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Abstract

Thermodynamics traditionally deals with macroscopic systems at thermal equi-
librium. However, since the very beginning of the theory, its range of appli-
cability has only increased, nowadays being applied to virtually every field of
science, and to systems of extremely different size.

This thesis is devoted to the study of thermodynamics in the quantum
regime. It contains original results on topics that include: Work extraction
from quantum systems, fluctuations of work, the energetic value of correlations
and entanglement, and the thermodynamics of closed quantum many body
systems.

First, we study work extraction from thermally isolated systems. Here the
notion of passive states naturally arises, as those quantum states from which
no work can be extracted. We start by characterising the set of passive states,
and find the most energetic passive states, a dual family to the well known
Gibbs (or thermal) states. Remarkably, passive states have the property of
activation: When considered as a whole, several copies of passive states can
become nonpassive. We study the dynamics of activation processes, and find
a relation between the entanglement generated and the speed of the process.

Next, we consider the possibility of extracting work from a system using an
auxiliary thermal bath. In this case, according to the second law of thermo-
dynamics, the amount of work is bounded by the free energy difference. We
develop corrections to this law which arise from the finite size and the structure
of the bath.

We go on by studying the fluctuations of work. Fluctuations are particularly
relevant for small systems, where their relative size is comparable to the average
value itself. However, characterising the fluctuations in the quantum regime
is particularly difficult, as measurements generically disturb the state. In fact,
we derive a no go result, showing that it is not possible to exactly measure the
fluctuations of work in quantum coherent processes. Despite this result, we
develop a new scheme that allows for their approximate measurement.

An important part of this thesis is devoted to the relation between quantum
correlations and work. We start by considering a set of correlated states which
are thermal at the local level, in which case the extractable work can only
come from the correlations. We compute the amount of work that can be
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stored in entangled, separable and correlated states with a fixed entropy, by
finding the corresponding optimal states and protocols. These results provide
fundamental bounds on the potential of different type of correlations for work
storage and extraction. Next, we consider the converse scenario, and study
the creation of correlations from thermal states. We find thresholds on the
maximal temperature for the generation of entanglement. We also work out
the minimal work cost of creating different types of correlations, including total
correlations, entanglement, and genuine multipartite entanglement.

Finally, we study the thermodynamics of closed quantum systems. Here we
use one of the most important recent insights from the study of equilibration
in quantum systems: Closed many body systems do not equilibrate, but can be
effectively described as if they had equilibrated when looking at a restricted,
physically relevant, class of observables. Importantly, the corresponding equi-
librium state is not necessarily a Gibbs state, but may be very well given by
a Generalized Gibbs ensemble state. With this in mind, we develop a frame-
work for studying entropy production and work extraction in closed quantum
systems.
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1. Introduction

Quantum physics emerged at the beginning of the 20th century in order to de-
scribe new microscopic phenomena involving, for example, atoms and photons.
The theoretical models at that time, based on Newton’s laws and Maxwell equa-
tions, were unable to provide descriptions to several phenomena, such as the
black body radiation or the photoelectric effect. Quantum mechanics emerged
as a new microscopic theory that could describe such new phenomena. The
result was a genuinely new physical theory, which started a new paradigm in
science. The theory was equally successful and debated. It yield exact pre-
dictions to the experimental results. However, its very foundations, and in
particular the interpretation of the theory, was not settled from the early days
of the theory and remains unsettled today.!

Quantum physics is intrinsically probabilistic: It does not provide a deter-
ministic answer to an experiment, but only assigns a probability to the different
possible outcomes. The measurement apparatus has an active role, so that the
possibility of observing basic physical properties, such as the position or the
velocity, without disturbing them vanishes. Not only that, but fundamental
ingredients of the theory, such as the superposition principle or entanglement,
completely escape our intuition. These unique features have both fascinated
and troubled quantum physicists for many decades, and a common attitude to-
wards the foundations of quantum physics was summarised by the celebrated
quote, shut up and calculate.

A new mindset in quantum physics started in the 80’s and 90’s with the
raise of quantum information and quantum computation. The crucial realisa-
tion was that quantum physics had the potential to revolutionise information
technologies. Quantum effects, which challenged our conceptions of nature and
reality, became powerful resources to improve current technologies. Celebrated
examples include Shor’s algorithm to factor large numbers efficiently, and the
BB84 protocol for secure communication using quantum entanglement. These
theoretical proposals were combined with an extreme advance in the control

! There are different interpretations of quantum theory, including The Copenhagen interpre-
tation, many-worlds interpretation, pilots-wave interpretation (Bohmian mechanics) and
information-based interpretations. Up until now,The Copenhagen interpretation is the
most used one.
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and manipulation of quantum systems in experimental platforms, such as ion
traps and cold atoms.

This success has motivated a renewed interest in the implications of and
possibilities offered by quantum phenomena in different fields. In particular,
recent years have experienced a growing interest in the study of thermody-
namics in the quantum regime (see (GHR™16; VA15) for recent reviews in
quantum thermodynamics). Thermodynamics, the study of energy transfers
in form of work and heat, started in the XVIIth century with a very practical
motivation: The design and development of heat engines. Approximately two
centuries later, in the 1950s, the first and second laws of thermodynamics were
developed, primarily out of the works of William Rankine, Rudolf Clausius,
and William Thomson. These laws, which were originally formulated for heat
engines, rapidly increased its range of applicability. In fact, nowadays, the laws
of thermodynamics, closely together with methods from statistical physics, are
applied to virtually every field of science, from black holes and cosmology, to
biology and chemistry.

Due to the universality of the laws of thermodynamics, we should not be
surprised that quantum physics obeys them within its framework of applica-
bility. The question is in fact how wide is this range. Standard thermody-
namics is formulated for states in thermal equilibrium, but current research
suggests that its power of predictability goes way beyond them. For exam-
ple, recent results coming from quantum information theory show that pure
quantum states of sufficiently large systems behave, for most times and ob-
servables, effectively as thermal equilibrium states (see (GE15) for a review
on the topic of equilibration). Furthermore, different approaches to deal with
out of equilibrium thermodynamic processes, in particular those based on re-
source theories (BaHO"13) and fluctuation theorems (TLHO7), confirm the
validity of the second law for a wide range of transformations. These works
open exciting possibilities and provide powerful tools to explore and study the
thermodynamics of small quantum systems.

The fact that quantum physics satisfies the laws of thermodynamics by no
means implies that quantum effects cannot modify, or even enhance, certain
thermodynamic tasks. In fact, the main goal of this thesis is to understand
and explore the implications of quantum phenomena, such as coherence and
entanglement, in thermodynamics.
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1.1. Motivation and contributions

1.1.1. Work extraction from quantum systems
State of the art and motivation

A considerable part of the thesis is devoted to the study of work extraction in
the quantum regime. Work extraction, together with other tasks in thermody-
namics, is traditionally studied within the set of thermodynamic operations,
which consists of transformations of thermodynamic variables, such as volume,
temperature, etc. Those operations can be implemented with ignorance of any
microscopic information, and indeed they are easily implementable in real ap-
plications. In fact, all engines are based on them. When dealing with small
quantum systems, it is not always clear what a thermodynamic operation is.
A way to escape this problem is to consider instead all operations as thermo-
dynamic operations. The motivation for this approach is two fold:

e The number of degrees of freedom of the systems of interest in the quan-
tum regime can be small. In this case, it is conceivable to treat all degrees
of freedom in the same footing, and assume we can transform all of them.

e In the last decades we have experienced an enormous advance in the level
of experimental control of quantum systems, so that is nowadays possible
to manipulate with a high level of control small quantum systems.

The problem is then to infer what is the best protocol given some partial mi-
croscopic information on the system -the system will be generically represented
by a density matrix, the entropy of which measures the level of ignorance.

A seminal work to deal with work extraction using general operations was
developed by Pusz and Woronowicz in (PW78), see also the work of Lenard
(Len78). In these works, the set of possible operations for work extraction
consists of all unitary operations on the system of interest. Note that, in
quantum physics, every evolution of a closed system can be described by a
unitary operation. In turn, for every open system, a closed super-system can be
constructed by considering the surrounding with which the system is interacting
with. Hence the considered set of operations is remarkably large.

Within this set of operations, the concept of a passive state was introduced in
(PWT78) as those states from which no work can be extracted -conversely, non-
passive states are those states which store work. Remarkably, passive states
have the property of activation: when considered as a whole, several copies of
passive states can become non-passive. The only states lacking this property
are thermal, or Gibbs, states. This selects Gibbs states, which are also known
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as completely passive states, as the only states that are genuinely useless for
work extraction: Even if one posses an infinite amount of Gibbs states (at the
same temperature), no work can be extracted from them. Complete passivity of
thermal states has motivated their role as free states in the recently introduced
resource theory of thermodynamics (BaHO'13).

An important observation in activation processes is that they can only be im-
plemented via global operations -indeed, at the local level the states are passive
and have no extractable work. The amount of work that can be extracted in
the thermodynamic limit via such operations was recently studied in (AF13).

Motivated by these considerations, we develop two different projects on the
phenomenon of activation. The first one is motivated by the fact that all all
passive-but-not-thermal states contain some work that can be potentially acti-
vated. We study how large such an activable work can be, which allows us to
find how energetically different are passive states from thermal states. The sec-
ond main question arises from the observation that global unitary operations,
which are necessary for activation, are also needed for generating entanglement.
This motivates us to characterise the exact relation between entanglement and
the extracted work.

Main results

The problem of finding the passive states with maximal actionable work turns
out to be the same as maximising (minimising) the energy (entropy) for a given
entropy (energy) within the set of passive states - note that Gibbs states provide
the dual solution to such optimisations. The solution to this optimisations
yields a one parameter family, which we term the most energetic passive states.
This family can be seen as the dual of Gibbs states, where the free parameter
plays the role of the temperature. This observation naturally allows us to
obtain some fundamental bounds for work extraction for finite dimensional
quantum systems. Furthermore, we quantify how energetically different are
passive states from Gibbs states, finding strikingly different results depending
on the structure of the Hamiltonian.

In a different project, we investigate in detail the activation process of passive
states, in particular the role of entanglement. We show that, while all work
can be extracted without generating entanglement at any point, entanglement
can increase the speed of the process.
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1.1.2. Second law of thermodynamics
State of the art and motivation

The concept of passive states appears when one considers work extraction from
a system that is thermally isolated from its surroundings. Yet, thermodynamics
is very much concerned with the situation where energy exchanges between
the system and a surrounding thermal bath take place. Here we investigate a
version of the second law, the extractable work from a system is bounded by the
free energy difference, which is defined in this setting.

The scenario of (PW78; Len78) can be extended to account for a thermal
bath by taking an initial state consisting of a system (out of equilibrium) and
a thermal state. The allowed operations are then any unitary operation on the
joined state. While formally correct, this is a rather theoretical approach: The
thermal bath is macroscopic, with an enormously large number of degrees of
freedom, and hence assuming controlled unitaries on the bath is impossible at
the practical level. Even with this unrealistic level of control, recent results in
the literature, see e.g. (EVdB11; BaHO'13; SSP14), show that the second law
of thermodynamics still holds true. This result is very remarkable because in
order to saturate the bound given by the second law, no control over the bath
is required: A weak interaction between system and bath is enough to bound
the limit set by the second law (AG13; Abel3). Nevertheless, the bath must
have some specific properties, in particular having infinite size and a continuous
spectrum.

Motivated by these results, in our work we study situations where, even with
unlimited control over the state of system and bath, saturating the second law
is not possible due to the finite size of the bath or the lack of a continuous
spectra.

Main results

Following (EVdB11; RW14), we derive an exact equality which holds for arbi-
trary unitary operations, from which the second law of thermodynamics follows.
This expression permits us to identify the different sources of non-optimality
in work extraction processes. We also construct explicit optimal protocols for
work extraction that saturate the second law. These protocols require a contin-
uous spectrum for the thermal bath, as well as an infinite size. By computing
the maximal extractable work in absence of these properties, we find corrections
to the second law arising from either finite size effects or the bath structure.
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1.1.3. Fluctuations of work in quantum coherent processes
State of the art and motivation

Phenomenological thermodynamics is formulated as an exact set of relations
among macroscopic quantities, such as heat and work. With the development
of statistical physics, it was realised that thermodynamic variables could be
interpreted as the average of (complex) microscopic magnitudes. For example,
thermal energy can be associated with the statistical mean of the the kinetic
energy of the systems’ particles. Therefore, the laws of thermodynamics have a
probabilistic nature: They are to be satisfied on average, but nothing prevents
their violation for small periods of time, or in particular realisations of an
experiment. The crucial realisation is that (usually) thermodynamics deals
with extremely large systems where, because of the law of large numbers, the
probability of observing noticeable divergences from the average value becomes
zero for all practical purposes.

The situation changes drastically when we deal with mesoscopic systems, or
even with systems of a few particles, as it is often done in quantum thermody-
namics. In this case, fluctuations do become relevant, and their characterisation
is important. In classical physics, relations to characterise the fluctuations in
thermodynamic processes were developed in the form of fluctuation theorems
(see (SPWS08; EHMO09) for reviews on the topic). Fluctuation theorems are
exact relations about the whole probability distribution, not only the average,
of thermodynamic variables. They can quantify the probability of processes
which are not necessarily allowed by the second law, but can occur with a
small probability.

The celebrated Jarzyinsky fluctuation theorem (Jar97), which characterises
the fluctuations of work, was extended to the quantum regime in (TLHO7)
(see also the recent review (HT15) and references therein). The result was
based on a particular measurement scheme to estimate work, consisting of two
measurements of energy, one done at the beginning and one at the end of the
process. Work is then associated with the difference of energies of the results
of the two measurements (TLHO7). While this scheme successfully extends the
fluctuation theorems to the quantum regime, it has an important drawback:
It does not allow for a description of quantum coherent processes. Indeed, the
first energy measurement destroys any energy coherence, and forces the system
to behave as a classical state, with a well defined energy.

In our project we aim to extend the results of (TLHO07) to states with quan-
tum coherence, by devising new measurement schemes that have a smaller back
action on the initial state.
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Main results

By considering general measurement schemes to estimate the fluctuations of
work, we first set fundamental limitations on the possibility of measuring work
fluctuations in coherent processes. Then we devise new strategies which allow
for the (approximate) characterisation of the fluctuations of work in coherent
processes.

1.1.4. Extractable work from correlations
State of the art and motivation

One of the immediate consequences of the second law of thermodynamics is
that there exists no cyclic process which extracts work from a thermal bath.
Indeed, if it was possible, one could construct a perpetuum mobile machine,
which would transform the dissipated heat into work with no additional cost.

The standard way to overcome this limitation is to obtain two thermal baths
at different temperatures. Each bath is, by itself, completely useless; but the
combination of both creates a heat flow that can be used for the extraction of
work. In other words, the hot bath is not in thermal equilibrium with the cold
one, and vice versa, and the corresponding absence of equilibrium is potentially
useful energy, i.e., work. At the theoretical level, it is not difficult to imagine
other origins for the work source. A seminal example is the Szilard engine,
which uses information as a source to extract work (Szi29).

In our work we aim to investigate the potential of correlations as a source of
work. For that, we consider a set of correlated systems that, at the individual
level, are found at thermal equilibrium at the same temperature. Because of
the result by (PW78), it follows that all the extractable work can only come
from the correlations between the states. We then investigate how much work
can be stored in such correlations, and whether this amount depends on the
quantum nature of them.

Main results

We consider general entangled states, separable states, and correlated states
with fixed global entropy. For each class of states, we find the optimal state
for storing work and the corresponding protocol to extract it. Our results
show that entanglement provides an advantage for work storage, although this
advantage decreases as the number of correlated systems increases, vanishing
in the thermodynamic limit.
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1.1.5. Fundamental limitations for creating correlations in
thermodynamic environments

State of the art and motivation

Quantum information protocols strongly rely on entanglement, which is the
root of relevant applications in cryptography, metrology, or quantum compu-
tation. In order to obtain maximally entangled states, the state needs to be
pure, i.e., one has perfect control and knowledge of it. Yet, in real applications,
it is to be expected that noise will diminish the purity of the state. Here we
are interested in understanding the limitations and possibilities for generating
entanglement and correlations in thermal states at finite temperature.

The thermodynamic-like limitations that we consider for generating entan-
glement and correlations are of two types,

e limitations arising form the initial temperature, and
e limitations arising form the available energy.

Regarding the first type, in quantum information it is known that there are
states that are too mixed to become entangled, i.e., there exists no unitary
operation that can generate entanglement on them (GB02; GB03) (see also
(HHHHO09) for a review in entanglement theory). Hence, it is to be expected
that states at high temperatures, which are very mixed, are useless for creating
entanglement. Our aim is in fact to find what is the maximal temperature that
allows for the generation of different forms of entanglement.

The second limitation that we consider is related to the work cost of gener-
ating entanglement and correlations. Since we consider states that are initially
at thermal equilibrium, a positive amount of work needs to be invested in order
to move them out of equilibrium and create correlations. The question is then
what is the minimal work cost to generate a certain amount of correlations or
entanglement.

Main results

We consider a set of independent thermal states at the same temperature, and
consider the possibility of implementing any unitary operation on them. We
find what is the maximal temperature allowing for the generation of differ-
ent types of entanglement, which depends on the number of copies that are
available. We show that even genuine multipartite entanglement -the strongest
form of entanglement in multipartite systems- can be created at any temper-
ature when sufficiently many systems are considered. We also investigate the
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work cost of producing entanglement and correlations by constructing explicit
protocols for generating a unit of correlation or an e-bit (a fundamental unit
of entanglement) at minimal energy cost.

1.1.6. Thermodynamics in the context of Generalized Gibbs
Ensembles

State of the art and motivation

It has been stressed the fundamental role that Gibbs states play in thermo-
dynamics, which was motivated because they are the only completely passive
states. There is another very strong reason why Gibbs states are ubiquitous in
thermodynamics: One expects that out of equilibrium systems will eventually
relax to a thermal state. This can be roughly justified by the observation that
(i) thermal states maximize the entropy, and (ii) according to the second law
of thermodynamics the entropy of a closed system can only increase. Hence, it
follows from (i) and (ii) that if the entropy increases continuously the final state
must be a thermal state - the temperature of which is defined by the energy
of the overall system. This is indeed what we observe in our daily life: For
example, take two systems at different temperatures -and hence globally out of
equilibrium- and after a sufficiently large time they will reach an equilibrium
state well described by a thermal state at an intermediate temperature.

At the quantum level, equilibration and thermalisation are intense topics of
research, and an unified picture is still missing (see (PSSV11; GE15) for reviews
on equilibration and thermalisation in quantum systems). What is nevertheless
widely accepted is that there exist systems which reach equilibration, but the
corresponding equilibrium state is not well described by a thermal state. A
relevant example are integrable models, the equilibrium states of which are
given by the so called generalized Gibbs ensembles (GGE) (CDEO08; CCR11).

Our aim is to study relevant processes in thermodynamics, such as entropy
production or work extraction, for equilibrium states that are well described
by GGE states.

Main results

We consider three kinds of equilibration, namely to (i) the time averaged state,
(ii) the generalised Gibbs ensemble (GGE) and (iii) the Gibbs ensemble. Those
are three effective descriptions with decreasing detail of the equilibrium state
(GE15). For each effective description, we investigate entropy production, the
validity of the minimal work principle and properties of optimal work extrac-
tion protocols. As in phenomenological thermodynamics, we show that in
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infinitesimally slow protocols no entropy is generated in any of the equilibrium
states, and are hence reversible. Reversible processes are also optimal processes
for work extraction, a phenomenon which is referred to as the minimum work
principle. We identify significant differences regarding the applicability of this
principle for the different types of equilibration.

1.2. Outline of the thesis

This Thesis is organized as follows:

e Chapter 2 gives an introduction to basic concepts that appear through
all the Thesis.

e Chapter 3 is devoted to the study of work extraction and passive states.
This chapter is based on the following original results: (PLHHT15b;
HPLHA13).

e Chapter 4 is dedicated to the study of the second law of thermodynamics.
The results are new and unpublished.?

e Chapter 5 contains our considerations on the fluctuations of work in quan-
tum coherent processes. The results are new and unpublished.?

e In Chapter 6 the amount of extractable work from correlations is investi-
gated. This chapter is based on the following original results: (PLHH"15a).
Sec 6.7 is original and not published.

e In Chapter 7 we study the generation of entanglement and correlations
starting from thermal states. This chapter is based on the following
original results: (HPLH"15; BPLFT15; FHPL).

e Chapter 8 contains our considerations about generalised Gibbs ensembles
and thermodynamics. It is based on the following (unpublished) original
results: (PLRGT15).

2These results arise through a collaboration with Paul Skrzypczyk and Karen Hovhannisyan.
A prepint including these results is expected in the next few months.

3These results arise through a collaboration with Antonio Acin, Elisa Baumer, Karen Hov-
hannisyan and Marcus Huber. A prepint including these results is expected in the next
few months.

10
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In this Chapter we aim to give the basic tools and concepts used throughout
this thesis. It has two main sections, one devoted to quantum thermodynamics
and one to quantum information. Let us point out that specific background
for certain results of this thesis will be presented at the beginning of the cor-
responding chapter.

2.1. Quantum thermodynamics

Thermodynamics provides us with laws governing the exchange of energy in
form of work and heat. Nevertheless, in the quantum regime, the very definition
of work is still a matter of debate (see e.g. (TLHO7; SSP14; GEW15; Abel3)
for different approaches to the definition of work in the quantum regime). Here
we present a rather standard textbook definition (LL80; GMMAO09), and leave
recent insights and alternative definitions of the concept of work for later points
of this thesis.

2.1.1. Work, heat, and the first law of thermodynamics

Let us consider a quantum system p(t) with an internal Hamiltonian H (¢). The
(average) internal energy of the system at time ¢ is simply given by,

E(t) = Tr (p(t)H(t)) - (2.1)

This energy varies in time as the system exchanges energy in, qualitatively, two
distinct ways,

e Work-like energy. This energy is associated with the variation of external
parameters that can be controlled, such as volume. In the quantum case

this corresponds to the change of the Hamiltonian H in time.

e Heat-like energy. This energy is associated with non-controlled energy
exchanges of the system with its surroundings.

11
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In order to quantify these two energic quantities, one defines work as

W:-AZM}G@fyv (2.2)

and the remaining energy is associated to heat,

Q= /OT dtTr <dzgt)H(t)> . (2.3)

Here we take the convention that work is extracted from the system, whereas
heat is absorbed -that explains the minus sign. By construction, the first law
of thermodynamics is satisfied,

AE=Q-W (2.4)

which is nothing but energy conservation.

It is important to note that work and heat are process dependent functions.
This is seen here by the fact that they can not be computed as an instanta-
neous function of the couple (p(t), H(t)), as the average energy in (2.1), but
rather depend on the whole time evolution- i.e., the path from (p(0), H(0)) to
(p(t), H(t)). At the infinitesimal level, this implies that work and heat are in
general not full differentials, and will be denoted as dW and Q).

Example: A thermally isolated system

In order to gain a better understanding of these definitions, let us consider a
thermally isolated system. In this case, the only variation of energy comes from
the time dependent nature of H (t),

H(t)=H + V(t). (2.5)

The state p then evolves as,
im0 _ (11(1), p(r) (2.

From (2.2), we obtain easily,
Q= [ arme (@ p0)Hw) = 0 (2.7)

in J,

where we used the cyclic property of the trace. Hence,
W = Te(H(0)p) — Tr(H(7)p(r)). (2.8)

Summarizing, when the system is thermally isolated, there is no heat exchange,
and work is equal to the change of internal energy.

12
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2.1.2. Second law of thermodynamics

Assume now that the system is immersed in a thermal bath at temperature 7.
We introduce the thermodynamic entropy as the heat exchanged in a reversible

Asth = /rev % (29)

The Clausius formulation of the second law of thermodynamics then states

that,
/5;? < ASip. (2.10)

That is, the change of the entropy of the system must be equal or larger than
the average heat absorbed by the system during the process. If we now define
the equilibrium free energy as,

process,

Feq(p) = Tr(Hp) — T'Sin(p), (2.11)
we obtain from (2.10) and the first law of thermodynamics,
W < —AF.,. (2.12)

That is, the extractable work from a system is bounded by the difference of
free energies, an equivalent formulation of the second law.
In order to compute the thermodynamic entropy Sin, let us introduce the
Von Neumann entropy,
S(p)=—Trplnp. (2.13)

Then, for states in thermal equilibrium, i.e. states of the form,

67’BH
T = = (2.14)

where Z = Tre #H it is known that the thermodynamic entropy equals the
Von Neumann entropy,
Sth(Tﬁ) = kBS(Tg), (2.15)

where kg is the Boltzmann constant, which, from now one will take it to be
equal to 1. This provides a simple recepy to compute the thermodynamic
entropy for equilibrium states, which is in fact the regime where traditional
thermodynamics applies.

Extending the definition of thermodynamic entropy for states out of equi-
librium is a difficult problem even in the classical regime, and is still debated
nowadays. A standard approach is to keep the relation (2.15), i.e., to define

13
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the out-of-equilibrium entropy of a state p as its Von Neumann entropy, (2.13).
In this case, the non-equilibrium free energy is defined as,

F(p) = Tr(Hp) = T5(p), (2.16)

which provides a more refined version of the second law (2.12). In Chapter
4, we will discuss in detail this form of the second law, and show that (2.16)
provides a meaningful way to extend the second law (2.12) for out of equilibrium
processes.

2.1.3. Work extraction and passive states

Let us now study the problem of work extraction from quantum systems in
more detail. We focus on processes where the system is thermally isolated, so
that no heat is exchanged at any point during the process (extensions including
thermal environments will be discussed in Chapter 4). We also consider cyclic
processes, in the sense that the Hamiltonian is the same at the beginning and
at the end of the process.!

Cyclic Hamiltonian processes can be described by a time dependent field
V(t), which is being turned on during a time interval ¢ € [0,7]. Since the
system is thermally isolated, the evolution of p can be described by a unitary
operator

U(r) = exp (—i/OT dt (H + V(t))) , (2.17)

where exp denotes the time-ordered exponential. By appropriately choosing
V(t) we can generate every unitary operation U = U(7), and thus the opera-
tions considered in this context are essentially all unitary operations.

Note that this scenario is the same as the one discussed in Sec. 2.1.1. There-
fore, the extracted work W is given by

W = Tr (pH) — Tr (U;;UU{) . (2.18)

where we used that V(0) = V(7) = 0. The internal (time-independent) Hamil-
tonian of the system can be decomposed as,

H=> eli)(i| with ei11> e (2.19)
%

!'Note that cyclicity is essential, otherwise the problem of work extraction becomes trivial: If
any transformation of the Hamiltonian H can be performed, one can extract an arbitrary
amount of work by adding negative terms to H, so that the system loses (an arbitrary
amount of) energy.

14
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Within the definition (6.3), work can be extracted from a system if and only if
the system is non-passive, where a passive system has the form (PW78; LenT78),

op =Y _pili)(i|, with pi1 <pi. (2.20)
A

That is, passive states are diagonal in the energy basis and do not have popu-
lation inversions (PW78; Len78). We now prove this result following (Len78).
Let U be a unitary operation and o, be a passive state, then

Tr (HUJ,,UT) - Zk:pkek]<k|U]k>|2 > Ek:pkek = Tr (Hop) (2.21)

where we used the fact that |(k|U|k)|? is a probability distribution and that
{pr} are decreasingly ordered. That is, any unitary acting on o, can only
increase its energy; and hence no work can be extracted from it. It easily
follows that, given a non-passive state p, the extracted work (6.3) is maximised
by (ABN04),

Winax = Tr(pH) — Tr(pP?SVe ) (2.22)

where p and pP®IV¢ are related through a unitary transformation (pP?**i¢ has
the form (2.20) with the p;’s given by the spectrum of p).

2.1.4. Activation, complete passivity, and Gibbs states

An interesting scenario appears when we consider the possibility to process
several copies of a passive state, i.e.,

p= "oy (2.23)

Here the Hamiltonian is simply given by the sum of local Hamiltonians, H(T) =

> H (©), As n increases, population inversions can start appearing in p, which
hence becomes non-passive. This is easily illustrated by an example. Consider
two identical 3-level systems o, in a passive state, with

h) = diag{eg, e1, 2} (2.24)

and
op = diag{po, p1, p2} (2.25)

where pg > p1 > ps. Suppose now that p,ps > p% while eg 4+ e2 > 2e;. The
state JZ(?Q is non-passive, as a population inversion appears among the levels
eo+e2 and 2e;. Hence a (global) unitary operation exchanging these two levels

can extract work from the state.

15
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Remarkably, it can be shown that if n is sufficiently large, population in-
versions always start appearing in ®"o,, the only exception being Gibbs or
thermal states (PW78; Len78). The fact that Gibbs states are the only non-
activable states will be proven in Chapter 3 following Ref. (AF13). Here, we
just note that Gibbs states keep their structure under composition,

i T
6_5[{() e_gH( )

- 2.2
z Z (2.26)

%

where Z =[], Z;, and hence they remain passive, no matter how many copies
one considers. This is why they are also referred to as completely passive states.

As a final remark we note that connections between passivity, free energy,
and the second law of thermodynamics will be provided in Chapter 4.

2.2. Quantum Correlations

Let us now turn to quantum information theory. A big part of this thesis is
related to the connection between thermodynamics and correlations. Particular
emphasis will be put in entanglement, a form of correlations that only exists
in the quantum world.

2.2.1. Correlations

Consider a bipartite quantum state pap. Correlations between the two systems
(denoted by A and B) can naturally be measured using the quantum mutual
information I4p,

Iap = S(pa) + S(pB) — S(pan), (2:27)

where pa p = Trp a4 pap and S() is the Von Neumann entropy. Note that, iff
A and B are independent, i.e., pap = pa ® pp, then [45 = 0.

In the multipartite setting one can generalise the notion of mutual infor-
mation by considering the difference between the sum of local entropies and
the total entropy of the system. That is, for a collection of n subsystems

16
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Ay, ..., Ay, we define the multipartite mutual information as
n
Iin=Y_S(p:) - S(p), (2.28)
i=1

where p; is the local state of subsystem A;. This quantity vanishes only when
the total system is a direct product.

2.2.2. Entanglement

Entanglement is a direct consequence of the linearity of quantum mechanics
and the composite structure of Hilbert spaces. While it is hence a very natural
phenomena in quantum physics, it has no classical counterpart. This gives
to entanglement a unique status: It is at the core of some the most amazing
properties of quantum physics, such as Bell non-locality, and at the is same
responsible for many applications of quantum information and computation.

In order to define entanglement, consider an bipartite pure state |[p4p). We
say |¢pap) is entangled if it cannot be written as a tensor product,

|paB) # |Pa) @ |dB). (2.29)

Otherwise, the state is separable. This notion is extended to mixed states as
follows: A density matrix p is said to be entangled if it cannot be written as a
convex combination of pure separable states,

p# 3 mlod) ol @100} (2:30)

We note that this definition of entanglement comes from the observation that
states of the form (2.30) can be generated by local operations and classical
communication (NC00).

In order to appreciate the power of entanglement, let us consider a two qudit
system, i.e. two d-level systems, and the following entangled state,

1
= —|1). 2.31
¥ =2 2:31)
If we compute the mutual information of this state, we obtain,

1) = 21nd. (2.32)

17
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This is in fact the maximum of I4p, as the Von Neumann entropy of a d-
dimensional system is upper bounded by Ind. Hence, we see that the corre-
lations of |¢) are maximally strong. Not only that, but if we now consider
separable states, one finds that (NCO00),

5% < Ind. (2.33)

That is, the strength of the correlations in entangled states can be twice as
much as in separable states.

The quantification and detection of entanglement is known to be a hard
task. The standard measure of entanglement for pure states is the entropy of
entanglement,

E([ar)) = S(pa) = S(pB) (2.34)

where S(p) is the Von Neumann entropy. This measure can be extended to
mixed states via the convex-roof construction

E(p) = ianpié‘(wi), (2.35)

where the infimum is taken over all pure state decompositions p = >, ps|ts) (1.
This measures is known as entanglement of formation. The difficulty of com-
puting/detecting entanglement lies in the minimization in (2.35). Several al-
ternative measures of entanglement, such as the entanglement negativity, have
also been proposed (see Ref. (HHHHO09) for a review in entanglement the-
ory). Those measures cannot detect all entangled states but can be efficiently
computed.

The situation is simpler in the case of bipartite qubit systems, where the
entanglement of formation can be analytically computed. For that, one defines
the concurrence (Woo98) which, for pure states, is the linear entropy of the
reduced state of one party,

Cw) = /21 - Tx(p3)), (2.36)

where pa = Trg|1))(¢|ap. This measure can be indeed functionally related to
the entropy of entanglement. Again, the definition (2.36) can be extended to
mixed states via the convex-roof construction C(p) = inf ), p;C(1;). For qubit
systems, the convex roof can be analytically calculated, yielding (Woo098)

C(p) = max(0,\1 — Ao — A3 — \y) (2.37)

in which Ay, ..., A4 are the eigenvalues, in decreasing order, of the Hermitian

matrix
R=\/Voivp (2.38)

18
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with
p=(oy®ay)p*(oy @ ay). (2.39)

Multipartite setting

The previous measures can be naturally extended to multipartite systems.
Here, states can be fully separable, partially entangled, or genwinely multipartite
entangled.

The level of entanglement in multipartite states can be quantified by intro-
ducing the notion of k-separability. An n-partite pure quantum state |¢gep) is
called k-separable, if it can be written as a product of k states:

’¢ksep> = ’431) ® ‘¢2> ® ... ‘¢k> (2.40)

A mixed state pysep is called k-separable, if it has a decomposition into k-
separable pure states,

Pksep = Zpi|¢ksep><¢ksep|- (2'41)

Particularly relevant are the two extreme cases: A n-partite state is called fully
separable if it is n-separable; and it is called genuinely multipartite partite
entangled (GME) if it is 1-separable.

In the multipartite setting, a state can be entangled in many inequivalent
ways, which do not only depend on the number of parties involved in the
entanglement (e.g., there are different classes of GME entangled states). To
understand this idea, consider first the case of two qubits. The maximally
entangled state, also known as an Einstein-Podolsky-Rosen (EPR) pair, reads

1
V2

There is a deep reason why the EPR pair is the most powerful entangled state,
besides the fact that it maximizes the entanglement measures defined above.
Consider the set of LOCC operations, i.e., operations consisting of local oper-
ations and classical communication. By the very definition of separability in
(2.30), every separable state can be constructed with LOCC operations, but no
entanglement can be generated with them -in fact LOCC can only decrease the
amount of entanglement. Now, given an EPR pair, one can deterministically
obtain any pure state using only LOCC operations (Nie99). Conversely, an
EPR state can be probabilistically obtained from any bipartite qubit entan-
gled state using SLOCC (stochastic LOCC).

[ (100) +[11)). (2.42)
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This result gives a unique status to the EPR pair, being the optimal resource
for constructing states in terms of LOCC operations. The uniqueness of a
maximally entangled state is lost in the multipartite setting. That is, there is
no single state from which any state can be obtained, even probabilistically.
Convertibility among states via LOCC and SLOCC operations have extensively
studied in the multipartite setting (see the recent results in (SSC*15) and
references therein). For three qubits, it is known that there are two inequivalent
classes of entangled states, which are given by,

bonz) = —=(1000) + 1))
1

lpw) = 3

(|001) 4 [010) + |100)). (2.43)

S

Each of these states is a different resource, as the states they can generate via
(S)LOCC operations have no overlap. Both the GHZ and the W are widely
used in quantum information. They can be easily extended to the multipartite
setting, although in this setting many more inequivalent entanglement classes
appear, and its characterization depends on the framework one uses (see e.g.
(SSC*15) for a recent discussion).
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3. Work extraction from thermally
isolated systems

This chapter is devoted to the study of passive states, with special attention
to the phenomenon of activation. In Sec. 3.1, we start by presenting the sem-
inal result of (PW78; Len78), namely that all passive states can be activated
in the thermodynamic limit (i.e. when an arbitrary large amount of copies
are processed) except for Gibbs states. Following (AF13), in this section we
also compute what is the extractable work in this limit, which is given by the
difference of free energies. Next, in Sec. 3.2, we present our first original contri-
bution, namely finding the most energetic passive states, which gives an upper
bound to such an extractable work. Finally, Sec. 3.3 is devoted to the study
of the role of entanglement in activation processes, and our main contribution
is to show that entanglement can increase the speed of such processes.

3.1. Maximal extractable work in the thermodynamic
limit

This section is based on the results of (AF13). The main goal is to compute
how much work can be extracted from,

in the asymptotic limit n — oo, where o), is a passive state. For that, let us first
bound the extractable work (2.22). By noting that (i) unitary transformations
preserve the Von Neumann entropy, and that (ii) for a fixed entropy, Gibbs
state are the states minimising the average energy, we have that,

Tr(pH) > Tr(pP*V° H) > Tr (75 H) (3.2)

where 74 is a fictitious Gibbs state whose temperature 5’ is chosen such that
S(p) = S(1p) is satisfied. Using (3.2) we immediately arrive at a bound for
the maximum extractable work from p,

Whnax < Tr(pH) — Tr(7 H). (3.3)
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In the single copy case, this bound can only be reached if p and 74 have the
same spectrum. Remarkably, this bound can be reached in the asymptotic
limit n — oo, in the sense that the total Wy, divided by n tends to the right
hand side of (3.3) (AF13). Let us now sketch the proof of this result, which is
based on typicality arguments.

Let 0, = diag{p1,...,pq} and h; = Z?:1 €;]i;) (5] be the internal Hamiltonian
of each system. Let us denote by i =41 - - -4, an n-bit string, with [i| = >, i.
The states

1) = i) -+ |in) (3-4)

run over all d” energy eigenstates of the total Hamiltonian H(*). Now, the
vast majority of the population of Uf,@” is located in the e-typical subspace (see,
e.g., (NCO00)), which is that spanned by [i)’s of the form,

(po+e0)N (patea)N d
10.0L.1..d..d ), with |eg|<e > e=0
(p1+e1)N k=1

or any permutation of the indices. There are ¢™5(?) of such typical configura-
tions, and they have probability

d d d

[T [Ipd, lal<e Y ea=o0. (3.5)

k=1 k=1 k=1

Note that for n — oo, € can be chosen to be arbitrarily small with ¢ > 0
(NCO00). Thus the choice of {€x} slightly modifies the value of each probability.

Now we can use an identical argument to show that Tg,m, for n large enough,
can be well approximated by considering only the ¢™3(#") typical configura-
tions. The key point is that, since S(73/) = S(0}), there are the same numbers

of typical configurations in 75" than in af}m. Hence we can construct a unitary

U™ that exchanges each typical state of Tgf” with each one of JI?”. Note that
this transformation is highly degenerate. After the transformation the state
ag)” has the energy of T?,n up to an exponentially small correction with n, and
hence we obtain that the extracted work per copy, W*, reads

W* = lim % (ﬁ (a§”H<T>) _Tr (U*UT?"U*T H<T>))

=Tr(opH) — Tr(1g H) (3.6)

which saturates the bound (3.3).
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3.2. The most energetic passive states

Our previous considerations have singled out Gibbs states among all passive
states. In the single-copy case, Gibbs states provide a upper bound on the
extractable work (3.3), and on the many-copies scenario they are the only ones
that cannot be activated. Both of these results are essentially a consequence of
the well known fact that Gibbs states maximize the entropy for a given energy,
and similarly they minimize the energy for a given entropy. This naturally ren-
ders the question of what are the passive states lying in the other extreme, i.e.,
those which maximize the energy for a given entropy, and similarly minimize
the entropy for a given energy.! Besides the genuine mathematical interest of
this question, it is also clearly physically motivated, as the outcome of this opti-
mization will bring a bound akin to (3.3) in the single copy case; and will allow
us to quantify the maximal amount of work that can be potentially activated.
The results of this section are original and based upon (PLHH'15b).

3.2.1. Main result

In this section, for a given entropy S and d-dimensional Hamiltonian H,
H =3 cli)il (37)
i

we find the passive state that maximises the energy, which we denote by o,. It
is convenient to first consider the complementary optimization, i.e., to find the
passive state that minimizes the entropy for a fixed energy E. We will then
show that both optimizations provide the same state.

Let us introduce the following set of d linearly independent states:

1 k
= 1 D Il (3.5)
=1

Note that all states wjy are passive and have the same spectrum of a micro-
canonical state (this distribution is known as the f-canonical distribution). It
is easy to see that any passive state can be written as a convex combination of
such states,

d
op = Z(h’wi, (3.9)
=1

'Note that it is important that the optimisations are carried out restricted to the set of
passive states. Otherwise they become trivial: the state with the least entropy for a fixed
energy is a pure state, and the state with the most energy for a fixed entropy is a thermal
state with a negative temperature.
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3. Work extraction from thermally isolated systems

w2

Figure 3.1.: Illustration of the set of all passive states S and the intersection
with the constant energy hyperplane S€ for a four dimensional system.

with ¢; > 0 and ), ¢; = 1. This shows that the set of passive states defines a
convex polytope, whose vertices are given by wy in (3.8). In fact the polytope
is a simplex, i.e., any two vertices are connected by an edge. We denote the
simplex spanned by all passive states as S.

Within &, we are interested in the subset of states with constant energy,
Tr(pH) = E. Since the energy Tr(pH) is a linear function, the condition
Tr(pH) = E defines an hyperplane which intersects with S. We denote by S&
the polytope formed by this intersection, i.e.,

S ={op, : 0p € Sand Tr(Ho) = E}. (3.10)

The point then is to minimize the entropy function S(o) = —Tr(olno) over
SE&. These considerations are illustrated in Fig. 3.1.

Now, S& is a polytope and the entropy is a concave function, and, as is
known from standard convex analysis, the minimum of a concave function over
a polytope is achieved at one of its vertices. The vertices of S€ have a simple
form. They occur at the intersections of the energy hyperplane with the edges
of § and therefore can be written as,

op(k,l) = Aw + (1 — MNwy (3.11)
where A = A(k, 1) is determined from the energy condition:

Tr(o,(k, ) H) = E, (3.12)
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3.2. The most energetic passive states

which leads to,

Ak, 1) = Tr(zligil)ﬂ?;(flwk)' (3:.13)

Note that for consistency Tr(Hwy) < E < Tr(Hw;) must be satisfied, i.e. the
vertices must be separated by the energy hyperplane. In general, the set of
feasible index pairs Z = {(k,l)|Tr(Hwy) < F < Tr(Hw;)} depends on the
spectrum of the Hamiltonian and the average energy E. It is however efficient
to compute, with a system of dimension d requiring only to check O(d?) pairs.
The last step of the optimization is to minimize the entropy over all feasible
pairs

o, = mIin op(k, 1), (3.14)
which can again be carried out efficiently for finite dimensional systems. We
denote the solution as o™ (E), and its entropy as Smin(E) = S(op"™(E)).

If Smin(F) is a monotonically increasing function of £, then J;,nin(E) is also
a solution of the complementary optimization, namely maximizing the energy
when the entropy is fixed. In the following we show that this is the case by
reductio ad absurdum. To proceed, let us define the polytope of all passive

states with an energy greater than or equal to F,
SEY(E) = {0, : 0p € Sand Tr(Ho) > E}. (3.15)

The vertices of this polytope are those of SE€ plus those vertices of & whose
energies are at least F. Recall that, as it was used before, the minimum of
S(o) over SET(E), Si. (E), is achieved on one of the vertices. Assume that it
is one of the wy with Tr(Hwy) > E. Consider the passive state aw + (1 — a)wg,
with A\ given by A(k,1) in (3.13), so that its energy is equal to E. A direct
calculation shows that S(aw; + (1 — a)wy) < S(wk), which contradicts our
previous assumption. This implies that the minimum of S(o) over SET is
attained on SE, which, along with the observation that SET(E') C SET(E) if
E’' > E, shows that the entropy is a non-increasing function of F.

In conclusion, the passive states that maximize the energy for a fixed entropy,
and at the same time minimize the entropy for a given energy, are the one
parameter family defined by (3.11). This family lies in the boundary of the set
of passive states (see figure 3.2), which are convex combinations of states given
by (3.8). This suggests a beautiful relation within the set of passive states
between canonical and #-canonical distributions: they give rise to the most
and least stable states, respectively.
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3. Work extraction from thermally isolated systems

1.2F

0.8

0.4 0.8 1.2 (H)

Figure 3.2.: Entropy versus energy for passive states given an equally spaced
Hamiltonian of 4 levels, i.e., H = diag{0, 1, 2,3}. The shaded area corresponds
to the simplex §. The two boundary curves correspond to the set of thermal
states (upper) and the set of most energetic passive states (lower), obtained
through (3.14).

3.2.2. Implications

In the single copy level, the main implication of o, is that it yields a lower
bound on the maximal extractable work W,,, from p, which is analogous to
the upper bound (3.3). Explicitly, we obtain that

Tr(pH) — Tr(opyH) < Winax < Tr(pH) — Tr(75 H) (3.16)

where S(o3) = S(p) = S(7p). Note that these bounds depend only on the en-
tropy and the energy of p. That is, they allow to estimate the extractable work
from p based only on global properties, as we expect from standard thermody-
namic theories. In fact, if we accept that the Von Neumann entropy is the right
generalization of the thermodynamic entropy for non-equilibrium states, then
these bounds provide fundamental limitations on the extractable work from p
based only on thermodynamic variables (energy and entropy).

In the many copy case, where one considers the possibility of extracting
work from many copies of a passive state, the relation (3.6) clearly shows
that o} is the state with the maximal amount of activable work. This is easy
to understand because in the thermodynamic limit discussed in Sec. 3.1, the
extractable work depends only on the initial energy and entropy of p. Therefore,
if the minimal amount of work is extracted in the single-copy level (which
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3.2. The most energetic passive states

corresponds to the case where the passive state associated to p is J;), then the
amount of work extracted through activation must be maximal.

It is of course natural to wonder how these bounds behave for Hamiltonians
that naturally occur in nature. For this purpose, in the next section we will
study the behaviour of

Amax(S, Ey) = Tr (Hoy) — Tr (Hrg) (3.17)

which quantifies the difference of energy between the least and most energetic
passive states for a given entropy. This quantity also represents the locked

work in a;.

3.2.3. Spectrum

The quantity Amax(S, E,) highly depends on the structure of H and its dimen-
sion. As an extreme case, when the dimension d of the system is 2, all passive
states are thermal and thus Apax (S, E; ) = 0. As the dimension increases, so
does Anmax(S, Ey), with a rate defined by the structure of H. In this section
we give some general considerations in the limit of d — co. These asymptotic
results are then illustrated by exactly solving some specific systems for finite
dimensions.

Our considerations strongly depend on the density of states (DOS), g,,, which
quantifies the number of states for energy level (the degeneracy). Indeed, the
total number of states up to energy F, denoted as IV, is given by,

E
N, = /O dE'g, (3.18)

Typical Hamiltonians, e.g. those occurring in short-range interacting systems,
have an exponential DOS. Roughly speaking, this can be justified by first as-
suming that entropy and energy are linearly related in macroscopic systems,
as they are extensive variables; and second by assuming that S, ~ In(V,)
at sufficiently large temperatures. These two natural assumptions are only
compatible with an exponential DOS, g, = €. Yet, long-range interacting
systems, or simply few-body Hamiltonians, might very well have a DOS that
grows substantially different. We now discuss the behaviour of A, (S, E;) for
DOS that grows either subexponentially or exponentially.

Polynomial growth of the density of states with energy.

Let us assume a dense spectrum bounded from above by E,, (the ground state
is taken to be non-degenerate and to have zero energy). Assume first that the
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3. Work extraction from thermally isolated systems

density of states (DOS) scales polynomially with energy,
g, = cE“, (3.19)

where ¢ is some positive constant. The total number of states within [0, E] is
then given by

E
N, = /0 dE'g,, = G—LEHG. (3.20)

Let us define wy, as a state that is filled up to energy F, i.e., w, = w,_ in (3.8).
It satisfies

1 [P a+1
Trlw.Hl=— | dE'qg ,E' = E
(w, H] NE/o 9y P
S(wy)=InN,. (3.21)

The MEPS is a combination of two such states, o, = Aw, + (1 — A)wy, , with
E., Ey depending on the specific case (entropy of the state, spectrum, etc).
Numerical analysis provides us with strong evidence that F; = 0 and Fy = Ey,

is always the optimal choice for N, > 1. Therefore we focus on
og = (1 — )\)’0><0| + \E,; (3.22)

where A is determined by the energy (or entropy) of oy.
The energy and entropy of og can be straightforwardly computed, yielding

a+1
E(Uo) = TI‘[O’()H] = )\a n 2Em
S(o0) = HO) + AN, +0 (N1, (3.23)

where H(A) = —Aln A—(1—X\)In(1—\) is the binary entropy in natural units of
information. From FE(og) and S(oy), one can express the entropy as a function
of the energy, S(FE). In particular, we obtain that,

InE,

m

S(E)—0 for E — 0. (3.24)
This relation implies that, if the norm of the Hamiltonian, F,,, is big enough,
then essentially the state has zero entropy while having a finite energy. This
is in sharp contrast with a thermal state, where if S — 0 then £ — 0. On
the other hand, this observation also implies that the work locked in a passive
state Amax (S, Ej) can be arbitrarily large if E,, — oo, which we can expect in
the limit d — oc.
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3.2. The most energetic passive states

In order to illustrate these results, we consider an equally spaced Hamilto-
nian,

d
H=c) klk)kl. (3.25)
k=1

Of course, this Hamiltonian is naturally found in single-body systems, as in a
harmonic oscillator, but is hardly imaginable in an interacting system. Note
that, in this case, g, is a constant, and the norm of the Hamiltonian increases
linearly with the dimension, £, = Ed. We have computed Apax(S, E}) as a
function of d and S in Fig. 3.3, case (a). The figure (see especially the inset)
shows how Apax(S, E,) increases linearly with d. Therefore, if the dimension
is large enough, passive states have a large range of energies for a fixed entropy.
In other words, there is a big energy gap, which increases with d, between the
most and least energetic passive states. In the next section we will see that
this gap dramatically shrinks for exponential density of states.

Bath-like spectrum

Assume now that the DOS now scales as
g, = . (3.26)

In this case, we again find strong numerical evidence that og, as defined in
(3.22), is the MEPS. After an straightforward computation we obtain,

E(og) = A (Em — b_l) + O (e_bEm)
S(00) = HA) + AIn N, +0 (N;rj) , (3.27)

From the expression of E we can determine A\(E) which, together with Np =
(e?Pm — 1) /b, can be inserted into S(op) to calculate S(F). Taking, again, the
limit E/E,, — 0, we find in this case S — bE. Therefore, we find that any
amount of energy of the MEPS has an associated amount of entropy, even if
the Hamiltonian is unbounded from above. Not only that, but if the energy is
extensive -which is expected in a system of weakly interacting particles- so will
be the entropy, as they are linearly related. This is exactly the behaviour found
in thermal states. Hence, at least qualitatively, the most and least energetic
passive states behave identically for an exponential growth of the DOS. We
now confirm this observation quantitatively in a particular system.
We consider a collection of n non-interacting two-level systems,

HD =) oD, (3.28)
=1
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Figure 3.3.: Apax(S, E,)/Ind versus S/Ind (a) for an equally spaced Hamil-
tonian with d = 50,100, 200, 400; (b) for a collection of n non-interacting two
level systems with n = 10, 50,100,200 (and d = 2™). As the dimension in-
creases, in (a) so does the energy difference between the most energetic passive
state and the thermal state, while in (b) the difference grows much slower due
to the presence of large degeneracies. Insets: Apax(S, Ey)/Ind versus d or n,
for fixed small value of S. While in (a) there is linear growth, in (b) the value
grows only logarithmically.
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3.3. The role of entanglement in work extraction

In this case, the number of states increases as Ng o ¢"H®) where p = E /ne
can be interpreted as the local population. Figure 3.3 (case b) shows the
computation of A ax(S, E; ) as a function of S, and for different values of n-
the dimension is given by d = 2". The figure shows that Apax(S, E,) grows
sublinearly with n (i.e., slower than Ind), and Apax(S, Ej) remains very small
even at very large energies/dimensions. This is in stark contrast with the case
of an equally spaced Hamiltonian shown in the inset a) of the figure, where
Amax (S, Ej;) grows linearly with d.

The example of Fig. 3.3 serves to illustrate that, for an exponential growth
of the spectrum, not only both the energy and the entropy are extensive for
the MEPS, but in fact the MEPS is very close to the thermal state itself. If
true in general, this would have strong consequences. It would mean that,
when dealing with Hamiltonians with an exponential DOS -those found, e.g.,
many-body systems locally interacting-, all passive states would behave pretty
much in the same way, once either the energy or the entropy is fixed. This is in
the spirit of the equivalence of canonical and microcanonical equilibria, that,
again, holds only for systems with short range interactions (CDR09; BC15;
MAMWI15). It is worth adding that these type of spectra play an important
role in fundamental questions such as thermalization (RGE12) or the third law
(MO14).

3.3. The role of entanglement in work extraction

In this section we study a different aspect of activation processes, in particular
the involved dynamics. The results presented are original and based upon
(PLHH"15b).

First of all, note that global unitary operations are necessary for activating
passive states. Indeed, the state aff” can only be non-passive at the global
level, as locally it is of course passive. Global operations are naturally related
with the creation of entanglement, which makes one wonder what is the exact
role played by entanglement in this process; and in particular whether there
is a quantitative relation among the entanglement and the (global) extracted
work.

Although a central motivation is to study work extraction from JZ?",
considerations apply to any initial diagonal state 2 in the energy basis,

0= Z Pi) (i, (3.29)

our

31



3. Work extraction from thermally isolated systems

so we keep the discussion general. Asin Sec. 3.1, we have that |i) = [|i1) - - |in)
and the total Hamiltonian given by, H™) = 3" h;, where h; = 3", ex|k) (k|.

First note that diagonal states in the energy basis are not entangled. This
follows because eigenstates of the Hamiltonian are separable (as the Hamil-
tonian is non-interacting), and hence any convex combination of them is also
separable. Hence, even if one is using entangling operations, in an optimal work
extraction process neither {2 nor the final state, which is passive and hence di-
agonal, are entangled. If entanglement appears, it does during the dynamical
process. In this respect, in the next sections we address the following ques-
tions: does the state of the system get entangled during the process? If yes,
how entangled does it become? Is there any way to bypass the entanglement
creation, so that the state remains classically correlated all the time?

In the next sections we answer affirmatively the last question and provide a
protocol that attains maximal work extraction with no entanglement genera-
tion at any time. The corresponding protocol is slow, in the sense that many
operations are required. Then we consider faster protocols and provide lower
bounds to the entanglement they generate.

3.3.1. Bypassing entanglement. Indirect paths.

To extract maximal work from a diagonal state we need to reorder its entries
accordingly. This reordering can be done in elementary steps of transpositions.
E.g., © may be such that the population of the lowest energy level (Py) is
not its maximal element, namely P,;. Then one needs to transpose P with
P,, etc. After some number of such steps the state will be ordered properly,
becoming passive.

The transposition of the population of any energy level by the population of
some other level can be done without creating entanglement in the meantime.
Indeed, suppose we need to transpose FP; by Pj. The eigenstates of H (T) corre-
sponding to them are [i) = |i1) -+ |in) and [j) = |j1) - - |jn), respectively. We
then divide this action in 2n — 1 transposition steps. First

li19...in) 2 |j102.-0n) 2 12 0n)er 2 172+ ) (3.30)

and the n — 1 steps back from |jij2...Jn—1%n) to |i). On each step one only
exchanges the populations between states involved in it. Here we stress that
all steps in (3.30) involve only the corresponding states, while the populations
of the other states are kept unchanged. Thus, one cannot perform any of these
steps with a local unitary operation.

The unitary operator that transposes the populations of two basis states, say
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3.3. The role of entanglement in work extraction

li) and [j), reads as

U8 = [k (k| + [i) (il + 13) Gl (3.31)

k#ij

If the control potential V(t) generating UY couples only to |i) and [j), the
evolution operator at some intermediate moment ¢ of the process is

Ul(t) = Z k) (k| 4+ u¥ (), (3.32)

k71,

where u(t) lives in the linear span of |i) and |j) and is unitary. It depends on
t and the concrete form of V().

Now for, e.g., the first step in (3.30) we need to perform the transposition
unitary U between [i) = |i1ig...i) and |i') = |j1i2...in). According to (3.32)
the global state of the system at an intermediate moment ¢ is

Q(t) = UV (1) QUi (2)

=(Py+ Py) p1(t) @ |ig...in) (iz...in| + | Pelk)(K|. (3.33)
k#i,i/

Quite straightforwardly, p1(t) > 0 and Tr[p1(¢t)] = 1, so (3.33) means that the
state is separable during the whole process of population exchange between |i)
and |i'). Notice that although U (¢) is global and thus has entangling power,
there exist states which it does not entangle. By the same reasoning, one may
stay separable also during the rest of transpositions in chain (3.30). So any
replacement in the global state can be made without creating entanglement
between its constituents, which proves that one can extract maximal work and
stay separable during the whole process.

The previous non-entangling protocol requires 2n — 1 global operations in
order to perform the desired exchange of the populations [i) and |j). However,
this exchange can be performed in one step by the unitary operator (3.31). We
term such evolutions by direct paths. Now, the natural question is whether
entanglement is generated by these direct paths, which allow one to extract
work faster and thus get more power.

3.3.2. Direct Paths

Consider the population exchange of |i) and [j). A relevant example of a direct
path would be the time independent hamiltonian H = 22 (|i)(j| + |j)(i|) which
generates the desired interchange at ¢t = 7. More generally, we will consider
the evolution of Q(t) = USQUUT where UV is found from (3.32).
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In order to measure the entanglement of Q(t) in a direct path we use a re-
cently proposed measure of genuine multipartite entanglement for mixed states
(MCCT11; HdV13; HPLAV13) which luckily turns out computable for states
relevant to the work extraction protocol. The measure is essentially a gener-
alisation of the concurrence to multipartite systems (see Appendix A.1l for a
detailed description of the measure). The measure represents an ordered string
E (with elements £y > --- > Egn-1_; > 0) called entropy vector (HdV13),
which quantifies multipartite quantum correlations the following way: if the
last 2/~ — 1 entries of E are zero, then the state is I-separable (HPLAV13). In
particular, (i) if E;y > 0, then the state is entangled, and (ii) if Fon-1_; > 0
the state is genuinely multipartite entangled (GME).

In Appendix A.1 we bring closed-form expressions of lower bounds for all
entries of the entropy vector. The states we deal with here have only two
(complex-conjugated) nondiagonal elements (3.29, 3.32), which greatly simpli-
fies the formulas. Their maximal values (reached simultaneously) during the
transposition between [i) and |j), Ak, are given by (see Appendix A.1):

Ey> Ay =|P,— Pj| — 2min Z VP, P, (3.34)

k
ael™y

where a runs over all bipartitions v, U 7, of the set {1,...,n}; A enumerates
the set of all k-tuples I'% of the index a; |is) is obtained from |i) by replacing
i by ji for all k € ~,; and analogously for |j,).

3.3.3. Entanglement generation in direct paths

Let us now explore expression (3.34) in more detail by focusing in the initial
state being a product of passive states,

Q, = ofn. (3.35)

with o, = diag(p1, ..., pq). In the limit n — oo, the extractable work from Uf?”
was shown in Sec. 3.1 to be,

W e 1
. Ty [H(O'p — Tﬁ/)] = ES(O’;DHT/B/), (3.36)
where 75 = diag(qi, ...,qq) is thermal and has the same entropy as o, and

S(|]') is the conditional entropy.

Let us now study the protocol described in Sec. 3.1, which allows to saturate
the bound (3.35). Recall that the protocol consisted in exchanging the popu-
lations of the typical states of af}m with those of TE?". In order to exchange all
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3.3. The role of entanglement in work extraction

S(ep) transpositions, which not overlap

typical states, one needs to implement e™
and can therefore be made successively.

Consider the direct path exchange of the populations of |i) and |j) given,
respectively, by P, = H?Zl pi; and Py = H?:l pj;- Here the expressions (3.34)

are simplified to
Ey > |P, — B| — 2k\/ PP (3.37)

So, e.g. for P; > Pj, the state will be at most [-separable when:

P,
Ffz 142y 42y +2, y=2N"1 9l 41, (3.38)
J

Now, pick one state from the typical set of 0}?", say ®Z:1 |k)®"Pk - and
transpose its probability HZ:I pp’* with Hi:l pp™ — the population of the
corresponding state ®g:1 |k)®% from the typical set of 75". Then, after some

manipulation, we find that formula (3.38) implies the following condition

1
S(rplioy) = 1 n [1+2v+2v7+77] (3.39)

that o, must satisfy to be at most [-separable during the process. Here v is
the same as in (3.38). It can be easily checked that (3.39) is the same for all
typical states, so it holds for the whole work extraction process.

Condition (3.39) has a simple interpretation — the greater the difference
between o0}, and 7, the more entanglement we need. In the n > 1 limit,
the condition for entanglement to be present is S(7s||o,) > In[3 + 2v/2]/n
so basically all states get entangled, while the condition for genuine n-partite
entanglement to appear is S(7g||0p) > In[2] which tells that this entanglement
does not have to be n-partite.

On the other hand, the extracted work is governed by the difference of o, and
otn (3.36)-note the strong similarity of the expression for extracted work (3.36)
and that for the entanglement generated in direct paths (3.39). So the further
Tg is from o, the more entanglement is generated and more work is extracted.
For direct paths, there is hence a clear connection between the entanglement
generated and the extracted work. This situation is illustrated in Fig. 3.4 for
four three-level systems.

3.3.4. Entanglement and Power

This exemplary case shows that entanglement is widely present during direct
exchanges. Furthermore, the amount of entanglement is directly connected to
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Figure 3.4.: A contour plot of the work W released by four three-level systems
initially in the state ®4Jp on the direct path exchange of the populations of
levels |1111) and [0222). The levels of each system are {0,¢,€e}. Lighter re-
gions correspond to more work extraction. The white lines separate regions of
[-separability, the left side (SEP) being fully separable and the rightmost re-
gion (GME) —genuinely multipartite entangled. The inset illustrates the direct
quantitative relation between the amount of genuinely 4-partite entanglement
measured by GME = Eynv-1_1, and the extractable work W in the same setting
and with pg = 0.55.

the amount of work for the case of identical systems. In general this connection
exists but is less direct — work from an elementary exchange is proportional to
the difference of populations involved, and so is the first term in (3.37) — the
expression for generated entanglement.

On the other hand, the amount of generated entanglement can be reduced
by combining direct and indirect paths. One simply performs n — [ exchanges
via indirect paths followed by a direct path producing at most [-partite en-
tanglement. Alternatively, (3.39) implies that for identical systems one can
arbitrarily reduce the amount of entanglement generated by performing K ex-
tra steps of direct exchange of states pi (k = 1, ..., K) satisfying S(p1||op) <
S(p2llop) < ... < S(otn|lop). In both cases, if we assume that all global trans-
positions are equally time consuming, reducing entanglement production comes
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at the expense of increasing the time of the process.

Our analysis thus suggests that, although entanglement plays no role for
the amount of work one extracts, it may be crucial for the power — the larger
the power output the more entanglement is created during the process. This
strictly holds for the protocols considered here, and it does not depend on
the choice of the entanglement measure. These considerations are in agree-
ment with the theory of speed limits in quantum evolutions, where it has been
shown that entangling operations allow to realize transformations faster than
products of unitaries (GLMO03). Finally, let us note that the converse problem,
that of charging a set of quantum batteries, has been very recently studied in
(BVMGL15), and a clear relation between entanglement and the speed of the
process has been observed.

3.4. Concluding remarks

In this chapter we have characterised the set of passive states, and also studied
several aspects related to the phenomenon of activation.

In our first results, described in Sec. 3.2, we have found the family of passive
states, the MEPS states, that maximise the energy of a system for a given
entropy — and similarly minimise the energy for a given entropy. There is hence
a clear parallelism with thermal states, which provide the reverse solution to
such optimisations. These extremal properties allowed us to obtain a lower
(upper) bound on the amount of extractable work from a single (collection of)
passive(s) state(s). We have also discussed how energy and entropy are related
for the MEPS depending on the spectrum of the Hamiltonian.

In the second project, we have studied the role of entanglement in activation
processes, motivated by the observation that global (entangling) operations
are necessary in this case. We have shown a relation between the entangled
generated and the speed of the process- i.e., the more entanglement, the faster
the process. These results are in agreement with considerations regarding speed
limits (GLMO03) and quantum batteries (BVMG15).
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4. Work extraction from a quantum
system in contact with a thermal

bath

4.1. Introduction

Our considerations in the previous chapter singled out Gibbs states of the
same temperature as completely passive states. Yet, when combined with
other states, Gibbs states can become extremely useful for thermodynamic
purposes, as they allow for transformations that are otherwise impossible. For
example, two thermal baths at different temperature, each of them being of
little use by itself, can be combined to create a heat engine. In fact, much of
the theory of thermodynamics is concerned on the question of what are the
possible operations when one combines a system with a thermal bath.

The joint evolution of system and bath is often studied under strong phys-
ical assumptions, such as weak coupling limit as well as specific system-bath
interactions. Under such assumptions the evolution can be described through
dissipative master equations (BP02). In the last years, new approaches to
quantum thermodynamics, where generic evolutions between system and bath
are allowed, have been put forward (see, e.g., (EVdB11; RW14; BaHO™13;
SSP14; WGE14)). In this chapter we take the framework of (EVdB11; RW14),
and consider all unitary operations (or equivalently all cyclic processes) on sys-
tem and an auxiliary Gibbs state at temperature 5. Hence, note that what
we call bath here is not a thermal bath in the standard sense of a macroscopic
reservoir, but rather an auxiliary finite-dimensional Gibbs state.

Before moving forward, let us introduce some notation. Throughout this
chapter we refer to the system as S and to the bath as B. p and v correspond
to the initial and final state respectively. For example, y5 = Trgysp is the final
state of the bath. We save the greek letter 7 for Gibbs states at temperature
B8, eg., Tg = efﬂHS/ZS.

This Chapter is structured as follows. In Sec. 4.2, we present a derivation of
the second law of thermodynamics -the derivation is original, although similar
results were obtained before in (EVdB11; RW14). In Sec. 4.3, we present
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4. Work extraction from a quantum system in contact with a thermal bath

an explicit protocol saturating the second law which is inspired on the works
of (SSP14; Abel3; AG13; RW14). In Sec. 4.5 and 4.5, we present our main
original contributions, namely a derivation of restrictions to the second law
arising from the finite size and the structure of the bath.

4.2. Second Law of Thermodynamics for Highly
Controlled Operations

We start by discussing a generalization of the second law for arbitrary opera-
tions and initial states. Similar results to those presented in this section can
be found in (EVdB11; RW14).

Consider a system S and an ancillary bath B with internal Hamiltonians Hg
and Hp. Initially they are not interacting, and hence the total Hamiltonian is
simply,

H = Hg + Hp. (4.1)

We assume that initially S and B are also found in a product state,

pPSB = ps ® pB, (4.2)
where
e_BHB
PB=T5=—5— (4.3)

i.e., B is in a Gibbs state at inverse temperature 8. No assumption is done on
the initial state of S. We now consider general interactions between S and B
(i.e., no weak coupling assumption) which can always be described by a unitary
operation- we assume that the joint state of S+B remains thermally isolated.
The final state after the interaction is hence given by,

vsB = Ups @ ppU". (4.4)

In order to extend the definition of work here, and be able to apply our
previous considerations to this setting, we treat SB as a ”supersystem”, which
is thermally isolated, and hence the average extracted work is given by,

W = Tr[Hpsp| — Tr[Hysg], (4.5)

where H = Hg+ Hp. This quantity corresponds to the energy extracted by the
external (time-dependent) sources. As suggested in Sec. 2.1.2, let us introduce
the non-equilibrium free energy of S as,

F(ps) = Tr(Hgps) — T'S(ps). (4.6)
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4.2. Second Law of Thermodynamics for Highly Controlled Operations

Now, adding and subtracting the difference of local entropies in (4.5), it can
be rewritten as,

W = —-AFEg — AEg = —AFg — AFg — T(ASs + ASp) (4.7)
Now we use the conservation of global entropy,

S(ysB) = S(pse) = S(ps) + S(pB)- (4.8)

and re express W as
W =—-AFs — AFg — TlIsp (4.9)

where Igp is the mutual information of the final state ygg. Now we use
that, given any thermal state 7, the free energy difference to another (non-
equilibrium) state p may be expressed through the relative entropy S(p||7) =
—S(p) — Tr(pln7) as AF =TS (p||7(B)), obtaining that

W = —-AFs = T(S(ysl|T8) + IsB) (4.10)

Equation (4.10), together with the related expession (4.12), are the main result
of this section: They are exact relations, valid for any global unitary operation,
between the extracted work from SB and the change of free energy of S. The
main implication of (4.10) follows from the positivity of Isp and S(||), which
leads to,

W < —AFs = F(ps) — F(7s). (4.11)

Remarkably, the latter expression only depends on the (initial and final) state
of S and the temperature of B. We can drop the dependence on the final state
of S by another straightforward manipulation,

W = —AF§ — T (S(xs|7s) + Ise + S(38I78)) , (4.12)

where
AF = F(ps) — F(13) (4.13)

and recall that, 73 = e s /Zg. Note that —AFg < —Ath, and hence we
can write the following chain of inequalities,

W < —AFg < —AF" (4.14)

where AFg represents the change of free energies in a particular protocol (from
ps to vg); and Ath is a bound on all possible work extraction protocols. The
quantity Ath is computed by the free energy difference between the initial
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4. Work extraction from a quantum system in contact with a thermal bath

state and taking as a final state the thermal state of S at the temperature of
the bath. We will sometimes refer to Ath as the thermodynamic bound. The
power of the bounds (4.14) is that work, a magnitude which depends on the
whole state of S and B as in (4.5), can be bounded by a function that depends
only on the state of S and the temperature of B.

The strength of the bounds (4.14) is also their generality: They are derived
assuming the possibility to implement any unitary operation on system and
bath together. Furthermore, the equality form (4.12) allows to understand the
origins of non-optimality in work extraction protocols. We can identify three:

1. the creation of correlations between system and bath, represented by the
term Igp,

2. the bath being moved out from thermal equilibrium, represented by the
term S(7g||78),

3. the system not reaching thermal equilibrium at the end of the process,
quantified by S(péHTg).

At a qualitative level, this allows us to understand why standard protocols in
classical thermodynamics, where very little control is available, can surprisingly
reach optimality: The interaction between system and bath is usually assumed
to be weak, ensuring that Isg remains small; and the bath remains in a thermal
state throughout the protocol. In the next section we make this intuition precise
by constructing a protocol that saturates the bound (4.12), which is inspired
in a quasistatic evolution of the system.

4.3. Optimal Protocol

In this section we construct an explicit protocol, inspired on the works of
(SSP14; Abel3; AG13; RW14), which is able to saturate (4.14). The protocol
is well reminiscent of the classical works in thermodynamics, as it is based on
a quasistatic evolution of pg.

The protocol consists of n steps, which in the limit n — oo and with a
properly engineered auxiliary Gibbs state, extracts maximal work of pg. Let
us first construct the necessary auxiliary Gibbs state. It consists of a collection
of n elements, each with Hamiltonian H® with the same dimension of Hg.
The Hamiltonian of the first one is chosen such that,

1
e_5H< )

_ passive 4.15
Z Ps ( )
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4.3. Optimal Protocol

Note that this is always possible, as by appropriately constructing H 1) we can
generate any passive state.! On the other hand, the Hamiltonian of the last
bath element is chosen to satisfy,

H™ = Hyg. (4.16)

The other Hamiltonians are a linear interpolation between those two, i.e.,

g =* ; Lhg 4 WH(”, ie{l,..,n}. (4.17)
Note that it is satisfied
gD — g 4 E(H(l) — Hg) = HD £ 2AH (4.18)
n

where x = 1/n. The total state of the bath is then simply given by,

. efﬂH(l)
p = Q) ok = = (4.19)
. . (A
(3 KA

The protocol, i.e. the specific unitary operation Ugp, can be divided in two
steps. In the first one, we bring pg to a passive form,

ps 55 ppassive, (4.20)

where we notice that we act on S only. In the second step, we perform a
collection of swaps between S and each element of the bath. In this process,
the unitary operation Usp can be decomposed as U = ), U; with,

Usps ® ppU} = pis @ ps. (4.21)

The work extracted in the first step (4.20) is simply,

W; = Tr (HS (PS . p}s)assive)> _ F(PS) B F(pgassive)’ (422)
where we used that the entropy of ps and pgaSSive is the same. Let us now

consider the second step, and divide the total work W;; into the sum of the
work extracted after each swap, Wi = >, W;. The work extracted during
particular swap Uj, using equality (4.10), can be expressed as,

Wi = F(p§ ™) = F(pb) = S(e 1 25| P10 1 2;.4) (4.23)

The fact that, for a given H, not every passive state is Gibbs does not imply that by
appropriately choosing H we can not generate any passive distribution.
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4. Work extraction from a quantum system in contact with a thermal bath

where we used that Igg = 0 in a swap operation. Now we expand the second
term of (4.23) in powers of z = 1/n using (4.18)

S 12|V 125 0) = F(em P ) 25) — F(e P17 1 250)

dF 1d*F 5
- - oO(z?
dx :E:Ox 2 de m:()x + (.’E )
1d?F 9 3
=-— 4.24
2 dz? la=0" 06 (4.24)

where we used that dF'/dx|;—o = 0 because the Gibbs state minimizes the free
energy function. Therefore, adding up all the steps, we obtain,

Wip = F(p§™) = F(rs) - 3 0(1/n?) (4:25)
=1

The error term scales as O(1/n), and hence, in the limit n — oo, it tends to
zero. Adding up the contribution of both protocols we finally obtain,

W =W+ Wi = F(ps) — F(rs) + O(1/n), (4.26)

as desired.
Two important requirements are necessary to successfully implement this
protocol:

1. the bath needs to be arbitrarily large, i.e., n — oo,

2. the auxiliary Gibbs states are engineered, in the sense that each Hamil-
tonian in (4.17) is carefully chosen and depends on pg. Alternatively, one
can assume the ability to prepare Gibbs states of any Hamiltonian.

In the next section we challenge both requirements, and study the limitations
that finite-size and lack of engineering can impose on optimal protocols.

4.4. Finite Size Effects

In this section we use the exact equalities derived in Sec. 4.2 to obtain finite-size
corrections to the principle of maximal work extraction. The results presented
in this section are original and complement the work of (RW14), where finite-
size corrections to the Landauer Principle where obtained. Note that, while
both the Landauer principle and the maximal work extraction principle can be
seen as formulations of the second law, the finite-size corrections depend on the
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specific formulation. For example, unlike in Ref. (RW14), our considerations
depend explicitly on the Hamiltonian of S.

Here we assume that S has a hamiltonian Hg with dimension dg, whereas
the Hamiltonian of B is free, and only its dimension dp is fixed. Let us rewrite
(4.12) as

W = —AF — TS(ysp||7sB). (4.27)

The point is to minimise S(ysp||7sB) over all Hg and vsp, for a fixed dimension
dp. For any Hg, S(vsB||7sB) = F(7vsB) — F(7sB) is always minimized when ~gp
is a Gibbs state, as they minimise the free energy function. Its temperature is
determined by the condition S(psg) = S(7sB). Let then ¢y be a Gibbs state
which satisfies S(psg) = S(7¢p), we then obtain,

S(vsgllts) > S(7égll7sB) = S(7éll7s) + S(73]|78) > S(T3]|7B). (4.28)

We can now minimise S(7;||78) over all Hamiltonians Hg. In (RW14), it is
proven that this minimisation is obtained when Hp takes the form,

Hf = diag(0,¢, ...., €), (4.29)

i..e, a Hamiltonian with only two levels, the highest one having a degeneracy
of dg — 1. The value of € can be determined by a numerical optimisation. More
concretely, expressing S(7;||m8) for Hfj, we obtain,

In(1+ (dg — 1)e ) In(1+ (dg — 1)e=7'¢)

S EA R - = (9

B g
(4.30)
On the other hand, the condition S(74y) = S(psg), which determines ', can
be now expressed as,

S| —%— :S@@+S( %3>. (4.31)
SB

Putting everything together, we obtained that,

S('YSBHTSB) > mein (H(ﬁ/, 6)) (4.32)

subject to the constraint (4.31). This minimisation can be carried out nu-
merically in a straightforward way (as it involves only two real parameters).
Importantly, the result only depends on § and dg, and hence it can be inter-
preted as a finite-size correction to the second law, W < —AF*h,
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Observe that, as dg/dg > 1, the corrections tend to zero. In this case, in
the expression that determines ', given by (4.31), the entropy of S becomes
negligible with respect to the entropy of B, which leads to 8/ — 3. In such a
case, the right hand side of (4.32) tends to zero.

Finally, it is important to stress that the fact that the Hamiltonian Hy can
be used to minimise the relative distance between states does not mean that
HY is a good Hamiltonian for a work extraction protocol. The presence of only
one gap in Hy makes it impossible to achieve slow quasi static transformation
of the system, in the spirit of the protocol described in Sec. 4.3, which makes
it a bad candidate for work extraction. Hence, while formally tight, we do not
expect our bounds to be reachable when considering specific work extraction
protocols.

4.5. Restricted Bath

In this section we study how the structure of the bath limits the possibility of
achieving the thermodynamic bound, and in particular we present some original
results about the limitations that appear when one uses a system made up of
n-level systems as a thermal bath for work extraction.

A crucial property of the optimal protocol described in Sec. 4.3 is the possi-
bility to prepare Gibbs state of any Hamiltonian. While this can be motivated
by the fact that thermal baths are expected to thermalise any system that is
put in weak contact with them, when dealing with highly controllable opera-
tions it is conceivable to imagine that we have only access to a particular set
of states. In this section we illustrate the consequences of this limitation by
considering a bath made up of the simplest quantum system, namely n 2-level
systems, or qubits, with identical gap 6. That is, our free resource is restricted
to bath of qubits with a fixed gap J. In this case, the initial state reads,

psB = ps @ T5". (4.33)

where pg = diag{l — p,p} and 73 = diag{l — ¢,q}. Note that, without loss
of generality, we assume that S starts in a passive state, as it can be brought
into this form with a local unitary acting on S only. Since SB together are
thermally isolated, the maximal amount of work from pgp reads,

Wiax = Tr ((Hs + Hg)(psB — pEESSive)) (4.34)

where we note that, unlike in free energy like bounds, this expression depends
on the specific state of the bath. Our aim is then compare Wi, with the
thermodynamic bound given by the difference of free energies, AF*™.
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In order to be able to extract work from SB, pgg must be a non-passive state.
Since pgp is diagonal, non-passivity is equivalent to the presence of population
inversions. There is a population inversion between two states A and B if
EA < Eg and pa > pg, or vice versa. Taking E4 = k6, pa = (1—p)¢"(1—q)"*
and Fg = kK'0 +¢€, pg = qu/(l — q)"_k/, we can easily derive a condition for
the appearance of population inversions,

. [ Bs } 6 {58 }
min< —, 1, <z— <max< —,1,, r=1,2,3,...,n 4.35
& e 5 (435

where x = |k — /|, and Bs = ln(lp%p), 8= ln(%) are the temperature of S
and B respectively. Whenever (4.35) is not satisfied, then Wy, = 0 and no
work can be extracted in any protocol. Note that this W = 0 is perfectly
compatible with AF™ = 0, which holds as long as § # (5. The fact that
Winax << AF™ just means that the auxiliary Gibbs state TE” is particularly
bad for work extraction purposes.

Without the need of computing explicitly Wiax, we can qualitatively under-
stand some of its properties from condition (4.35). In particular, if § > € and
Bd > Bse, the condition cannot be satisfied, and hence Wy ax = 0. Therefore
we expect regimes where either § > € (i.e., the energy scale of S is smaller
than that of the components of the bath) or 5 > (g (i.e., low temperatures)
is satisfied to not allow for work extraction. Note that in such regimes quan-
tum effects are particularly relevant. On the other hand, the fact that z in
(4.35) takes natural numbers, suggests that the regions where work extraction
is possible can be disconnected.

These considerations are illustrated in Figs. 4.1 and 4.2, where we have
computed Wi,y as a function of § in two different scenarios. It is important
to note that the computations were done for baths of a remarkable size, e.g.,
in the figures we took 500 qubits. This was only possible because of the high
amount of degeneracies present in the initial state of the bath, which allows us
to describe it with O(n) parameters. For such big baths, we observe in Fig.
that Wiax becomes zero for & > ¢, as it can be anticipated from condition
(4.35). Conditions (4.35) also characterise the regions where work extraction
is possible, as each value of = in (4.35) yields a possible set of & where the
state becomes non-passive. On the other hand, the figures also show how the
different free energies defined in (4.14) come into play. The thermodynamic
bound, given by W < —AF*™ is constant as it only depends on pg; whereas
the change of free energies AF depends on both the initial and final state of
the work extraction protocol and hence it yields a better estimation of Wy ax.
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Figure 4.1.: Maximal extractable work (in blue), free energy difference (in
orange) and the thermodynamic bound (in red) as a function of 6. The maximal
extractable work Wyax (which is computed through 4.34). We take for e = 5,

6 = 0.3, and p = 0.4. Observe that Wy.x never reaches the thermodynamic
bound.
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Figure 4.2.: Maximal extractable work (in blue), free energy difference (in
orange) and the thermodynamic bound (in red) as a function of 6. The maximal
extractable work Wyax (which is computed through 4.34). We take for e = 5,
6 =0.3, and p = 0.4.
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4.6. Activation

In this section we present some original results which show how the limitations
presented in the last section can disappear if one takes systems of increasing
size.

The previous section suggests that fine-tuning of the bath is necessary in
order to achieve optimality in work extraction protocols. In particular, for a
bath made up of n qubits, we showed that even in the macroscopic limit, no
work can be extracted from S even though the free energy of the state would
have suggested otherwise. In this section we show that, using the very same
bath, this limitation can be overcome and hence obtain W — AF}, if one
considers several copies of S, i.e., we take as an initial state pg = p?k ® p%’".
This result is in the same spirit of the activation of passive states presented in
Sec. 3.1. We now prove that Wi — AFy, for any § in the limit n, kK — oo
with k2/n — 0, by adapting the main result of (BaHO%13).

Let us assume there there exists a U which performs the following transfor-
mation,

p?k Q" — T(Sg)k 8", (4.36)

The associated energy change is W = keAp + ndAq, which is bounded by
AFy, = keAp — kT(S(ps) — S(1s)). By using the conservation of entropy,
kS(ps) +nS(m8) = kS(7s) + nS(y8), we can relate W with AF'", obtaining

n

AFy, —W =Tn (S(18) — S(yB) — B0Aq) = k

nAg® 4+ O ( Aq3> ,
(4.37)
where we Taylor expanded for Ag — 0. To justify such an expansion, note

that in any positive work extracting process 0 < W < AFyy,, it is satisfied

2ch(1 - ch)

- BLP < ng < E1(S(ps) ~ S(00)) (4.38)

which implies that Aq scales as k/n. Plugging this dependence into (4.37) we
obtain,
W = AF™ — O(k?/n). (4.39)

which shows that, in the limit k?/n — 0 it is in principle possible to find a
protocol (i.e., a unitary operation) that reaches optimality. Let us stress that
this result is independent of §, and therefore no engineering of the bath is
necessary.

Let us now construct explicitly the unitary implementing (4.36) by using
notions of typicality, as in Sec. 3.1, or see also Refs. (AF13; BaHO"13). In
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the limit k,n — oo, po is well described by a mixture of 285(Ps)+75(s) typical
states, i.e., basis states with energy ngd + kpe + £O(vV/N,Vk). The error in
such a description is exponentially small with both k& and n. On the other
hand, the final state can be described by the same number of typical states
since it has the same entropy as pg. Therefore, we can construct a U which
maps the typical states of the initial state to those of the final state, and thus
it effectively implements (4.36). In order to ensure that (4.39) holds while
k — oo, one can take k oc nl/4. Alternatively, if one only desires to obtain
optimality for each copy, i.e., (AF™ — W)/k — 0, taking k o n'/? suffices.

In Sec. 4.2 we identified three properties of optimal protocols for work ex-
traction: no correlations are created between system and bath, and both S
and B are in thermal equilibrium at the end of the process. It is easy to see
that the protocol constructed here satisfies the three of them. Indeed, the
final state in (4.36) is a product state, and thus Isg = 0. The system has
reached thermality, so that S(vys||7s) = 0. Finally, even if the state of B is not
completely thermal at the end, it follows from (4.38) that each bath qubit is
only perturbed an amount Ag ~ 1/n in the limit of large n. Then, one easily
obtains nS(vg||t8) ~ 1/n by expanding S(||) around Ag — 0.

Finally, we can extend the condition for the appearance of population inver-
sions, given in 4.35, for the case where k copies of S are available, obtaining,

min{ﬁs,l}gxégma}{{ﬁs,l}, ng, (4.40)
g € g b

where a = {1,2,...,n} and b = {1,2,...,k}. Thus, if k¥ and n are big, then
population inversions appear for most d. This can be understood as another
form of activation, when copies of a passive state are considered in the presence
of an auxiliary Gibbs state.

4.7. Connections to other frameworks: From time
dependent fields to fully energy preserving
operations.

In this section we present some connections between the framework used in this
Chapter for studying work extraction processes and other approaches to deal
with work extraction in quantum systems, in particular the resource theory
of thermodynamics (BaHO™13), which provides a fully quantum treatment to
thermodynamics.

Up to this point, we have considered S and B to be a thermally isolated
system. In this case, the energy is extracted from (or put into) SB by time
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dependent fields, which can generate unitary operations that do not commute
with Hg + Hg. While dealing with time dependent fields is motivated from an
experimental point of view (indeed, they are used to transform and deal with
microscopic quantum systems), from a fundamental point of view it might be
unsatisfactory to accept that work is extracted or input through semi-classical
fields. For a complete quantum picture, one needs to treat explicitly the energy
storage, which gives an extract energy from SB. This energy storer is often
referred to as a weight W. The possibilities and implications of having an
explicit energy storer in thermodynamic protocols has attracted a lot of interest
in the last years, see Refs. (LPS10; BaHO'13; Abel4; SSP14; FJR14; GA15;
GEW15) for relevant works in this direction. It is the purpose of this section
to describe how our considerations can be adapted to this framework.

4.7.1. Framework

When dealing with an energy storer, or a battery, we shall assume a non-
interacting Hamiltonian at the beginning of the process, of the form,

Hgspw = Hs + Hg + Hw (4.41)

The Hamiltonian of the battery is assumed to be dense and non-degenerate, so
that it can accept and give any amount of work,

Hy = /w|w><w|dw. (4.42)

On the other hand, the initial state of the work extraction protocol takes the
form

psBW = ps ® 7B ® pw, (4.43)
where unless said explicitly, no assumption is made on the state of the weight,
PW-

The main new ingredient within this framework is that, since the energy is
provided and located in the battery, the full system is closed and hence the
operations preserve the total energy. More precisely, strict energy conservation
can be expressed as,

[Hspw, Uspw] = 0. (4.44)
It follows from this condition that, for any psgw, we obtain,
AFEs+ AEg + AEw = 0. (4.45)

Following we will discuss possible definitions of work and formulations of the
second law within these frameworks, to later build explicitly connections be-
tween this framework and the one used throughout the thesis.

52



4.7. Connections to other frameworks: From time dependent fields to fully energy preserving operations.

4.7.2. Second laws of thermodynamics in the presence of a weight

From the conservation of the total average energy, we obtain,
AFw = —AFEg — AEg, (4.46)

Adding and subtracting the local differences of entropies, and by doing a ma-
nipulation similar to (4.10), we obtain,

AFW = —AFS — T(S('YBHTB) + ISBW)a (4.47)

where Ispw = S(vs) + S(vB) + S(yw) — S(vsBw) quantifies the correlations
generated in the tripartite system. Since Igpy > 0 and S(yg||m8) > 0, we
have that

ARy < —AFs. (4.48)

If no assumptions are made on the state of the weight and the process Usgw,
this relation is probably the most natural generalisation of the second law,
where work would be here identified with AFyw. This expression asserts that
the amount of free energy that can be transferred from the energy to the
weight is bounded by the free energy of the system itself. This naturally causes
some degradation of the free energy. If, after the first process, we were to use
the weight to raise a second weight (i.e., the first weight would become the
system), the extracted work would generically be less (being only the same
when optimality in both processes is reached). Identifying work as the change
of free energy of the weight have been suggested independently in Ref. (GA15),
following a similar reasoning that the one discussed here, and in Ref. (GEW15),
where an axiomatic approach is advocated.

Another approach for dealing with work extraction with an explicit energy
storage system is to associate work with the average change of energy of the
weight, AFEyw. This is motivated by the first works of Carnot in thermodynam-
ics, where one quantifies useful work by the amount of energy that a weight is
raised. In this case, the first trivial observation is that, from (4.48), it is obvi-
ous that AFEw can be larger than —AFg if one uses the weight as an entropy
sink, i.e., ASw < 0. In order to avoid this possibility, the authors of (SSP14)
impose the following restrictions on the allowed protocols Uspw,

o Weight-state independence: in any allowed protocol A Ew must be inde-
pendent of the initial state of the weight.

o Weight-translation invariance: any allowed Uspw must commute with
translation operations on the weight.
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The first condition ensures that the weight can not be used as an entropy
source, as ASw < 0 can not be smaller than zero for every pw. Using such
two conditions, one can derive a second-law-like expression relating A Eyy with
AFy (SSP14).

Finally, an important line of research in the framework of global energy-
preserving operations is the study of single-shot work extraction (DRRV11;
Abel3; HO13). Here one defines work as a deterministic change of energy
in the weight. In this framework the weight- usually described by a qubit
system- starts initially in a the ground state, and in a successful work extraction
protocol it ends in the excited state. Note that here work is not a fluctuating
variable, but a deterministic one, which is motivated by the fact that work is
usually associated with ordered energy. For this definition of work, one cannot
reach Wyet — AF™, but rather work is bounded by one-shot generalizations
of the free energy (Abel3; HO13).

As a final remark, we would like to express the opinion of the present au-
thor on the matter of the definition of work. Here we have briefly presented
three definitions of work, all of them leading to meaningful expressions of the
second law (under appropriate conditions). We believe that this should not be
seen as an inconsistency, because, in our opinion, the main point of quantum
thermodynamics is to establish relations (that are as general as possible) for
quantities that are operationally well defined. All the definitions here are ex-
amples of such operational quantities, and hence, independently of what we call
what, it seems a priori equally relevant the study of them. This could change
if, as it happens in macroscopic thermodynamics, there are direct applications
which favour one definition of work over the other.

Explicit connections between the different frameworks

Let us now explicitly relate time-dependent operations Usp with the time-
independent Uspw ones, i.e., unitaries that satisfy [Hs + Hg + Hw, Uspw] =
0. We would like to find, for every work extraction protocol Vsp in SB, a
corresponding work extraction protocol Vgpw in SBW that extracts the same
amount of work. For simplicity we focus on the case where work is identified
with the change of average energy on the weight AEy,. The problem is then to
find a Vgpw for every Vgp such that,

Tr (Hw (TI"S,B (VSBWPS QTR ® PWVSTBV\]) - Pw))
=Tr ((Hs + Hg)(Vspps @ 8Vdg — ps @ TB)) (4.49)

where [HS + Hp + Hw, VSBW] =0.
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For clarity, let us write the Hamiltonian of SB as,

Hn = 3Bl (4.50)

where i) = ]6>g) ® ]5)}(;) and E; = (l) + 5( ) Then we can write any unitary
operation on SB as,

Us = D uisli) (il (4.51)

Consider now the following energy preserving unitary on the extended space of
SBW,

Vepw = ZUU\Z T — E;))(j, @ (4.52)

It is indeed easy to check that VSBW commutes with the global Hamiltonian of
SBW. For simplicity, let us know focus on states pg that are diagonal in the
basis of Hs. In this case, we have that,

psB = Y _ pil Ei)(Eil. (4.53)
%
An straightforward computation then yields,

Tr (HWTI“S’B (VSBWPSB ® pWVSTBW>> TI‘ prw szluﬂ] E E; )

(4.54)
From this expression it is simple to show that indeed Vsgw satisfies condition
(4.49). This shows that, when dealing with diagonal states of the system,
any protocol derived within the framework of time dependent fields can be
translated to the framework of energy conserving operations by identifying
work with the average energy that the battery gains. Importantly, this result
holds independently of the state of the battery.

When dealing with coherent states, the situation is more subtle. It is easy
to see that the computation (4.54) does not work when the state of S has
coherences. In fact, dealing with coherences with strictly energy preserving
operations is known to be a hard task, see for relevant references (SSP13;
Abel4; LJR14; LKJR15; iaCanSanHO15). When it comes to the problem of
work extraction, an important insight was given by in Ref (Abel4) (see also
related work in Ref. (MSK15; KLOJ15)), where it was shown that if one
chooses the state of the battery to be a fully coherent state,

LJ2

=)Wl W=7 > |w) (4.55)

w=—L/2
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4. Work extraction from a quantum system in contact with a thermal bath

where Hw = ) w|w)(w|, then in the limit L — oo, one successfully obtains
(4.49) for this particular state of the weight. The intuition behind this result
can be understood by first noting that the operation (4.52) induces shifts on
the energy state of the weight. If the state of the weight is localized in a single
eigenstate, then a back reaction will appear due to the correlations created
when interacting with SB. However, in the case of a fully coherent state, the
state becomes an eigenstate of the shift operator, and hence there is no back
action at all.

Summarizing, in this section we have pointed out that the two frameworks
presented in this thesis, time dependent fields and energy preserving unitaries,
can be related through the transformation (4.52). In the case of diagonal states
of S, then essentially any state of the battery works, but when dealing with
coherences the correspondence holds only in the limit of a fully coherent state
of the battery. More details on the connection between both frameworks can

be found in Refs. (Abeld; MSK15; KLOJ15).

4.8. Concluding Remarks

In this chapter we have first derived the second law of thermodynamics in a very
general setting, by considering arbitrary unitary operations on system and bath
together (see (EVdB11; RW14) for similar results). This has been possible by
obtaining an exact expression that relates the extracted work with the change
of free energy of the state. From this relation it follows that work is bounded by
the free energy difference, and at the same time it shows explicitly the origins
of non-optimality. Those are the generation of correlations between system and
bath, and lack of thermal equilibrium at the end of the process. In this sense,
we note that neither quantum effects such as entanglement nor a high level of
control can lead to any violation of the second law of thermodynamics: This
law can be naturally extended to out of equilibrium processes in the quantum
regime.

The bath has been represented by a completely passive state, i.e., a Gibbs
state of a given temperature. Else, no assumption is made on it, neither on
its structure nor on its size. Therefore, our considerations apply to standard
thermal macroscopic reservoirs, but also to auxiliary Gibbs states made up
of, e.g., a few quits. This big range of applicability has allowed us to study
the implications of size and structure of the bath for work extraction in the
quantum regime. In the first place, we have derived finite-size limitations to the
principle of maximal work extraction, which only depend on the dimensionality
of the bath and its temperature. Secondly, we have considered baths made up of
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identical two-level systems. For such a specific structure, we have encountered
strong limitations on the work we can extract when either the temperature of
the bath is very low or the size of the energy gap of the bath is bigger than that
of the system. Indeed, in such regimes, even if we assume that any unitary can
be performed on system and bath, none of the free energy of the state can be
extracted. This illustrates the difficulty of extracting work from microscopic
quantum systems. To further strengthen this observation, we have also shown
that, as the size of the system increases (which we have illustrated by taking
copies of it), work extraction becomes possible and it progressively tends to the
free energy bound. Hence, we recover the standard results in the macroscopic
limit; while showing that strong limitations can show up when dealing with
small quantum systems.

Finally, we have discussed how the framework considered here, unitary evo-
lutions on system and bath, can be extended to the fully quantum case, where
energy is extracted and put into the system by an explicit energy storer, a
battery.

o7



4. Work extraction from a quantum system in contact with a thermal bath

o8



5. Quantum Fluctuations of Work

5.1. Introduction

Understanding fluctuations of thermodynamic work has always been of central
interest to statistical thermodynamics. Not only they provide an exhaustive
description of the work variable, but also, through Jarzynski-Crooks relations,
they serve as a bridge between equilibrium and nonequilibrum thermodynam-
ics (see (SPWS08; EHM09; CHT11) for reviews on the topic). In the quantum
realm, however, the very definition of work is a matter of debate, and hence
it is not surprising that characterising its fluctuations is a difficult task. This
difficulty has two basic origins: The first one is that work is associated with
a process, rather than an instantaneous state of the system, and hence it can-
not be described by a standard Hermitian operator. The second one is that
measurements in quantum physics generically disturb the state, and thus the
fluctuations of work will generically depend on the particular measurement
scheme which is being used.

The standard approach to estimate the fluctuations of work is the two pro-
jective measurement (TPM) scheme (TLHO7). The TPM scheme consists on
two projective energy measurements, one performed at the beginning and one
at the end of the process. This scheme successfully characterises the process
dependent nature of work, which is best illustrated by the fact that it al-
lows for the generalisation Jarzynski-Crooks classical relations to the quantum
regime. However, the measurements performed are invasive, as the first one
destroys any quantum coherence in the state. This prevents the possibility
of studying the thermodynamics of coherent processes: Even if the posterior
evolution of the state is coherent, the first measurement prevents quantum in-
terference effects - which are at the core of quantum physics. This raises the
question whether there exist other measurement schemes that can successfully
generalise the results of classical thermodynamics -in particular the celebrated
Jarzynski-Crooks fluctuation theorems- and at the same time describe coherent
transformations. Understanding to what extent this is possible, and suggesting
a new measurement scheme to do so, is the central aim of this chapter.

Besides the TPM scheme, other protocols have been considered for estimat-
ing the fluctuations of work, (most of them) leading to different distributions

59



5. Quantum Fluctuations of Work

and average values. In particular, continuous measurements of the system have
been studied in (VWT15), measurements of work as an operator in the Heisen-
berg picture in (ANO5a), and measurements through an ancillary system in
(RCP14) -see, also, in a the framework of the resource theory of thermody-
namics, the recent works (Abel6; AMOP16). The purpose of this work is to go
beyond specific (albeit physically motivated) measurement schemes and take
a more general approach, by considering all measurement schemes compatible
with two minimal requirements: (i) agreement with the TPM scheme for states
with no coherence, and (ii) agreement with the first law of thermodynamics at
the level of average quantities for all states.

When considered individually, both requirements can be satisfied by distinct
definitions of work. The TPM scheme satisfies (i) but not (ii) for coherent
states because the first measurement is invasive; and the definition of work in
(ANO5a) satisfies (ii) but does not properly account for the fluctuations, and
hence fails to satisfy (i). Attempts to satisfy both requirements simultaneously
have been performed in (All14; SG15), but the corresponding distribution for
work suffers from negative (quasi) probabilities (All14; SG15). Our first result
is showing in full generality that there exists no measurement scheme that can
simultaneously satisfy (i) and (ii). We show this result be considering both
individual and collective measurements, in which a measurement is applied on
several copies of the state that are independently undergoing the same process.

Although no measurement can satisfy (i) and (ii) exactly, collective measure-
ments do provide a promising way to describe quantum fluctuations of work,
as they can satisfy the two requirements with a better approximation that
standard measurements to estimate work. In particular, we construct a mea-
surement scheme, which acts on two copies of the state, that is able to describe
a whole range of coherent transformations and is compatible with the results
of the TPM scheme for diagonal states.

This Chapter is structured as follows. In Sec. 5.2, we describe the TPM
scheme, and highlight its limitations for describing coherent processes. In Sec.
5.3, following (RCP14), we show how the TPM scheme can be described as a
POVM. In Secs. 5.4, 5.5 and 5.6, we present one of our main results, which
takes the form of a no-go theorem: There is no measurement scheme that can
simultaneously agree with the TPM scheme for diagonal states in the energy
basis and agree with the first law of thermodynamics for all states. In Secs.
5.7 and 5.8, we present the second main result: A new measurement scheme to
approximately describe the fluctuations of work in coherent processes.
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5.2. The two projective measurement scheme

5.2. The two projective measurement scheme

Let us first briefly introduce the two projective measurement scheme to esti-
mate the fluctuations of work in quantum systems (TLHO7). This scheme was
introduced in order to characterise the fluctuations of work of a thermally iso-
lated quantum system p evolving under an auxiliary time dependent field- the
results can be formally extended to the case of general open quantum systems
(CTHO09). During the process, the Hamiltonian of p is externally varied, and
the evolution of p is described by a unitary operator U. The process can be
simply described as,

H— HY
p— UpUt (5.1)

where H (H\)) corresponds to the initial (final) Hamiltonian, and p (UpUT)
to initial (final) state. Let us explicitly write

H=ZEili><il

HD = 3" BP0 = ST ED Vv (5.2)

where note that we have introduced the unitary operator V', which transforms
the Hamiltonian basis,
iy = Vi), (5.3)

Notice that we restrict ourselves, for clarity of the discussion, to finite di-
mension Hamiltonians with discrete spectra, but the reader should take into
account that the generalisation to continuous spectra is straightforward (see
e.g. (TLHOT)).

Now, the first step of the protocol consists of a projective measurement of
the energy on p. This yields |i) with probability (i|p|é). Only then the process
is implemented, and the postselected state |i) evolves according to the unitary
operation U. Finally, a projective energy measurement with respect to the final
Hamiltonian is performed on the final state, yielding |j/)) with probability
|(j)|U]i)|?. To this realisation of the experiment, a work value

@) — . _ )
W) = E; E; (5.4)
is assigned, with corresponding probability

p(ij) = Pii Dij> (5.5)
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5. Quantum Fluctuations of Work

where

pij = [GPNUL1? = 1GIVIU). (5.6)
The whole probability distribution for work is obtained as,

PW) = 6(W — w)p) (5.7)
ij
where 0 is the Kronecker delta.

It is interesting to compare the results obtained through this work measure-
ment scheme with those of the definition of average work introduced in Sec.
2.1.1 and used throughout the rest of this thesis. Within the TPM scheme, the
average work is given by,

(W) TPM_ZWP ZPZJ)W i7)
= Z pii i — Z pzzpz,]E ()
= Z piiki — Z PiiEj Ukz‘UﬁVZjVJ:j (5.8)

On the other hand, the average work according to (6.3) is given by,
(W) =Tr (pH(O)) —Tr (UpUTH(f))
=> piBi—) pimE]('f)UkiUlTnWijE (5.9)
Notably, the two expressions become the same if p is a diagonal state. Indeed,

introducing the dephasing operation DJ...], which dephases p in the energy
basis defined by [i), we obtain that,

(W) =Tr (pH(O)) —Tr (UpUTH(f>)
W)rpy = Tr (PH(O)) —Tr (UD(p)UTH(f))
(W) = (Wgpyy = Te (U(D(p) = p)U T HI) (5.10)

Clearly, the two expressions become the same for states with no coherence in
the energy basis, i.e., for D(p) = p. In fact, at the average level, the TPM
scheme can be described as,

p — D(p) — UD(p)UT — D(UD(p)U") (5.11)
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where D(...) is a dephasing operator in the energy basis. In this form, it
becomes clear that the TPM scheme does not describe quantum coherent
processes, as the work fluctuations are computed on the process D(p) —

UD(p)UT.

5.3. Fluctuations of work and POVMs

In order to characterize the fluctuation of work, let us assume that the fluc-
tuations of work can be characterised by a real random variable W, to which
a probability distribution P(W) can be assigned.! In quantum physics, such
a P(W) can only be estimated through a measurement process, which in turn
can be always described by a generalized quantum measurement (a POVM). In-
deed, it is important to note that any measurement scheme, possibly consisting
of many different measurements, can always be described by a POVM.
A POVM is a set of positive operators {MW)V’s, which satisfy

M) > 0,
> MW =1, (5.12)
w

Each possible value of work W is associated with an operator M) so that
the probability to obtain W can be computed through

P(W) = Tr(pMW). (5.13)

Only recently, it was noted in (RCP14) that the TPM scheme can be de-
scribed as a POVM, which is given by,

MR =" 6(W — (B — EV))pi i @) (). (5.14)
i

(5

In the case where the possible values of work E; — Ejf are non-degenerate, we

, )
can introduce the operators MW = M (Ei—Ej ), and the TPM scheme then
can be expressed simply as,

Mt = pili @) ) (5.15)

!Note that in the rest of the thesis we have used W to design average work, whereas here it
becomes a fluctuating quantity. In this chapter we shall use (W) to determine the average
work.
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Clearly, both constructions satisfy the conditions (5.12).

As we have discussed, this POVM successfully characterises the fluctuations
of work for diagonal states, but tells us very little about coherent processes.
Our objective is to explore other possible POVM that can also estimate the
fluctuations of work in a meaningful way, and at the same time allow to char-
acterise the fluctuations in coherent processes. As in (5.14), we expect that the
operators M (W) are functions of the process, MW) = f(U, H, Hy), but do not
depend on the initial state p. Indeed, we would like to estimate the work done
in a process without knowledge of the initial state.

5.4. Minimal requirements to describe the fluctuations
of work

In this section we present two minimal requirements that a measurement scheme
for characterizing the fluctuations of work should desirably satisfy. They con-
sist of,

(i) agreement with the TPM scheme for states with no coherence (in the energy
basis), and

(ii) agreement with the first law of thermodynamics at the level of average
quantities for all states.

By imposing requirement (i), we ensure that we recover all probability distri-
butions from the well known TPM scheme, particularly the fulfillment of the
fluctuation theorems. Requirement (ii) is meant to give a minimal condition
for the extension of this scheme to coherent states. In this sense, notice that we
limit this condition to the average energy, which is operationally well defined
for coherent states.

We can now express these two requirements in detail by using our previous
considerations on POVMs. The first one simply states that,

Tr(pdiagM(W)) = Tr(pdiagM’gl/gl\)/[) Vpdiag, w (5'16)

where Mévgl\)/[ is given in (5.14), pdiag is any state that can be expressed as

Pdiag = sz|z><z| (5'17)

If no degeneracies exist in the values of work, we can associate to each energy

B;—gY)

transition a operator operator, M) = M ( j ), and then condition can be
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decomposed into (5.16),

Tr(paiag M) = pii pi Vpdiags ©J (5.18)
Tr(paiagM ™)) = 0 Ypdiag, if MW £ M) v ;. (5.19)

According to our definitions of work and heat in Sec. 2.1.1, agreement with
the first law simply means that,

(W) = Tr(pH) — Tr (UpUTHf) . Y (5.20)

with (W) = >, WP(W). As we have stressed in Sec. 5.2, the TPM scheme
agrees with this expression for the average work as long as the initial state has
no energy coherence.

Finally, we note that the quantity (5.20) has been recently referred to as
untouched work in (TH16), as it refers to the average work in absence of any
back action from the measurement apparatus. However, it is important to note
that there exist measurement schemes that can obtain (5.20), as we will now
show. Of course, we would like our measurement scheme to change (5.20) as
little as possible, in order to describe the process (5.1) with maximal precision.

5.5. Fundamental limitations for work measurements in
coherent processes

In this section we will prove that there is no measurement scheme compatible
simultaneously with requirements (i) and (ii). This result, together with the
extension to global measurements in Sec. 5.6, is one of two main results of this
Chapter.

We consider a POVM with operators M), where W may a priori take any
real value. Now we can use condition (5.19) to limit such values. Indeed, by
considering pgiag = |k) (k| Vk, we obtain that

kMM =0 it W#£E-ED, Vijk (5.21)

Furthermore, from the positivity of M) it follows that, (k|My|l) = 0 if
W # E; — BV, Vi, j, k, 1. Therefore,

MW =0 if W#E B, (5.22)

and hence P(W) =0if W # E; — E](-f). Summarizing, from requirement (5.19)
it follows that the only values that work can take are difference of energies.
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Requirement (i) also sets the value of the diagonal elements of M) where
. )
recall that M) = MPF—E) By again considering pdiag = |k) (k| Yk, we
obtain from (5.18) that -
(kMO k) = 81, (5.23)

Since there is only one non-zero diagonal element, the positivity of M (17) implies
that all off-diagonal elements are zero. Therefore, whenever no degeneracies

)

exist in the values of Ei—E](-f , requirement (i) completely sets the measurement

operators M) to
M) = p, i @) (i), (5.24)

which coincides with (5.24).

Consider now the requirement (ii). The average work of a certain process can
be estimated as (W), = >y, Tr(M (W) p)W. It will be convenient to introduce
the operator

xX=> wMm, (5.25)
w

so that (W), = Tr(Xp). Condition (5.20) implies that Tr (Xp) = Tr(pH) —
Tr (U pUTH f), which, after a simple rearrangement reads,

Tr (Xp) = Tt ((H - UTHfU)p) .Y (5.26)

which shows that
X=H-UH;U (5.27)

is a solution. Since this must hold Vp, the solution is unique. Note that this
does not mean that the measurement scheme, i.e. the set of My are fixed.
There are many possible combinations of MW) such that X = (UTH;U — H)
and ) w Mw = 1. However, it is easy to see that in most cases they are not
compatible with (5.24). We show that by considering a particular process.
Consider a two level system p and an initial Hamiltonian H = €|1)(1] and
a final one H;y = 6|1)(1|. The process is described by the following unitary
operation
U =0)(+| + 1) (-1, (5.28)

with [+) = (]0) +[1))/v/2, |-) = (|0) —|1))/v/2. Note that U~! = U. Consider
now a set of POVMs MW) = f(U, H, Hy). From (5.25), we find X as the
operator associated with the average value of work, obtaining

Xy = el (1] = 5 -) (1. (5.29)
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where we added the subindex (ii) to stress that it comes from requirement
(ii). On the other hand, we can use expression (5.24) to determine the work
operators compatible with requirement (i). This yields, M0 = |0)(0|/2,
MO = |0)(0]/2, MO0 = |1)(1|/2, MY = |1)(1]/2; and from (5.25) we

obtain 0h0 "
Xg = ZM(ij) — _5|>2< + (2¢ — 5)M
ij

(5.30)
Clearly, X ;) # X(jj), which proves that there does not exist any set of M W),

or equivalently any measurement scheme, that can simultaneously satisfy con-
ditions (i) and (ii) given the process described by (5.28).

5.6. Global Measurements

The previous result provides a fundamental limitation on our ability to char-
acterize the fluctuations of work in quantum physics. If one wants to minimize
the back action of the measurement apparatus, in order to preserve (5.20), one
must renounce to a right description of the fluctuations of work; and viceversa.
This was shown by considering arbitrary measurement schemes. In this sec-
tion, we extend this no-go result to global measurements on many copies of the
state. More precisely, we consider collective measurements on n copies of the
state, each of them evolving independently through the same unitary process.
The intuition behind is clear: By acting on several copies with fine-tuned mea-
surements, the back action of the measurement apparatus can be drastically
reduced. In order to study the capabilities of such collective strategies, as in
the previous section, we do not focus on particular measurement schemes, but
rather consider generic global measurements under requirements (i) and (ii).
Again, POVM’s are a powerful tool for this task.

When considering global measurements on n copies of the state, the operators
M}LW) will act on p®™ instead of p. In this case, requirement (i) can be expressed
as,

Tr(pgggM(ij)) = Tr(pdiagMglg)l\/[) Vpdiag (5.31)
where M%Q\/[ is given by (5.15); and requirement (ii) reads as,
Tr(p®"X) = Tt (pH) — Tr (UpUT av >) p (5.32)

where X = 3, W) M) Notice that essentially the same restrictions are

imposed on M () which now live in a Hilbert space of dimension d” instead
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of d -the dimension of p. This gives an enormous freedom to the measurement
operators that was not present before.

Despite the large freedom to choose the M"W) | we now show that there exist
processes where requirements (i) and (ii) can not be simultaneously satisfied by
any measurement scheme, even if n is arbitrarily large. For that, we consider
unitary operations of the form,

Ule) = V1 — €1+ eioy (5.33)

with € > 0, and cyclic processes, where HY) = H = |1)(1]. Let us introduce
k = ki---k, an n-bit string, with |k| = ) . k; being the Hamming weight
(number of 1s) of the string. The states |k) = |ki)---|kn) run over all d"
energy eigenstates of the total Hamiltonian, 2?21 H. For the unitary (5.33),
condition (5.31) can be then expressed as,

> pipy Uk M k) = € (610p0 + d11p1) (5:34)
k

where we took pdiag = p0|0) (0| +p1|1)(1|. From this expression, it is clear that,
(k| M) k) < € Vk. (5.35)

Because the operators M () must be positive, this condition implies that the
(free) off-diagonal terms of M () must satisfy,

(K| M1y < €2 vk, 1. (5.36)
Consider now the average work operator,

X — Zw(z‘j) M) = pp01) _ py(10) (5.37)
ij
and the state,
) = = (10) + 1)), (5.39)

We obtain the bound,

1

T ((|[4)(+)®"X) | = 272(k|X]1) <ot (5.39)

k.1

Let us know consider requirement (ii). We obtain that,

(W), ="Tr (p(H - UTHU)) = 2(p11 — poo) — 26V 1 — 2Refpo1]  (5.40)
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For the state (5.38),

‘<W>|+>‘ =eV1—¢€ (5.41)

Now, if we choose € = 1/(n2""1), we obtain, for n large enough

1 1

| Tr () (+)*"X)| < aontl < j2ontd

~ ‘<W>‘ +>‘ (5.42)

This finishes the proof: If € in (5.33) is small enough, then there exists no
measurement scheme compatible with (5.31) that can satisfy (5.32). This gen-
eralizes the previous no-go result to arbitrary collective measurements, i.e.,
measurements that act on a finite number of copies of p.

It is interesting to note that in the specific setting where the proof is built
-the unitary U(e) acting on a qubit system-, the value of € for which the two
requirements can not be satisfied decreases as n increases. This suggests that
collective measurements, while are not able to fully characterize quantum fluc-
tuations, can provide much better descriptions of them. This possibility is
studied in detail in the next sections.

5.7. A measurement scheme for the characterization of
the quantum fluctuations of work in qubit systems

In this section, together with our considerations in Sec. 5.8, we construct
a measurement scheme on two copies of the state which can approximately
describe the fluctuations of coherent processes.

Let us now exemplify the potential of collective measurements, by focusing
on measurements performed on two copies of a qubit undergoing a coherent
evolution. For simplicity, in this section we consider cyclic processes with

H = [1)(1]. (5.43)

For ease of the argument, we also assume that we can differentiate the four
possible transitions, so that a different measurement operator M () is assigned
to each of them. The general case is treated in the next section.

Let us first study which measurement set-ups are compatible with require-
ment (i). For cyclic processes, it implies that,

Tr(ping M) = (il paiagli) Uil Vhdiag (5.44)
Tr(p5a,M ")) =0, Vpagwg if MW % M) (5.45)
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where M9 can take four values: M0 A7(0D)  pr(10) a1 corresponding
to the different energy transitions (from ground state to ground state, from
ground state to excited, etc.). Firstly, from (5.45), and proceeding as in the
previous sections, one easily obtains that the only non-zero M(W) are the four
M) Secondly, condition (5.44) sets the diagonal elements of M (7). Indeed,
by first considering pdiag = |0)(0] and pgiag = |1)(1], we obtain

(0,0[M 910, 0) = |Upo|?

(1,1)|M 01, 1) =0, (5.46)

and by considering pqiag = p|0)(0] + (1 — p)|1)(1], we arrive at,
p*|Uool? + p(1 — p) Tr <M<00>(|01)<01| + |10>(10|)> = p|Uool? (5.47)

which implies,
(01]M9)01) + (10| M9 [10) = |Ugo!. (5.48)

Summarising, we obtain that
diag(M V) = |Upo|?{1,1 — (%9 o) 0} o9 ¢ [0, 1]. (5.49)

Similarly, we obtain,

diag(M V) = |Ugo[*{1,1 — ™ a0} a0 € [0,1],
diag(M V) = |U102{1,1 — OV, OV 0} o € [0, 1],
diag(M19) = |Up 240, 19,1 — o(19) 1} o9 e 0,1],
diag(M )Y = |U11 {0, ™), 1 — o1V 1} ot e 0, 1]. (5.50)
Because we have freedom on their choice, let us set a(90) = (01 = (10) —

o1 = 0. The off-diagonal terms of M09 are restricted by positivity con-
straints and by 3" M) = I. Combining those constraints we obtain,

|U0()|2 —.7}2 0 0

(00) _ —x*  |Upl® 0 0
M 0 0 0 0|’

0 0 0 0

‘Ulo‘Z T 0 0

* 2

(01) _ X |U1(]| 0 0
M 0 0 0 0|’

0 0 0 0
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0 0 0 0

00 0 0
A(10) ’

0 O ’U()l’z -y

0 0 —y* |Upl|

0 0 0 0

0 0 0 0
M(ll) —

0 0 |U11|2 Yy

00 y |Unl?

where |z| < min{|Ugo|?, |U10|?} and |y| < min{|Un1|?, |U11|*}. Let us now focus
our attention on cyclic processes, for which only M (19 and MY have a non-
zero € work value. In this case, we obtain,

*’U10’2 —XT 0 0
* 2
- _ ) (i5) _ —x _’U10’ 0 0
X’L Z(EZ Ej )M € 0 0 |U01|2 —y
’ 0 0 —y* |Un|?

For a general initial state p,

p= ( P00 Po1 )
po p11 )’
we obtain,

Tr(X:p®?) = (—poo|Uro]* + p11|Un1|?) — 2€(poo Re(p1ox) + p11 Re(proy™))
(5.51)

We can identify two terms. The first one comes from the diagonal part of p,
and hence corresponds to the average work as predicted by the TPM scheme.
The second one comes from the coherent part of p, and it depends on = and v,
the two free parameters in our measurement scheme. Those should be chosen
so that requirement (ii) is satisfied.

Regarding requirement (ii), and again assuming cyclic processes with H =
€[1)(1], we obtain that the set of measurement operators M), with X;; =
S WMW) | should satisfy

Tr(Xiip®?) = Tr(p(H —UTHU)) = (—poo|Uro]* + p11|U01 [*) =2 Re(Un1Ufppio)

(5.52)
The two expressions for the average work, (5.51) and (5.52), become identical if
one takes v = y* = U11U],,. However, the values of x and y are subject to the
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5. Quantum Fluctuations of Work

positivity constraints || < min{|Ugy|?, |U10|?} and |y| < min{|Uo|?,|U11|?}.
Generally, we can take

min{|Uoo|?, |Uo1|?, |Uo?, |Ur1]?}

x=vy" =UnUj ,
vom o U1 [[Tol

(5.53)

which ensures positivity and that the difference between the average work and
the estimated one is minimal.

Finally, it is important to stress that the measurement operators we con-
structed, determined by the choices of  and y, depend on U, but not on the
specific state p. This is because one would like to use the same measurement
scheme independently of the given state p.

5.7.1. An exemplary case

In order to illustrate the previous considerations, let us consider a specific
coherent evolution given by,

0) +11)
V2

More specifically, we consider the unitary given by U = [0)(+| + |1){(—|, with
[+) = (10) + [1))/v2, |-) = (10) — [1))/V/2, and consider the process to be
cyclic with the initial (and final) Hamiltonian being H = |1)(1]|. We will now
compare the work fluctuations of this process as predicted by the TPM -which is
equivalent to our measurement scheme when single copies are processed - with
that predicted by collective measurement on two copies. Recall the definition
of the transition probabilities,

— |0) (5.54)

P = PiDij (5.55)

with p; ; = |Ujil?
Predictions by the TPM. Applying the TPM scheme we obtain the following
values for the probabilities of work,

o p( =1/4,
o pOD =1/4,
o p(10) =1/4,
o pUl) =1/4.
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where p(7) are the probabilities associated with the transitions |i) — |j). These
predictions have little resemblance to the quantum process described in (5.54).
For example, according to the TPM scheme, the state ends at |1) with proba-
bility 1/2, whereas from (5.54) one would expect this probability to be 0. This
does not imply that the predictions of the TPM are incorrect, it simply shows
that the back reaction of the apparatus is very important.

Predictions by a collective measurement of two copies. Now we take our
measurement scheme defined through the operators M) with z,y given in
(5.53). A direct calculation yields,

o p00 =1/2,
o p(0) =,
o P10 =1/2,
. p(n) —0.

These probabilities are much closer to the untouched process (5.54). In this
case, the back action of the apparatus is small and the coherent nature of the
process is preserved.

This simple example shows how our measurement scheme allows for the exact
description of the fluctuations of work in some quantum coherent processes.
Remarkably, this is done by keeping the process nature of work inherited from
classical thermodynamics -by construction, the measurement scheme agrees
with the results of the TPM scheme whenever the state is non-coherent.

5.8. Generalisation to arbitrary systems

In this section we generalise our previous considerations to generic qudit sys-
tems: We will construct a collective measurement on two copies in order to
characterise coherent processes. We will not restrict ourselves to cyclic pro-
cesses, and consider totally generic evolutions and Hamiltonian transforma-
tions, as in (5.1). From (5.2), it will be convenient to introduce the unitary
operator,

W =Viu. (5.56)

Consider the work operators M (9. Inspired by our considerations in the
last section, we choose them to take the form,

M) = |i)(i| @ T) (5.57)
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5. Quantum Fluctuations of Work

where we note that the TU)’s are functions of the elements of U and will be
determined later. The operators M () forming a POVM implies that

PVACIE (5.58)
J
70 > 0. (5.59)
On the other hand, requirement (i) implies that,
Tt (painsT) = Wil Vpaiag. (5.60)
This suggests the following ansatz for the operators T,
T = W21 + AL (5.61)

where A(ij()i is a matrix made up of off diagonal elements only. We have freedom

to choose Agé}hag up to the constraints (5.58) and (5.59).

Now, by defining,
Xoy=Y (B — EY)M) (5.62)
]
we can compute the average work obtained through this measurement scheme
as, Tr(p®2X,),

Tr(p®2X;) = > E; Tr<®2M”) S EBY Tr(®2M<ﬂ)) (5.63)

(] tj

Let us compute each term individually. For the first one we obtain,

ZETY(@’?M”)) ZETr (p®2]i)(i| @ ) = ZE ilpli),  (5.64)

and for the second,

ZE}”Tr(p@MW)) :ZE.(f)Tr p=? Z\J )il © TU
i
ZEU)Z (jlpl5) Tr (pT ]Z)
:ZEE”erpu ) (W5l + Te(pAG))  (5.65)
j

i
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5.8. Generalisation to arbitrary systems

On the other hand, we can compute the average work in absence of back
action of the apparatus (i.e., requirement (ii)),

Tr(pXgp))) = Tr (p(H — UTH(f)U)>
= 3 Billoli) = B S W Wiilolk)
i 7 m

=" Eilpli) = S EBD 3 Gloli) Wil = S WaWiillk) |
i i j £k
(5.66)

where in the last equality we reordered some terms and changed some indexes
for convenience. From inspecting equations (5.65) and (5.66), we infer that the
choice,

AU = Z WaWi k)| (5.67)
14k

leads to Tr(pX))) = Tr(p®2X(i))), as desired. Explicitly, we obtain that the
operators TW) take the form

T = Wy |21 + Z Wi W5 k) (1] (5.68)
I#k

However, at the moment this is just a formal choice: In order to obtain a proper
quantum measurement the conditions (5.58) and (5.59) need to be satisfied.
Regarding (5.58), we obtain,

ST =N TP DY W | RN
J J l#k J
=1+ oulk)(l| =1L (5.69)
£k

where we used that WTW = I. Hence, our choice naturally satisfies constraint
(5.58). The positivity constraint (5.59) will depend on the particular choice
for U. In fact, as we have shown in Sec. 5.6, there exist choices for which
the operators cannot be positive. In such cases, the matrix A(®) needs to be
chosen as close as possible to (5.67), in such a way that the back action of the
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5. Quantum Fluctuations of Work

apparatus is minimised. This can be implemented by introducing a parameter
a, and defining

T = (Wil T+ a Y WuWj k) (| (5.70)
[

where a € [0, 1] is chosen according to o = maxg(8 | Tﬂ(ij) > 0Vi,j).
Summarizing, our measurement scheme to characterize the fluctuations of
work takes the form

MU = iy @ [ [WilPT+a > WuWi k)| | - (5.71)
Ik

In particular, the probability of obtaining the transition E (f) — FE; is given by

Tr(p>M ). The construction (5.71) is the second main result of this Chapter,
and following we show its usefulness and give an interpretation of the scheme.

5.8.1. Application: Characterisation of the fluctuations induced by
fully coherent operations

We now apply our previous general considerations to processes that can gen-
erate maximal coherence, or conversely extract work from maximally coherent
states. In particular, we consider unitary operations of the form,

fZe TR ) (5.72)

where d is the dimension of the Hilbert space. We also consider cyclic processes.
In this case, we can obtain the operators 7() in (5.68), and they take the form

(Z' ) 1 1 ! _ 2w ; l k) 1 = _ 2w '(l—k)
T = 214 = e @R ll—gz ERRTHX
£k 1.k=0

=Ulj)GIUT, (5.73)
Clearly, in this case the choice (5.67) defines proper measurement operators,
and hence o = 1 in the measurements (6.41). Recall that this implies that the

second requirement (ii) can be satisfied exactly in this process. The measure-
ment operators can be written as,

M) = [i)(i| o Uj) (j|UT. (5.74)
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This scheme can be applied to any initial state p, and it allows for the char-
acterisation of the fluctuations of work in processes induced by (5.72). This is
achieved by performing different measurements on the two copies, hence min-
imising the back action of the apparatus. Note that these considerations are a
generalisation of the example discussed in Sec. 5.7.1.

5.8.2. Interpretation of the measurement scheme

Let us first discuss the particular case of the coherent evolution in (5.72), in
which case the measurement is given by (5.74). This scheme has a simple inter-
pretation: Given a pair of two states p®?, we perform a projective measurement
of the energy to p; whereas the other copy first evolves as UpUT, and only then
a projective measurement of the energy is made. Notice that, in this case, the
two measurement are completely independent.

The interpretation of the general measurement, given by (5.57) and (6.41),
which can be applied to any process, is slightly more subtle. To the first copy, a
projective measurement of the energy is always made. Now, depending on the
outcome of this measurement, a different measurement will be performed on
the other p, which is given by (6.41) and depends on the value of the parameter
.

5.9. Concluding remarks

In this chapter we have explored the possibility of describing the fluctuations
of work in quantum coherence processes. We have first provided a no-go result:
There is no measurement scheme to estimate the fluctuations of work that can
be in agreement simultaneously with (i) the classical fluctuation theorems (i.e.,
the TPM scheme) and (ii) the first law of thermodynamics (as expressed by
the relation (5.20)). This result applies even when collective measurements are
considered.

Secondly, we have used collective measurement on two copies of in order to
obtain measurement processes that can, to a reasonably good approximation,
agree simultaneously with (i) and (ii). In particular, we constructed a mea-
surement scheme, which acts on two copies of the state, that is able to describe
a whole range of coherent transformations and is compatible with the results
of the TPM scheme for states with no coherence in the energy basis.
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6. Extractable Work from Correlations

6.1. Introduction

In this chapter we come back to the problem of work extraction from quantum
systems. The setting we consider is similar to the one described in Chapter
3 : Extracting work via highly controlled (unitary) operations from thermally
isolated quantum systems. In Chapter 3, we showed that global operations
are capable of extracting more work than local ones, as a state can be locally
passive but globally not. The only case where global operations do not provide
an advantage is that of a collection of (independent) Gibbs states at the same
temperature. We termed such states completely passive. In fact, two conditions
are required for complete passivity,

e local Gibbs states at the same temperature,
e independence of the local states (i.e., no correlations between them).

In chapter 1, we relaxed the first condition, and studied the extractable work
from products of passive-but-not-thermal states. The aim of this chapter is to
relax the second condition instead, and hence study the extractable work from
purely correlations.

Our first result is to show that, if no restriction on the global state is made,
then it is possible to store in the system the maximal amount of work compat-
ible with the requirement that the reduced states are thermal. In other words,
at the end of the protocol, the system is left in the ground state and, thus, all
energy has been extracted. Notably this is possible thanks to quantum entan-
glement. It is then natural to ask if the same amount of work can be stored
using a separable, or even a purely classical state diagonal states. We will see
that, although the amount of work that can be stored in unentangled states is
strictly smaller than the amount that can be stored in entangled states for any
finite n, the gain decreases with the size of the system and in the thermody-
namic limit (n — oo) purely classical states already become optimal. In fact,
quantum resources offer a significant advantage only for small n, while neither
entanglement nor energy coherences are needed for optimal work storage in
the thermodynamic limit. We also consider additional natural constraints on
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the global state, such as limiting the entropy or requiring the decohered (clas-
sical) version of the state to be thermal, and investigate the role of quantum
coherence and entanglement in these cases.

We also show that our results are applicable in the scenario where the sys-
tem has an access to a thermal bath. There the connection between work
extraction and correlations have been studied before (OHHHO02; Zur03; JJR12;
DL09; DRRV11). Given access to global operations on the subsystems, the ex-
tractable work is proportional to the mutual information (OHHHO02; JJR12).
That is, only the strength of the correlations is relevant, and not the type
(i.e. quantum or classical). Here, in contrast, we show that when the bath (a
macroscopic object) is not available and one has only a few subsystems, quan-
tum correlations do provide a sizeable advantage. This brings new insights in
the quantum-to-classical transition in thermodynamics.

Finally, we also compute the fluctuations of work in processes where the
initial state is entangled. We show that entanglement not only modifies the
average extractable work, but also modifies the probability of each single work
values. Here the considerations of Chapter 5 become extremely useful, as they
allow to deal with coherent states.

The results of this Chapter are original and can be found in (PLHH'15a)
(except for Sec. 6.7).

6.2. Framework

The framework we use is the same used in Chapter 3. We consider an isolated
quantum system which consists of n d-level subsystems. The local Hamiltonian

h=3" Eaa)(a (6.1)

is taken to be the same for each subsystem and, without loss of generality, it
is assumed that the ground state energy is zero. We consider the situation
where there is no interaction Hamiltonian between the subsystems, such that
the total Hamiltonian H is simply the sum of the individual local Hamiltonians

H=> h. (6.2)

As a set of operations for work extraction, we consider all unitary operations
U. The extractable work W reads,

W = Tr (pH) — Tr (UpUTH) . (6.3)
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and is maximized by (2.22):
Wmax — Tl“(pH) _ Tr(ppassiveH) (6.4)

pPaSIVe i5 the passive state with the same spectrum of p. Equation (6.4) defines
the energy that can be potentially extracted from the state via cyclic hamilto-
nian (unitary) processes. This quantity in this chapter, and we refer to it as
extractable work, stored work or work content.

We focus on the subset of all possible states of the system comprised by
locally thermal states. That is, all p such that the reduced state of subsystem
1 satisfies

pi = Trip =75 (6.5)

for all 4, where Tr; denotes the partial trace over all subsystems except subsys-
tem ¢. Here 73 is the thermal state of the subsystem at (a fixed but arbitrary)
inverse temperature 5 = 1/T,

T3 = %e_ﬁh, (6.6)
where Z = Tre #" is the partition function.

Apart from understanding how to exploit the general correlations to store
work in the system, we also study the particular role of entanglement and en-
ergy coherences in these processes. We consider three natural sets of correlated
states: (i) arbitrary states, thus including entangled ones, (ii) separable states
and a subset of them: (iii) states diagonal in the product energy eigenbasis. We
will study work extraction for these three different sets of correlated quantum
states.

Before proceeding further, a comment is in order. In the previous chapter
we showed that any scheme to measure the fluctuations of work will fail to
achieve the average expression (6.3) for all initial states p and processes U. This
limitation is particularly relevant for coherent and entangled states, which are
of fundamental importance here. In Sec. 6.7, we discuss these subtleties, and
in particular show that using the scheme devised in Sec. 5.8 we can describe
the fluctuations of work extracted from an entangled state.

6.3. Extractable work from correlations

If p is locally thermal (6.5), and since H is a sum of local Hamiltonians, the
first term of the right hand side of (6.4) is fixed and is given by

Tr (pH) = nEg, (6.7)
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where

Eg = TI‘(Tﬁh) (68)

is the average energy of the local thermal state. Note also that given our
convention that the ground state has zero energy, the second term of the right
hand side of (6.4), that is, the final average energy, is always nonnegative. This
implies that the extractable work is upper bounded by

Winax < nkg. (6.9)

This bound is attainable if and only if the final state is the ground state,
denoted by |0)®".

Quantum correlations are capable of making all the energy in the system
available for extraction in the form of work, as they allow saturating the bound
(6.9). Observe that the state

BE

1 d—1
¢) = ﬁze* 2" |a)®", (6.10)
a=0

is locally thermal, i.e., such that Tr;|¢)(¢| = 73 for all i. Moreover, since it
is pure, there exists a unitary matrix U such that U|¢) = [0)®™. Thus all the
energy nFEjg can be extracted from state |¢) and Wiax = nEjg.

It is clear that the state (6.10) is entangled. Hence it is natural to ask
whether the amount of extractable work would change if we restrict ourselves
to separable, or even classical states. If this is the case, then entanglement is
necessary for optimal work extraction.

6.4. Extractable work from separable and classical states

A simple argument shows that separable states, contrary to entangled, do not
allow for maximal work extraction. Separable states have the property that
the global entropy is greater than all the local entropies (NC00). Now, if the
system is initially in a separable state p, then S(p) > S(73). This condition,
first of all, indicates that the global state cannot be pure, implying that the
bound (6.9) cannot be reached by separable states. So, what is the best that
classical correlations can do?

A state that is separable and saturates the entropy bound S(p) > S(73) is
given by,

d—1

1 _
poen = 5 3¢ PErla) o], (6.11)
a=0
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which is simply the state (6.10) after being dephased in the (global) energy
eigenbasis. Furthermore, in Ref. (PLHH't15a) it is shown that this is the
separable state with the maximal extractable work (in particular, see Appendix
A of (PLHH'15a)). The extractable work from (6.11), Weep, is found, as
before, by finding its associated passive state, and then computing the average
energy difference, see (6.4). Since psep is already diagonal (with d non-zero
eigenvalues), it is only necessary to rearrange these non-zero eigenvalues to the
lowest possible energy levels. Let us assume that n > d—1, (i.e. that we are in
the regime of sufficiently many subsystems!). The d — 1 largest eigenvalues can
then simply be moved into the first excited subspace (with energy F1), giving

Weep =nEg — E1(1 - Z71). (6.12)

Note also that psep has no coherences, which means that diagonal and separable
states have the same capacity.

Moreover, as the number of subsystems, n, increases, we see that W, and
Winax become essentially the same: Wep/Winax =1 — O (n_l) (see Fig. 6.1).
This shows that, in the thermodynamic limit (n — o0), the difference be-
tween the extractable work from an entangled state and from a diagonal one
vanishes, hence quantum coherences and entanglement play essentially no role
here. However, for finite n there will always be a difference. In particular, in
the regime of n relatively small, the ability to store work in entanglement offers
a significant advantage (see Fig. 6.1).

6.5. Extractable work from states with fixed entropy

The previous results can be intuitively understood from entropy considerations.
When the correlations in the state are not restricted, it is possible to satisfy the
requirement of local thermality with pure entangled states, therefore attaining
optimal work extraction. When the state is separable, the global entropy of the
state cannot be zero as it is lower bounded by the local entropy and optimal
work extraction becomes impossible. Note also that the separable state optimal
for work extraction (6.12) has global entropy equal to the local one, which
means that its global entropy does not scale with the number of subsystems.
In other words, its entropy per subsystem tends to zero with the number of
subsystems, which intuitively explains why the state tends to be optimal in
this limit.

'For qubits or qutrits (d = 2 and 3, respectively) any ensemble is big enough, since in both
cases d — 1 < 2.
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1.0F

0.5},

Figure 6.1.: Extractable work from entangled (blue), separable (red), and en-
tangled but having the same entropy as the separable (green) states in units
of the initial total energy of the system. Specifically, we take the states (6.10),
(6.11), and with 7 from (6.14) for d = 2, fE; = 1. As n increases, classical
states become able to store essentially the same amount of work as quantum
ones.

In view of these considerations, it is important to understand how one can
store work in correlations when the entropy of the state is fixed. On the one
hand, having states whose global entropy scales with the number of subsystems
seems more realistic. On the other hand, this allows a more fair comparison
between entangled and separable states. In this section we will show that
quantum coherences and entanglement enhance the work storage capacity even
if the entropy of the global state is fixed. This implies that the entropy gap
between separable and entangled states mentioned above is not the only reason
making classical states generically worse. However, as in the case of non-
restricted entropy, the gain provided by entangled states or energy coherences
vanishes in the thermodynamic limit.

Stated otherwise, the question is whether locally thermal quantum states
subject to the constraint S(p) = S can store more work than (6.12) when
S = S(13). Now, keeping in mind that local thermality fixes the initial energy
to be nEg, finding the extractable work, Winax(S), amounts to minimizing the
final energy, Tr(Ho), over all o = UpUT with U being unitary and p satisfying
the conditions above.

One can readily lower bound Tr(Ho) by relaxing all the constraints except
S(oc) = S. Then, the state with the least energy compatible with a given
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entropy is the thermal state,
— ~®n
Pth = Ta (613)

with 8’ = '(S) being the unique solution of the entropy constraint S(7s) =
S/n. So, Tr(Ho) > Tr(Hpy) = n'Tr(hrg). This implies a bound on the
extractable work

Wmax(S) S ’I’LEﬁ (1 — F}ﬁTr (T/g/h)) . (6.14)
In principle, it is not clear if the previous bound is attainable, as the way
we found pt, does not guarantee it to be unitarily achievable from any of the
allowed initial states. Nevertheless, as we show below, for any given S and any
number n of qubits here always exists a locally thermal quantum state that
can be transformed to py, by a suitable unitary operator, i.e. the bound (6.14)
is tight.

Before moving to explicit protocols, let us show a direct consequence of
the bound (6.14). As the maximal extractable work from separable states,
given in equation (6.12), is obtained for S = S(73), one can easily com-
pare it to Wiax(S(73)). The result is illustrated in Fig. 6.1, showing that
Weep < Winax(S(78)). Therefore, even if the entropy is fixed, classical states
are generically weaker than entangled quantum states in terms of work storage
as the states delivering Wiax(S(73)) are necessarily entangled.

Now, let us show an explicit protocol that delivers (6.14). Since to reach the
bound in (6.14) the system has to necessarily end up in the state (6.13), we,
for clarity, construct the backwards unitary, which takes the final state Té@,” to
an initial state p which is locally thermal, at any temperature 8 < 3.

We first consider the simplest case of two qubits. In what follows it will be
convenient to introduce the local parameter

z = (0[7]0) — (1|75]1), (6.15)

i.e. the “bias” of the local (qubit) subsystem in state 73. It is a monotonic
function of the temperature: z = tanh(8FE/2) (from now on, we concentrate
on qubits and, therefore, drop the index of E7). Define also the unitary trans-
formation U, as

cosae 0 0 sina
0 1 0 0
U, = 0 0 1 0 (6.16)

—sinaa 0 0 cosa

That is, U, acts as a rotation by an angle « in the subspace spanned by
{]00), |11)}, and as an identity on the rest of the space.
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If as an initial state we take p = UaTEPUJZ, then since U, only generates
coherences in the subspace where both qubits are flipped, it is clear that the
reduced state of each qubit is diagonal. A straightforward calculation shows
that under the action of Uy, the state 7 (with bias 2’) transforms to an initial
state p with bias z = cos (2«r) z’. That is, we can achieve any bias z such that
|z| < 2’. As such, the local temperature of the initial state, which is simply
given by 8 = %tanh_l(cos (2a0) 2'), can take any temperature 8 < ' by an
appropriate choice of a.

6.5.1. Optimal protocol for n qubits

The above protocol can be readily generalised to the case of n qubits. Let us
denote by i =y - - i, an n-bit string, with |i| = >, ix. The states

1) = i) - - lin) (6.17)

run over all 2" energy eigenstates of H. We also introduce i—the bit-wise
negated string i, i.e.

i) = o®)i). (6.18)

Now we show that the unitary Ug,, with a = a- - - o, given by

Uqli) = cos ali) + sin ali), (i|Holi) < §
Ug|i) = —sin ali) + cosali), (i[Holi) < § (6.19)
Uali) = [i), (i Holi) = 5

produces a state p = UaTB/(HS)(XmUJY that is locally thermal with local bias z
and temperature 5 given by

2 = cos (20) 2 (6.20)
B = Z tanh ™! (cos (2a) 2

where 2’ = (0|73/|0) — (1|7g|1) = Tr(o,7p) is the bias of 75 (where, for the
sake of brevity, we now write 74 in place of 74/ (Hg) since no confusion should
arise). To see that this is the case, we note first that p is symmetric under
permutations, since both the initial state 75 (Hg)®" and U, are symmetric.
Therefore it suffices to calculate z; = (0]p1]|0) — (1|p1|1). We note first that
this can be re-written as follows

2= Te(oap1) = Tr (0. @ Hurp) = 3 GI(-D)pl) (621

i1in
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Now, it is straightforward to see that
{i|pli) = (i|Uq, TB,"UT| i) = cos? ali ]TB, i) + sin2a<i|7'§”|i) (6.22)

holds for all |i), and futhermore that (i|rg/|i) = (1 + (—1)’z’), which follows
from the definition of 2’ as the bias. Put together, this allows one to re-express
z] as

[ cos® a » sin? o .
. Z(l)“( SO+ ey + T H(H(l)%(z')))

i1°00n k k

(6.23)

which, upon interchanging the order of the product and sum becomes

:COSQHZ (1 + (=1)i*2)

| sina IT Y (-Dn @+ (~1)i(==)) (6.24)

i1t Tk

For k # 1, Zik(—l)il(l + (=1)%2") = 2, while for k = 1, Zik(—l)“(l +
(—1)*2') = 22/, from which we finally obtain

21 = cos?(a)2’ + sin?(a)(—2") = cos(2a)7’. (6.25)

The extension of this protocol to arbitrary qudit systems, with arbitrary
spectrums, is not straightforward. Partial results were obtained in (HPLH'15),
where the optimal unitary is constructed for large temperatures. The problem
was also solved in (HPLH'15) for equally spaced Hamiltonians, but solving it
in full generality remains an open question.

6.5.2. Presence of entanglement in the optimal state

Notice that the optimal protocol exploits coherence in all two-dimensional sub-
spaces spanned by |i) and [i). The coherences that are induced are global, and
hence one expects that p may be entangled. This is certainly the case for the
scenario depicted in Figure 6.1. More generally, let us now study the presence
of entanglement in the optimal state p = UaTg,’”U(L We can apply the criterion
for entanglement detection developed in (HMGH10; HRHBE12) for a certain
bipartition A|A, which yields an independent positivity condition for each pair
of coherences (i|p|i), (i|p|i),

[GlplE)| — /Iy 39220y 3l [E) > 0 (6.26)
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where II A[A is the permutation operator acting on the two-copy Hilbert space
exchanging partition A between the two copies. If condition (6.26) is satisfied,
then the state is entangled. Furthermore, because of the simplicity of the
form of p (in particular it has an X-like shape), this criterion is necessary and
sufficient (HRHBE12).

Focusing on |i) = |0...0), |i) = |1...1) and on the bipartition (n/2|n/2), the
condition for non-separability reads:

sin(20)(1 — e #'ny — 26 /2 > ), (6.27)

For sufficiently large n, entanglement will be present in the state for any «.
Indeed, when S(p) o< n, 3’ is a constant, and so is «. So, for n large enough, the

LHS of (6.27) will be ~ sin(2a)) which is larger than 0. In all other cases, i.e.
when S(p)  n, which means S(7g/) = % — 0 (with n — 00), e #'¢ decreases,
_ 1—ePe
T 14eBle
all, the LHS of (6.27) increases with n, becoming positive starting from some

value of n.

so 2/ increases, so cos(2a) = Z decreases, so sin(2a) increases. All in

6.5.3. The thermodynamic limit and classicality

Despite the presence of entanglement and coherence in the optimal p, in the
thermodynamic limit, the bound (6.14) can always be asymptotically reached
by (purely classical) diagonal states. To do so we apply the unitary U, with o
chosen appropriately. Consider that ay is non zero (and equal to 7/2) only for
k = np’ — u, i.e. between the subspaces with |i| = np’ —p and |i| = n(1—p') +pu,
where p’ = (1|75|1) = (1 — 2) is the excited state probability in 7. That is,
we consider the unitary V/

Vi) = i), li| =np’ — p
Vi) = —li), li| = np' — (6.28)
Vi) = |i), otherwise

In which case, denoting by £ = np/ — 1, we see that z; is now given by

=4 = 3 (=) lrgli) + (-1 (7ar[i))

li|=¢

+ 3 () @ Ve VI + (1) ({[Vre Vi) (6.29)
li|=¢
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6.5. Extractable work from states with fixed entropy

Using the definition of V, and the fact that (—1)* = —(—1)¥, this can be
re-expressed as

=2 =23 (1) (ilrgli) + (1) (i|rg i)

li|=¢

( () -62)
() =) <<Z:z> - <n7_7i 1)) >

=7 -2 ((p’)g(l — )" = () - p’)£> (Z) (n — 26) (6.30)

n

where to obtain the second line we used the fact that the probability of a state
in the subspace with |i| = ¢ is (p/)(1 — p/)"~* and then divided the (7}) states
in the subspace into the ("zl) for which ¢; = 0 and (?:11) for which i; = 1 (and
analogously for the subspace with |i| =n — /).

Using now the definition of ¢, and the following asymptotic expansion

Nnp' —p 1 _ o \n(l=p)+p n
Wy g )

1
— H/ (2 (1-p)n) 1
o (1) +0(+) (6.31)

after some straightforward manipulations we finally arrive at

z=2 (1 — 7%@,%1_1),) (1 — e_B/E(”Z,+2“))) + 0 (%) (6.32)

which demonstrates that we achieve z = 2/ (1 — O (1/y/n)) by swapping only
the population between two subspaces Wlthln the typical subspace. By apply-
ing a sequence of unitaries of the form V with for different values of u (i.e.
corresponding to different subspaces) we therefore see that we can change the
local bias (and hence local temperature) of the state by increments of order
1/4/n, which can be made arbitrarily small by choosing n sufficiently large. We
note however that the above analysis does not hold if p’ becomes too small,
approximately of the order 1/4/n. This situation is discussed in detail in Ap-
pendix B of (PLHH*15a), where the above protocol is applied for states with
submacroscopic entropy.
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6.6. Extension to other scenarios

Now we show how our techniques can be applied to other relevant scenarios
again in the context of optimal work storage in correlations. In particular, we
consider systems where (i) all moments of the energy distribution are equal to
those of a global thermal state and (ii) one has access to a thermal bath.

6.6.1. Work from energy coherences

Consider states whose diagonal (in the energy eigenbasis) is set to be equal
to that of a global thermal state, together with the initial condition of lo-
cal thermality. More formally, this approach is equivalent to imposing that
all moments of the energy distribution are those of the global thermal state:
Tr(H*p) = Tr(H kTg?”), for all k. This contrasts with the previous sections
where only the first moment (i.e. the average energy) was fixed by local ther-
mality. Moreover, notice that the entropy of the initial state is here uncon-
strained.

Focusing again first on the case of n qubits, we consider states which are
maximally entangled in every degenerate subspace:

n

Pdeg = <Z>pk(1 — )" ¥ D) (D

k=0

(6.33)

where p = e PE/Z and |D, ) o >_jij=k |1} is the normalized Dicke state of n
qubits with k excitations. It is straightforward to verify that the above state
satisfies equation (6.5) and has the required diagonal elements.

The passive state associated to (6.33) can be found as follows. Notice that
the state (6.33) is a mixture of n + 1 orthogonal states. Therefore the optimal
unitary amounts to rotating each of these states to the n + 1 lowest energy
levels one of which is the ground state with zero energy and the other n have
energy F. Therefore the energy of the transformed state is smaller than FE,
which means that it is possible to extract all the energy contained in the initial
state up to a correction of O(1):

Weeg = nEz — O(1)E. (6.34)

A similar result holds for the general case of n qudits (see Appendix A.2).
Therefore we conclude that all work can be stored in the coherences.

An interesting question is whether the state pges features entanglement. In-
tuition suggests that this may be the case, as large coherences are crucial in
this scenario. However, using the techniques developed in (ATSL12), we have

90



6.6. Extension to other scenarios

not been able to witness entanglement for n < 50. Based on this evidence, it
seems that in this case entanglement may not provide an advantage for any
number of subsystems.

6.6.2. Access to a bath

Finally, we consider an extended scenario in which the system is no longer iso-
lated and can be put in contact with a bath at the same (local) temperature.
Here, we ask what is the maximal work that can be extracted via unitaries
acting jointly on the system and the bath. Then it is known that the ex-
tractable work is upper bounded by the difference between initial and thermal
free energies (recall our considerations from Chapter 4):

W < Flo] - Flr"), (6.3)
where F[p] = Tr(Hp) — 3715(p) and the inequality can be saturated, see Sec.
4.3 for details.

In the present case, the extractable work from any locally thermal state with
entropy S is given by

W5, max(S) = 87" (nS(75) — 5), (6.36)

where the expression in parentheses is nothing else but a multipartite general-
ization of the quantum mutual information. This enforces our argument that
the origin of the extractable work are the correlations in the state. The bound
(6.36) is strictly bigger than (6.14), which is natural, as we consider a larger
set of operations. On the other hand, the states (6.10) and (6.11) maximize
the right hand side of (6.36), i.e. the free energy content is maximal, for en-
tangled and separable states respectively, and thus our previous considerations
also hold in this framework.

For the case of extracting work from energy coherences, one can readily use
(6.36) by computing the entropy of (6.33). As pqeg is a mixture of n 4+ 1 pure
states, its entropy cannot exceed (and, as can easily be shown, actually scales
as) In(n+1). Therefore, pqeg allows for storing all work in coherences except for
a O(Inn) correcting term. We note that this optimal state cannot be expressed
as a tensor product of many coherent states, a situation which was considered
previously in the literature (BaHO"13; SSP13).

Notice that, when given access to a bath, the extractable work only depends
on a single global property, namely the free energy of the state, which here
reduces to the generalized mutual information (6.36). Therefore, the strength
of the correlations become the only important property, and not whether they
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are quantum or not. This is in contrast to our previous results in Sec. 6.5.
In order to reconcile both results, imagine that a bath at temperature 3’ is
attached to our system. Then, the bound (6.35) (with 8 substituted by 8') will
reduce exactly to (6.14). Therefore we see that separable states can saturate
(6.14) when a macroscopic object, i.e. a bath, is available. This corroborates
our result in Sec. 6.5, namely that in the thermodynamic limit the difference
between quantum and classical correlations vanishes.

Our results in this section thus complement a previous works (DRRV11;
FWU13; OHHHO02; Zur03; JJR12; DL09), which, in different but related con-
texts, also deal with the problem of work extraction from thermal environ-
ments utilizing correlations. These works include a detailed analysis on the ex-
tractable work with local/non-local operations (OHHH02; Zur03), from corre-
lated states (JJR12; DL09), from entanglement with feedback control (FWU13),
and also for deterministic work extraction (DRRV11). It is also worth men-
tioning that when the correlations are not present between subsystems but
rather between the system and the bath, they become a source of irreversibil-
ity (GRE14).

6.7. Fluctuations of work from entangled states

Let us now combine the considerations of this chapter with those of Chapter
5, where the fluctuations of work where studied. We focus on work extraction
from the state (6.10), which is the optimal state for work storage and hence
has a great importance in this chapter. Furthermore, this state is particularly
interesting because it is pure, entangled, and has all the extractable work in
form of correlations.

As a preliminary step, let us consider applying the two projective measure-
ment (TPM) scheme to the state (6.10). The first initial projective measure-
ment would dephase the state, which would become (6.11). In this case, the
maximal extractable work becomes (6.12). Importantly, we see that the ad-
vantage due to entanglement is lost if such an scheme is applied.

Let us now consider the measurement scheme for the fluctuations of work
developed in Sec. 5.8 of Chapter 5. We focus on the case of two qubits, with
a Hamiltonian

H = ¢€|1)(1]. (6.37)
The initial state (6.10) then reads,

|p) = (cos |00) + sin cr|11)) (6.38)
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where cos? a = 1/(1 + e¢77¢) and sin? a = e7#¢/(1 + e77¢). Note that
e [0,7/4], (6.39)

because we assume positive temperature. It is easy to see that the reduced
states of |¢) are indeed thermal at temperature . The unitary U extracting
work from p is U,, which was introduced in (6.16), and is given by

cosa 0 0 sina
0 1 0 0
0 0 1 0
—sina 0 0 cosa

U, = (6.40)

In Sec. 5.8, we gave the general form for an optimal collective measurement
on two copies of the state,

M) = |3\ (i| @ T
= Uil T+~ > UpUsi k) (6.41)
I£k
where « is a factor to ensure the positivity of the operators. Recall also that

M) is the POVM operator associated with the energy transition ¢ — j. For
the unitary (6.40) with condition (6.39), we find that

v =tana (6.42)

is enough to satisfy the positivity condition. Recall that this parameter quan-
tifies how invasive the measurement is: For v = 1, there is no back action of
the apparatus (at least regarding average quantities), and for v = 0 the back
action is maximal. Given the choice (6.42), we obtain the following transition

probabilities for p = |¢)(¢| and Uy,
PP = (6, 6|M ), ¢) = [ (& 100) [T "]g)

= cos® a(cos® a + 2 cos asin® @)
p(oo’n) = cos a(sm o — 2cos asin® @)
p100) 2 a(sin® a + 2 cos asin® «)
pUbD = gin a(cos o — 2cos asin® ). (6.43)

and the other transition probabilities are zero. The probability of ending in
the ground state, i.e., of extracting maximal work, is given by,

3

(00,00) 1 p(11,00) = costa +sin* o + 2cosasin® a =

DPg =P
=1 —2sin?(2a)(1 — tan(a)) (6.44)
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for o € [0, 7/4]. Let us rexpress it as,
pg =1—e(a) (6.45)

with,
ea = 2sin®(2a)(1 — tan(a)). (6.46)

The quantity e, measures the strength of the back action of the apparatus.
It becomes 1 for o = /4, in which case py = 1, and hence maximal work is
extracted. For lower o’s, our measurements will decrease the amount of average
extracted work. Yet, the effect of entanglement is still present, and appears
explicitly in the second summands of the p(#37)’s.

6.8. Concluding remarks

In this chapter we investigated and compared the work storing capacities of
quantum and classical correlations. To eliminate all sources of work except
correlations, we considered systems which are locally thermal. The latter con-
dition is both necessary and sufficient to ensure that the system becomes passive
once the correlations are removed. This gives a new perspective on the problem
of passivity, in particular for the case of composite systems.

We first show that correlations are powerful enough to allow for the ex-
tractable work to be equal to all the energy present in the system (see Sec. 6.3).
For that to happen, the state of the system must not only be entangled but
also pure, which is impossible for locally thermal separable states due to an
entropy constraint. Entanglement is also useful when the state of the system
is mixed, as in this case we show that separable states can not generically
store the maximal work compatible with the entropy of the system and local
thermality. Furthermore, we prove that in all cases the quantum advantage,
significant for small ensembles, becomes irrelevant in the thermodynamic limit.

Then we have considered extensions of this scenario, a set of correlated yet
locally thermal states. In this respect, first we have studied the role of coher-
ences by further restricting the diagonal of the state in the energy eigenbasis
to be identical to a thermal state. Interestingly, in this case it turns out that,
in the thermodynamic limit, essentially all the energy can be stored in the
off-diagonal terms. Secondly, we have discussed the situation when the system
is allowed to interact with a thermal bath at the local temperature of the re-
duced states. Then, work is directly related to the strength of the correlations
as measured by (6.36).

Finally, we also discussed the fluctuations of work when the initial state is
entangled. Such fluctuations can not be studied by the usual TPM approach,
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and the methods developed in Chapter 5 become extremely useful. Focusing
on the case of two qubits, we computed the transition probabilities of the
different energy exchanges, where a new term appears due to the presence of
entanglement. The back action of the apparatus has also been discussed.
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7. Thermodynamic Cost of Creating
Correlations

7.1. Introduction

The main question explored in this Chapter is the following: what is the ther-
modynamic cost of establishing classical and quantum correlations? This ques-
tion clearly complements our considerations of Chapter 6, where we studied
how much work can be extracted from correlations. In this chapter we will see
how this complementary approach naturally brings new questions and consid-
erations.

In order to determine the thermodynamic cost of creating correlations, our
basic starting point is a quantum system composed of two (or more) uncor-
related subsystems, all initially in a thermal state at the same temperature.
Note that this is a very natural starting point from the point of view of the re-
source theory of quantum thermodynamics (BaHO"13), where thermal states
at the same temperature are taken for free. In order to establish correlations
between the subsystems, we allow ourselves to perform any possible unitary
operation on the entire system, which may possibly comprise an external bath.
Performing such a unitary will in general cost us some energy.

The first set of questions we seek to answer is how the temperature of the
initial state limits the ability to create different types of correlations in the
system, starting with classical correlations in bipartite and multipartite sys-
tems, before moving into bipartite entanglement and then different forms of
entanglement in the multipartite case, including the strongest form — genuine
multipartite entanglement. In all cases we seek for the maximal temperature
allowing for the generation of entanglement, and provide explicit protocols for
generating correlations and entanglement at finite temperature.

We then move on to the question of how the available energy limits the
correlations, by determining the maximal amount of correlation that can be
created given access to a limited amount of energy. Here our focus is primarily
on the bipartite setting, where we investigate optimal protocols for generating
classical correlations and bipartite entanglement with limited energy. In the
last section we discuss the effect of dealing with interacting systems.
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The results of this Chapter are original and published in (HPLH'15; BPLF*15;
FHPL). In particular the results of Sec. 7.3 and 7.4 are published in (HPLH™15),
the results of 7.5 in (BPLF'15), and finally the results of can be found in
(FHPL).

7.2. Framework

We consider a system of n initially uncorrelated d-dimensional quantum subsys-
tems. Each subsystem is taken to have the same (arbitrary) local Hamiltonian
H, and the same temperature kgT' = 1//3. Hence the initial state of the system
is

Z

e

pi = T?n, where 75 = (7.1)
and Z =Tr (e_fBH ) is the partition function. When discussing qubits we will
denote by E the energy of the excited state and

1

= TyeE (72

p
the ground state probability. Allowing ourselves the use of arbitrary (global)
unitaries U acting on the system, we want to characterise (i) what are the limi-
tations imposed by the initial temperature on the available correlations (either
classical or quantum) (ii) what is the energy cost W of creating correlations.
If the system is thermally isolated, the work cost reads,

W =T (Htot(pf - Tg’”)) : (7.3)

where pr = UTEZ’"UT is the final state and Hyor = ), H® is the total Hamil-
tonian. Later we will also consider the case of having access to an auxiliary
thermal bath at the same temperature.

7.3. Limitations arising from the temperature

First we consider the question of how the temperature of the initial state affects
the amount of correlation or entanglement that we can be created. In partic-
ular, we impose only that the process can be described by a unitary operation
(i.e., the system is closed), and make no further constraints, either in terms
of the energy cost of the process, or the efficiency of the implementation. As
such, the results presented here constitute fundamental limits on the creation
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of correlation or entanglement which arise solely from the thermal nature of
the initial states, and their corresponding temperature.

We first consider the creation of correlations, both in the bipartite and multi-
partite settings, before moving on to the question of entanglement generation,
again in both the bipartite and multipartite settings.

7.3.1. Correlations
Bipartite systems

Let us start by considering the case of a two qudit system, i.e. two d-level
systems. As discussed in 2.2, correlations between the two subsystems (which
shall be referred to as S; and S2) can naturally be measured using the quantum
mutual information I, s,,

Is,s, = S(ps,) + S(ps,) — S(p), (7.4)

where ps, = Trs,p (and ps, = Trs, p). The goal is then to find the the optimal
unitary operation U such that pf = Utg ® 73U T has the maximal possible
mutual information. Note first that initially Is,s, = 0, as the initial state
factorises. Thus, to create correlations, one must find a global unitary that
increases the local entropies S(ps,) of pr, since the total entropy S(p) = 25(73)
cannot change. Since for a d-level system the local entropy is upper bounded
by Ss, <logd, the maximal possible mutual information is upper bounded by

Is s, < 2[logd — S(73)]. (7.5)

This bound can always be achieved, by making use of the following protocol,
which amounts to rotating from the energy eigenbasis to the generalized Bell
basis, i.e. to a basis of maximally entangled qudit states (JJR12). In more
detail, for all d one can define the unitary operators

X =Y, Im+1moddym|,  Z = w™m)(ml (7.6)
m
with w = €2™/? as generalisations of the (qubit) Pauli operators o, and o,.
The Bell basis {|¢;;)}4; is then given by
61) = Z' @ X7|g), (7.7)

where |¢) = id >, 7). Finally, we consider the operation given by

U= o) isl. (7.8)
ij
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Since the initial state is a mixture of energy eigenstates, pf is a mixture of
Bell states. Finally, since these all have maximally mixed marginals, i.e.
Trs, (|¢ij)(¢ij]) = I/d the bound (7.5) is achieved. We end by noting that
the maximally mixed state I/d corresponds to the infinite-temperature ther-
mal state 79. We shall see later that when the amount of available work to
implement the process is limited, the optimal protocol produces thermal mar-
ginals, only there at lower temperatures.

Finally, we note that for all finite initial temperatures 5 # 0 the mutual
information that can be created between the two subsystems is non-zero, i.e.
one can produce correlations between them at arbitrary finite temperatures.

Multipartite systems

In the multipartite setting one can generalise the notion of mutual information
by considering the difference between the sum of local entropies and the total
entropy of the system. That is, for a collection of n subsystems Si, ..., Sy, the
multipartite mutual information is given by,

n
Iss,p = > S(ps,) — S(p), (7.9)
i=1
which vanishes only when the total system is a product. Again, since the
total entropy of the system is conserved, to maximise this quantity one must
maximise the sum of final local entropies after the protocol. The analogous
upper bound,
I{Sl"'Sn} < n(logd — S(Tg)), (710)
is seen to hold, and can again be achieved by rotating the energy eigenba-
sis to a basis of generalised GHZ states. Namely, one can define the basis

UPF, i) irwin DY

¢f ) =Z"RX2 - @ X" |¢"), (7.11)
where |¢") = id >, 11)®™ and the operation given by

Again, since the final state of the system is a mixture of generalised GHZ
states, all of which have maximally mixed marginals Trzk(\ﬁbij Ndij|) = 1/d
(where A}, denotes tracing over all subsystems except Ay) the bound is seen to
be saturated. Finally, as long as the initial temperature is not infinite g # 0,
then the bound is non-zero, and a finite amount of correlation can be created
between all of the subsystems.
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7.3.2. Entanglement

Having seen in the previous section that it is possible to create correlations
among the subsystems of a general multipartite system starting at arbitrary
temperatures in a relatively easy fashion, we now move on to the move inter-
esting question of creating entanglement. We first look at the case of bipartite
systems, where there is a single notion of entanglement, before moving on to
multipartite systems, where there are a number of inequivalent notions of en-
tanglement that we will study. In all cases we restrict ourselves to the study
of qubits.

Bipartite systems

Let us first consider the simplest possible scenario, involving two qubits. Al-
though there is only a single notion of entanglement, one can nevertheless
define many inequivalent measures of it. Here for concreteness we focus on the
concurrence (Woo098), as defined in Sec. 2.2.2. Recall that for pure states, it
is the linear entropy of the reduced state of one party,

() = /21 Te(p3)), (7.13)

where pp = Trp|¢) (¢ |aB, and is extended to mixed states via the convex-roof
construction

C(p) = inf Zpic(l/}i), (7.14)

where the infimum is taken over all pure state decompositions p = >, ps|ts) (1.

Crucially, for our purposes the problem of finding the state of maximal con-
currence given only its spectrum was solved in (IHOO; VADMO1), which is
an alternative way of phrasing the problem which we are interested in here.
Moreover, it was shown that the optimal protocol not only maximises the
concurrence (and therefore the entanglement of formation), but also two other
important measures of entanglement, the relative entropy of entanglement, and
the negativity.

The protocol of (VADMO1) is easiest understood by decomposing it into a
product of two unitaries, U = V5V, where V7 is a CNOT gate

Vi = [00)(00] + [01)(01| + [11)(10] + [01)(11], (7.15)

and V5 is a rotation in the subspace spanned by {|00),]|11)} to maximally
entangled states

V2 = |¢00)(00[ 4 [01)(01] 4 [10)(10[ + |¢10) (11]. (7.16)
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Denoting by {\;}; the eigenvalues of the initial state p; arranged in non-
increasing order, the concurrence of the final state pr = VnginfVZJr is given
by

C = maX(O, )\1 - )\3 - 2\/ )\2)\4). (717)

Applied to the case at hand, with p; = 754 ® 75 we finally obtain

Crax = max(O, 2p2 —pP— 2(1 - p) \% p(l - p)) (718)

It follows therefore, that unlike when considering correlations, there is a now a
threshold temperature, kpTmax/E ~ 1.19 (or equivalently a threshold ground-
state population ppin ~ 0.698), such that for all 7' > Tinax (0r p < Pmin) DO
entanglement can be created between the two qubits, even if arbitrary unitary
operations can be applied.

Multipartite systems

We now switch our attention to the multipartite setting. Here we will see that
the limiting temperature Ti,,x below which one can create entanglement can be
increased when several copies of the system are jointly processed. Essentially,
as more copies are available, the global system contains larger energy gaps
and thus subspaces with higher purity, which can be more easily entangled.
In the following we make this intuition precise by studying the dependence of
Tiax on the number of copies n. At the same time, we study several classes
of entanglement that naturally appear in the multipartite case including its
strongest form: genuine multipartite entanglement.

Entanglement in all bipartitions.

To start our discussion, we consider the case of n qubits and a straightforward
generalization of the above two-qubit protocol. That is, we consider a rotation
in the [0)®™, [1)®" subspace, of the form (7.16),

U = [¢"}{01%" + [¢" (1= + T = (|0)(0)=" — (|L)(1])*" (7.19)
where |¢"') = |¢}...). For a given bipartition jln—j (i.e. a partition of j qubits

vs. n—j qubits), the concurrence in the final state ps can be conveniently lower
bounded using the relation (MCC*11)

C = 2( [0 ps )" (7.20)

_\/<0‘®j<1|®(n—j)pf|0>®j’1>®(n—j)\/<1‘®j (0|®(n—j)pf|1>®j|0)®(n—j))
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7.3. Limitations arising from the temperature

and due to the simple form of py, these bounds are in fact tight (HRHBE12).
Evaluating explicitly, we then obtain

C =X — A — 20/ N A, Aj = (0|9 (1|% p,0)" I |1)®9. (7.21)
which is independent of the bipartition, and given by

C=p"—(1-p"—2p"1—p)"/> (7.22)

By demanding C' > 0, we can characterise the smallest p, and thus the largest

T, that allows for entanglement to be created simultaneously across all bi-
partitions, as a function of n. We find a linear scaling in n for this critical

temperature Téall bip '),
kBT]éaH bip.) n | (723)
E ~ 2In(1 4+ v/2)

Hence it follows that entanglement across all bipartitions can always be gen-
erated starting from an arbitrary temperature T, by considering a sufficiently
large number of qubits n. We note also that if one used instead of concurrence
the negativity across a bipartition, a straightforward calculation shows that
the same bound is obtained.

Entanglement in a single bipartition.

The above protocol can be improved if the aim is to generate entanglement
in a given single bipartition j|n — j. As in the two-qubit protocol, the idea is
to perform a permutation of the initial diagonal elements before applying the
rotation (7.19). From expression (7.21), we see that the optimal permutation
is the one where \g = p", A, = \; = p(1 —p)" ' and \,—; = (1 —p)". In such
a case, we a similar analysis to above leads to the limiting temperature, which,
for large n is given by

ksTr S n—1/2
E ~ In(3)

(7.24)

Hence the threshold temperature for the creation of bipartite entanglement
using this protocol is also linear in n (for high temperatures), but improves
upon the above protocol in the constant. Thus for fixed n, one can generate
entanglement across a single bipartition for slightly higher temperatures with
this protocol.

Genuine multipartite entanglement 1
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7. Thermodynamic Cost of Creating Correlations

Genuine multipartite entanglement (GME) is the strongest form of entan-
glement in multipartite systems. A state p is GME iff p only admits decompo-
sitions of the form

p= Zpi|¢i><¢i\ (7.25)

where at least one |¢;) is entangled in every possible bipartition. It follows that
a necessary but not sufficient condition for GME is that p itself is entangled
across every bipartition. This suggests that the previously considered protocol
for generating entanglement in all bipartitions is a natural candidate to gain a
first insight on the maximal temperature for GME creation.

After applying the unitary (7.19), the state ps is essentially a GHZ-state
mixed with (diagonal) noise. For such a simple form, the techniques of Ref.
(MCC*11; HPLAV13) give us the necessary and sufficient conditions for the
creation of GME (HRHBE12), namely

ppis GME <= p" — (1 —p)" — 202" = 1)p"2(1 —p)/2 >0  (7.26)

This condition leads to a lower bound on the threshold temperature for creating
GME, ToMmE, which turns out to be asymptotically independent of n, and given
by
keToy 1
E " 2In(2)°

where we added the suffix GHZ because the target entangled state of this
protocol is a GHZ state. Moreover, as we show in the Appendix A.3, this
result holds for all states whose density matrix features only diagonal and anti-
diagonal elements, also known as X-states.

Genuine multipartite entanglement 11

Recall that there are many inequivalent types of multipartite entangled states
and GHZ states only constitute one prominent class. In fact it is much more
favorable to use protocols that target another type of entangled states, namely
Dicke states (Dic54). An n-qubit Dicke state with &k excitations is defined as:

(7.27)

1

N(R)

where . P;{} is a sum over all possible permutations. Besides being rel-
evant for the theory of light-matter interaction, Dicke states are useful for
various quantum information tasks (CGP*12), have been detected experimen-
tally (WKK™'09) and have shown to exhibit genuine multipartite entanglement
(Duall; LPV*14).

D7) = —— > PAILH0)* ) (7.25)

104



7.3. Limitations arising from the temperature

By constructing a protocol that uses the state (7.28) as the target entangled
state, we obtain that the threshold temperature for generating GME is given
by

holons n [ n ] (7.29)

E ~ (/<:+1)lnn+0 (Inn)?

The scaling is almost linear with n, which allows now for the creation of GME
for an arbitrarily high temperature T' < oo, by considering a sufficient number
of qubits n. Note that this result is quite counter-intuitive, as the complexity
of the task we consider, entangling all qubits, increases with n. Furthermore,
it in stark contrast with the results obtained above for the GHZ class, and
thus indicates that different types of entanglement behave in a very different
manner.

Let us now sketch the idea of the protocol for creating Dicke type entangle-
ment; all details are in Appendix A.4. As in the previous cases, the protocol
consists of two steps: a permutation of the diagonal elements followed by a
rotation to maximally entangled states (in this case to Dicke states). The
permutation first moves the largest eigenvalue, p™, plus the small eigenvalues,
pF (1-— p)”*k7 into the degenerate subspace of energy kFE, thus purifying the
subspace. It also moves other small eigenvalues' into the subspaces of k—1 and
k + 1 excitations, as this is favorable for the considered entanglement witness
(HEST11). Now, in the degenerate subspace of k excitations, the state with
the biggest population p™ is rotated to the Dicke state. In order for the trans-
formation to be unitary, the rest of the energy eigenvectors of the subspace are
rotated to the set of orthonormal states

n 1 22k n— n
) = TRt M=y (1) )
J

with ¢ = {1,..., Ny — 1}. This concludes the protocol leading to (7.29) (see
Appendix A.4 for detailed computations).

The fact that the creation of Dicke type GME is so much more favorable can
be understood intuitively by recalling that Dicke states are in general much
more robust to noise compared to GHZ states (HEST11). Notice also from
(7.29) that it is most favorable to create entanglement in the first excited
subspace, where the Dicke state becomes the well-known W state.

1 m

i.e., eigenvalues with population p"~™(1 — p)™ with m/n — 0 in the asymptotic limit.
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Figure 7.1.: Regions where entanglement creation (green area) and GME cre-
ation (orange area) are possible by our explicit protocols. The upper (green)
points represent the best protocol for entanglement creation in a qubit/qudit
bipartition, and also an upper bound for creation of GME. The scaling for each
region are given in the main text.

Upper bounds and discussion

So far, we have investigated explicit protocols, which allowed us to place lower
bounds on the threshold temperature that still allows for the creation of en-
tanglement. To study the limitations imposed by a thermal background it is
essential to also find upper bounds on the maximal temperature. For that pur-
pose, a first approach is to use results on the geometry of quantum states. In
particular, it is known that the maximally mixed state is always surrounded by
a ball of finite size that contains only separable states, and it is possible to place
lower bounds on the radius of such a ball (GB02; GB03). By applying these
results we obtain an upper bound that scales exponentially with n. Therefore,
there is an exponential gap between lower and upper bounds, thus making this
approach essentially useless for large n.

The results from (GB02; GB03) are useful for any state, as long as it is
sufficiently close to the identity, whereas here we are concerned with a very
particular form of states, namely those states with a thermal spectrum. This
information can be used to obtain better upper bounds. Indeed, the following
theorem was proven in ref. (Johl3): let p € Ha ® Hg have eigenvalues \; >
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7.3. Limitations arising from the temperature
)\2 > > )\Qd; then

UpUT is separable VU <= A — Aan_1 — 24/ A2n—_2Aan < 0. (7.31)

By taking d = 2”71, this criterion applies to any qubit/qudit bipartition of the
n-qubit thermal system we considered. Furthermore, notice that this condi-
tion amounts to calculating the concurrence in a specific 4 x 4 subspace, which
happens to be exactly the purest one we used in the protocol leading to (7.24).
Hence that protocol is optimal for generating entanglement in any qubit/qudit
bipartition. While the possibility to obtain a better T in a qudit/qudit bipar-
tition remains open, this criterion does yield upper bounds for Téau bIP) and
TomE 2, obtaining

kBTéaH bip.) B n—1

E ~ In3’
< .32
E ~— In3 (7:32)

Therefore we obtain upper bounds on (7.23) and (7.29) that also scale linearly
with n, showing that this scaling between the maximal temperature and the
number of qubits is a fundamental property, and that our protocols perform
close to optimal for entanglement and GME generation at high temperatures.
The results are summarized in fig. 7.3.

The problem of the attainable entanglement in the unitary orbit of mixed
states has been considered in the context of nuclear magnetic resonance (see
(YBCO05) and references therein). The best protocol in ref. (YBCO05) obtains
precisely the scaling (7.23), improving on protocols based on algorithmic cool-
ing and effective pure states (DC00). Our result (7.24) provides a tighter bound
on the minimal temperature required for entanglement generation, and the up-
per bound derived from ref. (Johl3) gives evidence that it is tight.> We also
studied the minimal temperature for GME, finding a surprising positive scaling
with the number of qubits. Our results thus provide the first bounds on the
number of qubits required to generate entanglement and GME at finite temper-
ature, while showing that in the asymptotic limit generation of entanglement
and GME is possible at any temperature.

2recall that the presence of entanglement in every bipartition is a necessary condition for
GME.
3Recall that this upper bound only applies for qubit/qudit bipartitions
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7. Thermodynamic Cost of Creating Correlations

7.4. Energy cost in thermally isolated systems

We can associate to every operation U a work cost W, given in (7.3), which
corresponds to the external energy input. Regardless of the operation U, the
invested work is always positive because the initial state is in thermal equilib-
rium, i.e., W > 0 YU. This naturally raises the following question: what is the
minimal work cost of correlating thermal state? or, equivalently, what is the
maximal amount of attainable correlations when the energy at our disposal,
AF, is limited? In this section we address these question, both for total corre-
lations and entanglement, in the unitary orbit of thermal states (i.e., optimising
over all global unitaries U).

The results of this section and the next one are original and based upon
(HPLH™15).

7.4.1. Correlations

In analogy with the previous section, let us start by considering the case of a
two qudit system, i.e. two d-level systems. The goal is now to maximize I, g,,
as defined in (7.4), over all global unitaries constrained by W < AE.

Note first that initially Is, s, = 0, as the initial state factorises. Now, to
create correlations, we must apply a global unitary that will increase the local
entropies Ss, of py, since the total entropy S(p) = 25(75) will clearly not
change. Recalling that the thermal state maximises the entropy of a system
with fixed average energy, we find that

Inp <2 [S(r) — S(r5)] . (7.33)

where 3’ is chosen such that AE = Tr[Htot(T§2 — T?Q)}. Hence in order to
obtain correlations at minimal energy cost, one should look for a protocol such
that the local states of py are thermal states at equal temperature. That is,
the optimal unitary U* satisfies

Trs, (U*pU*Y) = Trg, (U*p;U*T) = 75 (7.34)

This unitary effectively heats up the system locally, while the global system
preserves its entropy. Finally, notice that expression (7.33) recovers the case of
maximal correlations, (7.33), in the limit 8/ — 0, with a corresponding work
cost,

1 1
W =2 <dTrH — ZTrHeﬁH> : (7.35)
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7.4. Energy cost in thermally isolated systems

These results are easily extendible to the multipartite case. The generalized
mutual information (7.9) is maximized (for a given energy cost) by those uni-
taries that satisfy (7.34) for every local state.

In the case of qubit systems, the optimal unitary is precisely the inverse
unitary constructed in Sec. 6.5 of Chapter 6. Indeed, one easily sees that
by running the optimal protocol of Sec. 6.5 backwards, one obtains the op-
timal protocol for the problem considered here. Therefore, the starting point
of Chapter 6 is the optimal ending point here; and vice versa. That is, the
two processes become the reverse of each other only when they are both op-
timal. This situation is in fact common in thermodynamics. For example, a
heat engine working at Carnot efficiency can be seen as an optimal refrigerator
running backwards. Our protocols thus exemplify this relation for the com-
plementary problems of creating correlations from work, and extracting work
from correlations.

5 - p=1000 KeT/E=00
kgT/E =0.2
p=0993 ° /E
1.6
p=0924 kgT/E=04
12
Iae
08 | p=0841 kgT/E=0.6
p=0777 kgT/E=0.8
04 r
p=0731 kgT/E =1
0

0.2 04 Ap/p 06 0.8 1

Figure 7.2.: Mutual information vs. available energy, for various values of
kgT/E.

7.4.2. Entanglement
Bipartite systems

Next we derive the minimal work cost of creating entanglement for the simplest
case of two qubits. Consider first the case T' = 0, i.e. 7 = |0)(0]. If the state
is pure, entanglement can be measured by the entropy of entanglement, which
is simply given by the local entropy of the state. The problem at hand is
thus equivalent to the maximization of the mutual information, so the same
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7. Thermodynamic Cost of Creating Correlations

reasoning can be used here*. In particular, the optimal unitary, U* in (7.34),
corresponds to the inverse of Uy, given in (6.16). From this we find the relation,

C= \/AEE <2_AEE>. (7.36)

Moving to non-zero temperature, finding the optimal unitary is no longer
straightforward. Nevertheless the problem can be attacked from two direc-
tions. First, we maximize C numerically, with respect to all possible unitaries,
for a given cost W. Second, we use an ansatz protocol, inspired by the opti-
mal unitaries to achieve Cyax in (7.17). These unitaries have the form of first
rotating in the subspace of |10) and |11), followed by rotating in the subspace
of |00) and [11). Our ansatz is to optimise over such unitaries, now a much
simpler optimisation over the two unknown angles (one for each rotation). The
results are presented in Fig. 7.3, where the solid line shows the result of the full
optimisation and the dashed line shows the results of the ansatz. We see that
when there is no restriction on the amount of available energy W, then our
ansatz protocol performs optimally. However, this is not the case when W is
limited. Note that the amount of energy required to reach Cpax is decreasing
as T increases, shown in inset (a), where we also see that for low temperatures
(kgT/E < 0.1), we can generate essentially one Bell state of two qubits, i.e.
Chax =~ 1. Moreover, for any T' > 0, there is a minimal amount of energy
required for generating entanglement, shown in inset (b). This is because some
energy is always needed to leave the set of separable states.

Multipartite systems

Quantification and characterization of multipartite entanglement is still a
highly active field of research (see e.g. Ref. (ES14)). The main challenge is
a consistent quantification of multipartite entanglement in operational terms,
but, as we discussed in the Sec. 2.2.2, this task may not be as easy as in
bipartite systems. Here we circumvent this issue by studying a measure inde-
pendent question: what is the energy cost of transforming a thermal state into
an entangled one, either GME or entangled in all bipartitions?

The work cost associated to the unitary (7.19) is easily computed to be

nE(1 — e PEM)

W=———— .
2(1 + e~ BE)n

(7.37)

4Note that the concurrence and the entropy of entanglement are isomorphic for two qubits
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Figure 7.3.: Main: Concurrence vs. available energy, for various values of
kgT'/E. Solid lines show the optimal protocol, found numerically by optimising
over the unitary group. The dashed lines show the performance of the simpler
protocol, described in the main text, which is seen to perform well, especially
for smaller temperatures. Moreover, if the available energy is not limited, our
ansatz is optimal. Inset (a) shows the behaviour of the maximal concurrence
Cax as a function of kgT'/E, while inset (b) shows the energy needed to leave
the separable set, as a function of kT /E.

By inserting 72! PP in (7.37), one obtains that the cost to leave the separable
set (for this particular protocol) is exactly

1++2
((1+v2)""+1)"

which is exponentially small in n. This shows that having more copies not
only opens the possibility to generate entanglement at a higher temperature,
but also reduces the energy cost of leaving the separable set. An exponential
decrease of the work cost with n is also found for the other protocols for GME
generation in the multipartite setting (see Appendix A.4). The reason behind
this behavior is that the considered protocols only act on particular subspaces,

WP = nF (7.38)
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7. Thermodynamic Cost of Creating Correlations

whose population becomes negligible in the limit of large n. This also im-
plies that the amount of generated entanglement decreases with the number
of copies. Interestingly, in the multipartite setting, even a small amount of
entanglement might be enough to obtain a substantial quantum advantage. In
particular, in the field of quantum computation, for a computational speed up
(in pure states) entanglement is required across every bipartition (Vid03), but
the actual amount can be polynomially small in the system’s size (VAN13). ®

7.5. Energy cost in the presence of an external bath

We now move to the scenario where an external bath B is available. The results
presented in this section are original and based upon (BPLF*15). For simplic-
ity of the discussion, we focus on the creation of correlations, as quantified by
the mutual information, in bipartite systems. Hence, the relevant magnitude
is simply

Is;s, = S(ps,) + S(ps,) = S(ps) (7.39)

where we added the subindex S to differentiate the system of interest of the
bath B. That is, in this case we have a system S made up of two subsystems
S1, So, in contact with a Gibbs state B. Here our considerations of Chapter 4
become useful. In particular, we use expression 4.10,

W = AFy + AFy + Tlsp, (7.40)

where AFy (AFy ) is the change of free energy of S (B). We now split AFy
into the free energy differences of its subsystems, and their correlations as

AFS = AFsl + AFS2 + Tlslsgu (741)

Finally, using the identity, AF =TS (p||7(8)) which holds for thermal states
T, we have,

BW = S(ps,|I7s,) + S(ps,|I7s,) + S(psll75) + Is,s, + Lss, (7.42)

where ps,, ps,, and pp denote the final reduced states for the subsystems, Sy
and S9, and the bath B, respectively. In other words, work can be invested
to shift the thermal marginals away from equilibrium or to create correlations.

5This translates to density matrices through the convex roof: If every possible decomposition
requires at least one element that is entangled across all partitions we can conclude that
the classical simulation will be hard and the dynamics of the system non-trivial (while it
is not at all clear whether this is necessary it is at least sufficient).
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7.5. Energy cost in the presence of an external bath

Since all quantities on the right-hand side of Eq. (7.42) are non-negative, it
follows,

Is,s, < BW. (7.43)

This gives an upper bound on the amount of correlations that can be created
given some available work W and an external bath at temperature 7T'.

Remarkably, it is possible to saturate this bound using a simple protocol,
which can be divided into two steps (see also Fig. 7.5):

1. Cooling: First, the temperature of S is lowered from T to 11 < T', reduc-
ing the global entropy of the system. The (minimal) energy cost for this
thermalization process is the change of free energy, which, as discussed
in Chapter 4, can be obtained if a sufficiently large bath is available. In
this case, W1 = AFy, and,

Wi =F(7s(B1) — F (75(B)) , (7.44)
where gy = 1/Tj.

2. Correlating: In the second step, the system is isolated from the bath
and it is correlated via a unitary operation U.qor. Following our previous
considerations, the unitary is chosen such that S; and Sy are locally
thermal at temperature Ty = 1/8y > 17,

Tr51(52) (UCOTYTS(ﬁl)UcTorr) = TSQ(Sl)(ﬁII)' (745)

Recall that this choice ensures that the systems are correlated at minimal
energy cost Wy.

There is thus a tradeoff between the amount of work Wiy, invested to cool
down the system, which allows one to potentially obtain larger correlations,
and the work Wy, invested to actually correlate it. It is straightforward to
obtain that both contributions add up to

W =Wi+Wn =Tls,s, + TS (1s(Bu) || 75(B)) - (7.46)

Therefore, optimality is achieved when the local temperature of the final state
marginals is identical to the initial temperature, 11y = 7', such that W = T'Ig ..
However, this is not always achievable. Setting Sy = [ may require Wi to
become larger than the energy that is necessary to cool down to the ground
state. This leads to a surplus of energy for the correlation step. In such a
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Figure 7.4.: Illustration of the protocol: In the first step the system is
cooled down by a controlled interaction with the bath, and the heat @ is
transferred to the bath. The associated work cost is Wi. In the second step,
the system is isolated from the bath before it is correlated though a unitary
operation, which effectively heats up the subsystems. The energy cost of the
second step is Wr.

case, 17y is larger than the initial temperature 7. The transition to this regime
occurs when,

W=W=W+Wy=T5(rs(8)), (7.47)

where Wy = —F (75 (B)) corresponds to the energy necessary to cool down to
the ground state and Wy = E (75(f5)) is the work necessary to correlate the
systems such that Sy = 5. After some rearranging, one obtains

Is, <477 iAW < S(r:(0)), (7.48)
S(rs(Bu)) i BW > S(75(8))
where [y is given by the implicit relation
E(7s(Bu)) = W + F (75(8)) - (7.49)

There are thus two fundamentally different regimes for the generation of mutual
information. We discuss this in detail in the next section for a system of two
bosonic modes.

Before moving to a particular physical system, it is worth mentioning that
our protocol is extendible to nonequilibrium initial states. One then needs to
first extract the work content of the state, which leaves it in a thermal state at
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7.5. Energy cost in the presence of an external bath

the temperature of the bath. Our protocol can then be readily applied using
the extracted work in addition to any externally supplied energy to correlate
the system.

7.5.1. A case study: Two bosonic modes

Let us examine more closely the scaling of the generated correlations with the
input energy for a system of two bosonic modes, or equivalently two systems
with an equally spaced infinite spectra. We take two systems with identical
internal Hamiltonian, H = Hg, + Hp,

Hy =Y (; + k) wl) (], (7.50)
k

where we implicitly assumed A = 1. The initial state is thermal, 7¢ = 7'?2, with

T = > . pk|k)(k|, and p, = %. Being thermal states of an the quantum
harmonic oscillator, the total energy and entropy of the two mode system can
be computed yielding,

E(1s(8)) = 2Tr(HT) = wcoth %}J (7.51)
S(rs(B)) = —2Tr(rInT) = 2h (coth 6;) (7.52)

with,
h(x):1;m1n1;$—x;11n$;1. (7.53)

By using expressions (7.51) and (7.52), one can easily compute the minimal
work cost of correlations obtained through the optimal protocol described in
the last section. The results are shown in Fig. 7.5.1. The figure clearly illustrate
two regimes, a linear and a sublinar one, in perfect agreement with (7.48).

In order to gain a better understanding on the sublinear region, let us now
consider the regime where the supplied energy W is much larger than S (75(53)) /3.
In this limit, we can expand h(x) over 1/x — 0 and use that S = 2h(E/w) to
obtain

S(rs(Bin) = 2In (S E((rs(B11))) + O <E((T:(;H))2) . (7.50)
or equivalently,
oz = 20 (SO0 + Frs(31) + 0 (125 (7.55)
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Figure 7.5.: Mutual information as a function of the invested work for a two
bosonic mode.In the figure we can appreciate the two regimes, linear and sub-
linear, as expected from (7.48)

which shows that, when the work input is big, the generation of correlations
increases logarithmically with it, Imax o< In W. This small increasing is in sharp
contrast with the linear increase at small energies (see again Fig. 7.5.1).

7.6. Energy cost of correlations in the presence of
interactions

Finally, we study how the presence of interactions modifies the previous bounds
obtained. These results presented here are original and based on (FHPL). In
particular, we are interested in understanding whether the relation W > T'Ig g,
can be violated, i.e., we can reduce the minimal work cost of correlations by
making use of the energy contained in the interacting term of the Hamiltonian.
We take for the system a Hamiltonian of the form,

HS:H51+HS2+H]. (756)

It is important to note that in this case, the initial state of S,

e—B(Hs, +Hg,+Hi)

T = Z (7.57)

is already correlated. Hence in order for a fair comparison with the non-
interacting case, we focus our attention in the gain of correlations, Al g,.
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As discussed above, the work cost of transforming 7(8) to a final state p
satisfies, W (1 — p) > AFs = F(p) — F(7). After some straightforward manip-
ulations we can express AFg with the Hamiltonian (7.56) as,

AFs = TAI s, + Tr (H;[p — 7]) + AFs, + AF,, (7.58)

where the quantities 13'31(52) correspond to nonequilibrium free energies with
respect to the local Hamiltonians, i.e.,

Fs.(p) = Tr (Hs,p) — T'S(ps,) (7.59)

with ps, s,y = Trg, g, P-

In order to develop strategies that can outperform the bound (7.43), it is con-
venient to express the density operators of a bipartite qudit system according
to the generalized Bloch-Fano decomposition (Fan83; AK08),

1 d?—1 d3—1 d?—1d3-1
P= gy | 2 ot ©Le £ ) bala @0 D, ) e ot © 03
m=1 n=1 m=1 n=1

(7.60)

where d; and ds are the dimensions of the local systms, the Hermitean operators
o5 satisfy Tr(oio5i) = 20, and Tr(oi) = 0, and the real coefficients ayy,, by,
and t,,, are subject to constraints arising from the positivity of p. The reduced
states are then immediately obtained as

di-1
1 1
P = T Is, + Z amoit |, (7.61a)
1 m=1
1 d2-1
pn = Is, + > bnos | . (7.61b)
n=1

The Hermitean interaction Hamiltonian can similarly be written as

d3—-1d%-1
H, = Z Z €mn Tot Q052 (7.62)
m=1 n=1

with real coefficients €y,,. Any terms of the form I3, ® 072 and 02! ® [, that
may appear in such a decomposition of H; can be absorbed into the local
Hamiltonians Hs,.

Returning to the relation of Eq. (7.58), notice that the interactions allow for
an improvement of (7.43) whenever Tr (H,[p — 7]) + 3., AFy, is negative. The
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7. Thermodynamic Cost of Creating Correlations

expansion of Eq. (7.60) further permits treating each of these terms indepen-
dently: The terms Aﬁ‘si depend only on the local Bloch vector components
am and by, for ¢ = 1 and ¢ = 2, respectively, whereas the interaction term
Tr (H,[p — 7]) depends only on the correlation tensor ¢,,. With this in mind
we can formulate two complementary strategies to improve upon (7.43).
First, we focus on the local terms AFS,-~ Defining the local Gibbs states as
Vs, = Zs, Le=BHs; which are generically different from the local initial states

Tsi(s2) = LTg, 5, T» it is useful to rewrite AFj, as,
= Sps.llvs.) = S 17s.) 5 (7.63)

where S(p||7) = =S(p) — Tr(plnT) is the relative entropy. Since S(.|.) is
a measure of distinguishability between two quantum states, the quantities
AFy, are negative whenever the final reduced states ps, are closer to the local
Gibbs states s, than the initial state marginals 75,. This provides a simple

strategy to minimize Aﬁ’si: The Bloch coefficients a%) and bﬁlp ) of the final

state p should to be chosen as close as possible to afn,z) and b&l’, respectively,
where al) = 4 Tr(vs,051) and b = = % Tr(ys,052). This strategy ensures that
AFs < 0.

The second strategy entails the minimization of the term Tr(H;[p — 7]).

Using Eqs. (7.60) and (7.62), we can express it in terms of the correlation
(p) (1)

tensors ¢y, and cmp, of p and 7, respectively, obtaining
d?—-1d%-1
Tr (H, ZZ ( (p) _ (7 >emn. (7.64)
m=1 n=1

(p) (")

This relation has a clear geometrical interpretation. Mapping cmn, Cmn, and
émn to vectors ¢ ¢(™) and € in a Euclidean vector space of dimension (d? —
1)(d3 — 1), the condition of Eq. (7.64) becomes

Tr (Hyfp— 7)) = (@ —c() €. (7.65)

To minimize the expression in (7.65) it is hence desirable to select the vector
(c(?) — (7)) to be as antiparallel as possible to €.
The considerations discussed in this section hence provide two complemen-

tary strategies to obtain W < Al ,, as desired. In general, the choices of

a%), bgﬁ), and c(p ) are limited by the positivity constraint, p > 0 (and of course

also by the amount of available work, W). In the next section we illustrate
possible issues with the positivity of p in more detail for a particular example
of two interacting quits.
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Improved generation of correlations for two qubits

We consider a system of two qubits, coupled by the Hamiltonian
Hs = w (03" + 03%) + €0y ®037, (7.66)

where w > 0 and € € R can take either sign. In this simple example, the pres-
ence of the interaction Hamiltonian H; = € 05'® 052 does not change the eigen-
states of Hg, but the eigenvalues of the noninteracting system are modified to
(e£2w) and —e (twice degenerate). The initial thermal state 7(8) = e #fs /Z
is hence of the form

T(B) = z-! diag{e*ﬁ(eﬁw),eﬁe,eﬂe,e*’B(E*Z‘“)} (7.67)

with Z2 =Tr (e‘ﬁHS ) > 0. The nonzero coefficients of the Bloch decomposition
of 7(B) are

ol = b)) = — 2z e P sinh(26w) < 0, (7.68a)
4ePe

MD=1- . 7.68b

- (7.680)

To correlate the system, we apply a two-step protocol based on the strategies
discussed before. In the first phase of the protocol, step I, we aim to minimize
the term Tr (H;[p — 7]). To do so, we transform the state 7 to p;, such that
gpl) — bgpl) (m)

the local Bloch vector components remain invariant, a = ay ’, while

the (nonzero) correlation tensor coefficient is mapped to

z

for a; > 0. With this, one finds Tr (H;[p, — 7]) = —|€|o; and from Eq. (7.58)
we obtain

WI — TAI5152 - |€|Oé1. (770)

The correlations are hence generated at a work cost that is lower than in the
noninteracting case, Wi < T'Alg s,. However, it is crucial to note that the
transformation in Eq. (7.69) is limited by the positivity constraint, p; > 0,
requiring 2\@,(;)| -1< cg’?) < 1. Depending on the sign of the interaction term,
one of these bounds is reached, when enough energy is supplied. That is, cg'?)
eventually tends towards either cg'?) = 2]a£f)\ —1lor cgp;) =1fore>0ore<0,
respectively.

If more energy is available than is needed to saturate the positivity constraint
in step I, we employ the complementary strategy in step II, the second phase
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7. Thermodynamic Cost of Creating Correlations

of the protocol. Now, we keep the correlation tensor fixed, while changing
the local Bloch vector components to minimize AFs, . This entails moving the
marginals closer to the states 75, that are locally thermal with respect to Hg;,.
These local Gibbs states are here given by

e PHs; 1 s,
1 = S = 5 (L~ tanh(Bw)o?) | (7.71)
S
with a,(zV) = —tanh(fw) < 0. We hence map p; to the state p; with Bloch
vector components given by
a,(zpn) = (1 —ap) agT) + ag agv) ) (7.72)

where 0 < a; < 1. Again, the positivity constraint p; > 0 must still be taken
into account. For ¢ < 0 we find that the full range of «y is compatible with
the positivity of p;. The work cost of step II is given by Wy = T'Alg s, +
AFSl + AFSZ , and, as illustrated in Fig. 7.6, we indeed find that Aﬁ’si < 0 for
all values of T >0, 0 < ay <1, and € < 0.

For € > 0, on the other hand, the positivity constraints require that ]a,(zp H)| <
la — 2(7)|. Since af”? < 0 and o = —tanh(fw) < 0, Eq. (7.72) yields
\agpn)] =(1- aH)]ag)\ + ay tanh(fw) > ]a,(;)\. Unfortunately, since ]ag)\ =
sinh(26w)/ (cosh(2Bw) + e 7€) < tanh(Sw), one finds that |agpﬂ)| > la— 27,
that is, the positivity constraint does not allow for step II of the protocol to be
carried out for € > 0.

In addition to the strategies discussed here, the states obtained after steps I
and II may be further correlated until the maximal value of correlation is
reached. However, the work cost per newly generated unit of correlation be-
yond this point may be the same, or even higher than in the noninteracting
case.

7.7. Concluding remarks

We have studied the possibility of generating correlations, and in particular
entanglement, in thermal environments. We have investigated how the initial
temperature limits the amount of correlations that can be generated. In partic-
ular, we have worked out fundamental limitations in terms of upper bounds to
the possibility to create entanglement at finite temperature. Furthermore we
have also obtained lower bounds by introducing explicit protocols, which can,
remarkably, reach the upper bounds in some cases. In the multipartite setting
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Figure 7.6.: Advantage in correlation cost: During step II of the protocol
to generate correlations between two qubits, an advantage over the noninter-
acting case arises when A, from Eq. (7.59) becomes negative. AFy, is plotted
here against the temperature 7" in units of w (recall that we use units where
h = kg = 1) for oy = 0.5, and the different curves correspond to values of € (also
in units of w) from € = 0 (top) to e = —1 (bottom) in steps of 0.1. The advan-
tage increases with increasing coupling strength ¢, but does not monotonically
decrease with the temperature. Instead, the advantage becomes maximal at a
finite temperature. Although curves are only shown for a fixed value ay = 0.5,
we have checked that other values yield analogous behaviour and the advantage
increases monotonically with oy;.

we studied the advantage of having more systems at one’s disposal, providing
an explicit route to overcome some of the fundamental limitations.

In a second step we have worked out the energy cost of creating correla-
tions and entanglement, highlighting the interplay between quantum effects
and thermodynamic resources. In the bipartite setting we managed to provide
explicit protocols which yield an upper bound to the work cost of creating a
unit of correlation or an e-bit (a fundamental unit of entanglement). We have
also explored the possibility of performing transformations using an auxiliary
thermal bath at the same temperature, in which case the relation between work

121



7. Thermodynamic Cost of Creating Correlations

and units of correlations takes a very simple form: W > TIg s,. That is, in
order to create I units of correlations, we need to invest at least an amount
T'T units of work. We have developed a simple protocol saturating this bound,
and discussed its validity in the case of interacting Hamiltonians.

The different protocols and upper bounds introduced in this chapter, both in
terms of limiting temperatures and energy costs, serve as ultimate bounds on
the possibilities of information processing in scenarios where thermodynamic
considerations cannot be ignored. Finally, from a more theoretical point of
view, our results establish a link between fundamental resources of two theories:
entanglement theory (HHHHO09) and the resource theory of thermodynamics
(BaHO'13).
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8. Work and entropy production with
Generalized Gibbs Ensembles

8.1. Introduction

Gibbs states, being the only completely passive states, play a fundamental role
in quantum thermodynamics. In fact, most often they are taken for granted:
For example, in the resource theory of thermodynamics, they are considered as
a free resource, and one is concerned in studying the transformations allowed
by thermal operations. Similarly, in the study of thermal heat engines, heat
baths are initially prepared in thermal states, and any system (weakly) inter-
acting with the bath is assumed to evolve towards a Gibbs states at the same
temperature as the bath.

In parallel with these studies, a second branch of quantum thermodynamics is
emerging: This is the study of quantum many-body systems out of equilibrium
and the question of thermalisation (CC06; CDEO08; RDO08; LPSW09; SF12;
Rei08; CE13). In this context, thermal baths are by no means assumed to
be available: Instead, one of the main goals of this field of research is to find
out under what precise conditions closed many-body systems are expected to
thermalise and —as one often says —“form their own heat bath”. Despite
remarkable progress in recent years, many questions on many-body systems
out of equilibrium remain open, even understanding whether non-integrable
generic systems always thermalise (GE15). Many-body localised systems are
expected not to thermalise, as they keep memory of the initial conditions,
while integrable models do not equilibrate to Gibbs states, but to the so-called
generalised Gibbs ensembles (GGE) (CDEOO08; CCR11; CE13; PE09; FE13;
CEF12; ZMP15; INW*15). For comprehensive reviews on the subject, see,
e.g., Refs. (EFG15; PSSV11; GE15; DKPR15).

The purpose of the following chapter is to bring these two realms of study
closer together, and study entropy production and work extraction taking into
account these recent insights into the mechanism of equilibration in many-
body systems. Stated otherwise, we want to study quantum thermodynamics
in situations where Gibbs states are not necessarily the right description of the
equilibrium state.
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8. Work and entropy production with Generalized Gibbs Ensembles

More specifically, in this chapter we consider a closed system that undergoes
a sequence of quenches and relaxations to an equilibrium state. Importantly,
unlike in standard studies in thermodynamics, equilibration after each quench
does not occur through weak coupling with an external (infinite) thermal bath.
In contrast, we incorporate the equilibration towards statistical ensembles as
an effective description of the unitary evolution of the closed system. This
effective description is adequate to describe the system only for a restricted,
although most relevant, set of observables. We consider three kinds of equilib-
rium states: the time averaged state, the Gibbs ensemble, and the generalised
Gibbs ensemble. Work extraction and entropy production will be studied for
these three models of equilibration, when either local quenches in a sub-region
of the many body system, or global quenches are performed. Finally, we will
study in detail a particular physical system well described by the GGE, namely
free fermionic systems.

It is also important to put this chapter in context with the previous ones.
In chapters 3 and 4, we studied work extraction assuming complete control
over the system, as we considered the ability to implement arbitrary unitary
operations. Here we take a more constrained set of operations, by only allowing
two physically relevant types of evolutions,

e Quenches, i.e., fast controlled transformation of the Hamiltonian.
e FEquilibrations, i.e., free (uncontrolled) evolution of the system.

Despite their simplicity, these two operations are enough to characterise the
optimal protocols for work extraction described in Chapter 4 (Abel3). Fur-
thermore, they provide a clean way to distinguish between controlled and non-
controlled degrees of freedom, which allows us to speak about entropy pro-
duction in closed systems. Indeed, entropy production will be associated with
our continuous loss of information due to the equilibration processes. We also
relate entropy production with the velocity of the work extraction process, and
study the minimal work principle (ANO5b). We show that its range of validity
can depend strongly on the model of equilibration.

This Chapter is structured as follows. In Sec. 8.2 we introduce the three
models of equilibration we consider and discuss its physical relevance as a de-
scription of the effective evolution of closed many-body systems. In Sec. 8.3
we turn to presenting our framework of work extraction based on quenches
and equilibrations. Sec. 8.4 discusses notions of entropy production in each
of the models of equilibration, where we introduce rigorous conditions for the
absence of entropy production and carefully relate these conditions to notions
of reversible processes. In Sec. 8.6 we discuss the minimal work principle and
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the protocols for optimal work extraction for each of the models of equili-
bration. Lastly, in Sec. 8.8 we study numerically a model of non-interacting
fermionic systems, where many of the features throughout our theoretical anal-
ysis are emerging. The results of this Chapter are original and can be found
in (PLRG"15).

8.2. Equilibration models

When referring to equilibration of quantum many-body systems, we refer to
finite but large systems. Such closed quantum many-body systems cannot
truly equilibrate due to their unitary evolution. What is generically the case,
however, is that expectation values of large restricted sets of observables equi-
librate in time to the value attained for the time average (Rei08; Reil2; Sholl;
CDEOO08), in the sense that they stay close to the time average for most times.
This is particularly true for local observables (GPLM™15).

8.2.1. Time average state or diagonal ensemble

We say that an observable A equilibrates if, after some relaxation time, its ex-
pectation value is for most times the same (A(¢)) ~ Tr(Aw) as the expectation
value of the infinite time average

1 T . .
w(p,H) := TILH;oT/O e HE il (8.1)

of an initial state p of a system described by a Hamiltonian H. A simple
calculation shows that the time averaged state corresponds to the de-phased
state in the energy basis and for this reason is often called diagonal ensemble.
More explicitly, if H is given by,

H= Z E. Py (8.2)
k

then the time averaged state reads

w(p, H) = PipP. (8.3)
k

It is interesting to note that the time averaged state corresponds to the max-
imum entropy state given all the conserved quantities (GME11). This obser-
vation turns the principle of mazimum entropy introduced by Jaynes (Jay57)
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into a consequence of the quantum dynamics. The principle of maximum en-
tropy states that the probability distribution which best represents the current
state of knowledge of the system is the one with largest entropy given the con-
served quantities of the system and it will be crucial to define our equilibration
models.

Although relaxation towards the time averaged state has been proven un-
der very general conditions (Rei08; LPSW09; SF12; Reil2), in practice, the
diagonal ensemble cannot be used as an equilibration model due to its inef-
ficiency. The description of the equilibrium state by the diagonal ensemble
requires the specification of as many conserved quantities as the dimension of
the Hilbert space, which scales exponentially in the system size. It is therefore
not even possible in principle to write save all the data in a computer for a
large interacting many-body system.

8.2.2. Canonical or Gibbs ensemble

In practice, the characterisation of the equilibrium state can in many instances
be done by specifying only a few quantities, e.g., the temperature and the
chemical potential. The most relevant and common case is the canonical en-
semble or the Gibbs state, for which only the temperature, or equivalently the
energy per particle of the initial state p, has to be specified,

Z Y

(&

waibbs(p, H) = (8.4)

where p is the state of the system before undergoing the equilibration process,
7Z = Tr(e=PH) is the partition function and the inverse temperature 3 > 0 is
fixed by imposing that Tr(Hwgipbs) = Tr(Hp).

For generic, non-integrable models, the thermal state is expected to be indis-
tinguishable from the time averaged state under very mild assumptions on the
Hamiltonian (Sre94; RDO08; GE15) and on the energy distribution of the ini-
tial state (RGE12; BC15). While the dynamical thermalisation has not been
rigorously proven, it is highly plausible, and it can be connected to typical-
ity arguments (PSW06; GLTZ06). The generality of these conditions explains
why the canonical ensemble is the corner-stone of the standard thermodynam-
ics. Nevertheless, there are known instances of systems that do not thermalise.
One central aim of this work is to study how the laws of thermodynamics are
modified when the Gibbs ensemble is not a good equilibration model and does
not satisfactorily describe the equilibrium state of the system.
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8.2.3. Generalised Gibbs ensemble

Examples of systems which do not fully thermalise to Gibbs states are con-
stituted by integrable systems. The infinite-time averaged states are not well
described by the Gibbs ensemble because of the existence of (quasi) local in-
tegrals of motion, i.e., conserved quantities ); that retain an infinite memory
about the initial state. In this case, the equilibrium states can be well-described
by the so-called generalised Gibbs ensemble (GGE) defined as

waar(p, H, {Qi}) oc e PHT2= A0 (8.5)

where the generalised chemical potential \; is a Lagrange multiplier associated
to the specific conserved quantity @);, 7 = 1,...,m, such that its expectation
value is the same as the one of the initial state

Tr (wae(p, H,{Qi})Qk) = Tr(pQk) - (8.6)

for each k =1, ..., m. The GGE can be understood as an interpolation between
the diagonal and the canonical ensembles. The diagonal ensemble maximises
the von Neumann entropy S(p) = —Tr(plog p) given all the conserved quanti-
ties { Py }. The Gibbs ensemble maximises the von Neumann entropy consider-
ing only the energy as a conserved quantity. The GGE is situated in between.
For a given state p and a set of operators (conserved quantities) {Q;}, it is
natural to define the set of states compatible with the values the conserved
quantities

E(p Q) = {o] Tr(pQ) = Tr(0 Q). (8.7)
The GGE is the state that maximises the von Neumann entropy within £(p, {Q;}).
From this perspective, the ensembles introduced so far can be summarised as

w(p, H) = argmax,eg(, 1p,})5(0) , (8.8)
waae(p, H,{Qi}) == argmax,ce(, 11,0,1)5(9) , (8.9)
waibbs (p, H) 1= argmaxgee(, (1})5(0) - (8.10)

Let us note that the entropy of the time averaged state has been introduced in
Ref. (Polll) as the diagonal entropy, where this quantity is argued to extend
the thermodynamic entropy in out-of-equilibrium quantum systems. A relevant
question in the construction of GGEs is how the conserved quantities have to
be chosen, and there is a certain degree of ambiguity of what constants of
motion to pick in order to arrive at the appropriate equilibrium state (GE15).
This discussion is not relevant for the general study pursued in this chapter,
however. It is the aim of our work to study the thermodynamical behaviour
of the GGE in full generality, hence we will not have to make any precise
assumption about the conserved quantities, unless it is explicitly specified.
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8.2.4. Example: Equilibration of a quadratic fermionic model

To illustrate the above considerations, let us consider a quadratic Hamiltonian
of fermions in a one dimensional lattice,

n n—1
HO = Z Eiajai + ZQ (aiam + azT+1ai) ) (8.11)
i=1 i=1

where n is the total number of sites and a; (a;-r) are the creation (annihilation)

operators in the i-site, which satisfy the fermionic anti-commutation relations
{ai,a;r} = 4;; and {aj,a;} = {a},a}} = 0. We would like to study how an
initially out of equilibrium state relaxes to equilibrium and see that the Gibbs
ensemble fails to describe the equilibrium state.

The initial state of the system is taken to be in thermal equilibrium,

pO = =BHO )z (8.12)

A quench is then performed to a new Hamiltonian HV, H© — H® in which
the energy of the first fermion is modified,

HD = HO 4 Adla,. (8.13)
After the quench, the population of the first fermion evolves in time as,
ny(t) = Tr(aial,o(t)) (8.14)

with p(t) = emiHWt p(0) et Ag the Hamiltonian is quadratic, it can be
exactly diagonalized, and the time evolution can be exactly simulated for large
times and system sizes (the difficulty of the problem scales linearly with n
instead of exponentially). This is explained in detail in Appendix A.5.

In Fig. 8.1, we plot the time evolution of the occupation of the first site nj(t).
As expected, we see that after some relaxation time, ni(t) equilibrates to the
value predicted by the GGE—which is relatively far from the one given by the
Gibbs equilibration model. The situation described in this example, a quench
and the characterisation of the equilibrium state, is extensively studied in the
literature, see for a recent review (GE15). One of the goals of this work is to
define and study the suitability of effective descriptions in terms of GGE states
for processes where many quenches are performed.

8.3. Framework for thermodynamic protocols

In the previous section we have introduced the different equilibration models
that describe the equilibrium state that is reached when a system initially in
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Figure 8.1.: Time evolution of the occupation of the first site of the lattice
ny = aial for a quadratic Hamiltonian of n fermions in a one dimensional
lattice. For the example we take n = 100, ¢, = 1, A = 0.15, § =2, g = 0.1
and time is measured in units of 1/(10g). An equilibration around the GGE is
observed, even for this moderately sized quantum system.
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state p evolves under Hamiltonian H. By construction, these models can be
used to describe the equilibrium state that is reached when a system in state
p and with initial Hamiltonian H™) undergoes a quench H™) — H ") and
later the system evolves under the final Hamiltonian H™ for a sufficiently
long time. In this case, the equilibrium state will be described by

w(p, H)) .= argmax__. S(o),

(o AP}

waae(p, H, {Qgﬁn)}) = argmaxgeg(p’{H’Q(ﬁn)})S(U) 5
waibbs(ps H (ﬁn)) 1= AIgMAX g, (r(am ) S (o).

However, thermodynamic processes (for instance a protocol of work extraction)
often involve a series of quenches and equilibrations. We will now extend our
previous considerations to such processes involving sequences of quenches and
equilibrations.

8.3.1. Equilibration under repeated quenches

Consider a sequence of changes of the Hamiltonian, as defined by a list of
N + 1 Hamiltonians, H™, where m = 0,1, ..., N denotes the step in the pro-
tocol and H® is the initial Hamiltonian. These Hamiltonian transformations
H(m=1 s F(m) are considered to be quenches, in the sense that they are per-
formed sufficiently fast such that the state of the system p is unchanged. Let us
denote the time at which the quench H(™~1 — H(™) ig performed by t,, with
tm < tmy1 for all m. After a quench, the system evolves under the Hamiltonian
H(™) for a time tm+1 — tm until a new quench H (m) sy F(m+1) ig performed at
time ty,41. This time interval is taken to be much longer than the equilibration
time such that the system can be considered to be in equilibrium. The exact
state of the system p(t) when m quenches have taken place (ty, <t < typ41) is
given by,

p(t) = e =t gy eilt=tm) HO (8.15)

where p(t,,) is the state of the system at t = t,,, when the Hamiltonian H (™)
starts to dictate the evolution. The state p(t,,) is given by the recursive ex-
pression

plty) = e Tt HE py ettt HETD (8.16)

Now, our aim is to construct an effective description of the whole evolution
of p, in such a way that the state after the m-th quench and its posterior equili-
bration, p(t), can be described by an appropriate equilibrium state. We denote
such equilibrium state that approximates the real state after m quenches, p(t),
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as wém)) where (---) is the place holder for one of the three models of equilibra-

tion: time-average (TA), GGE or Gibbs. The effective description of (8.15) is
then built in a recursive way as follows,

m m—1 m
W(TA):W(W(TA ),H( ))’
wiy = weer (waes » H™ Q™)) (8.17)

m m—1 m
wéib)bs = WGibbs (Wéibbs)a HY ))‘

Here, wé??) = p(tp) is the intial state, before any quench or evolution has taken
place. Note that, when constructing the GGE description, the set of conserved
quantities {ng)} changes for every Hamiltonian H (™).

In order to provide a motivation and interpretation of Eq. (8.17), together
with the implicit assumptions that come into play, let us illustrate it with a
simple example. Suppose a system initially in state p(0) and with Hamiltonian
H©O At time ¢, we perform a first quench H©® — H® and let the system
evolve under H; at time ¢y we perform second quench H® +— H® and let
the system evolve under H®) until it equilibrates at time ¢. For both evolutions,
we now consider effective descriptions in terms of GGE states. After the fist
evolution and immediately before performing the second quench, the system
is exactly described by p(t2) as given by Eq. (8.16). For a set of conserved

quantities {le)}, the corresponding GGE equilibrium state is given by,

wits = waar (p(t), HY, {QV}) = p(ta), (8.18)

9

where the symbol “~" means in this context that the average value of relevant

observables is well approximated by wgéE, that is
1
Tr(Ap(ta)) =~ Tr(Awiilp). (8.19)

Now, when describing the equilibrium state after the second quench, one can
simply apply the same recipe. That is, the state p(t(l)) is the initial state
when the evolution under H?) starts. Then, assuming that the new conserved
quantities {Q§2)}i are chosen appropriately and applying the same reasoning
one obtains an approximation by taking

waar (p(t2), H,{QP}) = p(t), (8.20)

with ¢ longer than the ¢ plus the subsequent equilibration time. Importantly,
note that this effective description is not efficient, in the sense that it requires
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keeping track of the exact state p(t2) to obtain the equilibrium state at time t.
If this is extended to N quenches, having to keep track of the exact evolution
until the (N — 1)-th quench is as demanding as keeping track of the whole
exact evolution over the process. It is here when the effective description (8.17)
becomes handy, as it can be constructed by keeping track of the value of the
conserved quantities only. First of all, coming back to the first evolution, note
that by applying (8.17) with m = 1 we recover (8.18), i.e., the standard result
for single quenches. Now, in order to construct the GGE state corresponding
to p(t), we assume that the conserved quantities {QEQ)} are within the set of
physically relevant observables A in (8.19). That is, we assume that

Tr(Q p(t)) = Te(Q wis) (8.21)

for all 7. In this way, in order to obtain the equilibrium GGE ensemble after
the second quench, it is not necessary to keep track of the exact state p(t2),

but one can simply use wgéE instead. Using (8.21) we then obtain,

B = woon(elle, O, (@)
~  waer(p(t), H?, {QEQ)}) (8.22)
~ p(t). (8.23)

Extending the same reasoning to the case of N quenches and other models of
equilibration other than the GGE, we arrive an effective description of the form
(8.17).

In the rest of this Chapter we will always use the effective description (8.17)
for the full process, in full analogy to what is usually done in thermodynamics
by always using the Gibbs state as a description for equilibrium states. We
thereby make the assumption that possible small errors in the effective de-
scription do not accumulate under repeated quenches. In Sec. 8.8 we provide a
numerical comparison of the real exact evolution and the model of Eq. (8.17)
for the case of free fermions. We will show for this example that the model
predicts with great accuracy the amount of work that is extracted in a protocol
involving a sequence of quenches. We leave as an open problem to identify both
numerically and analytically for which systems and protocols it is possible to
apply recursively the time-average, GGE or Gibbs models of equilibration as
we do in this work and it is canonically done in thermodynamic protocols for
the usual Gibbs ensemble.
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8.3.2. Work cost of quenches

Concatenations of quenches and equilibrations constitute a framework to de-
scribe thermodynamic processes -see, e.g., Refs. (Abel3; AG13). Within
this framework, work is associated with the input energy under quenches,
whereas heat is associated with the exchange of energy under equilibration
processes. At the level of average quantities, the work cost of a single quench,
H(m=1 sy [7m) reads

W = T (p(tm)(H<m> - H<m—1>)) (8.24)

where p(t,,) is given in (8.15). The main assumption of this work is precisely
that the work cost of a quench is very well approximated by the effective
description of the equilibrium state, i. e.

W — Ty (w<m—1>( ) H(m—n)) : (8.25)

where w(™~1 is its effective description (8.17). As the equilibration processes
happen spontaneously and have no work cost, the total work extracted in the
entire protocol is simply given by the sum of the steps

N
W=y wm, (8.26)
=1

8.3.3. The system - bath set-up

A particularly relevant scenario is the system - bath setting. We call system S
to the part of the total system upon which one has control and it is possible to
quench its Hamiltonian Hg. The bath B contains the degrees of freedom upon
one has no control and it is the responsible for equilibrating the system S. In
order for this equilibration to happen, the dimension of the Hilbert-space of S,
dim(Hg), is considered to be much smaller than that of the bath,

dim(Hs) < dim(Hp). (8.27)
and the total Hamiltonian to be of the form,
H™ =H™ @15+ 1s® Hp + V. (8.28)

where the interaction V is supported on S and B and couples the two subsys-
tems. Unlike the standard assumptions in thermodynamics, we do not assume
that the interaction V' is weak or that bath size is infinite.
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8.4. Entropy production and reversible processes

8.4.1. Notions of entropy production

An important quantity in thermodynamic processes is the entropy production
on system and bath during the protocol. Of course, the exact unitary dynamics
on SB does not change the von Neumann entropy in the system. However, we
are using an effective description on SB and in this effective description the
entropy might well change. This allows us to study entropy production in such
an effective description, which may be given in terms of time average states,
GGE states, or Gibbs states, depending on the context. In this section we study
general properties of such an entropy production, and show that it tends to zero
in quasi-static processes, as expected from phenomenological thermodynamics.

First of all, note that due to the fact the equilibration models can all be
understood as a maximisation of the entropy given some constraints, it follows
that the entropy of the effective description w® of SB is non-decreasing during
a thermodynamic protocol

Sy > S(w®) Vi=0,...,N. (8:29)

Therefore, thermodynamic protocols are in general irreversible: If we start with
the final state of the protocol and then run the protocol backwards, we will in
general not end up with the original initial state.

From phenomenological thermodynamics we would expect that the protocols
become reversible if they are done in a quasi-static way. In the context of our
set of operations, a quasi-static process is defined by considering N — oo
quenches H® — HO+D such that HO+) — HO is of order 1/N, followed each
by an equilibration process. We will now discuss in detail in which sense such
a statement remains true.

For our discussion let a — H(«) with « € [0,1] be a smooth path of Hamil-
tonians. For a fixed N we can discretise it as H®) = H(i/N) = H(a) and
therefore we can meaningfully speak about limits of slower and slower pro-
tocols as N — oo. It has to be clear, however, that even for small N, the
protocols might take a considerably large time, as we assume an equilibration
process after each quench. We will denote by w(«) = w® the equilibrium state
after the ith quench, and S(«) its entropy.

8.4.2. Entropy production for time averaged ensembles

As a first result, let us show that there is no entropy production in a quasi-
static process (da = 1/N — 0) when the equilibrium states are described by
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the time average state (8.1) -i.e., when all conserved quantities are taken into
account. To show this result, we write the eigenvalues p(a+da) of the density
matrix after the i + 1th quench in terms of the eigenvalues of w(«), as

pr(a+ da) = (Ex(a + da)|w(a)|Ex(a + da))
= 37 pele) (B () Brla + 50)) P, (3.30)
k/

where we have used that the eigenvalues of w(a + da) are simply the diagonal
elements of w(a) in the basis given by |Ey(a + da)). Let us now assume
differentiability of the eigenbasis, i.e.,
1
|Ek(a+ba)) = ———= (|Ek(a)) + |Xi(a))dt), (8.31)
14 0a?
(Xi(a) [Xp(a)) =1, (Ek(a) |[Xk(a)) =0.

Then we get

14602 S | (Bo(@) [ X (@) 2
) 1+ da?
= pr(a) + O((Soz2) as 0 — 0. (8.32)

pr(a+ da) = pi(a

This implies that the populations of the density matrix of the system are con-
stant in the slow process limit dac — 0. Hence, it follows that the entropy of
the (diagonal) time-averaged state is constant.

8.4.3. Entropy production for time generalised Gibbs ensembles

Now, we consider the case of a generic GGE equilibration where not all the
conserved quantities are taken into account. In this case, the equilibration
model (8.17) satisfies the relation,

Tr (wiopQ™ ) = Tr (wies Q™) | (8.33)
for all i = 1,...,m. Here the ng) correspond to the conserved quantities of

H(™) and Eq. (8.33) determines the corresponding Lagrange multipliers /\Em)

in (8.5). For such equilibrium states, we also identify conditions so that there
is no entropy production.

More precisely, we find the following result: If the Lagrange-multipliers as
determined by (8.33), form in the limit N — oo a set of smooth functions
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a — Aj(a) for j = 1,...,m, then the entropy is preserved in such a quasi-
static process. This result is shown simply by taking the continuum limit of
eq. (8.33) which yields

Tr (dflgl)Qj(aO =0, Vj=1,....m (8.34)

which can be in turn used to show that the entropy production vanishes,

% - ; Aj(a) Tr (dj(aa) Qj(a)> = 0. (8.35)

Let us now discuss heuristically under which conditions we expect that {\;}7"
are smooth functions. This can be well illustrated by the following example:
Consider the case of a two dimensional system for which we take m = 1, that is,
the only conserved quantity is the Hamiltonian Q; = H itself (i.e., the Gibbs
equilibration model). Consider initially a non-degenerate Hamiltonian

H(0) = E[1)(1 (8.36)

and an arbitrary initial state p(0) with an inverse temperature (0) > 0 and
thus the entropy is smaller than log(2). Now suppose that the final Hamiltonian

H(1)=0 (8.37)
has degenerate energy levels. Now take as a Hamiltonian path
H(a)=E(1—a)|1){(1] = H0)(1 — «) (8.38)

and an initial Gibbs state with inverse temperature 5(0). Then the eigenbasis
in the entire process does not change. Now note that the condition (8.33)
implies that the energy is preserved in every equilibration. But since we are
dealing with a two-dimensional system, as long as H («) is non-degenerate, the
state itself will remain constant w(a) = p(a) for any o € [0,1). In order to
keep the state constant, the inverse temperature needs to fulfil

Bla) = (0)/(1 — ). (8.39)

Therefore, the inverse temperature f(a) — 0o as o — 1, and it necessarily
diverges as @ — 1. Note that, in this case, when one reaches H(1), the final
state is a maximally mixed state with entropy log(2), which is larger than the
one of the initial state by assumption.
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Intuitively speaking, this example is easy to understand. Given that the
final Hamiltonian H (1) has two degenerate levels, any Gibbs states will have
entropy at least given by In2. Hence, if we take as an initial state one with
entropy lower than In 2, and choose and effective description in terms of Gibbs
states, entropy will necessarily be generated. The way to make this example
compatible with our previous result is to realise that the Lagrange multipliers
become infinite in this case. As a final remark, it is important to note that in
this case, our effective description (in terms of Gibbs states) differs from the
description in terms of time averaged states -which is expected to be the exact
one.

The previous example shows that in some cases the premise of our result
is not fulfilled. However, these pathological cases often imply that the chosen
GGE description is not accurate. For example, in the case of encountering a
ground state degeneracy, any conserved quantity in the GGE that discerns the
ground states would be enough to fix the problem. However, we leave in general
open whether one can find smooth trajectories for ¢ — \j(«) for a given set of
conserved quantities and trajectory of Hamiltonians—this may well depend on
the specifics of the model and on the ambiguity of what constants of motion
to pick in the first place (GE15).

8.4.4. Entropy production for Gibbs ensembles

Nonetheless, we can provide a definite answer to this problem in the case of the
Gibbs equilibration model (where the energy is the only conserved quantity).
Here we can show that: Given a quasi-static trajectory of Hamiltonians H («)
and initial state p(0) = e #(OH(0) /7. if there exists any smooth function o —
fla) # 0Va with f(0) = 5(0) such that

o~ F@)H(a)
S (Z> = 5(p(0)) (8.40)

then the quasi-static process along o — H(«) has no entropy production.
Defining the family of states

e—f(@)H () Q1
wila) == — (8.41)
note that eq. (8.40) implies
dS(wy) _ dwy(a) _
A = fla) Tr < o H(a) ) =0. (8.42)
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Taking the equality at the r.h.s., one sees that the state w¢(a) fulfils condi-
tion (8.34) and hence, wy(a) = w(a) and in turn, S(w(0)) = S(w(w)). In
other words, any function f(«) that —playing the role of the inverse tempera-
ture S(a)—keeps the entropy constant, will also fulfill the energy conservation
condition given by (8.34), so that f(«) = f(«). This result can be used to an-
swer in many situations whether a quasi-static process with constant entropy
between two Hamiltonians is possible.

8.4.5. Entropy production and reversibility

Leaving aside pathological cases, so far we have shown that entropy in our effec-
tive descriptions in terms of equilibrium states can only increase, and remains
constant if the protocol is quasi-static. Let us now connect entropy production
to reversibility of processes. First, note that for the GGE equilibration model
(similarly for the Gibbs model since it is a particular case of the former), con-
dition (8.34) is invariant if one reverses the process. More specifically, given
H(a) and wggr(0) as initial state, condition (8.34) determines the trajectory
of states wggr(u), with u from 0 to 1. Now, we can consider the trajectory
H (&) with initial state wggge(a@ = 0) with @ = 1 — . One can easily verify
that

Ty <dWGGE(d)

i Qj(d)> =0, Vj=1,...,m. (8.43)

Hence, the equilibrium state for the trajectory H (&) is given exactly by wggr(& =
1 — ) and thus, the protocol is reversible. In other words, we have seen that
for the GGE equilibration model reversible protocols correspond to arbitrarily
slow protocols where no entropy is produced on the system and bath together,
exactly as is the case for phenomenological thermodynamics.

An important consequence of phenomenological thermodynamics is that re-
versible transformations are always beneficial in thermodynamic protocols, a
phenomenon which is referred to as the minimum work principle. We will later
see that this principle naturally holds when the model of equilibration is given
by Gibbs states, but its range of applicability is considerably reduced when the
equilibrium states are described by GGE.

Before we go on to discuss explicit work extraction protocols, let us stress that
the entropy in S B, which can only increase or remain constant, is not simply
the sum of the entropies of S and B. This happens because we are considering
interacting quantum systems that show correlations between S and B. This
is true both in the exact and the effective description. Indeed, in general the
von Neumann entropy in SB is smaller than or equal to the sum of local
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entropies

(o) < S(p§)) + S(p}3). (8.44)
with equality if and only if p(i) = p(SZ) ® pg), i.e., when S and B are completely
uncorrelated. Thus, entropy-production in our set-up does not always mean
that entropy is locally produced in the system and the bath. The generation of
entropy is not always associated with the generation of correlations, as in Ref.
(ELV10), but rather to the mixing induced by equilibration processes.

8.5. Work extraction with Gibbs ensembles

8.5.1. Setting of work extraction

We now turn to presenting bounds and optimal protocols for work extraction
for the case of equilibration to the Gibbs ensemble given by wgibbs(p, H). In
the case of Gibbs thermalization, analytic bounds have already been obtained
within a set of operations similar to the one considered here, but with some
crucial differences. This is the case, for instance, in Refs. (Ali79; AHHHO04;
ANO5b; EVdB11; Abel3; AG13). There, it is assumed that the system equili-
brates, upon contact with the bath, as,

' ‘ . e~ BH+D)
pD s plt) = wg(H(”l)) =—7 (8.45)
where 5 > 0 is assumed to be fizxed throughout all the protocol. In contrast,
in the model that we will consider, given by wgibbs(p, H) in (8.4), the inverse
temperature 8 > 0 is defined so that the average energy is preserved in each
process of equilibration. Hence, in general it will not remain constant through-
out the protocol. Nevertheless, these two models of equilibration are related
so that (8.45) can be seen as a particular case of (8.4). Suppose that the total
energy of SB will not be substantially affected by the energy pumped or sub-
tracted in all the quenches H® — HO+YD_ In this case, the parameter 3 will
remain almost constant, since waipbs (P, HT) ~ ws(H+D); that is, the
two models coincide. This is expected to take place is in the limit of an infinite
bath B. Hence, our formalism and the following bounds can be regarded as a
correction to the usual results, due to the fact that the bath is not infinite and
loses energy and degrades in each of the equilibrations that it induces on S.
In order to study the work extraction problem, we focus first on the minimal
work principle, which is intimately related to the work extraction problem and
other tasks in thermodynamics such as the erasure of information (Landauer’s
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Principle). Analogously to the work extraction problem, the minimal work
principle has been studied within the model of equilibration (8.45) (see (ANO5b)
and references therein). Here, we extend these results under the model of
equilibration (8.4).

8.5.2. Minimal work principle

The minimal work principle states that, given an initial equilibrium state and
a given process, the work performed on the system is minimal for the slowest
realisation of the process (ANO5b). Here, as we generically take the convention
that work is extracted from the system, minimising the work cost corresponds
to maximising W in (8.26).

Let us consider an initial state p(*) and a protocol that changes the Hamil-
tonian from H® to H) according to a certain trajectory t — H(t). The
velocity of the protocol is determined by the number of quenches N and the
total work performed is given by the sum of the individual work W® in the
i-th step,

N-—1 N-1
W = ZW(i): ﬁ<p<z‘>(Hu>_H(i+1>)>
1=0 =0
- Tr (p(mH(m _Tr(p(N)H(N)>
N-1
+ ZTr((p@)— p<i+1>)H<i+1>), (8.46)
=1

where HM) = H() and in eq. (8.46) we have simply reorganised the terms and

added and subtracted the quantity Tr(p¥) H()). We can now use our model

of equilibration

o~ BOH®
AQ)

for all i > 1, where Z() = Tr(efﬂ(i)Hm) and 8% > 0 is determined by the
conservation of average energy: Tr(pt~YH®) = Tr(p() H®). One can easily
check that energy conservation implies that the last sum in (8.46) vanishes,
which implies that

(i) (i-1) ()

= Waibbs (P ) )= (8.47)

p

W =Tr (p<0)H<U>) ~Tr (p(N g\ >) , (8.48)

where pN) depends on the protocol. Note that this calculation is valid without
assuming that p(?) is an equilibrium state.

140



8.6. Work extraction with time averaged states

From eq. (8.48) we see that given a fixed final Hamiltonian H/), the protocol
that costs the minimum amount of work (and maximises the extracted work
W) is given by the one that leaves the final state with the least average energy.
Since the average energy is monotonic with the entropy for Gibbs states of pos-
itive temperature, we conclude that the optimal protocol is the one minimising
the entropy of the final state W(G]Yb)bs‘ Furthermore, as the entropy can only
increase throughout the protocol (see Sec. 8.4), a protocol creating no entropy
is optimal.

It has to be stressed that this holds true only as long as the final temperature
of the Gibbs state is positive, which happens if

Te(p™M H) < %Tr(H(f)). (8.49)
From the results in Sec. 8.4 (see Example 1) it is clear that this is true if the
initial state p(o) is a Gibbs state with positive temperature and the degener-
acy of the ground state of the Hamiltonians along the trajectory H(t) remains
constant. We thus conclude that the minimal work-principle holds in the effec-
tive description by Gibbs states for trajectories of generic local Hamiltonians,
which have non-degenerate ground spaces for typical choices of the Hamiltonian
parameters (ALS81).

8.6. Work extraction with time averaged states

8.6.1. Minimal work principle

In this section we discuss the minimal work principle to the situation when
the equilibration model is the time averaged state. Due to the absence of a
one to one relation between energy and entropy for TA states, we expect that
the minimal work principle will not be satisfied in general for initial TA states.
Yet, in this section we identify some scenarios where the principle remains valid.
Our results complement those of Ref. (AN05b), where the applicability of the
minimal work principle was studied for initial Gibbs states and the framework
of unitary evolutions under time-dependent Hamiltonians.

As an initial state we take an arbitrary equilibrium state which takes the
form w® = Z,(;) p,(gl)Plgl). Similarly, any state during the process reads

@ .
W) = 3 P, plith) (8.50)
k
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for ¢ > 0, where
HO =3 BV pY (8.51)
k

with P,gi) being the projectors onto the corresponding eigenspaces. The total
work of an arbitrary process of N steps is given by

W =Tr (H(%(l)) " (H(f)w(N)) . (8.52)

Let us now make use of the fact that the time-average w(*t1) can be written as
a finite mixture of unitaries w1 = T (WD) with TO() = 37, q,Ef)U,gi) :
U,gi”. Since the composition of any number of mixtures of unitaries is again
a mixture of unitaries, we see that the final state w®) is related to the initial
state w1 by such a mixture of unitaries,

Tr (H(f)w(N)> Tr (H(f) Z qukw(l)Uli> (8.53)
k

> rnUinTr(H(f) UuWut), (8.54)

where ¢, and Up are the probabilities and the unitaries of the total mixture of
unitaries. Now we can use that the unitary that minimises the lower bound in
eq. (8.54) is the one that transforms the state in a passive state, i.e.,

argming, Tr(HOULOUT) = 3" (W) B (8.55)
k

where (w())+ is the vector of eigenvalues of w(!), ordered such that (w(l))t >
While the above results set a limit to arbitrary processes, the minimal work
principle is formulated for a fixed process, i.e., a well defined path in Hamil-
tonian space. If the initial state together with the Hamiltonian path are such
that the final states (i.e., the family of states produced at different speeds of
the protocol) are passive, our considerations above show that the slowest real-
isation of the process is the optimal one. However, for those trajectories that
bring the system into a non-passive state, the minimal work principle is not
guaranteed to hold. In fact, in Ref. (ANO5b) it is shown that for initial Gibbs
states and unitary processes the applicability of the minimal work principle is
restricted to trajectories with no level-crossings. It is easy to see that such
trajectories are precisely those that preserve the passivity of the initial state.
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8.7. Work extraction with generalised Gibbs ensembles

Let us now consider the general case of GGE models of equilibration. Similarly
to the previous Sec. (8.6), we cannot provide a general answer for the relation
between enetropy production and the minimal work priniple, which is to be
expected, since -unlike for Gibbs states- there is not a clear correspondence
between energy and entropy in GGE states.

Here we will focus on a particular class of physical systems described by free
fermions, the equilibrium states of which are well described by the Generalised
Gibbs Ensemble. This is enough to reveal important differences in the minimal
work principle for Gibbs and GGE states.

Besides studying the minimal work principle beyond Gibbs ensembles, there
are important reasons for largely focusing on quadratic fermionic models, namely:

1. They can be efficiently simulated, allowing us to test how well the effective
description of the system approximates its real (exact) dynamics.

2. They are integrable, which implies that a GGE description is in general
necessary to capture their equilibration behaviour (PSSV11; GE15).

3. They can be simulated with ultra-cold atoms in optical lattices in and
out of equilibrium (LSA107).

While the discussion presented here is focused on fermionic systems, it should
be clear that their bosonic lattice instances (BDN12; BDZ08) and even bosonic
continuous systems (LEG™15; SFL115) can be captured in an analogous frame-
work with very similar predictions. The latter situation is specifically interest-
ing as modelling the physics of ultra-cold atoms on atom chips that is expected
to provide an experimental platform probing the situation explored here where
a GGE description is relevant.

8.7.1. Free fermionic systems
We consider quadratic fermionic Hamiltonians of the form
n
H = Z CZ'J(I;[(I]', (8.56)
i,j=1

where n is the number of different modes and the fermionic operators satisfy

the anti-commutation relations {ai,aj} = 0;j, {ai,a;} = {aj,a;} = 0. The
Hamiltonian H can be transformed into
n
H=>"enim (8.57)
k=1
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making use of mode transformations unitarily transforming one vector of fermionic
operators to a new one. It is well known that equilibrium states of Hamilto-
nians of the form (8.57) are not well described by Gibbs states, but rather by
generalised Gibbs ensembles (GGE), with the conserved quantities being the
energy modes @ = n};nk, k=1,...,n (GE15). Notice that the number of con-
served quantities is equal to the number of distinct modes n and hence linear
and not exponential in the system size. We define the correlation matrix v(p)
of a state p as the symmetric matrix having entries

7.3 (p) = Te(nin;p). (8.58)

If the state p is Gaussian, then 7(p) contains all information about p, as well
as its time evolution under Hamiltonians of the type (8.57). That means that
the full density matrix p can be reconstructed from just knowing the correla-
tion matrix. The correlation matrix of the GGE wggr(p, H, {77,177;{}) is found
by maximising the entropy while preserving all Qr = 77;177k7 which simply re-
duces to dephasing the correlation matrix defined in (8.58) to the diagonal
(see Appendix A.5 for details). This provides a simple method for obtaining
Ywace(p, H, {nfm})).

Most importantly, these GGE descriptions are also Gaussian states, and
hence also fully described by their correlation matrix. In particular, any such
GGE state wggg is described completely by the n numbers Tr(wGGEmT ),
i =1,...,n. Furthermore, it also only depends on the second moments, i.e.,
the correlation matrix, of the initial state from which it was constructed. Hence,
in the following we can always restrict to Gaussian states, even if the initial
state is not Gaussian: All the results are unchanged if we replace the initial
state with a Gaussian state that has the same correlation matrix.

Consequently, in the following, we can reduce the discussion to the level
of correlation matrices instead of the full density matrices. This allows us to
perform numerical simulations of the real time-evolution as well as the effective
description of large systems, because they have dimension n x n instead of
2" x 2" as needed to describe the full density matrix.

8.7.2. Optimal protocols for work extraction and minimal work
principle for free fermions

In this Sec. we derive analogous results of those obtained in Sec. 8.6.1, but
in terms of the correlations matrix instead of the full density matrix. More
concretely, we will show that, while the minimal work principle does not hold
in general for free ferminonic equilibrium states, we can identify some situations
where it remains valid.

144



8.8. Numerical results: comparison between exact dynamics and effective descriptions

Analogously to previous sections, we start with a GGE state and consider
a sequence of Hamiltonian transformations, from H© to H(f). In this case,
we consider transformations to any quadratic Hamiltonian of the form (8.57).
The final energy of a realization with IV steps is given by,

Tr( WGGE) Zpk ek . (8.59)

As we show in Appendix A.6, it satisfies Tr(wéG)EH(f)) =k (N )eéf), where

n

Tr(wiepH @) =Y () ()], (8.60)
k=1

where dg)) are the eigenvalues of 'y(p(o)) and the symbols T and ¥ indicate
that the lists are ordered in increasing and decreasing order, respectively. An
explicit protocol saturating this bound is constructed in A.6. The optimal
protocol is found to be reversible, so that no entropy is generated, and one
needs to perform an arbitrarily large amount of quenches to reach optimality.

In the optimal final state, wi,np, the diagonal elements of the correlation
matrix, corresponding to the population of the energy modes, decay as the
energy of the modes increases. This form is reminiscent of the passive states
previously introduced. However, in general, states of the form w¢p do not
need to be passive: While in passive states the occupation probabilities of the
global energy eigenstates are decreasing with increasing energy, here only the
occupation probabilities of different fermionic modes decreases with increasing
energy of the mode. The total energies are however obtained by combinations
of different modes. An example for a state that is non-passive, but where the
mode-populations are decreasing with increasing mode-energy is provided in
Appendix A.6.

Regarding the minimal work principle, one can use a similar line of reasoning
as in Sec. 8.6.1. For a fixed process, the minimal work principle is guaranteed to
hold true as long as the possible final states—which are realised by implement-
ing the process at different speeds—have the form (8.60), i.e., their populations
decrease with the energy of the modes. If this condition is not satisfied, the
minimal work principle does not hold in general.

8.8. Numerical results: comparison between exact
dynamics and effective descriptions

In this section we compute the work extracted in different scenarios by (i) a
numerical simulation of the exact unitary evolution of the system, (ii) using
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the effective description in terms of Gibbs states, and (iii) in terms of GGE
states. As a physical system, we consider a chain of fermions, taking as an
initial Hamiltonian,

n n—1
HO =Y ciala; + 3 g (alair +al1a) (8.61)
=1 =1

We discuss both global transformations of the Hamiltonian, as in Sec. 8.7.2,
and local ones. In all cases we find a very good agreement between the real
dynamics and the GGE effective description.

Besides comparing the effective descriptions with the real dynamics, in this
section we also study the applicability of the minimal work principle. We give
an explicit example of a process in which producing entropy is beneficial for
work extraction, thus apparently violating the minimal work principle. This
apparent violation can be explained because: (i) the equilibrium states of the
process are not well described by Gibbs states, but rather by GGE states, and
(ii) the conditions for the applicability of the minimal work principle for GGE
states discussed in Sec. 8.7.2 are not satisfied.

8.8.1. Work extraction with unrestricted Hamiltonians and free
fermions

Here, we take as the initial state p(o) a GGE state whose populations 7;; € (0,1)
in (8.58) are chosen i.i.d. from a Gaussian distribution. We then apply the
protocol described in Appendix A.6 for maximal work extraction, and compare
the results obtained by the exact dynamics and the GGE model of equilibration.
The exact dynamics are computed by, after the the ith quench, letting the
system unitarily evolve under the Hamiltonian H® for a time much longer
than the time scale of equilibration. Fig. 8.2 shows the results obtained using
both approaches. It shows a very good agreement, as long as the number of
fermions is sufficiently large (in the figure n = 100). Yet small discrepancies are
observed, which is due to the fact that we implement global quenches, for which
the state may not equilibrate. Note that, when performing local quenches and
starting with a Gibbs state, as in Fig. 8.3, equilibration of local observables is
guaranteed and the agreement is excellent.

We can also see in Fig. 8.2 how work increases as the process becomes slower,
becoming maximal in the limit N — oo, when reversibility is achieved. This is
nothing but a realisation of the minimal work principle. Indeed, the principle
can be applied in this case for a twofold reason: First, the exact dynamics are
well described by GGE states. Second, the final states of the applied protocol
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Figure 8.2.: Extracted work in the optimal protocol with unrestricted Hamil-
tonians. As an initial state, we take a diagonal state in the basis H(®, with the
populations {péo)} chosen at random between 0 and 1. We take e = 1,9 = 0.8
and N = 100. In order to simulate the real dynamics, after every quench, we
let the system evolve for a time chosen at random between 20/g and 100/g.
In green, we show the results using the actual unitary dynamics, in yellow our
effective description in terms of GGE states, and in dashed lines the analytical
result leading to eq. (8.60). The inset figure shows the entropy generated in
the effective description using GGE states.
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are passive (or, more precisely, are of the form (8.60)), which is a sufficient
condition for the applicability of the principle when dealing with free fermions,
as discussed in Sec. 8.7.2.

8.8.2. Work extraction with restricted free fermionic Hamiltonians
with a Gibbs initial state

Let us now assume that the Hamiltonian can only be locally modified, as
discussed in Sec. 8.3. The Hamiltonian (8.61) is split in three components.

Hg = elaJ{al (8.62)

(i.e., S is a single fermion),
V =g(alas + aba) (8.63)
and Hg = HO) —V — Hg, with H©® given in (8.61). Our capability to change
the Hamiltonian is thus reduced to a single parameter: the local energy e;.

Note that the coupling between the S and the B is not assumed to be weak.
The initial state takes the form,

—BH

Z )

(&
O =ps®

p (8.64)

where pg is initially out of thermal equilibrium. For example, in Fig. 8.3, it is
set to a lower temperature than the bath.

Fig. 8.3 shows the extracted work from pg as a function of the number of
quenches N, which is computed using the real exact unitary evolution, and the
effective description in terms of both GGE and Gibbs states. The agreement
between the unitary dynamics and the GGE description is excellent, for any
value of N and the parameters, but the Gibbs states fail to describe the pro-
cess. Even if the bath is initially in a Gibbs state, see eq. (8.64), the posterior
evolution of S B can not be correctly described by them. Although the descrip-
tion with in terms of Gibbs ensembles is quantitatively incorrect, it is fair to
say that it describes some qualitative features of the results. In particular, the
exact dynamics satisfies the minimal work principle, and so does the effective
description with Gibbs states. This follows because condition (8.49) is satisfied
during the process. However, as we show in the next section, condition (8.49)
can fail to predict the applicability of the minimal work principle.
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Figure 8.3.: Extracted work with only local transformations on the state of
the system. The different points correspond to the exact unitary evolution
(in green), to the effective evolution in terms GGE states (in yellow), and the
effective evolution using Gibbs states (in blue). The continuous lines corre-
spond to transformations with N — co. As an initial state we take, 8 = 1/2,
Tr(aialpg) = 0.1, n = 100. For the initial Hamiltonian, ¢ = 0.1, ¢ = 1
Vi # 1, g = 0.5. As a protocol we perform a first quench to e; = 4.3, followed
by N — 1 equidistant quenches back to the original Hamiltonian. As in Fig.
8.2, the exact evolution is obtained by letting system and bath interact for a
time much larger than the equilibration time (tgq o< 1/g).
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8.8.3. Work extraction with free fermionic restricted Hamiltonians
with a GGE initial state

Equilibrium states when dealing with Hamiltonians of the type (8.57) are well
described by GGE states, it is therefore natural to generalise the initial state
(8.64) to

B
o = ps © wiiy (8.65)
where wGGE is a GGE state with respect to the local Hamiltonian of B, Hp =
> bt ek )7712 U (B) . Let us now pick a very particular initial state given by

B) (B)t B 1 k> K

for some K < n. That is, only the K most energetic modes are populated.
No actual thermal state with positive temperature would have such properties
due to the population inversion of the fermionic modes. It is important to
acknowledge, however, that if we would chose an effective description as a Gibbs
state for such initial states, we would nevertheless obtain a positive effective
temperature provided that condition (8.49) is satisfied. This will be the case as
long as the number of populated energy-levels K is small enough. Indeed, for
any finite K, but large n, the energy-density in the state is much lower than
the critical energy-density needed for negative effective temperatures.

The work extracted in a particular protocol with initial state (8.65) is plot
in Fig. 8.4. The results clearly show how the extracted work decreases with
the time spent in the process. Therefore, more work is extracted when more
entropy is produced, and the minimal work principle does not apply in this
situation. In fact, this is to be expected because both the initial and the final
state of the protocol are highly non-passive, and thus the conditions described
in Sec. 8.7.2 are not satisfied. However, when using an effective description in
terms Gibbs states, we would have predicted that it is always beneficial to use
a quasi-static, reversible protocol since condition (8.49) is satisfied for the case
described in Fig. 8.4.

8.9. Concluding remarks

In this chapter, we have brought together the fields of research on equilibration
and quantum heat engines. Our main contribution is to go beyond the usual
paradigm of thermodynamics where work is extracted from a system in weak
thermal contact with an infinite heat bath at a given fixed temperature. In-
stead, we consider closed quantum many-body systems of finite size and with
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Figure 8.4.: The extracted work achieved with only local transformations on
the state of the system. As an initial state we take the one specified by K = 32,
Tr(a}alpg) = 0.1, and n = 150. For the initial Hamiltonian, we take ¢y = 0.1,
€ =1Vi# 1, g =0.5. As a protocol we perform a first quench to ¢; = 1.6,
followed by N — 1 equidistant quenches back to the original Hamiltonian. The
different points correspond to the exact unitary evolution (in green), to the
effective evolution in terms GGE states (in yellow), and to infinitesimally slow
protocol (N — 00). As in 8.2, the real evolution is obtained by letting system
and bath interact for a sufficiently long time (chosen at random).
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strong coupling between its constituents. We make use of recent insights into
the study of states out of equilibrium: closed many body systems do not equili-
brate, but can be effectively described as if they had equilibrated when looking
at a restricted, although most relevant, class of observables. The effective equi-
librium state that describes the system for these observables is, however, not
necessarily given by a Gibbs state; and even if so, its temperature will not
remain constant. In this case the effective equilibrium state is given by the
time averaged state, the GGE or the Gibbs state, depending on the particular
kind of system considered, as well as the family of observables that are taken
into account.

With this in mind, we have put forward a framework that studies work
extraction of closed many body systems, incorporating Hamiltonian quenches
as well as equilibrations according to the three models mentioned before. We
do not only assume that effective equilibrium state is a good description of the
state evolving after a single quench, but also that such an equilibrium state
can be taken as the initial state to describe further evolutions under subsequent
quenches. This model, which is successfully tested for free fermions, is what
allows us to describe a closed system similarly to the way open systems (in
contact with baths) are described in thermodynamics. Thus, we can formulate
similar questions regarding work and entropy production and indeed recover
many of the phenomena present for open systems.

In particular, we provide stringent conditions for the absence of entropy
production in quasi-static protocols. This turns to be intimately related to the
optimal protocols for work extraction and the minimal work principle, which
roughly speaking states that the work performed on the system is minimal
for the slowest realisation of a given process. We find that the minimum-
work principle can break down in the presence of a large number of conserved
quantities, while it remains intact if system and bath together can be well
described by a Gibbs ensemble, even in the strongly interacting regime. This
is shown numerically with the paradigmatic example of free fermions for which
the extracted work decreases with the time spent in the process if we consider
the GGE as equilibration model, but the minimal work principle still applies
when the Gibbs description is assumed.
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This thesis is devoted to the study of thermodynamic processes in the quantum
regime. Our work aimed at advancing our understanding of the implications
that quantum phenomena, such as coherence and entanglement, have for ther-
modynamic processes. Conversely, we have also investigated the limitations
that thermodynamic environments have on quantum information processing.
Our results provide new insights and quantitative results in the interplay of
quantum physics and thermodynamics, which naturally raise open questions
and challenges. In this last chapter we review the main conclusions of each
chapter and explore open directions and future work.

Work extraction from quantum systems

In Chapter 3, we have studied work extraction in the quantum regime. Building
on the seminal work by (PW78; Len78), we have studied the phenomena of
activation of passive states. We have explored the role of entanglement in this
process, by constructing different protocols which suggest that entanglement
is directly related to the velocity of the work extraction process: the faster
it is (i.e., more power), the more entanglement one needs to create. These
results are in agreement with Ref. (GLMO03), where entanglement was linked
to the speed of unitary evolutions. Natural open questions include obtaining a
direct quantitative relation among entanglement and power in energy exchanges
among multipartite systems (see the work of (BVMG15) in that direction), and
also to study the role of entanglement in other thermodynamic processes such
as heat exchange.

In a related project, we have bounded the amount of work that can be ob-
tained from activation processes. This naturally renders the family of the most
energetic passive states (MEPS), which is the dual of the Gibbs states, which
are the least energetic passive states. Because of this duality, we have shown
that the MEPS provide fundamental bounds on the work that can be extracted
from a quantum system which only depends on its entropy and energy. For
future work, it would be interesting to study the role of MEPS in the sce-
nario discussed in Chapter 4, where work is extracted from the system using
an auxiliary thermal bath, in order to connect our considerations to recent
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relevant results obtained in this setting (EVdB11; BaHO'13; RW14; Abel3;
AG13; SSP14; WGE14).

Second law of thermodynamics

In Chapter 4, we have studied a possible generalisation of the second law in out
of equilibrium processes, following the works of Refs. (EVdB11; RW14). By
considering a system together with a thermal state, possibly of finite size, we
have constructed an exact equality which holds for arbitrary unitary operations
on them. The second law naturally follows from such an equality. This formu-
lation, developed in Refs. (EVdB11; RW14), allowed us to obtain corrections
to the second law from the finite size or the structure of the thermal bath.

An interesting open question is to find what is the optimal work extraction
protocol given a bath of finite size. In particular, the optimal protocol discussed
in 4.3 approaches the bound given by the second law with a correcting term that
decreases linearly with the size of the bath, whereas the finite size corrections in
Sec. 4.4 can be shown to decrease quadratically by using the results of (RW14).
These two results provide lower and upper bounds to the fundamental finite
size corrections of the second law, and finding tighter bounds is desired.

Furthermore, we have shown that for a bath of identical two level systems,
the second law can not be saturated, even if the bath has infinite size. This
result relies on the presence of energy gaps in the bath spectrum. However,
in the presence of very weak interactions, such energy gaps could practically
disappear, although many other properties of the bath spectrum would be
preserved. Understanding the implications of weak interactions in the bath
Hamiltonian for our results is hence desired. In particular, one would like
to understand whether a small interaction between the bath constituents can
significantly change the limitations developed in Sec. 4.5.

Quantum fluctuations of work

In chapter 5 we have explored the possibility of describing the fluctuations
of work in coherent processes. Taking as a starting point the measurement
scheme for characterizing fluctuations developed in (TLHO7), we have explored
new measurement schemes that can meaningfully describe processes for states
with quantum coherence. First we have proven a no-go result: There is no
measurement scheme to estimate the fluctuations of work that can be in agree-
ment simultaneously with (i) the classical fluctuation theorems (i.e., the results
of (TLHOT7)) and (ii) the first law of thermodynamics for states with quantum
coherence. This result provides a fundamental limitation on the possibility of
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measuring the fluctuations of work in coherent processes. Despite this result,
we have constructed a collective measurement scheme, which acts on two copies
of the state, that reproduces exactly the results of (TLH07) and at the same
time is able to describe a family of quantum coherence processes.

A natural open question is to consider measurements involving more copies
in order to obtain better estimation schemes. One would expected that, as
more copies of the state are available, measurements schemes with a lower back
action can be developed, which could in principle allow for satisfying require-
ment (ii) with higher and higher level of approximation. However, let us note
that we have put a considerable effort on this question, only obtaining partial
results. Another very interesting line of research is to develop fluctuation the-
orems, which are usually formulated for states initially at thermal equilibrium
(SPWS08; EHM09; CHT11), in the presence of coherence. Recent results in
this direction can be found in (All14; Abel6; AMOP16). Another line of inves-
tigation which will be pursued is to connect the results of (Abel6; AMOP16),
where the fluctuations of work are defined in an explicit physical system (a
weight), with the approach based on quasiprobabilities from (All14; SG15).
More concretely, we would like to find a relation between the appearance of
negative quasiprobabilities within the framework of (All14; SG15) and the pres-
ence of coherence in the weight system within (Abel6; AMOP16).

Extractable work from correlations.

In chapter 6, we have considered a set of correlated states which are thermal
at the local level, and hence work can only come from the correlations among
them. We have computed the amount of work that can be stored in entangled,
separable and correlated states with a fixed entropy, by finding the correspond-
ing optimal states and protocols. These results provide fundamental bounds on
the potential of different type of correlations for work storage and extraction.

A technical open question is to extend the optimal protocols derived in Sec.
6.5 beyond qubit systems. Partial results are available in this direction, show-
ing that achieving optimality in some cases is not possible. Another interesting
open question is to investigate the scenario in which not only local marginals
are thermal, but so are the k-body reduced states (in particular the case of
nearest neighbours). This may give an insight into the role of different types of
multipartite entanglement in the context of work extraction. Other future di-
rections include understanding the role of correlations in other thermodynamic
processes, in this sense Refs. (JR10; Par08) provides an interesting discussion
on the consequences of correlations in heat exchanges.
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Fundamental limitations for creating correlations in thermodynamic
environments

In Chapter 7, we have studied the generation of correlations and entanglement
in thermal states at finite temperature. By assuming the possibility of imple-
menting arbitrary unitary operations, we have found fundamental limitations
for entanglement generation arising from the finite temperature of the states.
Next, we have imposed a constraint on the available energy, which allows us to
find the minimal work cost of building correlations and entanglement. These
considerations have also been discussed in the presence of a thermal bath, where
a simple expression between the work cost and the correlations has been found.

An interesting direction is to understand the complexity required to imple-
ment the optimal unitary operations for generating correlations and entan-
glement. For that, one can use that any unitary operation can be expressed
as a combination of elementary gates, which involve at most two body unitary
operations. This would also allow us provides us hints on how to construct pro-
tocols that are experimentally friendlier. In a similar mindset, finding protocols
that generate a substantial amount of entanglement and genuine multipartite
entanglement (GME) at high temperatures remains as an important future di-
rection, as this would give a bigger resistance to noise and is important for
other applications of GME, such as metrology (TA14).

Finally, from a more theoretical point of view, our results establish a link be-
tween fundamental resources of two theories: entanglement theory (HHHHO09)
and the resource theory of thermodynamics (BaHO"13). Establishing more
connections between these two theories is definitely an interesting subject of
further research.

Work and entropy production in Generalised Gibbs ensembles (GGE)

In Chapter 8, we have developed a framework to study thermodynamics in
closed quantum systems. In particular, we have used one of the most important
recent insights from the study of equilibration in quantum systems: Closed
many body systems do not equilibrate, but can be effectively described as if
they had equilibrated when looking at a restricted, physically relevant, class of
observables. Importantly, the corresponding equilibrium state is not necessarily
a Gibbs state, but may be very well given by a Generalized Gibbs ensemble
(GGE) state. With this in mind, we have studied entropy production and work
extraction for such an effective description.

These considerations may help to build connections between two fields of
research, quantum heat engines and equilibration in closed systems, that are

156



often disconnected. It is to be expected that many questions will arise in
the intersection between both fields. To start with, it would be interesting
to test our considerations for bosonic continuous systems, which can be cap-
tured in a similar framework that the one used for fermionic systems. Bosonic
systems are specially interesting as it can be modelled in ultra cold atoms
(LEG*15; SFL*T15). In a more theoretical line, we would like to gain a better
understanding on how equilibration beyond the weak coupling regime affects
the performance of heat engines (see (GRE14; SSLB16) for recent works in this
direction).

157



9. Conclusions and outlook

158



A. Appendices

A.1. Entanglement quantification

In this appendix we expand the explanations of the used entanglement measure
and its lower bounds in more detail. To introduce the mentioned measure,
consider an N-partite system in a pure state ¥. We define its entropy vector

S (HdV13; HPLAV13) as a string, whose elements are the entropies of the
reduced states of all subsystems of our N-partite system:

Si(¥) = 1/2(1 = Tr(p?)), k=1,...,2Y 1 —1, (A1)

where the index k runs over all possible bipartitions I' = {(vx|7%)} of {1,2,..., N };
and py, is the corresponding reduced state: pp = Traz (|10) (¢]).

The linear entropy is used in (A.1) for mathematical convenience. Similarly
to the standard entropy of entanglement for bipartite pure states, a non-zero
(linear) entropy of py reflects the presence of entanglement. Therefore, each
entry of the vector (A.1) detects entanglement in a particular bipartition.

The entropy vector (A.1) also reveals multipartite entanglement properties
of the state, in particular the l-separability (HPLdV13). A pure state is [-
separable if it can be written as a tensor product of at most [ terms, i.e., in
the form p; ® p2 ® ... ® px. Then, it is easy to realize that a l-separable state
contains 2!~ — 1 bipartitions where the state is separable. Therefore, if we set
the entries of Sj, in non-increasing order, (i) if the last 2/~ — 1 entries are zero,
then the state is [-separable. In particular, (ii) if the first entry is zero, then
the state is entangled (i.e., at least (N-1)-separable). Furthermore, (iii) if the
last entry is non-zero, i.e. all entries are non-zero, then the state is genuinely
multipartite entangled (GME), or 1-separable. Indeed the last entry can be
used to measure GME (HRHBE12).

This measure is extended to mixed states p via a convex roof construction
(HRHBE12; HdV13; HPLAV13):

Ei(p) = inf Se(y), k=1,..2N 11, A2
k(p) {piw)};p (i) (A.2)

where the infimum is taken over all possible decompositions {p;;|¥)} of p, and
Sy are the entries of the entropy vector arranged in non-increasing order. Then,
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the statements (i), (ii) and (iii) above also hold for Ej (Ej plays the role of S
in mixed states).

Since the convex roof construction (A.2) requires an optimization over an
infinite set and even determining whether a single entry is nonzero is extremely
difficult, we have to find a method to reliably calculate lower bounds to these
measures. Refs.(HRHBE12; HdV13; HPLdV13) provide lower bounds on all
entries of the entropy vector in terms of the matrix elements of the state p. For
a given set C of off- diagonal elements of p, they read:

By > M€ = ﬁ%j@ ()]~ 3 VEIATGIAT| - (4

where the index a runs over all bipartitions I' = {(y%|7%)} of {1,2,..., N} of
the set {1,..., N}; A enumerates the set of all k-tuples I'% of the index a; |i,) is
obtained from |i) = |é...i,) by replacing ix by ji for all k& € v, and analogously
for |ja)-

The lower bounds (A.3) easily apply to the considered processes in this work.
Indeed, given the initial global diagonal state €2, consider the exchange of pop-
ulations P;, P of the states [i), |j) respectively; under some unitary process
given by:

US(t) = > [k) (k| +ul(t), (A.4)
k+#£ij

where u3(t) lives in the linear span of |i) and |j) and is unitary. The bounds
(A.3) yield for UNQUT:

Ey > A, =2 | |P - B

a0 [uly )] —min 3 VR (A5)

k
acl™y

Notice that the right hand side of (A.5) can be made time-independent by
using maxt{|ui1j71(t)|-|ui1j’2(t)|} = 1/2 — a consequence of its unitarity. This leads
to the desired expression to compute the k-separability of the state under a
permutation of diagonal elements.

Finally, note that Fj in (A.5), i.e. the first entry of the entropy vector,
is equivalent to the PPT criterion. Therefore the bound is exact since the
dimension of the subspace is 222 and therefore the PPT criterion is a sufficient
and necessary condition. Furthermore, the last bound of (A.5), Eynv-1_1, is
also exact as proven in (HRHBE12). Therefore, our detection criteria is exact
both for entanglement and genuine N-partite entanglement and it can be used
to quantify them.
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A.2. Correlations in degenerate subspaces

Consider the total Hamiltonian
n ny
i=1 i=1

where each h; = h := Zz;é €ala)(al (with €9 = 0) has local dimension d, which
we assume to be finite. The number of different global energies, n; is found to

be ( -1
n+a—1)!
= O = qa—1y (A7)

which corresponds to the number of non-zero eigenvalues of (6.33). In order
to find the passive state associated to (6.33), one has to move such eigenvalues
to the lowest energy levels. This operation requires knowledge of the spectrum
of h;. Nevertheless, it will suffice for our purposes to move them to a suffi-

ciently degenerated energy. The degeneracy of a global energy F; = Z k(Z
k:(l)

k(l) k(l)
. The point is then to find the lowest energy, Fnin,

2 s

is equal to Cy'

mln kII]ln klnin
)

satisfying C ! a >l +(11 1> so that the work extracted after such a
transformation is simply given by

Wdeg > Epdeg - Emin~ (A8)
Now, notice that for large n
Cd 1 d
lim —=L o =0, Y kj=d (A.9)
n—oo . n— d,k’2,...,kd . J
Cn Jj=2

with B/ = Y% kles. Observe that E’ is of the order of the energy of one

a=2 a€
subsystem (for 1nstance, choosing k3 = d and £} = 0 for j > 2, we obtain

= dey). Therefore we can take Fni, = E’ obtaining the desired result.
In the case of d = 2 the expression for E, is particularly simple:

Wasia = [1 = 29" (1 = )19 . (A.10)

A.3. Protocols using X-states

Given a set of n thermal qubits, TE”, in this section we study the limitations
for entanglement creation within unitary transformations of the form:

8" > UX (A.11)
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where in the computational basis X takes the form

a 21
a2 22

(A.12)

Z; bg
ZT bl

with n = 2V71 |z < V/a;b; and Y, (a; + b;) = 1 to ensure that X is positive
and normalized (see (? ) for details). A relevant example of an X-like matrix
is,

p= |GHZVGHZ| + 2% (A.13)

where |GHZ) = %(|O...0)+ |1...1)). As shown in (? ), the GME n-qubit states
of the form (A.12) can be computed by the genuine multipartite concurrence,

Cam = 2max{0, |z;| —w;}, i =0,1,....,n (A.14)

where w; =377 \/a;b;.

We wish to maximize (A.14) over all U acting on (A.11). The initial state,
Tg’", has no off-diagonals term in the computational basis. It is then advanta-
geous to apply a unitary operation that only generates one off-diagonal term.
Indeed, creating off-diagonal terms results into a stochastic transformation of
the diagonal terms, thus increasing the w; term in (A.14) while the |z;| term
depends only on the highest off-diagonal term. On the other hand, given two
diagonal elements a;, b; of T?”, the biggest off-diagonal term that can be gen-
erated by a unitary operation is |a; — b;|/2, which is obtained by a rotation to
the corresponding Bell states. Therefore, the optimal protocol can be thought
as a combination of:

1. Rotate two diagonal elements to Bell states in order to maximize |z;| in
(A.14).

2. Permute the rest of diagonal elements to minimize w; in (A.14). This
is implemented by setting the elements in decreasing order (in w; =
Z;” i VO b;, having product of biggest with smallest, second biggest with
second smallest, etc.).
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Step 1 is optimized by acting on the ground state and the most excited state.
On the other hand, the thermal state is already ordered to optimize Step 2.
The first step leads to |z;| = (1 —e™™%¢)/Z™; and since a;b; = e 5", we obtain
that w; = (2" — 2)e P"/2/ 2" In the limit of large n, one easily obtains that
keTame/€ ~ ﬁ@)

The previous optimization was done in 2 steps (first maximizing z; and then
minimizing w;). Arguably this is not the optimal approach, as doing a bit
worse in step 1 can have a global benefit. While this being true, one can easily
convince himself that the differences are of O(1/n), and thus essentially rotating
the ground state with a very excited state and then optimally permuting the
rest of diagonal elements, will always lead to kpToyp/e ~ ﬁ@) Any other
unitary creating X-states from thermal states can not perform better.

A.4. The energy cost and scaling of the W-state

protocol
Given an n-qubit thermal state Q@ = 78" we here find the n > 1 asymp-
totic behaviour of the maximal temperature Ty that allows to unitarily
create genuinely multipartite entanglement (GME) in the ensemble with the
Wh-state protocol and also calculate the energy cost of the protocol. Here
7 = diag(p,vp), where p=1/(1+v) and v = e PE is the Boltzmann weight.
If the eigenvectors corresponding to the first excited level of the total Hamil-

(1)> n

;') }ieq and the ones corresponding to the second excited level

are {|w((12)>}2(£1_1)/2, then the measure we use has the form (7 )

E=Y 1]~ 2800 Y VD — (= 2) 3" (A.15)

i#£j a

tonian are {|w

where Q;; = <w§1)|Q]w](-1)) and Qg = <wé2)|Q|wl(]2)>.

In short, the W-state protocol is the maximization of £ over all such unitary
operations that generate non-diagonal elements only in the eigensubspace of the
first excited level (which we denote by W, ). These unitaries can be represented
as UII, where II is a permutation operation on the initial state and U is a
general n X n unitary living in W;. As this representation suggests, we divide
the optimization procedure in two steps: (i) maximization over Us for a given
II, and (ii) maximization over IIs. After IT acts, the state becomes Q! = TIpIl
and its projection on Wi we denote by w'l. Now, the operation U will act only
on w' and take it to w’ = Uw"UT and since U is unitary, the traces of w’ and
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w' will be the same. Therefore, we can rewrite (A.15) as

EUIOIUTEY  |wj; |—2\/Qig{) S VAL —(n—-2)> wil. (A.16)

iF#] «

This shows that the maximization of £ over U is reduced to the maximization
of >4 lwi;| over U. To find this maximum, we first observe that due to the

unitarity of U, Tr ((w)?) = Tr ((w')?); whence,

pe o T (Wh?) = iw)?
Z |Wij|2 = 9 .

(A.17)
1<J

We now relax for the moment the constraint that «’ and w'' are unitarily
connected and only require that Tr(w’) = Tr (w') = a and Tr ((w)?) =
Tr ((w")?) = a®X. Here we again divide the optimization in two steps: 1)
maximize ), |wj;| with 37, . |wz’-j\2 fixed and 2) maximize the latter. Now
we notice that

1) The maximum is reached for |wj;| = |w} ;| and therefore max}_

(n—1

\/n nz ) Zz‘<j |W§j|2-

2) From (A.17), the maximum for >, . \w£j|2 is reached when Y, (w!)? is min-
/

imal. Since ), w} = a is fixed, the minimum for ) (w]

(2
wj =%, ie., max}, |w§j\2 =a*(A—1/n) /2.

Finally,

i<j |W¢j =

)2 is reached when all

i<j

maxz Jwi;| = ay/n(n —1)(A—1/n), (A.18)
i#]

and on this maximum, w’ has the following form:

A—1 A—1/n
eb12 (njf) .. efin /n(njl)

3

1
n

A—1/n

. e®21 /n(n—l)
A—1/n /A=1/n

e n(n—1) e n(n—1)

Obviously, being obtained in less restrictive conditions, (A.18) upper-bounds
the sought maxy 37, . ; [wj;|. Nevertheless, one can prove, that for suitably cho-

3=
a
<
V]
3
S|
3|
|2
==

(A.19)

3=

sen {¢;;} the matrix in (A.19) can always be unitarily reached from w'. The
proof is slightly more involved and is conducted by first proving the statement
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for n = 3 by explicitly calculating the corresponding phases (only one phase
is necessary to adjust there) and then proving the statement by induction for
any n.

Now, having done the maximization over U, we turn to finding the Il with
largest

e = o (Valn =D~ 1/n) —n+2) - 2/ S o, (A20)

where we have plugged (A.18) in (A.16). The quantity A is defined above as
the sum of the squares of the normalized elements of w!'l. Therefore, it is never
bigger than 1 which implies that in the n — oo limit, £ in (A.20) will be non-
negative only if A — 1. On the other hand, choosing a bigger o and smaller
elements in the eigensubspace of the second excited level (which we denote by
Ws) and on the ground state will also make £ bigger. To fulfil all this we
choose II so that it takes the smallest element of 2, p™v™, to the ground state,
the biggest one, p™, to Wj. The rest of (n — 1) elements in W, are chosen so
that they are significantly smaller than p™. We will take them to be all equal
(so that they keep « as big as possible) and to be p"v™* with some k that will
be discussed later on. Also, we will choose the elements in W, to be p™v™ ™™
with some m that is small and independent of n. At this point we do not know
which exact choice of k and m will maximize E'I, but fortunately the existing
information about them is enough to deduce the asymptotic behavior we need.
With above described IT we have

14 (n — 12k
= T (A.21)

So, to have A — 1, nv™ % must — 0. With this condition and some alge-

braic manipulations employing Taylor expansions, we arrive at the following
asymptotic expansion:

gl
=12, 4 0 [t (A.22)
p

where C,, = (1 — 1/n)? (v™/2 +v*n/(n — 1)) and is always O[1] since v < 1
and k and m are positive. With this, we rewrite (A.22) as

SH 2, n—k—m/2 n—k

=l C’n(1+(’)[nv D (A.23)
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Having in mind that no™ % — 0 and explicitly indicating the dependence of k
and T (and hence v) on n we obtain from (A.23) the asymptotic condition of
the positivity of £ in the following form:

n—kn—m/2

6lnC'n—i-2 Inn— ToME/E . (A24)

1> nQUZ_k"_m/QC'n =

From formula (A.24) it is now obvious that to maximize Tgarg, ky has to be
as small as possible. So, whatever the k,, and m delivering the maximum are,
they are finite numbers independent of n. Therefore,

nk nk
TERT . A2
GME = 51, © [(lnn)2] (4.25)

Finally the energy input required for such a scaling can simply be calculated
from the prior permutations II alone, as all subsequent rotations are performed
in a degenerate subspace. Adding the cost of all the permutations above gives
the rather cumbersome formula for the energy cost of the W-state protocol as

W =B(1— e ?5)7" ((n = 1)(e77 — e PEOTD) 4 (1= e7P8) o pemPE)
ne PEN 4 (n? — n) (e F — em(nDPE) 4 g(e OB _ = FEM=I)) 96)

which while seemingly complicated due to the numerous required permutations
still remains exponentially small in n for any 7" > 0.

The W-state is but an element of a larger set of Dicke states. Correspond-
ingly, our W-state protocol can be straightforwardly generalized to Dicke state
protocols. First, let us introduce the m excitation Dicke states for n qubits:

1Dn) =~ D la), (A21)
{a}

where {a}s are the subsets of {i}!' ; consisting of m elements,

{a}) = Rictay 11)i jefig{ary 10)5, and the summation runs over all C" pos-

sible {a}s. Accordingly, the Dicke state protocol is the one when one is allowed

to create non-diagonal elements only in D,,, — the subspace spanned by |[{a})s.

In that case, the GME witness is as follows (? ):

Enl0] = 3 (I} QHBNI - /ol @ ({8} )@ ® QM {a}) @ [{8))) -
{7}

n(n—m—1)) ({a}|Ql{a})(A.28)
{a}
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where the set {7} is the collection of all possible ({a}, {8}) with {5} € D, and
such that the intersection {a} N{B} contains m —1 elements. As is straightfor-
ward to check, {7} has m(n—m)C}" elements. Ty, is a permutation operator
which, acted on some |0...1...0...1) ®|1...0...0...1), swaps the parts of the vectors
corresponding to {a} so that it takes first vector to D,,_1 and the second one
to Dypt1; €.g., [lf2,33/01100) ® [11000) = [01000) ® [11100) (see (? ) for more
detailed explanations).

As above, the idea is to maximize &,[UTIQIIU] over all unitaries U act-
ing in D,, and permutations II. Again, for a fixed II one has to maximize
>y [{({a}[Q{B})], but since {7} does not run over all non-diagonal elements
the form (A.19) may not necessarily be the optimal one. Nevertheless, since
finding maximum of the sum of absolute values of the part of non-diagonal ele-
ments of a matrix appears to be a formidable task, we will use the form (A.19)
as an ansatz. In what follows we will show that the asymptotic behavior for
TSy following from this ansatz is very close to the optimal one. As in the
previous case, the permutation delivering the optimal asymptotics will be the
one that puts p” and p"v"™ % (with k& > m finite but sufficiently big) in D,,
and fills D,,_; and D,,; with some p"v™ ! (with sufficiently big and finite 1).
With this, after simple manipulations we arrive at

EX = pm(1+ (C™ — 1)k — C™(n — m)v"F — C™(n — m)v" ! +
O (n*"v?")).(A.29)

So the condition for the presence of genuinely multipartite entanglement, 1 >
0 reduces to (7 )

e(m-i-l) lnn—% S 1 (A30)

whence we obtain

nk
T~ ————— A.31
(m+1)lnn (A-31)
implying that
nk

TRax > A.32
GME = (m+1)Inn ( )

for large ns.
Now, returning to the question of how close to the optimal this scaling is, let

us observe that the maximum for > ., [{({a}|Q[{5})| is given by VA=1/N)N(N — 1)
with IV in this case being C" (see (A.19) and the reasoning preceding it). This
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value for > - oy [({a}[Q[{8})] is not necessarily unitarily achievable from the
initial diagonal state but is clearly an upper bound for it. Proceeding as above
with this ansatz we obtain

nk

TA S < A.33
By < (4.33)

showing that the initial ansatz (A.19) is quite reasonable and that in any case

TES s =0 (ﬁ) for all m.

A.5. Fermionic systems: Correlation matrices, time
evolution, and entropy

We consider Hamiltonians of the type

H= Z cma;»[aj (A34)
i,J
where the operators a;, al-L satisfy the fermionic anti-commutation relations,
{ai,al} = 0;;, (A.35)
{ai,a;} = {a},al} = 0. (A.36)

Since the matrix ¢ in (A.34) is hermitian, it can be diagonalised by a uni-
tary operator, ¢ = ADA', where AA" = 1 and D = diag{F,, ..., E,}. The
Hamiltonian then can be expressed as,

H =" Ewlm, (A.37)
k
with
me=Y_ Ala;, (A.38)
J
= Ajka). (A.39)
J

The unitarity of A ensures that the transformation preserves the commutation
relations,

(e} = AcaAf {ai al} = 6. (A.40)
i,J
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where we used (A.36).
We will describe states within the framework of correlation matrices. Define
the entries of the correlation matrix y(p) corresponding to p as

Ya (p);; = Tr(ala;p). (A41)

Notice that the diagonal elements represent the occupation probabilities, or
populations, of each fermion. The correlation matrix in the diagonal basis
Yo (p)ij = Tr(njnj,o) is related to 7, through 7, = AT~,A*. The diagonal
elements of v,, corresponding to the populations of the free fermions, play an
important role, and we denote them by py,

P = Tr(ninep). (A.42)

—iHt , iHt

The time evolution of v(p) under H, p(t) = e pelft | can be easily computed

in the Heisenberg picture,

k . .
T i[H,n] = —iEny,

dt
“iBkty, (A.43)

ne(t) = e

where we have used {;, 77;} = §;; and 7 = 0. Therefore, on the one hand, it
follows that

T(p(t)) = Py (p)e ™ (A.44)
with D = diag{E1, ..., E,}. In the original basis it reads,
Ya(p(t)) = Uya(p)U" (A.45)

with U = A*e®™P AT. On the other, the time averaged state, which is defined
as,

T
m:mlﬁm, (A.46)

T—oo T

is given simply by

T({p)t) = (v(p))e =T [ (p(2))] (A.47)
where I' corresponds to a de-phasing operation. In fact, this state corresponds
to the GGE where the conserved quantities are the energy modes n,];nk, ie.,

i i+t (i+1
waan(p, H {0 ™™y = (o), (A.48)
The entropy of p can be calculated as
S(p) =Y H(d[). (A.49)
k

where dj, are the eigenvalues of v(p), and H(p) = —plnp — (1 — p) In(1 — p).
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A.6. Work extraction for free fermions and unrestricted
Hamiltonians

Here we find a bound for work extraction protocols, which, as discussed in
the main text, is equivalent to ﬁndlng a lower bound on the final energy,

Tr (w(G]\QEH (0)), with H = ), ek 77;277]20). From our considerations in Section
A5, it follows that under the joint operation of a quench,

ch a;a;j — HOHY Zc () of G, (A.50)

followed by an equilibration process, our effective description in terms of GGE
states takes the form

i+1 * i *
Yo(wiin) = AT [Az;+1)7@(wé)C¥E>A(i+l)} Al (A.51)

where T is a de-phasing operation, and ¢(it1) = AZHDA i+1> With D is a diag-
onal matrix. Let {d,(jJrl)} and {d,(j)} bet the eigenvalues of va(wggg) and

’ya(wg)GE), respectively. Under (A.51), they are related through a doubly

stochastic matrix,

A =" Cpd” (A.52)
with ", Cx; = >, Cry = 1. Therefore, the eigenvalues of the final state

’ya(wg\gE) can also be expressed as a stochastic combination of the eigenvalues

of 74(p ), {d,io)}. It now follows from basic notions of the theory of majoriza-
tion that,

Tr (Wi HO) > Z 4 = Tr (whep H) (A.53)

where T and + reflect lists ordered in increasing (decreasing) order. This pro-
vides the bound (8.60).

We now construct an explicit protocol that achieves this bound in the limit
N — o0, where N is the number of quenches performed. Let wa(p(o)) be the
correlation matrix of p(®) as in (A.41). First, find some U that diagonalises
1(p),

Ur(pUT = D, (A.54)

and make a quench to
HY =yTHOU*, (A.55)
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Since 7(p(?) is diagonal in the new basis, it follows that wg();E = p, e,

the state is not changed during the equilibration process. Now, slowly rotate
back to the original Hamiltonian, by performing N/2 quenches (followed by
equilibration processes) until H () is reached. At the end the state, p(N/ 2) is
(approximately) diagonal with respect to the original Hamiltonian, H(®). Next,
find some V that order the populations of v(p("/?)), so that V~y(pN/2) VT sat-
isfies (8.60). As before, perform a quench to H O = VTHOV* and slowly
come back to the original Hamiltonian by performing N/2 quenches. This pro-
cess will render the desired final state w(, 5 in the limit of infinitesimally slow
transformations, i.e., in the limit N — oco. The optimal protocol is therefore
reversible, and it agrees with our intuition that slow processes are better for
work extraction.

Importantly, note that these results for the free fermions are completely
analogue to the case of time average equilibrium state, as detailed in Sec. 8.6.
Indeed, the optimal protocol of work extraction resembles the one discussed
in Sec. 8.6. However, it should be stressed that the GGE equilibration model
considered for free fermions does not coincide in general with the time averaged
state. Indeed, this difference can be highlighted by looking at the final state
obtained for the time average model in comparison with the final state of the
GGE equilibration for free fermions. In the former, one ends up with a passive
state. This implies, for n fermions, 2" energy populations decreases with the
energy. On the other hand, for the GGE model of equilibration considered
here, the final state wi,qp is such only the n populations of the free fermions
need to be in decreasing order.

For example, consider a three-fermion system with Hamiltonian

H = 61771771 + 62775772 + 6377;,773 (A.56)

and a state p with Tr(n;rmp) = p; with ¢ = 1,2, 3. The quantum state p and H
can be written as

H =diag{0, €1, €9, €3,€1 + €2,€2 + €3,€1 + €3,€1 + €2 + €3}
p =diag{(1 —p1)(1 — p2)(1 — p3),p1(1 — p2)(1 — p3),
p2(1 = p1)(1 = p3), p3(1 — p1)(1 — p2), p2p1(1 — p3),
p2p3(1 — p1), pips(1 — p2), p1p2ps}- (A.57)
If we now choose €1 =1, €2 = 2, e3 = 2.5; and p; = 0.4, po = 0.3, and p3 = 0.1;
we obtain that p is not passive but has the form of wf, ;. The origin of the

difference is the set of operations in which every state is defined. Passive states
arise as optimal states for work extraction protocols if any unitary operation
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can be performed to the system, or, equivalently, every cyclic process in which
the system remains thermally isolated. On the other hand, states wg,, 5 become
optimal when the set of operations corresponds to (arbitrary) quenches to
quadratic Hamiltonians, which is in general more constraint that the set of
unitary operations. Within this constrained set of operations, they become
optimal.

172



Bibliography

[Abel3]

[Abel4]

[Abel6]

[ABNO4|

[AF13]

[AG13]

[AHHHO04]

[AKOS]

[ALS1]

[ALi79]

All14]

J. Aberg. Truly work-like work extraction via a single-shot
analysis. Nat. Commun., 4:1925, 2013.

J. Aberg. Catalytic coherence. Phys. Rev. Lett., 113:150402,
2014.

J. Aberg. Fully quantum fluctuation theorems. 2016.

A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen.
Maximal work extraction from finite quantum systems. EPL
(Europhysics Letters), 67(4):565, 2004.

R. Alicki and M. Fannes. Entanglement boost for extractable
work from ensembles of quantum batteries. Phys. Rev. E,
87:042123, 2013.

J. Anders and V. Giovannetti. Thermodynamics of discrete
quantum processes. New J. Phys., 15:033022, 2013.

E. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki.
Thermodynamics of quantum information systems, a Hamil-
tonian description. Open Sys. Inf. Dyn., 11:205-217, 2004.

Bertlmann R. A and P. Krammer. Bloch vectors for qu-
dits. Journal of Physics A: Mathematical and Theoretical,
41(23):235303, 2008.

M. Aizenman and E. H. Lieb. The third law of thermody-
namics and the degeneracy of the ground state for lattice
systems. J. Stat. Phys., 24(1):279-297, 1981.

R. Alicki. The quantum open system as a model of the heat
engine. J. Phys. A, 12:1.103-1.107, 1979.

A. E. Allahverdyan. Nonequilibrium quantum fluctuations of
work. Phys. Rev. E, 90:032137, 2014.

173



Bibliography

174

[AMOP16]

[ANO5a]

[ANOS5b]

[ATSL12]

[BaHOT13]

[BC15]

[BDN12]

[BDZ0S]

[BP02)

[BPLF*15]

[BVMG15]

A. Alhambra, L. Masanes, J. Oppenheim, and C. Perry. The
second law of quantum thermodynamics as an equality. 2016.

A. E. Allahverdyan and Th. M. Nieuwenhuizen. Fluctuations
of work from quantum subensembles: The case against quan-
tum work-fluctuation theorems. Phys. Rev. E, 71:066102, Jun
2005.

A. E. Allahverdyan and Th. M. Nieuwenhuizen. Minimal
work principle: Proof and counterexamples. Phys. Rev. F,
71:046107, 2005.

R. Augusiak, J. Tura, J. Samsonowicz, and M. Lewenstein.
Entangled symmetric states of n qubits with all positive par-
tial transpositions. Phys. Rev. A, 86:042316, Oct 2012.

F. G. S. L. Brandao, M. Horodecki, J. Oppenheim, J. M.
Renes, and R. W. Spekkens. Resource Theory of Quan-
tum States Out of Thermal Equilibrium. Phys. Rev. Lett.,
111:250404, 2013.

F.G.S.L. Brandao and M. Cramer. Equivalence of statisti-
cal mechanical ensembles for non-critical quantum systems.
2015.

I. Bloch, J. Dalibard, and S. Nascimbene. Quantum simula-
tions with ultracold quantum gases. Nature Phys., 8:267276,
2012.

I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics
with ultracold gases. Rev. Mod. Phys., 80:885-964, 2008.

H. P. Breuer and F. Petruccione. The Theory of Open Quan-
tum Systems. Oxford University Press, 2002.

D. E. Bruschi, M. Perarnau-Llobet, N. Friis, K. V. Hovhan-
nisyan, and M. Huber. Thermodynamics of creating corre-
lations: Limitations and optimal protocols. Phys. Rev. E,
91:032118, 2015.

F.C. Binder, S. Vinjanampathy, K. Modi, and J. Goold.
Quantacell: powerful charging of quantum batteries. New
Journal of Physics, 17(7):075015, 2015.



[CCO06]

[CCR11]

[CDEOOS]

[CDROY]

[CE13]

[CEF12]

[CGP+12]

[CHT11]

[CTHOY]

[DCOO]

[Dich4]

Bibliography

P. Calabrese and J. Cardy. Time dependence of correla-
tion functions following a quantum quench. Phys. Rev. Lett.,
96:136801, 2006.

A. C. Cassidy, C. W. Clark, and M. Rigol. Generalised ther-
malization in an integrable lattice system. Phys. Rev. Lett.,
106:140405, 2011.

C. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne. Ex-
act relaxation in a class of non-equilibrium quantum lattice
systems. Phys. Rev. Lett., 100:030602, 2008.

A. Campa, T. Dauxois, and S. Ruffo. Statistical mechan-
ics and dynamics of solvable models with long-range interac-
tions. Physics Reports, 480(3-6):57 — 159, 2009.

J. S. Caux and F. H. L. Essler. Time evolution of local ob-
servables after quenching to an integrable model. Phys. Rev.
Lett., 110:257203, 2013.

P. Calabrese, F. H. L. Essler, and M. Fagotti. Quantum
quench in the transverse field Ising chain II: Stationary state
properties. J. Stat. Mech., pages P07022, 2012.

A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, and
P. Mataloni. Experimental quantum networking protocols
via four-qubit hyperentangled dicke states. Phys. Rev. Lett.,
109:173604, Oct 2012.

M. Campisi, P. Hanggi, and P. Talkner. Colloquium : Quan-
tum fluctuation relations: Foundations and applications.
Rev. Mod. Phys., 83:771-791, Jul 2011.

M. Campisi, P. Talkner, and P. Hanggi. Fluctuation theo-

rem for arbitrary open quantum systems. Phys. Rev. Lett.,
102:210401, May 2009.

W. Diir and J. I. Cirac. Classification of multiqubit mixed
states: Separability and distillability properties. Phys. Rev.
A, 61:042314, Mar 2000.

R. H. Dicke. Coherence in spontaneous radiation processes.
Phys. Rev., 93:99-110, Jan 1954.

175



Bibliography

[DKPR15]

[DL09)]

[DRRV1]]

[Duall]

[EFG15]

[EHMO09]

[ELV10]

[ES14]

[EVdB11]

[Fan83]

[FE13]

[FHPL]

176

L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From
quantum chaos and eigenstate thermalization to statistical
mechanics and thermodynamics. 2015.

R. Dillenschneider and E. Lutz. Energetics of quantum cor-
relations. EPL (Europhysics Letters), 88:50003, 2009.

O. C. O. Dahlsten, R. Renner, E. Rieper, and V. Vedral.
Inadequacy of von Neumann entropy for characterizing ex-
tractable work. New J. Phys., 13:053015, 2011.

L.-M. Duan. Entanglement detection in the vicinity of arbi-
trary dicke states. Phys. Rev. Lett., 107:180502, Oct 2011.

J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body
systems out of equilibrium. Nature Phys., 11:124, 2015.

M. Esposito, U. Harbola, and S. Mukamel. Nonequilibrium
fluctuations, fluctuation theorems, and counting statistics in
quantum systems. Rev. Mod. Phys., 81:1665-1702, Dec 2009.

Massimiliano Esposito, Katja Lindenberg, and Christian Van
den Broeck. Entropy production as correlation between sys-
tem and reservoir. New J. Phys., 12:013013, 2010.

C. Eltschka and J. Siewert. Quantifying entanglement re-
sources. Journal of Physics A: Mathematical and Theoretical,
47(42):424005, 2014.

M. Esposito and C. Van den Broeck. Second law and
Landauer principle far from equilibrium. Furophys. Lett,
40004(95), 2011.

U. Fano. Pairs of two-level systems. Rev. Mod. Phys., 55:855—
874, Oct 1983.

M. Fagotti and F. H. L. Essler. Reduced density matrix after
a quantum quench. Phys. Rev. B, 87:245107, 2013.

N. Friis, M. Huber, and year = 2015 eprint =
arXiv:1511.08654 archivePrefix = arXiv  arxivld
= 1511.08654 Perarnau-Llobet, M. Energetics of corre-
lations in interacting systems.



[FJR14]
[FWU13]

[GA15]

[GB02]

[GBO3]

[GE15]

[GEW15]

[GHR*16]

[GLMO3]

[GLTZ06]

[GMEL11]

[GMMO9]

Bibliography

M. F. Frenzel, D. Jennings, and T. Rudolph. Reexamination
of pure qubit work extraction. Phys. Rev. E, 90:052136, 2014.

K. Funo, Y. Watanabe, and M. Ueda. Thermodynamic work
gain from entanglement. Phys. Rev. A, 88:052319, Nov 2013.

J. Gemmer and J. Anders. From single-shot towards general
work extraction in a quantum thermodynamic framework.

New Journal of Physics, 17(8):085006, 2015.

L. Gurvits and H. Barnum. Largest separable balls around
the maximally mixed bipartite quantum state. Phys. Rev. A,
66:062311, Dec 2002.

L. Gurvits and H. Barnum. Separable balls around the max-
imally mixed multipartite quantum states. Phys. Rev. A,
68:042312, Oct 2003.

C. Gogolin and J. Eisert. Equilibration, thermalisation, and
the emergence of statistical mechanics in closed quantum sys-
tems — a review. 2015.

R. Gallego, J. Eisert, and H. Wilming. Defining work from
operational principles. 2015.

J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk.
The role of quantum information in thermodynamics—a top-
ical review. Journal of Physics A: Mathematical and Theo-
retical, 49(14):143001, 2016.

V. Giovannetti, S. Lloyd, and L. Maccone. The role of entan-
glement in dynamical evolution. EPL (Europhysics Letters),
62(5):615, 2003.

S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi.
Canonical typicality. Phys. Rev. Lett., 96:050403, 2006.

C. Gogolin, M. P. Miiller, and J. Eisert. Absence of
thermalization in nonintegrable systems. Phys. Rev. Lett.,
106:040401, 2011.

J. Gemmer, M. Michel, and G. Mahler. Quantum Thermo-
dynamics: Emergence of Thermodynamic Behavior Within
Composite Quantum Systems (Lecture Notes in Physics).
Springer, 2009.

177



Bibliography

178

[GPLM*15]

[GRE14]

[HdV13]

[HES*11]

[HHHH09)

[HMGH]10]

[HO13]

[HPLAV13]

[HPLH*15]

[HPLHA13]

L. P. Garcia-Pintos, N. Linden, A. S.L.. Malabarba, A. J.
Short, and A. Winter. Equilibration time scales of physically
relevant observables. 2015.

R. Gallego, A. Riera, and J. Eisert. Thermal machines be-
yond the weak coupling regime. New J. Phys., 16:125009,
2014.

M. Huber and J. I. de Vicente. Structure of multidimen-
sional entanglement in multipartite systems. Phys. Rev. Lett.,
110:030501, Jan 2013.

M. Huber, P. Erker, H. Schimpf, A. Gabriel, and B. Hies-
mayr. Experimentally feasible set of criteria detecting gen-
uine multipartite entanglement in n-qubit dicke states and in
higher-dimensional systems. Phys. Rev. A, 83:040301, Apr
2011.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki.
Quantum entanglement. Rev. Mod. Phys., 81:865-942, Jun
2009.

M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayr. De-
tection of high-dimensional genuine multipartite entangle-
ment of mixed states. Phys. Rev. Lett., 104:210501, May
2010.

M. Horodecki and J. Oppenheim. Fundamental limitations
for quantum and nanoscale thermodynamics. Nat. Commun.,
4:2059, 2013.

M. Huber, M. Perarnau-Llobet, and J. I. de Vicente. Entropy
vector formalism and the structure of multidimensional en-
tanglement in multipartite systems. Phys. Rev. A, 88:042328,
Oct 2013.

M. Huber, M. Perarnau-Llobet, K. V. Hovhannisyan,
P. Skrzypczyk, C. Klockl, N. Brunner, and A. Acin. Ther-
modynamic cost of creating correlations. New J. Phys.,
17:065008, 2015.

K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and
A. Acin. Entanglement generation is not necessary for opti-
mal work extraction. Phys. Rev. Lett., 111:240401, 2013.



[HRHBE12)]

[HT15]

[ilaCanSanHO15]

[IHO0]

[INW*15]

[Jar97]

[Jay57]

[JJR12]

[Joh13]

[JR10]

[KLOJ15]

[LEG+15]

Bibliography

S. M. Hashemi R., M. H., C. J. Broadbent, and J. H. Eberly.
Genuinely multipartite concurrence of n-qubit z matrices.
Phys. Rev. A, 86:062303, Dec 2012.

P. Hanggi and P. Talkner. The other QFT. Nat. Phys.,
11:108, 2015.

Piotr Cwikliﬁski, Michat Studzinski, Michat Horodecki, and
Jonathan Oppenheim. Limitations on the evolution of quan-
tum coherences: Towards fully quantum second laws of ther-
modynamics. Phys. Rev. Lett., 115:210403, Nov 2015.

S. Ishizaka and T. Hiroshima. Maximally entangled mixed
states under nonlocal unitary operations in two qubits. Phys.
Rev. A, 62:022310, Jul 2000.

E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L.
Essler, and T. Prosen. Complete generalised gibbs ensemble
in an interacting theory. Phys. Rev. Lett., 115:157201, 2015.

C. Jarzynski. Nonequilibrium equality for free energy differ-
ences. Phys. Rev. Lett., 78:2690-2693, Apr 1997.

E. Jaynes. Information theory and statistical mechanics.
Phys. Rev., 106:620-630, 1957.

S. Jevtic, D. Jennings, and T. Rudolph. Maximally and min-
imally correlated states attainable within a closed evolving
system. Phys. Rev. Lett., 108:110403, 2012.

N. Johnston. Separability from spectrum for qubit-qudit
states. Phys. Rev. A, 88:062330, Dec 2013.

D. Jennings and T. Rudolph. Entanglement and the thermo-
dynamic arrow of time. Phys. Rev. E, 81:061130, Jun 2010.

K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings.
The extraction of work from quantum coherence. 2015.

T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler,
M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, and
J. Schmiedmayer. Experimental observation of a generalised
Gibbs ensemble. Science, 348:207, 2015.

179



Bibliography

[Len78§]

[LIR14]

[LKJR15]

[LL8O]

[LPS10]

[LPSWO09]

[LPV*14]

[LSA07]

[MAMWT15]

[MCCT11]

[MO14]

[MSK15]

180

A. Lenard. Thermodynamical proof of the Gibbs formula
for elementary quantum systems. J. Stat. Phys., 19:575-586,
1978.

M. Lostaglio, D. Jennings, and T. Rudolph. Thermodynamic
laws beyond free energy relations. 2014.

M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph.
Quantum coherence, time-translation symmetry, and ther-
modynamics. Phys. Rev. X, 5:021001, Apr 2015.

L. D. Landau and E. M. Lifshitz. Statistical physics. Perga-
mon, 1980.

N. Linden, S. Popescu, and P. Skrzypczyk. How Small Can
Thermal Machines Be? The Smallest Possible Refrigerator.
Phys. Rev. Lett., 105:130401, 2010.

N. Linden, S. Popescu, A. J. Short, and A. Winter. Quantum
mechanical evolution towards thermal equilibrium. Phys.
Rev. E, 79:061103, 2009.

B. Liicke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Téth,
and C. Klempt. Detecting multiparticle entanglement of
dicke states. Phys. Rev. Lett., 112:155304, Apr 2014.

M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen(De), and U. Sen. Ultracold atomic gases in optical
lattices: mimicking condensed matter physics and beyond.
Adv. Phys., 56:243-379, 2007.

M. P. Mueller, E. Adlam, L1. Masanes, and N. Wiebe. Ther-
malization and canonical typicality in translation-invariant
quantum lattice systems. 2015.

7. Ma, Z. Chen, J. Chen, C. Spengler, A. Gabriel, and M. Hu-
ber. Measure of genuine multipartite entanglement with com-
putable lower bounds. Phys. Rev. A, 83:062325, Jun 2011.

L1. Masanes and J. Oppenheim. A derivation (and quantifi-
cation) of the third law of thermodynamics. 2014.

A. S. L. Malabarba, A. J. Short, and P. Kammerlander.
Clock-driven quantum thermal engines. New Journal of
Physics, 17(4):045027, 2015.



[NCO0]

[Nie99)]

[OHHHO2]

[Par0g)]

[PEOY]

[PLHH"15a)

[PLHH*15b)]

[PLRG"15]

[Poll1]

[PSSV11]

[PSW06]

Bibliography

M. L. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

M. A. Nielsen. Conditions for a class of entanglement trans-
formations. Phys. Rev. Lett., 83:436-439, Jul 1999.

J. Oppenheim, M. Horodecki, P. Horodecki, and
R. Horodecki. Thermodynamical approach to quantify-
ing quantum correlations.  Phys. Rev. Lett., 89:180402,
2002.

M. H. Partovi. Entanglement versus Stosszahlansatz : Disap-
pearance of the thermodynamic arrow in a high-correlation
environment. Phys. Rev. E, 77:021110, Feb 2008.

I. Peschel and V. Eisler. Reduced density matrices and entan-
glement entropy in free lattice models. J. Phys. A, 42:504003,
2009.

M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber,
P. Skrzypczyk, N. Brunner, and A. Acin. Extractable work
from correlations. Phys. Rev. X, 5:041011, Oct 2015.

M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber,
P. Skrzypczyk, J. Tura, and A. Acin. Most energetic pas-
sive states. Phys. Rev. E, 92:042147, Oct 2015.

M. Perarnau-Llobet, A. Riera, R. Gallego, H. Wilming, and
J. Eisert. Work and entropy production in generalised gibbs
ensembles. 2015.

Anatoli Polkovnikov. Microscopic diagonal entropy and its
connection to basic thermodynamic relations. Ann. Phys.,
326(2):486 — 499, 2011.

A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore.
Non-equilibrium dynamics of closed interacting quantum sys-
tems. Rev. Mod. Phys., 83:863, 2011.

S. Popescu, A. J. Short, and A. Winter. Entanglement and
the foundations of statistical mechanics. Nature Phys., 2:754—
758, 2006.

181



Bibliography

182

[PW78]

[RCP14]

[RDOO0S]

[Rei08)]

[Reil2]

[RGE12]

[RW14]
[SF12]

[SFL*15]

[SG15]

[Sholl]

[SPWS08]

W. Pusz and S. L. Woronowicz. Passive states and KMS
states for general quantum systems. Commun. Math. Phys.,
58:273-290, 1978.

A. J. Roncaglia, F. Cerisola, and J. P. Paz. Work measure-
ment as a generalized quantum measurement. Phys. Rev.
Lett., 113:250601, Dec 2014.

M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and
its mechanism for generic isolated quantum systems. Nature,
452:854-858, 2008.

P. Reimann. Foundations of statistical mechanics un-
der experimentally realistic conditions. Phys. Rev. Lett.,
101:190403, 2008.

P. Reimann. Equilibration of isolated macroscopic quan-
tum systems under experimentally realistic conditions. Phys.
Scripta, 86:058512, 2012.

A. Riera, C. Gogolin, and J. Eisert. Thermalization in nature
and on a quantum computer. Phys. Rev. Lett., 108:080402,
Feb 2012.

D. Reeb and M. M. Wolf. An improved Landauer principle
with finite-size corrections. New J. Phys., 16:103011, 2014.

A. J. Short and T. C. Farrelly. Quantum equilibration in
finite time. New J. Phys., 14:013063, 2012.

A. Steffens, M. Friesdorf, T. Langen, B. Rauer, T. Schweigler,
R. Hiibener, J. Schmiedmayer, C. A. Riofrio, and J. Eisert.
Towards experimental quantum field tomography with ultra-
cold atoms. Nature Comm., 6:7663, 2015.

P. Solinas and S. Gasparinetti. Full distribution of work done
on a quantum system for arbitrary initial states. Phys. Rewv.
E; 92:042150, Oct 2015.

A. J. Short. Equilibration of quantum systems and subsys-
tems. New J. Phys., 13:053009, 2011.

E.M. Sevick, R. Prabhakar, S. R. Williams, and D. J. Searles.
Fluctuation theorems. Annual Review of Physical Chemistry,
59(1):603-633, 2008. PMID: 18393680.



[Sre94]

[SSC*15]

[SSLB16]

[SSP13]

[SSP14]

[S2i29]

[TA14]

[TH16]

[TLHO7]

[VA15]

[VADMO1]

[VAN13]

Bibliography

M. Srednicki. Chaos and quantum thermalization. Phys. Rev.
E, 50:888-901, 1994.

K. Schwaiger, D. Sauerwein, M. Cuquet, J. I. de Vicente, and
B. Kraus. Operational multipartite entanglement measures.
Phys. Rev. Lett., 115:150502, Oct 2015.

P. Strasberg, G. Schaller, N. Lambert, and T. Brandes.
Nonequilibrium thermodynamics in the strong coupling and
non-markovian regime based on a reaction coordinate map-
ping. 2016.

P. Skrzypczyk, A. J. Short, and S. Popescu. Extracting work
from quantum systems. 2013.

P. Skrzypczyk, A. J. Short, and S. Popescu. Work extraction
and thermodynamics for individual quantum systems. Nat.
Commun., 5:4185, 2014.

L. Szilard. iiber die entropieverminderung in einem ther-
modynamischen system bei eingriffen intelligenter wesen.
Zeitschrift fir Physik, 53:840-856, 1929.

G. Téth and I. Apellaniz. Quantum metrology from a quan-
tum information science perspective. Journal of Physics A:
Mathematical and Theoretical, 47(42):424006, 2014.

Peter Talkner and Peter Hanggi. Aspects of quantum work.
Phys. Rev. E, 93:022131, Feb 2016.

P. Talkner, E. Lutz, and P. Hinggi. Fluctuation theorems:
Work is not an observable. Phys. Rev. E, 75:050102, 2007.

S. Vinjanampathy and J. Anders. Quantum thermodynam-
ics. 2015.

F. Verstraete, K. Audenaert, and B. De Moor. Maximally en-
tangled mixed states of two qubits. Phys. Rev. A, 64:012316,
Jun 2001.

M. Van den Nest. Universal quantum computation with little
entanglement. Phys. Rev. Lett., 110:060504, Feb 2013.

183



Bibliography

[Vid03]

[VWT15]

[WGE14]

[WKK*09)

[Wo098]

[YBCO5]

[ZMP15]

[Zur03]

184

G. Vidal. Efficient classical simulation of slightly entangled
quantum computations. Phys. Rev. Lett., 91:147902, Oct
2003.

B. P. Venkatesh, G. Watanabe, and P. Talkner. Quantum
fluctuation theorems and power measurements. New Journal
of Physics, 17(7):075018, 2015.

H. Wilming, R. Gallego, and J. Eisert. Second laws under
control restrictions. 2014.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger,
G. Té6th, and H. Weinfurter. Experimental entanglement
of a six-photon symmetric dicke state. Phys. Rev. Lett.,
103:020504, Jul 2009.

W. K. Wootters. Entanglement of formation of an arbitrary
state of two qubits. Phys. Rev. Lett., 80:2245-2248, Mar
1998.

T. M. Yu, K. R. Brown, and I. L. Chuang. Bounds on the
entanglement attainable from unitary transformed thermal

states in liquid-state nuclear magnetic resonance. Phys. Rev.
A, 71:032341, Mar 2005.

L. Zadnik, M. Medenjak, and T. Prosen. Quasi-local con-
servation laws from semi-cyclic irreducible representations of
Uy(slp) in XXZ spin-1/2 chains. 2015.

W. H. Zurek. Quantum discord and maxwell’s demons. Phys.
Rev. A, 67:012320, Jan 2003.



	cubierta_marti_perarnau_web.jpg (Imatge JPEG, 500 × 500 píxels).pdf
	www.icfo.eu
	cubierta_marti_perarnau_web.jpg (Imatge JPEG, 500 × 500 píxels)


	cubierta_marti_perarnau_web.jpg (Imatge JPEG, 500 × 500 píxels).pdf
	www.icfo.eu
	cubierta_marti_perarnau_web.jpg (Imatge JPEG, 500 × 500 píxels)





