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Summary 

    The main objective of this thesis was to identify genomic regions associated with 

technological and lipid composition meat quality traits. In this way, we carried out a GWAS for 

57 phenotypes measured in the gluteus medius (GM) and longissimus dorsi (LD) muscles of pigs 

from a commercial Duroc line. In general, SNPs included in the PorcineSNP60 BeadChip only 

explained a limited amount of the phenotypic variance of the meat quality traits recorded in our 

population (0-51%). Moreover, we detected 40 and 101 genome- and chromosome-wide 

significant associations respectively. The majority of these associations were muscle-specific, 

maybe because the GM and LD muscles have different profiles of mRNA expression. Several of 

these regions were associated with more than one trait, suggesting the existence of pleiotropic 

effects. Specifically relevant was the genomic region located on SSC14 (120-124 Mb) which was 

associated with stearic, linoleic, unsaturated, and saturated fatty acids in both LD and GM 

muscles.  We also investigated if QTL regions contain expression QTL (eQTL) influencing the 

mRNA levels of loci transcribed in the GM muscle. The number of eQTL co-localizing with 

QTL for meat technological traits (5 cis-eQTLs) was lower than that of QTL for intramuscular 

fat (IMF) composition traits (20 cis-eQTL). Besides, we detected SNPs mapping to IMF QTL 

with trans-regulatory effects on gene expression (116 trans-eQTL). 

    We were also interested in analysing the genetic regulation of lipid genes. With this goal, we 

have performed an eQTL scan for 63 loci that are known to have a key role in lipid metabolism. 

Our results revealed 13 cis- and 18 trans-eQTL modulating the expression of 19 loci with a 

broad variety of biochemical functions. Moreover, we did not detect a clear predominance of 

either cis- or trans- effects on gene expression and none of the 31 eQTLs mapped to QTLs for 

lipid traits. This finding suggests that detected eQTLs have effects on gene expression but not on 

fatness phenotypes. 

    We have also investigated the existence of eQTL regulating gene expression in the GM 

muscle and liver, two tissues with a key role in the regulation of energy homeostasis. In this way, 

we have mapped 436 cis- and 450 trans-eQTLs in the GM muscle, while for hepatic genes the 

number of cis- and trans-eQTLs was more unbalanced i.e. 504 cis- vs 3,228 trans-eQTLs. The 

positional concordance between eQTLs maps generated in both tissues was weak, suggesting 

that the determinism of gene expression is mostly tissue-specific. In addition, we have used SNP 

data to identify 104 copy number variant regions, 47% of which co-localize with structural 

variants reported in previous studies. Approximately 39% of these CNVR co-localized with cis-

eQTL signals, whilst the co-localization of CNVR and trans-eQTL was somewhat higher 

(≈60%). The consistency of these co-localizations in the liver and muscle was weak.  

     

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Resumen 

    El principal objetivo de la presente tesis fue identificar regiones genómicas asociadas con la 

variación fenotípica de caracteres relacionados con la calidad de la carne. Para ello se realizaron 

estudios de asociación genómica (GWAS) para el contenido y la composición de la grasa 

intramuscular así como para la conductividad eléctrica, el pH, y el color de la carne. Dichos 

fenotipos se midieron en los músculos gluteus medius (GM) y longissimus dorsi (LD) de cerdos 

pertenecientes a una línea comercial Duroc. En general, los SNPs incluidos en el PorcineSNP60 

BeadChip de Illumina explicaron un porcentaje bajo o moderado (0-51%) de la varianza 

fenotípica de los caracteres evaluados en nuestra población. Mediante la aproximación GWAS, 

se identificaron un total de 40 QTLs significativos a nivel genómico y 101 QTLs significativos a 

nivel cromosómico.  Se observó que la mayoría de los QTLs detectados fueron específicos de 

cada músculo y esto probablemente se deba a que los  perfiles de expresión génica de ambos 

músculos son diferentes. Se detectaron además, varios QTLs con efecto en más de un fenotipo,  

lo  que sugiere la existencia de regiones con efectos pleiotrópicos. Es importante destacar el QTL 

localizado en el cromosoma porcino SSC14, que presentó asociaciones significativas con el 

ácido esteárico, linoleico y los porcentajes de ácidos grasos saturados e insaturados en los dos 

músculos LD y GM. Además, se investigó si las regiones QTL para la calidad de la carne 

contienen QTL con efectos sobre la expresión génica (eQTL). Con este enfoque se detectaron 

cinco eQTLs cuyas posiciones coincidieron con QTLs para el pH, la conductividad eléctrica y el 

color de la carne. Por otra parte, también se identificaron 20 cis-eQTL y 116 trans-eQTL que 

mostraban concordancia posicional con QTLs para el contenido y la composición de la grasa 

intramuscular. 

    De forma independiente, se analizó la regulación de la expresión génica de 63 loci cuyas 

funciones están relacionadas con el metabolismo de los lípidos. Nuestros resultados revelaron 13 

cis-y 18 trans-eQTLs asociados a la expresión de 19 loci. No se observó un claro predominio de 

los cis- o trans-eQTLs y además ninguno de los 31 eQTLs co-localizó con las regiones QTL para 

caracteres de engrasamiento. Este hallazgo sugiere que los eQTLs detectados tienen efectos 

sobre la expresión génica, pero no sobre la variabilidad fenotípica.  

    El estudio de la regulación de la expresión génica en el músculo GM y en el hígado nos ha 

permitido detectar 436 cis- y 450 trans-eQTLs en el músculo GM, mientras que para los genes 

expresados en el tejido hepático el número de cis- y trans-eQTLs fue más desequilibrado (504 

cis- vs 3.228 trans-eQTLs). La concordancia posicional de los mapas de QTLs en ambos tejidos 

fue baja, sugiriendo que existe un determinismo genético que es específico de cada órgano. Por 

otra parte, se han empleado los datos del PorcineSNP60 BeadChip para identificar 104 regiones 

genómicas con variaciones en el número de copias (CNVR). El 47 % del total de los CNVR 

detectados fueron previamente reportados en otras poblaciones. Además, aproximadamente un 

39 % de los CNVR co-localizaron con cis-eQTLs mientras que las co-localizaciones con los 

trans-eQTLs fueron mayores (≈60%). En general se obtuvo un número bajo de CNVR que co-

localizaron simultáneamente con cis- o trans-eQTLs en el músculo GM y en el tejido hepático.  
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1. Basics of the pig production system.  

   

   Pigs are one of the most important sources of meat for humans. Indeed, pork production 

represents more than 40% of the meat consumed worldwide, and in 2025 an increment of 

the global demand in 248,795 thousands of tons is expected (OECD-FAO , 2016). Around 

90% of the total pork production comes from China, Europe and the United States of 

America (USDA, 2016). Genetic improvement is one of the main factors that have 

contributed to the progress and success of pig production, which is often organized in three 

strata: the nuclei of selection, where purebred F0 individuals with a high genetic value are 

raised; the multiplier stratum, where F1 hybrid individuals are generated by crossing F0 

hogs and sows from two maternal breeds; and the commercial stratum where F1 individuals 

are crossed with a third paternal breed, characterized by its excellence in carcass or meat 

quality traits, to produce F2 pigs to be slaughtered. The nuclei of selection are generally 

managed by large integrator companies that own such genetic material and assume several 

financial risks, such as those associated with the variation of pig feed (grain) and meat 

prices. These companies sign contracts with farmers which contribute facilities and the 

labour force necessary to generate the final commercial product. In Spain, approximately 

70% of pig production is integrated. Selection of purebred parental individuals relies on the 

estimation of their genetic value for several traits of economic interest. Such estimates are 

obtained with the best linear unbiased predictor (BLUP) method, and they are usually 

combined in an index where each trait is balanced in accordance with its economic 

importance.  

 

   2. The nutritional properties and quality of pig meat 

 

   The meat of pigs is mostly made up of proteins (26%), having a low level of carbohydrate 

and a proportion of fat that ranges from 10 to 16% (Ciobanu et al., 2011).  Pig meat is a 

source of high quality proteins, vitamin B12 and iron, that are important for many 
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physiological processes such as muscle growth and the formation of red blood cells 

(Paddon-Jones et al., 2008). Besides, the low level of carbohydrates is positively associated 

with a reduced glycemic index, which is assumed to have beneficial effects on 

susceptibility to obesity, diabetes and some types of cancer (Biesalski, 2005). On the other 

hand, an excessive consumption of pig meat can be detrimental because of its cholesterol 

and saturated fatty acid (FA) contents, particularly if accompanied by  a low consumption 

of fruit and vegetables, reduced physical activity, smoking, and overeating (Eckel et al., 

2014).  

   The definition of pig meat quality is complex and encompasses multiple technological 

and organoleptic attributes. Besides, it also depends on the preferences of producers and 

consumers. For example, meat pH, water-holding capacity, cooking loss and oxidative 

stability are important for the processing industry, because they determine if meat can be 

safely commercialized (Maltin and Balcerzak, 2003). For the consumer, color, marbling, 

tenderness, juiciness and flavour are key factors that determine meat acceptance (Maltin 

and Balcerzak, 2003). Besides genetics, meat quality traits are influenced by a wide array 

of factors such as muscle type (fiber class and size), management conditions (nutrition, 

growth rate and age of slaughter) and the very same process of slaughtering (Rosenvold and 

Andersen, 2003). The transformation of muscle into meat involves a progressive depletion 

of energy produced by the exhaustion of ATP, a pH decrease from neutrality to acidity (pH 

≈ 5-5.8), an increase in ionic strength and also  the degradation of myofibrillar, cytoskeletal 

and intermediate filament proteins (Ciobanu et al., 2011). As previously said, important 

processing meat quality traits are pH, water-holding capacity (ability of the post-mortem 

muscle to retain water thus avoiding moisture loss), color, cooking loss (change of meat 

weight due to moisture loss associated with cooking) and firmness (Ciobanu et al., 2011). 

The rate of post-mortem pH decline is particularly critical: if it is too accelerated and the 

pH is low (pH < 6, 45 minutes after slaughter), the water-holding capacity of meat will be 

also low resulting in a high drip loss (pale, soft and exudative meat). On the other hand, a 

high ultimate pH (pH > 6, 12-48 h after slaughter) will result in an undesirable dark, firm, 

dry (DFD) meat (Adzitey and Nurul, 2011). Meat quality can be predicted on the basis of 

muscle electrical conductivity. In general PSE, reddish-pink, soft and exudative (RSE), and 

reddish-pink, firm and non-exudative (RFN) meats show an increased conductivity, while 
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DFD meat would display the opposite trend (Lee et al., 2000). With regard to meat color, it 

is mostly explained by myoglobin content, a parameter that depends on multiple factors 

such as nutrition, pH dynamics, rate of chilling and storage conditions. The oxidation of 

myoglobin and oxymyoglobin results in the generation of metmyoglobin, that confers a 

brown coloration to meat (Mancini and Hunt, 2005). Meat color can be measured by 

colorimetry, being the Minolta chroma-meter one of the most widely used instruments to 

achieve such goal. In general, meat quality traits are highly interrelated and they often 

depend on common factors such as glycogen content (Ciobanu et al., 2011).  

    Meat quality and nutritional properties are also affected by the content and composition 

of intramuscular fat (IMF). Brewer et al. (2001) found that chops with a low-middle fat 

infiltration were more acceptable than chops with a high fat content; and they were also 

juicier, more tender, oily and flavorful than leaner chops. However, Rincker et al. (2008) 

found a limited effect of IMF on the juiciness and flavour of meat. Indeed, the effects of 

IMF on the organoleptic characteristics of meat may vary amongst  breeds i.e  Fernandez et 

al. (1999) detected significant associations between IMF and meat juiciness and flavour in 

Meslan × Landrace pigs, but significance of such associations was lower in a Duroc × 

Landrace cross. Blanchard et al. (2000) detected correlations close to zero between IMF 

and juiciness, tenderness and flavor, in Large White, British Landrace and Duroc pigs. 

Differences amongst studies show that the relationship between IMF and meat attributes is 

complex and depends on many genetic and environmental factors.  

   With regard to human health, elevated ratios ofpolyunsaturated/monounsaturated fatty 

acids (PUFA/MUFA) and of omega-3 to omega-6 FA (n-3/n-6) are desirable because 

PUFA are associated with reduced concentrations of low density lipoproteins and total 

cholesterol, thus helping to decrease the incidence of coronary heart diseases (Astrup et al., 

2011). In contrast, saturated FA (SFA) are associated with obesity, high plasma cholesterol 

concentration, and an increased risk to suffer coronary heart diseases (Keys et al., 1986) 

and cancer (Wynder et al., 1997). From a technological point of view, PUFAs have a 

negative effect on the oxidative stability of meat, causing a rancid flavour, an increment of 

drip loss, a darker color, a low firmness and a decrease of shelf life (Wood et al., 2008). In 
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stark contrast, SFA have been associated to desirable sensorial characteristics of meat 

(Chizzolini et al., 1998; Wood et al., 2008).  

 

3. Heritability of meat quality traits. 

 

   Narrow-sense heritability (h
2
) refers to the proportion of phenotypic variance explained 

by additive genetic effects (Falconer and MacKay, 1996). Additive genetic variance can be 

estimated from the similarity between related individuals by relating the phenotypic 

covariance of a quantitative trait with the proportion of the genome for which two relatives 

share genes. Heritabilities are calculated using pedigree information to infer the 

relationships between individuals in a population  (Falconer and MacKay, 1996). Usually, 

heritabilities of meat quality traits range between 0.10 and 0.30 (Ciobanu et al., 2011, 

Table 1). As reported by Ciobanu et al., (2011), tenderness appears to be more heritable (h
2
 

= 0.25-0.30) than flavour and juiciness ( h
2
 < 0.10), while in the group of technological 

traits, meat color displays higher heritabilities (h
2
 = 0.15-0.57) than drip loss (h

2
 = 0.16) or 

ultimate pH (h
2
 = 0.21). In general, heritabilities for IMF content and composition traits are 

moderate to high, as shown in Table 1. 
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Table 1. Range of the heritabilities for meat quality traits. (Adapted from Ciobanu et al., 

2011) 

 

Traits Range of heritability  

Technological traits 

One hour post-mortem pH 0.04–0.41 

Ultimate post-mortem pH 0.07–0.39 

Colour  (light reflectance, CIE L* value) 0.15–0.57 

Water-holding capacity 0.01–0.43 

Drip loss 0.01–0.31 

Cooking loss 0.00–0.51 

Technological yield (cooked ham processing) 0.09–0.40 

Napole yield 0.26–0.78 

Meat quality index 0.11–0.33 

Visual score of meat quality 0.10–0.37 

Eating quality traits 

Tenderness (instrumental determination) 0.17–0.46 

Tenderness (sensory panel score) 0.18–0.70 

Flavour (sensory panel score) 0.01–0.16 

Juiciness (sensory panel score) 0.00–0.28 

Overall acceptability (sensory panel score) 0.16–0.34 

Muscle composition traits 

% water 0.14–0.52 

% lipid 0.26–0.86 

% glycogen (glycolytic potential) 0.25–0.90 

Fat composition traits (backfat) 

% water 0.27–0.42 

% stearic acid (C18:0) 0.30–0.57 

% linoleic acid (C18:2) 0.59–0.67 

Androstenone level (entire males) 0.25–0.88 
 
 
 

 

 

    Heritability for a given trait varies depending on the genetic background of each 

population under analysis. For instance, Suzuki et al. (2006) reported a heritability for meat 

lightness (L*) of 0.16 in Duroc pigs, while Gjerlaug-Enger et al. (2010) provided a higher 

estimate (h
2
 = 0.41) in Landrace swine. Similarly, the heritability of palmitic acid content in 

the longissimus dorsi (LD) muscle ranged from 0.07 in Sutai pigs (Yang et al., 2013) to 

0.47 in Duroc pigs (Casellas et al., 2010); and the heritability of muscle stearic acid content 

was 0.24 in Iberian × Landrace swine (Ramayo-Caldas et al., 2012) and 0.54 in Duroc pigs 
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(Gjerlaug-Enger et al., 2010). Such heterogeneity was also found when measuring h
2
 of 

traits recorded in different tissues or body locations i.e  Larzul et al. (1999) found h
2
 of 0.03 

and 0.23 for L* measured in the gluteus profundus and longissimus muscles, respectively. 

The same authors reported that h
2
 for pH24 measured in 4 different muscles oscillated 

between 0.17 (longissimus) and 0.39 (biceps femoris).  

     

4. The search for causal mutations in pigs 

 

4.1. The microsatellite era 

 

    A quantitative trait locus (QTL) is a genomic region that contains a polymorphism with 

significant effects on a quantitative trait. Until 2010, the majority of studies identified QTL 

by exploiting the existence of linkage disequilibrium between microsatellite markers and 

causal mutations with effects on traits of economic interest (Dekkers, 2004). If a QTL is 

linked to a marker locus, then individuals with different marker locus genotypes will have 

different mean values of the quantitative trait (Mackay et al., 2009). The two main 

strategies to detect QTL are shown in Figure 1.   
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Figure 1. Representation of Linkage (left) and association (right) mapping (Mackay et al., 2009). The yellow 

star indicates the position of a causal mutation. Both approaches require phenotypic and genotypic 

information. Linkage mapping: the parental generation (P1) consists of two genetically divergent inbred lines 

that are crossed to create the F1 generation. Crossing individuals from the F1 generation yields the F2 mapping 

population. Recombination in the F2 population creates new haplotypes and can uncouple marker genotypes 

from the causal locus. In contrast, association mapping uses historical recombination. In this case, 

recombination shuffles the initial haplotypes uncoupling all but the most tightly linked markers from the 

causal locus, thus allowing to map it with precision (reprinted from Nature Reviews Genetics 10, 565-577).  

Causal polymorphism 

QTL region 

>10 Mb 

QTL region 

<100 kb 

Genome  
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    In livestock species, most of QTL studies were performed in either F2 divergent crosses 

or half-sib families. In pigs, the first QTL mapping study was performed by Andersson et 

al. (1994), who reported QTL for backfat thickness and fat deposition in a Wild Boar × 

Large White cross. This seminal study proved the existence of genetic variation influencing 

fatness phenotypes in pigs. During the last couple of decades, a total of 16,560 QTLs were 

reported in the Pig QTL database (Hu et al., 2013) as shown in the Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of reported QTLs for electric conductivity and impedance, fat composition and colour. 

The X-axis represents pig chromosomes and the Y-axis shows the number of QTLs detected for each trait. All 

data were retrieved from the Pig QTL database (Hu et al., 2013).  

 

    Although these studies resulted in the identification of a large number of QTL, they were 

flawed by a number of important methodological limitations: 1) the size of the populations 

was generally small, usually in the range of a few hundred individuals, making difficult the 

identification of mutations with modest effects, and 2) the number of microsatellites (100-

200) was also small, and by this reason the confidence intervals of the QTL were quite 

large (Nagamine et al., 2003). However, several causal mutations were identified with this 



 I. Introduction  

 

10 

 

approach e.g. a nucleotide substitution at intron 3 of the IGF2 gene with regulatory effects 

on its expression (by abrogating the binding of a repressor factor) and with strong impact 

on muscle growth (Van Laere et al., 2003); and a missense substitution at the PRKAG3 

gene that influences muscle glycogen content, yielding meat with a low ultimate pH and a 

reduced water-holding capacity (Milan et al., 2000). In other instances, causal mutations 

were identified without performing previous QTL studies. A well-known example is the 

halothane gene, whose variation is associated with the porcine stress syndrome and the 

production of pale, soft and exudative meat (MacLennan et al., 1990). Fujii  et al. (1991) 

sequenced a candidate gene, the ryanodine receptor 1 locus, and found one missense 

polymorphism that causes the malfunctioning of this molecule and the deterioration of meat 

quality due to the sharp decline of the ultimate pH, protein denaturing and increased drip 

loss.  

 

4.2. The sequencing of the pig genome 

 

    The sequencing of the pig genome has been one of the main hallmarks of porcine 

genomics (Groenen, 2016). A large international consortium generated a 2.6 Gigabase draft 

sequence that was thoroughly annotated, evidencing the existence of 21,640 protein-coding 

genes, 380 pseudogenes and 2,965 non-coding RNAs (ncRNAs), which is probably an 

underestimate of the true number of ncRNAs. The evolution of Sus scrofa in Eurasia was 

investigated by sequencing ten wild boars, an experiment that yielded approximately 17 

million single nucleotide polymorphisms (SNPs, i.e. single-nucleotide substitutions of one 

base for another that occur in more than one percent of the general population). Analysis of 

these SNPs demonstrated that Asian wild boars are much more diverse than their European 

counterparts, a feature explained by the fact that wild boars are originary from Asia as well 

as because of the occurrence of a strong founder effect in Europe. The split between 

European and Asian wild boars probably took place 1.6–0.8 Myr ago, but gene flow 

between the wild and domesticate forms, and between the Asian and European gene pools 

was quite frequent. Genome sequencing of 16 wild boars and pigs from Europe and Asia 

also revealed the existence of copy number variation (CNV, chromosomal duplications or 
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deletions with sizes between 50 bp and several megabases) in the pig genome (Paudel et al., 

2013). The average size of the 3,118 CNV found by Paudel et al. (2013) was 13 kb and 

they comprised about 1% of the pig genome and 545 genes. Copy number variant regions 

(CNVRs) in pigs were enriched for genes related to sensory perception, neurological 

process, and response to stimulus, and the majority of them were shared between pigs and 

wild boars (Paudel et al., 2013). One of the most characterized CNV in pigs is the one 

including the KIT gene, that is closely associated with coat color i.e. white individuals have 

duplicated or triplicated copies of this locus while individuals with a solid coat have just a 

single copy (Pielberg et al., 2002; Johansson et al., 2005).  

 

4.3. The SNP era 

 

    The implementation of next generation sequencing methods making possible to generate 

millions of SNP markers in a single experiment enhanced the development of porcine high 

density SNP panels (Ramos et al., 2009) i.e. the Illumina Porcine SNP60 BeadChip, with 

64,000 SNP markers, and the Axiom chip, that appeared some time later, with 700,000 

SNPs (Samorè and Fontanesi,  2016). The SNPs contained within the Porcine SNP60 

BeadChip were detected by sequencing pigs belonging to diverse domestic swine breeds 

(Duroc, Pietrain, Large White and Landrace), and European and Far Eastern wild boars. 

The average distance between SNPs was 30-40 kb, with gap sizes larger than 250 kb on 

SSC14 and SSCX (Ramos et al., 2009).  

     Chips have been widely used not only to genotype SNPs but to detect CNV in pigs. 

Such studies are based on two metrics:  the logged ratio of observed probe intensity to 

expected intensity (LRR, deviations from zero indicate the existence of a copy number 

change) and B-allele frequency (BAF) i.e. the proportion of hybridized sample that carries 

the B allele, which should take values of 0.0 (AA), 0.5 (AB), and 1.0 (BB) depending on 

the genotype of the individual. For instance, a BAF of 0.66 for a locus may provide 

evidence of the existence of two copies of the B allele and one copy of the A allele. The 

first study in which SNP arrays were used to detect pig CNVs was carried out by Ramayo-
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Caldas et al. (2010), who discovered 49 CNVRs, ranging from 44.7 kb to 10.7 Mb (mean 

size: 754.6 kb), in a sample of 55 Iberian × Landrace pigs. Many other studies have focused 

on the description of CNVs in the genome of pigs (Chen et al., 2012; Wang et al., 2012) 

and even on the association of CNVs with meat quality traits (Wang et al., 2015).  

   The development of SNP chips was also fundamental to carry out genome-wide 

association studies (GWAS). The conceptual premises of GWAS are similar to those 

employed in QTL mapping with microsatellites, but the higher marker density makes 

possible to narrow QTL regions as well as to discover QTL in genomic regions not well 

covered with microsatellite markers. Besides, meta-analysis of data generated in different 

laboratories is easier because the same panel of SNP markers is used everywhere. 

Depending on the type of trait (categorical or continuous) different statistical methods are 

used to analyze the data. In this regard, mixed linear models have been increasingly used to 

carry out GWAS because sample structure (i.e. relatedness, geographic structure, etc., can 

be easily modeled by building a genetic relationship matrix). The contribution of SNPs to 

phenotypic variance of traits under analysis is estimated using a random-effects model 

(with or without fixed effects) and its significance is inferred on the basis of association 

statistics (Yang et al., 2014). Finally, a correction for multiple testing needs to be 

implemented in order to control the rate of false positives.      

     In pigs, the genetic basis of multiple traits has been explored by performing GWAS e.g. 

fat deposition (Duijvesteijn et al., 2010), IMF content and composition ( Ramayo-Caldas et 

al., 2012; Hernández-Sánchez et al., 2013; Yang et al., 2013), lipid serum concentrations 

(Chen et al., 2013; Manunza et al., 2014; Ding et al., 2015; Yang et al., 2015), meat quality 

traits (Luo et al., 2012; Ma et al., 2013, Sanchez et al., 2014), reproduction (Onteru et al., 

2011, 2012; Schneider et al., 2012), and clinical parameters (Boddicker et al., 2012; Fu et 

al., 2012). By using a GWAS approach, Ma et al. (2014) demonstrated that a splice 

mutation in the PHKG1 gene causes a 32 bp deletion and a premature stop codon, events 

that decrease the catalytic activity of this enzyme thus preventing glycogen breakdown. The 

muscle accumulation of glycogen decreases the ultimate pH of meat and increases drip loss 

(Ma et al., 2014).   
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 4.4. Genome-wide association studies for meat quality traits in pigs 

 

    The implementation of GWAS studies in pigs made possible to reduce the confidence 

intervals of QTL previously detected with microsatellite markers as well as to identify 

thousands of new associations between genomic regions and relevant productive traits. One 

of the first GWAS published was performed by Duijvesteijn et al., (2010), who reported 37 

SNPs, on SSC1 and SSC6, associated with androstenone levels in fat tissue. Many GWAS 

studies have targeted porcine meat quality traits. For instance, Ma et al. (2013) carried out a 

GWAS, in Sutai and Duroc × Erhualian F2 pigs, for meat quality traits recorded in the LD 

and semimembranosus muscles. In this study, the main genome-wide associations mapped 

to SSC3 (pH24) and SSC15 (drip loss). Similarly, Liu et al. (2015) evaluated multiple meat 

quality traits in Western Duroc × (Landrace × Yorkshire) and Erhualian pigs. Only a few 

QTL were shared between these populations, probably reflecting differences in the genetic 

architecture of meat quality traits between Asian and European breeds. Moreover, QTL on 

SSC12 and SSC15 showed pleiotropic effects on lightness (L*) of meat, color score, 

firmness and marbling. Zhang et al. (2015) detected six genomic regions associated with 

pH, redness (a*) and yellowness (b*) by carrying out a GWAS based on phenotypes and 

genotypes recorded in 1,943 crossbred commercial pigs. Five genomic regions, located on 

SSC1, SSC5, SSC9, SSC16 and SSCX, were associated with meat color traits. 

Interestingly, the SSC15 (133–134 Mb)  region has been associated with a*, b*, pH24, shear 

force and cook loss in many independent studies (Ponsuksili et al., 2014; Bernal Rubio et 

al., 2015; Liu et al., 2015; Zhang et al., 2015). Interestingly, this SSC15 region contains the 

protein kinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3) gene, whose 

polymorphism has causal effects on muscle glycogen depletion, a parameter that can have a 

strong influence on meat quality traits (Milan et al., 2000). Although electrical conductivity 

has been widely studied by performing  QTL scans based on microsatellites (Cepica et al., 

2003; Evans et al., 2003; Gallardo et al., 2012), this phenotype  has been only included in a 

few GWAS studies despite being an important predictor of meat quality (Ponsuksili et al., 

2014; González-Prendes et al., 2017). Ponsuksili et al. (2014) reported 15 SNPs distributed 

on SSC1, SSC6, SSC8 and SSC13 which happened to be associated with electrical 

conductivity measured 24 hours after slaughter in the LD muscle. On SSC6 (54.4 Mb), 
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there was one SNP with pleiotropic effects on electrical conductivity as well as on pH, 

impedance and percentage of weight loss in muscle at 24 hours post-mortem.  

     Several GWAS for IMF content and composition traits have been performed so far. 

Ramayo-Caldas et al. (2012) genotyped a backcross population (25% Iberian × 75% 

Landrace) with the Porcine SNP60 BeadChip and detected 813 SNPs, distributed in 43 

chromosome regions, displaying significant associations with IMF phenotypes. Particularly 

interesting was the region detected on SSC8 (Figure 3), with pleiotropic effects on 

palmitic, palmitoleic, palmitoleic/palmitic ratio, oleic/palmitoleic ratio and percentage of 

saturated fatty acids. In a subsequent study in the same population, Corominas et al. (2013) 

reported that the ELOVL6:c.-533C>T polymorphism may be the causal mutation explaining 

the associations found. The mechanism of action of this mutation might be related with the 

methylation status of the ELOVL6 promoter. More recently, Zhang et al. (2016
a
) reported 

26 genome-wide significant QTLs, distributed on eight chromosomes, for eight fatty acids. 

In this study, one QTL for stearic acid on SSC14 was detected in a crossbred 

Duroc × (Landrace × Yorkshire) population as well as in a meta-analysis with five different 

populations. This SSC14 region has been also identified in other studies as significantly 

associated with muscle FA composition traits (Yang et al., 2013; Ros-Freixedes et al., 

2016; Zhang et al., 2016
a
, 2016

b
). One SNP (g.2228T>C) at the promoter of the stearoyl-

CoA desaturase (SCD) gene, which catalyses the D9-cis desaturation of a range of fatty 

acyl-CoA substrates (Paton and Ntambi, 2009) and maps to SSC14 (120.9 Mb), has been 

shown to have causal effects on muscle stearic and oleic contents in Duroc pigs (Estany et 

al., 2014). 
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Figure 3. Manhattan plot of a GWAS (Ramayo-Caldas et al., 2012) for A) palmitic acid (C16:0), B) 

palmitoleic acid (C16:1 n-7), C) ratios of C16:1(n-7)/C16:0, D) ratios of C18:1(n-7)/C16:1(n-7), and E) 

saturated fatty acids. The x-axis represents the chromosomes containing the QTLs and the y-axis shows the –

log10 (P-value) of the reported associations. The horizontal line indicates the threshold of significance (q-

value ≤ 0.05).  
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4.5. Dissecting the regulatory basis of gene expression and complex phenotypes    

 

    The development of the microarray technology represented an important advance in 

animal genomics, providing a high throughput tool to characterize the transcriptome of 

multiples tissues (Pena et al., 2014). Several studies have focused on the evaluation of 

transcriptome variability in pigs with extreme phenotypes ( Ponsuksili et al., 2008; Liu et 

al., 2009; Cánovas et al., 2010; Hamill et al., 2012; Pena et al., 2016). In this way, the 

analysis of gene expression in the gluteus medius and/or longissimus dorsis muscles from 

pigs with divergent lipid phenotypes revealed that fatter animals had higher mRNA levels 

of both lipogenic and lipolytic enzymes (Liu et al., 2009; Cánovas et al., 2010; Hamill et 

al., 2012; Pena et al., 2016). Similarly, Ponsuksili et al. (2008) detected that pigs with lower 

water-holding capacity have reduced expression of lipid metabolism genes.  

     The combination of high throughput genotyping and microarray data has made possible 

to map the genetic determinants of gene expression, the so-called expression QTL (eQTL). 

An eQTL is a genomic region whose variation partly influences the genetic variance of a 

gene expression phenotype (Nica and Dermitzakis, 2013).  In general, eQTL can be 

classified as cis-acting (or cis-eQTL), when they map close (± 1 Mb, though this distance is 

arbitrary) to the regulated gene, or trans-acting (or trans-eQTL) when they do not. The two 

types of eQTLs are shown in Figure 4.  

    Since eQTLs may contain variants with regulatory effects on both gene expression and 

phenotypic variation, they can provide valuable information about candidate genes to be 

further investigated (Nicolae et al., 2010; Nica and Dermitzakis, 2013; Torres et al., 2014). 

One of the first porcine eQTL maps was reported by Ponsuksili et al. (2010). These authors 

carried out an eQTL analysis in pigs with divergent phenotypes for a combination of 

technological traits such as pH, conductivity and color. A total of 9,180 eQTLs were 

reported, of which 653 were classified as putative cis-acting. In another study, Ponsuksili et 

al. (2014) mapped meat quality QTL to SSC4 and SSC6 and identified SNPs associated 

with the expression of genes mapping to QTL regions i.e. ZNF704 (SSC4) and PIH1D1, 

SIGLEC10, TBCB, LOC100518735, KIF1B, LOC100514845 (SSC6). The expression 
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values of these genes were significantly correlated with meat quality traits as pH, colour 

and electric conductivity. 

 

 

 

Figure 4. Representation of a) cis- and b) trans-acting regulating the gene expression (Cheung and Spielman, 

2009). In the a) cis-eQTL the expression value of a gene close to the casual variant is incremented with the 

presence of G allele. For the b) trans-eQTLs the causal polymorphism is far away from the target gene that is 

influenced by  the effect of the A allele ( Reprinted from: Nature Reviews Genetics 10, 595–604). 

 

 

 

    In another study, Steibel et al. (2011) detected two eQTLs for the AKR7A2 and 

TXNDC12 genes, that are involved in lipid metabolism and map to marbling, intramuscular 

fat content and loin muscle area QTL. Muñoz et al. (2013) also combined QTL and eQTL 

mapping to identify candidate genes with potential effects on backfat thickness and 

intramuscular fat composition. By doing so, they proposed as candidate gene  the ELOVL6 

locus that plays a key role in fatty acid metabolism catalyzing the elongation of fatty acid 
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with 12–16 carbons to C18 (Jakobsson et al., 2006). Subsequently, Corominas et al.  (2013) 

demonstrated that a mutation at the promoter of this gene may have causal effects on the 

variation of C16:0 and C16:1 (n-7) fatty acids.  

 

 5- Using genomic information for the genetic improvement of pigs  

 

   One of the potential practical applications of porcine GWAS studies would be to identify 

causal mutations that can be used as selection criteria in breeding schemes. The success of 

such strategy has been limited because resource populations are usually small, the density 

of the Porcine SNP60 BeadChip is low and also because the intrinsic difficulty of 

distinguishing a causal mutation from a nearby marker. However, there have been stories of 

success that support the validity of the GWAS approach to detect causal mutations e.g. a 

major QTL for glycolytic potential was detected on SSC3 by Ma et al. (2014), and the 

subsequent refinement of the QTL and the sequencing of the PHKG1 gene made possible to 

demonstrate that a mutation at a splice site has causal effects on glycolytic potential and 

water-holding capacity.           

   Another consequence of the invention of the Porcine SNP60 BeadChip has been the 

implementation of genomic selection in porcine production. Genomic selection consists in 

estimating genomic breeding values using recorded phenotypic information and a large 

number of markers spread across the whole genome in a reference population (Meuwissen 

and Goddard, 2000; Ibañez-Escriche and Gonzalez-Recio, 2011). In genomic selection, 

markers can be included in the genomic evaluation without pre-selection based on QTL 

significance and location. Genomic selection allows the reduction of the generation interval 

because breeding values can be estimated very early in the productive life of animals 

(Hayes et al., 2009). Although the generation interval is short in pigs, the implementation 

of genomic selection could be useful to improve economically important traits with low 

heritabilities or that are difficult or expensive to measure. A thorough review about the 

current status and perspectives of genomic selection in pigs has been elaborated by Samorè 

and Fontanesi, (2016). According to these authors, the progress in sequencing methods will 

http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-14-845#CR34
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make possible to decrease genotyping costs and, in parallel, to increase the amount of 

genomic information produced, thus generating prediction equations that are more accurate 

and stable across time (Samorè and Fontanesi, 2016). 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

Chapter II. Objectives 
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General goal: 

    The main objective of this thesis was to identify genomic regions and candidate genes 

associated with meat quality and gene expression traits in a commercial line of Duroc pigs. 

This research forms part of the project “Study of traits related with lipid metabolism and 

pork quality using high throughput sequences and gene expression" (AGL2010-22208-C02-

02).  

 

Specific goals: 

1- To identify regions of the pig genome associated with the phenotypic variation of 

ultimate pH, electric conductivity, color (a*, b*, and L*) and intramuscular fat content and 

composition traits recorded in two different muscles (longissimus dorsi and gluteus medius) 

from Duroc pigs    

2- To investigate if genomic regions associated with such traits contain expression 

quantitative trait loci (eQTL) regulating the expression of genes with a potential impact on 

muscle physiology and metabolism.    

3- To compare the eQTL landscape of two tissues, skeletal muscle and liver, with central 

roles on energy homeostasis and to ascertain if eQTL co-localize with copy number 

variants.  
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Joint QTL mapping and gene 
expression analysis identify 
positional candidate genes 
influencing pork quality traits
Rayner González-Prendes1, Raquel Quintanilla2, Angela Cánovas1, Arianna Manunza1, 
Tainã Figueiredo Cardoso1,3, Jordi Jordana4, José Luis Noguera2, Ramona N. Pena5 & 
Marcel Amills1

Meat quality traits have an increasing importance in the pig industry because of their strong impact on 
consumer acceptance. Herewith, we have combined phenotypic and microarray expression data to map 
loci with potential effects on five meat quality traits recorded in the longissimus dorsi (LD) and gluteus 
medius (GM) muscles of 350 Duroc pigs, i.e. pH at 24 hours post-mortem (pH24), electric conductivity 
(CE) and muscle redness (a*), lightness (L*) and yellowness (b*). We have found significant genome-
wide associations for CE of LD on SSC4 (~104 Mb), SSC5 (~15 Mb) and SSC13 (~137 Mb), while several 
additional regions were significantly associated with meat quality traits at the chromosome-wide level. 
There was a low positional concordance between the associations found for LD and GM traits, a feature 
that reflects the existence of differences in the genetic determinism of meat quality phenotypes in these 
two muscles. The performance of an eQTL search for SNPs mapping to the regions associated with meat 
quality traits demonstrated that the GM a* SSC3 and pH24 SSC17 QTL display positional concordance 
with cis-eQTL regulating the expression of several genes with a potential role on muscle metabolism.

The physicochemical properties of the porcine muscle and its post-mortem maturation determine the organolep-
tic properties of fresh meat and cured products and, consequently, their acceptance by consumers1. The genetic 
determinism of electrical conductivity, acidity and color, which have been often used as predictors of meat quality, 
has been explored by performing genome-wide association studies (GWAS) in F2 populations2–4 as well as in 
purebred pigs5,6. An important limitation of using F2 intercrosses in GWAS studies is that they are not represent-
ative of the purebred populations that constitute the selection nuclei of breeding companies. On the other hand, 
certain breeds, such as Large White, have been strongly introgressed with Asian alleles that do not segregate in 
other European porcine populations7.

In a previous study, we measured electrical conductivity at 24 hours (CE), pH at 24 hours (pH24) and color 
(lightness or L*, redness or a*, and yellowness or b*) in gluteus medius (GM) and longissimus dorsi (LD) samples 
from 350 Duroc pigs (Lipgen population)8. Performance of a genome scan with 105 microsatellites revealed 
that the QTL maps for these two muscles were quite different8. Indeed, the only QTL that remained significant 
at the genome-wide level were those associated with GM a*, on Sus scrofa chromosome 13 (SSC13, 84 cM), and 
GM b* (SSC15, 108 cM). Unfortunately, the confidence intervals of these QTL were quite large due to the poor 
resolution of the microsatellite-based analysis. Moreover, we may have missed many QTL due to the relatively 
large spacing between markers. In the current work, we aimed to circumvent these limitations by employing a 
GWAS approach to identify meat quality QTL in the Lipgen population mentioned above. Taking advantage 
that microarray measurements of gene expression in the GM muscle were available for 104 Lipgen pigs, we have 
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performed an additional analysis where we have investigated the co-localization between GM QTL and expres-
sion QTL in cis (cis-eQTL).

Materials and Methods
Ethics approval.  The manipulation of Duroc pigs followed Spanish national guidelines and it was approved 
by the Ethical Committee of Institut de Recerca i Tecnologia Agroalimentàries (IRTA).

Measurement of phenotypic and expression data.  Phenotypic records were collected in a commer-
cial Duroc line of 350 barrows distributed in five half-sib families (Lipgen population). A detailed description of 
the management conditions of this commercial line has been previously reported9. Meat quality analyses were 
performed 24 h after slaughter at the IRTA-Centre of Food Technology by using 200 g samples of the LD and GM 
muscles. Electrical conductivity was estimated with a Pork Quality Meter (Intek GmbH) while pH24 was meas-
ured with a pH-meter equipment with a Xerolyte electrode (Crison). Meat L*, a* and b* color parameters were 
determined with a Minolta Chroma-Meter CR-200 (Konica Minolta) equipment (light source C and aperture 2).  
Microarray expression data of GM samples from 104 Duroc pigs were obtained in a previous study (data can be 
found in the Gene Expression Omnibus public repository, accession number: GSE19275) based on the use of 
GeneChip Porcine Genomic arrays (Affymetrix, Inc., Santa Clara, CA)10. A detailed description of the techniques 
and methods used to perform the RNA purification and microarray hybridization steps can be found in Canovas 
et al.10. Briefly, GM samples from 104 pigs were grinded in liquid nitrogen and homogenized with a mechanical 
rotor. Total RNA was purified with an acid phenol protocol11 and it was subsequently used as a template to syn-
thesize double stranded cDNA with the One Cycle cDNA Synthesis Kit (Affymetrix, Inc.). cRNAs were purified 
with the GeneChip Sample Cleanup Module (Affymetrix, Inc.), fragmented and added to a hybridisation cock-
tail10. The GeneChip Porcine Genome Array was equilibrated to room temperature and prehybridised with 1×​ 
hybridisation buffer at 45 °C for 10 min10. The hybridisation cocktail was heated to 99 °C for 5 min in a heat block 
and cooled to 45 °C for 5 min. Subsequently, a hybridization step was carried out at 45 °C for 16 hours. GeneChips 
were washed and labeled with streptavidin phycoerythrin in a Fluidics Station 450 (Affymetrix, Inc) and they 
were scanned in an Agilent G3000 GeneArray Scanner (Agilent Technologies, Inc.). The “Affy” and “Sympleaffy” 
packages from the Bioconductor project12 were employed to establish a set of quality control metrics to assess 
the quality of RNA samples and the efficiencies of the labelling and hybridisation steps. Data pre-processing and 
normalization were carried out with the BRB-ArrayTools software version 3.7.113. Genes displaying more than 
20% of expression values over ±​1.5 times the median expression of all arrays were retained for further analysis.

Genome-wide association analysis for meat quality and expression data.  Genotyping was 
performed with the Porcine SNP60 BeadChip (Illumina, San Diego, CA) which contains 62,163 single nucle-
otide polymorphisms (SNPs). Quality genotyping analyses were carried out with the GenomeStudio software 
(Illumina), as previously reported14. We removed SNPs (a) mapping to the X chromosome, (b) with a rate of 
missing genotypes higher than 5%, (c) that did not conform Hardy-Weinberg expectations (threshold set at a 
P-value ≤​ 0.001), (d) that had a minor allele frequency below 0.05, (e) that had a GenCall score <​ 0.15, (f) that 
had a call rate <​ 95% or (g) that could not be mapped to the pig genome (Sus scrofa 10.2 assembly). After filtering 
the raw data, a GWAS was carried out with 36,710 SNPs. Single-SNP association analyses were performed with 
the Genome-wide Efficient Mixed-Model Association (GEMMA) software15 under an additive genetic model that 
included the genomic kinship matrix to account for relatedness. The statistical model assumed in this analysis 
was:

µ β δ= + + + +y batch weight g e (1)ijklm j k l ijklm

where yijklm is the vector of phenotypic observations i.e. pH24, CE, L*, a* and b* measured at the GM and LD 
muscles of the ith individual; μ is the population mean of each trait; batchj is a systematic effect of the jth fattening 
batch, with 4 categories; β is the regression coefficient on the covariate weight at slaughter (weightk); δ is the SNP 
allelic effect, estimated as a regression coefficient on the corresponding gl genotype (values −​1, 0, 1) of the lth SNP; 
and eijklm is the residual effect. The statistical relevance of the systematic environmental sources of variation and 
the covariates included in the model were previously reported by Gallardo et al.8 and Casellas et al.16. Correction 
for multiple testing was implemented with a false discovery rate approach17.

Microarray data were available exclusively for GM muscle samples10. Following the strategy employed in 
the Genotype-Tissue Expression (GTEx) pilot analysis18, we primarily searched for cis-eQTL because they are 
expected to have larger effects than their trans-counterparts. We used two different strategies: Analysis 1, we 
retrieved 12 genes localized within GM QTL regions and we looked for cis-eQTL that might regulate their expres-
sion and Analysis 2, we made a search for cis-eQTL at a whole genome scale and we analyzed if there was a 
positional concordance between GWAS signals and cis-eQTL identified in this way. This second strategy made 
possible to identify cis-eQTL that might be located in the vicinity of GWAS signals. Genes corresponding to each 
probe included in the GeneChip Porcine Genomic array (Affymetrix, Inc., Santa Clara, CA) were identified in the 
BioMart database19. The statistical model assumed in this analysis was:

µ δ= + + + +y batch lab g e (2)ijklm j k l ijklm

where yijklm is the vector that defines the expression of each gene in the GM muscle of the ith individual; μ is the 
mean expression of each gene in the population; batchj and labk are the systematic effects i.e. batchj of fattening 
(with 4 categories) and labk (microarray data were generated in two different laboratories); δ is the SNP allelic 
effect estimated as a regression coefficient on the corresponding gl genotype (values −​1, 0, 1) of the lth SNP; and 
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eijklm is the residual effect. Correction for multiple testing was implemented with a false discovery rate approach17. 
The threshold of significance in Analysis 1 took into consideration the number of SNPs contained within 2 Mb 
windows around each one of the 12 genes under consideration, while in Analysis 2 such threshold was estab-
lished by taking into account the 36,710 SNPs typed in the Duroc population.

Results and Discussion
The SNPs arrayed in the Porcine SNP60 BeadChip explain a limited amount of the phenotypic 
variance of meat quality traits.  By using the GEMMA software, we have estimated the proportion of 
phenotypic variance explained by the 36,710 SNPs (h2

SNP) genotyped with the Porcine SNP60 BeadChip (Table 1). 
In general, estimates of h2

SNP ranged from low to moderate and differed between muscles. Discrepancies in the 
genealogic heritability (h2) estimates of meat quality traits recorded in different skeletal muscle samples were 
previously reported by Larzul et al.20. In this way, these authors found h2 of 0.03 and 0.23 for L* measured in the 
gluteus profundus and longissimus muscles, respectively. Similarly, the h2 values of pH24 measured in 4 different 
muscles oscillated between 0.17 (longissimus) and 0.39 (biceps femoris)20. When Gallardo et al.8 performed a QTL 
scan for meat quality traits in the Lipgen population, they also found that QTL maps differed markedly amongst 
traits recorded in the GM and LD muscles. As a whole, these results suggest that there are muscle-specific factors 
that modulate the genetic determinism of meat quality traits. Indeed, Quintanilla et al.21 identified remarkable 
differences in the gene expression patterns of the LD and GM muscles, a feature that was especially prominent for 
genes involved in muscle tissue development, cell proliferation and migration and muscle contraction.

Several h2
SNP values obtained by us were comparable to genealogic heritabilities estimated for porcine meat 

quality traits in previous studies. For instance Gjerlaug-Enger et al.22 reported heritabilities for a* of 0.43 and 0.46 
in Duroc and Landrace pigs, respectively. Similarly, Van Wijk et al.23 and Gjerlaug-Enger et al.22 described herit-
abilities of 0.11 (crossbred pigs) and from 0.12 (Landrace) to 0.27 (Duroc) for pH24. More unexpected were the 
null h2

SNP values obtained in the current work for traits such as b* (in GM) and L* (in both muscles). We attribute 
these null heritabilities to our inability to detect genetic variants that may have small effects or that segregate at 
very low frequencies24.

Environmental variables may also obscure the contribution of genetic factors. Indeed, meat quality traits 
can be affected by poor on-farm handling, mixing of unfamiliar animals and high pig density and long travel 
distance during transportation25. Such events may increase the stress of the swine brought to the abattoir and, 
consequently, they may have negative consequences on meat quality25. At the abattoir, extended lairage time can 
increase the incidence of dark, firm and dry (DFD) meat, while a short lairage time has been associated with an 
increased proportion of pale, soft and exudative (PSE) meat25. Electrical stunning induces a more rapid pH fall 
early post mortem and an inferior water-holding capacity than CO2 stunning, while an accelerated chilling may 
have negative consequences on meat tenderness and water-holding capacity25. In summary, all these factors, and 
others that are not mentioned, can have a strong impact on the post-mortem pH, electrical conductivity and color 
of pig meat and “dilute” the contribution of polygenes25.

Genome-wide and chromosome-wide associations with meat quality traits in Duroc pigs.  At 
the genome-wide level, we found significant associations between CE of LD and three genomic regions on SSC4, 
SSC5 and SSC13 (Table 2). The SSC4, 104 megabase (Mb) region, lies close to a previously reported QTL for CE 
identified by Cepica et al.26. We also found positional concordance between the SSC13 (137.0 Mb) region asso-
ciated with LD CE and a semimembranosus CE QTL reported by Evans et al.27. At the chromosome-wide level, a 
coincidence was detected between a a* QTL on SSC3 (50–57 Mb, Table 3) and a QTL for the same trait reported 
by Li et al.28 on SSC3 (55 Mb). Overall, our results confirm the existence of differences in the genetic determinism 
of meat quality traits recorded in the GM and LD muscles. The only exception was a region on SSC5 that signif-
icantly affected CE in both LD and GM muscles (Table 3). When we compared these data with the set of QTL 
previously reported by Gallardo et al.8 in the same Lipgen population we found one coincidence i.e. the GWAS 
signal identified on SSC4 (132 Mb) for CE in LD overlapped the confidence interval of a LD CE QTL (S0097 
marker, ~133 Mb) detected by these authors8.

In general the positional coincidence between GWAS signals detected by us and those reported in previous 
studies was weak, indicating that the majority of associations reported in the current work are new. For instance, 
when we compared our a*, b* and pH24 data with those described in six additional GWAS studies4,6,29–32 we only 
found one positional coincidence between the SSC10 (70.6 Mb) genomic region associated with LD a* in the Lipgen 

Phenotype

h2
SNP ± SE

LD muscle GM muscle

Electric conductivity (CE) 0.20 ±​ 0.07 0.11 ±​ 0.08

pH at 24 hours (pH24) 0.17 ±​ 0.10 0.12 ±​ 0.09

Minolta redness (a*) 0.41 ±​ 0.11 0.45 ±​ 0.11

Minolta yellowness (b*) 0.29 ±​ 0.12 0.00 ±​ 0.14

Minolta lightness (L*) 0.00 ±​ 0.25 0.00 ±​ 0.05

Table 1.   Proportion of phenotypic variance of meat quality traits recorded in the longissimus dorsi (LD) 
and gluteus medius (GM) muscles of Duroc pigs explained by SNP markers (h2

SNP ) and its standard error 
(SE).
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population (Table 3) and the SSC10 (72.8 Mb) region identified by Ma et al.4 as associated with the same trait in the  
semimembranosus muscle of White Duroc ×​ Erhualian F2 pigs.

The level of coincidence of trait-associated regions between these six GWAS for a*, b* and pH24 traits was 
also quite low. Only about 20% of the regions identified as significantly associated with any of these phenotypes 
were shared between two studies or more, indicating that the majority of associations are population-specific. 
These shared regions were: (a*) SSC4 (80–85 Mb)6,30, SSC6 (17–22 Mb)4,30, SSC7 (31–32 Mb)4,31, SSC12 (58–
63 Mb)30,31, SSC15 (133–136 Mb)30–32; (b*) SSC15 (129–133 Mb)30,32; and (pH24), SSC3 (15–19 Mb)30,31, SSC15 
(133–136 Mb)29,32. This latter region on SSC15 (133–136 Mb) appeared to be associated with a*, b*, pH24, shear 
force and cook loss in many independent studies29–32 but not in ours. Interestingly, this SSC15 region contains the 
protein kinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3) gene, whose polymorphism has causal 
effects on muscle glycogen depletion, a parameter that can have a strong influence on meat quality traits33.

Besides technical and methodological reasons, a probable cause for the lack of positional concordance 
between GWAS studies would be genetic heterogeneity34. Indeed, Yang et al.34 performed a GWAS for blood 
lipid traits in 2,400 Laiwu, Erhualian and Duroc ×​ (Landrace ×​ Yorkshire) pigs and they identified a total of 22 
QTL. Notably, only six regions were identified in more than one population, and 16 were detected in a single 
population.

Positional concordance between cis-eQTL for genes expressed in the GM muscle and QTL for 
GM traits.  In general, eQTL are highly enriched in variants with causal effects on phenotypic variation and 
they can provide valuable information about candidate genes to be further investigated. Integrative analyses of 
QTL and eQTL data have been performed in pigs, making possible to combine the power of recombination with 

Trait SSC N SNP Location (Mb) P-value q-value δ ± SE A1 MAF

LD CE

4 4 H3GA0013593 104.2–104.8 6.19E-06 0.04 0.28 ±​ 0.06 A 0.39

5 1 ASGA0024711 15.4 2.46E-06 0.04 −​0.32 ±​ 0.07 G 0.18

13 1 ALGA0027007 137.0 7.34E-06 0.04 0.27 ±​ 0.06 A 0.39

Table 2.   Genomic regions significantly associated at the genome-wide level with meat quality traits in 
Duroc pigs. LD: longissimus dorsi muscle, CE: Electrical conductivity at 24 hours post-mortem, N: Number of 
SNPs significantly associated with the trait under study, SSC: porcine chromosome, SNP: SNP displaying the 
most significant association with the trait under study, Location (Mb): region containing SNPs significantly 
associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated with a false 
discovery rate approach, δ: allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the 
minority allele.

Trait SSC N SNP Location (Mb) P-value q-value δ ± SE A1 MAF

LD CE
4

9 ALGA0026686 93.5–98.8 1.54E-05 0.01 −​0.28 ±​ 0.06 G 0.50

32 H3GA0013593 104.2–107.1 6.19E-06 0.01 0.28 ±​ 0.06 A 0.39

1 ALGA0028809 131.0 2.04E-04 0.02 −​0.26 ±​ 0.07 A 0.17

5 11 ASGA0024711 14.4–16.1 2.46E-06 0.004 −​0.32 ±​ 0.07 G 0.18

GM CE 5 5 ASGA0024564 13.0–14.7 3.15E-05 0.03 −​0.37 ±​ 0.09 A 0.39

LD pH24 16

3 MARC0086782 6.0–6.4 5.27E-04 0.05 0.08 ±​ 0.02 G 0.09

2 ALGA0089269 17.3–18.5 5.09E-04 0.05 −​0.06 ±​ 0.02 G 0.19

10 ASGA0091353 20.9–29.5 4.01E-04 0.05 0.05 ±​ 0.02 G 0.41

GM pH24 17

2 MARC0038923 14.2–16.4 9.11E-05 0.04 −​0.06 ±​ 0.02 A 0.48

5 MARC0101162 53.1–57.2 2.70E-04 0.04 0.07 ±​ 0.02 G 0.29

3 H3GA0049744 64.5–65.3 1.81E-04 0.04 −​0.06 ±​ 0.02 G 0.38

LD a* 10 1 ALGA0113811 70.6 2.99E-05 0.04 0.46 ±​ 0.11 A 0.36

GM a* 3

3 H3GA0009494 16.6–17.0 7.85E-05 0.01 0.70 ±​ 0.17 A 0.16

27 H3GA0009489 50.2–57.2 1.27E-04 0.01 0.65 ±​ 0.17 A 0.18

4 ALGA0021059 119.7–119.9 7.85E-04 0.04 0.48 ±​ 0.14 A 0.24

4 ALGA0021078 120.0–120.4 7.85E-04 0.04 0.48 ±​ 0.14 A 0.24

GM L* 16 1 MARC0073433 3.5 3.45E-05 0.04 1.23 ±​ 0.29 C 0.24

Table 3.   Genomic regions associated at the chromosome-wide level with meat quality traits in Duroc pigs. 
GM: gluteus medius muscle, LD: longissimus dorsi muscle, CE: Electrical conductivity at 24 hours post-mortem, 
pH24: pH at 24 hours post-mortem; a*: Minolta redness; L*: Minolta lightness, N: Number of SNPs significantly 
associated with the trait under study, SSC: porcine chromosome, SNP: SNP displaying the most significant 
association with the trait under study, Location (Mb): region containing SNPs significantly associated with the 
trait under study, P-value: nominal P-value, q-value: q-value calculated with a false discovery rate approach, δ: 
allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele.
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expression studies in order to identify promising candidate genes35. For instance, multiple associations between 
SNPs mapping to porcine chromosomes 4 and 6 and meat quality traits have been detected30. Through an eQTL 
approach, it was possible to identify several genes on SSC4 (ZNF704, IMPA1 and OXSR1) and SSC6 (IH1D1, 
SIGLEC10, TBCB, LOC100518735, KIF1B, LOC100514845) whose variation is concomitantly associated with 
gene expression and phenotype data30. Similarly, Ma et al.36 used a genetical genomics approach to demonstrate 
that a splice mutation in the PHKG1 gene is the causal mutation for a glycolytic potential QTL mapping to SSC3.

We have used this integrative strategy to identify potential candidate genes for meat quality traits in a dataset 
of 12 loci that mapped to GM QTL regions (Analysis 1). In doing so, we have detected 3 cis-eQTLs (Table 4) that 
co-localize with three chromosome-wide QTLs. One of them maps to SSC3 (16.6–17.06 Mb) and displays asso-
ciations with a* (Fig. 1a); while the other two are located on SSC17 (53.1–57.2; 64.5–65.3) and show significant 
associations with GM pH24 (Fig. 1b and c). Interestingly, two of the three cis-regulated genes encode lysosomal 
enzymes, i.e. cathepsin A (CTSA) and glucuronidase β​ (GUSB), that might be released during the post-mortem 
maturation of meat37,38. Cathepsin A is a lysosomal serine protease that can also protect galactosidase β​ from 
intralysosomal proteolysis38, while glucuronidase β​ is mainly involved in the degradation of glycosaminogly-
cans39. Interestingly, there are evidences that galactosidase β​ and glucuronidase β​ might affect the degradation of 
the collagen mucopolysaccharide, thus having a potential impact on meat ultrastructural properties40.

In Analysis 2, we have identified three additional cis-eQTL that map near to the SSC3 QTL for a* and the 
SSC17 QTL for pH24 (Table 5). The ADCY3 locus, that co-localizes with the SSC3 QTL for GM a* (Fig. 2a), 
encodes an adenylate cyclase catalysing the conversion of ATP into cyclic adenosine-3′​,5′​-monophosphate 
(cAMP), a secondary messenger that can have broad effects on muscle metabolism41. Indeed, AMPc is an activa-
tor of the cAMP-dependent protein kinase, a molecule involved in the phosphorylation of enzymes that promote 
the conversion of glycogen into glucose41. Noteworthy, the amount of glycogen stored in the muscle determines 
the post-mortem production of lactic acid, a molecule that has strong effects on meat color. Another eQTL of 
interest is the one influencing the mRNA levels of the secretory leukocyte peptidase inhibitor (SLPI) gene. This 
cis-eQTL co-localizes with the SSC17 QTL for GM pH24 (Fig. 2b). The SLP1 gene encodes a serine-protease that 
inhibits protein-degrading enzymes with strong effects on meat tenderization i.e. when the skeletal muscle is 
being degraded and transformed into meat, SLPI attenuates muscle proteolysis by binding to proteases and ren-
dering them inactive42. Finally, the co-localization of the IGKC cis-eQTL and the SSC3 QTL for a* (Fig. 2c) does 
not have an obvious biological interpretation because this gene is mainly related with humoral immunity.

Conclusions
We have detected genome-wide and chromosome-wide significant QTL for meat quality traits recorded in a 
Duroc commercial line with a population size that was moderate but comparable to the ones used in other por-
cine GWAS43–45. The limited positional concordance between the set of QTL detected by us and those reported 
by other authors in purebred populations suggests the existence of a significant amount of genetic heterogeneity 

QTLs Genes Cis-eQTLs

Trait SSC
Location 

(Mb) Names SSC
Location 

(Mb) SSC N SNPs
Location 

(Mb) P-value q-value B δ ± SE A1 MAF

GM a* 3 16.6–17.0 GUSB 3 16.9 3 3 ALGA0104024 16.4–17.6 1.60E-03 0.02 0.04 0.28 ±​ 0.09 A 0.46

GM pH24 17
53.1–57.2 CTSA

17
53.7

17
1 ALGA0095491 53.7 1.91E-05 6.11E-04 6.11E-04 −​0.37 ±​ 0.08 G 0.25

64.5–65.3 FAM210B 64.0 16 ALGA0096195 64.1–65.7 4.53E-11 1.99E-09 1.99E-09 −​0.53 ±​ 0.07 G 0.22

Table 4.   List of significant cis-eQTLs mapping within QTL regions for gluteus medius meat quality traits. 
a*: Minolta redness, pH24: pH at 24 hours post-mortem, N: number of significant SNPs, SNP: marker displaying 
the most significant association with the trait under study, Location (Mb): region containing SNPs significantly 
associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated with a false 
discovery rate approach, B: P-value corrected for multiple testing with the Bonferroni method, δ: allelic effect 
and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele.

QTLs Genes Cis-eQTLs

Traits SSC
Location 

(Mb) Names SSC
Location 

(Mb) SSC N SNPs
Location 

(Mb) P-value q-value B δ ± SE A1 MAF

GM a* 3
50.2–57.2 IGKC

3
59.8

3
20 ALGA0019294 58.0–61.9 7.54E-11 4.60E-07 2.15E-06 −​1.6 ±​ 0.22 A 0.19

120.0–120.4 ADCY3 121.1–121.2 3 ALGA0103469 120.0–121.9 2.28E-06 0.05 0.06 −​0.83 ±​ 0.17 A 0.08

GM pH24 17 53.1–57.2 SLPI 17 53.1 17 16 ALGA0095584 52.3–55.9 6.00E-08 3.48E-04 1.64E-03 2.30 ±​ 0.40 A 0.13

Table 5.   List of significant cis-eQTLs mapping close to QTL regions for gluteus medius meat quality traits.  
a*: Minolta redness, pH24: pH at 24 hours post-mortem, N: number of significant SNPs, SNPs: marker 
displaying the most significant association with the trait under study, Location (Mb): region containing SNPs 
significantly associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated with 
a false discovery rate approach, B: P-value corrected for multiple testing with the Bonferroni method, δ: allelic 
effect and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele.
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Figure 1.  Cis-eQTL (left panel) for the GUSB (1a), CTSA (1b) and FAM210B (1c) genes which map to QTL 
regions associated with meat quality traits recorded in the gluteus medius muscle (right panel). The x-axis 
represents chromosome length (Mb), and the y-axis shows the −​log10 (P-value) of the associations found. The 
horizontal line indicates the threshold of significance (q-value ≤​ 0.05). The vertical line depicts the genomic 
location of the GUSB, CTSA and FAM210B genes.
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Figure 2.  Co-localization of cis-eQTL (left panel) for the ADCY3 (2a), SLP1 (2b) and IGKC (2c) genes and QTL 
for meat quality traits recorded in the gluteus medius muscle (right panel). The x-axis represents chromosome 
length (Mb), and the y-axis shows the –log10 (P-value) of the associations found. The horizontal line indicates 
the threshold of significance (q-value ≤​ 0.05). The vertical line depicts the genomic location of the ADCY3, SLP1 
and IGKC genes.
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for meat quality traits in porcine breeds. We have found remarkable differences between the QTL maps for the 
LD and GM muscles, suggesting that meat quality is determined to a great extent by genetic factors that are 
muscle-specific. Finally, we have observed a number of cis-eQTL that co-localize with meat quality QTL regions. 
Several of these cis-eQTL regulate the expression of genes which may play important roles in muscle physiology 
and post-mortem meat maturation. Sequencing of the regulatory regions of these loci might be useful to uncover 
the identity of the causal mutations explaining the existence of these QTLs.
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Abstract  

 

Background 

Intramuscular fat (IMF) content and composition have a strong impact on the nutritional and 

organoleptic properties of porcine meat. Performance of genome-wide association studies 

(GWAS) has contributed to dissect the genomic basis of these traits and to identify mutations 

with causal effects. The goal of the current work was to investigate the genomic architecture of 

IMF traits in pigs.     

Results 

By performing a GWAS for 54 IMF content and composition traits, recorded in the longissimus 

dorsi (LD) and gluteus medius (GM) muscles of 350 Duroc pigs (Lipgen population), we have 

identified 37 genome-wide and 83 chromosome-wide QTL. Importantly, we have observed a low 

positional concordance between QTL detected for traits recorded in the GM and LD muscles (≈

85% of the QTL happened to be muscle-specific). We have also investigated if QTL regions 

contain expression QTL (eQTL) with either cis- or trans-regulatory effects on mRNA levels 

estimated with microarrays (N=104). Such analysis made evident the co-localization of QTL for 

IMF traits and cis-eQTL affecting the expression of 20 loci. By using microarray data, we have 

also shown that SNPs mapping to QTLs distributed on 8 chromosome regions trans-regulate the 

expression levels of 103 loci. 
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Conclusions 

The low positional concordance of QTL detected in the GM and LD muscles may have practical 

implications in the framework of genomic selection schemes aimed to improve IMF content and 

composition traits. Indeed, our results suggest that such selection may have heterogeneous 

consequences depending on the muscle under consideration (unless SNPs with consistent effects 

across muscles are selected as markers). We have also observed the existence of a substantial 

number of co-localizations between IMF QTL and cis- and trans-eQTL regulating gene 

expression. Further research will be needed to ascertain if such co-localizations are fortuitous or 

if they reflect the existence of causal mutations with regulatory effects on the expression levels 

of lipid-related genes as well as on the phenotypic variation of intramuscular fat phenotypes. 

 

Keywords: Intramuscular fat, fatty acid, genome-wide association analysis, GWAS, Duroc pig, 

gene expression.   
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Background 

 

Intramuscular fat (IMF) content and composition have important effects on the oxidative 

stability, tenderness and juiciness of pig meat [1]. These traits are moderately heritable and, in 

consequence, they can be improved through artificial selection [2]. Many genome scans have 

been carried out in pigs to identify quantitative trait loci (QTL) with effects on IMF phenotypes 

[3]. These studies have revealed that all porcine chromosomes harbour at least one IMF QTL, 

and that there are IMF QTL hotspots on chromosomes 4, 6 and 7 [3]. Recently, several genome-

wide association studies (GWAS) for IMF traits have been performed in divergent crosses and 

purebred pig populations [4–10], thus providing a comprehensive and high resolution picture 

about the genetic basis of such phenotypes.  

Genome-wide association studies performed in humans evidence that most regions 

displaying significant associations with phenotypes do not encode proteins, suggesting that the 

majority of causal mutations may have regulatory effects [11]. In pigs, multiple genome scans for 

expression QTL (eQTL) have been carried out as a strategy to elucidate the genomic architecture 

of traits of economic interest [12–16]. In this way, hundreds of eQTL associated with muscle 

gene expression phenotypes have been identified, and several of them have been shown to co-

localize with QTL for fatness traits [6,15,17,18]. In a previous study, 80 positional concordances 

between 14 cis-acting and 66 trans-acting eQTL and IMF QTL were detected [15]. Amongst 

them, five IMF QTL showed positional concordance with eQTL regulating the expression of 

genes involved in lipid metabolism and adipose function. The goal of the current work was to 

identify quantitative trait loci (QTL) for IMF content and composition traits in the gluteus 
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medius (GM) and longissimus dorsi (LD) muscles of Duroc pigs with the aim of ascertaining 

their levels of positional concordance. Moreover, we have investigated the co-localization of 

IMF QTL with SNPs regulating gene expression, either in cis- or in trans-. The identification of 

such co-localizations might be considered as a first step towards detecting regulatory mutations 

with causal effects on IMF traits.    

 

Methods 

 

Animal material and phenotype recording 

 

Phenotypes were recorded in 350 barrows from a commercial Duroc line (Lipgen 

population) generated by crossing 5 boars with 400 sows. After weaning, this pig population was 

transferred to the experimental test station at the Centre de Control Porcí (CCP) of the Institut de 

Recerca i Tecnologia Agroalimentàries (IRTA). A detailed description of the experimental 

population and management conditions can be found in Gallardo et al. [19,20]. Pigs were 

slaughtered at an approximate age of 190 days and a live weight of 122 kg. A near infrared 

transmittance device (NIT, Infratec 1625, Tecator Hoganas, Sweden) was used to determine IMF 

content in the GM and LD muscles. The measurement of fatty acid (FA) composition (C:12 to 

C:22 range) in the GM and LD muscles was achieved with a technique based on the gas 

chromatography of methyl esters [21]. A complete list of the IMF content and composition traits 

measured in the current experiment is shown in Supplementary Table 1. 
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High throughput genotyping with the Porcine SNP60 BeadChip 

 

Genotyping of the 350 Duroc pigs was achieved with the Porcine SNP60 BeadChip 

(Illumina, SanDiego, CA) which contains probes for 62,163 SNPs. Analyses related with the 

quality of the genotyping results were performed with the GenomeStudio software (Illumina). By 

using PLINK [22], we filtered SNPs with minor allele frequencies (MAF) below 5%, rates of 

missing genotypes above 10% or showing highly significant departures from the Hardy-

Weinberg expectation (threshold set at a P-value of 0.001). We also excluded SNPs that did not 

map to the porcine reference genome (Sscrofa10.2 assembly) and those located in sexual 

chromosomes. After these filtering steps, we obtained a subset of 36,710 SNPs that were used as 

markers in the GWAS analysis.  

 

Microarray analyses of gene expression in the gluteus medius muscle 

 

GeneChip Porcine Genomic arrays (Affymetrix, Inc., Santa Clara, CA) were used to 

measure gene expression in GM samples from 104 Duroc pigs (data are available in the Gene 

Expression Omnibus public repository of the National Center for Biotechnology Information, 

accession number: GSE19275). A detailed description of the techniques and methods used to 

perform RNA purification and microarray hybridization can be found in Canovas et al. [23]. 

Briefly, GM muscle samples were pulverized with a mortar and a pestle in liquid nitrogen and 

homogenized with a polytron device. Total RNA was isolated with an acid phenol protocol
 
[24] 

and the One Cycle cDNA Synthesis Kit (Affymetrix, Inc.) was employed to synthesize double 
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stranded cDNA. cRNAs were purified with the GeneChip Sample Cleanup Module (Affymetrix, 

Inc.), fragmented and added to a hybridisation mixture. GeneChip Porcine Genome Arrays were 

prehybridised with 1× hybridisation buffer at 45 °C for 10 min
 
[23]. Subsequently, the arrays 

were hybridized with the mixture containing cRNAs at 45 °C for 16 hours. GeneChips were 

washed and labelled with streptavidin phycoerythrin in a Fluidics Station 450 (Affymetrix, Inc) 

and they were scanned in an Agilent G3000 GeneArray Scanner (Agilent Technologies, Inc.). 

The "Affy" and "Sympleaffy" tools of the Bioconductor project [25] were used to establish a set 

of quality control metrics to evaluate RNA quality and the efficiencies of the labelling and 

hybridisation steps. Data pre-processing and normalization were carried out with the BRB-

ArrayTools software version 3.7.1 [26]. Genes displaying more than 20% of expression values 

over ±1.5 times the median expression of all arrays were retained for further analysis. Official 

gene names and positions of each probe included in the GeneChip Porcine Genomic array 

(Affymetrix, Inc., Santa Clara, CA) were identified in the BioMart database [27, 28] 

 

 

 

 

 

Statistical analyses 

Identification of QTL for intramuscular fat content and composition traits 

 

Statistical methods employed in the current work have been previously reported in 

Gonzalez-Prendes et al. [29]. In this way, mixed-model association analyses were carried out 
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with the Genome-wide Efficient Mixed-Model Association (GEMMA) software, developed by 

Zhou and Stephens [30]. This method corrects population structure by considering the 

relatedness matrix, built on the basis of all genome-wide SNPs as a random effect. We used the 

following statistical model to analyze IMF content and composition traits: 

  

y = Wα + xβ + Zu + ε 

 

where y is the vector of trait values for all individuals; W is a matrix of fixed effects (“batch 

of fattening” with 4 categories) and covariates that depend on the trait: (1) IMF content in GM 

(for fatty acid traits measured in the GM muscle), (2) IMF content in LD (for fatty acid traits 

measured in the LD muscle), (3) backfat thickness (for IMF content measured in GM and LD); 

α is a vector of the corresponding coefficients including the intercept; x is a vector of marker 

genotypes; β is the effect size of the marker; u is a vector of random individual effects with a n-

dimensional multivariate normal distribution MVNn (0, λ τ 
−1

 K), where τ−1
 is the variance of 

the residual errors; λ is the ratio between the two variance components and K is a known 

relatedness matrix derived from SNPs; and ε is a vector of errors. The statistical relevance of 

the systematic environmental sources of variation and the covariates were previously 

corroborated by Gallardo et al. [19] and Casellas et al. [31]. The proportion of phenotypic 

variance explained by the 36,710 SNPs (i.e. “chip heritability”) was calculated as follows: 

 

 22

2

2

eg

g

snp
+

=h
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where 2

g  is the additive variance calculated from markers and 2

e  is the residual variance. 

Correction for multiple testing was implemented with the false discovery rate (FDR) approach of 

Benjamini and Hochberg [32]. 

 

Co-localization between expression QTL and QTL for intramuscular fat traits  

 

We performed a genome scan to identify potential cis-eQTL regulating the expression of 66 

genes mapping to QTL determining IMF traits recorded in the GM muscle by using a previously 

reported methodology [29]. For the QTL regions with only one significant SNP, we selected 

genes located ±1 Mb around it. By using microarray data, we also investigated if SNPs located 

within GM IMF QTL regions affect in trans- the expression of 2,974 genes expressed in the GM 

muscle.  

 

y = Wα + xβ + Zu + ε 

where y is the vector of trait values for all individuals; W is a matrix of covariates i.e. ”batch 

of fattening” (with 4 categories) and “laboratory” (microarray data were generated in two 

different laboratories); α is a vector of the corresponding coefficients including the intercept; x 

is a vector of genotypes of a marker; β is the effect size of the marker; u is a vector of random 

individual effects with a n-dimensional multivariate normal distribution MVNn (0, λ τ 
−1

 K), 

where τ−1
 is the variance of the residual errors; λ is the ratio between the two variance 

components and K is a known relatedness matrix derived from SNPs; and ε is a vector of 
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errors. Correction for multiple testing was implemented with the FDR approach mentioned 

before [32]. As previously reported [29], the threshold of significance in the analysis of cis-eQTL 

was based on the number of SNPs contained within 2 Mb windows (i.e. ± 1 Mb around the 

analysed gene), while in the trans-eQTL analysis we took into account the whole set of SNPs 

mapping to QTL regions (459 SNPs).  

 

Results 

 

The description of the IMF content and composition phenotypes analyzed in the current 

work and the percentage of phenotypic variance explained by the 36,710 SNPs (h
2

snp) can be 

found in Supplementary Table 1 and Table 1, respectively. The h
2

snp values ranged between 

0.00-0.46 and 0.00-0.51 for GM and LD traits, respectively. Substantial discrepancies in the 

magnitudes of h
2

snp estimates corresponding to LD and GM traits were observed, a feature that 

suggests the existence of muscle-specific differences in the genetic determinism of IMF content 

and composition traits. For instance, h
2

snp values for omega-6 to -3 ratio (LD = 0.07, GM = 0.12), 

palmitic (LD = 0.13, GM = 0.26), and unsaturated (LD = 0.14, GM = 0.37) FA were clearly 

different in both muscles.  
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Table 1. Proportion of the phenotypic variance (and its standard error) of intramuscular fat 

content and composition traits explained by the 36,710 SNP markers analysed in the current 

work.  

 

 

Phenotype (%) Symbol 

longissimus dorsi 
muscle 

gluteus medius 
muscle 

h2
snp ± SE h2

snp  ± SE 

Intramuscular fat IMF 0.51 ± 0.10 0.46 ± 0.09 

Saturated FA SFA 0.14 ± 0.07 0.37 ± 0.12 

Capric C10:0 0.03 ± 0.05 0.06 ± 0.06 

Lauric C12:0 0.08 ± 0.09 0.00 ± 0.00 

Myristic C14:0 0.20 ± 0.09 0.00 ± 0.03 

Palmitic C16:0 0.13 ± 0.06 0.26 ± 0.12 

Margaric C17:0 0.14 ± 0.08 0.05 ± 0.05 

Stearic C18:0 0.26 ± 0.12 0.29 ± 0.10 

Arachidic C20:0 0.00 ± 0.06 0.02 ± 0.07 

Unsaturated FA UFA 0.14 ± 0.07 0.37 ± 0.12 

Monounsaturated FA MUFA 0.03 ± 0.05 0.00 ± 0.04 

Palmitoleic C16:1(n-7) 0.20 ± 0.08 0.25 ± 0.08 

Palmitelaidic C16:1(n-9) 0.35 ± 0.11 0.18 ± 0.10 

Heptadecenoic C17:1 0.12 ± 0.07 0.15 ± 0.07 

Oleic C18:1(n-9) 0.05 ± 0.05 0.00 ± 0.04 

Gondoic C20:1 0.02 ± 0.05 0.12 ± 0.10 

Polyunsaturated FA PUFA 0.00 ± 0.04 0.01 ± 0.03 

Linoleic C18:2 0.00 ± 0.03 0.01 ± 0.04 

α-Linolenic C18:3 (n-3) 0.10 ± 0.06 0.05 ± 0.05 

Eicosadienoic C20:2 (n-6) 0.07 ± 0.06 0.01 ± 0.05 

Eicosatrienoic C20:3 (n-3) 0.00 ± 0.04 0.02 ± 0.04 

Arachidonic C20:4 0.00 ± 0.03 0.00 ± 0.03 

Eicosapentaenoic C20:5 0.00 ± 0.00 0.04 ± 0.05 

Docosahexaenoic C22:6 0.00 ± 0.03 0.00 ± 0.03 

Omega-3 FA FA n-3 0.00 ± 0.05 0.06 ± 0.05 

Omega-6 FA FA n-6 0.00 ± 0.04 0.00 ± 0.03 

Omega-6 to -3 ratio n-6/n-3 0.07 ± 0.07 0.12 ± 0.10 

https://en.wikipedia.org/wiki/Lauric_acid
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Performance of a GWAS revealed the existence of 37 QTL displaying genome-wide 

significant associations with IMF phenotypes under study (Table 2). Besides, we also detected 

83 chromosome-wide significant associations (Supplementary Table 2). Pig chromosomes 

SSC2 (9-11 Mb), SSC4 (63.9-64 Mb), SSC5 (71-79 Mb) and SSC14 (87-99 Mb, 120-124 Mb) 

harboured the majority of significant QTL for muscle FA composition traits (Table 2, 

Supplementary Table 2), and such statement was particularly true for the SSC14 (120-124 Mb) 

region which was associated with multiple traits both in the GM and LD muscles (Figure 1). In 

general, there was a lack of positional concordance between GWAS signals detected for traits 

recorded in the LD and GM muscles (Figure 2). Indeed, when we considered the whole set of 

genome-wide and chromosome-wide significant associations, around 85% IMF QTL happened 

to be muscle-specific. It should be taken into account, however, that there were positional 

coincidences for QTL regulating different but related traits in both muscles. For instance, two 

QTL on SSC4 (63.9 Mb) and SSC14 (87.8-87.9 Mb) were associated with stearic (C18:0) 

content in the GM muscle and oleic (C18:1) percentage in the LD muscle. Similarly, one QTL on 

SSC14 (93.7-94.9 Mb) was associated with stearic in the GM muscle and with saturated and 

unsaturated FA content in the LD muscle. 
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Table 2. Genome-wide QTL for intramuscular fat content and composition traits recorded in the 

gluteus medius (GM) and longissimus dorsi (LD) muscles of Duroc pigs. 

Majority FA (gluteus medius) 

Traits SSC N SNP Region(Mb) P-value q-value B  ± SE A1 MAF 

GM C16:0 5 
8 ALGA0033025  71.7-79.8 0.00  0.03  0.17  -0.75 ± 0.16  A 0.12  

4 INRA0020052  80.0-80.1 0.00  0.03  0.17  -0.75 ± 0.16  G 0.12  

GM C18:0 

4 3 DIAS0001351  63.9 0.00  0.00  0.04  -0.55 ± 0.11  G 0.29  

14 

4 ASGA0063465  58.6-59.4 0.00  0.03  1.00  -0.44 ± 0.11  A 0.23  

9 ALGA0078300  65.5-67.9 0.00  0.01  0.41  -0.48 ± 0.11  A 0.23  

5 ALGA0079209  87.8-87.9 0.00  0.01  0.62  0.43 ± 0.09  A 0.48  

3 ASGA0064951  92.9-97.0 0.00  0.01  0.60  0.46 ± 0.09  G 0.41  

43 ALGA0081091 120.4-124.4 0.00  0.00  0.00  -0.63 ± 0.10  C 0.35  

GM C18:1 

(n-9) 
14 19 ALGA0081091 120.9-122.4 0.00  0.02  0.26  0.13 ± 0.03  C 0.35  

GM SFA 
4 3 DIAS0001351  63.9 0.00  0.04  1.00  -0.81 ± 0.19  G 0.29  

14 38 ALGA0081091 120.9-123.8 0.00  0.01  0.11  -0.87 ± 0.18  C 0.35  

GM UFA 
4 3 DIAS0001351  63.9 0.00  0.04  1.00  0.81 ± 0.19  G 0.29  

14 38 ALGA0081091 120.9-123.8 0.00  0.01  0.11  0.87 ± 0.18  C 0.35  

Majority FA (longissimus dorsi) 

LD C18:0 14 
2 CASI0010207  93.7 0.00  0.04  1.00  0.47 ± 0.11  A 0.41  

40 ALGA0081091 120.4-123.4 0.00  0.00  0.01  -0.62 ± 0.10  C 0.35  

LD C18:1 

(n-9) 

4 
3 MARC0050687  63.9 0.00  0.00  0.05  0.17 ± 0.03  C 0.29  

2 MARC0071018 134.9 0.00  0.04  1.00  -0.12 ± 0.03  G 0.32  

10 1 ALGA0057858  27.0 0.00  0.01  0.61  0.20 ± 0.05  G 0.11  

14 

4 ALGA0079221  87.8-87.9 0.00  0.03  1.00  -0.13 ± 0.03  A 0.45  

44 ALGA0081091 120.4-124.3 0.00  0.00  0.00  0.18 ± 0.03  C 0.35  

6 ALGA0082693 144.7-148.1 0.00  0.00  0.16  -0.13 ± 0.03  C 0.46  

LD SFA 

12 1 ALGA0110494  42.0 0.00  0.04  1.00  0.81 ± 0.18  A 0.31  

14 
6 ASGA0064951  93.2-94.9 0.00  0.03  0.99  0.81 ± 0.17  G 0.41  

37 ALGA0081091 120.4-123.4 0.00  0.00  0.05  -0.95 ± 0.19  C 0.35  

LD UFA 

12 1 ALGA0110494  42.0 0.00  0.05  1.00  -0.80 ± 0.18  A 0.31  

14 
1 ASGA0064951  94.9 0.00  0.04  1.00  -0.80 ± 0.17  G 0.41  

35 ALGA0081091 120.4-123.4 0.00  0.00  0.06  0.94 ± 0.19  C 0.35  
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Minority FA (gluteus medius) 

Traits SSC N SNP Region (Mb) P-value q-value B  ± SE A1 MAF 

GM C10:0 12 2 DRGA0011702  31.4-31.6 0.00  0.04  0.06  -0.04 ± 0.01  G 0.13  

GM C20:3 

(n-3) 

9 1 ALGA0121521   9.3 0.00  0.05  0.41  0.11 ± 0.03  A 0.07  

18 8 ASGA0097792  43.2-46.7 0.00  0.01  0.02  0.12 ± 0.02  G 0.07  

Minority FA (longissimus dorsi) 

LD C14:0 9 32 M1GA0026515  11.5-14.5 0.00  0.02  0.28  0.09 ± 0.02  G 0.41  

LD C16:1 

(n-9) 

2 7 H3GA0006290  23.8-24.3 0.00  0.01  0.03  -0.02 ± 0.01  G 0.25  

6 2 ASGA0087502  80.1 0.00  0.03  0.22  -0.02 ± 0.00  G 0.33  

12 1 ASGA0053255  13.6 0.00  0.04  0.39  -0.02 ± 0.00  G 0.48  

LD C17:0 

2 10 MARC0050503  10.1-11.1 0.00  0.00  0.00  -0.03 ± 0.01  G 0.30  

9 1 ASGA0009038 139.3 0.00  0.02  0.06  -0.03 ± 0.01  G 0.43  

17 1 INRA0052734  14.8 0.00  0.04  0.48  -0.03 ± 0.01  G 0.20  
1
SSC: porcine chromosome, N: Number of SNPs significantly associated with the trait under study, SNP: SNP 

displaying the most significant association with the trait under study, Region (Mb): region containing SNPs 

significantly associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated with a false 

discovery rate approach, B: Bonferroni corrected P-values, : allelic effect and its standard error (SE), A1: minority 

allele, MAF: frequency of the minority allele. 
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Figure 1. Manhattan plot of a genomic region on pig chromosome 14 (120-124 Mb) displaying pleiotropic genome-wide significant associations with C18:0, 

C18:1(n-9), unsaturated (UFA) and saturated (SFA) fatty acids contents in the gluteus medius (GM) and longissimus dorsi (LD) muscles of Duroc pigs. The x-axis 

represents the chromosomal region (Mb) containing the QTL and the y-axis shows the –log10 (P-value) of the reported associations. The horizontal line indicates the 

threshold of significance (q-value ≤ 0.05). 
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Figure 2. Comparison of the Manhattan plots of C14:0, C17:0, C16:0 and C20:3(n-3) fatty acid traits recorded in the (a) gluteus medius (GM) and (b) longissimus 

dorsi (LD) muscles of Duroc pigs. It can be observed that none of these 4 QTL affects IMF composition in both muscles. The x-axis represents the chromosomal 

region (Mb) containing the QTL and the y-axis shows the –log10 (P-value) of the reported associations. The horizontal line indicates the threshold of significance (q-

value ≤ 0.05). 
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Performance of an eQTL scan for 66 genes, located within GM QTL regions and with 

available microarray measurements of gene expression, made possible to identify 20 cis-eQTL 

regulating the expression of 20 loci (Table 3, Figure 3). As shown in Table 3, chromosome 14 

encompassed the majority of these cis-eQTL, which regulated 9 genes co-localizing with three 

GM C18:0 QTL at 6.1-7.6 Mb (FAM160B2 and POLR3D), 56.2-59.8 Mb (LGALS8 and LYST) 

and 64.8 Mb (RAB4A), and one GM C16:1 (n-7) QTL at 143.4 Mb (PSTK). The remaining three 

cis-regulated genes (BLOC1S2, COX15 and KCNIP2) co-localized with the SSC14 (120-124 

Mb) region displaying pleiotropic effects on muscle FA composition. We also identified cis-

regulated genes mapping to QTL on SSC4, SSC5, SSC6, SSC9, SSC12, SSC13 and SSC18 

(Table 3). Finally, an eQTL scan based on microarray data allowed us identifying ≈ 116 trans-

eQTL regulating the expression of 103 genes located in multiple genomic regions 

(Supplementary Table 3).  
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Table 3. List of the co-localizations between QTL for IMF traits recorded in the gluteus medius (GM) muscle and cis-eQTL regulating 

the mRNA levels of genes expressed in the GM muscle and mapping to QTL regions.   

Cis-eQTLs GM QTLs Genes 

SSC N SNPs Region (Mb) P-value q-value B δ±SE A1 MAF Traits Region (Mb) Names Region (Mb) 

4 
12 ALGA0026676 98.1-99.6 0.00 0.00 0.00 -0.50±0.06 G 0.48 

C20:4 99.0-99.0 
PEX19 98.0 

12 ASGA0020832 98.1-99.1 0.00 0.00 0.00 0.76 ±0.12 G 0.40 ATP1A2 98.2-98.3 

5 
1 ALGA0032768 72.9 0.00 0.05 0.05 0.29 ±0.11 A 0.22 

C14:0; C16:0; C18:2; FA n-6;PUFA 71.7-80.1 
BID 72.1 

13 MARC0048694 75.7-77.7 0.00 0.01 0.01 0.39 ±0.11 A 0.19 ZCRB1 76.4 

6 
17 ASGA0028321 62.1-63.9 0.00 0.00 0.00 0.64 ±0.12 C 0.37 

C17:0 
63.3-63.5 SLC25A33 64.1 

10 ALGA0037549 146.2-147.9 0.00 0.00 0.00 0.43 ±0.07 G 0.26 146.8-146.8 TTC4 145.6-145.7 

9 14 ASGA0041324 8.0-9.3 0.00 0.00 0.00 0.51 ±0.08 G 0.35 C20:3 (n-3) 9.3-9.3 PLEKHB1 8.8 

12 14 ALGA0120489 26.3-27.9 0.01 0.02 0.30 -0.31±0.13 G 0.14 C10:0 26.8-27.4 NME1 27.4-27.5 

13 
8 ALGA0067450 2.0-3.8 0.00 0.00 0.00 0.41 ±0.07 G 0.31 C20:3 (n-3) 2.2- 2.2 SH3BP5 2.4-2.5 

2 ASGA0095016 214.0-215.8 0.00 0.01 0.01 -0.35±0.10 A 0.16 C17:0 214.6-214.6 SLC37A1 216.2-216.3 

14 

5 ALGA0081104 121.4-121.9 0.00 0.00 0.00 0.34 ±0.08 G 0.14 
C16:1 (n-7); C18:0; C18:1 (n-9); SFA; UFA 120.2-125.9 

BLOC1S2 120.8-120.9 

17 MARC0043866 118.3-121.5 0.00 0.00 0.00 0.42 ±0.07 G 0.49 COX15 120.3 

20 DIAS0001040 6.1-7.5 0.00 0.00 0.00 -0.34±0.06 A 0.37 C18:0 7.5- 7.5 FAM160B2 6.7-6.8 

10 ASGA0066137 122.0-123.8 0.01 0.01 0.07 0.24 ±0.09 G 0.30 C16:1 (n-7);C18:0; C18:1 (n-9);SFA; UFA 120.4-124.3 KCNIP2 122.7 

14 ASGA0063513 56.2-59.8 0.00 0.00 0.00 0.68 ±0.08 G 0.37 

C18:0 
55.5-59.4 

LGALS8 58.8-59.6 

1 M1GA0018688 59.4-59.4 0.00 0.03 0.03 0.24 ±0.08 C 0.45 LYST 59.5-59.6 

25 H3GA0038597 6.1-7.6 0.00 0.00 0.00 0.73 ±0.07 G 0.38 7.5- 7.5 POLR3D 6.9 

1 H3GA0042863 143.4 0.00 0.04 0.04 -0.29±0.09 C 0.24 C16:1 (n-7) 143.0-144.4 PSTK 144.1 

1 ALGA0078128 64.8 0.00 0.03 0.03 0.30 ±0.09 G 0.13 C18:0 64.7-68.2 RAB4A 65.3 

18 18 ASGA0090003 46.1-47.7 0.00 0.01 0.02 0.29 ±0.08 A 0.35 C20:3 (n-3) 40.2-46.7 FKBP14 47.2-47.3 
 

1SSC: porcine chromosome , N: number of SNPs significantly associated with the trait under study , SNP: SNP displaying the most significant association with the trait under study, Region (Mb): region 
containing SNPs significantly associated with the trait under study or gene position, P-value: nominal P-value, q-value: q-value calculated with a false discovery rate approach, B: Bonferroni-corrected P-

value, :allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele. 
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Figure 3. Co-localization of cis-eQTL (right panel) for the (a) LGALS8 and (b) KCNIP2 genes and two QTL regions 

(left panel) for gluteus medius (GM) C18:0 traits: (a) SSC14, 55-59 Mb, (b) SSC14, 120-124 Mb. The x-axis 

represents the chromosomal region (Mb) containing the co-localizing QTL and eQTL and the y-axis shows the –

log10 (P-value) of the reported associations. The horizontal line indicates the threshold of significance (q-value ≤ 

0.05). The vertical line depicts the genomic location of the LGALS8 and KCNIP2 genes.  
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Discussion 

 

A genome-wide association analysis reveals that four chromosomes harbour the main 

determinants of intramuscular fat composition in a Duroc line 

 

The amount of phenotypic variance explained by the SNPs contained in the Porcine SNP60 

BeadChip was quite modest (Table 1). For instance, h
2

snp values for C16:0, C18:0, C18:1(n-9) 

and C18:2 at LD and GM ranged from 0.00-0.26 and 0.00-0.29, respectively. In contrast, 

genealogic heritabilities estimated by Casellas et al. [31] for the same set of traits happened to be 

considerable higher i.e. 0.25-0.47 for LD and 0.32-0.44 for GM. These results suggest that part 

of the phenotypic variation of IMF-related traits is not captured by the set of Porcine SNP60 

BeadChip markers. The size of our resource population is modest, but similar to those employed 

in previously published studies [4,33,34]. Indeed, we were able to identify 37 QTL with genome-

wide significant effects on muscle FA composition (Table 2), and 83 QTL displaying 

chromosome-wide significant associations (Supplementary Table 2).  

Genomic regions on SSC2 (9-11 Mb), SSC4 (63.9-64 Mb), SSC5 (71-79 Mb) and SSC14 

(87-99 Mb, 120-124 Mb) were the ones that harboured the main determinants of muscle FA 

composition in our Duroc commercial line (Table 2, Supplementary Table 2). Most of these 

genetic determinants had pleiotropic effects on several FA traits. For instance, the SSC14 (120-

124 Mb) region displayed consistent and strong associations with saturated and unsaturated FA 

both in the GM and the LD muscles (Table 2, Figure 1). This SSC14 region has been also 

identified in previous GWAS studies as significantly associated with muscle FA composition 
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traits [5,8–10]. One SNP (g.2228T>C) at the promoter of the stearoyl-CoA desaturase (SCD) 

gene, which catalyses the D
9
-cis desaturation of a range of fatty acyl-CoA substrates [35] and 

maps to SSC14 (120.9 Mb), has been shown to be strongly associated with muscle stearic and 

oleic contents in Duroc pigs [36]. Interestingly, our data suggest the existence of additional 

determinants of FA composition on SSC14 i.e. those mapping to the 58.6-59.4 Mb, 65.5-67.9 

Mb, 87.8- 87.9 Mb and 92.9-97.0 Mb intervals (Table 2).  

    Besides SSC14, there were three additional chromosomes displaying significant associations 

with IMF composition traits. In SSC2, two continuous regions at 10.2-10.9 Mb (LD) and 11.1 

Mb (GM) were associated with C17:1 as well as with C17:0 at 9.4 Mb in the LD 

(Supplementary Table 2). In a previous report, Zhang et al. [8] described this region as 

associated with the LD C20:3n6/C18:2n6 and the C20:4n6/C20:3n6 ratios in Erhualian pigs. 

Moreover, they proposed the fatty acid desaturase 2 (FADS2) gene as a probable candidate locus 

to explain the associations found. We also detected a significant GWAS signal on SSC5 for GM 

polyunsaturated FA, and n-6, C14:0, C16:0 and C18:2 FA (71.7-79.8 Mb, Table 2, 

Supplementary Table 2). This region also displayed significant associations with C20:0 in the 

LD muscle of White Duroc × Erhualian F2 pigs [5]. Moreover, Ros-Freixedes et al. [10] found 

associations with polyunsaturated FA content recorded in the GM muscle of Duroc pigs in a 

SSC5 region (84-85 Mb) that lies close to the one reported by us. Finally, the SSC4 (63.9-64 Mb) 

region identified in our commercial Duroc line as associated with GM C18:0 and LD C18:1(n-9) 

contents has not been reported in previous studies, including the one using a closely related 

Duroc population [10].  

Other regions associated with majority and minority FA happened to be scattered throughout 
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porcine chromosomes SSC1, SSC3, SSC4, SSC5, SSC6, SSC7, SSC8, SSC9, SSC10, SSC11, 

SSC12, SSC13, SSC17 and SSC18 (Table 2, Supplementary Table 2). Most of these 

associations were less significant than the ones reported in the previous paragraph, affected only 

specific FA and showed a poor consistency across muscles (Figure 2). These results agree well 

with those of Quintanilla et al. [37], who evidenced the existence of substantial discrepancies 

between the QTL maps of FA traits recorded in the GM and LD muscles of Duroc pigs. They 

interpreted this finding as evidence of the existence of muscle-specific factors modulating the 

penetrance of causal polymorphisms with effects on FA composition [37]. Indeed, correlations 

between the FA composition of LD and GM muscles are moderate [37] and microarray analysis 

has demonstrated the existence of significant differences in the GM and LD expression of genes 

influencing cell differentiation, muscle development and function, and lipid metabolism (our 

unpublished results).  

 

Co-localization of QTL for IMF related traits and genes regulated by eQTL  

 

A proportion of the QTL detected by us could be explained by the existence of regulatory 

polymorphisms with causal effects on both gene expression and phenotypic variation. In 

consequence, we have investigated the existence of eQTL regulating gene expression in cis- and 

trans-. As shown in Table 3, we detected co-localizations between 20 cis-eQTL and 23 QTL for 

IMF traits (out of 45 GM QTL). Unexpectedly, we did not detect any cis-eQTL for the SCD gene 

despite the fact that a polymorphism in its promoter has been defined as the causal mutation 

explaining the SSC14 QTL for saturated and unsaturated FA [36]. Amongst the cis-regulated 
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genes, it is worth to highlight the peroxisomal biogenesis factor 19 (PEX19), which maps to a 

SSC4 region (98-99 Mb) with effects on C20:4 content (Table 3). Peroxisomes play an essential 

role in lipid catabolism and, more particularly, on the β-oxidation of long-chain and very-long-

chain FA [38]. Moreover, intramyocellular triacylglycerol content has been associated with 

peroxisomal biogenesis and PEX19 levels in skeletal muscle from lean and obese humans [39]. 

Another interesting candidate gene is KCNIP2, which encodes a potassium voltage-gated 

channel interacting protein 2 (Table 3 and Figure 3). Interestingly, the potassium two pore 

domain channel subfamily K member 10 (KCNK10) gene has been shown to play a critical role 

in adipocyte differentiation and the accumulation of triacylglycerols by controlling C/EBPβ and 

C/EBPδ expression and insulin signaling [40]. Several of the cis-regulated genes detected by us 

have been reported in previous studies as associated with meat quality traits. For instance, 

Fontanesi et al. [41] demonstrated the existence of an association between the polymorphism of 

the ATPase Na
+
/K

+
 transporting subunit α2 (ATP1A2) gene and backfat thickness in Italian Large 

White sows. Variability at the NME/NM23 nucleoside diphosphate kinase 1 (NME1) gene has 

been also associated with meat quality traits in pigs [42,43]. Moreover, the pleckstrin homology 

domain containing B1 (PLEKHB1) and zinc finger CCHC-type and RNA binding motif 

containing 1 (ZCRB1) genes are differentially expressed in the adipose tissue of pigs with 

distinct fatness profiles [44,45] and in pre- vs post-natal muscle samples [46], respectively.  

We also explored if the SNPs contained within GM QTL regions are associated with the 

expression of genes mapping to other genomic regions or chromosomes. In this way, we 

identified ≈ 116 trans-eQTL regulating the expression of 103 genes (Figure 4, Supplementary 

Table 3). Several of these genes are trans-regulated by two or more genetic determinants e.g. 
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MTMR1 (SSC14, 95.6-96.2 Mb; 143.3 Mb), PI4KA (SSC13, 2.2 Mb; SSC14, 55.5-59.5 Mb), 

RUSC2 (SSC13, 27 Mb ; SSC14, 93.4-96.2 Mb), ADAM9 (SSC13, 207 Mb; SSC18, 37 Mb and 

40.5-46.5 Mb), KRR1 (SSC5, 74.0-78.6 Mb ; SSC9, 9.3 Mb) and MTAP (SSC5, 78.5 Mb ; SSC9, 

9.3 Mb). In other cases, the existence of two trans-regulatory factors is less obvious because they 

map to adjacent regions and, in consequence, they could be considered as a single genetic 

determinant e.g. MGAT1 (SSC5, 76.5-78.6 Mb; 80 Mb) and DDX21 (SSC5, 77.2-77.7 Mb; 80.5 

Mb). On the other hand, we also detected several genomic region trans-regulating two or more 

genes e.g. SSC5 (76.5-78.6 Mb) which modulates the expression of YIPF1, MRPS33 and 

MGAT1 mRNAs, SSC14 (57.7 Mb) which affects RASIP1, PTOV1 and CH242-204P3.4 mRNA 

levels, and the ALGA0121521 SNP (SSC9, 9.3 Mb), associated with the expression of 23 

different loci. The high number of trans-eQTL co-localizing with GM QTL suggests that this 

could be an important source of variation of IMF traits, Indeed, several of the trans-regulated 

genes shown in Supplementary Table 3 have an important role in lipid metabolism e.g. 

apolipoprotein E (APOE) which plays a key role in the transportation and storage of lipids [47] 

and acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS), which catalyses the first step of 

the FA β-oxidation pathway [48].  
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Figure 4. Manhattan plots depicting trans-eQTL regulating the expression of the ATP binding cassette subfamily F 

member 1 (ABCF1), apolipoprotein E (APOE), collagen type VI α3 chain (COL6A3), helicase with zinc finger 

(HELZ), protein phosphatase 6 catalytic Subunit (PPP6C) and TBC1 domain family member 4 (TBC1D4) genes. 

The x-axis represents the chromosomal region (Mb) containing the eQTL and the y-axis shows the –log10 (P-value) 

of the reported associations. The horizontal line indicates the threshold of significance (q-value ≤ 0.05).  
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Conclusions 

 

 The low positional concordance of QTL detected in the GM and LD muscles may have 

practical implications in the framework of genomic selection schemes aimed to improve IMF 

content and composition traits. Indeed, our results suggest that such selection may have 

heterogeneous consequences depending on the muscle under consideration (unless SNPs with 

consistent effects across muscles are selected as markers). We have also observed the existence 

of a substantial amount of co-localizations between GM QTL and cis- and trans- eQTL 

regulating the expression of genes with potential effects on lipid metabolism. Further research 

will be needed to ascertain if such co-localizations are fortuitous or if they reflect the existence 

of causal mutations with regulatory effects on gene expression and phenotypic consequences.    
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Abstract 

 

A comprehensive and systematic view about the genetic regulation of lipid 

metabolism genes is still lacking in pigs. Herewith, we have investigated the genetic 

regulation of 63 porcine genes with crucial roles in the uptake, transport, synthesis and 

catabolism of lipids. With this aim, we have performed an expression QTL (eQTL) scan in 

104 pigs with available genotypes for the Illumina Porcine SNP60 BeadChip and microarray 

measurements of gene expression in the gluteus medius muscle. Analysis of the data with 

the GEMMA software revealed 13 cis- and 18 trans-eQTL modulating the expression of 19 

loci. Genes regulated by eQTL participated in a wide array of lipid metabolism pathways 

such as the β-oxidation of fatty acids, lipid biosynthesis and lipolysis, fatty acid activation 

and desaturation, lipoprotein uptake, apolipoprotein assembly and cholesterol trafficking. 

These data provide a first picture about the genetic regulation of loci involved in porcine 

lipid metabolism. 

 

Keywords: pigs, gluteus medius, muscle gene expression, quantitative trait loci, lipid 

metabolism 

 

 

 

 

 

The search of regulatory variants with causal effects on the expression of genes with 
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important metabolic roles is fundamental to elucidate the genetic basis of multiple 

physiological and pathological phenotypes (Nica & Dermitzakis 2013). In humans, 

thousands of expression QTL (eQTL)  have been detected so far (Nica & Dermitzakis 2013; 

GTEx Consortium 2015), and the majority of them appear to act locally (cis-eQTL) rather 

than influencing the expression of genes located at distant genomic regions or chromosomes 

(trans-eQTL). Moreover, around 50% of human cis-eQTL are shared across distinct tissues, 

though the consistency in the magnitude and the direction of these regulatory effects may be 

variable (GTEx Consortium 2015).  

The genetic regulation of lipid metabolism genes has been poorly studied in pigs in 

spite of the fact that it may have a potential impact on the phenotypic variation of fatness 

traits. Indeed, the majority of eQTL studies performed in pigs have targeted either genes 

whose expression correlates with lipid phenotypes or loci comprised within the confidence 

intervals of fatness quantitative trait loci (Wimmers et al. 2010; Steibel et al. 2011; Cánovas 

et al. 2012; Heidt et al. 2013; Manunza et al. 2014). At present, we do not know if porcine 

lipid genes are predominantly regulated in cis- or trans- and if such regulation is featured by 

single or multiple polymorphisms. The goal of the current work was to shed light into these 

issues by identifying eQTL with effects on the muscle expression of 63 genes with an 

established role in the uptake, transport, synthesis and catabolism of lipids.     

We used 104 barrows from a commercial Duroc porcine line (Lipgen population) 

distributed in five half-sib families. After weaning, this pig population was transferred to the 

experimental test station at the Centre de Control Porcí (CCP) of the Institut de Recerca i 

Tecnologia Agroalimentàries (IRTA). A detailed description of the experimental population 

and management conditions has been reported (Gallardo et al. 2008, 2009). Barrows were 
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slaughtered at an approximate age of 190 days. Gluteus medius (GM) muscle biopsies were 

obtained in the abattoir and they were immediately frozen in liquid nitrogen, being 

subsequently stored at -80 ºC. All animal care and management procedures followed the 

ARRIVE guidelines (Kilkenny et al. 2010) and they were approved by the Ethical 

Committee of the Institut de Recerca i Tecnologia Agroalimentàries (IRTA). 

GeneChip Porcine Genomic arrays (Affymetrix, Inc., Santa Clara, CA) were used to 

measure gene expression in gluteus medius samples from the 104 Duroc pigs mentioned 

above (data are available in the Gene Expression Omnibus public repository of the National 

Center for Biotechnology Information, accession number: GSE19275). Total RNA isolation 

and microarray hybridization procedures have been fully reported by González-Prendes et 

al. (2017). Microarray data were generated at two distinct laboratories (i.e. Vall d’Hebron 

University Hospital and Center for Research in Agricultural Genomics). Data pre-processing 

and normalization were carried out with the BRB-ArrayTools software version 3.7.1 (Xu et 

al. 2008). Genes displaying more than 20% of expression values over ± 1.5 times the 

median expression of all arrays were retained for further analysis (Cánovas et al. 2010). A 

detailed description of the techniques and methods used to perform RNA purification and 

microarray hybridization can be found in Cánovas et al. (2010). Finally, sixty three loci 

annotated in the Ensembl (S.scrofa 10.2) database and having a well established role in lipid 

metabolism (Supplementary Table 1) were selected for further analysis. 

 

The Porcine SNP60 BeadChip (Illumina, San Diego, CA) was employed to genotype 

62,163 single nucleotide polymorphisms (SNPs) in the 104 Duroc pigs by following a 

previously reported protocol (Manunza et al. 2014). Pig 60K genotypes have been deposited 
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in the Figshare public repository (https://dx.doi.org/10.6084/ m9.figshare.4263317). The 

GenomeStudio software (Illumina) was employed to evaluate the quality of the typing data. 

By using PLINK (Purcell et al. 2007), we discarded SNPs with rates of missing genotypes 

above 10%, minor allele frequencies (MAF) below 5%, as well as those that did not 

conform to Hardy-Weinberg expectations (threshold set at a P-value of 0.001). Markers that 

did not map to the porcine reference genome (Sscrofa10.2 assembly) and those located in 

sex chromosomes were also eliminated from the data set. We also eliminated SNPs that 

were in strong linkage disequilibrium (r
2
 > 0.98). After these filtering steps, a total of 28,571 

SNPs were used to carry out a GWAS analysis for gene expression phenotypes. 

Statistical analyses were performed with the GEMMA software (Zhou & Stephens 

2012) by using a previously reported methodology (González-Prendes et al. 2017) . The 

GEMMA software uses a standard linear mixed model and an exact test of significance to 

identify associations between genotypes and gene expression phenotypes. The existence of 

population structure was taken into account by considering a relatedness matrix (Zhou & 

Stephens 2012). The model assumed in the statistical analysis was:  

 

 

y = Wα + xβ + Zu + ε 

 

where y is the vector of trait values for all individuals; W is a matrix of covariates 

i.e. ”batch of fattening” (with 4 categories) and “laboratory” (microarray data were 

generated in two different laboratories); α is a vector of the corresponding coefficients 

including the intercept; x is a vector of genotypes of a marker; β is the effect size of the 

https://dx.doi.org/10.6084/%20m9.figshare.4263317
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marker; u is a vector of random individual effects with a n-dimensional multivariate normal 

distribution MVNn (0, λ τ 
−1

 K), where τ
−1

 is the variance of the residual errors; λ is the 

ratio between the two variance components and K is a known relatedness matrix derived 

from SNPs; and ε is a vector of errors. Correction for multiple testing was implemented with 

a false discovery rate approach (Benjamini & Hochberg 1995) and SNPs with a q-value ≤ 

0.05 were considered as significantly associated with gene expression. As previously 

reported (González-Prendes et al. 2017), in the analysis of cis-eQTL we corrected for 

multiple testing by taking into consideration the number of SNPs contained within 2 Mb 

windows around each gene, while in the trans-eQTL analysis we took into account the 

whole set of 28,571 SNPs.  

           The eQTL scan for lipid-related genes identified 13 cis-eQTL and 18 trans-eQTL 

influencing the mRNA levels of 19 loci (Tables 1 and 2, Supplementary Figure 1). As 

shown in Table 1, the two cis-eQTL detected for the ACOX3 (SSC8: 2.7-3.7 Mb and 4.4 

Mb) and NPC2 (SSC7: 102.5-103.1 Mb and 104.1-104.4 Mb) genes were located in 

adjacent positions and they might correspond to two genetic determinants (instead of 4). In a 

previous study, Chen et al. (2013) identified 120 cis-eQTLs and 523 trans-eQTLs with 

effects on porcine hepatic gene expression. However, they focused their study on a dataset 

of 300-400 genes that showed significant correlations with traits under study and their 

sample size was larger than ours.  



Chapter V. 

 

 

92 

 

Table 1. Cis-eQTLs regulating the expression of 11 genes involved in porcine lipid metabolism
1
.  

Genes Cis-eQTL 

Symbol SSC Location (Mb ) SSC N SNP Region (Mb) P-value q-value B  ± SE A1 MAF 

ACADS 14 43.1 14 34 MARC0094155 42.6-45.9 0.00 0.00 0.00 -0.62 ± 0.08 G 0.21 

ACOX3 8 4.3-4.4 8 
2 M1GA0025674 2.7-3.7 0.00 0.02 0.03 -0.34 ± 0.10 G 0.36 

1 ALGA0118448 4.4 0.00 0.00 0.00 -0.75 ± 0.18 G 0.08 

ACSF2 12 26.8 12 8 ALGA0065780 24.0- 26.9 0.00 0.00 0.00 0.85 ± 0.11 A 0.16 

CITED2 1 28.2 1 4 MARC0028659 26.5-27.4 0.01 0.02 0.07 0.27 ± 0.10 G 0.38 

HMGCS1 16 29.4 16 18 ALGA0089927 28.0-29.8 0.01 0.02 0.14 0.23 ± 0.07 A 0.35 

LRP6 5 63.5-63.6 5 20 ASGA0025668 62.2-63.8 0.00 0.02 0.13 0.42 ± 0.13 G 0.40 

LIPA 14 110.1 14 10 ASGA0065584 108.8-109.9 0.01 0.04 0.14 0.27 ± 0.11 A 0.19 

NCOA1 3 121.2-121.3 3 3 MARC0003746 120.0-120.4 0.00 0.02 0.05 -0.28 ± 0.08 G 0.27 

NPC2 7 103.5 7 
6 ALGA0043923 102.5-103.1 0.00 0.00 0.00 0.33 ± 0.07 G 0.26 

3 INRA0027651 104.1-104.4 0.00 0.01 0.04 0.28 ± 0.09 G 0.28 

SLC25A17 5 4.8 5 27 H3GA0015347 2.7-5.9 0.00 0.00 0.00 -0.79 ± 0.15 G 0.30 

VLDLR 1 245.0 1 1 ASGA0005756 244.9 0.00 0.04 0.04 -0.33 ± 0.13 G 0.20 
1
SSC: porcine chromosome, N: Number of SNPs significantly associated with traits under study, SNP: SNPs displaying the most 

significant associations with traits under study, Region (Mb): regions containing SNPs significantly associated with traits under study, 

P-value: nominal P-value, q-value: q-value calculated with a false discovery rate approach, B : Bonferroni-corrected P-value, : allelic 

effect and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele. 
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Table 2. Trans-eQTLs regulating the expression of 12 genes involved in porcine lipid metabolism
1
.  

Genes Trans-eQTLs 

Symbol SSC  Location (Mb) SSC N SNP Region (Mb) P-value q-value B  ± SE A1 MAF 

ACADL 15 124.7 3 
1 MARC0017993 144.3 0.00 0.03 0.08 -0.58 ± 0.13 C 0.18 

2 ALGA0123606 21.7-21.8 0.00 0.03 0.07 -0.58 ± 0.13 G 0.18 

ACADM 6 127.5 
9 1 MARC0004327 29.5 0.00 0.04 0.34 -0.56 ± 0.12 C 0.22 

13 7 DIAS0003141 141.6-144.1 0.00 0.04 0.21 -0.72 ± 0.15 G 0.12 

ACADS 14 43.1 

3 1 MARC0039787 134.6 0.00 0.01 0.19 -0.47 ± 0.11 A 0.18 

12 3 M1GA0017106 58.9-59.4 0.00 0.02 0.24 -0.54 ± 0.12 A 0.12 

14 3 H3GA0040210 53.7-55.5 0.00 0.00 0.02 -0.48 ± 0.08 A 0.28 

17 1 INRA0053259 28.7 0.00 0.05 0.97 -0.46 ± 0.09 G 0.45 

ACSF2 12 26.8 12 4 MARC0030253 33.2-34.0 0.00 0.01 0.09 -0.49 ± 0.10 G 0.50 

APOA1 9 49.2 1 3 MARC0004843 181.0-183.7 0.00 0.01 0.01 1.02 ± 0.19 A 0.07 

CEBPD 4 87.3 7 1 ALGA0045624 128.5 0.00 0.04 0.04 1.30 ± 0.25 A 0.04 

CMIP 6 7.1-7.2 
5 2 ASGA0103424 12.4-12.7 0.00 0.04 0.36 0.59 ± 0.13 A 0.06 

13 7 DIAS0003141 141.6-144.1 0.00 0.00 0.00 0.58 ± 0.09 G 0.12 

ECI2 7 2.5 12 1 MARC0021670 37.0 0.00 0.03 0.03 -0.62 ± 0.13 A 0.16 

GPAT3 8 144.2 17 1 H3GA0049617 61.6 0.00 0.05 0.18 0.65 ± 0.14 A 0.22 

LACTB 1 120.1 15 2 MARC0020666 3.2-3.4 0.00 0.05 0.08 -0.62 ± 0.14 G 0.13 

LRP6 5 63.5-63.6 4 1 MARC0056621 134.9 0.00 0.03 0.03 -0.42 ± 0.08 A 0.47 

SLC25A17 5 4.8 1 7 SIRI0000355 129.2-138.3 0.00 0.03 0.26 -0.64 ± 0.13 G 0.18 
1
SSC: porcine chromosome, N: Number of SNPs significantly associated with traits under study, SNP: SNPs displaying the most 

significant associations with traits under study, Region (Mb): regions containing SNPs significantly associated with traits under study, 

P-value: nominal P-value, q-value: q-value calculated with a false discovery rate approach, B : Bonferroni-corrected P-value, : allelic 

effect and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele. 
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In the current work, the numbers of cis- and trans-eQTL for lipid genes were quite 

similar (Tables 1 and 2). In contrast, Cánovas et al. (2012) performed a genome scan for 

porcine muscle expression phenotypes and observed a predominance of trans- vs cis-eQTL. 

The most likely reason for this discrepancy is that we have used different thresholds of 

significance to correct for multiple testing in the cis- and trans-eQTL analyses. Indeed, in 

humans the majority of eQTL identified so far act in cis-. For instance, a recent eQTL scan 

in 869 lymphoblastoid cell lines revealed that 3,534 and 48 genes were affected by eQTL in 

cis- and trans-, respectively (Bryois et al. 2014). Similarly, a global analysis of 53 human 

datasets demonstrated the existence of 116,563 high confidence eQTL. Around 91% and 

9% of these eQTL acted in cis- and trans-, respectively (Zhang et al. 2014), and there was 

an average of 1.8 eQTL per gene.  

The majority of trans-eQTL detected by us resided in chromosomes different than 

the one containing the targeted gene, suggesting that they may exert their effects through 

SNPs that alter the synthesis of a diffusible factor. We also observed the existence of 

several genes (e.g. ACADS, ACSF2 and SLC25A17) simultaneously regulated by cis- and 

trans-eQTL (Tables 1 and 2 and Supplementary Figures 1 and 2). For instance, the 

expression of the ACADS gene is regulated by one cis- and four trans-eQTL on SSC3, 

SSC12, SSC14, and SSC17 (Supplementary Figure 1). Of note, the trans-eQTL on SSC3 

is defined by just one isolated SNP, so this result needs to be taken with caution. It might be 

argued that the trans-eQTL regulating the expression of ACSF2 on SSC12 (33.2-34 Mb) is 

a “phantom” eQTL produced by the existence of a neighboring cis-eQTL on SSC12 (24-

26.9 Mb). However, when we introduced the most significant SNP of the cis-eQTL in the 

statistical model as a fixed effect and repeated the analysis, the trans-eQTL on SSC12 
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(33.2-34 Mb) lost part of its significance (q-value > 0.05) but remained significant at the 

nominal level (Supplementary Figure 3).  

Our findings illustrate that even simple phenotypes, such as gene expression, can be 

regulated in a highly complex manner. From a functional point of view, this set of 13 cis- 

and 18 trans-eQTL regulated the expression of genes integrated in distinct metabolic 

pathways. In this way, the acyl-coenzyme A dehydrogenases for short-chain (ACADS), 

medium-chain (ACADM) and long-chain (ACADL) FA catalyse the first step in the FA β-

oxidation pathway (Kim & Miura 2004), and the enoyl-CoA delta isomerase 2 (ECI2) gene 

plays an essential role in the β-oxidation of unsaturated FA (Palosaari et al. 1990). 

Moreover, the solute carrier family 25 member 17 (SLC25A17) gene encodes a peroxisomal 

transporter of coenzyme-A, FAD and NAD
+
 cofactors (Agrimi et al. 2012) and it could 

have a role in the α-oxidation of FA (Van Veldhoven 2010). We have also detected eQTL 

for genes comprised in lipid biosynthetic pathways (Tables 1 and 2). For instance, the 

glycerol-3-phosphate acyltransferase 3 (GPAT3) is involved in the synthesis of 

triacylglycerols (Yamashita et al. 2014), and the 3-hydroxy-3-methylglutaryl-CoA synthase 

1 (HMGCS1) enzyme is a component of the cholesterol biosynthetic pathway (Medina & 

Krauss 2013). Other relevant loci are the acyl-CoA synthetase family member 2 (ACSF2) 

gene, which may participate in FA activation (Yang et al. 2009), the LACTB gene that 

affects adiposity in mice females (Yang. et al. 2009), the CCAAT/enhancer binding protein 

(C/EBP), δ (CEBPD) gene that has a key role in the regulation of adipogenesis (Hishida et 

al. 2009) and the Cbp/P300 interacting transactivator with Glu/Asp rich carboxy-terminal 

domain 2 (CITED2) locus that is involved in the regulation of hepatic gluconeogenesis 

(Sakai et al. 2012). 
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Our results demonstrate that around 30% of the lipid-related genes analysed in the 

current work are regulated by cis- and/or trans-eQTL with significant effects on their 

mRNA levels. In our data set, we have not detected a clear predominance of either cis- or 

trans-regulatory factors in the determination of gene expression, a result that contrasts with 

what has been obtained in humans where gene regulation is mostly exerted by cis-factors. 

In the next future, it would be worth to investigate if the set of eQTL detected herewith 

displays significant associations with the phenotypic variation of porcine traits of economic 

interest. 
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Abstract 

Background 

The identification of expression QTL (eQTL) in different tissues is an essential step to 

understand how gene expression is genetically regulated in a context-dependent manner. In 

humans, the performance of eQTL scans across tissues has revealed that 50% of them are 

shared by multiple tissues. In pigs, most eQTL studies have been focused on genes whose 

expression correlates with phenotypic variation of traits of economic interest or that are 

located within QTL regions. In the current work, we aimed to compare the genome-wide 

eQTL landscape of the porcine skeletal muscle and liver as well as to investigate the co-

localization of eQTL with copy number variant regions (CNVR).   

Results 

By performing genome scans in 104 Duroc pigs with available expression and genotypic 

data, markers associated with the mRNA levels of loci expressed in the gluteus medius 

muscle (436 cis-eQTLs and 450 trans-eQTLs) and liver (504 cis-eQTLs and 3,228 trans-

eQTLs) have been found. Only 66 cis-eQTL (and none trans-eQTL) were shared between 

the GM muscle and liver tissues. This high proportion of tissue-specific QTL contrasts with 

data obtained in humans, where 50% of eQTL are shared across tissues. This could be due, 

at least in part, to technical factors related with the low density of the Porcine SNP60 

BeadChip and the poor annotation of porcine microarrays. In addition, 104 CNVRs have 

been identified in 350 Duroc pigs typed with the Porcine SNP60 BeadChip. Approximately 

39% of these CNVR co-localized with cis-eQTL signals, whilst the co-localization of 
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CNVR and trans-eQTL was somewhat higher (≈60%). In general, these co-localizations 

happened to be tissue-specific.  

Conclusion 

The effects of eQTL on porcine gene expression appears to be predominantly tissue-

specific, but this result might be also the consequence of technical factors and needs to be 

confirmed in a broader sample of tissues. Moreover, the relative contributions of cis- and 

trans-eQTL to the regulation of gene expression is clearly different in the muscle and liver, 

possibly reflecting differences in transcript and functional complexity amongst tissues. The 

co-localization of CNVR and eQTL can be a first step to understand the role of structural 

variation on gene expression. 
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Background 

 

The performance of GWAS in humans has revealed that most of the regions that 

display significant associations with complex traits are not exonic, meaning that causal 

polymorphisms probably have regulatory effects on gene expression [1]. This realization 

has prompted the mapping of expression QTL (eQTL) i.e. single nucleotide polymorphisms 

(SNP), indels or copy number variants (CNV) that explain part of the variance of gene 

expression phenotypes [1]. Such studies have revealed that the majority of eQTL exert their 

effects in cis- (i.e. on neighboring genes), though it is unclear if this is a biological reality 

or a statistical artifact [2]. There are also evidences that CNV-tagging SNPs are enriched in 

cis-eQTL and that they often modulate multiple expression traits [3]. By examining the 

patterns of expression of 22,286 genes in 9 human tissues, the GTEx Consortium has 

shown that approximately 50% of eQTL are shared by nine tissues and that most of them 

display consistent effects across tissues [4].  

In pigs, hundreds of eQTL with effects on muscle [5–9], liver [10,11] and backfat 

[12] gene expression have been mapped. Often, these pig eQTL studies have targeted 

subsets of genes either mapping to QTL [12] or displaying significant expression-

phenotype correlations [5,6,10,11]. There are conflicting results about the predominant role 

of either cis-eQTL [7] or trans-eQTL [8,13] on gene regulation. The broad majority of 

porcine eQTL studies have targeted single anatomic locations and, in consequence, they do 

not provide clues about the differential genetic regulation of distinct tissues and organs. 

Moreover, these genome scans have explored the association of gene expression with 
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allelic variation of SNPs or microsatellites, neglecting the potential effect of CNVs on 

expression phenotypes. The goals of the current work were to compare the genomic 

distribution of eQTL in the pig gluteus medius (GM) skeletal muscle and liver, two tissues 

with highly differentiated patterns of expression [14], as well as to investigate their co-

localization with CNVs. 

 

Materials and Methods 

 

Phenotyping and genotyping of a commercial Duroc population 

 

As animal material, we have used a commercial Duroc line of 350 Duroc pigs that 

were slaughtered at an age of 190 days, with an approximate live weight of 122 kg. This 

population was generated by crossing 5 boars with ~400 sows, and it was raised in the 

experimental testing station at the Centre de Control Porcí (CCP) of the Institut de Recerca 

i Tecnologia Agroalimentàries (IRTA). The specific conditions of management and feeding 

have been previously reported [15,16]. At slaughter, GM muscle and liver biopsies were 

obtained for 104 pigs. Total RNA purification, measurement of gene expression with 

GeneChip Porcine Genome microarrays and data pre-processing and normalization have 

been fully reported [8,17]. All experimental procedures were approved by the Ethical 

Committee of the IRTA.  
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Genomic DNA was extracted from blood samples by following a standard phenol-

cloroform protocol. Each pig was genotyped for 62,163 single nucleotide polymorphisms 

(SNPs) with the Porcine SNP60 BeadChip (Illumina, SanDiego, CA). The quality of the 

genotyping results was evaluated with the GenomeStudio software (Illumina). The PLINK 

software [18] was used to filter SNP markers with minor allele frequencies below 5%, rates 

of missing genotypes above 10% as well as those did not conform Hardy-Weinberg 

expectations (threshold set at a P-value of 0.001). Markers that did not map to the porcine 

reference genome (Sscrofa10.2 assembly) and those located in sex chromosomes were also 

eliminated from the data set. Single nucleotide polymorphisms that were in complete 

linkage disequilibrium (r
2
 > 0.98) were also discarded from further analyses. After these 

filtering steps, a subset of 28,571 SNPs were used as markers for eQTLs analysis. The 

filtering criteria in the analysis of CNV were different than those reported above i.e. only 

SNPs that did not map to the Sscrofa10.2 assembly or that were located in sex 

chromosomes were removed, so the final marker data set contained 46,537 SNPs.  
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Genome scan for expression QTL 

The genome scan for eQTL regulating gene expression in the muscle and liver was 

carried out with the GEMMA software [19] following the methods described  by Gonzalez-

Prendes et al.[17]. Fixed effects and parameters assumed in the statistical model were:  

 

y = Wα + xβ + u + ε 

 

where y is the vector that defines the expression of each gene in the GM muscle and 

liver of the i
th

 individual; W is the matrix with a column of 1s and the fixed effects i.e. 

”batch of fattening” (with 4 categories) and “laboratory” (microarray data were generated 

in two different laboratories); α is a c-vector of the corresponding coefficients including the 

intercept; x is an n-vector of marker genotypes; β is the SNP allelic effect estimated as a 

regression coefficient on the corresponding x genotype (values -1, 0, 1); u is an n-vector of 

random effects with a n-dimensional multivariate normal distribution MVNn (0, λ τ 
−1

 K) 

where τ
−1

 is the variance of the residual errors; λ is the ratio between the two variance 

components; K is a known relatedness matrix derived from SNPs and ε is the vector of 

errors with an MVNn (0, τ 
−1

 I n ) being I n the identity matrix. Correction for multiple 

testing was implemented with a false discovery rate approach [27]. In the case of cis-eQTL 

the correction for multiple testing was carried out by taking into account the number of 

SNPs located in a 2 Mb window around the targeted gene [17]. In contrast, the analysis of 

trans-eQTL took into consideration the whole set of SNPs mapping to QTL regions [17].  
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Detection of copy number variation 

 

The PennCNV software [20] was employed to detect copy number variants (CNV) 

on the basis of the information provided by 46,537 autosomal SNPs. We did not employ 

multiple softwares to detect CNVs (and select as true those CNVs identified by two or 

more softwares) because such practice decreases type 1 error at the expense of substantially 

increasing type 2 error. The PennCNV software implements a hidden Markov model to 

infer CNV calls for each genotyped sample using as input the intensity signal Log R Ratio 

and the B Allele Frequency information generated with the BeadStudio (Illumina) software. 

Samples with a standard deviation of LRR > 0.30 and BAF drift > 0.01 were discarded. 

Besides, a wave adjustment procedure for genomic waves was carried out [20]. With these 

filtering steps, 20 samples were eliminated from the data set. Only CNVs spanning three or 

more consecutive SNPs were taken into account. Copy number variant regions (CNVR) 

were created by merging CNVs with an overlap of 80% or more. 

 

 

Validation of copy number variant regions by quantitative PCR 

 

 Quantitative real time PCR (qPCR) assays were used to validate eight CNVR 

(positive controls) and three putative single-copy genomic regions (negative controls). The 
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relative quantification (RQ) of the CNVRs was done as previously described [21].  Primers 

(Supplementary Table 1) were designed with the Primer Express Software (Applied 

Biosystems). Copy number variant regions were quantified in 384-well plates using SYBR 

Select Master Mix in a QuantStudio 12K Flex Real-Time PCR System platform (Applied 

Biosystems, Inc., Foster City, CA). Reactions were performed in triplicate, and they 

contained 7.5 ng genomic DNA and primers at 300 nM in a final volume of 15 μl. The 

thermocycling profile was: one cycle at 95 °C for 10 min plus 40 cycles of 15 sec at 95 °C 

and 1 min at 60 °C. Moreover, a melting curve profile (95 ºC for 15 sec, 60 ºC for 15 sec 

and a gradual increase in temperature with a ramp rate of 1% up to 95 ºC) was implemented 

to maximize the specificity of the amplification reactions. Relative expression values (RQ) 

were calculated with the Qbase+ software (Biogazelle, Ghent, Belgium) by applying the 2
-

ΔΔCt
 method, after verifying that its assumptions were adequately fulfilled [22]. Relative 

expression values were calibrated using the arithmetic mean of 3-5 samples showing the 

lowest number of copies for each specific assay. In the specific case of CNVR87, which 

encompasses a deletion, the 5 samples chosen for calibration were those with RQ values 

around 2. Normalization of expression data was done by using a previously reported assay 

based on the glucagon gene [23].  
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Results 

 

Detection of expression QTL in the porcine skeletal muscle and liver   

 

 A total of 436 cis-eQTLs and 450 trans-eQTLs regulating the expression of 449 and 

319 genes in the GM muscle were identified, respectively (Table 1, Supplementary 

Tables 2 and 3). The proportion of cis- and trans-eQTLs in the liver was much more 

unbalanced, with 504 cis-eQTLs and 3,228 trans-eQTLs modulating the transcription of 

525 and 1,902 genes, respectively (Table 2, Supplementary Tables 4 and 5). Global 

analysis of the data showed that the number of cis-eQTL per gene (0.96-0.97) was lower 

than the number of trans-eQTL per gene (1.41-1.69). Besides, 90 and 199 loci were 

simultaneously regulated by cis- and trans-eQTLs in muscle and liver, respectively 

(Supplementary Table 6, Figure 1). The level of overlap between the muscle and liver 

eQTL data sets was modest, with 66 cis-eQTLs (Figure 2) and none trans-eQTL shared by 

both tissues. Several examples of muscle- and liver-specific eQTL are shown in Figure 3. 
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Table 1. List of the most significant cis- and trans-eQTLs detected in the gluteus medius (GM) muscle.  

Muscle cis-eQTL Gene 

SSC N SNP Region (Mb) P-value q-value B δ±SE A1 MAF Acronym SSC Region (Mb) 

1 27 DRGA0000100 13.2-15.9 0.00 0.00 0.00 0.79±0.12 G 0.39 CNKSR3 1 14.4-14.4 

1 32 SIRI0000064 246.1-249.8 0.00  0.00  0.00  -1.07±0.12  G 0.06  FXN 1 248.6-248.8 

2 13 INRA0008800  65.1- 67.7 0.00 0.00 0.00 0.77±0.11 C 0.15 CALR 2 66.2-66.2 

2 13 ASGA0008809   6.7- 7.8 0.00  0.00  0.00  -0.56±0.08 A 0.49  TRPT1 2 6.9-6.9 

3 12 MARC0026232 140.0-141.8 0.00 0.00 0.00 0.60±0.06 A 0.37 ADI1 3 140.4-140.4 

7 20 MARC0077571  46.3- 47.9 0.00 0.00 0.00 -0.69±0.08 C 0.09 CLIC5 7 46.9-47.0 

8 11 ASGA0101414 122.3-124.1 0.00 0.00 0.00 0.87±0.09 C 0.18 AIMP1 8 123.8-123.8 

11 20 ASGA0050460  24.0- 27.7 0.00 0.00 0.00 0.73±0.10 G 0.16 AKAP11 11 25.4-25.4 

14 34 MARC0094155  42.6- 45.9 0.00 0.00 0.00 -0.62±0.08 G 0.21 ACADS 14 43.1-43.1 

18 18 ASGA0078711   4.3-  5.8 0.00 0.00 0.00 0.96±0.13 G 0.42 ACTR3B 18 4.9-4.9 

Muscle trans-eQTL Gene 

SSC N SNP Region(Mb) P-value q-value B δ±SE A1 MAF Acronym SSC Region (Mb) 

1 5 ASGA0089146 308.9-309.1 0.00 0.00 0.00 0.56±0.08 A 0.48 RASIP1 6 49.8-49.8 

3 3 ALGA0020311 40.1-42.9 0.00 0.00 0.00 -0.72±0.10 A 0.33 PREPL 3 102.2-102.3 

4 12 MARC0027501 104.4-109.0 0.00 0.00 0.00 0.62±0.07 G 0.36 CU207250.1 4 47.6-47.6 

4 1 ASGA0083736 106.3-106.3 0.00 0.00 0.00 0.60±0.08 G 0.45 UGPP 7 131.2-131.2 

5 1 INRA0019588 46.7-46.7 0.00 0.00 0.00 0.53±0.08 C 0.42 EMG1 5 66.1-66.1 

5 1 MARC0056503 34.5-34.5 0.00 0.00 0.00 0.63±0.07 G 0.45 UGPP 7 131.2-131.2 

8 1 ALGA0048824 49.7-49.7 0.00 0.00 0.00 0.51±0.06 A 0.43 NUDT6 8 108.4-108.4 

8 17 ALGA0115175 93.0-99.7 0.00 0.00 0.00 0.48±0.06 A 0.45 NUDT6 8 108.4-108.4 

8 8 MARC0049164 114.3-118.8 0.00 0.00 0.00 0.51±0.06 G 0.39 NUDT6 8 108.4-108.4 

10 1 MARC0112823 14.9-14.9 0.00 0.00 0.00 -1.42±0.15 A 0.36 IGKC 3 59.8-59.8 
1
SSC: porcine chromosome, N: Number of SNPs significantly associated with the trait under study, SNP: SNP displaying the most significant association with the 

trait under study, Region (Mb): region containing SNPs significantly associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated 

with a false discovery rate approach, B: Bonferroni corrected P-values, : allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the 

minority allele.  
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Table 2. List of the most significant cis- and trans-eQTLs detected in the liver tissue.  

 
Hepatic cis-eQTLs  Gene 

SSC N SNP Region (Mb) P-value q-value B δ±SE A1 MAF Acronym SSC Region (Mb)  

1 1 MARC0014312 146.3-146.3 0.00 0.00 0.00 2.62±0.58 A 0.46 IVD 1 145.9-145.9 

1 8 ASGA0006349 266.9-269.2 0.00 0.03 0.12 -0.12±0.04 A 0.43 ANP32B 1 268.0-268.0 

1 12 MARC0030335 270.3-271.9 0.00 0.00 0.00 1.49±0.29 A 0.33 TMEFF1 1 270.5-270.6 

2 3 ASGA0103706 11.8-13.3 0.00 0.00 0.00 -2.32±0.40 A 0.05 MED19 2 12.8-12.8 

3 21 MARC0055489 30.0-33.8 0.00 0.00 0.00 -1.46±0.38 A 0.19 LITAF 3 32.3-32.3 

5 9 H3GA0016069 22.5-24.0 0.00 0.00 0.00 0.45±0.08 G 0.13 PTGES3 5 23.6-23.6 

6 10 MARC0030904 84.2-86.9 0.00 0.00 0.00 -1.03±0.24 A 0.13 INPP5B 6 86.6-86.7 

7 13 H3GA0019664 4.2-5.8 0.00 0.00 0.00 -1.70±0.38 G 0.21 BLOC1S5 7 5.4-5.4 

13 18 ALGA0071453 96.0-99.5 0.00 0.00 0.00 1.06±0.21 C 0.19 TSC22D2 13 98.7-98.7 

14 6 MARC0069598 24.1-25.9 0.00 0.00 0.00 0.38±0.08 A 0.50 ADGRD1 14 25.5-25.7 

Hepatic trans-eQTLs  Gene 

SSC N SNP Region (Mb) P-value q-value B δ±SE A1 MAF Acronym SSC Region (Mb) 

1 

 

7 MARC0058870 34.9-36.6 0.00 0.00 0.00 -3.77±0.32 A 0.01 FAM63A 4 107.4-107.4 

4 DRGA0001450 120.2-121.8 0.00 0.00 0.00 -0.67±0.07 G 0.01 APOA1 9 49.2-49.2 

3 DRGA0001450 120.2-120.8 0.00 0.00 0.00 4.32±0.50 G 0.01 COX6A1 14 42.8-42.8 

4 DRGA0001450 120.2-122.4 0.00 0.00 0.00 -1.02±0.11 G 0.01 BCAS4 17 58.6-58.7 

4 DRGA0001450 120.2-121.8 0.00 0.00 0.00 3.90±0.43 G 0.01 INSIG1 18 2.8-3.0 

2 

 

4 ASGA0084177 0.16-0.36 0.00 0.00 0.00 -2.18±0.25 G 0.01 CALCOCO1 5 19.3-19.3 

4 ALGA0111915 162.0-162.2 0.00 0.00 0.00 -2.18±0.25 G 0.01 CALCOCO1 5 19.3-19.3 

4 ALGA0111915 162.0-162.2 0.00 0.00 0.00 -3.87±0.43 G 0.01 LEPROTL1 15 62.2-62.2 

3 6 MARC0001269 22.8-27.9 0.00 0.00 0.00 -3.44±0.56 G 0.16 CBX1 12 24.2-24.2 

14 13 H3GA0042707 140.7-141.7 0.00 0.00 0.00 -0.33±0.04 G 0.06 ESD 11 20.9-21.0 
 

1
SSC: porcine chromosome, N: Number of SNPs significantly associated with the trait under study, SNP: SNP displaying the most significant association with the 

trait under study, Region (Mb): region containing SNPs significantly associated with the trait under study, P-value: nominal P-value, q-value: q-value calculated 

with a false discovery rate approach, B: Bonferroni corrected P-values, : allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the 

minority allele. 
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Figure 1a.   
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Figure 1a. Examples of genes that are simultaneously regulated by cis- and trans-eQTL in 

the gluteus medius muscle.  In the Manhattan plots, the horizontal line indicates the 

threshold of significance (q-value ≤ 0.05) whilst the vertical line depicts the genomic 

location of the genes (GPRC5B, TMEM5) under consideration. 

 

 

 

trans-eQTL for GPRC5B mRNA on SSC5 cis-eQTL for GPRC5B mRNA 

trans-eQTL for TMEM5 mRNA on SSC15 cis-eQTL for TMEM5 mRNA 
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Figure 1b.                                             

Hepatic tissue 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b. Examples of genes that are simultaneously regulated by cis- and trans-eQTL in 

the liver. In the Manhattan plots, the horizontal line indicates the threshold of significance 

(q-value ≤ 0.05) whilst the vertical line depicts the genomic location of the genes (JAGN1, 

ANP32B) under consideration. 

 

 

trans-eQTL for JAGN1 mRNA on SSC8 cis-eQTL for JAGN1 mRNA 

trans-eQTL for ANP32B mRNA on SSC18 cis-eQTL for ANP32B mRNA 
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Figure 2.  Venn diagram showing the number of cis-eQTLs shared by the gluteus medius 

muscle and liver.   
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Figure 3a. 
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Figure 3a. Examples of cis- and trans-eQTL that are found in the muscle but not in the 

liver (a). In the Manhattan plots, the horizontal line indicates the threshold of significance 

(q-value ≤ 0.05) whilst the vertical line depicts the genomic location of the GST4 gene. 

 

no trans-eQTL for GSTA4 mRNA no cis-eQTL for GSTA4 mRNA 

trans-eQTL for GSTA4 mRNA on SSC7 cis-eQTL for GSTA4  mRNA 
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Figure 3b.                                                   
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Figure 3b. Examples of cis- and trans-eQTL that are found in liver tissue but not in the 

muscle (b). In the Manhattan plots, the horizontal line indicates the threshold of 

significance (q-value ≤ 0.05) whilst the vertical line depicts the genomic location of the 

PAXBP1 gene.  

 

no cis-eQTL for PAXBP1 mRNA no trans-eQTL for PAXBP1 mRNA 

cis-eQTL for PAXBP1 mRNA trans-eQTL for PAXBP1 mRNA on SSC5 
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Cytoscape package [24] and Reactome [25] database were used to identify pathways to 

which genes regulated in cis- and trans- belong to. The number of pathways detected for 

eQTL regulated genes expressed in the muscle tissue was lower than those detected for 

liver genes (Supplementary Tables 7-10). This result could be anticipated because the 

number of genes regulated by eQTL was higher in the liver and, besides, the functions of 

this organ are more diverse and complex than those of skeletal muscle [26]. The biological 

functions of eQTL regulated genes were quite diverse, but several of them were integrated 

in metabolic pathways with a potential impact on phenotypes that are important for the pork 

industry (Supplementary Tables 7-10) e.g. amino acid metabolism (cis-eQTL in the 

muscle and trans-eQTL in the liver),  β-oxidation of saturated and unsaturated fatty acids 

(trans-eQTL in the muscle), metabolism of lipids and lipoproteins (cis- and trans-eQTL in 

the liver), transcriptional regulation of white adipocyte differentiation (cis-eQTL in the 

liver), regulation of lipid metabolism by peroxisome proliferator-activated receptor α (cis-

eQTL in the liver), fatty acid, triacylglycerol and ketone body metabolism (cis-eQTL in the 

liver), metabolism of proteins (trans-eQTL in the liver) and sphingolipid metabolism 

(trans-eQTL in the liver). 

 

Co-localization of copy number variants and eQTL 

 

The analysis of structural variation with PennCNV revealed the existence of 1,126 

CNVs distributed in 16 pig chromosomes that were assembled into 104 CNVR regions 

(Supplementary Table 11). These CNVRs covered 21% of the pig genome. The 
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proportions of copy gain, loss and loss and gain CNVRs were 39%, 49% and 12%, 

respectively. The size of the CNVR ranged from 10.1 kb to 5.5 Mb, with a mean of 331.6 

kb. When we compared our CNVR dataset with CNVs previously reported in pigs [27–36] 

we found that 47% of the CNVR detected by us had been previously reported in the 

literature (Supplementary Table 12). Real time quantitative assays were designed for 

validating 8 CNVRs (CNVR 21, 23, 32, 54,74,81,87 and 97) and 3 single-copy regions 

(negative control) in 39 porcine samples. The validation of the 8 CNVR by qPCR showed 

clear evidence of the existence of copy number variation for 4 of them (CNVR21, 74, 87 

and 97), while for the remaining 4 evidence was less conclusive (Figure 4, Supplementary 

Figure 1). More unexpectedly, one of the putative single copy regions chosen as negative 

controls showed strong evidence of containing a CNV, while the status of the remaining 

two was less obvious (Supplementary Figure 2). 
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Figure 4. Relative expression values of four high-confidence copy number variation regions validated by quantitative real-time PCR 

analysis. Each analysed individual is represented in the x-axis, while the y-axis shows the corresponding relative quantification (RQ) 

value. We have assigned a value of 2 to the arithmetic mean of the samples used as calibrators.  

CNVR21 SAL1 Gene 
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The co-localization of CNVR and eQTLs was also analyzed (Supplementary 

Tables 13-16). In the GM muscle, 28 and 16 CNVR co-localized with 45 cis-eQTLs and 16 

trans-eQTL, respectively. In the liver, 28 and 59 CNVR co-localized with 42 cis-eQTLs 

and 139 trans-eQTLs. When the co-localizations between CNVR and cis-eQTL were 

compared in the muscle and the liver tissues, both data sets had 13% of CNVRs in 

common, but these CNVRs co-localized with different sets of cis-eQTL (Table 3, 

Supplementary Tables 13-16). Only six genes (HSDL2, PREPL, PACSIN2, EMG1, 

RASIP1 and KCTD20) located within CNVRs were consistently cis-regulated both in the 

GM muscle and liver (Table 3). No genes mapping to CNVR and being trans-regulated by 

the same eQTL in the liver and GM muscle were found.  
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Table 3.  List of CNVRs that co-localize with cis-regulated genes in the muscle and the 

liver (genes shared by both tissues are shown in bold).  

CNVR Genes regulated by muscle cis-eQTL Genes regulated by liver cis-eQTL 

21 PTBP3, HSDL2, SLC31A2 HSDL2 
26 CST6, PACS1 PPP1CA 
27 SNORD26, SNORD27, snR56, METTL12, 

WDR74 
RAB3IL1, TKFC 

46 PREPL PKDCC, PREPL 
47 ZNF7, ZNF251 SHARPIN 
53 SLC25A17, PACSIN2, PARVB ACO2, PACSIN2 
55 EMG1, GABARAPL1 KLRK1, EMG1, CHD4 
67 CH242-204P3.4, RASIP1, PTOV1, 

BCAT2, GYS1 
RASIP1, SULT2A1, POLD1 

69 FUCA1 TRNP1, GALE 
75 KCTD20 KCTD20 
76 RCN2, ANPEP SIN3A, SCAMP5, STOML1, SCAMP5, 

EDC3 
89 SLC25A39, EFTUD2 NMT1, HEXIM1 
101 ATIC FN1 
103 ZNF622 FAM134B 
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Discussion 

 

Skeletal muscle and liver have been selected as target tissues to perform a 

comparative eQTL analysis because they have a key role in body energy homeostasis, a 

parameter that has a strong impact on growth and fat deposition in pigs. Moreover, the 

patterns of expression of these two tissues are highly differentiated in pigs, probably as 

consequence of their distinct embryonic origin and physiological function [14]. The number 

of trans-eQTL happened to be much higher in the liver than in the GM muscle, while the 

number of cis-eQTL were similar in both tissues. In this regard, skeletal muscle, as well as 

blood and heart, is a good example of a tissue whose transcription is dominated by the 

expression of a reduced set of genes [37]. This circumstance decreases to a significant 

extent the power to detect eQTL [37]. Moreover, the biological roles of the liver 

(detoxification, bile production, metabolism, red blood cell destruction, etc.) are more 

diverse than those of the skeletal muscle (locomotion and metabolism); a feature that often 

is associated with a higher transcript complexity and a tighter genetic regulation.  

In pigs, hundreds of eQTL with effects on the muscle transcriptome have been 

detected but the majority of these studies have targeted subsets of genes either mapping to   

QTL [12] or displaying significant expression-phenotype correlations [5,6,10,11]. By 

analyzing global gene expression, we have found that the numbers of cis- and trans-eQTL 

in the pig GM muscle are remarkably similar, while hepatic trans-eQTL are five times 

more abundant than liver cis-eQTL. Liaubet et al. [13] made a genome scan based on 

microarray measurements of longissimus lumborum gene expression in 57 pigs and 
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identified 335 eQTL, of which only 18 had cis-regulatory effects. Similarly, Cánovas  et al. 

[8] identified 613 skeletal muscle genome-wide significant eQTL and only 13% acted in 

cis-. In humans, conversely, the broad majority of eQTL detected so far modulate gene 

expression in cis-. For instance, Bryois et al. [38] performed an association analysis of 

SNPs and CNVs with gene expression measured in 869 lymphoblastoid cell lines and found 

that 3,534 and 48 genes are affected by cis- and trans-eQTL, respectively. Zhang et al. [39] 

analyzed 53 eQTL data sets and identified 116,563 high-confidence eQTL, but only 9% 

acted in trans. Paradoxically, 60-75% of the heritability of gene expression in humans is 

explained by trans-effects [2], so the low abundance of trans-eQTL in humans might be 

due to the fact that the majority of studies have a low statistical power to detect them 

(correction for multiple testing is much more stringent in trans-eQTL than in cis-eQTL and 

usually trans-eQTL have subtler effects than cis-eQTL). In yeast, trans-regulation 

predominates over cis-regulation [40] and in Drosophila both types of eQTL have a similar 

prevalence [41]. Differences amongst species related with the density of genotyping 

platforms, functional annotation of genes and linkage disequilibrium patterns might also 

explain these discrepancies.   

 Our results indicate that the sharing of cis- and trans-eQTLs between pig liver and 

muscle is low (Figures 2 and 3). This would imply that the genetic regulation of gene 

expression in pigs has a strong tissue-specific component. However, if we had examined 

more tissues and we had used a chip with a higher SNP density and RNA-seq instead of 

microarrays, we would have probably found a higher level of concordance between tissues. 

In the Genotype-Tissue Expression (GTEx) pilot experiment [4], about 50% of eQTL were 

shared by the nine human tissues under analysis. Moreover, there were two main types of 
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eQTL i.e. those that regulate gene expression in a single tissue and those that are 

ubiquitously detected in all tissues. Interestingly, the GTEx pilot analysis also showed that 

eQTL affecting gene expression in the skeletal muscle show a limited replicability in other 

tissues [4]. In other studies also performed in humans, the tissue-specificity of eQTL took 

values between 50% [42] and 60-80% [43], implying that the effects of many regulatory 

mutations are modulated by tissue-associated factors. 

 Another goal of our study was to investigate the co-localization of eQTL and 

CNVR in order to make an initial assessment of the potential impact of structural variation 

on gene expression in pigs. We were able to detect 104 CNVR with an average size of 331 

kb, probably reflecting the inability of the Porcine SNP60 BeadChip to detect small CNVs. 

About 47% of the CNVR detected by us showed positional concordance with porcine 

CNVRs reported in previous publications [21,27–29,31,33,33–36] (Supplementary Table 

12).  A moderate agreement of CNVR locations amongst studies and populations has been 

evidenced in several reports [28,36,44–46]. Discrepancies could be due to differences in the 

genetic background of populations under analysis, filtering criteria (correction factors, 

criteria to define CNV and CNVRs, etc), genotyping methods, CNV calling algorithms and 

the use of family information [36,47].  

The validation of our CNVR data set by qPCR revealed that 50% of them could be 

classified as high confidence CNVR (Figure 4, Supplementary Figure 1). On the other 

hand, one of the three negative control (non-CNVR) regions also happened to be a high-

confidence CNVR (Supplementary Figure 2), indicating that our rate of false negatives 

could be high. Zhang et al. [39] compared the ability of the Birdsuite, Partek, HelixTree, 

and PennCNV-Affy to call 893 CNVs detected with the Affymetrix Genome-Wide Human 
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SNP Array 6.0 and validated, in eight HapMap samples, by paired-end sequencing of 

whole-genome fosmid clones. The averaged recovery rates of these four programs 

fluctuated between 7.5% (CNVs defined by 2-5 markers) to 54% (CNVs defined by more 

than 20 markers). The sensitivity of the Porcine SNP60 BeadChip is probably lower than 

that of chips employed in humans because of its modest SNP density, a feature that 

decreases very substantially the power to detect small CNVs that in the pig genome are 

more abundant than the large ones [28,47]. Moreover, SNPs residing in CNVs are often 

excluded from genotyping platforms owing to Mendelian inconsistency among families, 

lack of Hardy–Weinberg equilibrium and high missing genotype rates [48]. In summary, 

the identification of structural variants in domestic species is still very challenging and 

results need to be interpreted with caution.   

 Keeping these limitations in mind, we have examined the co-localization of CNVR 

and eQTL in the muscle and liver. In both tissues, approximately 39% of CNVRs co-

localized with cis-eQTL signals, whilst the co-localization of CNVR and trans-eQTL was 

somewhat higher (≈60%). The lack of positional concordance between CNVRs and eQTL 

could be due to technical reasons dealing with the relatively high false positive and 

negative rates of CNV detection with SNP arrays and the limited sensitivity and poor 

annotation of porcine microarrays. Besides, the search of CNVs was performed in a 

population of 350 individuals, while only 104 pigs had microarray measurements available. 

On the other hand, variations in copy number do not necessarily involve changes in gene 

expression e.g. in heterozygous individuals the loss of one allele can be compensated by an 

increase in the expression of the remaining one, and duplication can generate additional 

copies whose expression is silenced [47]. Indeed, the two high confidence CNVRs detected 
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in our study and containing the SAL1 and GABBR1 genes (Figure 4 and Supplementary 

Figure 1) did not co-localize with cis-eQTL regulating the expression of these two loci 

(Supplementary Tables 13-16), suggesting that these CNVRs do not have observable 

effects on gene expression. 

The positional coincidence of porcine CNVR and cis- and trans-eQTL is not 

unexpected. Indeed, SNPs tagging CNVs tend to be enriched in cis-eQTL and often affect 

multiple expression traits [3]. In a study performed in mouse, 83% of genes mapping to 19 

high-confidence CNVs showed evidence of some level of correlation between expression 

levels and copy number [49]. When we compared the muscle and liver data sets of CNVRs 

co-localizing with cis-eQTL, we observed that they share a substantial number of CNVRs 

(Supplementary Tables 13-16), but these CNVRs co-localize with different sets of cis-

eQTL (Table 3). The patterns of expression in the GM muscle and liver are very different, 

a feature that affects the impact and consequences of structural variation on gene 

expression. There were, however, six genes (HSDL2, PREPL, PACSIN2, EMG1, RASIP1 

and KCTD20) that were shared by both data sets (Table 3), suggesting that variation in 

copy number could be the causal factor modulating the expression of these loci. A future 

objective would be to investigate the correlation between the number of copies of genes and 

their expression levels, but a high throughput method allowing the accurate determination 

of CNV genotypes will be needed to achieve such goal (genotype determination based on 

Porcine SNP60 BeadChip data is too imprecise to carry out correlation analyses).   
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Conclusions 

The majority of eQTL detected by us seem to affect gene expression in a tissue-specific 

manner. However, this result could be explained, at least in part, by technical factors such 

as the low marker density of the Porcine SNP60 BeadChip and the poor annotation of 

porcine microarrays. Interestingly, a predominance of trans-eQTL vs cis-eQTL was 

observed in the liver, while in the muscle tissue the relative contributions of cis- and trans-

eQTL to the regulation of gene expression were similar. The higher transcript and 

functional complexity of the liver may partly explain this result. We have also observed a 

substantial number of CNVR and eQTL co-localizations, the majority of which are not 

simultaneously found in muscle and liver.   
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7.1 The markers contained in the Porcine SNP60 BeadChip explain a 

limited amount of the phenotypic variance of meat quality traits 

recorded in Duroc pigs 

     As shown in Table 7.1 the h
2

snp estimated for porcine meat quality traits in this thesis 

ranged between 0.00-0.46 and 0.00-0.51 for the GM and LD muscles, respectively. 

Besides, we observed clear differences between h
2

snp estimated for traits measured in 

these two muscles e.g. h
2

snp values for omega-6 to -3 ratio (LD = 0.07, GM = 0.12), and 

for Minolta b* (LD=0.29, GM=0.00). Similar discrepancies were reported by Larzul et al. 

(1999) who found h
2
 of 0.03 and 0.23 for L* measured in the gluteus profundus and 

longissimus muscles, respectively. Moreover, these authors demonstrated that h
2
 for pH24 

traits measured in 4 different muscles ranged between 0.17 (longissimus) and 0.39 

(biceps femoris). These differences suggest that the genetic determinism of meat quality 

traits varies from muscle to muscle. This finding was previously highlighted by 

Quintanilla et al. (2011) and Gallardo et al. (2012) who showed that QTL maps for traits 

recorded in the GM and LD muscles are clearly different.   

    We also observed important departures from the h
2

snp calculated by us and genealogic 

heritabilities estimated by Casellas et al. (2010) in the same population (Table 7.2). For 

instance, h
2

snp for C16:0 in the GM and LD muscles were 0.26 and 0.13, respectively, 

while genealogic heritabilities calculated by Casellas et al. (2010) were 0.32 (GM) and 

0.23 (LD). Similarly, h
2

snp and genealogic heritability estimates obtained for C18:1 in the 

GM and LD muscles were dramatically different with regard to the genealogic 

heritabilities estimated by Casellas et al. (2010) in the same population. In contrast, h
2

snp 

and genealogic heritability values were similar for intramuscular fat content. These 

results showed that a considerable amount of phenotypic variance for fatty acid traits 

cannot be detected by the SNPs contained in the Porcine SNP60 BeadChip.  This 
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“missing heritability” could be due to multiple causes (Manolio et al., 2009) i.e. 1) alleles 

with small effects are hard to detect, especially in small populations as ours 2) causal 

variants with low frequency in the population are also poorly captured by the chip 

markers 3) genealogic heritability may be overestimated because of gene-gene or gene-

environment interactions that may contribute to similarity between related individuals 

(Zuk et al., 2012). 
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Table 7.1. Proportion of the phenotypic variance (and its standard error) for meat quality 

traits explained by the 36,710 SNP markers.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intramuscular fat content and composition traits  

Phenotype (%) Symbol 

longissimus dorsi 
 muscle 

gluteus medius  
muscle 

h2
snp ± SE h2

snp ± SE 

Intramuscular fat IMF 0.51 ± 0.10 0.46 ± 0.09 

Saturated FA SFA 0.14 ± 0.07 0.37 ± 0.12 

Capric C10:0 0.03 ± 0.05 0.06 ± 0.06 

Lauric C12:0 0.08 ± 0.09 0.00 ± 0.00 

Myristic C14:0 0.20 ± 0.09 0.00 ± 0.03 

Palmitic C16:0 0.13 ± 0.06 0.26 ± 0.12 

Margaric C17:0 0.14 ± 0.08 0.05 ± 0.05 

Stearic C18:0 0.26 ± 0.12 0.29 ± 0.10 

Arachidic C20:0 0.00 ± 0.06 0.02 ± 0.07 

Unsaturated FA UFA 0.14 ± 0.07 0.37 ± 0.12 

Monounsaturated FA MUFA 0.03 ± 0.05 0.00 ± 0.04 

Palmitoleic C16:1(n-7) 0.20 ± 0.08 0.25 ± 0.08 

Palmitelaidic C16:1(n-9) 0.35 ± 0.11 0.18 ± 0.10 

Heptadecenoic C17:1 0.12 ± 0.07 0.15 ± 0.07 

Oleic C18:1(n-9) 0.05 ± 0.05 0.00 ± 0.04 

Gondoic C20:1 0.02 ± 0.05 0.12 ± 0.10 

Polyunsaturated FA PUFA 0.00 ± 0.04 0.01 ± 0.03 

Linoleic C18:2 0.00 ± 0.03 0.01 ± 0.04 

α-Linolenic C18:3 (n-3) 0.10 ± 0.06 0.05 ± 0.05 

Eicosadienoic C20:2 (n-6) 0.07 ± 0.06 0.01 ± 0.05 

Eicosatrienoic C20:3 (n-3) 0.00 ± 0.04 0.02 ± 0.04 

Arachidonic C20:4 0.00 ± 0.03 0.00 ± 0.03 

Eicosapentaenoic C20:5 0.00 ± 0.00 0.04 ± 0.05 

Docosahexaenoic C22:6 0.00 ± 0.03 0.00 ± 0.03 

Omega-3 FA FA n-3 0.00 ± 0.05 0.06 ± 0.05 

Omega-6 FA FA n-6 0.00 ± 0.04 0.00 ± 0.03 

Omega-6 to -3 ratio n-6/n-3 0.07 ± 0.07 0.12 ± 0.10 

Processing meat quality traits  

Electric conductivity CE 0.20 ± 0.07 0.11 ± 0.08 

pH at 24 hours pH24 0.17 ± 0.10 0.12 ± 0.09 

Minolta redness Colour  a* 0.41 ± 0.11 0.45 ± 0.11 

Minolta yellowness Colour b* 0.29 ± 0.12 0.00 ± 0.14 

Minolta lightness Colour  L* 0.00 ± 0.25 0.00 ± 0.05 

https://en.wikipedia.org/wiki/Lauric_acid
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Table 7.2. Proportion of the phenotypic variance for IMF content and composition traits 

explained by the 36,710 SNP markers (h
2

snp) and heritabilities estimated with genealogic 

information by Casellas et al (2010).  

 

 GEMMA  Casellas et al. (2010) 

Phenotype (%) h2
snp ± SE 

Bayes  

factor1 
Mean HPD952 

GM IMF 0.46 ± 0.09 992.9 0.47 0.18 a 0.86 

LD IMF 0.51 ± 0.10 1,152.3 0.55 0.18 a 0.91 

GM C16:0 0.26 ± 0.12 40.4 0.44 0.06 a 0.90 

LD C16:0 0.13 ± 0.06 15.6 0.47 0.08 a 0.88 

GM C18:0 0.29 ± 0.10 1,575.0 0.43 0.09 a 0.81 

LD C18:0 0.26 ± 0.12 883.0 0.45 0.09 a 0.86 

GM C18:1 (n-9) 0.00 ± 0.04 1.6 0.32 0.00 a 0.73 

LD C18:1 (n-9) 0.05 ± 0.05 1.3 0.30 0.00 a 0.69 

GM C18:2 0.01 ± 0.04 8.9 0.37 0.01 a 0.77 

LD C18:2 0.00 ± 0.03 0.6 0.25 0.00 a 0.68 

 

GM: gluteus medius, LD: longissimus dorsi, 
1
Bayes factor of the model with additive polygenic effects 

against the same model without additive polygenic effects following (García-Cortés et al., 2001),  
2
HPD95: 

highest posterior density region at 95%, SE: standard error. 

 

Probably, one of the main limiting factors in our study is the small size of the resource 

population. In humans, populations used for GWAS are much larger and often encompass 

hundreds of thousands of individuals (Mackay et al., 2009). 
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7.2 Genome wide association analysis indicates that the majority of QTL 

for meat qualiy traits have muscle-specific effects  

    In this thesis we have generated QTL maps for meat quality and composition traits 

recorded in two different muscles (GM and LD). By comparing the LD and GM QTL 

maps, we have confirmed previous results obtained by Quintanilla et al. (2011) and 

Gallardo et al. (2012) showing that the majority (≈ 90%) of QTL are muscle-specific. 

Interestingly, Quintanilla et al. (2011) identified remarkable differences in the gene 

expression patterns of the LD and GM muscles. In this way, many genes related with cell 

proliferation, tissue development, and muscle contraction showed differential expression 

in the GM and LD muscles. Li et al. (2010) identified 159 mRNAs) involved in a variety 

of functions (i.e. extracellular matrix, muscle contraction, energy homeostasis and 

metabolism, etc.) that were differentially expressed in the LD and soleus muscles. More 

recently, Herault et al. (2014) studied the trascriptomes of two glycolytic muscles, LD 

and semimembranosus, with similar myofiber composition and metabolic characteristics. 

They found that 3,823 genes were differentially expressed in these two muscles and 

concluded that this result might be explained by their distinct post-natal myogenic 

activities. Functional annotation revealed that these genes were mostly related with 

energy metabolism, cell cycle, gene expression, anatomical structure development, and 

signal transduction/immune response (Herault et al., 2014). These differences in mRNA 

expression across muscles could be due to the differential expression of regulatory non-

coding RNAs. In this regard, Liu et al. (2013) identified 173 microRNAs that are 

differentially expressed between glycolytic and oxidative muscles. Recently, Guo et al. 

(2016) built gene regulatory networks for 13 human tissues by integrating large-scale 

transcription factor-gene regulations with gene and protein expression data. They found 

that tissue-specific transcription factors are found to regulate more genes than 

transcription factors expressed in multiple tissues, and the processes regulated by these 
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tissue-specific transcription factors are closely related to tissue functions (Guo et al., 

2016). As suggested by Quintanilla et al. (2011), differences in the transcriptomic 

landscape amongst muscles might have consequences on the penetrance of causal SNPs. 

For instance, Musunuru et al. (2010) demonstrated that a mutation in the sortilin (SORT1) 

gene has a tissue specific penetrance because its effect depends on the expression of a 

transcription factor that is transcribed in the liver but not in adipose tissue or 

lymphocytes. 

    Although the majority of QTL identified by us had muscle-specific effects, we have 

also identified QTL with consistent effects across muscles. The clearest case is that of the 

QTL in SSC14 (120-124 Mb) with pleiotropic effects on C18:0, C18:1(n-9), SFA and 

UFA both in the GM and LD muscles. The existence of pleiotropy for quantitative traits 

has been reported in many model organisms such as Drosophila melanogaster, mice, 

yeast, and Arabidopsis thaliana (Flint and Mackay, 2009). According to Solovieff et al. 

(2013), almost 17% of genes have pleiotropic effects. In a study encompassing one 

thousand F16 mice  belonging to an advanced intercross line, 23 QTLs with pleiotropic 

effects on obesity, plasma lipid concentrations and susceptibility to diabetes were 

detected (Lawson et al., 2011). In pigs, Corominas et al. (2013)  reported one SNP in the 

promoter of the ELOVL6 gene with simultaneous effects on palmitic and palmitoleic fatty 

acids. Interestingly, Hernández-Sánchez et al. (2013), in the same Duroc population used 

by us, carried out a bivariate GWAS study which demonstrated that SNPs with 

pleiotropic effects on intramuscular fat and backfat thickness are scarce.    

7.3 Weak positional concordance of QTL detected in distinct studies 

    In general we have observed a low positional concordance between QTLs maps built 

with microsatellites (Quintanilla et al 2011, Gallardo et al 2012) and SNPs in the same 

resource Duroc population. The main concordances were found for the QTL detected for 
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SFA on SSC12 (≈42.0 Mb), CE (LD SSC4, ≈132 Mb) and for color a* in GM SSC10 

(≈72 Mb). However, it is difficult to establish comparisons between microsatellite and 

SNP based QTL maps because a number of microsatellites are not mapped in the 

Ensembl data base version 87 (Yates et al., 2016) and also because the confidence 

intervals of QTL mapped with microsatellite markers can be very large. Other studies 

have also highlighted that QTL detected with microsatellites cannot be always replicated 

in GWAS studies e.g. Yang et al. (2013) performed a GWAS for IMF composition and 

abdominal fat tissues and only confirmed 23 out of 63 QTL detected with microsatellite 

markers in the same population. In the same way, Qiao et al. (2015) performed a GWAS 

for growth and fatness traits in Sutai and F2 pig breeds and consistency with a previous 

linkage analisis study in the same populations was weak. This can be due to multiple 

factors i.e. 1) QTL maps based on microsatellites have a low resolution and many regions 

of the pig genome are not well covered by microsatellites, 2) factors included in the 

statistical model or multiple testing correction procedures may affect QTL detection. 

Indeed, Manunza et al. (2014) performed a GWAS for serum lipid traits in pigs and found 

that the results generated with different mixed-model methods (i.e. GEMMA, GenABEL, 

EMMAX) were not completely coincident. More recently, Guo et al. (2017) carried out a 

GWAS for growth and fatness traits in Sutai and F2 pig breeds and stated that consistency 

with a previous GWAS study targeting the same populations was quite low (they only 

confirmed 4 out of 15 previously reported QTL).   

    Although several meat quality QTL detected in this thesis have been previously 

reported in other GWAS studies (Ramayo-Caldas et al., 2012; Yang et al., 2013; Zhang et 

al., 2016) and one of them (SSC14, 120-124 Mb) has been widely described in different 

porcine populations ( Yang et al., 2013; Ros-Freixedes et al., 2016;  Zhang et al., 2016), 

in general our GWAS results showed low concordance with GWAS results published in 

other pig populations (Table 7.3 ). Yang et al. (2015) performed a GWAS for blood lipid 
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traits in 2,400 Laiwu, Erhualian and Duroc × (Landrace × Yorkshire) pigs and they 

identified a total of 22 QTL. Notably, only six regions were identified in more than one 

population, and 16 were detected in a single population. Guo et al. (2017) analysed 

fatness traits in 4 pig breeds and showed that the broad majority of detected QTL were 

breed-specific. In Table 7.3, we show a comparative analysis of GWAS results obtained 

in 3 porcine populations: it can be seen that the majority of QTL segregate in just one 

population. This could be due to methodological reasons, but likely there is a high genetic 

heterogeneity in the determinism of meat quality traits in pigs. This could be particularly 

true for Duroc pigs, since their genetic background is very different from those present in 

other pig breeds. For instance, Traspov et al. (2016) made a population genetics analysis 

of 26 porcine breeds from Russia, Belorussia, Kazakhstan, Ukraine, China, and Europe; 

and found that Duroc pigs display a strong genetic differentiation with regard to other 

European pig populations (Figure 7.1).  
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Figure 7.1 A principal coordinate plot showing that Duroc pigs are highly differentiated 

from their European counterparts. Figure adapted from Traspov et al. (2016) that was 

published under creative commons attribution 4.0 international license 

(http://creativecommons.org/licenses/by/4.0/).  

 

     The Duroc breed was formed in the United States, during the 19
th

 century, by crossing 

Red Durocs from New York and Jersey Reds from New Jersey, but the origin of this 

breed is still unclear (Megens et al., 2008). A low number of founders might explain the 

high genetic differentiation observed nowadays. Megens et al. (2008) stated that Red 

Guinea hogs might have participated in the foundation of the Duroc breed but this 

remains to be demonstrated. This would explain why regions associated with production 

traits in Duroc are difficult to replicate in other porcine breeds.  
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Table 7.3 Differences between QTLs maps of four fatty acid traits recorded in three 

different pig populations.   

Traits 1Duroc 2Landrace × Iberian 
3White Duroc × 

Erhualian 

 QTLs (Mb) QTLs (Mb) QTLs (Mb) 

C16:0 SSC5(71-80) 

SSC1(50.3;63,81.3); 

SSC2(25.7);SSC3(126.3);SSC4(95.1; 

136.2);SSC8(88.4; 119.7; 

130.6);SSC13(112.7);SSC15(29.3; 

60.5; 124.0);SSC17(22.5);SSC18(15.4) 

SSC7(31.4) 

C18:0 
SSC4 (63.9); 

SSC14 (58.6-59.4; 65.5-67.9; 87.8-

87.9; 92.9-97.0; 120.4-124.4) 

- 

 

SSC4(63.8);SSC14(

120-124) 

C18:1(n-9) 

SSC4(63.9;134.9); 
SSC10(27.0-27.1;54.6;54.6-54.6); 

SSC14 (64.7-68.2; 92.9-99.1; 118.7-

124.4; 136.2-136.2; 144.7-

148.1;150.3-153.5) 

SSC1(147.9);SSC4(13.8; 

54.6,107.2);SSC11(7.7);SSC13(112.7) 

SSC7(34.8);SSC4(1

23.6) 

 

SFA 

SSC4 (63.9) 

SSC12 (6.5-6.5;20.6-20.6;42.4-

48.8;50.6-50.6 

SSC14 (29.2-29.2;31.8; 92.9-99.1; 

119.9-124.4) 

SSC1(34.0; 50.3; 63.0; 81.3);SSC4( 

118.4);SSC8(13.9; 88.4; 

119.7);SSC13(112.7);SSC14(38.9) 

- 

PUFA SSC5 (71-80) 
SSC1(147.9);SSC4(42.8; 136.2); 

SSC14(5.4) 
- 

1
Current study. 

2
The genome positions (Mb) representing the QTLs detected in Landrace × Iberian 

population were extracted from Ramayo-Caldas et al. (2012). We used the SNPs names to update each 

position from assembly S.scrofa 9 to 10.2 in Ensembl data base version 87 (Yates et al., 2016). 
2
The QTLs 

positions in the White Duroc × Erhualian population were obtained from Yang et al. (2013). 
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7.4. Analysing the genetic regulation of gene expression through a 

GWAS approach 

    One of the goals of the current work was to investigate the positional coincidence of 

QTL for meat quality traits and eQTL regulating the mRNA levels of genes mapping to 

QTL regions and having biological functions with a potential impact on muscle 

physiology. Since microarray measurements of gene expression were exclusively done in 

the GM muscle, co-localization studies only took into account QTL for traits recorded in 

the GM muscle. In the analysis of pH, CE, and colour traits we used two approaches to 

identify cis-eQTL. The first of them consisted of doing a genome-wide analysis of cis-

eQTL and then identifying those that co-localize with QTL regions. In this case, the 

threshold of correction for multiple testing was established by considering the whole set 

of markers used in the analysis. In the second analysis, we just considered the set of 

genes comprised within QTL regions and the threshold of significance for correcting for 

multiple testing only took into account those SNP comprised within 2 Mb windows 

around each one of the genes under consideration. In our view, this second analysis is 

more appropiate than the first one and, in consequence, it has been also used in the 

GWAS of IMF content and composition traits. Moreover, the study of pH, CE, and color 

traits only targeted cis-eQTL because we considered the information published in humans 

(GTEx Consortium, 2015) stating that the effects of trans-eQTL are much smaller than 

those of cis-eQTL and that they cannot be reliably detected in populations with small 

sample sizes. In contrast, the genetic analysis of IMF traits targeted both cis- and trans-

eQTL mapping to QTL regions. We did this because we considered that observations 

made in humans do not necessarily apply to pigs and that excluding trans-eQTL from our 

analysis may imply the loss of valuable genetic information.  
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    The number of cis-eQTL detected in QTL regions for pH, CE, and colour traits was 

quite modest (6 genes regulated by cis-eQTL) if compared with those identified for IMF 

traits (20 genes), but it is also true that we detected much more QTL for IMF traits than 

for meat technological phenotypes. The cis-eQTLs detected in QTL regions for pH, CE, 

and colour traits were regulating the expression of genes that might have an effect on 

muscle physiology or metabolism, though this is difficult to establish because the 

biological mechanisms that regulate meat pH, electrical conductance or colour are poorly 

known (at least if compared with those that determine fat deposition, a process that has 

been intensively studied from a biochemical point of view). The ADCY3 gene was 

particularly interesting because it has been shown that the partial deletion of this gene in 

mouse impairs glucose tolerance and insulin sensitivity (Tong et al., 2016). In this regard, 

it is worth to highlight that meat pH, CE, and color strongly depend on the breakdown of 

glycogen into glucose and the anaerobic degradation of the glucose into lactic acid (Lee 

et al., 2000; Warriss et al., 1989). In contrast, the positional coincidence of a cis-eQTL 

regulating the expression of the IGKC gene and a QTL for GM redness is probably 

stochastic because this gene synthesizes the constant region of immunoglobulin kappa, a 

molecule with immune functions. In other cases (SLP1, CTSA, GUSB), cis-regulated 

genes may have consequences on meat quality but discussing about their potential 

involvement is still quite speculative because we do not have a detailed knowledge about 

their biological functions.         

    The performance of an eQTL scan for 66 genes, located within GM QTL regions made 

possible to identify 20 cis-eQTL regulating the expression of 20 loci. The majority of 

these cis-eQTL mapped to chromosome 14. Several of these genes might have an 

important role in lipid metabolism e.g. PEX19, that plays a key role in the biogenesis of 

peroxisomes, cellular organelles involved in lipid catabolism (Lodhi and Semenkovich, 

2014) and KCNIP2, that shows a significant differential expression in the muscle before 
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and after feeding (our unpublished results). Unexpectedly, we did not observe a cis-eQTL 

for the SCD gene that maps to the SSC14 (120-124 Mb) region containing the most 

significant associations with FA composition traits in both muscles. Recently, Ros-

Freixedes et al. (2016) showed that one SNP in the promoter of the SCD gene is 

associated with the composition of IMF and SCD mRNA levels. Moreover, Gol et al. 

(2016) demonstrated that this SNP has causal effects on SCD expression in cell cultures. 

Our inability to detect a cis-eQTL regulating the expression of the SCD gene might be 

due to the fact that SCD mRNA levels are affected by sex-related and nutritional factors 

(Joan Estany, personal communication), so the penetrance of the promoter polymorphism 

reported by Ros-Freixedes et al. (2016) may vary depending on environmental 

conditions. 

    We also identified SNPs mapping to GM QTL regions that trans-regulated the 

expression of 103 genes mapping to other chromosomal locations. Several trans-

regulated loci may have effects on lipid metabolism e.g. apolipoprotein E (APOE) which 

plays a key role in the transportation and storage of lipids (Kypreos, 2009) and acyl-CoA 

dehydrogenase, C-2 to C-3 short chain (ACADS), which catalyses the first step of the FA 

β-oxidation pathway (Jethva et al., 2008). Though the co-localization of QTL and eQTL 

cannot be interpreted as evidence of a causal relationship, our data suggest that trans-

eQTL could be an important source of variation for IMF composition traits in pigs. These 

trans-regulatory SNPs could act through a variety of mechanisms e.g. altering the 

sequence of a regulatory RNA or a transcription factor. Westra et al. (2013) carried out a 

trans-eQTL analysis based on 5,311 individuals with measurements of gene expression in 

blood cells and identified 233 SNPs displaying significant associations. Interestingly, 

many of these SNPs played an important role in susceptibility to systemic lupus 

erythematosus, cholesterol metabolism, and type 1 diabetes (Westra et al., 2013).   
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    We have also investigated the factors that regulate the expression of 63 genes related 

with lipid metabolism. In this way, we have identified 13 cis- and 18 trans-eQTL 

modulating the expression of 19 loci with key roles in lipid metabolism. Paradoxically, 

none of these eQTL mapped to a QTL for lipid traits, suggesting that the detected eQTLs 

have effects on gene expression but not on phenotypes. There are growing evidences that 

even mutations abolishing gene function do not always translate into an observable 

phenotype. For instance, extensive sequencing of Pakistani individuals revealed a woman 

with homozygous inactivating mutations in the PRDM9 gene that plays a key role in 

meiotic recombination (Narasimhan et al., 2016). In mice, the abrogation of PRDM9 

function results in infertility but, paradoxically, this woman had viable offspring 

(Narasimhan et al., 2016). The most likely explanation for this result is the existence of 

functional redundancy and compensation mechanisms that mitigate the effects of 

mutations that might be harmful (Narasimhan et al., 2016). In another study, 

Tchernitchko et al. (2004) noted that many missense mutations that are predicted to be 

deleterious do not have an impact on susceptibility to haemolytic anemia.  

     According to our results, around one third of the 63 lipid genes were regulated by at 

least one eQTL. The statistical power of our study is quite limited because we only have 

microarray data from 104 individuals, so we are probably unable to detect eQTL with 

subtle effects on gene expression. Moreover, it would be interesting to target a higher 

number of lipid-related genes. The annotation of the porcine microarrays and the pig 

genome are quite deficient, thus limiting the number of genes that can be analysed. 

Moreover, in the porcine microarrays gene expression is not measured in a reliable 

manner when mRNA levels are very low or very high. The optimal situation would be to 

perform eQTL scans based on RNAseq data obtained in a sufficient number of 

individuals (100 pigs at least). These large-scale studies can be done in the context of 

international initiatives such as the FAANG project (Andersson et al., 2015).     
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     Finally, we have demonstrated that eQTL sharing in two distinct porcine tissues, 

muscle and liver, is quite low. We have analysed gene expression in these two tissues 

because they play an important role in energy homeostasis and also because, according to 

Ferraz et al. (2008), their profiles of expression are highly differentiated, probably due to 

the fact that they derive from different embryonic layers. In this way, we detected 436 

cis- and 450 trans-eQTLs for genes expressed in the gluteus medius muscle and 504 cis-

eQTLs and 3,228 trans-eQTLs for hepatic genes. One important observation made by us 

is that the numbers of cis- and trans-eQTL in the muscle are similar, while in the liver 

trans-eQTL are clearly predominant, maybe reflecting the functional complexity of this 

organ. Our results are closely aligned with those presented by other authors indicating 

that porcine trans-eQTL are more abundant than their cis- counterparts (Liaubet et al., 

2011; Cánovas et al., 2012). In strong contrast, in studies performed in humans, cis-eQTL 

tends to be much more abundant than trans-eQTL. For instance, Zhang et al. (2014) 

analyzed 53 eQTL data sets and identified 116,563 high-confidence eQTL, but only 9% 

acted in trans-. Paradoxically, the analysis of the contributions of cis- and trans-eQTL to 

the heritability of gene expression revealed that the latter represent 60-75% of the value 

of such parameter (Albert and Kruglyak, 2015).  This result indicates that gene 

expression is essentially regulated in trans-, but probably these distant genetic 

determinants are quite scattered across the human genome and their effects are small and 

depend on the environment, meaning that they are difficult to detect, particularly when 

resource populations are small (Albert and Kruglyak, 2015). Another important 

difference with humans is that we have observed a weak sharing of eQTL in the pig 

muscle and liver, while the GTEx study (GTEx Consortium, 2015) has revealed that 50% 

of cis-eQTL are shared by the nine human tissues under analysis. In contrast, a study 

comparing the regulatory landscape in three tissues (fibroblasts, lymphoblastoid cell lines 

and primary T cells) derived from the same set of 75 European individuals reported that 
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69-80% of cis-eQTLs were cell-type specific (Dimas et al., 2009). In consequence, it is 

difficult to evaluate if discrepancies in the magnitude of eQTL sharing across tissues 

reveals biological differences between species or if it has technical reasons.  Moreover, 

muscle is a difficult tissue to work with because its transcriptomic profile is 

overwhelmingly dominated by the expression of a few genes encoding myofibrilar 

proteins. This means that the expression of other genes can be “masked” to some extent, 

making difficult to identify eQTL regulating their expression. Thus, it is possible that by 

using RNAseq data with a high sequencing depth we might be able to find a higher level 

of QTL sharing between muscle and liver.     

 

7.5. Identification of copy number variants in Duroc pigs and their co-

localization with eQTL  

     We were interested in characterizing copy number variation in our Duroc resource 

population because such structural polymorphisms might have important consequences 

on gene expression and phenotypes (Clop et al., 2012). For instance, it is well known that 

the white coat of pigs is explained by the segregation of CNV with duplicated or 

triplicated copies of the KIT gene that plays a key role in melanocyte survival and 

differentiation (Giuffra et al., 2002). Unfortunately, the reliable identification of CNV 

based on Porcine SNP60 BeadChip data has proven to be a difficult task. To infer the 

copy status of a given individual based on B allele frequency and log R ratio is not 

straightforward at all (Clop et al., 2012) and it strongly depends on the software used to 

do so (Ramayo-Caldas et al., 2010). When we compared the putative CNVs identified 

with the Porcine SNP60 BeadChip and estimates of copy numbers inferred with 

quantitative real-time PCR assays, only 50% of the CNVs were successfully confirmed. 

This rate is lower than (75%) that reported by Ramayo-Caldas et al. (2010), but these 
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authors only took into consideration CNVs identified simultaneously with three 

softwares, a practice that is expected to decrease substantially the rate of false positives. 

Indeed, our analysis showed that negative controls represented by putative single-copy 

regions contained CNVs. This finding makes clear that CNV analyses based on Porcine 

SNP60 BeadChip data miss many small CNVs that, to make things worse, encompass the 

broad majority of structural variation in pigs i.e. 80% of CNVR are smaller than 15 kb 

(Paudel et al., 2015). As a matter of fact, many SNPs residing in CNVs are often 

excluded from genotyping platforms owing to Mendelian inconsistency among families, 

lack of Hardy–Weinberg equilibrium and high missing genotype rates (Bae et al., 2008). 

In humans, Cooper et al. (2008) have shown that in old SNP arrays (which happen to 

have a higher resolution than the Porcine SNP60 BeadChip) 75% of deletions are not 

covered by probes contained in the chip and that regions containing segmental 

duplications are often confounded with CNVs. In pigs, Fernández et al. (2014) were able 

to confirm by high-throughput sequencing only 24 % of CNVR detected with the Porcine 

SNP60 BeadChip .  

     Although there was a considerable overlap (47%) between our data set of CNVs and 

those published in our studies, such co-localizations may have emerged by chance due to 

the fact that a substantial fraction of the pig genome is covered by CNVs. Another 

problem that we faced is that we lacked Porcine SNP60 BeadChip data from the mothers 

of the 350 F1 barrows, making impossible to evaluate the consistency of CNV 

segregation with parents-offspring trios. We also obtained evidence that many of the 

CNVs were present in a few individuals making impossible to assess their effects on gene 

expression or production phenotypes. A similar observation was made by Bae et al. 

(2010), who identified 368 CNVR in cattle, of which only 76 had a frequency > 1%. 
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     We have examined the level of co-localization between CNVRs and eQTL detected in 

the muscle and liver, which happened to be quite low. However, this is a rough approach, 

so results need to be interpreted with caution. Importantly, eQTL were identified in 104 

pigs with microarray measurements while CNVs were detected in 350 pigs. Second, and 

as previously said, many of the CNVs were harboured by a reduced number of 

individuals. And third, the duplication or deletion of a genomic region does not 

necessarily imply changes in gene expression i.e. the loss of one allele can be 

compensated by the increased expression of the remaining allele, and a duplicated copy 

of one gene might be transcriptionally silent (Clop et al., 2012). To investigate the impact 

of structural variation on gene and phenotype expression in pigs it will be necessary to 

use a technique clearly ascertaining  copy number status (e.g. whole genome sequencing, 

maybe complemented with some other approach), something that the current Porcine 

SNP60 BeadChip cannot do in an accurate manner. Subsequently, copy number status 

should be correlated with gene expression levels measured with RNAseq.   
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Conclusions  

1. The segregation of quantitative trait loci (QTL) for meat quality traits in the 

Duroc population under analysis has been demonstrated. The GWAS analysis for 

technological meat quality traits recorded in Duroc pigs revealed genome-wide 

significant associations between electric conductivity of the longissimus dorsi 

muscle and phenotypic variation mapping to SSC4 (104 Mb), SSC5 (15 Mb) and 

SSC13 (137 Mb), while several additional regions were significantly associated at 

the chromosome-wide level. The GWAS analysis for intramuscular fat content 

and composition traits allowed us identifying 37 genome-wide and 83 

chromosome-wide QTL. The main genomic regions associated with intramuscular 

fat composition mapped to SSC2 (9-11 Mb), SSC4 (63.9-64 Mb), SSC5 (71-79 

Mb), and SSC14 (87-99 Mb and 120-124 Mb). Particularly relevant was the 

genomic region on SSC14 (120-124 Mb), which displayed significant associations 

with C16:1, C18:0, C18:1(n-9), saturated, and unsaturated fatty acids contents. 

 

2. The QTL maps for meat technological and lipid composition traits recorded in the 

gluteus medius and longissimus dorsi muscles showed a low positional 

concordance, indicating that the genetic determinism of these phenotypes has an 

important muscle-specific component.  

 

3. Several QTL regions for meat quality traits co-localized with expression QTL 

(eQTL) regulating the mRNA levels of genes with a potential impact on muscle 

metabolism, though a causal relationship cannot be established yet. In this way, 

the performance of an eQTL search for SNPs mapping to regions associated with 

meat technological traits demonstrated that gluteus medius a* SSC3 and pH24 

SSC17 QTL display positional concordance with cis-eQTL regulating the 

expression of several genes (ADCY3, CTSA, GUSB, and SLP1) with a potential 

role on muscle metabolism. Moreover, 20 cis-eQTLs affecting the expression of 

20 loci mapping to QTL regions for intramuscular fat traits recorded in the gluteus 

medius muscle have been detected in the Duroc population. In addition, 116 

trans-eQTL mapping to QTL for intramuscular fat phenotypes measured in the 

gluteus medius muscle have been found. These trans-eQTL regulate the 

expression of 103 genes, part of which are involved in lipid metabolism.  

 

4. An eQTLs scan for 63 lipid metabolism genes revealed the existence of 13 cis- 

and 18 trans-eQTL regulating the expression of 19 genes with a broad variety of 

functions such as β-oxidation of fatty acids, lipogenesis, lipolysis, fatty acid 
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activation and desaturation, and lipoprotein uptake. These results evidence that 

regulatory mutations are a significant source of variation in the expression of 

lipid-related genes. 

 

5. A total of 436 cis-eQTL and 450 trans-eQTL regulating the expression of gluteus 

medius muscle genes have been found, while 504 cis-eQTL and 3,228 trans-

eQTL influencing mRNA levels in the liver have been detected. The weak 

positional concordance between the eQTL modulating the expression of muscle 

and hepatic genes indicates that the genetic regulation of gene expression has an 

important tissue-specific component in pigs. 

 

6. A total of 104 copy number variation regions (CNVR) have been identified in the 

Duroc pig population under study. Approximately 39% of these CNVR co-

localized with cis-eQTL, whilst the co-localization of CNVR and trans-eQTL was 

somewhat higher (≈60%). The consistency of these co-localizations in the liver 

and muscle was weak. 
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9.1. Supplementary material of Chapter IV: Identifying genomic regions associated 
with muscle lipid phenotypes and gene expression traits in Duroc pigs 

9.1.1 Supplementary Tables of Chapter IV.  

Chapter IV. Supplementary Table 1. Mean percentages and standard deviations (SD) of 

intramuscular fat and composition traits recorded in two muscles of 350 Duroc pigs. 

Phenotype  Symbol 

longissimus dorsi 
muscle 

gluteus medius 
muscle 

Mean ± SD (%) Mean ± SD (%) 

Intramuscular fat IMF 3.91±1.53 5.2±2.05 

Saturated FA SFA 37.11 ± 2.41 36.47 ± 2.07 

Capric C10:0 0.10 ± 0.07 0.11 ± 0.06 

Lauric C12:0 0.09 ± 0.04 0.09 ± 0.04 

Myristic C14:0 1.37 ± 0.27 1.39 ± 0.23 

Palmitic C16:0 23.47 ± 1.64 23.23 ± 1.42 

Margaric C17:0 0.21 ± 0.08 0.27 ± 0.16 

Stearic C18:0 11.71 ± 1.22 11.21 ± 1.13 

Arachidic C20:0 0.18 ± 0.07 0.17 ± 0.12 

Unsaturated FA UFA 62.89 ± 2.41 63.53 ± 2.07 

Monounsaturated FA MUFA 43.29 ± 5.65 43.19 ± 4.9 

Palmitoleic C16:1 (n-7) 2.98 ± 0.59 2.82 ± 0.49 

Palmitelaidic C16:1 (n-9) 0.46 ± 0.04 0.59 ± 0.05 

Heptadecenoic C17:1 0.17 ± 0.06 0.21 ± 0.06 

Oleic C18:1 (n-9) 34.96 ± 5.16 35.13 ± 4.48 

Gondoic C20:1 0.66 ± 0.16 0.68 ± 0.14 

Polyunsaturated FA PUFA 19.6 ± 7.35 20.35 ± 6.04 

Linoleic C18:2 14.12 ± 5.09 14.93 ± 4.1 

α-Linolenic C18:3 (n-3) 0.48 ± 0.09 0.62 ± 0.1 

Eicosadienoic C20:2 (n-6) 0.41 ± 0.1 0.53 ± 0.14 

Eicosatrienoic C20:3 (n-3) 0.49 ± 0.22 0.45 ± 0.2 

Arachidonic C20:4 3.52 ± 1.8 3.18 ± 1.55 

Eicosapentaenoic C20:5 0.16 ± 0.12 0.18 ± 0.14 

Docosahexaenoic C22:6 0.12 ± 0.1 0.12 ± 0.12 

Omega-3 FA FA n-3 0.91 ± 0.29 1.10 ± 0.34 

Omega-6 FA FA n-6 18.69 ± 7.12 19.25 ± 5.81 

Omega-6 to -3 ratio n-6/n-3 20.43 ± 4.71 17.82 ± 3.86 

https://en.wikipedia.org/wiki/Lauric_acid
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Chapter IV. Supplementary Table 2. QTL displaying chromosome-wide significant associations with intramuscular fat and 

composition traits recorded in the gluteus medius (GM) and longissimus dorsi (LD) muscles of 350 Duroc pigs
1
.  

 

Traits SSC N SNP 
Region 

(Mb) 
P-value q-value B δ ± SE A1 MAF 

GM IMF 13 6 MARC0046697  26.9-27.1 0.00  0.04  0.18  -0.67 ± 0.17  A 0.37  

Majority FA (gluteus medius) 

GM C18:0 14 

1 ALGA0074770 7.5-7.5 0.00 0.05 1.00 -0.28 ± 0.09 G 0.46 

3 ASGA0063465 55-58.6 0.00  0.02  1.00  -0.44 ± 0.11  A 0.23  

1 ASGA0066212 119.9-119.9 0.00 0.03 1.00 -0.42 ± 0.12 G 0.16 

7 MARC0019623 131.2-132.3 0.00 0.03 1.00 -0.47 ± 0.14 A 0.10 

GM C18:1 (n-9) 14 1 ALGA0074874 9.3- 9.3 0.00 0.05 1.00 -0.11 ± 0.03 C 0.20 

GM PUFA 5 6 ASGA0085283 71.7-79.8 0.00 0.04 0.26 2.99 ± 0.80 A 0.07 

GM n-6 FA 5 6 ASGA0085283 71.7-79.8 0.00 0.04 0.21 2.9 ± 0.76 A 0.07 

GM n-6/n-3 4 2 DIAS0002565 130.5-130.6 0.00 0.02 0.04 -1.39 ± 0.29 G 0.35 

Majority FA (longissimus dorsi) 

LD C18:0 14 5 H3GA0041168 87.8-88.2 0.00 0.01 0.73 0.41 ± 0.11 A 0.44 

LD C18:1 (n-9) 

10 2 DBMA0000150 54.6-54.6 0.00 0.05 0.14 -0.11 ± 0.03 A 0.45 

14 

 

16 ALGA0078299 64.7-68.2 0.00 0.02 1.00 0.12 ± 0.03 G 0.23 

9 ASGA0064951 93.2-99.1 0.00 0.02 1.00 -0.11 ± 0.03 G 0.41 

1 ASGA0091963 118.7-118.7 0.00 0.02 1.00 0.11 ± 0.03 A 0.38 

1 DRGA0014640 136.2-136.2 0.00 0.04 1.00 -0.12 ± 0.04 A 0.14 
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Traits SSC N SNP 
Region 

(Mb) 
P-value q-value B δ ± SE A1 MAF 

20 MARC0062790 150.3-153.5 0.00 0.01 0.41 0.11 ± 0.03 C 0.42 

LD SFA 

12 

1 ASGA0082934 6.5- 6.5 0.00 0.04 0.45 0.70 ± 0.18 G 0.32 

2 ASGA0054485 20.6-20.6 0.00 0.03 0.25 0.73 ± 0.18 A 0.31 

1 ALGA0066768 50.6-50.6 0.00 0.04 0.46 0.78 ± 0.22 G 0.17 

14 

 

1 ASGA0062403 29.2-29.2 0.00 0.03 1.00 0.64 ± 0.18 A 0.32 

1 DRGA0013769 31.8-31.8 0.00 0.04 1.00 0.73 ± 0.21 A 0.24 

LD UFA 
12 

1 ASGA0082934 6.5- 6.5 0.00 0.04 0.48 -0.69 ± 0.18 G 0.32 

2 ASGA0054485 20.6-20.6 0.00 0.03 0.26 -0.73 ± 0.18 A 0.31 

1 ALGA0066768 50.6-50.6 0.00 0.04 0.42 -0.78 ± 0.22 G 0.17 

14 1 ASGA0062403 29.2-29.2 0.00 0.03 1.00 -0.63 ± 0.18 A 0.32 

Minority FA (gluteus medius) 

Traits SSC N SNP 
Region 

(Mb) 
P-value q-value B δ ± SE A1 MAF 

GM C10:0 12 2 DIAS0001577 26.8-27.4 0.00 0.01 0.02 -0.03 ± 0.01 A 0.14 

GM C14:0 5 
15 ASGA0085283 71.7-79.8 0.00 0.01 0.03 -0.13 ± 0.03 A 0.07 

12 ALGA0103880 80.0-80.5 0.00 0.02 0.18 -0.07 ± 0.02 G 0.21 

GM C16:1 (n-7) 14 
42 ALGA0081091 120.4-124.3 0.00 0.01 0.06 0.19 ± 0.04 C 0.35 

2 ALGA0104036 143.0-144.4 0.00 0.02 0.84 0.19 ± 0.05 G 0.13 

GM C17:0 

5 4 ASGA0025952 68.0-68.1 0.00 0.02 0.08 0.08 ± 0.02 A 0.11 

6 

1 ASGA0092684 20.5-20.5 0.00 0.03 0.67 0.10 ± 0.03 A 0.05 

4 M1GA0008595 63.3-63.5 0.00 0.02 0.28 0.06 ± 0.01 G 0.28 

15 ALGA0036836 124.3-126.0 0.00 0.01 0.04 0.07 ± 0.02 A 0.17 
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Traits SSC N SNP 
Region 

(Mb) 
P-value q-value B δ ± SE A1 MAF 

2 DIAS0003128 133.2-133.3 0.00 0.02 0.17 0.07 ± 0.02 A 0.17 

1 MARC0038340 146.8-146.8 0.00 0.02 0.20 0.11 ± 0.03 G 0.05 

11 1 H3GA0032297 73.9-73.9 0.00 0.00 0.00 0.08 ± 0.02 G 0.19 

13 1 ALGA0074006 214.6-214.6 0.00 0.01 0.01 0.12 ± 0.03 G 0.06 

GM C17:1 2 1 MARC0050503 11.1-11.1 0.00 0.04 0.04 -0.02 ± 0.01 G 0.30 

GM C18:2 5 6 ASGA0085283 71.7-79.8 0.00 0.05 0.30 2.02 ± 0.54 A 0.07 

GM C18:3 10 2 ALGA0057399 18.7-18.8 0.00 0.03 0.07 0.06 ± 0.01 G 0.11 

GM C20:3 (n-3) 
13 

1 ASGA0083465 2.2- 2.2 0.00 0.05 0.19 0.06 ± 0.02 G 0.45 

1 ALGA0067910 11.1-11.1 0.00 0.04 0.13 0.08 ± 0.02 G 0.13 

1 MARC0023520 189.8-189.8 0.00 0.04 0.05 0.08 ± 0.02 C 0.12 

1 H3GA0037916 207.4-207.4 0.00 0.04 0.13 0.07 ± 0.02 C 0.18 

18 2 ASGA0095005 37.0-37.5 0.00 0.03 0.49 0.10 ± 0.03 A 0.06 

GM C20:4 4 1 ASGA0020884 99.0-99.0 0.00 0.04 0.04 0.92 ± 0.21 G 0.06 

Minority FA (longissimus dorsi) 

LD C10:0 18 3 ASGA0099368 5.1- 5.8 0.00 0.03 0.09 -0.03 ± 0.01 G 0.19 

LD C14:0 9 
3 ASGA0041280 7.7- 9.5 0.00 0.00 0.09 -0.09 ± 0.02 G 0.30 

3 ASGA0043433 65.2-65.7 0.00 0.02 0.78 0.08 ± 0.02 A 0.23 

LD C16:1 

(n-9) 

6 1 H3GA0017791 28.3-28.3 0.00 0.02 0.05 -0.02 ± 0.00 A 0.26 

7 
8 ASGA0037068 128.8-129.9 0.00 0.01 0.10 0.02 ± 0.01 A 0.16 

2 M1GA0011374 130.2-130.2 0.00 0.01 0.05 -0.02 ± 0.00 A 0.48 

12 
7 MARC0034121 42.4-48.8 0.00 0.03 0.30 -0.01 ± 0.00 A 0.30 

3 ASGA0055013 52.6-54.6 0.00 0.04 0.90 0.01 ± 0.00 G 0.29 



 IX. Annexes 

 

180 

 

Traits SSC N SNP 
Region 

(Mb) 
P-value q-value B δ ± SE A1 MAF 

LD C16:1 

(n-7) 

4 
3 MARC0050687 63.9-63.9 0.00 0.03 0.09 0.24 ± 0.06 C 0.29 

1 H3GA0014326 125.6-125.6 0.00 0.03 0.13 0.19 ± 0.05 C 0.32 

9 3 ASGA0043433 65.2-65.7 0.00 0.04 0.13 0.23 ± 0.06 A 0.23 

10 

2 ALGA0057868 27.0-27.1 0.00 0.02 0.06 0.23 ± 0.05 A 0.26 

4 H3GA0029887 34.2-38.3 0.00 0.02 0.05 0.25 ± 0.06 A 0.18 

1 ALGA0106385 52.8-52.8 0.00 0.04 0.30 -0.18 ± 0.05 A 0.36 

1 MARC0089740 77.7-77.7 0.00 0.04 0.29 -0.17 ± 0.05 A 0.40 

14 40 ALGA0081091 120.9-124.3 0.00 0.01 0.17 0.22 ± 0.05 C 0.35 

LD C17:0 

2 1 ASGA0008934 9.4- 9.4 0.00 0.04 0.46 0.04 ± 0.01 A 0.12 

5 
16 INRA0019528 60.6-68.1 0.00 0.02 0.14 0.04 ± 0.01 G 0.13 

3 ALGA0107635 103.8-104.0 0.00 0.03 0.39 0.02 ± 0.01 A 0.42 

8 
1 MARC0036242 27.4-27.4 0.00 0.04 0.28 0.03 ± 0.01 A 0.12 

7 ALGA0047393 31.7-32.2 0.00 0.04 0.20 0.05 ± 0.01 A 0.07 

10 
2 ALGA0058366 37.8-38.0 0.00 0.04 0.14 -0.03 ± 0.01 C 0.33 

3 ALGA0058457 42.2-42.3 0.00 0.04 0.22 0.03 ± 0.01 A 0.14 

LD C17:1 
2 

9 MARC0088806 3.2- 9.5 0.00 0.03 0.06 -0.04 ± 0.01 C 0.11 

2 ALGA0011938 10.2-10.9 0.00 0.05 0.53 0.02 ± 0.01 G 0.48 

1 DRGA0002832 25.6-25.6 0.00 0.05 0.58 -0.03 ± 0.01 A 0.12 

11 3 ASGA0050304 23.4-23.5 0.00 0.03 0.10 -0.03 ± 0.01 A 0.29 

LD C18:3 

2 1 ALGA0117101 44.7-44.7 0.00 0.03 0.03 0.06 ± 0.01 C 0.06 

9 
1 H3GA0027297 51.8-51.8 0.00 0.01 0.06 -0.05 ± 0.01 A 0.09 

8 ALGA0053212 60.9-64.2 0.00 0.01 0.06 -0.07 ± 0.02 A 0.05 
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Traits SSC N SNP 
Region 

(Mb) 
P-value q-value B δ ± SE A1 MAF 

1 ASGA0095645 147.5-147.5 0.00 0.04 0.40 0.06 ± 0.02 A 0.05 

LD C20:2 (n-6) 5 1 MARC0074262 98.8-98.8 0.00 0.04 0.04 0.03 ± 0.01 G 0.41 

LD C20:3 (n-3) 11 4 ASGA0088784 20.8-20.8 0.00 0.01 0.03 0.05 ± 0.01 G 0.14 

LD C20:4 3 1 H3GA0010420 116.3-116.3 0.00 0.03 0.03 -0.56 ± 0.13 A 0.34 

LD n-3 FA 1 
2 MARC0013135 65.3-65.8 0.00 0.05 0.52 0.09 ± 0.02 G 0.45 

9 ALGA0005329 115.2-117.0 0.00 0.05 0.54 0.09 ± 0.02 G 0.39 

 

1
SSC: porcine chromosome, N: Number of SNPs significantly associated with the trait under study , SNP: SNP displaying the most 

significant association with the trait under study, Region (Mb): region containing SNPs significantly associated with the trait under 

study, P-value: nominal P-value, q-value: q-value calculated with a false discovery rate approach, B : Bonferroni-corrected P-value, δ: 

allelic effect and its standard error (SE), A1: minority allele, MAF: frequency of the minority allele. 
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9.2. Supplementary material of Chapter V: Investigating the genetic regulation of the 
expression of 63 lipid metabolism genes in the pig skeletal muscle 

9.2.1 Supplementary Tables of Chapter V. 

Chapter V. Supplementary Table 1. List of 63 genes involved in lipid metabolism and 

annotated in the Ensembl database (release 84).  

Ensembl ID Name Acronym 

ENSSSCG00000026173 
ATP-binding cassette, sub-family A (ABC1), 

member 1 
ABCA1 

ENSSSCG00000028620 
ATP-binding cassette, sub-family D (ALD), member 

3 
ABCD3 

ENSSSCG00000016156 acyl-CoA dehydrogenase, long chain ACADL 

ENSSSCG00000003776 acyl-CoA dehydrogenase, C-4 to C-12 straight chain ACADM 

ENSSSCG00000009916 acyl-CoA dehydrogenase, C-2 to C-3 short chain ACADS 

ENSSSCG00000008724 acyl-CoA oxidase 3, pristanoyl ACOX3 

ENSSSCG00000017566 acyl-CoA synthetase family member 2 ACSF2 

ENSSSCG00000015784 acyl-CoA synthetase long-chain family member 1 ACSL1 

ENSSSCG00000016223 acyl-CoA synthetase long-chain family member 3 ACSL3 

ENSSSCG00000012583 acyl-CoA synthetase long-chain family member 4 ACSL4 

ENSSSCG00000000757 adiponectin receptor 2 ADIPOR2 

ENSSSCG00000005829 1-acylglycerol-3-phosphate O-acyltransferase 2 AGPAT2 

ENSSSCG00000015755 1-acylglycerol-3-phosphate O-acyltransferase 5 AGPAT5 

ENSSSCG00000013599 angiopoietin like 4 ANGPTL4 

ENSSSCG00000030921 apolipoprotein A1 APOA1 

ENSSSCG00000003088 apolipoprotein E APOE 

ENSSSCG00000016634 caveolin 1, caveolae protein, 22kDa CAV1 

ENSSSCG00000016635 caveolin 2 CAV2 

ENSSSCG00000006276 CCAAT/enhancer binding protein (C/EBP), delta CEBPD 

ENSSSCG00000010449 cholesterol 25-hydroxylase CH25H 

ENSSSCG00000004142 
Cbp/p300-interacting transactivator, with Glu/Asp 

rich carboxy-terminal domain, 2 
CITED2 

ENSSSCG00000002689 c-Maf inducing protein CMIP 

ENSSSCG00000015391 carnitine O-octanoyltransferase CROT 

ENSSSCG00000006126 2,4-dienoyl CoA reductase 1, mitochondrial DECR1 

ENSSSCG00000003854 enoyl CoA hydratase domain containing 2 ECHDC2 

ENSSSCG00000001000 enoyl-CoA delta isomerase 2 ECI2 

ENSSSCG00000026044 farnesyl-diphosphate farnesyltransferase 1 FDFT1 

ENSSSCG00000010631 glycerol-3-phosphate acyltransferase, mitochondrial GPAM 

ENSSSCG00000008569 
hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 

thiolase/enoyl-CoA hydratase , beta subunit 
HADHB 

ENSSSCG00000016379 high density lipoprotein binding protein HDLBP 

ENSSSCG00000016872 
3-hydroxy-3-methylglutaryl-CoA synthase 1 

(soluble) 
HMGCS1 

ENSSSCG00000026025 3-hydroxymethyl-3-methylglutaryl-CoA lyase HMGCL 
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Ensembl ID Name Acronym 

ENSSSCG00000016420 insulin induced gene 1 INSIG1 

ENSSSCG00000010226 jumonji domain containing 1C JMJD1C 

ENSSSCG00000004569 lactamase beta LACTB 

ENSSSCG00000010450 lipase A, lysosomal acid, cholesterol esterase LIPA 

ENSSSCG00000003018 lipase, hormone-sensitive LIPE 

ENSSSCG00000004509 lipase, endothelial LIPG 

ENSSSCG00000000625 low density lipoprotein receptor-related protein 6 LRP6 

ENSSSCG00000028960 
lanosterol synthase (2,3-oxidosqualene-lanosterol 

cyclase) 
LSS 

ENSSSCG00000016918 
mitogen-activated protein kinase kinase kinase 1, E3 

ubiquitin protein ligase 
MAP3K1 

ENSSSCG00000004454 malic enzyme 1, NADP(+)-dependent, cytosolic ME1 

ENSSSCG00000024134 monoglyceride lipase MGLL 

ENSSSCG00000025447 MID1 interacting protein 1 MID1IP1 

ENSSSCG00000001063 myosin regulatory light chain interacting protein MYLIP 

ENSSSCG00000008581 nuclear receptor coactivator 1 NCOA1 

ENSSSCG00000003707 Niemann-Pick disease, type C1 NPC1 

ENSSSCG00000002366 Niemann-Pick disease, type C2 NPC2 

ENSSSCG00000016863 3-oxoacid CoA transferase 1 OXCT1 

ENSSSCG00000011215 3-oxoacyl-ACP synthase, mitochondrial OXSM 

ENSSSCG00000001539 peroxisome proliferator-activated receptor delta PPARD 

ENSSSCG00000011579 peroxisome proliferator-activated receptor gamma PPARG 

ENSSSCG00000003837 
protein kinase, AMP-activated, alpha 2 catalytic 

subunit 
PRKAA2 

ENSSSCG00000000185 
protein kinase, AMP-activated, gamma 1 non-

catalytic subunit 
PRKAG1 

ENSSSCG00000016432 
protein kinase, AMP-activated, gamma 2 non-

catalytic subunit 
PRKAG2 

ENSSSCG00000026281 SREBF chaperone SCAP 

ENSSSCG00000009759 scavenger receptor class B, member 1 SCARB1 

ENSSSCG00000010554 stearoyl-CoA desaturase (delta-9-desaturase) SCD 

ENSSSCG00000010116 solute carrier family 25 (mitochondrial carrier SLC25A1 

ENSSSCG00000000072 solute carrier family 25 (mitochondrial carrier SLC25A17 

ENSSSCG00000015232 ST3 beta-galactoside alpha-2,3-sialyltransferase 4 ST3GAL4 

ENSSSCG00000017402 signal transducer and activator of transcription 5A STAT5A 

ENSSSCG00000005229 very low density lipoprotein receptor VLDLR 
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9.2.2 Supplementary Figures of Chapter V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V. Supplementary Figure 1. Manhattan plots of cis- and trans-eQTLs regulating 

the expression of the porcine ACADS gene. The x-axis represents the chromosomal region 

containing the eQTL  (measured in Mb), and the y-axis shows the -log10 (P-value) of the 

associations found. The horizontal line indicates the threshold of significance (q-value ≤ 

0.05). The vertical blue line depicts the genomic location of the ACADS gene 
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Chapter V. Supplementary Figure 2. Manhattan plots of cis- and trans-eQTLs regulating 

the expression of the porcine ACSF2 and SLC25A17 genes. The x-axis represents the 

chromosomal region containing the eQTL  (measured in Mb), and the y-axis shows the -

log10 (P-value) of the associations found. The horizontal red line indicates the threshold of 

significance (q-value ≤  0.05). The vertical blue line depicts the genomic location of the 

ACSF2 and SLC25A17 genes 
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Chapter V. Supplementary Figure 3. Comparison of the significance of a trans-eQTL 

(SSC12, 33.2-34 Mb) regulating the expression of the ACSF2 gene (SSC12, 26.8 Mb) 

before (a) and after (b) correcting  the data for the most significant SNP of a neighboring 

cis-eQTL (SSC12, 24-26.9 Mb). The x-axis represents the chromosomal region containing 

the eQTLs  (measured in Mb), and the y-axis shows the -log10 (P-value) of the associations 

found. The red and blue lines indicate the thresholds of significance after and before 

correcting for multiple testing, respectively.  

 

 

 (a) Before correcting (b) After correcting 
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