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Title
Mathematical Developments on Isotropic Positive Definite Functions on Spheres

Abstract: In this thesis, we investigate some problems related to positive
definite functions on the sphere. As known, positive definite functions play an
important role in representation theory, probability theory, stochastic processes,
harmonic analysis and machine learning. This role is emphasized a long the
thesis.

First, equivalence of Gaussian measures represents a fundamental tool to
establish the properties of maximum likelihood estimators as well as kriging
predictions under fixed domain asymptotics. Classical results for the equivalence
and orthogonality of measures associated to Gaussian fields on bounded sets
of Rd are available in the literature. The present work considers Gaussian
fields defined over spheres of Rd+1, with covariance functions depending on the
great circle distance. We provide necessary and sufficient conditions for the
equivalence of two Gaussian measures with two different covariance models with
associated d-Schoenberg sequences. As an example we study equivalence of
Gaussian measures for some parametric families of covariance functions valid on
spheres. A simulation study explores the consistency of the maximum likelihood
estimator associated to the covariance parameters of some covariance models on
the sphere.

Second, we consider the Schoenberg class Ψd of continuous functions ψ : [0, π]→
R, with ψ(0) = 1 such that the mapping C(ξ, η) = ψ(θ(ξ, η)), ξ, η ∈ Sd,
with θ being the geodesic distance, is positive definite on the product of two
d-dimensional spheres Sd embedded in Rd+1. We face Problems 1 and 3 proposed
in the essay by Gneiting (2013b) and related to the d-Schoenberg coefficients
in the series expansion of members of Ψd for a given d. Such problems have
precise implications for the simulation of Gaussian fields on spheres as well as for
applications to geostatistical data, with special emphasis to atmospheric sciences.
We also show how to deduce the 2-Schoenberg coefficients of given parametric
families of members of the class Ψd, called respectively exponential and Askey
families, for which the 1-coefficients were available but the 2-dimensional case
was still elusive.

Third, we propose and define a family of marked point processes in a noncom-
pact semisimple Lie groups. We first generate Lévy processes via marked point
processes by using jump-diffusion processes. We then build a family of Markov
processes in a maximal compact subgroup of a given semisimple Lie group.

Keywords: Covariance Operator, Gaussian Measures, Lie Groups, Positive Def-
inite Functions, Random Fields, Schoenberg Coefficients, Spherical Harmonics.
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Jury
Morten Nielsen

Jury
Stefano De Marchi

Advisor
Jorge Mateu

Coadvisor
Emilio Porcu

Castellón, Spain., May 29, 2017





Dedication

I dedicate my thesis work to my family and many friends. A special feeling of

gratitude to my loving parents, Arafat and Fayza whose words of encourage-

ment and push for tenacity ring in my ears. My brothers Yasser and Mohamed

have never left my side and are very special.

I also dedicate this work and give special thanks to my wife Aml and my

wonderful son Hamza for being there for me throughout the entire doctoral

program. I miss both of you so much.

I dedicate this work and give special thanks to my best friends Francisco, 

Jonatan, Mehdi, Carlos, Iulian and all members of Mathematics depart-

ment at Jaume I University.

With all my heart, thank to you all.





Acknowledgments

I would like to express my deep gratitude and sincere thanks to my advisor Jorge

Mateu, he was very kind with me throughout this work from the start to the

end of this work. I feel markedly indebted to him for his continuous stimulation,

unlimited help, valuable instructions and very close supervision. He devoted much

of his precious time for meticulous guidance that made this review possible.

I would like to express my deep appreciation and gratitude to Emilio Porcu who

helped me to get a better understanding of the subject. During this work his con-

tinuous support, endless experience and help have done very much to accomplish

this work.

Alos, I would like to thank Pablo Gregori for being very supportive and patient,

during my PhD studies.

Thanks to you all.





Contents

Contents III

Introduction V

1. Background and Preliminaries 1
1.1 Positive Definiteness of Functions . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Positive Definite Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Positive Definite Functions . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . 9

1.2 Random Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Spectral Representation for a Random Field . . . . . . . . . . . 15

1.3 Spherical Harmonics and L2(Sd)−Space . . . . . . . . . . . . . . . . . . . 16
1.3.1 Fourier Representation From Rd to Sd . . . . . . . . . . . . . . . 17
1.3.2 Zonal Spherical Harmonics Functions . . . . . . . . . . . . . . . . 20
1.3.3 Schoenberg’s Coefficients on Spheres . . . . . . . . . . . . . . . . 22

2. Equivalence and Orthogonality of Gaussian Measures on Spheres 27
2.1 Some Basic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Necessary and Sufficient Condition on Spheres . . . . . . . . . . . . . . . 32
2.3 Selected Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Multiquadric Covariance Function . . . . . . . . . . . . . . . . . . 38
2.3.2 The Sine Power Covariance Functions . . . . . . . . . . . . . . . . 40

2.4 A Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3. Gneiting’s Problems and the Class Ψd of Positive Definite Func-
tions over Hyperspheres 47
3.1 The class Ψd and d-Schoenberg coefficients . . . . . . . . . . . . . . . . . 48
3.2 Gneiting’s problems with their solutions . . . . . . . . . . . . . . . . . . . 50

3.2.1 Statements of the Problems . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 On the 2-Schoenberg coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 56

III



IV CONTENTS

3.3.1 Exponential Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Askey Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4. A family of Markov Processes in Maximal Compact Subgroups
of a Semisimple Lie Groups 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Marked Point Processes and the Multivariate Case . . . . . . . . . . . . 65
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Introduction

Isotropic positive definite functions on spheres play a significant role in Mathe-

matics, and they are of particular interest in geostatistics. For example, when

modeling large-scale spatial datasets, it might be of interest to work with Gaus-

sian processes at a planetary scale, being the Earth a perfect sphere, and using the

geodesic distance instead of the Euclidean one. In this context, isotropic positive

definite functions on spheres are important. In this thesis, our primary interest is

to study isotropic positive definite functions on spheres and their representation.

There has been a fervent research activity around positive definite functions on

spheres in the last five years. The seminal paper by Gneiting (2013a) offers an

impressive overview of the problem as well as some connections between mathe-

matical, complex and harmonic analysis, as well as approximation theory, with

the theory of stochastic processes, Gaussian random fields, and geostatistics.

Schoenberg’s theorem (Schoenberg, 1942, Theorem 2) in concert with the or-

thonormality properties of spherical harmonics imply that a very natural assump-

tion on positive definite functions over d-dimensional spheres of Rd+1 is that they

depend on the geodesic (great circle) distance between any two points located

over the d-dimensional spherical shell. Such an assumption is known as geodesic

isotropy and it is the building block for more sophisticated constructions, such

V
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as in Berg and Porcu (2016), Estrade et al. (2016) as well as Porcu et al. (2016).

More technical approaches based on complex spheres and locally compact groups

have been proposed in Berg et al. (2016).

As an application of the spectral representation of the isotropic positive definite

functions on spheres provided by Schoenberg (1942), we studied the equivalence

of two Gaussian measures on the sphere. Equivalence and orthogonality of prob-

ability measures are useful tools when assessing asymptotic properties of both

prediction and estimation for Gaussian fields. For Gaussian fields defined over

bounded sets of Rd and with a given stationary covariance function, the problem

has been studied by Gikhman and Skorokhod (1966), Skorokhod and Yadrenko

(1973) and Da Prato and Zabczyk (1992). The results obtained in this direction

motivated the tours de force in (Stein, 1988, 1990, 1993, 1999a, 2004), where

conditions under which predictions under a misspecified covariance function are

asymptotically efficient are provided.

A simple condition for the equivalence of two Gaussian measures, given in Stein

(2004), and based on the celebrated Skorokhod and Yadrenko (1973) results, is the

following: two stationary and isotropic (radially symmetric) covariance functions

Ci, with associated spectral densities fi, i = 1, 2, are compatible if f2(z)za, a > 0

is bounded away from 0 and ∞ as z →∞ and

∫ ∞
r

zd−1
(
f1(z)− f2(z)

f2(z)

)2

dz <∞, (1)

for any r > 0. Here, isotropy is meant in the sense that the covariance func-

tion depends only on the Euclidean distance. The argument above is the key for

evaluating equivalence of Gaussian measures with all the implications in terms of

estimation and prediction under fixed domain asymptotics. Zhang (2004), using

(1), showed conditions for the compatibility of two Matérn covariance functions

with different variance and scale parameters, and with the same (and fixed) level

of smoothness. Such a result has huge implications in terms of consistency of the

maximum likelihood estimators associated to the covariance parameters. Specif-
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ically, in the Matérn case not all the parameters can be estimated consistently

but the so-called microergodic parameter (Zhang, 2004) can be estimated consis-

tently. Similar results can be found in Bevilacqua et al. (2016) when using the

Generalized Wendland covariance function.

Stationary Gaussian fields on spheres (Marinucci and Peccati, 2011) have covari-

ance functions that depend naturally on the great circle distance. Their different

mathematical structure has been described in (Gneiting, 2013a), and their ex-

tension to space-time has been achieved in (Berg and Porcu, 2016) as well as in

(Porcu et al., 2016).

Fixed domain asymptotics is a natural asymptotics framework for Gaussian fields

defined on spheres when considering both estimation and prediction. The lack of

results for establishing the equivalence of Gaussian measures defined on the sphere

motivates the present thesis: we give necessary and sufficient conditions based on

the d-Schoenberg sequences associated to covariance functions depending on the

great circle distance. We find that two Gaussian measures with these covariance

models are never compatible except for the trivial case. A simulation study

explores the consistency of the maximum likelihood estimator associated to the

covariance parameters of Multiquadric and Sine power covariance models. In

the simulation study, we also consider the exponential model using the geodesic

distance.

The plan of the thesis is the following. In the first chapter, we present the

main concepts needed for results which we show in subsequent chapters, such as

positive definite kernels and spherical harmonics. We focus on the Schoenberg’s

representation of the isotropic positive definite functions on spheres.

The second chapter is devoted to the main results related to the necessary and

sufficient condition for the equivalence relation between two Gaussian measures

on the sphere. We then apply the results presented in that chapter to study

the equivalence or orthogonality of some parametric families of covariance func-
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tions on the sphere. Specifically, we focus on the Multiquadric and Sine power

covariance models (Gneiting, 2013a).

In the third chapter we address two important open problems. The former being

related to the representation of the d-Schoenberg’s coefficients in terms of 1-

Schoenberg coefficients. Such a problem is parenthetical to the celebrated Math-

eron’s turning bands operator (Matheron, 1963) proposed in Euclidean space

only. The latter problem finds instead motivation in atmospheric data assimi-

lation, where locally supported isotropic correlation functions are used for the

distance-dependent reduction of global scale covariance estimates in ensemble

Kalman filter settings (Buehner and Charron, 2007; Hamill et al., 2001).

In the fourth chapter, we derive some results related to stochastic processes on

the Lie groups. Finally, in the last chapter we give a general conclusion and the

ongoing work.



CHAPTER 1

Background and Preliminaries

In this chapter, we present the main concepts that are needed to provide our

results which we show in subsequent chapters. All these results are standard,

and we provide a motivation and references when necessary.

1.1 Positive Definiteness of Functions

The study of positive definiteness (kernels or functions) in Mathematical analysis

began with the work of Mathias (1923). The fundamental point of the charac-

terization of the positive definiteness regarding Fourier transforms appeared a

few decades later by Bochner (1948) and Schoenberg (1938). So we will begin

with a brief introduction for positive definite kernels and then for positive definite

functions.

1



2 CHAPTER 1. BACKGROUND AND PRELIMINARIES

1.1.1 Positive Definite Kernels

A positive definite kernel is a generalization of a positive definite function or a

positive definite matrix. We will start with the definition of the positive definite

kernel.

Definition 1.1.1. Suppose a nonempty set X and the mapping K : X ×X → C.

The mapping K is said to be positive definite kernel if for every n ∈ N and

for every n-tuple (x1, . . . , xn) of elements from X the matrix [K(xi, xj)]ni,j=1 is

positive definite in the sense that

n∑
i,j=1

K(xi, xj)αiαj ≥ 0,

for all complex numbers α1, . . . , αn.

We consider K(xi, xj) for i, j = 1, . . . , n as entries of n× n matrix. Note that if

the square matrix A = [aij] with aij ∈ C is positive definite, then A is Hermitian

(i.e., aij = aji) with non-negative eigenvalues, see (Johnson, 1970). For example,

Assume that K : X ×X → C is positive definite kernel. Then for any x1, x2, x3 ∈

X the matrix 
K(x1, x1) K(x1, x2) K(x1, x3)

K(x2, x1) K(x2, x2) K(x2, x3)

K(x3, x1) K(x3, x2) K(x3, x3)


is positive definite (i.e., Hermitian with non-negative eigenvalues). Thus

K(xi, xj) = K(xj, xi), for all i, j = 1, 2, 3, (1.1)

and the equation

det
(
[K(xi, xj)]3i,j=1 − λI

)
= 0 (1.2)

has non-negative solutions in λ, where I is the 3× 3 identity matrix.

The following proposition deals with operations that preserve positive definite-

ness.
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Proposition 1.1.2. Let Ki : X ×X → C, i = 1, 2, . . . be positive definite kernels.

Then the following properties are hold (Berg et al., 1984).

1. The positive combination ∑i aiKj is also positive definite for all ai ≥ 0, i =

1, 2, . . ..

2. The product of two positive definite kernels is also positive definite.

3. If the limit

K(x, y) = lim
i→∞

Ki(x, y)

exists, then K(x, y) is positive definite kernel, too.

From Proposition 1.1.2, we see that the set of all positive definite kernels is

closed under point-wise convergence and convex cone stable under multiplica-

tion (Schoenberg, 1942). Furthermore, if K(x, x) > 0 for all x ∈ X , then the

normalization of K(x, y)
K(x, y)√

K(x, x) K(y, y)

is a positive definite kernel, see (Rasmussen, 2006).

Example 1.1.3. Consider K : X × X → C a positive definite kernel. Then by

Proposition 1.1.2 we have

exp (K(x, y)) = 1 + 1
1!K(x, y) + 1

2! (K(x, y))2 + 1
3! (K(x, y))3 + · · ·

is a positive definite kernel.

We can define a positive definite kernel by using any arbitrary function on X ,

and this is noted in the following proposition.

Proposition 1.1.4. Suppose K : X × X → C is a positive definite kernel and

f : X → C a function. Then,

K̃(x, y) = f(x)K(x, y)f(y) (1.3)

is a positive definite kernel.
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Indeed, let x1, . . . , xn ∈ X and let α1, . . . , αn ∈ C. We have

n∑
i,j=1

K̃(xi, xj)αiαj =
n∑

i,j=1
f(xi)K(xi, xj)f(xj)αiαj

=
n∑

i,j=1
K(xi, xj)αif(xi)f(xj)αj ≥ 0.

In particular, K(x, y) = f(x)f(y) is a positive definite kernel. Hence,

n∑
i,j=1

K(xi, xj)αiαj =
n∑

i,j=1
f(xi)f(xj)αiαj

=
∣∣∣∣∣
n∑
i=1

f(xi)αi
∣∣∣∣∣
2

≥ 0.

Proposition 1.1.5. Let K : X × X → C be a positive definite kernel such

that |K(x, y)| < ε for all x, y ∈ X , ε > 0. If the radius of convergence of the

power series f(ξ) = ∑∞
i=1 aiξ

i with non-negative coefficients is ε > 0, then the

composition f ◦K : X × X → C is a positive definite kernel.

Example 1.1.3 is a particular case of Proposition 1.1.5, since the analytic function

in this case is the exponential f(x) = exp(x). Definition 1.1.1 can be formulated

for a real-valued positive definite kernel. Then we have the following definition.

Definition 1.1.6. (Berg et al., 1984) Suppose X is a nonempty set and let K be

a symmetric mapping K : X ×X → R (i.e., K(x, y) = K(y, x) for all x, y ∈ X ).

We say that K is a positive definite kernel if and only if it is symmetric , and the

following inequality
n∑

i,j=1
K(xi, xj)αi αj ≥ 0 (1.4)

is hold for any α1, . . . , αn ∈ R and for any x1, . . . , xn ∈ X .

Remark. Let X be a nonempty set and Y is a subset of X . If K : X × X → R

is positive definite kernel, then the restriction of K to Y ×Y is a positive definite

kernel.

Let X be a set and B(X) a σ−algebra over X. A function µ from B(X) to R+

is called a measure if for all E ∈ B(X), µ(E) ≥ 0, µ(∅) = 0 and for all countable
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collections of pairwise disjoint sets {Ei}∞i=1 in B(X):

µ

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ (Ei) .

Then the triple (X,B(X), µ) is said to be measurable space.

Example 1.1.7. Suppose X is a nonempty set and (X,B(X), µ) is a measurable

space. Then

1. Let Λ(X) := {Kω : X × X → R : ω ∈ X} i.e., Kω(x, y) ∈ L1(X).Then

K(x, y) =
∫
X
Kω(x, y) dµ(ω),

where x, y ∈ X , is positive definite kernel.

2. Let k : X × X → R be a function such that for any x ∈ X the function

k(x, ·) : X → R is a member of the space L2(dµ). Then the function

K(x, y) =
∫
X
k(x, s)k(y, s) dµ(s)

is a positive definite kernel.

Let H be a Hilbert space of real-valued function on some nonempty sets X (i.e.,

H ⊂ RX ). We denote the inner product on H by 〈f, g〉H and the associated

norm by ‖f‖2 = 〈f, f〉H for all f, g ∈ H. The sets that admit a kernel can be

embedded in a Hilbert space, this is the so-called Moore-Aronszajn theorem, see

(Lloyd, 2003).

Theorem 1.1.8 (Moore-Aronszajn Theorem). Let X be a nonempty set, the

mapping K : X × X → R is a positive definite kernel if and only if there exists

a Hilbert space H and a function ϕ : X → H (so-called feature map) such that

K(x, y) = 〈ϕ(x), ϕ(y)〉H for all x, y ∈ X .

Proof. Let K(x, y) be a positive definite kernel. Define ϕ : X → RX by ϕ(x) =

K(x, ·), for all x ∈ X . Let K ⊂ RX be the space of all linear combinations

of functions of the form ϕ(x) for some x. Following Proposition 1.1.5 for every
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f = ∑n
i=1 αiK(xi, ·) and g = ∑m

j=1 βjK(yj, ·), we can define the inner product on

K by

〈f, g〉K =
n∑
i=1

m∑
j=1

αiβjK(xi, yj).

Since K is a positive definite kernel, then 〈f, g〉K = 〈g, f〉K and

‖f‖K = 〈f, f〉K =
n∑

i,j=1
αiαjK(xi, xj) ≥ 0.

Moreover, K(x, y) = 〈K(x, ·), K(y, ·)〉K = 〈ϕ(x), ϕ(y)〉K, for all x, y ∈ X . And

the Hilbert space H is the completion of K.

Conversely, let x, y ∈ X . Since K(x, y) = 〈ϕ(x), ϕ(y)〉H, by the properties of

the inner product function, then K(x, y) = K(y, x). Thus K is symmetric. Let

n ∈ N, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R. Then

n∑
i,j=1

K(xi, xj)αiαi =
n∑

i,j=1
〈ϕ(xi), ϕ(xj)〉Hαiαi =

∥∥∥∥∥
n∑
i=1

αiϕ(xi)
∥∥∥∥∥

2

≥ 0.

Thus K is a positive definite kernel. �

Let {ei, i ∈ I} be an orthonormal basis of the Hilbert space H, where I is an

index set. Then for every x, y ∈ X

K(x, y) =
∑
i∈I
〈ϕ(x), ei〉H〈ϕ(y), ei〉H.

Therefore, if we define ϕi : X → R by ϕi(x) = 〈ϕ(x), ei〉H, then we can rewrite

the positive definite kernel as K(x, y) = ∑
i∈I ϕi(x)ϕi(y), for all x, y ∈ X , see

(Berg et al., 1984; Lloyd, 2003; Lang and Schwab, 2015).

Example 1.1.9. Consider X = R and K(x, y) = xy
2 . Then K(x, y) is a positive

definite kernel, since according to Theorem 1.1.8, the Hilbert space could be H = R

with ϕ(x) = x√
2 . Also, we can redefine K(x, y) = (x2 ,

x
2 ) (y2 ,

y
2)T , in this case the

Hilbert space will be H = R2 with ϕ(x) = (x2 ,
x
2 ), where (·)T refers to matrix

transpose .
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1.1.2 Positive Definite Functions

Let (S, ?) be an abelian semigroup equipped with a binary operation ?, an identity

element (denoted by e), and involution ∗ : S → S such that (s ? t)∗ = s∗ ? t∗

and (s∗)∗ = s for all s, t ∈ S, see (Ressel and Ricker, 1998). We will denote the

abelian semigroup with identity e together with the involution ∗ by ∗−semigroup.

Note that, if (G, ?) is an abelian group, then we can consider two different invo-

lutions ∗ : g 7→ g−1 and the identical involution ∗ : g 7→ g for all g ∈ G, see (Berg

et al., 1984). Now, we give the definition of the positive definite function on an

abelian ∗−semigroup (S, ?) with e.

Definition 1.1.10. Let S be a ∗−semigroup. A function f : S → C is said to be

a positive definite function if K : (s, t) 7→ f(s ? t∗) is a positive definite kernel on

S × S, i.e., if
n∑

i,j=1
f(si ? s∗j)αiαj ≥ 0,

for every n-tuple (s1, . . . , sn) of members from S and for every α1, . . . αn ∈ C.

Thus, a positive definite function comes in conjunction with the existence of

positive definite kernel K(s, t) such that

K(s, t) = f(s ? t∗), for all s, t ∈ S. (1.5)

Furthermore, if f is a positive definite function on a ∗−semigroup S, then Propo-

sitions 1.1.2, 1.1.5 and Theorem 1.1.8 are hold for f .

Example 1.1.11. Let (G,+) be an abelian group and G be a subset of G. Then

the involution map is ∗ : g 7→ −g, moreover G−G is a symmetric subset. Hence,

the function f : G→ C is positive definite on G if K(g, h) = f(g−h) is a positive

definite kernel for all g, h ∈ G.

The next example is a particular case of Example 1.1.11.

Example 1.1.12. Assume that (G,+) = (Rd,+) and f : Rd − Rd → C is defined

by f(x) = exp(i〈x, ω〉). Then f is positive definite for any fixed ω ∈ Rd. This is
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due to the inequality in Definition 1.1.10 as

n∑
i,j=1

f(xi − xj)αiαj =
n∑

i,j=1
exp(i〈xi − xj, ω〉)αiαj

=
n∑

i,j=1
exp(i〈xi, ω〉) exp(i〈−xj, ω〉)αiαj

=
n∑

i,j=1
exp(i〈xi, ω〉)exp(i〈xj, ω〉)αiαj

=
∣∣∣∣∣
n∑
i=1

exp(i〈xi, ω〉)αi
∣∣∣∣∣
2

≥ 0,

for every n-tuple (x1, . . . ,xn) of members from Rd and for every α1, . . . αn ∈ C.

The following theorem is one of the most important results of positive definite

functions on locally compact abelian groups in general and on Rd in particular,

that is, the so-called Bochner’s theorem, see (Adler and Taylor, 2007; Da Prato

and Zabczyk, 1992; Rudin, 2011; Heyer, 2012). Let B(Rd) denote the Borel

σ−algebra on Rd.

Theorem 1.1.13. Let f : Rd → C be a bounded continuous function. Then, f is

positive definite if and only if there exists a positive and finite Borel measure µ

on B(Rd) such that

f(ω) =
∫
Rd

exp(i〈ω,x〉)dµ(x), (1.6)

for all ω ∈ Rd.

Thus, Bochner theorem state that any continuous positive definite function on

Rd is a Fourier transform of some finite Borel measure µ ∈ B(Rd). To show that

the function f(ω) in (1.6) is positive definite function, let x1, . . . ,xn ∈ R and

α1, . . . αn ∈ C. Then

n∑
i,j=1

f(xi − xj)αiαj =
n∑

i,j=1
αiαj

∫
Rd

exp(i〈xi − xj,x〉)dµ(x)

=
∫
Rd

n∑
i,j=1

exp(i〈xi,x〉) exp(i〈−xj,x〉)αiαjdµ(x)

=
∫
Rd

∣∣∣∣∣
n∑
i=1

exp(i〈xi,x〉)αi
∣∣∣∣∣
2

dµ(x) ≥ 0.
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In fact, the importance of Bochner’s theorem (Theorem 1.1.13) is that it is provid-

ing the characterization of the positive definite function on the Euclidean space.

In Section 1.3 below, we will give the equivalent theorem which characterizes pos-

itive definite functions on the d- dimensional sphere, the so-called Schoenberg’s

theorem.

1.1.3 Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space is a Hilbert space of functionsH in addition to

all evaluation operators defined on H being bounded and linear, see (Berlinet and

Thomas-Agnan, 2011). The first one who presented the concept of reproducing

kernels (for short, RK) is Barnard and Moore (1935), whereas they referred to RK

as positive Hermitian matrices. Aronszajn (1950) defined the reproducing kernel

Hilbert space (for short, RKHS). In this section, we shall describe in general what

is the meaning of a reproducing kernel Hilbert space and its positive definite

kernel.

Let X be a nonempty set and H be a Hilbert space of real-valued functions

f : X → R with associated inner product and norm

〈f, g〉H =
∫
X
f(x) g(x)dµ(x), (1.7)

‖f‖H =
(∫
X
|f(x)|2 dµ(x)

)1/2
, (1.8)

for all f, g ∈ H, where µ is a positive and finite measure on the Borel σ−algebra

B(X ). We say that the Hilbert space H is L2(X , µ) (so-called squared-integrable

space), if ‖f‖2 <∞, see (Dai and Xu, 2013).

The evaluation operator on a Hilbert space H is a mapping δx that evaluates each

function inH at the point x ∈ X , i.e., δx : f 7→ f(x). It is clear that the evaluation

operator is linear in the sense that for any α, β ∈ R, δx[αf+βg] = αδx[f ]+βδx[g].
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We say that δx is bounded evaluation operator, if there exists M > 0 such that

|δx [f ]| = |f(x)| ≤M ‖f‖H ,

for all x ∈ X and for all f ∈ H, see (Steinwart and Christmann, 2008). Now, we

can define the reproducing kernel Hilbert space as follows.

Definition 1.1.14. A Hilbert space H defined above with associated inner product

(1.7) and the norm (1.8) is said to be a reproducing kernel Hilbert space, if every

evaluation operator δx is bounded on H for all x ∈ X .

Since the bounded operator is continuous, then the Hilbert space H is an RKHS

if the evaluation operator is continuous for all x ∈ X . Furthermore, the RKHS

has an interesting property that is, if f, g ∈ H are closed to each other, then their

evaluation f(x) and g(x) are closed for all x ∈ X .

Let H be a Hilbert space, in general the convergence with respect to ‖ · ‖H does

not imply the pointwise convergence. But if H is an RKHS, then the convergence

with respect to ‖ · ‖H does not necessarily implies pointwise convergence, i.e., let

{fn}∞n=0 be a sequence of functions in H, then limn→∞ ‖fn − f‖ = 0 imply that

fn → f as n → ∞, this is because of the continuity of the evaluation operator.

To show the meaning of the kernel in Definition 1.1.14 we need to define the

reproducing kernel (RK), see (Berlinet and Thomas-Agnan, 2011).

Definition 1.1.15. Let H be a Hilbert space defined as above with associated

inner product (1.7) and the norm (1.8). We say that the kernel K : X × X → R

is a reproducing kernel if for all x ∈ X , f ∈ H, then K(x, ·) ∈ H and

〈f,K(x, ·)〉H = f(x).

Thus, the reproducing kernel acts as evaluation operator for all f ∈ H. This

coincides with what we have said above in Theorem 1.1.8, where for all x, y ∈ X ,

we can define K(x, y) = 〈K(x, ·), K(y, ·)〉H. Using Riesz representation theorem,

we have the following theorem.
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Theorem 1.1.16. (Sejdinovic and Gretton, 2012) The Hilbert space H of real-

valued functions is RKHS if and only if H has a unique reproducing kernel.

Note that, the Hilbert space in Theorem 1.1.8 is not necessarily a reproducing

kernel Hilbert space. Also, it is clear that the reproducing Kernel is the positive

definite kernel. If H is a RKHS, then the subset span{δx : x ∈ X} is dense in H.

Example 1.1.17. (Pesenson, 1999) The set of band limited functions Ξ(R) is

the set of all square-integrable functions on R such that the Fourier transform

defined by

F [f ](ξ) =
∫ ∞
−∞

exp(−ixξ)f(x)dx,

for any ξ ∈ R has a compact support. Then we can define the space of band-limited

square-integrable functions on R as follows

Ξ(R) :=
{
f ∈ L2(R) : SuppF [f ] ⊂ [0, 1]

}
. (1.9)

It is clear that the space Ξ(R) is a Hilbert space. To prove that Ξ(R) is a RKHS,

we consider the positive definite kernel

K(x, y) = sin(x− y)
π(x− y) ,

from R × R to R. So we have to show that K(x, y) is a reproducing kernel, i.e.,

〈f,K(x, ·)〉H = f(x) as follows,

〈f,K(x, ·)〉R =
∫ ∞
−∞

f(y)sin(y − x)
π(y − x) dy

= 1
2π

∫ ∞
−∞

f(y)
∫ 1

−1
exp(−i(y − x)ξ)dξdy

= 1
2π

∫ 1

−1

∫ ∞
−∞

f(y) exp(−iyξ) exp(ixξ)dydξ

= 1
2π

∫ 1

−1
exp(ixξ)F [f ](ξ)dξ = f(x).

Thus, the positive definite kernel K(x, y) is a reproducing kernel. Moreover, the

space Ξ(R) is RKHS.
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Consider that H is a RKHS with a function f ∈ H such that f(x) , f(y) for all

x, y ∈ X . Then we can define a distance function d : X × X → R+ by

d(x, y) = inf {|f(x)− f(y)| : ‖f‖H ≤ 1} ,

= inf {〈f,K(x, ·)−K(y, ·)〉H : ‖f‖H ≤ 1} .

Thus, the distance satisfies d(x, y) ≤ ‖K(x, ·)−K(y, ·)‖H. Let X be a nonempty

set. Then the main conclusion of this section is, by the positive definite kernel

K : X × X → R (function) we can construct a reproducing kernel Hilbert space

H, hence we can define a distance function d(x, y).

1.2 Random Field Theory

The intention of this section is to set up a framework that contains the important

concepts which we need to present the results. Some of the main references in

this section are Adler and Taylor (2007); Preston (1976); Da Prato and Zabczyk

(1992) and Spodarev (2013). Let Ω be a nonempty set, B(Ω) a σ−algebra on Ω

and P is a probability measure on B(Ω), i.e., P(∅) = 0, P(Ω) = 1, for all B ∈ B(Ω)

then 0 ≤ P(B) ≤ 1 and for the collection {Bi}∞i=1 of pairwise disjoint sets in B(Ω)

P

( ∞⋃
i=1

Bi

)
=
∞∑
i=1
P (Bi) .

Then the triple (Ω,B(Ω),P) is said to be a probability space.

1.2.1 Gaussian Random Fields

Let (Ω,B(Ω),P) be a probability space and (X,B(X), µ) be a measurable space.

Let us start with fundamental definitions for random fields, in general.
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Definition 1.2.1. (Da Prato and Zabczyk, 1992) A random variable Z : Ω→ X

is a measurable mapping from (Ω,B(Ω),P) to (X,B(X), µ), i.e.,

Z−1(E) = {ω ∈ Ω : Z(ω) ∈ E} ∈ B(Ω) for all E ∈ B(X). (1.10)

The random field (random function or stochastic process) on a probability space

(Ω,B(Ω),P) is the family Z = {Z(t) : t ∈ T }, where T is an index space (for

example T = R+,R). In short, the random field Z(t) is a function whose values

are random variables for any ω ∈ Ω. The family {Z(ω, t) : t ∈ T } for fixed ω ∈ Ω

is called a trajectory (realization) of Z, see (Preston, 1976).

Note that if X = R, then we call Z is a univariate random field, and if X = Rd,

then we call it multivariate random field.

Definition 1.2.2. We define PZ as the distribution of a random variable Z(ω)

as a probability measure on the measurable space (X,B(X), µ), i.e., PZ(E) =

PZ (Z−1(E)), for E ∈ B(X).

The next definition to define the mean value and covariance functions for a given

random field Z on a probability space (Ω,B(Ω),P).

Definition 1.2.3. Let Z = {Z(t) : t ∈ T } be a random field, the mean function

of Z is given by

m(t) := E[Z(t)] (1.11)

for all t ∈ T , where E[·] is the expectation. And the covariance function of the

random field Z is defined by

C(t, s) = cov(Z(t), Z(s)) = E[Z(t) Z(s)]− E[Z(t)]E[Z(s)], (1.12)

for all t, s ∈ T .

We say that the covariance function is centered if the last term in (1.12) is equal

to zero, otherwise it is called a non-centered covariance function. The variance of

the random field Z is given by C(t, t) for all t ∈ T . It is clear that the covariance
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function is a symmetric positive definite i.e., it holds that

n∑
i,j=1

C(ti, tj)αiαj ≥ 0,

for all n ∈ N , n-tuple (t1, t2, . . . , tn) of members from T and α1, α2, . . . , αn ∈ C.

Also, the correlation function of the random field is defined by

R(t, s) = C(t, s)√
C(t, t)C(s, s)

.

It is clear that by the Cauchy-Schwarz inequality we conclude that the correlation

function is bounded by 1, i.e., |R(t, s)| ≤ 1, see (Spodarev, 2013). The core of

this section will be the Gaussian random field.

Definition 1.2.4. We say that the random variable Z(t) is a Gaussian random

variable it has a density function

ϕ(x) = 1√
2πσ

exp
(
−(x−m)2

2σ2

)
, x ∈ R,

for the mean value m of Z(t) and the variance σ2 = C(t, t). We denote it by

Z(t) ∼ N(m,σ2).

Furthermore, Z = {Z(t) : t ∈ T } is said to be a Gaussian random field if Z(t)

is a Gaussian random variable for all t ∈ T . In the case that T = Rd and each

Z(t) is Rd-valued variable, then Z = {Zi(t) : t ∈ T , i = 1, . . . , n} is multivariate

Gaussian random field if it has a density function

ϕ(x) = 1
(
√

2π)n
√

det(C)
exp

(
−1

2(x−m)C−1(x−m)T
)
, x ∈ Rd,

for the mean vector m = (E(Z1(t)), . . . ,E(Zn(t))) and covariance matrix C =

[Cij], where Cij = E[Zi Zj] − E[Zi]E[Zj], for i, j = 1, . . . , n and we denote it by

Nn(m,C), see (Spodarev, 2013; Adler and Taylor, 2007).
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1.2.2 Spectral Representation for a Random Field

We shall introduce the notions of stationary (homogeneous) and isotropic random

fields in the following definition.

Definition 1.2.5. Let Z = {Z(t) : t ∈ T } be a random field.

1. Z is said to be strongly stationary if for any n ∈ N, τ, t1, t2, . . . , tn ∈

T , the distribution of (Z(t1), . . . , Z(tn)) is the same as the distribution of

(Z(t1 + τ), . . . , Z(tn + τ)).

2. Let E|Z(t)|2 < ∞, t ∈ T , we say that the random field Z is weakly sta-

tionary if it has mean function m(t), t ∈ T and covariance function

C(t, s) = C(t + τ, s + τ) = C(s − t), for all τ, t, s ∈ T , i.e., the covari-

ance function depends only on the difference s− t.

3. A stationary random field is said to be isotropic if the covariance function

of Z depends only on the distance, i.e., C(t, s) = C(‖t− s‖), where ‖t− s‖

denotes the distance between t and s, see Table 1.1.

For example, the next table contains some examples of isotropic covariance func-

tions on Rd, see Gneiting (2013a).

Model C(‖t− s‖) Parameter

Matérn 2ν−1σ2

Γ(ν)

(
‖t−s‖
c

)ν
Kν

(
‖t−s‖
c

)
c > 0; ν > 0

Powered exponential σ2 exp
(
−
(
‖t−s‖
c

)α)
c > 0; 0 < α ≤ 2

Askey σ2
(
1− ‖t−s‖

c

)α
+

c > 0; α ≥ 2

Table 1.1. Parametric models of isotropic covariance functions with the range param-
eter, where Kν denotes the modified Bessel function of the second kind of
order ν (Gradshteyn and Ryzhik, 2007).

Note that we can also say that the random field is strongly isotropic if the dis-

tribution of Z is invariant under rotation,i.e., let T = Rd and Q ∈ SO (d),

the the distribution of (Z(t1), . . . , Z(tn)) is the same as the distribution of

(Z(Qt1), . . . , Z(Qtn)), see (Spodarev, 2013). Let Z =
{
Z(t) : t ∈ Rd

}
be a

centered (i.e., with a zero mean function) complex-valued random field on
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the probability space (Ω,B(Ω),P) with E|Z(t)|2 < ∞ and covariance function

C(t, s) = E[Z(t)Z(s)], t, s ∈ T . Following Spodarev (2013) the spectral repre-

sentation of Z(t) is given by

Z(t) =
∫
Rd

exp(i〈t, x〉)dµ(x), t ∈ Rd, (1.13)

where µ is an independently centered random measure on (Ω,B(Ω),P) with con-

trol measure ν. This construction allows us to state the so-called spectral repre-

sentation theorem.

Theorem 1.2.6. (Spodarev, 2013) The random field Z has spectral representation

if and only if its covariance function C(t, s) can be represented in the form

C(t, s) =
∫
Rd

exp(i〈(t− s), x〉)dν(x), t, s ∈ Rd. (1.14)

Similarly, in Section 2.2 we state the representation of Gaussian random fields on

spheres.

1.3 Spherical Harmonics and L2(Sd)−Space

Harmonic analysis on the circle means Fourier analysis. In general, Fourier

(1822) stated that, every square-integrable T−periodic function f on the interval

[x0, x0 + T] can be expressed uniquely as sums of the fundamental exponential

functions, and has the form

f(x) =
∑
n∈Z

cn exp
(
−2πinx

T

)
, (1.15)

where cn denotes the Fourier coefficients, and are given by

cn = 1
2π

∫ π

−π
f(x) · exp

(
−2πinx

T

)
dx, for all n ∈ Z. (1.16)
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1.3.1 Fourier Representation From Rd to Sd

In fact, the basic idea of Fourier series is the so-called orthogonal decomposition

theorem, which states that the basis of Fourier series is orthogonal, see (Cooper-

stein, 2010).

Theorem 1.3.1 (The Orthogonal Decomposition Theorem). Let W be a subspace

of Rd. Then each y ∈ Rd can be uniquely represented in the form y = ŷ+z, where

ŷ ∈ W and z ∈ W . In fact, if {u1,u2, . . . ,un} is any orthogonal basis for W ,

then

ŷ =
(
〈y · u1〉
〈u1 · u1〉

)
u1 + . . .+

(
〈y · un〉
〈un · un〉

)
un,

and z = y − ŷ, where 〈·, ·〉 is the standard inner product. The vector ŷ is called

the orthogonal projection of y onto W .

By Theorem 1.3.1, we can drive the generalized Fourier series for an arbitrary

function based on the basis of orthogonal functions. Let f(x) and g(x) be func-

tions defined on an interval I, then we define the inner product with respect to

the weight function w(x) > 0 (Rudin, 2011; Grafakos, 2008) as follows

〈f, g〉 =
∫
I
f(x)g(x)w(x)dx. (1.17)

The space of square-integrable functions on I, denoted as L2(I),is formed by

function on I such that 〈f, f〉 < ∞. On the circle, S1, the inner product (1.17)

for given functions f and g on S1 with respect the weight function w(x) = 1 is

given by

〈f, g〉 =
∫
S1
f(x)g(x)dx. (1.18)

It is clear that the space L2(S1) associated to the inner preoduct (1.18) is Hilbert

space. Let the subspace Hn(S1) = span{cosnx, sinnx} for all n ∈ N with

H0(S1) = R, then by Hilbert sum decomposition, we have

L2(S1) =
∞⊕
n=0
Hn(S1),



18 CHAPTER 1. BACKGROUND AND PRELIMINARIES

the subspaces {Hn(S1)}∞n=0 are pairwise orthogonal. The next definition is the

generalized Fourier series (Fekete, 1935; Grafakos, 2008; Marks, 2009; Rudin,

2011).

Definition 1.3.2 (Generalized Fourier Series). Let {fn(x)}∞n=0 be a sequence of

orthogonal basis functions, and f(x) is represented by

f(x) =
∞∑
n=0

cnfn(x). (1.19)

Then, the general Fourier coefficients cn are determined as

cn = 〈f, fn〉w
〈fn, fn〉w

, (1.20)

where 〈·, ·〉w means the inner product with respect to the weight function w(x) > 0.

After this quick glimpse of the Fourier series for a function defined on R, now, we

shall introduce the so-called spherical harmonics (i.e., the Fourier series on the

sphere). Let d ≥ 1 be an integer, the unit sphere denoted by Sd defined as follows

Sd :=
{

(x1, . . . , xd+1) ∈ Rd+1 | x2
1 + . . .+ x2

d+1 = 1
}
.

We start with Pn(d+1), the space of homogeneous polynomials of degree n in Rd+1

with real coefficients, and let Hn(d+ 1), the space of real harmonic polynomials

in Pn(d+ 1), i.e.,

Hn(d+ 1) = {P ∈ Pn(d+ 1) | 4P = 0} ,

where,4 denotes the Laplace operator. LetH(Sd) be the restrictions ofHn(d+1)

to Sd, the so-called spherical harmonics. The next lemma gives the relations

between the spaces Hn(d+ 1) and H(Sd), see (Atkinson and Han, 2012).

Lemma 1.3.3. The space Hn(d+ 1) is isomorphic to their restrictions to Sd.

We conclude from Lemma 1.3.3 that dim(Hn(d + 1)) = dim(H(Sd)). Since the

elements in H(Sd) are homogeneous polynomials P on spheres with 4SdP ≡ 0,
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we conclude that the dimension of this space H(Sd) is

h(n, d+ 1) = dim(H(Sd)) = (2n+ d− 1) (n+ d− 2)!
n! (d− 1)! ,

with h(0, d + 1) = 1 for all d ≥ 1, and its asymptotic behavior is h(n, d + 1) =

O
(
nd−1

)
(Morimoto, 1998, Theorem 2.4) or (Jean, 1980, Chapter 7). Let L2(Sd)

be the space of squared-integrable real-valued functions on the sphere Sd, which

is a Hilbert space with inner product defined by

〈f, g〉L2(Sd) := 1
S(Sd)

∫
Sd
f(x)g(x)d

(
Sd
)
, (1.21)

for every f, g ∈ L2(Sd) and x ∈ Sd, where d
(
Sd
)

is the surface measure and S(Sd)

is the surface area of Sd (Wang et al., 2016),

S(Sd) :=
∫
Sd

d
(
Sd
)

= 2 π d+1
2

Γ
(
d+1

2

) . (1.22)

Similarly, we define the square-integrable functions on spheres, L2
(
Sd
)
, by the

Hilbert sum decomposition

L2(Sd) =
∞⊕
n=0
Hn(Sd),

the subspaces
{
Hn(Sd)

}∞
n=0

are pairwise orthogonal, and the set of all finite linear

combination of elements in ⋂∞n=0Hn(Sd) is dense in L2(Sd). Following Lang (1993,

Corollary 1.9), we conclude that for every f ∈ L2(Sd) can be uniquely represented

as sum of a converging series

f =
∞∑
n=0

fn, (1.23)

where fn ∈ Hn(Sd). Let {Y `
n | 1 ≤ ` ≤ h(n, d + 1)} be an orthonormal basis of

Hn(Sd), i.e.,

〈Y `1
n , Y

`2
n 〉L2(Sd) = δ`1`2 , 1 ≤ `1, `2 ≤ h(n, d+ 1),
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where δ`1`2 is the Kronecker delta. Then we have,

fn =
h(n,d+1)∑
`=1

cn,`Y
`
n , where cn,` = 〈f, Y `

n 〉. (1.24)

The coefficients cn,` is the generalized Fourier coefficients with respect to the

Hilbert space L2(Sd).

1.3.2 Zonal Spherical Harmonics Functions

In this section, we study an important concept in harmonic analysis, that is,

zonal function and its relation with positive definiteness. Also, we shall study

the Schoenberg’s coefficients of a given function on spheres Sd. Let {Y `
n | 1 ≤ ` ≤

h(n, d + 1)} be an orthonormal basis of Hn(Sd) and define the zonal harmonic

polynomial of degree n by

Zn(x,y) =
h(n,d+1)∑
`=1

Y `
n (x)Y `

n (y), x, y ∈ Sd. (1.25)

Following (Morimoto, 1998, Lemma 2.23), we have the next proposition, that

gives an interesting property of zonal harmonics polynomials.

Proposition 1.3.4. For all x,y,x′,y′ ∈ Sd, with d ≥ 1, if 〈x,y〉 = 〈x′,y′〉, then

Zn(x,y) = Zn(x′,y′). Furthermore, there exists some function, ρ : R → R, such

that Zn(x,y) = ρ(〈x,y〉).

We conclude from Proposition 1.3.4 that the function Zn(x,y) depends only on

the inner product 〈x,y〉. Let Cd
n(·) denote Gegenbauer polynomials of degree

n and dimension d + 1 with Cd
n(1) = 1. Theorem 2.24 in Morimoto (1998)

studied the relation between Gegenbauer polynomials Cd
n(·) and zonal harmonics

Zn(x,y).

Theorem 1.3.5. For any fixed point x ∈ Sd and for any constant c ∈ R, there

is a unique homogeneous harmonic polynomial Zn ∈ Hn(d+ 1), such that y ∈ Sd
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is invariant under rotation, and Zn(x,x) = c. Moreover, we have

Zn(x,y) = c ‖y‖n Cd
n

(〈
y
‖y‖

,x
〉)

.

Since {Y `
n | 1 ≤ ` ≤ h(n, d + 1)} are the orthonormal basis of Hn(Sd), then we

can calculate the constant c in Theorem 1.3.5 as follows

c = h(n, d+ 1)
S(Sd) .

Thus we can define the zonal harmonics in terms of Gegenbauer polynomials Cd
n,

as follows

Zn(x,y) = h(n, d+ 1)
S(Sd) Cd

n (〈x,y〉) . (1.26)

Then by the definition of zonal harmonics (1.25), we have

Cd
n (〈x,y〉) = S(Sd)

h(n, d+ 1)

h(n,d+1)∑
`=1

Y `
n (x)Y `

n (y). (1.27)

Going back to Equation (1.23), the following proposition will give a closed form

of the sequence fn, for all n ≥ 0.

Proposition 1.3.6. Consider a continuous function f ∈ L2(Sd), if f can be

uniquely represented as f = ∑
n fn with fn ∈ Hn(Sd), then fn is given by

fn(x) = h(n, d+ 1)
S(Sd) 〈f(y), Cd

n (〈x,y〉)〉Sd , (1.28)

for all x ∈ Sd.

Following (Morimoto, 1998, Theorem 2.53), and denoting Cλ
n(t), t ∈ [−1, 1] for

the ultraspherical polynomials of degree n associated with λ = (d − 1)/2 > 0,

then we have

Cd
n(t) = 2n+ d− 1

(d− 1) h(n, d+ 1)C
λ
n(t), (1.29)
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and Cλ
n(1) = Γ(n + 2λ)/(Γ(n + 1)Γ(2λ)). Thus, we can rewrite Equation (1.28)

as follows

fn(x) = 2n+ d− 1
(d− 1) S(Sd) 〈f(y), Cλ

n (〈x,y〉)〉Sd . (1.30)

1.3.3 Schoenberg’s Coefficients on Spheres

Now, by Definition 1.3.2 we can summarize the generalized Fourier series as fol-

lows.

Proposition 1.3.7. For every continuous and square-integrable function f on

the inteval [−1, 1], f(t) can uniquely represented by

f(t) =
∞∑
n=0

b̃n,dC
λ
n(t). (1.31)

Then, the general Fourier coefficients b̃n,d determined as

b̃n,d = 〈f(t), Cλ
n(t)〉w

〈Cλ
n(t), Cλ

n(t)〉w
, λ = d− 1

2 , (1.32)

where 〈·, ·〉w means the inner product with respect to the weight function w(t) =

(1− t2)(d−2)/2.

The ultraspherical polynomials satisfies the following property

∫ 1

−1
Cλ
n(t)Cλ

m(t)
(
1− t2

) d−2
2 dt = δmn

(d− 1)2 h(n, d+ 1) S(Sd)
(2n+ d− 1)2 S(Sd−1) , (1.33)

where δmn is the Kronecker delta.

Now, if we considered two points x and y on the surface of Sd, then the spherical

or geodesic distance between x and y is given by

θ(x,y) = arccos(〈x,y〉).
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Thus, we conclude that the geodesic distance between any two points on the

surface of Sd depends on their inner product. Next proposition gives the Fourier

series for every continuous square-integrable function of geodesic distance.

Proposition 1.3.8. Let f be a continuous and square-integrable function on

[0, π], f(cos θ) can uniquely represented by

f(cos θ) =
∞∑
n=0

b̃n,dC
λ
n(cos θ). (1.34)

Then, the coefficients b̃n,d are given by

b̃n,d = (2n+ d− 1) Γ (λ)
2
√
π Γ

(
d
2

)
Cλ
n(1)

∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ, (1.35)

where λ = d−1
2 > 0.

Proof. To obtain Equation (1.34), since | cos θ| ≤ 1 then we can substitute t =

cos θ in Proposition 1.3.7. By applying Propodition 1.3.7 with weight function

w(cos θ) = sin(d−2) θ, then we have

b̃n,d =

〈
f(cos θ), Cλ

n(cos θ)
〉
w

〈Cλ
n(cos θ), Cλ

n(cos θ)〉w
. (1.36)

Using Equation (1.33) and changing the variables (t = cos θ), then we have

〈
Cλ
n(cos θ), Cλ

n(cos θ)
〉
w

= (d− 1)2 h(n, d+ 1) S(Sd)
(2n+ d− 1)2 S(Sd−1) , (1.37)

and since

〈
f(cos θ), Cλ

n(cos θ)
〉
w

=
∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ, (1.38)

then substituting (1.38) and (1.37) in (1.36), we have

b̃n,d = (2n+ d− 1)2 S(Sd−1)
(d− 1)2 h(n, d+ 1) S(Sd)

∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ. (1.39)
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By definition of h(n, d+ 1) and surface measure on Sd, we have

b̃n,d =
2(2n+ d− 1)2 π

d
2 Γ

(
d+1

2

)
n! (d− 1)!

2(d− 1)2 (2n+ d− 1) (n+ d− 2)! π d+1
2 Γ

(
d
2

)
×
∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ

=
(2n+ d− 1) Γ

(
d+1

2

)
n! (d− 2)!

(d− 1)
√
π (n+ d− 2)! Γ

(
d
2

)
×
∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ

=
(2n+ d− 1) (d− 1) Γ

(
d−1

2

)
Γ(n+ 1) Γ(d− 1)

2(d− 1)
√
π Γ(n+ d− 1) Γ

(
d
2

)
×
∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ

=
(2n+ d− 1) Γ

(
d−1

2

)
Γ(n+ 1) Γ(d− 1)

2
√
π Γ(n+ d− 1) Γ

(
d
2

)
×
∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ

= (2n+ d− 1) Γ (λ)
2
√
π Γ

(
d
2

)
Cλ
n(1)

∫ π

0
f(cos θ) Cλ

n(cos θ) sin(d−1) θ dθ.

This completes the proof. �

The representation of the square-integrable function defined on the sphere in

Proposition 1.3.8 is called Schoenberg’s representation. The coefficients b̃n,d in

(1.35) have interesting properties as they can used to determine whether a given

function defined on Sd is positive definite function (see Schoenberg (1942); Gneit-

ing (2013a)).

Now, we can define the concept of positive definite function on the sphere. We

say that the function C : Sd × Sd → R is positive definite if

n∑
i,j=1

αiαjC(xi,xj) ≥ 0, (1.40)
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for any α1, . . . , αn ∈ R and for every x1, . . . ,xn ∈ Sd. Schoenberg (1942)

characterized positive definite functions defined on the spheres of any dimension.

Theorem 1.3.9. Schoenberg (1942) A necessary and sufficient condition for a

continuous mapping ψ : [0, π] → R, with ψ(0) = 1 to belong to the class Ψd is

that the ultraspherical expansion

∞∑
n=0

{
(n+ λ)Γ(λ)

Γ(λ+ 1
2)Γ(1

2) ×
∫ π

0
Cλ
n(cos θ′)ψ(cos θ′) sind−1 θ′dθ′

}
Cλ
n(cos θ) (1.41)

has non-negative coefficients and converges absolutely and uniformly throughout

0 ≤ θ ≤ π to ψ(θ).

When λ → 0 the ultraspherical polynomials tends to Chebyshev polynomials of

the first kind, that is,

lim
λ→0

Cλ
n(cos θ)
Cλ
n(1) = Tn(cos θ) = cos(nθ).

Thus, by Proposition 1.3.7, any continuous function on the circle S1 has Fourier’s

coefficients as follows,

b̃0,1 = 1
π

∫ π

0
f(cos θ) cos(nθ)dθ,

b̃n,1 = 2
π

∫ π

0
f(cos θ) cos(nθ)dθ, for n ∈ N, (1.42)

these are the Fourier coefficients on the circle.

Let Ψd be the class of continuous mappings ψ : [0, π]→ R with ψ(0) = 1 such that

the continuous functions C : Sd × Sd → R defined through C(ξ, η) = ψ(θ(ξ, η))

are positive definite. Gneiting (2013a) used Theorem 1.3.9 to characterize the

members of class Ψd through the representation

ψ(θ) =
∞∑
n=0

bn,d
C(d−1)/2
n (cos θ)
C

(d−1)/2
n (1)

, θ ∈ [0, π], (1.43)
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where bn,d = b̃n,d C
λ
n(1) with {bn,d}∞n=0 being a uniquely identified probability

mass system and given by

bn,d = 2n+ d− 1
23−dπ

(Γ(d−1
2 ))2

Γ(d− 1)

∫ π

0
ψ(θ)C(d−1)/2

n (cos θ)(sin θ)d−1dθ, (1.44)

We follow Daley and Porcu (2014) and Ziegel (2014) when calling bn,d for the

d-Schoenberg coefficients.



CHAPTER 2

Equivalence and Orthogonality of

Gaussian Measures on Spheres

In this chapter, we provide necessary and sufficient conditions for the equivalence

of two Gaussian measures with two different covariance models with associated

d-Schoenberg sequences.

In general, any two probability measures there are three possibilities of their

relationship to each other, equivalent, orthogonal or neither. The next section

gives some basic to study that subject. For example, if we taken E = {1, 2, 3, 4, 5}

with two probability measures µ and ν on B(E) such that µ allocate probability 1
4

to {1, 2, 3} and probability zero to {4, 5} and ν allocate probability 1
4 to {2, 3, 4}

and probability zero to {1, 5}. Hence, µ and ν are equivalent for {2, 3, 5}, and

are orthogonal for {1, 4}, so in general we say in this case that µ and ν are

neither equivalent nor orthogonal, see (Stein, 1999a; Gelfand et al., 2010). As

for Gaussian measures have only two possibilities equivalent or orthogonal, see

(Ibragimov and Rozanov, 1978).

27
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2.1 Some Basic Structures

Let E be an infinite-dimensional real separable Banach space with associated

norm ‖ · ‖, and Borel σ−algebra B(E). We denote by Cb(E) the Banach space

of all continuous, bounded real-valued functions defined on E equipped with the

norm

‖ϕ‖ = sup
x∈E
|ϕ(x)|,

and for the closed subspace of Cb(E) of all real-valued function which are

uniformly continuous by Cub (E). A probability measure on a measurable space

(E,B(E)) is a σ−additive function µ from B(E) into [0, 1] such that µ(E) = 1.

Hence, the probability measure on E usually mean a probability measure defined

on the Borel σ−algebra of E. The measures on (E,B(E)) are completely

determined by their integrals with respect to all ϕ ∈ Cb(E).

Definition 2.1.1. (Da Prato and Zabczyk, 1992) Let µ, ν are two probability

measures on B(E), we say that µ equal to ν (notation: µ = ν) if for all ϕ ∈ Cb(E),

then ∫
E
ϕ(x)µ(x. ) =

∫
E
ϕ(x)ν(dx).

We propose now to recall the definition of the absolutely continuous of probability

measures.

Definition 2.1.2. Let µ, ν are two probability measures on B(E), we say that µ

is absolutely continuous with respect to ν (notation: µ � ν) if ν(A) = 0 implies

µ(A) = 0 for every A ∈ B(E) (i.e., every null set of ν is also a null set of µ).

Similarly, we can define ν � µ. Following Skorokhod and Yadrenko (1973), we

say that µ ∼ ν if and only if, µ is absolutely continuous with respect to ν and ν

is absolutely continuous with respect to µ, i.e., for every A ∈ B(E),

µ(A) = 0 ⇐⇒ ν(A) = 0.



2.1. SOME BASIC STRUCTURES 29

Now, we will discuss the relation between probability measures and its density

functions by using theorem of Radon-Nikodym, see (Rudin, 1986; Da Prato,

2006).

Theorem 2.1.3 (Radon-Nikodym). Consider µ, ν are two probability measure on

B(E). If µ is absolutely continuous with respect to ν, then there exists a unique

non-negative measurable function ϕ on E, such that for every A ∈ B(E),

µ(A) :=
∫
A
ϕ(x)ν(dx), (2.1)

and ϕ is called the density function of µ relative to ν.

By Theorem 2.1.3 we can define the equivalence relation between the probability

measures. We said that µ ∼ ν if and only if µ � ν, and ν � µ. Thus there are

density functions ϕ, ψ ∈ B(E) associated to µ, and ν, respectively such that,

ϕ(x) = dµ
dν (x), , ψ(x) = dν

dµ(x), x ∈ E,

and satisfy ϕ(x)ψ(x) = 1 almost everywhere x ∈ E. Hence, ϕ(x) > 0 almost

everywhere x ∈ E with respect to µ. To study the equivalence and the orthogo-

nality of any two probability measures, we will provide the following important

definition , that is, Kullback-Leibler divergence, see (Hershey and Olsen, 2007;

Heyer, 2012).

Definition 2.1.4 (Kullback-Leibler Divergence). Let ϕ and ψ are probability den-

sity function on E . The Kullback-Leibler divergence (For short, KL) is defined

as

KL(ϕ||ψ) =
∫
E
ϕ(x) log

(
ϕ(x)
ψ(x)

)
dx.

KL-divergence is commonly referred to as the relative entropy distance between

probability distributions. It is so easy to show that the KL-divergence is non-

negative, and equal to zero at ϕ = ψ almost everywhere. Note that the KL-

divergence is not a distance (metric) in the sense that not satisfies all metric

axioms. For example, it does not satisfy the symmetry, i.e., KL(ϕ||ψ) ,KL(ψ||ϕ).
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So, we will give another definition KL-divergence such that satisfy the symmetry,

so-called ”symmetrized KL-divergence”.

Definition 2.1.5 (Symmetrized Kullback-Leibler Divergence). Let ϕ and ψ are

probability density function on E . The symmetrized Kullback-Leibler divergence

is defined as

DKL(ϕ, ψ) = KL(ϕ||ψ) + KL(ψ||ϕ). (2.2)

Note that, symmetrized KL-divergence is symmetric but not a metric, because

it does not satisfy the triangle inequality. We can rewrite (2.2) in the following

formula,

DKL(ϕ, ψ) =
∫
E

[ϕ(x)− ψ(x)] log
(
ϕ(x)
ψ(x)

)
dx. (2.3)

Also, we call the symmetrized KL-divergence by ”entropy distance” between ϕ

and ψ.

Example 2.1.6. Suppose that ϕ and ψ are two probability density functions of

d−dimensional normal distribution with means m1 and m2 , and variances C1

and C2, respectively. The KL-divergence from ϕ to ψ, is defined by

KL(ϕ||ψ) = 1
2

[
log

(
det(C2)
det(C1)

)
+ (M2 −m1)TC−1

2 (m2 −m1) + Tr(C−1
2 C1)− d

]
.

Since, the probability density functions of d-dimensional Gaussian, is given by

ϕ(x) = 1√
det(2πC1)

exp
{
−1

2(x−m1)TC−1
1 (x−m1)

}
,

ψ(x) = 1√
det(2πC2)

exp
{
−1

2(x−m2)TC−1
2 (x−m2)

}
.

Thus, we have

log
(
ϕ(x)
ψ(x)

)
= 1

2

[
log

(
det(C2)
det(C1)

)
+(x−m2)TC−1

2 (x−m2)−(x−m1)TC−1
1 (x−m1)

]
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Hence,

KL(ϕ||ψ) =E log
(
ϕ(x)
ψ(x)

)

=1
2

[
log

(
det(C2)
det(C1)

)
+ E[(x−m2)TC−1

2 (x−m2)]−

E[(x−m1)TC−1
1 (x−m1)]

]
=1

2

[
log

(
det(C2)
det(C1)

)
+ (m2 −m1)TC−1

2 (m2 −m1)

+Tr(C−1
2 C1)− Tr(C−1

1 C1)
]

It is easy to find the symmetrized KL-divergence for the probability densities in

the previous example, that is, given by this from

DKL(ϕ, ψ) = 1
2

[
(m2 −m1)TC−1

2 (m2 −m1) + (m2 −m1)TC−1
1 (m2 −m1)

+ Tr(C−1
2 C1) + Tr(C−1

1 C2)− 2d
]
.

Consider µ and ν be two probability measures. Then according to Theorem

2.1.3, we have a corresponding probability density functions ϕ, and ψ are called

spectral density of µ and ν, respectively. By the uniqueness in ”Radon-Nikodym”

theorem, we can gain the equivalence and orthogonality of µ and ν by looking at

the conduct of their spectral densities ϕ and ψ, respectively. Let us start with

the definition of Hellinger integral for two probability measures on B(E).

Definition 2.1.7. Let λ, µ, ν are probability measures such that both µ and ν

are absolutely continuous with respect to λ. The Hellinger integral of µ and ν is

defined by

H(µ, ν) =
∫
E

√
dµ
dλ

√
dν
dλdλ. (2.4)

It is easy to check that the Hellinger integral is not depend on the choice of the

measure λ, for instance, we can take it to be 1
2(µ + ν) or (µ + ν). Also, we can

rewrite the Hellinger integral of µ and ν by their spectral densities ϕ and ψ as
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following,

H(ϕ, ψ) =
∫
E

√
ϕ(x)ψ(x)dx.

Example 2.1.8. Suppose that ϕ and ψ are two probability density functions of

d−dimensional normal distribution with means m1 and m2 , and variances C1

and C2, respectively. The Hellinger integral of ϕ and ψ, is defined by

H(ϕ, ψ) =
4
√

det(C1) det(C2)√
det(1

2C1 + 1
2C2)

exp
{
−1

8(m1 −m2)T
(1

2C1 + 1
2C2

)−1
(m1 −m2)

}
.

By Hellinger integral formula, we define the Hellinger distance as following for-

mula,

DH(ϕ, ψ) =
√

1−H(ϕ, ψ),

the connection between Hellinger distance and the KL-divergence is

KL(ϕ||ψ) ≥ 2D2
H(ϕ, ψ) = 2(1−H(ϕ, ψ)).

Proposition 2.1.9. (Da Prato and Zabczyk, 1992) The following properties hold

for an arbitrary pair µ, ν of probability measures on (E,B(E)).

• 0 ≤ H(µ, ν) ≤ 1.

• H(µ, ν) = 0 if and only if µ and ν are orthogonal.

2.2 Necessary and Sufficient Condition on

Spheres

Equivalence and orthogonality of probability measures are useful tools when as-

sessing the asymptotic properties of both prediction and estimation for Gaussian

fields. Denote with µi, i = 1, 2, two probability measures defined on the same

measurable space {Ω,A}, where A denotes the Borel σ−algebra on Ω. µ1 and µ2

are called equivalent (denoted by µ1 ≡ µ2) if µ2(A) = 1 for any A ∈ A implies
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µ1(A) = 1 and vice versa. On the other hand, µ1 and µ2 are orthogonal (denoted

by µ1 ⊥ µ2) if there exists an event A such that µ2(A) = 1 but µ1(A) = 0. For

a real-valued Gaussian random field Z = {Z(x),x ∈ Sd}, to define the concepts

presented in Section 1.3, we restrict the event A to the σ-algebra generated by

Z. We emphasize this restriction by saying that the two measures are equivalent

on the paths of Z.

By Theorem 5.13 of Marinucci and Peccati (2011), the Gaussian random field Z

admits a spectral representation

Z(x) =
∞∑
n=0

h(n,d+1)∑
`=1

αn`Y
`
n (x), x ∈ Sd, (2.5)

where {αn` | n ∈ N0, 1 ≤ ` ≤ h(n, d + 1)} is a sequence of Gaussian random

variables defined by

αn` =
∫
Sd
Z(x)Y `

n (x)dσd(x).

Theorem 1.3.9 showed that for the covariance function K : Sd×Sd → R associated

to Z(x), there exists a mapping ψ : [0, π]→ R such that

K(x,y) = E(Z(x)Z(y)) = ψ(θ) =
∞∑
n=0

bn,d
C(d−1)/2
n (cos θ)
C

(d−1)/2
n (1)

, (2.6)

where θ ∈ [0, π], {bn,d}∞n=0 is a uniquely determined sequence of positive co-

efficients given by (1.44) with ∑
n bn,d = 1, and E(·) denotes the probabilistic

expectation. The d-Scheonberg cefficients is given by Equation (1.44) which is

due to the fact that the sequence (αn`) satisfies E(αn`) = 0 and

E(αn` αn′`′) = S(Sd) bn,d
h(n, d+ 1) δnn

′ δ``′ .

Throughout the chapter, we shall refer to K or ψ equivalently as the covariance

function of Z, wherever no confusion arises.

Now, let Z1(x) and Z2(x) be two zero-mean Gaussian fields with covariance

functions ψ1(θ) and ψ2(θ), respectively. The corresponding covariance opera-
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tors on the Hilbert space L2(Sd) can be associated with a covariance function

ψ ◦ θ ∈ L2(Sd × Sd), so that

Cif(x) =
∫
Sd
ψi(θ(x,y))f(y)dy, ∀f ∈ L2(Sd), i = 1, 2. (2.7)

Assume that µ1 and µ2 are two Gaussian measures defined on the Borel σ−algebra

B(Sd) with corresponding covariance operators C1 and C2, respectively. Skorokhod

and Yadrenko (1973) provided a detailed study of the absolutely continuity prop-

erty for Gaussian measures and their equivalence in the Euclidean case, using the

Feldman-Hajek theorem (Skorokhod and Yadrenko, 1973; Da Prato and Zabczyk,

1992). We use the same approach to study the equivalence and the orthogonality

of any two Gaussian measures on the sphere Sd. An important ingredient for

the results proven subsequently is the Feldman-Hajek theorem (Da Prato and

Zabczyk, 1992), which is reported here for as reference contained exposition.

Theorem 2.2.1 (Feldman-Hajek theorem). Let µ1 and µ2 be two zero-mean

Gaussian measures with corresponding covariance operators C1 and C2, respec-

tively, as defined through (2.7). The measures µ1 and µ2 are equivalent if and

only if the operator D = C−1/2
2 C1C−1/2

2 is positive definite, invertible, bounded and

D − I ∈ L2(Sd), where I is the identity operator. Moreover, the Radon-Nikodym

derivative is given by the following formula

dµ2

dµ1
=
∞∏
n=0

h(n,d+1)∏
m=1

√
1 + δmn exp

{
−δmn

2(1 + δmn )〈C
−1/2
2 X(x), emn 〉2

}
,

where emn are the eigenvectors of D− I, and δmn are their corresponding eigenval-

ues.

Two Gaussian measures are either equivalent or orthogonal. This comes from

Ibragimov and Rozanov (1978), Kühn and Liese (1979) and Da Prato and Zabczyk

(1992), but we state it formally for the convenience of the reader.

Theorem 2.2.2. Any two zero-mean Gaussian measures µ1 and µ2 on B(Sd) are

either equivalent or orthogonal.
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The next result gives a sufficient and necessary condition for the equivalence of

Gaussian measures on the sphere Sd.

Theorem 2.2.3. Let Z1(x) and Z2(x) be two zero-mean Gaussian random fields

on Sd with corresponding d−Schoenberg coefficients bn,d,1 and bn,d,2, respectively.

Then, the measures µ1 and µ2 are equivalent if and only if

∞∑
n=0

h(n, d+ 1)
(
bn,d,1
bn,d,2

− 1
)2

<∞. (2.8)

Proof. Necessity. Let µ1 and µ2 be two equivalent Gaussian measures. Argu-

ments in Ibragimov and Rozanov (1978) show that the equivalence of probability

measures depends on the entropy distance between them. Hence, a necessary

step in the proof is to provide a closed form for the entropy distance between µ1

and µ2. According to Theorem 2.2.1, we define the likelihood ratio L = dµ2/dµ1

between µ2 and µ1 on Sd. We then have

L =
∞∏
n=0

h(n,d+1)∏
m=1

√
1 + δmn exp

{
−δmn

2(1 + δmn )〈C
−1/2
2 X(x), emn 〉2

}

= exp

−1
2

∞∑
n=0

h(n,d+1)∑
m=1

[
〈C−1/2

2 X(x), emn 〉2
δmn

(1 + δmn ) − ln(1 + δmn )
] . (2.9)

The log-likelihood is defined by

lnL = −1
2

∞∑
n=0

h(n,d+1)∑
m=1

[
〈C−1/2

2 X(x), emn 〉2
δmn

(1 + δmn ) − ln(1 + δmn )
]
. (2.10)

To find a closed form of the entropy distance between µ1 and µ2, we need to

calculate the expectation of (2.10) with respect to µ1 and µ2. By assumption µ1

and µ2 are equivalent. Thus, we can assume, following Skorokhod and Yadrenko

(1973), that

Ei

[
〈C−1/2

2 X(x), emn 〉2
]

=


1 for i = 1

1 + cn for i = 2,
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where Ei is the expectation with respect to µi, cn ≥ 0 and ∑
c2
n < ∞. Hence,

we conclude that the convergence of the series in (2.10) can be evaluated on the

basis of the following argument

E1

[
〈C−1/2

2 X(x), emn 〉2
δmn

(1 + δmn ) − ln(1 + δmn )
]

= δmn
(1 + δmn ) − ln(1 + δmn ) = O((δmn )2),

E2

[
〈C−1/2

2 X(x), emn 〉2
δmn

(1 + δmn ) − ln(1 + δmn )
]

= (1 + cn) δmn
(1 + δmn ) − ln(1 + δmn ) = O((δmn )2).

Following Stein (1999a) and Georgiou (2006), we can now define the entropy

distance (denoted by R), as follows

R = −E1(lnL) + E2(lnL)

=
∞∑
n=0

h(n,d+1)∑
m=1

O((δmn )2).

Thus, the entropy distance between µ1 and µ2 depends on the eigenvalues of the

operator D− I. Since the covariance operators C1 and C2 are diagonal (by unique

decomposition of positive definite operators), we have

δmn = bn,d,1
bn,d,2

− 1.

From the arguments in (Ibragimov and Rozanov, 1978) we have that the measures

µ1 and µ2 are equivalent if and only if the entropy distance between µ1 and µ2 is

finite, i.e. the following series

∞∑
n=0

h(n, d+ 1)
(
bn,d,1
bn,d,2

− 1
)2

is convergent, which proves the result.

Sufficiency. Let µ1 and µ2 be two zero-mean Gaussian measures with corre-

sponding covariance operators C1 and C2, respectively, associated with covari-

ance functions ψ1(θ) and ψ2(θ) with corresponding d−Schoenberg coefficients

bn,d,1 and bn,d,2, respectively. Assume that (2.8) holds. Define the operator

D : L2(Sd) → L2(Sd) by D = C−1/2
2 C1C−1/2

2 . Since the covariance operators
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C1 and C2 are diagonal, and by the positive definiteness of C1 and C2, we have

that the operator D is positive definite with eigenvalues bn,d,1/bn,d,2 > 0. Since

the operator D has eigenvalues greater than 0 and the operator D−I is diagonal,

then its eigenvalues (singular values) are greater than −1. Then by (2.8), we

conclude that D − I is Hilbert-Schmidt operator. This completes the proof. �

Since the Hilbert space L2(Sd) is a separable Hilbert space, let µi, i = 1, 2 be

two zero-mean Gaussian measures with covariance operators Ci, i = 1, 2. Define

the ratio between C1 and C2 as Λ = 〈X(x),C2X(x)〉
〈X(x),C1X(x)〉 , for any X(x) ∈ L2(Sd). Assume

K = supX(x)∈L2(Sd) ΛX(x) and k = infX(x)∈L2(Sd) ΛX(x). Then we have following

result.

Lemma 2.2.4. Let µ1 and µ2 be equivalent zero-mean Gaussian measures on Sd.

Then, 0 < k < K <∞.

Proof. According to Theorem 2.2.1, there exists an operator D = C−1/2
2 C1C−1/2

2

such that D is positive definite, invertible, and bounded. Thus, we can rewrite

the covariance operator C1 as C1 = C1/2
2 DC1/2

2 . Hence, the ratio between C1 and

C2 is given by

Λ = 〈X(x), C2X(x)〉
〈X(x), C1X(x)〉 = ‖C1/2

2 X(x)‖2

‖D1/2C1/2
2 X(x)‖2

.

Since D is invertible and bounded, then ‖D‖−1 ≤ ΛX(x) ≤ ‖D−1‖, i.e., 0 < k <

K <∞. �

2.3 Selected Examples

We now apply the necessary and sufficient condition proposed in Section 2.2 to

study the equivalence and orthogonality of zero-mean Gaussian measures associ-

ated with some particularly given covariance functions.
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2.3.1 Multiquadric Covariance Function

Let pi ∈ (0, 1) and τi > 0, i = 1, 2 be the parameters of the negative Binomial

distribution on Sd (Møller et al., 2015), given by

βn(pi, τi) = σ2
i

(
τi + n− 1

n

)
pni (1− pi)τi , n = 0, 1, · · ·

The corresponding covariance obtained through the representation (2.6) in S∞ is

ψi(θ) = σ2
i

(
1− pi

1− pi cos θ

)τi
, 0 ≤ θ ≤ π. (2.11)

If we assume that pi = 2δi
1+δ2

i
with δi ∈ (0, 1), then the previous representation of

the covariance will take the following expression (Gneiting, 2013a),

ψi(θ) = ψ(θ; δi, τi, σi) = σ2
i

(1− δi)2τi

(1 + δ2
i − 2δi cos θ)τi . (2.12)

Let d ≥ 2 and τi = d−1
2 . So the d−Schoenberg coefficients have the form

bn,d,i = σ2
i

(
d+ n− 2

n

)
δni (1− δi)d−1, i = 1, 2. (2.13)

The following proposition discusses the orthogonality condition of any two zero-

mean Gaussian measures on S2 with a Multiquadric covariance function.

Proposition 2.3.1. Let Zi(x), i = 1, 2 be zero-mean Gaussian random fields on

S2 with Multiquadric covariance functions ψi(θ) = ψ(θ; δi, τ, σi), i = 1, 2 as in

(2.12) with τ = d−1
2 . Let µi, i = 1, 2, be two different Gaussian measures with

Schoenberg coefficients bn,d,i as in (2.13). Then µ1 and µ2 are equivalent if and

only if σ2
1 = σ2

2 and δ1 = δ2.

Proof. On S2, h(n, 3) = 2n + 1 and the Schoenberg coefficients (2.13) have the

form

bn,2,i = σ2
i δ
n
i (1− δi), i = 1, 2. (2.14)
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By Proposition 2.2.3, to prove the orthogonality of µ1 and µ2 we need to show

that the series in (2.8) is divergent. For our case, the series (2.8) is of the form

∞∑
n=0

h(n, 3)
(
bn,2,1
bn,2,2

− 1
)2

=
∞∑
n=0

(2n+ 1)
((

σ1

σ2

)2
(
δ1

δ2

)n (1− δ1

1− δ2

)
− 1

)2

. (2.15)

To check the convergence or divergence of this series, we use Raabe’s test as

follows.

Step1. Consider

an = (2n+ 1)
((

σ1

σ2

)2
(
δ1

δ2

)n (1− δ1

1− δ2

)
− 1

)2

,

an+1 = (2n+ 3)
(σ1

σ2

)2
(
δ1

δ2

)n+1 (1− δ1

1− δ2

)
− 1

2

.

Step2. Now we need to evaluate the following term

n

[
an
an+1

− 1
]

= n


(2n+ 1)

((
σ1
σ2

)2 (
δ1
δ2

)n (1−δ1
1−δ2

)
− 1

)2

(2n+ 3)
((

σ1
σ2

)2 (
δ1
δ2

)n+1 (1−δ1
1−δ2

)
− 1

)2 − 1

 . (2.16)

Step3. To find the limit of (2.16), we have two different cases. The first one, if

δ1 < δ2, then
(
δ1
δ2

)n
and

(
δ1
δ2

)n+1
tend to zero as n→∞. Hence,

lim
n→∞

n

[
an
an+1

− 1
]

= lim
n→∞

n


(2n+ 1)

((
σ1
σ2

)2 (
δ1
δ2

)n (1−δ1
1−δ2

)
− 1

)2

(2n+ 3)
((

σ1
σ2

)2 (
δ1
δ2

)n+1 (1−δ1
1−δ2

)
− 1

)2 − 1


= lim

n→∞
n
[2n+ 1
2n+ 3 − 1

]
= lim

n→∞

[ −2n
2n+ 3

]
= −1 < 1.

Then Raabe’s test yields divergence, meaning that the Gaussian measures

µ1 and µ2 are orthogonal. For the second case, if δ1 > δ2, then
(
δ1
δ2

)n+1
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tends to infinity faster than
(
δ1
δ2

)n
as n→∞. Hence,

lim
n→∞

n

[
an
an+1

− 1
]

= lim
n→∞

n


(2n+ 1)

((
σ1
σ2

)2 (
δ1
δ2

)n (1−δ1
1−δ2

)
− 1

)2

(2n+ 3)
((

σ1
σ2

)2 (
δ1
δ2

)n+1 (1−δ1
1−δ2

)
− 1

)2 − 1


= lim

n→∞
(−n) = −∞.

Then the series (2.15) is always divergent. The proof is completed. �

2.3.2 The Sine Power Covariance Functions

The sine power covariance function is given by

ψ(θ;α, σ) = σ2
[
1−

(
sin θ2

)α]
, 0 ≤ θ < 2π, (2.17)

where α ∈ (0, 2), and σ2 > 0 are parameters (Soubeyrand et al., 2008; Gneit-

ing, 2013a). Let µ1 and µ2 be zero-Gaussian measures on the circle S1 with

corresponding covariance functions ψi = ψ(θ;αi, σi), i = 1, 2 as in (2.17). The

following proposition discusses the orthogonality condition of µ1 and µ2.

Proposition 2.3.2. Let Zi(x), i = 1, 2 be zero-mean Gaussian random fields

on S1 with covariance functions ψi = ψ(θ;αi, σi), i = 1, 2 as in (2.17). Let

µi, i = 1, 2 be Gaussian measures associated to Zi(x), i = 1, 2. Then, µ1 and µ2

are equivalent if and only if α1 = α2, σ2
1 = σ2

2.

Proof. The circular covariance function given by (2.17) has the following Schoen-

berg coefficients (Soubeyrand et al., 2008),

bn,1,i = σ2
i√
2

Γn+1

(
αi
2

)
, Γn+1

(
αi
2

)
= −1

(n+ 1)!

n∏
m=0

(
m− αi

2

)
, i = 1, 2.

(2.18)

According to Proposition 2.2.3, we have to check the convergence of the series

in (2.8) to determine if the given Gaussian measures µ1 and µ2 are equivalent or
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orthogonal. So, for our case the series in (2.8) takes the following form

∞∑
n=0

h(n, 2)
(
bn,1,1
bn,1,2

− 1
)2

=
∞∑
n=0

2
(

Λ
n∏

m=0

(2m− α1

2m− α2

)
− 1

)2

, (2.19)

where Λ =
(
σ1
σ2

)2
. We will use Raabe’s test to check the convergence of (2.19).

Step1. Now an and an+1 are given as follows

an =
(

Λ
n∏

m=0

(2m− α1

2m− α2

)
− 1

)2

, an+1 =
(

Λ
n+1∏
m=0

(2m− α1

2m− α2

)
− 1

)2

.

Step2. Next we evaluate the following term

n

[
an
an+1

− 1
]

= n


Λ∏n

m=0

(
2m−α1
2m−α2

)
− 1

Λ∏n+1
m=0

(
2m−α1
2m−α2

)
− 1

2

− 1

 . (2.20)

Step3. To find the limit of (2.20), we have two different cases to study the limit

of (2.20). The first case, if α1 > α2, then 2m−α1
2m−α2

< 1. Moreover, we have

lim
n→∞

n

[
an
an+1

− 1
]

= lim
n→∞

n


Λ∏n

m=0

(
2m−α1
2m−α2

)
− 1

Λ∏n+1
m=0

(
2m−α1
2m−α2

)
− 1

2

− 1

 = 0 < 1.

Thus, the series (2.19) is divergent. The second case, if α1 < α2, then
2m−α2
2m−α1

< 1. Moreover, we have

lim
n→∞

n

[
an
an+1

− 1
]

= lim
n→∞

n


Λ∏n

m=0

(
2m−α1
2m−α2

)
− 1

Λ∏n+1
m=0

(
2m−α1
2m−α2

)
− 1

2

− 1


= lim

n→∞
n


 Λ−∏n

m=0

(
2m−α2
2m−α1

)
Λ2n+1−α1

2n+1−α2
−∏n

m=0

(
2m−α2
2m−α1

)
2

− 1


= lim

n→∞
n

[(2n+ 1− α2

2n+ 1− α1

)2
− 1

]

= lim
n→∞

n

[
2(2n+ 1)(α1 − α2) + (α2

2 − α2
1)

(2n+ 1)2 − 2(2n+ 1)α1 + α2
1

]
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= α1 − α2 < 1.

Thus, the series (2.19) is divergent.

Since the series is always divergent, then the Gaussian measures µ1 and µ2 are

always orthogonal. �

2.4 A Simulation Study

We explore numerically some consequences of the theoretical results in Sections

2.2 and 2.3 on the estimation of some specific covariance models of Gaussian

random fields defined on the sphere. Specifically, we focus on maximum likelihood

estimation.

A consequence of Proposition 2.3.1 is that when estimating the parameters of the

Multiquadric model

ψM(θ) = σ2
M

(1− δ)2τ

(1 + δ2 − 2δ cos θ)τ , θ ∈ [0, π] (2.21)

on S2, then the parameters σ2
M and δ are both consistently estimable under fixed

domain asymptotic

A consequence of Proposition 2.3.2 is that when estimating the parameters of the

Sine power model

ψS(θ) = σ2
S

[
1−

(
sin θ2

)α]
, θ ∈ [0, π] (2.22)

on S1, then the parameters σ2
S and α are both consistently estimable under fixed

domain asymptotic

In our simulation setting we work on S2 and, in addition to the Multiquadric and

Sine power models, we also consider the exponential covariance model with the
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geodesic distance

ψE(θ) = σ2
E exp

(
−θ
b

)
, (2.23)

where θ ∈ [0, π] and σ2
E, b > 0.

Results in Zhang (2004) guarantee that when considering the Euclidean distance

on Rd, d = 1, 2, 3, σ2
E and b are not consistently estimable under fixed domain

asymptotic We explore the behavior of the maximum likelihood estimation of

both parameters on S2 using the geodesic distance.

We first consider some details on the computation on the great circle (GC) on S2.

For two location sites in longitude and latitude (expressed in decimal degrees),

Pi = (loni, lati)T and Pj = (lonj, latj)T and the radius of the sphere denoted by

R, the great circle distance is given by Rθ where

θ := θ(xi,xj) = arccos (〈xi,xj〉)

= [arccos{sin ai sin aj + cos ai cos aj cos(bi − bj)}].

Here ai = (lati)π/180, aj = (latj)π/180, bi = (loni)π/180, bj = (lonj)π/180,

xi = (ai, bi)T and xj = (aj, bj)T . Here we work, without loss of generality, on the

unit sphere (i.e, R = 1).

In order to check for consistency of the parameters we first consider 2000 locations

uniformly distributed on the surface of the unit sphere and we then consider

an increasing sequence n = 100, 200, 400, 800, 1200, 1600, 2000 of location sites

randomly chosen without replacement from the previous set points (see Figure

3.2 for the cases n = 100, 800, 2000). For each n we simulate, through Cholesky

decomposition, 1000 zero mean Gaussian random fields with covariance (2.21)

with σ2
M = 1, δ = 0.95, covariance (2.22) with σ2

S = 1, α = 0.74 and covariance

(2.23) with σ2
E = 1 and b = 1/3.

The covariances are reported in Figure 3.2. Note that, under this specific param-

eterization, they have a common practical range approximatively equal to 1. For
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Figure 2.1. Top: from the left to the right, increasing sequence of location sites on
the unit sphere (n = 100, 800, 2000) considered in the simulation study.
Bottom: from left to right, the Multiquadric, Sine power and exponential
correlation functions considered in the simulation study.

each n, for each model and for each simulation, we estimate through maximum

likelihood the parameters (σ2
M , δ)T in the first case, (σ2

S, α)T in the second case,

and (σ2
E, b)T in the exponential case.

In order to check for consistency of the parameters we look at the sample variance

of the maximum likelihood estimates when increasing n = 100, 400, . . . , 2000. In

order to take into account the different order of magnitude of the variances of

each parameter we consider a relative sample variance that is for each n, we first

consider the sample variances of the estimates and then we divided them by the

maximum (over n) of these sample variances. Since the sample variance is not

increasing with n when n = 100 the relative sample variance is equal to 1, and

then it does not increase with n. Figure 2.2 (left part) shows for each model

how the sample relative variance of the ML estimates of the scale parameters δ,

α and b decreases when the number of location sites increases. Figure 2.2 (right
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Figure 2.2. Relative sample variance of the maximum likelihood estimates of the
scale (left) and variance (right) parameters when increasing the number
of location sites on a fixed region of the unit sphere for the Exponential,
Sine power and Multiquadric covariance models.

part) shows for each model how the sample variance of the maximum likelihood

estimates of σ2
x, x = M,S,E decreases when increasing the number of location

sites increases.

From this example, it becomes apparent that sampling more data on S2

may not improve the jointly estimation of the scale and variance parameters

when using the exponential model. This suggests that scale and variance

parameters are not jointly estimable on S2. Similar simulation results have

been obtained in (Zhang, 2004) when working on R2. For the Multiquadric

covariance model, as expected from Propositions 2.3.1, there is a clear pattern

of decreasing (relative) sample variance when jointly estimating the scale

and variances parameters. For the Sine power model, even if Proposition 2.3.2

is valid on S1, our simulation results suggest that orthogonality is still valid on S2.

2.5 Conclusions

We have studied equivalence of Gaussian measures associated to random fields

over spheres. Our results show that the analogue of Skorohod (1967) conditions
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still hold over spheres, but this time in terms of convergence of the ratios of

d-Schoenberg coefficients.

An important fact is that for two celebrated parametric classes of covariances on

spheres (the Sine power and the Multiquadric) we found that Gaussian measures

related to them are always orthogonal, with the important implications in terms

of ML estimation that have been illustrated through Section 2.4. We found similar

results for other parametric classes of covariances defined over spheres.

Gneiting (2013a) has shown that, under some additional restrictions on the pa-

rameters, some parametric families of covariance functions being valid on Eu-

clidean spaces can be used with the great circle distance and thus adapted to the

sphere. This is the case for the Generalized Cauchy, the Dagum, the Wendland

and the Power Exponential models. The Matérn covariance (Matérn, 1960) can

be adapted at the expense of a sever restriction on the smoothing parameter,

which makes it not very appealing on the sphere.

Calculation of the d-Schoenberg coefficients for these models is in general unfea-

sible. Some exceptions can be found in Møller et al. (2015), where it is shown

that the 1-Schoenberg coefficients associated to Wendland functions have oscil-

lating behaviors. This makes extremely difficult to apply our results for our cases

and opens future researches oriented to finding other criteria for equivalence of

Gaussian measures over the sphere. This is the case for the Generalized Cauchy,

the Dagum, the Wendland and the Power Exponential models. The Matérn co-

variance (Matérn, 1960) can be adapted at the expense of a sever restriction on

the smoothing parameter, which makes it not very appealing on the sphere.

Calculation of the d-Schoenberg coefficients for these models is in general unfea-

sible. Some exceptions can be found in Møller et al. (2015), where it is shown

that the 1-Schoenberg coefficients associated to Wendland functions have oscil-

lating behaviors. This makes extremely difficult to apply our results for our cases

and opens future researches oriented to finding other criteria for equivalence of

Gaussian measures over spheres.



CHAPTER 3

Gneiting’s Problems and the Class Ψd of

Positive Definite Functions over

Hyperspheres

In this chapter we provide with partial answers to Problems 1 and 2 proposed

in Gneiting (2013b) on isotropic positive definite functions on spheres: find an

expression for any general d-Schoenberg coefficient in terms of Fourier coefficients

on the circle, find conditions in order to transfer from the Euclidean space to the

sphere setting, and give a lower bound for the minimal curvature of functions

vanishing beyond any given range. In the final section, we show expressions for

the 2-Schoenberg coefficients of functions in the exponential and Askey’s families

(completing the ones given in Møller et al. (2015)).

This result might have led to another methodology for building new isotropic

covariance models in Sd (just by choosing appropriate sequences of non negagative

coefficients with convergent series and forming the Gegenbauer expansion of such

sequence). However, the lack of links between the properties of the coefficients

and the properties of the model prevents practitioners to use it nowadays. In

47
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this direction, (Gneiting, 2013a) has given sufficient conditions on the sequence

of coefficients in order to yield strictly positive definiteness (which is useful for

interpolation of scattered data in spherical domains). This result motivates the

search of explicit formulas for the coefficients of well-known models, and our

Section 3.3 goes in that direction.

In the sequel, coefficients an in the Gegenbauer series expansion shall be referred

to as the n-th d-Schoenberg coefficient (as coined in Daley and Porcu (2014)),

and rephrased as bn,d, in order to stress the dependence on the dimension d. We

shall also restrict to members ψ of classes Ψd, sticking to notation in Gneiting

(2013a), so that the series explansion is:

ψ(θ) =
∞∑
n=0

bn,d
Cλ
n(cos θ)
Cλ
n(1) , (3.1)

where bn,d defined by (1.44).

3.1 The class Ψd and d-Schoenberg coefficients

Throughout, we shall be sloppy whenever using the abuse of notation θ for the

geodesic distance θ(ξ, η) between ξ, η ∈ Sd. We also consider the Hilbert sphere

S∞ = {x ∈ RN : ‖x‖ = 1}. We denote Cλ
n the n-th Gegenbauer polynomial of

order λ > 0, uniquely identified through the intrinsic relation

1
(1 + r2 − 2r cos θ)λ

=
∞∑
n=0

rnCλ
n(cos θ), θ ∈ [0, π],

where r ∈ (−1, 1). It is of fundamental importance that

∣∣∣∣∣Cλ
n(x)

∣∣∣∣∣ ≤ Γ(n+ 2λ)
n!Γ(2λ) = Cλ

n(1), x ∈ [−1, 1].

The following trigonometric representation for Gegenbauer polynomials, see

(Szegő, 1939, p. 93, Equation 4.9.22) will turn to be useful subsequently: for
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any λ > 0, λ < N and θ ∈ [0, π],

Cλ
n(cos θ) = 22−2λΓ(n+ 2λ)

Γ(λ)Γ(n+ λ+ 1)

∞∑
µ=0

(1− λ)µ(n+ 1)µ
µ!(n+ λ+ 1)µ

sin(n+ 2µ+ 1)θ
(sin θ)2λ−1 , (3.2)

where (x)m := x(x + 1) · · · (x + m − 1) denotes the rising factorial operator for

any non negative integer m with (x)0 = 1.

The case λ ∈ N has been elusive so far, and we obtain it here in a technical result

that will be of use in the following sections.

Lemma 3.1.1. Let λ ∈ N. Then, it is true that

Cλ
n(cos θ) = 22−2λΓ(n+ 2λ)

Γ(λ)Γ(n+ λ+ 1)

λ−1∑
µ=0

(1− λ)µ(n+ 1)µ
µ!(n+ λ+ 1)µ

sin(n+ 2µ+ 1)θ
(sin θ)2λ−1 . (3.3)

Proof. Let µ be a nonnegative integer. Define

(1− λ)µ = (1− λ)(2− λ) · · · (µ− λ− 1)(µ− λ),

where λ ∈ N. Thus, for all µ ≥ λ, the rising factorial will vanish. Moreover, the

summation in (3.3) equals zero for µ ≥ λ. The proof is completed. �

An alternative proof of the previous result can be provided through induction on

λ ∈ N. When λ = (d−1)/2, Gegenbauer polynomials have an explicit relationship

with spherical harmonics, being orthonormal basis of L2
(
Sd, d

(
Sd
))

, with d
(
Sd
)

is the surface measure, having total mass equal to 2π d+1
2 /Γ(d+1

2 ).

Let Ψd be the class of continuous mappings ψ : [0, π]→ R with ψ(0) = 1 such that

the continuous functions C : Sd × Sd → R defined through C(ξ, η) = ψ(θ(ξ, η))

are positive definite. Theorem 1.3.9 characterized the positive definite functions

defined on the spheres of any dimension.

Following Corollary 1 in (Gneiting, 2013a) the classes Ψd are nested, with the

inclusion relation

Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψ∞ :=
⋂
d≥1

Ψd
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being strict, and where Ψ∞ has as direct relation to the Hilbert sphere as previ-

ously defined.

A useful way to rephrase Schoenberg’s result is the following, and we state it

formally because it will turn to be useful for the subsequent exposition. Gneiting

(2013a) and Beatson et al. (2013) obtain recurrent formulas in order to write coef-

ficient bn,d as a linear combination of bn,d−2 and bn+2,d−2. By applying recursivity,

each coefficient bn,d can be finally written, when d is odd, as a linear combination

of Schoenberg coefficients in the circle, {bn+2k,1}bd/2ck=0 , and when d is even, as a

linear combination of Schoenberg coefficients in the sphere, {bn+2k,2}d/2k=0.

Arguments in Gneiting (2013a) and classical Fourier inversion show that the

d-Schoenberg coefficients are defined by (1.44). We recall that 1-Schoenberg

coefficients are the Fourier coefficients for even functions:

b0,1 := 1
π

∫ π

0
f(cos θ)dθ, bn,1 := 2

π

∫ π

0
f(cos θ) cos(nθ)dθ, (n ≥ 1). (3.4)

3.2 Gneiting’s problems with their solutions

3.2.1 Statements of the Problems

We now expose the problems faced in this chapter together with their partial

solutions.

Problem 1. (Gneiting, 2013b, Problem 1) Let n ≥ 0 and k ≥ 1 be integers. Find

the coefficients an,1, . . . , an,k in the expansion

bn,2k+1 =
k∑
i=0

an,ibn+2i,1 (3.5)

associated to the (2k + 1)-Schoenberg coefficients in terms of Fourier coefficients

bn,1, . . . , bn+2k,1. Similarly, find the (2k + 2)-Schoenberg coefficients in terms of

the 2-Schoenberg coefficients bn,2, bn+2,2, . . . , bn+2k,2.
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In order to state Problem 2, we follow Gneiting (2013a) when calling Ψc
d the

subclass of Ψd having members ψ that vanish for any θ ≥ c, with c ∈ (0, π].

When c < π, then any member of Ψc
d has local support, otherwise it is called

globally supported.

Problem 2. (Gneiting, 2013b, Problem 3) For an integer d ≥ 1, and for a given

c ∈ (0, π], find

acd := inf
ψ∈Ψc

d

(
−ψ′′(0)

)
. (3.6)

This is a problem of applied interest when d = 2. In atmospheric data assimila-

tion, locally supported isotropic correlation functions are used for the distance-

dependent reduction of global scale covariance estimates in ensemble Kalman

filter settings (see Gneiting (2013a), and the references therein). Thus, it is ap-

pealing to use a member of the class Ψc
2 with minimal curvature at the origin.

Some comments are in order. The solution of Problem 1 requires the use of

recursive formulae for the Gegenbauer polynomials and a constructive argument

that will be exposed subsequently. An approach of Problem 2 relies on considering

Ψ̃c
d, the subclass of Ψd given by those members ψ ∈ Ψd such that ψ(c) = 0.

Clearly, we have

Ψc
d ⊂ Ψ̃c

d ⊂ Ψd, (3.7)

with the inclusion relation being strict. The definition of the class Ψ̃c
d in con-

cert with Schoenberg’s representation and the oscillatory nature of Gegenbauer

polynomial implies that, for any member of the class Ψd, there exists a collec-

tion of members ψ̃ of the class Ψck
d , for {ck} being a sequence of constants with

ck ∈ (0, π], such that

ψ(θ) =
∞∑
k=0

bk,dψ̃k(θ), θ ∈ [0, π].

Another relevant comment is that Theorems 2 and 3 in Gneiting (2013a) provide

the upper bound acd ≤ 1
c2

4
d
j2
d−2

2
, where jν denotes the first positive zero of the
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Bessel function Jν . Some of these zeros are:

j0 ≈ 2.4048, j0.5 ≈ π j1 ≈ 3.8317.

According to Ehm et al. (2004) the constant acd in Euclidean spaces depend on

Boas-Kac roots, but Ziegel (2014) showed that the convolution root does not

always exist for positive definite functions on spheres. This makes the problem

mathematically more interesting, and certainly tricky.

3.2.2 Main results

Proposition 3.2.1. Let d > 1 be an integer, and let λ := (d− 1)/2. Then,

bn,d =
√
πΓ(n+ 2λ)

22λΓ(λ+ 1/2)Γ(n+ λ)

b∗n,1 − λ ∞∑
µ=1

(1− λ)µ−1(n+ 1)µ−1(n+ 2µ)
µ!(n+ λ+ 1)µ

bn+2µ,1


for n ≥ 0, where b∗n,1 = bn,1 when n ≥ 1 and b∗0,1 = 2b0,1. If d is odd, the expression

involves only a finite number of coefficients, i.e., b∗n,1, bn+2,1, . . . , bn+2λ,1.

Proof. By plugging Equation (3.2) into (1.44), we get

bn,d = α(λ, n)
∫ π

0

∞∑
µ=0

β(λ, n, µ)sin(n+ 2µ+ 1)θ
(sin θ)2λ−1 ψ(θ)(sin θ)2λdθ, (3.8)

where α(λ, n) = (n+λ)22−2λΓ(n+2λ)Γ(λ)
Γ(λ)Γ(n+λ+1)Γ(λ+1/2)Γ(1/2) and β(λ, n, µ) = (1−λ)µ(n+1)µ

µ!(n+λ+1)µ . Thus,

bn,d = α(λ, n)
2

∞∑
µ=0

β(λ, n, µ)
∫ π

0
ψ(θ)[cos(n+ 2µ)θ − cos(n+ 2µ+ 2)θ]dθ.

Direct inspection on the expression above, in concert with Equation (3.4) for the

Fourier 1-Schoenberg coefficients gives

bn,d = πα(λ, n)
4

β(λ, n, 0)[b∗n,1 − bn+2,1] +
∞∑
µ=1

β(λ, n, µ)[bn+2µ,1 − bn+2µ+2,1]
 ,



3.2. GNEITING’S PROBLEMS WITH THEIR SOLUTIONS 53

where b∗n,1 = 2b0,1 and bn,1 for n ≥ 1. We can rewrite the previous representation

as follows

bn,d = πα(λ, n)
4

(
β(λ, n, 0)b∗n,1 +bn+2,1[β(λ, n, 1)− β(λ, n, 0)]

+bn+4,1[β(λ, n, 2)− β(λ, n, 1)] + · · · ) .

Furthermore,

bn,d = πα(λ, n)
4

β(λ, n, 0)b∗n,1 +
∞∑
µ=1

bn+2µ,1[β(λ, n, µ)− β(λ, n, µ− 1)]
 , (3.9)

where β(λ, n, 0) = 1 and

β(λ, n, µ)− β(λ, n, µ− 1) = β(λ, n, µ− 1)
[
−λ(n+ 2µ)
µ(n+ λ+ µ)

]

= −λ(1− λ)µ−1(n+ 1)µ−1(n+ 2µ)
µ!(n+ λ+ 1)µ

.

This fact completes the proof by plugging this last expression into Equation

(3.9). �

Remark. The previous proposition applies for general λ > 0. In case that λ ∈ N,

i.e., d is odd, then the series becomes a finite linear combination, with µ ranging

from 1 to λ− 1.

We are now able to face Problem 2, where a formal statement for a partial solution

is exposed in the following.

Proposition 3.2.2. Let d > 1 be an integer. Then:

(i) acd ≥ 1
1−cos c if c ∈ [π/2, π].

(ii) acd ≥
(d+1)(cos c)(2−cos c)+1
(1−cos c)((d+1) cos c+1) if c ∈ [arccos

√
1
d+1 , π/2].

Proof. It is easy to check Beatson et al. (2013) that for any ψ ∈ Ψd with associated

d-Schoenberg coefficients {bn,d}∞n=0, it is true that −ψ′′(0) = 1
d

∑∞
n=1 n(n + d −

1)bn,d. Since the sequence {bn,d}∞n=0 is a probability mass system, functions ψ
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with mass concentrated in earlier coefficients have a lower value of −ψ′′(0), and

it is essential for the estimation of the infimum acd in Equation (3.6).

The set Ψc
d is difficult to tackle, because locally supported functions have an

infinite number of non null d-Schoenberg coefficients. In view of this, we consider

Ψc
d as a subset of the more amenable set Ψ̃c

d := {ψ ∈ Ψd : ψ(c) = 0}, of functions

having at least one zero at the fixed value θ = c. Now, denote

ãcd := inf
ψ∈Ψ̃c

d

[−ψ′′(0)]. (3.10)

Obviously, we have acd ≥ ãcd thanks to (3.7), and the latter value is attainable at

a known function for a range of values of c, as we shall show. In order to get ãcd
we need to solve the pair of equations

∞∑
n=0

bn,d = 1 and
∞∑
n=0

bn,d
Cλ
n(cos c)
Cλ
n(1) = 0 (3.11)

subject to the restriction {bn,d}∞n=0 ⊂ [0,∞). As already stated, we shall check

the values for functions with mass concentrated into the first coefficients. The

constant function (i.e. bn,d = 0 for n ≥ 1) is clearly out of Ψ̃c
d. Thus, we check

functions with bn,d = 0 for n ≥ 2. Using the equations in (3.11) we get the single

function

ψc(θ) = − cos c
1− cos c + 1

1− cos c cos θ,

and a sufficient condition for ψ to belong to the class ψ ∈ Ψ̃c
d is that c ∈ [π/2, π],

with −ψ′′c (0) = 1
1−cos c . Hence for c ∈ [π/2, π], ãcd = 1

1−cos c and it is attained at

function ψc.

For c ∈ [0, π/2] we have no members of Ψ̃c
d with bn,d = 0 for n ≥ 2, and we shall

look for functions with bn,d = 0 for n ≥ 3. Using again the system (3.11) we get

the set of functions that can be written as

ψβ(θ) = − cos c
1− cos c + (d+ 1) cos c+ 1

d
β
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+
(

1
1− cos c −

(d+ 1)(1 + cos c)
d

β

)
cos θ + β

(d+ 1) cos2 θ − 1
d

,

indexed by β := b2,d. The non negativity restriction of their coefficients turns

into the inequality

d cos c
(1− cos c)((d+ 1) cos c+ 1) ≤ β ≤ d

(d+ 1) sin2 c
,

which leads to a non empty set of values only if c ≥ arccos
√

1
d+1 , and ãcd is

attained at the lowest possible value of β satisfying the inequalities. �

This strategy might lead to values of ãcd for a wider range of values c, by using

functions with bn,d = 0 for n ≥ 4, and so on, but we have not explored further

this line because of the complexity of equations. Another way (yet unexplored)

of improving the lower bounds is using slightly more complex auxiliary sets Ψ(c,c′)
d

of functions having at least two zeros, or even more. We could find no examples

of members of this subclass.

Figure 3.1 depicts both upper and lower bounds for the range of c in dimension

d = 2.

Figure 3.1. Upper (Ehm et al., 2004, Theorem5.1) and lower (Proposition 3.2.2)
bounds for acd in the range c ∈ [arccos

√
1
d+1 , π] for d = 2.
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3.3 On the 2-Schoenberg coefficients of some

celebrated parametric families

This section inspects the problem of giving closed form expressions for the 2-

Schoenberg coefficients of correlation functions in the exponential and Askey’s

families Møller et al. (2015).

A relevant remark is that what really matters is the computation of the 1- and 2-

Schoenberg coefficients because all the others can then be calculated inductively

by using Corollary 3 in Gneiting (2013a). In particular, using Theorem 4.2 in

Møller et al. (2015) one can even get the Schoenberg’s coefficients related to

the representation of a given member of the class Ψ∞. Since the 1-Schoenberg

coefficients for the exponential and Askey families have been provided in Møller

et al. (2015), we focus here on the tricky case of the 2-Schoenberg coefficients

related to these families.

First, we note that Gegenbauer polynomials simplify to Legendre polynomials Pn
when dealing with S2. Thus, classical Schoenberg’s representation reduces to

ψ(θ) =
∞∑
n=0

bn,2Pn(cos θ), θ ∈ [0, π], (3.12)

where

bn,2 =
(
n+ 1

2

) ∫ π

0
Pn(cos θ)ψ(θ) sin θdθ,

for all n ≥ 0. The following representation for Legendre polynomials turns to be

useful Dixit et al. (2015)

Pn(cos θ) = 2n
n∑

m=0

(
n

m

)(
n+m−1

2
n

)
(cos θ)m.
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In view of the expression above, the 2-Schoenberg coefficients can be computed

through

bn,2 = (2n+ 1)2n−1
n∑

m=0

(
n

m

)(
n+m−1

2
n

)∫ π

0
(cos θ)m sin θψ(θ)dθ. (3.13)

3.3.1 Exponential Family

Let us consider the exponential family of members of Ψ∞, given by

ψα(θ) = exp
(
− θ
α

)
, θ ∈ [0, π], (3.14)

with α being a positive scaling parameter.

Proposition 3.3.1. The 2-Schoenberg coefficients related to the members ψα of

the class Ψ∞ as in Equation (3.14) are given by

bn,2(α) = 2n+ 1
21−n


n∑

m≡0(mod2)

(
n

m

)(
n+m−1

2
n

) (1 + e− πα
)

(m+ 1)2m ·2m −
m
2∑

k=0

1
(2k + 1)2α2 + 1

(
m+ 1
m−2k

2

)+

n∑
m≡1(mod2)

(
n

m

)(
n+m−1

2
n

)(1− e− πα
)

(m+ 1)2m ·2m − 1
2

(
m+ 1
m+1

2

)
−

m+1
2∑

k=1

1
4k2α2 + 1

(
m+ 1
m−2k+1

2

)
 . (3.15)

Proof. We provide a proof by direct construction. We first use Equation (3.13)

to obtain

bn,2(α) = (2n+ 1)2n−1
n∑

m=0

(
n

m

)(
n+m−1

2
n

)∫ π

0
e(− θ

α)(cos θ)m sin θdθ. (3.16)
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Using integration by parts, we have

∫ π

0
e(− θ

α)(cos θ)m sin θdθ =
(
e− πα (−1)m + 1

)
− 1
α(m+ 1)

∫ π

0
e− θ

α (cos θ)m+1dθ.

(3.17)

To compute the second term of (3.17), we use the explicit formulae proposed in

(Jeffrey and Zwillinger, 2007, Page 228) as follows,

(a) m is even The integral on the right hand side of (3.17) is given by

∫ π

0
e− θ

α (cos θ)m+1dθ =

(
1 + e− πα

)
2m

m
2∑

k=0

(
m+ 1
m−2k

2

)
α

(2k + 1)2α2 + 1 . (3.18)

(b) m is odd we obtain

∫ π

0
e− θ

α (cos θ)m+1dθ =
(
m+ 1
m+1

2

)
α
(
1− e− πα

)
2m+1

+

(
1− e− πα

)
2m

m+1
2∑

k=1

(
m+ 1
m−2k+1

2

)
α

(2kα)2 + 1 . (3.19)

We can now merge (3.18) and (3.19) into (3.17) to obtain

∫ π

0
e(− θ

α)(cos θ)m sin θdθ =

general m︷                     ︸︸                     ︷(
1 + (−1)me− πα

)
−

m is odd︷                            ︸︸                            ︷(
1− e− πα

)
(m+ 1)2m+1

(
m+ 1
m+1

2

)

−

m is even︷                                                      ︸︸                                                      ︷(
1 + e− πα

)
(m+ 1)2m

m
2∑

k=0

(
m+ 1
m−2k

2

)
1

(2k + 1)2α2 + 1

−

(
1− e− πα

)
2m

m+1
2∑

k=1

(
m+ 1
m−2k+1

2

)
α

(2kα)2 + 1︸                                                 ︷︷                                                 ︸
m is odd

(3.20)

Going back by substitution into Equation (3.20) in (3.16), we obtain (3.15). This

completes the proof. �
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Figure 3.2. Top: from left to right, the 2-Schoenberg coefficients associated to the
Exponential function ψα in Equation (3.14). Bottom: we zoom on the
same coefficients from 20 to 50, to show the oscillating behavior away
from the origin.

3.3.2 Askey Family

The Askey function (Askey, 1973) ψα,τ , is defined through

ψα,τ (θ) =
(

1− θ

α

)τ
+

for θ ∈ [0, π], (3.21)

where 0 < α and τ ≥ (d + 1)/2 are sufficient conditions for ψα,τ to belong to

the class Ψd. Since we are concerned with the 2-Schoenberg’s coefficients, we

consider the case τ = 2. A relevant remark is that when 0 < α < π, then the

Askey function is locally supported.

Proposition 3.3.2. The 2-Schoenberg coefficients related to the members ψα,2 of

the class Ψ2 as in Equation (3.21) are given by

bn,2(α) = (2n+ 1) 2n−1


n∑

m≡0(mod2)

(
n

m

)(
n+m−1

2
n

) [ 1
m+ 1

+ 1
(m+ 1)α22m−1

m
2∑

k=0

(
m+ 1
k

)
cos(m− 2k + 1)α− 1

(m− 2k + 1)2


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+
n∑

m≡1(mod2)

(
n

m

)(
n+m−1

2
n

)[
1

m+ 1 −
1

(m+ 1)2m+1

(
m+ 1
m+1

2

)

+ 1
(m+ 1)α22m−1

m−1
2∑

k=0

(
m+ 1
k

)[
cos(m− 2k + 1)α− 1

(m− 2k + 1)2

]
 .

(3.22)

Proof. Again, a proof by direct construction is provided. We first use Equation

(3.13) to obtain

bn,2(α) =(2n+ 1)
21−n

n∑
m=0

(
n

m

)(
n+m−1

2
n

)∫ π

0

(
1− θ

α

)2

+
(cos θ)m sin θdθ

=(2n+ 1)
21−n

n∑
m=0

(
n

m

)(
n+m−1

2
n

)∫ α

0

(
1− 2θ

α
+ θ2

α2

)
(cos θ)m sin θdθ. (3.23)

We now note that

∫ α

0

(
1− 2θ

α
+ θ2

α2

)
(cos θ)m sin θdθ =

∫ α

0
(cos θ)m sin θdθ︸                      ︷︷                      ︸

I1

− 2
α

∫ α

0
θ(cos θ)m sin θdθ︸                        ︷︷                        ︸

I2

+ 2
α2

∫ α

0
θ2(cos θ)m sin θdθ︸                          ︷︷                          ︸

I3

. (3.24)

The integral I1 is given by

I1 = 1
m+ 1 −

(cosα)m+1

m+ 1 . (3.25)

Using integration by part, we obtain that the integral I2 is given by

I2 = −α
m+ 1(cosα)m+1 + 1

m+ 1

∫ α

0
(cos θ)m+1dθ. (3.26)

By using the explicit formulas 3 and 4 (Jeffrey and Zwillinger, 2007, Page 153),

we have that the integral I2 is given by
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(a) m is even

I2 = −α
m+ 1(cosα)m+1 + 1

(m+ 1)2m

m
2∑

k=0

(
m+ 1
k

)
sin(m− 2k + 1)α

m− 2k + 1 (3.27)

(b) m is odd we obtain

I2 = −α
m+ 1(cosα)m+1 + α

(m+ 1)2m+1

(
m+ 1
m+1

2

)

+ 1
(m+ 1)2m

m−1
2∑

k=0

(
m+ 1
k

)
sin(m− 2k + 1)α

m− 2k + 1 . (3.28)

To compute the integral I3, we use integration by part to get

I3 = −α2

m+ 1(cosα)m+1 + 2
m+ 1

∫ α

0
θ(cos θ)m+1dθ. (3.29)

Using the explicit formulas 6 and 7 (Jeffrey and Zwillinger, 2007, Page 215) to

compute the integral in the second term of (3.29). After then substitute in (3.29)

to obtain the integral I3 as follows

(a) m is even

I3 = −α2

m+ 1(cosα)m+1 + 1
(m+ 1)2m−1

m
2∑

k=0

(
m+ 1
k

)(
m+ 1
k

)

×
[
α sin(m− 2k + 1)α

m− 2k + 1 + cos(m− 2k + 1)α− 1
(m− 2 + k)2

]
. (3.30)

(b) m is odd then

I3 = −α2

m+ 1(cosα)m+1 + α2

(m+ 1)2m+1

(
m+ 1
m+1

2

)

+ 1
(m+ 1)2m−1

m−1
2∑

k=0

(
m+ 1
k

) m−1
2∑

k=0

(
m+ 1
k

)

×
[
α sin(m− 2k + 1)α

m− 2k + 1 + cos(m− 2k + 1)α− 1
(m− 2 + k)2

]
(3.31)
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Then, from (3.25), (3.27), (3.28), (3.30) and (3.31) in (3.24), we have

(a) when m is even

I1 −
2I2

α
+ I3

α2 = 1
m+ 1 + 21−m

(m+ 1)α2

m
2∑

k=0

(
m+ 1
k

)
cos(m− 2k + 1)α− 1

(m− 2k + 1)2

(3.32)

(b) when m is odd we obtain

I1 −
2I2

α
+ I3

α2 = 1
m+ 1 + 1

(m+ 1)2m+1

(
m+ 1
m+1

2

)

+ 21−m

(m+ 1)α2

m−1
2∑

k=0

(
m+ 1
k

)[
cos(m− 2k + 1)α− 1

(m− 2k + 1)2

]
.

(3.33)

Going back by substitution into Equation (3.32) and (3.33) in (3.23), we obtain

(3.22). This completes the proof. �

Figure 3.3. Top: from the left to the right, the 2-Schoenberg coefficients of the Askey
function ψα,2 defined in Equation (3.21). Bottom: we zoom on the same
coefficients from 20 to 50, to show the oscillating behavior away from the
origin.



CHAPTER 4

A family of Markov Processes in

Maximal Compact Subgroups of a

Semisimple Lie Groups

4.1 Introduction

Let E be a locally compact Hausdorff space whose topology has a countable basis

(usually Rd), E the Borel σ-algebra on Rd, B the Borel σ-algebra on R, and

M := {µ : 0 ≤ µ(A) <∞ for A ∈ B} the set of nonnegative finite measures. Let

M] := {µ : µ(A) ∈ N for A ∈ B} be the set of counting measures, and M the

σ-algebra on M generated by the coordinate mappings µ 7→ µ(f) =
∫
fdµ for f ∈

Ck, where Ck is the set of continuous functions on E with compact support. Finally,

if (Ω,F ,P) denotes a probability space, a point process on E is a measurable

function N : (Ω,F)→ (M],M).

A one-dimensional point process is intended to describe events that occur ran-

domly over the positive real line. It can be represented as a sequence of nonneg-

ative random variables 0 = T0 < T1 < T2 < . . . , where the generic Tn is the n-th

63
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instant of occurrence of an event. Under the usual assumption of non-explosion,

according to which T∞ = lim ↑ Tn = ∞, the process can be represented via its

associated counting process Nt where

Nt = n if t ∈ [Tn, Tn+1) , n ≥ 0 or, equivalently, Nt =
∑
n≥1

1{Tn≤t} (4.1)

counts the number of events up to, and including, time t (see Daley and Vere-

Jones (2002), Daley and Vere-Jones (2007)). The non-explosion condition be-

comes Nt < ∞ for all t ≥ 0. Both Tn and Nt are defined on some probability

space (Ω,F ,P) with a filtration Ft to which Nt is adapted (i.e. a measurable

function for all t ≥ 0). A point process Nt is called a Poisson point process if

N0 = 0, Nt is a process with independent increments, and Nt − Ns is a Poisson

random variable of a given parameter Λs,t.

Usually one assumes Λs,t =
∫ t
s λudu for a deterministic function λt dubbed inten-

sity of the Poisson point process Nt. If Ft is the filtration FNt generated by Nt,

and λt ≡ 1, then Nt is called a standard Poisson process. It is also easily seen

that if Nt is a Poisson process with intensity λt = λ, then Tn+1 − Tn are i.i.d.

exponential random variables with parameter λ. Wiener processes are similar:

the increments of a Wiener process are normally distributed, and independent if

the intervals are disjoint. It is the basic building block for processes with contin-

uous trajectories, while the Poisson process remains for processes with jumping

trajectories. On the contrary, the Wiener process is itself a martingale, while the

Poisson process becomes a martingale only if one subtracts from Nt the process

given by its mean. Indeed,

Mt := Nt −
∫ t

0
λsds (4.2)

is a Ft-martingale by the F0-measurability of λt, assuming in addition that

E
{∫ t

s λudu
}
<∞. As a consequence, another characterization of a Poisson pro-

cess is

E {Nt −Ns| Fs} = E
{∫ t

s
λudu

∣∣∣∣Fs} (4.3)
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which implies that E {Nt} < ∞ and that Mt in (4.2) is an Ft-martingale. A

generalization of (4.3) admits the form

E
{∫ ∞

0
CsdNs

}
= E

{∫ ∞
0

Csλsds
}

(4.4)

that has to be valid for all nonnegative and Ft-predictable processes Ct, charac-

terizing a Poisson process with intensity λt (see Brémaud (1981)).

Our aim is to define a family of marked point processes in noncompact semisimple

Lie groups. This will help building a family of Markov processes in a maximal

compact subgroup of semisimple Lie groups. This class has lots of potential

applications, and it is a building block for other types of point processes.

The plan of this chapter is the following. Section 2 shows how to build marked

point processes and their multivariate version for noncompact semisimple Lie

groups. Then Section 3 develops Lévy processes in semisimple Lie groups that

help to define Markov processes in a maximal compact subgroup of semisimple

Lie groups.

4.2 Marked Point Processes and the Multivari-

ate Case

Let (Tn)n≥1 be a (univariate) point process and (Yn)n≥1 a sequence of random

variables with values in {1, 2, . . . , K}, all defined on the same space (Ω,F ,P).

For each k = 1, . . . , K we may then consider the counting process

Nt (k) :=
∑
n≥1

1{Tn≤t}1{Yn=k}.

Each Nt(k) is a univariate point process and the various Nt(k)’s have no com-

mon jumps. As in the univariate case, we have two equivalent representa-

tions, either as the double sequence (Tn, Yn)n≥1, or as the K-vector process

Nt = (Nt(1), . . . , Nt(K)), being a multivariate point process, or more precisely a
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K-variate point process. Considering Nt as a K-vector process, using (4.2) we

can define Mt a K-vector martingale with λt a K-vector intensity process whose

components are the individual intensities of the components Nt(k) of Nt.

Considering the representation (Tn, Yn), we may interpret Tn as the n-th occur-

rence of some phenomenon, and Yn as an attribute or mark of this phenomenon.

We may then speak of (Tn, Yn) as a marked point process, or a space-time point

process, and extend its definition to allow Yn to take values in a general measur-

able mark space (E, E). We synthesize this idea in the following definition.

Definition 4.2.1. An E-marked point process is a double sequence (Tn, Yn)n≥1

where Tn is a (univariate) point process, and Yn is a sequence of E-valued random

variables.

Obviously, the univariate and multivariate point processes are special cases of a

marked point process (see Björk et al. (1997)). Generalizing the representation of

a multivariate point process in the form of the K-vector process Nt, we associate

to each A ∈ E the counting process

Nt(A) :=
∑
n≥1

1{Tn≤t}1{Yn∈A}

and we write simply Nt = Nt(E). Considering the filtration

FNt := σ {Ns(A); s ≤ t, A ∈ E}

we define the associated (random) counting measure

p ((0, t] , A) = Nt(A), t ≥ 0, A ∈ E (4.5)

which is σ-finite under the assumption of non-explosion of Tn. This measure

allows to obtain more concise expressions via integrals of the form

∫ t

0

∫
E
H(s, y)p(ds, dy) =

∑
n≥1

H(Tn, Yn)1{Tn≤t} =
Nt∑
n=1

H(Tn, Yn). (4.6)
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Again, we may represent an E-marked point process equivalently as the double

sequence (Tn, Yn) or as the counting measure p(ds, dy).

In order to introduce now the intensity process in this more general setup, let us

assume that for each A ∈ E , the point process Nt(A) admits the intensity λt(A).

This leads to a measure-valued intensity λt(dy) so that, generalizing (4.4), one

has

E
{∫ ∞

0

∫
E
H(s, y)p(ds, dy)

}
= E

{∫ ∞
0

∫
E
H(s, y)λs(dy)ds

}
(4.7)

that has to be valid for all nonnegative Ft-predictable E-marked processes H

(given a filtration Ft on Ω). Ft -predictability here means measurability with

respect to P(Ft)⊗ E , where P(Ft) is the predictable σ-field on (0,∞)× Ω). We

also have the generalization of (4.2) in the form

q(ds, dy) = p(ds, dy)− λs(dy)ds (4.8)

where q(ds, dy) is a (signed) measure-valued martingale in the sense that the inte-

gral
∫ t
0
∫
EH(s, y)q(ds, dy) is a (P,Ft)-martingale for each Ft-predictable E-marked

process H, satisfying appropriate integrability conditions. The most common

form of intensity is given by

λt(dy) = λtmt(dy) (4.9)

where λt is nonnegative Ft-predictable, and represents the intensity of the Poisson

process Nt(E), while mt(dy) is a probability measure on E (typically, the Yn will

be i.i.d., independent of Nt(E)). The pair (λt,mt(dy)) is called the (P,Ft)-local

characteristics of p(ds, dy).

Notice finally that, as in the univariate case, we may let λt(dy) depend on some

driving F0-measurable random process Zt, leading to a doubly stochastic marked

point process. If, in the representation (4.9), λt is a deterministic time function,

the marked point process is called a marked Poisson process.
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We shall recall a corresponding result for point-process martingales that we for-

mulate in the most general case of a marked point process. Following Theorem

8 in (Brémaud, 1981, chapter VIII), the Ft-martingale Mt admits the following

representation

Mt = M0 +
∫ t

0

∫
E
H(s, y)q(ds, dy). (4.10)

So, in the case of a multivariate (and univariate) point process, the representation

(4.10) becomes

Mt = M0 +
K∑
k=1

∫ t

0
Hs(k)(dNs(k)− λs(k)ds) (4.11)

where (Ht(1), . . . , Ht(K)) is Ft-predictable with Ht(k) integrable with respect to

λt(k) for all k.

With the definition of a marked point process and with the integrals in the form

of (4.6), we may now consider processes of the general form

Xt = X0 +
∫ t

0
αsds+

∫ t

0
βsdωs +

∫ t

0

∫
E
γ(s, y)p(ds, dy) (4.12)

that are called jump-diffusion processes, and where the coefficients satisfy the

implicit integrability conditions, βt is adapted and γ(t, y) is predictable as defined

previously (see Ahn and Thompson (1988)). As usual, we may rewrite (4.12) in

differential form and consider, more specifically, differential equations of the type

dXt = Xt−

(
αtdt+ βtdωt +

∫
E
γ(t, y)p(dt, dy)

)
(4.13)

where we write Xt− with t− because of the predictability requirement in the last

coefficient and where γ(t, y) > −1. The last term in (4.13) can also be written as

∫
E
γ(t, y)p(dt, dy) = γ(t, Yt)dNt (4.14)

(see (4.6)), where Nt = Nt(E) = p((0, t],E) is the total number of jumps and Yt

denotes the piecewise constant, left-continuous time interpolation of the sequence
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Yn. Notice also that, in the case of a multivariate (in particular univariate) point

process, this last term in (4.13) takes the form

∫
E
γ(t, y)p(dt, dy) =

K∑
k=1

γt(k)dNt(k). (4.15)

We shall not discuss in detail equations of the form (4.13), in particular the

uniqueness of their solutions, but we limit ourselves to show that a solution to

(4.13) is given by the following exponential formula

Xt = X0 exp
[∫ t

0

(
αs −

1
2β

2
s

)
ds+

∫ t

0
βsdωs

] Nt∏
n=1

(1 + γ(Tn, Yn)) . (4.16)

Note that the diffusion part in this expression follows from the usual Itô’s for-

mulae, the jump part follows from the so-called exponential formula of Stieltjes-

Lebesgue Calculus (see Theorem T4 of Appendix A4 in [Brémaud (1981)]), but

it can also be obtained from the generalized Itô’s formulae as we show now. For

this purpose let a process Xt satisfy the general equation (4.12). Given a C1,2-

function F (t,X), we have that the generalized Itô’s formula, in the specific case

of (4.13), becomes

dF (t,Xt) = Ft(·)dt+ FX(·)Xtαtdt+ 1
2FXX(·)X2

t β
2
t dt+ FX(·)Xtβtdωt

+ [F (t,Xt−(1 + γ(t, Yt)))− F (t,Xt−)]dNt (4.17)

and where again, Nt = Nt(E) = p((0, t],E), (·) stands for (t,Xt), and the subscript

in F denotes partial derivatives. Notice that, if (4.17) is written in integral form,

we have the following two equivalent representations for the last term on the right

hand side

∫ t

0
[F (s,Xs−(1 + γ(s, Ys)))− F (s,Xs−)] dNs =

Nt∑
n=1

[
F (Tn, XTn)− F (Tn, XT−n

)
]

where the right hand side remains the same also in the more general case of Itô’s

formulae.
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We shall now use the generalized Itô’s formulae (4.17) to obtain the solution

(4.16) of equation (4.13). Choosing F (t,X) = logX, from (4.17) and (4.13) we

have

dF = αtdt−
1
2β

2
t dt+ βtdωt + log(1 + γ(t, Yt))dNt

from which

logXt = logX0 +
∫ t

0

(
αs −

1
2β

2
s

)
ds+

∫ t

0
βsdωs +

∫ t

0
log(1 + γ(s, Ys))dNs,(4.18)

i.e. we obtain (4.16) by taking the exponential on both sides in (4.18).

Our aim in this section is to obtain a closed form for a marked point processes

(later called Lt) is the more general multivariate case. For this goal, we first

need to rephrase Girsanov’s measure transformation theorem coming in Theorem

4.2.2, and we also need to recall (Brémaud, 1981, chp. VIII, T10) in this case

coming in Theorem 4.2.3.

Theorem 4.2.2 (Girsanov’s measure transformation). Let T > 0 be fixed,

(Ω,F ,Ft,P) a filtered probability space with F = ∪tFt, and θt a square integrable

predictable process. Define (Lt)t∈[0,T ] by

dLt = Ltθtdωt, L0 = 1 (4.19)

and suppose that, for all t, EP {Lt} = 1. Then there exists a probability measure

Q on F , equivalent to P, with dQ = LTdP such that

dωt = θtdt+ dωQt , L0 = 1 (4.20)

where ωQt is a Q-Wiener process.

Girsanov’s measure transformation allows to change the drift in a diffusion equa-

tion. In fact, suppose that, under P, we have dXt = atXtdt + σtXtdωt, and that

we would like to change to a measure Q ∼ P (∼ meaning equivalent to), under

which the same Xt satisfies dXt = rtXtdt + σtXtdωQt . In this case just take

θt = σ−1
t (rt − at).
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If we have both the Wiener process ωt and a marked point process represented

by a counting measure p(dt, dy), a Girsanov-type measure transformation allows,

in addition to the translation of the Wiener process, to perform also a change in

the intensity of the point process part. Then we can rephrase (Brémaud, 1981,

VIII, T10) in the following terms.

Theorem 4.2.3. Let [0, T ] be a finite time interval, p(dt, dy) an E-marked point

process with (P,Ft)-local characteristic (λt,mt(dy)). Let ψt ≥ 0 be Ft-predictable

and ht(y) ≥ 0 an Ft-predictable E-indexed process such that, P-a.s. and for all

t ∈ [0, T ], ∫ t

0
ψsλsds <∞;

∫
E
ht(y)mt(dy) = 1.

Define Lt = L
(1)
t · L

(2)
t where L(1)

t satisfies (4.19) and L(2)
t satisfies

dL(2)
t =

∫
E
(ψtht(y)− 1)L(2)

t− q(dt, dy) (4.21)

with q(dt, dy) = p(dt, dy) − λtmt(dy)dt the martingale measure associated to

p(dt, dy). If EPL(2)
t = 1 for all t, then all the statements of Girsanov’s trans-

formation hold true. In addition, p(dt, dy) has the (Q,Ft)-local characteristics

(ψtλt, ht(y)mt(dy)).

Notice that, using Girsanov’s transformation and (4.21), the Radon-Nikodým

derivative of Lt is

dLt = D
(
L

(1)
t · L

(2)
t

)
= L

(1)
t−dL(2)

t + L
(2)
t dL(1)

t

= Ltθtωt + Lt−

∫
E

(ψtht(y)− 1)q(dt, dy), L0 = 1 (4.22)

Using the exponential formula (4.16), we have that a solution of (4.22) is given

by

Lt = exp
{
−1

2

∫ t

0
θ2
sds+

∫ t

0
θsdωs +

∫ t

0

∫
E
(1− ψshs(y))λsms(dy)ds

} Nt∏
n=1

(ψTnhTn(Yn))

(4.23)
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In the case of a multivariate (in particular univariate) point process

(Nt(1), . . . , Nt(K)) with (P,Ft)-intensities (λt(1), . . . , λt(K)), consider an Ft-

predictable process (ψt(1), . . . , ψt(K)) such that, P-a.s., and for t ∈ [0, T ],∑K
k=1

∫ t
0 ψs(K)λs(K)ds <∞. Define L(2)

t by

dL
(2)
t =

K∑
k=1

(ψt(k)− 1)L(2)
t− (dNt(k)− λt(k)dt). (4.24)

Extending (4.21) - (4.22) - (4.23) to this multivariate case, we have

Lt = exp
{
−1

2

∫ t

0
θ2
sds+

∫ t

0
θsdωs

} K∏
k=1

exp
{∫ t

0
(1− ψs(k))λs(k)ds

}Nt(k)∏
n=1

ψTn(k)


(4.25)

Then, under Q, the intensities become (ψt(1)λt(1), . . . , ψt(K)λt(K)), and a con-

dition to have EPL(2)
t = 1 can be found in (Brémaud, 1981, VIII, T11). We note

that the values of Lt are stochastic, since, for our case, Nt ∼ Poisson(λt). This

is an important result because it has many applications, such as in asset price

models.

4.3 Lévy Processes in Semisimple Lie Groups

Consider G a noncompact semisimple Lie group, and K the maximal compact

Lie subgroup of G. If we assume that G = GLn(R) with e the identity matrix in

GLn(R), then we can assume K = O(n). We denote the dimension of G by d. Its

Lie algebra g will be identified with the left-invariant vector field at the identity

e. For any X ∈ g we denote by X` the corresponding left-invariant vector field.

In the case of matrix Lie groups, this vector field is derivative in the direction of

X`, that is, for a function f : G→ R we define

∂f

∂X`
(l) = d

dt

∣∣∣∣∣
t=0

f(exptX l), l ∈ G,

if such a derivative exists.
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Throughout this section we will work with a filtered probability space

(Ω,F ,Ft,P), where Ft is a σ-field contained in F . We assume that F = limt↑∞Ft
and, whenever necessary, that all P-null sets belong to Ft for any t ∈ [0,∞), and

that the filtration Ft is right-continuous, i.e. Ft = ∩s>tFs.

Now our aim is building a family of Markov point processes (i.e., left invariance

Lévy processes) via the stochastic processes given by (4.25). Next we recall the

definition of the Lévy process to the identification of how to build that process.

Definition 4.3.1. Let Lt be a stochastic process with values in G and let t ∈

[0,∞), then:

(1) L−1
s Lt (resp. LtL−1

s ) is called the right (resp. left) increment of the process

Lt for s < t.

(2) Lt is said to have independent right (resp. left) increments if for any 0 <

t1 < t2 < · · · < tn, the processes L0, L−1
0 Lt1, L−1

t1 Lt2, . . . , L−1
tn−1Ltn (resp. L0,

Lt1L
−1
0 , Lt2L−1

t1 , . . . , LtnL−1
tn−1) are independent.

(3) Lt, with independent right (resp. left) increments, is said to have stationary

right (resp. left) increments if L−1
s Lt

d= L−1
0 Lt−s (resp. LtL

−1
s

d= Lt−sL
−1
0 )

for any s < t.

(4) Lt is called Càdlàg if almost all of its paths are right continuous on [0,∞)

and have left limits on (0,∞).

(5) Lt is called left (resp. right) Lévy process in G if it is a Càdlàg process with

independent and stationary right (resp. left) increments.

Since the form (4.25) satisfies the five conditions in Definition (4.3.1) by consid-

ering L0 = e, it is a Lévy process generated by a marked point process, i.e. this

structure depends on a point process. In general, the transition probability on a

semigroup of this process is given by

Pt(f(l)) = E [f(lLt)]
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for any non-negative Borel function f on G. Then the distribution µt of Lt is

a weakly continuous convolution semigroup of a probability measure on G, and

satisfies

Pt(f(l)) =
∫
G
f(lh)dµt(h), t ∈ [0,∞).

Let C0(G) be the Banach space (with respect to the supremum norm) of functions

on G that vanish at infinity. Just as in the Euclidean case, one obtains a Feller

semigroup of operators (T (t), t ≥ 0) on C0(G) by the prescription

(T (t)f)(l) = E(f(lLt)),

for each t ≥ 0, l ∈ G, f ∈ C0(G), and its infinitesimal generator can be defined by

Lf(l) := lim
t→∞

(1
t

)
{E [f(lLt)]− f(l)}

for any continuous function f on G vanishing at infinity, such that the limit exists

under the supremum norm.

We fix a basis {X1, . . . , Xn} for g and define a dense subspace C2(G) of C0(G) as

follows

C2(G) :=
{
f ∈ C0(G) : X`

i (f) ∈ C0(G) and X`
iX

`
j (f) ∈ C0(G) for all 1 ≤ i, j ≤ n

}
,

where X` denotes the left invariant vector field associated to X ∈ g.

By recalling and applying Theorem 5.1 in Hunt (1956) for the generator L asso-

ciated to the Lévy process Lt, we have

Theorem 4.3.2. Since Lt is a Lévy process in G with infinitesimal generator L

then,

(i) C2(G) ⊆ Dom(L).
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(ii) For each l ∈ G, f ∈ C2(G)

Lf(l) =
n∑
i=1

biX
`
i f(l) + 1

2

n∑
i,j=1

cijX
`
iX

`
jf(l)

+
∫
G−{e}

(
f(Ltσ)− f(Lt)−

n∑
i=1

yi(σ)X`
i f(Lt)

)
ν(dσ), (4.26)

where, b = (b1, . . . , bn) ∈ Rn, c = (cij) is non-negative definite, symmetric

n× n real-valued matrix and ν is a Lévy measure of Lt on G− {e}.

Let (Lt)t∈[0,T ] be a continuous Lévy process in G whose generator is given by

(4.26) with ν = 0, i.e.,

L(Lt) =
n∑
i=1

biX
`
i f(Lt) + 1

2

n∑
i,j=1

cijX
`
iX

`
jf(Lt). (4.27)

Following Hunt (1956) and Ramaswami (1974), a Lévy process Lt in G can be

characterized as a Markov process with generator given by (4.27) for any smooth

function on G with compact support. The main result of this section is stated as

the following proposition.

Proposition 4.3.3. If Lt is a Lévy process in a noncompact semisimple Lie group

G, then there exists a Markov process in the maximal compact Lie subgroup of G.

Proof. Assume that Lt is a Lévy process in G, and K is its maximal compact

Lie subgroup. Recall that for Lt ∈ G, we can write Lt = ntatkt by the Iwasawa

decomposition on G = NAK. the map (n, a, g) 7→ l = nag is a diffeomorphism

from N × A × K onto G, where A is connected Abelian subgroup of G, N is

connected Lie subgroup of G and K is the right G-space defined by K ≡ (NA)\G.

Since K is the right G-space, then kt = (NA)Lt is a left invariance Lévy process,

moreover is a Markov process. This complete the proof. �

By applying Proposition (4.3.3) to (4.25), we obtain a closed form expression for

generating general families of Markov processes kt. By providing particular forms

to φs and λs we can derive examples cases that can be applied to a wide variety

of particular situations.
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4.4 Conclusions

We have defined a new family of Markov process in the maximal compact Lie

group of a noncompact semisimple Lie group. In particular, we have built a

marked point process given by (4.25) through the associated infinitesmial gener-

ator of Lt. Our result can be further used to drive particular cases by providing

φs and λs.



CHAPTER 5

Conclusions and Future Work

We here highlight the most relevant conclusions that the current work has brought

to light.

5.1 General Conclusions

• We have studied the equivalence and orthogonality of any two Gaussian

measures on the sphere by given the necessary and sufficient condition for

the equivalence of Gaussian measures on Sd.

• We have proposed the equivalence and orthogonality of the Gaussian mea-

sures associated to the multiquadric and sine power covariance functions,

in addition to their simulation study.

• For any dimension d ≥ 2, we show the relation between the d-Schoenberg

coefficients associated to a given positive definite functions on sphere and

the Fourier coefficients on the circle. This point is a generalization of the

first problem proposed in Gneiting (2013b).

77
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• For an integer d ≥ 1, and for a given c ∈ (arccos
(√

1
d+1

)
, π], we solved the

curvature problem for the class Ψd at zero, that is,

acd := inf
ψ∈Ψc

d

(
−ψ′′(0)

)
.

This point is the solution of an open problem proposed in Gneiting (2013b).

• We have given explicit formulas for the 2-Schoenberg coefficients for the

exponential and Askey’s covariance family on S2.

• We have proposed a new family of Markov processes in the maximal com-

pact Lie group of a noncompact semisimple Lie group defined by a marked

point process.

5.2 Ongoing and Future Work

We now write some open ideas that will be discussed and developed in the future.

5.2.1 Equivalence of Gaussian Measures of Multivariate

Random Fields on Sphere

In Chapter 2, we proposed the necessary and sufficient condition for any two

Gaussian measures of scalar-valued random field to be equivalence on the spheres.

Let Z = (Z1, . . . , Zd)T be a zero-mean Gaussian vector-valued random field on

Sd, with the matrix covariance operator KZ of Z, given by

KZ =


K(Z1, Z2) · · · K(Z1, Zd)

...
. . .

...

K(Zd, Z1) · · · K(Zd, Zd)

 , (5.1)

where K(Zi, Zj) = E(ZiZj), i, j = 1 . . . , d and defined by (2.6).
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Problem 5.2.1. Let Z1 and Z2 be two zero-mean Gaussian vector-random fields

on Sd with corresponding matrix covariance operator KZ1 and KZ2, respectively.

Under which condition the measures µ1 and µ2 associated to Z1 and Z2, respec-

tively, are equivalent?

5.2.2 When a Function from the Class Ψd Belongs to Ψd+1?

In Chapter 3, we defined the class Ψd and its members are continuous function has

a spectral representation (2.6). Following Trübner and Ziegel (2016) the classes

Ψd are nondecreasing in d and satisfy the inclusion

∞⋂
d=1

= Ψ∞ ⊆ . . .Ψ2 ⊆ Ψ1 (5.2)

Corollary 4 in Gneiting (2013a) gives the necessary and sufficient condition for a

function in the class Ψd to belong to the class Ψd+2.

Problem 5.2.2. If d ≥ 2, under which condition the function in the class Ψd

belongs to the class Ψd+1?

The difference between the result in (Gneiting, 2013a, corollary 4) and that prob-

lem is there the walk dimension with step 2, but here the step is 1. Also, Golinskii

et al. (2015) studied that problem on the Euclidean Space Rd. Problem 5.2.2 is

important to solve the second problem in Gneiting (2013b).

5.2.3 Turán Constant of Sd

Let the class Ψd defined as in Chapter 3. The Turán constant of Sd is defined by

T = sup {
∫
Sd ψ : ψ ∈ Ψd}. See Arestov and Berdysheva (2001); Gorbachev and

Manoshina (2004) for the history of the problem.

Problem 5.2.3. For a positive definite function ψ on the sphere Sd with ψ(0) = 1,

how large can T be?
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Révész (2011) discussed the results of the problem on the Euclidean case and for

balls in Euclidean space.
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Theory of Probability & Its Applications 23(2), 429–431, DOI 10.1137/1123052.

Kuo, H.-H. (1975), Gaussian Measures in Banach Spaces, Springer-Verlag.

Lang, A. and Schwab, C. (2015), ‘Isotropic gaussian random fields on the sphere:

Regularity, fast simulation and stochastic partial differential equations’, Ann.

Appl. Probab. 25(6), 3047–3094, DOI 10.1214/14-AAP1067.

Lang, S. (1993), Real and Functional Analysis, Springer-Verlag.
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Trübner, M. and Ziegel, J. F. (2016), ‘Derivatives of isotropic positive definite

functions on spheres’, arXiv preprint arXiv:1603.06727.

Ullah, A. (1996), ‘Entropy, divergence and distance measures with econometric

applications’, Journal of Statistical Planning and Inference 49(1), 137–162,

DOI 10.1016/0378-3758(95)00034-8.

Voit, M. (1997), ‘Rate of convergence to gaussian measures on n-spheres and

jacobi hypergroups’, The Annals of Probability pp. 457–477.

Wang, Y. G., Gia, Q. T. L., Sloan, I. H. and Womerlsey, R. S. (2015), ‘Needlet

approximation for isotropic random fields on the sphere’, arXiv preprint

arXiv:1512.07790.

Wang, Y. G., Le Gia, Q. T., Sloan, I. H. and Womersley, R. S. (2016), ‘Fully dis-

crete needlet approximation on the sphere’, Applied and Computational Har-

monic Analysis, DOI 10.1016/j.acha.2016.01.003.

http://dx.doi.org/10.1214/aoap/1029962604
http://dx.doi.org/10.1016/0378-3758(95)00034-8
http://dx.doi.org/10.1016/j.acha.2016.01.003


BIBLIOGRAPHY 93

Wendland, H. (1995), ‘Piecewise polynomial, positive definite and compactly sup-

ported radial functions of minimal degree’, Advances in computational Mathe-

matics 4(1), 389–396.

Yadrenko, M. I. and Balakrishnan, A. V. (1983), Spectral Theory of Random

Fields, Optimization Software, Publications Division.

Zhang, H. (2004), ‘Inconsistent estimation and asymptotically equal interpola-

tions in model-based geostatistics’, Journal of the American Statistical Associ-

ation 99(465), 250–261, DOI 10.1198/016214504000000241.

Ziegel, J. (2014), ‘Convolution roots and differentiability of isotropic positive def-

inite functions on spheres’, Proceedings of the American Mathematical Society

142(6), 2063–2077, DOI 10.1090/s0002-9939-2014-11989-7.

http://dx.doi.org/10.1198/016214504000000241
http://dx.doi.org/10.1090/s0002-9939-2014-11989-7




A
h

m
e

d
 A

r
a

fa
t

Mathematical Developments on Isotropic Positive Definite

Functions on Spheres

                  Ph.D. Student

Ahmed Arafat Hassan Mohammed

Your Questions 
  & Comments 
   Are Always 
     Welcome

M
a

th
e

m
a

tica
l D

e
ve

lo
p

m
e

n
ts o

n
 Iso

tro
p

ic P
o

sitive
 D

e
fin

ite
 Fu

n
ctio

n
s o

n
 Sp

h
e

re
s

                             


	Contents
	Introduction
	Background and Preliminaries
	Positive Definiteness of Functions
	Positive Definite Kernels
	Positive Definite Functions
	Reproducing Kernel Hilbert Spaces

	Random Field Theory
	Gaussian Random Fields
	Spectral Representation for a Random Field

	Spherical Harmonics and L2(Sd)-Space
	Fourier Representation From Rd to Sd
	Zonal Spherical Harmonics Functions
	Schoenberg's Coefficients on Spheres


	Equivalence and Orthogonality of Gaussian Measures on Spheres
	Some Basic Structures
	Necessary and Sufficient Condition on Spheres
	Selected Examples
	Multiquadric Covariance Function
	The Sine Power Covariance Functions

	A Simulation Study
	Conclusions

	Gneiting's Problems and the Class d of Positive Definite Functions over Hyperspheres
	The class d and d-Schoenberg coefficients
	Gneiting's problems with their solutions
	Statements of the Problems
	Main results

	On the 2-Schoenberg coefficients
	Exponential Family
	Askey Family


	A family of Markov Processes in Maximal Compact Subgroups of a Semisimple Lie Groups
	Introduction
	Marked Point Processes and the Multivariate Case
	Lévy Processes in Semisimple Lie Groups
	Conclusions

	Conclusions and Future Work
	General Conclusions
	Ongoing and Future Work
	Equivalence of Gaussian Measures of Multivariate Random Fields on Sphere
	When a Function from the Class d Belongs to d+1?
	Turán Constant of Sd


	Bibliography
	Blank Page
	Blank Page

