

!"
!!! )

(𝑁𝑁! − 1)𝜎𝜎!𝜎𝜎!
	
  

where the covariance σi,j  measures how much the two i-th and j-th 
coordinates xi,xj  deviate together in reference of their pre-calculated av-
erage coordinate x; and <...> denotes the average across the considered 
frames or trajectory. GROMACS standard package easily implement en-
tropy calculation using a two-step procedure: first it calculates the covari-
ance matrix and then estimates the entropy based on the quasi harmonic 
approach. This approach was employed in to calculate values in #P3 Fig 
6; S11 and Table S1.

Time lapses for reconfigurational events 
The time-resolved output of a clustering (each frame has an associated 
cluster, see Section 3.1 for an explanation) provides valuable information 
to evaluate the time lapses between conformational changes. Here, we 
assumed that when two sequential frames belong to different clusters a 
reconfigurational event has occurred; with this information in hand it 
then easy to extract the average time between conformational changes. 
Such information quantifies the frequency of structural rearrangements, 
which then can be used to compare simulations in different environments 
(#P3 Fig 6; S11 and Table S1). The number of reconfigurational events is 
independent on the number of clusters since a change in cluster only need 
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a minimum of two options.

3.3. Protein and the solvent 

FSS – First Solvation Shell and Bulk
The molecules surrounding the protein behave differently from those in 
pure solvent. Thus, two groups of solvent can be then defined in a simula-
tion: the first solvation shell (FSS) is formed by solvent molecules within 
5 Å from the protein; the bulk instead by molecules that lie at a distance 
from the protein larger than 6Å [11] (#P1 Tab 2, Fig S1A ; #P2 Tab 3).  

Identification of protein/solvent contacts
To evaluate the contacts that solvent molecules can form with protein 
residues, I used a criterion based on atomic distance: a contact is formed 
when at least two heavy atoms belonging to each molecule are closer than 
3.5 Å (#P2 Fig 5, 6, S6, #P3 Fig 5,6). Contacts can then be easily grouped 
according to i) the nature of the residues involved (polar or apolar); ii) the 
portion that forms the contact (sidechain or backbone) and iii) the posi-
tion in the native structure (part of the native protein core or not). Once 
these contacts are defined other solvent features can be easily extracted, 
for example the ratio of apolar/polar contacts (#P1 Tab 2, Fig S1, #P2 
Tab 3, Fig S5A) or the residence time of a solvent molecule around the 
protein (#P2 Fig 4B). Among all the contacts, the peculiar nature of the 
hydrogen bonds allows to identify them with a simple geometrical crite-
rion: a cutoff of 3.5 Å for the distance between the two electronegative 
atoms (the donor and the acceptor) and 120º for the angle between the 
donor-hydrogen and the acceptor (#P1 Tab 3, #P2 Tab 4, S4). 

When two or more co-solvent types are present, the contact prefer-
ence with either one co-solvent or the other can be quantified with the 
Contact Coefficient (CC). Here I specifically employed this metrics to 
evaluate solvation of proteins by urea and water molecules (CCUW ) [12], 
defined as:

CCUW =
NXU
NXW

·
MW
MU
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where NXU  and NXW  are the numbers of atomic contacts of amino acid 
X with urea and water molecules, respectively. CCUW  is normalized using 
the total numbers of atoms belonging to urea molecules MU  or to water 
molecules MW  in the system. A contact coefficient of 1 means that the 
amino acid has no contact preference for one of the co-solvents; values 
above 1 indicate preferential interaction with urea while values below 1 
with water (#P1 Tab 2, Fig 3B, S7, #P2 Fig 4A).

Figure 3.5. Bond critical points. 
Contour map of the electron den-
sity. The atomic symbols in denote 
the positions of the nuclei; yellow 
spheres the bond critical points and 
black lines the bond paths.

Energetics of hydrogen bonds (HB):  Atoms in Molecule (AIM)
To evaluate the strength of different hydrogen bonds a deeper analysis of 
the HB structure is needed.  The quantum theory of Atoms in Molecule 
(AIM), pioneered by Richard Bader [13], comes in hand by considering 
a bond as a 3D entity, the topology of which quantifies its physical and 
chemical properties. A powerful observable is the spatial topological de-
composition of the electron density ρ(r). According to AIM theory the 
electron density ρ(r) is at maximum at the atomic nuclei, which allows to 
clearly identifies the atomic position; chemical bonds can then be easily 
traced to unite the atomic nuclei. The saddle point, the minimum in elec-
tron density ρ(r), along the bonding direction identifies the bond critical 
point. In non covalent interactions, such as the hydrogen bond, the prop-

O

C

C

C

O
H

Critical Point
erties of the density field at the crit-
ical point, i.e. the density itself or 
its Laplacian1 , are proportional to 
the strength and the energy of the 
corresponding interaction [14]. In 
this work I compared the strength 
of several HB between the protein 
backbone and the solvent mole-
cules, by evaluating the electronic 

1   The scalar derivative of the gradient 
vector field of the electron density. It de-
termines where electronic charge is locally 
concentrated (negative values) and depleted 
(positive values).
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Energetics of solvent interactions
A post processing procedure allows calculating the interactions energies 
between two subgroups of molecule in a MD trajectory. Similarly to an 
MD run, the forces can be computed following the same pairwise equa-
tion given in Chapter 2. In my projects I calculated the electrostatic and 
Van der Waals energy contribution between each solvent molecule and 
the rest of the system, taking into account the relative position to the 
protein (FSS or bulk) at each frame. The comparison of the interaction 
energy distribution for all the molecules in the FSS, influenced by the 
presence of the protein, and in the bulk gives insights on the preferential 
and more favorable interactions with the protein [11](#P1 Fig S8, #P2 
Fig 5; 6, S5B).

Solvent diffusion and MSD – Mean Square Displacement 
The collective motion of all particles in a fluid is termed diffusion and its 
quantified by the diffusion coefficient. This macroscopic property relates 
to the microscopic thermal motion of individual molecules and relates 
with their average motility quantified in the mean square displacement 
MSD: 

MSD = ∆𝑟𝑟 𝑡𝑡 ! =
1
N

𝑟𝑟! 𝑡𝑡 − 𝑟𝑟! 0
!

!

!!!

	
  

Where ri(t) and ri(0) are the position of particle i at time t and at the 
reference time 0, respectively.  For molecules consisting of more than one 
atom (i.e. solvent molecules or even proteins), ri  can be taken as the cen-
ter of mass positions of the molecules. Albert Einstein, in his PhD thesis, 
derived a relationship between the macroscopic D diffusion coefficient 
and the microscopic behavior collected in the MSD [15]: 

lim
!→!

∆𝑟𝑟 𝑡𝑡 ! = 6𝐷𝐷𝐷𝐷	
  

distribution at their critical points. The structure were first extracted by 
MD simulations runs and geometrically optimized by QM calculation 
from which electron densities are derived (#P1 Tab 4).
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After calculating the MSD in different time windows (n), the diffusion 
coefficient D can be derived from the slope of the fitting line. Generally 
only the last half of values is used for the fitting, since the Einstein rela-
tion is valid as time approaches infinity (#P2 Fig S5C; #P3 Table 1).

3.4. Comparison with experimental observables

NMR observables were used to validate the MD trajectories by back 
calculating values from the MD ensembles and compared to the experi-
mental ones. In the first project we relied on two NMR high-resolution 
observables and one at low resolution (SAXS) (#P1 Tab 1, Fig S2-S4):

1.	 J-couplings, calculated from the dihedral angles through the Kar-
plus equation [16]:

𝐽𝐽  ! !"!!" =   6.4 cos! 𝜃𝜃 − 1.4 cos 𝜃𝜃 +   1.9	
  

where θ is the dihedral angle between H-N-Cα-H  atoms and the co-
efficients used, usually dependent on the atoms and substitutes involved, 
are those suggested by [17] for the protein backbone. The superscript 3 
indicates that the amide proton (HN) is coupled to the proton of the Cα 
(Hα) three bonds away, via H-N-Cα-H bonds.

2.	 RDC depends on both the geometry of the nuclei and also the 
degree and direction of alignment of the molecule with respect to the 
laboratory frame, which depends on its structure and the mechanism by 
which alignment is induced. This information is contained in the align-
ment tensor A, with elements Aij, which is a traceless and symmetric 3 × 3 
matrix defined by five independent elements that are, in most cases, un-
known and need to be determined empirically. RDCs are back calculated 
using the equation:

𝐷𝐷calc =  −  
𝜇𝜇!𝛾𝛾!  𝛾𝛾!ℎ  
8𝜋𝜋!𝑟𝑟!    𝐴𝐴!"   cos𝜙𝜙!   cos𝜙𝜙!  

!"

	
  

where i,j are the two nuclei, μ0 is the magnetic susceptibility of vacuum, 
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γX is the gyromagnetic ratio of nucleus X, h is Planck’s constant, r is the 
internuclear distance, and ϕi is the angle between the internuclear vector 
and axis i of the molecular reference frame where Aij is defined.

3.	 SAXS (Small Angle X-ray Scattering) experiment employs an 
X-ray to provide information about the fluctuations of electronic den-
sities in the matter. The output is a curve that registers the scattering 
intensity I(q) upon variation of the scattering angle and it contains infor-
mation in the reciprocal space on the structure of the object in solution, 
carrying information about shape and size of macromolecules. Software 
like CRYSOL [18]calculates the scattering curve from the structure of 
macromolecules (i.e. pdb files) and it fits the theoretical scattering curve 
to the experimental one by minimizing the discrepancy (chi-square val-
ue).
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 CHAPTER 4 

Protein unfolding in urea-
aqueous solution

“Arriving at one goal is the starting point to 
another” 

John Dewey

 “The compact and crystalline structure of the natural protein molecule, being 
formed by virtue of secondary valences, is easily destroyed by physical as 
well as chemical forces. Denaturation is disorganization of the natural protein 
molecule, the change from the regular arrangement of a rigid structure to the 
irregular, diffuse arrangement of the flexible open chain.”

Hsein Wu - 1931

Hsien Wu, a Chinese biochemist, was the first to define the denatured 
state of protein at structural level [1]. Despite so, denaturation became 
a widely known concept only after Mirsky and Pauling presented very 
similar ideas in a milestone article in 1936 [2]. The definition of the un-
folded state is a troublesome task due to its elusive nature; it can be sim-
ply regarded as major changes in the structure of a protein which leave 
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its primary sequence intact but prevent the protein from performing its 
function [3]. The unfolded/denatured state is not a single entity, rather is 
formed by many conformations with little native tertiary and secondary 
structure. The unfolded protein is then high in both conformational en-
tropy and free energy. In fact, in the protein landscape, these conforma-
tions correspond to points that become sampled only after perturbations 
of the physiological conditions [4], [5]. 

As we have seen in Chapter 1, protein stability depends on the en-
vironment, and specifically on changes for example in the temperature, 
pH, pressure, or in the solvent composition i.e. by adding denaturants to 
a large concentration (for example the standard denaturing solution of 
8M aqueous urea). At macroscopic level the folded and unfolded states 
of a protein coexist in a dynamic equilibrium, the portion of the popula-
tion that is folded is experimentally measurable by some conformational 
probe. For example, the secondary structure elements in a protein absorb 
circularly polarize light; the amount of absorbed light then, measured by 
Circular Dichroism –CD- spectroscopy, becomes a marker of the degree 
of foldedness in the protein ensemble. At structural level, the definition of 
the denatured “state” is, however, not trivial and depends on the solution 
conditions. Generally, unfolded conformations, under strong denaturing 
conditions, are described as highly open and solvent-exposed, with little 
residual structure; however very little is known about the structural details 
of the unfolded state and on the differences/similarities with the folded 
one. 

Many osmolytes become part of the standard tool-kit in biochemist 
laboratories as tools to address the stability of the native state of IOPs . 
For example, Anfinsen already employed urea in his seminal experiment 
about spontaneous folding; since then this denaturant has characterized 
the thermodynamic properties of many proteins, becoming one of the 
most popular ones [5]. Indeed the urea-induced unfolding transition is 
easy to follow over a population of the same protein that typically unfold 
in an all-or-none (cooperative) manner: aminoacid residues cannot be 
withdrawn from ordered region randomly and one at a time; instead the 
structure undergo to a “steep” transition which occurs within a narrow 
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range of concentration of denaturing agent.
In fact the fraction of folded proteins, measure for example by CD, de-

creases with the addition of urea in solution, following a typical sigmoidal 
curve (Figure 4.1). At the midpoint half of the ensemble is folded while 
the rest is unfolded and once the plateau is reached the transition is com-
plete. For most of the proteins a concentration of 8M of urea is enough to 
reach the completed transition to the denatured state. 

The folding/unfolding process then is then an equilibrium for which the 
equilibrium constant Kex can be extracted and consequently the difference 
in free energy ∆G between the folded and unfolded states follows the 
equation:

∆𝐺𝐺 = −𝑅𝑅𝑅𝑅 ln𝐾𝐾!"	
  

where R is the gas constant and T the absolute temperature. Employing 
urea in such experiments characterized hundreds of proteins; their ∆G 
usually falls within a narrow range between -5 and -15 kcal/mol. 
The thermodynamic description of folding leaves many open questions 
regarding the mechanism of action of urea, a subject that has been of-
ten debated in literature [7], [8]. Indeed experiments struggle in gaining 
atomistic insight on protein denaturation: the chaotic nature of the un-
folding process makes it difficult to interpret the ensemble measurements 
and to distinguish the multiple unfolding pathways. The high resolution 
of  MD simulations would easily overcome these issues but the typical 
millisecond timescale of the unfolding process is out of its reach.

Figure 4.1. The unfolding sigmoidal 
curve. Optical rotation of ribonuclease 
(left) and lysozyme (right) as a function of 
urea (full dots) and Guanidium Cloride (cir-
cles). Taken from [6]. The two denaturant 
agents exert similar effects but at different 
concentrations.



82 RESULTS

As seen in Chapter 1, experimental and theoretical studies both agree 
that urea integrates well into the hydrogen-bonding network of water 
leaving almost unaffected the solvent structure; as a consequence the sol-
vation term is reduced to the contribution of protein-solvent interactions. 
Indeed the “direct mechanism” theory states that protein-urea interac-
tions are the major driving force of protein unfolding. This theory brought 
with it a debate around the nature of such interactions and the involved 
protein moieties, cause by the ambivalent nature of the urea molecule, 
which bears both polar and apolar features.

Urea is a roughly planar molecule with one central carbonyl group C=O 
attached to two NH2 groups (Figure 4.2). The H atoms are sufficiently 
polarized by N, which becomes a good hydrogen donor in H-bonds. Sim-
ilarly the lone pair electrons on the carbonyl oxygen can accept one hy-
drogen bond as well.  No surprise then that hydrogen bonds were the first 
to be addressed as driving forces for urea-solvation; however dispersion 
interactions (also known as van der Waals attractive part, London forces 
or soft interactions) have quickly stolen the limelight; leading to a vivid 
discussion: it was easy to spot contrasting conclusions between results, for 
example [9] and [10]. The introduction of the two publications presented 
here focus indeed in presenting this topic.

To address the issue with a consistent approach, we set up a first project 
with the main objective to extract information, valid at proteome level, 
on the role of those two interactions (Section 4.2, Urea-MoDEL proj-
ect). While analyzing the data then other questions emerged and the 
scope was enlarged to include more specific analyses related to the end-
points of the folding/unfolding equilibrium: what is the exact nature of 
the urea-induced unfolded state of a protein? What is the role of urea in 

C

O

NN

Figure 4.2. The chemical structure of urea. 
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triggering the unfolding?  The two projects that I present in this chapter 
addressed those two questions independently, still keeping as leitmotif 
the protein-solvent interaction (Figure 4.3). The projects are ordered by 
year of publication; even in reality the Urea-MoDEL project (Project 2, 
Publication 2) was initiated before than the Urea-UBQ project (Project 
1, Publication 1). Despite the two studied systems are at the opposite side 
of the unfolding path, they do complement each other offering together a 
holistic view of the mechanism of urea-induced denaturation.

The first project (Section 4.1), in collaboration with the laboratory of 
Molecular Biophysics (Prof. Xavier Salvatella) at our institute aimed to 
characterize the urea-denatured state of ubiquitin, a small prototypical 
protein highly popular in nuclear magnetic resonance (NMR) studies. 

1 2
PROJECT 1

Unfolded Ubiquitin
PROJECT 2

Urea-MoDEL database

characterize the urea induced 
unfolded state of ubiquitin

role of urea in the early stages 
of unfolding

at proteome scale

decipher urea mechanism of 
action in promoting protein 

unfolding

C

O

NN

UREA
8M

UNFOLDED FOLDED

Figure 4.3. Overview of the two projects on urea-induced unfolding. While 
focusing on the opposite sides of the unfolding path, both projects keep as 
leitmotif the analysis of protein-solvent interactions and aim to understand the 
mechanism by which urea triggers the unfolding.
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We profit from Prof. Salvatella’s experience in representing unstructured 
proteins by refining their structure with NMR data: in analogy with 
IDPs, only an ensemble of conformations describes the heterogeneity of 
the chemically denatured ubiquitin. Prof. Salvatella provided us with the 
starting seeds to recreate by mean of MD simulation the correct urea /
unfolded ubiquitin system. After the validation against the available ex-
perimental observables, the ensemble generated by our atomistic MD 
simulations became very useful to dissect the nature of the unfolded state 
of the protein and its solvent environment.

The second project (Section 4.2) is a high-throughput study that 
aimed to overcome the heterogeneity of the unfolding pathway by col-
lecting simulations for all the most prevalent meta-folds in the Protein 
Data Bank (PDB). The analysis identifies common patterns that proteins 
experience during the early stages of the denaturation process. This sys-
tem not only allowed us to scale the results derived from the first projects 
to reach a proteome level but also to investigate the kinetic role of urea in 
trigger the unfolding.
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4.1. The urea-unfolded state of ubiquitin (Publication 1)
Our colleagues at the laboratory of Molecular Biophysics in our in-

stitute had developed a method to structurally characterize disordered 
proteins using RDC data as refinement. Its first application was on the 
protein ubiquitin, denatured in urea 8M (reference [30] in the article). 
The method, called ERIDU (ensemble refinement of intrinsically disor-
dered and unstructured molecules), finally overcomes the use of a single, 
average alignment tensor that, as discussed in Chapter 1, usually hampers 
the RDC refinement of flexible structures. The single tensor approach, in 
fact, neglects the rapid change in the shape, typical of unfolded proteins, 
which modifies the alignment with the laboratory framework. ERIDU 
instead efficiently computes the individual alignment tensor of each en-
semble member, leading to more accurate results. In the case of the un-
folded ubiquitin ERIDU allowed to select an ensemble of 100 structures 
that all together describe the denatured state of ubiquitin. However the 
presence of urea wasn’t specifically addressed in none of the refinement 
stages, lacking the details that should emerge from accounting the pro-
tein-solvent interactions.

We decided then to explore the effect of the urea solution on the ERI-
DU-ensemble by using the 100 structures as starting seeds for as many 
independent MD simulations with explicit solvent (Figure 4.4). We im-
mersed the structures in either 8M urea solution or in water, the latter 
used as control, and as a way to learn on the first stages of refolding. Two 
new ensembles were then created by the structures collected during the 
MD runs, called respectively MD UREA and MD WATER. We first ad-
dress the validity of these ensembles calculating observables, such as the 
J-coupling and SAXS curve, and comparing them with the ones available 
experimentally. Despite the fact that individual trajectories have deviat-
ed significantly from seed points, the MD UREA ensemble reproduces 
fairly well all the data without sacrificing the plasticity expected for a de-
natured state. On the other hand, MD WATER quickly deteriorates the 
agreement, moving towards a more compact “native-like” structure. These 
results indicated that the force-field was able to reproduce the expected 
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behavior of ubiquitin in the two solvents, and that the simulation time is 
enough as to reproduce a significant amount of movement in the protein.

At this point, we moved into the study of the interactions between sol-
vent molecules and the unfolded protein in the MD UREA ensemble. 
We found that the unfolded state of a protein is more “ureaphilic” than 
the native globular state, attracting a large proportion of urea molecules 
in the protein surroundings, mostly due to Van der Waals interactions, 
especially between apolar side chains and urea. To investigate the role of 
the hydrogen bonds, we employed QM calculation (Bader’s atom in mol-
ecules analysis) on the skeleton of hydrogen bonds taken from our MD 
UREA ensemble. We conclude that, although hydrogen bonds exist and 
contribute to the stabilization of the denatured protein, they unlikely rep-
resent the differential factor and the principal driving force of unfolding. 
Overall dispersion, rather than electrostatic, is the main energetic contri-
bution that keeps the protein unfolded in the presence of urea.

ERIDU 
100 dry structures

MD urea 
100 simulations in 8M urea

Experimental INPUT: 
RDCs on unfolded ubiquitin 

CONTROL:
MD water

100 simulations in water

BACK VALIDATION: 
RDCs, J-coupling, SAXS

characterize the 
unfolded state

ubiquitin/urea
interactions

shape SS type energy

Figure 4.4. Schematic overview of the Urea-UBQ project. Experimental 
data were used as input for MD simulation and as post-validation. Control sim-
ulations were also perfomed in water. Once validated, the simulations were 
used to adress several aspect of urea-unfolding, as indicated.
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Wepresent here the characterization of the structural, dynamics, and
energetics of properties of the urea-denatured state of ubiquitin,
a small prototypical soluble protein. By combining state-of-the-art
molecular dynamics simulations with NMR and small-angle X-ray
scattering data, we were able to: (i) define the unfolded state en-
semble, (ii) understand the energetics stabilizing unfolded structures
in urea, (iii) describe the dedifferential nature of the interactions of
the fully unfolded proteinswith urea andwater, and (iv) characterize
the early stages of protein refolding when chemically denatured
proteins are transferred to native conditions. The results presented
herein are unique in providing a complete picture of the chemically
unfolded state of proteins and contribute to deciphering the mech-
anisms that stabilize thenative state of proteins, aswell as those that
maintain them unfolded in the presence of urea.

denaturing mechanism | protein unfolding | random coil |
ensemble simulation

It has been known for decades that protein structure is highly
dependent on the solvent, and that certain chemical compounds

induce protein destabilization and eventually unfolding (1). Bio-
chemistry textbooks (2) state that under high denaturant concen-
tration proteins adopt a “random coil” conformation, but very little
is explained on the nature of such state. In fact, it has not yet been
described how different the urea random coil is from the ensemble
of conformations sampled by the unfolded state under native con-
ditions and, even more important, no consensus exists on the
physicochemical mechanisms explaining chemical denaturalization.
Urea is probably the most used chemical denaturant (3), but

after decades of study there are still many unknowns in its mech-
anism of action.Within “direct” theory, urea denatures proteins by
direct interaction with protein residues. These interactions are
supposed to be stronger than those occurring with water, which
would explain that groups not exposed to solvent in aqueous so-
lution become exposed when urea is present. Several variants of
the direct theory have been put forward. Thus, some authors have
suggested that the major destabilizing effect of urea is related to its
preferential interaction with the protein backbone (4, 5), side-
chains (6), polar or charged residues (7), hydrophobic residues (8–
10), or a mixture of hydrophobic and polar residues (11). The
physical nature of the direct interactions between proteins and
urea is also subject of debate, with some authors suggesting that it
is mostly electrostatic and related to the formation of direct hy-
drogen bonds (5, 7, 12, 13), and others suggest that dispersion
interactions are the main factor (14, 15). Some authors supported
the idea the denaturing role of urea is not related to the formation
of direct urea–protein interactions, but to its ability to “dry” the
protein, weakening the hydrophobic effect responsible for stabi-
lizing protein structures (16–19). However, recent consensus is
that this indirect mechanism is not the main explanation of the
effect of urea (18–20), pointing instead to the direct mechanism.
Massive experimental efforts have been directed to character-

izing the nature of the urea-unfolded state of proteins (3, 21–23),
because this is expected to be instrumental for the understanding
of protein folding (24). However, structural experimental tech-
niques face great difficulties to characterize the unfolded en-
semble, mostly a result of its large conformational flexibility. Only

recently low- andmedium-resolution models of the unfolded state
have been derived from spectroscopic techniques, such as small
angle X-ray scattering data (SAXS) or NMR (25, 26).
The history of simulation techniques (mostly molecular dy-

namics, MD) in the field of chemical unfolding of proteins starts in
the late 1990s (27, 28). Such pioneering works faced many prob-
lems, themost important one being the vast difference between the
time scale of the unfolding process and that accessible to simula-
tion. Even now, 15 y later, plainMD simulations are still limited to
reproducing the early stages of unfolding for most proteins (10,
14), forcing the use of advanced sampling techniques that bias
trajectories to populate unfolded states, a strategy that has pro-
vided spectacular results (13, 29) but that has obvious bias risks in
terms of the reliability of the sampled unfolded state and of the
unfolding pathway.
In this article we overcome the intrinsic time-dependent prob-

lems of MD to describe urea-unfolded proteins and the risks of
biasing techniques by running multiple unrestrained simulations
started from representative conformations of the unfolded state,
as defined by NMR data collected under denaturing conditions
(pH 2.0 and 8 M urea concentration): the ERIDU [Ensemble
Refinement of Intrinsically Disordered and Unstructured proteins
(30)]. MD simulations validated by NMR and SAXS data allowed
us to describe with unprecedented accuracy the structural and
physico-chemical properties of the unfolded state of a protein in
urea and to advance the understanding of the mechanisms of
protein folding and unfolding.

Methods
Starting Configurations. We used a finite set of structures collected in the
ERIDU ensemble of ubiquitin (30) as starting configurations for our simu-
lations. In short, this ensemble contains 100 different conformers of the
protein, which were determined by refinement of a statistical coil model (31)
using residual dipolar couplings (RDCs) as restraints. The 100-member en-
semble was found sufficient to properly describe the RDCs and known re-
sidual native contacts.

System Set-Up. Proteins were titrated to pH 2.0 using MDWEB procedures
(32), and immersed in a pre-equilibrated box of water/urea (28), adjusting
the concentration of denaturant to 8 M (matching the experimental de-
naturing conditions). After test calculations with different urea force-field
models, we selected the widely used refined parameters from the Optimized
Potentials for Liquid Simulations (OPLS) forcefield, (5, 8–11, 13, 15, 20, 28).
Note, however, that although incorrect models can yield to biased results
(9, 33) most current urea models provide very similar results (34, 35).
Chloride ions were added to keep electroneutrality. All systems were then
energy-minimized and preequilibrated by MD for 8 ns, keeping the back-
bone restrained by intramolecular harmonic potentials. This unusually large
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preequilibration period was required to avoid artifactual movements of the
backbone related to an incorrect solvent arrangement around the protein
(Fig. S1). Preequilibrated structures were then relaxed by removing back-
bone constraints during a 1-ns equilibration, which was then followed by
10-ns production runs for the 100 conformations in the ERIDU ensemble.
Additionally, 100-ns simulations for the 10 most dissimilar structures in
the ERIDU ensemble were performed to check the effect of extending
simulation times.

In parallel to urea simulations we performed control MD simulations in
water. Thus, proteins were solvated in a water box using the TIP3Pmodel and
chloride ions to keep neutrality of the system. Solvated systems were mini-
mized, preequilibrated, and equilibrated using a protocol identical to that
used for the urea/water simulations, except for the shorter preequilibration
in water because 2 ns were enough to equilibrate the solvent. Production
trajectories were collected for 10 ns under the same simulation conditions
used for urea simulations.

Bader’s Atoms in Molecule Analysis. To examine the electronic structure of the
hydrogen bonds between protein backbone and solvent, a set of four rep-
resentative structures (of protein–water and protein–urea complexes) were
taken from the MD trajectories. The starting geometries were reduced to
protein backbone atoms of the residue involved in hydrogen bonds with
urea or water molecules. These geometries were optimized at the MP2(full)/
6–311++G** (6 d, 10 f) level of theory using Gaussian09 (36, 37). The to-
pological analysis of the electron distribution was performed with the
AIMPAC package (38).

Trajectories Analysis. Analysis was performed using visual molecular dynamics
(39) as well as in-house programs and the analysis tools, most of them
available at the MDWEB application (32). Secondary structure was evaluated
using STRIDE software (40). Further details are provided in SI Methods.

Trajectory Validation. The scalar couplings were calculated from the ensemble
by using the Karplus equation as shown elsewhere (22) and compared with
experimentally measured values. The RDCs were calculated as described in
Esteban-Martín et al. (30). For this process the alignment tensor of each
conformation was computed explicitly using the method developed by Al-
mond and Axelsen (41) and the RDCs were averaged linearly. To account for
the absolute degree of alignment the ensemble-averaged RDCs were glob-
ally scaled to the experimentally measured RDCs. The SAXS profile was
computed using Crysol (42) software with default parameters.

Results
Validation of MD Simulations. Recent refinement of force-fields
guarantees that MD simulations reproduce well the folded state of
proteins (43, 44), but there is not such a guarantee for the unfolded
state, especially in the presence of chemical denaturants. A first
step should be then to check the quality of the MD ensembles by
direct comparison with experimental observables. Table 1 presents
a comparison between experimental and calculated NMR
parameters for the ERIDU and MD simulations performed (MD
simulations were performed under the same conditions used to
measure the experimental data). The agreement between experi-
mental and calculated NMR parameters, which include three-
bond scalar couplings (3J) and RDCs, was quantified using the
Spearman correlation coefficient (ρ). As shown in Table 1, MD
simulations in 8Murea provide an accurate description of 3J scalar
couplings of ubiquitin (Fig. S2), with a ρ in fact slightly better than
that obtained for the reference ERIDU ensemble (0.70 Hz; no
restraints based on 3J were introduced to derive the ERIDU
structures). For the case of RDCs, we find a good correlation
between calculated and measured RDCs (ρ = 0.80) (Table 1 and

Fig. S3), in fact only slightly worse than that of the ERIDU en-
semble (ρ = 0.98), where RDCS where explicitly restrained.
To further check the quality of the MD ensembles in 8 M urea,

we analyzed their ability to reproduce coarse grained experimental
observables derived from SAXS experiments performed using
identical conditions to those of our simulations (25). The agree-
ment between MD-results (postprocessed using the Crysol pro-
tocol) and experiment is very good (χ2 = 1.4) (Fig. S4), even
improving the good behavior of the original ERIDU ensemble (χ2 =
2.1; no SAXS restraints were included in ERIDU definition). Note
that no experimental restraints or constraints were imposed in our
MD simulations, which means that the agreement with these ex-
perimental observables should be interpreted as an independent
validation of our trajectories.
In summary, unbiased MD ensembles obtained in strong de-

naturing conditions (8 M urea pH 2) satisfactorily reproduce fairly
well all available experimental data on the chemical unfolded state
of ubiquitin. It is however unclear whether or not this behavior is
just reflecting the good quality of the original ERIDU ensemble,
which was not much deteriorated in multiple 10-ns simulations as
those considered here (see below). To check this point we com-
puted all SAXS and NMR observables using an MD ensemble
obtained under identicalMD conditions and started from the same
conformations, but in pure aqueous solvent. If the observed
agreement between calculated and measured SAXS and NMR
observables stems simply from memory artifacts, we should find
similar behavior in urea and aqueous simulations. As noted in
Table 1, it is however clear that MD-water simulations deteriorate
the quality of the original ensembles (correlation with experimental
RDCs and 3J scalar couplings decreases to 0.61 and 0.51, re-
spectively, and χ2 for the fitting to SAXS curve increases up to 9.8)
in terms of experimental observables of the urea unfolded state,
suggesting that we are not facing a memory artifact. To further
reject this possibility and to detect any other artifact related to the
limited length of the simulations, we extended the simulations of
the 10 most distinct structures in the ERIDU ensemble to 100 ns
(Methods). Results in Table S1 demonstrate the lack of significant
artifacts and the very close similarity, in terms of structural and
experimental parameters of the ensembles obtained by 10- and 100-
ns trajectories. In summary, we are confident that our MD simu-
lations capture well the nature of the urea–protein system, allowing
us to analyze the ensemble as a reliable representation of the
conformational space of chemically denatured ubiquitin.

Characterization of the Unfolded Ensemble in Water and Water/Urea.
The ERIDU ensemble is expected to capture reasonably well the
nature of the urea-denatured state of ubiquitin, but the consti-
tuting structures have little sense individually, and might be in fact
never populated. It is interesting then to analyze the evolution of
the MD trajectories collected in 8 M urea using as a reference
those obtained in pure aqueous solution. Fig. 1 demonstrates that
structures sampled by MD simulations in urea are far from native
structure, as anticipated by the ERIDU ensemble, showing back-
bone rmsds in the range 15–40 Å. MD-sampled structures in urea
are extended, showing typical radii of gyration (Rg) in the range
20–40 Å (compared with 11.7 Å of the native protein), with an
average value of 29.4 Å, matching the ERIDU distribution and
average (RgERIDU = 29.9 Å) and reproducing well the Rg derived
from independent SAXS data (28–32 Å) (25). The macroscopic
similarity betweenMD and ERIDU ensembles also becomes clear
in Fig. 2A, which displays the average Rg and solvent accessible
surface area (SASA) for the 100 (× 10 ns) MD trajectories and for
the corresponding ERIDU structures. In summary, all macro-
scopic descriptors of the ERIDU and MD ensembles are very
similar, but this does not imply that MD sampled structures match
individual ERIDU conformations. Thus, as noted in Fig. 1, in-
dividual trajectories move around 10 Å in 10 ns from starting
ERIDU, and more than 20 Å in 100-ns trajectories. These con-
formational movements, which as noted above do not modify ex-
perimental observables of the ensemble, often imply convergence

Table 1. Comparison between calculated and experimentally
measured parameters for ubiquitin at pH 2.0 and 8 M urea

Ubiquitin and urea 3J couplings ρ RDCs ρ SAXS χ2

ERIDU 0.64 0.98 2.1
MD urea 0.66 0.72 1.4
MD urea (all trajectories) 0.64 0.80 1.4
MD water 0.51 0.61 9.8

5934 | www.pnas.org/cgi/doi/10.1073/pnas.1216589110 Candotti et al.
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to other ERIDU structures (Fig. S5), indicating the dynamic nature
of the unfolded ensemble.
Despite starting from the same seed conformations, the trajec-

tories collected in pure water show a completely different behavior
from those collected in the presence of urea. Thus, instead of nav-
igating around the ERIDU representative structures, trajectories in
water very quickly diverge (rmsd from 10 to 30 Å) (Fig. 1B),
approaching to the native state (Fig. 1A). The major macroscopic
effect of the transfer of the ERIDU ensemble to water is a dramatic

collapse of the structures, which becomes evident as a very large
reduction of the Rg and of the SASA of the structures (Figs. 1D and
2B). A comparison of the bi-dimensional Rg vs. SASA plot in Fig. 2
for urea and water simulations clearly shows that although the
former is typical of a stable unfolded ensemble, close to the seeding
one (note that when 100-ns trajectories are used, no changes in the
plots are observed) (Fig. S6), the latter is typical of a system in the
first stages of folding, fast evolving toward a collapsed state akin to
a molten globule. This finding is even clearer when looking at the
conformation interchange plots in Fig. S5, which show that although
in the urea simulations random movements and exchange along
conformers occur, in the water simulations all trajectories tend to
converge toward a similar collapsed state.

Residual Structural Elements. A long debate in studies dealing with
unfolded proteins is whether or not residual structural elements of
the native structure are preserved in the chemically denatured
state, and whether or not, if they exist, these elements can act as
nucleation points to guide refolding in the absence of denaturant.
Very few amounts of secondary structure elements are detected
experimentally (45), and MD-simulations confirm the lack of
persistent elements of secondary structure in urea. In fact, we
detected a very small (less than 2%) α-helical annotation spread
along residues in both N- and C-terminal sections (Fig. 3), corre-
sponding to short-transient motifs, which never propagate to well-
defined stable elements of secondary structure. However, despite
the lack of stable secondary elements, a few 3D native arrange-
ments, are present in our simulations (Fig. 4), the most important
is a native-like β-hairpin between (originally) β-strands 1 and 2
(residues MET1-GLU18). This contact was present in 12% of
ERIDUensemble (30), and it was detected around 9%of the time in
our MD ensembles. Replication of a small number (13) of trajec-
tories using randomizing velocities leads to no change in the pop-
ulation of β1-β2 contacts, and extension of 10 trajectories to 100 ns
just increases slightly (to 12%) the population of this contact,
matching ERIDU estimates and supporting claims by Meier et al.
based on direct measures of transhydrogen-bond scalar couplings
(45) (not introduced by any means as restraints in our simulations).
Trajectories in water lead to an increase in interresidue contacts,

which start to signal (Fig. 4) some long-distance interactions re-
sembling those occurring in the native state. The β1-β2 contact is
reinforced because it is present inmore than 35%of the aggregated
simulation time in water (three times more than in urea). In-
terestingly, when the urea-unfolded structure is immersed in water
a significant amount of secondary structure is generated. Thus,
short turns are much better defined; the β-strand that was very
marginal in urea is detected in 2–4% of the simulated time, and the
much local α-helix conformation increases its population to 4%,
with some segments sampling α-helix conformation nearly 10% of
the simulation time (Fig. 3A). The locations of the segments
forming secondary structures correlate (Fig. 3A), although not
perfectly, with the regions of sequence where secondary structure
elements exist in the native structure. It is clear that urea not only
facilitates the expansion of the structure but also reduces dramat-
ically the amount of secondary structure. Indeed, in the absence of
urea, secondary structures form concomitantly with the hydro-
phobic collapse. Some contacts, like the β1-β2 contact (marginal in
urea), become reinforced, acting as early-formed native contacts,
which might help in guiding the refolding process toward a pro-
ductive pathway once denaturant is removed.

Nature of Protein–Urea Interactions. As already anticipated by Fig.
S1, chemically denatured ubiquitin captures very efficiently urea
from the bulk solution (Table 2). For example, the ratio water/urea
in the first solvation shell (FSS) is around 0.9, which compares with
5.4 in distant regions of the simulation box. The enrichment of
urea in the FSS was previously reported in MD simulations of the
early stages of the unfolding of urea (28), but the magnitude of
such an enrichment ismuch larger than that found for folded forms
of the protein (in fact, a control simulation performed for the
folded protein in urea reveals a ratio water/urea in the FSS of only

Fig. 1. Global conformational changes of the NMR conformational en-
semble after MD simulations. (A) Backbone rmsd between native ubiquitin
and final conformers of the ERIDU and MD ensembles. (B) Backbone rmsd
between initial and final conformers of the ERIDU and MD ensembles. (C) Rg
distributions for ERIDU and MD ensembles. (D) Difference in Rg between the
initial and final conformers of the ERIDU and MD ensembles.

Fig. 2. Sampling of MD simulations. Rg and solvent accessible surface area
SASA used as collective variables to visualize the sampling during the MD
simulation of all of the ensemble (A) in urea and (B) in water. Black dots
represent ERIDU starting conformations and frames belonging to the simula-
tion of a particular conformation are plotted with the same color according to
the color bar.
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around 2.0) (Fig. S1), suggesting that those residues exposed when
the protein is unfolded are those with higher preference to urea
compared with water. Interestingly, in the unfolded ensemble
apolar (A) and polar (P) residues were exposed to solvent to the
same extent (Table S2), but urea molecules tend to localize closer
to apolar residues (AP ratio 0.81) compared with water molecules
(AP ratio 0.57) (Table 2). The differential solvation effect of urea
is also evident in the contact coefficient (CCUW) (9), which reaches
a value of 14.0 for apolar and only 10.6 for polar residues. As

anticipated by others (8–10, 14), hydrophobic residues are the
main differential target for the preferential interaction of urea with
unfolded conformations of the protein. Clearly, our simulations
suggest that at least for this protein and in the context of a fully
unfolded ensemble, the preferential solvation of apolar solutes by
urea is themain stabilizing factor of the open state. As discussed by
Mountain and Thirumalai (34), other balance of interactions can
occur for other conformational states of the proteins.
Urea has been suggested to have a tendency to interact with

specific structural motifs of proteins (14, 15). In the absence of
clear cavity regions in the unfolded state of ubiquitin, we centered
our analysis in the region showing residual α-helix content, which
appear enriched (P < 0.001) in contacts with urea (Fig. 4B and Fig.
S7), as well as in the vicinities of the contact β1-β2 findings; in this
case there were no differences in urea interactions with respect
to the background. It is difficult to determine how much of the
improved urea binding found in regions with residual α-helixes is
related to sequence bias, but it is clear that the presence of residual
3D motives is not always stabilized by a preferential binding of
urea molecules.

Energetics of Protein–Urea Interactions. Previous studies have fa-
vored the direct mechanism to explain the denaturing effect of
urea, but have not clarified what is the physical nature of protein–
urea interactions: the electrostatic term (mainly hydrogen bonds)
or the van der Waals contacts (mostly dispersive effects). It has
been proposed by different authors that urea denaturation is
driven by hydrogen bonding to the backbone or polar residues (7,
13), a hypothesis that seems to be supported by the structure of
urea, which looks optimized to form hydrogen bonds with peptide
backbones. To check whether this hypothesis is correct, we ana-
lyzed the occurrence of protein-solvent hydrogen bonds in our
denatured ensemble (Methods and Table 3). Considering the
structure of water and urea, we should expect two- (water) and
four- (urea) times more hydrogen-bond donor than acceptor
interactions with the protein, but in fact more events of water
acting as hydrogen-bond acceptor than as a donor are found (ratio
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Fig. 3. Secondary structure and contacts with urea molecules. (A) Residual
secondary structure calculated with STRIDE (40) (coil, turns, helixes, and
strands) in MD simulations in urea (filled curve) and in water (line). (B) CCUW

along protein sequence. In both graph the secondary structure in the folded
protein is shown on the x axis.

Fig. 4. Structural changes and stability of the
hairpin. Contact maps for the folded ubiquitin, the
initial (ERIDU) and final MD ensembles. A cut-off of
10 Å was used.
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donor/acceptor for water equal to 0.63) (Table 3), and for the urea
the ratio donor/acceptor is just 2.55 (instead of the expected 4)
(Table 3), indicating that intrinsic acceptor capabilities of both
urea and water are larger than their donor capabilities, even in the
case of urea, the largest number of donors overcome this intrinsic
preference. The fraction of hydrogen bonds formed by the solvent
with the protein backbone is higher comparedwith side-chains, the
difference being more pronounced in urea (∼91% for backbone
and ∼9% for side-chain). In addition, the majority of hydrogen
bonds formed by urea are made with apolar residues, but the main
hydrogen-bond partners for water are the polar ones (Table 3).
Our MD-derived results suggest then that urea hydrogen-bond
capabilities contribute to stabilize exposed apolar residues directly
by electrostatic interactions with the backbone, and indirectly by
increasing the local density of urea around them, favoring the
formation of short-range dispersion interactions. However, it is
very unlikely that urea will direct protein unfolding through hy-
drogen bonding, as otherwise we should expect higher side-chain
contacts and more abundant interactions with polar residues,
where hydrogen-bond interactions are expected to be stronger.
Some authors (27, 46) have suggested that hydrogen bonds in-

volving urea are intrinsically stronger than those involving water
molecules and, therefore, that even a small number of hydrogen
bonds can significantly stabilize the open state of the protein. To

analyze this point with accuracy, we performed quantummechanics
Bader’s analyses (47) of complexes of water and urea with a model
of a peptide unit (Methods). As discussed elsewhere (48), the
analysis of the hydrogen-bond critical points in quantum me-
chanical optimized geometries provides a direct unbiasedmeasure
of the intrinsic stability of hydrogen bonds. Results shown in Table
4 reveal that (when contacting an amidemoiety) water intrinsically
prefers to act as a hydrogen-bond donor than acceptor, contrary to
what is found in MD simulations of water/urea mixtures, sug-
gesting a certain frustration of hydrogen-bond capabilities of
water in the FSS. For urea the situation is different, because the
acceptor capabilities of the carbonyl group are much larger than
the donor ones of the N-H bonds. Electron densities at the hy-
drogen-bond critical points and associated Laplacians clearly
show that water is a much stronger hydrogen-bond donor than
urea, but it is only slightly poorer than urea as an acceptor. Con-
sidering that there are 2.5-more hydrogen bonds with urea acting
as donor than as acceptor (see above), we can rule out the hy-
pothesis that urea-protein hydrogen bonds are intrinsically stron-
ger than the water-protein ones.
We also tested the recent suggestion by Blackledge and col-

leagues (25) that urea hydrogen bonds to the protein backbone
(with x number of urea molecules per residue), acting mostly (or
exclusively) as acceptor. We found first a much smaller number
of hydrogen-bond urea-protein contacts than that suggested by
the authors, and in fact the hydrogen-bond donor role of urea is
2.5-times more prevalent than the role as an hydrogen-bond ac-
ceptor. These findings, which are very robust to simulation details,
argue against a major effect of urea acceptor capabilities as amain
reason for the stabilization of the unfolded form of the protein.
However, to double-check this and to gain a deeper detail on the
physical nature of urea–protein interactions we postprocessed our
trajectories following the energy interaction scheme proposed by
Hua et al. (14). For the case of water molecules (Fig. S8), the
energy distributions obtained for the molecules in the FSS and in
the bulk overlapped, suggesting that water is not really protein-
philic (when the protein is unfolded in the presence of urea). The
situation for urea is quite different; although the electrostatic term
distributions in bulk andFSS overlap, indicating that hydrogen bonds
and other polar contacts do not favor themigration of urea frombulk
to the FSS, urea dispersive interactions are clearly better in the FSS
than in the bulk. Clearly, as anticipated by others from unfolding
trajectories of native proteins (14, 15, 29), direct dispersive inter-
actions of urea, mostly with apolar residues of the protein, seem the
major driving force for the stabilization of expanded conformations
of ubiquitin. However, as noted above, hydrogen bonds and other
polar contacts are not negligible, as they might be important to sta-
bilize exposed polar moieties of the protein that will generate oth-
erwise strong local fields, which would destabilize the unfolded state.

Discussion and Conclusion
Urea plays two major roles in unfolding: (i) a kinetic effect re-
ducing the free-energy barrier associated to protein unfolding, by
favoring the disruption of the key elements of the native structure,
and (ii) a thermodynamic effect, stabilizing extended forms of
the protein, that will collapse toward the molten globule when

Table 2. Characterization of the urea/water-protein structural
organization

Solvent descriptor Average ± SD

RWU* FSS 0.89 ± 0.18
RWU* bulk 5.36 ± 0.31
AP ratio† - water 0.57 ± 0.08
AP ratio† - urea 0.81 ± 0.05
CCUW

‡ apolar 13.98 ± 7.03
CCUW

‡ polar 10.62 ± 5.44
CCUW

‡ backbone 7.73 ± 1.76
CCUW

‡ side-chains 5.39 ± 1.16

*RWU, ratio of water/urea molecules in FSS (< 5 Å) and bulk (> 6 Å).
†AP ratio, fraction of solvent molecules close to apolar and to polar/charged
residues in the FSS.
‡CCUW, average contact coefficient for apolar, polar/charged residues and
for backbone and side-chain atoms.

Table 3. Percentage of urea-protein and water-protein
hydrogen bonds (HB) formed

Bond Sites No. HBs Percent*

Partners (% of total)*

Protein Apol Pol

Urea H-donor 4 36,229 39 All 52 48
SC 9 2 98
BB 91 55 45

Urea H-acceptor 1 14,181 61 All 52 48
SC 13 6 94
BB 86 52 48

Ratio D/A 4 2.55
Water H-donor 2 3,409 24 All 44 56

SC 23 1 99
BB 77 56 44

Water H-acceptor 1 5,364 76 All 36 64
SC 25 5 95
BB 75 44 56

Ratio D/A 2 0.63

Apol, apolar; BB, backbone; Pol, polar/charged; Ratio D/A, Ratio donor/
acceptor; SC, side-chains.
*Percent of total number, normalized according to the number of donor or
acceptors sites.

Table 4. Bader’s atom in a molecule analyses of hydrogen
bonds

Water or urea ρ ×102* ▽2ρ ×102†

Water
H-Donor 1.88 8.51
H-Acceptor 1.46 6.47

Urea
H-Donor 1.15 5.04
H-Acceptor 1.69 6.79

*Electron density at the bond critical points.
†Associated Laplacian.
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transferred to water. Most MD simulations published to date have
investigated the effect of urea in the unfolding mechanism, giving
very valuable information on the effect of urea in the early stages
of protein unfolding but providing little information on the nature
of urea–protein interactions in the fully unfolded state. The
present study, where the seed for MD simulation is not the native
structure but a NMR-derived ensemble of the unfolded state of
the protein provides a complementary picture of the effect of urea
in protein unfolding, giving direct information on the role of urea
in stabilizing the unfolded state of the protein.
The protein in 8M urea is fully extended and flexible, making no

attempts to recover native-like 3D structure. We found structural
and flexibility patterns for the protein in urea that fit with the
concept of “random coil” outlined in biochemistry textbooks (49).
When the chemically denatured ensemble is suddenly introduced
in water, a fast hydrophobic collapse occurs, outlining sections
of secondary structure (mostly inexistent in urea) and defining some
near-native 3D contacts, whichmight act as the seed for regeneration
of the native structure. Clearly, the chemically unfolded state seems
quite different to the “unfolded” state in aqueous solution.

The unfolded protein is more urea-philic than hydrophilic, and
captures very efficiently denaturant molecules to the FSS. Urea
forms abundant hydrogen bonds with the protein backbone but
detailed analysis of urea population reveals that apolar residues
are the main targets for urea-specific solvation and that disper-
sion, rather than electrostatic interactions, is the main energetic
contribution to explain the stabilization of the unfolded state of
the protein and the irreversibility of the unfolding process in the
presence of urea. Whether or not urea uses the same physico-
chemical mechanism to accelerate the kinetics of unfolding is an
intriguing issue that will require further investigation.
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donor/acceptor for water equal to 0.63) (Table 3), and for the urea
the ratio donor/acceptor is just 2.55 (instead of the expected 4)
(Table 3), indicating that intrinsic acceptor capabilities of both
urea and water are larger than their donor capabilities, even in the
case of urea, the largest number of donors overcome this intrinsic
preference. The fraction of hydrogen bonds formed by the solvent
with the protein backbone is higher comparedwith side-chains, the
difference being more pronounced in urea (∼91% for backbone
and ∼9% for side-chain). In addition, the majority of hydrogen
bonds formed by urea are made with apolar residues, but the main
hydrogen-bond partners for water are the polar ones (Table 3).
Our MD-derived results suggest then that urea hydrogen-bond
capabilities contribute to stabilize exposed apolar residues directly
by electrostatic interactions with the backbone, and indirectly by
increasing the local density of urea around them, favoring the
formation of short-range dispersion interactions. However, it is
very unlikely that urea will direct protein unfolding through hy-
drogen bonding, as otherwise we should expect higher side-chain
contacts and more abundant interactions with polar residues,
where hydrogen-bond interactions are expected to be stronger.
Some authors (27, 46) have suggested that hydrogen bonds in-

volving urea are intrinsically stronger than those involving water
molecules and, therefore, that even a small number of hydrogen
bonds can significantly stabilize the open state of the protein. To

analyze this point with accuracy, we performed quantummechanics
Bader’s analyses (47) of complexes of water and urea with a model
of a peptide unit (Methods). As discussed elsewhere (48), the
analysis of the hydrogen-bond critical points in quantum me-
chanical optimized geometries provides a direct unbiasedmeasure
of the intrinsic stability of hydrogen bonds. Results shown in Table
4 reveal that (when contacting an amidemoiety) water intrinsically
prefers to act as a hydrogen-bond donor than acceptor, contrary to
what is found in MD simulations of water/urea mixtures, sug-
gesting a certain frustration of hydrogen-bond capabilities of
water in the FSS. For urea the situation is different, because the
acceptor capabilities of the carbonyl group are much larger than
the donor ones of the N-H bonds. Electron densities at the hy-
drogen-bond critical points and associated Laplacians clearly
show that water is a much stronger hydrogen-bond donor than
urea, but it is only slightly poorer than urea as an acceptor. Con-
sidering that there are 2.5-more hydrogen bonds with urea acting
as donor than as acceptor (see above), we can rule out the hy-
pothesis that urea-protein hydrogen bonds are intrinsically stron-
ger than the water-protein ones.
We also tested the recent suggestion by Blackledge and col-

leagues (25) that urea hydrogen bonds to the protein backbone
(with x number of urea molecules per residue), acting mostly (or
exclusively) as acceptor. We found first a much smaller number
of hydrogen-bond urea-protein contacts than that suggested by
the authors, and in fact the hydrogen-bond donor role of urea is
2.5-times more prevalent than the role as an hydrogen-bond ac-
ceptor. These findings, which are very robust to simulation details,
argue against a major effect of urea acceptor capabilities as amain
reason for the stabilization of the unfolded form of the protein.
However, to double-check this and to gain a deeper detail on the
physical nature of urea–protein interactions we postprocessed our
trajectories following the energy interaction scheme proposed by
Hua et al. (14). For the case of water molecules (Fig. S8), the
energy distributions obtained for the molecules in the FSS and in
the bulk overlapped, suggesting that water is not really protein-
philic (when the protein is unfolded in the presence of urea). The
situation for urea is quite different; although the electrostatic term
distributions in bulk andFSS overlap, indicating that hydrogen bonds
and other polar contacts do not favor themigration of urea frombulk
to the FSS, urea dispersive interactions are clearly better in the FSS
than in the bulk. Clearly, as anticipated by others from unfolding
trajectories of native proteins (14, 15, 29), direct dispersive inter-
actions of urea, mostly with apolar residues of the protein, seem the
major driving force for the stabilization of expanded conformations
of ubiquitin. However, as noted above, hydrogen bonds and other
polar contacts are not negligible, as they might be important to sta-
bilize exposed polar moieties of the protein that will generate oth-
erwise strong local fields, which would destabilize the unfolded state.

Discussion and Conclusion
Urea plays two major roles in unfolding: (i) a kinetic effect re-
ducing the free-energy barrier associated to protein unfolding, by
favoring the disruption of the key elements of the native structure,
and (ii) a thermodynamic effect, stabilizing extended forms of
the protein, that will collapse toward the molten globule when

Table 2. Characterization of the urea/water-protein structural
organization

Solvent descriptor Average ± SD

RWU* FSS 0.89 ± 0.18
RWU* bulk 5.36 ± 0.31
AP ratio† - water 0.57 ± 0.08
AP ratio† - urea 0.81 ± 0.05
CCUW

‡ apolar 13.98 ± 7.03
CCUW

‡ polar 10.62 ± 5.44
CCUW

‡ backbone 7.73 ± 1.76
CCUW

‡ side-chains 5.39 ± 1.16

*RWU, ratio of water/urea molecules in FSS (< 5 Å) and bulk (> 6 Å).
†AP ratio, fraction of solvent molecules close to apolar and to polar/charged
residues in the FSS.
‡CCUW, average contact coefficient for apolar, polar/charged residues and
for backbone and side-chain atoms.

Table 3. Percentage of urea-protein and water-protein
hydrogen bonds (HB) formed

Bond Sites No. HBs Percent*

Partners (% of total)*

Protein Apol Pol

Urea H-donor 4 36,229 39 All 52 48
SC 9 2 98
BB 91 55 45

Urea H-acceptor 1 14,181 61 All 52 48
SC 13 6 94
BB 86 52 48

Ratio D/A 4 2.55
Water H-donor 2 3,409 24 All 44 56

SC 23 1 99
BB 77 56 44

Water H-acceptor 1 5,364 76 All 36 64
SC 25 5 95
BB 75 44 56

Ratio D/A 2 0.63

Apol, apolar; BB, backbone; Pol, polar/charged; Ratio D/A, Ratio donor/
acceptor; SC, side-chains.
*Percent of total number, normalized according to the number of donor or
acceptors sites.

Table 4. Bader’s atom in a molecule analyses of hydrogen
bonds

Water or urea ρ ×102* ▽2ρ ×102†

Water
H-Donor 1.88 8.51
H-Acceptor 1.46 6.47

Urea
H-Donor 1.15 5.04
H-Acceptor 1.69 6.79

*Electron density at the bond critical points.
†Associated Laplacian.
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Supporting Information
Candotti et al. 10.1073/pnas.1216589110
SI Methods
System Set-Up. Final system sizes ranges from 40,000 and 150,000
atoms with simulation boxes around one million Å3 (minimum
550.000, maximum 2.100.000 Å3), large enough as to guarantee
the lack of close contacts with images (shortest protein-protein
image contacts above 15 Å).

Simulation Details. Protein force-field parameters were taken from
latest modification of Amber parm99 (P99 SBILDN) (1) and, for
consistency with this force-field, urea parameters were taken from
Smith et al. (2), which refined previous an Optimized Potentials for
Liquid Simulations (OPLS) urea model, and the water model was
TIP3P (3). All production runs were carried out in NVT ensemble
(T = 300 K) using periodic boundary conditions and the Particle
MeshEwald procedure to introduce long-range electrostatic effects
(4). All bonds involving hydrogens were constrained using SHAKE
(5), which allowed us to integrate Newton’s equations of motion
every 2 fs. Trajectories were obtained using NAMD (6) for equil-
ibration, and theAceMDprogram (7) on graphical processing units
at the Barcelona Supercomputing Center (Minotauro Supercom-
puter) and Institute for Research in Biomedicine, Barcelona, for
production.

Trajectory Analysis. Contact maps were calculated using distances
between α-carbon atoms and a cut-off of 10 Å. Structures con-
taining a hairpin were identified using the crystal structure of
ubiquitin as reference (PDB ID code 1UBQ) and calculating the
rmsd for residues MET1 to GLU18, the cut-off used for the rmsd
was 6 Å. The water/urea ratio (RWU) was calculated in the first
solvation shell (FSS), defined as solvent molecules within 5 Å of
the protein, and in the bulk, defined as solvent molecules with
a distance larger than 6 Å from any atom of the protein. The
apolar/polar (AP) ratio was determined as the fraction of solvent
molecules close to apolar and polar/charged residues for each
solvent species in the FSS. The contact coefficient (CCUW) for
amino acid x was calculated as the ratio of the number of atomic
contacts of amino acid x with urea to the number with water
molecules (8). Hydrogen bonds were defined according to a cut-
off of 3.5 Å for the distance between donor and acceptor atoms
and 120° for the angle between donor-hydrogen and acceptor.
To compute the energy of each urea or water molecule with the
rest of the system in the FSS and in the bulk we used the same
procedure presented in Hua et al. (9). The solvent accessible
surface area has been calculated with NACESS (10).
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Fig. S1. Equilibration of the FSS. (A) The figure shows two snapshots corresponding to the starting (Left) and end (Right) points of the equilibration run (8 ns).
Urea and water molecules in the FSS are shown, respectively, in purple and orange. (B) Time evolution of the water to urea ratio (RWU) in the FSS during the
equilibration period (8 ns). Native ubiquitin is shown in black line.
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Fig. S2. Comparison with experimental 3J scalar couplings. Experimental 3J scalar couplings along the protein sequence (in red) are compared with those
calculated from molecular dynamic (MD) simulations in water (Left) and urea (Right).
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Fig. S3. Comparison with experimental residual dipolar couplings (RDCs). The different types of experimental RDCs along the protein sequence (in red) are
compared with those calculated from MD simulations in water (Left) and urea (Right).
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Fig. S4. Comparison of experimental and calculated small-angle X-ray scattering data (SAXS) curves. Experimental data (red line) are compared with curve
calculated from (A) the ERIDU (Refinement of Intrinsically Disordered and Unstructured molecules ensemble) and (B) snapshots taken from MD simulation in
urea and (C) in water.

Fig. S5. Rmsd matrix between all of the conformations. Each dot represents the difference in rmsd before and after 10 ns of MD simulation between two
conformations. A negative value (blue dots) show two conformations that are more similar after MD simulations, and positive values (red dots) imply that the
conformation become less alike. Notice that although in the urea simulations randommovements and interchange along conformers occur [noted as a mixture
of cases of conformations becoming more similar (blue) and more different (red) dots], in the water simulations all trajectories tend to converge toward
a similar collapsed conformation (blue dots massively dominating).

Candotti et al. www.pnas.org/cgi/content/short/1216589110 4 of 6
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Fig. S6. MD sampling. Radius of gyration (RG) and solvent accessible surface area (SASA) used as collective variables to visualize the sampling during 100 ns of
MD simulation for 10 conformations. Black dots represent the sampling of 100 × 10-ns trajectories; the 10 simulations of 100 ns are plotted with the different
colors according to the conformation number.

Fig. S7. Helical propensity and urea preference. Correlation between the percentage of helical propensity and the CCUW at the residue level in MD urea
simulations.

Candotti et al. www.pnas.org/cgi/content/short/1216589110 5 of 6
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Fig. S8. Electrostatic and dispersion energies of the solvent. Probability distribution function of Van der Waals and electrostatic energy of urea and water in
the FSS and in the bulk with the rest of the system.

Table S1. Conformation descriptors for the two ensemble of
simulations (10 × 100 ns and 100 × 10 ns)

Conformation descriptor 10 × 100 ns 100 × 10 ns

SASA (Å2) 10,810 ± 364 10,964 ± 297
Radius of gyration (Å) 29.4 ± 6.42 27.8 ± 5.96
3J agreement (ρ) 0.64 0.60
RDCs agreement (ρ) 0.80 0.78

Table S2. Average CCUW calculated for polar and hydophobic residues and their SASA calculated;
in addition the specific contribution of side-chains and backbone are reported

Residue CCUW SASA total (Å2) SASA side-chain (Å2) SASA backbone (Å2)

Polar and charged (40 residues) 10.322 148.918 126.886 22.0321
Hydrophobic (28 residues) 13.755 147.898 127.842 20.0565

Candotti et al. www.pnas.org/cgi/content/short/1216589110 6 of 6
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4.2. The early stages of the chemical unfolding at pro-
teome scale (Publication 2)

At the beginning of my Ph.D, the Prof. Orozco’s group had just released 
the largest European database of MD trajectories (MoDEL) (reference 
[21] in the article). Among this huge amount of data, MoDEL hosted 
two interesting comparative sets that have been already used to test the 
performance of several force-fields in water (reference [20] in the article). 
The first set was formed by 30 proteins, which represent the most pop-
ulated SCOP folds.  The second one was a subset of the first, formed by 
three ultra-representative protein for the main SCOP folds (all-α, /β and 
all-β, see Figure 1.9). For the latter, simulations at the microsecond times-
cale were collected, quite a rarity at that time. The next steps consisted in 
setting up a similar comparative database for the denatured state of these 
proteins, taking advantage of the available data collected in water. The aim 
was to understand the molecular driving of the urea-induced unfolding 
at the proteomic level, avoiding any bias due to the force-field or the pro-
tein used. Such project was possible thanks the efforts by Manuel Rueda, 
Alberto Perez, and Carles Ferrer-Costa, which started the system setups.

First, the three ultra-representative proteins were used as a probe test 
where we validate our procedure at the microsecond timescale (Figure 
4.5). Since denaturation is a slow process, we speed up some observables 
simulating proteins in urea 8M at a mildly high temperature (368K). As 
controls, then, these three proteins were simulated in water at both 300K, 
to check the stability of the used force-field; and at 368K to separate the 
effect of thermal and chemical unfoldings. In the latter case we could 
address more specifically the changes in protein dynamics, profiting from 
the same system temperature. 

We found that proteins clearly begin to unfold, but none of them reach-
es a fully unfolded state: they all preserve a certain degree of secondary 
structure and a compacted shape. Both temperature-alone and urea-alone 
produce a similar degree of unfolding and located in the same or very 
close by positions of the protein.
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However, a deeper look revealed several differences in the urea-induced 
unfolded structure: the apolar side chains are preferentially exposed to the 
solvent, and the atomic motions are slowed down prolonging the average 
time of local unfolding events. 

The spotted differences pointed out towards a complex role for urea, far 
from a passive stabilizer of the thermal unfolding. We challenged then 
this hypothesis at the proteomic scale simulating the other 27 proteins in 
denaturing condition (30 in total counting the three ultra-representatives 
too). The analysis, guided by the earlier findings, focused this time on 
the location and energetics of the interactions between protein and sol-
vent (Figure 4.5). The central question this time was the relation between 
the interactions of urea molecule with the protein and the observed local 
unfolding: are they related? Does urea trigger the unfolding, specifically 
where it locates? 

Overall, our conclusions are in good agreement with those from our 
first project: the van der Waals interactions are responsible for the attrac-
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Figure 4.5. Schematic overview of Urea-MoDEL. After a first validation on 
a smaller subset of proteins (against equally-long simulations in water), the 
analyses were extended on a larger subset, using the dynamic native state for 
comparison.  
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tion of a lot of urea molecules in the protein surroundings. Specific and 
location-dependent interactions (both H-bonds and VdW) instead sta-
bilize few urea molecules in cavities within the hydrophobic core. Those 
interactions often happen consistently in all the simulations of the same 
protein, and regardless of the forcefield used. We also found a common 
mechanism that brings urea molecules within the protein core, regardless 
of the protein under study (Figure 4.6). The intrusion of urea molecules 
is possible thanks to local unfolding events that happen at access points 
of the protein core (hinge points), usually formed by loops or turns at the 
protein surface. The longer average time of local unfolding events possibly 
facilitates the entering of urea molecules facilitating irreversible unfolding 
events. These are the “weak points” in each protein that are responsible for 
initiating the unfolding.

attraction of urea in the 
protein surroundings

1 2 exploit local 
unfolding events

3 intrude the 
hydrophobic core

hinge
point

hydrophobic
core

urea
molecules

favorable Van der Waals 
interactions

slow down of thermal 
�uctuations

sticky urea molecules 
stabilized by both VdW 

and H-bonds

THE ROUTE OF UREA TO THE HYDROPHOBIC CORE

LOCATION

ENERGETICS

Figure 4.6. The route of urea to enter the protein core. Schematic exempli-
fication of the steps that an urea molecule follows to intrude inside the core of 
a protein (1CZT). See also Figure 4 in the article’s main text.



103RESULTS

Exploring Early Stages of the Chemical Unfolding of
Proteins at the Proteome Scale
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Abstract

After decades of using urea as denaturant, the kinetic role of this molecule in the unfolding process is still undefined: does
urea actively induce protein unfolding or passively stabilize the unfolded state? By analyzing a set of 30 proteins
(representative of all native folds) through extensive molecular dynamics simulations in denaturant (using a range of force-
fields), we derived robust rules for urea unfolding that are valid at the proteome level. Irrespective of the protein fold,
presence or absence of disulphide bridges, and secondary structure composition, urea concentrates in the first solvation
shell of quasi-native proteins, but with a density lower than that of the fully unfolded state. The presence of urea does not
alter the spontaneous vibration pattern of proteins. In fact, it reduces the magnitude of such vibrations, leading to a
counterintuitive slow down of the atomic-motions that opposes unfolding. Urea stickiness and slow diffusion is, however,
crucial for unfolding. Long residence urea molecules placed around the hydrophobic core are crucial to stabilize partially
open structures generated by thermal fluctuations. Our simulations indicate that although urea does not favor the
formation of partially open microstates, it is not a mere spectator of unfolding that simply displaces to the right of the
foldedrRunfolded equilibrium. On the contrary, urea actively favors unfolding: it selects and stabilizes partially unfolded
microstates, slowly driving the protein conformational ensemble far from the native one and also from the conformations
sampled during thermal unfolding.
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Introduction

Urea is a protein denaturant that has been used for decades in

the study of protein folding/unfolding; however, after many years

of research the ultimate reasons of the denaturing properties of

urea remain elusive [1,2]. The dominant paradigm for unfolding

(the ‘‘direct’’ mechanism) claims that the denaturant properties of

urea are related to its capacity to interact with exposed protein

residues more strongly than water [3–15]. However, the nature of

such a preferential interaction is not so clear. Thus, while some

authors suggest that it is mostly electrostatic and related to the

formation of direct hydrogen bonds [7–9,16–17], others claim that

preferential dispersion is the leading term [13–15]. It is also

unclear whether the major destabilizing effect of urea is related to

interaction with the backbone [6–7] or with side chains [8–12]. In

the latter case, there is also discussion regarding the preferential

side chains: polar and charged [9] or apolar [4,10–12].

We recently combined multi-replica molecular dynamics (MD)

simulations and direct NMR measures of ubiquitin to characterize

the ‘‘urea unfolded ensemble’’ of this model protein [15]. Our

results suggest that urea stabilizes flexible over-extended confor-

mations of the protein, which are unlikely to be sampled in the

‘‘unfolded’’ state of aqueous proteins. Extended conformations of

the protein with exposed hydrophobic surfaces are more urea-

philic than the native globular state, due mostly to extensive

London dispersion interactions (the attractive contribution in Van

der Waals interactions between instantaneous dipoles) between

apolar side chains and urea molecules in the first solvation shell of

unfolded conformations. We believe that our results in reference

15 clarify the molecular basis of the effect of urea on the

thermodynamics of the foldedrRunfolded equilibrium, but

unfortunately, they do not provide information on the kinetic role

of urea in the unfolding process. In other words: does urea actively

induce protein unfolding? Or, on the contrary, does it passively

stabilize the unfolded state by selectively binding to unfolded

conformations? To analyze this point, we should characterize the

effect of urea in the first stages of thermochemical unfolding, when

the protein structure is still close to the native conformation and

internal residues are not fully exposed. Clearly, a study of this

nature presents many difficulties, the most important being that

the effect of urea on early stages of unfolding might be dependent

on the native structure. Therefore, to obtain conclusions of general
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validity, all representative protein folds should be addressed. Also,

results can be force-field-dependent, so if we aim to obtain robust

conclusions, we should perform simulations with a variety of force-

fields.

Given the typical kinetics of the folding/unfolding transitions of

small globular proteins [18], microsecond (msec) long simulations

should trace the first stages of these processes. In the current work,

we investigate the first stages of urea-driven protein unfolding

using msec-long atomistic simulation; to gain universality, we used

30 proteins representative of all protein folds, while to protect our

conclusions from force-field-related uncertainties, we used several

of the most popular force-fields. The results derived from this

study provide a robust and complete picture of the role of urea in

destabilizing folded states of proteins, and more importantly, on

the molecular mechanisms by means of which urea contributes to

accelerating protein unfolding.

Results

Protocol validation using three ultra-representative
proteins
We first validated our protocol using three ultra-representative

proteins (in bold in Table 1), one for each of the main classes in the

Structural Classification of Proteins (SCOP, [19]). We monitored

the protein stability in three environments: i) in chemical unfolding

conditions, in 8M urea and with a mildly high temperature

(T= 368K) to speed up the observable effects; ii) in thermal

unfolding condition, in water with the same high temperature; this

control allowed us to distinguish the effect of urea and temperature

on protein unfolding; iii) in water at room temperature as final

control. Four force-fields were used (OPLSAA - ON2; CHARMM

- C22; AMBER99 - P99 and P99SBILDN) for each system (see

Methods for the description of the force-fields used), collecting in

total 36 simulations of 1-msec length each.

Control simulations at room temperature. Analysis of the

trajectories in water at room temperature for the 3 ultra-

representative proteins confirmed that current force-fields can

accurately represent the native conformation of soluble proteins in

the msec range [20,21,22], reproducing the global and local

structure of proteins well. The structures in the last segment of the

trajectory (and the corresponding ones collected just after

equilibration) showed, in general, little structural drift from the

experimental conformation (see Figure 1, Suppl. Figures S1, S2

and Suppl. Table S1). This was noted in the small values of root

mean squared deviation (RMSD) from native structure at the end

of the simulation (typically around 1.5 Å), and the good

preservation of the fold structure (average TMscore around 0.8),

the shape descriptors (radius of gyration, RadGyr and solvent

accessible surface area, SASA) and the secondary structure (SS)

composition. We found only one significant discrepancy: simula-

tion of 1CQY using the C22 force-field showed a non-negligible

transition in the 100-ns time scale, leading to the sampling of

conformations that were 3 Å away from the experimental

structure; see Suppl. Figures S1, S2.

Control simulation of thermal unfolding (hot

water). The mild high temperature applied in the simulations

in hot water (below water boiling point: T= 368K) significantly

enhanced the global fluctuations of the protein (see Suppl. Figures

S2), while advances in the unfolding were still moderate. Thus,

after 1 msec of MD in hot water, the RMSD from experimental

Table 1. Structures representative of the 30 most populated
protein meta-folds.

Symb Fig. 3 PDB code Molecule name

a 1AGI Angiogenin-1

b 1CHN Chemotaxis protein CheY

c 1FVQ Copper-transporting ATPase

d 1GND Rab GDP dissociation inhibitor alpha

e 1KTE Glutaredoxin-1 (Thioltransferase)

f 1LIT Lithostathine-1-alpha

g 1PDO Mannose Permease – IIA domain

h 1SDF Stromal cell-derived factor-1

i 1SUR PAPS Reductase

j 2HVM Hevamine

k 1BFG Basic fibroblast growth factor

l 1BJ7 Allergen Bos D2

m 1CQY b-amylase, Starch-binding domain

n 1CSP Cold shock protein B

o 1CZT Coagulation factor V, C2 domain

p 1J5D Plastocyanin

q 1KXA Sindbis virus capsid protein

r 1NSO Protease

s 1PHT P13-kinase, SH3 domain

t 1BSN F1-ATPase, e subunit

u 1EMR Leukemia Inhibitory Factor

v 1IL6 Interleukin-6

w 1JLI Interleukin-3

x 1K40 Focal adhesion kinase, FAT domain

y 1LKI Leukemia Inhibitory Factor

z 1OOI Odorant binding protein LUSH

a 1OPC OMPR, Dna-binding domain

b 1FAS Fasciculin-1

c 1I6F Alpha-like toxin CsEv5

d 1SP2 SP1F2, zinc-finger dna binding domain

The list is divided according to the SCOP fold group (in order all-a, all-b and a/
b). The three ultra representative proteins used in the protocol validation are in
bold.
doi:10.1371/journal.pcbi.1003393.t001

Author Summary

The delicate equilibrium between the folded and func-
tional structure of a protein and its unfolded state is highly
dependent on environmental variables such as the solvent.
For example the co-solvent urea is a well-known protein
denaturant that displaces the equilibrium towards un-
structured and non-functional conformations of proteins.
However the molecular mechanism behind its ability
remains an enigma and the interpretation of the experi-
mental data is still ambiguous. By analyzing a set of
representative proteins through extensive molecular dy-
namics simulations in urea, we provide a robust and
consensus picture of the first stages of urea-driven protein
unfolding and elucidate the role of urea in accelerating
protein unfolding. Our results suggest that urea, thanks to
its stickiness and slow diffusion, benefits from the intrinsic
flexibility of proteins and stabilizes partially open-states,
slowly driving the protein toward unfolding.

Early Stages of the Chemical Unfolding of Proteins
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structures reached the range 5–7 Å, and shape descriptors

(RadGyr and SASA) indicated a moderate increase in the size of

the protein (see Figure 1 and Suppl. Table S2). The fold-

architecture started to be corrupted (TMscore values around 0.5),

with a moderate loss of native contacts (S3) and native secondary

structure (S2 - see Figure 1 and Suppl. Table S3).

Detailed analysis of the 12 simulations (three proteins and four

force-fields) provides interesting information on the behavior of the

force-fields. In general, the overall picture at the beginning of

thermal denaturation of proteins was quite robust to force-field

changes. However, we found two clear discrepancies. First, C22

appeared to facilitate unfolding in hot water (see Suppl. Figure S2),

yielding more flexible structures than those obtained with the

other force-fields. Second, in P99SBILDN the 1CQY protein

remained fully preserved at the end of the high temperature

trajectory. Five independent replicas of the same system with

different starting geometries and velocities failed to detect

significant unfolding for 1CQY with P99SBILDN. This observa-

tion points to a potential problem of over-stabilization of the

folded structure for this all-b protein.

The differential effect of urea in the early stages of

chemical unfolding. We first analyzed the impact of high

concentrations of urea on the three ultra-representative proteins.

Overall, and contrary to previous suggestions [13], in the

microsecond scale the unfolding efficiency of urea did not change

dramatically from that in hot water simulation. In the same

simulation period, proteins in urea display RMSD values that were

marginally larger than in hot water (see Figure 1 and Supp. Table

S2), and TMscore, S2 (secondary structure) and S3 (native

contacts) values at the end of the simulations in urea were not

much different to those obtained in hot water (see Figure 1 and

Supp. Table S2), except for a certain enlargement in the

disruption of b-sheets when urea was added (see Suppl. Table S3).

We found a significant correlation (r = 0.701; p-value,2.2

10216) between the time that each native contact remained lost in

water and in urea at the same temperature (Suppl. Figure S3-A).

This observation suggests that urea does not attack specific parts

of the protein, but rather benefits from the intrinsic breathing

movements of the protein at high temperature. However, the

role of urea in guiding unfolding is reflected by the different

nature of the structural deformations that occurred in hot water

and urea simulations. Thus, the latter sampled conformations

that were slightly more extended (higher RadGyr) and clearly

more exposed (higher SASA) than those sampled in hot water

(Figure 2). It is worth noting (see Figure 2 and Suppl. Figure S3)

that in urea-driven unfolding the solvent-accessible surface

(SASA) corresponding to apolar residues increased dramatically,

a behavior reminiscent of the surfactant action, while this

increase was moderate in hot water simulations. The urea-

induced increase of the apolar-exposed area was not accompa-

nied by a dramatic enlargement of RadGyr or to a large

decrease in the structural indexes, thereby suggesting that the

exposure of the hydrophobic core occurs through the creation of

small cavities (filled with urea) and the exposure of apolar side

Figure 1. Shape and unfolding descriptors for the three ultra-representative proteins. Root-mean-squared-deviation (RMSD) from the
starting conformation, radius of gyration (RadGyr), TMscore, solvent accessible surface area (SASA), native secondary structure index (S2) and native
contacts index (S3) were calculated in water, urea and hot water in the four force-fields (OPLSAA - ON2; CHARMM - C22; AMBER99 - P99 and last-
modified P99SBILDN). Average values and relative standard deviations are calculated in the last 10 ns of the simulation. For radius of gyration and
SASA, the value found for the starting conformation is reported as a red line. See Methods and Suppl. Text S1 for a description of the metrics. Error
bars mark the standard deviation.
doi:10.1371/journal.pcbi.1003393.g001
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chains, without a dramatic extension of the protein or an

explosion of the hydrophobic core.

A second major difference between the unfolding yielded by hot

water and by urea was revealed by the analysis of the dynamics of

the protein. Intuition suggests that proteins will show greater

fluctuation (at the same temperature) in the presence of a

denaturant like urea. This is certainly true for a fully unfolded

protein [15], but not during early stages of unfolding, when the

protein is still close to its native state, as noted in the values of

RMSD calculated in various time-windows (see Suppl. Figure S3-

B). The explanation of this apparently counterintuitive finding is

that urea solutions are more viscous, thus reducing the fastest

movements of the proteins, including the oscillations of side chains

(66% of side chains were stiffer in urea than in water). This

reduction causes a slow down of the atomic-motions, which in fact

opposes unfolding. However, the slower mobility of urea and its

sticky nature may explain the longer life time of lost contacts (see

Suppl. Text S1) in urea (see Table 2 and Suppl. Figure S4-C), a

feature that clearly favors unfolding (see below).

Regarding differences related to force-fields, we detected the

same discrepancies as in hot water. C22 simulations showed more

mobility and distortions (Suppl. Figure S2), but conformations

were still similar to those obtained with other force-fields. With the

P99SBILDN force-field, the full-b protein 1CQY remained stable

when simulated at high temperature in the presence (but also

absence) of urea. Five 1-msec replicas of this trajectory failed again

to detect any significant unfolding of this protein, a finding that

suggests caution in the use of P99SBILDN (a force-field refined to

reproduce folded structures) in unfolding studies of full-b proteins.

Given our observation, the P99SBILDN force-field was not

considered in the rest of the study.

Figure 2. Variation of the solvent accessible surface area (SASA) during the unfolding. Values are reported for apolar and polar residues in
hot water and urea, for the three ultra-representative proteins in all force-fields. SASA is normalized for each protein using the average value
calculated in the water simulations (to take into account the structure rearrangements and the mobility in water), while the structure index is used to
follow the unfolding process (from 1 - fully native folded protein - towards 0). The color marks the density. For more detailed pictures for each protein
see Suppl. Figure S3. Note that in urea the increase in SASA is larger than that in water, mostly due to the exposure of apolar moieties, similarly to the
action of surfactant.
doi:10.1371/journal.pcbi.1003393.g002

Table 2. Change in flexibility of contacts (opening time)
maintained in hot water and urea.

Force-field U* (%) W* (%) Tot (%) D(U-W) Normalized (%)

ON2 10.54 7.4 17.94 +17.5%

P99 12.19 4.64 16.83 +44.8%

C22 2.76 5.85 8.61 235.8%

P99SBILDN 7.02 3.51 10.53 +33.3%

*Percentage of native contacts that present a longer opening time in urea (U) or
water (W) (difference between opening time larger than | 0.1 | ns). The average
total number of contacts is 1110 in C22, 1148 in ON2, 1140 in P99 and 1143 in
P99. Each protein has ,380 native contacts - defined as those occurring for
more than 80% of the time in the 0.1 microsecond simulation in water at 300K.
doi:10.1371/journal.pcbi.1003393.t002
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Proteome-level study of urea unfolding
After the validation of our protocol, we extended the chemical

unfolding simulations to a larger set of proteins, to avoid any bias

in the conclusion due to the native structure. We performed 1 msec
of simulation in urea at high temperature (T=398K) for 30

proteins covering all the major protein folds (Table 1 and Suppl.

Dataset S1). Each system was simulated in three force-fields (C22,

ON and P99), excluding P99SBILDN as reported above, and

collecting in total 90 simulations. To have a more realistic picture

of the native state, instead of using the crystal structure, we used as

control 0.1 msec-long simulations in water at room temperature for

all the 90 systems. The analysis described here reveals some

common robust trends that illustrate the effect of urea during the

early stages of protein unfolding.

Global denaturation. As anticipated from simulations in the

small set of ultra-representative proteins, urea led to an

enlargement of the protein and to a deviation from its native

structure (Figure 3), without reaching, however, full unfolding in

any of the 90 simulations in urea at high temperature. On average,

our simulations produced RMSD values (from experimental native

conformation) around 4 Å larger than those found at the end of

the control simulation in water, while for these proteins a fully

unfolded structure should yield DRMSD values above the range

20 Å [15] and a random structure above 10 Å [23]. Only a few

proteins lost their fold integrity and native contacts after 1-msec
simulations in urea at high temperature, as noted in the reductions

beyond 0.5 in the TMscore and in native contact (S3 structural

index) around 0.2–0.3. However, in general, the urea-induced

disruption of core structural elements was moderate (reduction of

TMscore around 0.3–0.4 and S3 indexes around 0.4–0.6 at the

end of the trajectory; see Figure 3).

The selected force-fields showed a consistent representation of

unfolding and in general the urea- labile or resistant proteins

defined among the entire set matched in all of them. For example,

all force-fields detected minuscule advances in unfolding (as

determined by the set of metrics in Figure 3) for 1GND(d),

2HVM(j), 1CSP(n), 1OPC(a) and 1KTE(e), whereas the same

force-fields detected significant progresses in others (for example

1CQY-m, 1BSN-t, 1OOI-z, 1K40-x or 1SP2-d). Only in a few

cases was there apparent large discrepancy between force-fields

(example 1FVQ) and these corresponded to simulations where

structural alterations were already seen in the reference simula-

tions (example C22 for 1FVQ). In summary, despite the stochastic

nature of unfolding and the uncertainties implicit to the force-field,

the general picture of urea unfolding detected here is robust.

Urea-induced unfolding and loss of secondary

structure. We did not find any correlation between the

presence/absence of disulphide bridges and the extent of urea-

induced unfolding (note that to exclusively analyze the effects of

urea, disulphide bridges were not reduced in our calculations). All

changes in urea sensitivity related to fold type, secondary structure

composition or the presence or absence of disulphide bridges were

small during the first stages of unfolding.

The distribution of urea around the protein. As antici-

pated in previous studies [4,8,10,13,15], proteins are urea-philic.

All the proteins studied here (for all force-fields) quickly recruited

urea into the first solvation shell (in agreement with osmometric

experiments [24]), where the water/urea ratio reached values in

the range 3–3.5 water/urea molecules, while the background ratio

was around 6 (see Table 3). However, this enrichment was smaller

than that found for a fully unfolded protein (0.9 for unfolded

ubiquitin; [15]), thereby suggesting that the most urea-philic

groups remained buried in the interior of the protein. Urea did not

preferentially solvate any residue (see Figure 4A) and showed

preferential binding to the backbone rather than to the side chains

during the first stages of unfolding. Although larger in size, urea

Figure 3. Shape and unfolding descriptors for the 30 representative proteins. The difference of TMscore, RMSD and SASA between values
in urea and in water (to allow comparison between proteins of different size) calculated in urea in the three force-fields. The native contacts index
(S3), native secondary structure index (S2) and the difference in Secondary Structure content (D% Sec. Structure) are also shown. To facilitate
discussion, proteins are grouped following the SCOP classification. The correspondent pdb code is reported in Table 1; the group average is reported
as ‘‘av’’ while the symbol * marks proteins with disulfide bonds. Error bars mark the standard deviation.
doi:10.1371/journal.pcbi.1003393.g003
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has a higher affinity than water to interact with residues placed in

narrow cavities near the hydrophobic core (see below). Long

residence urea molecules placed in these cavities led to a partial

exposure of the hydrophobic core of the protein (see Figures 1–3).

At this point we wish to comment on the urea distribution for

C22 simulations, since we detected significantly less urea in

proximity of the protein as compared to the other force-fields. This

unusual behavior of C22 urea simulations is evident in Table 3

and Suppl. Figure S5-AB, where some trends found in P99, ON2

(or P99SBILDN) differ from those in the C22 simulations. Urea

densities around the proteins in the C22 simulations may have

been too low, possibly reflecting the excessive polarity of the urea

model used in the C22 trajectories (dipole moment 5.3 D,

compared with the dipoles around 4.7 D of the other models) [11].

The energetics of protein-urea interaction. The nature of

the interaction between urea and proteins has been the subject of

intense discussion (see Introduction). Our previous results [15]

suggest that in the fully unfolded state there are many urea-protein

hydrogen bonds, mostly with the backbone, but that the main

factor responsible for the urea-philicity shown by proteins is the

differential dispersion interaction of bulk and protein-bound urea.

However, these conclusions for the unfolded state might not be

valid when the protein is still compact during the early stages of

unfolding. Analysis of current data (see Table 4 and Suppl. Table

S4) shows that already in these early stages of unfolding 30% of the

protein-solvent hydrogen bonds are with urea, and the ratio is

even higher (36%) when considering only stable contacts. In 2/3 of

the cases, urea acts as a hydrogen donor when H-bonding to the

backbone, and, in general, urea-protein H-bonds display longer

life times than water-protein ones, a feature that appears to be

crucial to stabilize partially exposed residues (see below).

Nevertheless, the formation of these H-bond interactions (mostly

electrostatic in nature) is not the driving force that explains the

urea-philicity of the nearly-native conformation, since the migra-

tion of urea from background to the first solvation shell (FSS) of

the protein does not alter global electrostatics (see Suppl. Figure

S5-B), but improves the van der Waals interactions [13–15]. This

effect and the gain in water entropy related to the replacement of

several water molecules by a single urea molecule [10,11] may

drive denaturation in the early stages of urea unfolding.

Urea and protein dynamics. Urea diffuses quite slowly

(Suppl. Figure S5-C) and limits protein fluctuations, which leads to

an apparent paradox: a denaturant that slows down the dynamics

of proteins compared to the equivalent simulations in water (see

also Suppl. Figure S4-B). However, analysis of trajectories show

that such a paradox does not exist. Urea migration to the protein

surface was slower than that of water, but once it reached the

Figure 4. Location of solvent molecules in urea. A) Preference for urea solvation measured by CCUW (the ratio for each amino acid between
atomic contacts with urea and with water molecules - see Suppl. Text S1) for different parts of the protein: hydrophobic (H), polar (P), charged (C)
residues, side chains (SC), backbone (BB), protein core (PC) and non-protein core (NPC). Error bars mark the standard deviation. Note that in all the
force-fields the PC shows the largest values, meaning a larger preference for urea. B) Distribution of the residence time for urea and water molecules
during a 1-msec trajectory.
doi:10.1371/journal.pcbi.1003393.g004

Table 3. Comparison of ratio water-urea in the first solvation
shell (FSS) and in the bulk (BULK).

RatioWU* ON2
FSS1 - BULK2

P99
FSS - BULK

C22
FSS - BULK

All a 3.39–6.26 3.01–6.45 5.03–5.87

All b 3.56–6.43 3.13–6.52 5.12–5.89

a/b 3.22–6.24 3.09–6.21 4.93–5.94

Small 3.46–6.17 2.94–6.33 4.95–6.19

Values are the average along the simulation, SD is always lower than 0.2.
*values are the average along the simulation, standard deviation is always lower
than 0.2,
1FSS defined by a maximum 5 Å cutoff to protein,
2BULK defined by a minimum cutoff of 6 Å.
doi:10.1371/journal.pcbi.1003393.t003
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surface, urea remained for longer periods (see Figure 4B),

especially when located in cavities near the hydrophobic core of

the protein (see Figure 5 and Suppl. Figure S6-A for examples).

Interestingly, the positions of long-lasting urea interactions are

consistent among all four force-fields and seems associated with a

sizeable improvement in van der Waals interactions and electro-

static energies and with the formation of strong long-living H-

bonds (see examples in Figure 5, Suppl. Figure S6-A and Suppl.

Table S4). These findings demonstrate that even if H-bonding is

not the driving force behind the urea-philicity of proteins, it is

important to stabilize urea molecules at specific positions at the

protein interior.

As noted above, residues that are very mobile in urea are also

highly mobile in water at high temperature (see Suppl. Figure S4-

A). Furthermore (see Suppl. Figure S4-C), with the exception of

C22 simulations, there was a slight but significant (r.0.2; p-

value:,2.2 10216) correlation between oscillating residues in urea

simulations and in native simulations (water at 300K). Interest-

ingly, long-residence urea molecules were typically bound to rigid

regions of the protein adjacent to mobile residues, i.e. they are

located at putative hinge-points at the interface between the more

rigid core of the protein and flexible loops or tails (see examples in

Figure 6C and Suppl. Figure S6-C). The presence of sticky urea in

these regions is expected to have a major role in guiding unfolding

(see below).

Discussion

MD simulations with additive potentials and explicit solvent

have become very popular to explore chemical unfolding of

protein. There is little doubt that the use of the technique has

produced sizeable advances in the field, but we cannot ignore

some potential caveats in the beginning of this discussion. First, for

computational reasons we (and most authors in the field) are using

classical non-polarizable force-fields, which might not be accurate

enough to deal with a complex process such as unfolding. Previous

studies [4–5,7–15,25] have however demonstrated that urea/

water/protein effective parameters are able to reproduce a variety

of experimental observables, such as mass densities and radial

distribution functions of urea/water solutions derived from

neutron scattering experiments [25], the experimental water/urea

transfer free energies of tripeptides [10], and the urea density

Table 4. Hydrogen bond interactions of urea/water with proteins during the last 10 ns of trajectories.

H- bonds (% of total)*: Urea/water as H-donor Urea/water as H-acceptor

66/65 34/35

H-bonds with protein: Backbone Side chains Backbone Side chains

% of total 58/48 42/52 67/69 33/31

Av. Lifetime(ps)
$ 74/64 107/74 327/68 451/249

*Distance cutoff is 3.50 Å, angle cutoff is 120.00 degrees. Hydrogen bonded solvent molecules are defined for occupancies (total time) larger than 0.5 ns,
$
Life-time refers to the percentage of analyzed trajectory (10 ns).
doi:10.1371/journal.pcbi.1003393.t004

Figure 5. Long residence urea molecules. Examples of urea contacts with the protein residues (y-axis) along 1 msec of simulation (x-axis). Each
dot defines a contact between a urea molecule and protein residues. A contact is defined when at least one pair of heavy atoms comes closer than
3.5 Å (see Suppl. Text S1). Examples of urea molecules trapped in the protein core are shown in the top panels. Note that in the same protein but
simulated in different force-fields, a long residence urea is trapped in a very similar area of the protein core. The panels below show the evolution of
electrostatic and dispersion energies for the urea molecules (calculation details as in Suppl. Figure S5-B; see also Suppl. Text S1). Note the reduction
mainly in dispersion energies upon the binding of urea.
doi:10.1371/journal.pcbi.1003393.g005
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around unfolded proteins found by vapor pressure osmometry

measures [4,8,10,13,15,24]. Furthermore, our recent work [15]

has demonstrated that unbiased MD simulations in 8M urea

reproduce very accurately the unfolded ensemble as determined

from a variety of spectroscopic techniques (including SAXS and

NMR) under the same conditions. Thus, despite their simplicity

current force-fields reproduce reasonably well urea/water/protein

mixtures. We should remember that since we are exploring a

microsecond-long process, no direct experimental data is available

for comparison and accordingly caution is required. This move us

to use a consensus approach, running the simulations with

different force-fields to extract those results that seem robust to

force-field changes.

A second reason of concern is related to the stochastic

nature of unfolding, where individual trajectories can show

different degree of unfolding [13]. Again, by comparing

different trajectories we tried to define robust findings, but

we cannot ignore that the experimental result is the averaging

a near-Avogadro number of trajectories. A third reason of

concern, common to many experimental studies, is the

generality of the results, i.e. how general are the results

obtained with a few model proteins. To convince ourselves on

the general validity of our results we repeated the unfolding

studies for a large number of proteins representative of all

prevalent folds. Despite the obvious caveat of any theoretical

study, this approach provided a picture of unprecedented, to

Figure 6. Urea intrusion into the core of 1CZT. A) Contact map from the crystal structure of 1CZT in blue (each dot represent a contact), the
contacts lost during 1 msec of simulation in urea are shown in light blue. Areas in magenta mark residues with a large flexibility while those in orange
mark residues with a high preference to contact urea. B) Snapshots showing the temporal evolution of the protein structure; the areas in magenta
and orange follow the same color code as in panel A. Urea molecules within 4 Å of these areas are shown in the same color. Note that flexible areas
(in magenta) on the surface of the protein - mainly loops - undergo opening events, and the loss of contacts (panel A) connecting these areas to the
protein core (in orange) triggers urea intrusion. C) The residue root mean square fluctuation (RMSF; a measure of flexibility), the contact coefficient
CCUW (measure of the binding preference of protein to contact urea rather than water) and the % of lost time (measure of local unfolding) along the
protein sequence. These metrics allow us to locate areas with large % of lost contact time and high flexibility in urea (magenta), while orange and
yellow regions illustrate large values of CCUW, meaning a remarkable preference to contact urea. For more examples see Suppl. Figure S6-B.
doi:10.1371/journal.pcbi.1003393.g006
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our knowledge, completeness and robustness of the early stages

of urea unfolding.

Under our simulation conditions (8M urea at T = 368 K), we

detected clear signals of unfolding in the microsecond range,

but progress in denaturation was smaller than that reported for

model proteins of reduced stability [13]. Overall, the advance

in unfolding of proteins at T = 368 after 1 msec of MD is not

dependent on the fold, nor secondary structure composition,

and was similar for proteins with and without disulphide

bridges in the native form. No dramatic differences in the

advance of unfolding were found between water and urea

simulations performed at the same temperature; however,

unfolding paths in the presence or absence of urea differed,

since the partially unfolded structures sampled in hot water

maintained the hydrophobic residues hidden in the core of the

protein, while such residues were more accessible in presence

of urea.

Urea solutions are more viscous than pure water, which in our

simulation reduced high-frequency movements in the protein,

generating an unexpected slow down of the atomic-motions.

Urea residence times around protein residues were large,

especially when urea molecules diffuse close to the hydrophobic

core or to the interface between rigid and thermally mobile

regions (hinge points). We consider that the sticky nature of urea

and its preferential placement at hinge points is crucial for

unfolding, since it favors the rapid trapping of residues that

become exposed as a consequence of stochastic thermal

motions. The stabilizing effect of urea on exposed residues

slowly biases the trajectory towards the unfolded state, by

decreasing the chances of microscopic refolding [12,26]. The

effect of stabilization of exposed residues is especially productive

in terms of unfolding when residues are apolar, since in this case

urea (but not water) traps very efficiently the residue, increasing

the accessibility of other apolar residues in the vicinity. The

ensuing greater recruitment of urea in the region leads to a

cooperative effect resulting in the acceleration of protein

unfolding. Our data shows that, similar to the unfolded state

[13,15], it is the van der Waals interactions that drive the

accumulation of urea on the surface of the folded protein.

However, the role of H-bonding cannot be dismissed, as these

bonds are crucial for the stabilization of long-living urea

interactions near hinge points, which in turn are required to

bias intrinsic protein dynamics towards unfolding. Clearly,

‘‘direct’’ effects not only are the main factors responsible for the

urea-mediated stabilization of the unfolded state [15], but are

also relevant in guiding the first steps of urea unfolding.

Microscopic unfolding events are related to stochastic thermal

motions, which are in principle similar to those that occur

spontaneously in water at room temperature. However, urea is

not a mere passive spectator that simply stabilizes the small

percentage of unfolded protein coexisting within the native

ensemble and leading to a displacement in the foldedrRun-

folded equilibrium towards the denatured state. On the

contrary, urea has a dual function: i) it takes advantage of

microscopic unfolding events, decreasing their chances of

refolding, and favoring further unfolding [12,26]; and ii) among

these microscopic unfolding events it selects and stabilizes

microstates with exposed hydrophobic regions [4] (see Suppl.

Figure S7). These effects lead to a slow divergence in the

temperature-unfolding pathways in water and urea, and, as

shown for ubiquitin [15], to distinct unfolded states. Conse-

quently, concepts such as folded and unfolded states or folding

and unfolding pathways need to be revisited and reformulated

considering the nature of the denaturant used.

Methods

Selected proteins
As model structures for the main protein-folds we used the same

structures selected in our previous work in reference 20. We first

explored the early stages of urea unfolding using three ultra-

representative proteins for the most populated fold in the three

main classes in the SCOP database (all-a 1OPC, all-b 1CQY and

a/b 1KTE; [19,20]). Once the simulation protocols had been

validated with these proteins, the study was extended to a larger

set, consisting of 30 structures (110 residues on average)

representative of the most populated protein folds ([20,27] and

Suppl. Dataset S1)

Simulation set-up
All starting structures were taken from the Protein Data

Bank (PDB; [28]) and processed using our standard procedure

implemented in the MDWeb server [29]: experimental

structures were titrated to define the major ionic state at

neutral pH, neutralized by ions (sodium and chloride),

minimized for 1000 steps, heated up to the final temperature,

and solvated using a 8M urea/water octahedron box with a

spacing distance of 15 Å around the system. The box was

previously equilibrated in a Monte Carlo simulation using the

BOSS program [30]. The water model was taken from

Jorgensen’s TIP3P [31], while ion and urea force-field

parameters were those considered as the default of each

force-field. Urea parameters from Smith et al. [32] were used

for OPLS and P99SBILDN simulations, the same charges but

scaled according to the amber force-field were used in PARM

99, while Nilsson’s parameters were used in the CHARMM 22

force field [33]. Systems were then pre-equilibrated for 0.5 ns

with parm99-AMBER force field in keeping the backbone

restrained by intra-molecular harmonic potentials and then

equilibrated (0.5 ns) in each force field parameters removing

backbone constraints.

Simulation details
For the small set of ultra-representative proteins, three sets of

simulations corresponding to water at room temperature (T=300

K), hot water (T=368 K), and urea at high temperature (T=368

K) were carried out. For each condition, we performed 1 msec
simulations using four force-fields: three general purpose ones

(OPLSAA -ON2- [34]; CHARMM -C22- [35]; AMBER99 -P99-

[36]), and a last-generation force-field able to accurately reproduce

folded proteins (P99SBILDN, [37]). For the extended set of 30

proteins, control simulations in water were limited to 0.1 msec at
room temperature, while the 8M urea simulations were

performed, as above, for 1 msec at T = 368 K. Simulations for

the extended set of proteins were carried out using ON2, C22

and P99. All simulations were performed using periodic

boundary conditions and particle Mesh Ewald [38] corrections

for the representation of long-range electrostatic effects using a

1.0 Å grid spacing and a 9 Å cutoff. All trajectories were

collected with the NAMD2 [39] program. Integration of

equations of motions was performed every 2 fs after removing

vibrations of bonds involving hydrogen atoms using SHAKE/

RATTLE algorithm [40,41]. All simulations were carried out in

the isothermal (T = 300 or 368 K)/isobaric ensemble (P = 1 atm)

using the Langevin thermostat and barostats [42,43]. The

trajectories were analyzed using VMD [44] and the MdWeb

server [29], as well as Flexserver which can be accessed at:

http://mmb.pcb.ub.es/FlexServ/ (see also Suppl. Text S1 for a

detailed explanation of the metrics).

Early Stages of the Chemical Unfolding of Proteins
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Supporting Information

Dataset S1 List of the structures selected to represent
the 30 most populated folds according to SCOP, CATH,
Dali and Dagget’s databases [20]. When available, we

included the denaturation midpoint, as measurement of protein

intrinsic stability.

(XLS)

Figure S1 Structural descriptors for the ultra represen-
tative proteins. Structural descriptors (and associated standard

deviations) for the 3 ultra representative proteins along the first

and last 10 ns of the simulated time (1 microsecond) in water at

300K. The red line reports values for the starting conformation.

Error bars mark the standard deviation.

(TIF)

Figure S2 Root mean square deviations for the ultra
representative proteins. A) RMSd evolution and B) distribu-
tion among 1 microsecond for the 3 ultra representative proteins

in the three environments: water at 300K, urea 8M at 368K and

water at 368K. Each color identifies a force-field: red for C22,

violet for ON2, blue for P99 and green for P99SBILDN.

(TIFF)

Figure S3 Evolution of solvent accessible areas for the
ultra representative proteins. Correlation between solvent

accessible surface area (DSASA) of polar (left side) and apolar

residues (right) and the global structure index. For each force-field,

values for the three ultra-representative proteins: 1KTE (green),

1CQY (red) and 1OPC (blue) are reported. DSASA is defined as

the difference to the average values of the corresponding control

simulations, the global structure index is used to follow the

progress in the unfolding process (from 1 - fully native folded

protein - towards 0).

(TIFF)

Figure S4 Comparison between unfolding in hot water
and urea for the ultra representative proteins. A)
Correlation between the percentages of lost contact time for each

residue in urea and in hot water (r = 0.701; p-value,2.2 10216).

The percentage of lost contact time is calculated as contact time

lost during 1 microsecond (using water simulation at 300 K as a

reference) B) Average RMSd measured in different time windows

(time lag), from 2 ns up to 200 ns, in hot water (blue) and urea

(green). Reference structure for RMSd calculations is always the

first frame in the window, which means tha this metrics gives an

estimate of the short time scale oscillations of the protein C) Force-
field dependent distribution of average opening times(temporal

unfold – see Suppl. Text S1) in urea (green) and hot water (orange)

during the first 100 ns of simulations for the three ultra-

representative proteins. D) Correlation between the root mean

square fluctuation (RMSF) of the residues between simulations in

urea (368K) and water (300K). P-value is always smaller than 2.2

10216.

(TIFF)

Figure S5 Solvent features in urea unfolding simula-
tions. A) Average ratio water/urea molecules in the first solvation

shell of the 30 representative proteins in urea (values for every

force-field are presented using normal color code). Average values

and relative standard deviations are calculated in the last 10 ns of

the simulation. To facilitate discussion proteins are grouped

according to the SCOP classification, the group average is

reported as AV while the symbol * marks proteins with disulfide

bonds. Error bars mark the standard deviation. B) Distribution of

Van der Waals and electrostatic energies for urea and water in the

first solvation shell and in the bulk. C) Urea and water mean

square displacement in different time windows (tau) among the last

10 ns of the trajectories. The diffusion coefficient is calculated

using the Einstein equation, more details in Suppl. Text S1.

(PDF)

Figure S6 Examples of urea contacts during protein
unfolding. A) Examples of urea-protein contacts along simula-

tion time (msec). Each dot in the plot defines a contact between

that particular urea molecule and a residue in the protein.

Examples of urea molecules trapped in the protein core are shown.

B) Variation along the sequence of the residue RMSF (measure for

the flexibility), the contact coefficient CCUW (measure for the

preference of protein to contact urea vs. water) and the % of lost

contact time (Lost; a measure for the unfolding). The three

examples are randomly chosen among the 30 simulations; results

are shown for all the three force-field. The RMSF for each residue

is calculated in water (green) and in urea (red) while the B-factors

(appropriately scaled to maintain same units as RMSF) are from

the PDB structure (blue). Residues that are part of protein core are

marked in yellow along the x-axes. The color scale for CCUW

along the protein sequence ranges from blue (low preference for

urea) to orange (large preference for urea). Areas of high urea

preference are mostly located in rigid regions flanking highly

flexible segments. The % of lost time is calculated as the average

percentage of lost time from all the native contacts that each

residue forms. The color scale ranges from blue (low unfolding) to

magenta (large unfolding).

(TIFF)

Figure S7 A scheme to illustrate the action of urea on
micro-folding events. Two residues exposed due to local

unfolding oscillation - that quickly re-collapse in water - can

remain exposed for longer time in presence of urea. Urea, that has

a greater ability than water to form dispersion interactions, can

stabilize parts of the protein that are usually hidden from the

solvent, such as hydrophobic residues, and that can become

exposed during these unfolding oscillation. The summation of

many of these events moves the equilibrium towards the unfolding

state of a protein.

(TIF)

Table S1 Comparison of structural descriptors for 3
ultra-representative proteins in the periods (10–100 ns)
and (910–1000 ns).

(DOCX)

Table S2 Comparison of structural descriptors for 3
ultra-representative proteins in the period (990–1000 ns)
calculated in hotwater (HW) and urea (U) and their
difference with water (W) among the same period. Values
are displayed as mean(standard deviation).

(DOCX)

Table S3 Comparison of % secondary structure for 3
ultra-representative proteins in the period (990–1000 ns)
calculated in hotwater (HW), urea (U) and water (W).

(DOCX)

Table S4 Hydrogen bond interactions of urea/water
with proteins during the last 10 ns of trajectories for
different force-fields. Life-time refers always to the 10 ns

window analyzed.

(DOCX)

Text S1 Methods. Description of the analysis performed.

(DOCX)
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PDB	
  CODE	
   Fig	
  3	
  
symbol	
  

Denaturation	
  
Midpoint	
  **	
  

SCOP	
  Class	
   SEGMENT	
  
LENGTH	
  

	
   	
   	
   	
   	
  
1AGI	
   a	
   Tm	
  =	
  63°	
  C	
  *	
  

human	
  
(33%)	
  

alpha-­‐beta	
   125	
  

1BFG	
   k	
   Tm	
  =	
  64°	
  C	
   mainly-­‐beta	
   126	
  
1BJ7	
   l	
   	
   mainly-­‐beta	
   150	
  
1BSN	
   t	
   	
   mainly-­‐beta	
   88	
  
1CHN	
   b	
   Tm	
  =	
  56°	
  C	
   alpha-­‐beta	
   126	
  
1CQY	
   m	
   Tm	
  =	
  60°	
  C	
  *	
  

B.circulans	
  (33%)	
  
mainly-­‐beta	
   99	
  

1CSP	
   n	
   Tm	
  =	
  60°	
  C	
   mainly-­‐beta	
   67	
  
1CZT	
   o	
   Tm=	
  65.5°	
  C	
   mainly-­‐beta	
   160	
  
1EMR	
   u	
   	
   mainly-­‐alpha	
   159	
  
1FAS	
   b	
   	
   mainly-­‐beta	
   61	
  
1FVQ	
   c	
   	
   alpha-­‐beta	
   72	
  
1GND	
   d	
   	
   mainly-­‐alpha	
   105	
  
1I6F	
   c	
   	
   alpha-­‐beta	
   60	
  
1IL6	
   v	
   Cm	
  =	
  5.5	
  M	
  urea	
   mainly-­‐alpha	
   166	
  
1J5D	
   p	
   Tm	
  =	
  69°	
  C	
   mainly-­‐beta	
   98	
  
1JLI	
   w	
   	
   mainly-­‐alpha	
   112	
  
1K40	
   x	
   Tm	
  =	
  72°	
  C	
   mainly-­‐alpha	
   126	
  
1KTE	
   e	
   Tm	
  =	
  55°	
  C	
  *	
  

E.Coli	
  (33%)	
  	
  
alpha-­‐beta	
   105	
  

1KXA	
   q	
   	
   mainly-­‐beta	
   65	
  
1LIT	
   f	
   	
   alpha-­‐beta	
   131	
  
1LKI	
   y	
   	
   mainly-­‐alpha	
   172	
  
1NSO	
   r	
   Cm	
  =	
  3.4	
  M	
  urea	
   mainly-­‐beta	
   107	
  
1OOI	
   z	
   Tm=	
  50°	
  C	
   mainly-­‐alpha	
   124	
  
1OPC	
   a	
   	
   mainly-­‐alpha	
   99	
  
1PDO	
   g	
   Tm	
  =	
  94°	
  C	
   alpha-­‐beta	
   129	
  
1PHT	
   s	
   	
   mainly-­‐beta	
   83	
  
1SDF	
   h	
   	
   mainly-­‐beta	
   67	
  
1SP2	
   d	
   	
   small	
   31	
  
1SUR	
   i	
   	
   alpha-­‐beta	
   215	
  
2HVM	
   j	
   	
   alpha-­‐beta	
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Supplementary Information

Extract from the Dataset 1. The 30 most populated folds according to SCOP,. 
When available, the denaturation midpoint is included as measurement of pro-
tein intrinsic stability. **Denaturation midpoint  defined as the temperature (Tm 
in °C ) or denaturant concentration (Cm in M);  * values reported for an homol-
ogous, the similarity to the one in the original species is reported in brackets.
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Figure S1. Structural descriptors for the ultra representative proteins. 
Structural descriptors (and associated standard deviations) for the 3 ultra repre-
sentative proteins along the first and last 10 ns of the simulated time (1 micro-
second) in water at 300K. The red line reports values for the starting conforma-
tion. Error bars mark the standard deviation.
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Figure S2. Root mean square deviations for the ultra representative pro-
teins. A) RMSd evolution and B) distribution among 1 microsecond for the 3 
ultra representative proteins in the three environments: water at 300K, urea 8M 
at 368K and water at 368K. Each color identifies a force-field: red for C22, violet 
for ON2, blue for P99 and green for P99SBILDN.
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Figure S3. Evolution of solvent accessible areas for the ultra representa-
tive proteins. Correlation between solvent accessible surface area (ΔSASA) 
of polar (left side) and apolar residues (right) and the global structure index. 
For each force-field, values for the three ultra-representative proteins: 1KTE 
(green), 1CQY (red) and 1OPC (blue) are reported. ΔSASA is defined as the 
difference to the average values of the corresponding control simulations, the 
global structure index is used to follow the progress in the unfolding process 
(from 1 - fully native folded protein - towards 0).
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Figure S4. Comparison between unfolding in hot water and urea for the 
ultra representative proteins. A) Correlation between the percentages of lost 
contact time for each residue in urea and in hot water (r = 0.701; p-value<2.2 
10−16). The percentage of lost contact time is calculated as contact time lost 
during 1 microsecond (using water simulation at 300 K as a reference) B) Aver-
age RMSd measured in different time windows (time lag), from 2 ns up to 200 
ns, in hot water (blue) and urea (green). Reference structure for RMSd calcu-
lations is always the first frame in the window, which means that this metrics 
gives an estimate of the short time scale oscillations of the protein C) Force-
field dependent distribution of average opening times(temporal unfold – see 
Suppl. Text S1) in urea (green) and hot water (orange) during the first 100 ns of 
simulations for the three ultra-representative proteins. D) Correlation between 
the root mean square fluctuation (RMSF) of the residues between simulations in 
urea (368K) and water (300K). P-value is always smaller than 2.2 10−16.
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Figure S5. Solvent features in urea unfolding simulations. A) Average ra-
tio water/urea molecules in the first solvation shell of the 30 representative 
proteins in urea (values for every force-field are presented using normal color 
code). Average values and relative standard deviations are calculated in the 
last 10 ns of the simulation. To facilitate discussion proteins are grouped ac-
cording to the SCOP classification, the group average is reported as AV while 
the symbol * marks proteins with disulfide bonds. Error bars mark the standard 
deviation. B) Distribution of Van der Waals and electrostatic energies for urea 
and water in the first solvation shell and in the bulk. C) Urea and water mean 
square displacement in different time windows (tau) among the last 10 ns of the 
trajectories. The diffusion coefficient is calculated using the Einstein equation, 
more details in Suppl. Text S1.
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Figure S6. Examples of urea contacts during protein unfolding. A) Exam-
ples of urea-protein contacts along simulation time (µsec). Each dot in the plot 
defines a contact between that particular urea molecule and a residue in the 
protein. Examples of urea molecules trapped in the protein core are shown.
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Table 1. Comparison of structural descriptors for 3 ultra-representative pro-
teins in the periods (10–100 ns) and (910–1000 ns) and their difference (Δ(Last-
First)). When possible values are displayed as mean(standard deviation) and the  
Z-score has been calculated  of the Δ(Last-First)  value related to the differences 
between non consecutive windows of 10 ns.

 

Structural	
  	
  	
  

Descriptor	
  

	
   FIRST	
  	
  

(10-­‐100ns)	
  

LAST	
  	
  

(910-­‐1000ns)	
  

∆(Last-­‐First)	
   Z-­‐score	
  

Rmsd(Å)	
  
	
  

C22	
  
ON2	
  
P99	
  
P99*	
  

1.84(0.29)	
  
1.47(0.20)	
  
1.12(0.13)	
  
1.35(0.08)	
  

2.54(0.19)	
  
1.78(0.13)	
  
1.39(0.09)	
  
1.46(0.02)	
  

0.70(0.09)	
  
0.31(0.06)	
  	
  
0.27(0.04)	
  
0.11(0.05)	
  

1.34	
  
0.77	
  
0.63	
  
0.34	
  

Tmscore	
  
	
  

C22	
  
ON2	
  
P99	
  
P99*	
  

0.84(0.10)	
  
0.89(0.12)	
  
0.87(0.16)	
  
0.86(0.11)	
  

	
  0.65(0.13)	
  
0.77(0.12)	
  
0.84(0.11)	
  
0.83(0.06)	
  

-­‐0.19(0.03)	
  
-­‐0.12(0.00)	
  
-­‐0.03(-­‐0.05)	
  
-­‐0.03(-­‐0.05)	
  

-­‐1.31	
  
0.78	
  
0.56	
  
0.46	
  

Rg	
  (Å)	
  
	
  

C22	
  
ON2	
  
P99	
  
P99*	
  

13.02(0.61)	
  
13.00(0.62)	
  
13.08(0.47)	
  
13.12(0.63)	
  

	
  13.32(0.06)	
  
13.27(0.04)	
  
13.34(0.06)	
  
13.32(0.28)	
  

0.30(-­‐0.54)	
  
0.26(-­‐0.57)	
  
0.26(-­‐0.41)	
  
0.19(-­‐0.35)	
  

0.59	
  
0.68	
  
0.69	
  
0.43	
  

SASA	
  (Å2)	
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ON2	
  
P99	
  
P99*	
  

6365(225)	
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6165(88)	
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6134(93)	
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378(-­‐80)	
  
74(-­‐13)	
  
-­‐30(5)	
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1.23	
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29.9	
  
30.1	
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30.0	
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Table S2. Comparison of structural descriptors for 3 ultra-representative pro-
teins in the period (990-1000 ns)  calculated in  hotwater(HW) and  urea (U) and 
their difference with water (W) among the same period. Values are displayed as 
mean(standard deviation).

	
  
	
  

	
   Hot	
  Water(HW)	
  	
  

(990-­‐1000ns)	
  

	
  Urea	
  (U)	
  

(990-­‐1000ns)	
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   ∆(U-­‐W)	
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P99*	
  

7.35(1.25)	
  
4.91(0.24)	
  
7.49(0.51)	
  
4.89(0.20)	
  

6.01(0.33)	
  
5.11(0.19)	
  
7.64(0.68)	
  
7.74(0.32)	
  

4.68(1.10)	
  
3.15(0.00)	
  
6.13(0.44)	
  
3.72(0.10)	
  

3.33(0.18)	
  
3.36(-­‐0.04)	
  
6.28(0.61)	
  
6.58(0.22)	
  

Tmscore	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ON2	
  

P99	
  
P99*	
  

0.40(0.06)	
  
0.60(0.11)	
  
0.45(0.06)	
  
0.48(0.10)	
  

0.53(0.07)	
  
0.60(0.02)	
  
0.41(0.11)	
  
0.58(0.05)	
  

-­‐0.24(-­‐0.05)	
  
-­‐0.18(0.027)	
  
-­‐0.39(-­‐0.01)	
  
-­‐0.39(-­‐0.00)	
  

-­‐0.11(-­‐0.03)	
  
-­‐0.18(-­‐0.05)	
  
-­‐0.44(0.04)	
  
-­‐0.28(-­‐0.05)	
  

Rg(Å)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ON2	
  

P99	
  
P99*	
  

13.96(0.31)	
  
13.50(0.14)	
  
13.67(0.24)	
  
13.64(0.15)	
  

14.27(0.21)	
  
13.91(0.09)	
  
13.79(0.16)	
  
14.93(0.28)	
  

0.37(0.20)	
  
0.13(0.06)	
  
0.35(0.18)	
  
0.29(0.08)	
  

0.68(0.10)	
  
0.55(0.02)	
  
0.47(0.10)	
  
1.58(0.20)	
  

	
  	
  	
  	
  	
  SASA(Å2)	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ON2	
  

P99	
  
P99*	
  

7418(295)	
  
6372(149)	
  
6607(190)	
  
6570(160)	
  

7302(176)	
  
6822(125)	
  
7007(204)	
  
7517(210)	
  

691(152)	
  
126(55)	
  
516(124)	
  
533(59)	
  

575(33)	
  
576(31)	
  
915(138)	
  
1479(108)	
  

	
  	
  	
  	
  	
  	
  	
  S2	
  (%)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ON2	
  

P99	
  
	
  P99*	
  

56.52(2.76)	
  
58.10(2.28)	
  
64.24(3.06)	
  
74.59(1.41)	
  

66.57(2.53)	
  
64.48(2.02)	
  
51.34(1.24)	
  
55.10(2.01)	
  

-­‐17.56(0.95)	
  
-­‐20.6(0.10)	
  
-­‐18.35(1.3)	
  
-­‐12.0(-­‐0.34)	
  

-­‐7.52(0.72)	
  
-­‐14.22(-­‐0.15)	
  
-­‐31.26(-­‐0.52)	
  
-­‐31.50(0.24)	
  

	
  	
  	
  	
  	
  	
  S3(%)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ON2	
  

P99	
  
P99*	
  

36.39(5.28)	
  
58.83(6.57)	
  
46.20(9.44)	
  
69.43(5.16)	
  

51.95(8.6)	
  
64.13(5.29)	
  
32.66(5.14)	
  
45.56(4.27)	
  

-­‐43.27(3.04)	
  
-­‐22.87(4.39)	
  
-­‐39.72(7.68)	
  
-­‐17.53(3.55)	
  

-­‐27.71(6.37)	
  
-­‐17.57(3.11)	
  
-­‐53.26(3.38)	
  
-­‐41.41(2.66)	
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Table S3. Comparison of % secondary structure   for 3 ultra-representative pro-
teins in the period (990-1000 ns)  calculated in  hotwater(HW),   urea (U)  and 
water (W).

 

	
   Hot	
  Water(HW)	
  	
  

%	
  alpha	
  /	
  beta	
  	
  

	
  Urea	
  (U)	
  

%	
  alpha	
  /	
  beta	
  	
  

Water(W)	
  

%	
  alpha	
  /	
  beta	
  

1KTE	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
ON2	
  
P99	
  

P99*	
  

25	
  /	
  10	
  
14	
  /	
  22	
  
34	
  /	
  12	
  
28	
  /	
  20	
  

37	
  /	
  12	
  
26	
  /	
  17	
  
24	
  /	
  9	
  
11	
  /	
  9	
  

41	
  /	
  17	
  
41	
  /	
  16	
  	
  
39	
  /	
  17	
  
39	
  /	
  20	
  

1OPC	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
ON2	
  
P99	
  

P99*	
  

26	
  /	
  4.0	
  
28	
  /	
  18	
  
32	
  /	
  16	
  
28	
  /	
  14	
  

32	
  /	
  11	
  
27	
  /	
  18	
  
26	
  /	
  5	
  
25	
  /	
  10	
  

34	
  /	
  18	
  
31	
  /	
  23	
  
35	
  /	
  19	
  
33	
  /23	
  

1CQY	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  C22	
  
ON2	
  
P99	
  

P99*	
  

1	
  /	
  22	
  
0	
  /	
  46	
  
9	
  /	
  31	
  
2	
  /	
  46	
  

0	
  /	
  30	
  
0	
  /	
  39	
  
7	
  /	
  34	
  
2	
  /	
  46	
  

0	
  /	
  52	
  
2	
  /56	
  
1	
  /48	
  
3	
  /	
  48	
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Table S4. Hydrogen bond interactions of urea / water with proteins during the 
last 10 ns of trajectories for different force-fields. Life-time refers always to the 
10 ns window analyzed.

	
  
a)	
  OPLS	
  
	
  
H-­‐	
  bonds*:	
   	
  Urea	
  /	
  Water	
  as	
  H-­‐donor	
   Urea	
  /Water	
  as	
  H-­‐acceptor	
   	
  
%	
  of	
  total	
  	
  
	
  

64	
  /	
  62	
   36	
  /	
  38	
   	
  

H-­‐bonds	
  with	
  
protein:	
  
	
  

	
  BackBone	
   SideChains	
   BackBone	
   SideChains	
  

%	
  of	
  total	
  	
   64	
  /	
  46	
   36	
  /	
  54	
   70	
  /	
  72	
   30	
  	
  /	
  28	
  
Lifetime	
  %	
   0.69	
  /	
  0.58	
   1.08	
  /	
  0.80	
   4.25	
  /	
  1.01	
  	
   4.18	
  /	
  3.79	
  
	
  
	
  
b)	
  CHARMM	
  
	
  
H-­‐	
  bonds*:	
   	
  Urea	
  /	
  Water	
  as	
  H-­‐donor	
   Urea	
  /	
  Water	
  as	
  H-­‐acceptor	
   	
  
%	
  of	
  total	
  	
  
	
  

66	
  /	
  60	
   34	
  /	
  30	
   	
  

H-­‐bonds	
  with	
  
protein:	
  
	
  

	
  BackBone	
   SideChains	
   BackBone	
   SideChains	
  

%	
  of	
  total	
  	
   53	
  /	
  55	
   47	
  /	
  45	
   64	
  /	
  69	
  	
   36	
  	
  /	
  31	
  	
  
Lifetime	
  %	
   0.84	
  /	
  0.63	
   1.28	
  /	
  0.72	
   2.75	
  /	
  0.56	
  	
   4.71	
  /	
  2.29	
  
	
  
	
  
c)	
  PARM	
  99	
  
	
  
	
  
H-­‐	
  bonds*:	
   	
  Urea	
  /	
  Water	
  as	
  H-­‐donor	
   Urea	
  /	
  Water	
  as	
  H-­‐acceptor	
   	
  
%	
  of	
  total	
  	
  
	
  

69	
  /	
  65	
   31	
  /	
  35	
   	
  

H-­‐bonds	
  with	
  
protein:	
  
	
  

	
  BackBone	
   SideChains	
   BackBone	
   SideChains	
  

%	
  of	
  total	
  	
   55	
  /	
  44	
   45	
  /	
  56	
   67	
  /	
  69	
  	
   33	
  	
  /	
  31	
  	
  
Lifetime	
  %	
   0.73	
  /	
  0.66	
   0.94/	
  0.68	
   2.67	
  /	
  0.54	
  	
   3.94	
  /	
  2.09	
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Supplementary  Text S1 -  Methods

Analysis. Trajectories were analyzed  
using a variety of  metrics. Protein structur-
al descriptor include Root Mean Square 
Deviation (RMSD), TMscore, Radius of  
Gyration (RadGyr), Secondary Structure 
(SS - evaluated using STRIDE [1]),  Sol-
vent Accessible Surface Area (SASA - eval-
uated using NACESS [2]).  The average 
RMSD was measured in different time 
windows, with a time lag from 2 ns up to 
200 ns, in water and urea at 368K and al-
ways using as reference structure the first 
frame in the window.

To describe the  unfolding , we calculat-
ed the change of  protein features  taking 
as the reference the native state described 
by the control simulation at 300K in wa-
ter. Therefore the native contacts (tertiary 
structure) and  native secondary structure 
were calculated as those occurring for 
more than  80% of  the time in the control 
simulation, while   the protein core was 
considered formed by residues with an av-
erage SASA and standard deviation lower 
then 10 Å2  in the control simulation.

For the trajectories in urea and water at 
368K we calculated  the secondary struc-
ture index “S2” as the existing  fraction 
of  native secondary structure (see above) 
in each frame, and the tertiary structure 
index  “S3”  as the  existing fraction of  na-
tive contacts in each frame. Residues were 
considered to be in contact when their 
interesidue distance was shorter than 3.5 
Å [3]. The global structure index [4] was 
defined as the sum of  S2 and  S3. 

Regarding the stability of   intra-protein 
contacts, we considered as lost contacts 
those  with  a reduced contact time in urea 
or water at 368K compared to water sim-
ulation at 300 K (reduction for more than 
30% of  the simulated time). The % of  lost 
time for a residue was calculated as the 

average percentage of  lost contact time 
for all the native contacts involving that 
residue, during 1 microsecond  in urea or 
water at 368K  and using water simulation 
at 300K as a reference.  The flexibility 
of  the contacts and the average opening 
time was calculated for each native con-
tact at each snapshot in the first 100ns of  
hot water and urea simulations. This  first 
part of  the simulation contains the largest 
number of  comparable contacts (see be-
low), in later stages  most of  the contacts 
are generally unstable at least in one of  
the environments and therefore a compar-
ison would be uninformative.  A contact 
was considered “open”  if  the minimum 
distance between heavy atoms was larger 
than 5 Å  and “closed” if  the distance  was 
smaller than 4 Å. In the moonlight zone ( 
between 4 and 5 Å) the contact assumed 
the state of  the previous frame, avoiding 
ambiguous classifications. We focused the 
analysis on comparable contacts that are 
still preserved in both urea and water at 
368K ( difference in contact time is less 
than 20% compared to water at 300 K, 
in both simulations). Contacts that are 
completely lost or fully maintained in at 
least one of  the two environments  were 
removed because they  are uninformative 
regarding to changes in flexibility. We cal-
culated the rmsfSC as the rmsf  for a single 
sidechain  after  an alignment based only 
on  the backbone of  the same residue- thus 
the metric is only dependent on the local 
motion. The difference of  rmsfSC between  
water and urea at 368K was used  to eval-
uate the change in sidechain dynamics. 
We excluded differences smaller than 0.5 
to avoid the comparison of  residues with 
similar  flexibility. Therefore the analy-
sis was performed on values for ∆ rmsfSC 
(rmsfSC in water – rmsfSC in urea)  larger 
than 0.5 or smaller than -0.5.

Solvent features evaluated here include 
water/urea ratio in first solvation shell 
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(FSS; solvent molecules within 5 Å of  the 
protein) and in the bulk (solvent mole-
cules with a distance to the protein larg-
er than 6Å).  More detailed analysis were 
performed using the contact coefficient 
CCUW metric. CCUW is the ratio for each 
aminoacid between contacts with urea 
and with water molecules normalized with 
the total numbers of  urea and water atoms 
[3]; a contact is formed when  at least two  
heavy atoms are closer than 3.5 Å.  The 
residence time for urea and water mole-
cules during 1 microsecond trajectory was 
calculated as the time each solvent mole-
cule is in contact (see previous definition 
of  contact) with the same residues without 
any interruptions. Urea and water mean 
square displacements were calculated in 
different time windows (tau) among the 
last 10 ns of  the trajectories.  We used the 
Einstein equation [5] to calculate the dif-
fusion coefficient (D) from the slope of  the 
fitting line. Since the Einstein relation is 
valid as time approaches infinity, we used 
only the last half  of  values for the fitting. 
Solvent-protein hydrogen bonds were an-
notated with a heavy atom cutoff distance 
of  3.5 Å and a donor-hydrogen-acceptor 
angle greater than 120 degree. Stable 
H-bonds were defined as those detected 
for more than 5% of  the analyzed time.  
Interaction energies for urea and water in 
the FSS and bulk were computed follow-
ing Hua et al.  [6] using a 13.0Å spherical 
cutoff . All the analyses were perform with 
MDWEB [7], VMD [8] , Ptraj [9] and in 
house software, while statistical analysis 
were performed with R [10]. 
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 CHAPTER 5 

Macromolecular crowding and 
the physiological environment of 

proteins.
The diluted solutions generally employed by conventional biochemical 

experiments, and by most simulation studies are far from the physiologi-
cal environment. The inside of a cell, the cytoplasm, is instead a very dense 
and inhomogeneous environment. For example, the bacterial cytoplasm 
is composed by protein and nucleic acids at a voume fraction of typically 
20–30% (200-320 g/L of proteins1 , 75-120 g/L of RNA and 11-18 g/L 
of DNA), various metabolites and inorganic ions at several concentra-
tions, and water in the remaining space (~70%) (Figure 5.1). The case of 
eukaryotic cells is further complicated by the presence of organelles that 

1   Of which ~10% are cytoskeletal filaments and ~90% are soluble globular proteins

 “The hardest thing to see is what is in front of our 
eyes”

Johan Wolfgang von Goethe 
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create separated compartments, and by a more extensive cytoskeleton. In 
their cytosol, the part of the cytoplasm outside the organelles, macromol-
ecules occupy between 10–40% of the volume and the concentration var-
ies with cell type (50-250 g/L of proteins and 20–50 g/L of nucleic acid). 
In both cases, citing Katherine Luby-Phelps, “the cell cytoplasm is more 
like a crowded party in a house full of furniture than a game in an emp-
ty field”[1]. Intuitively, many physical properties of the cytoplasm differ 
form a dilute solution: it has a higher viscosity and a reduced dielectric 
constant2  compared to the infinite dilution limit.  However at microscop-
ic level most of the water molecules (~85%) still behaves similarly to pure 
solution (bulk) and only 15% of the water molecules has altered mobility 
(2-fold slower diffusion) [1]–[3]. 

Beside the changes in the solution properties, the most evident restric-

2  Due to the deplete the number of polarizable water molecules surrounding 
the proteins

Proteins

RNA

DNA
(1 %)

Small 
molecules

Polysaccharides 
(2 %)

Phospholipids
(2 %)

15%

6%

4%

70%

30%

70%

30%

Water 

Chemicals

Bacterial cytoplasm

Figure 5.1. The composition of a bacterial cell. Most of the cell is water while 
the remaining 30% contains varying proportions of molecules; among those 
proteins prevail. Color code: blue for proteins, yellow for nucleic acids and 
magenta for the rest.
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tions of the cytoplasm are related to the mere presence of other macro-
molecules (crowding). One of the most academic definition of ‘macromo-
lecular crowding effects’ was provided by Zhou, Rivas and Minton in a 
seminal review [4], which defines it as the alterations caused by “macro-
molecular cosolutes that are nominally inert with respect to the reaction 
of interest”, where the term ‘inert’ implies the only interaction between 
the crowder and the other macromolecular components of the system is 
an excluded-volume (i.e. steric) interaction. This assumption has guided 
the first tentative to rationalize crowding which kept the volume exclu-
sion as main player. The available volume modulates for example the effec-
tive concentration of a protein, with repercussions on its thermodynamic 
properties. Simple statistical thermodynamic models can, then, be used 
to predict the consequences on several processes such as protein fold-
ing, protein-protein association, conformational isomerization, enzyme 
activity and stability with respect to denaturation. In these models the 
structures are largely simplified and often described as spherical objects. 
For example, protein folding can be model as simple random walk in the 
presence of sphere obstacles [5] while the unfolded state is comparable 
to a compressable sphere [6]. By fine-tuning the size and the shape of 
both the crowders and the protein states, one can understand the impact 
of such variables in the model. The results are usually confirmed by ex-
periments employing artificial crowding agents, which mimic the pure 
volume excluded effect [7]. These chemicals, such as dextrans, Ficoll and 
polyethylene(glycol) (PEG), are non-charged polymers that are expected 
to occupy space without interacting with proteins. Recently, many doubts 
have arose about the real inert character of crowding agents, questioning 
whether or not they reveal physiologically relevant information [8],[9].

However inertness doesn’t appear to be a feature of physiological crowd-
ing: already in the 80s McConkey suggested that in vivo the transient in-
teractions that a protein form with the surrounding macromolecules could 
impact the protein structure. As important source of constraints in the 
spatial rearrangements of atoms, McConkey referred to them as “quinary 
structure”, following the scheme proposed by Linderstrøm-Lang [10]. 
To clearly discern the impact of such interactions on protein structure is 
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not trivial and needs accurate tools to mimic or preserve the physiological 
environments. Thanks to recent advances in NMR spectroscopy, we can 
now directly observe the behavior of proteins inside a cell or in cell-like 
environments (reconstituted cytosol or in solution with protein crowders) 
[11]. The introduction of isotopes (15N 13C 19F) on the test protein dis-
tinguishes its signal from the un-enriched (and therefore silent) proteic 
crowders. Unfortunately, the collected spectra are of difficult interpreta-
tion [11]: the quinary interactions and the high viscosity hinders the fast 
tumbling (i.e. rotation motion) of proteins resulting in a broader signal, 
especially evident for globular proteins (IOPs) [12,13].

It is clear then that macromolecular crowding can have severe reper-
cussion on the structure and consequently on the stability of proteins. 

Figure 5.2. Representations 
of the crowded cytoplasm. 
From the top: Goodsell’s ren-
dering of the cellular envi-
ronment [28] and a snapshot 
from a Brownian dynamics 
simulation of the cytoplasma 
of E.coli [27].

In the case of synthetic crowding agents, a 
simple estimation of the protein stability can 
be extracted from the melting temperature 
Tm or its free energy of unfolding ∆G (Figure 
4.1) upon the addition of crowding agents. 
In cell-like environments instead it can be 
estimated by the opening free energy, mea-
sured by the NMR-detected amide proton 
exchange.  However the measured effects on 
protein stability often disagree between syn-
thetic crowder and cell-like environments, 
and depend dramatically on the protein un-
der study (Table 5.1) [3], [13]–[15]. Together 
these contradictions hinder the extractions 
of general rules about the effect of crowding 
on protein structure, dynamics and stability.

In silico simulations can be useful to re-
solve these apparent contradictions. In sim-
ulations, similarly to experiments, the degree 
of realism can vary too. At the simplest level 
the crowded environment can be included 
via coarse-grained and spheroidal models of 
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Type Protein Crowding
Effect on 
stability

Reference

IOPs DNase I PEG500 + stability Sasaki et al 2007 [16]

C12 Ficoll + stability Benton et al 2012, [17]

Protein; 

E.coli lysate

Destabilized

Destabilized
Sarkar et al. 2013 [18]

GB1 In-cells + stability Monteith et al. 2014, 

[19]

IDP RTX (Ca2+) Ficoll70 Stabilization of 

both apo and 

holo

Sotomayor-Perez et al. 

2013 [20]

Alpha 

synuclein

In cell Remain 

disordered

Waudby et al, 2013 

[21]

vv crowders Remain 

disordered

Munishkina et al 2004 

[22]

N-protein of 

bacteriophage 

λ

Protein 

BPTI

+ stability 

to compact 

conformations

Johansen et al, 2011 

[23]

MGPs Human 

α-lactalbumin 

(HLA)

Ficoll 70 + stability
Zhang et al, 2012 [24]

Dextran 70 + stability

PEG 2000 destabilized (apo)

Table 5.1 Crowding effects on protein stability. Collection of some of the re-
sults reported in literature for several proteins types, classified according to the 
crowding agent used and the obserbed effect (+: increased).

biomolecules [25] or be implicit represented by a low-dielectric contin-
uum models [26]. A more realistic model consists of introducing in the 
simulations various biomolecules that mimic the biological diversity. Pio-
neer was the work of Elcock and coworker that recreated a model of the 
cytoplasm of E.Coli including the 50 most populated proteins (275 g/L) 
[27] (Figure 5.2). Their Brownian dynamics simulation in implicit solvent 
allowed computing the cytoplasm’s effects on the thermodynamics of pro-
tein folding, association and aggregation events. However it was thanks to 
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some recent MD simulation in explicit solvent that proteic crowders were 
linked to minor sub-populations of non-native states and structural per-
turbations that range from subtle changes to partial denaturation [29]–
[31]. The third project, part of this thesis, follow this latter approach and 
aims to study by means of MD simulations in explicit solvent a crowded 
system which included proteins with different conformational landscapes. 
By studying the crowding effects with models that include more detailed 
information on proteins might help the design of better approximations.

5.1. Crowding and protein landscapes (Publication 3).

After the experience gained through the urea-unfolding projects, we 
decided to apply a similar consistent approach to address the issue of 
macromolecular crowding. We set up a system ad-hoc to extract infor-
mation on the effect of proteic crowder on proteins with different energy 
landscape (i.e. MG, IDP, IOP), see Figure 5.3. To distinguish between 
universal effects related to crowding and specific ones related to proteic 

3 proteins
MG, IDP, IOP

vsW
A
T

C
R
O
W

Synthetic

Proteic
vs Concentration

-dependent effects

Protein-protein 
interactions

exclusive 
analyses

Protein
Structure

Protein
Flexibility

System
Dynamics

Changes in 

Figure 5.3. Schematic overview of the project. Three proteins with different 
energy landscape features were simulated in two crowding environments (pro-
teins and PEG500) and compared to control simulations in water. The main as-
pects of the analysis are indicated in yellow (for all the systems) and in magenta 
(exclusive to proteic-crowding).
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crowders, we included simulations of the same proteins in the presence of 
an artificial crowding agent (PEG500). As controls each protein was sim-
ulated in pure aqueous environment. The analysis was focused on changes, 
compared to what observed in water, in protein structure, flexibility and 
in the overall system dynamics (diffusion rates). For proteic crowders, we 
included five systems, each with a different protein concentration. In this 
way we could analyze concentration-dependent issues and enrich infor-
mation on protein-protein interactions in dense environments.

In the proteic crowded system the selected proteins could play at the 
same time the role of crowding agents and the “subject” that experiences 
crowding. We specifically looked for proteins that could represent the 
variety of conformational landscapes (IDPs, IOPs and MGs) and form 
a biologically relevant network. It tuned out that our group was already 
familiar with a system that fitted in both categories [32]. The central 
player of the system is the protein NCBD (nuclear co-activator bind-
ing domain), a small all-helical 51-residue molten globule (MG). Despite 
possessing a structured core of ~40 residues, this protein is remarkably 
promiscuous, binding to seven different partners with multiple structures 
reported in the literature (PDB codes: 1KBH, 1ZOQ, 2KKJ, 2L14). Two 
of its partners are the small intrinsically disordered protein ACTR (IDP) 
and the large and structured protein IRF-3 (IOP). Thanks to it structural 
plasticity and depending on the ligand involved (ACTR or IRF), NCBD 
adopts diverse conformations upon binding, which are generated by dif-
ferent arrangements of well-defined helices [33]. 

Our aim was to place multiple copies of NCBD alongside with its two 
partners in the same simulation box,  as illustrated in Figure 1 in the arti-
cle ( > 250000 atoms per system )3. 

We found that at structural level, crowding, both synthetic and proteic, 
favors open and moderately extended conformations with a higher con-
tent of secondary structure. Intriguingly, the malleable proteins (IDP and 
MG) in presence of proteic crowding gain in structures that could facil-

3   To efficiently simulate those huge systems we needed access to HPC resources, which 
we obtained during the 5th PRACE call (Grant #2013092029; 38,000,000 computational 
hours).
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itate the binding. Regarding protein flexibility, the two crowders trigger 
opposite effects:  PEG enhances the number of accessible conformations 
while proteic crowders limit them. The latter conformational restriction 
is not related to a reduction in the frequency of the conformational rear-
rangements events, which are in some cases even enhanced in presence 
of protein crowders. The dynamic of the entire system undergoes to a 
general reduction in presence of both crowders, with reduced diffusion 
rates for both water molecules and proteins. The volume exclusion effect 
depends on the concentration of the proteic crowders: the higher the con-
centration, the higher the degree of compactness of the protein. Proteins 
respond to crowding depending on their intrinsic disorder: the higher the 
disorder of a protein the higher the amount of aspecific intermolecular 
contacts that it forms. Intriguingly the changes observed in conforma-
tional entropy and protein flexibility follow the same trend, suggesting a 
major role for protein-protein contacts in driving the observed changes. 
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The habitat in which proteins exert their function is far from a dilute solution: 
it contains up to 300-400 g/L of several other macromolecules, primarily other 
proteins. The repercussions of this dense environment on protein behavior is 
often addressed employing synthetic crowding agents such as PEG. Such stud-
ies present a picture of crowding as an unspecific phenomenon that, by means 
of a volume exclusion effect, tends to favor folded states of any kind of protein. 
Here we use atomistic molecular dynamics simulations to analyze the effect of 
real (proteic) crowders in the structure and dynamics of three protein types:  an 
intrinsically disordered (ACTR), a molten globule (NCBD) and a one-structure 
fold (IRF-3). We found that crowding doesn’t stabilize a native compact struc-
ture and it prevents structural collapse. Physiological crowding generated by 
a dense protein environment leads to important changes in the structure and 
dynamics of proteins, often misrepresented by PEG questioning its utility as 
crowder model. 

Keywords: quinary interaction, protein disorder, crowders

Introduction
Most in vitro and in silico experiments 

treat proteins as highly purified entities 
that act in isolation - neglecting that they 
perform their duties inside the cell. Their 
“habitat” – the cell cytoplasm - contains be-
tween 80 to 300 g/L of  several other mac-
romolecules, corresponding altogether to 
5%-30% of  volume occupancy [1]. Among 
the several effects that crowded environ-
ment can exert on protein behavior, the 
volume exclusion had originally believed 
to be the most relevant one [2-5]. Accord-
ing to the excluded volume paradigm, the 

presence of  crowders limits the accessible 
space reducing the conformational entropy, 
favoring compact folded forms and restrict-
ing the prevalence of  extended states [3]. 

Following this traditional view of  crowd-
ing, most experimental studies on proteins 
in dense environments have been per-
formed adding large polymers, such as 
poly(ethylene glycol) (PEG), Dextran or Fi-
coll. These polymers, often referred as “in-
ert” crowders, should exclusively mimic the 
volume-exclusion effect [4], without adding 
any other more specific effects. However, in 
reality, experiments show a complex variety 
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of  effects of  “inert crowders” on protein 
stability, depending on the type and size of  
the crowder involved [3], [5], [6], warning 
on their effective “inert” nature [7]. Over-
all these findings arise many doubts on the 
ability of  these polymers to represent the 
crowded cytosol, and on the capability 
of  the volume exclusion model to explain 
the impact of  crowding in protein struc-
ture and dynamics. Recent studies in cell-
like environments have further challenged 
the volume exclusion model, showing that 
compacted conformations of  proteins may 
not be always preferred in physiological 
crowded environments [9]–[15]. For ex-
ample, NMR studies have shown that the 
native structure of  a globular protein can 
be destabilized inside the cell [11], [12], in 
reconstituted cytosol [13] and in solution 
with proteic crowders [14] contrary to the 
situation found with large synthetic poly-
mers [15]. 

 Such results suggest that proteic crowders 
might have a dual nature: on one hand they 
display the classical volume-exclusion ef-
fect, and on the other they have  form weak 
and transient (quinary) “soft” interactions 
with solute protein [9], [16], [17]. This 
generates a competition between destabi-
lizing and stabilizing forces whose final re-
sult is difficult to predict [16], [18], [19]. To 
further complicate the scenario, we cannot 
ignore that crowding might affect not only 
the thermodynamics of  folding, but also 
folding landscape, leading to the formation 
of  alternative states not present in dilute 
solutions [20]. This can have dramatic im-
pact on very dynamic proteins, such as in-
trinsically disordered (IDPs) or molten glob-
ules proteins (MGPs) [21]. Unfortunately, 
most crowding studies on these proteins 
employ synthetic polymers, often reporting 
only the expected increase in compactness 
of  the structure [22]–[26]. Studies of  IDPs 
or MGPs in cell-like crowder environments 
are more rare and have provided less clear 

conclusions [10], [18], [28–33].
Some of  the problems in reaching a con-

sensus theory on the nature of  crowding 
from experimental data rely on the intrin-
sic limitations of  experiments on highly 
dynamic systems, where single molecule 
information is lost within the experimental-
ly detected structural ensemble [31]. The-
oretical calculations, particularly molecular 
dynamics (MD), give direct access to atomic 
information on single-molecules in careful-
ly controlled environments, and are then 
the perfect complement to experimentally 
ensemble-based techniques in the study 
of  crowding effects [21], [35]–[38]. We 
take advantage here of  the power of  MD 
simulations to explore in detail the impact 
of  synthetic (PEG) and physiological (pro-
teins) crowders on the structure, dynamics 
and interactions of  proteins showing: i) 
an intrinsically ordered protein (IOP): the 
191-residues interferon regulatory tran-
scription factor (IRF-3), ii) a molten-glob-
ule conformation (MGP): the 51-residues 
nuclear coactivator-binding domain of  
CREB (NCBD), and iii) an intrinsically dis-
ordered protein (IDP): the 47-residues acti-
vator for thyroid hormone and retinoid re-
ceptors (ACTR). These three proteins not 
only model the three major types of  protein 
conformational landscapes, but also define 
a specific biological network, with NCBD 
as the central partner (the hub) able to 
transiently interact with IRF-3 and ACTR, 
thanks to its structural promiscuity [39]- 
[42]. Calculations present then the first 
systematic study of  crowding on proteins 
showing different levels of  structure and 
that define a biologically relevant crowded 
microenvironment.

Methods

Overview of  the crowding models.  
We mixed NCBD, ACTR and IRF-3 to ob-
tain five dense proteic solutions (175, 192, 
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239, 273 and 296 g of  protein/ml;  protein 
volume fraction 20-30%). A stoichiometry 
of  6:1:1 (NCBD, ACTR and IRF-3) was 
used to better reproduce the central protein 
of  the system: NCBD, for which we consid-
ered 6 starting conformation (one per copy), 
three of  them were taken from a NMR 
ensemble (PDB: 2KJJ), and corresponded 
to “folded” states (F1-3 in the remaining), 
while the other three were taken from snap-
shots collected from a 50 ns MD simulation 
at T=500K, corresponding a fully “un-
folded” protein (U1-U3 in the remaining). 
Starting conformation for ACTR and IRF-
3 were taken from PDB entries 1KBH and 
1ZOQ respectively. The starting positions 
and orientations of  the proteins in the sim-
ulation boxes were random (see below) to 
remove bias in the simulations. See Figure 1 
for a map of  the simulations performed.

Control simulations. Control simu-
lations at comparable timescale were per-
formed in two environments: eight simu-
lations (1 for ACTR, 6 for NCBD, and 1 
for IRF-3) in pure water boxes; and eight 
additional simulations in water:PEG500 
mixture (200 g/L concentration). In order 
to check for potential biases in the results 
originated from the finite size of  the sim-
ulation box, and the use of  a given set of  
relative orientation of  the proteins we per-
formed one additional simulation, but now 
considering an approximately an ~4 times 
larger box containing 24 NCBD, 4 IRF-3 
and 4 ACTR proteins. This huge system 
(~850.000 atoms at 182 g/L of  concentra-
tion) was simulated for 100ns and allowed 
us to have information of  each protein copy 
in different protein surroundings.  

To address the frustration of  the contacts 
between NCBD and its partners in the 
crowded environment we extracted pro-
tein pairs formed by either a folded or an 
unfolded conformations of  NCBD (F1 and 
U2 with ACTR, F3 and U3 with IRF-3) 

from the crowding simulation at 273 g/L 
and used them as starting seeds for multi-
ple simulations in pure water and crowding 
conditions (273 g/L). For each of  the four 
systems 10 simulations of  10 ns were per-
formed (reaching a total of  400 ns in water 
and in proteic crowding respectively). 

Simulation set-up. All starting struc-
tures were titrated, neutralized with mon-
ovalent ions, minimized, thermalized and 
pre-equilibrated using our standard proce-
dure implemented in the MD-Web server 
[37]. In the case of  PEG500 systems, pro-
teins were immersed in a pre-equilibrated 
box of  water/PEG molecules of  200g/L 
(starting PEG500 conformation from 
PDB- 4APO); the resulting systems were 
then pre-equilibrated by relaxing solvent 
for 10 ns prior to the general MD-Web 
equilibration procedure [37]. For the case 
of  proteic crowding the starting positions 
and orientations of  the different proteins 
were selected randomly by a Monte Carlo 
code that just avoids steric clashes between 
proteins. These systems were then hydrated 
to the desired concentration. The resulting 
systems were also pre-equilibrated for 10 ns 
prior to the general MD-Web equilibration 
procedure.

All the trajectories were collected with 
Gromacs 4.5 [38] using a time step of  2 fs in 
the isothermal (300 K) and isobaric (1atm) 
ensemble with Nose–Hoover thermostat 
and Berendsen barostat [39]–[41]. We 
applied periodic boundary conditions and 
particle Mesh Ewald corrections [42] for 
the representation of  long-range electro-
static effects with a grid spacing of  1.0 nm 
and a cut-off of  1.0 nm for Lennard-Jones 
interactions. Constrains on chemical bonds 
were solved by SHAKE algorithm [43] with 
a relative tolerance of  0.0001. Parm99-SB-
ILDN force field was employed for proteins 
[44], TIP3P for water molecules [45] and 
modified TraPPE-UA parameters from 



144 RESULTS

NCBD
Molten Globule

Folded (3)
NMR ensemble (1-4 g/L)

Unfolded (3)
MD thermal unfolding

ACTR - Intrinsically Disordered
Crystal bound to NCBD (VS=57%)

IRF-3 - Globular Folded 
Crystal bound to NCBD (VS=72%)

CONTROLS

WAT

 CROW 4X

PEG

175 192
239 273 296

F1 F2 F3 U1 U2 U3
ACTRNCBD

IRF

[g/L]

100  µs

3 µs 3 µs 3 µs 3 µs 3 µs

3 µs each

Figure 1. The simulated crowding system. From the top: example of one of the simu-
lated boxes (192 g/L) composed by eight structures: three conformations of NCBD from 
the folded NMR ensemble (PDB 2KKJ); three unfolded conformations of NCBD from a 
simulation at 500K, one conformation of ACTR, bounded to NCBD (PDB: 1KBH) and one 
conformation of IRF-3, bounded to NCBD (PDB: 1ZOQ); the five concentrations used as 
proteic-crowders; and the control simulations. Below each box the simulated time for that 
system is indicated.
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Fischer and colleagues for PEG molecules 
[46].

Analysis. Gromacs standard routines 
and in-house tools were used to mine the 
trajectories, with a minimum resolution 
of  20 picoseconds.  We evaluate the over-
all protein compactness with the radius of  
gyration (Rgyr), the deviation from a refer-
ence structure with the root mean square 
deviation (RMSD), the exposed surface to 
the outside with the solvent accessible sur-
face area (SASA) and the movements of  
each residues with the root means square 
fluctuations (RMSF). The secondary struc-
ture was evaluated by STRIDE [47]; VMD 
was used to visualize molecules and to ana-
lyze contacts [48]. Inter- and intra-protein 
contacts were defined by a cutoff of  0.8 
nm between alpha Carbons. Intra-protein 
contacts were defined as “explored” if  
they were found in more than five frames. 
Conformations recurrently sampled were 
detected by using a two-steps clustering 
of  backbone atoms using the GROMOS 
algorithm [49]. First we reduced the total 
number of  conformations in each trajec-
tory with a cutoff of  0.15 nm, and then, 
for each protein, the reduced ensembles 
in WAT, PEG and CROW were collected 
together and underwent to a second clus-
tering with a cutoff of  0.35 nm. Following 
Knott-Best [50] the relative orientation of  
the helices of  NCBD was used a coarse-
grained descriptor of  NCBD conforma-
tional space. The translational mean square 
displacements (MSD) of  the center of  mass 
of  molecules were calculated to gain infor-
mation on intermolecular movements (time 
windows of  10 and 25 ns were used for wa-
ter and proteins respectively). Self-diffusion 
coefficients were determined using Einstein 
relationship as described elsewhere [51]. 
Conformational entropies were approxi-
mated at the quasi harmonic level using the 
last 1 μs of  the simulations [52].  Finally, 

to detect reconfigurational events we clus-
tered the all-atom trajectory employing the 
GROMOS algorithm [49] with a cutoff of  
0.15 nm (0.1 nm for IRF-3) labeling as re-
configurational event any change in cluster.

Results and Discussion

Control simulations in water. Tra-
jectories in water (suppl. Figure S1 and Fig-
ure 2) show the expected behavior for the 
proteins under study. Thus, the folded pro-
tein (IOP: IRF3) is stable during the 4 μs 
of  trajectory, maintaining the pattern of  
secondary structure, fold and shape. Native 
contacts are well preserved, with sizeable 
movements localized only at the C-tal he-
lix, in a region with interface contacts in the 
crystal. A small, but detectable, tightening 
of  the hydrophobic core of  the protein is 
also present.

The Intrinsic disordered protein (IDP: 
ACTR) appears extremely mobile, sam-
pling a wide repertoire of  conformations: 
clustering analysis detected more than 250 
different conformers, none of  them pop-
ulated more than 5.5% of  the time, most 
of  them compact. The contact map is very 
fuzzy, suggesting that no remote long-living 
contacts exist, which hinders the formation 
of  stable folds. Some segments of  ACTR 
tend to form secondary structure, especially 
evident in the α-helix at the N-terminal, in 
perfect agreement with NMR experiments 
([53], [54]). However these helical elements 
are unstable and fuzzy, with local popu-
lations rarely above 50%, and undefined 
boundaries, therefore being unable to nu-
cleate the global structure of  the protein. 
Finally, the molten globule protein (MGP: 
NCBD) shows as expected a slow diffusion 
along the conformational space, with sam-
plings showing strong memory effects ([35], 
[50], [55-56]) . When NCBD trajectory 
starts from the “folded” NMR structure 
significant plasticity is obtained (around 
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100 structural clusters), due to the different 
orientation of  the three helical motives (h1, 
h2 and h3, see below and Figure S3), which 
generate a fuzzy contact map  and confirm-
ing that helical arrangements of  the AC-
TR-binding form prevail, while those re-
quired for IRF-3 recognition are rare ([50], 
[55]). When NCBD starts from the “unfold-
ed” state, a fast collapses into an amorphous 
globule happens. The protein forms many 
remote and unstable contacts (282 structur-
al clusters) and only small nascent elements 
of  secondary structure (particularly in h1 
and h2) are formed in the simulation time.  
All together these findings agree with previ-
ous claims on the slow dynamics of  NCBD 
(>100 μs [55]), and illustrate the complex-
ity of  a folding landscape of  a protein that 
was not evolutionary designed to collapse 
in a single well-defined minima. Overall, 
we can conclude that control simulations in 
water provide a reasonable picture of  the 
conformational landscape of  the three pro-
teins considered here as models of  well-or-
dered proteins, IDPs and MGPs in aqueous 
solutions. We can confidently use the same 
force-field and simulation protocol to ex-
plore crowded environments.

Crowding: synthetic vs proteic 
crowders. As described above, most theo-
retical and experimental studies on crowd-
ing have been performed using polymers 
(as PEG500) as co-solvents acting as “in-
ert” crowders mimicking cellular crowding. 
However: i) are polymers such as PEG500 
really “inert” crowders?, and ii) do they 
correctly mimic the proteic environment 
in the cell? In order to answer these two 
questions we compared trajectories in wa-
ter, PEG500-crowding and proteic-crowd-
ing (using similar crowder concentrations 
in both cases) of  the three model proteins 
considered here (Figure 2).

For IOP(IRF3) the effect of  crowding 
is quite modest and neither proteins or 

PEG500 induce large changes in the local 
or global structure. Secondary structure is 
stabilized by crowding, including the C-tal 
helix that was fragile in water. Both type of  
crowders (specially the proteic ones) pro-
duce an increase in the protein surface, and 
an enlargement in the structure (RGYR/
SASA), which is not consistent with the 
“exclude volume” theory. Only prote-
ic crowders  decrease the relative ratio of  
polar solvent accessible surface, suggesting 
that they attenuate the hydrophobic effect  
compared to water, where a collapse of  the 
core is more visible (cartoons in Figure 2 and 
suppl. Figure S2). Very interestingly, the crys-
tal conformation of  the protein is closer to 
those in a crowded environment (specially 
in the proteic media) than to those in dilute 
aqueous conditions, supporting the idea 
that crystals can in some cases mimic phys-
iological conditions better than pure water 
(suppl. Figure S4 ).

For IDP(ACTR) crowding agents have a 
tremendous impact in the conformational 
landscape, but we cannot find a pattern 
of  general “crowding” effects, since the 
changes induced by PEG in the conforma-
tional landscape of  the protein are com-
pletely different to those produced by the 
proteic environment. Thus, PEG induces a 
dramatic enlargement of  the sampled con-
formational space, which becomes domi-
nated by extended conformers showing just 
a moderate amount of  secondary structure. 
On the contrary, proteic crowders induce a 
reduction in the size of  the sampled con-
formational space, which is now dominated 
by relatively compact structures. The con-
formational space is reduced and there is a 
dramatic increase in the level of  secondary 
structure, which keeps the folding of  the 
three helices required for NCBD bind-
ing [57], [58]. These results demonstrate 
the inability of  PEG to reproduce cellular 
crowding around IDPs and strongly sug-
gest that proteic (but not synthetic) crowd-
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ing might help IDP to fold in the bioactive 
conformation.

For MGP(NCBD) the behavior of  
crowders largely depend on the starting 
conformation, mirroring the “memory 
effects” detected in dilute aqueous solu-
tion, and reinforcing the idea that NCBD 
(and probably other MGP) moves across a 
complex conformational landscape. In the 
trajectories collected starting from fold-
ed NCBD, crowders favor more extended 
conformations, with a fuzzy pattern of  
long-range contacts (Figure 2). The helical 
fragments are often arranged in bioactive 
conformations, often closer to the IRF-3-
bound state, that is not sampled in water 
(suppl. Figure S3). For trajectories starting 
from the unfolded conformation of  NCBD 

the effect of  crowders is much larger. Both 
PEG and proteic crowders hinder the col-
lapse observed in water and favor extend-
ed conformations. Interestingly, the native 
helices, which were hardly distinguishable 
in water, show significant populations and 
well-defined boundaries, especially for he-
lix 1, an effect that as happens for an IDP 
can help in partner recognition. Compared 
to proteic-crowding, PEG again leads to 
a much larger flexible ensemble with a 
much more diffuse pattern of  interactions, 
that differ from the one observed in prote-
ic-crowding.

In summary, proteic crowders exert a 
complex effect in modulating protein con-
formation, which largely depends on the 
structural level of  the native protein, not 

Figure 3. Changes in the solvent accessible surface area (SASA) of the protein in 
crowded systems. a) Sampling maps of the percentage of polar SASA (x-axis) and its 
total (y-axes) in nm2 calculated for the five concentrations of crowded systems and the 
other controls (CROW 4X = 100 ns at 182 g/L of a 4X larger system, PEG, water). For 
NCBD, the values from all the three conformations (three folded and three unfolded) are 
grouped together. 
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well reproduced by PEG.

Concentration effects in crowding. 
The analysis of  5 independent trajectories 
obtained at concentrations of  protein from 
175 to 296 g/l shows that the conforma-
tional landscape of  proteins is quite robust 
to moderate changes on concentration of  
the proteic environment (see Figure 3, and 
suppl. Figures S4-6). However, detailed 
analysis shows some subtle, but systematic 
concentration-dependent changes in the 
crowding effect. For example, low concen-
tration of  proteic crowder favors extended 
conformations, while as the concentration 
increases more collapsed structures are 
preferred (Figure 3). This strongly suggest 
that proteic crowding is defined by the 
combination of  two opposite effects: i) soft 
protein-protein interactions that favor the 
exposure of  protein moieties and the prev-
alence of  extended conformations, and ii) 
the “excluded volume” effect that favor 
collapsed structures. At low proteic con-
centration the first effect dominates, but,  
as the number of  possible protein-protein 
contacts is satisfied, the “excluded vol-
ume” effect gains importance leading to 
more collapsed structures. The navigation 

of  proteins above their energy landscape 
might be fine-tuned by playing with the 
proteic concentration.

 Micro-enviornments in protein 
crowding.  To evaluate the impact of  the 
specific protein location in the box, we com-
pared the 3 copies of  folded and 3 copies of  
unfolded NCBD, which have different pro-
teic neighbors and consequently different 
protein-protein contacts. If  the specific pro-
tein surroundings played a major role, dif-
ferent behaviors would be expected for the 
3 replicas. Instead their variability is consis-
tent with that found in water or PEG (Suppl. 
Table S1, suppl. Figure S4 and S7). To further 
confirm that specific interactions are not 
determinant in our systems, we simulate a 
larger variety of  protein locations in a 4x 
larger box (4X CROW; 182 g/L proteic 
concentration). No remarkable differences 
are found between the sampling obtained 
here and the one in smaller simulation box-
es (Figure 3, suppl Figure S5 and S8). The only 
remarkable exception is one of  the copies 
of  ACTR that has the N-tail exposed to a 
region of  small proteic density (in magenta 
in Figure 4). There the lack of  intra-protein 
contacts provoke an immediate response 

Figure 4. Structural de-
scriptors for the four con-
formation of ACTR in the 
4X box. a) Frequency maps 
of the RMSD values from the 
starting conformation (x-ax-
is) and the Radius of Gyra-
tion (y-axes) in nm. The total 
number of inter-protein con-
tacts is reported. b) Helical 
content along the sequence. 
c) Visualization of the 4X box 
with the four conformations 
of ACTR highlighted in col-
ors, same  color code as in 
the other graphs. 
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(within 100 ns) in ACTR, which undergoes 
to structural rearrangements (loss of  helic-
ity) never achievable when surrounded by 
proteins. The presence of  aspecific contacts 
appears as a major determinant for the ef-
fect of  proteic crowding.

 Quinary contacts and crowding. 
Results above suggest that protein-protein 
interactions might be the responsible for 
the effect generated by a dense protein en-
vironment. A key issue is whether or not the 
explored inter-protein contacts correspond 
to unspecific transient contacts (quinary 
contacts) or specific interactions, which 
could not be assigned to a bona fide crowd-
ing effect. 

We first analyzed the specific interactions 
that might occur in a biologically relevant 
cluster (IRF-3 and ACTR as partners of  
NCBD) but none of  the contacts formed 
during the simulation recalls those of  the  
bounded states (suppl. Figure S9). This sug-
gest that in the crowding environment such 
moieties might be busy interacting aspecif-
ically with other proteins, preventing them 

from optimizing their binding interface and 
leading to a contact frustration. Indeed, 
the same complexes, when placed in water,  
rapidly adjust to form very specific pattern 
of  contacts, that are not attainable under 
crowding conditions (suppl. Figure S10). We 
are, then, reproducing a bona-fide “crowd-
ing effects”, not contaminated by specific 
interactions that might occur in a biologi-
cally relevant cluster

 Further analysis, based on the residues 
involved in protein-protein contacts, failed 
again to detect any prevalence of  a specif-
ic type (Figure 5). In this case, the protein 
crowder concentration leaves unaffected 
both the total number of  protein-protein 
interactions and the type of  the interact-
ing residues (Figure 5). We found only a 
clear trend: the higher the disorder of  the 
protein, the larger the proportion of  resi-
dues involved in protein-protein contacts 
(see Figure 6, left panel). This network of  
interaction could then trigger the changes 
in protein flexibility that show the same 
dependence on the degree of  disorder (see 
next section). Overall we are, then, repro-

Figure 5. The aspecific quinary  contacts in crowded environments. For each confor-
mation,  the distribution of the inter-protein contact according to the nature of the residues 
involved is report at increasing proteic crowding concentration (bottom - up). The darker 
boxes on top display the reference values in the protein sequence (H: hydrophobic  in blue, 
P: polar  in yellow and C: charged in gray). The percentage of the inter-protein contact 
among the total (inter and intra) is also reported in red; the average for each protein is 
reported at the top (see also Figure 6).  
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Figure 6. Effects of proteic crowding and protein disorder. From the left: for each pro-
tein the % of intrinsic disorder (calculated with PONDR-FIT); the percentage of inter protein 
contacts of the total (inter and intra) and the difference from the simulation in water in: the 
backbone conformational entropy; the % of explored intra-protein contacts; the average lo-
cal root mean square fluctuation RMSF (Å) and the time between reconfigurational events 
(ns). Values are averages among all the crowding concentration.

ducing a bona-fide “crowding effects”, not 
contaminated by specific interactions that 
might occur in a biologically relevant clus-
ter

The protein flexibility. We already 
observed that PEG and crowding environ-
ments alter, compared to water, the protein 
internal entropy in opposite ways: PEG 
enhances the number of  conformations ac-
cessible to proteins; crowding instead lim-
its the visited configurations (Figure 2, and 
suppl. Table S1) - both at global  and local 
level as shown by the backbone configura-
tional entropy and the amount of  visited 
contacts, respectively. As observed for the 
interprotein contacts, the entropic change 

in proteic crowding (and not in PEG - suppl 
Figure S11) depends on the degree of  disor-
der of  each  protein (Figure 6): the higher the 
expected disorder, the higher the reduction 
in conformational exploration. The protein 
dynamics at local level (RMSF) follows the 
same trend while the global dynamics is 
even enhanced (with the exception of  the 
hyper-stabilized ACTR).  In proteic crowd-
ing then conformational changes are still 
possible and even encouraged, but the ac-
cessible conformational space is limited and 
altered compared to both water and PEG. 
The crowding-induced entropic frustration 
is possibly balanced by the enthalpic contri-
bution due to aspecific protein-protein con-
tacts, the amount of  which follow the same 

Diffusion Coefficient [μm2 / s ]


Water
 Proteins 


175 g/L
 4900 
 (120)
 11
 (1)

192 g/L
 4847
 (199)
 10
 (3)

239 g/L
 4291
 (91)
 7
 (2)

273 g/L
 4219
 (162)
 8
 (1)

296 g/L
 4041
 (123)
 11
 (3)

WATER
 5108 
 (226)
 86
 (26)


PEG
 2432
 (104)
 33
 (9)


Tab	
  1	
  

Table 1. Diffusion coefficient of water 
molecules and the proteins in crowded 
environment, water and PEG. The table 
reports the average diffusion coefficient and 
its standard deviation calculated for all the 
water molecules and for all the protein pres-
ent in the simulated box.
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trend (Figure 6). 

Diffusion. The additional interactions 
between macromolecules in crowding cre-
ate a high viscosity that has repercussions 
on other aspect of  the system mobility, i.e. 
diffusion rates and related binding kinetics 
[8], [59]. Considering translational mi-
cro-diffusion, i.e. involving small moieties, 
water molecules are slowed compared to 
dilute solutions (Table 1) [32]; however the 
slowest diffusion rate is found in PEG solu-
tion where the size of  the PEG polymers, 
smaller than a protein, disturb the displace-
ment of  water molecules more effective-
ly [60]. This behavior is not mirrored by 
macro-diffusion rates: protein displacement 
is mostly affected in crowding and within 
10x as in [59], [61]–[63]. At the analyzed 
timescale (nanosecond), no remarkable dif-
ferences exists between diffusion rates of  
folded or unfolded proteins. With due care 
[35],[66], our results provide a qualitative 
insight about the general reduction in mo-
bility that affects all the proteins.

Conclusions

We detect several effects common to all 
the analyzed conformations and that pro-
vide an insight about the universal forces 
that proteins, at different extent, feel un-
der crowding condition. Compared to di-
lute solution, both synthetic and proteic 
crowders favor open and moderately ex-
tended conformation with higher second-
ary structure content. However the contri-
bution of  the volume exclusion, that favors 
more compact structures, increases with 
the crowding concentration, confirming 
that macromolecular crowding is a battle-
field between two opposite forces, the soft 
interactions and the hard-core repulsion, 
the balance of  which depends on the con-
centration and type of  the crowder [9].

The common outcomes between syn-

thetic and proteic crowders are limited to 
this aspect; we detect, in fact, a divergent 
behavior in all the other observables. Pro-
teins in PEG experience an increased con-
formational entropy, confirming recent 
observations from calorimetric analysis , 
which  employ PEG molecules of  similar 
dimension [7]. PEG also doesn’t differen-
tiate proteins depending on the degree of  
disorder. Special care then needs to be tak-
en when studying flexible protein in pres-
ence of  PEG. 

The protein-crowded box appears as 
a stagnant system at the microsecond 
timescale, with slow diffusion rates and a 
general lower local dynamic. However at 
macro-level, changes involving the entire 
protein conformation can happen. Over-
all crowding favors conformations not ex-
plored in diluted solution and, in the case 
of  molten globules, it can encourage the 
adaptability to multiple partners through 
structural rearrangements. The extent of  
these repercussions in fact depend on the 
protein type, with disordered proteins ex-
periencing the most severe alterations. The 
unexpected stability and rigidity of  an IDP 
suggests that this particular structure can 
exist in crowding condition independently 
from its partner, NCBD. 

The work presented here is an attempt 
to rationalize the effect of  homogeneously 
distributed proteic crowders – modeling an 
environment closer to the packed interior 
of  a prokaryotic cell, with diffusion rates 
similar to E.coli [61]. However we should 
notice that eukaryotic cells are complex 
systems in which macromolecular crowd-
ing is just one of  the players. Their cellular 
interior, far from a “bag full of  molecules“, 
might be filled with compartments where 
proteins could be stabilized or destabilized 
according to the specific surrounding [66], 
as observed  in our case for protein portions 
exposed to diluted solutions. 

Overall the picture that emerges from our 
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analysis clearly overcomes the classic view: 
crowding doesn’t stabilize the native com-
pact structure but instead prevents structur-
al collapse. Despite the system stagnation, 
proteins upon proteic crowding retain a cer-
tain degree of  malleability that could help 
to exert their function: the flexibility of  the 
system is converged into a smaller ensemble 
of  conformations (reduced conformation-
al entropy) possibly leading to an efficient 
sampling among functional conformations 
and, as in the case of  protein ACTR, can 
extending the lifetime of  certain. 

Both synthetic and proteic crowders be-
have like non-inert crowder; they both favor 
more open structures and with more helical 
content; however the protein structural de-
tails in the two environments diverge, and 
despite PEG mechanism of  action remains 
outside the scope of  this work, we join 
the concerns regarding its employment to 
mimic the cell interior.

Bibliography
1. S. B. Zimmerman and A. P. Minton, “Macro-
molecular crowding: biochemical, biophysical, 
and physiological consequences,” Annu. Rev. 
Biophys. Biomol. Struct., vol. 22, pp. 27–65, 
1993.

2. A. Christiansen, Q. Wang, M. S. Cheung, and 
P. Wittung-Stafshede, “Effects of  macromolec-
ular crowding agents on protein folding in vitro 
and in silico,” Biophys. Rev., vol. 5, no. 2, pp. 
137–145, 2013.

3. A. H. Elcock, “Models of  macromolecular 
crowding effects and the need for quantitative 
comparisons with experiment.,” Curr. Opin. 
Struct. Biol., vol. 20, no. 2, pp. 196–206, 2010.

4. L. R. Singh and S. Mittal, “Denatured State 
Structural Property Determines Protein Stabili-
zation by Macromolecular Crowding: A Ther-
modynamic and Structural Approach,” PLoS 
ONE, vol. 8, no. 11, p. e78936, Nov. 2013.

5. H.-X. Zhou, G. Rivas, and A. P. Minton, 
“Macromolecular crowding and confinement: 
biochemical, biophysical, and potential physi-
ological consequences.,” Annu. Rev. Biophys., 

vol. 37, no. 1, pp. 375–397, 2008.

6. J. Batra, K. Xu, and H.-X. Zhou, “Nonaddi-
tive effects of  mixed crowding on protein stabil-
ity,” Proteins, vol. 77, no. 1, pp. 133–138, Oct. 
2009.

7. M. Senske, L. Törk, B. Born, M. Havenith, C. 
Herrmann, and S. Ebbinghaus, “Protein Stabi-
lization by Macromolecular Crowding through 
Enthalpy Rather Than Entropy,” J. Am. Chem. 
Soc., vol. 136, no. 25, pp. 9036–9041, Jun. 2014.

8. I. M. Kuznetsova, B. Y. Zaslavsky, L. Brey-
do, K. K. Turoverov, and V. N. Uversky, “Be-
yond the excluded volume effects: mechanistic 
complexity of  the crowded milieu.,” Mol. Basel 
Switz., vol. 20, no. 1, pp. 1377–409, Jan. 2015.

9. A. E. Smith, Z. Zhang, G. J. Pielak, and C. Li, 
“NMR studies of  protein folding and binding in 
cells and cell-like environments,” Curr. Opin. 
Struct. Biol., vol. 30, pp. 7–16, Feb. 2015.

10. A. Politou and P. A. Temussi, “Revisiting a 
dogma: the effect of  volume exclusion in molec-
ular crowding,” Curr. Opin. Struct. Biol., vol. 
30, pp. 1–6, Feb. 2015.

11. K. Inomata, A. Ohno, H. Tochio, S. Isogai, 
T. Tenno, I. Nakase, T. Takeuchi, S. Futaki, Y. 
Ito, H. Hiroaki, and M. Shirakawa, “High-reso-
lution multi-dimensional NMR spectroscopy of  
proteins in human cells.,” Nature, vol. 458, no. 
7234, pp. 106–109, 2009.

12. A. P. Schlesinger, Y. Wang, X. Tadeo, O. Mil-
let, and G. J. Pielak, “Macromolecular crowding 
fails to fold a globular protein in cells.,” J. Am. 
Chem. Soc., vol. 133, no. 21, pp. 8082–8085, 
2011.

13. M. Sarkar, A. E. Smith, and G. J. Pielak, 
“Impact of  reconstituted cytosol on protein sta-
bility.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, 
no. 48, pp. 19342–19347, 2013.

14. A. C. Miklos, M. Sarkar, Y. Wang, and G. 
J. Pielak, “Protein crowding tunes protein sta-
bility.,” J. Am. Chem. Soc., vol. 133, pp. 7116–
7120, 2011.

15. D. Gnutt, M. Gao, O. Brylski, M. Heyden, 
and S. Ebbinghaus, “Excluded-Volume Effects 
in Living Cells,” Angew. Chem. Int. Ed., vol. 54, 
no. 8, pp. 2548–2551, Feb. 2015.

16. W. B. Monteith, R. D. Cohen, A. E. Smith, 
E. Guzman-Cisneros, and G. J. Pielak, “Qui-



154 RESULTS

nary structure modulates protein stability in 
cells,” Proc. Natl. Acad. Sci., vol. 112, no. 6, pp. 
1739–1742, Feb. 2015.

17. Y. Wang, M. Sarkar, A. E. Smith, A. S. Kro-
is, and G. J. Pielak, “Macromolecular crowding 
and protein stability.,” J. Am. Chem. Soc., vol. 
134, pp. 16614–8, 2012.

18. W. B. Monteith and G. J. Pielak, “Residue 
level quantification of  protein stability in living 
cells.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, 
no. 31, pp. 11335–40, Aug. 2014.

19. M. Sarkar, A. E. Smith, and G. J. Pielak, 
“Impact of  reconstituted cytosol on protein sta-
bility,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, 
no. 48, pp. 19342–19347, Nov. 2013.

20. R. Harada, N. Tochio, T. Kigawa, Y. Sugi-
ta, and M. Feig, “Reduced native state stability 
in crowded cellular environment due to pro-
tein-protein interactions.,” J. Am. Chem. Soc., 
vol. 135, pp. 3696–701, 2013.

21. V. N. Uversky, “A decade and a half  of  
protein intrinsic disorder: biology still waits for 
physics.,” Protein Sci. Publ. Protein Soc., vol. 
22, pp. 693–724, 2013.

22. A. Soranno, I. Koenig, M. B. Borgia, H. 
Hofmann, F. Zosel, D. Nettels, and B. Schuler, 
“Single-molecule spectroscopy reveals polymer 
effects of  disordered proteins in crowded envi-
ronments,” Proc. Natl. Acad. Sci. U. S. A., vol. 
111, no. 13, pp. 4874–4879, Apr. 2014.

23. A. Roque, I. Ponte, and P. Suau, “Macro-
molecular crowding induces a molten globule 
state in the C-terminal domain of  histone H1,” 
Biophys. J., vol. 93, no. 6, pp. 2170–2177, Sep. 
2007.

24. J. Hong and L. M. Gierasch, “Macromolec-
ular crowding remodels the energy landscape of  
a protein by favoring a more compact unfolded 
state,” J. Am. Chem. Soc., vol. 132, no. 30, pp. 
10445–10452, Aug. 2010.

25. D. Johansen, C. M. J. Jeffries, B. Hammou-
da, J. Trewhella, and D. P. Goldenberg, “Effects 
of  macromolecular crowding on an intrinsically 
disordered protein characterized by small-angle 
neutron scattering with contrast matching.,” 
Biophys. J., vol. 100, pp. 1120–1128, 2011.

26. S. Qin and H.-X. Zhou, “Effects of  Mac-
romolecular Crowding on the Conformational 
Ensembles of  Disordered Proteins,” J. Phys. 

Chem. Lett., vol. 4, no. 20, Oct. 2013.

27. D. P. Goldenberg and B. Argyle, “Minimal 
effects of  macromolecular crowding on an in-
trinsically disordered protein: a small-angle neu-
tron scattering study,” Biophys. J., vol. 106, no. 
4, pp. 905–914, Feb. 2014.

28. C. S. Szasz, A. Alexa, K. Toth, M. Rakacs, 
J. Langowski, and P. Tompa, “Protein disorder 
prevails under crowded conditions,” Biochemis-
try (Mosc.), vol. 50, no. 26, pp. 5834–5844, Jul. 
2011.

29. A.-C. Sotomayor-Pérez, O. Subrini, A. 
Hessel, D. Ladant, and A. Chenal, “Molecu-
lar Crowding Stabilizes Both the Intrinsically 
Disordered Calcium-Free State and the Fold-
ed Calcium-Bound State of  a Repeat in Toxin 
(RTX) Protein.,” J. Am. Chem. Soc., vol. 135, 
pp. 11929–34, 2013.

30. C. A. Waudby, C. Camilloni, A. W. P. Fitz-
patrick, L. D. Cabrita, C. M. Dobson, M. Ven-
druscolo, and J. Christodoulou, “In-cell NMR 
characterization of  the secondary structure 
populations of  a disordered conformation of  
α-synuclein within E. coli cells,” PloS One, vol. 
8, no. 8, p. e72286, 2013.

31. B. Schuler and H. Hofmann, “Single-mole-
cule spectroscopy of  protein folding dynamics—
expanding scope and timescales,” Curr. Opin. 
Struct. Biol., vol. 23, no. 1, pp. 36–47, 2013.

32. R. Harada, Y. Sugita, and M. Feig, “Protein 
Crowding Affects Hydration Structure and Dy-
namics,” J. Am. Chem. Soc., vol. 134, no. 10, 
pp. 4842–4849, Mar. 2012.

33. A. V. Predeus, S. Gul, S. M. Gopal, and M. 
Feig, “Conformational Sampling of  Peptides in 
the Presence of  Protein Crowders from AA/
CG-Multiscale Simulations,” J. Phys. Chem. B, 
vol. 116, no. 29, pp. 8610–8620, Jul. 2012.

34. M. E. McCully, D. A. C. Beck, and V. Dag-
gett, “Multimolecule test-tube simulations of  
protein unfolding and aggregation,” Proc. Natl. 
Acad. Sci. U. S. A., vol. 109, no. 44, pp. 17851–
17856, Oct. 2012.

35. A. N. Naganathan and M. Orozco, “The 
native ensemble and folding of  a protein mol-
ten-globule: functional consequence of  down-
hill folding.,” J. Am. Chem. Soc., vol. 133, pp. 
12154–12161, 2011.

36. M. Kjaergaard, K. Teilum, and F. M. 



155RESULTS

Poulsen, “Conformational selection in the mol-
ten globule state of  the nuclear coactivator bind-
ing domain of  CBP,” Proc. Natl. Acad. Sci., vol. 
107, no. 28, pp. 12535–12540, Jul. 2010.

37. A. Hospital, P. Andrio, C. Fenollosa, 
D. Cicin-Sain, M. Orozco, and J. L. Gelpí, 
“MDWeb and MDMoby: an integrated web-
based platform for molecular dynamics simula-
tions,” Bioinformatics, vol. 28, no. 9, pp. 1278–
1279, May 2012.

38. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. 
Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, 
P. M. Kasson, D. van der Spoel, B. Hess, and E. 
Lindahl, “GROMACS 4.5: a high-throughput 
and highly parallel open source molecular simu-
lation toolkit.,” Bioinforma. Oxf. Engl., vol. 29, 
pp. 845–54, 2013.

39. H. J. C. Berendsen, J. P. M. Postma, W. F. van 
Gunsteren, A. DiNola, and J. R. Haak, “Mo-
lecular dynamics with coupling to an external 
bath,” J. Chem. Phys., vol. 81, pp. 3684–3690, 
Oct. 1984.

40. S. Nosé, “Nosé, S.: A molecular-dynamics 
method for simulations in the canonical ensem-
ble. Mol. Phys. 52, 255-268,” Mol. Phys., vol. 
52, no. 2, pp. 255–268, 1984.

41. W. G. Hoover, “Canonical dynamics: Equi-
librium phase-space distributions,” Phys. Rev. A, 
vol. 31, no. 3, pp. 1695–1697, Mar. 1985.

42. T. Darden, D. York, and L. Pedersen, “Parti-
cle mesh Ewald: An N⋅log(N) method for Ewald 
sums in large systems,” J. Chem. Phys., vol. 98, 
no. 12, pp. 10089–10092, Jun. 1993.

43. J.-P. Ryckaert, G. Ciccotti, and H. J. Ber-
endsen, “Numerical integration of  the car-
tesian equations of  motion of  a system with 
constraints: molecular dynamics of  n-alkanes,” 
J. Comput. Phys., vol. 23, no. 3, pp. 327–341, 
1977.

44. K. Lindorff-Larsen, S. Piana, K. Palmo, P. 
Maragakis, J. L. Klepeis, R. O. Dror, and D. E. 
Shaw, “Improved side-chain torsion potentials 
for the Amber ff99SB protein force field,” Pro-
teins, vol. 78, no. 8, pp. 1950–1958, Jun. 2010.

45. W. L. Jorgensen, J. Chandrasekhar, J. D. 
Madura, R. W. Impey, and M. L. Klein, “Com-
parison of  simple potential functions for simulat-
ing liquid water,” J. Chem. Phys., vol. 79, no. 2, 
pp. 926–935, 1983.

46. J. Fischer, D. Paschek, A. Geiger, and G. Sad-
owski, “Modeling of  aqueous poly(oxyethylene) 
solutions: 1. Atomistic simulations,” J. Phys. 
Chem. B, vol. 112, no. 8, pp. 2388–2398, Feb. 
2008.

47. D. Frishman and P. Argos, “Knowl-
edge-based protein secondary structure assign-
ment,” Proteins Struct. Funct. Bioinforma., vol. 
23, no. 4, pp. 566–579, Dec. 1995.

48. W. Humphrey, A. Dalke, and K. Schulten, 
“VMD: visual molecular dynamics,” J. Mol. 
Graph., vol. 14, no. 1, pp. 33–38, 27–28, Feb. 
1996.

49. X. Daura, K. Gademann, B. Jaun, D. See-
bach, W. F. van Gunsteren, and A. E. Mark, 
“Peptide Folding: When Simulation Meets Ex-
periment,” Angew. Chem. Int. Ed., vol. 38, no. 
1–2, pp. 236–240, Jan. 1999.

50. M. Knott and R. B. Best, “A Preformed 
Binding Interface in the Unbound Ensemble of  
an Intrinsically Disordered Protein: Evidence 
from Molecular Simulations,” PLoS Comput 
Biol, vol. 8, no. 7, p. e1002605, Jul. 2012.

51. M. P. Allen and D. J. Tildesley, Computer 
Simulations of  Liquids. Oxford: Oxford Science 
Publications., 1987.

52. I. Andricioaei and M. Karplus, “On the 
calculation of  entropy from covariance matrices 
of  the atomic fluctuations,” J. Chem. Phys., vol. 
115, no. 14, pp. 6289–6292, Oct. 2001.

53. M. Kjaergaard, A.-B. Nø rholm, R. Hen-
dus-Altenburger, S. F. Pedersen, F. M. Poulsen, 
and B. B. Kragelund, “Temperature-dependent 
structural changes in intrinsically disordered 
proteins: formation of  alpha-helices or loss of  
polyproline II?,” Protein Sci. Publ. Protein Soc., 
vol. 19, pp. 1555–1564, 2010.

54. V. Iešmantavičius, M. R. bing Jensen, V. 
Ozenne, M. Blackledge, F. M. Poulsen, and M. 
Kjaergaard, “Modulation of  the Intrinsic Helix 
Propensity of  an Intrinsically Disordered Pro-
tein Reveals Long-Range Helix–Helix Interac-
tions,” J. Am. Chem. Soc., vol. 135, no. 27, pp. 
10155–10163, 2013.

55. M. Kjaergaard, L. Andersen, L. D. Niel-
sen, and K. Teilum, “A folded excited state of  
ligand-free nuclear coactivator binding domain 
(NCBD) underlies plasticity in ligand recogni-
tion,” Biochemistry (Mosc.), vol. 52, no. 10, pp. 
1686–1693, Mar. 2013.



156 RESULTS

56. M. Kjaergaard, F. M. Poulsen, and K. Tei-
lum, “Is a Malleable Protein Necessarily Highly 
Dynamic? The Hydrophobic Core of  the Nu-
clear Coactivator Binding Domain Is Well Or-
dered,” Biophys. J., vol. 102, no. 7, pp. 1627–
1635, Apr. 2012.

57. V. Iešmantavičius, J. Dogan, P. Jemth, K. 
Teilum, and M. Kjaergaard, “Helical Propen-
sity in an Intrinsically Disordered Protein Accel-
erates Ligand Binding.,” Angew. Chem. Int. Ed 
Engl., pp. 1–5, 2014.

58. J. Dogan, X. Mu, Å. Engström, and P. Jemth, 
“The transition state structure for coupled bind-
ing and folding of  disordered protein domains,” 
Sci. Rep., vol. 3, Jun. 2013.

59. J. A. Dix and A. S. Verkman, “Crowding ef-
fects on diffusion in solutions and cells,” Annu. 
Rev. Biophys., vol. 37, pp. 247–263, 2008.

60. N. Kozer and G. Schreiber, “Effect of  
Crowding on Protein–Protein Association 
Rates: Fundamental Differences between Low 
and High Mass Crowding Agents,” J. Mol. Biol., 
vol. 336, no. 3, pp. 763–774, Feb. 2004.

61. Y. Wang, C. Li, and G. J. Pielak, “Effects of  
proteins on protein diffusion,” J. Am. Chem. 
Soc., vol. 132, no. 27, pp. 9392–9397, Jul. 2010.

62. S. R. McGuffee and A. H. Elcock, “Diffu-
sion, Crowding & Protein Stability in a Dynamic 
Molecular Model of  the Bacterial Cytoplasm,” 
PLoS Comput Biol, vol. 6, no. 3, p. e1000694, 
Mar. 2010.

63. M. Feig and Y. Sugita, “Variable Interac-
tions between Protein Crowders and Biomo-
lecular Solutes are Important in Understanding 
Cellular Crowding,” J. Phys. Chem. B, vol. 116, 
no. 1, pp. 599–605, Jan. 2012.

64. C. T. Andrews and A. H. Elcock, “Molecu-
lar Dynamics Simulations of  Highly Crowded 
Amino Acid Solutions: Comparisons of  Eight 
Different Force Field Combinations with Exper-
iment and with Each Other,” J. Chem. Theory 
Comput., vol. 9, no. 10, pp. 4585–4602, Oct. 
2013.

65. D. Petrov and B. Zagrovic, “Are current 
atomistic force fields accurate enough to study 
proteins in crowded environments?,” PLoS 
Comput. Biol., vol. 10, no. 5, p. e1003638, May 
2014.

66. L. M. Gierasch and A. Gershenson, 

“Post-reductionist protein science, or putting 
Humpty Dumpty back together again,” Nat. 
Chem. Biol., vol. 5, no. 11, pp. 774–777, Nov. 
2009.



157RESULTS



158 RESULTS

 3

 1.5

R
M

SD
(n

m
)

U1 U2 U3

 0  0  0  2  2  2  4 4 4

 2

 1

Time (μs)

F1 F2 F3

604020 0 
Residue #

Contact Map
d

  

  

  

 

 

 
 

 

 
 
 
 
 

Residue #
604020 0 

Helicity

Residue #
40 60

NMR
structure

UNFOLDED

FOLDED

%
 H

el
ix

20

 20

 60

 80

 0

 40

100
UNFOLDED

296 g/L

40

50

PEG

 

 

      

 

10

30

50

 

 

 

 

 
 60

FOLDED

UNFOLDED clusters = 282

FOLDED clusters = 98

6% 5%5%

14% 12.5%13%

St
ar

tin
g 

se
ed

 

NMR structure

h1

h3 h2

h1

h2

h3
h1 h2 h3

a)

Figure S1. Control simulations in water. a) The RMSD evolution in time of each con-
formation of NCBD; the contact map and the helical content along the sequence (blue 
boxes are the helices in the crystal), calculated for the folded and unfolded conforma-
tions, grouped together. For each group the representative structures of the three most 
populated clusters are shown (the relative population is reported below) together with the 
reference structure from the PDB (NMR structure); b) same for ACTR; c) same for IRF-3 
for which only the cartoon-like structure show the comparison between the crystal structure 
(in grey) and the second cluster found in water (population of 2%). Contact map of the 
PDB structure is shown  in black while its secondary structure is shown with boxes (blue 
helices, black)

Supplementary Information



159RESULTS

 0  2

 4

Residue #

Secondary Structure Contact Map

 4 

%
 H

el
ix

%
 β

-s
he

et

Residue # Residue #

contact with NCBD

 

18090 0 

180

90

180100 0 

 100 

80

RM
SD

(n
m

)

Time (μs)

IRF-3
 0.5

 100 
 d

CRYSTAL

WATER

CRYSTAL

CRYSTAL
ACTR-bound

 0  2

 4 1.5

Residue #

Secondary Structure Contact Map

 

180

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

10 20 30 40 50

 

Residue #

 10

 30%
 H

el
ix

%
 b

et
a

 s
he

et
s

Residue #

 100

 50

 20

 80

WATER

CRYSTAL

 2

 4

4020 0 

RM
SD

(n
m

)

Time (μs)

ACTR

 100 

4020 0  

 dCrystal

 # clusters = 265

C1
5.5 %

C2
5 %

C3
5 %

c)

b)



160 RESULTS

Figure S2. Changes of SASA in IRF-3, measured as the difference in SASA from the last 
to the fist frame for each protein residues. Residues with positive values, in red, open to 
the solvent during the simulated time, while residues with negative values, in blue, loose 
solvent exposure. Values are shown for water, PEG and crowding at 192 g/L.

Figure S3. 3D rearrangements of NCBD helices.  a) Cartoon explaining how elevation 
and azimuth are derived from the helix vectors h1-3 as seen in [Knott and Best, Plos Comp 
Biology, 2012]. b) Cartoon illustrating how helix vectors relate to the NCBD structure and 
its opposite positioning in two protein conformations. Each vector follows the principal axes 
of the atoms in the original helical each region, whether or not helices are formed in that 
moment. Panels in c) for control systems and d) for crowding system show the frequency of 
each 3D helical conformation defined by Azimuth (x-axes) and Elevation (y-axes). Results 
are collected for the three folded conformations together. The black signs mark values cal-
culated from NCBD structure available in the PDB: ACTR-bound (PDB: 1KBH), p53 bound 
(2L14), IRF-bound (PDB: 1ZOQ), the NMR ensemble of unbound NCBD (2KJJ) and the 
structure used as starting point.
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  Table S1. Descriptors for the conformations of NCBD. For each conformations the   
average difference in several descriptors is reported for both proteic crowding (192 g/L) 
and PEG simulations. Values in bold are the average for each group while the standard 
deviation is reported in brackets. 
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Figure S7. Structural details for the conformations of NCBD. For each conformations 
the contact map and the helicity along the sequence of the proteic crowder at 192 g/L, 
against the one in water (blue).
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Figure S8. Helical content in the 4X control. For each protein we compared the helical 
content calculated in all the conformations in the 4X box(182 g/L) with the values taken 
from the crowding systems with comparable crowding concentration

Figure S9. NCBD and its partners: complex formation and contact frustration. Con-
tacts maps between NCBD residues (x-axes) and its partners (y-axes) ACTR on the left 
and IRF-3 on the right side. The plots in the first row display the contact time (% of the 
total simulated time) in the simulation at 273 g/L as an example of crowded system. The 
black dots mark contacts in the bounded structure available at the PDB. The second row 
displays the difference (Water - Crowded) in contact time calculated in the 10 copies of 10 
ns in crowded conditions and in water. The contact map calculated from the 10 copies at 
crowded conditions is plotted in the background to identify contacts gained from scratch in 
water. The latter are marked with grey boxes. The cartoons at the bottom illustrate contacts 
newly formed in water (left side) between ACTR (in magenta) and NCBD (in cyan) while 
the crowded environment (right-side) prevented their formation.
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reference: the backbone conformational entropy; the % of explored intra-protein contacts; 
the average local root mean square fluctuation RMSF (Å) and the time between reconfig-
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Fig S10. Contact maps of NCBD/ACTR complex in water. For each complex (ACTR 
with F1 or U2) the contacts maps for each of the ten copies of in water are shown. The red 
box highlights areas where often new contact (not present in crowding environment) are 
formed in water.
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 CHAPTER 6 

Summary of the results and 
general discussion

6.1. Summary of the results

1) The urea-induced unfolded state of ubiquitin
We found that the simulations of the unfolded state of ubiquitin:

•	 In urea 8M reproduce fairly well the available experimental data, 
without sacrificing the plasticity expected from an unfolded state. 

•	 In water the ensemble moves very quickly towards compact and “na-
tive-like” structures, starting a folding pathway. 

The unfolded state of ubiquitin in presence of urea aqueous solution is 

“Real science is a revision in progress, always. It 
proceeds in fits and starts of ignorance.”

Stuart Firestein, Ignorance: How It Drives Science
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more ureaphilic than the native globular state, attracting a large propor-
tion of urea molecules in the protein surroundings. The responsible for 
this attraction are mostly Van der Waals interactions, especially between 
apolar side-chains and urea. Although hydrogen bonds are present and 
contribute to the stabilization of the unfolded state, they don’t represent 
the differential factor and the main driving force. 

2) The early stages of protein unfolding in urea 
In simulations of the early stages of unfolding for three ultra-represen-

tative proteins and in presence of either urea-aqueous solution or higher 
temperature, we found that:
•	 Proteins preserve a significant degree of secondary structure and a 

compact shape in both unfolding conditions.

•	 A similar degree of local unfolding in the three proteins is induced by 
both denaturing conditions, often even located in similar positions in 
the protein sequence.

•	 Only in the urea-induced unfolded structures the apolar sidechains 
are preferentially exposed to the solvent, and the atomic motions are 
slowed down prolonging the average time of local unfolding events. 

In simulations of the urea-induced unfolding at proteome scale, we 
found that:
•	 Van der Waals interactions are responsible for a general attraction of 

urea around the protein

•	 Punctual interactions (hydrogen-bonds or Van der Waals) stabilize 
urea molecules in cavities within the hydrophobic core. These interac-
tions are protein-specific and consistent among forcefields. 

•	 Many examples suggest that the intrusion of urea is possible thanks 
to unfolding events that happen at access-points (hinge points) of the 
protein core.

3) Proteins in macromolecular crowding 
•	 Compared to dilute solution, both synthetic and proteic crowders fa-
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vor open and moderately extended conformation with higher second-
ary structure content. The contribution of the volume exclusion, that 
favors more compact structures, increases with the crowding concen-
tration. 

•	 Opposite to PEG, proteic crowders decrease the conformational en-
tropy; this entropic frustration is balanced by the enthalpic contri-
bution due to soft and non-specific inter-protein contacts with the 
surrounding macromolecule.  

•	 Proteins respond to crowding depending on their intrinsic disor-
der: the higher the disorder of a protein the higher the amount of 
non-specific intermolecular contacts that it forms. Intriguingly the 
changes observed in conformational entropy and protein flexibility 
follow the same trend, suggesting a major role for protein-protein 
contacts in driving the observed changes.

•	 Crowders, especially the proteic ones seems to favor the population of 
bioactive conformation of disordered proteins (both intrinsic disor-
dered and molten-globule).

 
6.2. General discussion

•	 Building a consensus view.
In this comparative study we created ad-hoc systems to derived gen-

eral rules about the repercussions of two co-solvents (the urea-aqueous 
solution and a crowded environment) on three major features of proteins: 
their structure, dynamics and interactions with the surrounding solvent. 
Both phenomena are generally biased by the specifications of the sys-
tem under study: type of protein involved, size of the crowder, parameters 
used, etc. While general trends had already emerged from previous stud-
ies, still special care needs to be taken when making comparison between 
results, which indeed even leaded to opposite conclusions [1-2]. In our 
case we also benefited from the joint efforts of previous studies and we 
tried to rationalize them in a consistent fashion; our approach consisted 
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in studying multiple versions of a system by varying, when possible, only 
one variable at time i.e. the protein class or fold, the forcefield, the type 
of crowder, the stage of the process etc. In this way we could discern 
the impact of such variables and extract results that are robust to their 
changes. For the urea-induced unfolding we studied independently the 
two end-points of folded/unfolded reaction, limiting our study to glob-
ular proteins that have a clear separation between folded and unfolded 
state (see the following section for a comprehensive discussion on the two 
projects). Macromolecular crowding instead is a phenomenon that could 
in principle affect all the proteins. In this case we included proteins with 
very different conformational landscapes and flexibility patterns in order 
to detect possible differential effects. Beside the general rules that could 
be derived from results that are consistent in all the systems, the spotted 
differences resulted equally informative in unveiling the mechanism be-
yond both urea-induced unfolding and macromolecular crowding. 

•	 The two sides of urea-induced unfolding: a comprehensive view
When taken together, the two projects on urea-induced protein unfold-

ing give a broader overview on the mechanism by which urea unfold the 
proteins. For example we detected a universal urea-philicity of the protein: 
at both the beginning and the end point of the unfolding process, urea 
molecules are attracted in the protein surroundings via dispersion forces. 
This enrichment is more noticeable for the unfolded state compared to its 
folded counterpart. And while in both cases the hydrogen bonds and oth-
er polar contact are not negligible, they never represent the driving force 
for the unfolding, as their magnitudes are comparable to those of water. 

A difference aspect in the two stages of the unfolding is related to the 
protein areas that interact with the urea molecules. While in the ful-
ly-unfolded protein the apolar residues are the preferential partners, in 
the partially-unfolded state these moieties are still buried in the protein 
interior, preventing them to become the main partner. During the early 
stages of unfolding, instead, urea molecules are preferentially found in 
areas characterized by a specific topology: cavities of the protein core that 
become accessible thanks to local unfolding events or mobile loops in 
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the vicinities. The fundamental role of these events, part of the natural 
breathing pattern of each protein, suggest that urea doesn’t attack areas 
on the protein surface depending of their nature, as it could have instead 
suggested the pattern found in the fully-unfolded protein. Instead two  
concomitant events initiate the unfolding: i) the general high presence 
of urea molecules around the protein and ii) the transient local mobility 
that gives a temporary access to the protein core. Once unfolded, the pro-
tein (now represented by an diverse ensemble of structures) becomes even 
more urea-philic compared to its corresponding folded state; indeed urea 
molecules readily surround and stabilize the newly exposed hydrophobic 
areas, preventing any attempt to recover the native state. The forces that 
drive unfolding in urea are, then, very different from the ones behind oth-
er chemical denaturants; for example guanidinium chloride (Gdm+ Cl-), 
induce denaturation by disrupting salt bridges that stabilize the folded 
conformation [3]. It should not be surprising then that some proteins 
have different responses and resistance to the two denaturing agents[4], 
confirming that the unfolded state of a protein, together with its structur-
al features, cannot be separated from its unfolding conditions.

•	 Proteins dynamics in non-aqueous environments 
Compared to pure water solutions, both urea 8M and crowded solutions 

have a higher viscosity, which slows down the overall dynamic of the sys-
tem. Small co-solvents, such as urea and PEG, usually affect micro dif-
fusion more than larger ones, like proteic crowders [5]. Indeed we found 
self-diffusion rates of water strongly reduced in PEG or urea 8M (0.5X 
PEG or 0.3X Urea), and only marginally in proteic crowders (0.8 X). 

However, while in the case of PEG it doesn’t affect the local dynamic of 
the protein, for urea and proteic crowders the viscosity is translated into 
a reduction of its fast local movements (i.e. rmsf of the local side chains). 
In presence of urea, the slower local mobility has important repercussion 
in the protein-solvent interactions: the longer opening time enhances the 
chances for urea molecules to intrude in the protein core and guide to-
wards the unfolding of the protein. In the case of proteic crowders the 
reduction in the protein mobility depend on the amount of non-specific 
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contacts that a protein can form with the surrounding: the higher the 
number of interactions, the higher the reduction in local flexibility.

Interestingly in all the non-aqueous environments the global protein 
plasticity is preserved, if not enhanced compared to water: in the ear-
ly stages of the unfolding process, proteins are accumulating chang-
es that increase their degree of unfolding; the unfolded conformations 
interchange with other members of the unfolded ensemble; and in the 
crowded environment a degree of conformational exchanges is observed 
too. Such plasticity is fundamental to drive the sampling towards new 
structures that are not usually observed in water. This is not valid for our 
IDP in proteic crowding: the extraordinary plasticity observed in water 
is mitigated when placed in the new solvent. This single-case observation 
prevents us from deriving a general rule valid for IDPs but it encourages 
further studies on the reaction of several IDPs and MGs to cell-like en-
vironments.

•	 Proteins outside water: common behaviors 
Proteins in either urea 8M or macromolecular crowding solutions pres-

ent a more exposed surface to the new solvent and, when present, a desta-
bilized hydrophobic core. Both phenomena come along with a larger ex-
posure of the apolar surface of the protein, and new protein conformation 
are stabilized by the concerted presence of universal soft/dispersive inter-
action. Overall then, both denaturant and crowders appear more accom-
modating for the entire protein structure, which include a heterogeneous 
degree of polarity. Clearly, the ability of both types of solvent to remove 
water molecules from the vicinities of the protein surface explains this 
common effect, which is obviously more pronounced in the case of urea.

•	 Sequence-dependent behaviors 
The reaction of each protein to the cosolvent (urea or crowder) is very 

specific; however from the background noise it is possible to discern pat-
terns that might respond on specific protein features. For example, while 
all the proteins appear to be equally urea-philic regardless of their ami-
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no-acid composition, each protein has specific weak points where the un-
folding nucleates and that remain consistent among the several simulat-
ing conditions. As we already pointed out, the unfolding process exploits 
the protein local flexibility that gives temporary access to the protein 
core. The intrinsic flexibility pattern is sequence-dependent and explains 
the presence of protein-specific nucleation points, suggesting a possible 
mechanism by which some proteins resist to urea-denaturation. Since the 
urea-philicity is a universal feature for all the proteins, it is lack of these 
weak areas (aka unfolding nucleation points) that instead might prevent 
the urea-denaturation. For example proteins that have a native state with 
a tight, rigid and non-accessible protein core, despite being surrounded by 
urea molecules, don’t create the right opportunity for solvent molecules to 
intrude inside the protein core. Such behavior might resemble the one of 
thermophilic proteins [4]. 

In proteic crowding, the differential response depends on a similar fea-
ture: the lack of a stable hydrophobic core in water, which is typical of 
intrinsically disordered or molten globule proteins. In water this feature 
is translated into a high degree of disorder and a restless structure, often 
collapsed to minimize the few hydrophobic residues from the exposure 
to water. Proteic crowders instead mitigate the disorder and the mobility 
and partially-structured conformations can have a longer lifetime. 

•	 Complexity and simplification of cell-like environments. 
Strictly speaking, the physiological environment of a protein is the 

one that occurs in nature, which can only be approximated in labora-
tory conditions and (probably) never be exactly reproduced. It follows 
that both experiments and simulations are models that only approximate 
reality based on a certain degree of simplification. Diluted solutions, de-
spite being an over-simplification of the cell-like environment, have been 
extremely useful (and will continue to) in macromolecular biochemistry. 
However the study of cell-like environments will bring more awareness 
about the consequences of such a simplification. Most biophysical studies 
aiming to approach physiological-like crowding condition use idealized 
crowding agents such as PEG, or even the more inert Ficoll and Dextran. 
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We found that in some cases PEG and proteic crowders have similar, 
but in others (specially for disordered proteins) have quite different ef-
fects. In summary, our results suggest that while they remain interesting 
non-aqueous environments to study, they possibly do not represent the 
complexity of the cellular environment

•	 Strength and limitations of simulations in biology 
To accomplish our aim and derive general rules, here we employed MD 

simulation on strategically selected systems. A major strength of in silico 
simulations is the full control of the system set-up, which allows the tun-
ing of specific variables with a precision rather difficult to achieve in ex-
perimental settings. On the other hand, a major downside of simulations 
is their dependence on force-fields parameters. Special care then needs 
to be taken in selecting the adequate parameters, especially in absence of 
a direct comparison with experimental results. Comparative studies with 
multiple force-fields help to overcome such bias and lead to more robust 
results. 

Nowadays we often exploit computational simulations to reproduce and 
predict the reality, and only seldom to perform absurd experiments, which 
would be impossible with any other method. However pushing a system 
to one extreme can reveal a lot about its nature: for example in the case 
of urea, Stumpe and Grübmuller performed a ‘‘Gedankenexperiment’’, 
in which urea polarity was scaled to create a hyper- and hypo polar urea 
molecule [6]. These cutting-edge works, in order to be realistic - although 
impossible, need a solid background and a detailed knowledge of the sys-
tem under study. The large amount of available results on the urea aqueous 
solution, from both theoretical and experimental side, gave the right con-
fidence to play with the system. On the other hand, crowded systems have 
become accessible to theoretical and experimental studies only recently; it 
is not surprising then that they miss a more solid realism. We are now at 
the right stage to use all the available tools to dig into the crowding issue: 
these concerted efforts will define better the challenges and guide the 
development of even more suitable methods to tackle the issue. 
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In summary, taking all the lessons from the simplified models used so 
far, we could soon move towards the study of proteins in their biological 
habitats. Although it seems science fiction to correctly simulate or pre-
cisely observe the behavior of proteins inside the cell, I believe that the 
joint efforts of experiments and simulations will soon meet at half way. 
In that sense I join the “call to arms” proposed by Elcock, who suggested 
to “stop comparing experimental apples with simulated oranges (or ba-
nanas)” and instead incite to directly compare numbers from theory and 
experiment, as precisely as possible [7].  The challenge is to shorten the 
gap between experiments and theory, and to combine both to approach 
the long-term dream of understanding living organisms from the basic 
rules of physics and chemistry.  
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In the urea-induced unfolded state of ubiquitin:
1. Simulations were able to reproduce the behavior of the unfolded 
ubiquitin in 8M urea solution. 

2. Overall dispersion, rather than electrostatic interactions, is the 
main energetic contribution to explain the stabilization of the unfold-
ed state of the protein and the irreversibility of the unfolding process 
in the presence of urea. 

In the early stages of the urea induced unfolding:
1. The partially unfolded states expose to the solvent the apolar resi-
dues buried in the protein interior, mainly via cavitation. 

2. Similar to the unfolded state, it is the dispersion interactions that 
drive urea accumulation in the solvation shell. H-bonds instead are 
crucial to stabilize long-living interactions strategically placed at 
hinge points; 

3. Urea molecules take advantage of microscopic unfolding events to 
penetrate the protein interior, suggest a more sophisticated role for 
urea, far from the passive stabilizer of the thermal unfolding.

 Regarding the impact of macromolecular crowding:
1. The universal effect of crowding is exerted via the soft interactions 
and favors open and moderately extended conformation with high-
er secondary structure. This phenomenon counterbalances the vol-
ume-exclusion, which prevails at higher crowding concentrations;

2. The impact of proteic crowding is proportional to the degree of 
disorder of the protein; 

3. The artificial crowder PEG fails to reproduce correctly the effects of 
proteic crowders, arising concerns about its general use as a surrogate 
of cell-like environments.  

CONCLUSIONS
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