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de Ingeniería Dirigida por Modelos

Resumen en Español

Los requisitos de la Web 2.0 y las nuevas tecnologías que han aparecido recientemente
(por ejemplo, Internet de las Cosas, aplicaciones móviles o Big Data) han evidenciado las li-
mitaciones de los sistemas de gestión de bases de datos (SGBD) relacionales cuando se usan
en las modernas aplicaciones que requieren manejar grandes volúmenes de datos. Esto ha
motivado el desarrollo de un número cada vez mayor de sistemas no relacionales con el pro-
pósito de abordar los requisitos de tales aplicaciones, en especial, la capacidad de representar
datos complejos, la escalabilidad y hacer frente al aumento del tráfico de datos. El término
NoSQL (Non SQL/Not only SQL) se utiliza para denotar esta nueva generación de sistemas
de bases de datos.

El interés en los sistemas NoSQL ha crecido constantemente durante la última década.
Un gran número de empresas ya han implantado bases de datos NoSQL y la adopción au-
mentará considerablemente en los próximos años, como se informa en [1, 87]. El sitio web
“nosql-database.org” muestra una lista de unos 225 sistemas NoSQL disponibles en la ac-
tualidad. En realidad, el término NoSQL se refiere a un variado conjunto de paradigmas de
modelado de datos que gestionan datos semi-estructurados y no estructurados. Las princi-
pales categorías de NoSQL son: documentos, familia de columnas, clave-valor y bases de datos
de grafos. Las tres primeras representan datos semi-estructurados utilizando un modelo de
datos basado en la agregación [109]. Estos paradigmas son los más extendidos, siendo Mon-
goDB [80] el sistema NoSQL más utilizado [88].

Es preciso señalar que los sistemas NoSQL que pertenecen al mismo paradigma pueden
tener diferentes características. Sin embargo, la mayoría de los sistemas NoSQL tienen al-
gunas propiedades comunes, como son: SQL no es utilizado, no tiene que ser definido un
esquema para especificar la estructura de datos, la ejecución en clústeres es el factor principal
que determina su diseño, y se desarrollan como iniciativas open-source [109]. Poder alma-
cenar datos sin tener que definir previamente un esquema es uno de las características más
atractivas de las bases de datos NoSQL, aunque conlleva importantes desventajas como se-
ñalaremos más adelante en este capítulo.

El reciente informe de Dataversity “Insights on Modeling NoSQL” [1] ha señalado que
el modelado de datos también será una actividad crucial para las bases de datos NoSQL y ha
llamado la atención sobre la necesidad de herramientas NoSQL que proporcionen funcio-
nalidad similar a la disponible para bases de datos relacionales. Los autores de este informe
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identificaron tres principales características que deberían ser ofrecidas por las herramientas
de modelado NoSQL: visualización de modelos, generación de código y gestión de metada-
tos.

La Ingeniería de Datos es la disciplina que se ocupa de los principios, técnicas, métodos
y herramientas relacionado con la gestión de datos en el desarrollo de software. Los datos se
almacenan normalmente en sistemas de gestión de bases de datos (por ejemplo, relacionales,
orientados a objetos o NoSQL) y la Ingeniería de Datos se ha ocupado principalmente de las
bases de datos relacionales hasta el momento, aunque el interés se está desplazando hacia las
bases de datos NoSQL.

En esta tesis, hemos abordado cuestiones relacionadas a la Ingeniería de Datos, más espe-
cíficamente con la ingeniería inversa de datos NoSQL y el desarrollo de utilidades de bases
de datos capaces de proporcionar los tres tipos de funcionalidad mencionados anteriormen-
te. El trabajo de esta tesis se ha centrado, por lo tanto, en la Ingeniería de Datos NoSQL que
es un área de investigación emergente dentro del campo de Ingeniería de Datos.

En los últimos años, la Ingeniería de Software Dirigida por Modelos (MDSE o simple-
mente MDE) está ganando cada vez más aceptación, principalmente debido a su capacidad
para abordar la complejidad del software y mejorar la productividad del software [110, 121,
16]. MDE promueve el uso sistemático de modelos con el fin de elevar el nivel de abstracción
en el que se especifica el software, y para aumentar el nivel de automatización en el desarro-
llo de software. Las técnicas MDE, en especial el metamodelado y las transformaciones de
modelos, han demostrado ser útiles para tareas de ingeniería directa e inversa.

Los esquemas de datos son modelos y las operaciones sobre ellos se pueden implementar
usando transformaciones de modelo. Por lo tanto, los enfoques transformacionales se han
utilizado tradicionalmente para automatizar tareas de ingeniería de datos como normaliza-
ción, conversión de esquemas o integración de esquemas como se explica en detalle en [56].
La implementación de estas tareas podría ser facilitada por MDE. Sin embargo, la comuni-
dad de ingeniería de datos ha prestado poca atención a la aplicación de MDE como se indica
en [105].

Motivación A diferencia de los sistemas relacionales, en la mayoría de las bases de datos
NoSQL los datos se almacenan sin necesidad de haber definido previamente un esquema.
Esta falta de un esquema de datos explícito (schemaless) es probablemente la característica
NoSQL más atractiva para los desarrolladores de bases de datos. Siendo schemaless, se pro-
porciona una mayor flexibilidad para manejar los datos, por ejemplo, la base de datos puede
almacenar datos con una estructura diferente para el mismo tipo de entidad (datos no uni-
formes) y la evolución de los datos es favorecida debido a la falta de restricciones impuestas a
la estructura de datos.

Sin embargo, eliminar la necesidad de declarar esquemas explícitos no tiene que confun-
dirse con la ausencia de un esquema, ya que éste está implícito en los datos almacenados y
en el código de las aplicación. De hecho, los desarrolladores siempre deben tener en cuenta
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el esquema cuando escriben código que accede a la base de datos. Por ejemplo, tienen que
respetar los nombres y tipos de los campos al escribir operaciones de inserción o consulta.
Esta es una tarea propensa a errores, más aún cuando la existencia de varias versiones de cada
entidad es probable. Cuando existe un esquema es posible un control estático de errores. Por
otro lado, algunas herramientas y utilidades de base de datos necesitan conocer el esquema
para ofrecer funcionalidades tales como realizar consultas tipo SQL, migrar datos automáti-
camente o bien procesar datos de manera eficiente.

Por tanto, está surgiendo un interés creciente en el manejo de esquemas NoSQL explíci-
tos, como se evidencia en los enfoques de inferencia de esquemas recientemente propuestos
que serán analizados en esta tesis [72, 119, 102], y algunas herramientas ya disponibles para
ayudar a los desarrolladores de NoSQL [81, 108, 47]. En cuanto a la dificultad de escribir
código que acceda correctamente a los datos, aparecen dos estrategias para las aplicaciones
NoSQL: (i) combinar la carencia de un esquema con mecanismos que garanticen un acceso
correcto a los datos (por ejemplo, validadores de datos) y (ii) utilizar mappers que convierten
datos NoSQL en objetos de un lenguaje de programación. La mayoría de los mappers actua-
les son para sistemas NoSQL de documentos (Object-Document mappers, ODM), y Mon-
goose [81] es el ODM más utilizado, que ha sido creado para usar MongoDB con Javascript.
Sin embargo, ODM para otros lenguajes, como Java y PHP, también están disponibles.

Como se ha indicado anteriormente, la ausencia de un esquema permite almacenar datos
no uniformes, es decir, una entidad puede tener versiones diferentes del esquema implíci-
to (tipo) que caracteriza los datos almacenados de dicha entidad. Cada versión está definida
por un conjunto de atributos. La versión de una entidad puede originarse, por ejemplo, me-
diante una elección de diseño inicial o cambios en el esquema implícito de una entidad (los
objetos que tienen el esquema evolucionado coexisten con los objetos que tienen el nuevo
esquema). Por lo tanto, teniendo en cuenta que cada entidad puede tener una o más versio-
nes, establecer el esquema (o tipo) de una entidad requiere considerar el conjunto de esque-
mas de sus versiones. Por lo general, la unión de todas las versiones de entidad [72] o alguna
forma de tipo aproximado [119] se considera el esquema de una entidad. Una noción de es-
quema de base de datos global para bases de datos NoSQL no se ha propuesto todavía hasta
donde sabemos.

El informe “Insights into Modeling NoSQL” [1], presentó recientemente un análisis so-
bre el papel del modelado para los sistemas NoSQL. Sus autores destacaron que las herra-
mientas de modelado de datos son esenciales para abordar algunos de los principales retos
para la adopción industrial de los sistemas NoSQL como: modelado de datos, gobernabi-
lidad de los datos, documentación y herramientas apropiadas. Hay una carencia de herra-
mientas de bases de datos NoSQL que proporcionen capacidades similares a las que se dis-
ponen para bases de datos relacionales. Además, las herramientas existentes son inmaduras.
El informe identificó tres categorías principales de funcionalidades deseadas para los siste-
mas NoSQL: visualizar diagramas de esquemas y datos, generación de código ymanejo de
metadatos.
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La visualización de modelos, la documentación y la ingeniería inversa de la base de datos
NoSQL existente se señalan como características que se proporcionan mediante herramien-
tas de visualización. Los diagramas serían útiles para diseñar bases de datos, tomar decisio-
nes, documentar y representar los esquemas inferidos mediante procesos de ingeniería in-
versa. El informe señaló que las bases de datos NoSQL son schemaless, por lo que se necesita
un proceso de ingeniería inversa para descubrir el esquema implícito en los datos y código.
En cuanto a la generación de código, los modelos podrían utilizarse para generar artefactos
de aplicaciones, por ejemplo, código de una aplicación podría generarse a partir de esquemas
NoSQL de alto nivel o esquemas físicos podrían generarse a partir de esquemas conceptua-
les o lógicos. Esta generación de código sería útil para aumentar la productividad y mejorar
la calidad (por ejemplo, el número de errores se reduce), entre otros beneficios. Finalmente,
los metadatos se consideran esenciales en algunos escenarios como lograr la integración entre
diferentes almacenes NoSQL. Cabe señalar que la información expresada en los esquemas es
la parte esencial de los metadatos gestionados en las bases de datos. Los autores del informe
señalaron que la persistencia poliglota será la norma en un futuro muy cercano. Esto exigirá
la integración de sistemas de bases de datos de diferentes tecnologías. Los modelos podrían
ser útiles para tal integración, y las herramientas de la base de datos tendrán que ser capaces
de manejar modelos para diferentes paradigmas.

Cuando los objetivos de esta tesis se establecieron a principios de 2014, todavía no se ha-
bían publicado trabajos sobre la inferencia de esquemas para bases de datos NoSQL, y no
habían herramientas NoSQL disponibles. Por ejemplo, el artículo que describe nuestra
primera versión del proceso de inferencia fue presentado en CIbSE’2105 en diciembre de
2014 [82], y la segunda versión fue descrita en un artículo que enviamos a ER’2015 en abril
de 2015 [102]. Estos trabajos ya presentaron algunas soluciones para la visualización de esque-
mas y generación de código para mappers ODM. Los primeros enfoques de inferencia de
esquemas propuestos por otros grupos de investigación también se publicaron a lo largo del
año 2015, así como las primeras herramientas de visualización de esquema NoSQL [47] y los
mappers ODM [81].

Definición del problema y Objetivos La ausencia de esquema explícito es una característica
necesaria en los sistemas NoSQL debido a que proporciona la flexibilidad requerida por el
hecho de que la estructura de datos puede cambiar con frecuencia. Sin embargo, los desa-
rrolladores necesitan comprender el esquema implícito cuando escriben código y algunas
herramientas requieren conocer el esquema para soportar alguna funcionalidad. Esto exige
la definición de estrategias de ingeniería inversa dirigidas a descubrir los esquemas y el desa-
rrollo de herramientas que aprovechen los esquemas inferidos para ofrecer funcionalidades
que ayuden a los desarrolladores. Estas herramientas permitirán que la flexibilidad obtenida
no suponga perder los beneficios importantes que proporcionan los esquemas de base de
datos. La existencia de versiones de entidad en bases de datos NoSQL es el principal reto que
se debe abordar en el proceso de inferencia de esquemas. Con respecto a la implementación
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del proceso de inferencia y las herramientas de la base de datos, creemos que las técnicas de
MDE, especialmente el metamodelado y las transformaciones de modelos, facilitan esta ta-
rea. El metamodelado es útil para tener representaciones en alto nivel de abstracción de la
información manejada, y las transformaciones del modelo ayudan a automatizar el desarro-
llo. El trabajo de esta tesis se centrará en los sistemas NoSQL cuyos modelos de datos están
orientados a la agregación.

Los objetivos de esta tesis son los siguientes:

Objetivo 1. Diseño e implementación de un proceso de inferencia de esquemas. Diseñar un
enfoque de ingeniería inversa basado en modelos para inferir los esquemas implícitos
en bases de datos NoSQL. La estrategia definida debe tener en cuenta la existencia de
versiones de entidades y obtener un modelo que represente todas las versiones existen-
tes en la base de datos para cada entidad.

Objetivo 2. Definición de una noción de esquema de bases de datos NoSQL Realizar inves-
tigaciones sobre cómo el concepto tradicional de esquema conceptual de base de da-
tos relacional puede trasladarse a bases de datos NoSQL. Una definición que incluya
entidades o versiones de entidad y relaciones entre entidades, en particular agregación
y referencia.

Objetivo 3. Diseñar diagramas para representar esquemas NoSQL y construir herramientas
que soporten su visualización. Investigar qué tipo de diagramas podrían represen-
tar visualmente los diferentes tipos de esquemas identificados para las bases de datos
NoSQL. También debemos implementar algunas herramientas que soporten la visua-
lización de estos diagramas. Las técnicas MDE se utilizarían para implementar dichas
herramientas.

Objetivo 4. Generación de código para mappers ODM. Desarrollar una solución MDE pa-
ra generar automáticamente código para mappers ODM, como esquemas y funciones
de validación para Mongoose y otros ODM.

Objetivo 5. Generación de validadores de datos. Desarrollar una solución MDE para gene-
rar automáticamente validadores (es decir, predicados de esquema) destinados a ser
utilizados para comprobar que los datos se almacenan sin violar el esquema.

Objetivo 6. Definición de una estrategia para clasificar los objetos. Definir un algoritmo de
agrupación para determinar a qué versión de entidad pertenece un dato leído de la
base de datos. Esta clasificación podría ser útil como un primero paso para una imple-
mentación de migración automática de objetos de una versión a otra, o para homoge-
neizar bases de datos.
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Metodología Para la consecución de los objetivos de esta tesis se ha seguido la metodolo-
gía “Design science research” (DSRM) descrita en [68, 117]. Define un proceso que consiste
de seis actividades: (1) Identificación del problema y motivación, (2) Definir los objetivos,
(3) Diseño y desarrollo de la solución, (4) Demostración, (5) Evaluación y (6) Conclusiones
y difusión. Se trata de un proceso iterativo en el que el conocimiento producido a lo largo
del proceso, por medio de la construcción y evaluación de nuevos artefactos, sirve como re-
alimentación que permite mejora los artefactos creados con anterioridad hasta completar la
solución final.

Discusión de los resultados Hemos definido un enfoque de inferencia de esquemas que
se ha implementado como un proceso de ingeniería inversa basado en modelos. El esquema
deducido se representa como un modelo que conforma al metamodelo NoSQL_Schema
que es independiente de la plataforma. Las principales diferencias de nuestra estrategia de
inferencia con respecto a otros enfoques propuestos son (i) se extraen las versiones de cada
entidad; (ii) se descubren todas las relaciones entre las versiones de entidad extraídas: agre-
gación y referencias; (iii) se considera la escalabilidad y el rendimiento del algoritmo de infe-
rencia aplicando una operación Map-Reduce para acceder directamente a la base de datos y
obtener el conjunto mínimo de objetos JSON necesarios para aplicar el proceso de inferen-
cia. Nuestro interés no es obtener un esquema simplificado, aproximado o esqueleto, sino
que nuestra idea es registrar todas las versiones de la entidad y las relaciones entre ellas. Esta
decisión está motivada por el hecho de que nuestro enfoque está dirigido a aplicaciones de
negocio en las que el número máximo de versiones de una entidad no será excesivamente
grande. Este escenario es diferente al considerado en [119] que supone que varias decenas de
miles de versiones pueden existir para una entidad. El enfoque ha sido validado por medio
de una base de datos MongoDB generada a partir de los datos de StackOverflow. Por lo que
sabemos, nuestro trabajo es el primer enfoque que maneja esquemas versionados. Otros en-
foques no toman en cuenta la versión de las entidades [23] o bien obtienen el esquema de
unión [72] o un esquema aproximado [119]. Aquí, hemos definido la noción de esquema
versionado y los siguientes tipos: Esquema de version (raíz o agregado) que sólo incluye las
versiones de entidades relacionadas con una versión de entidad (y entidades si hay referen-
cias); Esquema entidad (raíz o agregado) que sólo incluye entidades relacionadas con una
entidad; Esquema de base de datos que incluye todas las versiones de entidad de una base de
datos; y Esquema de entidades de la base de datos que incluye los esquemas unión de todas
las entidades de la base de datos. Por lo tanto, hemos identificado un conjunto de esquemas
para sistemas NoSQL, que pueden definirse en tres niveles: entidad, versión de entidad o
base de datos.

Los desarrolladores de aplicaciones de base de datos NoSQL necesitan entender el es-
quema implícito de la base de datos. De hecho, deben tener en cuenta este esquema cuando
escriben o mantienen código. La visualización del esquema en forma de diagramas sería muy
útil para estos desarrolladores de la misma manera que los esquemas E/R se han utilizado
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para los desarrolladores de aplicaciones de bases de datos relacionales. Hemos definido repre-
sentaciones visuales para cada tipo de esquema definido en esta tesis. En particular, hemos
utilizado diagramas de clases UML para representar esquemas de versión raíz, esquemas de
unión de entidades y esquemas de bases de datos de entidades. Se obtienen varios benefi-
cios al representar esquemas NoSQL en forma de diagramas: se facilita su comprensión, su
comunicación y se obtiene una documentación separada del código.

Hemos desarrollado dos soluciones MDE para visualizar los tipos de diagramas definidos.
En primer lugar, transformamos el modelo de esquema generado en el proceso de inferencia
en un metamodelo Ecore con el objetivo de visualizarlo mediante un editor de metamodelos
Ecore. Hemos utilizado el editor integrado en Eclipse/EMF. Esta solución ha ilustrado los
beneficios de representar modelos y metamodelos uniformemente. Después de esta prue-
ba de concepto, transformamos el modelo de esquema inferido en código PlantUML para
una visualización del diagrama de clases UML. Nuestro trabajo ha servido para definir una
notación específica para los esquemas NoSQL [29].

Con el objetivo de ilustrar posibles aplicaciones de los esquemas inferidos, además de su
visualización, hemos abordado el desarrollo de dos utilidades de generación de código: códi-
go para mappers ODM y código para validación de datos. Hemos diseñado e implementado
un enfoque para la generación de código para mappers ODM existentes. Es una solución
independiente de tecnología, y como prueba de concepto se ha aplicado a Mongoose, donde
hemos sido capaces de generar esquemas y artefactos para diferentes funcionalidades pro-
porcionadas por este mapper, como validadores, discriminadores y manejo de referencias. La
solución MDE ideada ha mostrado la utilidad de definir metamodelos intermedios en una
cadena de transformaciones de modelos. Hemos definido un metamodelo que reorganiza
la información incluida en un modelo de esquema en una forma más apropiada para gene-
rar los esquemas de cada versión, tarea que requiere distinguir entre propiedades comunes y
específicas para cada versión. La validación de datos es necesaria para asegurar que todos los
objetos recuperados y almacenados por una aplicación se ajusten a una versión de entidad
dada.

Hemos desarrollado una solución MDE que genera validadores para ser aplicados cuan-
do los datos se almacenan en la base de datos. Se trata de una cadena de transformación de
modelos de dos pasos. Aquí, se ha definido también un metamodelo para una representa-
ción intermedia que facilita la generación de validadores. Los modelos intermedios se ob-
tienen mediante una transformación modelo a modelo a partir del modelo del esquema y,
a continuación, una transformación modelo a texto genera las funciones de validación que
comprueban la versión de entidad de los datos que se van a almacenar.

Por otro lado, se ha diseñado e implementado una utilidad que clasifica los datos en ver-
siones de entidad. Esta solución ha implicado abordar el problema de determinar a qué ver-
sión de entidad pertenece un objeto recuperado de la base de datos. Para ello, se ha diseñado
un algoritmo de clustering que se basa en un algoritmo de generación de árboles de decisión
óptimos.
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Cabe señalar que un objetivo general de esta tesis fue mostrar los beneficios de usar MDE
en el área emergente de Ingeniería de Datos NoSQL. Hemos creado soluciones MDE tanto
para implementar el proceso de inferencia de esquema como las utilidades de base de datos
desarrolladas para ilustrar posibles aplicaciones de los modelos de esquema inferidos. Estas
soluciones han mostrado algunas de las principales ventajas que ofrece MDE como (i) la
capacidad del metamodelo para representar información a alto nivel de abstracción, la cual
ha sido especialmente útil en el proceso de ingeniería inversa y para obtener representaciones
intermedias en las cadenas de transformación de modelos definidas, (ii) el poder unificador
de los modelos, (iii) la utilidad de las transformaciones de modelos para generar artefactos
como código de las aplicaciones, (iv) aprovechar la existencia de las herramientas existentes
para la definición de DSL textuales y gráficos, y (v) la utilidad de los modelos para conseguir
independencia de la plataforma.

Contribuciones Las principales contribuciones de esta tesis son las siguientes. Hemos de-
finido el primer enfoque que infiere esquemas conceptuales de bases de datos NoSQL que
tiene en cuenta las versiones de las entidades y sus relaciones así como la escalabilidad. El me-
tamodelo de esquemas contribuye a la propuesta de modelos unificados para bases de datos
NoSQL. Nuestro análisis de la noción de esquema para bases de datos agregadas NoSQL es
otra contribución de esta tesis. El conjunto de esquemas propuestos podría servir para guiar
el trabajo de investigación en este dominio. Hasta donde sabemos, hemos diseñado los pri-
meros diagramas para visualizar esquemas versionados NoSQL, tanto la propuesta de usar
diagramas de clase UML como la definición de una notación específica. Hemos diseñado e
implementado las primeras utilidades para la generación de código para mappers ODM. En
particular, hemos generado código para elmappersMongoose, aunque la solución MDE de-
finida es aplicable a cualquiermapper ODM. También son originales las soluciones propues-
tas para la generación de validadores de datos y clasificación de datos en versiones de enti-
dad. El desarrollo de estas herramientas también ha contribuido a mostrar cómo las técnicas
MDE pueden ser muy útiles en el área de Ingeniería de Datos NoSQL. Aunque la aplicación
de MDE en Ingeniería de Datos ha sido muy limitada hasta la fecha, creemos que las expe-
riencias de uso descritas aquí pueden ayudar a entender los beneficios y motivar a los cons-
tructores de herramientas NoSQL a aprovechar los principios, métodos, técnicas y herra-
mientas de MDE. Nuestro trabajo ha sido uno de los primeros en reconocer la aparición del
área de investigación de ingeniería de datos NoSQL y en contemplar la aplicación de MDE
en esa área. El estudio del estado del arte realizado en esta tesis es otra contribución de esta
tesis. Hemos identificado un conjunto de criterios para comparar los diferentes enfoques de
inferencia de esquemas. En nuestro conocimiento, no se ha publicado ninguna revisión tan
exhaustiva como la presentada aquí. Finalmente, todo el software implementado se puede
descargar de la página: https://github.com/catedrasaes-umu/NoSQLDataEngineering.
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Inferring NoSQL Data Schemas with Model-Driven
Engineering Techniques

Abstract

Modern applications that have to deal with huge collections of data have evidenced
the limitations of relational database management systems. This has motivated the de-
velopment of a continuously growing number of non-relational systems, with the pur-
pose of tackling the requirements of such applications. Specially, the ability to represent
complex data and achieving scalability to manage both large data sets and the increase
in data traffic. The NoSQL (Not SQL/Not only SQL) term is used to denote this new
generation of database systems.

The lack of an explicit data schema (schemaless) is probably the most attractive NoSQL
feature for database developers. While relational systems require the definition of the
database schema in order to determine the data organization, in NoSQL databases data
is stored without the need of having previously defined a schema. Being schemaless, a
larger flexibility is provided: the database can store data with different structure for the
same entity type (non-uniform data), and data evolution is favoured due to the lack
of restrictions imposed on the data structure. However, removing the need of declar-
ing explicit schemas does not have to be confused with the absence of a schema, since
a schema is implicit into data and database applications. The developers must always
keep in mind the schema when they write code that accesses the database. For instance,
they have to honor the names and types of the fields when writing insert or query op-
erations. This is an error-prone task, more so when the existence of several versions of
each entity is probable. Therefore, the idea is emerging of combining a schemaless ap-
proach with mechanisms (e.g. data validations against schemas) that guarantee a correct
access to data. On the other hand, some NoSQL database tools and utilities need to
know the schema to offer functionality such as performing SQL-like queries or auto-
matically migrating data. A growing interest in managing explicit NoSQL schemas is
therefore arising.

This thesis presents a reverse engineering strategy to infer the implicit schema in
NoSQL databases, which takes into account the different versions of the entities. We
call these schemas Versioned Schemas. We propose different schemas that can be ap-
propriate for NoSQL databases. The usefulness of the inferred versioned schemas is
illustrated through two possible applications: schema visualization, and automated code
generation. In particular, we have developed database utilities to generate different soft-
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ware artifacts: code for Object-Document mappers (ODM), data validators, and code to
classify objects in entity versions.

The approach has been designed to be applied to NoSQL systems whose data model
is aggregate-oriented, which is the data model of the three most widely used types of
NoSQL stores: document, key-value, and column family stores. Model-Driven Engineer-
ing (MDE) techniques, such as metamodeling and model transformations, have been
used to implement both the schema inference strategy and the applications, in order to
take advantage of the abstraction and automation capabilities that they provide.

Thus, we show how MDE techniques can be helpful to develop solutions in the
emerging “NoSQL Data Engineering” area. The schema inference approach proposed
has been validated for the Stackoverflow dataset that have been stored into MongoDB.
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For a true writer, each book should be a new beginning
where he tries again for something that is beyond attain-
ment. He should always try for something that has never
been done or that others have tried and failed. Then
sometimes, with great luck, he will succeed.

Ernest Hemingway

1
Introduction

Data-intensive software applications include two main components: a set of software pro-
grams and a database. Most of these applications have traditionally used relational stores as
the database. Relational database management systems (DBMS) were adopted by compa-
nies around the world more than thirty years ago.

At the beginning of the nineties, new database applications that required managing com-
plex objects (e.g. geographic information or multimedia systems) evidenced the limitations
of the relational model for the representation and processing of that sort of data. Then, new
kinds of DBMS were defined, such as object-oriented and object-relational database sys-
tems. Later, the emergence of the Web also originated new challenges to the database com-
munity, which were mainly related to the management of unstructured or semi-structured
data. XML-based data was proposed to address the new requirements. However these new
database paradigms (object-oriented, object-relational, and semi-structured database) only
achieved success in very reduced market niches, and relational systems continued being the
predominant databases.

Modern applications (e.g., social media, Internet of Things, mobile apps, and Big Data)
that have to deal with huge collections of data have again evidenced the limitations of re-
lational database management systems. This has motivated the development of a contin-
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uously growing number of non-relational systems, with the purpose of tackling the re-
quirements of such applications. Especially, the ability to represent complex data, to achieve
scalability to manage both large data sets, and to cope with the increase in data traffic. The
NoSQL (Not SQL/Not only SQL) term is used to denote this new generation of database
systems.

Interest in NoSQL systems databases has steadily grown over the last decade. A large
number of companies have already embraced NoSQL databases, and the adoption will rise
considerably in next years, as reported in [1, 87]. The “nosql-database.org” website shows
a list of about 225 existing NoSQL systems. Actually, the NoSQL term refers to a varied
set of data modeling paradigms that manage semi-structured and unstructured data. The
major NoSQL categories are: document, wide column and key-value stores, and graph-based
databases. Except for graph databases, the paradigms aim to represent semi-structured data
using an aggregate-based data model [109]. These paradigms are the most widespread, be-
ing MongoDB [80] the most widely used NoSQL system [88]. The MongoDB company
was recognized as a Leader by the Gartner 2015 Magic Quadrant for Operational Database
Management Systems, and other companies that offer aggregate-based systems, such as Re-
dis [97] or Couchbase, were considered Leader and Visionary, respectively, in that report.

It is worth remarking that systems in the same NoSQL paradigm can even have different
database features. However, most NoSQL systems have a few common properties, namely:
SQL language is not used, schemas have not to be defined to specify the data structure, the
execution on clusters is the main factor that determines its design, and they are developed
as open-source initiatives [109]. The ability of storing data without prior definition of a
schema is one of the most attractive features of NoSQL systems although originates some
drawbacks as discussed later in this chapter.

The recent Dataversity report “Insights into Modeling NoSQL” [1] has remarked that
data modeling will be a crucial activity for NoSQL databases and has also drawn attention
on the need for NoSQL tools that provide functionality similar to those available for rela-
tional databases. The authors of this report identified three main capabilities to be offered
by NoSQL modeling tools: model visualization, code generation, and metadata manage-
ment. These three kinds of capabilities requires the knowledge of a schema as stated in that
report.
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Data Engineering is the Computer Science discipline concerned with the principles,
techniques, methods, and tools to support the data management in the software develop-
ment. Data are normally stored in database management systems (e.g. Relational, Object-
oriented, or NoSQL) and Data Engineering has been mainly focused on relational data so
far, although interest is shifting towards NoSQL databases. In this thesis, we have addressed
issues which are related to topics of Data Engineering, more specifically to NoSQL data
reverse engineering and the development of NoSQL database utilities able of providing ca-
pabilities of the three categories highlighted in the report mentioned above. The work of
this thesis is therefore focused onNoSQL Data Engineering that is an emerging research
area within of theData Engineering field.

Over the last few years,Model-driven Software Engineering (MDSE or simply MDE) is
increasingly gaining acceptance, mainly owing to its ability to tackle software complexity
and improve software productivity [110, 121, 16]. MDE promotes the systematic use of mod-
els in order to raise the level of abstraction at which software is specified, and to increase the
level of automation in the development of software. MDE techniques, more specifically
metamodeling and model transformations, have proven to be useful for forward and reverse
engineering tasks.

Data schemas are models, and operations on them can be implemented using model
transformations. Transformational approaches have therefore traditionally been used to
automate data engineering tasks such as normalisation, schema conversion, or schema inte-
gration as explained in detail in [56]. The implementation of such tasks could be facilitated
by MDE. The rationales should be sought in MDE, which provides a specific technology
(principles, techniques and tools) with which to build transformational solutions. How-
ever, data engineering community has paid little attention to the application of MDE as
noted in [105].

The purpose of this thesis is to define a model-driven reverse engineering strategy to in-
fer implicit schemas from NoSQL databases, and to explore the usefulness of the inferred
schemas by developing some database utilities. Model-driven solutions have been devised
to tackle the implementation of utilities for three applications: graphical schema represen-
tation, automated generation of data validators and code for ODM mappers, and database
object classification.
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The rest of this chapter is organized as follows. First, the work is motivated in Section 1.1.
Then, the problem and goals are stated in Section 1.2. Afterwards, Section 1.3 describes the
research methodology applied in this thesis. Finally, the structure of this document is out-
lined.

1.1 Motivation

While relational systems require the definition of the database schema in order to determine
the data organization, in most NoSQL databases data is stored without the need of having a
previously defined schema. This lack of an explicit data schema (schemaless) is probably the
most attractive NoSQL feature for database developers. Being schemaless, a larger flexibility
to manage data is provided, for instance the database can store data with different structure
for the same entity type (non-uniform data), and data evolution is favored due to the lack
of restrictions imposed on the data structure. However, removing the need of declaring ex-
plicit schemas does not have to be confused with the absence of a schema, since a schema is
implicit into stored data and database application code. The developers must always keep
in mind the schema when they write or maintain code that accesses the database. For in-
stance, they have to honor the names and types of the fields when writing insert or query
operations. This is an error-prone task, more so when the existence of several versions of
each entity is probable. On the other hand, some NoSQL database tools and utilities need
to know the schema to offer functionality such as performing SQL-like queries or automat-
ically migrating data or either manage data efficiently. A growing interest in managing ex-
plicit NoSQL schemas is therefore arising, as evidenced in the schema inference approaches
recently proposed [72, 102, 119] and a few tools already available to help to NoSQL devel-
opers [81, 108, 47]. Regarding to the difficult of writing code that correctly accesses to data,
two strategies are emerging for NoSQL database applications: (i) combining the schemaless
approach with mechanisms that guarantee a correct access to data (e.g. data validators) [52],
and (ii) using mappers which converts NoSQL data into objects of a programming lan-
guage. Most current mappers are for document stores (Object-document mappers, ODMs),
and Mongoose [81] is the most widely used ODM, created for MongoDB and Javascript.
However, ODMs for other languages, such as Java and PHP, are also available.

As noted above, the schemaless feature allows non-uniform data for entities, i.e. an entity
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can have different versions of the implicit schema (type) that characterizes the data stored
of that entity. Each version is defined by a set of attributes. The version of an entity can be
originated, for instance, by a initial design choice or changes on the implicit schema of an
entity (objects that have the evolved schema coexist with objects that have the new schema).
Therefore, taking into account that each entity can have one or more versions, establish-
ing the schema (or type) of an entity requires to consider the set of schemas of its versions.
Usually, the union of all entity versions [72] or some form of approximate type [119] is con-
sidered the schema of an entity. A notion of global database schema for NoSQL databases
has not been proposed yet as far as we know.

The aforementioned Dataversity report discussed the implications of the absence of ex-
plicit schemas in NoSQL systems and considers that “Data isn’t an asset until meaning
can be extracted from it”, and without a clear understanding of the inherent structure in
NoSQL database, “all the Big Data in the world is useless”, and “There are many emerging
techniques and technologies that allow for the modeling of NoSQL data stores, especially
with reverse mapping techniques, but they are still maturing”. It is worth noting that this
report was published in mid-2015, while our work started at the beginning of 2014.

The authors of the report surveyed to industry’s experts whose job function is related to
the data management: Data and/or Information Architecture (49%), Executive Manage-
ment (8%), IT Management and Software/System Vendor (6,8%), and Business Intelligence
and/or Analytics (6,1%). The survey consisted of 20 questions about the NoSQL imple-
mentation in the enterprise, NoSQL models, tools and functionality. This survey high-
lighted that the adoption of NOSQL is still limited (25% of respondents indicated that their
enterprises was using NoSQL databases) but the expected growing rate is high (more than
60% of respondents indicated that they planned to implement document or graph stores in
less than 18 months). With regard to the use of models, NoSQL modeling is considered a
needed practice (63% indicated that data modelers are needed), although no modeling is cur-
rently done in many companies (a third of respondents said that they only write application
code).

From this survey, the authors analyzed the role of modeling for NoSQL stores. Next,
we will comment some of the more relevant results or its analysis in relation to the aims
of our work. The report highlighted that data model tools are essential to tackle some of
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the main challenges for the industrial adoption of NoSQL systems as: data modeling, data
governance, documentation and appropriate tooling. There is a lack of NoSQL database
tools providing capabilities existing for relational databases. Moreover, existing tools are im-
mature. The report identified three main categories of desired functionalities for NoSQL
systems: diagramming, code generation, andmetadata management. Model visualization,
documentation and reverse engineering of existing NoSQL database are noted as features to
be provided by diagramming tools. Visual diagrams would be useful in designing databases,
making decision, documenting, and representing the schemas inferred by means of reverse
engineering processes. The report noted that NoSQL databases are schemaless, and there-
fore a reverse engineering process is needed to discover the implicit schema. Regarding
to code generation, models could be used to automatically generate artefacts of applica-
tions, i.e. application code could be generated from high-level NoSQL schemas or physi-
cal schemas could be generated from conceptual or logical schemas. This code generation
would be useful to increase productivity and improve quality (e.g. number of errors is re-
duced), among other benefits. Finally, metadata are considered essential in some scenarios as
achieving the integration among different NoSQL stores. It is worth note that information
expressed in schemas is the essential part of metadata managed in databases. The authors of
the report remarked that persistence polyglot will be the norm in a very near future. This
will demand the integration of database systems of different technologies. Models could be
useful for such an integration, and database tools will have to be able to manage models for
different paradigms.

When the goals of this thesis were established at the beginning of 2014, no works on
schema inference for NoSQL systems had been published yet, and no NoSQL database
tools were available. Therefore, our work has been carried out without knowledge of other
previous related research efforts. For example, an article describing our first version of the
inference process was submitted to CIbSE’2105 in December, 2014 [82], and the second ver-
sion was described in an articles that we submitted to ER’2015 in April, 2015 [102]. These
works already presented some solutions for schema visualization and generation of code
for ODM mappers. The first schema inference approaches proposed by other research
groups were also published throughout the year 2015 [72, 119, 23], as well as the first tools
of NoSQL schema visualization [47] and ODM mappers [81].
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1.2 Problem Statement

The absence of explicit schema is a feature needed in NoSQL systems because it provides
the required flexibility when the data structure varies often. However, developers need to
understand the implicit schema when they write code, and some tools require knowing the
schema to support some functionality. This demands the definition of reverse engineer-
ing strategies aimed to discover the inherent schemas, and building tools that take advan-
tage of the inferred schema to offer capabilities that assist developers. These tools will bring
the benefits of schemas without losing the flexibility gained by being schemaless. The ex-
istence of entity versions in NoSQL databases is the main challenge to be addressed in the
schema inference process. With regard to the implementation of the inference process and
the database tools, we believe that MDE techniques, especially metamodeling and model
transformations, ease this task. Metamodeling is useful to build representations at high level
of abstraction of the information being managed, and model transformations help to auto-
mate the development. The work of this thesis will be focused on NoSQL systems whose
data models are aggregate-oriented.

The goals of this thesis are the following:

Goal 1. Design and implementation of a schema inference process. To devise a model-
driven reverse engineering approach to infer the implicit schemas in NoSQL databases.
The strategy defined should take into account the existence of entity versions and ob-
tain a model that represents all the versions existing in the database for each entity.

Goal 2. Proposal of a notion of NoSQL data schema. To conduct research on how the tra-
ditional concept of relational database conceptual schema can be defined for NoSQL
databases. The definition should include entities (or entity versions) and relation-
ships between them, in particular aggregation and references.

Goal 3. Design diagrams for NoSQL schemas and implement tools that support its visualization.

To investigate what kind of diagrams could visually represent the different kinds of
schemas identified for NoSQL databases. We should also implement some diagram-
ming tools that support the visualization of these diagrams. MDE techniques would
be used to implement these tools.
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Goal 4. Code generation for ODMmappers. To develop an MDE solution to automati-
cally generate code for ODM mappers, such as schemas and validator functions for
Mongoose.

Goal 5. Generation of data validators. To develop an MDE solution to automatically gen-
erate validators (i.e. schema predicates) intended to be used to check that data are
stored without violating the schema.

Goal 6. Definition of a strategy to classify objects. To define a clustering algorithm to de-
termine which entity version an object belongs to. This classification could be useful,
for instance, for building migration procedures to a higher level.

The last four goals has allowed us show the usefulness of the inferred schemas.

1.3 Research Methodology

In order to achieve the objectives of this thesis that were introduced in the section above,
we have followed the design science research methodology (DSRM) described in [68, 117].
The design process consists of the six activities shown in Figure 1.1: (1) Problem identifica-
tion and motivation, (2) Define the objectives of a solution, (3) Design and development,
(4) Demonstration, (5) Evaluation, and (6) Conclusions and communication.

1.
Problem

identification
and motivation

2.
Define the
objetives of 
a solution

3.
Design and

Development

4.
Demostration

5.
Evaluation

6.
Conclusions

and
communication

Figure 1.1: Acঞviঞes in Research Methodology.

This is an iterative process in which the knowledge produced throughout the process by
constructing and evaluating new artifacts serves as feedback for a better design and imple-
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mentation of the final solution. Following the activities defined in DSRM, we began by
identifying the problem and its motivation. The ideas that served to establish the purpose
of this thesis came from our experience in model-driven data and code reverse engineer-
ing [124, 105], and our vision of the need or convenience of schemas for developing some
applications involving NoSQL systems, such as the migration of legacy relational systems to
NoSQL systems. The Dataversity report [1] and the first research efforts [72, 119] as well as
the first tools of NoSQL schema visualization [47] and ODM mappers [81] corroborated
our hypothesis.

In previous Section 1.1, we have motivated the problem and explained how it was iden-
tified, and we have clearly stated the goals in the previous Section. They basically are: (i) to
define a reverse engineering strategy to infer the implicit schema in NoSQL databases, which
takes into account the different versions of the entities, and (2) to illustrate the usefulness of
the inferred schemas through three possible applications: schema visualization, and auto-
mated generation of data validators, and code for ODM mappers. Normally, a knowledge
of the state of the art is required to state the problem and the consequences (i.e. benefits and
drawbacks) of its solution. In our case, the state of the art has been studied as we progressed
in our work. For example, we knew of the approaches [72] and [119], once we had designed
and implemented our inference schema strategy. As can be observed in Chapter 3, most of
discussed research works that have to do with NoSQL systems were presented after the be-
ginning of our thesis work.

We started the third activity by designing a schema inference strategy. Then we built a
rapid prototype as proof of concept of our approach. We defined an MDE solution that,
in a first step, injected all JSON stored objects into JSON models, and then a RubyTL [34]
model-to model transformation generated a model that represented all the entity versions
extracted. The injector was generated through EMFText [49] that is a tool for defining
textual Domain-Specific Languages (DSL), i.e. the input would be the JSON grammar in
the required format by the tool. This first version was presented in the CIbSE’2015 confer-
ence [82]. A crucial element of this first version was the NoSQL_Schema metamodel de-
fined to represent the inferred versioned schemas. Then, we observed that a Map-Reduce
operation could improve significantly the performance by selecting a unique stored object
for each entity version. Moreover, a general-purpose language could be more convenient
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than model-to-model transformation languages to implement the reverse engineering strat-
egy because of the complexity of the task. This second version of the inference process was
presented in the ER’2015 conference [102]. In that article, we illustrated the usefulness of
the inferred versioned schemas through two possible applications: schema visualization,
and automated generation of data validators. After, we improved the performance of the
schema inference process and performed a validation by creating a MongoDB database with
the Stackoverflow dataset [113].

Regarding the schema visualization, we first devised the solution proposed in [102],
which is based on generating an Ecore metamodel from the extracted schema model. Af-
ter, we experimented with UML class diagrams generated as PlantUML code [96], and
then we noted the need of generating specific diagrams for NoSQL schemas. This specific
notation was developed as part of a master’s thesis [29] in July 2016, and presented in the
JISBD’2017 conference. The MDE solution designed to generate data validators is based
on a decision tree that reduces the number of checking needed to find the version which a
data object belongs to. We are now writing a longer article that describes the finally applied
schema discovering strategy and the applications of inferred schema visualization, the vali-
dation with the Stackoverflow database, and the generation of data validators. We have also
designed an MDE solution to generate code for ODM mappers (schemas and other artefacts
depending on the mapper target), in particular we have considered the Mongoose [81] and
Morphia [83] mappers. Our work on generating code for ODM mappers was presented in
the Modelsward’2107 conference [104].

All the approaches that we have defined are based on MDE technology because this tech-
nical space provides principles, techniques and tools that (i) facilitate the involved infor-
mation representation at a high level of abstraction by using models and metamodels, and
(ii) automate the generation of software artifacts from models by means of model transfor-
mations.

In the fourth activity, we demonstrated that each of the solutions developed adequately
works. We have created a small movie database to test our implementations, and we have
validated our schema discovering approach by using a MongoDB database created from the
Stackoverflow dataset [113]. The Stackoverflow has been also used to validate the scalability
of the inference in big databases. It is worth remarking that we have applied an iterative
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method, and the artifacts (e.g. metamodels and inference strategy) developed have evolved
throughput the work of this thesis. For example, in the validation of the inference strategy,
we realized that more heuristics to identify references were needed.

Finally, we have evaluated our work by comparing the objectives with the results ob-
tained. We have concluded by identifying some improvements and future research lines.

1.4 Outline

The structure of the rest of this document is as follows:

• Chapter 2 introduces the background needed for a better understanding of this the-
sis. It presents concepts related to data modeling, NOSQL systems, and the MDE
paradigm.

• Chapter 3 analyzes the state of the art in three areas. Namely, schema discovering ap-
proaches, unified representation of NoSQL data models, and schema diagramming
tools. The lacks and weaknesses of each work are discussed and several dimensions are
defined to compare the works.

• Chapter 4 defines the different kind of schemas that we have considered for NoSQL.
In addition, the NoSQL_Schema metamodel defined to represent the inferred schemas
is described, and a overview of the schema discovering strategy is outlined.

• Chapter 5 explains in detail the reverse engineering process defined in this thesis to
discover implicit eschemas in NoSQL databases. It also includes the validation of the
proposal by inferring the schema for the Stackoverflow dataset.

• Chapter 6 describes the different kinds of diagrams used to visualize the inferred
schemas: UML class diagrams for Ecore metamodels, UML class diagrams generated
with PlantUML, and diagrams of a notation specifically defined for this purpose.
The implementation of each of utilities developed is explained.

• Chapter 7 describes the MDE solutions designed and implemented to generate data
validators and code for ODM mappers. The strategy devised to classify objects into
versions of entities is also explained.
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• Chapter 8 concludes this thesis by analyzing to what extent the goals we have pre-
sented in this chapter have been achieved. We summarize the main contributions and
publications of this thesis. We end by providing some insights into further work.
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If I have seen further than others, it is by standing upon
the shoulders of giants.

Isaac Newton

2
Background

This chapter introduces the background needed for the better understanding of this thesis.
The explanations given concern to the aims of our work and the technologies used in the
implementation of the developed tools. The former will also help to motivate our work.
Firstly, we will introduce some basic concepts in data modeling; we will distinguish between
reference and aggregation relationships. Next, the notion of semi-structured data is defined,
and the JSON format is presented. Then, we will describe the mainNoSQL paradigms. At
this point, we will present a JSON database that will be used as a running example through-
put this document. After, we will explain a notion that is essential in our work: aggregate-
oriented data model. Model-Driven Software Engineering (MDE) techniques have been
used to implement the tooling developed in this thesis. We will therefore introduce the cen-
tral elements of MDE: metamodels, model transformations, and domain-specific languages.
Finally, as we have to deal with databases that may have potentially millions of objects, we
have to develop our algorithms in a scalable way. We used MapReduce techniques [39], im-
plemented in most NoSQL databases, that are scalable by design.
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2.1 Basic Concepts of Data Modeling

In software development, models are useful because they (i) help reasoning about the sys-
tem to be implemented, (i) serve as documentation of the system being built and the design
choices made, (iii) facilitate the communication among stakeholders, and (iv) allow auto-
matically generating the code of the final system. For example,UML class models [107] are
created to represent the structure of the domain classes of an object-oriented application.
In the database area, models are also created for the same purposes. For instance, Entity-
Relationships (E/R) models [26] are used to create database schemas.

The data model term denotes the formalisms (i.e. languages) whose purpose is to rep-
resent the structure of the data managed by an information system [111]. The schema term
is used to refer to the representations (i.e. models) expressed by means of a data model.
Data models (and therefore schemas) can be expressed at three levels of abstraction, accord-
ing to the ANSI/SPARC architecture [25]: conceptual, logical, and physical. A conceptual
schema expresses the semantics of a domain: entities and relationships between them. A
logical schema is expressed in terms of a particular database paradigm (e.g. relational, object-
oriented, or graph.) A logical schema can be derived from a conceptual schema by trans-
forming entities and relationships into elements of the target paradigm (e.g. tables in rela-
tional databases, and classes in object oriented databases.) Data stored in a database con-
forms to a logical schema which determines its structure. The database model term is fre-
quently used to refer to logical data models. Finally, a physical model expresses details of
how data are physically stored (e.g., indexes and clusters.) For instance, in relational database
design, the E/R and UML modeling languages are widely used to create conceptual, logical,
and physical schemas. In this thesis, we are interested in schemas and models for NoSQL
databases. We will use UML-like representations to express the NoSQL data schemas.

Throughput this document, we shall use the database schema term to refer to logical
schemas created using a data modeling language, and the data entity (or simply entity) term
with its usual meaning, i.e. category of physical objects or concepts of the real world that are
represented in database schemas. So, a database stores information of entities in some for-
mat. For instance, a relational database of an university can store information on doctoral
student entities (e.g. name, email, and supervisors) in form of rows and tables. Entities have
attributes or properties whose values are of a simple type (e.g. integer, float, and string), and
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there are relationships between entities (e.g. a student has one or more supervisors, and a
student name is formed by a first name and a last name).

In conceptual modeling, a relationship between two entities is usually represented by
means of an association relationship. Moreover, an aggregation relationship is used to model
part-of relationships. For instance, UML provides associations that can be labeled as com-
posite in order to represent an aggregation relationship in which the parts are dependent
and exclusive to the whole. These two relationships are implemented by means of object
references in most object-oriented databases and programming languages. References are
manipulated in a transparent way to developers, which can navigate among objects by using
high-level constructs.

The embedded object technique can also be used to implement a relationship between
two objects, specially if it is an aggregation. For instance, Figure 2.1 shows aMovie object of
the database that will be introduced as running example in Section 2.5. This figure shows
how the values of the rating and criticisms properties are embedded objects. In particular,
theMovie object has embedded a Rating object and an array of Criticism objects. It is worth
noting that these embedded objects are not implementing an aggregation (i.e. part-of) rela-
tionship defined at the conceptual level.

This technique is normally used to express that the objects involved into a relationship
are stored as a single unit, instead of being referenced. In fact, the embedded object tech-
nique usually implies that developers must explicitly manage references. That is, they must
choose if a relationship is implemented by means of either references or embedded objects.
In our example, the value of the director_id property ofMovie is a reference to aDirector
object. This decision would have been taken by considering criteria as efficient access to the
information of embedded objects. Therefore, the embedded object relationship conveys se-
mantics that can be used with different purposes, such as allocating memory or disk space to
objects, or assuring consistency when objects are changed (e.g. a cascading delete if the root
object is removed).

The aggregate term is normally used to refer to the object structure that consists of a root
object that recursively embeds other objects, so that an aggregation hierarchy is formed (e.g.
Movie object in Figure 2.1.)

While complex data is represented in relational databases through joins by means of
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title: Truth

year : 2015

director_id: 345679

genre : Drama 

rating

criticisms

score 6.8

voters 12682

colorjournalist media

Jordi Costa

media

red

greenLou Lumenick New York Post

url: http://elpais.com/

name: El País

Director

_id: 345679

name: James Vanderbilt

Movie

Figure 2.1: Example of Embedded and Referenced Objects.

foreign keys (i.e. references between tables), object references (whose representation is not
managed by developers) and aggregate objects provide more abstract forms of representing
such data. Reference and aggregation constructs facilitate the representation and manipula-
tion of relationships among objects.

The distinction between object references and embedded objects has been supported by
different object-oriented databases and languages, but it has not become part of the main-
stream software development. The Eiffel language [77] distinguished between references
and expanded types in order to allow the definition of object references and embedded ob-
jects, respectively. The aggregation relationship was supported by some object-oriented
databases [13, 24], with the purpose of representing composite objects (i.e. the part-of re-
lationship). As explained in Section 2.9, some object-oriented metamodeling languages,
such as Ecore [114] and MOF [92], have also distinguished between references and compos-
ite references (i.e. embedded objects) in order to establish the relations among concepts of
the abstract syntax of a language. In the software design realm, the use of aggregate objects
is proposed in the Domain-Driven Design method [50] in order to assure the application
consistency by accessing aggregated objects only through the root object that controls the
changes so that they are correctly applied. Note that commonly used programming lan-
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guages (e.g. Java, Ruby, and C#) do not offer support for aggregates, hence the developers
have the responsibility of writing the code aimed to ensure that a set of objects behaves as an
aggregate.

Although the distinction between object references and embedded objects is not sup-
ported in most of languages and systems, more widespread NoSQL database systems are
based on an aggregate-oriented data model [109], as explained in detail later in this chapter.
Therefore, such a distinction will play an essential role in NoSQL data models that we will
address in this thesis.

2.2 Semi-Structured Data

In the mid 1990s, the notion of semi-structured data arose to define the properties of data in-
volved in the Web and the new applications that appeared around it (e.g. genome databases
or geographical databases), as well as to tackle the data integration of independent sources
and data browsing (i.e. to write data queries without knowledge of the schema) [8, 20, 9].

Semi-structured data is mainly characterized by the fact that its structure is not defined
in a separated schema, but it is implicit on the data itself. A semi-structured data is usually
described as a tuple of key-value pairs. Keys (a.k.a. fields and tags) denote properties or at-
tributes of the data, and the values can be primitive (i.e. atomic values of types such as num-
bers, string, and boolean) or complex (tuples and arrays). Figure 2.2 shows how data of a
doctoral student could be expressed by using the syntax defined in [9].

A piece of data on doctoral students includes two fields with primitive values (phone and
email) and three fields with complex values (name, supervisors, and program). The name
field is a tuple with the first and last names. The program field is a tuple that registers the
title of the doctorate study program and the faculty in charge of this program. The super-
visors field registers the array with the identifiers of the tutors of the doctoral student. Each
identifier would be a reference to the corresponding piece of data with information about
a supervisor. Semi-structured data has, therefore, a hierarchical structure (i.e. nested struc-
ture) with a root tuple (student in the example) which can include other tuples and arrays.
It is worth noting that semi-structured data is a format to express embedded or aggregate
objects but without the necessity of a prior definition of a schema. Hereafter we will use the
term object instead of tuple.
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{
"student": {

"email": "severino.feliciano@um.es",
"name": {

"firstName": "Severino",
"lastName": "Feliciano"

},
"phone": 123456789,
"program": {

"centre": "Faculty of Computer Science",
"title": "PhD in Computer Science"

},
"supervisors": [

99988877,
22233344

]
}

}

Figure 2.2: Student Example.

As indicated in [20], a piece of semi-structured data can be formalized as some kind of
graph-like or tree-like structure. If references among pieces of data are allowed, the structure
would be a graph. Figure 2.3 shows the graph for the student data example. We suppose that
supervisors have the name and department fields among others. Our graph representation
includes leaf nodes labeled with meaningful data (atomic values) and intermediate edges la-
beled with symbols that denote the field names. An array is represented by labeling internal
edges with integers. A root or intermediate node has a child node by each field of the object
associated. As indicated in [20], this graph model can be defined as:

type base = int | float | string | ...
type tree = base | set (tree x symbol)

The creation of runtime and persisted data usually requires the existence of a specifica-
tion of its structure. For instance, objects are instantiated from classes (i.e. types) during the
execution of object-oriented programs, and a schema must be defined prior to storing data
in a relational database. However, semi-structured data can be directly created, because it
includes information that describes its structure. This is why it is commonly characterized as
“schemaless” and “self-describing”. In the previous example, the information on the struc-
ture is within the data (i.e. graph shown in Figure 2.3), but no schema or types have been
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student

name

firstName lastName

"Severino" "Feliciano"

supervisors program

title centre

"PhD in Computer Science" "Faculty of Computer Science"

phone
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"99988877"

_id

"22233344"

email

"severino.feliciano@um.es"

_id

1 2

supervisor supervisor

"99988877" "22233344"

Figure 2.3: Graph representaঞon for the Student data.

defined in a separate specification separated of the data.
The lack of explicitly defined schemas (schemaless) offers some significant benefits to de-

velopers of database applications as noted in [8] and [109]. In particular, this characteristic
facilitates the data evolution and having non-uniform data.

Data evolution Data structure can evolve frequently as schema changes are not needed.
Data with the new structure can be stored without any kind of restriction. In our
example, student data that registers more than one phone number could be stored at
any moment. In relational systems, data evolution requires to change the schema and
some kind of data migration.

Non-uniform data One of the main strengths of semi-structured data is to allow the varia-
tion in structure on data of the same type. For instance, the student data could be reg-
istered with variations: a property could have values of different type (e.g. the name
is either a single string or the first and last name are distinguished in a nested object)
or either a property is optional (e.g. when a student complete his doctoral thesis at
a company, some information on the involved company could be registered). These
variations typically are minor changes in representation.
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Although the absence of a schema provides a greater flexibility in managing data, however
it has some drawbacks for developers. When a schema is formally defined (e.g. a relational
schema), a static checking assures that only data that fits the schema can be manipulated in
application code, and mistakes made by developers in writing code are statically spotted. In
fact, the analogy to statically and dynamically typed languages is commonly used to note the
difference among semi-structured data and data that conforms to a schema [20]. When a
schema is not defined, errors such as duplicated or missing properties are not catched when
the data are created.

As explained in Chapter 1, most NoSQL databases are schemaless because (i) storing data
whose structure is rapidly changing or is unknown in advance, and (ii) supporting agile de-
velopment are two of the main requirements that they must satisfy. New application do-
mains in which data structures are expected to experience rapid change were already identi-
fied twenty years ago in the first works on semi-structured data [8, 20]. The number of such
applications has grown considerably since then.

XML has been the commonly used format to store semi-structured data from the ad-
vent of Web and its adoption by the World Wide Web Consortium (W3C) as a standard to
exchange data on the Web. However, since the appearance of JSON (JavaScript Object No-
tation)* at the end of the last decade, XML is losing predominance as data interchange for-
mat in favor of JSON. In fact, JSON is the format used to store data in majority of NoSQL
databases (data are internally encoded in some binary serialization format such as BSON).
Next, we shall describe the JSON format.

2.3 The JavaScript Object Notation (JSON) Format

JSON [3] is a standard human-readable text format widely used to represent semi-structured
data. This notation is taking the place of XML as primary data interchange format because
it is more simple and legible. JSON is a small subset of JavaScript, more specifically JSON
data are JavaScript literals. This has significantly contributed to the success of JSON. There
are two JSON standards: ECMA and RFC 7159. The main difference is that ECMA con-
siders any JSON value as a valid JSON text, instead RFC 7159 establishes that a valid JSON

*http://www.json.org/.
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text must have an object or array as root. JSON is highly interoperable because data inter-
changed are simply Unicode text [112].

Figure 2.4 shows the JSON grammar in form of syntax diagrams which are taken from [3].
This grammar specifies that a JSON text (a.k.a. document) can be either (i) an object formed
by a set of key-value pairs or (ii) an array (i.e. an ordered list) of values. The type of a JSON
valuemay be a primitive type (Number, String, or Boolean), an object, or an array of values.
null is used to indicate that a key has no value. This grammar allows to represent data in
form of nested structures by using objects (i.e. tuples) and arrays (i.e. lists) as composition
constructs. Note, that JSON is a notation intended to express semi-structured data (tree-like
form and schemaless). In fact, example of Figure 2.2 is really a valid JSON text. According
to its tree-like structure, we will distinguish between root (e.g. student object) and nested
objects (e.g. the name and program objects nested to student) in JSON documents.

{ }string value:

,

value ][

,

string

number

object

array

true

false

null

array

value

object

Figure 2.4: JSON Grammar.

Figure 2.5 shows how the example of doctoral student data could be expressed in JSON
and XML in order to contrast both formats. This example evidences the benefits of legibil-
ity and simplicity commonly mentioned to explain that JSON is replacing to XML as main
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data interchange format.

<?xml version="1.0" encoding="UTF-8" ?>
   <student>

   <name>
    <firstName>Severino</firstName>
    <lastName>Feliciano</lastName>

   </name>
   <phone>123456789</phone>

<email>severino.feliciano@.um.es</email>
<supervisors>99988877</supervisors>
<supervisors>22233344</supervisors>
   <program>
      <title>PhD in Computer Science</title>
     <centre>Faculty of Computer Science</centre>

   </program>
   </student>

{ 
   "student":{
      "name": {
         "firstName": "Severino",
      "lastName": "Feliciano"
      },
      "phone": "123456789",
      "email": "severino.feliciano@.um.es",
      "supervisors": ["99988877", "22233344"],
      "program": {
         "title": "PhD in Computer Science",

 "centre": "Faculty of Computer Science"
}

   }
}

XML JSON

Figure 2.5: JSON versus XML Data.

JSON Schemas The JSON Schema initiative [4] has recently emerged to provide stan-
dard specifications for describing JSON schemas. Although its adoption is still very limited,
some tools (e.g. validators, schema generators, documentation generators) have evidenced
the usefulness of having JSON schemas. Figure 2.6 shows an example of a JSON schema
for the Student data introduced above. The JSON type of each field is specified. For anOb-
ject field, the fields (“properties” field) are specified, and the required fields are enumerated
(“required” field). For anArray field, the type of the items is specified, and the properties
required are enumerated.

2.4 NoSQL databases

As commented in Chapter 1, the NoSQL term is used to refer to different new database
paradigms which are an alternative to the predominant relational DBMSs. Web applica-
tions such as social networks (e.g. Facebook), text searching (e.g. Google) and e-commerce
(e.g. Amazon), which manage very large and complex data, are some examples of scenarios
where different NoSQL systems have been successfully used. The main difference between
NoSQL databases and relational databases is the set of properties they provide; while rela-
tional databases provide all the ACID (Atomicity, Consistency, Isolation and Durability)
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{
"type": "object",
"properties": {

"name": {
"type": "object",
"properties": {

"firstName": "string"
,

"lastName": "string"
},
"required": [

"firstName",
"lastName"

]
},
"phone": "string",
"email": "string",
"supervisors": {

"type": "array",
"items": {

"type": "string"
}

},
"program": {

"type": "object",
"properties": {

"title": "string",
"centre": "string"

},
"required": [

"title",
"centre"

]
}

},
"required": [

"name",
"phone",
"email",
"supervisors",
"program"

]
}

Figure 2.6: Example JSON Schema.

properties, NoSQL databases provide a subset of the CAP properties: Consistency (when-
ever a writer updates, all readers see the updated values), Availability (the system operates
continuously even when parts of it crash) and Partition tolerance (the system copes with
dynamic addition and removal of nodes) [109].

Actually, the NoSQL term refers to a varied set of data modeling paradigms aimed to
manage semi-structured and unstructured data. Most of them have a few common proper-
ties, namely: SQL language is not used, schemas have not to be defined to specify the data
structure, the execution on clusters is the main factor that determines its design, and they
are developed as open-source initiatives. The major NoSQL categories are: document, wide
column and key-value stores, and graph-based databases [109].

Key-value databases Provide the most simple way to storing data: a key-value pair. The
database is therefore a set of key-values pairs. This structure is similar to themap col-
lection type that is provided in many programming languages. Most of key-value
systems do not assume any structure on the data, and treats it as blobs of information

23



(e.g. Riak [100]), but a few of them allows assign a type (e.g. integer) to values (e.g.
Redis [97]).

Document databases Data are also stored as a set of key-value pairs, but the value takes
form of an structured document (normally a JSON-like document) that can be navi-
gated to obtain particular data or to form queries. In addition, the database is usually
organized into a set of collections, and each collection contains the documents stored
for an kind of entity (e.g. student or movie). Then queries can be issued on collec-
tions. MongoDB [80] and CouchDB [5] are the most used document systems.

Wide Column databases They are organized as a collection of rows, each of them consist-
ing of a row key and a set of column families, each of them being, in turn, a set of
key-value pairs. Cassandra [21] and Hbase [57] are the most used column-family sys-
tems.

Graph databases A database is stored as a labeled property graph; nodes contain entity’s
properties, and edges represent the relationships among entities. Edges can also be
labeled with properties. Unlike other NoSQL systems, relationships are first-class
citizens in graph databases. Neo4J [85] and OrientDB [94] are two well-known graph
databases.

While graph databases are based on a graph data model which emphasizes the relation-
ships among data entities, the other three categories (key-value, document, and wide col-
umn) are based on a aggregate-oriented data model which emphasize how the data entity
has a nested structured which results of the fact that entities have properties whose value can
also be entities (i.e. the tree-like structure proper of semi-structured data) [109].

Except for a few exceptions like Cassandra, most NoSQL systems are schemaless. As ex-
plained in Section 2.2, this is a significant difference with relational databases, and provides
greater flexibility, as the structure of the data stored is not restricted by a schema.

It is really complicated to determine what NoSQL database best fits the needs of a com-
pany, given the number of existing systems (225 in “nosql-database.org”) and that they con-
siderably differ even within the same category. This has motivated the publication of guides
for helping to choose the most appropriate NoSQL system for a particular set of require-
ments for a data-intensive application. In this thesis, we are only interested in data modeling
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issues, and therefore issues on performance and CAP properties will be not addressed in this
section.

2.5 A NoSQL Database for the Running Example

Here, we introduce a set of JSON documents that represent data on movies, which will be
used throughput this thesis as an running example of database. For the purposes of this the-
sis, we have considered a NoSQL database as an arbitrarily large array (i.e. a collection) of
JSON objects that include: a) a field (e.g. type) that describes its entity type; and b) some
form of unique identifier for each object (in our case the _id field). This format is non-
compromising, and provides system independence. In fact, it is very similar to what it is
actually used in most NoSQL database implementations. For example, CouchDB guides
recommend the usage of the type field. MongoDB creates one collection for each type of ob-
ject, so that the collection name could provide the type field. In HBase, the type field of an
object could be the name of its column family. If the value of the type field is not directly ob-
tainable, some heuristics could be used. However, in some cases it may require for the user
to provide it.

Our database example is formed by an array that stores the collections ofMovies,Direc-
tors, andMovieTheater. We have supposed that initially aMovie object has five mandatory
fields: title, year, director, genre, and rating, and an optional field prizes. The field criticisms
was added later. EachDirector object has the mandatory fields name and directed-movies,
and the actor-movies optional field. In addition, the films field, intended to record the list
of directed films, was renamed as directed_films as part of a database refactoring process.
The Criticism embedded objects have the mandatory fields content, journalist, andmedia;
the value of the media field can be a String or anotherMedia embedded object that has the
name an url fields, both are of String type. The Prize objects have the year, event, and name
fields.

Note that while JSON syntax allows embedded objects to be explicitly represented, JSON
does not provide any construct to explicitly express that a value is a reference to another ob-
ject. Instead, references must be inferred from a data analysis. Some idioms have been there-
fore proposed to express references in NoSQL databases. For instance the _ref or _id suffix
for the name of the fields whose value is a reference or the embedded object {$ref: entity-
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name, $id: reference-id} (DBRefs, in the MongoDB terminology) that indicates the ref-
erenced value and the entity type. These idioms will have to be considered in our schema
inference process (Chapter 5).

Figure 2.1 shows the nested structure of theMovie database object whose title is "Truth",
and Figure 2.7a shows the object tree of thisMovie object.

2.6 Aggregate-Oriented Data Models

A limitation of the relational database paradigm is the lack of appropriate constructs to rep-
resent complex data [24]. Relationships among objects must be addressed through joins by
means of foreign keys (i.e. references between tables). Object references and embedded ob-
jects are constructs specially conceived to represent complex data, but they are not part of
the relational model. This limitation motivated the emergence of object-oriented databases
and object-relational paradigms in early nineties. These two object database paradigms have
been scarcely adopted by companies. Object-oriented databases have a small market niche
(mainly CAD/CAM and multimedia applications) [32]. Object-relational databases ex-
tended the relational models with constructs intended to manage complex data. These ex-
tensions add complexity to databases and reduce the productivity of programmers, which
motivated the lack of acceptance among developers of relational database applications [69].
As indicated above, NoSQL databases have emerged to meet the requirements of modern
applications, by overcoming the limitations of existing database models.

Unlike object-oriented databases, aggregate objects are usually preferred to object ref-
erences in the case of NoSQL databases, because the data is distributed through clusters
to achieve scalability, and object references may involve contacting remote nodes. Thus,
aggregate-orientation has been identified as a characteristic shared by the data models of the
three most widely used NoSQL systems: key-value, document, and wide-column. They or-
ganize the storage in form of collections of key-value pairs in which the values can also be
collections of key-value pairs. The “aggregate-oriented data model” term has been proposed
to refer these three data models [109]. It is worth noting that in these models references
among data are expressed in a similar way as foreign keys in relational databases, that is, the
atomic value of a property (e.g. director_id inmovie) matches a value in another property of
a different object (e.g. _id in director), as shown in Figure 2.1.
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(a)

(b)

Figure 2.7: Object Tree and Type Tree for a Movie.

NoSQL databases store semi-structured data, and they are therefore characterized by
the fact that explicit schemas do not have to be defined (schemaless feature), which pro-
vides them with greater flexibility. As explained above, non-uniform data can be stored,
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{ "rows": [
{ "type": "movie",
"title": "Citizen Kane",
"year": 1941,
"director_id": "123451",
"genre": "Drama",
"_id": "1",
"prizes": [
{ "year": 1941,

"event": "Oscar",
"names": [

"Best screenplay",
"Best Writing"

]},
{ "year": 1941,

"event": "New York Film Critics Circle Awards",
"names": ["Best Screenplay"]

},

{ "year": 1999,
"event": "Village Voice Film Poll",
"names":["Best Film of the Century"]

},
{ "year": 1941,

"event": "National Board of Review, USA",
"names": [

"Best Film",
"Top Ten Films"

]}
],
"criticisms": [
{ "journalist": "Roger Ebert",

"media": "Chicago Sun-Times",
"url": "http://chicago.suntimes.com/",
"color": "green"

},
{ "journalist": "Pablo Kurt",

"media": "FILMAFFINITY",
"url": "http://filmaffinity.com/es/main.html",
"color": "green"

},
{ "journalist": "Richard Brody",

"media": "The New Yorker",
"color": "green"

}
]},

{ "type": "movie",
"title": "The Man Who Would Be King",
"year": 1975,
"director_id": "928672",
"genre": "Adventures",
"_id": "2",
"running_time": 129

},
{ "_id": "3",
"type": "movie",
"title": "After hours",
"year": 1985,
"director_id": "907863",
"genre": "Comedy",
"prizes": [
{ "year": 1986,

"event": "Independent Spirit Awards",
"names": [

"Best Best Feature",
"Best Director"

]
},

{ "year": 1986,
"event": "Festival Cannes",
"names": ["Best director"]

}]
},
{ "_id": "4",

"type": "movie",
"title": "Truth",
"year": 2014,
"director_id": "345679",
"genre": "Drama",
"rating":{

"score": 6.8,
"voters": 12682

},
"criticisms": [

{ "journalist": "Jordi Costa",
"media": "El pais",
"color": "red"

},
{ "journalist": "Lou Lumenick",

"media": "New York Post",
"color": "green"

}
]},

{ "type": "movie",
"title": "Touch of Evil",
"year": 1958,
"writers": ["Orson Welles", "Whit Masterson"],
"director_id": "123451",
"genres": ["Thriller", "Classic"],
"_id": "5"

},
{ "name": "Orson Welles",

"directed_movies": ["1", "5"],
"actor_movies": ["1","5"],
"type": "director",
"_id": "123451"

},
{ "type": "director",

"directed_movies": ["4"],
"name": "James Vanderbilt",
"_id": "345679"

},
{ "type": "director",

"directed_movies": ["3"],
"name": "Martin Scorsese",
"_id": "907863"

},
{ "type": "director",

"directed_movies": ["2"],
"name": "John Huston",
"_id": "928672"

},
{ "type": "movieTheater",

"_id": "22",
"name": "String",
"city": "String",
"country": "String"

},
{ "type": "movieTheater",

"_id": "23",
"name": "Kinepolis",
"city": "Madrid",
"country": "Spain",
"noOfRooms": 25

}]}

Figure 2.8: Movie Database for the Running Example.
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and the database evolution is facilitated. Figure 2.8 shows an example of NoSQL document
database that stores JSON data on movies.

Several versions of an entity can be stored at the same time into a schemaless database due
to the non-uniformity characteristic and the changes in the data structure when the database
evolves. Database designers can consider initially some entity to have optional fields or fields
that can have values of a set of types. Moreover, new versions of existing entities are created
when the database evolves, that is, new fields may be added or removed, or the type of a
existing field can be changed. Therefore, each entity will have one or more versions in the
database schema. For example, in ourMovie database example, there are 5 versions of the
Movie entity, 2 versions ofDirector, and 2 versions of Criticism. Note that versions exist
both for root and nested entities.

A schema of an aggregate-oriented data model for NoSQL database would be basically
formed by a set of entities connected through two types of relationships: aggregation and
reference. Each entity will have one or more properties or fields that are specified by its
name and its data type. As indicated above, entities can be root or nested. A root entity is
not nested to any other entity, and a nested entity is those embedded into a root or nested
entity. However, the existence of entity versions means that each entity has as many schemas
as it has versions, and then different kinds of schemas may be defined for aggregate-oriented
data models, as discussed in Section 4.1. In that section, we will show how these schemas can
be represented by labeled graphs. Figure 2.7 shows a kind of schema that is visualized as a
entities tree (Figure 2.7b), which has been inferred from the Movie object that is also repre-
sented in form of a tree (Figure 2.7a).

In Chapter 6.1, we will present two notations for representing schemas for aggregate-
based data models: a notation based on UML class-diagrams, and a notation specifically
designed to visualize NoSQL versioned schemas. For instance, Figure 2.9 shows a possible
visualization of the entity database schema for the Movies database, whose definition will
be given in Section 4.1. Each entity schema is formed by joining the schemas of its entity
versions, for example,Movie schema results of the union of the theMovie entity version
schemas.
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Figure 2.9: Object Tree and Type Tree for a Movie.

2.7 Object-Document Mappers

As commented above, in NoSQL database applications, the schema is in the mind of devel-
opers, so they have to devote a considerable effort to check that data managed in programs
conform to the implicit schema. When database systems (e.g. relational systems) require the
definition of a schema that specifies the structure of the stored data, a static checking assures
that only data that fits the schema can be manipulated in application code, and mistakes
made by developers in accessing data are statically spotted. However, schemaless databases
entail developers to guarantee the correct access to data. This is an error-prone task, more
so when the existence of several versions of each entity is possible. Therefore, some database
utilities are emerging in order to alleviate this task. Object-NoSQL mappers are probably
the more useful of these new tools. Like object-relational mappers, these mappers provide
transparent persistence and perform a mapping between stored data and application ob-
jects. This requires that developers define a data schema, e.g. by using JSON [81], anno-
tations [41], or a domain specific language [76]. Most of these mappers are for document
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stores (Object-document mappers, ODM) because document-based databases (mainly
MongoDB†) are the most widespread NoSQL systems. Mongoose [81] is the most widely
used ODM, created for MongoDB and Javascript. However, ODMs for other languages,
such as Morphia [83] for Java and Doctrine [41] for PHP, are also available.

It is worth noting that developers have two alternatives in building NoSQL database
applications. They can work in a schemaless way or use an ODM mapper, by deciding on
the trade-offs between flexibility and safety: they could prefer not having the restrictions
posed by schemas or either avoid the data validation. ODM mappers can be a good choice
when non-uniform types or custom fields are not needed, and the database schema will not
change frequently. Next, we will introduce Mongoose as in this thesis we have developed
code generators for these mappers.

Object-Document Mappers: Mongoose Mongoose is the de facto standard for defining
schemas for MongoDB when writting Javascript applications. With Mongoose, database
schemas can be defined as Javascript JSON objects, and then applications “can interact with
MongoDB data in a structured and repeatable way” [61]. Since JSON is a subset of the ob-
ject literal notation of JavaScript, the Mongoose schemas are really Javascript code. Schema
definition objects are compiled intomodels. Such schemas are the key element of Mon-
goose, and other mechanisms are defined based on them, such as validators, discriminators,
or index building. Instances of models map stored documents on which CRUD operations
can be performed via the Mongoose API. An example with the creation of a blog schema can
be seen in Figure 2.10.

2.8 MapReduce Operation

This thesis deals with NoSQL databases. Most NoSQL databases were born to overcome
the problems with horizontal scalability of relational systems, so they offer algorithms for
distributing, querying, and processing all the database data in a set of computation and stor-
age nodes.

†Actually MongoDB uses BSON (Binary JSON), a variation of JSON with optimized binary storage and
some added data types.
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var mongoose = require('mongoose');
var Schema = mongoose.Schema;

var blogSchema = new Schema({
title: String,
author: String,
body: String,
comments: [{ body: String, date: Date }],
date: { type: Date, default: Date.now },
hidden: Boolean,
meta: {

votes: Number,
favs: Number

}
});

Figure 2.10: Schema of a Blog Post in Mongoose.

One of the most important paradigms that allow that horizontal scalability is MapRe-
duce [38, 39]. Its roots, as its name implies, comes from functional programming languages
constructs: most functional languages provide equivalentmap and reduce functions. map is
a higher-order function that receives a list of values vi and a function f and produces a list of
resulting values, each one being the result of applying f to each original value vi ({f(v1), f(v2), . . . , f(vn)}).
The reduce function receives a list of values (in MapReduce it is usually the result of the
map operation) and a function g, that, applied on the list, summarizes the values producing
a single result.

The interest in these functional approaches is that it does not impose an order of evalu-
ation, so effectively they can be performed in parallel. As themap function is the same to
be applied to all data, if the data is distributed among several hosts, each of these hosts can
perform themap function application in parallel.

The actual MapReduce paradigm is adapted to be applied to huge collections of data el-
ements identified by a key, as most NoSQL databases are organized (see Section 2.4.) Thus,
as described in [38], the types of the map and reduce functions are defined as:

• map (k1, v1)→ list(k2,v2)

• reduce (k2, list(v2))→ list(v2)

Themap function is applied to each data element, identified by the pair of key and value.
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Each application of the map function generates zero or more pairs of key and value. Note
that the domain of the produced keys and values may be different from the original data.

Then, a suffle process is performed by the run-time (usually the database) so that all the
values produced under the same key are grouped, and thus, the reduce function will receive
elements in the form of a key and a list of values. The function, then, reduces the initial set
of data identified by this key to a set of small set of values, smaller than the initial set. This
calculation involves generating statistics, counting values, etc.

Specifying processes using MapReduce requires a different perspective than the tradi-
tional imperative approaches or SQL based queries or processing. As an example of mean-
ingful map and reduce functions, the literature traditionally shows how to calculate the set
of different words in a text, and the number of times each word appears in the text [38].

Figure 2.11: MapReduce word count example.

Figure 2.11 (taken from https://cs.calvin.edu/courses/cs/374/exercises/12/lab/)
visually shows the process. In the figure, the initial input is taken from a complete docu-
ment. The document is then split, which corresponds–in NoSQL database terminology–to
different documents stored in the database. The map operation is performed in parallel to
the different documents. In the word count example, the text of each document is separated
in words, and, for each word, a key-value pair is produced in which the key is the word, and
the value is 1, indicating that the map operation has found an occurrence of this particular
word.
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The shuffling operation connects all the elements under the same key (the same word) in
a list. Each pairs then will contain the same key, and the list of values for this key. This can
be simplified using the key and joining all the values in a list. This is exactly the arguments
that the reduce operation receives. The results of the reduce operation are again word-count
pairs. Joining all the results, the final result is obtained, containing all the different words
and the count for each one.

In this thesis, MapReduce is used to achieve scalability, as the inference process is per-
formed on all the objects of a database. The actual map and reduce operations used are
explained in Section 5.1. For each document considered, its schema is constructed using
an ASCII coding scheme. Then, the schema is used as a key, so all the objects that share
the same schema are grouped by the shuffling process. Taking one of the group selects the
archetype, and the list of archetypes generates a first hint of the different database types,
used later for a finer inference.

2.9 Basis of Model-Driven Engineering

Model-Driven Software Engineering (MDSE or simply MDE) refers to an area of Software
Engineering that addresses the systematic use of models to improve the software produc-
tivity and some aspects of software as maintainability and interoperability. Models can be
used in the different stages of the software lifecycle to raise the abstraction level and auto-
mate development tasks. Although models have been used since early years of program-
ming, MDE is a newly emerging discipline of Software Engineering. In November of 2000,
OMG launches the MDA (Model-Driven Architecture) initiative [89]. MDA increased the
interest in modeling by presenting a vision of the software development in which models
are first-class citizens, like programs are. Although this idea was not really a novelty, MDA
attracted the attention of the software community on the called model-driven development
paradigm. Therefore, the emergence of MDA is usually considered the milestone that moti-
vated the emergence of MDE.

Actually, MDA is only one of the existing MDE paradigms, but there are others, such as
Domain-Specific Development [70, 116] andModel-Driven Modernization [93] which share
the same four basic principles [16]: (i) models are used to represent aspects of a software
system at some abstraction level; (ii) models are instances-of (or conform-to) metamodels;
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(iii) model transformations provide automation in the software development process; and
(iv) models can be expressed by means of modeling languages.

As noted in [16], there are four main scenarios in which MDE techniques can be ap-
plied: (i) building new software applications, (ii) software modernization (e.g. software re-
engineering), (iii) use of models at runtime to represent the context or running software
system, and (iv) integration of software tools. In this thesis, we have devised model-based
solutions for tackling problems related to the two first scenarios: reverse engineering to infer
database schemas in form of models, and developing database utilities from the extracted
models.

Although MDE techniques are mainly used to create new software systems, they are also
frequently used to automate software evolution tasks, for instance, to reverse engineer ex-
isting systems [51, 115, 95, 18]. Reverse engineering is based on code or data comprehension
techniques. Chikofsky and Cross [28] define reverse engineering as “the process of analyz-
ing a subject system to i) identify the system’s components and their interrelationships, and
ii) create representations of the system in another form or at a higher level of abstraction”. Re-
verse engineering can take advantage of MDE techniques. Metamodels provide a formalism
to represent the knowledge harvested at a high-level of abstraction, and automation is fa-
cilitated by using model transformations. Therefore, we have devised an MDE solution to
reverse engineer versioned schemas from aggregate-oriented NoSQL databases that we use
to create database utilities. These utilities have been also developed by means of metamodels
and model transformations.

Next, we shall shortly introduce the basic concepts of MDE.

2.9.1 Metamodeling

Ametamodel is a model that describes the concepts and relationships of a certain domain.
A metamodel is commonly defined by means of an object-oriented conceptual model ex-
pressed in a metamodeling language such as Ecore [114] orMOF [92]. A metamodeling
language is in turn described by a model calledmeta-metamodel, therefore, a metamodel is
an instance of a meta-metamodel and a model is an instance of a metamodel. The four-level
metamodelling architecture is normally used to express the instantiation relationship be-
tween models and metamodels [16] as illustrated in Figure 2.12 that shows the four-level ar-
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Figure 2.12: Four-Level Architecture for UML and ER Notaঞons.

chitecture for the case of UML class models. A similar architecture can be defined for other
technical spaces [74] as also shown in Figure 2.12 for relational databases technical space
(schemas defined with the E/R language) and grammarware technical space (GLP programs
conform to a grammar that is defined wit the EBNF language).

Metamodeling languages generally provide four main constructs to express metamod-
els: classes (normally referred to as metaclasses) for representing domain concepts; attributes
for representing properties of a domain concept; association relationships (in particular ag-
gregations and references) between pairs of classes to represent relationships between do-
main concepts; and inheritance between child metaclasses and their parent metaclasses for
representing specialization between domain concepts. These four constructs are provided
by the Ecore language [114]. Figure 2.13 shows the main elements of the Ecore that repre-
sent the mentioned four constructs. The metamodel concepts are represented by means of
EClass; attributes are represented as EAttributes, and EReferences allows us to represent
relationships by using the containment boolean attribute to indicate its kind: aggregation
(containment=true) and reference (containment=false). In the following chapters we will use
metamodels with different purposes as representation of the implicit schema of a NoSQL
database.

Usually, UML class diagrams are used to visually represent metamodels. For instance,
Figure 2.14 shows a metamodel that represents the basic concepts of relational schemas.
A Schema aggregates a set of Tables which, in turn, aggregate Columns and Fkeys (foreign
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Figure 2.13: Main Elements of the Ecore Meta-Metamodel.
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Figure 2.14: An Example Metamodel for Relaঞonal Schemas.

keys). Schemas, tables, and columns have a name, so that the corresponding classes inherit
a name attribute from aNamedElement class. A column also has a type attribute of type
String. Table has a reference to one or more Columns that form its primary key (pkey), and
a Fkey has references to the columns that form it (cols) and the table to with it references
(ref ).

A metamodel must also include the well-formedness rules that constraint the set of valid
models. Languages such as OCL (Object Constraint Language) [91, 120] are normally used
to write these rules. Due to the limitations of UML diagrams to express complete and pre-
cise specifications, OCL was initially defined as a companion language for UML. OCL is a
strongly-typed and declarative language that is widely used to write constraints and queries
on class models. In MDE, OCL is especially used to create metamodels and writing model
transformations (e.g. in the navigation of the source model). For instance, the following
rule could be included in the above metamodel example to specify that an schema can not
contain two tables with the same name.

context Schema
inv: DifferentNamesForTables
tbls-> forAll (t1 |

tbls->forAll (t2 |
t1.name = t2.name

implies t1 = t2))
end
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2.9.2 Domain-Specific Languages (DSLs)

Models (i.e. an instance of a metamodel) are created by means of textual or visual languages.
When MDE solutions are developed for forward engineering scenarios these languages are
needed to express the models from which target artifacts are generated. These languages are
calledDomain-Specific Modeling Languages (DSL) as they are designed to solve problems
in a specific domain. However, sometimes modeling languages can be applied in any do-
main (General-Purpose Modeling Languages) [16]. Tools are available to define metamodel-
based DSLs, that is, languages that allow creating models whose structure is determined by
a metamodel. These tools facilitate the definition of a notation (concrete syntax) for the
metamodel (abstract syntax), which can be textual or graphical (or a combination of both).
This information (metamodel and notation) is used to automatically generate an editor
and a model injector (i.e. a tool that create the instance of the metamodel from the visual
or textual notation). The most widely used tools are Xtext [122] and MPS [84] for textual
DSLs, and Sirius [7] and Metaedit [6] for graphical DSLs. In the case of textual DSLs, the
tools provide a BNF-like notation to express the language grammar. For graphical DSLs, the
tools provide a graphic editor to define the symbols of the metamodel elements and the tool
palette of the editor generated.

DSLs have been used since the early years of programming, however, MDE has substan-
tially increased the interest in them. Most MDE solutions involve the definition of one or
more DSLs in order for users to create the required models. It is worth noting that when
MDE is applied in reverse engineering scenarios, notations are not needed for the meta-
models that represent the information gathered in that process if such information is not
intended to be understood by users. In our case, the models obtained in the inference pro-
cess are mainly intended for developers to help them to understand the database schema. As
discussed in Chapter 6, one possible strategy to visualize the models inferred is to define a
notation by using a DSL definition tool. However, we first visualized schemas by applying
a generative approach to automatically generate diagrams from the models inferred, because
this implementation requires less effort. Models have been directly manipulated by model
transformations in order to achieve the diagramming of schemas and the implementation
of some utilities such as validators or code for object-document mappers as described in Sec-
tion 7.1. In our work, we have only created a DSL to express parameter models in generating

39



ODM schemas. This DSL is explained in Section 7.1.

In addition to abstract syntax and concrete syntax, a DSL has semantics as a third element.
The semantics defines the behavior of the DSL; there are several approaches for defining
it [71], but it is typically provided by building a translator (i.e., a compiler) to another lan-
guage that already has a well-defined semantics (e.g., a programming language) or either an
interpreter.

2.9.3 Model transformations

An MDE solution usually consists of a model transformation chain that generates the de-
sired software artefacts from the source models. Three kinds of model transformations are
commonly used: model-to-model (M2M), model-to-text (M2T) and text-to-model (T2M).

M2M transformations These transformations generate a target model from a source
model by establishing mappings between the elements defined in their metamodels. One
or more models can be the input and output of a M2M transformation. M2M transforma-
tions are used in a transformation chain as intermediate stages that reduce the semantic gap
between the source and target representations.

The complexity of model transformations mainly depends on the abstraction level of the
metamodels to which the models conform. The most frequently used M2M transformation
languages (e.g., QVT [90],ATL [67], ETL [73]) have a hybrid nature since M2M trans-
formations can be very complex to be expressed only by using declarative constructs [53].
These languages allow transformations to be imperatively implemented by using different
techniques: i) imperative constructs can be used in declarative rules (e.g, ATL and ETL),
ii) a declarative language is combined with an imperative one (e.g., QVT Relations and
QVT operational), or iii) the language is designed as a DSL embedded into a general pur-
pose language (e.g., RubyTL [34] into Ruby). Using model transformations to solve reverse
engineering problems is an example of scenario where a high degree of processing of infor-
mation is required and the complexity of transformations can become very high [105, 124].
Moreover, these reverse engineering tasks require the definition of intermediate data struc-
tures as graphs, trees, or tables, which are usually not supported by M2M transformation
languages. The complexity of reverse engineering can be better tackled by using a model
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management API (e.g. EMF) for a general purpose programming language (e.g. Java or
Xtend) [115, 105, 124]. A survey on model transformation languages can be found in [35].

M2T transformations These transformations generate textual information (e.g. source
code or XML documents) from an input model. M2T transformations produce the target
artefacts at the last stage of the chain. Mofscript [43], acceleo [44], and the facilities sup-
ported by the xtend language [2] are some of the most widely used M2T model transforma-
tion languages.

T2M transformations These transformations (also called injectors) are used to extract
models of the source artifacts of an existing system. They are mainly used in software mod-
ernization (e.g. in reverse engineering) to obtain the initial model to be reverse engineered.
Hence, they are less frequently used than M2M and M2T. Among the tools for extracting
models from code we remark the use of textual DSL definition tools as Xtext [122] or EMF-
text [49]. A grammar is defined for the language of the input text, and the tool generates
the model injector. Other tools used to inject models from source code are: MoDisco [17]
that implements parsers (called discoverers) for Java and other languages, and the XML injec-
tor of the Eclipse Modeling Framework (EMF) [114] that obtains Ecore models from XML
schemas.

In our work, we developed an initial prototype of our schema inference process by using
(i) EMFText to create a model injector for JSON documents, and (ii) RubyTL to imple-
ment a m2m transformation that analyzed JSON models to obtain models representing the
inferred schema. Finally, as explained in Chapter 5 the inference process was implemented in
Java by using EMF API to build the extracted model.

2.10 Tooling, Frameworks, and Languages Used

NoSQL databases To show the validity of our approach in several databases and database
types, we used two of the most common document-oriented NoSQL databases: Mon-
goDB [80] and CouchDB [5]. We have started working also in HBase [57], but it requires
further development, as HBase stores all the values as a byte blob. However, the approach
has proved to be usable also in wide-column stores such as HBase.
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As indicated in Section 2.7, we have automatically generated schemas for Mongoose.

Eclipse Modeling Framework and Ecore Eclipse Modeling Framework (EMF ) [114] is the
core infrastructure for theModeling Project of the Eclipse platform. This project integrates
a set of tools for applying MDE. EMF is currently the most widely used framework, and
has significantly contributed to the fact that MDE can now be used in the academic and
industry communities. EMF is composed of a metamodeling language called Ecore and the
tooling needed for the creation and manipulation of Ecore (meta)models, which is usually
referred also as EMF.

EMF supports two ways of manipulating models: code generation and dynamic mod-
els. Given a metamodel, EMF can generate a set of classes and interfaces which represent
the metaclasses of the metamodel and can be instantiated to create models. This is called
generated EMF. Instead of generating code, EMF also allows a model to be dynamically
generated by means of the dynamic EMF API.

All the tools developed in this thesis use EMF/Eclipse as modeling framework.

Model transformations In our work, we have used dynamic EMF in Java code to imple-
ment the inference process. As indicated above, we have not used a M2M transformation
language as they are not appropriate for complex reverse engineering processes. With re-
gards to M2T transformations, we firstly used the MOFScript language [43] but we mi-
grated our code to Xtend [2] to achieve a better interoperability and support. Recently,
MOFScript has been discontinued and this supports that our decision was appropriate.

Xtend [2] is a dialect of Java that compiles to Java 5 and is available as a Eclipse plugin
that is integrated into EMF. This language was devised with the aim of offering to the Xtext
community a powerful language to provide semantics (i.e. M2M and M2T transforma-
tions) to the DSLs built with Xtext. In fact, Xtend was implemented by using Xtext. Xtend
was presented as a Java modernized with advanced features as lambda expressions, exten-
sion methods, and type inference. Most of these novelty features are currently supported by
Java 8. However, Xtend provides an interesting mechanism that is not provided by Java 8:
a template definition mechanismwhich allows M2T transformations to be written. This
mechanism offers language constructs to easily navigate through the input models and the
text generated can be specified as the input model is traversed.
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Other MDE tools Xtext [122] is a very widespread DSL definition tool that has achieved a
high level of maturity along last eight years. Xtext together Xtend form a powerful environ-
ment to build DSLs. Xtext offers a simple BNF-like language to define the concrete syntax
of a DSL. From a grammar specification, Xtext generates the DSL metamodel, an editor
and a model injector. We have used Xtext to create theODM Parameter DSL described in
Section 7.1.

PlantUML [96] is a textual DSL aimed to draw UML diagram. The notation is simple
and easy to learn and use. The PlantUML engine generates

DOT code and use Graphviz [55] for drawing UML diagrams. We have used PlantUML
to visualize the NoSQL schemas inferred as models in form of UML class diagrams, as ex-
plained in Chapter 6.
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We ourselves feel that what we are doing is just a drop
in the ocean. But the ocean would be less because of that
missing drop.

Mother Teresa of Calcuta

3
State of the Art

Database management systems (e.g. Relational, Object-oriented or NoSQL) are a key ele-
ment of software applications. Data Engineering is the Computer Science discipline con-
cerned with the principles, techniques, methods and tools to support the data management
in the software development. Some of the main topics of Data Engineering are Data Evo-
lution (e.g. data migration), Data Reverse Engineering, Data Integration, and Data Tool-
ing. Data Engineering has been mainly focused on relational data so far, although interest
is shifting towards NoSQL databases. Therefore, NoSQL Data Engineering is an emerging
area which is increasingly attracting the attention of industry and academia. In our research
work, we have tackled the inference of implicit schemas in NoSQL databases and the usage
of the inferred schemas to develop database utilities. Therefore, this thesis contributes to
the NoSQL Data Engineering area with one of the first works on reverse engineering as well
as the automation of some tasks by means of utilities generated from schemas.

We have organized the related work analyzed in three main categories: (i) NoSQL schema
inference approaches, (ii) NoSQL schema representations, and (iii) development of database
utilities. In the first category we have also considered the works related to the extraction of
XML and JSON schemas. In the third one, we have focused on schemas visualization tool-
ing. We end this chapter with a final discussion that contrast the related work with the pro-
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posals presented in this thesis.

3.1 NoSQL Schema Inference

The schema extraction for JSON-based technologies and applications is gaining attention
as JSON is becoming a de facto standard in information interchange. Also, JSON-based
NoSQL stores are emerging. This research effort is related to the works published over the
years on schema inference and schema versioning for semi-structured data, specially XML
documents. The works most closely related to the NoSQL schema extraction approach de-
vised in this thesis are [72] and [119]. Next we will discuss in detail these two works. More-
over, we will also comment on other relevant works on schema inference from NoSQL
databases, XML, and JSON.

3.1.1 Meike Klettke et al.

An algorithm to extract schemas from aggregate-oriented NoSQL databases is presented
in the work of Klettke et al. [72]. This algorithm adapts strategies proposed for extract-
ing XML DTDs [79] to JSON documents. The authors use JSON Schema to represent
the output. A JSON Schema is extracted from a collection of JSON documents. Figure 3.1
shows the schema obtained for theMovie collection of our running example.

Noting that the JSON schema shown in Figure 3.1 for the Movie collection corresponds
to the notion of union object schema given in Section 4.1, only that aggregated types are la-
beled asObject and arrays of objects as array. Therefore, this work does not discover what
entities and entity versions exist in the database and, therefore, any of the kinds of versioned
schemas defined in Section 4.1 have been considered. Instead, the approach of Klettke et al.
only obtains a schema for each collection, which is called type, that is defined as the union
of the object schemas of each version. That is, an entity schema is formed by the union of
all the fields of the versions that exist for that entity. For instance, the schema obtained for
themedia field is [{“type”:”string”},{“type”:“Object”}], according to the variation of this field
in our database example. References are also identified. For instance the field director_id
references toDirector entities, but this is not specified in the JSON schema obtained.

Given a collection of documents as input, the algorithm of Klettke et al. works in four
steps as shown in Figure 3.2. In a first step, a selection of the documents to be analyzed is
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{
"type": "object",
"properties": {

"_id": {
"type": "integer"

},
"title": {

"type": "string"
},
"year": {

"type": "string"
},
"director_id": {

"type": "string"
},
"genre": {

"type": "string"
},
"running_time": {

"type": "integer"
},
"rating": {

"type": "object",
"properties": {

"score": {
"type": "integer"

},
"voters": {

"type": "integer"
}

},
"required": [

"score",
"voters"

]
},
"prizes": {

"type": "array",
"items": {

"type": "object",
"properties": {

"year": {
"type": "integer"

},
"event": {

"type": "string"
},
"names": {

"type": "array",
"items": {

"type": "string"
}

}
},
"required": [

"year",
"event",
"names"

]
}

},
"criticisms": {

"type": "array",
"items": {

"type": "object",
"properties": {

"journalist": {
"type": "string"

},
"media": {

"anyOf": [
{

"type": "string"
},
{

"type": "object",
"properties": "..."

}
]

},
"color": {

"type": "string"
}

},
"required": [

"journalist",
"media",
"color"

]
}

}
},
"required": [

"_id",
"title",
"year",
"director_id",
"genre"

]
}

Figure 3.1: JSON Schema of our database example.
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Figure 3.2: Four steps of the approach of Kle�ke et al. (extracted from [72]).

performed: either the entire collection or a subset of it. When this second option is cho-
sen, the subset is formed by considering properties as version number, timestamp, date, or
a particular split attribute. Next, the algorithm parses selected JSON documents to con-
struct the Structure Identification Graph (SG) that represents the structure (i.e. the type or
entity schema) of a document (i.e. a root object) of the collection. Figure 3.3 shows the SG
built for the Movie_2 and Movie_4 objects of our database example. Nodes correspond to
JSON values and edges capture the hierarchical structure. Nodes and edges are labeled with
information that indicate which JSON document the property belongs to. This informa-
tion consists of lists of identifiers of all the documents that include a particular property.
Each property is defined by the path of keys formed by the ordered list of keys of the ob-
jects parents, which starts with the key of the root object. Moreover, the SG nodes store the
data type of each field. Finally, the SG graph is traversed to generate the JSON schema. The
information stored into the SG nodes allows to distinguish when a field of an root or em-
bedded object is required or optional.

The JSON schema generated is used to calculate statistics and metrics, and finding out-
liers in the stored data. This information is generated in the process of construction of the
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[2:0,4:0]

[4:7] [4:7]

[2:0,4:0] [2:0,4:0] [2:0] [4:0]

{
   "_id": "2",
 "type": "movie",

   "title": "The Man Who Would Be King",
   "year": 1975, 
   "director_id": "928672", 
   "genre": "Adventures",
 "running time": 129

}

{
   "_id": "4",
   "type": "movie",
   "title": "Truth",
   "year": 2014, 
   "director_id": "345679",
   "genre": "Drama",
   "rating":{
     "score": 6.8,
     "voters": 12682
   },

   "criticisms": [
      {
         "journalist": "Jordi Costa",
         "media": "El País",
         "color": "red"
      },
      {
         "journalist": "Lou Lumenick",
         "media": "New York Post",
         "color": "green"
      }
   ]
}

movieObj
[2:0,4:0]

title
[2:2,4:2]

year
[2:3,4:3]

director_id
[2:4,4:4]

genre
[2:5,4:5]

running time
[2:6]

criticismObj
[4:7]

criticisms
[4:7,4:13]

_id
[2:1,4:1]

rating
[4:6]

voters
[4:9]

score
[4:8]

[2:0,4:0] [2:0,4:0] [4:0]

[4:6] [4:6]

[4:7,4:13] [4:7,4:13]

media
[4:11,4:15]

color
[4:12,4:16]

journalist
[4:10,4:14]

[4:7,4:13]

Figure 3.3: Structure Idenঞficaঞon Graph for a Movie.

SG graph. An example of statistics offered is the percentage of documents including a par-
ticular field. These percentages can be used to find outliers as missing properties (i.e. those
properties occurring in nearly all the documents) or additional properties (i.e. those proper-
ties rarely occurring). Among the metrics, the degree of coverage for documents is proposed
in order to measure the structural homogeneity of a collection. The authors also suggest as
further work some database utilities similar to those developed in this thesis, such as valida-
tors and objects mapper classes.

The notion of NoSQL schema presented in our work is more expressive than the JSON
schemas in the standard, since NoSQL schemas contain aggregation and reference relation-
ships between entities, and also entity versions are extracted and represented. Our work
therefore differs from this approach in several essential aspects: i) the algorithm of Klettke
et al. identifies the required and optional properties, but object version schemas are not ob-
tained; ii) schemas involve anObject type, and reference and aggregation relations are not
considered; iii) they do not specify how to cope with huge amounts of data; and iv) we ob-
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tain a model that conforms to a metamodel, instead of a JSON Schema.

3.1.2 Lanjung Wang et al.

The authors present a schema management framework for NoSQL document stores [119].
To our knowledge, this is the only proposal that, like our work, deals with entity versions.
The main elements of this framework are shown in Figure 3.4: (i) an algorithm for discover-
ing and extracting schemas; (ii) an approach for querying extracted schemas, and (iii) a for-
mat to present all the schema versions of an entity as a single approximate schema, in order
to make it easier for users to understand the structure of stored documents.

Schema
Presentation

Schema Extraction & Discovery

Schema Repository

Query

Schema Consuming

Figure 3.4: Schema management framework of Wang et al. (extracted from [119]).

Three main challenges have been identified in building this framework. First of them has
to do with the existence of different schema versions for the entities stored into a collection.
Moreover, the authors consider that a collection can have tens of thousands of versions in
some real-world scenarios. For instance, they have identified 21,302 versions of the Company
entity in the 24,367 documents of the DBpedia database. This database is one of four ana-
lyzed case studies. The first challenge to be tackled is therefore the efficiency of the process
of schema discovering and extracting, which must also support efficient online updates. The
other two challenges are related to queries in the discovered schema repository. The authors
have defined a SQL-like API to perform queries over the schema repository. They have
defined only two basic queries as are checking the existence of a particular schema or sub-
schema. Since the authors assume the existence of a very large number of schema versions
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for an entity, then they consider that a single schema should be returned, rather than the
collection of all the existing versions, when data scientists perform queries over the schema
repository in advanced data exploration scenarios. They discarded the union and intersec-
tion of schemas because the first operation could generate schemas with a large number of
properties, whereas the intersection could originate schemas with a very reduced number of
properties. For instance, in the case of the Company entity of DBpedia, the intersection is
only one property, whereas there are 1,648 properties for the union.

To achieve an efficient schema discovering algorithm, the authors have devised a data
structure called eSiBu-Tree (encoded Schema in Bucket Tree) to represent schemas both in
memory during the inference process and on disk when they are persisted. The queries are
efficiently performed by using this data structure. To summarize schemas, the notion of
skeleton schema is proposed. The eSiBu-Tree and the skeleton notion are the two main con-
tributions of the work of Wang et al., which support the schema management framework
proposed. Next, we will give some details on these two concepts.

root root root root

{
  “article_id”: “D3”,
  “author”: 
    {
       “_id”: 123,
       “name”: “Jane”
    },
    “text”: “great”
}

article_id article_id article_idauthor author author authortext text text text

_id

_id

name name

name

name _id

{
  “article_id”: “D1”,
  “author”:
    {
      “_id”: 453,
      “name”:
        {
          “first_name”: “Amy”,
          “last_name”:”Ho”
        }
    },
  “text”: “not bad”
}

first_name last_name

{
  "Did”: “D4”,
  “author”:
    {
     “name”: “King”
    },
  “text”: “not bad”
}

{
  “text”: “nice”,
  “author”:
    {
      “name”: “June”,
      “_id”: 352
    },
  “article_id”: “D0”
}

Did

S1 S2 S3 S4

Figure 3.5: Documents stored in Arࢼcle collecঞon (extracted from [119]).

The design of the eSiBu-Tree data structure was due to the inefficiency observed to group
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equivalent schemas by means of a Canonical Form (CF)-based method, in particular the
method for generating Depth-First Canonical Form [27]. This method analyzes all the ob-
jects of a collection and groups the fields by levels as illustrated in the example of Figure 3.6
that shows the generation of the Canonical Form for the four JSON documents shown in
Figure 3.5. These documents are stored in a collection for anArticle entity which has three
properties: identifier, text, and author. The number of levels is determined by the maxi-
mum level of nesting in the documents. In this example, there are 4 levels that correspond
to root.author.name.firstName and root.author.name.lastName. Figure 3.6 illustrates how
iteratively works the CF-based algorithm. An array of label-code pairs is generated for each
level. This array is called code map array. Given a nesting level in the hierarchical structure
of the documents stored into a collection, a code map array contains a pair for each field
with different type; in the example the array for the level 2 includes pairs for the following
fields: article_id, text andDid of String type; and three pairs for the author field that corre-
sponds to the documents S1, S2, and S3 (this field has the same type in S4 and S1). Each pair
of a code map array has a code that is assigned as follows: 1 is assigned to the first field found
for that level, and this value is incremented by one for each new pair added to the array. The
label of a field of Object type results of concatenating the name of the field with the ordered
codes of its children fields, which are part of the map code array of the next level. Therefore,
a sort of codes is needed to form the labels of these fields. In the case of fields of primitive
type, the label is only formed by the name of the field.

The performance of the CF-based algorithm for grouping schemas depends on the num-
ber of sorts of codes performed. Therefore, Wang et al. defined the eSiBu-Tree data struc-
ture which allows define a divide-and-conquer algorithm that reduces the number of sort
by half. This algorithm also provides better performance than the CF-based algorithm for
querying schemas and obtaining the schema skeleton. Figure 3.7 shows the eSiBu-Tree gen-
erated as result for documents in Figure 3.5. Each node or bucket belongs to a single schema,
and a schema is represented by the path going from the root bucket to a bucket that repre-
sent its last level of nesting. A bucket is formed by four elements: (i) an identifier that is a
ordered sequence of codes of pairs in the parent bucket; (ii) an array of label-code pairs like
that described for the CF-based algorithm, but a bucket only contains the pairs of a partic-
ular schema, instead of all pairs of all the schemas for a determined nesting level (level 2 in
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ID: 2,3,4 F

article_id     : 1      Did          : 4
author, 1, 2 : 2      author , 2 : 5
text             : 3

Level 1

Level 2

Level 3 Level 3Level 3

article_id     : 1      Did          : 4
author, 1, 2 : 2      author , 2 : 5
text             : 3      author,1,3 : 6

article_id     : 1      text       : 3
author, 1, 2 : 2 

root,1,2,3 :         1
root,3,4,5 :         2
root,1,3,6 :         3

root,1,2,3 :         1
root,3,4,5 :         2

root,1,2,3 :         1

_id :           1   name,1,2 :       3
name :       2

_id :           1
name :       2

_id :           1
name :       2

first_name : 1      last_name : 2

Level 4

(a) (b) (c)

Level 1

Level 2 Level 2

Level 1

Figure 3.6: Canonical form generated for documents in Figure 3.5 (extracted from [119]).

Figure 3.6 includes three pairs for authors, but a bucket only contains a pair for each field
included), (iii) a flag that indicated whether a bucket is the end of the path representing a
particular schema; and (iv) a list of children buckets. In Figure 3.7, the tree (c) shows the
eSiBu-Tree that is finally generated. The root of this tree only includes an array of label-code
pairs for all the fields in root documents. This root bucket has two children bucket because
two potential schemas can be identified at level 1 ({article, _id, text and author} and {Did,
text, and author}). The {ID:1,2,3} bucket for the former schema includes pairs for the _id
and name fields of author, and has a list of two buckets whose flag is true, these two buckets
end the path of buckets for the schemas of the documents S1 (and S4) and S3 in Figure 3.5.
The {ID:2,3,4} bucket for the second schema includes a pair for the name field, and a list of
only a children which ends the path of buckets for the schema of the S2 document.

A skeleton is the smallest attribute set that is “enough” to characterize to the schema of
the entity associated to a collection. The authors have defined some quality criteria that
guide the skeleton construction process to find out the highest quality attribute set. They
have defined an algorithm based on the eSiBu-Tree generated in the schema extraction phase
for the skeleton construction.
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(a) (b) (c)

3, _id          : 1

3, name      : 2

article_id: 1     text: 2

author    : 3

article_id: 1     text: 2

author    : 3     Did : 4 

article_id: 1     text: 2

author    : 3     Did  : 4 

ID: 1

ID: 2,3,4   F

3, _id          : 1

3, name      : 2
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3, name      : 2

ID: 1,2
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ID: 1,2
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2, first_name : 1

2, last_name : 2

ID: 1,2

Figure 3.7: eSiBu-Tree generated for documents in Figure 3.5 (extracted from [119]).

Actually, schema extraction from semi-structured data has been already addressed in sev-
eral works as [9], as well as the problem of finding the minimal perfect or approximate type
of a object graph (i.e. a concise an accurate summary of a give data graph). Wang et al. note
that the main contributions of its work are (i) tackling the efficiency issue, and (ii) the iden-
tification and usage of quality criteria to construct the skeleton [119].

3.1.3 MongoDB Schema

MongoDB-Schema [108] is an early prototype of a tool whose purpose is to infer schemas
from JSON objects and MongoDB collections. Given a set of objects of the same collection,
the inference algorithm extracts an schema that is similar to that obtained with the approach
of Klettke et al. [72], that is, the union of the object schemas of the different versions of an
entity. When a field belongs to more than one entity version, its type is the union of the
types encountered for this field. Moreover, metadata is added to each field in the root and
embedded objects in form of a key/value pair. For instance “type” indicates the object type
(e.g. Number, String, or Boolean), “count” indicates the number of objects that contains a
field, “probability” for a field indicates the percentage of objects that have it, “probability”
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for a type indicates the percentage of objects that have the field/type pair. The schema can
also collect the values sample for each field/type pair. Figure 3.8 shows the structure of a
schema in MongoDB-Schema. An entity schema is formed by a collection of fields, and each
field has one or more types that can be ConstantType, PrimitiveType,Array andDocument.
MongoDB-Schema supports the set of BSON types.

{
"count": 4, // parsed 4 documents
"fields": [ // an array of Field objects
{

"name": "_id",
"count": 4, // 4 documents counted with _id
"type": "Number", // the type of _id is `Number`
"probability": 1, // all documents had an _id field
"has_duplicates": false, // therefore no duplicates
"types": [ // an array of Type objects

{
"name": "Number", // name of the type
"count": 4, // 4 numbers counted
"probability": 1,
"unique": 4,
"values": [ // array of encountered values
1,
2,
3,
4

]
}

]
},
{

"name": "a",
"count": 3, // only 3 documents with field `a` counted
"probability": 0.75, // hence probability 0.75
"type": [ // found these types

"Boolean",
"String",
"Number",
"Undefined" // for convenience, we treat Undefined as its own type

],
...

Figure 3.8: Parঞal Structure of a Enঞty Schema in MongoDB-Schema (extracted from [108]).

The schema example in Figure 3.8 is taken from the documentation of MongoDB-Schema [108].
The _id field ofNumber type is encountered in the four parsed documents, but the a field
is only encountered in three documents and has a different type in each document: Boolean,
String, andNumber. The meaning of metadata considered can be easily understood from
the comments added. The set of built-in types can be extended with custom types by adding
a detector function for values of that type, and it is also possible to override the function that
identifies values of a built-in type.
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3.1.4 SQL query engine for structured data sources

Some NoSQL database tools have recently emerged which offer functionality that requires
discovering the schema of the data stored. Spark SQL [123] and Drill [42] query engines are
examples of such tools. Spark SQL Apache provides uniform access to a variety of struc-
tured data sources. In Spark SQL, a schema is described as a set of Scala algebraic types and
can be inferred for a given set of JSON objects. Spark addresses object versions by means of
“sum types”, that is, creating types that contain all the properties in all the objects of an en-
tity type, allowing them to be null in the objects created or received. Noting that this notion
of “sum types” corresponds to the concept of “union object schema” defined in Section 4.1.
As for conflicting types, it generalizes to a String type, that is able to represent any value.
This may allow these conflicting types to be addressed without crashing, but it does not of-
fer any guarantee regarding the consistency of the data.

Apache Drill [42] is a SQL query engine for Hadoop, NoSQL and Cloud storage. It
dynamically discovers the schema during the processing of a query, but it cannot cope with
conflicting objects (those that do not comply with the schema). Also, the discovered schema
is just used for the purposes of Drill, and cannot be reused by other applications.

3.1.5 JSON Discoverer

A MDE-based approach to infer JSON schemas from JSON-based Web APIs is proposed
in [64, 65]. This work is motivated by the fact that the integration or reuse of Web APIs
requires an understanding of the data model behind them. However, the schemaless charac-
teristic of JSON makes it difficult for developers to gain this understanding. Therefore, the
authors propose a solution aimed to discover and visualize implicit schemas in JSON data.
A three-step process is performed to discover the domain model of the services. Firstly, the
JSON data for a service is injected into models which conforms to a JSON metamodel. The
JSON model injector and JSON metamodel has been generated by defining a JSON gram-
mar in Xtext [122]. In the second step, a mapping between the JSON metamodel and the
Ecore meta-metamodel is established in order to transform the JSON model into a domain
model. JSON objects and pairs are transformed into Ecore classes and references. Each class
of the domain model generated corresponds to the notion of entity union schema that was
defined in Section 4.1. The resolution of conflicting types is addressed by generalizing to
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the String type just like in Spark SQL. Finally, the domain models obtained for each service
are integrated by superposing the common classes. Therefore, the domain model generated
would correspond to the notion of entity database schema defined in Section 4.1 but exclud-
ing references between entities. A tool that implements this approach can be online exe-
cuted in [40]. This tool is called JSON Discoverer and offers three functionalities: (i) simple
discovery that discovers the schema for JSON documents of a single service; (ii) advanced
discovery that provides the global schemas of a Web API by integrating the schemas discov-
ered for each service; and (iii) Composition that composes the schemas of several Web APIs.
Schemas are drawn as UML class diagrams: entities and properties are represented as classes
and attributes, respectively; and relationships between entities are represented as composite
associations. Web API composition are represented as UML sequence diagrams.

This schema discovering work of Canovas and Cabot [64, 65] is close to our approach
but there are some significant differences between them as indicated below. Unlike the
works previously analyzed, this inference process extracts entity domain models rather
union object schemas, which requires discovering and extracting the involved aggregation
relationships. However, the existence of data versions (i.e. versioned schemas) is not ad-
dressed, and the references between objects are not discovered. This can be easily checked
by trying visualize the schema for our Movie database example in [40]. Another remark-
able difference of the inference process has to do with the strategy applied to resolve con-
flicting types in building a entity as the union of the schemas of the different versions. We
extracted the union of all the types identified, instead of generalizing to the String type. It
is remarkable that our work focused on NoSQL databases, whereas JSON Discoverer is a
solution intended to developers that manage Web APIs. Therefore, we had to take into ac-
count some specificities of databases, such as the very large of documents that can exist in
a collection. Thus, a JSON model injection is not feasible in our solution, instead we have
used a map-reduce operation as explained in Chapter 5. Moreover, we have extracted mod-
els that are instances of a metamodel that represents NoSQL schemas, instead of generating
domain models that are instances of the Ecore meta-metamodel. Finally, it is worth to note
that the JSON-to-Ecore mapping defined in the work of Cánovas and Cabot is similar to
the one we have defined for obtaining a visual representation of the global schema, which
will be explained in Section 6.2. We have converted the inferred schema models into Ecore
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elements in order to take advantage of the visualization utility for metamodels provided in
Eclipse/EMF. However, in our case, the mapping is more direct.

3.1.6 ExSchema

ExSchema [23, 22] is a tool aimed to discover schemas for NOSQL stores by applying a static
analysis of the source code of applications that use data store management APIs. The tool
supports different kinds of data stores: document, column family, graph and relational.
ExSchema has been implemented as an Eclipse plugin, and can be integrated with Git repos-
itories to continuously analyze the application code in order to evolve the schema when is
needed. The schema discovering process is performed in two steps. Firstly, the Java code of
database applications is analyzed and the schema discovered is represented by means of el-
ements of a meta-layer (i.e. a metamodel) based on the SOS meta-layer proposed to offer a
common interface for accessing a NoSQL stores [11] which is described in more detail later
in this chapter.

Relationship

AttributeSet

Struct

*

*

*

* *

**
*

*

Figure 3.9: ExSchema Metalayer (extracted from [23]).

SOS has been extended with a new Relationship element to support graph stores, as
showed in Figure 3.9. The discovered schema is visualized as a PDF image, and a Spring
Roo [101] is generated to modify the original source code in order to work with the schema.
As can be seen in Figure 3.10 (extracted from [22]), ExSchema visualizes schemas with a large
number of visual elements, which makes it difficult to understand what are entities and
which are the relationships among them.
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Attribute
name: idPost

Attribute
name : postTimeStamp

Attribute
name : postGeoStamp

Attribute
name : idContact

Attribute
name : fr.imag.mynet.domain.Post Struct

Attribute
implementation : MONGODB

Set

Set

Figure 3.10: Generated diagram by the ExSchema tool for a MongoDB collecঞon (extracted from [22]).

3.1.7 Early works on schema extraction for semi-structured data

At the end of the nineties, structuring or typing semi-structured data was a novel topic
and an area of much research activity [8, 9, 20]. Although one of the main attraction of
semi-structured data is being schemaless, several utilities of discovering the data structure
was identified as: to optimize query evaluation, to facilitate the data integration, to im-
prove storage, to construct indexes or to describe the database content to users [9]. Then,
the main concern was to formally define the concept of data type (i.e. schema) for semi-
structured data. Schemas are defined by means of some kind of graph-like structure as edge
labeled graphs [20] based onObject Exchange Model (OEM) [8]. First-order logic (Datalog)
and simulation were formalisms used to formally describe the notion of schema [9]. The
schema discovery was mainly addressed as the problem of finding the most specific schema
or approximate type for a set of data of the same entity. A clustering-based algorithm for
approximate typing of semi-structured data was presented in [86]. In [118], an algorithm
to find the typical type of a majority of objects in a collections is described. These authors
tested the algorithm on the IMDb, in particular they chose 100 top movies from the list
of 250 most voted movies. Then they converted HTML documents of these movies into
OEM models in order to execute its algorithm, and obtained three more frequent object
schemas, which were called schema patterns, which described to a 22%, 17%, and 16%.
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In our work, we are not interested in obtaining an approximate schema for an entity, but
we discover and extract all the entity versions. In order to present a summary schema, we
obtain the entity union schema. Moreover, our discovering process outputs a model that
conforms to a metamodel in order to facilitate the development of database utilities.

XML Schema Extraction The eXtensible Markup Language (XML) has been the pre-
dominant format for data exchange on the Web. Because the definition of a schema (e.g.
a DTD or XML Schema) is not mandatory to create XML documents, the XML schema
extraction has received a great attention from the database community. The process of ex-
tracting an XML schema (usually a DTD) consists of two main steps: discovering the hi-
erarchical structure of the documents and transforming it into the schema representation.
In [79], the authors present a tool able to infer the DTD of a set of XML documents. The
approach applied to build this tool, which is called dtd-miner2000, works as follows. Each
XML document is Firstly represented in form of n-ary tree, then the overall structure of
all the structurally similar document trees is represented in a spanning graph, and finally
some heuristics are applied to generate a DTD from the information in the spanning graph.
The Structure Identification Graph (SG) used in the approach of Klettke et al. described
above is based on this spanning graph data structure. In [14], the problem of inferring an
XML schema is considered a problem that “basically reduces to learning concise regular ex-
pressions from positive examples strings”, and several algorithms are described in detail. An
efficient algorithm is presented in [58] which is based on the ideas exposed in [78], where
the form of the regular expressions is restricted and some heuristics are proposed. In [66]
a strategy to infer schemas from heterogeneous XML databases is presented. The schema
is provided as a Schema Extended Context-Free Grammar, and the different versions are
integrated into a single grammar which is mapped to a relational database schema. An algo-
rithm to infer a succinct type (i.e. a schema) for a JSON dataset is proposed in [31], which
works in two phases. In the first phase a Map-Reduce operation is applied. The map oper-
ation infers the type of each JSON object and generates a pair whose key is the inferred type
and the value is 1. The reduce operation counts the number of objects of each type, that is,
it generates a set of pairs< Ti : mi >, where

∪
i=1

Ti denotes the type that describes the

dataset andmi counts the number of objects of type Ti. In the second phase, a type fusion
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algorithm is applied to collapse similar types, which is based on some heuristics that depends
of the valuemi.

3.2 NoSQL Schema Representations

In the past years, several metamodels have been proposed to represent NoSQL schemas. As
indicated above, SOS [11] is a meta-layer (i.e. a metamodel) aimed to to support the hetero-
geneity of NoSQL systems. As shown in Figure 3.11, SOS provides a uniform representa-
tion for schemas of aggregate-based databases. A schema consists of a set of collections (Set
metaclass). A key-value property is a simple element (Attributemetaclass) and a group of
key-value pairs form a complex element (Struct metaclass). A Set can contain structs and
attributes. Struct and Set can be nested.

Relationship

AttributeSet

Struct

*

*

*

*

*

*

Figure 3.11: The SOS metalayer (extracted from [11]).

A design method for aggregate-based NoSQL database is proposed in [19]. This method
defines the NoAM (NoSQL Abstract Model) model to represent these databases in a system-
independent way. NoAM is really based on SOS and it has been designed to serve as an in-
termediate representation between aggregate objects of database applications and NoSQL
systems. A NoAM database is a set of collections that contain a set of blocks. Each block is
uniquely identified by a block key. Each block contains a set of entries that are key-value
pairs. Several strategies to represent a dataset of aggregated objects as a NoAM database are
proposed in [19].

OurNoSQL_Schemametamodel provides a higher level of abstraction than SOS and
NoAM. These data models do not consider the possible existence of database object ver-
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sions. Moreover, they does not explicitly represent relationships between entities. More-
over, they have not been implemented in form of a metamodel. It is worth noting that SOS
and NoAM have been designed with a purpose different to our metamodel. Whereas we are
interested in the schema discovering, SOS was devised for uniform accessing and NoAM is
part of a design methodology.

As explained in Section 2.3, the JSON Schema format [4] has been recently proposed
with the aim of providing standard specifications for describing JSON schemas. JSON
Schema has been used to represent the schemas inferred in the approach of Klettke et al. [72]
which has been described in this chapter. Our metamodel is more expressive than this stan-
dard format, since it considers aggregate and reference relationships and entity versions.

3.3 NoSQL Database Utilities

The immaturity of current NoSQL tools has been noted in the report [1] that we have com-
mented in Chapter 1. Actually, there is a lack of tools for NoSQL systems capable of provid-
ing functionality similar to that available for relational systems. As we have indicated, the
Dataversity’s report identified three main categories of capabilities that should be supported
in the NoSQL space tooling: diagramming, code generation, and metadata management. In
Chapters 5, 6 and 7, we will present some database utilities that have been developed in this
thesis for each of these three categories of functionality. Here, we describe some of the few
NoSQL tools currently available for data modeling.

ER/Studio Data Architect ER/Studio Data Architect [47] has been the first commercial
tool supporting some kind of NoSQL data model. Since mid-2015, this tool support a re-
verse engineering process for MongoDB databases, and schemas discovered are visualized as
E/R-like diagrams. The schema discovery process is applied on a single collection, and the
diagram obtained shows the union entity schema but references are ignored, that is, the di-
agram visualizes the root entity and the direct or indirectly embedded entities. Figure 3.12
shows the diagram obtained for the collection of movies of our running example.

Note that the reference relationship toDirector is not shown. Collections are represented
by rectangles, and nested objects by rectangles with rounded corners. This schema discover-
ing process does not take into account the possible existence of entity versions.
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Figure 3.12: ER/Studio: Diagram forMovie collecঞon.

CA ERwin CA ERwin* is another widespread modeling tool. ERwin Unified Data Mod-
eler is a project under development with the aim of supporting data modeling for relational
and NoSQL systems (Document and Column Family), which has been presented as an arti-
cle in infoQ [48]. This tool will provide data schema discovery and data migration between
RDBMS & NoSQL databases. A data model based on the Entity-Relationship notation
is used to represent relational and NoSQL (Document/Column Family) logical schemas
in a unified way. Entities, properties, relationships and keys are the main elements of such
schemas. Entities represent tables and collections/column family; properties represent

*http://erwin.com/products/data-modeler.
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columns and key/columns; relationships represent relational constraints and different el-
ements in NoSQL schemas as References, Embedded Objects, and row across multiple col-
umn families; and keys represent indexes. A logical model also includes query patterns and
data production patterns. Moreover, physical models for the three considered paradigms
have been defined. The tool will be able to support forward and reverse engineering. Phys-
ical models can be automatically generated from a logical model, and a logical model can
be automatically extracted and visualized from data. Query and data production patterns
are used to transform logical models into physical models. With regard to the reverse engi-
neering process to discover NoSQL schemas, the article [48] indicates that some techniques
applied are: Schema coverage on statistics of records, machine learning, feedback collec-
tion from UI, dimension building in classifier, and continual improvement of accuracy in
schema inference process. However, the author of this article does not give any details on
the implementation of this process and how these techniques are really applied.

DBSchema DBSchema [37] is a modeling tool that allows to represent relational databases
graphically. It offers, among other things, an interactive schema tool, a reverse engineering
tool for databases, a random data generator once the schema is known, and a visual query
builder. Recently, the tool has been augmented with support for MongoDB. The schema
discovering is not able to perform inter-collection references automatically, but they can
be created later using the utility. As some other utilities, it combines all the attributes of all
the entity versions, and it is not clear how will it deal with conflicting properties in different
objects. Figure 3.13 shows the result of inferring our example database.

MongoDB Compass MongoDB Compass[33] is a graphical tool that is included in Mon-
goDB to facilitate the data exploration and manipulation. Compass offers a graphical user
interface that allows the user to analyze the stored documents and visualizes information on
the schema of the collections, as the frequency, types and ranges of fields, e.g. a histogram
is used to show the frequency of values of a integer field. This tool provides other function-
ality that is not related to understand the implicit schema, such as (i) to graphically show
information on the query performance; (ii) to visually work with geospatial data; (iii) a vi-
sual editor that makes it easier to perform CRUD operations; (iv) to write validation rules
for data; (v) to visually build queries; and (vi) to offer information that helps to manage
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Figure 3.13: DBSchema Result for the Running Example Database.

indexes. As commented in discussing the work of Klettke et al. [72], we could also obtain
statistics and outliers in our schema inference process.

Other Works An MDE approach to convert UML class diagrams to graphs inside graphs
databases is presented in [36]. The 1authors build an intermediate GraphDB metamodel
that is filled from the UML model using a M2M transformation. Then, Java artifacts that
are able to manipulate the instances stored in the database are created. For all the classes in
the UML model, CRUD classes are created to be able to create and manipulate entities of
the UML classes stored in the graph database. An important point is that they are able to
transform OCL restrictions present in the UML model into Gremlin code (a generic graph
manipulation language supported by several graph based databases) to ensure the consis-
tency of the graph. In Chapters 6 and 7 we will show how the schemas inferred in our ap-
proach can be used to automatically generate code for NoSQL database applications.
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3.4 Final Discussion

In this section we shall contrast the schema inference process proposed in this thesis with
the more relevant related works that have been discussed in this chapter. Table 3.1 summa-
rizes the comparison attending to a set of dimensions established that appear in the leftmost
column.

The notion of NoSQL schema presented in our work is more expressive than the JSON
schemas in the standard. Our NoSQL schemas contain aggregation and reference relation-
ships between entities, and also entity versions are extracted and represented. Our work
therefore differs from the approach of Klettke et al. [72] in several essential aspects: i) the
algorithm proposed identifies the required and optional properties, but object version
schemas are not obtained; ii) schemas involve anObject type, but reference and aggregation
relationships are not considered; iii) they do not specify how to cope with huge amounts of
data; and iv) we obtain a model that conforms to a metamodel, instead of a JSON Schema.

The approach presented in this thesis differs of the work of Wang et al. [119] in the fol-
lowing aspects. First, the input of our schema extraction process is not the set of all docu-
ments stored into the database, but an array that only contains one object schema for each
entity version of the database. This array of object schemas is obtained by applying a map-
reduce operation. As explained in Section 4.1, an object schema has the same structure as the
described object but each primitive value is replaced by a string or number that denote its
JSON type. This pre-processing stage significantly improves the efficiency of our approach
with respect to the algorithms presented in [72] and [119], in which all the objects stored are
managed. Noting that our map-reduce operation provides the minimum number of objects
needed to discoverer all the schemas existing in the database. In Chapter 5 we will explain in
detail our MapReduce operation. Secondly, the output of our schema extraction process is
a model that conforms to an Ecore metamodel that represent NoSQL schemas, which will
be described in Section 4.2. The use of models entails two important benefits as are (i) a rep-
resentation at a high-level of abstraction, and (ii) taking advantage of MDE technology to
perform tasks as validation, automatic code generation and tool integration. In Chapters 6
and 7 we will show how MDE technology has been used to develop some database utilities.
Thirdly, our output model registers all the discovered schemas and they are used for visual-
ization and code generation (e.g. schemas for ODM mappers), instead Wang et al. focused
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on generating a skeleton for the presentation. It should be noted that these authors consider
scenarios where a large number of schemas can be discovered, whereas our work is focused
on business applications scenarios in which the number of different schemas for an entity
is limited. In such applications, when a new schema version for an entity is defined during
a evolution of the system, data for the previous versions are migrated to the new version.
This is due to the greater difficulty to write code and queries on several schema versions. A
discussion of MongoDB developers on this topic can be found in [99].

The schema inference process considered in MongoDB-Schema [108] is very limited with
respect to our proposal. Versioned schema are not considered and the process only discovers
and extracts the union object schema of a collection. Aggregation and reference relation-
ships are not considered. The schema inferred is represented as a JSON document, whereas
we obtains Ecore models.

While Spark SQL [123] obtains union object schemas, our approach discovers and repre-
sents the set of versioned schemas defined in Section 4.1. In the case of union object schemas,
the conflicting types are solved by defining union types. Thus, the schema inference of
Spark SQL has the same limitations of MongoDB-schema. Our versioned schemas are com-
plete, and allow having a more fine grained control of the objects that enter to and are ob-
tained from a database. Moreover, the reference and aggregation relations between entities
are not made explicit in Spark SQL.

The JSON schema discovering work of Cánovas and Cabot [64, 65] is close to our ap-
proach but there are some significant differences between them as indicated below. Unlike
the works previously analyzed, this inference process extracts entity domain models rather
union object schemas, which requires discovering and extracting the involved aggregation
relationships. However, the existence of data versions (i.e. versioned schemas) is not ad-
dressed, and the references between objects are not discovered. This can be easily checked
by trying visualize the schema for our Movie database example in [40]. Another remark-
able difference of the inference process has to do with the strategy applied to resolve con-
flicting types in building an entity as the union of the schemas of the different versions. We
extracted the union of all the types identified, instead of generalizing to the String type. It
is remarkable that our work focused on NoSQL databases, whereas JSON Discoverer is a
solution intended to developers that manage Web APIs. Therefore, we had to take into ac-
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count some specificities of databases, such as the very large number of documents that can
exist in a collection. Thus, a JSON model injection is not feasible in our solution, instead we
have used a map-reduce operation as explained in Chapter 5. Moreover, we have extracted
models that are instances of a metamodel that represents NoSQL schemas, instead of gener-
ating domain models that are instances of the Ecore meta-metamodel. Finally, it is worth to
note that the JSON-to-Ecore mapping defined in the work of Cánovas and Cabot is similar
to the first strategy defined in this thesis for obtaining a visual representation of the global
schema, which will be explained in Chapter 6. We have converted the inferred schema mod-
els into Ecore metamodels in order to take advantage of the metamodel editor provided in
Eclipse/EMF. However, in our case, the mapping is more direct.

With respect to ExSchema [23], we could remark the following differences: (i) our meta-
model provides a representation at higher level of abstraction than the ExSchema meta-layer,
(ii) Versioned schemas are not addressed in ExSchema, (iii) Aggregation and reference rela-
tionships are not explicitly differentiated, (iv) we visualize schemas in a way that facilitates
the understanding of the data structure. Actually, data and code reverse engineering are
complementary approaches. Our work could be integrated with a solution based on code
analysis. It is worth to note that the source code analysis implemented by ExSchema focused
on insert and update operations of the supported APIs, and the authors have not presented
new contributions on this tool.

Our work contrasts with the XML schema extraction approaches here commented in
several aspects. We have used a metamodel to represent the schemas, which has allowed us
to apply MDE techniques, and we keep the different versions instead of obtaining a single
schema. Our schema is richer, taking into account aggregations and references. With regard
to the algorithm presented in [31], our inference process also has a first phase that applies a
map-reduce operation, whose main purpose is to achieve scalability. The first step of this
phase performs the same job that the map-reduce in [31], however in this work no abstract
data model is generated.

In Chapter 6 we will present the diagrams proposed in this thesis to represent versioned
schemas. Our solution visualizes the versioned schemas defined in Section 4.1. Instead, in
ER/Studio [47] and DBSchema [37] the inference process is applied on a single collection,
and the diagram obtained only shows the union object schema. Moreover, these tools only
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support MongoDB at this moment, while any aggregate-based NoSQL system could be
supported in ours.

Regarding to the project outlined in [48], we highlight the following differences: (i) our
metamodel to represent NoSQL schemas is more expressive than theUnified Data Model
proposed; (ii) our inference process extracts the schemas of all the documents stored; and
(iii) we have defined diagrams for different kinds of versioned schemas. The separation be-
tween logical and physical data models is a strength of the ERwin’s proposal. We are also
applying intelligent techniques, such as algorithms based on decision trees, to classify the
objects into entity versions. Finally, noting that our approach generates schema models that
conform to an Ecore metamodel, so that we can take advantage of MDE techniques in order
to develop utilities around them.
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Order and simplification are the first steps toward
mastery of a subject – the actual enemy is the unknown.

Thomas Mann

4
Schemas for NoSQL Databases

In this section, we shall define the types of schemas that we have identified for
aggregate-oriented NoSQL databases. Starting from the concept of semi-structured ob-
ject, we will first define the concept of object schema, and then will introduce the concepts
of entity and entity version, and the notion of Versioned Schemas. Once we have defined
the different kinds of schemas, we shall describe the metamodel proposed in this thesis for
represent such schemas. To end this section, we shall outline the general architecture of the
proposed approach to infer schemas.

4.1 Entities, Versions of entities and Versioned Schemas

As explained in Section 2.2, an aggregate-oriented NoSQL database stores a set of semi-
structured objects. The document term is commonly used to refer to database objects in the
case of document databases (e.g. MongoDB). Next, we will define the concepts introduced
in Chapter 2 in a more formal way.

Object (Root and Embedded) A database objectO is composed of one or more fields
(a.k.a. attributes or properties) pi: O = {p0, p1, . . . , pm}. Each field pi is specified by a pair

71



< ni, vi >, where ni and vi denote the name and value of the field, respectively. The value of
a field can be:

• An atomic value (a number, string, or boolean).

• Another object, i.e. an embedded object inside the object which the field belongs to.

• A reference to another object; this is usually a string or integer that matches the value
of a field of that other object referenced. The exact representation of the reference
depends on the implementation.

• An array of values, which can be homogeneous or heterogeneous.

Below we show aMovie object which is part of theMovie database introduced in Sec-
tion 2.5 as a running example. This object will be used to illustrate the definitions presented
here.

We will use the Root Object term to distinguish to those objects that are not embedded
into any object. We will assume that the target object of a reference must be a root object.
{

"title": "Truth",
"year": 2015,
"director_id": "345679",
"genre": "Drama",
"rating": {

"score": 6.8,
"voters": 12682

},
"criticisms": [

{
"journalist": "Jordi Costa",
"media": {

"name": "El Pais",
"url": "http://www.elpais.com"

},
"color": "red"

},
{

"journalist": "Lou Lumenick",
"media": "New York Post",
"color": "green"

}

72



]
}

ThisMovie object is a root object which has (i) three fields with atomic values: title, year,
and genre, (ii) one field with an object value (rating); (iii) one field with a reference value
(director_id); and (iv) one field with an array of objects (criticisms).

Object tree An objectO can be represented by a tree-like structure that is defined as fol-
lows.

• The root node has a child node by each field of the objectO; this node is labeled with
“root”.

• The nodes for atomic values or reference values do not have children (they become
leaf nodes), and they are labeled with the value.

• The nodes for embedded objects have a child node for each field of the object, and
they are not labeled.

• The nodes for arrays have a child node for each element included in the array, and
they are labeled with the string “[]”.

• The edges going out of object-nodes are labeled with the names of the fields of the
object.

• The edges going out of array-nodes are labeled with a natural number from 1 to the
size of the array.

The number of levels or depth of an object tree is determined by the highest level of nest-
ing of the embedded objects. Each field has associated a field path that results of traversing
the edges from the root to the node that corresponds to that field. We will denote a field
path as the ordered sequence of labels of the edges traversed (i.e., names of fields) starting
with the “root”, and the labels are separated by the “.” (dot) symbol. When a the value of a
field f is an array, we will use the notation f[i] to denote the element i.
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Figure 4.1: Tree for a Movie.

Figure 4.1 shows the tree for the Movie object shown above. This tree has four levels
(depth = 4). Some examples of paths are root.title (level 1), root.rating.voters (level 2), root.criticisms[1].journalist
(level 3) and root.criticisms[1].media.url (level 4).

It is worth noting that the object tree is really a labeled directed graph due to the refer-
ences among objects.

Object Schema The schema (or type) of an object is obtained by replacing the atomic
values of the object by an identifier that denote its type (i.e. String, Number, or Boolean).
Therefore, a schema has the same structure as the described object with respect to fields,
nested objects and arrays. That is, a schema can also be represented by a tree-like data struc-
ture whose leaf nodes are labeled with type identifiers instead of atomic values, as shown in
Figure 4.2. We refer to this structure as type tree. In NoSQL databases there are two kinds
of objects: root and embedded. A schema can therefore describe both kinds of objects. We
will also use the raw schema term to refer to object schemas.

Actually, the set of primitive types depends on the data representation language. We are
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Figure 4.2: Type Tree for a Movie.

assuming that data are represented in JSON format and the primitives types are: Number,
String, and Boolean.

TheArray type will be the only kind of collection considered. The tuple term will be
used to refer to arrays of atomic values (e.g. numbers or strings). We will use the notation
[T], where T denotes a data type, to express the type of a homogeneous array, and [T1,T2, . . . ,Tp]

to denote a heterogeneous array including p values vi whose type is Ti(i =1, . . . , p). Arrays
can be nested. In Figure 4.2, the type of the criticisms field is an array of Criticism objects.

Entity and Entity Versions A database stores data that relate to entities of real the world
(i.e any physical or conceptual thing that exists). Here, an entity labels all the objects that re-
fer to the same concept (e.g. movie, director, or prize). As explained in detail in Section 2.6,
the schemaless nature of NoSQL databases allows for different stored objects of the same
entity type to have variations in their schemas. Therefore, we will introduce the notion of
entity version to denote each of the sets of objects that, sharing the same entity label, have
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a different schema. Each entity will have one or more entity versions. Note that versions
exist both for root and nested entities. For example, in ourMovie database example, there
are 5 versions ofMovie, 2 versions ofDirector, Criticism, Prize, andMovieTheater, and one
version of andMedia. Movie,Director andMovieTheater are root entities; Criticism and
Prize are entities embedded intoMovie; andMedia is an entity embedded into Criticism.
We refer to versions of an entity by means of the name of the entity followed of the version
number that is preceded by an underscore symbol; for instanceMovie_4 andDirector_1
would be some of the entity versions in our database example.

Versioned Schemas The existence of entity versions, each with different levels of varia-
tion in their schema, raises the need for what we call versioned schemas, which denote the
schemas defined for the set of entity versions. This is different from traditional databases or
programming languages, where an entity has just one schema. Thus, each entity version will
have its own schema, the entity version schema.

An entity version schema (or simply version schema) is obtained from the object schema of
an entity version by replacing each embedded and referenced objects by the corresponding
name of the target entity version or embedded object entity version, respectively.

Version schemas for root entities will be called root schemas. In Figure 4.3 we show (in
JSON format) the root schema for theMovie_4 entity version, to which theMovie object
shown in Figure 4.1 belongs.

{
"title": "String",
"year": "Number",
"director_id": "ref(Director_1)",
"genre": "String",
"ratings": "Rating_1",
"criticisms": [

"Criticism_1",
"Criticism_2"

]
}

Figure 4.3: Schema forMovie_4.

A version schema therefore involves four kinds of entity types: (i) primitive; (ii) reference,
when the field references objects of another entity; (iii) aggregation, when the field aggregates
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objects of another entity; and (iv) array type, that can have one (homogeneous) or more
(heterogeneous) base types that can in turn be primitive, aggregation, and reference types,
and even another array type. The relationship type term will be used to refer both to the
reference and aggregation types. Note that these two types originate that a schema is either
directly or indirectly related to others. A version schema can also be represented in form
of a tree-like structure as shown in Figure 4.4. In this tree root and nodes intermediate are
labeled with the name of the corresponding entity version.
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titledirector_id year genrerating criticisms

journalist media color

StringString String String
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String
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1 2

"score" "voters"

NumberNumber

_id

director_1

String

[criticism]

criticism_1 criticism_2
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name

String

url

String

media_1

Figure 4.4: Version Tree forMovie_4.

In theMovie_4 version schema, the title, genre, and year fields are of primitive type; the
director_id field is of reference type; the rating field is of type Rating; and the criticisms field
is of type array of Criticism. It is worth noting that the array type is not homogeneous,
as it includes Criticism objects of two versions of the entity. As shown in Figure 4.4, the
Movie_4 version schema involves the Criticism_1, Criticism_2,Director_1 and Rating_1 ver-
sion schemas, and these schemas involve in turn other schemas, in particular Criticism_1 to
Media_1), so that a schema graph is formed.
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Next, all the version schemas that are direct or indirectly referenced byMovie_4 are shown.

{
"Criticism_1": {

"journalist": "String",
"media": "Media_1",
"color": "String"

}
}

{
"Criticism_2": {

"journalist": "String",
"media": "String",
"color": "String"

}
}

{
"Media_1": {

"name": "String",
"url": "String"

}
}

{
"directed_movies": [

"Movie_4"
],
"name": "String",
"_id": "String"

}

{
"Rating_1": {

"score": "Number",
"voters": "Number"

}
}

Taking into account entity versions, an entity schema cannot be just one schema: it has to
contain the set of schemas of the different entity versions of that particular entity. Thus, an
entity schema can be defined as the set of schemas of their entity versions.

Sometimes, it is interesting to have a “view” of all the entity versions of a given entity.
This can be done joining all the properties contained in the schemas of the entity versions of
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the entity. Thus, an entity union schema can be constructed with the following rules:

1. For each property whose name appears only in one entity version schema, add that
property to the entity union schema.

2. For each property whose name appears in more than one entity version schema:

(a) If the type of the property is the same in all the entity version schemas in which
it appears, add that property to the entity union schema.

(b) If the type of the property differs in some entity version schemas, collect the set
of different types of the property and build a union type. A union type of two
types T1 and T2, denoted asU(T1,T2), can be defined as a type that describes
both the elements described by T1 and those described by T2.

Figure 4.5 shows the entity union schema for theMovie entity of our database in JSON
format, and Figure 4.6 shows this entity schema in form of a tree.

{
"title": "String",
"year": "Number",
"director_id": "ref(Director)",
"genre": "String",
"ratings": "Rating",
"criticisms": [

"Criticism"
],
"prizes": [

"Prize"
]

}

Figure 4.5: Enঞty Union Schema for theMovie Enঞty.

That is, an entity schema describes an entity by establishing its relationships with other
entities, whereas a version schema describes a version entity by establishing its relationships
with other entity versions.

It is worth noting that most of works on schema inference for JSON documents in NoSQL
systems discover entity union schemas that result of superposing all the analyzed objects by
replacing each primitive type value by its type. That is, the schema obtained is the union of
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Figure 4.6: Tree of an enঞty union schema for Movie.

the object schemas of each entity version, but version schemas and entity schemas are not
discovered and therefore the structure of the schema is similar to those shown in the tree in
Figure 4.5. We refer to these schemas as union object schemas. Several strategies are used to
solve the problem of conflicting types when a field belongs to more than one version. For
instance, the type of the field can be the union of all the types encountered or the String
type.

Finally we shall define two kinds of schemas for aggregate-oriented databases that in-
volves all the entities instead of being defined for only one entity or entity version.

• Database schema. It is formed by the set of the root schemas that describe all the root
entity versions of the database. As a schema recursively depends on the schemas of
the embedded or referenced entities, a complete schema is formed by the set of ver-
sion schemas of all the entity versions that exist in the database.

• Entity database schema. It is formed by the entity union schemas that describe all the
root entities of the database.
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4.2 A Metamodel for NoSQL Schemas

A key element of our proposal is the metamodel used to represent aggregate-oriented NoSQL
database schemas. Figure 4.7 shows the metamodel that we have defined according to the
definitions introduced in previous section. This metamodel will be calledNoSQL-Schema
metamodel.

A complete schema (metaclassNoSQLSchema) is formed by a collection of entities (En-
tity). Each entity has one or more versions (EntityVersion). A version has a set of properties
(Property) that may beAttributes orAssociations, depending on whether the property repre-
sents a simple type or a relationship between two entities. A tuple denotes a collection that
may contain atomic values and they can be nested. An association can be either anAggrega-
tion or a Reference. The cardinality of an association is captured by the lowerBound and up-
perBound attributes, which can take values 0, 1, and−1. In addition to the set of properties
(properties reference), an entity version has three attributes that are used to register whether
it is a root entity (root boolean attribute), the number of documents in the database of that
particular entity version (count long integer attribute), and the version identifier (versionid
integer attribute).

Note that an aggregate is connected to one or more entity versions ([1..*] refTo reference)
because an embedded object may aggregate an array with objects of different versions. In-
stead, a reference is connected to one entity ([1..1] refTo), since we need to know that a ver-
sion holds references to a certain entity, but we decided not to cross object boundaries. The
opposite self-reference in the Referencemetaclass is used to make the relationship bidirec-
tional, and specifies the other end.

4.3 Overview of the Architecture

Extracting versioned schemas (i.e. complete and root schemas) from aggregate-oriented
NoSQL databases involves discovering entities, versions of each entity, and the fields and
relationships (aggregations and references) of each version. Therefore, a reverse engineer-
ing algorithm for this task must traverse all the stored objects (i.e. root entities), and analyze
their structure in order to harvest all the schema elements, that is, to discover the implicit
schema into the data.
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Figure 4.7: NoSQL-SchemaMetamodel Represenঞng NoSQL Schemas.

As explained in Section 2.9, reverse engineering can take advantage of MDE techniques:
(i) metamodels provide a formalism to represent the knowledge harvested at a high-level of
abstraction, and (ii) automation is facilitated by using model transformations. Therefore,
we have devised an MDE solution to reverse engineer versioned schemas from aggregate-
oriented NoSQL databases. As we will show in Chapters 6 and 7, these models inferred will
be used to create database utilities.

Figure 4.8 shows the architecture of the MDE-based reverse engineering solution pro-
posed in this thesis to extract versioned schemas, which is organized in three stages. Firstly,
a MapReduce operation is applied in order to extract a collection that contains one raw
schema for each version of an entity as explained in next section. This collection is named
Raw Schema Collection. As indicated in Section 2.8, MapReduce is germane to most NoSQL
databases, and provides a good performance as it is the native processing method when an
algorithm has to deal with all the objects in a database. Thanks to the MapReduce opera-
tion, the reverse engineering process only must manage a small collection of simple objects
instead of all the stored objects. This means a considerable optimization.
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Figure 4.8: Overview of the Proposed MDE Architecture.

Secondly, the raw schemas of the collection obtained are transformed into a JSON repre-
sentation. We will use the Version Archetype Collection term to refer to this new collection.

Thirdly, the reverse engineering process analyzes all the JSON objects of the Version
Archetype Collection and generates a model that conforms to the NoSQL-Schema meta-
model (Figure 4.7).

As shown in Figure 4.8, the inferred NoSQL-Schema models may be used to build tools
that could be classified in two categories: i) database utilities that require knowledge of the
database structure, for instance a SQL query engine for NoSQL databases or database statis-
tics, and ii) helping developers to deal with problems caused by the absence of an explicit
schema, for instance the tools presented in Chapters 6 and 7, which can generate data valida-
tors or schema diagrams, among other applications. M2M and M2T transformations have
been used to implement these tools.
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Have a vision. It is the ability to see the invisible. If you
can see the invisible, you can achieve the impossible.

Shiv Khera

5
The Inference Process of NoSQL_Schema

Models

This chapter describes the inference process defined in this thesis to extract im-
plicit versioned schemas of aggregate-oriented NoSQL databases. Our strategy takes into ac-
count the existence of versions of the entities as well as references among entities. The infer-
ence process is organized in three stages as commented in Section 4.3. We shall explain each
stage in detail and show the validation of the inference process that has been performed.

5.1 Obtaining the Version Archetype Collection

To improve the efficiency, we have considered a preliminary stage that applies aMapReduce
operation to obtain a collection that only contains one raw schema for each entity version of
the database. This collection will be referred to as the Raw Schema Collection.

For each database object (i.e. root objects), themap() operation performs a two-step pro-
cess. First, it generates the version identifier. The version identifier is obtained by chang-
ing the values from all the key/value pairs of the object with their corresponding type, so a
pair “"name":"Pedro"” is converted to “"name":"s"”, the “s” indicating that that particu-
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lar value was a String. The special type field is left intact. To this object, an object-to-string
serialization is performed, that becomes the version identifier. Secondly, the<version identi-
fier, {count:1}> key/value pair is emitted. The value is an object used as accumulator of the
number of objects of a particular entity version.

Recall that a raw root schema of a root object was defined in Section 4.1 as a JSON object
built honoring two rules: i) it has the same structure as the root object with respect to fields,
nested objects and arrays, and ii) each primitive value in the root object is replaced by its
JSON type.

In our running example (Figure 2.8), {name:String, directed_movies:[String],actor_movies:[String]}
would be the raw schema for theDirector entity with _id=123451, and {title:String, year:
Number, director_id:String, genre: String, criticisms:[{journalist:String, media:String, url:
String, color: String}}] would be the raw schema of theMovie with _id=4. More visually:

JSON object Raw Schema

{name: ”Orson Welles”,
directed_movies: [”1”, ”5”],
actor_movies: [”1”,”5”]

}

{name:String,
directed_movies:[String],
actor_movies:[String]

}

Note that the type and _id fields have not been considered for sake of simplicity.
Next, we show the key/value pair generated by themap() operation for theMovie ob-

ject with _id=4. The key (i.e. the version identifier) is formed byMovie followed by the
raw schema of the object, and the value is theMovie object. One object with this structure
would be generated for each object stored into the database.
{"{type:"movie",title:"s",year:0,director_id:"s",
genre:"s",criticisms:[{journalist:"s",media:"s",
url:"s",color:"s"}]}":{count:1}}

Note that “"s"” is used for Strings, “0” is used for numeric values, and “true” for boolean.
Once themap() generates the key/value pairs with the above indicated structure, the re-

duce() operation is performed once for each version identifier. It receives a key (version iden-
tifier) and a set of counters, and calculates the total number of objects. The result is an array
of serialized JSON objects, but now containing just one object per version entity and the
count field accumulates the total number of objects for the corresponding version.
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TheMapReduce operation is followed by a transformation that converts strings repre-
senting serialized JSON objects into archetype objects with the structure of the correspond-
ing entity version extracted from the original JSON objects.Therefore the Raw Schema Col-
lection is converted into the Version Archetype Collection, which contains one archetype
object per entity version.

5.2 Obtaining the Schema

The objects of the Version Archetype Collection are analyzed to discover the elements of the
complete schema of the database: entities, versions, fields, and relationships. This analysis
involves a reverse engineering process that must obtain a root version schema for each ex-
isting entity version. The task to be performed consists on transforming a labeled tree into
a labeled graph. The input is a labeled tree that represents an archetype object of a entity
version. This kind of structure was described in Section 4.1 and an example is shown in Fig-
ure 4.1. The target graph would be formed by (i) a tree of identical structure but intermedi-
ate nodes are labeled with a symbol denoting the inferred type, and (ii) the references from
intermediate nodes to root nodes of another trees are established (i.e. object references are
discovered). Figure 5.1 illustrates this transformation by showing how the tree for the Movie
with _id=4 (actually the archetype object is analyzed) is converted in the graph that repre-
sents the root version schema for this object.

Therefore, the reverse engineering process discovers the elements of a complete schema
by analyzing the archetype object collection. The result is a model that conforms to the
NoSQL-Schema metamodel introduced in Section 4.2.

As the schema elements are discovered, they are represented as elements of the NoSQL_Schema
model generated as output. For this, the algorithm is organized in two stages. First, Entities,
EntityVersions,Attributes, and Types (PrimitiveTypes and Tuples) are created, and thenAs-
sociations (Aggregates and References) are created in a second stage, once all the EntityVer-
sions have been discovered. Next, we shall describe in detail how this algorithm works.

Discovering entities and entity version for root objects The algorithm traverses all the
objects of the collection. The value of the type field of archetype objects is used to create the
Entity elements. An Entitywill be created when a new value of the type field is found in the
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Figure 5.1: Schema Tree for Movie object with _id = 4.
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visited object. Its name will be the value of the type field.
Each object in the archetype object collection should originate an EntityVersion. How-

ever, this does not always occur, because an EntityVersionmay exist already that only differs
in the cardinalities of one or more fields. In these cases, the cardinalities of the existing Enti-
tyVersion are adjusted to include both specifications, and no new EntityVersion is created.

Each Entity holds a list of entity versions, in which each new EntityVersion is added.
The treatment applied to each object of the collection involves an analysis of each of its

pairs, more specifically the data type of the value is checked to discover model elements.

Discovering entity versions for embedded objects When the value of a pair is an object
or a tuple of objects, then such objects are recursively traversed to discover their entity ver-
sion types. Such types are identified by obtaining its raw schema and the name of the cor-
responding entity. This name is obtained from the pair’s key. If the value is an array of ob-
jects and the name is plural, then the singular name is used. We keep a collection of existing
raw schemas for each discovered entity. Then, we check if the new raw schema discovered
already exists in the collection of the corresponding entity. If it does not exist, a new Enti-
tyVersion is created and added to the associated Entity. When the created EntityVersion is
the first one discovered for a particular entity, an Entity element is also created. Several Enti-
tyVersions may embed the same aggregated Entity.

An EntityVersion is named by appending, to the entity name, a suffix with an underscore
and a counter of the number of version. For instance, two EntityVersionwould be generated
for theDirector root objects of the running example, namedDirector_1 andDirector_2, and
Prize_1 and Prize_2would be generated for the Prize objects embedded intoMovies. Fig-
ure 5.2 shows a textual report with all the entity versions generated for the running example.

Discovering Attributes and Types AnAttribute is generated for each visited object’s pair
whose value is either atomic or an array of either primitive types or nested arrays of primi-
tive types. The attribute name is given by the pair name. With regard to the type, a Primi-
tiveType or a Tuple is generated depending on whether the value is atomic or an array. Each
createdAttribute is added to the collection of attributes of the corresponding EntityVer-
sion. For instance, the pair “title”:“Truth” in a version ofMovie would lead to theAttribute
named “title” and a PrimitiveType named “String”; and a pair “nationality”: [“Spanish”,
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Versions Entities:
Entity Movie {
Version 1 {
genre: String
title: String
year: int
director[1]: [Ref]->[Director] (opposite=true)
criticisms[+]: [Aggregate]Criticism
prizes[+]: [Aggregate]Prize

}
Version 2 {
genre: String
title: String
year: int

   running_time: int
director[1]: [Ref]->[Director] (opposite=true)

}
Version 3 {
genre: String
title: String
year: int
director[1]: [Ref]->[Director] (opposite=true)
prizes[+]: [Aggregate] Prize

}
Version 4 {
genre: String
title: String
year: int

   rating[1]: [Aggregate] Rating
director[1]: [Ref]->[Director] (opposite=true)
criticisms[+]: [Aggregate] Criticism

}
Version 5 {
genres: Tuple [String]
title: String
writers: Tuple [String]
year: int
director[1]: [Ref]->[Director] (opposite=true)

}
}

Entity Movietheater {
Version 1 {
city: String
country: String
name: String

}
Version 2 {
city: String
country: String
name: String
roomNumbers: int

}
}

Entity Media {
Version 1 {
name: String
url: String

}
}

Entity Rating {
Version 1 {
score: int

  voters: int
}

}

Entity Director {
Version 1 {
actor_movies[+]: [Ref]->[Movie] (opposite=true)
directed_movies[+]: [Ref]->[Movie] (opposite=true)
name: String

}
Version 2 {
directed_movies[+]: [Ref]->[Movie] (opposite=true)
name: String

}
}

Entity Criticism {
Version 1 {
color: String
journalist: String
media[1]: [Aggregate] Media

}
Version 2 {
color: String
journalist: String
media: String

}
}

Entity Prize {
Version 1 {
event: String
names: Tuple [String]
year: int

}
Version 2 {
event: String
name: String
year: int

}
}

Figure 5.2: Textual report of all the enঞty versions.
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“French”] in a version ofMovie would generate anAttribute named “nationality” and a
Tuple.

Discovering Aggregation relationships A pair results in anAggregate (i.e. an aggregation
relationship) if its value is either an object or an array of objects. That is, anAggregate is cre-
ated for each EntityVersion that corresponds to an embedded object. Each createdAggregate
element must be added to the collection (properties) of the corresponding EntityVersion, and
must be connected to the EntityVersion (refTo reference).

Regarding to the cardinality, the lowerBound and upperBound attributes ofAggregate
take their values depending on the multiplicity of the Pair, e.g. it is one-to-one (lowerBound=1
and upperBound=1) if the pair value is an object that can not be null, and the cardinality is
zero-to-many (lowerBound=0 and upperBound=−1) if the pair value is an array of objects
that can take the null value.

Discovering Reference relationships As explained in Section 2.3, a reference implies that
an entity’s pair identifies an object of another entity. That is, the pair values of the refer-
encing entity match the values of another pair in the referenced entity (this is equivalent
to foreign keys and joins in relational tables). These identifier values can be strings, integer
numbers or arrays of these two primitive types. Two strategies are applied to discover refer-
ences (i.e. Reference elements):

• Some conventions commonly used to express references are checked, such as:

� If a pair name has the entityName_id suffix, then, a entity named entityName
would be referenced if it exists.

� MongoDB itself suggests to use a construct like {$ref:“entityName”, $id:“reference_id”}
to express references to objects of the entity named “entityName” [98].

• If a pair name is the name of an existing entity and the pair values match the values of
a _id pair of such an entity.

For instance, the directed_movies field ofDirector entity versions references to an array
ofMovie objects, and the director_id field of aMovie entity versions references aDirector
object (Figure 5.3).
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Figure 5.3: Graphical Representaঞon of all the Enঞঞes with the sum of all fields.

As in the case of aggregations, the references are connected to the corresponding entity
(properties and refTo relationships) in the second stage of the transformation. The cardinal-
ity is obtained for references as explained above for the aggregation relationships. Once all
the references have been generated, the opposite relationship is resolved.

5.3 Inference Validation

We have done some tests to validate the inference approach. To test the inference algo-
rithms, we used several datasets, as well as some synthetic datasets generated with a random
data generator that reproduces the structure of a given NoSQL Schema.
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5.3.1 Roundtrip Validation

For the validation of the inference algorithm and the implementation, we generated several
artificial test cases to exercise all the different combinations of entities, versions, attribute
sharing, changes in types, references, etc.

We developed a random data generator that, from a NoSQL_Schema model, generates
a complete database, supporting both MongoDB and CouchDB. The inference process is
then run against the database, and the same NoSQL_Schema model should be generated as
output. The generated model can change the entity version numbers, but the same entity
versions must be generated, with the same properties, aggregations and references.

The data generator itself is interesting to generate example databases given a desired
schema, that can allow the programmers to better assess the database properties with respect
to indexes and queries.

Figure 5.4: Global View of the Movie Versioned Schema (Original Model).

Figure 5.4 shows the original schema, while Figure 5.5 shows the inferred schema after
the database population. Note how there are the same entities and versions, with the same
properties, the only visible change being thatMovie_2 andMovie_4 are exchanged.

93



Figure 5.5: Global View of the Movie Versioned Schema (Inferred Model).

5.3.2 Scalability Case Study: StackOverflow Database

To show the validity of our approach with a real world database, we searched for public
databases that had evolved during time, adding and removing attributes, having optional
attributes, etc.

We found that the StackOverflow site* has public data dumps of all its content, including
posts and answers, post history, users, comments, tags, badges, etc. This website has been
working since 2008, and was founded by well-known software community gurus, Jeff At-
wood and Joel Spolsky. With almost ten years of service, their database has evolved during
time, and the format in which they offer the data dumps (XML)†, allows to capture the dif-
ferences in each of the elements of the different entities.

The dataset is medium-sized, and consists of several XML files, one per entity (users,
posts, tags, etc.), which in total sum about 100 GB compressed. It contains, at the time of
this writing (March, 2017) around ten million posts and three million users.

The process of data loading was done using MongoDB 3.4.2 in an Intel(R) Core(TM) 2
*http://stackoverflow.com/.
†https://archive.org/details/stackexchange.
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↓ seconds objects→ 0.5M 1M 2M 5M 10M 15M

Total inserঞon ঞme 223 434 828 2865 4210 5554
Users 41 80 143 356 693 968
Votes 28 57 113 294 580 823
Comments 31 62 125 339 632 887
Posts 45 85 181 438 896 1188
Tags 17 18 18 17 17 17
Postlinks 30 69 125 285 613 835
Badges 31 63 123 308 623 836

MapReduce & inference 39 73 138 336 652 919
Total ঞme 262 507 966 3201 4862 6473

Table 5.1: Inserঞon, MapReduce, and inference ঞmes for different dataset size.

Quad CPU Q8300 @ 2.50GHz, with 4 GB of memory. For data loading, a custom XML
to MongoDB Java program was used. Each XML object was converted directly, selecting
the different attributes and converting them into key/value pairs of JSON objects for Mon-
goDB.

We tried different sizes to show the variation of insertion time and inference time. The
table 5.1 shows the different times for different number of objects.

Figure 5.6 shows the graph representation of Table 5.1. In those times, it is interesting to
note that the ratio between number of objects and time of the MapReduce and inference
operations goes down as the number of objects increases, as shown in Figure 5.7. This is one
of the indications that the algorithm for obtaining the schema is scalable, and again we only
tried with one computer.

For the tests, we took the same number of objects of each entity type (except for Tags,
that we always inserted them, as they only have 50,000 elements) to process from half mil-
lion elements to fifteen million elements. The time for insertion and inference scales up
linearly with the number of objects, and this was tested just in one computer. We expect to
have speedup when more computers are used.

The inference process correctly determined the different entities in the original database.
It also correctly determined the references between the different entities. However, some
fields of Number type were incorrectly identified as references, for example, theUpVotes and
DownVotes fields were identified as references to the Votes entity. We expect, as a future work,
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Figure 5.6: Graph of Times of Table 5.1.

to allow the user to specify which identified references are not references in fact. This dataset
didn’t contain aggregations, as it was obtained as a dump of a SQL database. Finally, it also
detected the different versions for each entity.

Concretely, in the bigger 15 million objects example, 1 entity version was discovered for
Badges, 4 versions for Comments, 263 entity versions for Posts, 4 for Votes, 33 forUsers, etc.
Figure 5.8 shows the generated model. The higher number of versions, that in many cases
are due to optional attributes, gives us the idea of developing some capabilities for browsing
and/or querying in the schema visualization tools. We leave it as a future work, in particular
to extend the visualization tool created with Sirius that is commented in the Chapter 6.

Figure 5.9 shows the global set of entity versions discovered, using Sirius, while Figure 5.10
shows a union schema for the Stackoverflow example.
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Figure 5.7: Raঞo of MapReduce and inference ঞme versus number of objects from Table 5.1.
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Figure 5.8: NoSQLSchema model result for Stackoverflow.

Figure 5.9: Global Set of Enঞty Versions Generated for Stackoverflow.
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Figure 5.10: Union Schema using PlantUML for the Stackoverflow Example.
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Visible things can be invisible. However, our powers of
thought grasp both the visible and the invisible – and I
make use of painting to render thoughts visible.

René Magritte

6
Visualization of NoSQL Schemas

In Chapter 5 we explained the approach devised in this thesis to infer schemas for NoSQL
databases. In this Chapter and the next one we shall present some applications of the in-
ferred schemas. In particular, we have developed solutions to visualize schemas and auto-
matically generate different kinds of software artifacts for NoSQL database applications:
code for ODM mappers, data validators, and object classification into entity versions. These
database utilities mitigate problems that lack of explicit schemas cause to developers.

In this Chapter, we will describe three approaches to visualize NoSQL schema diagrams:
(i) to convert Schema models into Ecore models (i.e. metamodels), and using the metamodel
editor available for Ecore/EMF, which represent Ecore metamodels as UML class diagrams;
(ii) to generate PlantUML code for visualizing UML class diagrams; and (iii) to define a
specific notation. The two first proposals have been devised in this thesis, and the third one
has been developed in a Master’s Thesis based on the results obtained in our work [29].

6.1 Visualization of NoSQL Schemas

The activity of software modeling brings four important benefits: (i) models help to reason
and understand the system under study; (ii) models facilitate the communication among
stakeholders; (iii) models document the design choices; and (iv) models can be formally
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specified in order to generate artifacts of the final application. These benefits are also gained
with NoSQL schema models, in particular when they are visually represented. Schema dia-
grams are useful both to designers and developers. Designers can express the database struc-
ture at a high level of abstraction, and developers can write better code if they have a model
that properly represents the database schema. Moreover, schema diagrams provide a very
useful documentation that facilitates the database evolution.

NoSQL-Schema models inferred contains all the information needed to express the dif-
ferent versioned schemas defined in Section 4.1. We have developed several utilities to visual-
ize diagrams that represent to each kind of versioned schema.

Initially, we used EMF to Graphviz (emf2gv) [45] to test our inference process. This
tool is a Eclipse plugin that generates a diagram that represents the object graph of an EMF
model. Figure 6.1 shows an excerpt of the diagram generated for our Movie database. This
is a representation similar to those offered by some schema discovering tools as [23]. i.e. a
schema tree. However, NoSQL schemas should be represented by means of a more ade-
quate notation that clearly shows the schema elements: entities, entity versions and relation-
ships. UML class diagrams can be used to represent NoSQL schemas just as they are used
for relational schemas.

In this thesis, we have built visualization tools that show versioned schemas (root version
schemas, entity union schemas and entity database schemas) as UML class diagrams. We
first developed a simple solution to visualize entity database schemas by taking advantage
of the metamodel editor included in Eclipse/EMF [102]. After, we used plantUML [96] to
generate diagrams for representing root version schemas, union entity schemas and entity
database schemas. This experience evidenced the convenience of defining some specific no-
tation to adequately visualize NoSQL versioned schemas. Such a notation was implemented
by means of the Sirius tool [7] as part of a Master’s Thesis [29]. Next, we will describe each
one the diagrams proposed for NoSQL schemas, as well as the solutions implemented for
their generation.

6.2 Using EMF Metamodel Diagram to Visualize Entity Union Schemas

Figure 6.2 shows the first MDE solution that we have devised to visualize entity union dia-
grams.
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NoSQLSchema : movie_Id4

Entity : Movie
 

Entity : Rating
 

Entity : Media

Entity : Criticism

EntityVersion
versionId : 1
count : 0
root : true

EntityVersion
versionId : 1
count : 0
root : false

EntityVersion
versionId : 1
count : 0
root : false

EntityVersion
versionId : 1
count : 0
root : false

EntityVersion
versionId : 2
count : 0
root : false

Attribute : _id
 

Attribute : director_id
 

Attribute : genre

Attribute : title
 

Attribute : type
 

Attribute : year
 

Aggregate : criticisms
lowerBound : 0  
upperBound : -1  

Aggregate : rating
 lowerBound : 1  
 upperBound : 1  

Attribute : score

Attribute : voters
 

Attribute : name

Attribute : url
 

Attribute : color
 

Attribute : journalist
 

Aggregate : media
 lowerBound : 1  
 upperBound : 1  

Attribute : color
 

Attribute : journalist
 

Attribute : media
 

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : Number

PrimitiveType : Number

PrimitiveType : Number

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

PrimitiveType : String

Figure 6.1: An excerpt of the diagram for Movies database generated with EMF to Graphviz.
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Schema
Model

Schema
MetaModel

<<instance-of>>

Generation
EMFatic Code

Report
Generation

class Book {
 attr String[1] title; 

attr int[1] year; 
attr String[1] type;

 attr String[1] Date;
 attr String[+] authorsTuple ;
 attr int[1] pages;
 ref Publisher[1] publisher;
 val Content[1] content;
 val Author[+] authors;
}

Book {
 title: String 

year: int
 type: String 

published_date: Date
 authors: Tuple [String, String]
 pages: int
 publisher[1]: [Ref]->[Publisher] (opossite=False) 

content[1]: [Agregate] Content
 authors[+]: [Agregate] Author 
}

EMF
Tooling

Figure 6.2: MDE soluঞon to generate schema reports and diagrams

NoSQL-Schema models inferred are input to a model to text transformation that gen-
erates EMFatic code. EMFatic is a textual notation to express Ecore metamodels [46]. Our
M2T transformation establishes a mapping between the NoSQL-Schema metamodel and
the Ecore meta-metamodel shown in Figure 2.13 in Section 2.9.1, in a similar way to the map-
ping defined in [64] with the purpose explained in Section 3.1.5. These two mappings illus-
trate the benefits of representing models and metamodels uniformly. Next, we explain how
we have mapped NoSQL-Schema metamodel elements to Ecore metamodels.

• Each entity generates a Ecore metaclass (EClass instance) of the same name; an Ecore
attribute (EAttribute instance) is added to the metaclass for each entity’s attribute,
which has the same name and the types JSON are mapped to Ecore types (EDataType
subclass instances): Number (integer) to EInt, Number (float) to EFloat, Boolean to
EBoolean, String to EString, and JSON arrays of primitive type values to EList.

• Each aggregate and reference association of the NoSQL-Schema metamodel generates
a composite and non-composite Ecore reference (EReference instance), respectively,
with identical name and cardinality.

• If several versions of an aggregate or reference association exist in a model but with
different cardinalities, the Ecore model generated will include only one version, and
the cardinality resulting of applying the rules established for the UML package merge [92]:
(i) the lower bound of the resulting multiplicity is the lesser of the lower bounds of
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the multiplicities of involved relationships, and (ii) the upper bound of the resulting
multiplicity is the greater of the upper bounds of the multiplicities of the matching
elements.

The M2T transformation is executed to generate an EMFatic textual file, and the EM-
F/Eclipse tooling is used to generate the corresponding Ecore model which can be visualized
as a UML class diagram by means of the metamodel editor integrated into EMF/Eclipse.
Figure 6.3 shows the diagram for the running example of the Movies database.

Figure 6.3: Enঞty Union Schema visualized for the running example database.

This diagram represent the entity database schema that includes all the entity union
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schemas of the entities of the database. Recall that several strategies can be used to solve
the problem of conflicting types when a field belongs to more than one version. In our in-
ference process, the type of a field is the union of all the types encountered. In a class dia-
gram, the representation of a union of type for the same field can not be visualized unless
the name is changed. For instance, the Criticism entity contains themedia attribute (String
type) and the aggregation relationship of the same name (its association end is theMedia
entity). We have changed the name of the attribute tomedia_1 in order to represent both
properties.

Finally, noting that entity versions cannot be explicitly represented in UML class dia-
grams, but a new kind of representation is needed.

As shown in Figure 6.2, we also implemented an M2T transformation that automatically
generates a textual report of all the entity versions existing in the database. This transforma-
tion also has the schema model inferred as its input. This was a proof of concept to illustrate
that textual documentation (e.g. HTML code) could be generated from schema models,
which could be complementary to the diagrams generated. Figure 6.4 shows a textual report
of our running example. Attributes (name and type), and aggregate and reference relation-
ships are indicated for each entity version.

6.3 Using PlantUML to visualize NoSQL Schemas

As indicated in Section 2.10, PlantUML [96] is a drawing tool for visualizing UML dia-
grams. It provides a textual DSL to express the diagrams. For instance, Figure 6.5 show the
PlantUML code for the diagram shown in Figure 6.6. PlantUML code is transformed into
.DOT code in order to be visualized by means of a Graphviz engine [55]. Using the Plan-
tUML notation we can define formatting features of diagrams, such as colors and icons for
elements. In addition, it is possible to have an attribute and association with the same name.
This flexibility is not achieved in the previous solution based on generating Ecore models.
We have used PlantUML to visualize three kind of diagrams: root version schemas, union
entity schemas, and entity database schemas. Each kind of diagram is generated by means of
a model-to-text transformation that generates the PlantUML code that corresponds to the
input NoSQL-Schema model, as illustrated in Figure 6.5.
skinparam backgroundColor transparent
skinparam class {
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Versions Entities:
Entity Movie {
Version 1 {
genre: String
title: String
year: int
director[1]: [Ref]->[Director] (opposite=true)
criticisms[+]: [Aggregate]Criticism
prizes[+]: [Aggregate]Prize

}
Version 2 {
genre: String
title: String
year: int

   running_time: int
director[1]: [Ref]->[Director] (opposite=true)

}
Version 3 {
genre: String
title: String
year: int
director[1]: [Ref]->[Director] (opposite=true)
prizes[+]: [Aggregate] Prize

}
Version 4 {
genre: String
title: String
year: int

   rating[1]: [Aggregate] Rating
director[1]: [Ref]->[Director] (opposite=true)
criticisms[+]: [Aggregate] Criticism

}
Version 5 {
genres: Tuple [String]
title: String
writers: Tuple [String]
year: int
director[1]: [Ref]->[Director] (opposite=true)

}
}

Entity Movietheater {
Version 1 {
city: String
country: String
name: String

}
Version 2 {
city: String
country: String
name: String
roomNumbers: int

}
}

Entity Media {
Version 1 {
name: String
url: String

}
}

Entity Rating {
Version 1 {
score: int

  voters: int
}

}

Entity Director {
Version 1 {
actor_movies[+]: [Ref]->[Movie] (opposite=true)
directed_movies[+]: [Ref]->[Movie] (opposite=true)
name: String

}
Version 2 {
directed_movies[+]: [Ref]->[Movie] (opposite=true)
name: String

}
}

Entity Criticism {
Version 1 {
color: String
journalist: String
media[1]: [Aggregate] Media

}
Version 2 {
color: String
journalist: String
media: String

}
}

Entity Prize {
Version 1 {
event: String
names: Tuple [String]
year: int

}
Version 2 {
event: String
name: String
year: int

}
}

Figure 6.4: Textual report of enঞty versions in the running example database.

BackgroundColor Blue \n
ArrowColor Blue
BorderColor Red \n
FontSize 18 \n
FontName Arial \n

}

skinparam stereotypeCBackgroundColor Blue
skinparam stereotypeCBorderColor SpringGreen

Class Movie4<<(R,Turquoise)>>{
<b> String _id
<b> String genre
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Schema Model

Schema
Metamodel

PlantUML code
Generation

Class Movie<<(R,Tomato)>>{
<b> String _id
<b> String genre
<b> String title
<b> String type
<b> int year
<b> int running_time
<b> String[] genres
<b> String[] writers

}  
Movie --> "[1..1] director" Director
Movie *--> "[1..*] criticisms" Criticism
Movie *--> "[1..*] prizes" Prize
Movie *--> "[1..1] rating" Rating
Class Criticism<<(A,BurlyWood)>> {
<b> String color
<b> String journalist
<b> String media

}
Criticism *--> "[1..1] media" Media
Class Media<<(A,BurlyWood)>> {
<b> String name
<b> String url

}
Class Prize<<(A,BurlyWood)>> {
<b> String event
<b> String[] names
<b> int year
<b> String name

}
Class Rating<<(A,BurlyWood)>> {
<b> int score
<b> int voters

}

PlantUML
Engine

<<conforms>>

Figure 6.5: Visualizaঞon of schema diagrams by using PlantUML.

<b> String title
<b> String type
<b> int year

}

Movie4 --> "[1..1] director" Director

Class Director<<(E,Tomato)>>{
<b> String _id
<b> String name
<b> String type
<i><color:Navy>ref Movie[] actor_movies</color>
<i><color:Navy>ref Movie[] directed_movies</color>

}

Movie4 *--> "[1..1] criticism1" Criticism1

Movie4 *--> "[1..1] criticism2" Criticism2

Class Criticism1<<(V,BurlyWood)>>{
<b> String color
<b> String journalist

}

Criticism1 *--> "[1..1] media1" Media1

Class Media1<<(V,BurlyWood)>>{
<b> String name
<b> String url

}

Class Criticism2<<(V,BurlyWood)>>{
<b> String color
<b> String journalist
<b> String media
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}

Movie4 *--> "[1..1] rating1" Rating1

Class Rating1<<(V,BurlyWood)>>{
<b> int score
<b> int voters

}

@enduml

Root Version Schemas As explained in Section 4.1, a version schema represents the type
(schema) of a particular entity version and expresses the type for each property that can be:
primitive, or a referenced or embedded entity, or an array. Such schemas can be visualized
by showing only the entity version directly referenced or either the complete graph formed
by including the indirectly referenced entity versions. We focused here on the representation
of version schemas for root entities, and its schema tree is shown as a UML class diagram.
For instance, Figure 6.6 shows in form of UML class diagram the version schema tree shown
in Figure 4.4 for theMovie_4 entity version. Each entity version in the schema is repre-
sented as a class, and a letter within a small circle is used to distinguish the root entity (“R”)
(“V”) of the embedded entity versions. The class name is the entity version name in the
schema model (i.e. property name followed by an integer identifier from 1 toN that is used
as version number). All the entity versions which are directly or indirectly nested to the root
entity version are shown by means of unidirectional composite relationships whose name
and cardinality are the same than the corresponding aggregation elements of the schema
model. When an entity version named v1 aggregates an array ofN entity versions named
v2, this is represented by means ofN unidirectional composite relationship from v1 to v2,
whose cardinality is 1..1 and the role name is the name of the corresponding schema model
property. As explained in Section 5.2, the target of a reference is an entity not a entity ver-
sion, therefore a version schema can also include entities, and the “E” letter is used to label
the classes that represent entities. For entities, the diagram shows the embedded or refer-
enced entities but not entity versions. If an entity references to the root entity version then
the references links are not shown, but the specification is enclosed after the attribute list in
the format: keyword ref is followed of the entity name and the property name.

Figure 6.6 shows the diagram for the schema of theMovie4 entity version. As observed,
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Movie4 aggregates an array that includes objects of two versions of the Criticism entity, and
one of them, in turn, aggregates aMedia1 entity version. Movie4 also aggregates a Rating1
entity version, and references to theDirector entity. Note that the diagram does not include
the link for references fromDirector toMovie but they are represented in the format com-
mented above: refMovie[]actor_movies and refMovie[]directed_movies.

Figure 6.6: Root Enঞty Version Schema forMovie_4 generated with PlantUML.

The root version schema forDirector2 is shown in Figure 6.7. Director2 references to the
Movie entity (directed_movies property), therefore the diagram includes the union schema
for this entity. That is,Movie aggregates to Criticism, Prize, and Rating entities, references
toDirector (ref Director director), and has a attribute for each entity’s attribute with the
limitations commented above for UML class diagrams: there not exist two attributes with
identical name but different type, although an attribute and relationship can have identical
name for the same entity.
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Figure 6.7: Root Enঞty Version Schema for Director_2 generated with PlantUML.

Entity Union Schemas As explained in Section 4.1, an entity schema contains the set of
schemas of the different entity versions of that particular entity, and an entity union schema
is formed by joining all the properties contained in the schemas of the entity versions of the
entity. Therefore, the definition of an entity union schema includes primitive types, arrays,
and the union schemas that correspond to the embedded or referenced entities. When the
schema defines a root entity then it is called root union schema. Next, we describe how such
schemas could be represented as class diagrams by using PlantUML. We have followed the
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strategy explained above for visualizing entities in root version schemas. When several ver-
sion schemas have a property with identical name but the type is different, the union type
inferred for this property can only be visualized if it is satisfied that it has only two versions:
one includes the property with a primitive type (or a tuple) and the other one is a relation-
ship, but the rest of possible unions of types would cause an error because would have sev-
eral attributes (or relationships) with the same name and different type (or association end).
Figure 6.8 shows the union schema for theMovie entity, which includes eight attributes
(two of them are tuples of String), three composite relationships for the Criticism, Prize and
Rating union schemas, and a reference relationship to theDirector entity union schema.
The diagram also shows the relationships of the aggregated or referenced union schemas, for
instance, the composite relationship from Criticism toMedia and two reference relation-
ships fromDirector toMovie. While the previous diagrams show all the referenced or em-
bedded entity versions involved in the definition of a version schema for a root entity, the
diagram for an entity union schema only includes entities. Therefore, in the diagram of Fig-
ure 6.8 the references relationships fromDirector toMovie are shown because no confusion
is caused. Note that Criticism entity contains themedia attribute of type String along and
the aggregation relationship of the same name whose association end is theMedia entity.

Entity Database Schemas As explained in Section 4.1, an entity database schema is formed
by the the set of entity union schemas that describe all the root entities of the database. It is
worth to note that an entity union schema can be direct or indirectly connected to the rest
of entity union schemas existing in the database, and then such an schema will be equiva-
lent to the entity database schema. Therefore, a diagram of the entity database schema is
formed by superposing all the diagrams for root union schemas. Figure 6.9 shows the dia-
gram for the entity database schema of our running example. This diagram is the same as
that shown in Figure 6.9 but including the union schema forMovieTheater that is not in-
volved in the union schema forMovie. In this case,MovieTheater is not connected to the
rest of schemas in the diagram. This could be explained by some facts as that (i)MovieThe-
ater objects have been registered but they should be connected to other entities, e.g. Movies,
or (ii) the database is being migrated and references toMovieTheater objects from other
objects have been removed, or (iii) Movies and MovieTheater are managed by different ap-
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Figure 6.8: Enঞty union schema for Movie generated with PlantUML.

plications.

6.4 Using Sirius to Visualize NoSQL Schemas

The previously described solutions to visualize NoSQL schemas evidenced the convenience
of defining a specific notation for this purpose because UML class diagrams are not appro-
priate to represent entity versions. For this aim, a diagramming tool has been developed as
part of a Master’s Thesis [29, 60]. The applied strategy has been to create a model editor
by means of Sirius [7]. This solution takes advantage of the fact that our inference process
generates models that are instances of a Ecore metamodel. Sirius is a robust and powerful
tool to define concrete syntax for an existing metamodel. The development time and effort
to achieve the schema visualization is considerably reduced by using this kind of solution in
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Figure 6.9: Enঞty union schema for Movie generated with PlantUML.

relation to create the editor from scratch. Figure 6.10 shows the visualization process. First,
we define the notation for the Schema metamodel by using the capabilities offered by Sirius
for this task. Taking as input the metamodel and its notation, Sirius generates (i) an editor
to create and visualize diagrams of models that conform to the input metamodel, and (ii) a
model injector that generates an EMF model from the graphical representation. Next, we
will comment the main features of the different diagrams and views created for our meta-
model. [29, 60].

Global View Tree This view shows a tree with three branches that are labeled as Schema,
Inverted Index and Entities, as illustrated in Figure 6.11. Schema labels the list of all the root
entities with their version schema; given a root version schema, the user can browse their
embedded and referenced schemas. For instance, Figure 6.11 shows the aggregated and ref-
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Figure 6.10: Visualizaঞon of schema diagrams by using Sirius.

erenced schemas from the root version schemas ofMovie,Director andMovieTheater.
Schemas forDirector_1 are shown in that figure. Inverted Index labels an inverse index of
versions. This kind of index has been defined to navigate from a root or embedded version
schema to all the root version schemas from which is referenced (for example,Director_1 is
referenced fromMovie_1). Entities labels a list of all the entities that exist in the database.
Both root and embedded entities are included in the list. The user can select an entity to dis-
play its entity versions, and then she/he can inspect their properties and types. Therefore,
this Entities branch shows the database schema as defined in Section 4.1.

In this tree, each kind of element is identified by means of square or circle icons in or-
der to ease the understanding of the schema to the user. The following icons have been de-
signed.

• Entities are represented with a pale purple icon that encloses the tag “E” and the en-
tity name.

• Entity versions are represented with a yellow icon that encloses the “EV” tag and the
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Figure 6.11: Global Schema Tree for theMovie example.

entity version name.

• Root entities are represented with a root picture, and the name of the root entity
version.

• Aggregate and reference relationships are represented by means of an arrow icon that
has dark blue and purple colors, respectively. The icon is followed by the relationship
name and and the target entity name.

• Primitive attributes and tuples are represented with a pink icon that enclosed the “A”
tag and the attribute and type names.

These icons are used in all the diagrams created to provide a uniform view to user. It is
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possible to navigate from the Global View Tree to the other diagrams by means of contex-
tual menus.

Database Schema Diagrams A database schema diagram shows the information of the
Entities branch in similar form to a UML class diagram, as observed in Figure 6.12. With
this diagram, the user can see at a glance what are (i) the database entities, (ii) the set of ver-
sion schemas of each entity, (iii) the attributes and relationships of each version schema.
Aggregation and reference relationships are visualized as a solid line and the aggregates and
references tags are used to differentiate between them.

Figure 6.12: Database schema diagram forMovies database.

From these diagrams it is possible to access to the two diagrams defined to represent root
version schemas: plain and nested version schemas, and the contextual menu of an entity can
be used to navigate to its entity diagram.

Root Version Schema Diagrams A root version schema diagram represents a root version
schema as defined in Section 4.1. Plain and nested diagrams differ in how the direct relation-
ships between version schemas are represented. In both diagrams, schemas are represented
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as rounded rectangles. As shown in Figure 6.13, these relationships are indicated by arrows
in plain diagrams just like they appear in a database schema diagram. Instead, the embedded
schemas are visually represented as rectangles nested to the rectangle of the root schema in a
nested diagram, as shown in Figure 6.14,

Figure 6.13: Plain version schema diagram forMovies database.

A nested diagram offers a more compact view and more clearly shows the nested level
for each root schema. Instead, a plain diagram highlights the relationships between version
schemas.

Entity Schema Diagrams An entity schema diagram represents an entity schema as de-
fined in Section 4.1. They show the version schemas as rectangles nested into a rectangle
that represents the root or embedded entity it belongs to, as shown in Figure 6.15. In this
diagram, the Criticism entity has two versions and the corresponding version schemas are
shown, for instance Criticism_1 aggregates a version schema of theMedia entity.
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Figure 6.14: Nested version schema diagram forMovies database.

Figure 6.15: Enঞty Schema Diagram for Criࢼcism

.
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Most software today is very much like an Egyptian pyra-
mid with millions of bricks piled on top of each other,
with no structural integrity, but just done by brute force
and thousands of slaves.

Alan Kay

7
Code Generation from Schema Models

In this chapter, we will show how the inferred schemas can be used to generate code for
NoSQL database applications. We will describe the MDE solutions developed to automat-
ically generate (i) code for ODM mappers, (ii) data validation code, and (iii) code to classify
objects into entity versions.

7.1 Generating code for ODM Mappers

An MDE solution has been designed and implemented to automate the usage of ODM
mappers when the database already exists. We have considered Mongoose [81] for MongoDB[80],
but the solution presented is applicable to other object-document mappers.

We shall first present an overview of the proposed MDE solution. Next, we will intro-
duce the EntityDifferentiationmetamodel and explain in detail the two stages of the model
transformation chain that implements the solution: (i) howNoSQL-Schemamodels are
transformed into EntityDifferentiationmodels. and (ii) the generation of Mongoose schemas
from EntityDifferentiationmodels.
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7.1.1 Overview of the approach

We have defined a two-step model transformation chain which has as input an inferred
NoSQL_Schemamodel, and generates Javascript code of Mongoose artefacts. The generated
artefacts are mainly the database schema and validators. Figure 7.1 shows this generation
process, which will be explained in detail in the next sections. The first step of the chain is
a M2M transformation that reorganizes the information included in a NoSQL-Schema in
a way that facilitates the code generation. This transformation generates a model that con-
forms to the EntityDifferentiationmetamodel which will be explained later in this section.
The second step is a M2T transformation that generates Mongoose code from the model
obtained in the previous step. The EntityDifferentiationmetamodel has been defined to
make writing the M2T transformation easier. The M2M transformation has been imple-
mented in Java, while the M2T transformation has been written in Xtend [2].

Schema
inference

NoSQL
Schema

metamodel

NoSQL
Schema
model

Version
differentiation

Entity
Differentiation

model

Mongoose
artefacts

generation

Entity
Differentiation

metamodel
- Database schema
- Data validators
- Discriminators
- Update functions

<<conforms>>

<<conforms>>

ODM Parameter
model

ODM Parameter
metamodel

<<conforms>>

<<m2t>>

Database

<<m2m>>

Figure 7.1: Overview of the Proposed MDE Soluঞon.

Our solution deals with the existence of more than one version for data entities, which
imposes an additional complexity; conversely, it captures all the variability in the data base.
We have considered that the fields of an entity version can be of three kinds: (i) Common
to all entity versions (i.e. they are part of the all documents of the entity); (ii) Shared with
other entity versions; and (iii) Specific to particular entity version. For instance, in our run-
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ning example, the fields title, year, director and genre are common to all Movie objects, while
the field prizes is shared by two versions of Movie, and the field rating is specific to the ver-
sion defined for the Movie object with _id = 4.

7.1.2 Generating EntityDifferentiation Models

Generating artifacts to manage the different entities and entity versions often has to differ-
entiate between the properties common to all entity versions and other properties specific of
a given entity version, as indicated above.

For instance, once a document of the database is obtained, in order for it to be classi-
fied as belonging to a given entity version, some property checksmust be performed. These
checks can ignore the common properties of all entity versions of a given entity, and take
into account those properties that differentiate each entity version of the rest.

This may seem a trivial task, but some subtleties that will be addressed in this section
made it easier to take this process as separate of the artifact generation process, and also
made the generation process itself easier. Thus, the Entity Differentiation Metamodel was
created with the main purpose of distinguishing between common and specific properties
of an entity version.

This metamodel is shown in Figure 7.2. The root element of this metamodel is Entity-
Differentiation that aggregates a set of elements (EntityDiffSpec) that specify the differ-
ences between the versions of an entity. An EntityDiffSpec aggregates a set of specification
of properties common to all entity versions (PropertySpec) and a set of properties specific
of a given entity (EntityVersionProp). A PropertySpec has the needsTypeCheck boolean at-
tribute whose purpose is explained below, and an EntityVersionProp aggregates a set of Prop-
ertySpecs and a set of PropertySpecs that do not have to be in a specific entity version (also
explained below). Note that the Entity Differentiation Metamodel has references to the
elements of the NoSQLSchema metamodel: (i) an EntityDiffSpec references to an Entity,
(ii) an EntityVersionProp to an EntityVersion, and (iii) a PropertySpec to a Property. Actually,
an EntityDifferentiationmodel organizes information contained in a Schema model in a way
convenient to distinguish between common and specific properties in entity versions, and it
could be useful for other applications.

The rationale behind this metamodel is based in two facts of the inference process:
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Figure 7.2: Enঞty Differenঞaঞon Metamodel.

1. The inference process is complete, that is, all documents in the database are consid-
ered, and their different entity versions recorded. Each document of the database
belongs to exactly one entity version.

2. In order to differentiate between versions of a given entity, only properties specific of
the given entity version need to be considered.

Instances of this metamodel are obtained via a model-to-model transformation from
theNoSQLSchemametamodel. For each Entity, an EntityDiffSpec model element is gen-
erated. As said above, this element holds a set of common properties across all the versions
(commonProps), and a set of differentiation properties for each version (entityVersionProps),
These sets are obtained as follows. Common properties are those properties that are present
(with the same name and type) in all the entity versions of a given entity. Conversely, the set
of specific properties for a given entity version is composed of the properties that are present
in this entity version, but are not present in all other entity versions.

Properties in a EntityDifferentiationmodel are linked through the PropertySpec class.
This class includes a needsTypeCheck attribute to signal when a discrimination cannot be
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made just using the name of the property. For instance, if two entity versions share a prop-
erty with the same name but with different type, the fact that a document has a property
with that name cannot be used to discriminate between these two entity versions: a type
check must be performed. So, the needsTypeCheck attribute is set for the properties that
appear in any other entity version with the same name but with different type.

An excerpt of the generated model for the database example can be seen in the Figure 7.3.

Figure 7.3: Excerpt of the EnঞtyDifferenঞaঞon Model for the Example.

7.1.3 Generating Mongoose Schemas

A Mongoose schema defines the structure of stored data into a MongoDB collection. In
document databases, such as MongoDB, there is a collection for each root entity. In our
database example there would be two collections: Movie andDirector. Therefore, a Mon-
goose schema should be defined for each of the two collections. Such schemas are the key
element of Mongoose, and other mechanisms are defined based on them, such as validators,
discriminators, or index building. In this Section, we shall explain the process of generating
schemas by means of the m2t transformation indicated in Section 7.1.1. Figure 7.4 shows the
generated schemas for the example database (MovieTheather is not considered).
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// Movie Schema
var criticismsSchema = {

color: {type: String,
enum:['green', 'yellow',

'red'],
required: true},

journalist:{type: String, unique:true,
required: true},

media:{type: String, required: true},
url: String

}
var prizesSchema = {

event:{type: String, required: true},
names:{type: [String], required: true},
year: {type: Number, required: true}

}
var movieSchema = new mongoose.Schema({

title:{type:String, maxlength:40,
unique:true, required:true},

_id: {type:String, index:true,
required:true},

year: {type:Number, index:true,
required:true},

type: {type:String, required:true},
director_id: {type: String,

required: true,
ref:'Director'},

genre: {type:String,

enum:['drama','comedy',
'children'],

required:true},
criticisms: {type:criticismsSchema},
prizes: {type:prizesSchema}

},{collection:'Movie'});

var Movie = mongoose.model('Movie',movieSchema);

// add Director1 schema referenced by Movie1
var directorSchema = new mongoose.Schema({

_id: {type:String, index:true,
required:true},

name: {type:String, unique: true,
required:true},

type: {type:String, required:true},
actor_movies: {type:String,

ref:'Movie'},
directed_movies: {type:String,

required:true,
ref:'Movie'}

},{collection:'Director'});

// add for Director 1 entity Version
directorSchema.path('actor_movies').required();

var Director = mongoose.model('Director',
directorSchema);

Figure 7.4: Generated Mongoose Schema.

Aggregations and references can be specified in Mongoose schemas. An aggregation is
expressed as an nested document which defines the schema of the aggregated entity. A ref-
erence is expressed by means of the ref option in the definition of the type of an attribute.
In addition to the type (i.e. a primitive type as ObjectID, Number or String), the ref option
is used to indicate the name of a model of the referenced schema. In Figure 7.4, theMovie
schema aggregates schemas for Prize (prizes field) and Criticism (criticisms field), and in-
cludes a reference toDirector documents stored in theDirector collection (director_id field).
The ref option is used by Mongoose to ease the use of references in queries.

Note that we are assuming a scenario in which a company wants to use Mongoose for an
existing database in order to take advantage of its facilities to check that data are correctly
managed. Then, our tool would infer the database schema and generate code facilitating
the use of the mapper. In generating schemas, we had to consider the existence of entity ver-
sions. For this, we have used the require validator that Mongoose provides to specify that
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a value for a particular field must always be given to save documents of a schema. Specifi-
cations of fields that are common to all the versions of an entity includes the validator re-
quires:true to guarantee that any document stored of the entity will include these attributes.
To work with a particular entity version, developers should add to the schema require re-
strictions for each of the specific fields of the version. In the schema of Figure 7.4, theMovie
schema includes the require for the four common fields.

The transformation works as follows to generate database schemas: A schema is gener-
ated for each EntityDiffSpec connected to a root entity. For each of them, its common and
entity version properties are added to the generated schema, but the require option is added
only for common properties. For each aggregate property, an external declaration of type
is added to improve the legibility of the schema. A model is created for schemas referenced
from other schemas, which is needed to add the ref option in the declaration of the refer-
ence property. Note that this strategy will recursively operate because the existence of aggre-
gate and reference properties. Therefore, we generate the entity database schema.

7.2 Generating other Mongoose Artefacts

In addition to the schema definitions and the management of references between docu-
ments, Mongoose provides functionality to facilitate the development of MongoDB appli-
cations, such as validators, discriminators, and index specification. To automatically gen-
erate Mongoose code involved in all these mechanisms, we have created a domain-specific
language (DSL) aimed to specify the information needed for such generation. This DSL is
namedODM Parameter Language and it is independent of a concrete mapper technology.
Figure 7.5 shows an example of specification for the entities of our database example. This
DSL has been created with Xtext [122], and models are obtained by means of the parser gen-
erated by this tool. These DSL models are input to the m2t transformation that generates
Mongoose artefacts from EntityDifferentiationmodels, as shown in Figure 7.1.

In Mongoose, the validation is defined at the schema level. Some frequently used valida-
tors are already built-in. The require and unique validators can be applied to any property.
As explained in previous Section, we have used require to specify what properties are com-
mon to all the versions. The unique validator is used to express that all the documents of a
collection must have a different value for a field of primitive type. Other examples of val-
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Figure 7.5: Specificaঞon Example with the ODM Parameter Language.

idators aremin andmax for Number fields, and enum,minlength andmaxlength for String
fields. Indexes are also defined at schema level, for instance an index can be specified with
the index option or the unique validator (which also implies the creation of an index). Ex-
amples of use of these validators are shown in the schema in Figure 7.4. For instance an
enumeration is defined for the color field of Criticism and the title field ofMovie is unique.
These validators have been generated from the information provided by the DSL specifica-
tion shown in Figure 7.5.

Our schema inference mechanism cannot discover the decisions behind a version en-
tity. As indicated in Section 2.6, version variation can be caused by different reasons, such
as requirement changes, non-uniform data, or custom fields in entities. We have used the
required validator to specify which fields are part of a particular entity version. However,
Mongoose provides the discriminator mechanism to have collections of non-uniform data
types. This mechanism would be more appropriate than the require option for non-uniform
data. For instance, aMovieTheater collection could register two kinds of movie theaters in
ourMovie database: single screen or multiplexed theaters. The name, city, country fields
would be common, but the noOfRooms field would be only part of multiplexed theaters.
Figure 7.5 shows how to declare a discriminator for an entity,MovieTheater in the example.
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The schemas generated from this declaration would be the following:

var options = {discriminatorKey: 'kind'};

var movieTheaterSchema = new mongoose.Schema(
{name: String, , city: String, country: String},
options);

var MovieTheater1 = mongoose.model('MovieTheater1',
theaterSchema);

var MovieTheater2 = MovieTheater1.discriminator(
'MovieTheater2',
new mongoose.Schema({noOfRooms: Number}, options));

Mongoose provides update() helper methods, but they do not apply validators, so the
code to perform updating must be written following three steps (find-update-save). We also
automate the generation of this code. For instance, in Figure 7.5 we show the code generated
for updating the genre field of theMovie schema:

function update_genre(query, aGenre) {
Movie.findOne (

query,
function (err, movie) {

if (!err) {
movie.genre = aGenre;
movie.save(function (err, user) {

console.log('Movie␣saved:␣', movie);
});

}
}

);
}

7.3 Generation of Data Validators

Validation is often needed when dealing with NoSQL databases. For instance, a developer
would want to assure that all the objects retrieved and stored by a given application conform
to a given entity version. When developing a new version of an application, for example, ob-
ject validators (a.k.a. schema predicates) could be created so that the programmer can check
each object that transfers to and from the database. Another scenario could be removing a
given version of objects from the database, or migrating one version to another. Validators
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allow checking, for example, that objects that are about to be inserted in the database com-
ply with the required structure.

Using the EntityDifferentiationmetamodel, via a M2T transformation using XTend [2],
we built validation functions that check if a given JSON object is of the correct entity and
entity version. Thus, the process generates validation functions for each entity version.

NoSQL databases differ from SQL databases in that they are schema-on-read, instead of
SQL, which are schema-on-write. That is, the correctness of an given object with respect to
a schema is checked once the object is read from the database. We can also mimic the behav-
ior of SQL systems and we can check beforehand that a given object to be written into the
database comply with the schema.

Thus, we have two different perspectives for validation:

• Validation before writing to the database, and

• Validation when reading from the database.

These two processes are subtly different in our case. When reading from the database,
the objects are known to be of a given entity. The only uncertainty is what specific entity
version do they belong to. Thus, in this case, the common properties of all the versions of
an entity (those described by the commonProps attribute of the EntityDiffSpec class) do not
have to be tested, as they will be present in all the obtained objects of a given entity. Only
the properties described by propertySpecs attribute of the EntityVersionProp class have to be
checked. This case will be shown in the next section (Section 7.4).

When writing into the database, the object produced by the application can have any
set of arbitrary properties. Thus, the check in this case has to be complete, including the
common and specific properties of the given entity version that the application wants to
store.

In the rest of this Section we will study how validator functions are generated for each
entity version. We will generate JavaScript code to perform the validation, as most of the
databases considered use Javascript extensively either from the client or to write MapReduce
processes. A Javascript client program could use these validator functions to assure that the
objects that it writes to the database are correct with respect to the entity version they want
to generate. Of course, other languages could be exercised by the M2T transformation.
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The code generation can be described as follows:

1. For each discovered Entity, consider all of its Entity Versions.

2. For each Entity Version, generate two validator functions. One “minimal”, and one
“exact” function.

3. The “minimal” function refers to the minimum properties an object must possess
to belong to an entity version. This could be considered as a form of duck typing. In
this case, if the object hasmore fields than the entity version, it will be allowed. This
is because sometimes the application would want to add additional attributes, while
keeping compatibility by maintaining a set of known previous attributes.

(a) To generate the “minimal” function, for each of the attributes of the entity ver-
sion (common and specific) we generate a property check. Property checks,
depending on the needsTypeCheck attribute of PropertySpec, have two forms:

i. If needsTypeCheck is true, a test that checks whether this object has the
property name and of the corresponding type is emitted. Type checks are
tailored depending on the actual type, so checks for strings, integers, arrays,
and aggregate objects are produced accordingly. In the case of aggregate
objects, the corresponding validation function call is emitted for the aggre-
gated type.

ii. If needsTypeCheck is false, only a test for the existence of the property name
within the object is emitted by the M2T transformation.

4. The “exact” function is very similar to the minimal function seen above. The main
difference is that, apart from considering common and specific properties, also “prop-
erty absence tests” are generated for the properties listed in the notProps attribute
of EntityVersionProp. These absence tests just check that the object do not have the
properties listed by notProps. This has to be done to treat the case in which an en-
tity version’s properties are a subset of the properties of another entity version. If the
first check is performed, then the object would be erroneously considered to be of the
first entity version, when it may be of the second entity version if it has the correct
attributes.
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Below we show some generated code for the running example database. Recall for exam-
ple that theMovieTheater entity had two entity versions, one of them (MovieTheater_2)
having the attribute noOfRooms. The code generated forMovieTheater_2 is shown in Fig-
ure 7.6.

Movietheater_2: {
name: "Movietheater_2",
isOfExactType: function (obj)
{

var b = true;
b = b && ("type" in obj)

&& (obj.type.match(/Movietheater/i) ? true : false);
b = b && ("_id" in obj);
b = b && ("name" in obj);
b = b && ("city" in obj);
b = b && ("country" in obj);
b = b && ("noOfRooms" in obj);
return b;

},
isOfType: function (obj)
{

var b = true;
b = b && ("type" in obj)

&& (obj.type.match(/Movietheater/i) ? true : false);
b = b && ("_id" in obj);
b = b && ("name" in obj);
b = b && ("city" in obj);
b = b && ("country" in obj);
b = b && ("noOfRooms" in obj);
return b;

}
},

Figure 7.6: Validaঞon Code forMovietheater_2.

The “minimal” function is in this case isOfType, and the “exact” one is isOfExactType.
Both versions in this case are equal because this entity is the one that has more attributes,
so checking all of them ensures an object is of the correct entity version. Note also how the
type attribute is checked against the name of the Entity, and only non-type-check tests are
performed.

The Figure 7.7, in turn, shows the code generated forMovietheater_1. The attribute
noOfRooms is not checked in the minimal function, but, for the exact function, the absence
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Movietheater_1: {
name: "Movietheater_1",
isOfExactType: function (obj)
{

var b = true;
b = b && ("type" in obj)

&& (obj.type.match(/Movietheater/i) ? true : false);
b = b && ("_id" in obj);
b = b && ("name" in obj);
b = b && ("city" in obj);
b = b && ("country" in obj);
b = b && !("noOfRooms" in obj);
return b;

},
isOfType: function (obj)
{

var b = true;
b = b && ("type" in obj)

&& (obj.type.match(/Movietheater/i) ? true : false);
b = b && ("_id" in obj);
b = b && ("name" in obj);
b = b && ("city" in obj);
b = b && ("country" in obj);
return b;

}
},

Figure 7.7: Validaঞon Code forMovietheater_1.

of the noOfRooms attribute must be checked to assure that the object does not effectively
belongs toMovietheater_2.

Finally, Figure 7.8 shows an example of a type check forMovie_3. The prizes attribute
changes fromMovie_3 andMovie_1, so in both has to be type checked. The figure also
shows how the internal type of an aggregated object (in this case an array of objects prizes) is
checked calling the previously generated isOfExactType of the corresponding type (Prize_2).

7.4 Entity Version Classification

As commented in the previous Section, validation on read is different from validation on
write, as all the objects in the database, after the inference process, belong to one of the En-
tity Versions. Thus, for each object, the checks will be produced that tell its entity version.

These check functions can be used as the first step of, for example, migration processes
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name: "Movie_3",
isOfExactType: function (obj)
{

var b = true;
b = b && ("type" in obj) && (obj.type.match(/Movie/i) ? true : false);
b = b && ("director_id" in obj);
b = b && ("title" in obj);
b = b && ("_id" in obj);
b = b && ("year" in obj);
b = b && ("prizes" in obj) && (obj.prizes.constructor === Array) &&

obj.prizes.every(function(e)
{ return (typeof e === 'object') && !(e.constructor === Array)

&& (
mongoMovies3.Prize_2.isOfExactType(e)
);

})
;
b = b && ("genre" in obj);
b = b && !("genres" in obj);
b = b && !("rating" in obj);
b = b && !("running_time" in obj);
b = b && !("writers" in obj);
b = b && !("criticisms" in obj);
return b;

},

Figure 7.8: Excerpt of the Validaঞon Code forMovie_3.

that allow to change a given entity version into another version inside the database, or to
obtain statistics from the data base.

As the set of checks is known for all the versions of a given entity, aminimal set of checks
can be generated using algorithmic techniques. For that, aDecision Tree algorithm [75] was
used to decide the minimum path that distinguished among entity versions. The different
checks of the decision tree would be the presence or absence of attributes from the Entity-
Differentiationmodel.

To store the information of the different decision trees for the entities, we built aDeci-
sionTreemetamodel. This metamodel captures the root for each entity (DecisionTreeForEn-
tity), and a set ofDecisionTreeNodes, which can be either LeafNodes, that identify a given
entity version, or IntermediateNodes, that check a given property of the object (checked-
Property). The intermediate nodes have a yesBranch and a noBranch property, to form the
tree, and correspond to the result of the check for the property performed in the object.
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Figure 7.9: Decision Tree Metamodel.

To buildDecisionTreemodels, a M2M process from the EntityDifferentiationmodels
has been written in Java. Using all the properties of each Entity Version, a Weka decision
tree algorithm has been implemented. For all the properties of all the entity versions, Weka
instances were created, and the decision tree algorithm executed. The tree, then, was inter-
preted to finish the M2M process and generate the finalDecisionTreemodel.

An example logical tree generated for theMovie entity can be seen in Figure 7.10. Only
a small set of attributes is checked to determine that an object belongs to an entity version.
This is because the decision tree algorithm selects the optimal path that differentiates the
different instances (entity versions, in this case). As can be seen in the Figure, all the entity
versions have the same weight (1.0), but in a future work we will give weights according to
the number of objects of that entity version present in the database (this is obtained as part
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criticisms

prizes:[Prize_1;Prize_2]:[0..-1]

= yes

genre

= no

Movie_1 (1.0)

= yes

Movie_4 (1.0)

= no

!running_time

= yes

Movie_5 (1.0)

= no

Movie_3 (1.0)

= yes

Movie_2 (1.0)

= no

Figure 7.10: Decision Tree for theMovie Enঞty.

of the MapReduce process), to prioritize the checks generated.
Note that different checks are generated, depending on the needsTypeCheck flag (see for

example prices in the first left branch of the tree). Also, “absence tests” are generated, speci-
fied with a “!” prepending the name (see !running_time in the figure).

The generated code for theMovie entity is shown in Figure 7.11 (entityVersionForObject
function). The nested if constructs mimic those of the decision tree branches. Note how
for prices a full type check is emitted. Also, thanks to the properties of the decision tree, we
can exchange the “yes” and “no” branches of the tree shown in Figure 7.10 for the “absence
test” branches, like for example !running_time, and generate just normal existence tests. We
used here again Javascript, as these check functions can be used, for example, inside MapRe-
duce scripts for databases to perform the selection of objects to process based on their entity
version.

Finally, using the same information we can also generate specific check functions for spe-
cific entity versions. These tests will have the minimum set of checks needed to tell if a given
object belongs to a given entity version. Figure 7.12 shows the code generated for some en-
tity versions. As can be seen, the branches of the tree are followed to generate the tests.
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name: "Movie",
entityVersionForObject: function (obj)
{

if (("criticisms" in obj))
{

if (("prizes" in obj) && (obj.prizes.constructor === Array) &&
obj.prizes.every(function(e)

{ return (typeof e === 'object')
&& !(e.constructor === Array)
&& (
mongoMovies3.Prize_1.isOfExactType(e) ||
mongoMovies3.Prize_2.isOfExactType(e)
);

})
)
{

return "Movie_1";
} else {

return "Movie_4";
}

} else {
if (("genre" in obj))
{

if (("running_time" in obj))
{

return "Movie_2";
} else {

return "Movie_3";
}

} else {
return "Movie_5";

}
}

}

Figure 7.11: Decision Tree Code for theMovie Enঞty.
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checkEV_Movie_2: function (obj)
{

if (("criticisms" in obj))
return false;

if ((!("genre" in obj)))
return false;

if ((!("running_time" in obj)))
return false;

return true;
},
checkEV_Movie_3: function (obj)
{

if (("criticisms" in obj))
return false;

if ((!("genre" in obj)))
return false;

if (("running_time" in obj))
return false;

return true;
},
checkEV_Movie_5: function (obj)
{

if (("criticisms" in obj))
return false;

if (("genre" in obj))
return false;

return true;
}

Figure 7.12: Check Funcঞons forMovie versions 2, 3, and 5.
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It would be great to have a undo function in our lives

Anonymous

8
Conclusions and Future Work

Interest in NoSQL systems is continuously growing and the database reports predict that
they will be widely adopted by a large number of companies in the near future. Actually,
a polyglot persistence is the foreseen scenario, in which companies will use both relational
databases and different kinds of NoSQL stores [1, 109].

Database schemas are a valuable asset, traditionally known to bring several benefits:
(i) they help in understanding how data is stored and organized in a database; (ii) they allow
to statically detect the errors in data access made in programs; and (iii) they provide knowl-
edge required by tools that provide functionality such as facilitating homogeneous query
languages over data or integrating heterogeneous databases.

While the concept of database schema plays a central role in relational database systems,
most NoSQL systems are schemaless, that is, they do not require having to formally de-
fine an schema. NoSQL schemaless databases also have schemas but they are implicit into
stored data and application code. Not having to define schemas is necessary because this fea-
ture offers the flexibility that modern applications demands due to that the data structure
frequently changes. Certainly, the absence of an explicit schema is a very attractive charac-
teristic for many NoSQL developers. However, it is becoming increasingly evident that the
schemaless nature in NoSQL database should coexist with a knowledge of the schema by
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tools that help to developers. The schemas would be discovered by means of reverse engi-
neering processes [1]. The Dataversity report [1] evidenced the necessity of building such
tools to support the development of NoSQL applications. Tools with a functionality sim-
ilar to those offered for relational databases are required, specially tools for (i) generating
code, (ii) model visualization, and (iii) metadata management.

Therefore, the inferred schemas of NoSQL databases are useful to build a number of
tools intended to help developers that make use of NoSQL databases. They may mitigate
the problems due to the lack of an explicit schema. For instance, reports, diagrams, val-
idators, and version migration scripts could be automatically generated from the NoSQL
Schema models. Moreover, there are tools that require knowledge of the schema in or-
der to provide certain functionality, e.g. SQL query engines or integrating heterogeneous
databases.

Building these tools poses some challenges that demand a great effort of industry and
academia in the emergingNoSQL Data Engineering area. When the work of this thesis
started at the beginning of 2014, few research works in this area had been published. At the
time of writing this thesis, the research effort in that area have been still very limited, and it
has been mainly focused on the inference of schemas from data stored in document stores,
as discussed in Chapter 3. Regarding to database tools, some existing modeling tools for
designig relational databases are being extended to provide NoSQL inferred schema visu-
alization [47, 37, 48]. Moreover, NoSQL systems are offering tools for viewing, analyzing,
and querying stored data, as Compass for MongoDB [33]. Some kind of data analysis is also
performed in [72] where outliers are identified.

Next, we will discuss the level of achievement of the goals of this thesis that were pre-
sented in Chapter 1.

8.1 Discussion

In Chapter 1, five objectives were defined: (1) to design and implement a schema inference
process for aggregate-based NoSQL systems; (2) to propose of a notion of NoSQL data
schema; (3) to design diagrams for representing NoSQL schemas and to implement tools
that support its visualization; (4) Code generation for ODM mappers; and (5) Generation
of data validators.
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Next, we shall discuss to what extension the goals have been achieved.

8.1.1 Goal 1. Design and Implementation of a Schema Inference Process

We have defined a schema discovering approach that has been implemented as a model-
driven reverse engineering process as described in Chapter 5. The schema inferred is rep-
resented as a model that conforms to the NoSQL_Schema metamodel which is NoSQL
system-independent. The main differences of our inference strategy with respect to other
proposed approaches are the following: (i) to extract the versions of each entity; (ii) to dis-
cover all the relationships among the entity versions extracted: aggregation and references;
(iii) consider the scalability and performance of the inference algorithm by applying a MapRe-
duce operation to directly access to the database and obtaining the minimum set of JSON
objects needed to apply the inference process. Our interest is not to obtain a succinct, ap-
proximate or skeleton schema. Instead, our idea is to record all the entity versions and rela-
tionships between them. This decision is motivated by the fact that our approach is targeted
to business applications in which the maximum number of versions of an entity will not be
very high. This scenario is different of that considered in [119], that supposes that several
tens of thousand of version can exist for an entity.

The approach has been validated with a real case study, in particular we have created a
MongoDB database from the open data Stackoverflow dataset. This validation showed that
the inference algorithm scaled well with respect to the number of objects.

8.1.2 Goal 2. Proposal of a notion of NoSQL data schema

As far as we know, our work is the first approach that manages versioned schemas as shown
in Table 3.1. Other approaches do not take into account versions of entities [23] or either
they obtain the union schema [72] or an approximate schema [119]. Here, we have defined
the notion of Versioned Schema, and the following kinds of versioned schemas: Version
Schema (Root or Aggregate) that only includes the entity versions related to an entity ver-
sion (and entities if there are references); Entity Schema (Root or Aggregate) that only in-
cludes entities related to an entity;Database Schema that includes all the entity versions of a
database; and Entity Database Schema that includes the union schemas of all the entities of
the database. Therefore, we have identified a set of schemas that can be considered in deal-
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ing with NoSQL systems, which can be defined to three levels: entity, entity version, and
database. These schemas have been defined in detail in Section 4.1.

The schemas are valid for document-based NoSQL databases, but it can be applied to
wide column stores too, as stated in the future work. Adaptation to graph-based databases
is also possible.

8.1.3 Goal 3. Design Diagrams for NoSQL Schemas and Implement Tools that
Support its Visualization

Developers of NoSQL database applications need to understand the implicit database
schema. In fact, they must keep in mind this schema when they write or maintain code. The
visualization of the schema in form of diagrams would be very helpful for these developers
in the same way as the E/R schemas have been used for developers of relational database ap-
plications. We have defined visual representations for each kind of schema defined in this
thesis. In particular, we have used UML class diagrams to represent root version schemas,
entity union schemas, and entity database schemas. Several benefits are gained by represent-
ing NoSQL schemas in form of these diagrams: both understanding about them and its
communication are facilitated, and a documentation separated from the code is obtained.

We have developed two MDE solutions to visualize the kinds of diagrams defined. First,
we transform the inferred schema model generated into a Ecore metamodel with the aim of
visualizing it by means of an Ecore metamodel editor. We have used for this the editor inte-
grated into Eclipse/EMF. This solution have illustrated the benefits of representing models
and metamodels uniformly. After this proof of concept, we transform the schema model in-
ferred into PlantUML code for a visualization of UML class diagram. Our work has served
to define a specific notation for NoSQL schemas [29].

Recently, some companies that offer data modeling tools have extended theirs tools
to provide some kind of visualization of schemas for document stores (normally Mon-
goDB) [47, 37]. However, these tools do not cope well with the variability of the schema-
less data: they either do not support variation in the structure of the objects of a given type,
or they overgeneralize the schema to embrace all the possible variations. In our proposal,
we define schemas that take into account the existing versions of each type: the versioned
schemas have the unique characteristic of completely defining the structure of the data, also
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showing the high-level relationships, such as aggregation and reference.

8.1.4 Goals 4 and 5. Code Generation for ODM Mappers and Data Validators

With the aim of illustrating some possible application of schemas inferred in addition to
its visualization, we have tackled the development of two code generation utilities: code for
ODM mappers and code for data validation.

We have designed and implememented the generation of the schema specification code
for existing ODM mappers.In the case of Mongoose, we have also been able to generate
artefacts for different functionality provided by this mapper, such as validators, discrimina-
tors, and reference management. The MDE solution devised has shown the usefulness of
defining intermediate metamodels in a model transformation chain. We have defined the
EntityDifferentiationmetamodel, which reorganizes the information included in a schema
model in a more appropriate form to generate the schemas of each version. This requires to
distinguish between common and specific properties for each version.

Data validation is needed to assure that all the objects retrieved and stored by a given
application conform to a given entity version. We have developed an MDE solution that
generates validators to be applied when data are stored into the database. This solution has
been implemented as a two-step model transformation chain. Here, a metamodel has also
been defined to have an intermediate representation that facilitates the generation of valida-
tors. The intermediate models are obtained via a model-to-model transformation from the
NoSQL_Schema models, and then a model-to-text transformation generates the validator
functions that check the entity version of the data to be stored.

8.1.5 Goal 6. Definition of a Data Classifier

To determine the entity version an object from the database belongs to, a clustering algo-
rithm has been designed, based on a decision tree algorithm. This algorithm assures that
minimal checks are performed in order to discriminate between the different entity ver-
sions of an object belonging to a given entity. This classification allows filtering and apply-
ing transformation only to those objects that belong to a given entity version.
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8.1.6 Advantages of using MDE

It is worth noting that a general objective of this thesis was to show the benefits of using
MDE in the emerging area of NoSQL Data Engineering. We have created MDE solutions
both to implement the schema inference process and the database utilities developed to il-
lustrate possible applications of the inferred schema models. These solutions have shown
some of the main advantages that MDE offers as:

• Represent information at a high level of abstraction. Metamodeling is a more ex-
pressive formalism than XML and JSON when representing the information in-
volved in a data reverse engineering process. Rather than using proprietary formats,
models allow the information to be uniformly represented, which favors software
quality, e.g. interoperability, extensibility or reuse. The existence of widely adopted
metamodeling languages (e.g. Ecore) strengthens the benefit of metamodels with re-
gard to proprietary formats. We have defined metamodels (i) to represent NoSQL
schemas, and (ii) to obtain intermediate representations that reorganize the informa-
tion included in schema models in an adequate format to generate code, and (iii) to
represent the decision tree defined for classifying data into versions.

• Everything is a model. As noted in [15], the fact that metamodels and meta-metamodels
are also models is a strength of MDE. In this thesis, we have been able to appreciate
the unification power of models in the first strategy of visualization of schemas based
on a transformation that convert a schema model into an Ecore metamodel.

• Automation. We have created model transformation chains to implement all the tool
developed in this thesis. We have been able to automatically generate code of different
platforms: PlantUML DSL, Javascript code of Mongoose schemas, Java validators.
Here we have not measured the gain of productivity as we did in previous works [62,
63, 106] because this was not the focus of our work.

• Tooling for building DSLs. Several metamodel-based DSL definition tools there
are available to build DSL. Xtext and Sirius are two of the more widely used tools in
the Eclipse platform, Xtext for textual DSLs and Sirius for graphical DSLs.We have
been used Xtext to create the Parameter DSL aimed to express the parameter model
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required to generate code for the Mongoose mapper. Sirius has been used in [29] to
define a graphical notation aimed to represent diagrams of NoSQL schemas. These
tools allow to save a great effort and time in developing DSLs.

• Platform independence. Independence of source and target technologies can be
achieved the use of models. A pivot model can be used to achieve this independence.
In our case, the schema metamodel is independent of a particular aggregate-based
NoSQL system, and he plays the role the unified or pivot model.

8.2 Contributions

The main contributions of our work have been the following. To our knowledge, we have
defined the first approach that infers database schemas from NoSQL databases discovering
all the versions of the inferred entities and their relationships. Other novelty aspect of this
approach is to address the scalability. In addition, the schema metamodel contributes to the
proposals of unified models for NoSQL databases. The first version of the approach was
presented in April, 2015 in the XVIII Iberoamerican Conference on Software Engineering
(CIbSE’2015) [82] and the second version in the 34th International Conference on Concep-
tual Modeling (ER 2015) [102].

Our analysis of the notion of schema for aggregate-based NoSQL databases is another
contribution of this thesis. The set of proposed schemas could serve to guide further re-
search work in this domain. As far as we know, we have presented the first proposal to visu-
alize NoSQL versioned schemas, both the usage of UML class diagram and the definition
of a specific notation. The first utility to visualize schemas was already outlined in the arti-
cle presented in ER’2015. Now, we are preparing and article that describes all our work on
visualization of NoSQL schemas, which will be submitted to the 36th International Con-
ference on Conceptual Modeling (ER’2017) that will be held in November, 2017 in Valencia
(Spain) [59]. A previous version of this work will be presented in the Spanish Conference
on Software Engineering and Databases (JISBD’2017) [60] that will be held in July, 2017 in
La Laguna (Tenerife, Spain).

To our knowledge, we have designed and implemented the first utilities for the genera-
tion of code for ODM mappers. In particular, we have generated code for the Mongoose
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mapper, but the MDE solution defined is applicable to any ODM mapper. This approach
has been presented in the 5th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2017) [104]. We have also shown novelty ap-
proaches to generate data validators and classify data into entity versions. The develop-
ment of these tools has also contributed to show how MDE techniques can be very useful
in NoSQL Data Engineering area. While the application of MDE in the Data Engineering
field has been very limited to date, we believe that experiences of usage as the here described
can help to understand the benefits of its usage and motivate to NoSQL tool builders to
take advantage of MDE technology. We introduced the ”Model-driven NoSQL Data En-
gineering” term in a work presented to the Spanish Conference on Software Engineering
and Databases (JISBD’2015) [103] in which we pointed out the emergence of the NoSQL
Data Engineering research area and contemplated the application of MDE in that area. We
are now preparing a longer paper that describes the current version our schema discovering
strategy and the two mentioned code generation utilities are used to illustrate the possible
applications of the inferred schemas. This paper will be submitted to the “Information and
Software Technology” journal.

The study of the state of the srt made for this thesis (Chapter 3) is another contribution
of our work. We have contrasted the NoSQL schema discovering approaches proposed,
unified metamodels, and tooling that are available at this moment. This analysis has dis-
cussed the more significant academic and industrial efforts in the NoSQL data engineering
area. We have also identified a set of criteria to compare the different schema inference ap-
proaches. To our knowledge, no review as exhaustive as the one presented here has been
published to date.

Cites At the time of writing this thesis, our work has received only 6 cites (we have con-
sulted Google Scholar) and they only reference the article presented in ER’2015 [102]. The
proceedings of the article that describes the generation of code for ODM mappers has been
published a few weeks ago, so this work has not been cited yet.

In [65] is noted that our approach “could be applied to analyze JSON documents, how-
ever, it is specially tailored to NoSQL databases and do not provide assistance to integrate
Web APIs”. In [36], it is compared with a proposal to generate graph databases from UM-
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L/OCL conceptual schemas and it is noted that “they do not aim to provide support for a
full-fledged application nor consider the addition of constraints on the reversed schema”.
Our work is also considered in a recent study on data modeling in the NoSQL world [12],
in which it is claimed that our approach “supports the idea that, even in the NoSQL con-
text, a model-based description of the organization of data is very useful during the en-
tire life-cycle of a data set”. In a work on the definition of a standarization model for in-
tegrating heterogeneous databases is indicated that “our idea of reverse engineering the
database to obtain the schemas in the original models can also be useful in the case of the
graph model” [10]. [54] considers that our approach “introduces schema management on
top of schemaless document systems”. Finally, our work is discussed together with the ap-
proaches [72] and [119] in a paper that presents a proposal for finding multidimensional
structures in document stores aimed at enabling OLAP querying in the context of self-
service Business Intelligence (BI) [30]; the authors commented that “these works focus on
the structural variety of documents within the same collection caused by their schemaless
nature and by the evolution of data”.

8.3 Future Work

The research we have presented in this thesis has allowed the Modelum Group and the Cat-
edra SAES-UMU to start a research line in Model-Driven NoSQL Data Engineering, in
which they will collaborate in the following years. Several interesting directions can be taken
to continue our research activity in this area. They are here organized according to the main
objectives of this thesis. In addition, we point out other directions that present a not so di-
rect relationship with the topics here addressed. Note that some future works outlined dif-
fer in the scope.

Schema inference process We will adapt our reverse-engineering process to be applied
to column-family stores. This involves adapting the inference process, as some of these
databases do not have proper data types, and only store data blobs, for example HBase [57].
Moreover, we will validate our inference process with more open datasets such as DBPedia
or IMDB. A more fine type system for the data inference is planned. With this, more de-
tailed types can be output for schemas, supporting attributes that only are of a set possible
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values (similar to enums in some programming languages), or that only hold several ranges
of values, or union types to better support variability. Generating type specifications similar
to Datalog is also planned.

Schema visualization When several tens or hundreds of schemas are inferred, the visual-
ization of all the schemas is not helpful, but queries or browsing mechanisms are needed to
understand the database schemas. We are extending the schema editor developed with Sirius
with such capabilities. Also, joining mechanisms such as optional fields will allow to reduce
the number of versions.

Data visualization In this thesis we have explored how data analysis techniques can be
applied to generate data visualizations that take into account the schema and version of
the objects in the database, allowing to visually identify the quantities of objects of each
type and version. If a data base has evolved over time, it would be interesting to show which
data belong to each version. After this initial effort, future directions include allowing more
statistics to be done in the data and to be shown related to their entity version.

Code generation The MDE techniques and metamodels used in thesis has proven very
useful for generating different artefacts and utilities for NoSQL databases. More utilities
can be generated, however. We plan, among other research works, to consider more map-
pers for MongoDB and for other data bases, and to build a generative architecture to auto-
mate the building of Mongoose-based MEAN applications for existing databases.

Database evolution When the database evolves, data that corresponds to new entity ver-
sions can be stored. Then, it could be required to migrate data from old versions to the new
version. Generating object version transformers could then be interesting. A developer can
describe, by means of a specialized DSL, the necessary steps to convert one version of an
object to another version. These could be used in at least two ways:

• A new application that uses the stored old data may require that all the recovered
objects comply with the new version. A version transformer could be generated that
removes the unneeded fields, and gives values to new, non-existing fields. This would
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guarantee that the application would always use object with the correct (new) version,
giving all the process more robustness.

• Batch database migration. MapReduce jobs could be generated to transform old ver-
sion objects into new versions. This is possible given the precise version information
stored in the schema.

Design of NoSQL databases The design of NoSQL stores is mainly influenced by the
queries to be issued on the database. We are investigating how the the graphical notation de-
fined to visualize schemas could be converted into a DSL aimed to design NoSQL database.
This DSL would allow to express information on queries that could be used to generate the
database schema. Moreover, we are investigating how execution plans of SQL queries could
be used to migrate relational schemas to NoSQL schemas.

Relational database to Polyglot persistence migration As indicated in the report [1]
“Polyglot persistence is the new normal: As NoSQL database architectures are specialized,
people need to use multiple systems in their enterprises, leading to polyglot persistence.”
Considering the experience of the ModelUM group in data and code reengineering, we are
exploring how tackle the challenges of the migration of legacy applications to new systems
based on polyglot persistence.

8.4 Publications

The research activity of this thesis has produced various contributions that have been pre-
sented and discussed on several peer-review forums. The articles in which the research from
this thesis has been published are presented below.

• Sevilla Ruiz, D., Feliciano Morales, S. and García-Molina, J.: An MDE Approach
to Generate Schemas for Object-document Mappers. In Luis Ferreira, Slimane Ham-
moudi and Bran Selic (eds), Proceedings of the 5th International Conference on
Model-Driven Engineering and Software Development (MODELSWARD 2017),
pages 220-228, SCITEPRESS, 2017 (Candidate to best paper award, not published
acceptance rate).
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• Sevilla Ruiz D., Feliciano Morales, S., García-Molina J.: Inferring Versioned Schemas
from NoSQL Databases and Its Applications. In: Johannesson P. et al. (eds), Proceed-
ings of Conceptual Modeling, 34th International Conference (ER 2015), pages 467–
480. Lecture Notes in Computer Science, vol. 9381, Springer, 2015. (acceptance rate
of 20%).

• Feliciano Morales, S. and García-Molina, J. and Sevilla Ruiz, D.: Inferencia del es-
quema en bases de datos NoSQL a través de un enfoque MDE. In Araujo, J. et al.
(eds), Proceedings of 18th IberoAmerican Conference on Software Engineering (CIbSE 2015),
pages 11–25, Curran Associates. April 22-24, 2015. (acceptance rate of 22,5%).

• Hernandez, A. Sevilla Ruiz D., Feliciano Morales S., García-Molina J.: AModel-
Driven approach to visualize NoSQL schemas. Submitted to the 36th International
Conference on Conceptual Modeling (ER 2017).

• Hernandez, A. Sevilla Ruiz D., Feliciano Morales S., García-Molina J.: Visualización
de Esquemas en Bases de Datos NoSQL. In Ruiz González, F (Eds.), Actas de las
XXII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2017). La Laguna,
Tenerife, julio, 2017.

• Sevilla Ruiz D., Feliciano Morales S., García-Molina J.: Model-Driven NoSQL Data
Engineering. In Canós, J. H. y González-Harbour, M. (Eds.), Actas de las XX Jor-
nadas de Ingeniería del Software y Bases de Datos (JISBD 2015). Santander, septiem-
bre, 2015 (handle: 11705/JISBD/2015/021)

8.5 Software Utilities Developed

The tools implemented in this thesis can be downloaded from https://github.com/catedrasaes-umu/

NoSQLDataEngineering.
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