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ABSTRACT 
 

Designing structures to achieve a specified performance state has gained 

importance on seismic design practice. Currently, several methodologies have 

been proposed in order to take into account for inelastic behavior of the structure 

in design phases. In that sense, a performance limit state can be provided that 

controls damage and strength demand. However, most of these methods involve 

iterative process that depends, in some cases, on the experience of the designer. 

Otherwise, many are based on the concept of equivalent single degree of freedom 

system, which is, only adequate for regular structures.  

 

In this Thesis, a direct performance based seismic design methodology for 

irregular structure with damage control is proposed. This method is based on the 

superposition of two elastic spectral analyses. One strength of the method is the 

selection of the local distribution damage regions (by mean of plastic hinges), 

intentionally chosen by designer. The distribution of hinges defines the zones where 

damage is allowed and the desired failure mechanism in the design.  

 

A damage parameter () is defined to control the damage intensity in the plastic 

hinges and the non-structural damage through allowable displacement or drifts. 

This coefficient is also used for the superposition of the two elastic solutions. In this 

way. It is possible to estimate the evolution of the non-linear response as this 

parameter varies, the adequate value of  for target performance can be easily 

selected. 

 

 A series of case-studies examples are developed on 2D and 3D irregular 

systems, both in plan and height. Moreover, the effects of higher modes of 

vibrations is highlighted on the design process, making possible to account for them 

in the final design. The method is validated through non-linear analyses, by means 

of incremental static analysis (pushover) and step-by-step time-history analysis. 

The results presented show good accuracy when predicting local damage, ductility 

and strength demand in design phases. Moreover, the methodology was used as 



 

an assessment method as well, applied to a numerical example and a pseudo-

dynamic test on a full-scale prototype. It was demonstrated, in both cases, the 

importance of the effect of higher vibration modes. In these cases, it was evidenced 

that, the current provisions to achieve the “strong column – weak beam” capacity 

criterion may not be adequate in a general basis. The proposed method allows for 

a more general way to obtain the overstrength factor for columns, which may be 

different in different stories.   
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RESUMEN   

 

El diseño de estructuras para satisfacer niveles prestacionales, o de desempeño 

específico ha ganado interés en la ingeniería sismo resistente. Actualmente, 

existen varias metodologías de diseño sísmico basadas en prestaciones, en las 

cuales se intenta tener en cuenta el comportamiento no-lineal en las fases de 

diseño, controlando el nivel de daño y la demanda de resistencia a rotaciones 

concretas. Sin embargo, la mayoría de los métodos tienen procesos iterativos, que 

dependen, en algunos casos, de la experiencia del proyectista. Por otro lado, 

muchos están basados en el concepto de sistemas equivalentes de un grado de 

libertad, el cual es adecuado sólo para estructuras con esquema regular. 

 

En esta tesis se desarrolla un método de diseño sísmico basado en 

prestaciones (o desempeño) para estructuras irregulares con control de daño. Este 

método se basa en la superposición de dos análisis espectrales elásticos, lo que 

hace que sea directo (no iterativo). Un punto fuerte del método es poder 

seleccionar los daños locales intencionalmente a través de rótulas plásticas, en el 

cuál el daño es permitido y el mecanismo deseado es asegurado. Se define un 

parámetro () para controlar la intensidad del daño en las rótulas plásticas y los 

daños no estructurales a través de desplazamientos y derivas de piso. Este 

coeficiente sirve, a la vez, para combinar las soluciones elásticas mediante 

superposición. De esta forma, se consigue estimar la variación de la respuesta no-

lineal en función de dichos parámetros. Así, el valor adecuado de  para una 

prestación objetivo puede relacionarse fácilmente. Se desarrolla una serie de 

ejemplos y casos de estudios de diversos sistemas 2D y 3D sobre estructuras 

irregulares en planta y altura. Además, el efecto de los modos altos de vibración 

se hace evidente en el proceso de diseño. 

 

El método es validado a través de análisis no-lineales en el tiempo (time-history) 

y mediante modelos no-lineal estático (Pushover). Los resultados presentados son 

considerados como buena aproximación en la predicción de daños locales y 

demanda de ductilidades en las fases de diseño. Por otro lado, el método también 



 

fue utilizado como método de evaluación para un ejemplo numérico y un 

experimento pseudo-dinámico en un prototipo a escala real. En estos casos, se 

evidenció que, las actuales provisiones normativas para conseguir el criterio de 

capacidad de la columna fuerte – viga débil pueden no ser adecuadas o suficientes. 

El método propuesto permite estimar el coeficiente de sobre-resistencia a aplicar 

a las columnas de una forma más óptima, el cual puede ser diferente para 

diferentes pisos. 
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1 INTRODUCTION 
 

 

 

1.1 Background and context 

 

In recent earthquakes, e.g. Northridge 1994, Kobe 1995, L’Aquila 2009, 

Canterbury 2010, Maule 2010, Ecuador 2016 and Taiwan 2016 among many 

others, the adequacy of capacity seismic design based on preventing structural 

collapse has been confirmed. However, it has also been highlighted the extensive 

damage levels that can be produced in the process. Currently, the goal of seismic 

design goes beyond preserving life safety, but also to control damage in structural 

and non-structural components. The allowable damage intensity should be 

consistent with previously selected performance objectives. 
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Performance – based seismic design (PBSD) is a conceptual design 

framework whose early developments can be tracked back to the decade of 

1990’s, SEOC (2000), ATC-40 (1996), FEMA 273 (1997), Bertero et al (2001), 

among others, wherein design criteria are expressed in terms of performance 

objectives selected for a structure subjected to different levels of seismic hazard. 

It is a powerful design approach based on the idea that performance objectives 

(such as immediately serviceability, damage limitation to reparable extent, and 

life safety) can be related to the level of structural damage and other possible 

indicators, as inter-story drifts and/or member deformations. 

 

These concepts imply the need for occurrence of inelastic behavior in structural 

elements. Many approaches have been proposed by the research community 

during the late 90’s and the decade of 2000. Assessment and verification methods, 

such as the “Capacity Spectrum Method” in the ATC-58 Project, FEMA (2012) and 

“N2 Method” Fajfar (2000), appeared during the early years, as well as some 

concepts and definitions of the objectives of the “Performance Based Design” 

(PBD). However, design tools and methodologies were still to be defined, making 

PBD mainly an iterative process, to be applied in special situations. 

 

In order to successfully implement performance based design, practical 

methodologies should be developed that, in the case of earthquake performance, 

accounts for non-linear behavior of structures. This latter aspect is a relevant 

inconvenient that has limited an extended use of the performance based design 

paradigm. 

 

Many researchers have worked in developing practical design methods to 

achieve a limit damage state by using some simplification on the non-linear 

dynamic performance. Some of the more extended ones are the Displacement 

Based Seismic Design (DBSD), and its simplified format Direct Displacement 

Based Design (DDBSD), proposed by Priestley & Kowalsky (2000) during the late 

90’s. This method is currently well extended and accepted in specialized practice 



CHAPTER 1. INTRODUCTION 

3

due to its simplicity and direct process. Other methodologies have also been 

proposed by Ayala, et al. (2012), (Franchin & Pinto, 2012), Sullivan (2011), Kappos 

& Stefanidou (2010), (Benavent-Climent, 2007), Chopra & Goel (2001), (Benavent-

Climent, 1997) Panagiotakos & Fardis (1999), (Akiyama, 1999) among many 

others. 

 

As a key aspect in PBD is the explicit and realistic consideration of the inelastic 

behavior, most of the existing proposals are iterative, except for the DDBSD. The 

simplified DDBSD is a direct approach; however, it requires substituting the 

structure by an equivalent single degree of freedom (SDOF) model based on 

plausible assumptions of the deformation shape of the 1st vibration mode. As stated 

by the authors, this simplification is applicable to regular structures. 

 

The methodology that is developed in this thesis corresponds to the extension 

of the work of non-linear static design approach to seismic loadings. This aim 

requires a framework to control the dynamic characteristics of the structure after 

the seismic demand and its performance variation. 

 

Although the referred design method proposed in this thesis is not restricted to 

concrete structures, it presents advantages when applied to this type of structures, 

and others materials that may exhibit limited ductility, as it particularly focuses on 

the selection of the zones where forces will be dissipated or redistributed, the 

distribution of ductility demand and how to design for it, as in Bairán & Marí (2010). 
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1.2 Motivation 

 

In the recent seismic events that strike regions with constructions designed 

according to seismic provisions, it was observed that a large number of structures 

that survived the earthquakes without collapsing suffered disproportional damage 

levels, making reparation economically unfeasible (Pampanin, 2012). 

 

Although, this performance is considered as adequate according to the collapse 

prevention requirements in current codes, rehabilitation and facilities substitution in 

frequent events resulted excessive economic losses. This has turned into the 

attention of stakeholders, insurance companies and general public and highlighted 

the need of multiple performance requirements for different hazard levels. 

 

In order to provide safe and economic designs, together with adequate degree of 

reparability, plausible methods are needed to include residual damage and 

deformation as a design variables. Damage in structural and nonstructural 

components is strongly related to the maximum deformability and the residual 

displacement in local components and the overall structure. Therefore, considering 

residual deformation and its distribution in early design steps is crucial and implies 

accounting for the inelastic response. 

 

The inelastic behavior is intended to be reached in several performance based 

design methods as a manner of “non-linear” design, i.e. a design procedure in 

which the degree of redistribution and ductility demand is a-priori selected in order 

to achieve a given structural performance with economic or sustainability benefits. 

It is possible to design a structure intended to consider real behavior, in which it has 

to exceed elastic branch in a force-displacement curve. In many exiting methods 

for design assumes a plastic structural response based in the two collapse 

theorems of the theory of plasticity. However, concrete structures do not show a 

perfect plastic or elasto-plastic behavior. On the contrary, they show limited 
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ductility. However, it is possible to design for higher ductility in order to satisfy the 

demand. 

 

In this sense, the Concept of “non-linear design” is to account for the non-linear 

behavior in first design steps. That means, to design not only for resisting the elastic 

internal forces, but also to select a specific level of force redistribution as well as a 

reinforcement design for a ductility demand. In that way, it is intended to reach a 

reinforcement layout in which concrete structures achieve ultimate state while the 

internal force coincides with proposal design. 

 

Lately, some performance based design methods are proposed with the concept of 

double linear analysis as in Franchin & Pinto (2012) and Bairán & Marí (2010). 

Where, numerous of equivalent linear analyses of seismic performance at each 

point in the design phases are computed, implementing an intermediate element-

by-element damage assessment after the first analysis. For the latter method, a 

superposition of both analysis is computed to find a final response. 
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1.3 Objectives 

 

The main goal of this thesis is to develop a direct performance based seismic 

design method applied for irregular concrete structures, where the designer may 

explicitly take into account the no-linear behavior in the early phases of design. A 

design procedure with such characteristics have been considered as “non–linear 

design” in (Bairán & Marí, 2010), where an adequate procedure was proposed 

applied to static loads enabling any degree of redistribution of the internal forces 

envelope that optimizes the design with adequate safety. The process is direct 

and is based on a double elastic analysis of the original and an auxiliary structure 

with perfect hinges, which are combined in a convenient manner. 

 
A number of specific objectives must be formulated to meet the main goal. The 

first specific goal is to develop a numerical model algorithm enabling the 

necessary modal spectral dynamic analyses of the original structure and the 

auxiliary system with perfect hinges, being like this capable to obtain all modal 

properties and result to reach for a well design. Other specific objectives are 

described below. 

 

- To extend the theory developed in (Bairán & Marí, 2010), accounting for 

dynamic and seismic loads. As well as, keeping it attractive for design 

practice. As it is based on linear analysis, concepts of model spectral 

analysis will be used. 

 
- To look for a practical design parameters that allows controlling the damage, 

strength and ductility demand, so it can be used as design variable. 

 
- To study the effects of multimodal response and derive an approach to take 

them into account in the design method. 

 

- To study the effects of irregularities in height and plan in the response of the 

damaged system and investigate if the method can account for. 
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- To enable the use of different dissipating systems from the structural 

construction technology, i.e., Reinforced Concrete (RC), Partially 

Prestressed Concrete (PPC), with bonded or unbonded active reinforcement, 

seismic devices, etc. 

 
- To validate the design methodology by means of up to date assessment 

methods, including explicitly the non-linear and dynamic behavior, namely, 

pushover and non-linear time-history analysis. 
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2 STATE OF THE ART 
 

 

 

2.1 Earthquake engineering design and structural dynamics 

 

Earthquake engineering is the discipline that solves the problem of studying the 

effects of earthquakes on infrastructures and designing them the service seismic 

events. In this problem, the demand (earthquake) is a time varying actions if posed 

in the frequency (or period) domain. Earthquake ground motion contains an infinity 

of number of frequencies deforming through a medium (soil or rock). On the other 

hand, all structures have their own dynamic properties and interacts with the ground 

motion. In seismic analysis it is necessary to work with the two types of frequency 

dependence mentioned above, one as a demand and the other as a response. 
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The modal uncoupling method is the most extended elastic seismic analysis. 

Besides being the fastest method, it shows a conceptual idea of the “n” shapes of 

independent displacement of structures, where modal superposition describe the 

complex vibration deformation of a multi-degree of freedom (MDOF). Those 

displacement shapes are called vibration modal shapes. This methodology allows 

to obtain two kind of structural responses: the time – history response at each 

interval of time and the maximum response that is calculated by means of response 

spectrum. In both cases, it is important to notice that this modal uncoupling method 

is valid only for linear structural response, i.e. constant stiffness and proportional 

damping matrices. Based on basics structural dynamic concepts, the motion 

equation is deduce in Chopra (2007), Paz (1998), Clough & Penzien (1993) among 

others. The equation of multi-degree of freedom for free vibration ca be written as 

(2.1). 

𝑀𝑢̈ + 𝐾𝑢 = 0 (2.1) 

The non-trivial solution of (2.1) leads to an algebraic problem, called the Matrix 

Eigenvalue problem. The stiffness and mass matrices 𝐾 and 𝑀 are known. The 

problem is to determine the scalar 𝜔𝑛
2 and vector ∅𝑛 as in Eq (2.2). The notation 

are, circular frequencies and Eigen vectors, respectively.  

[𝐾 − 𝜔𝑛
2𝑀]∅𝑛 = 0 (2.2) 

 

2.1.1 Modal Spectral Analysis 

 

Structural design is usually based in the peak values of forces and deformations 

over the duration of the earthquake – induced response. The peak response of a 

SDOF (single degree of freedom) systems can be calculated from the response 

spectrum. The estimation obtained is accurate enough for structural designs 

applications. However, the total response of a MDOF (Multi-degree of freedom) will 

be a combination of all peak values from all modal response. Several method exist 

for modal combination, as the square root of sum of squares (SRSS), proposed by 

Rosenblueth (1951), for well-separated natural frequencies. The maximum 
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response is obtained by square root of sum of square of response in each mode of 

vibration and is expressed by: 

𝑅𝑚𝑎𝑥 = √∑𝑟𝑖
2

𝑛

𝑖=1

 (2.3) 

The complete quadratic combination (CQC) proposed by Wilson, et al. (1981) 

for earthquake excitations that contain a wide band of frequencies with long phases 

of strong shaking is define with the following equation. 

𝑅𝑚𝑎𝑥 = √∑∑𝑟𝑖 ∙ 𝛼𝑖𝑗 ∙ 𝑟𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2.4) 

Where 𝑟𝑖 and 𝑟𝑗 are the maximum response in the 𝑖 and 𝑗 modes, respectivetly and 

𝛼𝑖𝑗 is the correlation coefficient. . Other methods, such as the absolute sum and 

double sum, have been proposed for modal combination, among others. 

 

2.1.2 Viscous Damping 

 

The process by which the free vibration of a structure steadily diminishes in 

amplitude is called damping. When damping is considered, the equation of motion 

is: 

𝑴𝑢̈ + 𝑪𝑢̇ + 𝑲𝑢 = 0 (2.5) 

 

Nevertheless, it is not easy to determine the damping matrix [𝑪]. Hence, modal 

damping ratios are estimated using measured data from similar structures. Most of 

the recorded data used for damping estimation come from structures shaken bellow 

the inelastic range. On the other hand, recorded motions of structures that have 

experience significant yielding during an earthquake would provide additional 

damping that also include energy dissipation due to yielding. Most building codes 

typically defines the design response spectrum for a reference structural damping 

ratio of 5%. However, actual damping ratio varies for different structural materials, 
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systems and stress levels. In Table 2.1 some damping values for structural systems 

are shown (Newmark & Hall, 1982). 

 

Table 2.1. Recommended damping values 

Stress level Type an condition of structure 
Damping Ratio 

(%) 

Working stress, 
no more than 
about ½ yield 
point 

Bolted and riveted steel or bolted joint 5-7 

Welded steel, prestressed concrete, slightly 
cracked reinforced concrete 

2-3 

Reinforced concrete with considerable 
cracking 

3-5 

At or just below 
yield point 

Welded steel, prestressed concrete without 
complete loss in prestressed 

5-7 

Reinforced concrete 7-10 

prestressed concrete with loss of prestressed 7-10 

Bolted and riveted steel, wood structures 
with bolted joint. 

10-15 

 

 

2.2 Hysteretic energy dissipation 

 

The hysteretic energy in an element is dissipated by a structural system during 

a seismic event when a certain amount of nonlinearity deformation takes place. It 

has been recognized by several researchers as an indicator of the level of seismic 

force reduction through energy dissipation, e.g. Park, et al. (1987), (Benavent-

Climent, 2011), Bojorquez, et al. (2011). In general, a hysteretic loop with large 

energy dissipation capacity at a member level are considered as a guarantee of 

better deformation performance of the system, implying that there is a good 

correlation between the dissipated hysteretic energy and the inelastic deformation 

demands (see Figure 2.1). However, unlike the structural stiffness, it is complex to 

compute the damping coefficient from the dimensions of the structure and materials 

properties. Thus, it is not feasible to identify all the mechanisms that dissipate 

vibrational energy in structures. 
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a. Reinforced concrete b. Partially prestressed concrete with 
unbonded tendons 

Figure 2.1. Numerical moment – curvature hysteretic loop relation for a particular 
structural concrete element 

 

2.2.1 Ductility and energy dissipation relationship 

 

A relationship between force and deformation is needed in order to determine 

the amount of energy dissipation. In a single degree of freedom (SDOF) system, a 

complete force – displacement cycle, with load reversals, is representative of the 

maximum deformation demand during an earthquake. The area enclosed in the 

loop (Figure 2.1) is dissipated in that cycle. As an viscous damped system also 

dissipates energy within each cycle, an equivalent damping ratio for the nonlinear 

system may be derived. In Chopra (2007), this was demonstrated by considering a 

steady-state motion of a single degree of freedom system due to the harmonic force 

as in Eq. (2.6).  

𝑓(𝑡) = 𝑓𝑜 ∙ sin𝜔𝑡 (2.6) 

It can be shown that the energy dissipated in a load cycle by a damped SDOF is 

given by Eq. (2.7), where 𝑢𝑜 is the maximum displacement in a cycle and 𝜔𝑛 = √
𝐾

𝑀
 

is the natural frequency of the system. 

 

𝐸𝐷 = 𝑐 ∙ 𝜋 ∙ 𝜔𝑛 ∙ 𝑢0
2 (2.7) 
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Figure 2.2. Energy dissipated 𝐸𝐷 in a cycle of a harmonic 

vibration determined for any hysteretic loop  

 

The most common method for defining equivalent viscous damping is to equate 

the energy dissipated in a vibration cycle of the actual structure and an equivalent 

viscous system (Blandon, 2004). The structure force – displacement relation may 

be obtained from experiments or from numerical non – linear analysis under cyclic 

loading. The energy dissipated in the actual section is given by the area 

𝐸𝐷  enclosed by the hysteresis loop as in Figure 2.2, as in Chopra (2007), Paz 

(1998), among others. By equating 𝐸𝐷 to the energy dissipated in viscous damping 

given Eq. (2.7), the following relationship is obtained:  

𝜉ℎ𝑦𝑠𝑡 =
𝑐𝑒𝑞

𝑐𝑐𝑟
=

1

4𝜋

𝐸𝐷

𝐸𝑠𝑜
 (2.8) 

Where the strain energy is calculated from the equivalent stiffness as, 

𝐸𝑠𝑜 =  
𝐾𝑒𝑞 ∙ 𝑢𝑚𝑎𝑥

2

2
 (2.9) 

This formulation is widely accepted and it has been applied to model the damping 

in multi-degrees of freedom systems. In most performance based seismic design 

methods, the total damping of the structure is considered as the sum of the elastic 

viscous damping and the hysteretic damping as: 

 

𝜉𝑒𝑞 = 𝜉𝑒𝑙 + 𝜉ℎ𝑦𝑠𝑡 (2.10) 

F 

u 

Keq 

𝑬𝒔𝒐 

𝑬𝑫 

𝒖𝒐 
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Where the hysteretic damping (𝜉ℎ𝑦𝑠𝑡) depends on the hysteretic rule 

corresponding to the structure that is being designed. The elastic damping (𝜉𝑒𝑙) 

ratio is usually taken as 0.05; although, alternative values have been given in Table 

2.1. 

Jacobsen (1930) proposed the first approximate solution of the steady-state of 

a non-linear oscillator by defining an equivalent linear oscillator. In Jacobsen’s 

approach, both oscillator have the same natural frequency and dissipate equal 

energy per cycle of a sinusoidal response. In performance based seismic design 

methods, Jacobsen’s damping was combined with the secant stiffness as 

equivalent stiffness 𝐾𝑒𝑞 (see Figure 2.1). This differs from the Jacobsen’s initial 

work in which it is used the initial stiffness. The equivalent linearization approach 

defined by Jacobsen’s damping and the secant stiffness is referred to as the JDDS 

approach (Jacobsen’s Damping Secant Stiffness), such combination was proposed 

by Rodenblueth & Herrera (1964). The JDSS approach applied to the rigid-

perfectly-plastic loop (RPP) shown in Figure 2.3 yields an equivalent damping in 

(2.11), with an equivalent coefficient of  2 𝜋⁄ . The area 𝐴1  is the area of the 

hysteretic loop, and 𝐴2 is the area of RPP loop which encompasses the hysteretic 

loop of area 𝐴1. 

In the work presented by Grant, et al. (2004), it was shown that viscous and 

hysteretic damping should not be added directly. Instead, if the structure exhibits 

viscous damping which is proportional to tangent stiffness, this damping value 

should be reduced prior to adding it to the hysteretic component. 

𝜉ℎ𝑦𝑠𝑡 = 
2

𝜋
∙
𝐴1

𝐴2
 (2.11) 

 
Figure 2.3. Equivalent damping for bilinear and RPP hysteretic rule 
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2.2.2 Equivalent hysteretic damping for different structural systems. 

 

There exist different proposals to obtain equivalent damping for reinforced 

concrete structures. Blandon (2004) and Rodiguez, et al. (2012) reviewed and 

studied the existing approach for all type of elements, such as Priestley, et al. 

(2007), Kowalsky (1994), Dwairi, et al. (2007), Gulkan & Sozen (1974), 

Rodenblueth & Herrera (1964), among others. The work of Dwairi, et al. (2007), 

Priestley & Kowalsky (2000) represented the hysteretic component of response in 

the form: 

𝜉ℎ𝑦𝑠𝑡 = 𝐶 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.12) 

Where the coefficient 𝐶 depends on the shape of the hysteresis loop. This type 

of relationship can be derived from the area-based approach of Eq. (2.10) for the 

Elastic Perfectly Plastic (EPP) rule. In this case, it can be shown that the factor 𝐶 

would be equal to 2. However some period dependency was found for effective 

periods  Te  < 1.0 second. In Priestley, et al. (2007), it can be found values of the C 

constant for different hysteretic systems (see Table 2.2). 

 

Table 2.2. Coefficient C corresponding to structural typology  

Concrete wall building, Bridges 𝜉𝑒𝑞 = 0.05 + 0.444 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.13) 

Concrete frame building 𝜉𝑒𝑞 = 0.05 + 0.565 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.14) 

Hybrid prestressed frame 𝜉𝑒𝑞 = 0.05 + 0.186 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.15) 

Steel frame building (RO) 𝜉𝑒𝑞 = 0.05 + 0.577 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.16) 

Friction slider (EPP) 𝜉𝑒𝑞 = 0.05 + 0.670 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.17) 

Bilinear isolation system (BI r=0.2) 𝜉𝑒𝑞 = 0.05 + 0.519 ∙ (
𝜇 − 1

𝜇 ∙ 𝜋
) (2.18) 
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2.3 Seismic performance assessment  

 

The prediction of inelastic seismic response is an essential component of 

performance seismic design and assessment (PBSD). Some methods, as the non 

– linear static analysis or the non – linear time history analysis, allow engineers to 

“understand” structure’s behavior and progression of damage in structural elements 

with increasing ground motion intensity. In some way, all PBSD methods evaluate 

if the collapse mechanisms are produced safely in the intended manner. At the 

same time, they ensure that all the strength capacity is exploited. 

 

2.3.1 Non – linear static analysis (Pushover) 

 

In this procedure, the static loads are applied in incremental steps until a failure 

mechanism of the structure is reached, as described in FEMA-273 (1997). The non 

– linear designation comes from the fact that the various components/elements are 

modeled using a non – linear model, normally with concentrated plastic hinges in 

elements. This is one of the most widely used methods for structural seismic 

assessment due to its low computational cost and its ease of use in comparison 

with non – linear dynamic analysis. For example, it does not require selecting and 

scaling of ground motions records. In contrast, it can only estimate the maximum 

response, but not the transient one. The basic steps of a pushover analysis are 

describe in the Figure 2.4. (Bento, et al., 2004) 

 

1. Model structure 

 

2. Select pattern of distribution of loads 

 

3. Perform a series of non – linear analyses, increasing the load distributed in the 

selected pattern step by step on sequentially degraded models as damage is 

predicted 

 

4. Develop pushover curve as the connection of the results of base shear at every 

step and the corresponding top displacement 
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5. Determine effective dynamic properties 

 

6. Determine demand lateral displacement for design ground motion 

 

7. Check adequacy of elements for force and deformation demands at design 

lateral displacement. 

 

 
Figure 2.4. General flowchart for Non –linear Static Procedure 

 (Bento, et al., 2004) 

 

2.3.2 Time – History analysis 

 

When the transient behavior is of interest, besides the peak response, there are 

two main analysis methods: modal superposition and direct time integration. While 

for the analysis of linear structures both methods are applicable, in the case of non 

– linear behavior, the latter method is the only option. For a non – linear analysis, 

a realistic enough behavior could be observed by modeling concentrated plastic 

hinges in elements which will provide the mechanism progress as damage takes 

place.  

A number of numerical methods for time-integration algorithm are available. 

According to Dokainish & Subbaraj (1989), ideal algorithms should be 

unconditionally stable and second-order accurate, generate low frequency error 
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and low damping error, high or controllable damping for the high frequency 

response, be computationally efficient and self-starting or single-step.  

 

Houbolt (1950) made one of the first attempts to develop an integration scheme 

for the computer analysis of aircraft dynamics. In structural dynamics problems, 

governing equation is a second order differential equation. The widely used solution 

techniques include direct integration, step-by-step time interval integration and 

implicit schemes (Hughes, 1987) are; those related to Newmark’s method as, 

Newmark – β method (Newmark, 1959), Wilson − θ method (Wilson, 1968), Hilber 

– Hughes – Taylor (HHT) method (Hilber, et al., 1977), the Generalized-α method 

(Chung & Hubert, 1993).  

Those techniques can be referred as one-step method with a second order 

accuracy, which is unconditionally stable in linear dynamics and permits an efficient 

variable step size variation. The Newmark – β method and Newmark family of 

algorithm, are widely used in numerical evaluation of the dynamic response of 

structures adapted to non – linear system with concentrated plastic hinges. 

Dahlquist (1963) showed that the constant average acceleration method is the most 

accurate unconditionally stable scheme. 

 

 

2.4 Performance based design methods 

 

One of the major development in seismic design has been the increased 

emphasis on multiple limit state design, as can be seen the “Performance based 

engineering” (Priestley, 2000). Design for seismic resistance has been undergoing 

a critical reappraisal, with the emphasis changing from “resisting” to “performance” 

on summing an earthquake. The concept of designing structures to achieve a 

specified performance limit state, defined by strain or drift limits, was first 

introduced. Currently, performance based design (PBD) is a design philosophy that 

places structures’ non – linear behavior in relation to their real needs, reducing 

leadership to standards methods. PBD gives more freedom to design procedures, 
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and provides ways to compare different of methods. It opens a wide range of 

possibilities, techniques, methods that allows the most of material properties, 

structural typologies and adaptive behavior. 

 

One relevant landmark was the capacity design principle proposed in New 

Zealand in 1970 by Park & Paulay (1975). It was a formal realization that the relative 

distribution of strength through a structure was more important than the absolute 

value of design base shear. It was recognized that a frame building would perform 

better under seismic actions if it could be assured that plastic hinges form in a 

particular order, so the desired failure mechanism will take place. Hence, in the 

case of multi-story frame buildings, the plastic hinges are to occur in beams instead 

columns. This was further known as “strong column – weak beam” design principle. 

In order to ensure this type of mechanism, brittle undesired modes want to be 

avoided. 

 

Further, the research community became involved in attempts to quantify the 

inelastic deformation capacity of structural components, generally in terms of 

displacement of ductility (µ∆) as it is accepted as an indicator of force reduction 

factors (“R” or “q”).  

 

 

2.4.1 Non – linear static design method (Bairán, et al., 2011) 

 

Performance based seismic design is a way to design structures taking into 

account its realistic behavior after yielding. A static method so called “Non – Linear 

Static Design” was proposed by Bairán, et al. (2011). 

 

This methodology directly considers plastic behavior in designs phases without 

iterations or need for non – linear analysis. It means that the structure can not only 

be designed for resisting certain load, but also to produce a level of redistribution 

that can be decided a priori by designers. If the structure is further assessed through 
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non – linear analysis or experimental models, the intended inelastic behavior should 

be observed. Including similar distribution of plastic hinges, damage and ultimate 

load intended in structural design. 

 

The method is based on two linear analyses of two structural schemes, referred 

as elastic structure and an auxiliary structure. To obtain the final redistribution of 

internal forces and deformation, the two elastic analyses are superposed in a 

convenient manner. The first structure is identical to a typical elastic model of the 

structure to be designed with the conventional process, and the external loads. In 

the second structure (auxiliary structure), the designer selects the plastic hinges 

locations. In those hinges a pair of moment vectors (representing a tensor quantity) 

are applied in both sides of hinges, of equal magnitude and opposite sign to 

bending moment that designer wants to redistribute. This means that the bending 

moment applied (𝑀𝑅) in the second structure on an internal hinge, will be the 

difference between the final bending moment that designer wants to achieve after 

redistribution (𝑀𝑓𝑖𝑛𝑎𝑙) and the bending moment obtained in this point in the first 

linear analysis (𝑀𝑒), see the Figure 2.7. This method can be performed in four 

simple steps, as shown below and illustrated in Figure 2.5: 

 

Step 1. Linear elastic analysis. 

 

Step 2. Decision of hinges locations with his bending moment redistribution 

values. 

 

Step 3. Structural analysis of redistribution of internal forces and obtain plastic 

rotation.  

 

Step 4. Design reinforcement in plastic hinges for ductility and resistance demand. 
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Step 1 Step 2 Step 3 Step 4 

Figure 2.5. Concept of a complex structure with “Non-linear static design” method.  
 

 
Figure 2.6. Plastic rotation produced due to redistribution moment 𝑀𝑅 

 

  
+ + 

 
 

a.  Linear Elastic Analysis – Bending 
moment diagram. 

b. Linear Elastic Analysis with bending 
moment applied in hinges – Diagram of 

redistribution Bending moment. 

 

c. Final state. 

Figure 2.7. Final state estimation through the two linear analyses. 
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Figure 2.8. Redistribution moments applied to a complex structure. 

 

In Figure 2.6 a moment – curvature diagram shows the reduction due to the 

bending moment applied on internal hinge, which follows a rotation capacity that 

has to be provided in the plastic capacity. In that way, the final result (Figure 2.7.c) 

satisfies both equilibrium and compatibility as it is the superposition of two elastic 

models. In a complex multi-degree of freedom (MDOF), as shown in Figure 2.8, the 

bending moment to be redistributed 𝑀𝑅 will be a pair of moments vectors 

(−𝑀𝑅  and 𝑀𝑅), self-balanced in each side of plastic hinge which were located 

intentionally in this specific element. Hence, equilibrium is also satisfied. 

 

The bending moment will produce, in general, increments of elastic bending 

moments in other parts of the structure, that are needed to take into account those 

changes of internal forces. At the moment of confining internal forces of both 

structures, the variation of internal forces in elements, which remain elastic, it is 

included automatically in the final step. 

 

The analysis of rotation in the auxiliary structure in complex MDOF structures 

can be deduced. However, commercial software packages does not allow for 

applications of moments on hinges. Therefore, an ad-hoc methodology was 

proposed. 

 

The relationship between nodal forces and nodal displacements of macro-

elements can be written through a matrix partition as follows in Eq. (2.19): 
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gg glg g
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    
     
       

(2.19) 

 

Where 𝑞𝑔  and 𝑑𝑔 represent forces and displacements vectors of external nodes, 

i.e. degrees of freedom 1 to 7 in Figure 2.9. Vectors 𝑞𝑙  and 𝑑𝑙 represent forces and 

displacements vectors degree of freedom for internal hinge in global axes.  

 

 

 

a. Macro-element with one internal hinges. 

 

 

 

b. Macro-element with two internal hinges 

Figure 2.9.  Macro-elements with one or two plastic hinges. 
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Stiffness matrix partition is achieved by assembling the macro-element from 2 

or 3 sub-elements. Figure 2.9 shows the case for an element with one and two 

internal hinges, respectively. For the sake of simplicity, the axial degrees of freedom 

are not shown. The partitioned matrix, as it is shown below, provides the bending 

matrix to be assembled. Where the length of the sub-assembling, 𝑙1
′ ,  𝑙2

′  and 𝑙3
′ , are 

shown in Figure 2.9. 
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All degrees of freedom are statically condensed by defining the stiffness matrix 

of the macro-element in Eq. (2.23). Statically equivalent forces of the redistributions 

internal moment are obtained for the exterior nodes, as in the Eq. (2.25). In general, 

macro-element condensed stiffness matrix is obtained as: 

𝐾𝑒 = 𝐾𝑔𝑔 − 𝐾𝑔𝑙 ∙ 𝐾𝑙𝑙
−1 ∙ 𝐾𝑙𝑔  (2.23) 

The bending moment applied is 

𝑀𝑅,𝑖 = −(𝑀𝑒,𝑖 + 𝑀𝑝,𝑖) (2.24) 

Where 𝑖 represents de hinge label. The equivalent nodal force vector for bending 

is defined from Eq. (2.25) and (2.26). 

𝑞𝐸𝑃 = −𝐾𝑔𝑙 ∙ 𝐾𝑙𝑙
−1 ∙ 𝑞𝑙 (2.25) 

 

𝑞𝑙 =

[
 
 
 
 
 

0
𝑀𝑅1

−𝑀𝑅1

0
𝑀𝑅2

−𝑀𝑅2]
 
 
 
 
 

 (2.26) 

 

Table 2.3. Estimated effective stiffness in concrete structure in elastic zone 

ELEMENT TYPE MOMENT OF INERCIA REDUCTION FACTORS (
𝑰𝑬

𝑰𝑩
⁄ ) 

Beams 0.30 

Column with weak axil 0.50 

Column with strong axil 0.70 

Wall with weak axil 0.35 

Wall with strong axil 0.50 

 

In this process plastic hinges are considered as perfectly plastic. This hypothesis 

is reliable and safe enough for design phases. However, the calculated plastic 

rotation depend also on the stiffness in the structure in elastic zone. Therefore, if 

the structure is made of reinforced concrete (RC), the effects of cracking should be 

considered. For this reason, it is important to use an estimation of effective crack 

stiffness (𝐾𝑓𝑖𝑠). This stiffness can be calculated as in Eq. (2.27). 
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𝐾𝑓𝑖𝑠

𝐸𝐼
= (

𝑑

ℎ
)
3

∙ [0.12 + 5.4 ∙ 𝜂 ∙ 𝜌 (1 +
𝜌′ ∙ 𝑑′

𝜌 ∙ 𝑑
)] (2.27) 

As a result of the analysis, the distribution of internal moments (𝑀𝑑) and the 

corresponding ductility demand, in terms of required plastic hinges rotations (𝜃𝑝,𝑑) 

are obtained. Design should be made such that: 

𝑀𝑢 ≥ 𝑀𝑑 ; 𝑁𝑢 ≥ 𝑁𝑑;  𝑉𝑢 ≥ 𝑉𝑑 (2.28) 

 

𝜃𝑢 ≥ 𝜃𝑑 (2.29) 

 

The design process, for 𝑁𝑑 = 0, is as follows. Design plastic rotation is used for 
estimating the minimum ultimate curvature, in cross sections, through Eq. (2.30), in 

which (𝐿𝑝) is the plastic length. 

∅𝑢 = ∅𝑦 + 2
𝜃𝑝

𝐿𝑝

 (2.30) 

Therefore, it is possible to determine a limit depth of neutral axis (𝑥𝑙𝑖𝑚), either from 

the Eq. (2.31) or form direct abacuses which take into account confining 

reinforcement ratio as in Bairán & Marí (2010), Bairán, et al. (2011). This study 

provides a collection of direct design abacuses for different type of steel bars, 

concrete, and level of confinement. 

𝜉𝑙𝑖𝑚 =
𝑥𝑙𝑖𝑚

𝑑
=

𝜀𝑐

𝜀𝑐 + 𝜀𝑠𝑢
=

𝜀𝑐𝑢

𝑐 ∙ 𝜀𝑦 + 𝜃𝑑 ∙
𝑑
𝐿𝑝

 
(2.31) 

When the confinement in concrete is needed, the confined To determine confined 

concrete ultimate deformation and its strength it depends on the volumetric 

confinement reinforcement ratio, and it will be necessary an iterative process in 

order to obtain confinement reinforcement and material properties to use in Eq. 

(2.32).  It can be defined the limit moment that indicates if it is necessary to have 

compression steel bar reinforcement to ensure the highest possible ductility as 

below: 

𝑀𝑙𝑖𝑚 =  𝜂 ∙ 𝜆 ∙ 𝜉𝑙𝑖𝑚 ∙ 𝑓𝑐𝑑 ∙ 𝑏 ∙ 𝑑2 ∙ (1 −
𝜆 ∙ 𝜉𝑙𝑖𝑚

2
) (2.32) 

Where 𝜂 and 𝜆 are parameters of the equivalent compression block, see EC2 

(1992). Finally, if the bending moment is smaller than Eq. (2.32) it is not necessary 
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to provide specific compression steel reinforcement. Further situations, where 

spalling or special confinement, may be needed in order to guarantee the ductility 

capacity (Bairán, et al., 2011); direct equations for the cases have been also 

developed. 

 

2.4.2 Seismic design based on direct deformation (Kappos & Stefanidou, 2010) 

 

A deformation – based seismic design method for 3D R/C irregular buildings 

using inelastic dynamics analysis was proposed by Kappos & Stefanidou (2010). 

The non-linear behavior of the structure is approximately and explicitly taken into 

account through non-linear step by step dynamic analyses of partially inelastic 

structural model subjected to earthquake records for multiple levels of earthquake 

action. At least 3 for services conditions and 3 for life safety are considered. The 

record are scaled in accordance with these two limit states considered in the 

performance criteria. The design method proposed is applicable to irregular 

buildings with and without shear walls and dual system with frames and walls. The 

steps required to implement the method are shown in the flowchart in Figure 2.10. 

First, a conventional elastic analysis of the structural model considering reduced 

inertias in beams due to cracking and gross inertia in columns is carried out the 

design forces of the element sections that will exhibit damage under the service 

limit state. All beams are designed for bending only, considering a reduction factor 

to account for more general definition of the moment – rotation diagram (𝑀 − 𝜃), 

and the requirement of minimum reinforced specified in the design code. 

Subsequently, based on the available information of the properties of the structural 

elements (stiffness and strength). A partially inelastic model is constructed, in which 

inelastic deformation are accepted for all beams and columns at base whereas the 

rest of columns are considered to behave elastically. With this information, non – 

linear dynamic analyses of the structural model are carried out, considering as 

demand a set of no less the three earthquake records representative of the site of 

the structure and the services limit state considered for the design.  
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Execute the elastic 
analysis for 

serviceability

Design beams for 
bending, using 

suggested 
correcction factor

Check minimun 
reinforcement 

specific by code 

Determine basic 
level of strengh

Execute inelastic 
time history analysis

Serviceability 
satisfied?

YES

Execute inelastic 
time history analysis

Scale seismic 
records to meet life 
safety requirements

Select seismic 
demands (Miminum 

3 records)

Scale seismic 
records to meet 

serviceability 
requirements

NOT
Change cross-

sections and/or 
reinforcement

Defined longitudinal 
reinforcement in 

columns 
Design for shear

Detail confinement, 
anchorages and lap 

splices

END

Set-up partially 
inelastic model

 

Figure 2.10. Flowchart of Seismic design method based on direct deformation, SDBDD 

by (Kappos & Stefanidou, 2010) 

 

Further, it should be verified that the drift and the ductility demands obtained, 

lies within the range of allowed values. If this is not the cases, the proposed design 

must be modified until performance is in accordance with the target in the limit state. 

Once this condition is satisfied, a new set of non-linear dynamic analyses of the 

designed model is carried out, using as demands a set records consistent with the 

life safety limit state. With the result obtained, the columns are designed for bending 

and all the structural elements are designed for shear. Finally, the design of all 

elements is detailed so that the structural system, as a whole, can develop the 

inelastic levels considered in the design.  
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As the application of the method involves the use of results of non-linear dynamic 

analyses of the structures, high precision is expected. In general, better than other 

existing methods. However, it has as drawbacks, that to apply it, the designer must 

have enough knowledge and experience to carry out, and interpreting these non-

linear analyses and for the selection of the earthquake records required. Moreover, 

the method involves a series of iterations in which the improvement of the solution 

with respect to previous attempt is very much dependent on the experience of the 

designer and it is time consuming. 

 

2.4.3 A Displacement-Based Seismic Design Method with damage control 

for RC buildings (Ayala, et al., 2012) 

 

This method was propose by Ayala, et al. (2012) and consists on a displacement 

based seismic design with damage control, where the targets for considering a 

performance level are set as displacements and a damage distribution, which are 

proposed by the designer. The method is based on concepts of basic structural 

dynamics and of a reference or equivalent single degree of freedom system, 

associated to a fundamental mode, with a bilinear behavior.  

 

The main hypothesis of this method is that the non-linear capacity curve of a 

MDOF structure can be approximated by a bilinear curve, as shown in Figure 

2.11.a. This behavior curve may be conveniently represented in the acceleration-

displacement response spectrum (ADSR) format, as it is shown in Figure 2.11.b. 

Here, the capacity curve and the behavior curve are obtained from the results 

produced by two conventional modal spectral analyses, one for the elastic analysis 

with undamaged structure, and the other for the inelastic phase, i.e., the damaged 

structure. In Figure 2.11, 𝑉 is the base shear, 𝑑 the top displacement of the MDOF 

system, 𝑆𝑎 is the pseudo-spectral acceleration equivalent to the strength per unit 

mass, (𝑅). 𝑆𝑑  is the spectral displacement and 𝐾 is the stiffness. The first slope in 

the branch of the capacity curve (Figure 2.11.a), represents the stiffness properties 

of the structures in the elastic range associated to the top displacement and the 
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second slope branch is the corresponding inelastic range. The characteristic of this 

last branch are defined by the assumed damage distribution associated to the 

proposed maximum displacement of the given performance level. 

 

The yield strength per unit mass ( 𝑅𝑦) is the demand level to be met by the 

structural elements, which are assumed to be damaged under design conditions. 

The strength per unit mass (𝑅𝑢) is the demand level for the elements that behave 

elastically under design conditions. The preliminary results publish in Mendoza 

Pérez (2011) show that, for the analyzed structures, stiffness values corresponding 

to approximately half the undamaged stiffness are acceptable. 

 

 
a. Bi-linearization of the capacity curve b. Behavior curve in the ADRS format 

Figure 2.11. Transformation of the capacity curve to the spectral space 
 

 
a. Undamaged model b. Damaged model 

Figure 2.12. Dynamic properties of two stages of behavior propose. 

 

The application of this seismic design method involves the following steps: 

 

1. Obtain of a preliminary structure, considering gravitational and lateral loads. 

 
2. Modal analysis of the un-damage model structure from elastic stiffness 

considering as a MDOF and obtain fundamental period “𝑇1”. 
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3. For a given performance level, a rational damage distribution is defined in 
accordance with the characteristic of the structures.  

 
4. Based on the prescribed story drift for the require performance level, the 

target roof displacement du, is defined by means of the displaced shape of 

the damage model. 

 
5. An approximation of the yield roof displacement 𝑑𝑦, is calculate and the 

properties of the elements obtained from preliminary design through the 

following equation: 

𝑑𝑦 =
𝛿𝑛

𝜓𝑛
 (2.33) 

 

𝛿𝑛 = 
0.3 ∙ 𝜀𝑦 ∙ 𝐿1 (

𝐼𝑣1
𝐿1

+
𝐼𝑣2
𝐿2

+
𝐼𝑐𝑛
𝐻𝑛

+
𝐼𝑐𝑛+1
𝐻𝑛+1

)

ℎ𝑣1 (
𝐼𝑐𝑛
𝐻𝑛

2 + 𝛾𝑜
𝐼𝑐𝑛+1

𝐻𝑛+1
2 )

 (2.34) 

 

Where, 

𝛿𝑛 t is the yield inter-story drift at the floor where the maximum drift occurs; 

𝜓𝑛 is the drift obtained from a modal spectral analysis of the undamaged structure 

at the story where maximum drift occurs, normalized by the maximum roof 

displacement; 

𝜀𝑦 is the yield strain of the reinforcement steel; 

𝐿1 is the length of the span to the left of the node nearest to the center of the storey 

where maximum drift occurs; 

𝐿2 is the length of the span to the right of such node; 

𝐻𝑛 is the height of the storey where maximum drift occurs; 

𝐻𝑛+1 is the height of the storey above the storey where the maximum drift occurs; 

𝐼𝑣1 and 𝐼𝑣2 are the moment of inertia of the beams in the spam 1 and 2, respectively; 

𝐼𝑐𝑛 and 𝐼𝑐𝑛+1 are the moment of inertia of the columns of the storey n and n+1; 

respectively and ℎ𝑣1 is the beam depth at span 1. 
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6. With the result of modal spectral analysis, the target yield and ultimate 

spectral displacement of the SDOF system corresponding to the fundamental 

mode are calculated, as well as its ductility, (𝜇), defined by Eq. (2.35). 

𝜇 =
𝑆𝑑𝑢

𝑆𝑑𝑦
 (2.35) 

7. From the design displacement spectrum, for a given 𝜇 and 𝛼, the ultimate 

spectral displacement associated to (𝑇1), is obtained. Finally, this spectral 

displacement and the target spectral displacement of the frames (𝑆𝑑𝑢), are 

compared. If the last value obtained close enough to the target, the design is 

considered satisfactory. Otherwise, the initial period of the structure, (𝑇1) 

and/or the damage distribution needs to be modified. Alternatively, the 

required period to satisfy the target displacement can be directly obtained 

from the displacement spectra. 

 

8. If the target displacement of the structure is guaranteed, the yield 

strength, (𝑅𝑦) for the period that satisfies the target displacement is obtained 

from the inelastic strength spectrum (ISS), corresponding to the values of (𝜇) 

and (𝛼) previously calculated. 

 

9. The ultimate strength 𝑅𝑢, is calculate using Eq. (2.36)  

𝑅𝑢 = 𝑅𝑦[1 + 𝛼(𝜇 − 1)] (2.36) 

 
10. Once the characteristic points of the behavior curve are defined, the behavior 

curve of the reference SDOF system may be drafted as it’s showed in the 

Figure 2.13.a. 

 
11. Three analyses need to obtain the design forces of the elements: a gravity 

load analysis of the un-damage structures, a modal spectral analysis of the 

un-damaged structure using the elastic design spectrum scaled by ratio of 

the strength per unit mass at the yield point to the behavior curve and the 

elastic pseudo-acceleration for the initial period, 𝜆1 as it is showed in Figure 

2.13.b, and modal spectral analysis of the damaged structure using the 
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elastic spectrum scaled by the ratio of the difference of ultimate and yield 

strengths per unit mass and the pseudo-acceleration for the period of the 

damaged structures, 𝜆2 as it is showed in Figure 2.13.c.  

 

12. Design of structural elements in accordance with the forced obtained from the 

analysis of the simplified models using applicable rules. 

   
a. Behavior curve of 

reference SDOF system 
b. Un-damaged model c. Damage model 

Figure 2.13. Strength spectra used for the modal spectral analyses 
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Dspectrum   du

NOT

Change initial stiffness and/
or damage distribution to 

satisfy the target 
displacement

YES

Obtain from the 
corresponding inelastic 

strength spectrum (µ,α) the 
strength Ry, associated to T1

Modal spectral analysis of the 
damage model using elastic 

spectra scaled by λ1

Sum the result of gravity 
load and modal spectral 

analyses 

Design of element and check 
the displacements

END

Obtain the ductility, µ = Sdu/Sdy and 
post-yielding stiffness ratio,

 α = K2/K1.

Calculate Ru, and define the 
behavior curve

Calculate the scale factor λ1 
and λ2

Gravity load analysis and 
modal spectral analysis of 

un-damage model using the 
elastic spectra scaled by λ1

 

Figure 2.14. Flowchart of displacement based seismic design method with damage 

control. (Ayala, et al., 2012) 
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This approach allows PBD of irregular structures and to manage the local 

damage. It is formulated from basic approximations to concepts of structural 

dynamics used in design practice. Nevertheless, the method is sensible to the 

importance of proposing a realistic damage distribution and more rigorous 

relationship between stiffness of structural elements in order to have a good 

approximation. On the other hand, a comparison of spectral displacement and 

design displacement should be done in the process as a condition. That means that 

an iteration is involved in the process. Figure 2.11 shows the process of designing, 

where an iteration for the spectral displacement should converge with the ultimate 

displacement. 

 

2.4.4 Performance – based plastic design of RC frames (Liao, 2010) 

 

Performance-Based Plastic Design (PBPD) method has been recently 

developed to achieve enhanced performance of earthquake resistant structures. 

The design concept uses pre – selected target drift and yield mechanism as 

performance criteria. The design base shear for selected hazard level is determined 

by equating the work needed to push the structure monotonically up to the target 

drift to the corresponding energy demand of an equivalent SDOF oscillator. 

 

By using the concept of energy balance applied to a pre-selected yield 

mechanism with proper strength and ductility, structures designed by the PBPD 

method can achieve a predictable structural performance under – strong 

earthquake ground motions. It is important to select a desirable yield mechanism 

and target drift as key performance limit states for given hazard levels right from 

the beginning of the design process. The distribution and degree of structural 

damage are greatly dependent on these two limit states. 

 

An outline of the step-by-step Performance-Based Plastic Design (PBPD) 

procedure is given in the following. The details are then presented in the 

subsequent sections:  
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1. Select a desired yield mechanism and target drift for the structure for the 

design earthquake hazard.  

 

2. Estimate the yielding drift (𝜃𝑦), the fundamental period (𝑇), of the structure 

and determine an appropriate vertical distribution of design lateral forces.  

 

3. Determine the elastic design spectral acceleration value 𝑆𝑎, by multiplying 

seismic response coefficient 𝐶𝑠, with 𝑅/𝐼, where 𝑅 = 8 and 𝐼 = 1 in the design 

of RC SMF 𝑆𝑎 was determined this way for two reasons:  

 

a. For long period the codes prescribe the minimum value of 𝐶𝑠 but not for 

𝑆𝑎;  

b.  For consistency and fair comparison with the baseline frames. 

 

4. Calculate the design base shear, V. In order to estimate the ductility reduction 

factor and the structural ductility factor, an inelastic seismic response of EP-

SDOF is needed, such as idealized inelastic response spectra by Newmark-

Hall (1985) used in this study. 

5. Modify V for RC SMF as needed since the force-deformation behavior is 

different from the assumed EP behavior and P-Delta effect is not considered 

in the calculation of Vin Step 4. 

 

6. Use plastic method to design the designated yielding members (DYM), such 

as beams in RC SMF. Members that are required to remain elastic (non-

DYM), such as columns, are designed by a capacity design approach. 

 

It was assumed in this study that the idealized inelastic spectra by Newmark and 

Hall for EP-SDOF systems are also valid for MDOF systems. This needs further 

study. 
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The modal shape of higher mode is significant for taller structures. P-Delta effect in 

the determination of required moment capacity of beams may be overestimated 

since the inclusion of P-Delta effect in this study was based on first mode shape 

(linear deformation pattern). Further refinement is needed for taller frames where 

higher modes can influence the deflected shape significantly.    

 

 

Figure 2.15. Performance-based plastic design flowchart for RC moment frames: 

member design (Liao, 2010) 
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2.4.5 Displacement-Based Method of Analysis for Regular Reinforced-

Concrete Wall Buildings (Panagiotou & Restrepo, 2011) 

 

This methodology consist on a displacement based (DB) approach for the 

analysis for performance based seismic design of regular RC wall buildings. The 

method considers two performance levels, immediate occupancy (IO) and life 

safety (LS). This method explicitly accounts for the combined effects of the inelastic 

first mode of response, kinematic system overstrength, and higher modes of 

response. Parametric analyses performed by (Panagiotou, 2008) suggest that in 

most wall buildings, including regular tall buildings, the effects of the higher modes 

of response are mostly dominated by the second translational mode. For the design 

of the building, the second mode is approximated by the following cubic polynomial: 
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The second – mode modal weight (𝑊𝑒,2), participation factor (𝛤2), and 

contribution factor. If the first-mode period and the structural system type are 

known, the second – mode period can be approximated. Thus, the second-mode 

base shear is 
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Figure 2.16. Design acceleration and displacement-response spectrum 
(Panagiotou & Restrepo, 2011) 
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The authors state that for most medium-rise buildings, there is no advantage in 

computing 𝑇2 accurately. This is because 𝑇2 often falls in the region of constant 

spectral acceleration. The second-mode base shear is distributed in lateral 

forces( 𝐹2,𝑖) proportional to 𝑊𝑖 ∙ Φ2,𝑖. No base shear – force reduction is made in 

Eq. (2.38) for the inelastic response of the wall. It is assumed that the second 

response mode of the building is not significantly reduced by nonlinear response at 

the base of a wall. The method of analysis makes the following four assumptions:  

 

1. The bending moment at the critical section at the base of the cantilever walls, 

where plastic hinges will ultimately develop, is attributable to the first mode of 

response only. 

 

2. The wall is cracked in the whole height, and no tension stiffening exists in the 

reinforced-concrete walls. 

3. The effect of overstrength, as defined in the following, is not accounted for to 

determine the required base bending moment strength of the walls. 

 

4. The lateral deformations in the building are exclusively caused by the first 

mode. The second assumption results in a conservative design, particularly 

in regions of a low seismic hazard, in which the likelihood of significant 

cracking caused by ground shaking at IO is low. The fourth assumption limits 

the number of stories in a building to which the method proposed is suitable: 

as the number of floors increases, the participation of the higher modes of 

response increases to the extent that their contribution to lateral 

displacements and more importantly, to inter – story drifts, becomes non – 

negligible. 
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2.4.6 Direct displacement based seismic design (Priestley & Kowalsky, 2000) 

 

In the case of direct displacement based seismic design method (DDBSD), the 

application involves the calculation of the design displacement 𝛥𝑑, an equivalent 

mass 𝑀𝑒, an effective height 𝐻𝑒 , a ductility µ, and the yield displacement 𝛥𝑦 of an 

equivalent single degree of freedom system. The effective period of the substitute 

structure 𝑇𝑒 is found using the value of 𝛥𝑑 in the displacement design spectrum 

associated to an equivalent viscous damping ratio, and from it, it is possible to find 

the equivalent stiffness, all of this data the base shear of the simplified system may 

be obtained as it is shown in Figure 2.17.  This base shear will be distributed among 

all floors in proportion to their masses and assumed displacement. Once the force 

vector is calculated, the design forces of the elements are determined from a 

conventional linear static analysis of the structure subjected to the force vector 

obtained before. And finally the design of the structural elements is defined from a 

capacity design aimed to guarantee a safety mechanism due to seismic criteria. 

 

Due to its apparent simplicity of this method has become it very attractive for 

seismic design in practice. However, its application has some limitations as its 

formulation is based on the validity of some questionable considerations like 

characterizing the behavior of a non – linear multi degree of freedom structures by 

the means of an equivalent linear viscous – elastic single degree of freedom 

systems, something that is not always appropriate on design consideration. Some 

other aspect as the distribution of forces by the shape of a single equivalent period 

similar to the first mode of vibration is an issue that in some full – scale test building 

demonstrate that some higher mode effect appears when inelastic behavior start. 
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a. Substitute structure in SDOF b. Effective stiffness 

  

c. Effective damping vs ductility d. Design displacement spectra 

Figure 2.17. Fundamentals steps of the Direct Displacement Based Design 
(Priestley & Kowalsky, 2000) 

 

Obtain Preliminary   design

Determine yield drift, Ѳy 

Select performance level 

and associated ultimated 

drift, Ѳu

Determine target 

displacement at each level, 

Δi.

Transform MDOF system 

into an equivalent SDOF 

system

Determine target 

displacement of equivalent 

SDOF system, Δd

Determine yield 

displacement of equivalent 

SDOF system, Δy

Determine displacement 

ductility of equivalent SDOF 

system, µ 

Estimate system damping 

ξeq using ξ-µ relationships 

Determine system equivalent 

mass Me

Obtain the effective period, 

Te, using displacement 

spectra associated to ξeq

Calculate effective stiffness, 

Ke
Obtain base shear 

Distribution of the base 

shear to floors in proportion 

to the asumed 

displacement and floor 

masses

Calculate design element 

forces

Modify design element 

forces through a capacity 

design 

END

 

Figure 2.18. Flowchart of direct displacement seismic design propose by 

 (Priestley & Kowalsky, 2000) 
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2.5 Full scale Experimental test in shear concrete wall with higher 

vibration mode effects  

 

Higher vibration mode effects has been observed in many full scale experimental 

test, especially for medium rise building, for more than 2-3 story, as the following 

work presented in this section. Some proposal has been made in other to consider 

this effect in concrete walls, as in the work of Panagiotou (2008) and Panagiotou & 

Restrepo (2011). Other works highlighted the importance of making a proposal to 

consider higher modes effects in structural design phases as Luu, et al. (2014), 

Maniatakis et al. (2013), Ghorbani-renani (2010), Tremblay, et al. (2008) among 

many others. 

 

2.5.1 Dual plastic hinge and displacement based design for shear walls 

 

Panagiotou (2008) proposes the method of “Dual Plastic Hinge” for shear tall 

concrete walls. In this approach, plastic hinges are allowed to form in the wall base 

and near mid-height, while ensuring elastic response elsewhere. Bringing a 

reduction in the amount of longitudinal reinforcement and of transverse 

reinforcement in a significant portion of the walls. This concept is an approximation 

in order to reduce the effects of higher modes of response in high-rise building in 

shear walls as it is explained in Panagiotou & Restrepo (2009).  

 

Figure 2.19.Three different cases of plasticity location in an Euler-Bernoulli cantilever. 
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Later, Panagiotou & Restrepo (2011) developed a displacement based method 

for regular RC wall buildings. It was applied to a full scale 7 story building sub-

assembly tested at UC San Diego. The method relies in the following four 

assumptions: (1) the bending moment at the critical section at the base of the 

cantilever walls, where plastic hinges will ultimately develop, is attributable to the 

first mode of response only, (2) all walls are cracked, and no tension stiffening exists 

in the reinforced-concrete walls, (3) the effect of kinematic system overstrength, is 

not accounted for to determine the required base bending moment strength of the 

walls, (4) the lateral deformations in the building are solely caused by the first mode 

of response.  

 

One important aspect is that it provides fixed polynomial expressions for both 

assumptions of first hinge dominated by the first mode and second hinge dominated 

by the second mode. For cantilever wall buildings, the shape of the first mode is 

approximated by the following polynomial expression 
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The effects of the higher modes of response are largely dominated by the 

second translational mode. For the design of the building, the second mode is 

approximated by the following cubic polynomial: 

 

Φ2𝑖 = 2.4(
ℎ𝑖

𝐻
)

3

− 8.6 (
ℎ𝑖

𝐻
)

2

+ 5.2
ℎ𝑖

𝐻
 (2.40) 

 

2.5.2 Experimental test on shear walls specimen  

 

In the work of Ghorbanirenani (2010), the first phase of the research included 

shaking table tests performed on two 9.0m tall models of 8-storey reinforced 

concrete shear walls designed in accordance with current Canadian code 

provisions. It was carried out on full-scale and 1:2.37 reduced scale wall (W1) 



CHAPTER 2. STATE OF THE ART 

45

specimens to evaluate the seismic design provisions. A second series of 

experiments were conducted on two identical 1:2.33 scaled, 8-storey reinforced 

concrete shear wall (W2) specimens to investigate the effects of higher modes on 

the inelastic response of slender walls under high frequency ground motions.  

To investigate the developing of damage for the different levels of intensity, one 

specimen was tested under incremented ground motion amplitudes ranging from 

40% to 120% of the design level. For the second specimen, the first test was 

performed at 100% of the design level and the amplitude was increased stepwise 

in subsequent tests up to 200% of the design level. 

 

In this work, the inelastic responses of a reinforced concrete wall is presented 

(Figure 2.20.a). A numerical model (Figure 2.20.b) was built using finite elements 

method and fiber element analysis. It should be noticed that for the numerical 

model, fiber element method was a good alternative in terms of computing time and 

it produced reasonable results in comparison to the finite element method, 

although, particular attention needs to be given to the selection of the damping 

ratios.  

  

a) Model walls tested in the laboratory b) Finite Element model 

Figure 2.20. Reinforced concrete wall model 

 

The maximum base shear forces obtained from tests exceeded the wall design 

shear strength by the factor of 1.4. Figure 2.21 present the vertical distribution of 
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the horizontal accelerations along the height of Walls W1 and W2 at the time of 

maximum base shear under 100% earthquake. Seismic loads, acting on the walls 

directly correspond to the accelerations shown. The lateral force patterns, obtained 

from tests, show significant contributions from the second and third modes of 

vibration. In Figure 2.21 there is a comparison between the experimental tests, the 

analysis with Open Sees program (OS) and the analysis with VecTor2 (VT2) 

program. 

 
Here, wall W2 is used to illustrate this dual hinge design procedure (Figure 2.22). 

In the dual-hinge concept, the wall is redesigned for plastic hinge at the sixth level, 

where it occurred in the original design. The design moment in that hinge region 

was taken equal to the value obtained from analysis and reduced. In Figure 2.22.c 

the moment demand along the wall height resulting from the dual-hinge concept is 

lower than the demand on the wall designed for hinging at the base only. 

  
a) Wall (W1) b) Wall (W2) 

Figure 2.21. Vertical distribution of horizontal accelerations under 100% Earthquake- 

 

   
a) Location of 

hinges 
b) shear forces distribution 

along the wall height 
c) Moment distribution along the wall 

height 

Figure 2.22.Analysis of wall based on the dual-hinge and modified single-hinge 
design approaches. 
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Figure 2.23. Scheme on the experimental investigation on higher mode effects 
(Ghorbanirenani, 2010) 

 

One of the main conclusions of the research is that, by increasing the ground 

motion amplitudes, higher mode response of the walls was slightly more 

pronounced and resulted in higher drift. An example is shown in Figure 2.23, for 

particular a record from a zone with a high dominant frequency. 

 

The works of Tremblay, et al. (2008), is part of the work explained above. It is 

part of a preliminary test program that was carried out to validate the use of reduced 

scale physical models to reproduce the inelastic cyclic flexural and shear responses 

of R/C wall. Time-history with ground motions for the region of Vancouver and 

Montreal were used. This record have high dominant frequency, which leads to 

relatively more significant higher mode response. The influence of the seismicity at 

the site on higher mode effects is illustrated for a 15-storey (each story height is 3 

meters) reinforced concrete shear wall building located at two different sites in 

Canada: Vancouver, and Montreal. The analytical work is also used to highlight 

other parameters influencing the bending moment and shear demand on shear wall 

structures (see Figure 2.24).  
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a) Vancouver record site   b) Montreal record site 

Figure 2.24. Vertical distribution of the inertial loads, shear forces and bending 
moments in the 15-storey walls. 

 

The work of Luu, et al. (2014), is based on the same experimental and analytical 

tests described above. It is interesting to highlight the result in Figure 2.25. Where 

the typically design procedure is compared to the transient nonlinear behavior of 

the structure. It is evident that the effect results in the amplification of the base 

shear. The formation of the second hinge in the upper wall region is also explained 

following by redistribution of the shear forces, and a time lag between maximum 

base shear and maximum bending moment. 

The Figure 2.25 shows the three analyses, the first (Figure 2.25.a), shows a 

typically linear modal spectral analysis, with its forces distribution along the wall 

height and the result of internal forces. Moreover, the second (Figure 2.25.b), 

shows the same linear analysis with the typical reduction of seismic force, with a 

single reduction factor for all vibration modes, it means that, the reduction of the 

final seismic force is linear. However, the third analysis (Figure 2.25.b), shows the 

real non – linear behavior in terms of the force distribution along the height, which 

the shape is totally different from the elastic analysis, and bigger as well, in 

comparison with the reduced by the typical reduction factor. The last observation, 

lead to focus on the importance of higher vibration modes effect.  

 



CHAPTER 2. STATE OF THE ART 

49

 
a. Linear modal response spectrum analysis 

 
b. Linear modal response spectrum analysis considering nonlinearity 

 
c. Observed nonlinear behavior 

Figure 2.25. Analysis considering higher mode effects on structural wall response 
(Luu, et al., 2014) 
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3 EXTENSION OF THE 

DOUBLE LINEAR ANALYSIS 

METHOD TO SEISMIC LOADING 
 

 

3.1 Introduction  

 

Performance based seismic design (PBSD) process explicitly evaluates how a 

buildings is likely to perform given the potential hazard and design for a 

performance level. It starts with the selection of design criteria state in the form of 

one or more performance objectives. In general, performance objectives may be 

related to a certain level of damage, either structural or non-structural, associated 

to structural safety, economic losses or functionality. Most PBSD methodologies 

are based on modal dynamic spectral analysis (MDSA) through elastic design 

spectrum; although other are based on time history analysis.  
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In order to take into account the non – linear behavior of structures when MDSA 

is employed, a behavior factor (q or R) is typically listed in many standards codes 

in order to reduce the seismic demand. Those reduction factors consider sectional 

ductility and energy dissipation due to damage from cyclic loading in structures, as 

a global response, but depending on construction systems (reinforced concrete, 

prestressed concrete, steel structures, etc.). 

 

Nevertheless, PBSD methodologies can find, through its own process, a more 

accurate alternative reduction factor, as is the case of DDBSD from the work of 

Priestley, et al. (2007) and others, such as Kappos & Stefanidou (2010), Ayala, et 

al (2012), Liao (2010). At present, direct methods only accounts for the first mode 

of vibration of the elastic structure, thus limiting its applicability in general situations. 

Methods for irregular structures are iterative. However, it is known that when 

damage occurs, e.g. cracking or local yielding, a variation of the stiffness is 

produced; hence, modal properties vary and affect the seismic demand and 

distribution of inertial forces. The differences with respect to the estimating based 

on the first elastic mode shape increase implies modification of the natural periods 

and the mass participation factor.  

 

Figure 3.1 summarizes the study of Tremblay, et al. (2005) about the case of 

higher modes effect. They demonstrate problems where the main issue is clearly 

the load pattern more that is similar to second mode of vibration than the first.  

Hence, estimating load distributions from the elastic analysis and further application 

of a behavior factor produces unsafe design with incorrect distribution of resistance 

and ductility capacity.  

 

In this chapter, the Double Linear Analysis method (DLA) will be extended to 

account for seismic loads. Further case studies analyses will be carried out in order 

to show that using a reduction factor, as standard codes recommend for seismic 

load reduction, is not, in general, the more convenient way to accounting inelastic 

seismic response as is shown Figure 3.2.  
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a) Seismic stability of braced steel frames; b) higher modes effects in slender R/C 

walls; and c) Seismic response of steel frame/wood panel walls. 

Figure 3.1. Research topics for earthquake simulation testing and higher mode effect 

(Tremblay, et al., 2005) 

 

Several laboratory tests on full – scale buildings have been carried out recently 

by Biondini, et al. (2012), Tremblay, et al. (2008) and (Panagiotou & Restrepo 

(2007).  That reported discrepancies from the collapse mechanisms and the 

intended design. Even though, applying an up-to-date design procedure of 

standard codes by taking in consideration the seismic forces reduction factors and 

satisfying the concepts of strong column – weak beam.  

 

In the methodology here proposed, means to account the above mentioned 

phenomena have been taken into consideration. The proposal provides an 

approach to evaluate them during the design process and control the collapse 

mechanism according to the chosen by the design strategies. In the following 

section, the proposed method is detailed. 

 

 
 

Figure 3.2. Variation of seismic load pattern due to local damage intentionally 
imposed in the “Double Linear Analysis” method (DLA) 

𝑞 𝑜𝑟 𝑅? 

F3 

F2 

F1 
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3.2 Design methodology 

 

This proposal methodology will be referred as “Double Linear Analysis” (DLA) 

method for performance based seismic design. This method is a design process of 

structures in order to resist certain loads considering the non – linear behavior for 

a global and local regions in the structure as an implicit way, the method also 

reports decision taking in a fast and transparent way. Designers will be able to 

decide working with a complete elastic structure, or a “damage” structure, by 

considering an intentional distribution of plastic hinges where designer need to 

reduce internal forces. 

 

This method does not need an explicit non – linear analysis; however, if a non–

linear analysis is performed on the structure designed according to this approach, 

one should obtain similar distribution of plastic hinges, internal forces and level of 

damage selected previously as a function of plastic ration capacity in proposed 

perfect hinges. 

 

The methodology proposed is an extension of the “Static non – linear design” 

(SNLD) previously mentioned in chapter 2.4.1 proposed by Bairán, et al. (2011). 

Both methods are based on the superposition of two linear analysis on a reference 

elastic structure and an auxiliary structure. The main difference observed in the 

seismic design, with respect to static loading, is that the superposition is based on 

the final results of internal forces and deformation of two linear modal spectral 

analysis (MSDA), as shown in Figure 3.3. The two structural models used here 

referred as elastic structure (Figure 3.3.a), for the original model, and auxiliary 

structure for the second model (Figure 3.3.b).  

 

The first structure is modeled as lineal elastic. It is subjected to both elastic 

gravitational and seismic forces. From it, the elastic internal forces and deformation 

can be obtained. Therefore, it corresponds to the same structural model used in 

current seismic design according to most codes. The auxiliary structural model is 
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similar to the previous one but includes a series of internal perfect hinges, which 

are distributed according to the designer decision. The points including the perfect 

hinges are the points where structural damage will be allowed in the design. Figure 

3.4 shows the flowchart of the Double Linear Analysis method. 

 

 
 

a) Elastic structure b) Auxiliary structure with perfect hinges 

Figure 3.3. Type of structures in DLA 

 

Perform modal dynamic 

linear analysis of an 

elastic structure

Decide strategy of plastic 

hinge location 

Perform modal dynamic 

linear analysis of an  

strcucture with perfect 

hinges

Combine from both 

structures its final result

Sectional design from a 

given ductility demand 

and normal design for 

elastic member 

END

 

Figure 3.4. Flowchart for the “Double Linear Analysis” (DLA)  
for performance based seismic design 
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Seismic damage in structures does not only represent a hysteretic energy 

dissipation, but also, a different distribution shape of base shear along the height. 

The current method pretends to include the variation of the distribution of forces 

along the height of any structures that is changing due to the influence of higher 

modes during the damage process for a proposed level and damage distribution.  

 

Most of the performance design methods studied in chapter 2.4 are based on 

iterative processes or, when direct methods are available, they are based on an 

equivalent structure and an equivalent period of vibration. This is suitable only for 

very regular structures, and does not allow to determine the effects of higher 

vibration modes. The DLA method accounts for higher vibration modes at the final 

state of an “inelastic” structure, local damage control, global behavior and different 

local hysteretic energy dissipation rule. 

 

The general steps of DLA are direct, as is specified below: 

 

1) Perform a linear MSDA on the reference elastic structure and obtain the 

elastic response. 

 

2) Decide strategy of plastic hinge location based on the need of reduction of 

internal forces; based on reduction of base shear or evolution of local 

damage proposed in terms of plastic rotation in hinges.  This defines the 

model of the auxiliary structure. 

 

3) Perform a linear MSDA on the auxiliary structure with perfect hinge 

configuration. 

 

4) Design the structure according to the superposition scheme and 

combination of internal forces depicted in chapter 3.3 of both structures and 

thus obtaining the final or intermediate structure design.  Plastic rotation 

demand will control sectional design. 
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(a.1)  (b.1)  (c.1)  (d.1) 
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= 

 

(a.2)  (b.2)  (c.2)  (d.2) 

 

+ 

 

“+” 

 

= 

 

(a.3)  (b.3)  (c.3)  (d.3) 

Figure 3.5. Final state estimation of Design steps for the DLA. 
The symbol “+” stands for superposition combination 

 

 In Figure 3.5, the previous mentioned steps are presented. Figure 3.5 a1 to a3 

and b1 to b3 represent the first step, consisting in performing a conventional MSDA 

of a structure loaded from an elastic design spectrum without any reduction factor 

of seismic forces, static loads are represent in columns “a”. In this step, the elastic 

moments (𝑀𝑒) and elastic displacements (𝛿𝑒) are calculated from the elastic 

seismic force (𝐹𝑠𝑒) and gravitational load (𝑞𝑔). Figure 3.5 c.1, c.2 and c.3 show the 

second and the third steps, respectively. They consist on a conventional MSDA of 

the auxiliary structure with perfect hinges, loaded with seismic spectrum 

forces (𝐹𝑠𝑢), calculated with the modal properties of the auxiliary structure.  

 

This seismic demand is clearly different in the two previous cases. In general, 

the auxiliary structure forces is lower than the one on the elastic reference structure, 

due to its higher flexibility and different modal properties. This analysis provides the 

largest possible deformation, according to the given distribution of hinges in terms 

of displacement (𝛿𝑢) and ductility demand (𝜃𝑝) at each hinge. For elements without 

hinges, a redistribution of internal forces will be observed. With the resulting 

combination shown in Figure 3.5 d.1, d.2 and d.3, structural design based on a 

given strength and ductility demand can be carried out. 
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Figure 3.6. Superposition of Elastic and auxiliary structure in a force – displacement 

diagram in terms of damage parameter alpha (𝛼) 

 

In Figure 3.6, it is represented, from the points (p) to (a), the response of a linear 

analysis of the elastic structure with stiffness matrix  [𝐾𝑒]. After this, the designer 

should take a decision about the quantity and the location of damaging points, 

represented by perfect internal hinges in the auxiliary structure model. The decision 

of the distribution of hinges could be based on convenient levels of internal forces 

redistribution, reduction of base shear or a level of damage to be controlled as a 

function of plastic rotation in hinges, or a combination of both. In the same Figure 

3.6, from point (p) to (b), the linear response behavior of the, more flexible, auxiliary 

structure with perfect hinges and stiffness matrix [𝐾𝑢] is shown. Curve (p)-(c)-(e) 

represent the combined response for a value of damage parameter, as will be 

introduced in the next section. 

 

 

3.3 Combination of structures and damage control 

 

After the analysis of the two elastic structures in previous section, the 

superposition of deformation and internal forces of both structure may be performed 

in order to obtain the non–linear response. For this goal, a combination factor (α) 

is proposed to combine both forces and displacements, as shown in Eq. (3.1) and 

(3.2), respectively. As will be shown latter, this factor controls the damage taken 

place in the structure; hence, providing a way to select its value objectively.  
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The  factor ranges from 0 to 1. For a totally plastic or damaged structure,  will 

be equal to 1. A fully undamaged structure will be obtained with  = 0. The 

combination of internal forces and deformation is thus,  

 

𝐹𝑛𝑙
𝑖 = 𝐹𝑒

𝑖 ∙ (1 − α) ∙ 𝜂 + 𝐹𝑢
𝑖 ∙ α ∙ 𝜂 (3.1) 

 

𝑑𝑛𝑙
𝑖 = 𝑑𝑒

𝑖 ∙ (1 − α) ∙ 𝜂 + 𝑑𝑢
𝑖 ∙ α ∙ 𝜂 (3.2) 

 

In this notation, 𝐹𝑛𝑙
𝑖  and 𝑑𝑛𝑙

𝑖  are the final results of the combined forces and 

displacement at the node 𝑖 obtained in the two structural models from the multi 

modal spectrum analysis. Hence, 𝐹𝑒
𝑖 and 𝑑𝑒

𝑖  are the force and displacement of node 

𝑖 in the elastic structure respectively (step 1) and 𝐹𝑢
𝑖 and  𝑑𝑢

𝑖 , the ultimate possible 

forces and displacement coming from the auxiliary structure (step 3) at the same 

node  𝑖.  

 

In Figure 3.6, it can be noticed that the force and displacement variation from 

point (p) to (d) is given by the second term in Eq. (3.1) and (3.2) for a particular 

value of the (𝛼) factor. This term represents the plastic behavior of the combined 

structure and if it is placed in continuation of the elastic response, it will be the curve 

from point (c) to (e). The elastic part of the structure’s behavior corresponds to the 

force and displacement variation from point (p) to (c). Thereby, superposition of 

both structures represents the final or combined structure.  

 

Finally, the 𝜂 factor in Eq. (3.1) and (3.2) is the damping correction factor that 

takes into account the energy dissipation by hysteretic damping in each hinges 

corresponding to a hysteretic loop model. The factor will be introduced in the next 

section. 
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3.4 Local and global damage control  

 

As mentioned above, Eq. (3.1) and (3.2) control force and deformation 

combinations of elastic reference and auxiliary models of the structure; from their 

superposition the final demand of the inelastic structure is estimated.  In the last 

step in this methodology, the final design of structure must be carried out by 

designing the steel reinforcement to satisfy the required strength and ductility 

demands, for the selected cross section sizes. To this end, the moment resistance 

demand is obtained as in Eq. (3.3) and the ductility demand is obtained from Eq. 

(3.4). 

𝑀𝑛𝑙
𝑖 =  𝑀𝑒

𝑖 ∙ (1 − α) ∙ 𝜂 + 𝑀𝑢
𝑖 ∙ α ∙ 𝜂 (3.3) 

 

𝜃𝑛𝑙
𝑖 =  𝜃𝑒

𝑖 ∙ (1 − α) ∙ 𝜂 + 𝜃𝑢
𝑖 ∙ α ∙ 𝜂 (3.4) 

 
Where, 

𝜃𝑒
𝑖 = 

𝑀𝑒
𝑖

𝐸 ∙ 𝐼

𝐿𝑝

6
  (3.5) 

The Figure 3.7 shows a moment – rotation diagram evolution for a hinge  𝑖, in its 

final state, after the combination of structures for a particular value of combination 

factor (𝛼). In this figure, point (a) is the reduced bending moment as a result of the 

yielding of plastic hinges and the redistribution of forces produced. However, the 

reduction of forces caused by the energy dissipation of hysteretic damping should 

still be added. After considering the effect of energy dissipation, the strength and 

plastic rotation demands are represented by point (b). The maximum reduction of 

bending moment would occur for a complete damage, hence, the maximum rotation 

possible in a hinge takes place. If this is the case, the strength demand in that hinge 

should be enough to resist gravity loads or static bending moment  𝑀𝑠𝑡, but will not 

have strength demand from seismic forces, as shown in point (c). In that case, 

internal forces will be redistributed in other elements that should resist all seismic 

forces.  
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Figure 3.7. Moment – Rotation evolution diagram in hinge (𝑖) 

 

The energy dissipation correction factor () in Eq. (3.1) to (3.4) is defined in 

terms of the ductility demand in each local damaging point (hinge). Thus, is also 

dependent on the type of hysteresis loop of the component. The maximum ductility 

in the hinge (𝑖) is then obtained as: 

𝜇𝑚𝑎𝑥
(𝑖) = 

𝜃𝑢
(𝑖)

𝜃𝑒

(𝑖) (3.6) 

While the ductility demand can be computed as in Eq. (3.7), as a function of the  

coefficient. 

𝜇(𝑖) = 
𝜃𝑛𝑙

(𝑖)

𝜃𝑦

(𝑖) = [1 + 𝜇𝑚𝑎𝑥
(𝑖)

∙
𝛼

(1 − 𝛼)
] (3.7) 

Where the combined rotation 𝜃𝑛𝑙

(𝑖)
 in the non-linear system is calculated as the 

Eq. (3.4), and the yield rotation 𝜃𝑦
(𝑖)

 is the first term of the Eq. (3.4) as below.  

𝜃𝑦
(𝑖)

= 𝜃𝑒
(𝑖)

∙ (1 − α) ∙ 𝜂 (3.8) 

The study from Dwairi et al. (2007) shows that the hysteretic damping 

component 𝑖 can be calculated as: 

𝜉ℎ𝑦𝑠𝑡

(𝑖) =  C ∙ (
𝜇(𝑖) − 1

𝜇(𝑖) ∙ 𝜋
) (3.9) 

Where the coefficient C depends on the shape of the hysteretic loop. This has a 

relationship on the theoretical area – based approach mentioned in chapter 2 for 
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the Elastic Perfectly Plastic (EPP) rule. The values of C can be taken from Table 

2.2 in chapter 2.2.2. This design procedure requires relationship between rotation 

ductility and equivalent viscous damping. The total damping of the system is the 

sum of elastic and hysteretic damping: 

𝜉𝑠𝑦𝑠 =  𝜉𝑒𝑙 + 𝜉𝑒𝑞  (3.10) 

The elastic damping can be considered as 5%. However, as ductility and 

strength demand in each component may be different, the equivalent damping is 

computed as the weighted average based on the energy dissipated by the different 

structural elements. That is,  

𝜉𝑒𝑞 = 

     

   

1

1

 M θ

 M θ

i i i

i i

n

nl nl hyst

i

n

nl nl

i






 






 (3.11) 

The system determines the damping correction factor 𝜂. There are different 

models relating damping and 𝜂. Two main procedures can be applied: those that 

use inelastic spectra, and those using equivalent viscous damping. In this 

methodology, the second alternative is followed (equivalent viscous damping) to 

represent ductility and energy dissipation capacity, as it allows for a more direct 

compatibility with many design codes. In these sense, the 𝜂 factor will be related to 

the equivalent damping through the Eq. (3.12) included in Eurocode-8 (2004). 

𝜂 = √
0.10

0.05 + 𝜉𝑠𝑦𝑠

  (3.12) 

The final step of the method is to design the elements and plastic hinges for the 

computed strength and ductility demand. In this way, the structure should be able 

to perform as it was decided in the design process with the same cross section, as 

it is shown in Figure 3.5 c.3. Thus, it presents the damage proposed in terms of 

maximum rotation in plastic hinges as in Figure 3.8. For the element that should 

remain elastic, a capacity design should be made, for the strength demand 

computed in the analysis; and a convenient overstrength factor. 
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Plots of local and global ductility and strength demand evolution can be 

constructed using Eq. (3.1) to (3.4) by simply varying the factor 𝛼. Thus, it is 

possible to decide the value of 𝛼 by looking for the local damage as plastic rotation 

desired or maximum displacement on top floor and, thereby, obtain a value of the 

behavior factor “𝑞”. 

 

 

  

a) Plastic rotation evolution for the hinge 𝑖 b) Bending moment evolution for the hinge 𝑖 

  

c) Displacement evolution for de node 𝑖 d) Total  base shear evolution 

Figure 3.8.  Illustration of internal forces and deformation evolution by selecting a level of 
damage corresponding to an alpha (𝛼) factor 
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º  
 

a. Evolution of seismic load pattern with 𝛼 b. Building with all beams hinged 

 

Figure 3.9. Comparison of inelastic seismic force for DLA and normal reduction 𝑞 factor 

 

Moreover, it is interesting to notice that, not only the reduction of base shear is 

produced by damage and yielding, but how seismic forces distribution varies along 

the height by changing the combination factor; as it is shown in Figure 3.9.a. Where 

the distribution of seismic forces for a 5 stories not so irregular building is shown 

when hinges in all beams are allowed. The dashed line that represents the typical 

homothetic reduction of the seismic forces, underestimating the forces in the lower 

and mid stories. 
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4 NUMERICAL 

IMPLEMENTATION 
 

 

4.1 Introduction  

 

In order to develop de method presented in chapter 3, the REDIS2D and 

REDIS3D algorithms were developed as a matrix structural analysis. Those 

algorithm are extensions from the REDIS2D algorithm proposed (Bairán & Marí, 

2010) in order to develop the method NLSD. In this chapter, it is developed the 

numerical algorithm in order to implement internal hinges in a 2D and 3D element. 

In the latter case, include directionality of perfect internal hinge behavior and the 

diaphragm behavior. These algorithms were extended to modal spectral dynamic 

analysis to implement finally tools and issue to develop the DLA methodology.  
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4.2 Structural matrix analysis  

 

Frames structural analysis problem can be solved in matrix analysis approach. 

Two different methods can be used, the flexibility method and the stiffness method. 

The first, also referred to as the force or compatibility method, is essentially a 

generalization in matrix form of the classical deformation method. The latter method 

is derived from the classical slope-deflection method; and it is also referred as the 

displacement or equilibrium method. In this approach the unknowns are the joint 

displacement, which are determined first by solving the structure’s equation of 

equilibrium (Kassimali, 1999).  

 

The general formulation to account for distributed or concentrated loads acting 

on beam elements is 

      oF   K d F   (4.1) 

 

Where  𝐹𝑜 is a vector of fixed-end-reactions, expressed in terms of the global-

coordinate components (Paz & Leigh, 2001). The fixed reactions are equal to the 

equivalent nodal forces, but with opposite sign. 

 

The unknown nodal displacements and support reactions are calculated by 

partitioning the system stiffness equation, solving first for the unknowns 

displacements, and then calculating the unknown reactions. The nodal 

displacement, in local axes, are found as:  

    
1

l l ld F K


  (4.2) 
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4.3 Internal hinges modeling 

 

4.3.1 2D Element  

 

An internal hinge in a beam element, cause a discontinuity in the slope. 

Moreover, the increment of bending moment is zero at the hinge. This required 

modifications to be applied to the stiffness matrix of continuous element. For a 

conventional stiffness method, no explicit compatibility equation is required, as the 

rotation (slope) on the left side of large should be equal to that on the right side. 

The conventional stiffness method to idealize an internal hinge could be used. To 

this aim one should separate beam segment (see Figure 4.1), formulate equilibrium 

equation and solve the unknowns. 

 

Consider the cases of a 2D beam element with two nodal hinges, as shown in 

Figure 4.1, with global degrees of freedom as shown in Figure 4.2. At any internal 

hinge the bending moment is zero and the assembled matrix  [KT], with a size 

14x14, corresponding to all nodal and hinges degree of freedom should be 

partitioned as below. 

 

Figure 4.1 Idealized beam with two internal hinge 

 

 

Figure 4.2. 2D beam element model with two internal hinge  

𝐿 

Node 𝑖 Node 𝑗 
Internal hinge  

H1 
Internal hinge  

H2 

𝐿1 𝐿2 𝐿3 
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 (4.3) 

 

In a compact notation the total stiffness matrix for an element with two internal 

hinge will be 

K K

K K

gg gh

T
hg hh

K
 

  
 

 (4.4) 

 

In order to eliminate the degrees of freedom (DOF) corresponding to internal 

hinge rotation associated with internal bending moment, it is proceed as follows: 

F K K d

F K K d

g gg gh g

h hg hh h

        
     

        

 (4.5) 

 

In Eq. (4.5), 𝑑𝑔 represents the d.o.f. of the element ends and 𝑑ℎ represents the d.o.f 

of the internal perfect hinge. Thus, is equivalent to: 

F𝑔 = Kgg ∙ d𝑔 + Kgh ∙ dℎ (4.6) 

Fℎ = Khg ∙ d𝑔 + Khh ∙ dℎ (4.7) 
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Solving for dh in the second term of Eq. (4.6), one gets  

dℎ = Kℎℎ
−1 ∙ (Fℎ − Khg ∙ d𝑔) (4.8) 

 

Substituting Eq. (4.8) in Eq. (4.7), it is obtained 

F𝑔 = (Kgg − Kgh ∙ Kℎℎ
−1 ∙ Khg) ∙ d𝑔  − Kgh ∙ Kℎℎ

−1 ∙ Fℎ (4.9) 

 

Eq. (4.9) has the form of equation with concentrated or distributed load acting 

on beam elements by considering the following formulation for a general structure 

that is: 

F = K𝑐 ∙ d𝑔 − Feq  (4.10) 

Therefore, the condensed stiffness matrix for the macro – element with two internal 

hinges will be  

Kc = (K𝑔𝑔 − K𝑔ℎ ∙ Kℎℎ
−1 ∙ Kℎ𝑔) (4.11) 

The equivalent nodal force vector is defined by 

Feq = − K𝑔ℎ ∙ Kℎℎ
−1 ∙ Fℎ (4.12) 

Where Fh is the internal forces vector acting on the internal hinges, 
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(4.13) 
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Figure 4.3. Plastic rotation in (M − θ), hinge 𝑖 in a pure bending. 

 

Figure 4.3 represent the case when the internal hinges models a plastic hinge in 

the element. Once internal forces and deformation at internal hinges are found in 

the macro – element, plastic rotation can be found as the difference of the rotation 

as in Eq (4.14) and Eq (4.15) and shown in Figure 4.4. For an element with only 

one internal hinge the same procedure must be followed. 

𝜃𝑝1 =  𝜃ℎ11 − 𝜃ℎ12 (4.14) 

𝜃𝑝2 =  𝜃ℎ21 − 𝜃ℎ22 (4.15) 

 

 

Figure 4.4. Illustration of plastic rotation in a beam model with two internal hinge 

 

4.3.2 3D elements  

 

An extension to three dimensional beams with one or two internal hinge is 

straight forward in the matrix form. 

 
Figure 4.5. 3D beam model with two internal hinge 
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Similar to the previous section, in Figure 4.5 the internal degrees of freedom of 

3D element with two internal hinges is presented. Eq. (4.16) shows the partitioned 

equation matrix for the 3D beam model corresponding to Figure 4.5. From here, the 

same procedure can be done in order to obtain the condensed matrix for an 

element, condense nodal forces and equivalent internal forces. 

 

 

 

   

   

 

 

12 1 12 12 12 16 12 1

16 1 16 12 16 16 16 1

F K K d

F K K d

x x x x

x x x x

g gg gh g

h hg hh h

     
        

         

 (4.16) 

 

4.4 Constrained degrees of freedom  

 

4.4.1 Rigid Body 

 

The deformation some structural components can be very small compared to 

the deformation the rest. Thus elements with a very small deformation enough to 

be neglected, they can be idealized as rigid bodies. (Cheng , 2001).  

Two nodes on the rigid body are constrained, so that the deformation of a so 

called slave nodes can be represented by the deformation of the other, referred as 

master node. Deformation of all the constrained slave nodes will be depended on 

that of the master node. Hence, the degrees of freedom (DOF) of all the slave can 

be transferred to the master node. Therefore, the number of DOF in the structure 

is reduced, the size of the stiffness matrix will be reduced as well. 

In the Figure 4.6, the notation 𝑋𝑚𝑗, 𝑌𝑚𝑗 and 𝑍𝑚𝑗 are the coordinates of the 

relative position of the slave node with respect to its master nodes. The 𝐹𝑠𝑗 and 𝑀𝑠𝑗 

are the forces and moments in the slave node, respectively. 𝐹𝑚𝑗 and 𝑀𝑚𝑗 are the 

forces and moments in the master node, respectively.  The forces on the slave node 

can be substituted by static equivalent forces on the master node, as computed in 

the following equations: 
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a) Before transformation b) After transformation 

Figure 4.6. Rigid-body Constraint 

 

, ,

, ,

, ,

, ,

, ,

, ,

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

mj mj

mj mj

mj x sj x

mj y sj y

mj z sj z

mj x sj x

mj y sj y

mj z mj mj sj z

F F

F F

F F

M M

M M

M M

Z Y

Z X

Y X

     
     
     
     
     
     
     
     
     
  




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 (4.17) 
 

 

In matrix notation, 

   mj j sjF C F      (4.18) 

 

Where the matrix [𝐶𝑗] is a constraint matrix, coordinates in the matrix are those 

referred in the Figure 4.6. Similarly, a transformation could be used for the 

displacements of corresponding degrees of freedom. Resulting that the 

displacement of a salve node located at a  𝑋𝑚𝑗, 𝑌𝑚𝑗 and 𝑍𝑚𝑗 from the master node 

is: 

   
T

sj j mjCu U     (4.19) 

Where {𝑢𝑚𝑗} represents displacement of the master node, and {𝑢𝑠𝑗} represents 

displacement of the slave node. In this Thesis a planar constraint is need to model 

floor diaphragms. The constraint for this particular case, is explained in the 

following.  
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4.4.2 Floor diaphragm constraints 

 

A floor slab in a building is very stiff in its plane, but very flexible out of its plane. 

Therefore, the in–plane deformations in the floor system are small compared to the 

inter–story horizontal displacements. Thus, a planar constraint can be used to 

model the floor slab’s diaphragm as a 2D rigid body. The in – plane displacements 

of the diaphragm can be expressed in terms of two displacement, 𝑢𝑥
𝑚(𝑖)

 and 𝑢𝑦
𝑚(𝑖)

, 

and a rotation about z – axis  𝑢𝜃𝑧
𝑚(𝑖)

 (see notation in Figure 4.7.b). 

Figure 4.7 shows a slab with a slave node with its corresponding six degrees of 

freedom and the same slab after matrix transformation due to constraints. The 

number of degrees of freedom are reduced, and the master node has now the sum 

of forces of all the slave node, the diaphragm displacements and the rotation about 

z – axis. 

 

 

 

a) Typical joint “𝑖” on floor system  
in x – y plane 

b) Constrained system 

Figure 4.7. Rigid diaphragm approximation model 

 

In the case of static loading, the location of the master node 𝑚𝑗 can be arbitrarily 

selected in the plane of the slab. However, for dynamic loading, it is recommended 

to locate the master node at the center of mass of the weights that are assigned to 

the slave joints. As the result of this rigid diaphragm approximation, the following 

compatibility equations must be satisfied for joints attached to the diaphragm: 

       s i s i i m i

x x zu u y u     (4.20) 

       s i s i i m i

y y zu u x u     (4.21) 
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The rotation 𝑢𝜃𝑧
𝑠(𝑖)

 may or may not be constrained to the rigid body rotation of the 

diaphragm. This decision must be based on how beams and columns are physically 

connected to the floor system. That is, if the connection implies fixing of torsional 

moments of columns to the slab or transversal bending moment of beams, this can 

be considered the cases of monolithic construction. In that case, the following 

constraint is used: 

   s i m i

z zu u    (4.22) 

In matrix form, the displacement transformation is as Eq. (4.23) and if rotation in 

𝑢𝜃𝑧
𝑠(𝑖)

 is not used will be as Eq. (4.25): 

 

 

 

 

 

 

 

 

1 0

  0 1        

0 0 1

   

s i m i

ix x

s i m i

iy y

s i m i

z z

u u
y

u u
x

u u 

   
    
           
    
     

      

  
(4.23) 

 

 

 

 

 

 

1 0
    

0 1     

s i m ii

x x

s i m ii

y y

u uy

u ux

       
    
        

 (4.24) 

 

In matrix notation, 

   s m

ju C u   
  (4.25) 

 

Where {𝑢𝑠}, is the displacement of the slave node due to the transformation of the 

constraint matrix [𝐶𝑗], and {𝑢𝑚} is the displacement of the master node. 

 

4.4.3 Multipoint constraint computational modeling 

 

In general, in a numerical model of a real structure, a master node can have 

associated more than two slave nodes with six degree of freedom, for a 3D model. 

The force in the master node correspond to summation of the internal forces acting 
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on all slave nodes in the constrained matrix degrees of freedom (𝐹𝑥
𝑠(𝑖), 𝐹𝑦

𝑠(𝑖),𝑀𝑧
𝑠(𝑖)) 

(see Figure 4.8.b.). Therefore, the other three free degrees of freedom in the slave 

node are independent of the master node’s influence  ( 𝐹𝑧
𝑠(𝑖), 𝑀𝑥

𝑠(𝑖), 𝑀𝑦
𝑠(𝑖)). Hence, the 

stiffness matrix will be reduced by the same constrained matrix [𝐶𝑗]. The 

constrained forces vector corresponding to the constrained stiffness matrix will be: 

 

 

 

 

 

 

 

 

 
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1

1f

2

f 2

3
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f
4

f

C 0 0 0

0 C 0 0

0 0 C 0         

0 0 0 C
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mj

F
F

F
F

F
F

F
F

F

 
    
    
    
         
    
    
     

  

  (4.26) 

 

In matrix notation, 

{𝐹𝑐} = [𝐶𝑗] ∙ {𝐹𝑠} (4.27) 

 

In Eq. (4.27) the vector 𝐹𝑐 will be the constrained forces vector, 𝐹𝑠 the vector of 

forces each slave nodes. 𝐹𝑚𝑠(𝑖) is the vector of forces in the master node that is 

statically equivalent to the forces applied in the slave node. The matrix [CC] is the 

constrained matrix that relates the slave nodes internal forces with the master node 

and the matrix [Cf] represents the independent degrees of freedom of slave node. 

   

1 0 0 0 0 0

CC 0 1 0 0 0 0  

0 0 0 1
i i

mj mjy x

 
 
 
 
  

  
(4.28) 

 

f

0 0 1 0 0 0

C 0 0 0 1 0 0  

0 0 0 0 1 0

 
 

  
 
 

 (4.29) 
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(4.32) 

 

 

a) Typically floor system without constraint 
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b) Constrained floor system after transformation 

Figure 4.8. Diaphragm model 

 

In the constraint matrix [CC], the notation 𝑥𝑚𝑗

(𝑖)
 and 𝑦𝑚𝑗

(𝑖)
 are the distance in the 

plane between master node 𝑚𝑗
(𝑖) of its corresponding diaphragm and slave 

node 𝑠𝑗
(𝑖). They can be computed by the difference between the in plane coordinate 

of the master node minus the slave node. 

𝑥𝑚𝑗

(𝑖)
= (𝑥(𝑚) − 𝑥(𝑖)) (4.33) 

𝑦𝑚𝑗

(𝑖) = (𝑦(𝑚) − 𝑦(𝑖)) (4.34) 

 

As it was mentioned before, the stiffness matrix is reduced to a constrained stiffness 

matrix, and it can be computed by Eq. (4.35): 

[𝐾𝑐] = [𝐶𝑗] ∙ [𝐾𝑒] ∙ [𝐶𝑗]
𝑇
 (4.35) 

 

Finally, the constrained displacement vector {𝑢𝑚} and the total displacement vector 

{𝑢𝑠} at the slave node, due to the influence of the master node of its corresponding 

diaphragm, is: 

{𝑢𝑚} =  [𝐾𝑐]
−1 ∙ {𝐹𝑚} (4.36) 

{𝑢𝑠} = [𝐶𝑗]
𝑇

∙ {𝑢𝑚} (4.37) 

 

As mentioned in 4.4.2, the master node will be located in the center of masses of 

the diaphragm. Which can be computed as: 
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
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  (4.38) 

 

Where 𝑥(𝑖) is the coordinate vector of the masses 𝑀𝑥(𝑖) belonging to the floor 

diaphragm.  

 

 

 

4.5 Structural dynamics  

 

Time dependent response of an undamped system in free vibration is governed 

by the equation of motion. The frequency and vibration mode of the system is given 

by the, so called, characteristic equation, presented in chapter 2. In a multi-degree 

of freedom problem, nodes without masses in some DOF may exist, this provokes 

singularities in the mass matrix. For this reason, the mass and stiffness matrices 

must be condensed. The following section shows the static condensation method.  

 

4.5.1 Static condensation method 

 

The static condensation method is used to eliminate the degrees of freedom that 

have no assigned mass, in order to conduct the dynamic analysis. First, one should 

identify those degrees of freedom to be condensed and those that are not, for 

instance, by looking at the mass assigned in the degree of freedom. The algorithm 

for this method, starts by assigning a value, e.g. unit, for the values to be condensed 

and those to be independent, as in Eq. (4.41) and Eq. (4.42), respectively, taking 

as example the mass and stiffness matrix as in Eq. (4.39) and Eq. (4.40). 
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11 15
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k k
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 (4.39) 
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m
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 
 
 
 
  

 (4.40) 

 

1 0 0 0 0
MC = 

0 0 0 0 1

 
  

 (4.41) 

 

0 1 0 0 0

MI = 0 0 1 0 0

0 0 0 1 0

 
 
 
 

 (4.42) 

 

The partitioned condensed and independent matrices are computed by: 

       
T

KCC  = MC K MC   (4.43) 

 

       
T

KCI  = MC K MI   (4.44) 

 

       
T

KIC  = MI K MC   (4.45) 

 

       
T

KII  = MI K MI   (4.46) 

 

The reduced condensed matrix is finally obtain as follows: 

         
1

cK  = KI KIC KCC KCI


    (4.47) 

 

In order to work with the same independent degrees of freedom, the mass matrix 

is reduced as well by, 

       
T

cM MI M MI    (4.48) 
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4.5.2 Modal Analysis 

 

In the proposed design method, the seismic analysis problem is solved by means 

of the modal spectral dynamic analysis. To carry out this methodology, the 

characteristic equation, as in Eq. (4.49), must be solved and modal properties of 

the structures is analyzed.  

     2
K M a   (4.49) 

The roots 𝜔2 of this equation provides the eigenvalues of the system, and the 

square root of the natural frequencies 𝜔𝑖. Thus, it is possible to solve for the 

unknown vectors {𝑎𝑖} in terms of relative values. These vectors are the eigenvector 

and represent the vibration modes. As the solution are the eigenvectors, they are 

represented in relative magnitude, i.e., normalized for practical magnitude. Several 

normalization criteria are possible. Here the eigenvector are normalized as: 

    
T

M

ij

ij

j j

a

a a

   
(4.50) 

The directional eigenvector in “x” can be obtain by: 

11, 12, 13, 14, 15, 16,

21, 22, 23, 24, 25, 26,
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,
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 

65, 66, 


 
 
 
 
 
 
 
 
 
  

 (4.51) 

 
Where, 𝐽𝑥 is a directional reduction matrix, in matrix notation is: 

 ,ij x x ijJ          (4.52) 

For “y” direction, 𝐽𝑦 is as below, directions matrix 𝐽 in other direction is obtained in 

the same manner. 
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0 1 0 0 0 0

0 0 0 0 1 0
y

J
 
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 

 
(4.53) 

For a normalized eigenvector, the mass participation factor is computed as: 

   1
T

i j M        (4.54) 

In order to obtain displacement and forces in all degrees of freedoms (DOF), the 

previously condensed DOF should be recovered. Hence, the condensed modal 

displacement is obtained as: 

   
1

j,cond  = KCC KCI j 


          (4.55) 

And the total modal displacement for each mode is computed by: 

   j,tot j,cond = MC MI
T T

j                (4.56) 

 

4.5.3 Modal Spectral analysis 

 

Modal spectral analysis is used to determine the maximum earthquake response 

by means of the response spectrum. For seismic design using a design spectrum, 

spectral acceleration should be obtained for each natural vibration mode of the 

structures. Thus, nodal forces for each mode can be computed as: 

   j j = M j jf Sa g                (4.57) 

The modal base shear is obtained as: 

     j  = 1
T

jVb f   (4.58) 

All the internal forces (shear force, bending moment, axial force, etc.) due to 

each modal response “𝑅𝑗” are combined, in this proposal, by the method (SRSS) 

for well separated natural frequencies. In the DLA method, the auxiliary structure 

presents the plastic rotation in each internal perfect hinge. When the modal spectral 

analysis is carried out, the plastic rotation from each modal response must be 

combined by the combination method, in that cases SRSS method. 
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 2

1

 = 
n

j

j

R R


  (4.59) 

 

In order to obtain directional modal forces, base shear, and internal forces 

response by modal combination, directional matrix should be used as in Eq. (4.51). 
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5 EFFECTS OF HIGHER 

VIBRATION MODES  
 

 

 

5.1 Introduction  

 

In current seismic design process, the modal spectral analysis provides an 

overview of the importance of the first mode of vibration, typically regarded as the 

fundamental one. Based on elastic properties, higher vibration modes can be 

neglected. Nevertheless, when inelastic behavior occurs, the contribution of 

different mode shapes may be more important.  
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The current seismic design practice is to estimate the structures response based 

on elastic models, but, for economic reasons, buildings are not designed to remain 

elastic under the design earthquake. Instead, yielding is normally allowed to form 

at the end of beams or base of walls under such severe ground shakings. Although, 

the plastic rotation in the hinge zone must be within an acceptable limit and the 

length of the element outside the hinge zone is expected to remain elastic. 

 

The response spectrum analysis (RSA), which accounts for multi-mode effects, 

is commonly used in the seismic design of buildings. In the RSA procedure, the 

elastic responses of each vibration modes are first determined from the response 

spectrum at 5% damping ratio. Then, the total elastic response is combined by 

either the SRSS or the CQC method. Finally, seismic load is affected by a response 

modification factor (“R” or “q”) that accounts for the system overstrength and 

inelastic effects. 

 

The most common practice is to assume the same reduction factor for all modes, 

without changing the load distribution and, in some cases, applying an equally 

overstrength factor to all elements to remain elastic. Although, there is a strong 

evidence that inelasticity affects higher modes of vibration unequally. In some case, 

only one mode is considered. 

 

Recently, extensive research by Biondini et al. (2012), Ghorbanirenani (2011), 

Tremblay et al. (2008), Panagiotou & Restrepo (2007) and Tremblay, et al. (2005) 

have been carried out on the effects of higher modes through laboratory 

experiments for low and medium rise concrete building. A plastic analysis was 

carried out in Moehle (2015) in order to highlight the problem of the concept of weak 

beam – strong columns related to higher modes in inelasticity process. Those 

research has been conducted regarding higher-mode effects on the response of 

multi degree-of-freedom (MDOF) systems. In some of these researches, certain 

proposals or approximations are made attempting to avoid this problem.  
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In this chapter, the work of Moehle (2015) and Biondini, et al. (2012) are 

analyzed, and the performance based seismic design method proposed in Chapter 

3 is used as an assessment methodology of the effects of higher vibration modes. 

 

5.2 Plastic and collapse mechanism for a 12-storey regular building  

 

In Moehle (2015) it is stated that, when a building sways during an earthquake, 

the distribution of damage over height depends on the distribution of lateral drift. In 

a case where a building have weak columns, drift tends to be concentrated in one 

or few stories, and may exceed the drift capacity of the columns. If columns provide 

a stiff and strong spine over a building height, drift will be more uniformly distributed, 

and localized damage will be reduced (see Figure 5.1).  

 

Figure 5.1. Idealized beam-yielding mechanisms: (a) story mechanism; (b) 

intermediate mechanism; (c) beam mechanism. 

 

Another aspect is that, in order to achieve a complete mechanism involving 

hinges in all stories as in Figure 5.1 (c), columns moment strength several times 

larger than the beam moment strengths may be required, which may result 

uneconomical. Therefore, some yielding of the columns has to be anticipated 

especially at the base of the column in the first story. 

Moehle (2015) also analyzed a 12-storey building (see Figure 5.2). Here the 

failure mechanism developed was studied with a “strong column – weak beam” 

overstrength ratio of 1.2, as it is required in ACI 318 (2014). It is observed in the 

Figure 5.2, that some columns are yielding and the mechanism is formed in the 6 th 

floor, even though it had been designed following the “strong columns – weak 

beam” design philosophy.  
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Figure 5.2. Calculated plastic mechanism for a 12-story frame. (Moehle, 2015) 

  

Even if beam overstrength was negligible, which generally is not the case, column 

yielding along the building height was unavoidable unless the columns were made 

much stronger than the beams. That is, the overstrength factor is largest then 1.2. 

 

This conclusion was demonstrated using a limit analysis of a frame under lateral 

loading, as follows. Let us consider the frame shown in Figure 5.2(a). An Imposed 

virtual displacement was applied in a kinematically acceptable yield mechanism, 

such as the one shown in Figure 5.2(b). For this example, it was considered only 

virtual mechanisms extending from the base to some upper level. A virtual work is 

done by the external forces, acting through virtual lateral displacements, and by 

internal moments, acting through the hinge virtual rotations.  

The correct solution is the one corresponding to the minimum base shear. For 

this example, it was found that, the correct solution is a mechanism extending from 

the base through level 6 Figure 5.2(c), when the overstrength factor of 1.2 was 

used. 

 

Although the correct mechanism was found to extend up to level 6, it can be 

seen in Figure 5.2(c) that other mechanisms were nearly as critical. It was stated 

that slight changes in relative strengths within the frame could result in different 

mechanism.  
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Thus, it is explicitly interpreted that “It should be expected that yield mechanisms 

during earthquake ground shaking will vary from one time to another because the 

lateral load profile continuously changing with time” […]. An issue that the 

methodology proposed in Chapter 3 is expected to take into account. 

 

In the next section a parametric analysis is presented. Three buildings with 

similar layout as the one in Figure 5.2 are analyzed. The difference between the 

three are the columns stiffness (columns size). The objective, is to compare the 

results when designing with the DLA method and the observed in Figure 5.2. The 

DLA is used in order to analyze the “strong column – weak beam” performance 

through the overstrength factor, obtained from the DLA method. Those analyzes 

are part of a numerical validation comparing with the plastic analysis done in Figure 

5.2. A fourth case with similar building is analyzed. However, in this case the 

mechanism proposed is that beams yield from first to sixth story and yielding of top 

columns in the sixth floor. The aim of this proposal is to impose a columns failure 

in middle height. 

 

5.2.1 Assessment with the “Double Linear Analysis” (DLA) of higher mode 

effects for a twelve story building. 

 

The example presented in the previous sections is considered as benchmark, 

as it has a simple geometry, fully regular, and it is a relatively tall structure. Although 

there is not a detailed information described as the cross section, story height, 

gravitational loads and seismic hazard. 

Nevertheless, a variation of cross section strength is considered. By analyzing 

the model with the “Double linear analysis” (DLA) described in Chapter 3, it is shown 

that the beam hinges formed in a high floor due to a biggest force in this a high floor 

produced by higher modes effect. After reproducing the original case-study, a 

parametric analysis is carried out. 
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This first case corresponds to square columns of 150, 130 and 100 cms from 

level 1 to 4, level 5 to 8 and level 9 to 12 respectively; the second case are columns 

of 130, 110, 90 cm and the third case columns of 100, 90, 80 cm. Beams are all 

equal to 40x60 cm. The building is subjected to a gravity load of 35 KN/m and a 

seismic hazard correspond to a design spectrum from EC8 (2004) type 1, ductility 

factor 𝑞 = 1, soil type B and a pga = 0.25g, (see Figure 5.3).  

 

For the first three cases, the DLA method is used to design a beam yielding 

mechanism in whole height, that is means all beam completely damage for the 

seismic action. Load pattern in all cases is compared from an elastic and inelastic 

structure. The “strong column – weak beam” overstrength factor (Ω) is compared in 

order to appreciate the difference distribution of strength demand along the height 

of the structure.  

 

 

 
Figure 5.3. Design Spectrum 
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5.2.1.1 Case 1 

 

 

Figure 5.4. Conventional load pattern in comparison with the obtained from the 
“Double Linear Analysis”  

 

 

  

a. Bending moment for columns b. Overstrength required in column by floor 

Figure 5.5. Overstrength required of columns with the double linear analysis for the a 
criteria of “strong column – weak beam” 

 

 

 



CHAPTER 5: EFFECTS OF HIGHER VIBRATION MODES 

90 

 

5.2.1.2 Case 2 

 

  

Figure 5.6. Conventional load pattern in comparison with the obtained from the “Double 
Linear Analysis” 

 

  

a. Bending moment for columns b. Overstrength required in column by floor 

Figure 5.7. Overstrength required of columns with the double linear analysis for the 
concept of “strong column – weak beams” for the case 2. 
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5.2.1.3 Case 3 

 

 
 

Figure 5.8. Conventional load pattern in comparison with the obtained from the  
“Double Linear Analysis” 

 

 

 
 

a. Bending moment for columns b. Overstrength required in column by floor 

Figure 5.9. Overstrength required of columns with the double linear analysis for the 
concept of “strong column – weak beams” for the case 3. 
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5.2.1.4 Case 4  

 

The effect of varying the strengths of columns and beams using a limit analysis 

approach is shown in Figure 5.10. It shows a case where the overstrength ratios, 

where 𝛼𝑜𝑠 is ranging from 0.8 to 4.0. For  𝛼𝑜𝑠 = 0.8 𝑜𝑟 1.0, the critical mechanism is 

a soft story in the sixth floor. As 𝛼𝑜𝑠 increases above 1.2, the base shear strength 

increases and the controlling yield mechanism corresponding to the minimum base 

shear for that value of 𝛼 extends higher into the structure. For the case of 𝛼𝑜𝑠 = 4, 

Moehle (2015) obtained yielding in the columns in the sixth floor. However, a full 

beam mechanism is never achieved.  

 

For the sake of comparison, in the following, DLA is going to be used to study 

the maximum overstrength factor needed for a similar collapse mechanism (Figure 

5.11.a). The maximum overstrength factor obtained with the DLA is 3.6. If the curve 

in Figure 5.10 is interpolated to a value of 𝛼𝑜𝑠 = 3, or, to others curves the minimum 

value will be for the fifth floor or higher floor. Meantime, the DLA prediction is 

compared to the limit plastic analysis of Moehle. It is worth noting, as it can be seen 

in Figure 5.11.c, that the overstrength factor is not uniform in all stories. 

Nevertheless, for conventional seismic design, a single overstrength factor is 

considered. This issue can lead to never achieving the full “strong column – weak 

beam” collapse mechanism. This leads, in many cases, to column yielding in an 

upper story. 

  
Figure 5.10. Yield mechanism solution for frame designed with different ratios of 

columns to beam strengths. The base shear is normalized to the value for 𝛼𝑜𝑠 = 0.2. 
(Moehle, 2015) 
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a) Mechanism 
proposed 

b) Bending moments in 
columns  

c) Overstrength factor 
necessary along the height  

Figure 5.11. Overstrength factor assessment for a mechanism in the sixth floor 

 

5.2.2 Discussion  

 

In Figure 5.4, Figure 5.6 and Figure 5.8, there were presented conventional load 

patterns obtained with an elastic modal dynamic spectral analysis (MDSA) for 12-

story building. This first load pattern, shown in dash line, is compared to a load 

pattern from a MDSA of a second structure assuming all beams yielded (with 

perfect hinges). These two load patterns are compared, and discussion about the 

different characteristic of the design shear force are discussed in the following.  

 

5.2.2.1 Relationship of the force reduction factor to the shape of load distribution 

 

The criterion of “strong column – weak beam” suggests that all beams should be 

yielded before a mechanism is formed. After all beams are yielded, columns at the 

base story should present plastic hinges. However, in Figure 5.4, Figure 5.6 and 

Figure 5.8, it was demonstrated that, when all beams yield in the column 

connections, the load pattern will vary, resembling more to a system where columns 

act as a cantilever. In Figure 5.4, Figure 5.6 and Figure 5.8 it can be observed that, 

in between those two load patterns, there will be other patterns that should appears 

in the process of damage of all beams until have a complete damage.  
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Although, the reduction factor 𝑞 is uniformly applied in standards codes, the 

method of Double Linear Analysis for Performance Based Seismic Design (DLA) 

shows that this load pattern can vary much when all beams are damaged. Being 

more similar to the second mode of vibration with local maximum values, in the top 

floor and 1/2 - 1/3 height approximately. 

 

 In the Figure 5.4, Figure 5.6 and Figure 5.8 it was shown, in light continuous line 

that, the load pattern for a conventional MDSA but applying the reduction factor  𝑞 =

4, 𝑞 = 3, 𝑞 = 2  𝑎𝑛𝑑  𝑞 = 1.5. It is evident that the difference between the load 

pattern with all beam damage in comparison with the elastic reduced by a single 

factor.  

 

5.2.2.2 Strong column – weak beam overstrength factor 

 

By comparing the bending moments on the beams and columns in a joint, 

obtained from the DLA, it can be observed that the bending moment vary after 

considering the beam yielded. Therefore, the required overstrength factor of the 

columns can be computed in order for not yielding in the columns of that joint. 

The three cases are represented in Figure 5.5.b, Figure 5.7.b and Figure 5.9.b, 

respectively. The evaluation is done with the elastic moment of interior columns and 

other case with exterior columns with the respectively moment at the same joint 

with all beam completely damaged. It can be observed in Figure 5.5.a, Figure 5.7.a 

and Figure 5.9.a, which the maximum overstrength factor in all cases investigated 

is located at about 1/3 of height of the building. The maximum overstrength factor 

decreases to zero at the top floor, where there is no need bending moment for the 

auxiliary structure, when 𝛼 = 1. However, in practice the overstrength factor should 

be larger than 1. Analyzing the Figure 5.5.b, Figure 5.7.b and Figure 5.9.b, it can be 

concluded that overstrength factor are not needed from columns 9 to 12 almost in 

all cases. Although, some minimum overstrength should be considered to account 

for the stochastic variability of the beam and column strength. Nevertheless, the 

minimum overstrength factor is needed in almost 1/3 of the height. Hence, providing 
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a constant value is not economical. Furthermore, from middle height to base floor 

the overstrength factor is decreasing not to zero but between 2 and 2.5, which is 

reasonably consider in some standards code as the overstrength factor should be 

1.2 or 1.35.  

A similar result it is highlighted in the work of (Franchin & Pinto, 2012), where, 

the deformation inter-story drift is compared in each floor for a normal MSDA 

capacity design and the peak inter-story drift profile for five return periods for a non-

linear time-history analysis. In the modified design method proposed in (Franchin , 

et al., 2016), the news constraint ensure that Columns-Beams-Capacity design 

ratios (CBCRs) is larger than 1.2 at all nodes but for the base of ground floor 

columns. 

 

5.2.2.3 Sensitivity analysis of DLA results 

 

Another relevant aspect for this analysis is that, the building studied in (Moehle, 

2015) was analyzed changing the size of columns as it was mentioned earlier. The 

first remark is that, the lateral behavior is practically the same in terms of shape 

deformations; however, it is observed that if the structure is less stiff, the base shear 

is reduced more than for a stiffer structure.  

 

Another important observation is related with the overstrength factor. In all cases 

the maximum load is higher than elastic seismic forces in the middle height of the 

structure. In the case 1, the maximum overstrength factor is in the sixth floor while 

by reducing the column’s stiffness the peak overstrength factor occurs on lower 

floor. In case 2 the maximum overstrength factor is in the 5-4 story and in case 3 is 

clearly in the 4 story. Note that the case 1 coincides with the example in the work 

of Moehle (2015). 

 

Therefore, in the case 1 (see Figure 5.4 and Figure 5.5) the maximum demand 

of overstrength factor is also in the sixth floor, with a much higher value than the 

required in standards codes, but coinciding with the results of Moehle (2015).  
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5.2.2.4 Recommendation for the “strong column – weak beam” capacity design 
criterion 

 

Currents seismic standards codes requires designing frames structures with the 

criterion of “strong columns –weak beam”. This requires that, in a joint, the sum of 

moments of columns should be larger than the sum of the moment of beams 

connected to this joints by a certain overstrength factor. The multiplying factor 

varies in different codes, from 1.2 in UBC code to 1.35 in EC8. In any case, the 

intended objective is to avoid plastic hinges in columns, by assuming that if the 

beam yields first in any joint the column would not experiment an increment of 

amount demand. The intention is to exploit all sectional ductility capacity of plastic 

hinges in beams.  

This assumption mentioned above, should be a first step in a capacity design to 

ensure that all beam will yielded in plastic hinges. A second step should emphasize 

a second state after beams are yielded, in which columns are acting as a cantilever. 

Here, bending moments can be much bigger than the supposed elastic state and 

beams are presented a very low bending moment or zero. Along the height of 

columns acting as a cantilever, the overstrength factor is different in each story and 

much higher than the increasing factor to meet the concept of “strong column – 

weak beam” as it was mentioned above. This can be observed in Figure 5.5.b, 

Figure 5.7.b and Figure 5.9.b. 
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5.3 Assessment for a Pseudo-dynamic test on a full scale prototype  

 

5.3.1 Description of the case study 

 

In the work of Biondini et al. (2012) a numerical investigation was carried out on 

a full-scale prototype of a multi-storey precast structure (see Figure 5.12). The main 

objective of the research was to analyze the performance of different types of 

precast connections. A pseudo-dynamic tests was carried out on the different 

structural schemes shown in Figure 5.13. The forces on each actuator was initially 

estimated based on the base shear distribution of the design seismic forces from a 

modal spectral analysis. However, after that, a non – linear time – history analysis 

was carry out and showed that the maximum floor forces expected was much 

higher and exceed the actuators capacity as it is shown in Figure 5.15.b to Figure 

5.17.b. Hence, the prototype was forced to reduce one span and the final model 

was as it is shown the final configuration in Figure 5.12. 

 

The results of the non – linear analyses highlighted the importance of the higher 

vibration modes, which were considered the responsible of higher forces, in some 

cases in mid-floors. For all the numerical cases studied with this prototype, it is 

shown that the response spectrum modal analysis allows a reliable estimation of 

the storey displacements (see Figure 5.15.a to Figure 5.17.a), whereas it may lead 

to a significant underestimation of the maximum story forces, as it is shown in  

 

Table 5.1. Here, it is shown the comparison of peak floor forces and floors 

displacements of a modal analysis and a non – linear time – history analysis.  
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Table 5.1. Story forces and displacements evaluated through modal analysis and  
non – linear time – history analysis for the prototype 

 Model 2, 3 and 4 for viscous damping (𝜉𝑣 = 0%) 

  Displacement (cm) Peak story forces (KN) 

 Storey Modal Time-History Modal Time-History 

Model 2 

III 19.86 16.48 195 722 

II 10.72 9.81 233 1047 

I 3.32 4.12 234 1384 

Model 3 

III 11.1 10.44 250 738 

II 8.34 7.16 231 747 

I 3.14 3.17 223 1143 

Model 4 

III 3.79 5.60 410 875 

II 2.99 4.38 395 1100 

I 1.51 2.4 265 982 

 

 
Figure 5.12. The structural prototype.  

 

Figure 5.13. Schemes of the structural prototype. 
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The seismic input action was the East-West component of the modified 

Tolmezzo accelerogram (see Figure 5.14.a), with a total duration of 12 second. The 

corresponding scaled response spectrum matches very well the Eurocode-8 (2004) 

design spectrum for a soil class B, (see Figure 5.14.b). The maximum amplitude of 

the accelerogram is scaled due to the soil factor to 0.3g. 

 

  

a) Tolmezzo Accelerogram b) Scale response spectrum Modified  

Figure 5.14. Seismic input action 

 

  

a) Story displacement  b) Story forces 

Figure 5.15. Comparison of modal and time-history analysis for Model 2 for 𝜉𝑣 = 0% 

 

 



CHAPTER 5: EFFECTS OF HIGHER VIBRATION MODES 

100 

  

a) Story displacement b) Story forces 

Figure 5.16. Comparison of modal and time-history analysis for Model 3 for 𝜉𝑣 = 0% 

 

 

  

a) Story displacement b) Story forces 

Figure 5.17. Comparison of modal and time-history analysis for Model 4 for 𝜉𝑣 = 0% 

 

 

5.3.2 Assessment of Model 2 by means of the DLA method 

 

The model 2 (Figure 5.15) has been numerically tested by a time-history non-

linear analysis (THNLA) for different viscous damping implementing the Rayleigh 

proportional damping. In the pseudo-dynamic test the viscous damping is 

neglected. This consideration is made assuming that, while full-scale test is done, 

hysteretic behavior is present, but not viscous damping. However, the modal 

spectral analysis was carried out for a 5% of viscous damping to design the full-

scale prototype, the behavior factor q corresponding is 3. 
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The DLA method was used as an assessment method. A blind prediction was 

done in order to propose a mechanism that satisfies the same load pattern for the 

THNLA results. As the THNLA, three viscous damping were proposed (𝜉𝑣 = 0%, 

𝜉𝑣 = 2%, 𝜉𝑣 = 5%); however, for the DLA, theses 𝜉𝑣 were used for MSDA for a 

scaled response spectrum corresponding to the same signal used in THNLA 

(Tolomezzo earthquake), see Figure 5.18. Figure 5.18 shows the three response 

spectrum compared with the design spectrum. 

 

The first test with the DLA method proposed for a certain distribution of hinges 

resulted in a different configuration of distribution of peak story forces (load pattern) 

in comparison to an elastic modal dynamic spectral analysis (MDSA). 

Other tests (varying the local damage) were done in order to seek for a similar 

load pattern found in the THNLA (see Figure 5.19). For practical proposes, the 

same scheme of local damage proposed with the DLA for one case study is used 

to vary the viscous damping. Finally, it was possible to find the load pattern obtained 

from the THNLA (see Figure 5.19.b, Figure 5.19.d. Figure 5.19.f). 

 

 
Figure 5.18. Series of Response spectrum corresponding to 

 the scaled Tolomezzo earthquake. 
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a) Mechanism proposed 
b) Time-history analysis with 0% of 

viscous damping. Equivalent 
damping of 15.1% 

 
 

c) Mechanism proposed 
d) Time-history analysis with 2% of 

viscous damping. Equivalent 
damping of 15% 

 
 

e) Mechanism proposed 
f) Time-history analysis with 5% of 

viscous damping. Equivalent 
damping of 7%. 

Figure 5.19. Comparison of modal analysis, non-linear time-history analysis and the 
DLA with and without equivalent damping for Model 2 

 

The Figure 5.19 is summarized in the Table 5.2, where the conventional MDSA 

used for the design of the prototype is compared with the time – history analysis 

peak stories forces with the shown viscous Rayleigh damping, then, it is compared 

with the DLA method using a MDSA for the same viscous damping (𝜉𝑣) values 

finding the same load pattern distribution. Finally, for these last result, a wide range 
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of equivalent damping (𝜉𝑒𝑞) values were proposed. The hysteretic rule used was a 

Takeda fat law. A damping correction factor (𝜂) could be computed from an 

equivalent damping. Thus, a wide range of equivalent damping are proposed in 

order to find the best that fits with the peak stories forces from THNLA, as it is 

shown in Table 5.3. 

 

Table 5.2. Comparison of the time – history analysis story forces [KN] with DLA with 
different viscous damping but with a hysteretic damping and with the modal analysis with 

the 5% of viscous damping 
 Story Modal ξv =5% Time-History ξv =0% DLA ξeq = 15% DLA ξv =0% 

Model 2 

III 195 722 825.2 1167 

II 233 1047 1151.2 1628 

I 234 1384 1583.9 2240 
 Story Modal ξv =5% Time-History  ξv =2% DLA ξeq = 15% DLA ξv =2% 

Model 2 

III 195 514 503.7 747 

II 233 747 757.3 1123 

I 234 839 807.2 1197 
 Story Modal ξv =5% Time-History ξv =5% DLA ξeq = 7% DLA ξv =5% 

Model 2 

III 195 459 422.3 542 

II 233 553 562.9 723 

I 234 691 717.8 922 

 

Table 5.3. Reduction of load pattern [KN] for three story due to a wide range of equivalent 
damping values 𝝃𝒆𝒒 for a time-history analysis with 0% of viscous damping  

𝝃𝒆𝒒  0.05 0.100 0.130 0.150 0.170 0.190 0.210 0.230 0.250 

𝜼 1 0.816 0.745 0.707 0.674 0.645 0.620 0.598 0.577 

S
to

ry
 III 1167.00 952.9 869.8 825.2 786.8 753.3 723.7 697.4 673.8 

II 1628.00 1329.3 1213.4 1151.2 1097.6 1050.9 1009.6 972.9 939.9 

I 2240.00 1829.0 1669.6 1583.9 1510.2 1445.9 1389.2 1338.7 1293.3 

 

  
a. Complete cyclic response test b. Biggest loop for a cycle 

Figure 5.20. Cyclic test for the full scale prototype for the model 2 

A2 
A

 

𝜉𝑒𝑞 =15.1% 
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Table 5.3, shows the responses for a wide range of equivalent damping, it can 

be seen that an equivalent damping corresponds to a good estimation of story 

forces distribution. However, for 𝜉𝑣 =  0%, a 𝜉𝑒𝑞 =  21%  fits the story peak story 

forces from time-history analysis. Nevertheless, analyzing the cyclic test in Figure 

5.20, the energy dissipate is, for an equivalent damping of 15%, despite this, the 

story forces for the DLA for 𝜉𝑣 =  0% with 15% of equivalent damping is still a good 

accuracy compared for the peak forces of THNLA (Figure 5.19.b). 

One of the reason of this different load pattern and higher forces is the effect of 

higher mode of vibration. Leading to a distribution of plastic hinge different than 

expected for the designed prototype. The scheme of local damage was correctly 

predicted with a blind prediction for many proposal of local damage, selecting the 

one that fit the load pattern from non-linear time-history, by using the method of the 

DLA. Hence, another indicator that 15% of equivalent damping is adequate is 

because of the maximum base shear in the cyclic analysis, in the Figure 5.20 is 

1948 KN. Assuming that the second mode of vibration is predominat, one of the 

story forces should have opposite sign. In Table 5.3, for an equivalent damping of 

15%, the 3rd story is considered negative (see Figure 5.21). This force distribution 

sums a base shear of 1909.9 KN. The assumption of a stories forces as a negative 

value can be perfectly adopted due to the modal combination where the SRSS 

method the sign is lost with the square exponent.  

 

Figure 5.21. Floor forces with sign assumption for model 2. An equivalent damping of 

15% for a mechanism with hinges at the top of first floor’s column. 
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A visual inspection on the full scale prototype at the end of the test campaign 

was done by the referred authors. The aim is to give a general description of the 

damage in structural members. For instance, the cracking pattern has not been 

represented by following the exact pattern of each member, but patterns have been 

simplified in order to represent the common status of all similar members. Some 

damage are presented in Figure 5.22, in particular damage at the second story, 

where it was unexpected according to the original design. 

 

 
 
 
 
 

 
 

Figure 5.22. Column crack pattern  
(Negro, et al., 2012) 
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5.3.3 Assessment of model 3 and 4 (monolithic prototype)  

 

Similarly to model 2, a non-linear time-history analyses were made in order to 

look for the forces necessary in the actuators for the pseudo-dynamic test for the 

model 3 and 4. The model 4 is a monolithic structure as it is shown in Figure 5.23.c. 

The analysis is performed in the same manner as in the previous section, in order 

to find an equivalent damping that occurred in the time-history analysis for the real 

structure.  

 

 

 
 

a. Mechanism Proposed for Model 3 b. Time-history analysis with 0% of 
viscous damping. Equivalent damping 

of 24%. 

 
 

c. Mechanism Proposed for Model 4 d. Time-history analysis with 0% of 
viscous damping. Equivalent damping 

of 24%. 

Figure 5.23. Comparison of the result with time-history analysis and the 
DLA for Model 3 y Model 4. 
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Table 5.4. Reduction of load pattern [KN] due to a wide range of equivalent damping 
values 𝝃𝒆𝒒 belonging to a time-history analysis with 0% of viscous damping for the  

Model 3 

𝝃𝒆𝒒  0.05 0.10 0.13 0.16 0.19 0.21 0.24 0.27 

𝜼 1.000 0.816 0.745 0.690 0.645 0.620 0.587 0.559 

S
to

ry
 III 1301.40 1062.6 970.0 898.1 840.1 807.1 764.2 727.5 

II 1241.40 1013.6 925.3 856.6 801.3 769.9 729.0 694.0 

I 1956.50 1597.5 1458.3 1350.1 1262.9 1213.4 1148.9 1093.7 

 

Table 5.5. Reduction of load pattern [KN] due to a wide range of equivalent damping 
values 𝝃𝒆𝒒 belonging to a time-history analysis with 0% of viscous damping for the  

Model 4 

𝝃𝒆𝒒  0.05 0.10 0.13 0.16 0.19 0.21 0.24 0.27 

𝜼 1.000 0.816 0.745 0.690 0.645 0.620 0.587 0.559 

S
to

ry
 III 1493.50 1219.4 1113.2 1030.6 964.1 926.2 877.0 834.9 

II 1652.30 1349.1 1231.6 1140.2 1066.6 1024.7 970.3 923.7 

I 1507.80 1231.1 1123.8 1040.5 973.3 935.1 885.4 842.9 

 

On the model 3 and 4, there were two different mechanism proposed for each 

case in order to find the same stories forces as in the non-linear time-history, 

respectively. A cycle test of the full-scale prototype for all configuration was done, 

as it is shown in Figure 5.20 and Figure 5.24; a visual inspection was performed 

(see Figure 5.22). The global damage, after all cycle test, is referenced in the Figure 

5.25. This figure, helped to decide the best mechanism for the model 3 and 4, (see 

Figure 5.23.a and Figure 5.23.c).  

 

For the cycle test of model 4, the biggest hysteretic loop correspond to an 𝜉𝑒𝑞 =

24%. If this equivalent damping is used for the DLA, it fits very well in comparison 

with floor forces for the time-history analysis, as it is shown in Table 5.5. Moreover, 

an equivalent damping of 19% fit even better.  

The proposal of damage with the method of the DLA is reasonably good, as it 

reproduced the local damages by experimental test.  
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a) Complete cyclic response test b) Biggest loop for a cycle 

Figure 5.24. Cyclic test for the full scale prototype for the model 4 

 

 

Figure 5.25. Typical damage and plastic hinging formation after the cyclic test 

 

 

5.3.4 Discussion  

 

In this section, it was studied the importance of the influence of higher modes 

effect on experimental test. The method of the DLA was used as an assessment 

method for a numerical example in literature, and for full – scale experimental test 

for a three story precast building. Others full – scale experimental test for concrete 

walls are presented in chapter 2. In Chapter 3, it was demonstrated that the higher 

modes gain importance when damage start to happen. The first occurrence of 

damage appear with the first mode of vibration as the predominant mass 

participation factor. Nevertheless, as it was explained, when damage occurs, the 

structures becomes more flexible, the importance of first mode of vibration 

decreases and higher vibration modes gain weight in mass participation factor.  

𝜉𝑒𝑞 = 24.2% 
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The example of Luu, et al. (2014) presented in section 2.5.1 in chapter 2 is 

demonstrated similar conclusions (see Figure 3.9) as the DLA methodology 

exposed in chapter 3. In Figure 3.9, the result of the experimental test, and the 

elastic analysis using the reduction factor “q” for seismic force in order to account 

for inelastic behavior is compared. A conclusion is that load pattern shape should 

not be homotetically reduced along the height. As it was stated in previous sections, 

the load pattern changes along the damage process. This leads to different 

configuration of internal forces. In some cases, for mid height and tall buildings, 

similar values for bottom inelastic forces and elastic forces are observed, although, 

it might differ for other floors, as in work of Moehle (2015), (see Figure 5.4, Figure 

5.6 and Figure 5.9). For this reason the base shear in many cases is bigger than 

expected when using a reduction factor, as in the case of the work of Biondini, et 

al. (2012). On the other hand, for 3D models and irregular structures it is a complex 

issue, as the deformed shape can change in different direction even different from 

vibration modes shapes, the phenomenon depends on the damage location, this 

will be discussed in Chapter 6.  

 

Some different proposal exist in order to account for an approximation of the 

higher modes effects. Many full scale experimental test, especially for those 

medium rise building (more than 2-3 story), are made some proposal in other to 

consider this effect in concrete walls as in the work of Panagiotou (2008) and 

Panagiotou & Restrepo (2011). Other works highlighted the importance of making 

a proposal to consider higher modes effects in structural design phases as Luu, et 

al. (2014), Maniatakis et al. (2013), Ghorbani-renani (2010), Tremblay, et al. (2008), 

among many others. 
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6 VALIDATION EXAMPLES 
 

 

 

6.1 Introduction 

 

In this chapter, five structure are designed with the DLA method in order to show 

the applicability of the approach to different performance objectives and types of 

irregularities. Each example is also used as a validation of the method as the 

performance of the designed cases. They are also assessed by means of both 

pushover (PO) and non-linear time-history analysis (NLTH) computed by the 

software SAP2000. 

The first example consists on a simple regular 3-story building, while the 

irregularities and complexity is increased in the following cases. Finally, a 3D 

building showing torsional horizontal coupling is also investigated. 
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All structures were first pre-sized for gravity load and an estimating of seismic 

demand according to EC8 (2004). In all the examples the total gravitational load is 

accounting for the live and dead load, the 40% and 60% respectively. The 

mechanical properties of materials used are 𝑓𝑐𝑘
′ = 30 MPa, modulus of 

elasticity 𝐸𝑐 =  30 GPA. For Steel reinforcement properties, the yield stress 𝑓𝑦𝑘 =

500 MPa and modulus of elasticity 𝐸𝑠 = 200 GPA. The seismic demand, considered 

for all cases, is the design spectrum from the EC8, with a PGA = 0.30g, type 1 and 

a type C soil. The hysteresis rule assumed is rectangular, i.e. with unloading equals 

to the elastic stiffness bilinear. The seismic input action used is the record 

accelerogram from L’Aquila earthquake (Figure 6.1.d) scaled to the design 

spectrum (Figure 6.1.b). The scaling method implemented is as it is proposed by 

(Bermudez, et al., 2012). In this type of scaling it is considered that all mode of 

vibration in the scaled response spectrum should be fit as best as possible. This 

assumption comes from the fact that, inelastic structures present important 

contribution of higher modes of vibration. The reason that the response spectrum 

from L’Aquila earthquake fits so well along all spectral acceleration, as it is shown 

in Figure 6.1.b., is the scaling process following along the ranges of frequencies in 

the response spectrum (Figure 6.1.c) filtered from the earthquake record (Figure 

6.1.b). This methodology is developed in (Bermudez, et al., 2012). 

 

The second validation procedure consists on comparing against an incremental 

non-linear static analysis (Pushover). It should be highlighted that the load pattern 

is taken as the one obtained in the DLA design. The pushover analysis is sensitive 

to load distribution of load along the height, highlight in many works as in Javadein 

& Taghinezhad (2007), Jingjiang, et al. (2003), Khoshnoudian, et al. (2011) among 

others. A similar concept as the DLA method regarding the load pattern is proposed 

by Antoiou & Pinho (2004), as the adaptive pushover; where, the load pattern is 

changing step by step by updating the damage stiffness. In this chapter, the load 

pattern used is the maximum load corresponding to the level of damage proposed 

in the design according to the performance objective. 
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a. Original Accelerogram  b. Filtered signals  

  
c. Scaled response spectrum  d. Scaled accelerogram 

Figure 6.1. L’Aquila earthquake record scaled to design spectrum from (Eurocode-8, 
2004) 
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6.2 3-Storey regular building [Example 1] 

 

This first example shows a regular low-rise 3-storey building. The aim, is to show 

the accuracy of the method and the information that could be achieved using the 

DLA method. The structure is subjected to a gravity load of 56 KN/m. In this case, 

the 𝛼 factor is taken as 0.5. This value is selected by fixing a maximum rotation in 

all hinges at 1.5e-2 rad, as it is shown in Figure 6.4.b. This corresponds to the case 

of limiting the maximum local damage to reproduce cracking and small residual 

deformation. At the same time, trying to keep an inelastic displacement slightly 

higher than elastic. On the other hand, the distribution of hinges were located in all 

end-beams. The intention is to meet the weak beam – strong columns criterion. 

That assumption highlights the effect of higher modes. In Figure 6.4.a, it is shown 

the evolution of the absolute maximum lateral story forces obtained by the DLA 

compared with the typically used in conventional design process, which is reduced 

by a behavior factor ("𝑞" 𝑜𝑟 "𝑅" ). The geometry of the structure is detailed in Table 

6.1. Modal properties for elastic and auxiliary structures are shown in Table 6.2. 

 

Table 6.1. Geometry of elements sections of elastic (E) and auxiliary structure (A) 

Element Edge Story Width [mm] Height [mm] Length [mm] 

Column C1 A - B 1-3 400 400 3500 

Beam V1 A - B 1-3 400 600 8000 

 

Table 6.2. Modal properties of elastic (E) and auxiliary structure (A) 

Mode 
Period [sec.] Mass participation factor [%] 

(E) (A) (E) (A) 

1 0.672 2.584 87.00 72.49 

2 0.215 0.398 10.52 21.67 

3 0.129 0.148 02.47 05.83 

 

This first example aims to show the accuracy of the method and, the amount of 

information obtained latter analyze of both structures (elastic and auxiliary), by 

superposing final behavior of both structures. Several figures can be constructed 

to support the decision of selecting the value of 𝛼 factor; such as, the evolution of 

all internal forces, base shear, plastic rotation demand, hysteretic energy 
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dissipation, equivalent damping, sectional ductility demand, and evolution of the 

damping correction factor (see Figure 6.2 to Figure 6.5 and Figure 6.8). 

In this example, two considerations are taken as starting point for the structural 

design with the DAL method. The first, the criterion of strong column – weak beam 

has to be reached; therefore, the distribution of hinges were placed in all beam 

ends. Secondly, the damage in those hinges need to be controlled. For that reason, 

with the evolution of rotation on hinges (Figure 6.4.b), the value 𝛼 could be select 

as equal to 0.5. For this value, it was observed (Figure 6.4) that the maximum 

plastic rotation as 1.5e-2 rad. Finally, the fact that, damage is allowed, higher 

vibration modes gain importance. Figure 6.3.a shows the evolution of maximum 

absolute floor-forces, it can be noticed how evolves from the elastic shape. One 

can notice different magnitude in the story forces than the obtained by applying the 

force reduction factor (q) uniformly.  

 
Figure 6.2. Base shear evolution for a wide range of 𝛼 factor. 

 

 
 

a. Load pattern evolution with damage b. Structure with hinges configuration 
Figure 6.3. Hinges configuration and load pattern evolution for a wide range of 𝛼 factor 

344.54 KN 

874.02 KN 

𝛼 → 1 

𝐹1 

𝐹2 

𝐹3 
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a. Displacement evolution b. Rotation evolution 

  
c. Hysteretic damping evolution by hinge d. Equivalent damping evolution  

  
e. Damping correction factor evolution  f. Ductility rotation evolution  

Figure 6.4. Analysis with the DLA. Combination for a wide range of alpha factor 
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a. Maximum displacement b. Maximum bending moment 

  
c. Maximum shear forces d. Maximum axial forces 

Figure 6.5 Representation of maximum internal forces after combination with DLA method 

 

 
Figure 6.6. Non – linear  time – history of displacements floors 
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a. Elastic structure b. Auxiliary structure 

Figure 6.7. Comparison of vibration modes of elastic and auxiliary structure 
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a. Element 7 b. Element 1 

 
 

c. Element 8 d. Element 2 

  
e. Element 9 f. Element 3 

Figure 6.8. Evolution of seismic bending moment compared with static moment 
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Table 6.3. Maximum displacement [cm] for non-linear time – history analysis (NLTH) and 
non-linear static analysis (PO), compared with the prediction using the DLA design 

Story 1st 2nd 3rd 

PO 4.21 9.62 13.20 

NLTH 3.82 10.53 15.63 

DLA 2.74 7.73 13.15 

 

Table 6.4. Ductility demand (𝜃𝑑) [rad] from non-linear time–history analysis (NLTH) and 
non-linear static analysis (PO), compared to the DLA design 

Hinge ID 7H1 7H2 8H1 8H2 9H1 9H2 

PO 1.250e-2 1.140e-2 1.150e-2 9.764e-3 - 8.424e-3 

NLTH 1.080e-2 1.310e-2 1.340e-2 1.760e-2 1.460e-2 9.138e-3 

DLA 1.057e-2 1.057e-2 1.430e-2 1.430e-2 1.484e-2 1.484e-2 

Hinge ID 1H1 2H1 3H1 4H1 5H1 6H1 

PO 3.052e-3 - - 4.603e-3 - - 

NLTH 3.428e-3 4.254e-3 - 1.855e-3 - - 

DLA - - - - - - 

 

Table 6.5. Maximum bending moment [KN/m] in plastic hinge for non-linear time – history 
analysis (NLTH) and non-linear static analysis (PO), compared with the prediction using 

the DLA design 
Hinge ID 7H1 7H2 8H1 8H2 9H1 9H2 

PO 125.70 593.90 21.69 537.63 195.62 288.49 

NLTH 596.77 594.38 529.69 537.63 314.88 309.55 

DLA 589.50 589.50 536.70 536.70 311.80 311.80 

Hinge ID 1H1 2H1 3H1 4H1 5H1 6H1 

PO 526.76 56.21 100.82 527.08 380.25 119.96 

NLTH 526.84 427.54 365.26 526.51 365.26 312.01 

DLA 526.10 426.80 375.01 526.10 426.80 375.01 

 

Table 6.3 to Table 6.7 compare the internal forces obtained from the NLTH, PO 

and the predicted with the DLA method. Figure 6.9 and Figure 6.10 demonstrate 

the good approximation on base shear resulting the NLTH and PO compared to the 

DLA design. On other hand, columns were designed to remain elastic; although, in 

the NLTH and PO analysis show small rotations on columns (Table 6.4). However, 

these plastic rotation may be considered as minor damage. Furthermore, as the 

PO and NLTH analyses show (Figure 6.10) that the DLA methodology is capable 

to capture the effect of higher vibration mode, simulating, in that manner, an 

adaptive pushover, but for design cases. 
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Table 6.6. Maximum shear forces [KN] in plastic hinge for non-linear time – history 
analysis (NLTH) and non-linear static analysis (PO), compared with the DLA design 

Hinge ID 7H1 7H2 8H1 8H2 9H1 9H2 

PO 131.01 316.98 151.25 296.74 162.25 285.75 

NLTH 315.74 315.69 296.23 268.22 312.96 278.15 

DLA 314.70 314.70 295.30 295.30 255.80 255.80 

Hinge ID 1H1 2H1 3H1 4H1 5H1 6H1 

PO 170.35 51.06 23.69 218.56 234.44 122.91 

NLTH 256.02 247.10 153.48 240.71 238.39 167.85 

DLA 214.20 199.40 179.20 214.20 199.40 179.20 

 
Table 6.7. Maximum axial forces [KN] in plastic hinge for non-linear time – history analysis 

(NLTH) and non-linear static analysis (PO), compared with the DLA design 

Hinge ID 7H1 7H2 8H1 8H2 9H1 9H2 

PO 67.58 67.58 42.85 42.85 49.68 49.68 

NLTH 77.41 77.41 72.17 72.17 93.51 93.51 

DLA 27.05 27.05 23.46 23.46 92.47 92.47 

Hinge ID 1H1 2H1 3H1 4H1 5H1 6H1 

PO 444.52 313.50 162.25 899.47 532.49 285.74 

NLTH 928.03 616.99 317.89 927.37 613.73 303.13 

DLA 953.00 626.10 302.40 953.00 626.10 302.40 

 

 
Figure 6.9. Non – linear  time – history of the base shear 

 

 
Figure 6.10. Non-linear incremental static (Pushover) curve  

  

409.53 

KN 

Disp.: 13.20 cm 

Vb: 388.92 KN 
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6.3 2-Storey irregular building [Example 2] 

 

The example 2 consists on an irregular 2-storey building subjected to a gravity 

load of 61.25 KN/m together with the seismic action. Two different configuration of 

hinges are considered in order to evaluate capacity of the DLA for different 

performance objectives. The first, is the capability to select hinges where 

redistribution of internal force wants to occur. In this case, hinges were located in 

elements 9 and 12 in order to redistribute bending moment. The aim of this example 

is to obtain similar internal forces from central beams negative bending moment 

from beams sides. According to this criteria the selected 𝛼 was taken as equal to 

0.30. 

The second case, the performance objectives was not to exceed a plastic 

rotation of 1.5e-2 rad in the irregular structure. The geometry of the structure is 

detailed in Table 6.8 and sketched in Figure 6.11 modal properties for elastic and 

auxiliary cases are shown in Table 6.9. 

 

Table 6.8. Geometry of elements sections of elastic (E) and auxiliary structure (A) 

Element Edge Story Width [mm] Height [mm] Length [mm] 

Column C1 A-B-C-D 1-2 400 400 3500 

Beam V1 A to B 1-2 350 500 3000 

Beam V1 B to C 1-2 350 500 6000 

Beam V1 C to D 1-2 350 500 2000 

 

Table 6.9. Modal properties of elastic (E) and  
auxiliary structure case 1 (A1) and case 2 (A2) 

Mode 
Period [sec.] Mass participation factor [%] 

(E) (A1) (A2) (E) (A1) (A2) 

1 0.351 0.466 1.037 87.76 89.13 75.58 

2 0.138 0.142 0.187 12.22 10.86 24.41 

3 0.042 0.043 0.043 5.7e-4 1.4e-3 1.1e-19 

4 0.037 0.037 0.037 6.9e-3 2e-4 1.8e-17 
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a. Case 1 – bending moment redistribution  b. Case 2 – All beams yielded 

Figure 6.11. Structure layout for both cases  

 

  
a. Base shear evolution [Case 1] b. Base shear evolution [Case 2] 

Figure 6.12. Base shear evolution for a wide range of 𝛼 factor. 
 

-

 
 

a. Displacement evolution [Case 1] b. Displacement evolution [Case 2] 
Figure 6.13. Base shear evolution for a wide range of 𝛼 factor. 
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a. Rotation evolution [Case 1] b. Rotation evolution [Case 2] 

Figure 6.14. Rotation evolution for a wide range of 𝛼 factor. 

  
a. Hysteretic damping evolution [Case 1] b. Hysteretic damping evolution [Case 2] 

Figure 6.15. Hysteretic damping evolution in hinges 

 

 

  
a. Hysteretic damping evolution [Case 1] b. Hysteretic damping evolution [Case 2] 

Figure 6.16. Equivalent damping in structures 
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a. Elastic structure b. Auxiliary structure 
Case 1 

c. Auxiliary structure 
Case 2 

Figure 6.17. Comparison of vibration modes of elastic and auxiliary structure 

 

  
a. Maximum story forces evolution [Case 1] b. Maximum story forces evolution [Case 2] 

Figure 6.18. Evolution of maximum story forces  

 

 
Table 6.10. Maximum displacement [cm] for NLTH and PO, compared with DLA [Case 1] 

 

Story 1st 2nd 

PO 1.24 2.52 

NLTH 1.90 3.79 

DLA 1.24 2.57 

 
 
 
 
 

α → 1 
F2 

F1 

F2 

F1 

α → 1 
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Table 6.11. Ductility demand (𝜃𝑑) [rad] from NLTH and PO compared to 
 the DLA design [Case 1] 

Hinge ID 8H1 8H2 9H1 9H2 10H1 10H2 

PO 2.28e-3 1.33e-3 - - 1.08e-3 2.31e-3 

NLTH 3.71e-3 1.72e-3 1.55e-3 2.58e-3 3.67e-3 2.52e-3 

DLA 3.35e-3 2.28e-3 - - 1.84e-3 2.88e-3 

Hinge ID 11H1 11H2 12H1 12H2 1H1 2H1 

PO - - - - - - 

NLTH 2.08e-3 2.28e-3 2.05e-3 3.27e-3 2.14e-3 2.98e-3 

DLA - - - - - - 

Hinge ID 3H1 4H1 5H1 6H1 7H1  

PO - - - 6.24e-4 -  

NLTH 1.97e-3 5.98e-4 1.23e-3 2.08e-3 1.75e-3  
DLA - - - - -  

 
Table 6.12. Maximum bending moment [KN/m] in plastic hinge for NLTH and PO, 

compared with the prediction using the DLA design [Case 1] 
Hinge ID 8H1 8H2 9H1 9H2 10H1 10H2 

PO 208.69 287.22 65.58 372.67 130.21 179.54 

NLTH 264.66 287.79 403.92 378.19 266.31 179.99 

DLA 266.7 290.5 410.7 401.0 268.5 180.1 

Hinge ID 11H1 11H2 12H1 12H2 1H1 2H1 

PO 171.20 259.52 48.316 273.80 254.19 88.00 

NLTH 217.01 264.5 311.86 287.19 264.97 121.70 

DLA 218.61 267.3 315.1 294.2 264.6 148.6 

Hinge ID 3H1 4H1 5H1 6H1 7H1  

PO 291.69 162.84 327.77 235.21 283.67  
NLTH 322.08 319.78 328.81 232.14 283.07  

DLA 321.80 253.10 326.60 263.80 282.80  

 

The first case, two the beam’s end are hinged, the factor 𝛼 selected is 0.3. Note 

that, the reduction of the magnitude of forces is larger due to redistribution than 

energy dissipation. Table 6.11 and Figure 6.20.a shows the PO curve for which the 

structure presents limited yielding deformation. Moreover, Figure 6.18.a shows 

that, for those low quantity of active hinges and small rotations, higher vibration 

modes are negligible. This previous mentioned phenomenon differs from the 

second case (Figure 6.18.b) where all beams are hinged and present considerable 

damage. 
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Table 6.13. Maximum displacement [cm] for NLTH and PO,  
compared with the DLA design [Case 2] 

Story 1st 2nd 

PO 2.64 7.12 

NLTH 2.19 6.87 

DLA 2.27 7.15 

 
Table 6.14. Ductility demand (𝜃𝑑) [rad] from NLTH and PO compared to DLA [Case 2] 

Hinge ID 8H1 8H2 9H1 9H2 10H1 10H2 

PO 1.080e-2 1.040e-2 8.277e-3 1.150e-2 1.080e-2 9.783e-3 

NLTH 1.010e-2 1.040e-2 1.130e-2 7.263e-3 9.402e-3 8.382e-3 

DLA 1.092e-2 1.087e-2 1.086e-2 1.083e-2 1.073e-2 8.738e-3 

Hinge ID 11H1 11H2 12H1 12H2 1H1 2H1 

PO 1.300e-2 1.111e-2 8.650e-3 1.390e-2 1.45e-3  

NLTH 1.410e-2 1.190e-2 1.280e-2 1.270e-2 - - 
DLA 1.470e-2 1.465e-2 1.477e-2 1.493e-2 - - 

Hinge ID 3H1 4H1 5H1 6H1 7H1  

PO - - - - -  
NLTH - - - - -  

DLA - - - - -  

 

Table 6.15. Maximum bending moment [KN/m] in plastic hinge for NLTH and PO, 
compared with the prediction using the DLA design [Case 2] 

Hinge ID 8H1 8H2 9H1 9H2 10H1 10H2 

PO 61.11 161.75 8.77 209.76 1.45 73.64 

NLTH 122.50 161.84 209.36 210.54 146.66 74.24 

DLA 121.1 161.8 208.6 208.6 143.8 73.40 

Hinge ID 11H1 11H2 12H1 12H2 1H1 2H1 

PO 28.44 148.90 9.35 153.25 315.55 101.73 

NLTH 73.28 148.96 215.86 154.07 308.51 202.73 

DLA 72.01 148.88 215.8 152.40 316.9 216.9 

Hinge ID 3H1 4H1 5H1 6H1 7H1  

PO 331.51 174.60 331.83 212.40 389.19  

NLTH 316.20 279.88 320.22 188.73 371.67  

DLA 331.32 274.82 331.62 275.30 390.20  

 

  
a. Case 1 b. Case 2 
Figure 6.19. Non – linear  time – history of base shear  

Vb: 580.90 KN 
Vb: 417.36 KN 
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The second case, the criterion of strong column – weak beam is met while 

considerable damage is allowed on the beams. As the PO curve shows (Figure 

6.20.b), the structure exhibits important yielding. In spite of extensive damage, the 

method succeeded in avoiding yielding of the columns (Table 6.14) 

In both design cases the capability of the method to account for inelastic behavior 

is demonstrated. Internal forces and base shear on NLTH and PO result are 

compared and a good approximation is achieved by the DLA design method.  

 

  
a. Base shear vs top floor displacement 

[case 1] 
b. Base shear vs top floor displacement 

[case 2] 

Figure 6.20. Non-linear incremental static (Pushover) curve 

 

 

  
a. Case 1 b. Case 2 
Figure 6.21. Non – linear  time – history of displacement 

 

Disp.: 2.52 cm 

Vb: 555.79 KN 

Disp.: 7.12 cm 

Vb: 398.53 KN 
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a. Elastic maximum bending moment b. Case 1 – Inelastic maximum bending 
moment  

Figure 6.22. Comparison of bending moment diagrams 
for the elastic and Inelastic structures in case 1 

 

 
 

c. Elastic maximum bending moment d. Case 2 – Inelastic maximum bending 
moment  

Figure 6.23. Comparison of bending moment diagrams 
for the elastic and Inelastic structures in case 2 
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6.4 7–Storey irregular building [Example 3] 

 

This example consists on an irregular 7-storey building subjected to a gravity 

load of 61.25 KN/m together with the seismic action. The structural layout and 

height of this example are chosen in order to evaluate the importance of higher 

vibration modes and the design method accuracy for irregular structures. The 

geometry of the structure is detailed in Table 6.16. Modal properties are shown in 

Table 6.17. 

 

The plastic mechanism proposed is that all beams are damaged, in order to have 

an approximation of the criterion of “strong column – weak beam”. Columns are 

designed to remain elastic. In Figure 6.24.c to Figure 6.24.f, there are some of the 

parameter to take in to account for the selection of the damage factor (𝛼) are shown. 

In this case 𝛼 is taken as 0.5. The selection of the damage factor value, was 

selected on the analysis of the floor displacement evolution according to the DLA. 

The top displacement for this cases is similar to the elastic ones, while the base 

shear is reduced from 2584KN to 1254 KN. This is possible because of the variation 

of the evolution of period and the increment of participation factor of vibration mode 

2 and 3. 

 
Table 6.16. Geometry of elements sections of elastic (E) and auxiliary structure (A) 

Element Edge Story Width [mm] Height [mm] Length [mm] 

Column C1 A-B-C-D 5-7 600 600 3500 

Column C2 A-B-C 1-4 800 800 3500 

Column C3 D 1-4 500 500 3500 

Beam V1 - 1-7 350 500 7000 

 

Table 6.17. Modal properties of elastic (E) and auxiliary structure (A) 

Mode 
Periods [sec.] Mass participation factor [%] 

(E) (A) (E) (A) 

1 1.11 3.15 71.94 59.73 

2 0.39 0.72 12.83 20.03 

3 0.19 0.27 6.38 9.72 
4 0.13 0.15 3.37 4.22 
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a. Maximum absolute floor – forces 
evolution with the mechanism proposed 

b. Mechanism proposed, all beams hinged 

  
c. All hinges plastic rotation evolution d. Maximum absolute Floor – 

displacement evolution 

  
e. Structure Equivalent damping evolution f. All hinges hysteretic damping evolution 

Figure 6.24. Analysis for PBSD with the DLA. 
Combination and superposition for a wide range of alpha factor 

 

Figure 6.25.a shows the structure deformation as displacement and rotation 

demand for which the damaged sections should be designed. Maximum bending 

moment for the selected damage factor are plot in Figure 6.25.b. For this example, 

the accuracy of the method is shown in Figure 6.26, Table 6.18, Table 6.19 and 

∆F(α) 

7th floor 

6th floor 

5th floor 

4th floor 

3rd floor 

2nd floor 
1th floor 
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Table 6.20. The displacement, rotation and bending moment computed by the DLA 

are compared with the result of non-linear time history analysis. It can be observed 

that all columns remain elastic as it is shown in Table 6.20. As observed, bending 

moments are lower than the computed by DLA (Figure 6.25.b. and Table 6.20) and 

the plastic rotation are negligible. The based shear obtained in the DLA is 1234.9 

KN, a difference of 14% lower respect to time-history analysis. Although the 

approximation may be regarded as good, it should be highlight that the spectrum 

of the scaled acceleration presents a similar difference with respect to the design 

spectrum (11%) in the region of the first vibration mode of the structures. Finally, in 

this example the concept of strong columns – weak beams is achieved accounting 

a performances based design for a given hazard.  

 

 

a. Displacement deformed shape  b. Bending moment law  
Figure 6.25. Deformation and internal forces result for the DLA with a  

damage factor (𝛼 = 0.5) 

 

 

Figure 6.26. Non – linear time – history displacement of all the storey 
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c. Elastic structure d. Auxiliary structure 

Figure 6.27. Comparison of vibration modes of elastic and auxiliary structure 
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Table 6.18. Ductility demand (𝜃𝑑) [rad] from non-linear time–history analysis (NLTH) and 
non-linear static analysis (PO), compared to the DLA design 

Hinge ID 25H1 25H2 26H1 26H2 27H1 27H2 28H1 28H2 

PO 0.00261 0.00688 0.00234 0.00234 0.00180 0.00651 0.00786 0.00851 

NLTH 0.00551 0.00716 0.00541 0.00718 0.00529 0.00678 0.00808 0.00878 

DLA 0.00529 0.00527 0.00525 0.00526 0.00515 0.00506 0.00793 0.00790 

Hinge ID 29H1 29H2 30H1 30H2 31H1 31H2 32H1 32H2 

PO 0.00786 0.00848 0.00749 0.00760 0.00717 0.00943 0.00738 0.00932 

NLTH 0.00815 0.00873 0.00778 0.00783 0.00775 0.00998 0.00799 0.00985 

DLA 0.00788 0.00788 0.00774 0.00761 0.00913 0.00910 0.00907 0.00907 

Hinge ID 33H1 33H2 34H1 34H2 35H1 35H2 36H1 36H2 

PO 0.00718 0.00763 0.00632 0.00894 0.00653 0.00864 0.00561 0.00702 

NLTH 0.00766 0.00932 0.00774 0.01001 0.00788 0.00977 0.00679 0.00810 

DLA 0.00896 0.00890 0.00981 0.00976 0.00970 0.00968 0.00933 0.00880 

Hinge ID 37H1 37H2 38H1 38H1 39H1 39H2 40H1 40H2 

PO 0.00270 0.00648 0.00246 0.00246 0.00670 0.00106 - 0.00412 

NLTH 0.00878 0.00790 0.00856 0.00803 0.01001 0.00699 0.01039 0.00832 

DLA 0.01192 0.01176 0.01178 0.01191 0.01255 0.01299 0.01301 0.01309 

Hinge ID 41H1 41H2       

PO - 0.00193       

NLTH 0.01195 0.00951       

DLA 0.01337 0.01331       

 

Table 6.19. Maximum displacement [cm] for non-linear time – history analysis (NLTH) and 
non-linear static analysis (PO), compared with the prediction using the DLA design 

Story 7 6 5 4 3 2 1 

PO 21.61 20.11 17.52 13.75 9.58 5.28 1.63 

NLTH 19.73 19.19 17.31 13.84 9.63 5.36 1.73 

DLA 21.33 17.20 13.31 9.72 6.49 3.46 1.06 

 

  
a. Non – linear time – history of the base 

shear 
b. Pushover curve 

Figure 6.28. Non – linear base shear 

Vb: 1,108.9 KN 
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Table 6.20. Maximum bending moment [KN/m] in plastic hinge for NLTH and PO, 
compared with the prediction using the DLA design 

Hinge ID 25H1 25H2 26H1 26H2 27H1 27H2 28H1 28H2 29H1 29H2 

PO 127.51 484.04 126.28 482.00 127.59 434.34 82.09 552.17 73.06 553.92 

NLTH 475.77 484.68 473.83 486.45 478.66 434.89 549.45 552.90 542.28 555.60 

DLA 474.00 479.97 471.44 481.37 478.17 429.89 558.33 559.82 549.43 565.04 

Hinge ID 30H1 30H2 31H1 31H2 32H1 32H2 33H1 33H2 34H1 34H2 

PO 68.85 512.81 134.14 554.93 119.23 557.92 112.03 529.14 140.25 542.23 

NLTH 542.76 514.00 550.17 556.37 542.35 560.81 542.77 530.54 539.94 546.50 

DLA 550.21 511.85 569.82 568.75 557.09 574.97 558.07 536.40 558.08 558.85 

Hinge ID 35H1 35H2 36H1 36H2 37H1 37H2 38H1 38H2 39H1 39H2 

PO 117.51 549.19 103.14 442.03 147.73 507.18 138.78 514.90 80.22 436.97 

NLTH 525.93 552.14 521.71 444.33 508.92 510.64 501.91 518.18 444.34 447.45 

DLA 539.01 566.56 535.40 436.62 521.99 526.52 513.54 536.00 442.03 454.25 

Hinge ID 40H1 40H2 41H1 41H2 1H1 7H1 14H1 21H1   

PO 55.45 446.53 14.23 380.28 1678.8 1796.7 1814.9 346.9   

NLTH 468.42 455.69 412.50 397.14 1846.9 1971.6 1996.9 375.7   

DLA 470.80 460.97 402.85 390.64 2175.8 2200.7 2220.3 417.37   

 

The accuracy of the compared internal forces as bending moment, ductility demand 

as plastic rotation and nodal displacement with NLTH and pushover analyses, were 

predicted with a good accuracy, they are showed in Table 6.18 Table 6.20, 

respectively. Columns remain elastic in all cases, some yielding are present; 

however those yielding belongs to values that represent crack; the moment rotation 

curvature of those yielding zone in columns showed that the maximum rotation are 

before the yielding point. 
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6.5 6-Storey building with complex vertical irregularities [Example 4] 

 

In this example, a 6-storey building with vertical irregularities is studied. The 

building is subjected to a gravity load of 56 KN/m in all beams and the seismic 

actions. The detailing of section are shown in Table 6.21 and modal properties of 

the structures is shown in Table 6.22. The structural layout and height of this 

example, are chosen in order to evaluate the accuracy of the DLA method for 

complex concrete structure.  

Hence, to obtain an uniform the reinforced layout, the design objective is set to 

produce similar bending moments in stories 1 and 2. After analyzing the evolution 

of maximum bending moment demand, the 𝛼 factor was select as 0.6. To achieve 

this design of redistribution demand of plastic rotation in some beam is reached 

1.2e-2 rad.  

 

Table 6.21. Geometry of elements sections of elastic (E) and auxiliary structure (A) 

Element Edge Story Width [mm] Height [mm] Length [mm] 

Column C1 A-B-C-D-E 1-6 800 800 3500 

Beam V1 A to B 1-6 400 600 7000 

Beam V2 B to C 1-2 400 600 5000 

Beam V3 C to D 1-4 400 600 6000 

Beam V4 D to E 1-5 400 600 7000 

 

 

Table 6.22. Modal properties of elastic (E) and auxiliary structure (A) 

Mode 
Periods [sec.] Mass participation factor [%] 

(E) (A) (E) (A) 

1 0.687 1.517 60.22 34.58 

2 0.453 0.535 11.78 37.58 

3 0.199 0.245 14.80 07.73 

4 0.132 0.152 03.59 10.45 
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a. Base shear evolution  b. Mechanism proposed 

 
 

c. All hinges plastic rotation evolution d. Maximum absolute Floor – displacement 
evolution 

Figure 6.29. Analysis for PBSD with the DLA. 
Combination and superposition for a wide range of alpha factor 

 

  

a. Elastic maximum displacement b. Inelastic maximum displacement 

Figure 6.30. Comparison of elastic and Inelastic displacement obtained  
with the DLA design 

 

 

Vb: 1,647.9 KN 

Vb: 3,201.3 KN 

6th floor 

5th floor 

4th floor 

3rd floor 

2nd floor 

1th floor 
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a. Elastic maximum seismic moment b. Inelastic maximum seismic moment  

Figure 6.31. Comparison of  elastic and Inelastic bending moment obtained with the 
DLA design 

 
 

Table 6.23. Ductility demand (𝜃𝑑) [rad] from non-linear time–history analysis (NLTH) and 
non-linear static analysis (PO), compared to the DLA design 

Table 6.23.a. Beams rotations 
Hinge ID 27H1 27H2 28H1 28H2 29H1 29H2 30H1 30H2 

PO 7.16e-4 2.49e-4 4.24e-4 5.92e-4 7.00e-4 5.64e-4 7.78e-4 4.43e-4 

NLTH 2.76e-3 3.12e-3 2.95e-3 2.95e-3 2.82e-3 3.03e-3 2.76e-3 3.18e-3 

DLA - - - - - - - - 

Hinge ID 31H1 31H2 32H1 32H2 33H1 33H2 34H1 34H2 

PO 4.80e-3 4.35e-3 4.64e-3 3.04e-3 4.25e-3 2.95e-4 3.38e-4 2.03e-4 

NLTH 6.34e-3 6.85e-3 6.24e-3 5.62e-3 6.41e-3 2.93e-3 2.62e-3 2.85e-3 

DLA 5.25e-3 5.19e-3 5.00e-3 3.90e-3 4.90e-3 - - - 

Hinge ID 35H1 35H2 36H1 36H2 37H1 37H2 38H1 38H2 

PO 7.15e-3 6.70e-3 - - 8.53e-3 7.89e-3 - - 

NLTH 9.98e-3 1.09e-3 2.26e-3 2.62e-3 1.33e-2 1.44e-2 1.35e-3 2.39e-3 

DLA 9.14e-3 9.24e-3 - - 1.14e-2 1.14e-2 - - 

Hinge ID 39H1 39H2 40H1 40H1 41H1 41H2   

PO - - 9.04e-3 8.45e-3 - -   

NLTH 2.20e-3 2.71e-3 1.56e-2 1.66e-2 2.39e-3 2.93e-3   

DLA - - 1.21e-2 1.21e-2 - -   

 

Figure 6.31 shows, by means of the maximum bending moment distribution, how 

higher vibration modes are affecting storey 2 and 3, showing higher bending forces 

comparing to the elastic bending moment diagrams.  
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Table 6.23.b. Columns rotations 

Hinge ID 1H1 2H1 3H1 4H1 5H1 6H1 7H1 8H1 

PO 1.26e-4 - - - - - 4.07e-4 1.08e-4 

NLTH 3.07e-3 - 1.35e-3 1.86e-3 1.13e-3 5.03e-4 3.03e-3 - 

DLA - - - - - - - - 

Hinge ID 9H1 10H1 11H1 12H1 13H1 14H1 15H1 16H1 

PO - - - - 3.86e-4 1.66e-4 - - 

NLTH 5.23e-4 1.09e-3 4.13e-4 - 3.08e-3 - 1.64e-3 - 

DLA - - - - - - - - 

Hinge ID 17H1 18H1 19H1 20H1 21H1 22H1 23H1 24H1 

PO 4.84e-4 2.21e-5 - - - 5.44e-4 1.35e-4 - 

NLTH 3.05e-3 2.77e-3 1.48e-3 6.82e-4 7.59e-4 2.89e-3 - 1.74e-3 

DLA - - - - - - - - 

Hinge ID 25H1 26H1       

PO - -       

NLTH 4.39e-4 3.24e-4       

DLA - -       

 
Table 6.24. Maximum displacement [cm] for NLTH and PO, compared with the prediction 

using the DLA design 
Story (Edge A) 6th 5th 4th 3rd 2nd 1st 

PO 16.18 12.47 8.67 5.08 2.22 0.67 

NLTH 24.11 17.91 12.18 7.29 3.38 1.57 

DLA 16.08 11.88 7.79 4.23 1.79 0.53 

Story (Edge D) 6th 5th 4th 3rd 2nd 1st 

PO - 5.16 4.47 3.46 2.14 0.74 

NLTH - 9.07 7.72 5.99 3.81 1.60 

DLA - 5.21 4.30 3.10 1.75 0.56 
 

  
a. Non – linear  time – history of  

displacement of edge A 
b. Non – linear  time – history of  

displacement of edge E 

Figure 6.32. Non – linear  time – history of displacement floors 
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Figure 6.33. Non-linear incremental static (Pushover) curve 

 

 
Figure 6.34. Non – linear  time – history of the base shear 

 

Figure 6.29.a shows the reduced base shear in “x” direction computed with the 

DLA method. It is shown that it fits well the base shear obtained from pushover 

analysis (Figure 6.33) and, compared to the maximum base shear of NLTH (Figure 

6.34), the accuracy is still close to the prediction. It should be highlight that, for the 

selected 𝛼 value, the storey displacement is practically the same as what will have 

been obtained with an elastic design (Figure 6.29). Table 6.23 shows some yielding 

in columns hinges by very small rotation; however, it may be considered as 

negligible.  

  

Disp.: 16.18 cm 

Vb: 1,581.2 KN 

Vb: 1,962.5 KN 



 CHAPTER 6: VALIDATION EXAMPLES 

141

Table 6.25. Maximum bending moment [KN/m] in plastic hinge for non-linear time – history 
analysis (NLTH) and non-linear static analysis (PO), compared with the prediction using 

the DLA design 

Table 6.25.a. Beams bending moment 

Hinge ID 27H1 27H2 28H1 28H2 29H1 29H2 30H1 30H2 

PO 213.78 640.09 471.71 710.22 343.88 680.03 229.87 679.41 

NLTH 662.60 615.24 704.61 689.50 683.63 655.71 689.52 653.86 

DLA 666.10 658.80 709.9 726.8 688.2 696.1 696.1 698.1 

Hinge ID 31H1 31H2 32H1 32H2 33H1 33H2 34H1 34H2 

PO 87.03 527.33 265.94 448.54 60.62 636.37 410.43 854.35 

NLTH 536.99 539.31 484.01 456.16 432.36 574.32 858.41 745.30 

DLA 528.7 529.6 476.3 448.1 421.1 652.6 870.7 879.6 

Hinge ID 35H1 35H2 36H1 36H2 37H1 37H2 38H1 38H2 

PO 225.82 682.24 379.94 363.49 218.83 674.95 303.36 594.23 

NLTH 682.78 696.17 892.78 757.22 690.04 695.53 753.75 705.69 

DLA 664.2 674.6 908.8 915.4 661.7 663.6 766.0 757.9 

Hinge ID 39H1 39H2 40H1 40H1 41H1 41H2 42H1 42H2 

PO 154.76 601.95 135.50 596.56 88.43 488.53 533.23 498.20 

NLTH 740.05 665.38 615.02 619.17 638.27 616.58 514.76 517.82 

DLA 757.9 745.3 582.3 583.5 642.1 619.2 484.9 485.7 

 
 

Table 6.25.b. Columns bending moment 

Hinge ID 1H1 2H1 3H1 4H1 5H1 6H1 7H1 8H1 

PO 1217.5 748.91 1232.41 733.25 224.31 62.64 1340.8 1077.38 

NLTH 1208.31 906.78 1807.35 1404.48 786.66 422.18 1336.15 994.81 

DLA 1216.10 691.80 1816.5 1416.2 793.4 168.6 1345.3 1086.6 

Hinge ID 9H1 10H1 11H1 12H1 13H1 14H1 15H1 16H1 

PO 1708.80 800.31 472.97 207.08 1353.3 1239.14 176.40 261.02 

NLTH 2155.36 1281.63 786.03 491.31 1349.67 1179.20 792.80 315.26 

DLA 2165.3 1287.7 790.1 516.0 1364.5 1244.5 801.3 270.1 

Hinge ID 17H1 18H1 19H1 20H1 21H1 22H1 23H1 24H1 

PO 1353.12 1139.2 258.14 84.53 16.55 1311.04 876.51 318.30 

NLTH 1340.99 1125.03 940.98 394.49 354.60 1302.67 772.36 804.30 

DLA 1354.6 1150.6 948.0 392.3 356.2 1315.5 899.1 815.0 

Hinge ID 25H1 26H1       

PO 91.48 8.43       

NLTH 394.41 252.38       

DLA 394.8 251.0       
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a. Elastic structure b. Auxiliary structure 

Figure 6.35. Comparison of vibration modes of elastic and auxiliary structure 
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6.6 3D building with vertical and horizontal irregularities 

 [Example 5] 

 

This section presents a 3D model of a RC structure with plan and vertical 

irregularities. The aim, is to show the accuracy of the DLA method applied to a 

complex layout structure. The seismic load was applied in “x” direction; however, 

the result components in both directions are account for by the non-linear analysis 

and the validation methodology. Design loads are shown in Table 6.27, elements’ 

cross section in Table 6.26 and modal properties in Table 6.28. The building layout 

is shown in Figure 6.36. The decision of distribution and damage intensity was 

based on the design objective of redistributing the bending moments on some 

beams and by reducing internal forces on columns. As it is demonstrated in the 

previous example, this concept gives a considerable redistribution of internal force 

but not an important plastic rotation. With this design objective and after analyzing 

the evolution of bending moment, the factor 𝛼 is taken as 0.4, and the maximum 

rotation is 5e-3 rad. 

 
Table 6.26. Geometry of elements sections of elastic (E) and auxiliary structure (A) 

Element Story Width [mm] Height [mm] Length [mm] 

Column C1 1-3 500 500 3500 

Beam VL1 1 400 600 7000 

Beam VT1 1 300 500 5000 

Beam VL2 2 400 600 7000 

Beam VT2 2 300 500 5000 

Beam VL3 3 400 600 7000 

Beam VT3 3 300 500 5000 

 
Table 6.27. Distributed load [KN/m] in elements   

ELE ID Load ELE ID Load ELE ID Load ELE ID Load 

27 -10.00 36 -28.00 45 -5.00 54 -5.00 

28 -10.00 37 -10.00 46 -19.00 55 -5.00 

29 -14.00 38 -10.00 47 -10.00 56 -14.00 

30 -24.00 39 -14.00 48 -10.00 57 -5.00 

31 -10.00 40 -5.00 49 -28.00 58 -5.00 

32 -10.00 41 -5.00 50 -10.00 59 -7.00 

33 -24.00 42 -7.00 54 -10.00   

34 -10.00 43 -12.00 52 -14.00   

35 -10.00 44 -5.00 53 -7.00   
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Table 6.28. Modal properties of elastic (E) and auxiliary structure (A)  

Mode 
Periods [sec.] Mass participation factor [%] 

(E) (A) (E) (A) 

1 0.4240 0.63706 1.587 52.619 

2 0.3772 0.42062 60.167 1.806 

3 0.2882 0.30849 24.626 28.538 
4 0.1518 0.15584 0.019 11.471 

5 0.1311 0.15180 9.296 0.0059 

 

          
 

  

  
a. Plan views b. Elevation views 

Figure 6.36. 3D model layout 
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a. Base shear evolution  b. Rotation evolution in hinges 

Figure 6.37. Analysis for PBSD with the DLA. 
Combination and superposition for a wide range of alpha factor 

 

 
 

a. Elastic bending moment  b. Combined (Inelastic) bending moment 

  
c. Elastic displacement  d. Combined (Inelastic) displacement 

Figure 6.38. Comparison of Inelastic maximum bending moment diagrams and 
displacement computed with the DLA with the elastic solution  

Vb: 1,265.9 KN 

Vb: 1,776.2 KN 
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Figure 6.39. Non – linear  time – history of the base shear 

 

The designed reinforcement was selected in order to redistribute the internal 

forces in the 1st and 2nd story longitudinal beams. Inelastic maximum bending 

moment diagrams can be compared with the elastic bending moment in Figure 

6.38. It worth emphasizing the fact of activating a low quantity of hinges allows 

reaching the maximum reduction of internal forces with low value of 𝛼 factor (Figure 

6.37). The deformation for the elastic and inelastic structure have a similar shape; 

however, if the damage was introduced in other location, deformation shape could 

be different than the elastic.  

 

Table 6.29. Ductility demand (𝜃𝑑) [rad] from non-linear time–history analysis (NLTH) and 
non-linear static analysis (PO), compared to the DLA design 

Table 6.29.a. Beams rotations 

Hinge ID 33H1 33H2 36H1 36H2 39H1 39H2 

PO 2.97e-3 3.49e-3 3.68e-3 3.80e-3 3.86e-3 3.93e-3 

NLTH 3.41e-3 4.85e-3 3.61e-3 4.76e-3 4.09e-3 4.74e-3 

DLA 1.96e-3 1.39e-3 3.34e-3 3.35e-3 4.72e-3 4.73e-3 

Hinge ID 46H1 46H2 49H1 49H2 52H1 52H2 

PO 1.25e-3 1.66e-3 1.90e-3 2.05e-3 2.24e-3 2.30e-3 

NLTH 3.42e-3 4.71e-3 3.83e-3 4.98e-3 4.87e-3 5.47e-3 

DLA 1.27e-3 1.76e-3 3.07e-3 3.07e-3 4.31e-3 4.31e-3 

 
 
 
 
 

Vb: 1,421.1 KN 
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Table 6.29.b. Columns rotations 

Hinge ID 1H1 2H1 3H1 4H1 5H1 

PO - 4.1e-3 4.35e-3 4.56e-3 4.41e-3 

NLTH 3.35e-3 3.26e-3 3.29e-3 2.77e-3 2.66e-3 

DLA - - - - - 

Hinge ID 6H1 7H1 8H1 9H1 10H1 

PO 4.74e-3 7.73e-3 4.85e-3 4.87e-3 4.93e-3 

NLTH 2.65e-3 1.64e-3 1.53e-3 1.65e-3 1.73e-3 

DLA - - - - - 

 
Table 6.30. Maximum displacement [cm] for non-linear time – history analysis (NLTH) and 

non-linear static analysis (PO), compared with the prediction using the DLA design 

 

Story (Edge X3-Y3) 3rd 2nd 1st 

PO 
x 4.53 3.75 2.11 

y 0.41 0.31 0.10 

NLTH 
x 5.56 3.84 1.70 

y 1.36 0.94 0.42 

DLA 
x 4.40 3.20 1.30 

y 1.20 0.90 0.40 

Story (Edge X2-Y1) 3rd 2nd 1st 

PO 
x - 3.24 1.92 

y - 0.57 0.20 

NLTH 
x - 3.77 1.75 

y - 1.83 0.83 

DLA 
x - 2.0 0.80 

y - 1.7 0.70 
 

  
a. Non – linear  time – history of  

displacement of edge X3-Y3 
b. Non – linear  time – history of  

displacement of edge Y2-X1 

Figure 6.40. Non – linear  time – history of displacement floors 
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Figure 6.41. Non-linear incremental static (Pushover) curve for  

the top story in edge X3-Y3 
 
 

Table 6.31. Maximum bending moment [KN/m] in plastic hinge for non-linear time – history 
analysis (NLTH) and non-linear static analysis (PO), compared with the prediction using 

the DLA design 

   
 

Table 6.31.a. bending moment on beams 

Hinge ID 33H1 33H2 36H1 36H2 39H1 39H2 

PO 84.6 185.62 186.83 272.12 297.15 338.64 

NLTH 175.50 185.65 269.71 271.85 338.9 340.04 

DLA 214.3 205.0 315.4 316.4 394.8 395.1 

Hinge ID 46H1 46H2 49H1 49H2 52H1 52H2 

PO 69.62 145.37 127.17 216.81 216.72 261.47 

NLTH 135.09 145.48 215.47 215.87 262.22 263.03 

DLA 169.8 158.3 251.3 252.0 304.7 304.9 

 

 

Table 6.31.b. Bending moments on columns 

Hinge ID 1H1 2H1 3H1 4H1 5H1 

PO 147.45 225.74 164.55 172.18 220.10 

NLTH 241.6 283.35 250.16 309.34 334.41 

DLA 261.6 305.3 264.0 337.7 364.2 

Hinge ID 6H1 7H1 8H1 9H1 10H1 

PO 130.54 179.40 181.70 231.96 232.89 

NLTH 277.48 410.17 408.17 561.69 561.27 

DLA 306.4 454.7 454.4 625.9 626.1 

 

Disp.: 4.54 cm 

Vb: 1,053.4 KN 
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By analyzing Table 6.29, the maximum of plastic rotations obtained in PO and 

NLTH are reached. Table 6.31 shows the bending moment result of the NLTH and 

PO analysis, which are slightly lower (7.2%-10%) than DLA prediction. The base 

shear prediction in Figure 6.37.a, is 11% lower than NLTH (Figure 6.39) and 16.7% 

bigger than PO (Figure 6.41). Finally, the displacement obtained with the DLA, is 

compared as well with the two non-linear analysis. Table 6.30 shows two directional 

displacements due to the torsional effect. In spite the existence of this torsional 

displacement in the building, the DLA shows a good approximation of inelastic 

displacement. 
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7 CONCLUSIONS 
 

 

 

7.1 General conclusions 

 

The main objective of this Thesis was to develop a direct performance based 

seismic design method for concrete structures. This general objective was achieved 

with enough accuracy for design purposes, by extending the non-linear static 

design (NLSD) methodology, based on a double linear analysis (DLA), to seismic 

loads and 3D effects. Thus, a “Double Linear Seismic Analysis” (DLSA) for 

performance based seismic design method was developed. The method was 

applied to concrete structures.  
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The methodology proposed was validated through a number of design examples 

whose performance was assessed by means of Non-Linear Time-History (NLTH) 

and incremental static non-linear analysis, i.e. Push-Over (PO). In this way, the 

accuracy of the method was demonstrated. Furthermore, the methodology of 

selecting damage was used as an assessment method. Thereby, it was confirmed 

that the DLA methodology is capable of capturing the effects of higher vibration 

modes when the structure behavior is non-linear. It was possible to obtain how the 

pattern of maximum storey seismic load changes along the height during damage 

process with reasonable precision for design purposes. Likewise, those results 

highlight the importance of considering the redistribution of lateral forces in order to 

avoid underestimation forces on elements in middle stories; as it may lead to not 

ensuring of the “strong column – weak beam” criterion and the consequent 

formation of undesired plastic hinges on columns. 

 

The main hypothesis on which the method is based is that the non-linear 

response can be approximated, for design purposes, by two linear analyzes of the 

elastic and the auxiliary models, and the adequate superposition of both. The latter 

is carried out by means of a damage factor (). Based on the results of this Thesis, 

this hypothesis can be considered as valid. 

 

The  factor allows for a simple representation of the variations of the damage 

intensity distribution, redistribution of internal forces and energy dissipation, for 

varying values of . Hence, it allows supporting design decisions and may be useful 

for optimization. 
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7.2 Specific conclusions 

 

Based on the analyses carried out in this research, the following specific 

conclusions can be drawn: 

 

- A direct performance based seismic design procedure for 2D and 3D irregular 

structures was developed. This method accounts for energy dissipation and 

redistribution of internal forces in the design process. For which, the decision 

of the intensity and damage location is decided in early design phases by the 

designer. 

 

- The proposed method assures the distribution of hinge location selected by 

the designer.  In the case of damage located in beams, the “weak beam-strong 

column” criterion is accounted for, considering the redistribution of internal 

forces in the system.  

 

- The NLTH and PO analysis demonstrated that DLA captures the effects of 

higher vibration modes, activated after the structure behavior is inelastic. 

 

- The examples carried out in this thesis, show that the more regular the 

structure layout is, the contribution of the effects of high vibration modes 

increase more after the inelastic behavior begins, compared to irregular 

structures.  This can be explained by the fact that the participation factor of 

modes higher than the fundamental one in the auxiliary structure, simulating 

the presence of plastic hinge distribution.  

 

- The proposed equation for the superposition of the response of the elastic and 

auxiliary models allows for a simple separation of the effects of the nonlinear 

behavior; i.e., force reduction and displacement increment, into components 

due to redistribution and dissipation.  The importance of each component was 

observed to be dependent on the damage intensity parameter (). This 
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provides basis for design decisions on increasing ductility, hysteresis loops, 

seismic devices, etc.  

 

- In all the considered examples, beams where the elements were damage was 

produced. In the most of the cases, columns remained elastic; although, in 

some situations, minor yielding was observed in these columns with very small 

plastic rotations. By slightly reducing the elastic column stiffness, column 

yielding did not take place.  This suggests that the consideration of crack 

stiffness in non-linear analysis should be include.  

 

- Due to redistribution of forces, as the damage evolves without the formation 

of hinges on columns, the resistance demand on columns keeps increasing 

after first yielding of the beams on the ends of the columns.  Hence, depending 

on the selected distribution of hinges, height and extend of damage (or 

ductility demand), the ratio of column resistance demand to the yielding 

strength of beams in the floor varies.  It was observed that this ratio can be 

considerably larger than the overstrength factors in current design codes.  

This result is in agreement with the observations of other researches, Moehle 

(2015), Vielma (2008), (Franchin , et al., 2016), among others, that reported 

that code overstrength factors do not totally guarantee the strong column-

weak beam criterion on tall buildings. 

 

- The ratio of columns strength demand to beam yielding strength ratio varies 

along the building height.  Its maximum value is sensitive to the current 

distribution of lateral forces.  This suggests that a non-constant overstrength 

factor may be needed to avoid the formation of plastic hinges in columns. 

 

- The shape of the seismic load pattern is sensitive to the damage parameter 

(). For larger values of  (large damage), significant differences on the 

distribution of force in the non-damaged system may be observed.   
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7.3 Recommendations for future research 

 

After conducting the research, some topics of possible improvement of the 

method have been identified. In the following, recommendation for future research 

in some ways are the given:  

 

- In chapter 6, it was observed that the accuracy of the DLA was adequate for 

design purposes, providing improved information of the time dependent and 

non-linear response. However, design recommendation should be studied by 

means of parametric analyzes and safety factors should be calibrated based 

on target reliabilities, and the considerations of the system and seismic 

variability. 

 

- In the cases of a hinged beam, redistribution of bending moments takes place 

in columns. In the validation cases, all columns were designed with the 

needed strength. Despite this, a safety gap between the column strength 

demand and yielding strength of beams for real designs.  The role of 

overstrength factors and a calibration format for this coefficient should be 

calibrated for designing with the DLA method.  

 

- The proposed methodology is able to account for different structural 

technologies for connection, hysteresis, use of seismic devices, etc. A study 

related to the use single or combine techniques should be carried out to derive 

recommendations and guidelines. Likewise, retrofitting procedure with 

hysteretic device could be developed, i.e., the work of Benavent-Climent 

(2011). 

 

- In some structural systems, such as inverted pendulum, hinges may only take 

place in columns. However, this may produce a mechanism in the auxiliary 

structure and modal analysis cannot be carried out on it. Therefore, a pertinent 

improvement of the methodology is to include yielding stiffness in the column 
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hinges, so that it will be possible to exploit a complete mechanism, exploiting 

the base columns strength and ductility capacity.  

 

- Second order effects has been neglected in the analysis conducted in this 

research.  However, its inclusion in the linear analyses of the elastic and 

auxiliary system is possible by means of the geometric stiffness matrix. It is 

suggested that a research regarding the inclusion of second order effects in 

the design with the DLA method should be carried out. 

 
- The maximum response for each structure is obtained by modal analysis. In 

this thesis the SRSS method was used. Other modal combination should be 

investigated for non-well separate frequencies in higher vibration modes. 

 
- As recently suggested in Wilson (2015), it is currently possible to carry out 

linear time-history analysis with a low computational cost. Although, this may 

provide significant improvement in the uncertainties related to modal response 

combination, this will not include the effects related to the nonlinear response. 

The DLA method may provide an interesting tool to estimate the nonlinear 

response in the transient analysis.  Therefore, it is suggested to carry out a 

research on the adaptations of the DLA method for use together with linear 

time history analysis as alternative to spectral analysis. 

 

- The DLA method was here applied and validated for one direction modal 

dynamic spectral demand. Moreover, the directionality of the seismic hazard 

should be investigated, including the effects of the vertical component, as this 

may affect the formation of hinges in columns. 

 
- Finally, it is recommended to investigate the use of the evolution curves, which 

are easily generate by the DLA to optimize a performance based earthquake 

design. Evolution plots for multiple seismic demands corresponding to 

different return periods, may be plot in the same graphic. Hence, the DLA may 

be used as a design tool for multiple design objectives.  
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