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Abstract

Résumé (French)

Cette thèse présente l’étude de la réduction de modèles pour les réseaux électriques
et les réseaux de transmission. Un point de vue mathématique a été adopté pour
la réduction de modèles. Les réseaux électriques sont des réseaux immenses et com-
plexes, dont l’analyse et la conception nécessite la simulation et la résolution de
grands modèles non-linéaires. Dans le cadre du développement de réseaux électriques
intelligents (smart grids) avec une génération distribuée de puissance, l’analyse en
temps réel de systèmes complexes tels que ceux-ci nécessite des modèles rapides,
fiables et précis. Dans la présente étude, nous proposons des méthodes de réduction
de de modèles à la fois a priori et a posteriori, adaptées aux modèles dynamiques
des réseaux électriques.

Un accent particulier a été mis sur la dynamique transitoire des réseaux élec-
triques, décrite par un modèle oscillant non-linéaire et complexe. La non-linéarité de
ce modèle nécessite une attention particulière pour bénéficier du maximum d’avantages
des techniques de réduction de modèles. Initialement, des méthodes comme POD et
LATIN ont été adoptées avec des degrés de succès divers. La méthode de TPWL,
qui combine la POD avec des approximations linéaires multiples, a été prouvée
comme étant la méthode de réduction de modèles la mieux adaptée pour le modéle
dynamique oscillant.

Pour les lignes de transmission, un modèle de paramètres distribués en domaine
fréquentiel est utilisé. Des modèles réduits de type PGD sont proposés pour le
modèle DP des lignes de transmission. Un problème multidimensionnel entièrement
paramétrique a été formulé, avec les paramètres électriques des lignes de transmission
inclus comme coordonnées additionnelles de la représentation séparée. La méthode
a été étendue pour étudier la solution du modèle des lignes de transmission pour
laquelle les paramètres dèpendent de la fréquence.

Mots-clés Réseaux Intelligents, Dynamique transitoire, Équations oscillantes,
Lignes de transmission, Réduction de modèles, Décomposition orthogonale appro-
priée, Méthode d’incrémentation de grande longueur, Méthode linéaire par morceaux
de trajectoire, Décomposition généralisée appropriée, Paramètres dépendants de la
fréquence
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Abstract

Resumen (Spanish)

Esta tesis presenta un estudio de la reducción de modelos (MOR) para redes de
transmisión y distribución de electricidad. El enfoque principal utilizado ha sido la
dinámica transitoria y para la reducción de modelos se ha adoptado un punto de vista
matemático. Las redes eléctricas son complejas y tienen un tamaño importante. Por
lo tanto, el análisis y diseño de este tipo de redes mediante la simulación numérica,
requiere la resolución de modelos no-lineales complejos. En el contexto del desarrollo
de redes inteligentes, el objetivo es un análisis en tiempo real de sistemas complejos,
por lo que son necesarios modelos rápidos, fiables y precisos. En el presente estudio
se proponen diferentes métodos de reducción de modelos, tanto a priori como a
posteriori, adecuados para modelos dinámicos de redes eléctricas.

La dinámica transitoria de redes eléctricas, se describe mediante modelos dinámi-
cos oscilatorios no-lineales. Esta no-linearidad del modelo necesita ser bien tratada
para obtener el máximo beneficio de las técnicas de reducción de modelos. Métodos
como la POD y la LATIN han sido inicialmente utilizados en esta problemática con
diferentes grados de éxito. El método de TPWL, que combina la POD con múltiples
aproximaciones lineales, ha resultado ser el mas adecuado para sistemas dinámicos
oscilatorios.

En el caso de las redes de transmisión eléctrica, se utiliza un modelo de parámet-
ros distribuidos en el dominio de la frecuencia. Se propone reducir este modelo
basándose en la PGD, donde los parámetros eléctricos de la red de transmisión son
incluidos como coordenadas de la representación separada del modelo paramétrico.
Este método es ampliado para representar la solución del modelos con parámetros
dependientes de la frecuencia para las redes de transmisión eléctrica.

Palabras claves Redes Inteligentes, Dinámicas Transitorias, Ecuaciones de Movimiento
Oscilatorio, Líneas de Transmisión, Reducción de Modelos, Descomposición Ortog-
onal Propia, Método de Incremento de Gran Tiempo, Método Lineal en Trayectoria
Piece-wise, Descomposición Generalizada Propia, Parámetros Dependientes de la
Frecuencia
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Abstract

Abstract

This thesis presents the study of the model order reduction for power grids and
transmission networks. The specific focus has been the transient dynamics. A
mathematical viewpoint has been adopted for model reduction. Power networks are
huge and complex network, simulation for power grid analysis and design require
large non-linear models to be solved. In the context of developing “Smart Grids”
with the distributed generation of power, real time analysis of complex systems such
as these needs fast, reliable and accurate models. In the current study we propose
model order reduction methods both a-priori and a-posteriori suitable for dynamic
models of power grids.

The model that describes the transient dynamics of the power grids is complex
non-linear swing dynamics model. The non-linearity of the swing dynamics model
necessitates special attention to achieve maximum benefit from the model order re-
duction techniques. In the current research, POD and LATIN methods were applied
initially with varying degrees of success. The method of TPWL has been proved
as the best-suited model reduction method for swing dynamics model; this method
combines POD with multiple linear approximations.

For the transmission lines, a distributed parameters model in frequency-domain
is used. PGD based reduced-order models are proposed for the DP model of trans-
mission lines. A fully parametric problem with electrical parameters of transmission
lines included as coordinates of the separated representation. The method was ex-
tended to present the solution of frequency-dependent parameters model for trans-
mission lines.

Keywords Smart Grids, Transient Dynamics, Swing Equations, Transmission
Lines, Model Reduction, Proper Orthogonal Decomposition, Large Time Increment
Method, Trajectory Piece-wise Linear Method, Proper Generalized Decomposition,
Frequency-Dependent Parameters
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Chapter 1

Introduction

This chapter presents the literature review and establishes the state of the art in
the model order reduction of electrical power systems. Also, it presents the various
model order reduction methods employed in the field of power systems.
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1.3.3 Model Reduction by Mathematical Analysis . . . . . . . . 11

1.4 Motivation: Rationale and Advantages of Model Re-
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1.5 Objectives and Approach . . . . . . . . . . . . . . . . . . . 14

1.6 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . 15
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1.2. Introduction to the Problem

1.1 Introduction to the Problem

1.2 Smart Grids

The term smart grid instantaneously pops the image of high voltage electric power
lines and power generation stations in mind, but what exactly does it mean. The
term “smart grid” refers to the use of computers, communications, sensing, and
control technology parallel to the electric grid [3]. It is a two way flow of electricity
and information which is capable of monitoring and controlling all the aspects of a
power distribution system from power plants to individual customers [4]. In a Smart
Grid, power production from different types of generation units are integrated into
the grid and the grid is connected to the production units and the consumers and
the information is constantly exchanged. The concept of an interconnection and
information flow in a smart grid is depicted in the Figure 1.1.

Electric power grids are among the most complex network systems possible due
to the large number of nodes and the interconnection of various types of sources,
loads, and controls. Current electricity distribution systems have a number of flaws
such as voltage drops, blackouts, overloads and as well as environmental issues of
electricity generation mainly through the burning of fossil fuels [5]. There is a hope
in the smart grid solutions that these problems can be overcome. The economic and
environmental factors make it necessary for the adoption of smart grids with the
advancement in the renewable energies and efficient energy management solutions.
They provide a reliable electricity delivery, minimization of cost of electrical energy
to the consumers and facilitate the interconnection of new generating sources to the
already available grid [3].

Already countries like US, China, India, UK and European Union have started
working towards the introduction of smart grids. This field has shown a lot of
potential and business opportunities and an early start resulting in better imple-
mentation and new infrastructure could propel emerging nations to the front. USA
has invested about $7 billion [3], while China has invested about $7.3 billion and
a further planned investment of $ 96 billion by the year 2020 [3]. China is one of
the fastest growing countries and its energy needs will double by 2020. Judging by
the amount of Chinese investment in smart grid technologies it is estimated that
by 2015 it will account for 18.2% of global smart grid appliance. South Korea is
another country that has invested about $1 billion and with a small $65 million
pilot project already implemented for 6000 homes in Jeju Islands [3]. The South
Korean leaders envisage a nationwide implementation of smart grids by 2030. Other
developing countries like India and Brazil are also at the forefront of this technology
with increase in their renewable energy productions.

Smart grid technology is the integration of advances in digital and information
technology. It is designed to be flexible with operational intelligence and connectiv-
ity. Due to the availability of sensing and data sources it is possible to have real
time precision in operations and control to dynamically optimize grid operations.
It allows for variable rates of electricity to be charged at different times depend-
ing upon the demand and supply, thus benefitting consumers as well as reduce
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1.2. Smart Grids

Figure 1.1: A graphic demonstration of the Smart Grid concept

loads during the peak time. US department of energy (DOE) defined some of the
main functionalities of the smart grids as self-healing, active participation from the
consumers, resilient operations against physical and cyber attacks, accommodating
different types of generation and storage options and most importantly optimized
and efficient operations [3, 6].

1.2.1 Challenges and Opportunities

Transformation from traditional power generation systems and grids to smart grids
is a major upgrade and a lot of challenges are ahead. The biggest challenge is the
transition from the traditional grid to the smart grid with the grid running. There
are sercurity risks associated with the power grids in their current state, as well
as the reliance on an old system with the ever growing complexity increases the
probability of failures. The way forward is the gradual deployment of the smart
grids solutions.

Optimum placement of distributed generation, determining failures and real time
modification and self-healing are few to name. Modeling and analysis of electric
power systems is another major challenge due to the large network size.

1.2.2 Distributed Generation

Distributed generation is one of the main components of accomplishing the smart
grid concept. It is the decentralizing of the power generation capabilities from
thermal or nuclear power plants to more environmental friendly renewable power
generation, e.g. solar and wind power generation. An overview of the available
literature reveals that there is no single consistent and agreed upon definition of
distributed generation. It is generally considered as the generation of electricity
from many small sources such as PV panels, small wind turbines etc. Apart from
the definition, there are also multiple terminologies associated with the distribution
generations such as Anglo-American countries often use “embedded generation” and
in Europe and parts of Asia it is termed as “decentralized generation” [7]. The
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1.3. Smart Grids

definition of the distributed generation varies with the rating of the power units as
well, as according to following definitions:

• The Electric Power Research Institute defines distributed generation from few
kilowatts to 50 MW.

• Distributed generation is regarded as up to 25 MW according to the Gas
Research Institute.

• Preston and Rastler define the size as ranging from a few kilowatts to over 100
MW [8].

• Others have defined similar power ratings of up to 100 MW as defining dis-
tributed generations.

Another important criterion in distributed generation is the location of the dis-
tributed generation plants. And also the manner this distributed generation is inte-
grated with the grid.

Distributed generation can provide support for the primary network in the main-
tenance of a sustained and stable operation of the smart grid. It can supply directly
to the customers or just provide a support and backup system [9].

1.2.3 Modeling and Simulation of Power Grids

Mathematical modeling of the electrical power systems is carried out in order to per-
form the simulation of the electric power systems. The objective of such simulations
is to understand the behavior of the system under static and dynamic conditions
[10]. Generally, power grids are large scale and complicated networks that have
complicated, dynamic and nonlinear behavior changing continuously in both time
and space [11]. The power system consists of many components like generators and
loads and even these components are different from one another making the task
of modeling and simulation further complicated because of the interdependence of
heterogeneous components. The simulations are necessary to analyze the system
weaknesses and to perform load flow and stability studies. These studies are ex-
tremely crucial because of the commercial and economic cost associated with the
unreliability of power systems.

Mainly load flow or power flow studies are carried out for static analysis of the
power grids and the data needed for such analysis consists of the topology of the net-
work, transmission networks, model and parameters for transmission lines, location
of power generation units and the loads. The details about these will be discussed in
the subsequent chapters in the current thesis. In addition to this, dynamic studies
must also be performed to ensure the uninterrupted and reliable power to the con-
sumers. For such dynamic studies, the models are even more complicated and the
level of required data increases further. All of this makes the modeling and simula-
tion of power grids computationally expensive and therefore we see more and more
applications of High Performance Computing (HPC) in the energy systems [12].
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1.3. Model Reduction of the Power Grids

1.3 Model Reduction of the Power Grids

Power systems are typically large networks and very complicated engineering sys-
tems in operation in the present world. The analysis of such complex systems is
computationally expensive. Real time analysis and study of dynamic stability of the
system is a very difficult task numerically. As noted in the previous section about
the applications of HPC in power systems has increased manyfolds. An alternative
to the HPC is to make the model such that average computing capabilities can han-
dle the problem. A reduced order model is therefore required for efficient simulation
of the power grids. Reduced order models that replace a given mathematical model
that is considerably smaller but still retains a reasonable level of accuracy and still
contains the relevant dynamics of the system is an active area of research in power
systems.

Traditionally, model order reduction of power systems can be categorized into
two classes [13]. The first is based on the application of coherency and aggregation
methods, which usually gives a reduced order nonlinear model. The second method
focuses on the external system that is less relevant to the part of the system under
consideration and consider it as an input-output model and thus resulting in a lower
order model.

In the electrical engineering community, dynamic equivalencing has been studied
since 1970s as a means to perform model reduction. The earliest researchers in this
field is Robin Podmare and the method proposed by Podmore [14] are still currently
being employed in the industry in updated form. Dynamic equivalency method is a
method based on the coherency and model reduction is achieved through aggregation
of coherent generators or similar elements of the power system. The method works
by identifying the elements of the power systems that are coherent and aggregating
these coherent machines into equivalent single element. The distribution of the
power system into the study system and an external system reduces the size of the
model because the disturbances in the study system does not effect significantly the
internal dynamics of the external system, although a sufficient level of connection
between the two needs to be maintained in order to accurately model the system for
the stability analysis. In large power grids, even after reduction the size of the model
is still significant and usually more than 5000 buses and around 1000 generators [13].

Model reduction of power grids based on coherency technique was also presented
in the study of Tanaka et al [15]. The main feature of their proposed model reduction
method is the capability that the short circuit current in the reduced model remains
equal to that of the original system and it reduces any radial or loop sub-systems.
The focus on matching the short circuit current in the reduced and the original
system is to retain the transient influence by the system disturbance. The proposed
method is utilized in the Japanese market, the authors have concluded that the
method is useful but there is little room for improvement in terms of accuracy and
proposed the research should be focused on other areas to improve accuracy such as
the modal truncation methods.
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1.3. Model Reduction of the Power Grids

1.3.1 Static Equivalent Methods

Physical power systems are large networks and as already established by the discus-
sion in the current chapter, needs some kind of model reduction to perform simu-
lation and analysis with available computing power in realistic time. Although the
static analysis of the power flow analysis is less complicated than the dynamic prob-
lems encountered in the power system studies, researchers still thrive to form reduced
models [16]. Static equivalent methods are developed simultaneously with dynamic
equivalencing methods around 1970s [17, 18, 19, 20]. There is a rich collection of
available literature and the study by Yu et al [16] have listed these categorizing them
according to the methods. These methods include the Thevenin equivalent method,
methods based on Ward equivalent [20] and REI equivalents. Müller and Nelles [21]
have utilized the ability of Artificial Neural Networks (ANN) to model non-linear
static systems and applied it on the static equivalent networks.

There are more recent work published on the topic of static equivalent methods,
but considering our focus of research is on the dynamic systems we switch our focus
to the model order reduction methods applied on the dynamic models of the power
systems.

1.3.2 Dynamic Equivalencing

Dynamic Equivalency is the earliest form of the model reduction in the research,
analysis and design of power system dynamics with the earliest work available from
Altalib and Krause [22], Podmore [14] and Rudnick et al [23]. With dynamic equiv-
alencing, a part of the network termed as an external system is replaced by an
equivalent system, a graphic example of this method is given in the manuscript of
Feng et al [24]. In the study by Feng et al, they have presented the solution for
dynamic equivalencing of networks in which distributed generation is present. The
ever growing renewable energy generation increases the size and complexity of the
power distribution network and it is very difficult to gather the exact data to model
it properly. The focus of the study of Feng et al has been on such systems and
presenting solutions for the dynamic equivalencing. The authors have used system
identification methods based on input/output observances and regarded the system
as a black box. The advantage in this technique is that with the unavailability of the
actual network structure and parameters, the system can still be reduced. Methods
used for system identification are ARX and State-Space from the MATLAB Sys-
tem Identification toolbox. The proposed method is proved to be accurate for the
cases where the type and location of disturbances is same as for the system used for
identification. If this changes, the accuracy levels drop which is the shortcoming of
this proposed method. Nevertheless, the advantage is in the strength that without
proper knowledge of the system parameters and structures, the method works.

Dynamic equivalencing methods are around since 1970s and Electric Power Re-
search Institute (EPRI) developed DYNRED computer program which is still being
employed in the industry. It has been updated and now includes online DSA (Dy-
namic Security Assessment) since 2010, this capability was tested by Ma et al and
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the results were published in their study in 2011 [25].
Dynamic equivalent method’s application depends upon the knowledge of the

structure and the parameters of the power grid and its components. In the study by
Feng et al [24], they proposed a method when these parameters are not known or
difficult to know for certain. Other researchers presented ways to get these param-
eters, one such method is the use of phasor measurement units (PMU). Anderson
and Chakrabortty [26] in their study presented their development of graph-theoretic
algorithms for placement of PMUs which are used to identify the dynamic equivalent
model. They have demonstrated their method on an IEEE 34-bus system, also they
have shown the dependence of PMU locations and the computational time of these
algorithms on network size and complexity. In an earlier paper by Chakrabortty et
al [27] presented a methodology of reducing a two-area power system to a dynamic
equivalent two machine system using the transient phasor measurements.

Takimoto [28] developed an algorithm for forming linear dynamic equivalents
based on the modal analysis claiming that it has greater accuracy. The model order
reduction is based on the aggregation of similar modes and also the elimination
of the inferior modes, the author further claims that it has no significant effect
on the frequency response of the subsystem and it is suitable for the steady-state
and transient stability analysis studies. A brief description of the steady-state and
transient stability analysis will be presented in the next chapter. The author has
combined the mathematical techniques of model reduction, i.e., the modal analysis
with the technique of dynamic equivalencing which is more prevalent in the electrical
engineering field. As described earlier the techniques based on the coherency tends
to have a lesser degree of accuracy compared with modal analysis but the author
has chosen a coordinate system which is the same as the reference generator D-Q
coordinate system instead of the R-J coordinate system. This allows the accuracy
to be better even the system becomes nonlinear. The number of modes to be kept in
the reduced system are managed in an intelligent way such that modes with similar
eigenvalues are aggregated and the reduction is performed without damaging the
frequency response. This means that some of the inferior modes have to be kept
considering they are important for the frequency response. The method was verified
using a power system consisting of 16 generators and it was shown that considerable
reduction was achieved without a significant loss of accuracy. This paper is very
interesting and it is suggested as a good read for researchers in the field of model
reduction of power grids. It provides very good insight into the model reduction and
its intricacies in the power system applications.

Singhavilai et al [29] presented a method to identify the dynamic equivalent of
a power system using online measuement with the knowledge of coherent genera-
tors. The authors have used the graph model for knowing the number of coherent
generators and their locations, thus eliminating the need for determination of the
dynamic parameters of the power system. The authors have proposed five steps
for the parameter identification which includes the graph model of the power sys-
tem, identifying the coherent generators, aggregation and the network reduction.
The method was demonstrated on a five bus power system and is shown to be re-
liable. There are other studies such as [30] which have proposed other methods for
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the identification of parameters for the purpose of dynamic equivalent. They have
demonstrated their approach on a 10 machine 39 bus New England test system and
proved their method retains all the dynamics properties of the original network.

There are a lot of developments on the topic of dynamic equivalence [31, 32, 33,
34]. In the study by Zhou et al [33] introduced the dynamic characteristics of loads
in the model reduction using the dynamic equivalent method. Hu et al [34] have
also presented the work with inclusion of dynamic characteristics of loads instead of
static load models.

Porkar et al [35] have presented a method using Frequency Domain method to
find a network equivalent for the external system. The method they have used is
the frequency dependent network equivalent (FDNE) and they have developed it by
approximating the admittance matrix by vector fitting method.

Recent developments have also seen researchers working with artificial neural
networks (ANN) [36] while Joo et al [37] have included the dynamics of the rotor and
the voltage in the coherency based dynamic equivalencing for the model reduction
purposes. Ouari et al [38] have proposed a method where the authors claim the
coefficients matrices structure is preserved in the time domain representation. A
detailed analysis and development through the years in the field of model reduction
using the coherency principle is given in the book by Joe H. Chow [13].

1.3.3 Model Reduction by Mathematical Analysis

A number of approximation schemes are available for model reduction and selec-
tion of an appropriate scheme depends upon the problem to be tackled so that a
suitable reduced order model is achieved [39]. The techniques defined by Bai et al
[39] includes Krylov-subspace techniques, Lanczos based methods such as MPVL
algorithm and SyMPVL etc. In the subsequent discussion we will keep focus on
the techniques used in model order reduction of the power grids’ simulation. The
methods presented in this section are other than the dynamic equivalencing meth-
ods and hence are more mathematical based model reduction. Takimoto [28] had
categorized model reduction techniques in his study into one more engineering based
and other mathematical based analysis and has presented a good reference base for
both techniques that were available at that time. Here, we present studies which
are published later than the study by Takimoto.

Chaniotis and Pai [40] have applied the Krylov Subspace methods in the model
reduction of the power systems and have proposed a connection between the Krylov
subspace model reduction and the previously discussed coherency in power systems.
The authors have used the Krylov subspace method to reduce a linearized model of
the external area of the power system and observed the effects of the model reduction
by introducing a fault in the study area. Another objective of their study was to
use this method for the identification of coherent generators in the external area.
The authors have demonstrated the application of their method on a system that
contains 50 machines in the external area of the power system.

The study by Parrilo et al. [41] presents the use of principal-orthogonal decom-
position based methods to reduce the hybrid, nonlinear model of a power network.
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1.3. Model Reduction of the Power Grids

The focus of their study is to develop a reduced order model that is capable of
approximating the global behavior of the hybrid nonlinear power network. The
authors used the “Swing Equations” which are the second order differential equa-
tions representing the rotor dynamics of the generator. These equations are used
to represent each generator node and used along with an algebraic equation to de-
note each load bus. The models described in the study are hybrid and nonlinear
interconnected systems. To model a physical power grid, the simulation using this
model become very large to handle and hence model reduction becomes important.
The difficulties in the model reduction for this case are presented by the hybrid and
nonlinear nature of the model. In this paper, the Karhunen-Loéve decomposition
is implemented. The Karhunen-Loéve decomposition provides for high dimensional
systems with state space is Rn, a method to find the smallest dimensional subspace
which contains observed points on the trajectories of the system. The subspace ob-
tained through this decomposition is then used to project upon the dynamics from a
Galerkin projection. Thus, the high-dimensional system is approximated by a small
number of nonlinear ordinary differential equations. The authors in this study also
used the concept of external area and a study area, where the one half of the grid
was reduced considering it as an external area while the area where the cascading
failure was introduced was kept in original dimension, thus considering it as a study
area. The results show excellent agreement between the original model with 100
states and the reduced model with 10 states only. It is one of the important studies
which formed the basis of our current study.

In the study by Sturk et al [42], applied the structured model reduction on the
power systems with an external area and a study area, the advantage the author
claims is that it reduces the external area to a low order linear system keeping the
nonlinear characteristic of the study system. In their study, the authors have lin-
earized the external area before applying the model reduction algorithm on this part
of the system. The method of structured model reduction is based on the concept
of balanced truncation and there is a necessary requirement of being asymptoti-
cally stable. The authors in this study have used MATLAB’s ode15s solver for the
solution of the high fidelity and reduced order models as these DAEs are stiff, a
phenomenon which contains both slow and fast dynamics. The same solver has also
been used in our current study. The authors have demonstrated their algorithm
using a 3 machine, 9 bus system and the system was reduced from 16 states to just
3 states. In another study by Sturk et al [43], the authors have presented the same
methodology of structured model reduction to power systems without the need to
identify the coherent group of generators.

Model reduction techniques like balanced truncation and optimal Hänkel are not
recent and have been applied in the model reduction of the power systems. A good
review of these and a couple of modified techniques have been presented in the study
by Bettayeb and Al-Saggaf [44] and their application to a single machine infinite bus
system. Comparison based on errors and transient responses are given between these
techniques and it has been shown that the balanced, weighted balanced, optimal
Hänkel and weighted optimal Hänkel are good model reduction methods. The two
unweighted methods perform good in terms of transient responses but their steady
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state behavior deteriorates which is improved in the weighted methods. Weighting
also improves the transient performances. Detailed descriptions of these methods
and their applications can be read from the chapter by Al-Saggaf and Bettayeb [45].

Cherid and Bettayeb [46] have presented reduced order models using balanced
representations, the focus of their study is the single machine power system. The
development is based on the state space representatiions and take into account the
controllability and observability concept. The results show that the reduced model is
accurate enough and a comparison with Davison reduction technique shows that the
balanced reduction method adopted in this study performs better in both transient
and steady state cases. In the study by Al-Saggaf [47], he has used the same balanced
representations for the model reduction for the purpose of dynamic control of a power
plant. The study by Al-Saggaf presented the development of dynamic equivalent
model reduction which is presented in the previous section with the use of balanced
state space representations.

Kashyap et al [48] have used model order reduction for the purpose of state
estimation of phasor measurement units (PMUs). The authors have proposed an
algorithm based on reduced-dimension matrices which operate separately on PMU
measurements and on conventional measurements. The proposed scheme is applica-
ble to distributed implementation and is reported to be numerically stable. PMUs
are used to measure electrical signals on an electric power grid and can be useful in
real time management of the power grid, for the purpose of real time management
state estimation (SE) is important. It is an initial step towards the implementation
of the smarter grids. PMUs can provide accurate, synchronized measurements of
voltage and current phasors sampled at upto 30 times per second, which is faster
than the traditional measurement methods. PMU measurements are available as real
and imaginary parts of the positive sequence voltage and current phasors. But, it is
infeasible to cover the whole grid with PMUs and therefore the measurements are
combined with the conventional instrument transformer measurements. The issue of
combining these two measurements has been studied and presented an efficient al-
gorithm. It is an iterative procedure where state vector is estimated using weighted
least squares approach. The algorithm was applied on a IEEE 14-bus system and
compared with existing schemes in the literature and demonstrated good accuracy.

Wille-Haussmann et al. [49] uses symbolic reduction approach to model lower
order grid segments. Symbolic model reduction technique is based upon looking at
the equations that describe the model and removing equations that do not influence
the specified variables. Symbolic reduction works by starting with the detailed
model and removing variables with negligible influence and aggregate the remaining
equations into a reduced model. The reductions can be either algebraic, branch,
switch reductions or term replacing or term cancellation. The study shows reduction
by a factor of 2 for a typical grid. This algorithm was used for the optimal operation
and control of smart grids.

The idea of using reduced order models for the real time control and optimization
is based on the necessity of solving the huge network of nodes encountered in smart
grids. The concept of proper generalized decomposition is applied for developing a
reduced order model of the smart grids.
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1.4 Motivation: Rationale and Advantages of Model

Reduction

From the literature review presented in the previous sections, it can be deduced
that most of the studies in the model reduction of power systems divide the power
grid in two parts, namely, 1) study area and 2) external area. The model reduction
albeit is applied only on the external area because it’s detailed study is not needed
and therefore is considered for the model reduction because a loss of accuracy and
details about the dynamics will not have a profound effect on the study area, while
the study area has been modeled in detail as it has to be completely accurate and
must capture the whole dynamic behavior.

The literature review presented in the previous sections demonstrates that there
are a lot of challenges and hence opportunities available in the simulation of smart
grids. The real time data available from the sensors in the distribution systems and
the end user will make the real time operations of the smart grid advance and will
enable customer engagement. The smart grids are the grids for the future and with
advanced computation and visualizations; it will enable state estimation, real time
contingency analysis and real time monitoring of dynamic behaviors in the system.
The biggest hurdle in the simulation and optimal control is the sheer size of the grid
network. This large domain makes traditional computational models inefficient and
time consuming for this purpose. Therefore, the need for an efficient reduced order
model so that the simulation and control of smart grids can be made possible in real
time arises. PGD as shown in so many applications offers a potential in the reduced
order modeling of the smart grids. It is demonstrated that the method of PGD can
reduce the number of computations significantly and hence will allow the real time
control possible and efficient.

In the current thesis, we endeavour to find a solution for the model reduction of
the whole grid without the distinction between the external area and the study area.
In doing so, our motivation is to have a reduced order model which is accurate enough
compared to the high fidelity model and must capture the important dynamics of
the power grid.

1.5 Objectives and Approach

The idea of having a model that can be used in real-time for control and prediction
of the dynamic behavior of the power grids is of prime concern in this study. The
design, analysis and optimization cycle for power grids require simulation models
that can be run repeatedly and provide reliable and accurate results.

For this purpose, one can not rely on full dimensional models for large complex
problems. The answer to this kind of problem lies in the model order reduction.
In the current research presented in this thesis, the objective is to search for such
model order reduction techniques that can be applied to non-linear dynamic models
involved in the simulation of power grids and develop reduced-order models. The
main objectives of the current research can be summarized as:
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1. Develop reduced-order model capable to efficiently simulate the high order
non-linear problems.

2. Develop reduced-order models that can be used with a broader range of input
variables without the need of constantly updating.

3. Preferably, use a priori model order reduction methods and build a database
of solutions that can be used in real-time analysis.

4. Present solutions for problems that are discovered during literature survey
which have complex solutions. Present alternative computationally efficient
model reduction solution techniques based on the methods of our expertise,
i.e., LATIN and PGD.

The approach that is adopted in this research is using the methods that are well-
understood for model order reduction on problems identified from the literature
review of model order reduction in power grids. A priori methods which form the
core competencies of our research group take the preference as the choice of method
but a posteriori methods are also applied. Because, in power systems most of the
studies focus on time-domain simulation we also approached the problem from time-
domain. However, in some cases our experience suggest that some problems can be
efficiently solved in frequency-domain and the model reduction methods are more
effective, we transformed the problem in to frequency-domain and then applied
our model reduction techniques. A general approach to the model order reduction
adopted in the current thesis is shown through a flow-chart presented in Figure 1.2.

1.6 Scope of the Thesis

Keeping in view the objectives defined in Sec. 1.5 and the literature survey presented
in Sec. 1.3, the thesis focuses on the transient dynamics of the power grids and
transmission lines. The thesis is divided into six chapters as:

1. Chapter 1 presents the literature survey and establishes the state of the art
of model order reduction in power grids.

2. Chapter 2 presents the models that are the focus of current research so that
the reader gets familiar with the problem in hand. Some standard model-
ing techniques are introduced in this chapter and fast non-linear solver such
as Alternating Search Directions (ASD) and Large Time Increment (LATIN)
methods are presented. The test problems dealt with in the current thesis are
also introduced and developed in this chapter.

3. Chapter 3 gives an overview of the a posteriori model order reduction meth-
ods in the time-domain studied for the current research and also presented
some initial results and discussions about the applications of the Proper Or-
thogonal Decomposition (POD) method. Then later in the chapter the method
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of Trajectory Piece-wise Linear (TPWL) method which also is a posteriori
method and its application on the swing dynamics model is presented. This
also serves as the first major contribution of the current research.

4. Chapter 4 and Chapter 5 presents the a priori method of the Proper Gen-
eralized Decomposition (PGD) for the transmission line models and simula-
tion. In Chapter 4, we present the PGD method as an harmonic solver using
Distributed Parameters model for transmission lines and present it as an al-
ternative model order reduction method. In Chapter 5, we present PGD as an
efficient solver for problems with frequency dependent parameters and provide
another major contribution of the current research.
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Chapter 2

Basics of Power Systems and
Problem Description

An introduction to the basics of the power systems and its elementary knowledge is
vital for the understanding of the research presented in this thesis. In this chapter,
we present a brief description of the power systems. The layout of the chapter is
such that it starts with very basic definition of power systems and its constituents,
later on in the chapter we will present different models used in the analysis and
design of power systems that have been used in this thesis. Finally, we setup the
test problem that will be the focus of research in the current study.
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2.2. Power System

Figure 2.1: Basic elements of a power system [1]

2.1 Power System

A general power system consists of source of electrical energy usually generators
or wind or solar powered renewable resources, a transmission and a distribution
network and at the end the user generally termed as loads.

Electric power systems have some basic characteristics:

• Consists of three-phase ac systems at constant voltage.

• Traditionally, synchronous machines are used for electricity generation. These
machines run on fossil fuel, some are nuclear powered and some are hydro pow-
ered and convert mechanical energy into electrical energy. Recently, renewable
resources are added into electricity generation.

• Transmission of power from generators to end users over long distances. The
transmission system for this purpose works on different voltage levels.

A schematic diagram of the components of the power system is given in Fig-
ure 2.1.
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2.2 Definitions

In this section, we present some definitions that have been used in this thesis.

2.2.1 Current

Electric current can be defined as the flow of electric charge, the charge is basically
the movement of electrons. The symbol for current is I and the SI units for current
are Ampere named after André-Marie Ampère.

Generally, the currents are classified either as Direct Current (DC) or Alternating
Current (AC). The difference between AC and DC is the direction of the flow of
electric charge. DC is the unidirectional flow of the electric charge while in AC the
electric charge periodically reverses direction, usually in a waveform defined by a
sine wave.

2.2.2 Voltage

Voltage also called as the potential difference is the difference in electric potential
energy between two points in a conductor. It represents the force that pushes the
electric charge from one place to another. Voltage can be considered as the work
done by per unit electric charge against a static electric field to move between two
points. It is denoted by the symbol V and the SI units are volts. The units are
named after the Italian scientist Alessandro Volta.

2.2.3 Ohm’s Law

Ohm’s law is the relation between the current and the voltage, it states that the
current passing through a conductor between two points is directly proportional to
the voltage applied across these two points. The relationship is presented as:

V = IR (2.1)

where, R is the proportionality constant defined as the resistance R with units
of Ω (ohms). The resistance is usually a material parameter depending upon the
conductor’s material and geometry.

2.2.4 Power

Power is defined as the rate of energy E consumed or transferred by an electrical
circuit per unit time. The SI unit of power is Watt (W) and is denoted by P .

P =
E

t
= V I (2.2)

Since, power can be absorbed or supplied by a electrical component, there are
two categories in which the components are placed.
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2.2.4.1 Passive Devices

Passive devices or loads are devices which consumes electric power and transform
them into other forms of energy such as heat, light, mechanical work etc. Examples
of passive devices are motors, light bulbs or electrical appliances.

For passive loads with linear relationship between current and voltage, Ohm’s
law can be used in the equation for power.

P = V I = I2R =
V 2

R
(2.3)

2.2.4.2 Active Devices

Active devices are components that generate power by converting other forms of
energy to electrical energy for example, chemical energy from a battery or mechanical
energy. These devices are called as power sources and common examples include
generators and batteries.

2.2.4.3 Complex Power

For AC currents, the power takes the form of complex power denoted by S. Given
voltage and current phasors V and I such that:

V = V ∠δ

I = I∠φ
(2.4)

Then the complex power S can be calculated as follows:

S = V I∗

= V ∠δ × I∠(−φ)

= V I∠(δ − φ)

= V I∠(θ) = V I cos θ − ιV I sin θ

(2.5)

where θ = δ−φ is the power angle (i.e phase difference between voltage and current).
The units of complex power are volt-ampere (VA). The power can be denoted as

S = P + ιQ (2.6)

where, P is defined as the active or real power with units watt (W) while the Q

is termed as the reactive power with the units of volt-ampere reactive (VAR). The
magnitude of the complex power |S| is called the apparent power.

2.2.5 Bus

In load flow or power flow studies, the graph node of a single-line diagram typically
with multiple connections at which voltage, current or power is to be calculated is
called a bus.
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Node Type |Vi| δi PGi QGi PLi QLi

Slack (Reference) � � × × � �

PQ (Load Bus) × × � � � �

PV (Voltage Control Bus) � × � × � �

Table 2.1: Classification of buses with knowns and unknowns

2.2.6 Classification Of Buses

Generally, the buses are classified into three types depending upon the information
known. A tabular representation of these buses is presented in Table 2.1.

2.2.6.1 Load Buses

In these buses no generators are connected and hence the generated real power
PGi and reactive power QGi are taken as zero. The load drawn by these buses are
defined by real power −PLi and reactive power −QLi in which the negative sign
accommodates for the power flowing out of the bus. This is why these buses are
sometimes referred to as P-Q bus. The objective of the load flow is to find the bus
voltage magnitude |V i| and its angle δi.

2.2.6.2 Voltage Controlled Buses

These are the buses where generators are connected. Therefore the power generation
in such buses is controlled through a prime mover while the terminal voltage is con-
trolled through the generator excitation. Keeping the input power constant through
turbine-governor control and keeping the bus voltage constant using automatic volt-
age regulator, we can specify constant PGi and |Vi|for these buses. This is why such
buses are also referred to as P-V buses. It is to be noted that the reactive power
supplied by the generator QGi depends on the system configuration and cannot be
specified in advance. Furthermore we have to find the unknown angle δi of the bus
voltage.

2.2.6.3 Slack or Swing Bus

Usually this bus is numbered 1 for the load flow studies. This bus sets the angular
reference for all the other buses. Since it is the angle difference between two voltage
sources that dictates the real and reactive power flow between them, the particular
angle of the slack bus is not important. However it sets the reference against which
angles of all the other bus voltages are measured. For this reason the angle of this
bus is usually chosen as 0◦. Furthermore it is assumed that the magnitude of the
voltage of this bus is known.
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2.2.7 Kirchhoff’s Laws

Kirchhoff’s law are a set of two laws one for current and one for voltage, together
with Ohm’s law provides a tool for the analysis of electrical circuits. These are

2.2.7.1 Kirchhoff’s Current Law

Kirchhoff’s current law (KCL) states that at every node in a circuit, the sum of all
currents entering must be equal to zero. It can be represented as:

N∑

n=1

in = 0 (2.7)

An alternative definition of KCL can be the sum of currents entering a node
must be equal to the sum of currents leaving the node. This law is based on the law
of conservation of charge.

2.2.7.2 Kirchhoff’s Voltage Law

Kirchhoff’s voltage law (KVL) states that the sum of voltages around a closed loop
in an electrical circuit must be zero. It can be mathematically represented as:

M∑

m=1

vn = 0 (2.8)

An alternative definition of KVL can be that the sum of voltage drops must
be equal to the sum of voltage rises in a closed loop. It is based on the law of
conservation of energy.

2.2.8 Admittance

Admittance is a measure of the ease with which an electrical current can pass through
a circuit and also it’s possibility of getting polarized which is a dynamic quantity.
It is a vector quantity comprised of two independent scalar quantities, namely, con-
ductance G and susceptance B. The units of admittance are siemens and is given
by the expression

Y = G+ ιB (2.9)

Conductance G is the inverse of resistance and it is the quantity which represents
the ease of passage of current through a circuit. The imaginary part of the admit-
tance is called the Susceptance B, it is the AC counter part of the conductance.
When an AC current passes through a component that has non-zero susceptance,
energy is alternately stored and released either through a magnetic field or an elec-
tric field. When the component through which current passes is an inductor, then it
produces a magnetic field and the susceptance is inductive and is assigned a negative
imaginary value. On the other hand if the component is a capacitor, an electric field
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is produced and the susceptance is called capacitive and is assigned positive imagi-
nary values. Both conductance and susceptance have the units same as admittance,
i.e., siemens.

Admittance is the inverse of impedance Z

Y =
1
Z

(2.10)

2.2.8.1 Bus Admittance Matrix

Bus admittance matrix or nodal admittance matrix (also called Y matrix or Y bus
or admittance matrix) is an N × N matrix representing a power system containing
N buses. The bus admittance matrix of a large power system has large number of
zeros and hence is quite sparse. In the power flow study, the knowledge of Y matrix
is fundamental. It provides a relation between the injected node currents and the
node voltages.

I = YbusV (2.11)

where, I is the vector of injected node currents and V is the vector containing node
voltages and Ybus is the bus admittance matrix.

2.2.9 Impedance

Impedance is the inverse of admittance and it describes the opposition that an
electric component or circuit offers to the flow of current. It is also a complex
variable and consists of resistance R and reactance X. Impedance is denoted by
symbol Z and the SI unit for impedance is ohms Ω. Mathematically,

Z = R + ιX (2.12)

In DC circuits, only the resistance R part of the impedance is present, but in the
AC circuits, the imaginary part reactance X is also present. The reactance is the re-
lated to the energy stored and released in inductive and capacitive components with
each AC cycle. Both resistance and reactance have the same units as impedance.

2.2.9.1 Bus Impedance Matrix

The inverse of the Bus Admittance Matrix is the Bus Impedance Matrix, also known
as Z-matrix or impedance matrix. Unlike, the admittance matrix, impedance matrix
can not be constructed by inspection.

V = ZbusI (2.13)

The calculation of Zbus can be done by inverting the admittance matrix, it is
very useful in short-circuit calculations. Also, unlike the bus admittance matrix,
bus impedance matrix is not sparse.

There are methods to build Zbus and Ybus which can be found in [50].
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2.3 Power Flow Analysis

The most fundamental study of a power system is the solution for steady-state
powers and voltages. It is important in system planning and operation and the
most commonly performed study in power systems [50]. For the purpose of power
flow analysis, the transmission system is modeled with nodes or buses representing
generators or loads which inject and consume power respectively. These nodes are
interconnected using transmission links and the topology of the network is given by
either the bus admittance or bus impedance matrix.

The aim of the power flow study is to ensure that the power is delivered to
the consumers within an acceptable voltage and frequency limits and reliably. In
the power flow analysis, the complex power demanded by loads SLi is known and
constant. Power flow study requires the relationship between the complex power
generated SGi, load demand SLi and the bus voltages Vi across the network. This
relation is given by the equations termed as “Power Flow Equations”, which is
presented in the Sec. 2.3.1.1.

In a few simple cases, power flow problems can be solved analytically but in most
cases the power grid is too big to solve analytically and hence numerical methods
are often applied for the solution. The numerical methods typically applied in the
power flow analysis are:

• Guass Iteration

• Guass-Seidel Iteration

• Newton-Raphson Iteration

We explain the power flow problem using the standard method of Newton-
Raphson in the next section.

2.3.1 Newton-Raphson

Newton-Raphson method is the second most commonly used power flow solution
method after Gauss-Seidel Iteration method. The main idea behind Newton-Raphson
is the linearization of the nonlinear power balance equations. We will explain the
Newton-Raphson method using a general problem.

We assume a function f(x) n-dimensional function of variable x also an n-
dimensional vector. Then, the problem is defined as find x̂ such that f(x̂) = 0.

x =




x1

x2
...
xn




, f(x) =




f1(x)
f2(x)
...

fn(x)




(2.14)

Newton-Raphson method is based on the first order linearization of the function.
The linearization is carried out using the Taylor Series expansion, for multi-variable
functions Tayler series is written as:
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f1(x̂) = f1(x) +
∂f1(x)
∂x1

∆x1 +
∂f1(x)
∂x2

∆x2 + · · ·+
∂f1(x)
∂xn

∆xn + higher order terms

...

fn(x̂) = fn(x) +
∂fn(x)
∂x1

∆x1 +
∂fn(x)
∂x2

∆x2 + · · ·+
∂fn(x)
∂xn

∆xn + higher order terms

(2.15)

In matrix terms, it can be represented as

f(x̂) =




f1(x)
f2(x)
...

fn(x)



=




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
. . . . . .

...
∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xn







∆x1

∆x2
...

∆xn



+ higher order terms (2.16)

The matrix with the partial derivatives is the Jacobian matrix J(x). The steps
for the solution based on Newton-Raphson method are:

1. Make an initial guess xi.

2. Linearize the function f(x) using the Jacobian J(x) at xi.

3. Define the increment ∆x ≈ −J(x)−1f(x)

4. Update the previous value of xi with the increment calculated from the first
order approximation as xi+1 = ∆xi + xi

5. Iterate until convergence

There are certain advantages of the Newton-Raphson method. It has a quadratic
rate of convergence, which means that when the error becomes small the solution
converges very quickly. But, this has a negative side effect as well, the solution
depends upon initial guess and it can diverge very quickly as well. We now discuss
the application of Newton-Raphson method to Power Flow Analysis.

2.3.1.1 Power Flow Equations

The equations governing the power flow in a network are the power balance equa-
tions.

Si = ViI
∗

i (2.17)

where I∗

i is the complex conjugate of current Ii entering the node i. The current Ii
can be replaced with the Kirchoff’s current law at node i:

Ii =
n∑

k=1

YikVk (2.18)
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2.3. Power Flow Analysis

The admittance Yik is the sum of conductances Gik and the susceptances Bik of
the line connecting node i and k.

Yik = Gik + ιBik (2.19)

The power Si in terms of active and reactive powers is defined as:

Si = Pi + ιQi (2.20)

Replacing the current in eq. (2.17) with the Kirchoff’s law given in eq. (2.18), and
recalling the complex form of the voltage we have

Si = Vi
n∑

k=1

Y ∗

ikV
∗

k =
n∑

k=1

|Vi||Vk|e
ιθik(Gik − ιBik)

=
n∑

k=1

|Vi||Vk|(cos θik + ι sin θik)(Gik − ιBik)
(2.21)

Writing the active and reactive power as the real and imaginary parts of the
power balance equations

Pi =
n∑

k=1

|Vi||Vk|(Gik cos θik +Bikι sin θik) = PGi − PLi

Qi =
n∑

k=1

|Vi||Vk|(Gik sin θik − Bikι cos θik) = QGi − QLi

(2.22)

where subscripts G and L represent the power generated and the power load de-
manded at each node. So, now the power balance equations that are needed to be
solved to find the voltage magnitude and phases are defined, we apply the Newton-
Raphson algorithm defined on this problem. Rewriting the equations in eq. (2.22)
as

n∑

k=1

|Vi||Vk|(Gik cos θik +Bikι sin θik)− PGi + PLi = 0

n∑

k=1

|Vi||Vk|(Gik sin θik − Bikι cos θik)− QGi +QLi = 0
(2.23)

and adopting the notation of P (x) for the first term in the first of the equations and
Q(x) for the first term in the second equation,

Pi(x)− PGi + PLi = 0

Qi(x)− QGi +QLi = 0
(2.24)

In power flow solution, one of the nodes is taken as the reference termed as the
“slack bus”, at the slack bus both the voltage magnitude and phase is known instead
of the power generated and demanded. Once the voltage magnitudes and phases are
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Iteration New Solution Error

1

[
−0.2
0.9

] [
0.2
0.1

]

2

[
−0.233
0.8586

] [
0.033
0.0411

]

3

[
−0.236
0.8554

] [
0.003
0.0035

]

Table 2.2: Newton-Raphson Iterations for two bus example problem

The iterations and the results are presented in Table 2.2.

Result: x =

[
θ2

|V2|

]
=

[
−13.52◦

0.8554

]

The results and iterations listed in Table 2.2 indicated the rapid convergence
of the Newton-Raphson algorithm. But, as stated earlier the convergence to the
correct solution inordinately depends on the initial guess. Just as an example, if we

had chosen an initial condition to be

[
θ

(0)
2

|V2|
(0)

]
=

[
0
0.25

]
. The solution would then

converged to a different solution that we call a low voltage solution. x =

[
θ2

|V2|

]
=

[
−49.91◦

0.261

]

This situation is explained through the Figure 2.3. The figure shows two hyper-
bolic curves representing the eq. (2.17) and a straight line representing eq. (2.18).
The two points denoted by s1 and s2 are the two initial guesses which lead to differ-
ent solutions on the hyperbolic curves of eq. (2.17), the solution converged in the
negative x-y quadrant is the low voltage solution while the solution converged in the
positive x-y quadrant represents the correct high voltage solution.

This is explained in detail in Figure 2.4 for what values of voltage magnitude and
angle can be selected for the initial guess so that the method converges to the high
voltage solution. On the x-axis is the phase angle and on the y-axis is the magnitude.
Red region represents the convergence to the high voltage solution while the yellow
region shows the initial value which leads to the low voltage solution.

2.3.2 Alternating Search Direction

A new method of Alternating Search Directions (ASD) was proposed for the solu-
tion of load flow problems. The motivation was that a method should be adopted
in which the computationally cumbersome calculations of Jacobian matrix can be
avoided instead a fixed direction should be selected for all iterations. Hence the com-
putation of the search direction matrices can be done only once before the iteration
process starts. There is an additional benefit of this method and it is the guaranteed
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β
α

s2 s1

high voltage sol.

low voltage sol.

I
=

Y
(V

−

V
0
)

I = S∗

V ∗

I
=

S
∗

V
∗

Figure 2.3: Convergence of the NR method w.r.t. initial guess

Figure 2.4: Region of convergence w.r.t. initial guess
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conversion to the high voltage solution and hence the probability of wrong solution
because of the initial guess is thus eliminated completely.

In order to explain the method better,we will forgo the index notation and present
the equations in vector notation. Rewriting eq. (2.17) in vector notation and intro-
ducing I0 as the constant current in the same equation.

YV = I0 + I (2.26)

A few symbols that are used in the future are defined here, ⊙ denotes the
Hadamard component-wise product of vectors and ⊘ denotes the component-wise
quotient of vectors. The power balance equations in vector notation is written as:

S = V ⊙ I∗ (2.27)

In the method of alternating search directions, we use the equations described
by (2.26) and (2.27) and introduce two additional linear equations. One single
iteration of the method, involves solving these four equations in total in two steps.
The additional equations that are introduced define the search directions and provide
a linear relationship between the currents and voltages at each node. One of the
each additional equation is paired with eqs. (2.26) and (2.27), for an iteration l, we
can express the pair of equations as:





I [l+(1/2)] − I [l] = α(V [l+(1/2)] − V [l])

Y V [l+(1/2)] = I0 + I [l+(1/2)]
(2.28)

The superscipt notation [l + (1/2)] in (2.28) represent the intermediate step in
the iteration l. The matrix α ∈ C

n×n is known a priori, is the search direction for
the first step. For the second step of the iteration, a matrix β ∈ C

n×n is used as the
search direction and the second pair of equation is:





I [l+1] − I [l+(1/2)] = β(V [l+1] − V [l+(1/2)])

V [l+1]∗ ⊙ I [l+1] = S∗
(2.29)

2.3.2.1 ASD method algorithm

The algorithm of alternating search direction method is simple, here we will briefly
describe the algorithm and later apply it on a simple problem to demonstrate the
method.

1. Given the system attributes like the admittance Y matrix, power demanded
and generated at each node Si and I0.

2. Select the search direction matrices α and β, be sure they are not identical.

3. Evaluate the matrix (Y − α), this is done only once at the beginning of the
iteration procedure.

4. Calculate the initial voltage using the two equations in (2.29).
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2.3. Power Flow Analysis

5. Using the pair of equations in (2.28) and (2.29), alternate between evaluating
V and I until convergence is achieved.

2.3.2.2 Advantages of ASD method

Alternating search directions offer various advantages over the conventional methods
used for power flow problems like Gauss-Seidel and Newton-Raphson methods.

1. The main advantage over the Newton-Raphson method is the computationally
efficient algorithm without the need of evaluating Jacobian at each iteration.

2. The method converges quicker than Gauss-Seidel method and needs around
similar iterations as Newton-Raphson. The comparison of iterations needed
for convergence between these methods was studied by a group including the
author in a study [51].

3. The method guarantees convergence to the high-voltage solution, a problem
which requires attention in conventional methods. The equations of (2.29) can
be solved analytically and a quadratic equation is formed. The root with posi-
tive determinant of the resulting quadratic equation is selected to progress the
solution, this results in the solution convergence to the high voltage solution.
This is explained in the Figure 2.5 for an example problem that we used for
the Newton-Raphson method.

4. The coupled non-linearity is tackled separately by dividing the problem in a
global linear part and a local non-linear part, the equation pair (2.28) is the
global linear part of the problem and the equation pair (2.29) is the non-linear
problem solved locally at each nodes.

s1s2 β

α

high voltage sol.

low voltage sol.

I
=

Y
(V

−

V
0
)

I = S∗

V ∗

I
=

S
∗

V
∗

Figure 2.5: Convergence of the ASD method w.r.t. initial guess
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Description Symbol Value

Total Buses N 100
Number of Generators Ngen 4
Number of Loads Nload 96
Power Generated SGi 1 + 0ι [p.u.]
Power Demanded at loads SDi −SGi/(N − Ngen) [p.u.]
Slack bus Voltage V1 1 + 0ι [p.u.]

Table 2.3: Values used for parameters in POD model reduction

2.3.3 Application of ASD to an Example Problem

This is a simple explanation of the method of alternating search directions, a detailed
insight into the method can be found in [52]. The method was applied to an example
problem, the grid we consider in this study is a grid of 100 buses, same as the grid
in the study of Parrilo et al [41]. The grid is represented by nodes in a square mesh
of 10 by 10. We have 4 nodes representing as generators and the rest are considered
as load buses. Node 1 was considered as the slack node and nodes 23, 28, 73 and
78 are the generators. Figure 2.6 shows the grid with the positions of generators
marked by red circles.

Figure 2.6: A 10 by 10 grid with 4 generators

The generators are assumed to deliver 1 p.u. power each and the power de-
manded at each load buses is assumed equal and the sum of the demanded power
at all the load buses is equivalent to the power generated by the generator buses.
The admittances are considered real only and are selected random for the linkages
between any buses. The values are listed in Table 2.3.

2.3.3.1 Search Directions

The matrices α and β are the search direction matrices of order Cn×n. The choice
of these matrices depends upon the problem and can be selected without any re-
striction. The only limit on the choice of these matrices is that they should not be
identical, which will lead the search directions to become parallel.
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2.3. Power Flow Analysis

In the example problem discussed here, the choice of matrices α and β has
been based upon the admittance matrix Y . The admittance matrices for the power
systems in general are sparse matrix and therefore relying on the admittance matrix
for the search direction matrices results in these matrices being sparse themselves.
This is specially fruitful in terms of memory requirements for large power grids. The
matrix α is taken to be a diagonal only matrix with the entries equal to the inverse
of the entries of the admittance matrix, while the β is a diagonal matrix also with
the entries same as the diagonal entries of the admittance matrix, i.e.,

αij =




0 if j 
= i

− 1
Yii

if j = i
(2.30)

βij =




0 if j 
= i

Yii if j = i
(2.31)

The choice of β is such that it should be close to the admittance matrix.

2.3.3.2 Steps of the Solution Procedure

Let us illustrate the method algorithm using the example we have chosen.

1. We begin with the calculation of voltages using the local non-linear set of
equations (2.29).

V ∗[0] ⊙ (I [0] − I0) = S∗

βV [0] = I [0]
(2.32)

2. Eliminate I [0] and derive a quadratic equation in terms of V [0]

V [0] =
I0 ±

√
I2

0 + 4βS

2β
(2.33)

3. Select the root with positive determinant
√
I2

0 + 4βS because it represents the
high voltage solution which is the physical solution.

4. Calculate I [0] using the power balance equations in (2.32).

5. Calculate V [1/2] from the linear set of the problem given in (2.28), eliminiating
I and forming the equations in terms of V , we have

− [Y − α]V [1/2] = I [0] − αV [0] + I0 (2.34)

6. Calculate I [1/2] using the Kirchoff’s law, the second equation in (2.28).
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2.4. Power System Stability

7. Now, we calculate the voltage V [1] using (2.29), again combining the two equa-
tions to eliminate I [1] and derive a quadratic equation whose solution can be

V [1] =
(β − I [1/2] + I0)±

√
(β − I [1/2] + I0)2 + 4βS

2β
(2.35)

8. Selecting the root with positive determinant of eq. (2.35) and calculate I [1]

using the power balance equation.

9. Iterate until convergence is achieved within a prescribed tolerance.

2.3.3.3 Results

The method converges very quickly for a grid which has admittance values in the
order of O(10), the results are graphically illustrated in the figure 2.7. The voltage
magnitude is real as expected and the number of iterations required is 60 presented
in the Figure 2.9 and the time for convergence is about 3 secs. The voltages in the
whole grid is close to the voltage of the slack node and also the phase angles of all
the buses are close to the phase of the slack bus which is an indication of the system
in static stability as demonstrated in the figures 2.7. Similarly, the solutions for
current are presented in figures 2.8.

For the case, with low admittance matrix the method is able to converge and
has the ability to demonstrate the instability of the power grid, one by the number
of iterations increase several times to about 1600 iterations before the solution is
converged. Although the number of iterations increase in the case of unstable solu-
tions the time required is still around 5 secs. This demonstrates the potential of the
alternating search direction method for the use of power flow analysis. The results
for the low admittance case are presented in figures 2.10 and the iterations required
for convergence are presented in figure 2.12. The graphic solution presented in the
figures 2.10 shows that the voltages in nodes other than slack bus become too large
and also have an imaginary component as well as the phase angles of the buses are
very high compared to the slack bus which leads to the coherent swing instability.

The method is applied to a couple of benchmark problems and has been published
[51] with the comparison made with Gauss-Seidel and Newton-Raphson methods.

2.4 Power System Stability

Power system stability has been an important area of research since 1920’s [53]. The
stability of power systems is of vital importance because of the losses can run into
billions in case of instabilities leading to failure of the power grids [1]. Historically,
the focus remained on the transient stability of the grids and hence we have also
decided to focus our research and development of reduced order models for the
study of transient stability. The transient stability is concerned with the issue of
maintaining synchronism between generators after a severe disturbance [50]. The
disturbance can come from many sources for example a lightning strike. Typically,
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(a) Real Voltage (b) Imaginary Voltage

(c) Voltage Phase

Figure 2.7: Voltage magnitude and phase for high admittance values

(a) Real Current (b) Imaginary Current

Figure 2.8: Solution of Current for high admittance values
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Figure 2.9: ASD iterations for high admittance values

there are procedures associated with the fault occurences such as these to clear the
fault. The sequence of events called a fault sequence generates a transient through
the power system [50].

2.5 Swing dynamics equations

A mathematical model to describe the transient dynamics of power systems is the
“Swing Dynamics” [50]. It involves a second order differential equation representing
the generator node or bus which originates from the rotor dynamics of the generator
and an algebraic equation associated with the load bus. The differential equation
for the ith bus:

miδ̈i + diδ̇i = pmi − pi for i = 1, ..., N (2.36)

The unknown in the equation (2.36) is δi(t) and i varies from i = 1, ..., N where
N represents the number of nodes in the system. The variables δi represent the
generator rotor angle derivations with respect to a synchronously rotating frame,
while δ̇i and δ̈i are respectively the first and the second time derivatives of the rotor
angle. The quantities pmi and pi are the mechanical power input and the electrical
power output and are given. The parameters mi and di are the ith generator’s
normalized inertia and damping coefficients.

The expression for the electrical power output is given by:

pi =
N∑

k=1

|Vi||Vk|bik sin(δi − δk) for i = 1, ..., N (2.37)

In equation (2.37), Vi = |Vi|e
ιδi , and yik = gik + ιbik represents the complex

admittance matrix with bik is the line susceptance and gik is the line conductance,
it is assumed that voltage magnitudes |Vi| do not change and the transmission line
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(a) Real Voltage (b) Imaginary Voltage

(c) Voltage Phase

Figure 2.10: Voltage magnitude and phase for low admittance values

(a) Real Current (b) Imaginary Current

Figure 2.11: Solution of Current for low admittance values
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Figure 2.12: ASD iterations for low admittance values

losses are negligible, i.e. yik is purely imaginary (gik = 0). Using eq. (2.37) in eq.
(2.36) gives, The term bik is the line susceptance between buses i and k, and is 0 if
these two buses are not connected and also in the case i=k.

miδ̈i + diδ̇i = pmi −
N∑

k=1

|Vi||Vk|bik sin(δi − δk) for i = 1, ..., N (2.38)

Until this point, we have considered the grid as consisting of only generators
which are considered as PV buses and are represented by a differential equation
given in eq. (2.38). However, a general power grids consists of both generation units
and loads where that power is consumed. For a node where we have a load, the
equation representing the bus is an algebraic one which is a simple power balance
equation

pli = −pi (2.39)

In the limit when the motor constants are zero, we obtain a differential-algebraic
equation (DAE) system, which can be interpreted as the singular perturbation limit
of the model presented.

We can combine the differential equation of (2.36) and the algebraic equation
of (2.39) in order to have a system of differential algebraic equations that represent
the whole grid. In this case, we can write the swing equations in the form:

γi
(
miδ̈(t) + diδ̇(t)− pmi

)
+ (1− γi) pli = −pi (2.40)

Replacing pi using eq. (2.37),

γi
(
miδ̈(t) + diδ̇(t)− pmi

)
+ (1− γi) pli = −

∑

j

|Vi||Vj|bij sin(δi(t)− δj(t)) (2.41)
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Where, γi represents the locations of generators, 1 for the generator node and 0
elsewhere. PLi

is the power consumed at the ith node.
Equation (2.38) describes the transient dynamics of the power system under

the assumption that the lines are purely reactive and voltage magnitudes are kept
constant [41].

In the current study, several techniques are employed for the purpose of model
order reduction. It is to be noted in the framework of POD and other model reduc-
tion methods, mathematical manipulations of system (2.38) are more easily handled
using matrix and vector representations. Hence, we present the system of equations
in matrix form:

[M ]{δ̈}+ [D]{δ̇} = {pm} − {p({δ})} (2.42)

Where, [M ] and [D] are N × N diagonal matrices, while {δ̈}, {δ̇} and {δ} are
vectors in R

N , N being the number of nodes in the grid. Note that, the notation
[M ]{δ̈} stands for the matrix-vector product. The vector {p({δ})} is a nonlinear
function of {δ}. Eq. (2.42) is the high fidelity model of the swing dynamics in
contrast to the reduced order model that is developed based on the high fidelity
model.

The differential-algebraic equation (2.41) can also be written in matrix form as:

{γ}
(
[M ]{δ̈}+ [D]{δ̇} − {pm}

)
+

(
31− {γ}

)
{pl} = −{p({δ})} (2.43)

where {γ} is a vector with indices equal to one coinciding the generator nodes and
zero elsewhere.

2.5.1 Coherent Swing Instability

The transient stability of power grids is very important for the continuous function
and transmission of power through the grid. The coupled nature of the synchronous
rotating machines in a neighborhood make the grid susceptable to transient insta-
bilities when one of the power generator is subjected to a disturbance. The coupled
swing dynamics of rotating machines in a neighborhood can lead to coherent swing
instability, which means that if one of the generator is subjected to a large enough
disturbance that it causes it to loose synchronicity with the neighboring generators.
If the generator that is the subject of disturbance doesn’t reverse back to the original
stable position with respect to the phase δ, it can cause other generators to follow
and start oscillations. This loss of transient stability can cause large power outages
such as the one in Italy [54].

2.5.2 Cascading Failure

A cascading failure is defined as the successive failure of most of the machines in a
multi-machine system caused by a fault in a part of the system. This type of failure
can occur in any system of interconnected parts including computer networking,
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financial markets etc. We are here focused on the power transmissions systems and
cascading failure in power grids is the result of disturbances in the grid. Cascading
failures can result in large blackouts of power supply [55]. In a study by IEEE PES
CAMS task force has detailed various reasons that lead to cascading failures in [56].

The definition of cascading failures as given in [56] is that sequence of depen-
dent failures of individual components that successively weakens the power system.
Typically an overload of a transmission line leads to its failure which then overloads
the neighboring transmission lines, if the failure is not contained then it can lead
to a total failure of the grid and results in a blackout [55]. In the study by IEEE
PES CAMS task force [56], they have adopted a wider view of cascading failures
and included in addition to electrical components, other events such as software or
control systems as well as human error in the propagation of cascading failure.

2.6 Non-linear Methods for Dynamic Problems

The results of the static problem gives the confidence in the application of fast non-
linear solvers like the ASD and their ability to be used successfully in power grids
simulations. Since, the main focus of this current research is in the dynamic cases
of the power grids like the transient stability. We now present the methods and
results for the dynamic problems in power systems. For the dynamic problems, we
have two options of time-domain simulation and frequency-domain simulations. We
will present methods for both the domains, starting with the time-domain methods.
Time-domain simulation is preferred more in the studies of power systems, even when
the solution is easy to compute in frequency-domain the results are then transformed
to the time-domain because the overall grid studies involve component-wise analysis
which is comparatively simple to combine in time-domain.

Transient stability of the power grids is a keen area of research because of its im-
plications in the power system planning, operation and control. Energy based meth-
ods for the transient analysis of power grids were developed originally by Mangnusson
[57] and Aylett [58]. The substantial size of power grids makes the transient analysis
computationally costly to simulate and therefore a need of model order reduction
arises. Reduced order models need to be computationally cost-effective while retain-
ing considerable accuracy of the full model in large network grids simulations.

Real time analysis and monitoring of non-linear swing dynamics of power grids
requires simulation of very large number of nodes therfore a reduced order model
of the network is a key for quick on the fly simulations. A number of model order
reduction methods are discussed in the literature. In this section we would discuss
some of these methods and their relevance in the model order reduction of the non-
linear swing dynamics of the power grids.

A number of approximation schemes are available for model reduction and se-
lection of an appropriate scheme depends upon the problem to be solved so that
a suitable reduced order model is achieved [59]. Some of the earliest methods in
the domain of model order reduction are Truncated Balance Realization proposed
by Moore in 1981, Hankel-norm reduction published in 1984 by Glover [60], Proper
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Orthogonal Decomposition (POD) [61], Assymptotic Waveform Evaluation, PRIMA
[60] and a more recent Proper Generalized Decomposition (PGD) [62]. There are
more recent methods which are modified form of these fundamental methods tailored
for specific problems such as the Laguerre-SVD method [63]. The techniques defined
by Bai et al [39] includes Krylov-subspace techniques, Lanczos based methods such
as MPVL algorithm and SyMPVL among others for the reduced order modeling in
the electromagnetic applications.

As a precursor to the a priori model order reduction methods in time-domain
for transient problems we start with the method of Large Time INcrement (LATIN)
which is the predecessor of ASD method and is considered as a fast, non-iterative in
time, solver for non-linear dynamic problems. Although, not strictly a model order
reduction method but considering LATIN is a non-incremental method, it can result
in significant savings in computational time.

2.7 Fast Solution Methods in Time-Domain

In time-domain dynamic problems, we are interested in the transient dynamics of
the power grids. In this section, we present the method of LATIN for the solution
of non-linear problem of transient dynamics of power grids.

2.7.1 Problem Statement

The mathematical model used to describe the dynamical behavior of buses in a
power grid is the “Swing Dynamics” model that we described in Sec 2.5. The swing
equations are recalled here,

miδ̈i + diδ̇i = pmi −
N∑

k=1

|Vi||Vk|bik sin(δi − δk) for i = 1, ..., N (2.44)

The variable of interest is the phase δi of voltages at each bus i. This is because
the coherent swing instabilities defined in Chapter 2 are the results of the phases
angles of the coherent generators going out of sync due to some external disturbance.
In the following discussion, we will focus on a grid termed as “ring grid”. The grid is
formed in such a way that all the nodes or buses are considered as PV nodes, i.e., all
the nodes have generators and each generator is connected to only two generators
such that in a ring, an example of such a grid is presented in Figure 2.13. Therefore,
the term ring grid, additionally there is also a slack bus which is simultaneously
connected with all the generators, similar to the ring grid presented in the study of
Susuki et al. [54].

We are interested in this problem because of the potential it has to develop in
to an unstable condition defined as the coherent swing instabilities, presented in
Sec. 2.5.1. The grid in this part of our study is the same as in the study of Susuki
et al. [54]. The swing equations presented in (2.44) are used to model the dynamics
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N identical

generators Infinite bus

Figure 2.13: A ring grid power network. Blue circles representing generators con-
nected to an infinite bus

of the ring grid, since the grid does not include any load (PQ) buses, the equations
are purely differential equations.

A list of assumptions for the grid in the current study are:

• The power grid is loss-less

• The generators are small and the ratio between the length of transmission line
joining generators to the infinite bus and the length of transmission line joining
two consecutive generators is much bigger. Hence, the interaction between a
generator and infinite bus is much smaller than the interaction between two
neighboring generators

• Transmission lines joining two consecutive generators is shorter than the line
joining the generators with the infinite bus

• Transmission lines between the infinite bus and all the generators are of same
length

• Transmission lines connecting the generators are of same length

With the assumptions made above, the form of the right hand side of eq. (2.44)
representing the non-linear function of power demanded at bus i changes, recalling
the power demanded pi(δ) given by the equation from Chapter 2,

pi(δ) =
N∑

k=1

|Vi||Vk|bik sin(δi − δk) (2.45)

The generator at node i now connects with two other generators at buses (i− 1)
and (i+ 1) and also with the slack node. The susceptance between two consecutive
generators is denoted by bint and the susceptance between any generator and the
slack node is denoted by b and it is assumed that the values of bint and b are same
for every connection between two generators and a generator and slack bus. Since,
the nodes are considered as PV nodes, this means that the voltage magnitude at

44



2.7. Fast Solution Methods in Time-Domain

Symbol Description Value

mi Mass of the generators 1 [p.u.]
|Vi| Voltage Magnitude of generator 1 [p.u.]
pmi Power generated by the generators 0.95 [p.u.]
b Susceptance between generator and slack node 1 [p.u.]
bint Susceptance between consecutive generators 100 [p.u.]
N Number of generators 20

Table 2.4: Grid Data

each node is known and for simplification it is taken to be one. The mass of the
generators are assumed to be one and the system is assumed to be undamped. The
properties of the grid are listed in Table 2.4. The eq. (2.45) for the ring grid is
modified to be:

pi(δ) = +b sin δi + bint{sin(δi − δi−1) + sin(δi − δi+1)} (2.46)

Therefore, the swing dynamics equation takes the following form.

δ̈ = pmi − b sin δi − bint{sin(δi − δi−1) + sin(δi − δi+1)} (2.47)

We apply initially Newton-Raphson method on this problem and then apply
methods which should be computationally faster and economical than the Newton’s
method.

2.7.2 Newton-Raphson

Newton’s method (Newton-Raphson method) as described in the Sec. 2.3.1 is com-
monly used in the electrical engineering community. The method is very well known
and simple to implement. In the current section, we make use of the MATLAB’s
built-in ODE solver ode15s to implement Newton’s method and use it as a reference
for the performance of other methods. MATLAB’s ODE solver ode15s is based on
the “Backward Differentiation” formulae of order 1 to 5. The solver is suited ideally
for stiff problems or problems with differential-algebraic-equations (DAEs) which is
the case in swing dynamics model when we consider both PQ and PV nodes, where
PV nodes are represented by differential equations and PQ nodes are represented
by non-linear algebraic equations.

The main concept of the Newton’s method is to find the roots of a problem in an
iterative solver. As defined in Sec. 2.3.1, the method requires the first derivative and
in the current case this derivative is the Jacobian matrix. In order to implement,
the eq. given by eq. (2.47) is divided into two first order differential equations by
assuming δ̇i(t) = ωi(t), therefore,
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2.7. Fast Solution Methods in Time-Domain

Symbol Description Value

T Total time of simulation 2.5 [s]
∆T Time step 0.001 [s]
Nt Total time snapshots 2500

Table 2.5: Training trajectories data

dδi
dt

= ωi

dωi
dt

= pmi − b sin δi − bint{sin(δi − δi−1) + sin(δi − δi+1)}
(2.48)

The time step and the total time of simulation are listed in the Table 2.5. The
results are graphically presented in in Figure 2.14 where each line represents the
dynamics of individual generator, an average value of the generators’ phase angle is
given in in Figure 2.15.

Figure 2.14: Evolution of phase angle δi after initial disturbance

2.7.3 LATIN

LATIN stands for “LArge Time INcrement” method and the method of Alternat-
ing Search Direction (ASD) described in Sec. 2.3.2 is inspired by this method. As
was the case in ASD, the method is divided into two parts, a global linear and the
other local non-linear part. The obvious difference between the two methods is that
LATIN is adapted for dynamic problems. The biggest advantage of LATIN method
is the non-incremental nature of the method, which means that this method is not
an iterative solver in time-domain. It is an alternative to Newton-Raphson method

46



2.7. Fast Solution Methods in Time-Domain

Figure 2.15: Average value of δ for all buses

which we have described is an iterative procedure in time-domain as well. One
can argue that LATIN method itself uses iterations but that iterative procedure is
needed to converge to the solution but the method is non-incremental in time. The
time domain can be solved completely in one iteration. The method was initially
developed for problems in mechanics of materials by Ladevèze [52]. The idea orig-
inated by Pierre Ladevèze for problems where the non-linear part was local in the
physical space, the separation of the space-time representation was thus proposed
where the global part was linear and the non-linearity was in the local part of the
problem. The time-dependent non-linear function was integrated locally [64].

The problem we are dealing in the transient dynamics of power grids is given
by eq. (2.48). Before, moving further, we transform our equation for voltage to the
complex plane from the polar coordinate system, because the magnitude at each
node is assumed to be known and fixed.

V = |V |(cos δ + ι sin δ) (2.49)

Also, we can write the right hand side of the eq. (2.48) in terms of the complex
power formula, therefore eq. (2.48) can be written as:

dωi
dt

= pmi − ℜ[V I∗] (2.50)

The equations as per the procedure of LATIN method is divided into local non-
linear and global linear parts as:

Local





δ̇ = ω

ω̇ = pmi − ℜ[V [l]I [l]∗]

V [l] = |V |(cos δ + ι sin δ)

I [l+(1/2)] − I [l] = β(V [l+(1/2)] − V [l])

(2.51)
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Figure 2.16: Evolution of phase angle δi after initial disturbance using LATIN

where I0 represents the contribution from the slack bus. The superscipt notation
[l+(1/2)] in eq. (2.28) represent the intermediate step in the iteration l. The matrix
α ∈ C

n×n is known a priori, is the search direction for the first step. For the second
step of the iteration, a matrix β ∈ C

n×n is used as the search direction and the
second pair of equation is:

Global





I [l+1] − I [l+(1/2)] = α(V [l+1] − V [l+(1/2)])

Y V [l+1] = I0 + I [l+1]
(2.52)

The solution is initialized at the equilibrium position of the generators given by

δi = sin−1
(
pmi
b

)

ωi = 0
(2.53)

At the start of each local part of the iteration, the values of δ and ω are updated
using high order finite difference formulas. Once, δ is updated the complex voltage
is updated using eq. (2.49). With the updated voltage, we can perform the first
part of the LATIN iteration from [l] to [l+1/2]. In the global part of the system, we
use the Kirchoff’s current law to update the voltages and currents at all the buses
from [l + (1/2)] to [l + 1].

The value of the phase angle of each bus δi of the first implementation of the
LATIN method is presented in Figure 2.16 and the average δ is presented in the
Figure 2.17. A quick comparison with the results from the Newton’s method with
the LATIN can conclude that the solution did not converge to the exact solution.

A probable cause of the error is the accumulation of error and a solution was
thought to divide the time-domain into more sub-domains and iterate LATIN pro-
cedure over each sub-domain. The new procedure would first start with the first
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Figure 2.17: Average value of δ for all buses using LATIN

(a) Error convergence in voltage (b) Error convergence in current

Figure 2.18: Error Convergence with respect to iterations of LATIN procedure
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sub-domain in time and once the convergence is achieved the procedure would then
follow on to the subsequent sub-domains. In an attempt to better converge to the
exact solution, the total time-domain of 2.5 seconds was divided into 10 sub-domains.

The method of dividing the time-domain into smaller sub-domains inevitably
makes the procedure computationally time consuming and the total number of iter-
ations increase from 275 in the first case to about 700 iterations in total, with about
70 iterations for each sub-domain. The results are presented for δi in Figure 2.20
and for average δ in Figure 2.21. But the results show that the method has still not
converged to the right solution, only a slight change is observed in the average value
of δ.

A further modification of the procedure is performed, with the addition of domain
overlap for the sub-domains. The size of sub-domains were also decreased and
therefore the total number of iterations increased further to about 9225 iterations.
But instead of reducing the error to the correct solution, the procedure converged
to a solution that is even further away and thus increasing the errors. The results
are presented graphically in Figures 2.22 and 2.23.

The divergence is observed to increase with the decrease in the time-domain
solved in each LATIN iteration. This suggests that the divergence is not due to
the numerical instability with the LATIN method but with the problem itself being
unstable. Although there are some problems reported in the literature with the
application of LATIN in problems with the snap-back behavior. In the study of
Vandoren et al [65], they have compared this problem in LATIN method with the
iterative procedure of Newton-Raphson method. The snap-back behavior is defined
in mechanics as the failure in which initiation of damage results in the reduction
of elongation and reduction of load instead of the increase in elongation and defor-
mation [66]. The solution proposed by Vandoren et al [65, 67] is to use a constrain
function in the equilibrium equation during the global stage of the LATIN procedure.

2.8 Conclusions

This chapter performs the task of setting up the problem that we discuss in the cur-
rent thesis. The introduction to power system components and analysis is required
for development of the problem of transient dynamics. The standard methods used
in the Power System applications are introduced and explained. One of the early
success in the current research is the application of ASD method for the power
flow studies. The results are extremely encouraging and compares well with the
already well known methods in the industry. The results of the ASD method were
then expanded into another study which manifested in the publication of a journal
article.

In the second part of the chapter, we presented the main focus of our study that
is the transient dynamics problem. A fast non-incremental method of LATIN was
applied to the transient dynamics model represented by the swing dynamics model.
Although, the results are not as expected still it gave deep insight into the problem.
In the case when the method of LATIN is applied, the solution becomes unstable
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(a) Solution after convergence in
1st sub-domain

(b) Solution after convergence in
2nd sub-domain

(c) Solution after convergence in
3rd sub-domain

(d) Solution after convergence in
4th sub-domain

(e) Solution after convergence in
5th sub-domain

(f) Solution after convergence in
6th sub-domain

(g) Solution after convergence in
7th sub-domain

(h) Solution after convergence in
8th sub-domain

(i) Solution after convergence in
9th sub-domain

(j) Solution after convergence in
10th sub-domain

Figure 2.19: Evolution of δi with convergence of each sub-domain
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Figure 2.20: Evolution of phase angle δi after initial disturbance using LATIN

Figure 2.21: Average value of δ for all buses using LATIN
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Figure 2.22: Evolution of phase angle δi after initial disturbance using LATIN

Figure 2.23: Average value of δ for all buses using LATIN
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and keeps on diverging due to the separation of the non-linear problem from the
global solution which is not a numerical issue rather than a system instability. As,
we tried even domain decomposition and domain overlap with LATIN. The method
diverges even faster pointing towards the instability in the divided problem rather
than a numerical issue.
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Chapter 3

Reduced order modeling of Power
Systems

This chapter presents the a posteriori model order reduction methods for the tran-
sient problem of the swing dynamics. The chapter starts with the introduction to
the POD method and its application to the problem. The chapter discusses the
results of POD and introduces the method of Trajectory Piece-Wise Linear method.
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3.2. Model Order Reduction of Swing Dynamics

3.1 Model Order Reduction of Swing Dynamics

In Chapter 1, we discussed the model order reduction in the power systems and
presented a brief review of different categories of model order reduction techniques.
Now, in this chapter we describe the a posteriori model order reduction methods
we studied in the current research and applied to the transient dynamics problem
of power systems represented by the swing dynamics 2.5. We start with the basic
method of POD and discuss the method for transient problems.

3.2 A posteriori Reduced Order Modeling

A posteriori reduced order modeling methods require full scale simulation of prob-
lems using conventional numerical techniques before the model reduction can be
applied. With the a priori method of LATIN described in Sec 2.7 not converging
for the transient problems, we refer to a posteriori methods in search of a suitable
method that can be applied to swing dynamics model. In the following sections, we
will describe a posteriori methods and present some results for the same problem.

3.2.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition is an “a posteriori” method for model order re-
duction. The study by Parrilo et al. [41] presents the use of POD to reduce the
hybrid, nonlinear model of a power network. POD based model order reduction has
found applications in diverse fields and is the preferred method in electrical engi-
neering applications such as in the study by Montier et al [68]. In their study, POD
is applied in combination with discrete empirical interpolation method.

The Karhunen-Loève decomposition provides for high dimensional systems with
state space in Rn, a method to find the smallest dimensional subspace which contains
observed points on the trajectories of the system. The subspace obtained through
this decomposition is then used to project upon the dynamics from a Galerkin pro-
jection. Thus, the high-dimensional system is approximated by a small number of
nonlinear ordinary differential equations.

The objective is to find an orthonormal basis considerably smaller as compared
to the high fidelity model using the information extracted from previously computed
simulations. Say {δ} is a vector of dimension N containing all the state variables
of the system, the objective of POD is to reduce the dimension from N to q where
q << N . The mapping from the original to the reduced coordinates is expressed by
the linear application:

{δ} = [Ũ ]{z} (3.1)

where {δ} is a N × 1 vector, [Ũ ] is a N × q matrix, and {z} is a q × 1 vector. The
goal of POD is to compute matrix [Ũ ] from the analysis of the principal components
of the available solutions.
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3.2. A posteriori Reduced Order Modeling

The matrix [Ũ ] can be calculated using several techniques. In essence, POD
is similar to the Karhunen-Loéve decomposition (KLD) and it is often referred to
as KLD, principal component analysis (PCA) or the singular value decomposition
(SVD) [69]. In the current study, SVD interpretation has been used to obtain a
reduced order model.

Here, we will briefly describe the SVD reduction procedure which is available as
a built-in function in MATLAB.

A selection of solution “snapshots” {δ}k, with k = 1, 2, . . . , n, are arranged into
the columns of the matrix [Q] ∈ R

N×n,

[Q] = [{δ}1, {δ}2, . . . , {δ}n] (3.2)

The number of snapshots must guarantee that they represent the complete set of
solutions, i.e., n must be large enough. The set of n snapshots contains redundant
information that have to be suppressed by keeping only the pertaining remaining
modes q.

The factorization under SVD is given as:

[Q] = [U ][Σ][V ]∗

=
N∑

i=1

σi{Ui}{Vi}
T ≈

q∑

i=1

σi{Ui}{Vi}
T

(3.3)

where, [U ] is a N ×N matrix, [Σ] is a N ×n diagonal matrix with non-negative real
numbers on the diagonal, and [V ]∗ is a n × n, unitary matrix, [V ]∗ is the conjugate
transpose of the n×n unitary matrix [V ]. The left hand side of eq. (3.3) accurately
estimate the full [Q] matrix for i=1,...,N. The last sum is the truncation of first
terms that sufficiently approximates the full [Q] matrix.

To obtain a reduced order model which retains minimum energy required to
accurately capture the behavior of the high fidelity model, it is truncated at q where
q << N . Number of modes q are selected such that for any j > q, the quotient η
is within some defined tolerance and σj << σ1, where quotient η is defined as the
difference of the relative energy retained, where η = 0 means that the total energy
of the system is retained. It is usually the case that only few of the larger σj contain
the most energy and the rest σj for j = q, ..., N can be dropped from the reduced
basis.

η =

∣∣∣∣∣

∑q
j=1 σj∑N
k=1 σk

− 1

∣∣∣∣∣ (3.4)

The quotient η is employed to find the size of the reduced basis which accurately
mimics the original basis, typical values are between 10−1 and 10−5. The matrix [Ũ ]
is given as:

[Ũ ] = [{U}1, {U}2, . . . , {U}q] , q < N < n (3.5)

The columns of [Ũ ] correspond to vectors {U}i representing the most character-
istic modes in the solution, that is, the most recurrent structures.
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3.2. A posteriori Reduced Order Modeling

For detailed insight into the method and the variations in the above mentioned
procedures of KLD, PCA and SVD, the author refers to the studies by Liang et al.
[69]. Additionally one can also refer to Kerschen et al. [70] and Berkooz et al. [71].

The reduced order model for the governing equations is obtained by replacing
{δ} with the relation given by equation (3.1) in equation (2.44), writing the system
given in (2.44) in matrix form,

[M ][Ũ ]{z̈}+ [D][Ũ ]{ż} = {pm} − {p} (3.6)

and using Galerkin method to project the residual on the reduced basis

[Ũ ]T [M ][Ũ ]{z̈}+ [Ũ ]T [D][Ũ ]{ż} = [Ũ ]T{pm} − [Ũ ]T{p({δ})} (3.7)

Defining the following notations

[M̃ ] := [Ũ ]T [M ][Ũ ]

[D̃] := [Ũ ]T [D][Ũ ]

{p̃m} := [Ũ ]T{pm}

{p̃({z})} := [Ũ ]T{p({δ})}

(3.8)

we obtain the governing equation (2.44) in the reduced basis as:

[M̃ ]{z̈}+ [D̃]{ż} = {p̃m} − {p̃({z})} (3.9)

Note that {p̃} is a nonlinear fuction of {z}.

3.2.2 High Fidelity Model

For the model order reduction with a-posteriori methods we start with the model
reduction of the grid presented in the study of Parrilo et al. [41]. The grid contains
both loads and generators as buses, thus the swing dynamics model represented by a
system of differential-algebraic equations (DAEs), given by equation 8 in the Section
2.4 is used. Recalling the equation here,

{γ}
(
[M ]{δ̈}+ [D]{δ̇} − {pm}

)
+

(
31− {γ}

)
{pl} = −{p({δ})} (3.10)

The starting point for the current research is based upon the work presented
by Parrilo et al. [41]. The authors used Proper Orthogonal Decomposition (POD)
for the model reduction of the network grid presented in the Fig 2.6. It has been
noted in the study that the model reduction of this kind of grid is difficult because
of the hybrid nature of the differential algebraic equations and the non-linearity of
the system.

The study by Parrilo et al. [41] focused on the model reduction for the power
grid suffering a cascading failure, defined in Chapter 2 Sec. 2.5.2. In the study
by Parrilo et al., an initial known failure was induced in the grid by removing the
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Description Symbol Value

Total Buses N 100
Number of Generators Ngen 4
Number of Loads Nload 96
Power Generated pmi 1 + 0ι [p.u.]
Power Demanded at loads pli −pmi /(Nload) [p.u.]
Mass of the generators mi 1 [p.u.]
Damping of the generators di 0.01
Voltage Magnitude |Vi| 1 [p.u.]

Table 3.1: Values used for parameters in POD model reduction

corresponding connection between the buses, thus bij from the admittance matrix.
This initial failure is known and it’s effect spread through the network was predicted
using the POD model reduction. The reduction approach used in the study was to
divide the domain in two parts [x1, x2] where x1 is the part of the grid where the
states of the system were kept and x2 were replaced by a lower-order approximation.

The results in the study of Parillo et al. [41] are limited in the sense that the
reduced model is only used for the part of the grid where it remained unaffected
by the cascading failure. In the current study, the endeavor is to apply the model
reduction on the whole grid and the effects it has on the prediction of the cascading
failure. The grid and the conditions are similar as defined in the study of Parrilo et
al. [41]. Just as in the study by Parrilo et al. [41], two kinds of initial failures are
implemented. The first kind of failure is that one of the connections between two
buses is removed due to the overload on the line connecting the two buses and other
is that one of the generators is perturbed and hence the generator phase becomes
asynchronous with respect to other generators. Both of these initial problems lead
to the cascading failure in the grid.

3.2.3 Numerical Integration of the High Fidelity Model

Swing equations are numerically integrated in the commercial software MATLAB.
The values of the different parameters of the power grid are listed in Table 3.1.

The grid we consider in this study is the same as we used in the static case studied
using the alternating search direction 2.3.2. This is a grid of 100 buses represented
by nodes in a square mesh of 10 by 10. We have 4 nodes acting as generator and
the rest are considered as load buses. Figure 2.6 shows the grid with the positions
of generators. Eq (3.10) is the system of differential-algebraic equations (DAEs)
defining the behavior of the grid in the transient case.

3.2.4 Linear Approximation of Swing Equations

The non-linearity in the swing equations (3.10) is present in the power consumed
term pi. Recalling the swing equations in indicial notation here,
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3.2. A posteriori Reduced Order Modeling

γi
(
miδ̈i(t) + diδ̇i(t)− pmi

)
+ (1− γi) pli =

−
∑

j

|Vi||Vj|bij sin (δi(t)− δj(t))
(3.11)

Using the Taylor series expansion,

f(x) = f(a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 +
f ′′′(a)
3!

(x − a)3 + · · · (3.12)

for a function f(δ) = sin(δ + δ0),

sin (δ + δ0) ≈ sin(δ0) + cos(δ0)(δ − δ0) (3.13)

Using only the first order approximation, the linearization of the function pi is
simply,

pi =
∑

j

|Vi||Vj|bij sin (δ0i + δi(t)− δ0j − δj(t))

≈
∑

j

|Vi||Vj|bij cos (δ0i − δ0j) (δi(t)− δj(t))
(3.14)

Using the linearized form of pi given in eq. (3.14) and replacing in eq. (3.11),
the linearized equation is

γi
(
miδ̈i(t) + diδ̇i(t)− pmi (t)

)
+ (1− γi) pli(t)

= −
∑

j

|Vi||Vj|bij cos (δ0i − δ0j) (δi(t)− δj(t))
(3.15)

Separately representing the differential and algebraic equations after lineariza-
tion.

miδ̈i + diδ̇i = pmi −
∑

j

|Vi||Vj|bij cos (δ0i − δ0j) (δi(t)− δj(t))

0 = −pli −
∑

j

|Vi||Vj|bij cos (δ0i − δ0j) (δi(t)− δj(t))
(3.16)

In order to implement the system of equations in MATLAB to solve the linear
system of equations (3.15) and assuming δ̇ = ω, we present the equations in matrix
form.

[
M 0
0 I

]
.

[
ω̇

δ̇

]
+

[
D B
−I 0

]
.

[
ω
δ

]
=

[
P
0

]
(3.17)

where B is the matrix containing the line susceptances.
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Figure 3.1: Equilibrium Solution for the linearized problem

3.2.5 Equilibrium Solution

The static solution presented in the section 2.3.2 showed that the power grid al-
ways settles to an equilibrium position. An initial solution of the problem for the
equilibrium conditions was sought with the linearized equations as given here. The
difference in the results presented in this section with the results presented in the
Sec. 2.3.2 is due to the assumptions made for this case. In the study we presented
in Sec 2.3.2, we considered the first node as the slack node where we fixed both the
voltage magnitude |V1| and the phase angle δ1. The rest of the nodes had both volt-
age magnitude |Vi| and phase angles δi as unknown, instead we had power demanded
or generated as given. Here, we are not considering any node as the reference node
and instead of having both voltage magnitudes |Vi| and phase angles δi as unknowns,
we fix the voltage magnitudes as given in Table 3.1 and keeping only phase angles
δi as unknown variable.

The linearzied equation was used to generate the equilibrium solution. This
solution serves as an initial condition for the problems where an induced fault was
introduced in the grid. The equilibrium solution for the grid studied is given in the
Figure 3.1.

An interesting observation should be pointed out here, that the equilibrium solu-
tion depends upon the initial guess taken during the Newton’s method. The solution
presented in Figure 3.1 is the result when the initial guess was taken as δi = 0.1
for all the buses. But for a random initial guess, the solution converges to the one
presented in Figure 3.2. But, this should not be a cause of concern, as the impor-
tant aspect in the swing dynamics model is the difference in the phase angles of
the neighboring buses and as it can be observed the solution in Figure 3.2 is just a
translated solution of Figure 3.1.

In the current study, POD based reduced order modeling was performed for three
cases, namely;

1. Failure of a bus
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3.2. A posteriori Reduced Order Modeling

Figure 3.2: Equilibrium Solution for the linearized problem with random initial
guess

2. Variable loads

3. Load Prediction

3.2.6 Connection Failure between buses

To simulate the behavior of the grid going through cascading failure, it was modeled
that if the difference between the rotor angles between two adjacent buses grows be-
yond a certain value, the connection between the buses will be removed and therefore
introducing a new fault in the grid.

In the first case, we try to simulate the failure of a bus and subsequent cascading
failure initiated by this kind of failure. One of the buses is removed from the grid,
this is achieved by making the corresponding susceptance matrix values to zero.
Figure 3.3 shows the tribanded matrix B with some entries missing respresentative
of lost connection between two loads and Figure 3.4 shows the position of the bus
removed as the point of initial failure.

bij = 0 when line connecting nodes i and j is disconnected (3.18)

3.2.7 Variable loads

The aim is to perform simulations based on real time measurements of the demanded
power. Since, the real time simulation based on the measurements from sensors on
the grid require models that are capable of quick simulations, reduced order models
based on the swing dynamics model will be necessary. Therefore, we start with a
high fidelity model simulation with some assumptions and then use the methods like
POD to find reduced order models. For this purpose, it is assumed that the power
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Figure 3.3: Banded B matrix with missing entries representing the removal of the
bus

Figure 3.4: Network grid with cross representing the removal of the bus
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3.2. A posteriori Reduced Order Modeling

(a) Power demanded by a load (b) Power generated by a machine

Figure 3.5: Power oscillations for load and generator buses

demand at load buses vary with time and can be approximated by a combination of
simple sinusoidal and exponential functions. To meet this fluctuation in the power
demand the generators can also follow different yet close sinusoidal patterns for
power generation.

The approach used in this case was to use a sinusoidal wave to mimic the gen-
erators response and a similar sinusoidal wave to represent the behavior of loads.
In addition, another exponential sinusoidal function was superimposed on the loads
with a high frequency. The functions for the power demand by loads and the power
generated by machines is given as:

pli = −[1 + sin(ω1t) + γ1 exp−t/2π]− γ2 cos(ω2t) exp−t/2π (3.19)

where ω2 < ω1.

pmi = (1 + sin(ω1t))×
(Nload)
Ngen

(3.20)

Figure 3.5a graphically represents the profile of the power demand at load buses
that we have used to simulate the high fidelity model while the power generator
profile is shown in Figure 3.5b.

3.2.8 Load Prediction

Another situation, where reduced order models can be useful is in the prediction
of load demand and generation for future and assess the dynamic behavior of the
grid based on these simulations and carry out any precautionary measures required.
The predictions can be based upon the historical data of the power grids in similar
conditions.

A reduced order model is suitable for the quick estimation of the grid’s dynamic
response under the variable load. For the next day power demand prediction a small
variation is added in a sinusoidal function. Note that, these are just assumptions to
validate the model, in real time the power demand can be a complex combination of

65



3.2. A posteriori Reduced Order Modeling

Figure 3.6: Power demanded by a load ‘i’

several functions. Similar to the first case of load oscillations, we use another high
frequency low amplitude sine wave given as:

pli = − [(1 + γ1)× sin(ω1t) + γ1 × sin(ω2t)] (3.21)

where ω2 < ω1

And the power generated can be estimated as:

pmi = (1 + γ1)× Nloads/Ngen (3.22)

The load curve generated by (3.21) is represented in the Figure 3.6.

3.2.9 Divergence in the solution

One thing that was observed during the high fidelity model simulation with the
linearized model of eq. (3.17) that the solution keeps on diverging. Even for solutions
where the power demand and generated were forced to zero, the solution kept on
diverging. To eliminate the possibility of divergence due to the functions we adopted
for the power demand and generated in the Sec. 3.2.7 and 3.2.8 in eqs. (3.18) to
(3.22), we modified the functions for power demand pmi and power generated pli. The
power functions for this purpose are approximated as a damped sinusoid given in
eq. (3.23). The graphical representation of this function is given in Figure 3.7.

pli = − [γ1 × sin(ω1t)× exp(−ω2t)]

pmi = [γ1 × sin(ω1t)× exp(−ω2t)]
(3.23)

The solution of the linearized swing equations with the power functions of eq.
(3.23) also diverges even though from Figure 3.7, it can be observed that the power
at all the nodes vanishes around 10 secs. The time evolution of the solution is
presented in the Figure 3.8.

The average phase angle δi of all the buses was computed and plotted against
time alongwith the magnitude of the average power in Figure 3.9.
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3.2. A posteriori Reduced Order Modeling

Figure 3.7: Power demanded by a load ‘i’

To understand this behavior, a linear stability analysis was carried out on the
system matrices to determine whether instability is caused by a numerical issue or
is this system is linearly unstable. We solved the characteristic problem associated
with our DAE system.

([
M 0
0 I

]
+ µ

[
D B
−I 0

])
ν = 0 (3.24)

The eigen-analysis of the system which is ill-conditioned show that most of the
eigenvalues are clustered around zero, but two of the eigenvalues are in the positive
half of the complex plane. The eigenvalues are plotted in the Figure 3.10.

3.2.10 Results and Discussions about POD

Since, the solution keeps on diverging and from the results presented in Sec 3.2.9
it is evident that the system of equations is linearly unstable. We tried to increase
the damping of the system in order to check if the system is stable for any values
other than presented in the Table 3.1. With the damping equal to the mass of
the generators, the system remains unstable but the values of the phase angles does
not increase to very large values, therefore, the author applied the proper orthogonal
decomposition on the solution obtained with di = 1. Although, this value of damping
is unrealistic but it can give an insight into the effectiveness of the model reduction
method.

The simulation of cascading failure as defined in Sec. 2.5.2 is initiated by a single
failure which can then lead to multiple failures in the grid. In order to excite the
cascading failure, one initial bus is removed by means of removing the corresponding
entries in the susceptance matrix. This is assumed that it will redistribute the
voltage and can result in the further failures. The other lines are removed when
the phase difference between corresponding buses reaches a certain limit. To check
the accuracy of the reduced model described by the POD, once we removed the line
joining buses 73 and 74 and simulate the grid until the equilibrium state is achieved.
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3.2. A posteriori Reduced Order Modeling

(a) t = 0.02 sec (b) t = 4 sec

(c) t = 8 sec (d) t = 12 sec

(e) t = 16 sec (f) t = 20 sec

Figure 3.8: Evolution of the solution with time
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Figure 3.9: Average δ and average power w.r.t. time

Figure 3.10: Eigenvalues of the characteristic problem
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3.2. A posteriori Reduced Order Modeling

Figure 3.11: Difference between new and previous equilibrium for line 73-74 failure
using high fidelity model

(a) Singular values (b) Sum of the modes

Figure 3.12: SVD modes for the simulation of connection failure

The difference between the initial equilibrium state and this new equilibrium state
is shown in the Figure 3.11 which is the exact solution.

Figures 3.12a and 3.12b represent the modes and the sum of the modes obtained
from the exact solution. It can be observed from the figures 3.12a and 3.12b that
only 12 modes out of the total 200 modes are high energy modes and their sum is
almost equal to 1. The POD basis created using these modes was tried to simulate
cascading failures of the similar conditions. Various different buses were taken out
and simulated using the reduced basis in order to ascertain the accuracy of the
model. For the initial failure being at the same point as the one tested in the exact
solution for the construction of this reduced basis, shows a very accurate result. The
difference between the initial and final equilibrium states is shown in the figure 3.13
which appears close to the solution presented in Figure 3.11 for the high fidelity
model. Figure 3.14a shows the norm of the relative error for the case where the link
between generator at bus 73 and load bus 74 is disconnected, for better graphical
representation the norm is presented in a semilog plot in Figure 3.14b.

The above mentioned case shows good promise for the POD based reduced order
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Figure 3.13: Difference between new and previous equilibrium for line line 73-74
failure using POD

(a) Norm of the Relative Error (b) Semilog plot of the Relative Error

Figure 3.14: Relative Error in the solution for line 73-74 failure using POD
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Figure 3.15: Difference between new and previous equilibrium for line 51-52 failure
using high fidelity model

modeling. However, in real world situation, it is not always known where the fault
may develop and how it will effect the grid. For this kind of unpredictable fault
propagation, it is very critical for the reduced order model to accurately capture and
simulate a failure in the network anywhere. To simulate this kind of unpredictable
error, we have used the POD basis constructed previously to simulate when the
initial bus failure is between loads 51 and 52 and compare it to the exact solution.
The exact and the reduced model solutions are presented in the Figure 3.15 and
Figure 3.16 respectively, while the norm of the error is shown in the Figure 3.17a
and the semilog plot of the relative error in Figure 3.17b.

The results show that although POD basis accurately models the scenario when
the same case was used to construct the basis it fails to accurately model the other
failures. The promise of POD based model reduction is immense when the grid size
is small and all the probable combinations of failures can be used to construct the
reduced basis. However, in the practical applications, network grids are much larger
and the network topology is complex and varied and hence it will be impractical to
incorporate all the probable failures in the construction of the reduced basis.

The second case where we wanted to predict the day ahead load variation in the
realtime analysis. We developed a sinusoidal profile for the loads and the generators
given by the equations (3.19) and (3.20). The profiles for the load and generator
powers are given by the graphs in Figure 3.5a and Figure 3.5b. These variable loads
were used in the full solution and used to build a POD reduced order basis.

The modes and the sum of these modes are represented in figure 3.18a and 3.18b.
Only the first four modes were dominant out of the total 200 modes. The results for
the simulation from the reduced order basis for the same problem, generates good
results. The norm of the relative error and the semilog plot are presented in the
Figure 3.19a and Figure 3.19b.

To predict the next day load using the reduced basis generated from the high fi-
delity model simulation of Sec 3.2.7, another sinusoidal wave superimposed with high
frequency low amplitude sine wave was used for the loads represented in Figure 3.6.
The norm of the error is acceptably low although varies slightly with each time step
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Figure 3.16: Difference between new and previous equilibrium for line 51-52 failure
using POD

(a) Norm of the Relative Error (b) Semilog plot of the Relative Error

Figure 3.17: Relative Error in the solution for line 51-52 failure using POD

(a) Singular values for the case of vari-
able load

(b) Sum of the modes for the case of
variable load

Figure 3.18: Singular Value Decomposition of the high fidelity solution of variable
load
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(a) Norm of the Relative Error (b) Semilog plot of the Relative Error

Figure 3.19: Relative Error in the Solution of Variable Load using POD for Variable
Load

(a) Norm of the Relative Error (b) Semilog plot of the Relative Error

Figure 3.20: Relative Error in the Solution of Load Prediction using POD from
Variable Load

and depends upon the profile of the power demanded curve used in the prediction
simulation. This behavior is illustrated in the Figure 3.20a and Figure 3.20b.

3.2.11 Treating Non-linearity

Although it is possible to use POD on nonlinear problems for model order reduction,
the necessity of evaluating the nonlinear function renders it less practical in terms of
computational complexity. In the current study, we are using MATLAB based ODE
solver ‘ode15s’, which requires that the nonlinear function to be defined analytically.
Recalling the equation for pi describing the nonlinear function,

pi = −
N∑

k=1

|Vi||Vk|bik sin(δi − δk) for i = 1, ..., N

The nonlinear function here depends upon the original basis δ, in the reduced
basis it has to be defined as:
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3.3. Trajectory Piece-Wise Linear Method

pi(Ũz) = −
N∑

k=1

|Vi||Vk|bik sin(
q∑

j=1

(Ũij − Ũkj)zj) for i = 1, ..., N

p̃l(z) =
N∑

i=1

Ũil pi(Ũz) for l = 1, ..., q

(3.25)

The nonlinear function p̃(z) in the reduced basis therefore becomes,

p̃l(z) = −
N∑

i=1

Ũil

N∑

k=1

|Vi||Vk|bik sin(
q∑

j=1

(Ũij − Ũkj)zj) for l = 1, ..., q (3.26)

It is evident from the eq. (3.26), it requires O(N2 × q2) operations, which is
counter-productive to the reduced order modeling. To save computation costs and
truly exploit the benefits of reduced order modeling, it would be necessary to elimi-
nate theN2 number of operations which is the dimension of original basis. Therefore,
a method of Trajectory Piece-Wise Linear Method (TPWL) has been proposed. The
solution of the reduced basis using the TPWL method is presented in Chapter 4.
Here, in the following section 3.3 we will briefly present the method of Trajectory
Piece-wise Linear Method.

As an example of the problem with increased computational cost, we performed
a simulation with POD based reduced model for the high fidelity model presented
in Sec. 2.7.3. The full simulation without the model reduction required around 202
seconds, with POD and the nonlinear function as defined in eq. (3.26) the simulation
took about 290 seconds.

3.3 Trajectory Piece-Wise Linear Method

From the results presented in the Sec. 3.2.1, it is clear that the method of lin-
earization is not applicable because the system becomes linearly unstable. And it is
demonstrated through the discussion in the Sec. 3.2.11 that inclusion of the nonlinear
function in the reduced model is counter-productive in terms of computational time.
Therefore, a method should be adopted which addresses the issue of nonlinearity in
the system.

Model order reduction of non-linear dynamic systems is a challenging problem
and there are issues that are intuitive in the model reduction of non-linear systems.
The foremost problem is the accurate and computationally efficient method that
approximates the high fidelity model in the reduced basis [72]. Therefore, for any
reduced order model to work efficiently on a non-linear problem such as the swing
dynamics model, it must be able to construct a basis which is of lower dimension
than the original model and approximate the non-linear functions of the system in
a way that is computationally efficient [73].

The Trajectory Piece-wise Linear method is a method which combines the posi-
tive aspects of the proper orthogonal decomposition and the linearized model for the
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swing dynamics equations. The first requirement of any model reduction method is
to construct a reduced basis of order q smaller than the order of the original basis
N , such that, q << N . The method of proper orthogonal decomposition (POD) is
very good at reducing the dimension of the problem, the other question of an effi-
cient approximation of the non-linear function is what we need an answer for. We
present in this method which tries to solve the issue of approximating the non-linear
function. The main concept of the TPWL method is to use the linear approxima-
tion of the non-linear function using the Taylor Series expansion but not just at the
starting point. The trick is to find multiple linear approximations throughout the
domain and combine them in such a way that it covers the whole domain of interest.
The non-linear function in the original model is replaced with a weighted sum of
linearized models in the reduced model.

The method of TPWL offers several advantages for the kind of problem we are
dealing with in the current research. First and foremost, it offers an accurate approx-
imation of the non-linearity of the problem by using linear approximations at several
points in the domain, without compromising the computational efficiency too much.
Even though, we have used POD for the model reduction, the method of TPWL can
easily incorporate any of the other well known model reduction techniques [72] such
as Empirical Interpolation Method (EIM) [74] and Discrete Empirical Interpolation
Method (DEIM) [75].

3.4 Literature Review of TPWL

The main hurdle in the effective model order reduction of the power grids is the
strong nonlinearity appearing in swing dynamics models. Trajectory Piecewise-
Linear method (TPWL) is a well-defined method for the model order reduction of
nonlinear time varying applications [73]. This method proposes a suitable strategy
for treatment of nonlinearities which presents the real bottleneck of model order
reduction. This method has been applied on several nonlinear problems especially
to electronics engineering applications [76, 77, 78, 79, 80, 81, 82, 83].

The method of TPWL originated for the non-linear problems in electrical circuits
[84]. The method was initially used in the model order reduction of non-linear
dynamical systems by Rewienski and White [85]. The method was developed by
Rewienski [73] as his PhD dissertation and used this method on various applications
including electrical circuits, MEMS and fluid problems. The method has thus been
adopted for problems in subsurface flow simulations [86, 87], computational fluid
dynamics [88] and chemical process controls [89].

A similar method to the one adopted in this paper is found in the work of
Bugard et al [90] and Panzer et al [91] who have proposed a parametric model order
reduction. The main idea presented in these works is to reduce several local models
and then produce a parametric reduced order model using a suitable interpolation
strategy. Compared to these methods, TPWL has one global reduced basis and uses
interpolation of locally linearized models just to represent the nonlinear term in the
reduced variables space. More than one training trajectories can be added together
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to form the single global reduced basis similar to the concept of POD.
Non-linearity is recurrent in the electronics engineering applications, Hao et al.

[92] implemented TPWL macromodeling in their study of the analog mismatch
for the large-scale stochastic differential-algebraic equations (SDAE). They imple-
mented TPWL with an improved incremental aggregation of sub-spaces and named
it as “isTPWL". Their results indicate tremendous gains in terms of computational
speed compared to the Monte-Carlo method with similar level of accuracy. Zong et
al. [93] applied TPWL macromodeling methods for the time-dependent non-linear
models of the circuits. The authors in this study have proposed MOR in time do-
main rather than frequency domai based on wavelet-collocation method. Farooq et
al. [81] have used Chebyshev interpolating polynomials in each piecewise region in
their implementation of TPWL method.

TPWL method has been implemented in non-linear control of integrated circuits
and MEMS [78]. Xie and Theodoropoulos [89] have used the capability of TPWL
of reducing large scale non-linear dynamic models and demonstrated it through the
stabilisation of the oscillatory behavior tubular reactors as the case study. They have
demonstrated the use of linear MPC for non-linear distributed-parameter systems.
The study combines the use of POD and finite element Galerkin projection to gather
low order nonlinear models of the system, then TPWL was applied to get a piecewise
linear representation of the reduced model.

Trajectory piecewise-linear methods are not limited to just power electronics
and control systems applications, indeed there are vast areas of research where the
application of TPWL based model order reduction will be beneficial [86, 87]. The
study by He et al. [86] involves the implementation of TPWL macromodeling for
subsurface flow simulations. In another study by Cardoso and Durlofsky [87] the
work on model order reduction using TPWL methods for subsurface flow simulations
is presented. The authors have applied their proposed method on two examples of
24,000 and 79,200 grid blocks and comparing it with experimental results have shown
the method produces results accurately. Also, the saving in terms of computational
time is given in the range of 100-2000 times which is significant.

In the current study, we implemented TPWL method to accurately obtain a re-
duced order model for the nonlinear transient dynamics of power grids, mathemat-
ically modeled by swing dynamics. The swing dynamics model is highly non-linear
and it is very difficult to have accurate results with linearized reduced order models
and the nonlinear POD is inefficient with respect to time consumption. Therefore,
the adoption of TPWL method in the current study is suitable for the model order
reduction of power grids.

3.5 Model Order Reduction using TPWL

In this section, we present the model order reduction based on the Trajectory Piece-
wise Linear (TPWL) method, which combines the typical proper orthogonal decom-
position with the linearization of the non-linear functions at multiple points in the
solution manifold.
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3.5.1 Proper Orthogonal Decomposition

The method of proper orthogonal decomposition has already been presented in the
Section 3.2.1. Here, we recall that from the results of Sec. 3.2.9, it was concluded
that the method of POD is not suitable for effective model order reduction of swing
dynamics model because of the non-linearity.

Although, we discussed in the Sec. 3.2.9 that POD with the linearized approx-
imation of the swing dynamics problem does not work as intended because of the
system becoming linearly unstable. It is primarily because of the linear approxima-
tion making the system unstable, we have shown from the results that POD as a
method itself shows some encouraging results. In the method of TPWL, POD is
used for the model reduction part. Therefore, at this point we refer the readers back
to Sec. 3.2.1 to recall the method of POD if not familiar.

3.5.2 Trajectory Piece-Wise Linear method

An approach based on TPWL method has been adopted in the current study to reap
the benefits of reduced order modeling while also maintaining a good approximation
of the nonlinear function.

Evaluation of {p̃(z)} requires N2 × q2 operations which results in similar time
consumption as high fidelity model. The objective of introducing TPWL method is
to construct a locally affine mapping {L̃p(z)} from R

q to R
q at some time steps s

where s << n which involves less operations and such that {L̃p(z)} ≈ {p̃(z)}.
Trajectory piece-wise linear method is a method combining the model order re-

duction and the linearization of the non-linear functions. The system in the current
study given by swing dynamics equation, recalled here in eq.(3.27), has strong non-
linear characteristic and as described in earlier sections, nonlinear reduced order
model does not reduce the time consumption. The TPWL method provides a com-
bination of linearized models obtained at selected snapshots.

miδ̈i + diδ̇i = pmi −
N∑

k=1

|Vi||Vk|bik sin(δi − δk) for i = 1, ..., N (3.27)

To accurately capture the behavior of nonlinear function, it is important that
the points selected for the linearization should be such that they span the whole
manifold in which the system trajectories evolve. As an example of this, Figure 3.21
shows the typical trajectory in the space of reduced variable {z} and in this the
selection of linearization points is made to ensure that the trajectory is completely
covered.

The proposed method takes advantage of multiple linearized points instead of
relying on the linearization of the initial point, this combination of linearization
models enhances accuracy considerably and solves the issue of linear instability
encountered in the implementation of POD based reduced order modeling methods,
presented in Sec. 3.2.1.
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Figure 3.22: Two stages of TPWL Simulation

80



3.5. Model Order Reduction using TPWL

The general algorithm of the TPWL method is graphically represented in the
Figure 3.22.

In the following sections we will present the methodology to select the lineariza-
tion points and also the weighting procedure for the combination of the linearization
points.

3.5.2.2 Selection of Training Trajectories

Training trajectories form an integral part of the TPWL method which theoretically,
should be able to cover all the domain of the nonlinear function. The selection of
training trajectories, therefore, requires careful selection of initial conditions upon
which the trajectories of the swing model depend. One may consider it is inefficient
to compute so many nonlinear functions to cover the whole domain. However, in
practice there are only a few possible conditions a system can achieve in real time
applications. Training trajectories provide the points at which the nonlinear system
has to be linearized (see Sec. 3.5.2.3). It is to be stressed that the TPWL method
can interpolate between the training trajectories but not to extrapolate. Therefore,
it is necessary to include all the trajectories in the training set that are considered
to be visited by the nonlinear function [72].

3.5.2.3 Selection of Linearization Points

Selection of linearization points has been done during the offline stage of the TPWL
method and is performed on the full original dimension of the system. This is due to
the reason that the construction of the linear approximation {L̃p(z)} is done with the
information already available from the training trajectories. Therefore, we present
the equations in terms of the original basis {δ}, the nonlinear function {p(δ)} in
equation (3.10) is linearized at certain points in time. This function at a generic
snapshot is given by local approximation {Lj

p({δ})} as:

{Lj
p({δ})} ≈ {p}j + [J ]j

(
{δ} − {δ}j

)
for j = 1, ..., s (3.28)

This is the first step in the TPWL simulation after the full nonlinear solutions
have been obtained at the predefined training trajectories. The initial conditions are
represented by {δ}0 and it is by default the first point selected for the linearization.
The Jacobian is given by matrix ‘[J]’ as:

[J ] =
∂{p}

∂{δ}
=

[
∂{p}

∂δ1

. . .
∂{p}

∂δN

]
(3.29)

Note that, the jacobian can be derived analytically for the swing equations.
The linearized function approximates the actual nonlinear function using the

Jacobian at the specified linearization points, represented by j in the superscript.
The idea behind the TPWL method is that a number of linearization points are se-
lected and the linearized functions at those snapshots are summed up by a weighting
function given a global approximation as presented in eq. (3.30). A detail on the
selection of linearization points has been presented in Algorithm 1.
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(a) Linearization at Fixed intervals (b) Linearization using tolerance

Figure 3.23: Two methods for selection of linearization points

{Lp({δ})} ≈
s∑

j=1

wj ·
(
{p}j + [J ]j

(
{δ} − {δ}j

))
(3.30)

where, Lp is the linear approximation, {p}j, [J ]j are the nonlinear function and Jaco-
bian matrix evaluated at the jth linearization point, and {δ}j is the jth linearization
point. The weight ŵj is given by (3.31), which depends on the distance dj between
{δ} and linearization point {δ}j, and the normalized form is denoted by wj which
appears in eq (3.30).

ŵj = e−βdj/dmin

(3.31)

where β is a positive constant and it can be adjusted to reduce the error and smooth
the affine function {Lp}, dj is the distance between {δ} and linearization point {δ}j

and dmin is the minimum among dj.
The strategy to select the linearization points is traditionally based on the

difference between the phase differences between the successive time steps, i.e.,
(δi − δi−1)j − (δi − δi−1)j−1 . If the phase difference is greater than some angle,
e.g. 10 degrees, than this point j will be added to the set of linearization points.
This method is widely used in the studies referenced in our work as presented in the
works of Albunni [72] and Rewienski et al. [85]. The limitation in this method is
that when the selection is based on the distance between points, there is no control
over the error. This can lead to significant error especially if the Jacobian is close to
singular. The alternative method adopted in this study is to place the linearization
points adaptively based on an error indicator. This is obtained by the difference
between the nonlinear function and the approximation obtained by TPWL method.
When a point is encountered for which the error is greater than a given threshold,
the TPWL model is enriched with a new point. This procedure is applied recursively
to all the snapshots of the training simulations, starting with a single point that is
the initial condition.

A simple nonlinear trigonometric function and its linear approximation based on
the concept of fixed distance in the context of its norm is plotted in figure 3.23a
while a new method developed in the current study is shown in figure 3.23b. As it is
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observable from figures 3.23a and 3.23b, the number of linearization points are com-
parable as 5 in the first case to 7 in the current case has reduced the approximation
error by about 40 %. Generally, the increase in number of linearization points is
of no significant loss in computation time as the selection is done during the offline
phase while in the online phase the computation of linear functions is very quick.

This approach is similar to the method proposed in the study of Liu et al [76] in
which the authors have used a global maximum error for linearization point selection.

Algorithm 1 Build set of linearization points

Input {δ}i, {p}i, [J ]i, i = 1, ..., n
Initialize set of linearization points with initial condition as the first point {δ̂}1 =
{δ}0

S = {δ̂}1, s = 1
{p̂}1 = {p}1, [Ĵ ]1 = [J ]1

Set tolerance ǫs for the selection of new point of linearization
ǫs = 0.005
while i < n do
Linearize {p} and combine in a weighted sum
for j = 1 to s do
Compute ŵj according to eq. (3.31) and normalize to get wj

{Lp({δ}i)} =
∑s

j=1 w
j · ({p}j + [J ]j ({δ}i − {δ}j))

if {{p({δ}i)} − {Lp({δ}i)}} > ǫs then
Increase the size of set of linearization points
{δ̂}s = {δ}i, {p̂}s = {p}i, [Ĵ ]s = [J ]
S ← S ∪ {δ̂}s

end if
end for

end while
Output S = {{δ̂}1, ..., {δ̂}s}, s = card(S), {p̂}j, [Ĵ ]j, j = 1, ..., s

The modified version of the selection of linearization points is more time con-
suming then the original method proposed by Albunni [72]. However, selection of
linearization points is performed during the offline phase where time is not a con-
straint, the proposed method in the current study has higher accuracy with the
problem discussed here.

A very important note that the nonlinear function {p̃}j and the Jacobian matrix
[J̃ ]j are stored in the reduced basis.

3.5.2.4 Weighting Function

TPWL method combines the linearized model in a convex combination approximat-
ing the original nonlinear system. In a convex combination all the coefficients are
greater or equal to zero with the sum of all the coefficients equal to one. If there are
‘s’ linearized models and ‘q’ is the order of the linearized system, then the compu-
tation of these weights is in the order of O(sq) (for detailed study on the weighting
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3.5. Model Order Reduction using TPWL

function refer to thesis of Rewienski [73]). The calculation of weights is carried out
during both the online and offline phases in the current study.

Given the set of linearization points S and β, the weights can be calculated for
any point with respect to the points in the linearization set. The value of β should
be a positive constant, in the current study its value is 25 . A smaller value smooths
the function and make its appearance continuous, while a higher value results in
kinks in the function. The necessity of adjusting β is that it helps to reduce the
error between the nonlinear function and its approximation. The first step is to
compute the distance dj between a point {δ} and all the points in the set S using,

dj = ||{δ} − {δ}j||2 for j = 1, ..., s (3.32)

The weights are then calculated as,

ŵj = e−βdj/dmin

for j = 1, ..., s (3.33)

where, dmin = minj=1,...,s dj

Once, the weights are calculated with respect to all the points in the set S, the
weights are normalized as:

wj =
ŵj

∑s
i=1 ŵ

i
, for j = 1, ..., s , i = 1, ..., s (3.34)

During the online phase, in place of {δ} reduced basis {z} is used to calculate the
distance and the points in the set S consists of linearization points in the reduced
basis as well.

3.5.2.5 Numerical Integration of the Reduced Model

Once a linear model has been obtained from the training trajectories during the
offline phase, the values of the nonlinear function and the Jacobian matrix evaluated
at the selected linearization points are reduced and stored to be used during the
online phase along with the set of linearization points. The nonlinear function and
the Jacobian is projected in the reduced space as:

{p̃({z})} = [Ũ ]T{p({δ})}

[J̃ ] = [Ũ ]T [J ][Ũ ]
(3.35)

Since, we replace the nonlinear function with an approximation containing sum
of linearized functions, we have

{L̃p({z})} = [Ũ ]T{Lp([Ũ ]{z})}

⇒ {L̃p({z})} ≈
s∑

j=1

wj ·
(
{p̃}j + [J̃ ]j

(
{z} − {z}j

)) (3.36)

84



3.6. Numerical experiments

In the above equation, the weights wj are evaluated afresh in the reduced dimen-
sion. The weights are calculated exactly as described in the section 3.5.2.4 with {z}
replacing the {δ}.

With the above information, we now have a system in reduced basis which fully
exploits the benefits of reduced order modeling. As it can be observed from equation
(3.36), the number of operations now depend on s rather than N2.

3.6 Numerical experiments

The network grid studied here is termed as the “Ring Grid" consisting of only gener-
ators with one reference node connected to all the generators, represented in Figure
3.24. The mathematical model describing the ring grid is the swing dynamics given
by the eq. (3.27).

The grid in this study is a ring grid containing all the generator nodes and a slack
node in a topology such that the slack node is connected with all the generators. A
slack node or bus in electrical power system is a bus where both |V | and δ are known
and is used to balance the power losses or power demand shortage while performing
a power flow study [94]. Here, the slack bus is modeled as an infinite bus which is
a simplifying assumption that the voltage at this bus is always constant and it has
infinite power capacity as the impedance is zero for this bus. A list of assumptions
for the grid in the current study are:

• The power grid is loss-less

• The generators are small and the ratio between the length of transmission line
joining generators to the infinite bus and the length of transmission line joining
two consecutive generators is much bigger. Hence, the interaction between a
generator and infinite bus is much smaller than the interaction between two
neighboring generators

• Transmission lines joining two consecutive generators is shorter than the line
joining the generators with the infinite bus

• Transmission lines between the infinite bus and all the generators are of same
length

• Transmission lines connecting the generators are of same length

The nonlinear function pi in equation (3.27) is different from its form given
in eq. (2.37) in Sec. 2.5 due to the assumptions described earlier and is given as
eq. (2.46) in Sec. 2.7.2, recalling the non-linear term here,

pi = b sin(δi) + bint[sin(δi − δi+1) + sin(δi − δi−1)] for i = 1, ..., N (3.37)

where, b is line susceptance between generators and the reference node and bint is
the line susceptance between two connected generators.
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N identical

generators Infinite bus

Figure 3.24: A ring grid power network. Blue circles representing generators con-
nected to an infinite bus

Symbol Description Value

mi Mass of the generators 1 [p.u.]
di Damping of the generators 0.25 [p.u.]
pm Power generated by the generators 0.95 [p.u.]
b Susceptance between generator and slack node 1 [p.u.]
bint Susceptance between consecutive generators 100 [p.u.]
N Number of generators 1000

Table 3.2: Grid Data

The equation (3.27) takes the following form,

miδ̈i + diδ̇i = pmi − b sin(δi)− bint[sin(δi − δi+1) + sin(δi − δi−1)]

for i = 1, ..., N
(3.38)

The grid studied consists of 1000 generators and one slack node connected to all
the generators. The data used in the study is given in Table 3.2, all the values are
given in per-unit system.

The values used in the current study are adapted from the study of Susuki et
al. [54] with the addition of damping to ensure the steady state stability of the
power grid. Also, the number of generators in the study of Susuki et al. are only
20 and the focus of their study is to demonstrate the coherent swing instabilities.
Although different from the study by Susuki et al., the grid loop as described in
their study presented a good opportunity to showcase the ability of TPWL method
for the model order reduction and fast simulation of electrical power grids.

3.6.1 Training Trajectories and Reduced order models

In the current study, there are three different scenarios of initial conditions that
must be taken into account for the training trajectories, these are listed in Table
3.4. The dependence of the trajectories on the initial conditions is evident since the
trajectory will be different in each case as shown in the Figure 3.25 to Figure 3.27.
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(a) Complete trajectory (b) Zoomed in view

Figure 3.25: First training trajectory: Initial condition of equilibrium with one node
perturbed

Symbol Description Value

T Total time of simulation 50 [s]
∆T Time step 0.005 [s]

Table 3.3: Training trajectories data

As described in section 3.5.2.2, multiple training trajectories have been employed
for the generation of reduced order models. These training trajectories were cate-
gorized into three different types. The total time of simulation and the step size
are listed in Table 3.3 and Table 3.4 lists the perturbation amount and the node for
each case.

1. Initial conditions at the equilibrium point for all the generators bar one. This is
illustrated in Figure 3.25a and in Figure 3.25b a zoomed in view of Figure 3.25a
is presented where the effect of non-synchronous generator on its neighboring
generators can be observed.

2. All the generators start from a non-equilibrium point and one generator out
of synchronicity. This is illustrated in Figure 3.26a and a zoomed in view is
presented in Figure 3.26b.

3. All the generatros start from the same non-equilibrium state and are syn-
choronous. This case is demonstrated by Figure 3.27

The Jacobian is a tri-banded diagonal matrix in the case under study here.

Jk,l =
∂pk
∂δl

=
∂

∂δl
[b sin(δk) + bint sin(δk − δk+1) + bint sin(δk − δk−1)]

= δ̂k,l{b cos(δk)}+ {bint cos(δk − δk+1)}(δ̂k,l − δ̂k+1,l)

+ {bint cos(δk − δk−1)}(δ̂k,l − δ̂k−1,l)

(3.39)
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(a) Complete trajectory (b) Zoomed in view

Figure 3.26: Second training trajectory: Initial condition of non-equilibrium with
one node perturbed

Figure 3.27: Third Training trajectory: Initial condition of equilibrium with all
nodes synchronous

Training Trajectory δ δi ∀i 
= 2

Trajectory 1 1.45 1.25
Trajectory 2 1.1 1
Trajectory 3 0.8 0.8

Table 3.4: Initial conditions
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Training
Trajectory

Quotient
‘η’

Modes
‘q’

Tolerance
‘ǫs’

Lin pts
‘s’

1
1× 10−4 312 0.01 26
1× 10−2 203 0.005 47
2× 10−2 171 0.005 47

2
1× 10−4 312 0.005 16
1× 10−2 199 0.005 16
1× 10−2 199 0.001 49

3
1× 10−4 123 0.001 9
1× 10−2 62 0.001 9
2× 10−2 52 0.001 9

Table 3.5: Number of modes and linearization points for all training trajectories

(a) Singular Modes (b) Sum of the Modes

Figure 3.28: 1st training trajectory

Figure 3.25a represents the first case where the system was initially in equilibrium
state except one generator whose phase angle was disturbed from the equilibrium
position by 0.2 radians. The second case is represented in Figure 3.26a which is the
one where all the generators start off from non-equilibrium position and in addition
one of the generator’s phase angle is different from the rest by an angle of 0.1 radians.
The third case is the one where all the generators are in sync but they are not at
the equilibrium position and hence the system oscillates before settling down to a
steady state equilibrium, this case is shown in Figure 3.27.

Reduced order models obtained using the POD technique are listed in the Ta-
ble 3.5 along with the number of linearization points selected, the order of the model
reduced depends upon the individual cases. The Figures 3.28a to 3.30b represents
the modes and the sum of modes for case 1, case 2, and case 3 respectively.

It is intuitive that the more the number of modes and the number of linearization
points the more time the reduced model takes to simulate. The time consumption
data along with number of modes and linearization points of the training trajectories
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(a) Singular Modes (b) Sum of the Modes

Figure 3.29: 2nd training trajectory

(a) Singular Modes (b) Sum of the Modes

Figure 3.30: 3rd training trajectory
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Training
Trajectory

Modes
‘q’

Lin
Pts
‘s’

Time
(sec)

Full
Model

POD
Lin
Pts
Sel

1
312 (η < 10−4) 26 (ǫs = 0.01)

202 33
276

312 (η < 10−4) 47 (ǫs = 0.005) 632
203 (η < 10−2) 47 (ǫs = 0.005) 580

2
312 (η < 10−4) 16 (ǫs = 0.005)

191 27
155

199 (η < 10−2) 16 (ǫs = 0.005) 150
199 (η < 10−2) 49 (ǫs = 0.001) 850

3
130 (η < 10−4) 8 (ǫs = 0.005)

60 30
105

62 (η < 2 × 10−2) 8 (ǫs = 0.005) 100
62 (η < 2 × 10−2) 17 (ǫs = 0.001) 200

Table 3.6: Time Consumption Data

is listed in Table 3.6. It is to be noted that all the simulations were run on a laptop
with a i5-4200 CPU with a 1.6GHz processor and 8 GB RAM.

The combination of the above described number of modes and number of lin-
earization points gave us some varied performance in terms of time and errors. The
errors mentioned in the Table 3.7 are both the absolute errors and the relative er-
rors in the δ of corresponding generators where we have listed the maximum error
in cases where we simulated the same case with TPWL as the case in training
trajectories. This way we gain confidence in the model selected for the cases that
differ from the training trajectories. The modes and number of linearization points
selected are based on the minimum error while keeping the time of computation
minimum. A comparison of average δ from the full non-linear simulation and the
TPWL simulation is presented in Figures 3.31 to 3.33.

The comparison between the reduced linearized model from TPWL and the full
non-linear model was carried out on the average δ, which is termed as collective-
phase variable and its time derivate is ω. These are defined for loop power systems
as:

δ =
1
N

N∑

i=1

δi (3.40)

ω =
dδ

dt
=

1
N

N∑

i=1

ωi (3.41)

The variables are well-known in power system stability analysis as the Center
of Angle (COA) or Center of Inertia (COI) [54]. These variables demonstrate the
collective dynamics of the system and are useful in the study of stability of the power
grids.
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Zoomed in view

Figure 3.31: Comparison of the average δ for the 1st training trajectory

Figure 3.32: Comparison of the average δ for the 2nd training trajectory
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Figure 3.33: Comparison of the average δ for the 3rd training trajectory

Training
Trajectory

Modes
‘q’

Lin
Pts
‘s’

TPWL
Time
(sec)

Error in
δ

Abs Rel

1
312 26 90 s 0.0011 8.97×10−4

312 47 123 s 8.55×10−4 6.85×10−4

203 47 61 s 8.56×10−4 6.85×10−4

2
312 16 26 s 0.0044 0.0035
199 16 13 s 0.0046 0.0036
199 49 17 s 8.71×10−4 6.75×10−4

3
123 9 5 s 0.0014 0.0011
123 4 3 s 0.0126 0.0044
52 9 2 s 0.0013 9.86×10−4

Table 3.7: Specifics of Reduced Order Models and the Error w.r.t. Training Trajec-
tories
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Test Cases δ δi ∀i 
= 2

Test Case 1 1.12 1
Test Case 2 1.15 1.15
Test Case 3 1.37 1.25
Test Case 4 1.45 1.25

Table 3.8: Initial conditions for test cases

Zoomed in view

Figure 3.34: Comparison of the average δ for the 1st test case

The modes and the linearization points from the training trajectories were saved
and then used with cases which are different from the training cases. The results we
obtained are encouraging for this kind of model order reduction for the nonlinear
functions. The variations in the values of phase angles δi of the disturbed node used
for the test cases are listed in Table 3.8.

3.6.2 First test case: Single Node perturbation in non-
equilibrium conditions

This is the case which is closely related to the second training trajectory. We have
all the nodes starting from a non-equilibrium point δi = 1 ∀i 
= 2 and in addition
one node was perturbed by about 0.12 radians, i.e., δ2 = 1.12. The initial conditions
used for this test case are presented in Table 3.8.

The results are very promising and the TPWL simulation is considerably faster
as the full simulation in a similar case takes about 240 seconds while the TPWL
simulation took about 18 seconds with good accuracy. The errors are listed in the
Table 3.9. The comparison of the average δ between the original and reduced order
models are presented in Figure 3.34.
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Zoomed in view

Figure 3.35: Comparison of the average δ for the 2nd test case

3.6.3 Second test case: Synchronous non-equilibrium

This is a case similar to the third training trajectory where we had all the nodes
starting from a synchronous non-equilibrium position, in this case we gave the initial
conditions of 1.15 rather than 0.8 in the training case δi = 1.15 ∀i. The initial
conditions used for this test case are presented in Table 3.8.

The results are excellent and the TPWL simulation is considerably faster as the
full simulation in this case takes about 60 seconds while the TPWL simulation takes
about 4 seconds with very high accuracy. The errors are listed in the Table 3.9 and
the comparison of the average δ between the original and reduced order models are
presented in Figure 3.35.

3.6.4 Single node perturbation with low intensity

Since the perturbations can be random, a common case which can occur is that
the disturbance of different magnitudes in the same node. In this case we disturb
the node at position 2 same as in the training trajectory by 0.12 radians rather
than the 0.2 radians in the training case. The results are excellent and the TPWL
simulation is considerably faster as the full simulation in this case takes about 215
seconds while the TPWL simulation took about 66 seconds. The errors listed in
the Table 3.9 and the comparison between the average δ between the original and
reduced order models are presented in Figure 3.36.

3.6.5 Single node perturbations in Equilibrium conditions

One of the most common case which we can encounter is that there is a random
perturbation in one of the nodes while the system was in equilibrium position, i.e.,
all the generators were initially synchronous. It is similar to the case 1 from the
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Zoomed in view

Figure 3.36: Comparison of the average δ for the 3rd test case

Zoomed in view

Figure 3.37: Comparison of the average δ for the 4th test case

training trajectories except that the position of the disturbed node is changed, in
this case we disturb the node at position 100 rather than the node 2 in the training
case. The results are close and the TPWL simulation is considerably faster as the
full simulation in this case takes about 270 seconds while the TPWL simulation took
about 64 seconds. The errors listed in the Table 3.9 and the comparison between the
average δ between the original and reduced order models are presented in Figure 3.37.

3.6.6 Additional tests in Non-Equilibrium conditions

A few other variations were also tested for similar cases as the third training tra-
jectory. For example, changing the node position of the disturbed generator and
changing both the node position and the disturbance value. The results for this case
is listed in the following Table 3.10.
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Test
Case

Modes
‘q’

Lin
Pts
‘s’

Time
(sec)

Error in
δ

Full
Model

TPWL Abs Rel

1 199 49 240 18 8.75×10−4 6.75×10−4

2 62 17 60 4 6.62×10−4 5.27×10−4

3 203 47 215 66 7.31×10−4 5.84×10−4

4 203 47 270 64 0.1177 0.0810

Table 3.9: Error in Test cases of TPWL Simulations

Pert
Node

Pert
Value

Modes
‘q’

Lin
Pts
‘s’

TPWL
Time
(sec)

Error in
δ

Abs Rel

500 0.07 199 16 20 s 0.0699 0.0653
800 0.07 199 16 28 s 0.0504 0.0471
800 0.1 199 16 28 s 0.0504 0.0471

Table 3.10: Maximum error in different tests of TPWL

3.6.7 Convergence Analysis

It is important to analyse the source of error in the current study. As the results
from the previous section shows that the error is small but not small enough as
to compare with the machine precision level. In order to understand how does the
error diminish and its dependency on various factors, we studied different factors
namely, the number of modes, number of linearization points and the time step size.
It is evident from the previous tables that the number of modes used has a little
impact on error but considerable one on time consumption during the simulation.
The behavior of the maximum relative error in the reduced linearized variable δ
with respect to the time step and the number of linearization points is shown in the
Figures 3.38a and 3.38b, respectively. The non-monotonic behavior of the relative
error as a function of time step in Figure 6a is due to the fact that for a larger
time step compared to the one adopted for the training trajectory (∆T = 0.005)
the reduced order model might skip some of the linearization points. Hence, it is
inferred that the time step used for the reduced model simulation should be at least
equal to the time step used in the training simulation. For smaller time steps the
error is bounded by the truncation error of the reduced basis.

It can be conclusively said that the major impact on the accuracy of the reduced
order linearized model depends on having more linearized point. This is quite in-
tuitive, since adding more points around which the linearization of the non-linear
function is performed it will be able to capture the non-linear behavior more effec-
tively and hence reducing the error.
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(a) Relationship between Error and
Time Step

(b) Relationship between Error and
Linearization Points

Figure 3.38: Maximum Relative Error in δ

Trajectory for Confidence Interval δ δi ∀i 
= 2

Trajectory 1 1.5 1

Table 3.11: Initial conditions used in the build up for confidence interval

3.6.8 Confidence Interval

In order to give an idea of how the reduced model generated using TPWL compares
with the high fidelity model, we carried out a simple analysis similar to sensitivity
analysis. For this analysis, all the parameters were kept constant bar one. This
is repeated for all the parameters. This analysis is performed using reduced basis
generated using one training trajectory. The details of the training trajectory are
similar to as listed in Table 3.2 and the initial values of the phase angles are listed
in Table 3.11. The number of linearization points (s) in the reduced basis for this
case is 205 and the modes (q) selected are 199 out of 1000.

In Table 3.12 we presented the upper limit and the lower limit wherever applicable
that we can use with confidence having a maximum relative error in {δ} of 5% or
less. Due to the nature of the problem, the lower limit in the case of pm and upper
limit of d are open-ended as the error is always bounded on these limits. The number
of generators N and the susceptances b are not included in this exercise because they
depend upon the network topology and changes in these will have to be incorporated
through a new reduced model. The mass of the generator is also not included since
the equation is always normalized with the mass of the generator such that mi is
one. The variation in the phase angle δ2 depends upon the initial condition, the
performance of the reduced model simulation impvores with the inclusion of more
than one training trajectory and hence, the range for δ2 increases from what is given
in Table 3.11.

As we have described earlier that in this method several training trajectories can
be included in the offline phase to make the reduced basis. This implies that for
values over the limits in the Table 3.12, we can add another training trajectory so
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Parameter Upper Limit Lower Limit

pm 0.97 [p.u.] -
di - 0.15 [p.u.]
δ2 2.25 1
bint 105 [p.u.] 95 [p.u.]

Table 3.12: Confidence Interval for parameters with training trajectory of Table 3.11

that the error remains acceptable.

3.7 Conclusions

In this chapter, we presented the a posteriori model order reduction methods and
adopted it for the swing dynamics problem. Based on the simulations presented for
the linearized high fidelity model, it is concluded that the process of linearization
of the swing dynamics model makes the system unstable. This was also the case in
LATIN method presented in Chapter 2, and also when we applied the linearization
procedure on the high fidelity model for the a posteriori model reduction using POD.
Hence, it was evident that it was more related to system itself being unstable which
was confirmed through the linear stability study we performed and presented in
Sec. 3.2.9.

Therefore, it was suggested to use TPWL to deal with the non-linearity in a
manner that not only solves the problem of instability but also keeps the model
order reduction computationally efficient.

TPWL proves to be a very robust method for model order reduction of models
containing nonlinear functions. It has been proved as a fast, reliable and accurate
MOR technique as observed from the results presented by the test cases in Sec-
tion 3.6. The method as described is separated into offline and online phases, where
in the offline phase the selection of linearization points is carried out. That is the
only time consuming part of the method and as it is performed only once during
offline phase the time penalty on the overall procedure is not severe.

For the confidence interval, some other values of disturbances in {δ}, and different
values of pm, di, bint were trialed and the results as shown in section 3.6.8 proves the
robustness of the method considering the large variations possible for simulation with
reduced model. Note that, the confidence interval’s simulation were performed with
only one training trajectory and if more trajectories are included in the reduced basis
the interval where the method can be applied increases and the results improves.

The method is very well adapted to the problem discussed in this study and
more application for example, for the differential-algebraic equations (DAEs) of the
network grids containing both generators (PV nodes) and the loads (PQ nodes),
can further consolidate the current method as a well established model reduction
method. A journal article [95] was published based on the results presented in this
chapter.
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Chapter 4

Model Order Reduction of
Transmission Line Models in
Power Systems

The major part of power systems are the complex transmission networks. A similar
argument for the model reduction of transmission systems is valid as for the power
grids. In this chapter, we present model reduction of transmission line models using
the a priori method of PGD. A frequency-domain distributed parameters model for
transmission lines is used and a full parametric problem is developed using PGD.
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4.1. Introduction

4.1 Introduction

Reduced order models for transmission lines have been studied widely for decades.
There are a number of methods proposed for reduced order modeling of transmission
line models, these methods are often based on modeling limited part of a transmis-
sion system or a simplification of the system [96]. The details of these methods can
be found in a number of studies [97, 98, 99]. These studies consider model order
reduction through application of a number of methods such as the balanced trunca-
tion, modal trunction or Hankel singular values. But most of them have limitations
in the capturing of the whole range of frequencies.

Morched and Brandwajn [96] have presented a method to generate equivalent of
network from the frequency response. The authors have used the lumped parameter
models and developed a network equivalent which is simple and is able to approx-
imate the network’s behavior over a wide frequency range. Models are developed
to reduce the complexity of the transmission system and save computation time in
a number of analysis required for the power system studies [99, 100]. Lefebvre [99]
have developed a reduced order model of the state space representation of transmis-
sion lines for the eigenanalysis. The authors have used the state-space equivalencing
technique based on the balanced truncation. Clerici and Marzio [100] have focused
their research on the evaluation of the transient behavior of switching overvoltages.
They have presented results for transmission lines with intermediate or long length
as the length of the transmission line has a significant effect on the transients because
of the frequency of the AC currents [101]. There are several model order reduction
methods applied and an overview can be found in the study by Ionutiu et al [102].
Soysal and Semlyen [103] have presented the linear least squares approach to model
order reduction of transmission lines. On the other hand, Remis [104] has used the
Lanczos-type reduction method for multi-conductor transmission lines. Belhocine
and Marinescu [97] have developed a mixed balanced-modal truncation method for
the model order reduction of transmission lines.

In the current study, the distributed parameters model is used to model the
transmission lines, there are other models available for the transmission lines such
as the π-equivalent model [101]. Distributed parameters models are not exclusive
to the power system transmission lines but also used in mechanical engineering like
heat equations and transport equations [105, 106]. Jang et al [105] have used the
truncated balanced realization and singular perturbational model for a MIMO sys-
tem. Opmeer [106] presented model reduction of the distributed parameters model
for three different problems. Opmeer has used the Hankel singular values in order to
reduce distributed parameters model. But, as noted in the study by Opmeer [106]
the Hankel singular values decay asymptotically and therefore present a difficulty
in balanced truncation method because then all the modes become important to
achieve accurate results [97] a problem that Belhocine and Marinescu discuss also
present in the modal truncation method.

In this chapter, we propose a PGD based solution of the distributed parame-
ters (DP) model considering space-frequency as the separated representation coor-
dinates. The chapter is divided into four major sections, first section presents the
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DP model and the analytical solution in frequency-domain. The second section is
used to present the PGD formulation, while third section extends PGD for para-
metric problem. In the last section, we present results of PGD based reduced order
model developed in this study.

4.2 DP Model

The electrical transmission lines provide the path for the voltage and current waves to
propagate, the dynamics of the propagation is described by a distributed parameters
(DP) model. This model depends upon the considerations taking into account like
the losses and the frequency dependence of the parameters.

The distributed parameters model for a lossy transmission line with constant
parameters can be written in the time domain as:

∂v(x, t)
∂x

= −L∂i(x, t)
∂t

−Ri(x, t),
∂i(x, t)
∂x

= −C∂v(x, t)
∂t

−Gv(x, t)
(4.1)

for 0 ≤ x ≤ l, where v(x, t) and i(x, t) are the voltage and current in the line re-
spectively, and the resistance, the inductance, the capacitance and the conductance
are represented by R,L,C,G respectively and these constants are positive and in-
dependent of frequency. The parameters R,L,C,G are given in per unit length and
in Distributed Parameters model are used without multiplication with the length of
the line. However, these parameters must be multiplied by the length of the line in
case one is using any lumped circuit model for transmission lines e.g. π-equivalent
model. The effect of transverse conductance of the line is neglected in this model,
i.e., G = 0. The interconnection between the transmission line, the load and the
generator is performed using the Kirschhoff’s laws and the boundary values are given
by,

v(x, t)|x=0 = V0(t) − Z0i(x, t)|x=0

v(x, t)|x=l = Zi(x, t)|x=l

(4.2)

The terms V0 is the voltage source assumed to represent a generator behind an
impedance represented by Z0. The equations (4.1) and (4.2) represents the full
model of the power system, written in state space representation the system is

[

ż1

ż2

]

=

[

0 − 1
C
∂
∂x

− 1
L
∂
∂x

−R
L

] [

z1

z2

]

Bz(t) = V0(t), Cz(t) = y(t), z(0, x) = z0(x)
(4.3)

In equation (4.3) z1(t) = v(x, t) and z2(t) = i(x, t) and with B[z1(t) z2(t)]T =
v(0, t) − Z0i(0, t) = V0(t) the input and C[z1(t) z2(t)]T = v(l, t) the output. Ma-
trices B and C are given as B = [1 − Z0] and C = [0 Z].

102



4.2. DP Model

Initial conditions are not fixed as described in the paper by Belhocine and Mari-
nescu [98]. In the current study, we employ homogeneous initial conditions, i.e.

v(x, t)|t=0 = 0
i(x, t)|t=0 = 0

(4.4)

We transform the Distributed Parameters model for transmission lines from time-
domain to frequency-domain to convert the partial differential equations of (4.1) to
ordinary differential equations in only one variable, that is only in space dimension.
The benefit is in the availability of an easy analytical solution in addition to the
well-defined PGD formulation for such equations. Moreover, as noted in the study of
Morched and Brandwajn [96], that typically the electromagnetic transient studies are
focused on the equivalent models around power frequency. Morched and Brandwajn
argue that this decreases the accuracy of these studies for frequencies different from
the power frequency. Therefore, by transforming the model into the frequency-
domain and using PGD as a harmonic analysis tool which includes all the frequencies
of interest, we can have a very accurate model for studying the electromagnetic
transients in transmission systems.

Consider the Fourier transform with respect to the time domain for the unknowns
v(x, t) and i(x, t)in equation (4.1),

Ft {v(x, t)} = V̂ (x, ω) =
∫ ∞

−∞
v(x, t)e−ιωt

Ft {i(x, t)} = Î(x, ω) =
∫ ∞

−∞
i(x, t)e−ιωt

(4.5)

Applying Fourier transformation on the first derivatives with respect to time
present in eq. (4.1), without going into details we present.

Ft

{

∂v(x, t)
∂t

}

= (ιω)V̂ (x, ω)

Ft

{

∂i(x, t)
∂t

}

= (ιω)Î(x, ω)
(4.6)

The above definitions of eqs. (4.5) and (4.6) then transform the PDE in (4.1) to
an equivalent equation in frequency-domain,

∂V̂ (x, ω)
∂x

= −Î(x, ω).(R + ιLω),

∂Î(x, ω)
∂x

= −V̂ (x, ω).(ιCω)
(4.7)

with boundary conditions as
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V̂ (x, ω)|x=0 = V̂0(ω) − Z0Î(x, ω)|x=0

V̂ (x, ω)|x=l = ZÎ(x, ω)|x=l

(4.8)

Eliminating Î(x, ω) from equation (4.7)

d2V̂ (x, ω)
dx2

+ (LCω2 − ιRCω)V̂ (x, ω) = 0 (4.9)

The boundary conditions for the differential equations in frequency domain are
different from the boundary conditions given in eq (4.2) for the time domain. In
the equations (4.1) and the corresponding boundary conditions (4.2) are given for
a transmission line connected with a power system i.e. generator at one end and a
load at other end. In the current study, we are more inclined in solving the system
for a generic case where at the end of the transmission lines can be a generator
and a load or loads at both ends. Therefore, following set of boundary condition is
employed in the study.

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=0

= −Î|x=0.(ιLω +R)

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= 0

where

Î|x=0 = 1

(4.10)

A mirror image of the boundary condition is given as:

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=0

= 0

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= −Î|x=l.(ιLω +R)

where

Î|x=l = 1

(4.11)

Ofcourse, the two versions of boundary conditions defined in equations (4.10)
and (4.11) are mirror images of each other. We expect to solve the aforementioned
problem only once with one set of boundary conditions while the other will be a
mirror image about x = L/2.

A similar second order differential equation in terms of Î can be derived with the
following boundary conditions.

∂2Î(x, ω)
∂x2

+ (LCω2 − ιRCω)Î(x, ω) = 0 (4.12)
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∂Î(x, ω)
∂x

∣

∣

∣

∣

∣

x=0

= −V̂ |x=0.(ιCω)

∂Î(x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= 0

where

V̂ |x=0 = 1

(4.13)

or

∂Î(x, ω)
∂x

∣

∣

∣

∣

∣

x=0

= 0

∂Î(x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= −V̂ |x=l.(ιCω)

where

V̂ |x=l = 1

(4.14)

4.2.1 Analytical Solution

There exists an analytical solution for the second order differential equation of the
form given in equation (4.9).

∂2V̂ (x, ω)
∂x2

+ (LCω2 − ιRCω)V̂ (x, ω) = 0 (4.15)

With the boundary conditions as:

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=0

= −Î1|x=0.(ιLω +R)

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= −Î2|x=l.(ιLω +R)

(4.16)

Using commercial software MAPLE, we get the analytical solution of the ordinary
differential equation with the boundary condition defined as in equation (4.16). The
analytical solution although is not separable.

The solution is

V̂ (x, ω) = c1e
√
LCω2−ιRCω x + c2e−

√
LCω2−ιRCω x

where

c1 =
(ιLω +R)√

−LCω2 + ιRCω





Î1e
−

√
−LCω2+ιRCω l − Î2

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





c2 =
(ιLω +R)√

−LCω2 + ιRCω





Î1e
√

−LCω2+ιRCω l − Î2
e

√
−LCω2+ιRCω l − e−

√
−LCω2+ιRCω l





(4.17)
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If either of the boundary condition is replaced with a homogeneous Neumann
boundary condition, i.e., Î1 = 0 or Î2 = 0, then we have boundary conditions as
defined in equations (4.10) and (4.11) respectively. In such cases, the values of c1
and c2 becomes,

For Î2 = 0,

c1 =
(ιLω +R)√

−LCω2 + ιRCω





Î1e
−

√
−LCω2+ιRCω l

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





c2 =
(ιLω +R)√

−LCω2 + ιRCω





Î1e
√

−LCω2+ιRCω l

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





(4.18)

For Î1 = 0,

c1 =
(ιLω +R)√

−LCω2 + ιRCω

[

−Î2
e

√
−LCω2+ιRCω l − e−

√
−LCω2+ιRCω l

]

c2 =
(ιLω +R)√

−LCω2 + ιRCω

[

−Î2
e

√
−LCω2+ιRCω l − e−

√
−LCω2+ιRCω l

]
(4.19)

The analytical solution for the equation (4.12) given here

∂2Î(x, ω)
∂x2

+ (LCω2 − ιRCω)Î(x, ω) = 0 (4.20)

With the boundary conditions as:

∂Î(x, ω)
∂x

∣

∣

∣

∣

∣

x=0

= −V̂1|x=0.(ιCω)

∂Î(x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= −V̂2|x=0.(ιCω)

(4.21)

The analytical solution is given by

Î(x, ω) = c1e
√

−LCω2+ιRCω x + c2e−
√

−LCω2+ιRCω x

where

c1 =
ιCω√

−LCω2 + ιRCω





V̂1e
−

√
−LCω2+ιRCω l − V̂2

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





c2 =
ιCω√

−LCω2 + ιRCω





V̂1e
√

−LCω2+ιRCω l − V̂2

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





(4.22)

If either of the boundary condition is replaced by a homogeneous boundary
conditions,i.e., V̂1 = 0 or V̂2 = 0, then we have boundary conditions as defined
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in equations (4.13) and (4.14) respectively. In such cases, the values of c1 and c2
becomes,

For V̂2 = 0,

c1 =
ιCω√

−LCω2 + ιRCω





V̂1e
−

√
−LCω2+ιRCω l

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





c2 =
ιCω√

−LCω2 + ιRCω





V̂1e
√

−LCω2+ιRCω l

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l





(4.23)

For V̂1 = 0,

c1 =
ιCω√

−LCω2 + ιRCω

[

−V̂2

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l

]

c2 =
ιCω√

−LCω2 + ιRCω

[

−V̂2

e
√

−LCω2+ιRCω l − e−
√

−LCω2+ιRCω l

]
(4.24)

4.3 A priori Reduced Order Modeling in Frequency

Domain

A priori model order reduction is considerably faster than the a posteriori model
reduction because it eliminates the need to perform the simulation of high fidelity
model. Therefore, a priori model reduction remains the method of choice. As
presented in the Sec. 2.7.3 a priori methods weren’t able to converge to the right
solution in the time-domain. There remains a possibility of achieving success with
a priori methods in the frequency-domain modeling. For this purpose, we introduce
the method of Proper Generalized Decomposition (PGD) as a priori method for
model reduction in frequency-domain. The method of PGD is well-suited for both
time-domain and frequency-domain problems, here we have used it for the frequency-
domain problems.

4.3.1 Proper Generalized Decomposition

Proper Generalized Decomposition (PGD) belongs to a family of a priori model
reduction methods. The method is based on the a priori separation of variable of
the unknown field [62]. PGD can be considered as a model reduction technique in
which the reduced basis are constructed progressively by enriching the reduced basis
by adding a single mode per iteration of the method. The accuracy of the method
is analyzed after each enrichment and if necessary, more enrichment modes can be
added [107]. Suppose, our unknown field is a variable u(x1, x2, · · · , xD) defined in
a D-dimensional space C

D. PGD works by separating the solution for u in each
coordinate basis xi, a tremendous advantage of PGD is that the coordinate xi can
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be a parameter as well like the boundary conditions or the material parameters. The
solution in PGD framework is represented as:

u(x1, · · · , xD) =
n

∑

i=1

F 1
i (x1) × · · · × FDi (xD) (4.25)

The number of terms n are referred to as the enrichment modes are unknown
a priori. The enrichment terms are added successively until a solution is achieved
converged to a preset tolerance. The separated representation achieved through
PGD and the previously discussed POD is different that unlike POD, PGD does not
need a solution of the original high-dimensional problem before the solution can be
separated.

A quick solution steps in the PGD method as a priori differential solver is pro-
vided here, for more insight into the method of PGD, one can refer to a wealth of
publications by Chinesta et al [62, 108, 109, 110, 111, 112]. The works that involve
PGD in the frequency-domain problems are by Modesto et al [113]. For solving
nonlinear problems with PGD, we can combine the method of LATIN described in
Sec. 2.7.3 with PGD. In the study by Ladevèze et al. [114], PGD method has been
used with the LATIN method. One of the advantages of the PGD method is that it
is capable of handling parametric problem as discussed in the study by Raquel et al
in [115, 116]. It should be noted that PGD can be used as an algebraic solver. The
steps in PGD method are:

1. Given a PDE with appropriate boundary conditions, formulate a weak formu-
lation.

2. Represent the variable of interest in separated representation. The separated
representation can include parameters in addition to the coordinates.

3. Insert the separated representation in the weak formulation and obtain weak
formulations for each coordinate separately.

4. Initialize the first mode such that it satisfies the boundary value in case of
Dirichlet boundary conditions.

5. Make an initial guess for the enrichment mode and apply the Greedy algorithm.

6. Set a tolerance as a convergence criteria of enrichment modes.

7. Define a stopping criteria for the enrichment process.

8. Analyze the solution and if it does not satisfy the stopping criteria defined
in Step 6, add another enrichment mode until convergence is achieved with
respect to the stopping criteria.
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4.3.1.1 Example Problem

We explain the method of PGD using an example of second order partial differential
equation, namely the Poisson equation.

∆u(x, y) = f(x, y) ∀ x ∈ Ωx = (0, 2), y ∈ Ωy = (0, 1) (4.26)

with a homogeneous Dirichlet boundary condition. For a given forcing function
f(x, y) = 1, we have analytical solution for Poisson’s equation. The analytical
solution is given as:

uexact(x, y) =
∑

m,n odd

64
π4mn(4n2 +m2)

sin
(

mπx

2

)

sin(nπy) (4.27)

The surface plot using the analytical solution is given in Figure 4.2a. In order to
compare the PGD method with the analytical solution, we present the development
of PGD formulation.

The weak formulation for the Poisson’s equation with test function u∗(x, y), is
given as:

∫

Ωx×Ωy

u∗.(∆u− f) dx dy = 0 (4.28)

Since, we need a solution in separated form, we define our variable of interest as,

u(x, y) =
n

∑

i=1

Xi(x).Yi(y) (4.29)

similarly for the test function

u∗(x, y) = X∗(x).Y (y) +X(x).Y (y)∗ (4.30)

Now, for a nth enrichment mode with previous modes already computed, we have

u(x, y) =
n−1
∑

i=1

Xi(x).Yi(y) +Xn(x).Yn(y) (4.31)

Consider, we are at an iteration p of the enrichment mode n, we have the solution
converged so far as:

un,p(x, y) = un−1Xi(x).Yi(y) +Xp
n(x).Y

p−1
n (y) (4.32)

The process of converging the nth enrichment mode is performed using alternating
direction strategy. The process starts with an initial guess, let’s assume Y 0

n (y) and
calculate X1

n(x) and so on until convergence is achieved. At the end of the process,
the values of Xp

n(x) and Y
p
n (y) are added to the database of previously computed

modes as Xn(x) and Yn(y). To calculate Xp
n(x) from Y p−1

n (y), we use eq. (4.32).
The test function can be written as:

u∗(x, y) = X∗
n(x).Y

p−1
n (y) (4.33)
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Replacing eq. (4.32) and (4.33) into equation (4.28), we have the weighted resid-
ual form.

∫

Ωx×Ωy

X∗
n.Y

p−1
n .

(

d2Xp
n

dx2
Y p−1
n +

d2Y p−1
n

dy2
Xp
n

)

dx dy

= −
∫

Ωx×Ωy

X∗
n.Y

p−1
n .

n−1
∑

i=1

(

d2Xi
dx2

Yi +
d2Yi
dy2

Xi

)

dx dy

+
∫

Ωx×Ωy

X∗
n.Y

p−1
n f dx dy

(4.34)

Since, all the functions of y are known, we can define the following expressions.







































αx =
∫

Ωy
(Y p−1
n )2

dy

βx =
∫

Ωy
Y p−1
n .d

2Y p−1

n

dy2 dy

γxi =
∫

Ωy
Y p−1
n .Yidy

δxi =
∫

Ωy
Y p−1
n .d

2Yi

dy2 dy

ξx =
∫

Ωy
Y p−1
n .f dy

(4.35)

Inserting the definitions from eq. (4.35) in eq. (4.34).

∫

Ωx

X∗
n.

(

αx.
d2Xp

n

dx2
+ βx Xp

n

)

dx =

−
∫

Ωx

X∗
n.
n−1
∑

i=1

(

γxi .
d2Xi
dx2

+ δxi .Xi

)

dx+
∫

Ωx

X∗
n.ξ

x dx

(4.36)

Eq. (4.36) represents the weighted residual form in one dimension which can be
solved by any numerical scheme like finite element method. The system of equations
obtained from finite elements method can be represented in matrix form as:

αx[Kx]{Xp
n} + βx[Mx]{Xp

n} =

−
n−1
∑

i=1

(γxi [Kx]{Xi} + δxi [Mx]{Xi}) + ξx[Mx]{1, · · · , 1}T
(4.37)

Once, Xp
n is known, we can calculate Y pn using the same procedure.

un,p(x, y) = un−1Xi(x).Yi(y) +Xp
n(x).Y

p
n (y) (4.38)

The test function can be written as:

u∗(x, y) = Xp
n(x).Y

∗
n (y) (4.39)

Replacing eq. (4.38) and (4.39) into equation (4.28), we have the weighted resid-
ual form.
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∫

Ωx×Ωy

Xp
n.Y

∗
n .

(

d2Xp
n

dx2
Y pn +

d2Y pn
dy2

Xp
n

)

dx dy

= −
∫

Ωx×Ωy

Xp
n.Y

∗
n .
n−1
∑

i=1

(

d2Xi
dx2

Yi +
d2Yi
dy2

Xi

)

dx dy

+
∫

Ωx×Ωy

Xp
n.Y

∗
n f dx dy

(4.40)

Since, all the functions of x are known, we can define the following expressions.






































αy =
∫

Ωx
(Xp

n)
2 dx

βy =
∫

Ωx
Xp
n.
d2Xp

n

dx2 dx

γyi =
∫

Ωx
Xp
n.Xidx

δyi =
∫

Ωx
Xp
n.
d2Xi

dx2 dx

ξy =
∫

Ωx
Xp
n.f dx

(4.41)

Inserting the definitions from eq. (4.35) in eq. (4.34).

∫

Ωy

Y ∗
n .

(

αy.
d2Y pn
dy2

+ βy Y pn

)

dy =

−
∫

Ωy

Y ∗
n .
n−1
∑

i=1

(

γyi .
d2Yi
dy2

+ δyi .Yi

)

dy +
∫

Ωy

Y ∗
n .ξ

y dy

(4.42)

Using the finite element methods, the eq. (4.42) can be solved and can be ex-
pressed in matrix form as:

αy[Ky]{Y pn } + βy[My]{Y pn } =

−
n−1
∑

i=1

(γyi [Ky]{Yi} + δyi [My]{Yi}) + ξy[My]{1, · · · , 1}T
(4.43)

At this we define, a stopping criteria which can be used to judge the convergence
of the alternating direction. A tolerance ǫ is predefined such that the iterations are
stopped when the following equation holds true.

||Xp
n(x).Y

p
n (y) −Xp−1

n (x).Y p−1
n (y)||

||Xp−1
n (x).Y p−1

n (y)||
< ǫ (4.44)

The enrichment modes are stopped when the residual R(n) is acceptably low
within a predefined tolerance.

R(n) =
n

∑

i=1

(

∂2Xi
∂x2

.Yi(y) +
∂2Yi
∂y2

.Xi(x)

)

− f (4.45)

Any other method can also be adopted. One stopping criteria for the enrichment
process is the ratio between the last mode and the first mode. In this way, it can
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4.3. A priori Reduced Order Modeling in Frequency Domain

(a) X-axis (b) Y-axis

Figure 4.1: Modes in separated x-y dimensions

be observed that what improvements are added to the solution by the new modes.
This is denoted by ε(n) and defined as:

ε(n) =
||Xn(x).Yn(y)||
||X1(x).Y1(y)||

(4.46)

The modes computed for the Poisson’s equation from the PGD formulation are
prsented in Figure 4.1. The results from the PGD based separated solutions Fig-
ure 4.2b and the analytical solution Figure 4.2a alongwith the error between the
PGD solution and the analytical solution in Figure 4.2c.

4.3.2 PGD formulation for DP Model

We are seeking a separable solution to the (4.15), representing the DP model in
single variable of voltage, in the form of

V̂ (x, ω) =
n

∑

i=1

Xi(x).Oi(ω) (4.47)

Equation (4.15) along with the boundary conditions given in equations (4.10)
and (4.11). In order to develop a PGD formulation, first we must have a weak
formulation of the problem.

Multiply equation (4.15) with a test function δV ∗(x) where, δV represents the
test function and ∗ represents the complex conjugate.

∫

Ωx×Ωω

δV ∗∂
2V̂

∂x2
dxdω −

∫

Ωx×Ωω

δV ∗.f(ω)V̂ dxdω = 0 (4.48)

where, f(ω) = (LCω2 − ιRCω).
Integrating by parts gives
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4.3. A priori Reduced Order Modeling in Frequency Domain

(a) Analytical Solution (b) PGD Solution

(c) Error between PGD and Analytical
solutions

Figure 4.2: Relative Error in the Solution of Variable Load using POD for Variable
Load
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4.3. A priori Reduced Order Modeling in Frequency Domain

∫

Ωx×Ωω

δV ∗∂
2V̂

∂x2
dxdω =

∫

Ωω

δV ∗.
∂V̂

∂x

∣

∣

∣

∣

∣

x=l

dω −
∫

Ωω

δV ∗.
∂V̂

∂x

∣

∣

∣

∣

∣

x=0

dω

−
∫

Ωx×Ωω

∂δV ∗

∂x

∂V̂

∂x
dxdω

(4.49)

With the boundary conditions given in equation (4.10) or (4.11),one of the terms
in the equation (4.49) becomes zero. For example, with boundary condition of
equation (4.10), we have

∫

Ωx×Ωω

δV ∗∂
2V̂

∂x2
dxdω = −

∫

Ωω

δV ∗.
∂V̂

∂x

∣

∣

∣

∣

∣

x=0

dω −
∫

Ωx×Ωω

∂δV ∗

∂x

∂V̂

∂x
dxdω (4.50)

Therefore, the weak form of equation (4.48) after inserting the boundary condi-
tion becomes

∫

Ωx×Ωω

∂δV ∗

∂x

∂V̂

∂x
dxdω+

∫

Ωx×Ωω

f(ω)δV ∗V̂ dxdω =
∫

Ωω

δV ∗(x = 0, ω).Î1.(ιLω+R) dω

(4.51)
The generic weak form is:

A(V̂ , δV ) = L(V̂ )
where

A(V̂ , δV ) = A1(V̂ , δV ) + A2(V̂ , δV )

(4.52)

And the bilinear form is defined as:

A1(V̂ , δV ) =
∫

Ωx×Ωω

∂δV ∗

∂x

∂V̂

∂x
dxdω

A2(V̂ , δV ) =
∫

Ωx×Ωω

f(ω)δV ∗V̂ dxdω

L(δV ) =
∫

Ωω

δV ∗(x = 0, ω).Î1.(ιLω +R) dω

(4.53)

As stated earlier, we need a separated representation of the variable V̂ , assuming
n− 1 converged modes, we have:

V̂ (x, ω) =
n−1
∑

i=1

Xi(x).Oi(ω) +Xp
n(x)O

p−1
n (ω) (4.54)

We assume the test function δV ∗(x, ω) in the separated form as

δV ∗(x, ω) = Op−1∗
n (ω)δX∗

n(x) +X
∗
n(x)δO

p−1∗
n (ω) (4.55)
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4.3. A priori Reduced Order Modeling in Frequency Domain

The generic bilinear form in separated representation is given as:

m1(O, δO).a1(X, δX) +m2(O, δO).a2(X, δX) =

−
n−1
∑

i=1

m1(O, δO).a1(X, δX) −
n−1
∑

i=1

m2(O, δO).a2(X, δX) + l1(δO).l1(δX)
(4.56)

And the bilinear form is defined as:

a1(X, δX) =
∫

Ωx

dδX(x)∗

dx
.
dX(x)
dx

dx

a2(X, δX) =
∫

Ωx

δX(x)∗.X(x) dx

l1(δX) = δX(x)∗(x = 0, ω).I1

m1(O, δO) =
∫

Ωω

O(ω)∗.O(ω) dω

m2(O, δO) =
∫

Ωω

f(ω).O(ω)∗.O(ω) dω

l1(O) =
∫

Ωω

O(ω)∗.(ιLω +R) dω

(4.57)

The PGD solution methodology is based upon an alternating strategy with the
separated form of V̂ (x, ω) given above in (4.47). We assume that the solution is
converged until the step n − 1, and the solution is in the enrichment step n in the
pth iteration,

Since, we are employing the Greedy Algorithm and made the assumption that
the solution is converged until the enrichment step n in the pth iteration,

δV ∗(x, ω) = Op−1∗
n (ω)δX∗

n(x) (4.58)

Substituting equations (4.54) and (4.58) in equation (4.51), we get

∫

Ωx×Ωω

dδX∗
n

dx

dXp
n

dx
Op−1∗
n .Op−1

n dxdω +
∫

Ωx×Ωω

f(ω).δX∗
n.X

p
nO

p−1∗
n .Op−1

n dxdω =

−
∫

Ωx×Ωω

n−1
∑

i=1

dδX∗
n

dx

dXi
dx
Op−1∗
n .Oi dxdω −

∫

Ωx×Ωω

f(ω).
n−1
∑

i=1

δX∗
n.Xi.O

p−1∗
n .Oi dxdω

+
∫

Ωω

δX∗
nO

p−1∗
n (Î(ιLω +R)) dω

(4.59)

In the above equation, all functions of the parameter ω are known, and we can
evaluate the corresponding one-dimensional integrals
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4.3. A priori Reduced Order Modeling in Frequency Domain

αx =
∫

Ωω

Op−1∗
n .Op−1

n dω

βx =
∫

Ωω

f(ω).Op−1∗
n .Op−1

n dω

γxi =
∫

Ωω

Op−1∗
n .Oi dω

δxi =
∫

Ωω

f(ω).Op−1∗
n .Oi dω

µx =
∫

Ωω

Op−1∗
n .Î .(ιLω +R) dω

(4.60)

Hence, we have a weighted residual form in the variable Xp
n

∫ l

0
αx.
dδX∗

n

dx

dXp
n

dx
dx+

∫ l

0
βx.δX∗

n.X
p
n dx =

−
∫ l

0

n−1
∑

i=1

γxi .
dδX∗

n

dx

dXi
dx

dx−
∫ l

0

n−1
∑

i=1

δxi .δX
∗
n.Xi dx+ δX

∗
n.µ

x|x=0

(4.61)

The solution to (4.61) can be found using finite elements which will give us Xp
n.

αx[Kx]{Xp
n} + βx[Mx]{Xp

n} = −
n−1
∑

i=1

(γxi [Kx]{Xi} + δxi [Mx]{Xi})

+ {1, 0, ..., 0}Tµx
(4.62)

αx = {Op−1
n }T [M1

w]{Op−1
n }

βx = {Op−1
n }T [M2

w]{Op−1
n }

γxi = {Op−1
n }T [M1

w]{Oi}
δxi = {Op−1

n }T [M2
w]{Oi}

µx = Î{Op−1
n }T [M1

w]{(ιLω +R)}
where

[M2
w] =

∫

Ωω

f(ω).NT
w .Nw dω

(4.63)

In the matrix operations in MATLAB, the transpose of a complex valued vec-
tor/matrix also conjugates it. In other softwares, it must be made sure that the
transpose is the conjugated transpose.

The next step will be to evaluate Opn, since we already evaluated the term Xp
n.

We assume the solution in the separated form is now given as:

V̂ (x, ω) =
n−1
∑

i=1

Xi(x).Oi(ω) +Xp
n(x)O

p
n(ω) (4.64)
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4.3. A priori Reduced Order Modeling in Frequency Domain

We assume the test function V ∗(x, ω) in the separated form as

δV ∗(x, ω) = Xp∗
n (x)δO∗

n(ω) (4.65)

Substituting equations (4.64) and (4.65) in (4.51) and simplifying we get:

∫

Ωx×Ωω

dXp∗
n

dx
.
dXp

n

dx
.δO∗

n.O
p
n dxdω +

∫

Ωx×Ωω

f(ω).Xp∗
n .X

p
n.δO

∗
n.O

p
n dxdω =

−
∫

Ωx×Ωω

n−1
∑

i=1

dXp∗
n

dx
.
dXi
dx
.δO∗

n.Oi dxdω −
∫

Ωx×Ωω

f(ω).
n−1
∑

i=1

Xp∗
n .Xi.δO

∗
n.Oi dxdω

+
∫

Ωω

Xp∗
n |x=0.δO

∗
n.(Î .(ιLω +R)) dω

(4.66)

In this step, all the functions of the parameter x are known, and we can evaluate
the following integrals

αω =
∫

Ωx

dXp∗
n

dx
.
dXp

n

dx
dx

βω =
∫

Ωx

Xp∗
n .X

p
n dx

γωi =
∫

Ωx

dXp∗
n

dx
.
dXi
dx

dx

δωi =
∫

Ωx

Xp∗
n .Xi dx

ξω = Xp∗
n |x=0.Î

(4.67)

Hence, we have (4.66) as

∫

Ωω

αω.δO∗
n.O

p
n dω +

∫

Ωω

f(ω).βω.δO∗
n.O

p
n dω = −

∫

Ωω

n−1
∑

i=1

γωi .δO
∗
n.Oi dω

−
∫

Ωω

f(ω).
n−1
∑

i=1

δωi .δO
∗
n.Oi dω +

∫

Ωω

ξω.δO∗
n.(ιLω +R) dω

(4.68)

The equation (4.68) giving the weighted residual form doesn’t involve any differ-
ential operators. The corresponding strong form results as:

αωOpn + f(ω)β
ωOpn = −

n−1
∑

i=1

γωi Oi − f(ω)
n−1
∑

i=1

δωi Oi + ξ
ω(ιLω +R) (4.69)

(αω + f(ω)βω)Opn = −
n−1
∑

i=1

(γωi + f(ω)δωi )Oi + ξ
ω(ιLω +R) (4.70)
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4.3. A priori Reduced Order Modeling in Frequency Domain

Parameter Name Symbol Value Units

Inductance L 1.3×10−8 H/km
Capacitance C 8.87×10−9 F/km
Resistance R 0.105 ohm/km
Length of line l 900 km
Minimum Frequency ω1 300 rad/sec
Maximum Frequency ωn 1300 rad/sec

Table 4.1: Distributed Parameters Values

Quantity Value

Absolute Error 0.0864
Relative Error 1.7924 ×10−4

Number of Modes 12

Table 4.2: Error between Analytical and PGD Solutions

This is a set of algebraic equations solving which gives the unknown function
Opn(ω).

Alternatively, we can solve (4.68) using FEM.

(αω[Mω] + βω[MA
ω ]){Opn} = −

n−1
∑

i=1

(γωi [Mω] + δωi [M
A
ω ]){Oi} + ξω{(ιLω +R)} (4.71)

A similar PGD formulation for the differential equation in terms of current has
been formulated and is listed in Appendix A.1.

4.3.3 Validity of PGD Solution

In order to implement the PGD solution, we first must validate the PGD solution
and its accuracy. For a simple case, we have the analytical solution for the problem
given in (4.8) and the boundary conditions of (4.10). The parameters used for the
validation purposes are adopted from the book of Bergen and Vittal [117] for a line
of 138 kV line and are listed in the table 4.1.

Solutions obtained using analytical expression and PGD are plotted in figures
(4.3a) to (4.3f) as well as the error plots in figures (4.3g) to (4.3i) between the PGD
solution and the solution obtained from the analytical solution. The maximum
absolute and relative errors are listed in the Table 4.2.

The solution from PGD is accurate as evident from the errors listed in the Ta-
ble 4.2. Also from the number of modes, presented in Figure 4.4, it is proved that
PGD provides a fast as well as accurate alternative solution to the analytical solu-
tion. The analytical solution can also be presented in separated representation using
SVD but the actual benefit of using PGD over SVD is in its ability to use it as a
parametric solver which we present in the next section.
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4.3. A priori Reduced Order Modeling in Frequency Domain

(a) Exact Absolute Voltage (b) Exact Real Voltage (c) Exact Imaginary Voltage

(d) PGD Absolute Voltage (e) PGD Real Voltage (f) PGD Imaginary Voltage

(g) Error Absolute Voltage (h) Error Real Voltage (i) Error Imaginary Voltage

Figure 4.3: Analytical and PGD Solution for the DP Model
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4.3. A priori Reduced Order Modeling in Frequency Domain

(a) Real x (b) Imag x

(c) Real ω (d) Imag ω

Figure 4.4: Modes of PGD Solution
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4.3. A priori Reduced Order Modeling in Frequency Domain

Figure 4.5: Residual w.r.t. Enrichment Modes

4.3.3.1 PGD Residual Evaluation

Residual of the PGD solution is important to evaluate so that the progress of the
solution and the quality of the enrichment modes can be assessed. The residual can
be evaluated as:

Res(δV ) := −A(VPGD, δV ) + L(δV ) (4.72)

The solution and the operator given in separated representation as:

VPGD(x, ω) =
N

∑

m=1

Xm(x)Om(ω) =
N

∑

m=1

4Xm ⊗ 4Om (4.73)

A(VPGD, .) =
N

∑

m=1

a1(Xm, .)m1(Om, .) − a2(Xm, .)m2(Om, .) → C (4.74)

L(.) = lO1 (.)l
X
1 (.) → B (4.75)

Therefore, the equation for residual calculation is

R =
N

∑

m=1

Cm − B

R =
N

∑

m=1

(M

w
.Om ⊗ Kx.Xm − M



w
.Om ⊗ Mx.Xm) − B

(4.76)

The residual for the case presented in this section, the residual decreases steeply
after first mode. The residual steadily keeps on decreasing with more enrichment
modes as presented in the Figure 4.5.

4.3.3.2 Effect of Tolerances on PGD Performance

Before moving further in application of PGD’s separated representation on the trans-
mission line model, first we must quantify the effectiveness of the method. In this
section, we study the effects of tolerances for the alternating directions and the
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Tolerance of
Alternating
Directions

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Iterations 32 14 27 40 56 8 7 7 6 6
99 95 85 82 99 81 69 63 57 48
55 29 93 29 40 16 13 12 11 10
99 99 99 99 99 99 99 99 99 99
99 18 7 7 11 7 6 5 5 4
42 12 30 22 24 12 11 10 9 8
99 99 99 99 99 14 8 6 6 5
99 99 38 15 26 6 6 5 5 5
99 99 19 10 14 10 9 8 7 6
99 99 99 99 24 23 20 16 13 9
99 99 99 16 7 7 6 5 4 3
99 99 99 99 99 20 16 10 10 5

Modes -12-
Abs Err 0.0864
Rel Err 1.7924 × 10−4

Residual 1.59 × 10−10

Table 4.3: Performance of PGD solution w.r.t. tolerance of alternating directions

tolerance for the enrichment process and their relation with the error, number of
modes, number of iterations and the residual. Two studies were performed, first the
tolerance for the enrichment process was set at 1 × 10−10 and varied the tolerance
for enrichment process. The results of the first case is reported in Table 4.3.

The second set of analysis was carried out with tolerance for alternating directions
was set at 1×10−10 and the tolerance for enrichment modes was varied over a range
from 1 × 10−6 to 1 × 10−15, the results are presented in the Table 4.4.

4.4 PGD as Parametric Solver

The strength of PGD is not only its ability to reduce models in a priori sense but
also to include parameters in the basis. In this section, we present the parametric
solution of the DP model of transmission lines. First, we begin with including only
one parameter and study the results. Then we will present the PGD formulation
including all the parameters.

4.4.1 Inductance L as an extra parameter

As a first instance, we introduce inductance L as a parameter in PGD separated
representation. The solution in separated representation will be then written as,
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4.4. PGD as Parametric Solver

Tol for
Enrich

10−6 10−7 10−8 10−9 10−10 10−12 10−15

Iterations 99 69 69 22 29 44 76
99 99 99 68 99 75 33
16 15 54 48 40 41 99
99 99 99 99 99 99 7
15 8 12 8 8 11 35
48 18 35 13 20 39 81
99 46 78 48 22 99 16

26 14 20 17 9 10
13 12 10 12 12 37
38 46 47 96 27 9

9 8 68
34 99 8

9 99
99 99
99 99
99 12

99
99

Modes 7 10 10 10 12 16 19
Abs Err 3.42 0.11 0.11 0.11 0.09 0.08 0.08
Rel Err 0.007 2.2 × 10−4 1.8 × 10−4 2.6 × 10−5

Residual 4.2 × 10−7 2.8 × 10−9 1.6 × 10−10 3.5 × 10−11 6.4 × 10−15

Table 4.4: Performance of PGD solution w.r.t. tolerance of enrichment modes
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4.4. PGD as Parametric Solver

Nx Nω NL L LNL

1801 2001 1001 1 × 10−3 1.5 × 10−3

Table 4.5: Number of elements and range for PGD with L as a parameter

Modes
Maximum Error

Frobenius Norm
of Error Matrices

Absolute Relative Absolute Relative

25 175.5276 0.3639 6.3595×104 203.0935
50 16.6750 0.0327 7.9057×103 22.7360
100 13.8586 0.0287 3.9136×103 16.1839
150 2.1991 0.0052 814.6762 1.2063

Table 4.6: Error of PGD solutions with L as a parameter

V̂ (x, ω, L) =
n

∑

i=1

Xi(x)Oi(ω)Li(L) (4.77)

The formulation is the same as previously defined and is detailed in the Ap-
pendix A.2. Here, we just present our results based on the PGD separated repre-
sentation with inductance L as a parameter in addition to the space and frequency
coordinates.

The values of R and C are kept fixed as listed in the Table 4.1. The range of
values of L and the discretization used in the parametric space are listed in Table
4.5.

We present the errors for a specific value of inductance L = 1.302 × 10−3H/km
in the Table 4.6, values of resistance R and capacitance C are kept the same as
in Table 4.1. The results indicate that the parametric solution depends upon the
parameter range and the discretization size. Increasing the modes of PGD solution
improves the accuracy of the solution which is intuitive. The results are graphically
presented in the Figures 4.6. The number of modes for improved accuracy are quite
large which can be reduced by using a post PGD compression. The convergence of
the PGD solution with the addition of enrichment modes is presented in the Figure
4.7.

Frobenius Norm (commonly termed Euclidean norm) defined in the Table 4.6 is
the matrix norm defined as the square root of the sum of the absolute squares of its
elements ‖A‖F =

√

∑m
i=1

∑n
j=1 |ai,j|2.

The inclusion of inductance L as an extra parameter has provided good results
from the parametric solution. Although, the number of enrichment modes have
increased considerably compared with the solution where the solution was sought
separated only in the space-frequency domain. The additional number of modes did
not have significant impact on the memory or the computational time. Nevertheless,
the number of modes can be reduced using post-PGD compression.
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4.4. PGD as Parametric Solver

(a) With 25 modes (b) With 50 modes

(c) With 100 modes (d) With 150 modes

Figure 4.6: Effect of enrichment modes on error with inductance as parameter

Figure 4.7: Effect of enrichment modes on ratio α of 1st mode to last mode
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Parameter Symbol
Range

Discretization
Initial Final

Inductance L 1 × 10−3 1.5 × 10−3 NL = 1001
Resistance R 1 × 10−1 2 × 10−1 NR = 1001
Capacitance C 8.5 × 10−9 9 × 10−9 NC = 1001
Space x 0 900 Nx = 1801
Frequency ω 300 1300 Nω = 2001

Table 4.7: Parameter Space

Modes
Maximum Error

Frobenius Norm
of Error Matrices

Absolute Relative Absolute Relative

25 255.9129 0.6884 1.2172×105 391.7488
50 120.4323 0.0589 6.6426×104 288.9914
100 58.3446 0.1544 2.5890×104 142.9241

Table 4.8: Error of parametric PGD with values of L,R,C as listed in Table 4.7

4.4.2 Extending PGD for Parameters R,L and C

The next step is to develop a full parametric solution with all the electrical param-
eters of the transmission line as extra coordinates of the separated representation.
This separated representation is of great significance in terms of real time evaluation
of any type of commercially available transmission lines. In this way, we will have a
database prepared in offline mode which we can then use in real time.

The formulation is presented in Appendix A.3.
Now, we have defined the PGD formulation for a fully parametric problem, we

present some solutions and compare with the analytical results presented earlier in
the chapter. The range of parameters used and the discretization for each parameter
is presented in the Table 4.7.

The results for the full parametric solution using PGD is presented in the Table
4.8. The results are compared with the exact solution of the parameters presented
in the book of Bergen and Vittal [117] and presented throughout this chapter.

The results presented in the Table 4.8 highlighted the fact that with the para-
metric solution, the choice of parameter range has to be carefully selected. In the
results presented in Section 4.3.3, the separated solution needs only 12 modes, while
the solution with only inductance L as a parameter needs upto 150 modes. With
150 modes, the accuracy is very good and the error is about 0.5 %, but for the full
parametric solution this much modes are insufficient for accurate solutions. There-
fore, we reduce the size of the parameters domain and are presented in the Table
4.9.

With the reduced range for parameters, the results are presented in Table 4.10.
The errors have reduced below 1 % with only 50 modes and with more enrichment
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Parameter Symbol
Range

Discretization
Initial Final

Inductance L 1.25 × 10−3 1.35 × 10−3 NL = 1001
Resistance R 1 × 10−1 1.1 × 10−1 NR = 1001
Capacitance C 8.8 × 10−9 8.9 × 10−9 NC = 1001
Space x 0 900 Nx = 1801
Frequency ω 300 1300 Nω = 2001

Table 4.9: Reduced range for Parameter Space

Modes
Maximum Error

Frobenius Norm
of Error Matrices

Absolute Relative Absolute Relative

25 39.0809 0.0767 1.1461×104 38.9270
50 13.7160 0.0044 5.8392×103 24.1773
100 7.5472 0.0024 1.0306×103 5.1648

Table 4.10: Error of parametric PGD with reduced range of L,R,C as listed in
Table 4.9

modes included the Frobenius norm with 100 modes also very low. This indicates
that with 100 modes the error at each node is reduced to a very manageable level.

4.5 PGD Solution as Generalized Transfer Func-

tion

The transfer function for a transmission line connecting a voltage source ‘V̂0’ at one
end and a load represented by ‘Z’ at the other end is studied in this section. The
purpose of this study is twofold, one which is of concern in this section is the model
reduction of the transfer function of a power transmission line. The other purpose is
the validation of the separated representation obtained by the application of PGD
which is to be utilized in the study of power grids harmonics analysis presented in
the next chapter. The boundary conditions for the harmonic analysis are different
than the current study and are presented in the equation (4.10) and (4.11).

In the study by Belhocine and Marinescu [98], the transfer function is obtained
using the Laplace transfer. The differential equations representing the DP model is
given in eq. (4.1) as recalled here.

∂v(x, t)
∂x

= −L∂i(x, t)
∂t

−Ri(x, t),
∂i(x, t)
∂x

= −C∂v(x, t)
∂t
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4.5. PGD Solution as Generalized Transfer Function

(a) Error with 25 modes (b) Error with 50 modes

(c) Error with 100 modes (d) Solution with 100 modes

Figure 4.8: Evolution of Parametric PGD solution for parameters listed in Table 4.1
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4.5. PGD Solution as Generalized Transfer Function

For an ideal voltage source Z = 0 and the line opened at extremety i.e. Z = ∞,
the boundary conditions are given as

v(x, t)|x=0 = V0(t)
i(x, t)|x=l = 0

(4.78)

For such a system, the transfer function for the output V̂ (l, s) at x = l in the
Laplace domain is given in the study by Belhocine and Marinescu [98] as:

V̂ (l, s)

V̂0(s)
=

1

cosh
(

l
√

Cs(R + Ls)
) (4.79)

The transfer function in the spectral approach as described in the study by
Belhocine and Marinescu [98], can be written in an infinite form

V̂ (l, s)

V̂0(s)
=

1
∏∞
n=1

(

4l2LC
(2n−1)2π2 s2 + (R

L )4l2LC

(2n−1)2π2 s+ 1
) (4.80)

The detailed explanation of the spectral approach method is given in the refer-
ences by B. Ya. Levin [118] and R.F. Curtain and H.J. Zwart [119]. In the next
section, the model reduction of the transmission line models are discussed and the
separated representation obtained using PGD is presented.

4.5.1 Model Reduction of the Transmission Line Model

Transmission line models should be able to fully describe the transients of the power
systems. DP model has this capability but it is very difficult to use this model
except for very few cases which is not practical. Hence, the other finite dimensional
models like the π-model and multiple π-sections model are developed, but these
models are not able to describe the wave propagation and have limitations in terms
of its applications. The model reduction depends upon the application and the need
to keep specific dynamics of the system keeping in view the type of study to be
performed.

In the study [97] by Belhocine and Marinescu, they have presented the modal
truncation and balanced truncation approach. Their goal was to present a model
reduction technique which preserves the dynamics of the system the analysts are
interested in. The authors first presented the two models of balanced and modal
truncation and discussed. Later they have presented their own developed method,
which is a mix of balanced and modal trunctations. The reduced order model
obtained by combining the balanced and modal truncations as presented in the
study by Belhocine and Marinescu [98] has still 171 modes. The number of modes
are still high, even though the reduced model has closely matched the DP model.

We can use the ability of PGD to develop a separated representation of the
DP model which has far fewer modes. As presented in the section 4.2, the fourier

129



4.6. PGD Solution as Generalized Transfer Function

(a) Step Response (b) Response to a sinosuidal input

Figure 4.9: Time simulation of transmission line transient behavior

transformation of the differential equations of (4.1) and the boundary conditions
gives us the ordinary boundary value problem with mixed boundary conditions.

d2V̂ (x, ω)
dx2

+ (LCω2 − ιRCω)V̂ (x, ω) = 0 (4.81)

V̂ (x, ω)|x=0 = V0(t)

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= 0
(4.82)

The transfer function in the separated representation is given by the product of
the separated representation of the ODE.

4.5.2 Step Response

First, we present the time-domain simulation and present the results for a step input
and a sinusoidal wave with a 100 Hz frequency. The same values are used in the
study by Belhocine and Marinescu [98]. The results are graphically represented in
the Figure 4.9.

In this section, we employed the PGD for space-frequency separated represen-
tation to obtain the generalized transfer function. The impulse response, i.e., the
generalized transfer function response is given in the Figure 4.10.

Multiplying the impulse response with the given input function, gives the appro-
priate response which is equivalent to convolution in time domain. The results are
presented graphically in Figures 4.11a and 4.11b.

Comparing our results with the results presented in the study by Belhocine and
Marinescu [98] and obtained from our time simulation and are presented in Figures
4.12a and 4.12b, we can observe the PGD solution matches quite well.

130



4.6. PGD Solution as Generalized Transfer Function

Figure 4.10: Impulse Response

(a) Step Response (b) Response to a sinosuidal input

Figure 4.11: Time simulation using Inverse Fourier on the solution from space-
frequency domain

(a) Step Response (b) Response to a sinosuidal input

Figure 4.12: Comparison of solution from time-domain and inverse Fourier of solu-
tion from frequency-domain
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4.6 Conclusions

In this chapter, we have presented the PGD formulation for space-frequency domain
and compare the results of PGD separated representation with the analytical re-
sult. The PGD solution compares well and provides a reliable, accurate and robust
method. The PGD formulation was then extended for the parametric problem. The
results obtained are encouraging, parametric space, discretization and the number of
enrichment modes all have effect on the accuracy of the results. In the last section,
the PGD formulation is applied to a problem from the literature and demonstrated
the method on this problem effectively.

132



Chapter 5

Model Reduction of DP Model
with Frequency-Dependent
Parameters

This chapter presents the application of Proper Generalized Decomposition on trans-
mission line models involving frequency dependent parameters. Frequency depen-
dence of parameters can be due to a number of reasons including the phenomenon
known as “Ground Return Effects”, “Proximity Effects” and “Skin Effects”. In the
current study, simplified methods of skin effects based on Bessel functions are used
in order to showcase the method. The method can easily accommodate other effects
which induces frequency dependence in the transmission line parameters. In time
domain modeling, the parameters are assumed constant and these models prove
inefficient when incorporating these parameters as function of frequency. There-
fore, a frequency domain simulation is implemented using harmonic analysis. PGD
presents a separated representation and provides a quick and accurate solution for
such problems.
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5.1.

Accurate modeling of transmission lines is important in the simulation and sub-
sequent transient analysis of power grids. In this framework, frequency dependence
of the line parameters should be accounted for [120]. The parameters of transmission
lines in practice are highly frequency dependent and it is necessary to accommodate
the frequency dependence over the whole frequency range of interest.

AC transmission lines are affected by the frequency of the AC voltage which pro-
duces a secondary effect on the line resistance and inductance. This effect is related
to the non uniform distribution of the current which tends to concentrate more to-
wards the outer surface of the line away from the center as the frequency increases
[121]. Skin effects results in the reduction of the effective cross-section of the line
used for the transmission of current and hence the resistance increases. This concen-
tration of current at the surface has an inverse relation with the internal inductance
of the line, as the frequency increases the inductance decreases [122, 123]. There are
other phenomena like ground return and proximity which also have an effect on the
transmission line parameters resulting in the frequency dependence of these param-
eters [122]. If the phenomena which produce frequency dependence are ignored and
the parameters are assumed to be constant, this results in a magnification of the
higher harmonics [124]. The wave shapes are distorted and at higher frequency the
peaks have higher magnitudes than that are observed in practice. There are a wide
range of frequencies presented in the signals during the transient phase and this can
be modeled with the frequency-dependent parameters.

The challenge in time domain modeling is to incorporate the frequency depen-
dence in an efficient manner and as such, several formulations have been proposed.
As it will be discussed later in this paper, many of these result in profound modifi-
cations of the original model that are sometimes difficult to interpret in the light of
their physical meaning. Accounting for frequency related effects is obviously more
natural when the governing equations are formulated in the frequency domain rather
than in time. However, this implies that incremental time stepping strategies for
transient simulation can no longer be applied and harmonic components have to be
solved individually, each requiring the solution of a different problem.

In this work we propose a robust parametric solver that allows to determine at
once all the harmonics in a given frequency range. While this step is performed
“off-line", the actual time response can be efficiently computed “on-line". The rest
of this chapter is organized as follows, Section 5.1 presents the literature review.
Section 5.2 presents the method proposed in the current study to deal with the
frequency dependent parameters in the frequency domain. In the Section 5.3 we
present the skin effects model for the transmission lines and in Section 5.4 we present
the distributed parameters model of transmission lines that we adopted in this study.
Finally, we present the results of our proposed approach in the Section 5.6 and extend
it to the commercial transmission lines in Section 5.7.
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5.1 Related Work

The frequency dependence of the parameters is the consequence of the assumption
made in the derivation of Telegrapher’s equations from the Maxwell’s equations
[125]. It is assumed that the conductor carries a uniform current in a uniform
time-harmonic magnetic field. Furthermore, it is assumed that the curvature of the
wire is negligible and there is no field variation in the wire direction i.e. x-axis in
this case. It is considered that the current flows in x-direction only [126]. These
assumptions simplify the 3-D Maxwell’s equation to a manageable 1-D equation
known as Telegrapher’s equation given by:

∂v(x, t)
∂x

= −Ri(x, t) − L∂i(x, t)
∂t

,
∂i(x, t)
∂x

= −Gv(x, t) − C∂v(x, t)
∂t

(5.1)

where, v, i are the voltage and current, R, L, G and C are the resistance, inductance,
conductance and the capacitance per unit length respectively. Eliminating i and
combining the two equations in 5.1 give

LC
∂2v(x, t)
∂t2

+ (LG+RC)
∂v(x, t)
∂t

+RGv(x, t) =
∂2v(x, t)
∂x2

(5.2)

In order to retain the correct physical behavior, the model parameters like re-
sistance and inductance are often considered as functions of frequency in order to
compensate for the simplifications introduced by the assumptions in the derviation
of the 1-D model. The other scenario in which these parameters are kept constant
will then require the 3-D partial differential equations to be solved.

Several numerical methods have been proposed for the solution of frequency
dependent models [127]. An overview is listed in the Table 5.1.

There are mainly two families of solution procedures, i.e., a time-domain simula-
tion and a frequency-domain simulation. There are arguments in favor of both these
methods. Time-domain modeling is delicate and some numerical instabilities and
accuracy issues have been reported in the literature [124, 130]. But, the advantage
it provides is the straightforward compatibility with the the models for components
of the power system.

Most of the studies, reported in Table 5.1, avoid convolutions and developed in-
telligent models to circumvent the difficulties in time-domain modeling by modifying
the formulation of the eqations in time. For example, in the study by Semlyen and
Dabuleanu [128], the authors have used approximations based on the exponential
functions. The study by Chu-Sun et al [129] uses equivalent circuit with each sec-
tion is a combination of equivalent resistances and inductances to include the skin
effects. Some recent studies like Marques da Costa et al [122] used fitting methods
to include skin effects in lumped parameters model of transmission line.

On the other hand, research studies in favor of frequency-domain modeling points
out the ease of formulation. Instead of time convolutions, we can readily multiply the
harmonic response of the system with the desired input function. Then obtaining the
solution in time-domain is simply just a matter of inverse transformation. Wilcox
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5.1. Related Work

Authors Phenomena Methods
Time Domain Modeling
Semlyn and
Dabuleanu
[128]

Ground return effect
Approximation of time variable
characteristic admittance using expo-
nential functions

J. R. Marti
[124]

Ground return effect
Weighting Functions,
Characteristic Impedance

Chu-Sun et al [129] Skin effect
Equivalent Circuit using parallel
equivalent resistors and inductors

Suk Oh [130] Skin effect Difference Approximation Method
Marques da
Costa et al
[122]

Ground return,
skin and corona
effects

Fitting Procedure for state space
lumped parameters models

Dávila et al [131]
Corona and Skin
Effects

Differential Integral Equation
(Radulet Line Equations)

Frequency Domain Modeling
Meyer and
Dommel [132]

Ground return effect
Linear Superposition
of all frequency components

Wilcox and
Condon [133]

Skin Effects

Modal Analysis,
Conversion to time-domain using Auto-
Regressive-Moving-Average (ARMA)
as fitting method

Kurokawa et al [120]
Ground return
effect

Clarke’s matrix as the
modal transformation matrix

Machado et al. [127]
Skin and Prox-
imity Effects

Magnetic Field Analysis using
Bessel function development

Bormann and
Tavakoli [123]

Skin and Prox-
imity Effects Reluctance networks

Gatous and
Pissolato [134] Skin Effects

Simplified expressions of R and L
based on Bessel Funcitons

Kim and
Neikirk [135] Skin Effects

Compact Circuit Model
in form of Ladder Circuit

Admane et al
[121] Skin Effects

Reduced order differential model
based on Kim’s Ladder Circuit

Table 5.1: Literature Review
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and Condon [133] proposed a inverse transformation method based on ARMA (Auto-
Regressive-Moving-Average) fitting method to obtain time-domain model, where
ARMA is a statistical model used in several fields to fit model to observed data.
While other studies like by Kurokawa et al [120] used modal transformation matrix.
In frequency-domain analysis, as described in the study of Meyer and Dommel [132],
we have to use linear superposition of all the frequency components. The solution
is performed for every individual frequency present in the transients, as the unit
impulse response in time, “translates” as the unit heaviside response in frequency-
domain.

In the current study, we present a simple yet efficient frequency-domain method
based on the Proper Generalized Decomposition for the solution of transmission line
including the frequency-dependence of parameters due to skin effects. We propose a
method based on PGD’s separated representation as a monolithic solver for all the
frequencies.

5.2 Proposed Approach

Refering to eq. (5.2), the second term is referred as the dissipation term and the last
term is the dispersion term. For a lossless transmission line, we assume G = 0. By
introducing a suitable finite element basis, the function v(x, t) can be approximated
as:

v(x, t) ≈
n

∑

i=1

vi(t)φi(x) (5.3)

Then, imposing Galerkin orthogonality of the residual of equation 5.2 on the basis
functions φi(x) leads to the following system of ordinary differential equations in
time

[M ]{v̈(t)} + [C]{v̇(t)} + [K]{v(t)} = {f(t)} (5.4)

where, [M ], [C]and[K] are referred to as the mass, damping and stiffness matrices
by analogy with structural dynamics. The unknowns of the problem are arranged
into the vector {v(t)} = {v1(t), v2(t), . . . , vn(t)}.

Time integration of Eq. 5.4 requires the solution of a n × n algebraic system
for every time increment. Modal analysis provides an efficient strategy to reduced
the numerical complexity of the system by transforming into a set of n uncoupled
equations.

Transforming the problem from time-domain to frequency-domain using either
Laplace or Fourier transformation. We show here for a Fourier transformation with
X̂ = xeιωt and F̂ = feιωt,

(

−ω2[M ] + ιω[C] + [K]
)

X̂ = F̂ (5.5)

For a system with no damping, i.e. [C] = 0, the diagonalization of the system
leads to the following generalized eigenvalue problem which corresponds to solving
for the free response of the system in modal analysis.
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5.3. Skin Effects Model

(

−ω2[M ] + [K]
)

X̂ = 0 (5.6)

However, for a system with constant parameters and damping, this means solving
a quadratic complex eigenvalue problem. In this case, modal analysis works only if
the damping is a linear combination of mass and stiffness matrices such as [C] =
a0[M ] + a1[K].

(

−ω2[M ] + ιω[C] + [K]
)

X̂ = 0 (5.7)

In case of a system with frequency dependent parameters, the mass and stiffness
matrix are no longer symmetric and frequency ω becomes a parameter. This is the
case we address here when the parameters resistance R(ω) and inductance L(ω)
becomes frequency dependent because of skin effects. In cases with parameters de-
pending upon frequency, the problem can not be solved using direct time integration
as the time formulation started with constant parameters and in frequency domain,
frequency dependent parameters are introduced which violates the causality. In the
study by Crandall [136], the author discusses the effect of choosing frequency de-
pendent parameter on time formulation, the argument is that even if the frequency
dependence correlates with the experimental data, the inverse transformation to the
time domain results in the loss of causality and the concept of non-equations is
introduced for such equations in time-domain. In addition, the modal analysis is
no longer a viable option for solution. The better option is to solve the harmonic
analysis problem using eq. 5.5 for every frequency ω.

(

−ω2[M(ω)] + ιω[C(ω)] + [K(ω)]
)

X̂(ω) = F̂ ∀ ω (5.8)

Now, the harmonic analysis problem requires solution of n number of linear
equations to be solved where let n represent the order of discrete frequencies involved.
A similar problem involving the fractional damping was discussed in the study by
[137]. The use of proper generalized decomposition (PGD) as a paramteric solver
as presented in earlier studies by Chinesta et al. [108] and [62] is considered here
as well. PGD provides a strong tool as a single monolithic solver as compared to
solving the harmonic problem using eq. 5.8 individually for every frequency. Note
that if we solve the linear problem of eq. 5.8 we have to compute the matrices for
every single frequency as they are no longer constant compared to the case where the
constant parameters was considered and depend upon the frequency. Therefore, in
this study, we present the Proper Generalized Decomposition (PGD) as a parametric
solver, a method capable to solve the harmonic analysis.

5.3 Skin Effects Model

Skin Effect results in frequency dependence of the transmission line parameters;
resistance and inductance. At this point, it is necessary to make the distinction
between the internal inductance of the conductor and the external inductance. The
evaluation of external inductance is based on the assumption that the total current
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5.3. Skin Effects Model

flow is on the surface of the transmission line, i.e., external inductance is maximum
when the skin effect is maximum. However, the external inductance is the result of
the current flow in the neighbouring transmission line and therefore remains con-
stant. In the current case, we are dealing with the single transmission line and in
the succeeding discussion wherever inductance is mentioned it is assumed internal
inductance unless explicitly mentioned.

A model derived from Maxwell equations is presented here for a solid cylindrical
conductor. Here, an assumption worth mentioning is that we consider a solid cylin-
drical conductor, typically transmission lines are bundled aluminum strands twisted
together with some transmission lines consisting of steel strands in the core to in-
crease the strength of the transmission line. However, here for the sake of simplicity
the discussion is limited to a solid cylindrical conductor to effectively demonstrate
the method. This model presents the complex internal impedance as the ratio of
the voltage drop along the surface to the total current enclosed [138].

Z(ω) =
ιωµ

2πr
ber(u) + ιbei(u)

(
√
2 / σ)(ber′(u) + ιbei′(u))

Z(ω) = R(ω) + ιωLin(ω)
(5.9)

where

u =
r
√
2
δ

(5.10)

and

δ =

(

2
ωµσ

)1/2

(5.11)

r is the radius of the cross-section of the conductor, ω is the angular frequency
and related to frequency in Hz as ω = 2πf , µ is the magnetic permeability and σ is
the electrical conductivity of the conductor. The terms ber(.) and ber′(.) are the real
part of the Bessel function and its first derivative respectively and similarly bei(.)
and bei′(.) are the imaginary parts. The bessel real and imaginary functions defined
here are the historic names of the Kelvin functions, defined for a Bessel function of
first kind Jν with the phase of (3/4)π:

Jν(eι(3/4)πu) = berν(u) + ιbeiν(u) (5.12)

The real and imaginary pars of the internal impedance gives the resistance and
inductance respectively.

R(ω) =
1
r

(

µf

2πσ

)1/2 [

ber(u)bei′(u) + bei(u)ber′(u)
(ber′(u))2 + (bei′(u))2

]

ωLin(ω) =
1
r

(

µf

2πσ

)1/2 [

ber(u)bei′(u) + bei(u)ber′(u)
(ber′(u))2 + (bei′(u))2

]

(5.13)
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Several researchers have presented simple models to include skin effects in the
transmission line models [130], [134] and [121]. Since, our focus in the current study
is not to model the skin effects but rather use the existing model and present a
solution that is able to perform transient simulations with skin effects included.
Therefore, we present here some of the simplified models and use them in our study.

For a transmission line with large radius compared to the skin depth [139], δ <<
4r where skin depth δ is calculated as (5.11).

R(ω) =
1

σ(2πr)δ
, L(ω) =

1
σ(2πr)δω

(5.14)

In the technical report by Phil Lucht [139], a low frequency limit is defined after
which the resistance and inductance become the functions of frequency, below this
limit the resistance and inductance are given by

R =
1
σπr2

, L =
µ

8π
(5.15)

The low frequency resistance is the same as the DC resistance of a conductor in
per unit length given by

R =
ρ

πr2
(5.16)

where ρ is the resistivity of the conducting material.
The article by Monteiro et al [140] presents a simplified formulation for the cal-

culation of skin effects on the transmission line wires. The formulation is based upon
the Fourier transformation of the Maxwell’s equation presented above in eq (5.9).
The methodology presented by Monteiro et al is simple in terms of its application
without the need to use Bessel functions and also presented good accuracy as it is
directly developed from the Maxwell’s wave equations.

R(ω) =
∑∞
k=1 (Rk/(R

2
k + ω

2L2))

(
∑∞
k=1Rk/(R

2
k + ω2L2))2 + ω2 (

∑∞
k=1 L/(R

2
k + ω2L2))2 (5.17)

L(ω) =
∑∞
k=1 (L/(R

2
k + ω

2L2))

(
∑∞
k=1Rk/(R

2
k + ω2L2))2 + ω2 (

∑∞
k=1 L/(R

2
k + ω2L2))2 (5.18)

where

Rk =
ξ2
k

4πσr2
; L =

µ

4π
and ξk =

(2k − 1)π
2

+
π

4
(5.19)

The units of Rk is Ω.m and L is H/m. The units of electrical conductivity
σ is S/m and of the magnetic permeability µ is H/m. The term ξk is the kth

Bessel function root and is directly proportional to k. As mentioned previously, the
transmission line in this study is considered to be a solid cylindrical copper wire, its
radius and the electrical properties of the copper are listed in Table 5.2.

A comparison of different models was performed and the results were compared
with the results from the study of Monteiro et al [140]. The results for the resistance
and inductance with respect to the frequency is presented in the figures 5.1a and
5.1b.
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Parameter Value Units

Radius (r) 30 mm
Length (l) 300 km
Electrical Conductivity (σ) 5.96 × 107 S/m
Magnetic Permeability (µ) 1.26 × 10−6 H/m

Table 5.2: Copper conductor wire properties

(a) Step Response (b) Sine Response

Figure 5.1: Frequency dependent resistance and inductance of a conductor
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5.4 Distributed Parameters Model

5.4.1 Time Domain Simulation

We start with the time domain distributed parameters (DP) model. The electrical
transmission lines provide the path for the voltage and current waves to propagate,
the dynamics of the propagation is described by a distributed parameters model.
This model depends upon the considerations taking into account like the losses and
the frequency dependence of the parameters.

The distributed parameters model for a lossy transmission line with constant
parameters can be written in the time domain as:

∂v(x, t)
∂x

= −L∂i(x, t)
∂t

−Ri(x, t),
∂i(x, t)
∂x

= −C∂v(x, t)
∂t

(5.20)

for 0 ≤ x ≤ l, where v(x, t) and i(x, t) are the voltage and current in the line re-
spectively, and the resistance, the inductance and the capacitance are represented by
R,L,C respectively and these constants are positive and independent of frequency.
The parameters R,L,C are given in per unit length and in distributed parameters
model are used without multiplication with the length of the line. However, these
parameters must be multiplied by the length of the line in case one is using any
lumped circuit model for transmission lines e.g. pi-equivalent model. The effect of
transverse conductance G of the line is neglected in this model. The interconnection
between the transmission line, the load and the generator is performed using the
Kirschhoff’s laws and the boundary values.

v(x, t)|x=0 = V0(t)
i(x, t)|x=l = 0

(5.21)

The term V0 is the voltage source assumed to represent a generator, the boundary
condition given above assumes that the voltage source is ideal, that is, the impedance
is zero (Z0 = 0) and the impedance at the receiving end (x = l) is infinite (Zl = ∞).

The equation is converted to a single variable second order differential equation
in time and space.

∂2v

∂x2
− LC∂

2v

∂t2
−RC∂v

∂t
= 0 (5.22)

The equation (5.22) is then discretized in time and space, using finite difference
scheme for the time integration and finite elements for the space.

For a copper conductor wire, we can calculate the resistance and inductance from
the equations (5.15), these values are listed in the table 5.3. Solving a space time
problem for these values, with a boundary condtion representing a step as an input
voltage V0.
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Parameter Value Units

Resistance (R) 5.7603 × 10−3 ohm/km
Inductance (L) 5.0980 × 10−5 H/km
Capacitance (C) 1.00 × 10−8 F/km
Length (l) 300 km
Space Discretization (∆x) 1.0 × 10−1 km
Total Time (T) 3.0 × 10−2 sec
Time Step (∆t) 1.0 × 10−5 sec

Table 5.3: Electrical Properties of a Copper Wire

(a) Step Response (b) Sine Response

Figure 5.2: Time Simulation of constant parameters model in space-time domain

V0 =

{

0 for t � 0
1 for t > 0

(5.23)

Also, a sine function with a frequency of f = 100Hz was used as an input voltage
for the same system

V0 =

{

0 for t � 0
sin(2π100t) for t > 0

(5.24)

The results of time simulation for the receiving end voltage x = l is presented
graphically in the Figures 5.2a and 5.2b.

5.5 PGD Formulation

Skin effects phenomena resulting in frequency dependence of DP model can not
be numerically integrated in the time domain. But, the problem in the frequency
domain becomes a linear second order differential equation, where the parameters
resistance and inductance are now a function of frequency. Fourier transformation of
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5.5. PGD Formulation

the time domain distributed parameters model gives the equation in the frequency
domain as:

∂V̂ (x, ω)
∂x

= −Î(x, ω).(R + ιLω),

∂Î(x, ω)
∂x

= −V̂ (x, ω).(ιCω)
(5.25)

Combining the two equations given in (5.25), we get a second order ordinary
differential equations for voltage.

∂2V̂ (x, ω)
∂x2

+ (LCω2 − ιRCω)V̂ (x, ω) = 0 (5.26)

Corresponding boundary conditions in the frequency domain is given as

V̂ (x, ω)
∣

∣

∣

x=0
= V0

∂V̂ (x, ω)
∂x

∣

∣

∣

∣

∣

x=l

= 0
(5.27)

This problem can be solved using PGD. A solution in separated representation
as per PGD formulation is given as:

V̂ (x, ω) =
n

∑

i=1

Xi(x).Oi(ω) (5.28)

For the details about PGD formulation and its advantage, one can refer to several
publications for example, [62, 108]. In Chapter 4 we presented the PGD formulation
in detail for eq. (5.26) with Neumann boundary conditions.

Once, a separated solution using PGD with the boundary conditions given in
(5.27) is obtained, it is straightforward to get the desired time response using the
discrete inverse fourier function available in MATLAB. Using the separated repre-
sentation of eq 5.28, the differential equation of the DP model can be expressed in
separated representation. In order to develop a PGD formulation, we derive a weak
formulation of the problem.

Multiply equation (5.26) with a test function δV ∗(x) where, δV represents the
test function and δV ∗(x) represents the complex conjugate.

∫

Ωx×Ωω

δV ∗∂
2V̂

∂x2
dxdω −

∫

Ωx×Ωω

δV ∗.f(ω)V̂ dxdω = 0 (5.29)

where, f(ω) = (LCω2 − ιRCω).
We assume the test function δV ∗(x, ω) in the separated form as

δV ∗(x, ω) = O∗(ω)δX∗(x) +X∗(x)δO∗(ω) (5.30)

145



5.5. PGD Formulation

Entity Constant Parameters Frequency Dependent

εp 10−10 10−10

εn 10−10 10−10

n 40 14
Residual 5 × 10−16 4 × 10−19

Computation time 250 sec 50 sec

Table 5.4: PGD Criteria

Since, the problem is now separated in the space X(x) and the frequency O(ω),
we have to solve two problems using FEM once for the space domain and then for
the frequency domain. The weak formulation for the one dimensional problem in
space is,

∫

Ωx×Ωω

dδX∗
n

dx

dXp
n

dx
Op−1∗
n .Op−1

n dxdω +
∫

Ωx×Ωω

f(ω).δX∗
n.X

p
nO

p−1∗
n .Op−1

n dxdω =

−
∫

Ωx×Ωω

n−1
∑

i=1

dδX∗
n

dx

dXi
dx
Op−1∗
n .Oi dxdω −

∫

Ωx×Ωω

f(ω).
n−1
∑

i=1

δX∗
n.Xi.O

p−1∗
n .Oi dxdω

+
∫

Ωω

δX∗
nO

p−1∗
n (Î(ιLω +R)) dω

(5.31)

and for the problem to be solved in the frequency domain, the weak formulation will
be

∫

Ωx×Ωω

dXp∗
n

dx
.
dXp

n

dx
.δO∗

n.O
p
n dxdω +

∫

Ωx×Ωω

f(ω).Xp∗
n .X

p
n.δO

∗
n.O

p
n dxdω =

−
∫

Ωx×Ωω

n−1
∑

i=1

dXp∗
n

dx
.
dXi
dx
.δO∗

n.Oi dxdω −
∫

Ωx×Ωω

f(ω).
n−1
∑

i=1

Xp∗
n .Xi.δO

∗
n.Oi dxdω

+
∫

Ωω

Xp∗
n |x=0.δO

∗
n.(Î .(ιLω +R)) dω

(5.32)

The tolerances selected for the termination of the greedy algorithm εp and the
tolerance for termination of enrichment process εn, along with the number of modes
n in both the constant parameters and frequency-dependent paramters are listed in
Table 5.4.

The boundary condition in eq (5.27) is an equivalent of having an impulse func-
tion at the source which gives the impulse response or the transfer function Ĥ of
the transmission line. The voltage impulse response at the receiving end is given as:

Ĥ(x = l, ω) =
n

∑

i=1

Xi(x = l).Oi(ω) (5.33)
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5.6. PGD for frequency dependent parameters

(a) Absolute Value (b) Real Value (c) Imaginary Value

Figure 5.3: Voltage in space-frequency domain with constant parameters

Once, this is done, the time response to any arbitrary condition at the source node
is then straightforward multiplication of the voltage function in frequency domain
with the particular solution of the PGD at the receiving node. Then the frequency
response to an arbitrary function V̂0 is given as

V̂ (x = l, ω) = Ĥ(x = l, ω) × V̂0 (5.34)

5.5.1 Verification of PGD results

In this section, we first present the time response using inverse fourier transform of
the PGD solution particularized at the receiving end.

The PGD solution in terms of voltage on a space-frequency domain is presented
in figures 5.3a to 5.3c and only the first ten enrichment modes from PGD solutions
for the sake of clarity are presented in the figure 5.4. While figures 5.5a and 5.5b
shows the time response to a unit step function and a sinusoidal wave respectively
obtained from the separated solution of PGD.

The results from Figure 5.6a and 5.6b shows good correlation between the solu-
tion from time integration and the PGD solution. Therefore, it is established that
the PGD solution is an accurate representation of the DP model of transmission
lines.

5.6 PGD for frequency dependent parameters

The benefit of solving DP model in the frequency domain in the separated represen-
tation of PGD is the easy, fast and accurate solution with the option of a parametric
solution. PGD methods provide the best option for parametric problems both in
terms of computational efficiency and ease of solving the problem. In the case of skin
effects, the equation (5.26) now has parameters resistance R and inductance L as a
function of frequency ω. As explained earlier time integration of such problems is
almost impossible to achieve and hence PGD provides real accurate option to solve
such problems. The problem is similar to the case of fractional derivatives which is
similar to the fractional RLC circuit [141].

Eq (5.26) with R and L as functions of frequency reads as:
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5.6. PGD for frequency dependent parameters

(a) Step Response (b) Sine Response

Figure 5.6: Comparison of Time Response between PGD Solution and Time Inte-
gration

(a) Absolute Value (b) Real Value (c) Imaginary Value

Figure 5.7: Voltage in space-frequency domain with skin effects included

∂2V̂ (x, ω)
∂x2

+ (L(ω).C.ω2 − ιR(ω).C.ω)V̂ (x, ω) = 0 (5.35)

The increase in the resistance with the frequency and a simultaneous decrease
in the inductance results in a system more damped than the system with constant
resistance and inductance. This effect can be noticed in the Figures 5.7a to 5.7c
showing the voltage in the space-frequency domain, there is only one peak visible
with a much less amplitude.

From the modes presented in Figure 5.8, it is also observed the number of en-
richment modes for the PGD solution are only 14 including the first mode which
includes the effect of the Dirichlet boundary condition. Performing inverse Fourier
transform on the PGD solution for step and sin function as the input voltage at the
sending end, the receiving end voltages are obtained as:

The effect of increased damping due to the increase in resistance can be compared
in the receiving end voltage for the frequency dependent and constant paramters
solution given in the figures 5.9. In Figure 5.10, the two responses from the constant
parameters and frequency dependent parameters are plotted on top of each other
for a direct comparison. The increased damping removes almost all the oscillations
observed in the constant parameters solution of figures 5.5a and 5.5b.
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(a) Step Response (b) Sine Response

Figure 5.10: Comparison of response between constant and frequency dependent
parameters

Entity Parametric Frequency Dependent PGD

∆l 0.05
εp 10−10

εn 10−10

n 67
Residual 1 × 10−7

Computation time 700 sec

Table 5.5: PGD Criteria

5.6.1 Parametric Solution

The advantage of PGD based harmonic analysis is that any parameter can be in-
troduced as an added dimension to the separated representation. As an initial step,
we introduce length of the transmission line as a new dimension for the parametric
problem. The solution now is given as:

V̂ (x, ω, l) =
n

∑

i=1

Xi(x).Oi(ω).Di(l) (5.36)

where Di represents the modes of the dimension introduced to represent length.
The mathematical formulation of the problem remains similar and there is no

significant additional computational cost to the problem. For the case, we have
reported in this study, the new dimension of transmission line length is considered
for a range (200, 300) km. The discretization for the space and frequency have been
kept the same as in previous case. The discretization and the other information
valuable to gauge the PGD solution is listed in Table 5.5. Only the first ten modes
of the PGD solution for the three dimensions are presented in Figure 5.11, the total
number of enrichment modes are 67.

The advantage of parametric solution is presented in Figure 5.12 where the vari-
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Figure 5.12: Variation of Voltage along the transmission line for different lengths at
60 Hz

Modes
Maximum Error

Frobenius Norm
of Error Matrices

Absolute Relative Absolute Relative

67 1.08 ×10−8 2.26 ×10−4 6.45×10−5 0.8164

Table 5.6: Error of PGD solution with length as a parameter

ation of voltages along the transmission line with different lengths for a frequency
of 60 Hz is plotted. Another advantage of such a solution is in the sensitivity or
uncertainty analysis, in such an analysis a fixed point is selected and a variation of
usually 5% in the independent variable and its effect on the variable of interest is
studied. With a PGD solution, we already have a complete solution as a curve and
the derivative can be easily evaluated for the sensitivity analysis.

For a specific case with transmission line length of 300 km, the solution can
be particularized from the parametric PGD solutions and the results and the cor-
responding errors are presented in Figures 5.13. The length of 300 km is chosen
such that it can be compared with the solution provided earlier in Figure 5.7 and
the errors presented are compared with this solution. The errors are listed in the
Table 5.6.

5.7 Application to Commercial Transmission Lines

As stated in the earlier Section 5.3 in this chapter, transmission lines used commer-
cially are different in geometry and construction to the one presented previously.
The above discussion is presented for the simplification provided by the assumption
that the transmission line is a solid cylindrical conductor. The method can be ap-
plied to the transmission lines that are commonly used in the power grids worldwide,
here we apply the method on two such types of transmission lines known with their
trade names as “Falcon” and “Grosbeak”. First, we introduce some concepts related
to the transmission lines.
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(a) Absolute Voltage (b) Error in Absolute Voltage

(c) Real Voltage (d) Error in Real Voltage

(e) Imaginary Voltage (f) Error in Imaginary Voltage

Figure 5.13: Parametric PGD Solution for line of 300 km length
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Figure 5.14: Typical construction of ACSR [2]

5.7.1 Transmission Line Construction and Materials

Typical overhead transmission lines use aluminum as the conducting materials.
There are several types of commercial transmission lines using aluminum as the con-
ductors; aluminum-conductor-steel-reinforced (ACSR), aluminum-conductor-alloy-
reinforced (ACAR), all-aluminum-conductor (AAC), and all-aluminumalloy-conductor
(AAAC). These transmission lines especially ACSR are the most preferred ones,
these are concentrically stranded conductor of one or more layers of aluminum wires
wrapped around high strength steel wires. The steel wires are used to provide
strength without comprising on the current carrying capacity known as ‘Ampacity’.
A typical construction of ACSR transmission lines is shown in Figure 5.14.

5.7.2 Resistance

The DC resistance for a transmission line is given as:

RDC =
ρl

A
(5.37)

where, ρ is the resistivity (Ωm) of the conducting matarial, l is the length (m) of
the line and A is the cross-sectional area (m2). Considering A = πr2 and ρ = 1/σ,
equation (5.37) is similar to equation (5.16).

As described earlier, the frequency of the AC current produces a skin effect
resulting in increase of the resistance. In general, for a 60 Hz an empirical skin
correction factor k is estimated to be around 1.02 [2].

RAC = kRDC (5.38)

The value of resistance at 60 Hz and at a specified temperature is given in
the chapter by Manuel Reta-Hernández [2]. Besides frequency, the resistance of a
transmission line is effected by temperature, spiraling of stranded conductors and
arrangement of bundle conductors. Although, equation (5.37) is primarily for the
solid cylindrical conductor it can be used to estimate the resistance per unit length
of the ACSR transmission line given the effective cross-sectional area and the con-
ductivity of aluminum. These values are provided in most of the factsheets by the
manufacturers of the transmission line wires. The tyipcal values of conductivity and
magnetic permeability of different materials is presented in the Table 5.7.
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Material Conductivity at 20◦ C (S/m) Permeability (H/m)

Aluminum 3.50 ×107 1.256665×10−6

Copper 5.96×107 1.256629×10−6

Steel 6.99×106 1.26×10−4

Table 5.7: Electrical Properties of conductor materials

Figure 5.15: Example of stranded conductors in bundles per phase of two, three or
four [2]

5.7.3 Inductance

For a solid cylindrical conductor of radius r with a current I across it. The material
is assumed to be non-magnetic and the current distribution to be uniform, i.e., no
skin effect present. As described in the earlier section, the internal inductance of a
solid cylindrical conductor is given by second of the two in equation (5.15).

Lint =
µ

8π
(H/m) (5.39)

The effect of frequency is felt on internal inductance which tends to diminish with
the increasing frequency. However, for high voltage transmission lines there are more
than one stranded conductors arranged in bundles per phase. An example of the
bundles is given in the chapter of transmission line parameters [2] and presented
here in Figure 5.15.

The presence of more than one stranded conductor results in another type of
inductance categorized as the external inductance. The calculation of the external
inductance is based on the assumption that the current in the neighboring conductor
is at the surface of the neighboring conductor, i.e., the skin effect is maximum.
Therefore, this external inductance is considered constant with increase in frequency.
The total inductance at any point D on the conductor Ltot which is the sum of
internal Lint and external inductance Lext is given as:

Ltot =
µ0

2π
ln

(

D

GMR

)

(H/m) (5.40)

where, GMR is the geometric mean radius, radius of a fictional conductor that has
no internal flux but having same inductance as the actual conductor with radius r
and is given as:

GMR = e−1/4r = 0.7788r (5.41)
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Therefore, the external inductance can be calculated from the total inductance
(Lext = Ltot−Lint). Generally, the manufacturers do not provide the total inductance
but the inductive reactance.

5.7.4 Inductive Reactance

The value of the inductive reactances given by the manufacturers is the sum of the
external and internal inductive reactance. Inductive Reactance is the resistance of
an inductor when an AC current is applied across it. It is fairly simple to calculate
inductance from inductive reactance and vice versa using the following relation.

XL = ωL = 2πfL (5.42)

5.7.5 Capacitance

For a solid cylindrical conductor with radius r, the capacitance between two points
P1 and P2 is given as,

C =
2πε0

ln
[

x2

x1

] (F/m) (5.43)

where, ε0 is the free space permittivity. For a coaxial cable with outer radius R2

and inner radius R1, the capacitance is given as,

C =
2πε0

ln
[

R2

R1

] (F/m) (5.44)

5.7.6 Capacitive Reactance

Similar to the inductive reactance, the values provided by the manufacturer for
capacitance is in terms of resistance known as capacitive reactance XC . The rela-
tionship between capacitive reactance and capacitance is given as,

XC =
1
ωC

=
1

2πfC
(5.45)

Now, we have presented the basic information needed to explain the transmission
lines that we have used in this study, we can apply our methodology to two ACSR
transmission lines Grosbeak and Falcon. Table 5.8 gives the information that is
available from the manufacturers for these and similar transmission lines. The reason
to choose two different types of ACSR transmission line is to provide a comparison
for very different types of transmission lines. From the data provided in Table 5.8, it
can be observed that Falcon type line is thicker than the Grosbeak but it’s resistance
and reactances are small as compared to the Grosbeak line.
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Code

Cross-
Section
Area

Resistance
25◦C

(mΩ/km) GMR

Reactances
(60 Hz)

Total
(mm2)

Aluminum
(mm2)

DC
AC
(60
Hz)

XL
(Ω/km)

XC
(Ω/km)

Falcon 908 806 35.9 37.4 15.91 0.312 0.187
Grosbeak 375 322 91.7 92.2 10.21 0.346 0.209

Table 5.8: ACSR Data

(a) Resistance (b) Internal Inductance

Figure 5.16: Skin Effect for ACSR Falcon transmission line

5.7.7 Skin Effects for ACSR Transmission Lines

The skin effect on the ACSR transmission lines resistance and inductance is pre-
sented in the Figure 5.16 and Figure 5.17b for Falcon and Grosbeak respectively.
Here, the internal inductance is presented which decreases with increase in frequency.
Thus, the total inductance which is the sum of internal and external inductance also
decreases because of the vanishing contribution from the internal inductance.

5.7.8 PGD Results for Constant Parameters Model of Trans-
mission Lines

The PGDmodes for the two types of transmission lines are given here and the voltage
distribution in the space-frequency domain with visible resonances are presented in
the following figures. For Falcon type ACSR transmission lines the modes are given
in figures 5.18a to 5.18d.

The voltage distribution from the PGD solution is presented in figure 5.19a to
5.19c.

For Grosbeak type ACSR transmission lines the modes are given in figures 5.20a
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(a) Resistance (b) Internal Inductance

Figure 5.17: Skin Effect for ACSR Grosbeak transmission line

(a) Real x (b) Imaginary x

(c) Real ω (d) Imaginary ω

Figure 5.18: PGD modes for ACSR Falcon transmission line
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(a) Absolute Voltage (b) Real Voltage (c) Imaginary Voltage

Figure 5.19: Voltage in space-frequency domain with constant parameters for ACSR
Falcon line

to 5.20d.
The voltage distribution from the PGD solution is presented in figure 5.21a to

5.21c.

5.7.9 Time Simulation for Constant Parameters Model of
ACSR Lines

The response to step and sinusoidal input voltage from the time simulation for the
Falcon line is given in figures 5.22a and 5.22b. The time response for the Grosbeak
line for similar inputs is given in figures 5.23a and 5.23b.

5.7.10 PGD Results for Frequency-Dependent Model of Trans-
mission Lines

The results with the skin effects included are presented in figures. It is evident
from these figures that the skin effect dampens the system and the system reaches
stationary conditions faster than the one where parameters are assumed constant.

The voltage distribution from the PGD solution is presented in figure 5.19a to
5.19c.

For Grosbeak type ACSR transmission lines the modes are given in figures 5.20a
to 5.20d.

The voltage distribution from the PGD solution is presented in figure 5.21a to
5.21c.

5.7.11 Time Simulations for Frequency-Dependent Model
of Transmission Lines

The time response for skin effects is very difficult to obtain however J. R. Marti [124]
has presented a methodology to overcome the issues of instability and accuracy albeit
for the ground return effect. The effect of the ground return is similar to the skin
effects that we have presented in the current study.

The time response for the step and sinusoidal input of the same magnitude and
phase is presented for the frequency-dependent model in figures 5.28a and 5.28b. The
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(a) Real x (b) Imaginary x

(c) Real ω (d) Imaginary ω

Figure 5.20: PGD modes for ACSR Grosbeak transmission line

(a) Absolute Voltage (b) Real Voltage (c) Imaginary Voltage

Figure 5.21: Voltage in space-frequency domain with constant parameters for ACSR
Grosbeak line
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(a) Step Input (b) Sinusoidal Input

(c) Step Input (d) Sinusoidal Input

(e) Step Input (f) Sinusoidal Input

Figure 5.22: Time Response for Falcon Transmission Line, (a) and (b) using Time-
Domain simulations, (c) and (d) using inverse Fourier on PGD and (e) and (f)
comparison of two approaches
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(a) Step Input (b) Sinusoidal Input

(c) Step Input (d) Sinusoidal Input

(e) Step Input (f) Sinusoidal Input

Figure 5.23: Time Response for Grosbeak Transmission Line, (a) and (b) using
Time-Domain simulations, (c) and (d) using inverse Fourier on PGD and (e) and (f)
comparison of two approaches
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(a) Real x (b) Imaginary x

(c) Real ω (d) Imaginary ω

Figure 5.24: PGD modes for ACSR Falcon transmission line with skin effects

(a) Absolute Voltage (b) Real Voltage (c) Imaginary Voltage

Figure 5.25: Voltage in space-frequency domain with skin effects for ACSR Falcon
line
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(a) Real x (b) Imaginary x

(c) Real ω (d) Imaginary ω

Figure 5.26: PGD modes for ACSR Grosbeak transmission line with skin effects

(a) Absolute Voltage (b) Real Voltage (c) Imaginary Voltage

Figure 5.27: Voltage in space-frequency domain with skin effects for ACSR Grosbeak
line
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(a) Step Input (b) Sinusoidal Input

Figure 5.28: Time Response from PGD Solution with skin effects for Falcon line

(a) Constant Parameters Model (b) Frequency-Dependent Parameters
Model

Figure 5.29: Time Response from PGD Solution without and with skin effects for
Falcon line for a step input

effect of increased resistance and less inductance is visible as the voltage transients
diminishes quickly and as demonstrated in the figures 5.29a and 5.29b for step
response for constant parameters and frequency-dependent parameters respectively.

The comparison between the two models also show the much more damped re-
sponse even in the transient phase. These are presented in the figures 5.30a and
5.30b.

Similar results are obtained for the Grosbeak transmission line and are presented
in figures 5.31 to 5.33.

The skin effects have less impact on the Grosbeak transmission line compared to
the impact on the Falcon line. It has two reasons, first the radius of the Grosbeak
transmission line is small compared to the Falcon line and hence the ratio of skin
depth to the radius of the conductor is not that big and the second reason is that
the increase in resistance is more pronounced in the Falcon transmission line.
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(a) Step Input (b) Sinusoidal Input

Figure 5.30: Comparison between constant parameters and frequency-dependent
paramters for Falcon line

(a) Step Input (b) Sinusoidal Input

Figure 5.31: Time Response from PGD Solution with skin effects for Grosbeak line

(a) Constant Parameters Model (b) Frequency-Depdendent Parame-
ters Model

Figure 5.32: Time Response from PGD Solution without and with skin effects for
Grosbeak line for a step input
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(a) Step Input (b) Sinusoidal Input

Figure 5.33: Comparison between constant parameters and frequency-dependent
paramters for Grosbeak line

5.8 Conclusions

The main contribution of the study presented in this chapter is the development of a
method to include methods like skin effects that render the parameters a function of
frequency. The method is equally applicable on the ground return effect which has a
similar effect on the parameters i.e. the frequency dependence. The work presented
in this study, shows the effectiveness of frequency domain methods for problems
involving frequency dependent parameters. In partricular, harmonic analysis us-
ing PGD is both fast and accurate and provides results where the modal analysis
methods are unable. There are methods available that include the parameters as
a function of frequency and simulate the model in time domain but these methods
are complicated to implement and as they use time integration it will be computa-
tionally costly and time consuming. The method we presented here involves PGD
which has already been proved as a fast and accurate method. The method is also
applicable to the fractional RLC circuits. The application of the said method on the
commercially available transmission lines show the effect and proves that compared
to time integration this method is more practical.
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Conclusions

This chapter provides an overall conclusion of the research conducted during the
preparation of this thesis and future directions this research can take based on our
observations and conclusions. We group the conclusions from each chapter and
summarize it as follows:

• The a-priori method of fast non-linear solver of ASD proved to be a robust and
efficient solver for static cases. However, the method of LATIN which was the
basis for ASD method was unable to converge because of instability induced
due to the separation of non-linear problem from the global part.

• The swing dynamics model involves non-linearity which involves neighboring
nodes. This complex non-linearity should be handled carefully. The swing
dynamics equations are hyperbolic partial differential equations and the system
becomes linearly unstable if the linear approximation using Taylor series is
adopted. Also, the separation of non-linearity from the global problem results
in system becoming unstable.

• The method of TPWL which uses multiple linear approximations summed in
a weighted convex combination. Using multiple linear approximations help
the system to remain stable. In the case, where we use only one linearization
around the initial equilibrium point, the resulting linear equation becomes an
unbounded function of δ, which was originally bounded in the non-linear sine
function. This was avoided by using multiple linear approximations and the
convex combination of these linear functions make sure that the contribution
from any one linearization point is kept limited. The weighting functions based
on the distance also biased the contribution of linear approximations towards
the one closest and hence the system remains stable.

• The reduced-order model based on TPWL method proved to be accurate and
computationally efficient. The method was able to provide reduced-order
model that can be used for accurate and quick solutions for a wide range
of input variables.

• The method of PGD was implemented in the construction of a reduced-order
model of the DP model of transmission lines. The separated representation
obtained from PGD was shown to be accurate compared with the analytical
solution of the DP model in the frequency-domain. The number of enrichment
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modes from PGD formulation are comparable to the size of the reduced basis
from a-posteriori POD method for the case where we separate only the space
and frequency dimensions. The real advantage of PGD becomes apparent
where we introduce other parameters in the separated representation.

• The method of PGD works efficiently for parametric problem. The results
presented in Chapter 4 show that for achieving better performance of para-
metric solution, the range of parameters and the size of discretization hold the
key. If the parameter range chosen is comparatively bigger then the number
of enrichment modes become too many and also the accuracy suffers. This is
due to the fact that there are a lot of resonances present in the problem and
as the frequency increases the resonant modes introduce more and more waves
which are difficult to capture with fewer enrichment modes. There is a solu-
tion however for reducing the number of modes and that is to use a post-PGD
compression of modes using SVD or high order SVD (HOSVD) methods.

• In the last chapter, we discussed the problem where the parameters are func-
tion of one of the coordinates in PGD formulation. In this particular case, the
parameters are frequency dependent which is a common occurrence in many
real-life applications. We presented PGD based harmonic analysis solver for
such problems. The method of PGD presents an efficient and fast method as
well as accurate and reliable method for problems which are frequency depen-
dent in time-domain representation or involve fractional derivatives of time.

Based on the results achieved during the research, we have published our results
in various journals. These include

• Although the static problems were not the focus of the study, the solution
using the ASD method of power flow analysis were published in a research
paper.

Borzacchiello D, Chinesta F, Malik MH, García-Blanco R, Diez P. Unified
formulation of a family of iterative solvers for power systems analysis. Electric
Power Systems Research, Volume 140, November 2016, Pages 201-208, ISSN
0378-7796, http://dx.doi.org/10.1016/j.epsr.2016.06.021

• The results of the TPWL method presented in Chapter 3 were also published.

Malik MH, Borzacchiello D, Chinesta F, Diez P. Reduced order modeling
for transient simulation of power systems using Trajectory Piece-Wise Linear
approximation. Advanced Modeling and Simulation in Engineering Sciences
2016.

• A manuscript is submitted based on the results of Chapter 5 for frequency
dependent parameters model.

Malik MH, Borzacchiello D, Chinesta F, Diez P. Inclusion of Frequency De-
pendent Parameters in Power Transmission Lines Simulation using Harmonic
Analysis and Proper Generalized Decomposition.
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Further Developments

The research carried out during the current doctoral studies is just the beginning
of an exciting research direction. There are several problems that can be studied
further based on the studies we conducted, namely:

• Application of TPWL method on benchmark grids by IEEE and extension to
real world grid networks which includes both types of load and generator buses
and other power generation modeled by different models. Also, the network
topology is complex and time dependent in real networks, the method offers
great potential which should be utilized and can be developed into softwares
specific to the power industry needs.

• Harmonic analysis of benchmark power grids and extension to real power net-
works based on the PGD formulation provided in the current study. This
method also offers potential that should be developed further and can lead to
industrial applications and patents.

• The results from the frequency-dependent parametric problem can be extended
to fractional RLC circuits.
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Appendix A

PGD Formulations

A.1 PGD for Current ODE

We need a separable solution to the (4.12) in the form of

Î(x, ω) =
n

∑

i=1

Xi(x).Oi(ω) (A.1)

Equation (4.12) alongwith the boundary conditions given in equations (4.13)
and (4.14) represent the second order ODE for current along a transmission line. In
order to develop a PGD formulation, first we must have a weak formuation of the
problem.

Multiply equation (4.12) with a test function δI∗(x)

∫

Ωx×Ωω

δI∗ ∂
2Î

∂x2
dxdω +

∫

Ωx×Ωω

δI∗.f(ω)Î dxdω = 0 (A.2)

where, f(ω) = (LCω2 − ιRCω).
Integrating by parts gives

∫

Ωx×Ωω

δI∗ ∂
2Î

∂x2
dxdω =

∫

Ωω

δI∗.
∂Î

∂x

∣

∣

∣

∣

∣

x=l

dω −
∫

Ωω

δI∗.
∂Î

∂x

∣

∣

∣

∣

∣

x=0

dω

−
∫

Ωx×Ωω

∂δI∗

∂x

∂Î

∂x
dxdω

(A.3)

With the boundary conditions given in equation (4.13) or (4.14), one of the
terms in the equation (A.3) becomes zero. For example, with boundary condition
of equation (4.13), we have

∫

Ωx×Ωω

δI∗ ∂
2Î

∂x2
dxdω = −

∫

Ωω

δI∗.
∂Î

∂x

∣

∣

∣

∣

∣

x=0

dω −
∫

Ωx×Ωω

∂δI∗

∂x

∂Î

∂x
dxdω (A.4)

Therefore, the weak form of equation (A.2) becomes
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∫

Ωx×Ωω

∂δI∗

∂x

∂Î

∂x
dxdω−

∫

Ωx×Ωω

f(ω)δI∗Î dxdω = −
∫

Ωω

δI∗(x = 0, ω).
∂Î

∂x
dω (A.5)

The PGD solution methodology is based upon an alternating strategy with the
separated form of Î(x, ω) given above in (A.1). We assume that the solution is
converged until the step n− 1, and the solution is during the enrichment step n in
the pth iteration,

Î(x, ω) =
n−1
∑

i=1

Xi(x).Oi(ω) +Xp
n(x)O

p−1
n (ω) (A.6)

We assume the test function δI(x, ω) in the separated form as

δI∗(x, ω) = δX∗
n(x)O

p−1∗
n (ω) (A.7)

Substituting equations (A.6) and (A.7) in equation (A.5), we get

∫

Ωx×Ωω

dδX∗
n

dx

dXp
n

dx
Op−1∗
n Op−1

n dxdω −
∫

Ωx×Ωω

f(ω).δX∗
n.X

p
nO

p−1∗
n Op−1

n dxdω =

−
∫

Ωx×Ωω

n−1
∑

i=1

dδX∗
n

dx

dXi
dx
Op−1∗
n Oi dxdω +

∫

Ωx×Ωω

f(ω).
n−1
∑

i=1

δX∗
n.XiO

p−1∗
n Oi dxdω

+
∫

Ωω

δX∗
nO

p−1∗
n V̂ (ιCω) dω

(A.8)

In the above equation, all functions of the parameter ω are known, and we can
evaluate the corresponding one-dimensional integrals

αx =
∫

Ωω

Op−1∗
n .Op−1

n dω

βx =
∫

Ωω

f(ω).Op−1∗
n .Op−1

n dω

γxi =
∫

Ωω

Op−1∗
n .Oi dω

δxi =
∫

Ωω

f(ω).Op−1∗
n .Oi dω

µx =
∫

Ωω

Op−1∗
n .V̂ .(ιCω) dω

(A.9)

Hence, we have a weighted residual form in the variable Xp
n

∫ l

0

dδX∗
n

dx
.
dXp

n

dx
.αx dx−

∫ l

0
δX∗

n.X
p
nβ

x dx =

−
∫ l

0

n−1
∑

i=1

dδX∗
n

dx
.
dXi
dx
γxi dx+

∫ l

0

n−1
∑

i=1

δX∗
n.Xiδ

x
i dx+ δX

∗
n.µ

x|x=0

(A.10)
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The solution to (A.10) can be found using finite elements which will give us Xp
n.

The equation in terms of Finite Elements can be described as:

αx[Kx]{Xp
n} − βx[Mx]{Xp

n} = −
n−1
∑

i=1

(γxi [Kx]{Xi} − δxi [Mx]{Xi})

+ {1, 0, ..., 0}Tµx
(A.11)

αx = {Op−1
n }T [M1

w]{Op−1
n }

βx = {Op−1
n }T [M2

w]{Op−1
n }

γxi = {Op−1
n }T [M1

w]{Oi}
δxi = {Op−1

n }T [M2
w]{Oi}

µx = V̂ {Op−1
n }T [M1

w]{(ιCω)}

(A.12)

The next step will be to evaluate Opn
We assume the solution in the separated form as:

Î(x, ω) =
n−1
∑

i=1

Xi(x).Oi(ω) +Xp
n(x)O

p
n(ω) (A.13)

We assume the test function I∗(x, ω) in the separated form as

δI∗(x, ω) = Xp∗
n (x)δO∗

n(ω) (A.14)

Substituting equations (A.13) and (A.14) in equation (A.5) and simplifying we
get:

∫

Ωx×Ωω

dXp∗
n

dx
.
dXp

n

dx
.δO∗

n.O
p
n dxdω −

∫

Ωx×Ωω

f(ω).Xp∗
n .X

p
n.δO

∗
n.O

p
n dxdω =

−
∫

Ωx×Ωω

n−1
∑

i=1

dXi
dx
.Oi.
dXp∗

n

dx
.δO∗

n dxdω +
∫

Ωx×Ωω

f(ω).
n−1
∑

i=1

Xi.Oi.X
p∗
n .δO

∗
n dxdω

+
∫

Ωω

Xp∗
n |x=0δO

∗
nV̂ (ιCω) dω

(A.15)

In this step, all the functions of the parameter x are known, and we can evaluate
the following integrals

αω =
∫

Ωx

dXp∗
n

dx
.
dXp

n

dx
dx

βω =
∫

Ωx

Xp∗
n .X

p
n dx

γωi =
∫

Ωx

dXp∗
n

dx

dXi
dx

dx

δωi =
∫

Ωx

Xp∗
n .Xi dx

ξω = Xp∗
n |x=0.V̂

(A.16)
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Hence, we have (A.15) as

∫

Ωω

αω.Opn.δO
∗
n dω −

∫

Ωω

f(ω).βω.Opn.δO
∗
n dω = −

∫

Ωω

n−1
∑

i=1

γωi .Oi.δO
∗
n dω

+
∫

Ωω

f(ω).
n−1
∑

i=1

δωi .Oi.δO
∗
n dω +

∫

Ωω

ξω.δO∗
n.(ιCω) dω

(A.17)

The equation (A.17) giving the weighted residual form doesn’t involve any dif-
ferential operators. The corresponding strong form results as:

αωOpn − f(ω)βωOpn = −
n−1
∑

i=1

γωi Oi + f(ω)
n−1
∑

i=1

δωi Oi + ξ
ω(ιCω) (A.18)

(αω − f(ω)βω)Opn = −
n−1
∑

i=1

(γωi − f(ω)δωi )Oi + ξω(ιCω) (A.19)

This is a set of algebraic equations solving which gives the unknown function
Opn(ω).

Alternatively, we can solve (A.17) using FEM.

(αω[Mω] − βω[MA
ω ]){Opn} = −

n−1
∑

i=1

(γωi [Mω] − δωi [MA
ω ]){Oi} + ξω{(ιCω)} (A.20)

This is an algebraic equation solving which gives the unknown function Opn(ω).

A.2 PGD Formulation with Inductance L as an

extra parameter

V̂ (x, ω, L) =
n

∑

i=1

Xi(x)Oi(ω)Li(L) (A.21)

The test function is defined as

δV (x, ω, L) = δX(x)O(ω)L(L)) +X(x)δO(ω)L(L) +X(x)O(ω)δL(L) (A.22)

The term LCω2 − RCω has to be separated as well. Therefore, we define the
following functions,

f1(ω) = Cω2 f2(ω) = RCωι
g1(L) = L g2(L) = 1
F = LCω2 −RCωι = f1(ω)g1(L) − f2(ω)g2(L)

(A.23)

189



Appendix A. PGD Formulations

The generic bilinear form is defined as

m1(O, Õ)a1(X, X̃)p1(L, L̃) −m2(O, Õ)a2(X, X̃)p2(L, L̃)

+m3(O, Õ)a2(X, X̃)p3(L, L̃) = lO1 (Õ)l
X
1 (X̃)lL1 (L̃) + l

O
2 (Õ)l

X
2 (X̃)lL2 (L̃)

(A.24)

With the following definitions

a1(X, X̃) =
∫

Ωx

dX̃∗(x)
dx

dX(x)
dx

dx , a2(X, X̃) =
∫

Ωx

X̃∗(x)X(x)dx

m1(O, Õ) =
∫

Ωω

Õ∗(ω)O(ω)dω , m2(O, Õ) =
∫

Ωω

f1(ω)Õ∗(ω)O(ω)dω

m3(O, Õ) =
∫

Ωω

f2(ω)Õ∗(ω)O(ω)dω

p1(L, L̃) =
∫

ΩL

L̃∗(L)L(L)dL , p2(L, L̃) =
∫

ΩL

g1(L)L̃∗(L)L(L)dL

p3(L, L̃) =
∫

ΩL

g2(L)L̃∗(L)L(L)dL

lO1 (Õ) =
∫

Ωω

ωÕ∗(ω)dω , lO2 (Õ) =
∫

Ωω

Õ∗(ω)dω

lX1 (X̃) = X̃∗(x)(x = 0).I1ι , lX2 (X̃) = X̃∗(x)(x = 0).I1.R

lL1 (L̃) =
∫

ΩL

LL̃∗(L)dL , lL2 (L̃) =
∫

ΩL

L̃∗(L)dL

(A.25)

We now, define the alternating algorithm to calculate Xn assuming On and Ln
known, the separated function and test function are

V̂ n = V̂ n−1 +XnOnLn
δV = δXnOnLn

(A.26)

The bilinear form reads

m1(On, On)a1(Xn, δXn)p1(Ln, Ln) −m2(On, On)a2(Xn, δXn)p2(Ln, Ln)

+m3(On, On)a2(Xn, δXn)p3(Ln, Ln) = −
n−1
∑

i=1

m1(Oi, On)a1(Xi, δXn)p1(Li, Ln)

+
n−1
∑

i=1

m2(Oi, On)a2(Xi, δXn)p2(Li, Ln) −
n−1
∑

i=1

m3(Oi, On)a2(Xi, δXn)p3(Li, Ln)

+ lO1 (On)l
X
1 (δXn)lL1 (Ln) + l

O
2 (On)l

X
2 (δXn)lL2 (Ln)

(A.27)
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To calculate Xp
n, using the weak form

∫

Ωx

dδX∗
n

dx

dXn
dx
dx

∫

Ωω

O∗
nOndω

∫

ΩL

L∗
nLndL

−
∫

Ωx

δX∗
nXndx

∫

Ωω

f1(ω)O∗
nOndω

∫

ΩL

g1(L)L∗
nLndL

+
∫

Ωx

δX∗
nXndx

∫

Ωω

f2(ω)O∗
nOndω

∫

ΩL

g2(L)L∗
nLndL =

−
n−1
∑

i=1

∫

Ωx

dδX∗
n

dx

dXi
dx
dx

∫

Ωω

O∗
nOidω

∫

ΩL

L∗
nLidL

+
n−1
∑

i=1

∫

Ωx

δX∗
nXidx

∫

Ωω

f1(ω)O∗
nOidω

∫

ΩL

g1(L)L∗
nLidL

−
n−1
∑

i=1

∫

Ωx

δX∗
nXidx

∫

Ωω

f2(ω)O∗
nOidω

∫

ΩL

g2(L)L∗
nLidL

+ δX∗
n(x = 0).I1ι

∫

Ωω

ωO∗
ndω

∫

ΩL

LL∗
ndL

+ δX∗
n(x = 0).I1.R

∫

Ωω

O∗
ndω

∫

ΩL

L∗
ndL

(A.28)

In matrix terms, we can write

{Xn}[Kx].{O∗
n}[Mω]{On}.{L∗

n}[ML]{Ln}
− {Xn}[Mx].{O∗

n}[M2
ω]{On}.{L∗

n}[M1
L]{Ln}

+ {Xn}[Mx].{O∗
n}[M1

ω]{On}.{L∗
n}[ML]{Ln} =

−
n−1
∑

i=1

{Xi}[Kx].{O∗
n}[Mω]{Oi}.{L∗

n}[ML]{Li}

+
n−1
∑

i=1

{Xi}[Mx].{O∗
n}[M2

ω]{Oi}.{L∗
n}[M1

L]{Li}

−
n−1
∑

i=1

{Xi}[Mx].{O∗
n}[M1

ω]{Oi}.{L∗
n}[ML]{Li}

+ {1, 0, · · · , 0}T .I1ι{O∗
n}[M1

ω]{1}{L∗
n}[M1

L]{1}
+ {1, 0, · · · , 0}T .I1.R{O∗

n}[Mω]{1}{L∗
n}[ML]{1}

(A.29)

To calculate On assuming Xn and Ln known, the separated function and test
function are

V̂ n = V̂ n−1 +XnOnLn
δV = XnδOnLn

(A.30)

191



Appendix A. PGD Formulations

The bilinear form reads

m1(On, δOn)a1(Xn, Xn)p1(Ln, Ln) −m2(On, δOn)a2(Xn, Xn)p2(Ln, Ln)

+m3(On, δOn)a2(Xn, Xn)p3(Ln, Ln) = −
n−1
∑

i=1

m1(Oi, δOn)a1(Xi, Xn)p1(Li, Ln)

+
n−1
∑

i=1

m2(Oi, δOn)a2(Xi, Xn)p2(Li, Ln) −
n−1
∑

i=1

m3(Oi, δOn)a2(Xi, Xn)p3(Li, Ln)

+ lO1 (δOn)l
X
1 (Xn)lL1 (Ln) + l

O
2 (δOn)l

X
2 (Xn)lL2 (Ln)

(A.31)

To calculate Opn, using the weak form
∫

Ωx

dX∗
n

dx

dXn
dx
dx

∫

Ωω

δO∗
nOndω

∫

ΩL

L∗
nLndL

−
∫

Ωx

X∗
nXndx

∫

Ωω

f1(ω)δO∗
nOndω

∫

ΩL

g1(L)L∗
nLndL

+
∫

Ωx

X∗
nXndx

∫

Ωω

f2(ω)δO∗
nOndω

∫

ΩL

g2(L)L∗
nLndL =

−
n−1
∑

i=1

∫

Ωx

dX∗
n

dx

dXi
dx
dx

∫

Ωω

δO∗
nOidω

∫

ΩL

L∗
nLidL

+
n−1
∑

i=1

∫

Ωx

X∗
nXidx

∫

Ωω

f1(ω)δO∗
nOidω

∫

ΩL

g1(L)L∗
nLidL

−
n−1
∑

i=1

∫

Ωx

X∗
nXidx

∫

Ωω

f2(ω)δO∗
nOidω

∫

ΩL

g2(L)L∗
nLidL

+X∗
n(x = 0).I1ι

∫

Ωω

ωδO∗
ndω

∫

ΩL

LL∗
ndL

+X∗
n(x = 0).I1.R

∫

Ωω

δO∗
ndω

∫

ΩL

L∗
ndL

(A.32)

In matrix terms, we can write

[Mω]{On}.{X∗
n}[Kx]{Xn}.{L∗

n}[ML]{Ln}
− [M2

ω]{On}.{X∗
n}[Mx]{Xn}.{L∗

n}[M1
L]{Ln}

+ [M1
ω]{On}.{X∗

n}[Mx]{Xn}.{L∗
n}[ML]{Ln} =

−
n−1
∑

i=1

[Mω]{Oi}.{X∗
n}[Kx]{Xi}.{L∗

n}[ML]{Li}

+
n−1
∑

i=1

[M2
ω]{Oi}.{X∗

n}[Mx]{Xi}.{L∗
n}[M1

L]{Li}

−
n−1
∑

i=1

[M1
ω]{Oi}.{X∗

n}[Mx]{Xi}.{L∗
n}[ML]{Li}

+X∗
n(x = 0).I1ι[M1

ω]{1}{L∗
n}[M1

L]{1}
+X∗

n(x = 0).I1.R[Mω]{1}{L∗
n}[ML]{1}

(A.33)
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To calculate Ln assuming Xn and On known, the separated function and test
function are

V̂ n = V̂ n−1 +XnOnLn
δV = XnOnδLn

(A.34)

The bilinear form reads

m1(On, On)a1(Xn, Xn)p1(Ln, δLn) −m2(On, On)a2(Xn, Xn)p2(Ln, δLn)

+m3(On, On)a2(Xn, Xn)p3(Ln, δLn) = −
n−1
∑

i=1

m1(Oi, On)a1(Xi, Xn)p1(Li, δLn)

+
n−1
∑

i=1

m2(Oi, On)a2(Xi, Xn)p2(Li, δLn) −
n−1
∑

i=1

m3(Oi, On)a2(Xi, Xn)p3(Li, δLn)

+ lO1 (On)l
X
1 (Xn)lL1 (δLn) + l

O
2 (On)l

X
2 (Xn)lL2 (δLn)

(A.35)

To calculate Lpn, using the weak form

∫

Ωx

dX∗
n

dx

dXn
dx
dx

∫

Ωω

O∗
nOndω

∫

ΩL

δL∗
nLndL

−
∫

Ωx

X∗
nXndx

∫

Ωω

f1(ω)O∗
nOndω

∫

ΩL

g1(L)δL∗
nLndL

+
∫

Ωx

X∗
nXndx

∫

Ωω

f2(ω)O∗
nOndω

∫

ΩL

g2(L)δL∗
nLndL =

−
n−1
∑

i=1

∫

Ωx

dX∗
n

dx

dXi
dx
dx

∫

Ωω

O∗
nOidω

∫

ΩL

δL∗
nLidL

+
n−1
∑

i=1

∫

Ωx

X∗
nXidx

∫

Ωω

f1(ω)O∗
nOidω

∫

ΩL

g1(L)δL∗
nLidL

−
n−1
∑

i=1

∫

Ωx

X∗
nXidx

∫

Ωω

f2(ω)O∗
nOidω

∫

ΩL

g2(L)δL∗
nLidL

+X∗
n(x = 0).I1ι

∫

Ωω

ωO∗
ndω

∫

ΩL

LδL∗
ndL

+X∗
n(x = 0).I1.R

∫

Ωω

O∗
ndω

∫

ΩL

δL∗
ndL

(A.36)

In matrix terms, we can write
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[ML]{Ln}.{X∗
n}[Kx]{Xn}.{O∗

n}[Mω]{On}
− [M1

L]{Ln}.{X∗
n}[Mx]{Xn}.{O∗

n}[M2
ω]{On}

+ [ML]{Ln}.{X∗
n}[Mx]{Xn}.{O∗

n}[M1
ω]{On} =

−
n−1
∑

i=1

[ML]{Li}.{X∗
n}[Kx]{Xi}.{O∗

n}[Mω]{Oi}

+
n−1
∑

i=1

[M1
L]{Li}.{X∗

n}[Mx]{Xi}.{O∗
n}[M2

ω]{Oi}

−
n−1
∑

i=1

[ML]{Li}.{X∗
n}[Mx]{Xi}.{O∗

n}[M1
ω]{Oi}

+X∗
n(x = 0).I1ι{O∗

n}[M1
ω]{1}[M1

L]{1}
+X∗

n(x = 0).I1.R{O∗
n}[Mω]{1}[ML]{1}

(A.37)

A.3 Parametric Solution with R,L,C included

For the fully parametric solution, we need the separated solution in the form as:

V (x, ω, L,R,C) =
n

∑

i=1

Xi(x)Oi(ω)Li(L)Ri(R)Ci(C) (A.38)

As with the tradition, we assume that the solution is in the pth iteration for the
mode N and all the previous modes have converged. At this stage, the separated
representation and the test functions are given as

V (x, ω, L,R,C) =
n−1
∑

i=1

Xi(x)Oi(ω)Li(L)Ri(R)Ci(C) +

Xp
n(x)O

p−1
n (ω)Lp−1

n (L)Rp−1
n (R)Cp−1

n (C)

(A.39)

δV ∗(x, ω, L,R,C) = δX∗
n(x)O

p−1∗
n (ω)Lp−1∗

n (L)Rp−1∗
n (R)Cp−1∗

n (C) (A.40)

For the sake of simplicity we drop the superscript p and p − 1 from equations
(A.39) and (A.40).

V (x, ω, L,R,C) =
n−1
∑

i=1

Xi(x)Oi(ω)Li(L)Ri(R)Ci(C) +

Xn(x)On(ω)Ln(L)Rn(R)Cn(C)

(A.41)

δV ∗(x, ω, L,R,C) = δX∗
n(x)O

∗
n(ω)L

∗
n(L)R

∗
n(R)C

∗
n(C) (A.42)

Let us define some definitions for the integrals we will be using in this section.

194



Appendix A. PGD Formulations

x1 =
∫

Ωx

∂X∗
n

∂x

∂Xn
∂x

dx x2 =
∫

Ωx

X∗
nXn dx

xi3 =
∫

Ωx

∂X∗
n

∂x

∂Xi
∂x

dx xi4 =
∫

Ωx

X∗
nXn dx

(A.43)

o1 =
∫

Ωω

O∗
nOn dω o2 =

∫

Ωω

ω2O∗
nOn dω o3 =

∫

Ωω

ωO∗
nOn dω

oi4 =
∫

Ωω

O∗
nOi dω oi5 =

∫

Ωω

ω2O∗
nOi dω oi6 =

∫

Ωω

ωO∗
nOi dω

(A.44)

l1 =
∫

ΩL

L∗
nLn dL l2 =

∫

ΩL

LL∗
nLn dL

li3 =
∫

ΩL

L∗
nLi dL li4 =

∫

ΩL

LL∗
nLi dL

(A.45)

c1 =
∫

ΩC

C∗
nCn dC c2 =

∫

ΩC

CC∗
nCn dC

ci3 =
∫

ΩC

C∗
nCi dC ci4 =

∫

ΩC

CC∗
nCi dC

(A.46)

r1 =
∫

ΩR

R∗
nRn dR r2 =

∫

ΩR

RR∗
nRn dR

ri3 =
∫

ΩR

R∗
nRi dR ri4 =

∫

ΩR

RR∗
nRi dR

(A.47)

xb1 = Xn
∗(x = 0)

ob1 =
∫

Ωω

O∗
n dω ob2 =

∫

Ωω

ωO∗
n dω

lb1 =
∫

ΩL

L∗
n dL lb2 =

∫

ΩL

LL∗
n dL

cb1 =
∫

ΩC

C∗
n dC

rb1 =
∫

ΩR

RR∗
n dR rb2 =

∫

ΩR

R∗
n dR

(A.48)

Inserting equations (A.36) in the equation (4.15) and multiply by the test func-
tion of equation (A.37) and simplifying. Skipping the intermediate steps as it is
similar to the previous sections and presenting the codifiable form

∫

Ωx

∂δX∗
n

∂x

∂Xn
∂x
.o1.l1.c1.r1 dx−

∫

Ωx

δX∗
nXn.o2.l2.c2.r1 dx

+
∫

Ωx

δX∗
nXn.o3.l1.c2.r2 dx ι = −

n−1
∑

i=1

∫

Ωx

∂δX∗
n

∂x

∂Xi
∂x
.oi4.l

i
3.c

i
3.r

i
3 dx

+
n−1
∑

i=1

∫

Ωx

δX∗
nXi.o

i
5.l
i
4.c

i
4.r

i
3 dx−

n−1
∑

i=1

∫

Ωx

δX∗
nXi.o

i
6.l
i
3.c

i
4.r

i
4 dx ι

+ I1δX∗
n(x = 0).ob1.l

b
1.c

b
1.r

b
1 + I1δX

∗
n(x = 0).ob2.l

b
2.c

b
1.r

b
2 ι

(A.49)
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In matrix notation, the above equation is much easier to interpret and is

[Kx] 4Xn.o1.l1.c1.r1 − [Mx] 4Xn.o2.l2.c2.r1 + [Mx] 4Xn.o3.l1.c2.r2 ι =

−
n−1
∑

i=1

[Kx] 4Xi.oi4.l
i
3.c

i
3.r

i
3 +

n−1
∑

i=1

[Mx] 4Xi.oi5.l
i
4.c

i
4.r

i
3 −

n−1
∑

i=1

[Mx] 4Xi.oi6.l
i
3.c

i
4.r

i
4 ι

+ I1. 4δX∗
n(x = 0).ob1.l

b
1.c

b
1.r

b
1 + I1. 4δX∗

n(x = 0).ob2.l
b
2.c

b
1.r

b
2 ι

(A.50)

For calculating On

∫

Ωω

OnδO
∗
n.x1.l1.c1.r1 dω −

∫

Ωω

ω2.OnδO
∗
n.x2.l2.c2.r1 dω

+
∫

Ωω

ω.OnδO
∗
n.x2.l1.c2.r2 dω ι = −

n−1
∑

i=1

∫

Ωω

OiδO
∗
n.x

i
3.l
i
3.c

i
3.r

i
3 dω

+
n−1
∑

i=1

∫

Ωω

ω2.OiδO
∗
n.x

i
4.l
i
4.c

i
4.r

i
3 dω −

n−1
∑

i=1

∫

Ωω

ω.OiδO
∗
n.x

i
4.l
i
3.c

i
4.r

i
4 dω ι

+
∫

Ωω

δO∗
n.x

b
1.l
b
1.c

b
1.r

b
1 dω +

∫

Ωω

δO∗
n.x

b
1.l
b
2.c

b
1.r

b
2 dω ι

(A.51)

In matrix notation, the above equation is much easier to interpret and is

[Mω] 4On.x1.l1.c1.r1 − [M2
ω] 4On.x2.l2.c2.r1 + [M1

ω] 4On.x2.l1.c2.r2 ι =

−
n−1
∑

i=1

[Mω] 4Oi.xi3.l
i
3.c

i
3.r

i
3 +

n−1
∑

i=1

[M2
ω] 4Oi.x

i
4.l
i
4.c

i
4.r

i
3 −

n−1
∑

i=1

[M1
ω] 4Oi.x

i
4.l
i
3.c

i
4.r

i
4 ι

+ [Mω]41.xb1.l
b
1.c

b
1.r

b
1 + [M1

ω]41.x
b
1.l
b
2.c

b
1.r

b
2 ι

(A.52)

For calculating Ln

∫

ΩL

LnδL
∗
n.x1.ω1.c1.r1 dL−

∫

ΩL

L.LnδL
∗
n.x2.ω2.c2.r1 dL

+
∫

ΩL

LnδL
∗
n.x2.ω3.c2.r2 dL ι = −

n−1
∑

i=1

∫

ΩL

LiδL
∗
n.x

i
3.ω

i
4.c

i
3.r

i
3 dL

+
n−1
∑

i=1

∫

ΩL

L.LiδL
∗
n.x

i
4.ω

i
5.c

i
4.r

i
3 dL−

n−1
∑

i=1

∫

ΩL

LiδL
∗
n.x

i
4.ω

i
6.c

i
4.r

i
4 dL ι

+
∫

ΩL

δL∗
n.x

b
1.ω

b
1.c

b
1.r

b
1 dL+

∫

ΩL

L.δL∗
n.x

b
1.ω

b
2.c

b
1.r

b
2 dL ι

(A.53)

In matrix notation, the above equation is much easier to interpret and is

[ML] 4Ln.x1.ω1.c1.r1 − [M1
L] 4Ln.x2.ω2.c2.r1 + [ML] 4Ln.x2.ω3.c2.r2 ι =

−
n−1
∑

i=1

[ML] 4Li.xi3.ω
i
4.c

i
3.r

i
3 +

n−1
∑

i=1

[M1
L] 4Li.x

i
4.ω

i
5.c

i
4.r

i
3 −

n−1
∑

i=1

[ML] 4Li.xi4.ω
i
6.c

i
4.r

i
4 ι

+ [ML]41.xb1.ω
b
1.c

b
1.r

b
1 + [M1

L]41.x
b
1.ω

b
2.c

b
1.r

b
2 ι

(A.54)
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For calculating Cn

∫

ΩC

CnδC
∗
n.x1.ω1.l1.r1 dC −

∫

ΩC

C.CnδC
∗
n.x2.ω2.l2.r1 dC

+
∫

ΩC

C.CnδC
∗
n.x2.ω3.l1.r2 dC ι = −

n−1
∑

i=1

∫

ΩC

CiδC
∗
n.x

i
3.ω

i
4.l
i
3.r

i
3 dC

+
n−1
∑

i=1

∫

ΩC

C.CiδC
∗
n.x

i
4.ω

i
5.l
i
4.r

i
3 dC −

n−1
∑

i=1

∫

ΩC

C.CiδC
∗
n.x

i
4.ω

i
6.l
i
3.r

i
4 dC ι

+
∫

ΩC

δC∗
n.x

b
1.ω

b
1.l
b
1.r

b
1 dC +

∫

ΩC

δC∗
n.x

b
1.ω

b
2.l
b
2.r

b
2 dC ι

(A.55)

In matrix notation, the above equation is much easier to interpret and is

[MC ] 4Cn.x1.ω1.l1.r1 − [M1
C ] 4Cn.x2.ω2.l2.r1 + [M1

C ] 4Cn.x2.ω3.l1.r2 ι =

−
n−1
∑

i=1

[MC ] 4Ci.xi3.ω
i
4.l
i
3.r

i
3 +

n−1
∑

i=1

[M1
C ] 4Ci.x

i
4.ω

i
5.l
i
4.r

i
3 −

n−1
∑

i=1

[M1
C ] 4Ci.x

i
4.ω

i
6.l
i
3.r

i
4 ι

+ [MC ]41.xb1.ω
b
1.l
b
1.r

b
1 + [MC ]41.xb1.ω

b
2.l
b
2.r

b
2 ι

(A.56)

For calculating Rn

∫

ΩR

RnδR
∗
n.x1.ω1.l1.c1 dR−

∫

ΩR

RnδR
∗
n.x2.ω2.l2.c2 dR

+
∫

ΩR

R.RnδR
∗
n.x2.ω3.l1.c2 dR ι = −

n−1
∑

i=1

∫

ΩR

RiδR
∗
n.x

i
3.ω

i
4.l
i
3.c

i
3 dR

+
n−1
∑

i=1

∫

ΩR

RiδR
∗
n.x

i
4.ω

i
5.l
i
4.c

i
4 dR−

n−1
∑

i=1

∫

ΩR

R.RiδR
∗
n.x

i
4.ω

i
6.l
i
3.c

i
4 dR ι

+
∫

ΩR

RδR∗
n.x

b
1.ω

b
1.l
b
1.c

b
1 dR +

∫

ΩR

δR∗
n.x

b
1.ω

b
2.l
b
2.c

b
1 dR ι

(A.57)

In matrix notation, the above equation is much easier to interpret and is

[MR] 4Rn.x1.ω1.l1.c1 − [MR] 4Rn.x2.ω2.l2.c2 + [M1
R] 4Rn.x2.ω3.l1.c2 ι =

−
n−1
∑

i=1

[MR] 4Ri.xi3.ω
i
4.l
i
3.c

i
3 +

n−1
∑

i=1

[MR] 4Ri.xi4.ω
i
5.l
i
4.c

i
4 −

n−1
∑

i=1

[M1
R] 4Ri.x

i
4.ω

i
6.l
i
3.c

i
4 ι

+ [M1
R]41.x

b
1.ω

b
1.l
b
1.c

b
1 + [MR]41.xb1.ω

b
2.l
b
2.c

b
1 ι

(A.58)
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