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The	invention	of	laser	half	a	century	ago,	brought	about	the	emerging	
field	 of	 Photonics:	 the	 science	 of	 light.	 Recent	 advancement	 in	
Photonics	 have	 brought	 about	 a	 new	 era	 of	 miniaturisation	 of	
devices.	Integrated	optoelectronic	devices	of	micro‐meter	scale	play	
an	 important	 role	 in	 faster	and	 safer	means	of	Communication	and	
information	transfer.	Along	came	a	need	for	technology	to	allow	the	
manipulation	 of	 light	 at	 the	micrometer	 scale,	with	 precise	 control	
over	 beam	 propagation.	 The	 past	 decades	 have	 been	 an	 intense	
research	on	novel	photonic	nanostructures,	and	new	metamaterials	
to	expand	the	possibilities	to	engineer	the	propagation	of	light	

Since	 the	 pioneering	 works	 of	 E.	 Yablonovich	 and	 S.	 John	 [Yab87,	
Joh87]	 the	 number	 of	 scientific	 studies	 devoted	 to	 look	 for	 new	
structures,	 materials	 and	 specially	 functionalities	 has	 grown	
exponentially.	 From	 1990	 to	 2010	 there	 was	 initial	 intensive	
research	 in	 the	 field	 of	 periodic	 nanophotonic	 structures,	 the	 so‐
called	 Photonic	 Crystals	 (PhC),	 which	 lead	 to	 the	 discovery	 of	
amazing	new	features,	from	frequency	band‐gaps,	to	slow	light,	light	
localization	 in	 defects,	 applications	 for	 nonlinear	 phenomena,	
inhibition	 of	 spontaneous	 emission,	 wave	 guiding	 in	 planar	
structures	or	 in	PhC	 fibers.	Moreover,	all	 these	peculiarities	rapidly	
jump	 from	 being	 theoretical	 predictions	 to	 be	 experimentally	
demonstrated	 phenomena	 [Mart90,	 Bla00,	 Russ03,	 Noda03,	 Vla05,	
Dud06]	or	even	to	the	discovery	of	their	presence	in	nature	[Vuk03].		

Initially,	PhC	showed	the	ability	to	modify	the	dispersion	relations	in	
the	 frequency	domain	 results	 therefore	 leading	 to	 temporal	 effects.	
The	temporal	dispersion	is	the	relation	between	angular	frequency		
and	wave	vector	k,	and	it	is	modified	due	to	the	periodic	modulation	
of	 refractive	 index,	 that	 is	 to	 say	(k).	 However,	 it	 also	 affects	 the	
spatial	dispersion.	Thus,	 for	a	given	 frequency	given	,	 the	relation	
between	 the	 spatial	 components	 of	 the	wavevector,	 for	 instance	 kx	
and	 ky,	 is	 simultaneously	modified.	 This	modification	 in	 the	 spatial	
dispersion	curve	kx(ky)	affects	diffraction,	 leading	 to	different	beam	
propagation	 effects	 such	 as,	 self‐collimation	 [Hos99,	 Chi03,	 Sta06,],	
focalization	and	 imaging	behind	 the	PhC	structure	 [Luo02,	Chub03,	
,Ber04,	Sav09],	spatial	(angular)	filtering	[Sta09,	May10,	Col10],	and	
negative	refraction	[Cub03,	Dec08]	to	even	invisibility	[Van08].	
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However,	 as	 it	 is	 evident	 from	 the	 well‐known	 Kramers–Kronig	
relations	 [Luc05],	 that	 modulation	 of	 the	 refractive	 index	 is	
accompanied	 by	 a	modulation	 of	 absorption	 or	 emission.	Moreover,	
near	 resonance,	 the	 effects	 of	 absorption/emission	 can	 become	
relevant	 and	 have	 to	 be	 taken	 into	 account	 in	 addition	 to	 beam	
propagation	 effects	 arising	 from	 refractive	 index	 modulations.	 As	 a	
result,	 more	 recently,	 attention	 was	 paid	 to	 equally	 accessible	
artificial	 nanophotonic	 structures,	 where	 gain	 and	 losses	 are	
modulated	 on	 the	 wavelength	 scale:	 Gain	 Loss	Modulated	Materials	
(GLMMs)..	The	concept	of	GLMMs	in	one	dimension	(1D)	was,	in	fact,	
previously	 considered	 in	 the	 context	 of	 distributed	 feedback	 lasers	
[Chen08],	quantum	well	lasers	and	semiconductor	arrays	[Ult06].		
	
The	main	differences	of	 light	propagation	through	gain/loss	or	index	
modulated	 media	 may	 be	 easily	 explained	 using	 the	 corresponding	
dispersion	 curves	(k)	 (see	 the	 schematic	 representation	 of	 Fig.	 1,	
just	 considering	 the	 case	of	 two	 interacting	modes).	 In	 the	 case	of	 a	
one‐dimensional	 index	 modulated	 media,	 eigenfrequencies	 remain	
real	 and	 only	 the	 phase	 velocity	 of	 the	 wave	 is	 modified	 by	 mode	
coupling.	 At	 resonance	 frequencies	 push	 appear	 and	 Photonic	 Band	
Gaps	(PBG)	appear;	 inhibiting	 light	propagation	since	no	wavevector	
is	 available	 at	 the	PBG	 frequencies	 (see	 Fig.	 1.1a).	 	 On	 the	 contrary,	
gain/loss	modulated	media	affect	both	the	real	and	imaginary	parts	of	
eigenfrequencies	and	thus,	also	 the	gain/absorption	can	be	modified	
through	 the	 mode	 coupling.	 At	 resonance	 frequencies	 lock	 and	
complex	 modes	 develop	 being	 either	 amplified	 or	 decreasing	
depending	 on	 the	 complex	 component	 im(k)	 	 (see	 Fig1.1b,c).	 The	
appearance	 of	 sharp	 peaks	 in	im(k)	 corresponds	 to	 an	 anisotropic	
gain	 in	 the	 k‐space.	 This	 angular	 dependence	 on	 gain	 gives	 rise	 to	
spatial	filtering	effects	as	well.	

Fig.	1.1	Schematic	dispersion	curves	of	a	PhC(a),	GLMM(b)	and	the	anisotropic	gain	in	
k‐space	present	in	GLMMs(c).	The	black	lines	denote	(k)	for	an	homogenous	media 
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The	 idea	 to	 apply	 photonic	 nanostructures	 to	 engineer	 the	 spatial	
profile	of	light	beams	was	first	proposed	just	before	I	started	my	PhD	
research,	and	precisely	developed	in	the	group	where	I	did	my	PhD.	
Self‐collimation,	 super‐diffusion	 and	 flat	 focalisation	 where	
predicted	along	with	the	presence	of	high	directive	gain	[Sta09]	[Bot	
10].	 Developing	 such	 ideas	 in	 specific	 systems,	 and	 binging	 them	
closer	to	applications	has	been	the	main	objective	of	my	PhD.		

The	 work	 of	 my	 PhD	 was	 devoted	 to	 understand	 the	 beam	
propagation	 effects	 in	 GLMMs,	 identify	 the	 spatial	 propagation	
effects	exhibited	by	such	materials	and	propose	realistic	scenarios	in	
which	LMM	can	be	implemented	in	existing	and	evolving	technology	
and	 devices.	 We	 built	 our	 studies	 from	 a	 solid	 understanding	 of	
GLMMs	published	 in	prior	 studies	 [Sta09],	which	 is	however	based	
on	 the	 paraxial	 approximation,	 which	 reduces	 the	 accuracy	 of	 the	
predictions	 by	 a	 large	 scale.	 Paraxial	 approximation	 excludes	
wavevectors	of	the	beam	which	are	propagating	at	a	large	angle.		

The	methodology	adopted	in	our	study	is	a	combination	of	analytical	
prediction	 and	 numerical	 confirmation	 of	 the	 predicted	 effects.	
Analytical	predictions	combine	the	full	plane	wave	expansion	model	
and	 a	 truncated	 couple	 mode	 expansion	 of	 Maxwell	 equations.	
Concerning	numeric	beam	propagation	experiments,	we	used	Finite	
Difference	Time	Domain	(FDTD)	method	to	numerical	propagate	the	
light	 beam	 through	 a	 periodically	 loss	 modulated	 media.	 FDTD	
computes	 the	 full	 set	 of	 Maxwell’s	 equations	 and	 involves	 no	
approximation.		

As	predicted	by	the	plane	wave	expansion	method,	the	propagation	
of	light	beams	within	such	structures	is	sensitive	to	the	propagation	
direction.	 We	 provided	 a	 numerical	 proof	 in	 2D	 periodic	 Loss	
Modulated	 Materials	 (LMM)	 with	 square	 and	 rhombic	 lattice	
symmetry,	 by	 solving	 the	 full	 set	 of	Maxwell’s	 equations,	 using	 the	
finite	 difference	 time	 domain	 method,	 which	 entails	 no	
approximation.	Anisotropy	of	amplification/attenuation	leads	to	the	
narrowing	of	the	angular	spectrum	of	beams	with	wavevectors	close	
to	 the	 edges	of	 the	 first	Brillouin	Zone.	The	effect	 provides	 a	novel	
tool	 to	 filter	 out	 high	 spatial	 harmonics	 from	 noisy	 beams,	 while	
being	 amplified.	 A	 later	 study	 lead	 us	 to	 analyse	 the	 focalisation	
performance	 of	 a	 flat	 LMM	 slab.	 Flat	 lensing	 was	 analytically	
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predicted	 by	 the	 dispersion	 curves	 obtained	 from	 a	 coupled	mode	
expansion	of	Maxwell’s	 equations,	 and	 then	numerically	 confirmed.	
For	 a	 range	 of	 frequencies	 coinciding	 with	 a	 high	 transmission	
window	 at	 resonant	 Bragg	 frequencies	 (bandgap	 frequencies	 for	
PhCs),	 light	 beams	 undergo	 negative	 (anomalous)	 diffraction	
through	 LMMs.	 The	 phase	 shifts	 accumulated	 within	 the	 structure	
are	then	compensated	by	normal	diffraction	in	free	space,	leading	to	
a	 substantial	 focalization	 beyond	 it.	 The	 predicted	 phenomena	 are	
generic	 for	spatially	modulated	materials	and	other	kinds	of	waves.	
Thus,	 we	 also	 discussed,	 for	 the	 first	 time,	 propagation	 in	 LMM	
acoustic	crystals,	predicting	high	angular	transmission	bands.		

While	these	initial	studies	assumed	hypothetical	LMM	materials,	in	a	
realistic	 scenario,	 loss	 modulations	 are	 always	 accompanied	 by	
refractive	 index	 modulations,	 as	 predicted	 by	 Kramers‐Kronig	
relations.	 During	 the	 final	 phase	 of	 my	 PhD,	 we	 focused	 on	 more	
realistic	 structures	 exhibiting	 both	 index	 and	 loss	 modulations,	
namely	 metallic	 photonic	 crystals	 (MPhCs),	 made	 of	 2D	 rhombic	
arrays	 of	 metallic	 cylinders	 embedded	 in	 air.	 We	 explored	 their	
ability	to	tailor	the	spatial	propagation	of	light	beams.	Indeed,	MPhCs	
support	self‐collimated	propagation	and	negative	diffraction.	 In	this	
later	case,	flat	 lensing	was	demonstrated,	 leading	to	the	focalization	
of	 beams	 behind	MPhCs	 slabs.	 Also,	 the	 anisotropic	 attenuation	 of	
light	within	MPhCs	enables	spatial	filtering.		

Finally,	we	initiated	studies	towards	the	implementation	of	GLMMs.	
One	 of	 such	 possible	 applications	 are	 Broad	 Area	 Semiconductor	
(BAS)	amplifiers,	or	ultimately	BAS	lasers.	BAS	(also	referred	as	edge	
emitting	 lasers)	 are	 technologically	 relevant	 light	 sources	 which	
main	advantage	being	their	high	conversion	efficiency.	Their	planar	
configuration	 enables	 efficient	 access	 of	 the	 pump	 to	 the	 whole	
volume	of	the	active	amplifying	medium.	However,	BAS	lasers	suffer	
from	 a	 serious	 disadvantage	 as	 the	 spatial	 quality	 of	 the	 emitted	
beam	 is	 relatively	 low	 [Bur99].	 If	 no	 special	 mechanisms	 are	
incorporated	 in	 the	 design,	 the	 emission	 has	 a	 broad	 and	 noisy	
optical	and	angular	spectrum.	The	poor	spatial	quality	is	principally	
due	 to	 the	absence	of	a	natural	angular	selection	mechanism	in	 the	
large	aspect‐ratio	cavity	of	such	devices.	In	absence	of	cavity	mirrors	
such	planar	semiconductor	structures	can	act	as	light	amplifiers,	BAS	
amplifiers.	We	realize	preliminary	studies	to	show	that	GLMMs	may	
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act	in	BAS	amplifiers	as	an	intrinsic	mechanism	to	improve	the	beam	
quality	emission.		

The	 original	 work	 performed	 during	 my	 PhD	 along	 these	 lines,	
resulted	in	three	published	papers	[Kum12,	Kum13,	Kum14]	(where	
I	 am	 always	 the	 first	 author)	 and	 six	 conference	 papers	 [Bot11,	
Bot13,	 Bot14,	 Her11,	Her12,	 Herr12‐2].	 Therefore,	 in	 this	way	 this	
PhD	 is	 based	 on	 the	 three	 published	 papers	 and	 six	 conference	
proceedings,	being	organized	as	follows.	 

Chapter	 2	 provides	 an	 overview	 the	 general	 properties	 of	 complex	
crystals	methods	used	in	the	thesis. 

In	 Chapter	 3	 we	 describe	 how	 LMM	 support	 beam	 spatial	 effects	
such	 as	 spatial	 filtering,	 flat	 lensing	 or	 self‐collimation,	 through	 a	
new	mechanism,	different	from	the	case	of	PhCs.	

Chapter	4	is	devoted	to	beam	shaping	in	MPhCs,	being	modulated	in	
the	both	real	and	imaginary	components,	however	being	only	lossy,	
no	gain	is	present.	We	show	how	this	kind	of	complex	structures	also	
hold	non‐diffractive	propagation	and,	negative	diffraction	leading	to	
flat	lensing	and	spatial	filtering.	

The	 application	 of	 the	 previous	 results	 being	 used	 to	 improve	 the	
beam	quality	of	BBAS	amplifiers	is	discussed	in	Chapter	5.		

Finally,	 Chapter	 6	 summarizes	 the	 results	 and	 presents	 the	
conclusions	 of	 the	 thesis,	 as	 well	 as,	 a	 discussion	 on	 future	
perspectives.	

Along	 the	 development	 of	 my	 PhD,	 we	 proposed,	 analyzed	 and	
established	 spatial	 beam	propagation	effects	 in	GLMM,	 from	purely	
ideal	 LMM	 structures	 to	more	 realistic	 structure	 as	MPhCs	 or	 BAS	
amplifiers.	
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2.1	Light	waves	propagation		

The	 first	 nanostructured	 artificial	 materials	 studied	 to	 control	 the	
light	 propagation	 were	 made	 of	 dielectric	 materials.	 They	 were	
called	 Photonic	 Crystals	 (PhC)	 for	 their	 ability	 to	 affect	 the	
propagation	of	photons	analogously	to	energy	bands	for	electrons	in	
solids.		

Early	 in	 1887	 the	 English	 physicist	 Lord	 Rayleigh	 [Ray88]	
experimentally	 demonstrated	 the	 existence	 of	 photonic	 band‐gaps	
(PBGs)	as	forbidden	propagation	bands	for	certain	frequency	ranges.	
Research	interest	grew	with	the	publication	of	two	milestone	papers	
in	 1987	 by	 E.	 Yablonovitch	 [Yab87]	 and	 S.	 Johnwork	 [Joh97],	 who	
pointed	 out	 the	 potential	 applications	 of	 such	 structures	 in	 the	
control	of	spontaneous	emission	of	materials	embedded	in	them,	or		
in	the	localization	of	light.	[Sak04,	Joa11,	Sou12]	

Periodic	nanostructures	with	modulations	on	the	wavelenght	scales	
can	be	build	 one,	 two,	 or	 three	dimensions	being	 fabricated	with	 a	
large	variety	of	methods	 that	 include	drilling	holes,	 stacking	 layers,	
direct	 laser	writing,	 or	 self‐assembly	 of	 spheres.	More	 recently	 the	
assembly	 of	 new	 materials	 such	 as	 metals	 or	 semiconductors	 has	
lead	 to	 the	 general	 concept	 of	 Complex	 Crystals	 which	 hold	 exotic	
properties	 not	 only	 involving	 waves,	 frequency	 PBG	 or	 guiding	
wavelengths	 but	 also	 affecting	 the	 propagation	 of	 light	 beams,	
finding	applications	wherever	light	must	be	manipulated.		

	

2.1.1	 Coupled	mode:	 Two	mode	 case	 and	 temporal	
dispersion	
In	 order	 to	 model	 the	 propagation	 of	 light	 trough	 a	 periodic	
nanostructure,	we	start	 from	the	wave	equation	as	directly	obtained	
from	the	Maxwell	equations,	which	in	terms	of	the	electric	field	reads:	

2

2

2

1
)(

t

E

c
rE








 	 	 	 Eq.(2.1)	

Here	  r
 	is	the	relative	electric	susceptibility	of	the	material,	which	in	

the	most	general	approach	may	consists	on	a	real	part	(corresponding	
to	the	refractive	index)	as	well	as	an	imaginary	part	(corresponding	to	
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losses	or	gain).	 In	general,	 the	 ratio	between	 the	 real	and	 imaginary	
parts	of	such	susceptibility	depends	on	the	materials.	As	it	is	evident	
from	 the	well‐known	Kramers–Kronig	 relations,	 a	modulation	of	 the	
refractive	index	can	be	accompanied	by	a	modulation	of	absorption	or	
emission.	 Moreover,	 near	 resonance,	 the	 effects	 of	
absorption/emission	can	become	relevant	and	have	 to	be	 taken	 into	
account	 in	 addition	 to	 beam	 propagation	 effects	 arising	 from	
refractive	 index	 modulations.	 As	 a	 result,	 beyond	 PhC	 the	 new	
problem	 to	 be	 considered	 is	 light	 propagation	within	materials	 that	
incorporate	in	phase	index	and	gain/loss	modulations.	The	concept	of	
gain/loss	modulation	in	1D	was	considered	previously	in	the	context	
of	 distributed	 feedback	 lasers	 [Chen08],	 quantum	 well	 lasers	 and	
semiconductor	arrays	[Ult06].	
	
This	approach	is	mainly	devoted	to	simple	harmonic	optical	potentials	
which	 allows	 describing	 the	 field	with	 a	 reduced	 number	 of	modes.	
Consider	 the	 simplest	 case	 of	 a	 1D	material	 presenting	 a	 sinusoidal	

modulation	 in	 the	 permittivity	 )ee(im)qzcos(im iqziqz  121 	

with	amplitude	m	and	a	given	wavenumber	q.	The	propagation	along	
the	material	of	a	linearly	polarized	monochromatic	harmonic	electric	
field	 with	 amplitude tiezEtzE  )(),( 	 is	 simply	 determined	 by	 the	

form:	

)()(
)(

2

2

2

2

zE
c

z
z

zE 



 .		 						 			Eq.(2.2)	

The	 field	 can	be	written	 as	 the	 incident	 field	 and	 the	 corresponding	
harmonics	 introduced	 by	 the	 direct	 interaction	 with	 the	 modulated	
material	in	the	form	of	a	Plane	Wave	Expansion:	

  
j

zqji
j

ikz eaezE )( .		 	 Eq.(2.3)	

Next,	 we	 analyze	 the	 interaction	 between	 two	 of	 these	 modes,	 e.g.	
modes	 with	 wavenumbers	 k	 and	 k‐q.	 Introducing	 the	 field	 and	
material	modulation	in	the	propagation	equation	and	grouping	terms	
with	the	same	exponential	factor,	one	obtains	the	equations	coupling	
these	two	modes:	
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Shifting	 the	 )( ,k 	 origin	 to	 the	 crossing	 point	
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Near	the	crossing	point	 )( 00 ,k the	equation	set	has	the	simple	

analytical	form:	
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where		∆k ൌ ݇ െ ݇଴	 and	 ∆ ൌ െ ଴	 are	 the	 deviations	 from	 the	
degeneracy	point.	The	analytical	 relationship	between	 the	 frequency	
and	the	wavenumber	deviations	is	the	simple	form:	

4

2

0

2

2
km

kc    	 	 				 Eq.(2.7)	

This	problem	can	be	faced	as	a	wave	with	a	real	wavevector	evolving	
in	 time	within	 the	 structured	material	 (an	 initial	 condition	problem,	

)(ω k )	or	as	a	wave	with	a	defined	real	frequency	propagating	along	

the	 complex	 crystal	 (a	 boundary	 condition	 problem, ω)(k ).	 In	 the	

first,	modes	have	a	complex	valued	frequency		being	the	real	part	of	
	 the	 wave	 frequency	 and	 its	 imaginary	 part	 the	 temporal	
grow/decay	 exponent.	 In	 the	 second,	 waves	 with	 real	 frequency	 	
propagate	through	the	medium	with	a	complex	k	wavenumber,	being	
its	 imaginary	 part	 the	 spatial	 grow/decay	 exponent.	 Here,	 we	
consider	real	wavenumbers	to	obtain	complex	eigenfrequencies.	
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Considering	 real	 values	 of	 the	modulation	 amplitude	 in	 permitivity
0,  iir mimmm ,	 i.e.	 the	Photonic	Cristal	(PhC)	case,	eigenvalues	

given	by	the	"initial	value	problem"	(k)	are	real,	as	shown	in	Fig.	
2.1.		

	

Fig.	2.1	Dispersion	 relation.	Frequency		 (in	normalized	units	 c/a	where	a	 is	 the	
lattice	constant)	versus	wavenumber	k	(in	normalized	/a	units	).	

In	 general,	 for	 a	 complex	 value	 of	 the	 coupling,	 the	 matrix	 is	 not	
hermitian,	 and	 the	 eigenvalues	 of	 the	 problem	 are	 not	 necessarily	
real‐valued.	The	real	parts	of	the	eigenfrequencies,	as	 in	the	case	of	
PhCs,	 correspond	 to	 the	 frequencies	 of	 the	 Bloch	 modes	 and	 the	
imaginary	 part	 of	 the	 frequency	 is	 the	 net	 gain	 or	 loss	 of	 the	
corresponding	 Bloch	 mode.	 For	 the	 case	 of	 purely	 imaginary	
modulations,	that	is	to	say	for	a	modulation	amplitude	in	permitivity	

0 rir m,immm ,	 eigenvalues	 become	 complex‐conjugated	 near	

resonance	and	real	and	imaginary	parts	are	represented	in	Fig.	2.2.	

	

Fig.	2.2	Real	(left)	and	imaginary	(right)	part	of	the	dispersion	relation.	Frequency		
(in	normalized	units	c/a	where	a	 is	the	 lattice	constant)	versus	wavenumber	k	(in	
normalized	/a	units	).	

For	 the	 purely	 imaginary	 the	 dispersion	 curves	 of	 the	 uncoupled	
modes	(dashed	curves)	do	not	“push”	mutually	as	it	is	in	the	case	of	
PhCs	 to	 form	 the	bandgap	around	 their	 cross	point,	but	 rather	pull	
one‐another	and	lock	to	some	common	frequency.	The	width	of	the	
locking	area	is	 2/0qm 	as	follows	from	eq.	2.7.	
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2.1.2	Plane	Wave	Model	in	Photonic	Crystals	

The	 Plane	 Wave	 expansion	 Method	 (PWM)	 is	 a	 well‐established	
modal	method	to	solve	the	wave	equation	as	an	eigenvalue	problem,	
based	 on	 the	 Floquet‐Bloch	 theorem	 for	 periodic	 systems,	 see	 for	
instance	 [Ho90]	 [Joh01].	 Analogously	 to	 the	 coupled	 mode	
expansion,	we	shall	 start	by	 the	wave	equation	 in	a	non‐permeable	
space	 (=0),	 instead	 of	 eq.	 2.1,	 it	 is	 here	 more	 convenient	 to	
consider	the	magnetic	field	ܪሬሬԦሺݎ, 	waves	plane	harmonic	Assuming	ሻ.ݐ
,ݎሬሬԦሺܪ ሻݐ ൌ 		:equation	Helmholz’s	the	,		ሻ݁௜ఠ௧ݎሺܪ

	 ଵ

ሺ௥Ԧሻ
	ܪሬሬԦሺݎԦሻ ൌ మ

௖మ
	ԦሻݎሬሬԦሺܪ 																	 Eq.(2.8)	

where	 	Ԧሻݎሺߝ is	 any	 periodic	 function	 in	 space,	 Ԧሻݎሺߝ ൌ Ԧݎ൫ߝ	 ൅	 ሬܴԦ൯		

with ሬܴԦ ൌ ݊ଵ Ԧܽଵ ൅ ݊ଶ Ԧܽଶ ൅ ݊ଷ Ԧܽଷbeingሼ Ԧܽଵ, Ԧܽଶ, Ԧܽଷሽthe	 primitive	 direct	
lattice	 vectors	 of	 the	 periodicity.	 According	 to	 the	 Floquet‐Bloch	
theorem	the	solutions	to	Eq.	2.8	can	be	chosen	in	the	form	of	periodic	

functions	of	 the	wavevector	 ሬ݇Ԧ	meaning	 that	 the	solution	at	 ሬ݇Ԧ	 is	 the	

same	 that	 the	solution	at	 ሬ݇Ԧ ൅ 	Ԧܩ ,	being	ܩԦ	a	 reciprocal	 lattice	vector	

which	 may	 be	 expressed	 as	 Ԧܩ ൌ ݉ଵ
ሬܾԦ
ଵ ൅ ݉ଶ

ሬܾԦ
ଶ ൅ ݉ଷ

ሬܾԦ
ଷbeing	

൛ሬܾԦଵ, ሬܾԦଶ, ሬܾԦଷൟthe	reciprocal	lattice	vectors	defined	as	ܽపሬሬሬԦ ൉ ሬܾԦ௝ ൌ 2௜௝.	
In	 turn,	ߝሺݎԦሻ	can	be	expanded	 into	a	Fourier	series	of	all	 reciprocal	

vectors,ܩԦ:	 	
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Where	p=1,2	 stands	 for	 the	 two	polarizations,	 perpendicular	 to	 the	

propagation	 direction	 ሬ݇Ԧ ൅ 	.Ԧܩ Then,	 using	 the	 expansion	 of	 Eq.	 2.9	
may	 be	 rewritten	 for	 2D	 systems	 decoupling	 modes	 for	 both	
polarizations,	TM	and	TE,	as:		

											:ܯܶ ∑ หሬ݇Ԧ ൅ Ԧหหሬ݇Ԧܩ ൅ Ԧ′หܩ
′ܩെܩ
െ1

ீᇲ ൉ ீ,ଵܪ ൌ 	
మ

௖మ
			ଵ,ீᇲܪ	 Eq.(2.10a)	

													:ܧܶ ∑ ൫ሬ݇Ԧ ൅ Ԧ൯ீᇲܩ ൉ ൫ሬ݇Ԧ ൅ Ԧ′൯ܩ
′ܩെܩ
െ1 ீ,ଶܪ ൌ 	

మ

௖మ
		ଶ,ீᇱܪ	 Eq.(2.10b)	

This	 leads	 to	 an	Hermitian	 eigenproblem	 over	 the	 primitive	 cell	 of	
the	 lattice	at	each	Bloch	wavevector	k.	This	primitive	cell	 is	a	 finite	
domain	 if	 the	 structure	 is	 periodic	 in	 all	 directions,	 leading	 to	
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discrete	 eigenvalues	 labelled	 by	 n=	 1,2,....	 These	 eigenvalues	 ωn(k)	
are	 continuous	 functions	of	k,	 forming	discrete	bands	when	plotted	
with	respect	to	k,	in	a	band	diagram	or	band	structure.	Such	temporal	
dispersion	 relations	 map	 all	 possible	 plane	 waves	 in	 the	 system.	
Besides,	the	solutions	are	periodic	in	k,	meaning	that	the	solution	at		
k	 is	 equal	 to	 the	 solution	 at	 k+Gj.	 .	 Thanks	 to	 this	 periodicity,	 it	 is	
sufficient	 to	 compute	 the	 eigensolutions	 for	 k	within	 the	 primitive	
cell	of	this	reciprocal	space	or	First	Brillouin	Zone	(FBZ).	This	folding	
of	 the	 dispersion	 relations	 is	 shown	 in	 the	 Band	 Diagram	 of	 a	 1‐
dimensional	 (1D)	 structure	 with	 R1=a	 and	 G1=2/a,	 then	 the	 FBZ	
would	 correspond	 to	 k	 e	 [‐/a,	 /a],	 but	 due	 to	 the	 time‐reversal	
symmetry	 the	 interval	 (‐kk),	 it	 is	 reduced	 to	 k	 e	 [0,	 /a].	 The	
shaded	areas	on	Fig.	2.5	indicate	the	forbidden	propagation	bands	or	
Photonic	Bandgaps	 (PBG).	The	 shaded	areas	 indicate	 the	 forbidden	
propagation	bands	or	PBGs.	

Fig.	2.5	Temporal	 dispersion	 relations	 (band	 structure)	 of	a	periodic	1D	 dielectric	
structure,	as	shown	in	the	inset.	Left:	Frequency		(in	normalized	units	c/na	where	
a	is	the	lattice	constant)	versus	wavenumber	k	(in	normalized	/a	units).	The	dotted	
lines	 represent	 the	 dispersion	 of	 a	 uniform	 1D	 medium,	 and	 the	 vertical	 line	
determines	 the	FBZ.	The	 red	 curve	 represents	 the	 folded	dispersion	of	 the	periodic	
medium.	Right:	Band	diagram	of	the	FBZ.	The	shaded	domains	indicate	the	PBG.	
	

Note	 also	 that	 k	 is	 not	 required	 to	 be	 real;	 complex	 k=kRe+	 i	 kIm	
represent	 evanescent	modes	 that	 can	exponentially	decay	 from	 the	
boundaries	of	a	finite	crystal,	but	which	cannot	exist	in	the	bulk.		
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Fig.	2.6	Left:	Complex	wavevector.	Right:	Transmission.	Both	plotted	with	respect	to	
the	normalized	frequency	on	the	vertical	axis.	
Figure	 2.6	 shows	 the	 calculated	 valued	 for	 the	 real	 and	 imaginary	
components	as	well	as	the	transmission	from	a	finite	1D	structure	as	
the	one	in	Fig.	2.5.	
While	during	many	years	efforts	were	dedicated	to	find	3D	photonic	
structures	exhibiting	a	full	PBG	to	completely	inhibit	the	propagation	
of	 light	 (for	 all	 directions),	most	applications	are	based	on	2D	PhC.	
Such	2D	structures	are	easily	achievable	to	fabricate	with	the	actual	
nanophotonic	 techniques	 and	 already	 hold	 the	 most	 important	
characteristics	 of	 PhC.	 One	 of	 the	 basic	 geometries	 used	 in	 2D	
photonic	crystals	are	cylinders	embedded	in	air	(or	cylindrical	holes	
embedded	 in	 a	 material)	 in	 a	 triangular,	 hexagonal	 or	 general	
rhombic	 geometry.	 For	 this	 configuration	 the	 TE/TM	 polarizations	
behave	differently,	being	PBG	bigger	for	TM	(E	parallel	 to	the	rods)	
in	the	case	of	rods.	Figure	2.7	shows	the	Band	diagram.	

Fig.	2.7	Dispersion	relation	(band	structure)	of	a	periodic	2D	square	lattice	made	of	
rods	 in	air	dielectric	PhC	 formed	 by	 rods	 in	air.	 Left:	Frequency		 (in	normalized	
units	c/na	where	a	is	the	lattice	constant)	versus	wavenumber	k	(in	normalized	/a	
units).	The	dotted	lines	represent	the	dispersion	of	a	uniform	1D	medium,	where	the	
vertical	 line	determines	 the	 shows	 the	 “folding”	 effect	of	applying	Bloch’s	 theorem	
with	an	artificial	periodicity	a,	.	The	red	curve	represents	the	 folded	dispersion	of	
the	periodical	medium.	Right:	Band	diagram	of	the	FBZ.	The	shaded	domains	indicate	
the	PBG.	

The	PWE	model	may	be	regarded	as	an	initial	condition	problem	in	
the	sense	that	the	frequency	of	each	spatial	mode	is	determined	for	
each	given	real‐valued	k,	therefore	this	modal	method	is	in	principle	
useful	to	describe	real	periodic	structures,	that	is	to	say,	purely	real‐
valued	in	PhCs	where	frequency	is	purely	real‐valued.	However,	 for	
gain/loss	modulated	materials	 the	 imaginary	 part	 can	 be	 nonzero.	
Precisely	such	imaginary	part	determines	the	non‐stationary	growth	
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or	decay	of	modes	of	ref.	[Bot10],	where	the	Plane	Wave	Expansion	
model	is	extended	to	be	applied	in	systems	where	the	gain	and	losses	
are	modulated	instead	of	the	refractive	index.	This	model	is	used	in	
my	PhD	to	obtain	 the	band	diagrams	 for	both	1‐D	and	2‐D	GLMMs.	
The	 model	 underlines	 the	 existence	 of	 frequency	 locked	 modes	
instead	 of	 the	 opening	 of	 PBGs.	 It	 also	 re‐iterated	 the	 existence	 of	
spatial	beam	propagation	effects	mentioned	in	the	previous	study.	

	

2.2	Beam	propagation	in	Complex	Crystals	
We	 consider	 the	 propagation	 of	 a	monochromatic	 wave	 tiEe  	
along	a	material	structured	 in	both,	 the	transverse	and	 longitudinal	
directions.	 The	 wave	 equation	 for	 the	 monochromatic	 wave	 is	
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																																					Eq.	(2.11)	

Introducing	 the	 field	amplitude	A,	 the	electric	 field	of	a	plane	wave	

can	be	written	as	 rkiAeE


 	and	the	propagation	equation	for	the	field	
amplitude	can	be	written	as	

	 0)1(2 222  AknAkiA


																									Eq.	(2.12)	

where	the	wavevector	  zx kkk ,


	gives	the	propagation	direction	of	

the	 plane	 wave	 and	 its	 modulus	 is	 the	 wavenumber	 inside	 the	
material.	

The	 studied	beams	propagate	 along	 structured	materials	 in	 the	 x‐z	
plane.	 The	 planar	 studied	 medium	 is	 sinusoidally	 modulated	 in	
refractive	index	and	gain.	The	considered	2D	sinusoidal	modulation	

 )cos()cos(2),( 21 rqrqnnzxn h


 	 has	 a	 homogeneous	 complex	

refractive	index	nh	and	the	modulated	part	with	a	complex	amplitude
n 	and	geometry	given	by	the	two	vectors	 ),(),,( 21 zxzx qqqqqq 


	

where	  cos,sin qqqq zx  	 correspond	 to	 the	 transverse	 and	
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longitudinal	 modulation	 wavenumbers	 respectively	 and	 being	 2 	
the	 angle	 between	 the	 two	 generating	 vectors.	 The	 complex	
refractive	 index	 can	 be	 written	 as	 a	 product	 of	 transverse	
modulation	 and	 longitudinal	 modulation	 or	 alternatively	 in	 the	
exponential	form:	

	  )()()()(),( zqxqizqxqizqxqizqxqi
h

zxzxzxzx eeeennzxn   	Eq.	(2.13)	

The	 propagating	 light	 beams	 along	 the	 structured	 material	 can	 be	
now	 expanded	 as	 an	 addition	 of	 harmonics	 of	 the	 potential	

periodicities	 in	 the	 form	 ..),( ,

,
, cceAzxE rki
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 	 and	 Al,p	 is	 the	 amplitude	 of	 each	 mode.	 The	 wave	

equation	takes	the	expression:	
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					Eq.	(2.14)	

where	

2

0 k 	is	the	wavenumber	in	vacuum.		

The	 introduction	of	 the	 expanded	 field	 and	potential	 ),( zxn 	 in	 the	

propagation	equation	results	in	a	coupled	system	for	the	amplitudes	
of	 the	 harmonics.	 The	modulation	 couples	 the	 neighboring	modes,	
obtaining	an	equation	for	each	one.		
	

2.2.1	 Coupled	 mode	 equations.	 Three	 mode	
case	
In	 many	 cases,	 we	 are	 interested	 in	 the	 evolution	 of	 the	 beam	
envelope	propagating	 in	a	given	direction	z.	 Its	propagation	 is	only	
related	 with	 the	 dispersion	 relation	 curves	 at	 small	 transverse	
wavenumbers	that	can	be	generally	calculated	just	considering	three	
harmonics,	(l,p)=(0,0),(0,‐1)	and	(‐1,0),	 the	ones	that	 intersect	at	 the	
edge	of	the	first	Brillouin	zone	at	resonance.	The	square	symmetry	is	
an	 special	 case	 for	 which	 not	 three	 but	 four	 modes	 intersect	 at	
resonance	(l,p)=(0,0),(0,‐1)	,(‐1,0)	and	(‐1,‐1).		
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Only	 considering	 these	 three	 principal	 modes,	 the	 system	
eigenvalues	 can	 be	 easily	 calculated	 from	 eq.	 2.14.	 The	 complex	
index	modulation	 amplitude	 determines	 the	 character	 of	 the	mode	
coupling	 and	 creates	 bandgaps	 for	 PhC‐like	 materials	 with	 real	
refractive	 index	 modulations	 or	 locking	 areas	 for	 gain/loss	
modulations	 as	 explained	 in	 Section	 2.1.1.	 	 In	 the	 case	 of	 beam	
propagation	 this	 corresponds	 to	 angular	 bandgaps	 and	 gain	
propagation	 directions	 with	 amplifying	 and	 depleting	 modes	 (see	
Figure	2.8).	

	

Fig.	2.8	Real	and	imaginary	part	of	the	eigenvalues	for	the	three‐mode	model.	a)	and	
b)	correspond	to	a	photonic	crystal	 like	structure	with	m=0.1,	q=75o	and	appearing	
angular	bandgaps.	 c)	and	d)	 correspond	 to	m=i0.1,	q=75o	appearing	 locking	areas	
where	eigenvalues	become	complex‐conjugated.		

	

2.2.2	Dispersion	curvature	and	diffraction	

Diffractive	broadening	of	light	beams	is	a	fundamental	phenomenon	
which	geometrical	interpretation	is	a	different	acquired	phase	shifts	
on	the	transverse	modes	composing	the	beam,	i.e.	the	acquired	phase	
depends	on	the	propagation	angle.	This	dephasing	of	the	plane	wave	
components	results	in	a	diffractive	broadening	of	the	light	beam.		

In	general	the	positive	(negative)	diffraction	means	that	the	surfaces	
of	 constant	 frequency	 are	 concave	 (convex)	 in	 the	 wave‐vector	
domain	(see	Fig.	29).		
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The	continuous	change	 from	positive	 to	negative	curvatures	on	 the	
surfaces	 of	 constant	 frequency	 assure	 the	 occurrence	 of	 the	 zero	
diffraction	or	self‐collimation,	supposed	to	occur	in	a	particular	point	
in	 the	 wave‐vector	 domain	 where	 the	 curvature	 of	 the	 surfaces	 of	
constant	frequency	becomes	exactly	zero	(Fig.	29	a).	Self‐collimation	
physically	means	 that	 light	beams	of	arbitrary	width	can	propagate	
without	diffractive	broadening	(Fig.	29	b).	

The	 dispersion	 curvature	 can	 be	 modified	 by	 modulations	 of	 the	
refractive	index	and	adjusting	the	parameters	it	is	possible	to	obtain	
positive,	 negative	 and	 also	 nondiffractive	 regimes.	 For	 instance,	
eigenmodes	 with	 larger	 real	 eigenvalue	 in	 Figure	 2.8	 a	 presents	 a	
near	zero	curvature.		

Fig.	2.9	a)	Real	isofrequency	contours	of	the	dispersion	relation	of	Fig.	2.7.	Down(up)	
contours	 correspond	 to	 the	 TE	 first	 (second)	 band.	 In	 z	 direction	 appear	 for	 an	
increasing	 frequency	value	a	positive	curvature	 (normal	diffraction),	 flatness	 (non‐
diffraction)	and	negative	curvature	(negative	diffraction).	b)	Representative	schemes	
of	beam	shape	evolution	and	accumulated	phase	(solid	black	line)	for	the	three	cases.			

 

2.3	Numerical	Methods	in	Complex	Crystals	
	
2.4.1	Paraxial	Approximation	

Assuming	 that	 the	 spatial	 period	 of	 the	 structure	 is	 significantly	
larger	 than	 the	 wavelength,	 the	 Slowly	 Varying	 Envelope	
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Aproximation	can	be	applied	and	 the	propagation	along	 the	 crystal	
can	be	well	described	by	the	paraxial	approximation:		
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                           Eq.(2.15)	

where	 second	 derivatives	 in	 the	 propagation	 direction	 have	 been	
neglected.	For	small	enough	amplitudes	of	the	spatial	modulations	of	
the	refractive	index	 n ,	the	equation	can	be	expressed	as		
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The	periodic	modulation	of	 the	complex	refractive	 index	allows	the	
field	expansion	as	an	addition	of	harmonics	as	explained	in	Section	2,	
and	 the	 solvability	 of	 this	 linear	 system	of	 equations	 results	 in	 the	
transverse	dispersion	relation	of	the	studied	material	 )( xz kk .	We	fix	

real	 values	 for	 the	 transverse	 wavenumber	 kx	 to	 obtain	 complex	
eigenvalues	kz	and	the	corresponding	eigenfunctions	of	the	system.		

A	 sinusoidal	modulation	 of	 the	 complex	 refractive	 index	 (Eq.	 2.13)	
just	couples	the	first	neighboring	harmonics	and	the	field	expansion	
can	 be	 truncated	 to	 five	 harmonics,	
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The	corresponding	matrix	will	give	the	eigenvalues	and	eigenvectors	
of	 the	 linear	system.	The	system	can	be	even	reduced	to	only	 three	
modes	as	explained	in	Section	2.2.1.	

The	 paraxial	 equation	 can	 be	 numerically	 integrated	 by	 semi‐
spectral	methods	following	a	split‐step	method,	i.e.	by	splitting	every	
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time	 step	 into	 a	 first	 perfect	 integration	 of	 the	 diffractive	 term	 in	
Fourier	 space	 followed	 by	 a	 second	 Eulerian	 integration	 of	 the	
refractive	index	term	in	real	space.		

	
2.4.2	Finite	Difference	Time	Domain	method	
	
The	finite‐difference	time‐domain	(FDTD)	method	the	most	popular	
method	 used	 in	 computational	 electrodynamics	 [Cou28,	 Yee66,	
Taf80,	Taf00].	It	is	the	most	important	tool	used	for	diffractive	optics	
simulations.	 The	 ability	 to	 model	 light	 propagation,	 scattering,	
diffraction,	 reflecting	 and	 polarization	 effects	 are	 a	 unique	
combination	 of	 features	 of	 FDTD.	 	 It	 allows	 accurate	 and	 powerful	
computation	 of	 structures	 on	 wavelength	 scale	 with	 very	 fine	
structural	details.		High	light	confinement,	which	in	turn	corresponds	
to	 large	 refractive	 index	 of	 the	 medium,	 makes	 it	 suitable	 for	
simulation	 of	 semiconductor	 devices.	 We	 have	 extensively	 used	
FDTD	in	two	spatial	and	one	temporal	dimensions	in	our	studies	to	
simulate	 light	 beam	 propagation	 in	 hypothetical	 and	 realistic	
scenarios.		

	

Fig.	2.	 	Numerical	representation	of	the	2D	computational	domain	for	a)	TE	and	b)	
TM	waves.	Position	of	the	fields	in	the	2D	unit	cell.	

The	 FDTD	 approach	 is	 based	 on	 direct	 numerical	 solution	 of	 time‐
dependent	 Maxwell’s	 curl	 equation.	 The	 FDTD	 algorithm	 as	 first	
proposed	 by	 Kane	 Yee	 in	 1966	 employs	 second‐order	 central	
differences.	 For	 the	 calculation,	 the	 space	 is	 divided,	 in	 Cartesian	
coordinates,	 into	 rectangular	 cells	 which	 size	 is	 defined	 by	 x and	
y,	as	schematically	represented	in	Fig.	2.	In	the	grid,	the	E‐field/H‐
field	 vector	 component	 is	 equidistant	 from	a	 pair	 of	H‐field/E‐field	
vector	components,	considering	central	difference	approximation	of	
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the	 derivatives	 of	 Maxwell’s	 equations.	 The	 z	 direction,	
perpendicular	 to	 x‐y	 plane	 is	 assumed	 to	 be	 infinite.	 The	 spatial	
confutation	determines	along	with	the	spatial	resolution	determines	
the	temporal	time	step	 t .	Once	the	cell	size	is	chosen,	the	Courant	
condition	 or	 the	 stability	 condition	 dictates	 the	 time	 step	 [Cou28].	
For	 stability	 reasons,	 a	 field	 component	 cannont	 propagate	 more	
than	once	cell	size	in	one	time	step.		

	 	 	 	 
 

0

x
t

c
		 	 	 								Eq.(2.16)	

where	it	is	assumed	that	the	wave	travels	at 0c ,	the	speed	of	light.	

Yee’s	scheme	considered	Ex	and	Hy.		
	
	The	algorithm	can	be	summarized	as	follows:		
	
1.	 Replace	 all	 the	 derivatives	 in	 Ampere’s	 and	 Faraday’s	 laws	with	
finite	differences.	Discretize	space	and	 time	so	 that	 the	electric	and	
magnetic	fields	are	staggered	in	both	space	and	time.		
2.	 Solve	 the	 resulting	 difference	 equations	 to	 obtain	 “update	
equations”	 that	 express	 the	 (un‐	 known)	 future	 fields	 in	 terms	 of	
(known)	past	field		
3.	Evaluate	the	magnetic	fields	one	time	step	into	the	future	so	they	
are	now	known	(effectively	they	become	past	fields).		
4.	 Evaluate	 the	 electric	 fields	 one	 time‐step	 into	 the	 future	 so	 they	
are	now	known	(effectively	they	become	past	fields).		
5.	Repeat	the	previous	two	steps	until	the	fields	have	been	obtained	
over	the	desired	duration.		
	
There	are	several	commercial	simulation	tools	that	implement	FDTD	
algorithms	[Crys].	
	
	

	



 

 

 

 

 

 

    

 

 

  

	

Chapter	3
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3.1	High	directional	gain	in	LMM	

This	 chapter	 describes	 the	 first	 general	 spatial	 studies	 on	 beam	
propagation	in	Gain/Loss	Modulated	Materials	(GLMM)	and	contains	
the	 main	 original	 contributions	 made	 to	 the	 field	 during	 my	 PhD	
research.	 The	 description	 follows	 approximately	 the	 chronological	
order	in	which	they	were	developed.	Based	on	four	publications,	two	
journal	 papers	 [Kum12,	 Kum13]	 and	 two	 conference	 proceedings	
[Bot11,	Bot13],	 the	chapter	 is	divided	 into	 two	main	parts,	 the	 first	
one	 devoted	 to	 the	 high	 directional	 propagation,	 spatial	 filtering	
effects	 [Bot11,	Kum12]	and,	 the	second	part	studies	the	 flat	 lensing	
effect	observed	in	Loss	Modulated	Materials	(LMM)	[Kum13,	Bot13].		

As	 pointed	 out	 in	 the	 introduction,	 it	was	 originally	 predicted	 that	
periodic	GLMM	hold	the	ability	to	manage	spatial	diffraction	of	light	
beams	 [Sta09,	 Bot10].	 The	 effects	 predicted	 in	 those	 pioneering	
works	 are	 based	 on	 the	 strong	 dependence	 of	
amplification/attenuation	of	electromagnetic	waves	on	the	direction	
of	propagation	within	GLMM.	However,	these	studies	were	based	on	
a	 paraxial	 approximation,	 which	 therefore	 excluded	 reflection	 at	
large	angles.	Therefore,	such	results	could	not	be	directly	applicable	
to	GLMM,	for	modulations	on	the	wavelength	scale.		

In	 refs.	 [Kum12,	 Kum13],	 we	 analyze	 the	 propagation	 of	 beams	
through	GLMM	using	Finite	Difference	Time	Domain	(FDTD)	method	
and	 prove	 the	 predicted	 affects.	 FDTD	method	 is	 used	 to	 simulate	
propagation	 of	 light	 through	 photonics	 structures,	 and	 contains	 no	
simplifications.	 We	 perform	 FDTD	 analysis	 on	 structures	 with	
different	 geometries,	 being	 either	 square	 or	 rhombic,	 embedded	 in	
an	inactive	background	(no	gain,	no	loss).	The	results	shown	here	are	
for	absorptive,	 linear	materials;	however,	 the	main	conclusions	still	
hold	for	general	GLMMs.	

As	a	matter	of	fact,	losses	are	present	in	all	photonic	structures,	and	
while	generally	neglected	when	designing	ideal	structures,	they	may	
represent	 a	 serious	drawback	 for	most	 actual	 devices.	They	 should	
be	considered	in	every	system,	especially	when	dealing	with	periodic	
structures.	 Hence,	 we	 shall	 start	 by	 the	 simplest	 case,	 considering	
purely	lossy	periodic	structures,	LMMs,	with	no	index	contrast.	This	
will	 be	 considered	 as	 an	 ideal	 and	 hypothetical	 scenario;	 however,	
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the	 purpose	 here	 is	 to	 investigate	 whether	 it	 is	 possible	 to	 take	
advantage	of	inherent	losses	present	in	such	structures.		Also,	if	gain	
is	 present	 in	 the	 linear	 structure,	 the	 wave	 amplitude	 will	 grow	
exponentially	 to	 infinity.	 By	 this	 simplification	 we	 avoid	 another	
difficulty	in	managing	the	non‐linear	growth	of	light	intensity,	which	
in	turn	leads	to	numerical	saturation.	

However,	the	conclusions	extracted	from	refs.	[Kum12,	Kum13]	hold	
for	general	GLMMs.	For	the	case	of	LMMs,	the	modes	exhibiting	low	
losses	have	a	similar	spatial	distribution	as	 the	modes	with	highest	
amplification	in	the	case	of	GLMMs,	either	with	a	significant	net	gain,	
or	 with	 zero	 net	 gain.	 The	 first	 band	 of	 a	 two‐dimensional	 (2D)	
square	GLMM	with	zero	net	gain	is	provided	in	Fig.	3.1.		

	
Fig.	3.1.	Band	diagram	of	a	2D	square	GLMM,	consisting	of	a	square	 lattice	of	gain	
cylinders,	n=1+0.3i,	of	radius	R=0.3a,	being	a	the	lattice	constant,	embedded	in	a	lossy	
background	medium,	n=1‐0.118,	to	provide	zero	net	gain;	see	the	insets	of	figure	a).	
a)	Real	part	of	the	band	diagram,	the	normalized	 frequency	 is	expressed	 in	units	of	
Re/qc,	being	c	the	speed	of	light	in	vacuum	and	q	the	reciprocal	lattice	constant;	,	
M	and	X	are	the	reciprocal	lattice	with	the	high	symmetry	points.	b)	Representation	
of	the	real	part	of	the	first	band	centered	at	M	point.	The	inset	shows	the	isofrequency	
contour	near	the	resonant	frequency	0.707.	c)	Imaginary	part	of	the	band	diagram,	
Im/qc,	as	a	function	of	the	wavevector	direction.	d)	Representation	of	the	imaginary	
part	of	the	first	band	centered	at	M	point.	[Bot10]	
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The	real	part	of	the	band	structure	(Figures	3.1a	and	3.1b)	is	similar	
to	 that	 of	 an	 index	modulated	 PhC	 [Souk12].	 The	major	 significant	
difference	 between	 an	 index	 modulated	 PhC	 and	 a	 LMM	 is	 the	
locking	 of	 modes	 at	 the	 M	 point,	 see	 Fig.	 3.1a,	 and	 the	 strong	
amplification/attenuation	 close	 to	 the	 edge	 of	 the	 First	 Brillouin	
Zone	 (FBZ),	 see	 Fig.	 3.1d.	 Analogously	 to	what	 occurs	 in	 PhCs,	 the	
change	 in	 the	 curvature	 of	 the	 isofrequency	 contours	 close	 to	 the	
edge	of	 the	FBZ	 (see	 the	 inset	 in	Fig.	 3.1b),	 hints	 that	beam	spatial	
effects	may	be	expected	also	for	LMM.	Note	that	 for	the	normalized	
frequency	 re/qc	 =	 0.65,	 the	 isofrequency	 contour	 has	 a	 positive	
curvature,	which	 leads	 to	normal	diffractive	propagation.	However,	
for	a	normalized	frequency,	a/,	of	0.665	the	curvature	becomes	flat	
along	 the	 M	 direction,	 which	 corresponds	 to	 non‐diffractive	
propagation.	Finally,	 the	negative	 curvature	 for	a	 frequency	of	0.68	
may	 gives	 rise	 to	 negative	 diffraction.	 Therefore,	 throughout	 the	
study,	we	focus	our	interest	at	the	edge	of	FBZ	to	demonstrate	such	
expected	spatial	effects	in	GLMMs.	

	
Fig.	3.2.	Resonance	condition	for	the	first	three	modes	in	reciprocal	space	of	a	general	

rhombic	 lattice	 defined	 by	 the	 reciprocal	 lattice	 vectors:	 	 and	 .	 The	

transverse	 and	 longitudinal	 components	 of	 the	 reciprocal	 lattice	 components	 are	

denoted	by	 and	 	and	the	wavevector	is	denoted	by	 	.	

The	edges	of	the	FBZ	may	be	determined	geometrically,	by	imposing	
the	resonance	condition	on	the	wavevector	space,	see	the	schematic	
representation	 on	 Fig.	 3.2	 for	 a	 general	 triangular	 lattice.	 Let	 us	
consider	 a	 lattice	 defined	 by	 the	 direct	 lattice	 vectors	
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periods	 of	 the	 lattice	 2 a and	 2 ||a ).	 The	 resonant	 condition	 for	 the	

wavevectors	in	the	reciprocal	lattice	space	may	be	then	determined	
by:	

	 	 2 2 2( )||k q k q   	 	 	 Eq.(3.1)		

and,	therefore:	

	 	 	
2 2

2
||

||

q q
k

q
  	 	 	 	 Eq.(3.2)	

where	 	 	and	 	are	the	reciprocal	 lattice	vectors	components,	as	

defined	by:	 	 and	 ,	 see	 the	 schematic	 representation	

of	the	mode	resonance	in	Fig.	3.2.		

We	 investigate	 three	 different	 2D	 LMM	 structures	 with	 different	
geometries:	 two	rhombic	and	one	square	 lattices.	For	both	rhombic	
lattices	determined	by	an	angle	between	the	direct	lattice	vectors	in	
real	 space,	 2,	 of	 either	 75º	 and	 105º	 respectively,	 we	 consider	
propagation	 along	 the	 M	 (Fig.	 3.3a)	 and	 K	 (Fig.	 3.3b)	
crystallographic	 directions.	 For	 the	 square	 lattice	 we	 study	 the	
propagation	 along	 the	M	 direction	 (see	 Fig.	 3.3c).	 Substituting	 for	

,	 	 and	 expressing	 the	 wavevector,	 ,	 and	 further	

simplifying,	we	obtain	the	condition	for	the	normalized	frequency	at	
the	FBZ	edge	as:		

	 	
1

2 2BZ
BZ

a
a

sin( )sin( )  
  	 	 	Eq.(3.3)		

From	Eq.(3.3)	we	may	obtain	the	values	for	aBZ	 for	the	square,	 	and	
rhombic	geometries,	characterized	by	the	angles	between	the	lattice	
vectors,	 or	 equivalently	 between	 the	 reciprocal	 lattice	 vectors	 	 2;			
being	 2=75	 (rhombic	 geometry	 with	 propagation	 along	 long	
diagonal	 in	 direct	 space),	 2=90	 (for	 the	 square	 geometry),	 and	
2=105	(rhombic	geometry	with	propagation	along	short	diagonal,	
in	direct	 spce),	 that	 is	 to	 say,	 for	propagation	along	 the	M	 and	K	

directions.	Note	that	2+2	=.	Such	normalized	values	( )	are,	

respectively	 0.65,	 0.707,	 and	 0.85.	 Figure	 3.3d	 shows	 the	 relation	
between	the	normalized	aBZ	and		obtained	using	the	above	equation	
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for	the	three	geometries	considered	throughout	the	chapter.	Effects	
are	expected	to	occur	precisely	at	the	edge	of	the	FBZ.	

	
Fig.	3.3a)	Schematic	representation	of	the	mode	resonance	to	determine	the	M	point	
of	 a	 rhombic	 lattice,	 referred	 as	 long	 diagonal.	 b),	 c)	 and	 d)	 show	 the	 reciprocal	
lattice	geometry	of	 the	 structures	considered	 in	 the	analysis.	The	red	 shaded	areas	
indicated	the	irreducible	FBZ.	The	inset	shows	the	lattice	geometry,	with	the	dashed	
arrows	indicating	direction	of	propagation	and	the	angle	between	two	lattice	vectors	
.	d)	Relation	between	aBZ.	(normalized	frequency	a/BZ)	and	;	being	2+2	=.	The	
lines	indicate	the	geometries	used	in	the	analysis	and	the	corresponding	value	for	aBZ.		

	

3.1.1	Angular	transmission	profiles	in	LMM	

In	 ref.	 [Kum12],	 we	 show	 that	 the	 amplification	 or	 attenuation	 of	
light	waves	in	artificial	materials	may	become	extremely	sensitive	to	
the	propagation	direction	when	spatially	modulating	the	gain/loss	of	
the	medium	on	the	wavelength	scale.	We	provide	a	numerical	proof	
of	 such	 high	 anisotropy	 of	 the	 gain/loss	 in	 2D	 periodic	 structures	
with	square	and	rhombic	 lattice	symmetry	by	solving	the	 full	set	of	
Maxwell’s	 equations	 using	 the	 Finite	 Difference	 Time	 Domain	
Method	(FDTD),	using	the	commercial	FDTD	algorithm	Crystal	Wave	
[Crys].	 Precisely,	 such	 anisotropy	 of	 the	 amplification/attenuation	
leads	 to	 the	 narrowing	 of	 the	 angular	 spectrum	of	 the	 propagating	
radiation	with	wavevector	 close	 to	 the	edges	of	 the	FBZ.	The	effect	
may	 provide	 a	 novel	 and	 useful	 method	 to	 filter	 out	 high	 spatial	
harmonics	from	noisy	beams.	
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Spatial	 filtering	 effects	 are	 therefore	 associated	 with	 the	
amplification	or	attenuation	of	specific	modes.	To	assess	the	filtering	
performance	of	LMM,	it	is	first	necessary	to	reconstruct	the	angular	
transmission	 profiles	 of	 the	medium.	 The	 structure	 considered	 for	
the	 FDTD	 analysis	 is	 a	 50m	wide	 and	 20m	 long	 crystal	made	 of	
lossy	 cylinders	 (radius	 R=0.2a,	 being	 a	 the	 lattice	 constant)	
embedded	in	air.	The	loss	considered	is	on	the	order	of	105cm‐1.	The	
beam	waist	is	chosen	in	such	a	way	that	it	covers	several	transverse	
modulations	 of	 the	 LMM	 structure.	 For	 comparison,	 we	 consider	
both	 the	 TE	 and	 TM	polarizations	 of	 the	waves.	 Field	 distributions	
are	measured	at	twice	the	Rayleigh	distance	denoted	by	the	red	line	
in	Fig.	3.4a.	The	obtained	field	distribution	within	the	crystal	and	the	
corresponding	 Fourier	 transform,	 for	 a	 given	 frequency,	 are	
provided	in	Figures	3.4b	and	3.5c,	respectively.			

	
Fig.	3.4.	Light	propagation	in	a	LMM	with	square	lattice	geometry.	The	solid	red	line	
in	a)	indicates	the	plane	in	which	the	field	distribution	is	analyzed.	The	black	curves	
in	b)	and	c)	depict	the	propagated	 field	distribution	and	 its	Fourier	transform.	The	
red	 dashed	 curve	 in	 c)	 indicates	 the	 Fourier	 field	 distribution	 for	 the	 same	 beam	
propagation	within	a	homogenous	medium.	

Note	 the	 symmetrically	 placed	 lobs	 in	 the	 Fourier	 spectra,	 in	 Fig.	
3.4c,	 arising	 at	 the	 coupling	 frequencies.	 A	 transverse	 frequency	
scan	in	the	range	close	the	edge	of	the	FBZ	is	performed,	the	angular	
transmission	profile	 is	obtained	by	normalizing	 the	Fourier	 spectra	
with	that	of	the	beam	propagated	through	a	homogenous	medium.		

The	 analysis	 of	 both	 TM	 and	 TE	 polarizations	 (see	 Fig.	 3.5),	
demonstrated	 that	 this	 spectrum	 narrowing	 effect	 is	 more	
pronounced	in	the	case	of	TM	polarization,	i.e.	when	the	electric	field	
polarized	parallel	to	the	rods.	The	edge	of	the	FBZ	for	a	square	lattice	
corresponds	 to	aBZ	=0.707.	The	 two	equally	 spaced	 lobs	converging	
at	the	edge	of	the	FBZ	perfectly	match	the	PWE	analysis.	
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Fig.	3.5	Angular	transmission	profiles	obtained	from	the	normalized	Fourier	spectra	
in	a/	units	for	both	the	parallel	a)	and	the	perpendicular	b)	polarization	in	a	square	
LMM	crystal.	

	

3.1.2 Spatial	filtering	in	LMM	
From	 the	 angular	 transmission	 profile,	 it	 can	 be	 seen	 that	 close	 to	
edge	of	the	FBZ,	only	the	central	range	of	frequencies	is	amplified	(or	
less	absorbed).	This	fact	may	become	a	useful	tool	for	spatial	filtering	
as	it	means	that	the	surrounding	frequencies	of	a	noisy	signal	can	be	
easily	filtered	out.		

While	 reconstructing	 the	angular	 transmission	profiles,	we	observe	
that	 the	narrowing	of	 the	Fourier	 spectrum	 is	 still	 enhanced	 in	 the	
case	of	a	rhombic	geometry,	and	especially	for	propagation	along	the	
long	diagonal,	see	Fig.	3.3.a.	Therefore,	we	propagate	a	random	noisy	
beam	along	M	direction	of	the	rhombic	LMM	crystal	and	the	results	
clearly	show	the	expected	spatial	filtering	effect.		

Figure	 3.6	 shows	 the	 spatial	 filtering	 performance	 from	 a	 rhombic	
LMM.	 In	 Fig.	 3.6b	 a	 comparison	 of	 the	 spectral	 components	 of	 the	
input	noisy	beam	and	filtered	beam	is	provided.	Note	that	the	filtered	
output	 contains	 an	 amplified	 central	 frequency.	 Besides,	 Fig.	 3.6c	
shows	the	response	of	the	LMM	for	a	noisy	beam	input,	where,	at	the	
edge	 of	 the	 FBZ	 (aBZ=0.85	 for	 the	 considered	 rhombic	 structure),	
only	the	central	part	of	the	frequency	is	amplified.		
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Fig.	3.6	a)	Input	noisy	beam	(black)	and	filtered	output	beam	(green)	intensities.	b)	
Corresponding	 Fourier	 spectra	 of	 the	 incident	 noisy	 beam	 and	 filtered	 output.	
Angular	 transmission	 profiles	 of	 the	 rhombic	 lattice	 structure,	 for	 the	 two	 input	
beams:	c)	noisy	beam	and	d)	Gaussian	beam.		

	

3.2	Flat	lensing	in	LMM	
Flat	lensing	is	accounted	by	convex‐curved	isofrequency	contours	of	
propagating	modes	in	wavevector	space.	The	effect	arises	as	convex	
phase	 shifts	 are	 accumulated	 through	 either	 a	 negative‐index	
material	 [Pen00]	 or	 a	 PhC	 slab	 [Luo02,	 Cub03,	 Ber04],	 and	 are	
further	 compensated	 by	 normal	 diffraction	 beyond	 the	 structure,	
determining	the	focalization	distance	from	the	flat	lens.	

In	 this	 study	 [Kum13],	 we	 propose	 a	 flat	 lensing	 effect	 using	 a	
periodic	loss‐modulated	material.	The	effect	is	analytically	predicted	
by	the	dispersion	curves	obtained	from	the	coupled	mode	expansion	
of	 Maxwell	 Equations	 and	 further	 confirmed	 by	 numerical	 beam	
propagation	 simulations.	 From	 both,	 analytical	 and	 numerical	
studies,	we	 concluded	 that,	 for	 a	 range	 of	 frequencies,	 light	 beams	
undergo	 negative	 diffraction	 on	 propagation	 through	 the	 loss‐
modulated	medium,	 leading	 to	 a	window	of	high	 transmission.	The	
phase	shifts	accumulated	by	negative	diffraction	within	the	structure	
are	 then	 compensated	 by	 normal	 diffraction,	 leading	 to	 substantial	
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focalization	 beyond	 it.	 Figure	 3.7	 provides	 a	 schematic	
representation	 of	 the	 focusing	 performance	 by	 a	 LMM.	 At	 given	
frequencies,	 the	 beam	 undergoes	 negative	 diffraction	 within	 the	
crystal,	 while	 spreading,	 the	 curvature	 of	 wave	 fronts	 becomes	
concave.	 Then,	 propagation	 in	 free	 space	 with	 normal	 diffraction	
compensates	 such	 curvature	 of	 the	 phase	 fronts	 leading	 to	 the	 flat	
focusing	effects	

	
Fig.	 3.7.	 Schematic	 representation	 of	 beam	 propagation	 in	 a	 LMM	 structure.	 The	
Gaussian	source	is	shown	as	blue	line.	The	inset	shows	the	unit	cell.		

	

3.2.1	Negative	Diffraction.	Numerical	analysis		
In	order	 to	 show	 the	 flat	 lensing	effect	by	a	LMM,	we	assume	a	2D	
medium	 with	 a	 harmonic	 periodic	 modulation	 of	 the	 complex	
refractive	 index.	 Once	 again,	 we	 consider	 square	 and	 rhombic	
lattices.			

	
Fig.	3.8.	Mode	coupling	of	three	adjacent	dominant	modes	in	a	structured	LMM	with	

rhombic	geometry,	kz	as	a	function	of	kx,	where  


,x zk k k .	The	three	adjacent	modes	

are	 represented	by	 three	uncoupled	 circles	 in	a).	The	 resonance	point	where	 three	
modes	intercept	is	shown	in	b)	for	a	homogenous	media	and	d)	for	LMM.	
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The	 system	can	be	described	by	using	 three	adjacent	modes	 in	 the	
mode	expansion	 [Kum13].	For	a	perfect	homogeneous	medium,	 the	
dispersion	of	each	mode	corresponds	to	a	circle	in	wavevector	space	
which	 radius	 increases	 with	 frequency.	 Figure	 3.8	 depicts	 the	
dispersion	 for	 frequencies	 falling	 before	 and	 after	 resonance.	 The	
perturbed	 three	 resonant	 modes	 in	 wavevector	 space	 for	 a	
structured	 LMM	 intersecting	 at	 the	 edge	 of	 FBZ	 are	 shown	 in	 Fig.	
3.8b.Therefore,	 the	 character	 of	 diffraction	 can	 be	 directly	
determined	by	means	of	the	curvature	of	the	dominant	mode	of	the	
spatial	 dispersion	 (real	 part	 of	 the	 normalized	 longitudinal	

wavevector	kz	as	a	function	of	kx,	where	  


,x zk k k ,	at	kx=0).		

For	normal	diffraction,	 the	curvature	of	dispersion	 is	positive,	as	 in	
Fig.	 3.9a.	 For	 negative	 diffraction,	 the	 dispersion	 curve	 acquires	
negative	 curvature	 as	 in	 Fig.	 3.9b.	 In	 both	 cases	 the	 beam	 spreads	
while	propagating,	see	Figs.3.9b	and	3.9d.		

	
Fig.	3.9.	Mode	coupling	of	three	adjacent	dominant	modes	in	a	structured	LMM.	The	
dominant	mode	 is	represented	by	the	bold	curve.	Blue	 lines	denote	the	propagation	
wavevectors.	 a)	 Coupling	 leading	 to	 normal	 diffraction.	 c)	 Coupling	 leading	 to	
negative	 diffraction.	 The	 plots	 on	 the	 right	 column	 schematically	 represent	 the	
diffractive	broadening	in	both	case.	

From	 the	 analytical	 studies	 [Kum13],	 coupled	 mode	 analysis,	 the	
analytical	 curvature,,	may	be	determined	as	 the	 second	derivative	
of	 the	 longitudinal	 wave	 number	 with	 respect	 to	 the	 transverse	
component,	 across	 the	 edge	 of	 the	 FBZ	 (where	 the	 change	 of	
curvature,	see	Fig.	3.1b).	Considering	a	general	form:	  z xk f k ,	the	

curvature	of	the	dispersion	may	be	obtained	as:		
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Figures	 3.10a	 and	 3.10b	 depict	 the	 complex	 mode	 coupling	 for	
rhombic	 LMM	 and	 propagation	 along	 the	 long	 diagonal.	 While	 the	
real	part	of	dispersion	determines	diffraction,	the	imaginary	part,	kim	
accounts	 for	 absorption.	 The	 analytical	 curvature	 of	 the	 dominant	
mode,	 the	 less	 absorbing	 one,	 is	 determined	 as	 a	 function	 of	 the	
frequency	in	Fig.	3.10c.	Such	curvature	can	then	be	compared	to	the	
phase	evolution	obtained	from	numerical	propagation	studies.	

	
Fig.	 3.10.	 Complex	 dispersion,	 a)	 real	 and	 b)	 imaginary,	 and	 corresponding	
diffraction,	c),	for	a	rhombic	geometry	LMM,	along	the	long	diagonal.	

	

3.2.2 Numerical	Lensing	Analysis.		
In	order	to	confirm	the	different	diffractive	regimes,	we	numerically	
propagate	 light	 beams	 using	 FDTD.	 We	 may	 consider	 a	 LMM	
structure	 and	 propagate	 a	 Gaussian	 beam	 within	 it	 with	 central	
carrier	frequency	close	to	the	edge	of	the	FBZ.	Then,	we	numerically	
evaluate	 the	 phase	 profiles	 at	 a	 given	 exit	 plain.	 For	 a	 range	 of	
frequencies,	 a/,	 on	 either	 side	 of	 FBZ,	 the	 phase	 profiles	 are	
obtained	after	propagation	through	the	LMM	crystal.	We	consider	a	
15‐period	 long	structure,	with	 lossy	cylinders	embedded	in	air.	The	
complex	 refractive	 index	 of	 the	 cylinders	 is	 fixed	 to	 be	 1+0.4i	
(corresponding	to	an	absorption	coefficient	of		=	5	x	104	cm‐1).		The	
radius	 of	 the	 cylinders,	 R,	 is	 considered	 to	 be	 R	 =	 0.2	 a,	where	 a	
stands	 for	 the	 lattice	constant.	We	here	provide	 the	example	of	 the	
study	 of	 a	 rhombic	 geometry,	 2=105,	 for	 propagation	 along	 the	
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long	diagonal	of	the	reciprocal	space.	We	consider	a	Gaussian	beam,	
width	of	1.5	m,	and	given	central	 carrier	 frequency	 close	 to	 the	K	
high	 symmetry	 point,	 incident	 on	 the	 structure;	 we	 numerically	
evaluate	 the	 phase	 profiles	 at	 a	 given	 exit	 plane.	 The	 layout	 of	 the	
numerical	 grid	 is	 depicted	 in	 Fig.	 3.11.	 The	 excitor	 is	 placed	 inside	
the	 LMM,	 with	 a	 detector,	 D1,	 at	 the	 exit	 plane	 of	 the	 structure.	
Another	detector,	D2,	 is	 located	at	30	m	 from	the	exit	plane	and	a	
third	detector,	D0,	at	x=0,	provides	the	horizontal	cross	section	of	the	
field.	The	amplitude	and	phase	of	 the	electric	 field	 is	determined	at	
all	detectors.	

	
Fig.	3.11	a)	Representation	of	the	FDTD	calculation	scheme	indication	the	position	of	
the	detectors	D0,	D1	and	D2.	b)	Incident	field	(blue	curve),	field	at	detector	D1	(black	
curve)	and	at	detector	D2(red	curve).	

Figures	3.12b	and	3.12c	present	the	different	curvatures	of	the	phase	
associated	with	frequencies	a/	=0.62	and	0.7,	for	propagation	along	
the	 long	 diagonal	 of	 a	 rhombic	 lattice	 (resonant	 frequency	 for	 the	
structure,	i.e.	edge	of	the	FBZ	corresponding	to	a/=0.63).	The	phase	
of	the	propagating	beam	is	obtained	from	the	electric	field	at	D1.	The	
curvature	 of	 the	 phase	 is	 calculated	 using	 Eq.	 3.4.	 	 From	 Figures	
3.12a	and	3.12b	it	can	be	noted	that	the	phase	curvature	dependence	
on	 the	 carrier	 frequency	 obtained	 from	 numerical	 simulations,	
reproduces	 the	 analytical	 curvature.	 	 For	 all	 the	 structures	
considered	 in	 [Kum13],	 the	 analytical	 and	 numerical	 predictions	
show	a	good	agreement.	

	While	 for	 frequencies	 far	 from	 the	FBZ	edge,	 the	phase	 curvatures	
would	 resemble	 the	 reference	 beam,	 near	 resonance,	 propagating	
within	the	LMM	strongly	deviates	from	the	reference	beam,	see	Figs.	
3.12b	 and	 3.12c.	 The	 transition	 from	 negative	 to	 strong	 positive	
diffraction	occurs	precisely	at	the	resonant	frequency.	
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Fig.	 3.12	 a)	 Analytical	 dispersion	 curvature	 plotted	 as	 a	 function	 of	 the	 carrier	
frequency,	 in	 a/	 units,	 for	 propagation	 along	 the	 short	 diagonal	 of	 a	 rhombic	
structure.	 The	 dashed	 curve	 corresponds	 to	 the	 curvatures	 of	 the	 reference	 beam	
propagating	in	an	equivalent	homogenous	medium	b)	Phase	curvature	reconstructed	
from	 the	 numerical	 modeling.	 The	 dark	 discontinuous	 lines	 represent	 the	 phase	
curvatures	of	the	reference	beam	propagating.	c)	and	d)	show	the	phase	of	the	beam	
obtained	after	propagation	for	a/=0.62,	0.7.	The	red	curves	in	c)	and	d)	indicate	the	
phase	curvature	of	the	reference	beam	at	the	corresponding	frequencies.	

Analyzing	 the	numeric	 intensity	maps	after	 the	LMM,	shown	 in	Fig.	
3.13,	 focalization	 is	 observed	 coinciding	 with	 a	 high	 transmission	
window	 for	 frequencies	 close	 to	 the	 edge	 of	 FBZ.	 This	 is	 a	 direct	
consequence	of	the	anisotropic	attenuation	of	LMM	structures.			

	
Fig.	3.13	a)	Intensity	transmission	map	for	propagation	along	the	long	diagonal	of	a	
LMM,	as	obtained	at	the	exit	plain	of	the	structure,	and	b)	at	a	distance	of	36a	from	
the	exit	plain.	The	yellow	line	represents	the	width	of	the	reference	beam.	
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3.2.3	 Flat Lensing in a Sonic	LMM	
The	effect	of	loss	modulation	on	beam	propagation	can	be	extended	
to	acoustic	regime	as	well.	In	[Bot13]	we	compare	beam	propagation	
in	 LMMs	 in	 both	 optical	 and	 acoustic	 wavelength	 range.	 We	
considered	 structures	with	 square	 geometry,	 i.e.	 propagation	 along	
M	 direction.	 	 Finite	 Element	Method	 (FEM)	 is	 used	 for	 numerical	
simulations	 in	 acoustic	 LMM.	A	 similar	 structure	 to	 that	 of	 LMM	 in	
optical	regime	analysis	is	consider	for	phononic	case	also.	The	radius	
of	 absorbing	 cylinders	 are	 fixed	 at	 R=0.2a	 and	 the	 extinction	
coefficient	of	=1.37.		

	
Fig.	3.14a)	FDTD	transmission	map	 for	cylinders	with	ncyl	=	1+0.4i,	the	vertical	axis	
denotes	the	carrier	frequency,	in	a/λ	_units,	of	the	1.5	μm‐wide	incident	Gaussian	and	
the	 horizontal	 axis	 the	 normalized	 distance	 from	 the	 sample.	 b)	 Transverse	 cross	
section	at	a	distance	of	36a	after	the	structure,	denoted	by	D	in	figure	a),	where	the	
continuous	 the	 red	dotted	 curve	 is	 for	 comparison	with	propagation	 in	 free	 space.	
Figures	c)	and	d)	show	analog	numeric	FEM	calculations	for	a	sonic	crystal	made	of	
cylinders	with	extinction,	α	=1.37,	embedded	in	air.	

Figures	3.14a	and	3.14c	compare	the	intensity	distribution	along	the	
horizontal	axis	of	propagation.	The	presence	of	a	high	transmission	
window	around	the	edge	of	the	FBZ	(	=0.707)	can	be	seen	in	both	
optical	and	acoustic	regimes.	A	small	degree	of	focalization	can	also	
be	observed	to	frequency	close	to	a/=0.65.		
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We predict and demonstrate that the periodical modulation of the gain/loss profile on the 

wavelength scale in at least two dimensions of space can lead to interesting beam propagation 
effects, similar to self-collimation or subdiffractive propagation, but also to spatial beam filtering. 

While in photonic crystals (PCs) the modulation of the refractive index brings about the 
formation of band gaps in the frequency dispersion spectra, the seemingly analogous materials, 

those with gain/loss modulation (GLM) do not exhibit such celebrated property. However, it has 
been recently shown that the GLM on the wave scale in 2D systems may also strongly modifY the 

propagation properties of waves both in time and space domains. In this case, the modification of 
the spatial dispersion can lead to a variety of nontrivial effects. Whereas the refractive index 
modulation pushes the frequencies of the harmonic field components one from another opening the 
band gaps around their cross points, gain/loss modulation (GLM) has the opposite result. Indeed the 

self-collimation effects in PCs appear due to the deformation (flattening) of the interacting 

(mutually pushing) spatial dispersion curves [1]. In the case of GLM, the spatial dispersion curves 

become also substantially modified due to the mode pulling and locking, and thus also self­

collimation effects or even negative diffraction can be expected [2]. Besides, the highly directional 

gain provides a beam filtering mechanism. 

These propagation effects may be predicted from the plane-wave complex isoline calculations 
and can be mathematically rigorously derived considering the interaction of two field components 

in a 2D weak harmonic GLM under the paraxial approximation [3]. Finally, full numerical 
simulations may be obtained from FDTD field propagation computations. 

(c) 

Fig. 1 (a) [sofrequency lines at the edge of the FBZ for a square 20 system made of cylinders (R = 0.3a, where a is the 

distance between cylinders) with gain (s= 1+0.3i) embedded in a lossy medium; with no net average gain. The inset 

shows the curvature change close to the M high symmetry point. (b) Gain profile (imaginary part of the frequency) of 

the lower order mode around the edges of the FBZ. (c) Propagation of a Gaussian beam in a self-collimation regime 
(the sidebands, however, start growing after longer propagation, due to the additional sideband-growing effect) 
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4.1	Metallo‐dielectric	Photonic	Crystals	

In	 the	 previous	 chapter,	 we	 have	 considered	 Gain	 Loss	Modulated	
Materials	 (GLMMs)	 or	 more	 precisely	 Loss	 Modulated	 Materials	
(LMMs)	 which	 essentially	 represent	 a	 limiting	 case	 of	 GLMMS.	
However,	 actual	 periodically	 structured	 materials	 show	 both	
refractive	 index	 and	 gain/loss	 variations,	 as	 they	 are	 intrinsically	
related	 via	 the	 Kramers–Kronig	 relations.	 Pure	 index	 modulations	
may	 only	 occur	 for	 given	 frequencies,	 whereas	 purely	 gain/loss	
modulations	 are	 barely	 possible.	 Therefore,	 in	 real	 materials,	 such	
two	extreme	(ideal)	cases	may	never	be	achieved.		

This	chapter	describes	two	publications,	one	journal	paper	[Kum14]	
and	 a	 conference	 proceeding	 [Bot14]	 where	 we	 study	 light	 beam	
propagation	 in	 systems	 holding	 both	 index	 and	 gain/loss	
modulations.	 The	 paper	 [Kum14]	 is	 precisely	 devoted	 to	 provide	 a	
detailed	 analysis	 of	 light	 beam	 propagation	 in	 metallic	 photonic	
crystals	 (MPhCs),	 consisting	 of	 gold	 cylinders	 embedded	 in	 air,	
where,	 indeed,	 both	 losses	 and	 refractive	 index	 are	 simultaneously	
modulated.	We	are	able	to	predict	and	numerically	prove	that	such	a	
structure	 supports	 non‐diffractive	 (self‐collimated)	 propagation	
associated	 to	 zero	 diffraction.	 In	 this	 case,	 the	 lack	 of	 phase	 shift	
among	 transverse	 modes	 maintains	 the	 beam	 profile	 unchanged	
along	the	crystal.	We	also	predict	flat	 lensing	associated	to	negative	
diffraction.	 In	 the	 latter	 case,	 the	 anomalous	 phase	 shifts	
accumulated	 within	 the	 structure,	 when	 compensated	 by	 normal	
diffraction	behind	it,	lead	to	a	significant	focalization	of	light	beams.		

Prior	to	the	appearance	of	the	two	publications	presented	here,	the	
topic	 of	 flat	 lensing	was	 usually	 discussed	 in	 association	with	 left‐
handed	materials	or	Negative	Index	Materials	(NIMs).	The	concept	of	
NIM	 was	 introduced	 by	 Veselago	 [Ves68].	 He	 proposed	 that	
homogenous	 materials	 with	 negative	 electric	 permittivity	 and	
magnetic	 permeability	would	 give	 rise	 to	 negative	 refractive	 index,	
thereby	exhibiting	anomalous	propagation	effects	such	as	 that	 light	
propagates	with	opposite	phase	and	energy	velocities;	 the	so‐called	
left‐handed	 media.	 	 Such	 materials	 do	 not	 occur	 in	 nature,	 and	
therefore	the	study	remained	at	a	theoretical	 level till	the	advent	of	
metamaterials:	 artificial	 electromagnetic	 structures	 engineered	 on	
subwavelength	 scales	 to	 tailor	 its	 response,	 proposed	 by	 Pendry	
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[Pen99,	 Pen00].	 	 He	 suggested	 that	 artificially	 tailored	 materials,	
with	 periodically	 aligned	 metallic	 structures	 with	 periods	 smaller	
than	 the	 wavelength	 of	 light	 could	 present	 an	 averaged	 negative	
electric	 permittivity	 and	 negative	 magnetic	 permeability.	 These	
studies	 predicted	 the	 ability	 of	 such	 materials	 to	 focus	
electromagnetic	 waves	 to	 a	 spot	 size	 much	 smaller	 than	 the	
wavelength.	These	materials	are	better	known	as	perfect	lenses.	Flat	
lensing	 was	 first	 experimentally	 demonstrated	 for	 metamaterials	
with centimetre-scale features at microwave	 frequencies	 [Sel01],	 and	
later	observed	optical	wavelengths	[Xu13].	

Another	 fundamental	 advantage	 of	 flat	 lenses	 is	 the	 lack	 of	 optical	
axis.	 Conventional	 lenses	 need	 a	 curved	 surface	 to	 focus	 the	
electromagnetic	waves,	whereas	a	NIM	can	form	an	image	with	a	flat	
surface,	a	trait	that	can	be	attributed	to	negative	index	of	refraction.	
This	 kind	 of	 tailored	 materials	 with	 average	 negative	 electric	
permittivity	and	magnetic	permeability	are	known	as	metamaterials.	
Diffraction	 limited	 imaging	methods	employing	metamaterials	have	
been	 demonstrated	 in	 microwave	 [Grb04,	 Lag04]	 and	 visible	
frequency	ranges	[Xio07,	Smo07].	The	fabrication	of	metamaterials	is	
extremely	 hard	 considering	 complex	 nanostructures,	 especially	 in	
the	visible	range	of	 frequencies,	as	 the	period	should	be	 the	size	of	
several	nanometers.		

Negative	 diffraction	 observed	 in	 PhCs	 is	 due	 to	 a	 very	 different	
phenomenon.	 It	 can	 be	 explained	 by	 the	 bends	 in	 isofrequency	
contours	 of	 spatial	 dispersion	 curves.	 In	 the	 case	 of	 PhCs,	 the	
refractive	 index	 of	 the	 material	 is	 positive,	 so	 is	 the	 electric	
permittivity	and	magnetic	permeability.	Investigations	on	the	spatial	
dispersion	 relations	 of	 PhCs	 led	 to	 the	 discovery	 of	 novel	 spatial	
propagation	 effects	 as:	 self‐collimation	 due	 to	 the	 flattening	 of	 the	
curvature	of	spatial	dispersion	[Kos99b,	Wit02,	Chi03,	Aug05,	Sta06,	
Lu06,	Lom06];	spatial	filtering	due	to	the	angular	gaps	in	dispersion	
curves,	or	strongly	tilted	segments	[Sta09a,	Mai10]	(as	described	in	
Chapter	 2);	 and	 finally	 focalization	 and	 imaging	 behind	 a	 PhC	
[Luo02a,	 Luo02b,	 Li03,	 Luo03,	 Wan04,	 Fab06,	 Ren07]	 due	 to	 the	
convexly	curved	segments	of	the	spatial	dispersion.		

The	purpose	of	our	study	is	to	show	the	effect	of	negative	diffraction	
on	 beam	 propagation,	 providing	 a	 significant	 focalization.	 In	
addition,	 we	 numerically	 demonstrate	 the	 spatial	 filtering	 of	 noisy	



Chapter	4.	Beam	shaping	in	Metallic	Photonic	Crystals	

 

70

beams	due	to	the	anisotropic	attenuation	of	 light.	This	effect,	which	
arises	due	 to	anisotropic	gain/loss	profile	 in	GLMM–	 like	materials,	
was	 described	 in	 an	 ideal	 scenario	 of	 pure	 loss	 modulation	 in	
[Kum12].			

For	 this	 study,	 we	 consider	 a	 2D	 periodic	 structure	 made	 of	 gold	
cylinders	 in	 air,	 see	 Fig.	 4.1a.	 The	 geometry	 of	 the	 structure	 is	
defined	by	 the	 lattice	 constant	a,	 the	 angle	between	 the	 two	 lattice	
vectors	,	and	the	radius	of	the	cylinders	R.		The	dielectric	constant	of	
dielectric	materials	for	frequencies	larger	than	the	plasma	frequency,	

p ,	 may	 be	 described	 by	 the	 Drude	 model,	 by	 the	 following	

expression:	
2 21 p( ) ( i )       ,	 where	 	 is	 the	 frequency	 of	

light,	and	p	stands	 for	 the	collision	 frequency	of	gold	 [Bor80].	The	
absorption	 coefficient	of	Gold	 (Au)	 at	 1 m  	 is			 770000	 cm‐1	

and	for	Platinum	(Pl)	is	around	710000	cm‐1.		

	
Fig.	4.1a)	Arrangement	of	metallic	cylinders	embedded	in	air	in	a	MPhC,		a	being		the	
lattice	 constant,	R	 the	 radius	 of	 the	 cylinders,	 	 the	angle	 between	 the	 two	 direct	
lattice	 vectors	 indicated	 by	 thin	 arrows,	 and	 the	 thick	 red	 arrow	 indicates	 the	
direction	 of	 propagation	 of	 beam.	 b)	 /c)	 FDTD	 propagation	 of	 a	 Gaussian	 beam	
through	the	structure	made	of	Platinum/	Gold	cylinders	respectively,	R=0.2a		=75º,	
The	 Gaussian	 beam	 carrier	 frequency	 is	 a/=0.85.	 The	 blue	 rectangular	 boxes	
indicate	the	position	of	the	MPhC.	The	yellow	line	is	the	detector,	at	t	focus.	

We	numerically	propagate	 a	Gaussian	beam	using	Finite	Difference	
Time	 Domain	 (FDTD)	 method.	 The	 electric	 field	 considered	 is	
linearly	polarized	parallel	to	the	cylindrical	rods.	The	field	intensity	
distribution	of	a	Gaussian	beam	of	width	3m	propagating	 through	
MPhCs	with	periodically	arranged	Platinum	(Pl)	and	Gold	cylindrical	
rods	are	depicted	in	Figures	4.1b	and	4.1c.	The	length	of	the	crystal	is	
9	periods,	around	10	m.	The	geometry	of	the	structure	is	defined	by	
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the	angle	between	direct	 lattice	vectors,	,	which	 is	75º,	 i.e.	we	are	
considering	 propagation	 along	 the	 long	 diagonal	 of	 the	 rhombic	
structure,	 along	 the	ΓM	 direction,	as	 spatial	 effects	 are	 generally	
enhanced	 in	 such	 rhombic	 structure	 as	 compared	 to	 square	
geometry	 [Kum12,	Kum14].	 From	 the	 figures	 it	 can	be	 seen	 that,	
for	a	particular	frequency	(a/=0.85)	focalization	of	the	beam	after	
propagation	through	the	crystal	occurs	in	both	cases,	either	for	Au	or	
Pl	MPhCs,	but	being	the	effect	stronger	for	the	case	of	Au	cylinders.		

The	 spatial	 propagation	 effects	 may	 be	 interpreted	 using	
isofrequency	contours.	 In	Fig.	4.2,	we	try	 to	predict	 the	behavior	of	
light	 beam	using	 the	 band	 diagrams	 of	 two	 consecutive	 bands.	 Fig.	
4.2b	 corresponds	 to	 the	 isofrequency	 curvatures	 for	 the	 low‐lying	
band,	 i.e.	 a/λ=0.56‐0.83	 and	 Fig.	 4.2c	 for	 the	 higher	 band	 with	
frequency	range	a/λ=0.83‐1.1.		

	
Fig.	4.2	a)	Band	diagram	for	the	rhombic	structure	with	=75º.	The	irreducible	First	
Brillouin	Zone	(FBZ)	is	shown	in	the	offset,	with	the	high	symmetry	points	and	arrows	
indicating	directions	for	calculation	of	the	band.	b),c)	Isofrequency	contours	for	two	
consecutive	bands	 lying	below	and	above	 the	bandgap.	The	 colorbar	 indicates	 the	

frequency	in	a/	units.		

The	 curvature	 of	 the	 spatial	 dispersion,	 see	 4.2b,	 becomes	 flat	 for	
frequencies	 close	 to	 a/λ=0.68;	 accounting	 for	 non‐diffractive	
propagation.	 Increasing	 frequency,	 increasing	 the	 arrow	 indicating	
the	 direction	 of	 propagation,	 the	 dispersion	 curve	 becomes	 convex	
with	 respect	 to	 the	 direction	 of	 propagation	 for	 the	 range	 of	
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frequencies,	0.68	<	a/λ	<	0.74.	This	negative	diffraction	may	lead	to	
the	focusing	of	beams	after	propagation	trough	the	MPhC.		

From	the	isofrequency	contours	of	the	higher	band,	Fig.	4.2c,	we	can	
predict	 similar	 effects.	 	 At	 a/λ	 =0.83,	 there	 is	 a	 transition	 from	
convex	 to	 concave	 curvature.	 There,	 a	 non‐diffractive	 regime	 is	
expected.	This	effect	may	not	be	as	pronounced	as	the	one	expected	
for	the	lower	band,	owing	to	the	smaller	angular	frequency	coverage	
as	 observed	 from	 the	 figure.	 On	 the	 other	 hand,	 a	 significantly	
pronounced	 negative	 diffraction	 is	 expected	 for	 frequencies	 a/λ	 >	
0.84,	 due	 to:	 i)	 a	 larger	 coverage	 of	 angular	 spectrum,	 and	 ii)	 a	
stronger	curvature	of	the	spatial	dispersion.		

In	 order	 to	 optimize	 the	 computational	 time,	 we	 numerically	
propagate	 a	 Gaussian	 beam	 through	 the	 MPhC	 structure,	 and	 feed	
the	resultant	amplitude	and	phase	information	as	input	to	a	paraxial	
propagation	 model.	 The	 value	 of	 the	 filling	 fraction	 f R a 	 is	
optimized	 to	 obtain	 the	 maximum	 focalization	 after	 propagation	
through	the	MPhC.	Therefore,	assuming	for	all	calculations	an	input	
beam	 frequency	 fixed	 to	 be	a/	=	 0.85	we	 analyze	 the	 focalization	
performance	for	different	values	of	the	filling	fraction.			

The	 intensity	map	 of	 the	 horizontal	 cross	 section	 detector	 and	 the	
intensity	distribution	for	a	vertical	detector	at	the	focal	plane,	Figures	
4.3a	 and	 4.3b,	 indicate	 the	 best	 focusing	 occurring	 for	 f	 =	 0.2;	 as	
already	previously	observed	[Kum13,	Kum14].	

	
Fig.	4.3.	a)	 Intensity	distribution	 in	 z,	 for	propagation	along	 the	 ΓM	direction	and	
a/λ=0.85,	for	different	filling	fraction	f.	b)	Intensity	distribution	at	the	focal	point.	

	
4.2	 Non‐diffractive	 propagation	 in	 Metallic	
Photonic	Crystals	
Non‐diffractive	 propagation	within	 a	MPhC	 is	 associated	 to	 the	 in‐
phase	 propagation	 of	 all	 angular	 components	 of	 a	 beam.	 Then,	 the	
spatial	 shape	 of	 a	 beam	 is	 preserved	 as	 the	 angular	 components	
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propagate	with	the	same	phase	velocity,	as	schematically	illustrated	
in	 Fig.	 4.4a.	 In	 a	 MPhC,	 it	 is	 possible	 to	 propagate	 a	 beam	 almost	
without	 distortion	when	 its	 carrier	 frequency	 corresponds	 to	 non‐
diffractive	 regime,	 resulting	 in	 collimated	 propagation	 within	 the	
crystal.	

	 	
Fig.	4.4	a)	Geometrical	 interpretation	of	diffraction	of	a	Gaussian	beam	 in	air,	and	
self‐collimation	 inside	 the	 crystal.	 b)	Normal	 diffraction	 of	 a	 Gaussian	 inside	 	 the	
MPhC	 crystal	 of	 Fig.	 4.2	 with	 carrier	 frequency	 a/	 =	 0.64.	 c)	 Non‐diffractive	
propagation	 at	 a/	 =	 0.7.	 d)	 Propagation	 at	 a	 higher	 frequency	 a/=0.72.	 The	
intensity	 is	 normalized	 to	 unity	 at	 every	 x‐plane	 (vertical	 cross	 sections	 as	 the	
intensity	decreases	exponentially	due	to	losses)	for	the	sake	of	visualization.			

We	 now	 consider	 the	 arrangement	 of	 metallic	 rods	 in	 a	 rhombic	
geometry	 of	 Fig.	 4.2	 and	 propagation	 along	 M.	 While	 for	 low	
frequencies	 the	 beam	 undergoes	 normal	 diffraction	 within	 an,	 see	
Fig.	4.4b,	increasing	frequency	the	structure	supports	self‐collimated	
propagation,	 see	 Fig.	 4.4c.	 Finally,	 further	 increasing	 frequency,	we	
may	find	regimes	of	anomalous	diffraction,	see	Fig.		4.4d,	which	will	
be	later	discussed	in	detail.	

In	 fact,	 for	 the	 same	MPhC	 there	 may	 be	 different	 self‐collimation	
regimes,	 as	 shown	 in	 Fig.	 4.5a	 and	 4.6b.	 Fig.	 4.5a	 corresponds	 to	 a	
frequency	 of	a/λ	 =	 0.68	 and	 to	a/λ	 =	 0.79.	While	 both	 frequencies	
correspond	 to	 flat	 segments	 in	 the	 spatial	 the	 angular	 coverage	 of	
such	the	flat	segment	is	larger	in	the	first	case.	The	loss	experienced	
by	 the	 Gaussian	 beam	 upon	 propagation	 through	 the	 structure	 is	
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similar	 in	 both	 cases	 as	 indicates	 the	 cross‐section	 of	 the	 intensity	
profile	depicted	in	Figs	4.5c	and	4.5d,	respectively.	

	
Fig.	4.5.	Non‐diffractive	propagation	inside	an	infinite	MPhC	with	the	same	structural	
parameters	of	Fig.	4.2.	a)	Normalized	 intensity	profile	of	the	propagated	beam	 in	a	
length	of	70a	considering	an	initial	beam	of	width	2.5a,	at:	a)	a/λ	=	0.68;	b)	at	a/λ	=	
0.79.	 c)/d)	 Corresponding	 horizontal	 cross	 sections	 of	 the	 intensity	 profile	
corresponding	to	x	=	0.	

	

4.3	 Negative	 diffraction	 in	 Metallic	 Photonic	
Crystals	
As	 already	 shown,	 MPhCs	 may	 support	 anomalous	 or	 negative	
diffraction,	 for	 different	 ranges	 of	 frequencies.	 The	 first	 of	 these	
ranges	 lying	 just	 below	 the	 resonant	 frequency.	 A	 Gaussian	 beam	
propagating	 through	 an	 MPhC	 may	 accumulate	 a	 strong	 negative	
phase	which,	 at	 some	point	after	exiting	 the	MPhC,	 is	 compensated	
by	 free	 space	 propagation.	 All	 the	 angular	 components	 become	 in‐
phase	at	the	focal	point.		

The	 anomalous	 diffraction	 leads	 to	 the	 flat	 focusing	 effect	 as	
schematically	 represented	 in	 Fig.	 4.6a.	 This	 is	 supported	 by	 MPhC	
with	 rhombic	 or	 square	 geometries,	 as	 in	 Fig.	 4.6b.	 Note	 that	 the	
focal	distance	is	determined	by	the	curvature	of	spatial	dispersion.	A	
higher	the	curvature	of	the	dispersion	leads	to	a	larger	focal	distance,	
since	 the	 negative	 phase	 accumulated	 in	 propagation	 within	 the	
crystal	required	a	 larger	propagation	distance	behind	the	crystal	 to	
compensate	 it.	 Such	 curvature,	 and	 hence	 the	 corresponding	 focal	
length	are	strongly	dependent	upon	frequency.	
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Fig.	 4.6.a‐	 Geometrical	 interpretation	 of	 a	 Gaussian	 beam	 undergoing	 anomalous	
diffraction	 on	 passing	 through	 a	 periodically	 loss	 modulated	 structure	 b)	
Propagation	of	a	Gaussian	beam	of	carrier	frequency	a/λ	=	0.6	through	the	MPhC.	

Such	 frequency	 dependence	 on	 the	 focal	 distance	 is	 analyzed	 Fig.	
4.7a,	 for	 a	 square	 geometry	 (edge	 of	 the	 FBZ	 at	 a/λ	 =	 0.707).	 Flat	
focusing	 is	observed	as	 the	 frequency	 increases	below	the	resonant	
frequency,	 from	 a/λ	 =	 0.6	 to	 a/λ	 =	 0.7.	 The	 curvature	 of	 spatial	
dispersion	 increases	with	 frequency,	 as	 focal	 length	 increases.	 This	
can	be	shown	representing	the	peak	intensity	of	the	on‐axis	intensity	
profile,	see		Fig.	4.7b.	

	

Fig.	4.7	a)	Negative	diffraction	in	a	MPhC	with	square	geometry	for	different	carrier	
frequencies	a/λ	=	0.55,	0.6,	0.65	and	0.7	below	 the	 resonant	 frequency.	b)	On	axis	
intensity	profiles	for	a	range	of	frequencies	a/λ	=	0.6‐0.72.	

Also,	the	width	of	the	beam	at	the	focal	point	varies	with	the	number	
of	 periods,	 length	 of	 the	 MPhC	 crystal.	 The	 beam	 waist	 becomes	
narrower	as	the	number	of	periods	increases	from	5	(Fig.	4.8b)	to	9	
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(Fig.	4.8f);	in	this	case	the	analyzed	structure	is	of	rhombic	geometry	
with	propagation	along	long	diagonal.		

	
Fig.	4.8.	Left	column:	negative	diffraction	in	MPhC	with	different	number	of	periods:	
a)	5,	c)	7	and	e)	9,	respectively.	Right	column:	intensity	profile	of	a	Gaussian	beam	at	
focus	 (black	 solid	 curve)	 in	 comparison	 with	 the	 intensity	 profile	 of	 a	 beam	
propagating	in	free	space.	

A	detailed	study	was	carried	out	 for	different	structural	geometries	
[Kum14].	Figure	4.9	presents	the	horizontal	cross	section	(at	z=0)	of	
the	normalized	 intensity	of	 a	Gaussian	beam	propagating	along	 the	
long	and	short	diagonal	through	a	rhombic	(parameters	of	Fig.	4.2c)	
MPhC	 a	 comparison	 between	 propagation	 of	 a	 rhombic	 structure.	
two	 significant	 such	 structures.	 Different	 focusing	 regimes	 can	 be	
observed,	as	well	as	the	increase	of	focal	length	with	frequency.	

Fig.	4.9	Cross	sectional	normalized	intensity	at	z=0	plotted	against	the	frequency	a/λ	
for	propagation	through	a	rhombic	structure	along:	a)	the	long	diagonal	(FBZ	edge	
a/λ=0.85)	and	b)	the	short	diagonal	(FBZ	edge	a/λ=0.63).	The	dashed	curve	indicates	
the	focal	point.	
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4.4.	Spatial	filtering	in	MPhC	
In	 the	 previous	 sections	 were	 dedicated	 to	 propagations	 effects,	
focalization	and	self‐collimation,	directly	related	to	the	curvature	of	
the	 spatial	 dispersion	 curves.	 We	 now	 focus	 our	 on	 the	 spatial	
filtering	 performance	 in	 MPhCs.	 The	 anisotropic	 losses	 of	 such	
structures	allow	filtering	the	noisy	components	of	the	incident	beam	
while	propagation	through	a	MPhC.	

	

Fig.	4.10.	a)	FDTD	 simulation	 setup	used	 to	demonstrate	 the	spatial	 filtering	along	
the	short	diagonal	of	a	rhombic	MPhCs.	A	Gaussian	source	of	3	m	width	(blue	solid	
box),	 passes	 through	 a	 diffuser	 (yellow	 box),	 before	 crossing	 the	MPhC	 (thick	 red	
box).	A	detector	is	placed	at	the	focal	point	(green	thick	line).	b)	Input	random	beam	
(red),	spatial	filtered	beam	(black)	and	reference	beam	propagated	in	the	absence	of	
MPhC	(dashed	blue).	c)	FFT	profiles	of	the	input	beam	(red)	and	spatial	filtered	beam	
(black).	e)/	f)	Intensity	map	and	FFT	map	at	the	detector,	plotted	against	the	carrier	
beam	frequency	in	a/λ	units.	

The	spatial	filtering	shown	in	Fig.	4.10	is	analogous	to	the	previously	
demonstrated	effects	in	a	purely	loss	modulated	media	with	a	similar	
structural	geometry	[Kum12].		

A	diffuser	consisting	of	random	radii	cylinders	generated	the	random	
beam	from	a	Gaussian,	see	Fig.	4.10a.	The	structure	considered	is	a	
rhombic	geometry	with	propagation	along	short	diagonal	(aBZ=0.83).	
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Figures	4.10b	show	the	output	beam	as	compared	to	the	noisy	input	
beams,	 and	 the	 same	 bema	 propagated	 through	 free	 space.	 The	
filtering	 is	 also	 evident	 comparing	 the	 corresponding	 spectral	
profiles,	as	obtained	by	the	Fast	Fourier	Transform	(FFT),	see	4.10c,	
for	 a	 carrier	 frequency	 of	 a/λ=0.76.	 	 Finally,	 the	 FFT	map	 of	 Fig.	
4.10f	 clearly	 shows	 that	 the	 angular	 frequency	 narrows	 as	 the	
frequency	 increases	 after	 a/λ=0.8	 indicating	 stronger	 spatial	
filtering	effect.			
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5.1	Broad	Area	Semiconductor	Amplifiers	
	
One	of	the	possible	areas	where	we	expect	the	concept	of	(Gain	Loss	
Modulated	Material)	GLMM	 to	be	used	 to	 its	 full	 potential	 is	Broad	
emission	Area	Semiconductor	(BAS)	lasers	and	amplifiers,	which	are	
important	 devices	 for	 technological	 applications.	 Broad	 Area	
Semiconductor	Amplifiers	are	capable	of	emitting	at	high	power	with	
a	 relatively	 directional	 output	 beam	 (compared	 with	 LEDs).	 A	
semiconductor	 optical	 amplifier	 is	 a	 forward‐biased	 heavily‐doped	

p+‐n+	 junction	 fabricated	 from	 a	 direct‐bandgap	 semiconductor	
material.		The	main	advantage	of	such	lasers	is	their	high	conversion	
efficiency,	as	the	planar	configuration	enables	efficient	access	of	the	
pump	 to	 the	 whole	 volume	 of	 the	 active	 amplifying	 medium.	
Therefore,	 these	 lasers	 are	 widely	 used	 in	 pumping	 of	 solid	 state	
lasers,	 free	 space	 communication	 and	 other	 applications	 which	
requires	 high	 electrical‐to‐optical	 power	 conversion	 efficiency	 and	
possibility	 of	 choosing	 spectral	 characteristics	 for	 the	 intended	
application	[Kru99,	Cre14,	Naj15,	Fri15].	

	
Fig.	5.1	Schematic	of	a	BAS	amplifier	with	fast	(vertical)	and	slow	(horizontal)	axis.	

As	 shown	 in	 the	 schematic	 Fig.	 5.1,	 the	 active	 layer	 is	 sandwiched	
between	p‐type	and	n‐type	semiconductor	layers.	The	typical	size	of	
the	 active	 layer	 is	 1	μm × 100	μm.	 In	 the	 vertical	 (short)	 direction,	
the	height	(e.g.	1	μm)	is	small	enough	to	obtain	single‐mode	guidance	
and	 as	 a	 result	 essentially	 diffraction‐limited	 beam	quality	with	 an	
M2	 factor	 only	 slightly	 above	 1	 is	 obtained.	 Because	 of	 the	 small	
aperture	size,	the	beam	divergence	in	this	direction	is	relatively	high,	
with	a	beam	divergence	half‐angle	of	25°.	Due	to	that	fast	divergence,	
this	is	called	the	fast	axis	direction.		
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In	 the	 long	 direction	 (slow	axis	 direction),	 the	 stripe	width	may	 be	
e.g.	 50,	 100,	 200	μm,	 or	 even	 larger,	 so	 that	 the	 light	 is	 distributed	
over	 many	 spatial	 modes	 in	 this	 direction.	 As	 a	 result,	 the	 beam	
divergence	 is	much	 larger	 than	 for	 a	 diffraction‐limited	 beam	with	
that	 size,	 although	 still	 significantly	 smaller	 than	 for	 the	 fast	 axis	
direction.	 (Typical	 values	 are	 around	 5–10°	 FWHM.).	 Furthermore,	
the	beam	profile	may	be	multi‐peaked	in	the	horizontal	direction.	

The	 major	 disadvantages	 of	 BAS	 amplifiers	 and	 lasers	 are	 a	 high	
divergence,	 which	 is	 several	 times	 larger	 than	 the	 diffraction	 limit	
[Lan91]	and	an	irregular	and	multi‐lobbed	output	beam	[Bur99].	The	
high	 divergence	 in	 the	 vertical	 axis	 can	 be	 easily	 removed	 by	 a	
cylindrical	lens,	but	if	no	special	mechanisms	are	incorporated	in	the	
design,	such	as	different	schemes	of	optical	injection	[Gol88,	Rad11]	
or	 optical	 feedback	 [Raa02,	 Man03]	 among	 others,	 the	 emission	
exhibits	spatiotemporal	fluctuations	in	the	slow	axis	direction	with	a		
broad	 and	 noisy	 angular	 spectrum.	 The	 low	 spatial	 quality	 of	 the	
beam	 can	 be	 explained	 by	 the	 lack	 of	 an	 intrinsic	 mode	 selection	
mechanism	 in	 the	 large	 aspect‐ratio	 cavity	 of	 such	 devices	 [Bur99,	
Ada93].	 In	 addition,	 the	 Bespalov‐Talanov	 [Bes66]	 modulation	
instability	 in	 strongly	nonlinear	 regimes	 leads	 to	 filamentation	 and	
deteriorates	the	quality	of	the	emission.		

In	 this	 chapter,	 we	 study	 the	 influence	 of	 periodically	 micro‐
structuring	of	BAS	amplifiers	on	 the	spatial	quality	of	 the	amplified	
beam.	 We	 consider	 a	 two‐dimensional	 modulation	 of	 the	 gain	
function,	which	can	be	achieved	using	a	periodical	grid	of	electrodes	
for	the	electrically	pumped	semiconductors,	as	illustrated	in	Fig.	5.2a	
[Kum11].	The	periodic	modulation	of	 the	spatial	pump	profile,	on	a	
spatial	 scale	 of	 several	 wavelengths,	 can	 indeed	 substantially	
improve	the	quality	of	the	amplified	beam.	

Previous	 studies	 show	 that	 a	 periodic	 gain/loss	 modulation	 on	 a	
wavelength	 scale	 can	 lead	 to	 particular	 beam	 propagation	 effects,	
such	 as	 self‐collimation,	 spatial	 (angular)	 filtering,	 or	 beam	
focalization	 [Sta09,	 Bot10].	 In	 semiconductor	 media,	 due	 to	 the	
linewidth	enhancement	(Henry)	 factor,	,	a	periodical	spatial	pump	
distribution	causes	a	combined	Gain	and	refraction	Index	Modulation	
(GIM).	We	note	 that	 a	 very	 specific	 and	different	GIM	case	 is	being	
intensively	 studied	 in	 systems	 with	 broken	 PT‐symmetry	 [Mak08,	
Lon09].	 Here	 we	 show	 that	 the	 angular	 spectrum	 of	 the	 radiation	
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through	 a	 GIM	 amplifier	 becomes	 narrower	 while	 being	 amplified.	
For	 sufficiently	 long	 propagation	 distances	 (of	 the	 order	 of	
millimeters)	 we	 show	 that	 the	 normalized	 beam	 quality	 factor,	M2	
[ISO05],	can	reduce	down	to	unity	indicating	that	the	BAS	amplifier	
output	becomes	perfectly	Gaussian	 for	even	strongly	random	initial	
input	beam	profiles.	

Up	to	now	we	considered	gain/index	modulation	profile	created	by	a	
grid	 of	 electrodes	 for	 the	 electrically	 pumped	 semiconductors	 (Fig.	
5.2a).	 However,	 the	 gain/index	 profile	 can	 be	 alternatively	 created	
using	 other	 techniques	 as	 shown	 in	 Fig.	 5.2:	 by	 nonhomogeneous	
doping	 of	 the	 active	 layer,	modulating	 the	 gain	 layer	 by	 ion	 beam,	
structuring	 the	 material	 drilling	 holes	 on	 the	 whole	 device,	
modulating	the	input	power	by	multiple	beam	interference	allowing	
a	temporal	control	in	the	structure,	or	modulating	the	surface	of	the	
semiconductor	 to	 generate	 an	 effective	 refractive	 index	 grating,	
among	others	[Kum11].	

	
Fig.	5.2	Different	schemes	to	induce	a	periodic	gain/index	modulation	in	Broad	area	
semiconductors	 ,	 a)	 structured	metallic	 contact,	 	 b)	 Ion	 beam	 structuring	 of	 the	
active	 layer,	c)	drilling	holes,	d)	 structured	optical	pumping	and	e)	 structuring	 the	
surface	of	the	semiconductor.		

	

5.2Noise	reduction	in	BAS	Amplifiers		
Many	 approximations	 have	 been	 considered	 to	 model	 the	 Broad	
Band	 Semiconductor	 amplifiers	 and	 Edge‐emitting	 lasers.	 For	 this	
study	we	start	with	the	travelling‐wave	model	used	in	[Agr89,	Ult03].		
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Different	models	have	been	derived	for	this	type	of	devices.	A	simple	
mathematical	model	 commonly	used	 for	BAS	heterostructures	with	
or	without	current	injection	can	be	expressed	considering	the	slowly	
temporal	 varying	 amplitude	 of	 field	 and	 carrier	 density	 [Bram98,	
Kum11].	 A	 further	 approximation	 considers	 a	 simple	 static	 model	
consisting	 of	 two	 coupled	 equations	 commonly	 used	 for	modelling	
BAS	heterostructures	with	and	without	current	injection.	The	model	
considers	the	interaction	of	the	slowly	varying	amplitude	of	the	field	
and	the	carrier	density.	The	electric	field	is	modeled	by	its	amplitude	
A	 in	a	paraxial	approximation	which	also	 includes	 linear	 losses	and	
nonlinearities	 appearing	 due	 to	 the	 gain	 and	 refractive	 index	
dependence	 on	 the	 carrier	 density.	 An	 exact	 treatment	 of	 current	
spreading	 in	 the	 semiconductor	 active	 layer	would	 require	 solving	
the	 corresponding	 2D	 Poisson	 equation,	 although	 a	 simplified	
approximation	is	possible	[Joy82].	The	model	consists	of	two	coupled	
equations	 for	 the	 TE	 polarised	 electric	 field	 (A)	 (Eq.5.1)	 and	 the	
carrier	density	(N)	(Eq	5.2):	

   AANiNi
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	 																									Eq.(5.1)	

D
2N
x2
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The	 rate	 equation	 of	 the	 carrier	 density	 includes	 radiative	 and	
various	nonradiative	recombination	processes	that	have	more	or	less	
importance	 depending	 on	 the	 semiconductor	 material.	 The	
parameter	B	 corresponds	 to	 the	Spontaneous	 recombination,	and	C	
takes	into	account	the	Auger	recombination.	The	carrier	diffusion,	D,	
is	 only	 taken	 into	 account	 along	 the	 transverse	 direction	 x	 while	
diffusion	 along	 the	 propagation	 direction	 is	 neglected	 because	 the	
typical	 length	 of	 carrier	 modulations	 is	 much	 larger	 than	 the	
diffusion	length.		

In	 order	 to	 study	 the	 spatial	 evolution	 of	 beam	 profiles	 along	 the	
semiconductor	layer,	we	further	simplify	the	model.	First,	we	neglect	
the	nonradiative	recombination	terms	because	they	are	small	in	the	
considered	 case	 and	 have	 no	 influence	 in	 the	 qualitative	 study	 of	
beam	propagation	and	the	emerging	spatial	effects.		

The	 pumping	 profile	 directly	 depends	 on	 the	 electrodes	 structure.	
However,	the	carrier	diffusion	considered	in	Eq	5.2,	always	smooths	
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the	 profile.	 Therefore,	 even	 in	 the	 case	 of	 electrodes	 introducing	 a	
stepwise	 profile,	 the	 final	 effective	 pump	 of	 the	 active	 medium	
approaches	a	sinusoidal	modulation.	Neglecting	B	and	C	coefficients	

and	considering	smooth	enough	carrier	distributions	( 
2

2

x

N




)	and	

neglecting	 a	 small	 enough	 diffusion	 (D<<),	 we	 can	 obtain	 a	 first	

approximation	of	the	carrier	distribution:	 2
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For	small	enough	diffusion	coefficients	we	can	derive	an	expression	
for	N	 in	 terms	 of	 the	modulation	 function	p(x,z),	 thereby	 obtaining	
the	 expression	 for	 the	 electric	 field	 in	 terms	 of	 the	 modulation	
function.		
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where		 is	 the	 linewidth	enhancement	 factor	of	 the	 semiconductor	
and	 	 is	 the	 linear	 losses	 which	 includes	 scattering	 losses	 and	
cladding	layer	absorption.		

	
Fig.	5.3	Scheme	of	a	BAS	amplifier	depicting	spatial	 filtering	of	a	noisy	 input	beam.	
The	periodic	modulation	of	gain	profile	is	obtained	by	placing	periodically	arranged	

metallic	 contact	 on	 the	 surface	 substrate	material.	 Lattice	 constants	 d 	 and	 ||d 	

along		x‐z	direction	are	shown.		

The	spatial	gain	modulation	in	this	BAS	amplifiers	and	lasers	scheme	
is	 obtained	 by	 the	 spatially	 distributed	 pumping	 rate	 p(x,z),	
simultaneously	inducing	in‐phase	gain	and	index	modulations	due	to	
the	 	 factor.	 The	 effective	 distributed	 pump	 can	 be	 expressed	 in	
terms	of	geometry	as:	

	 	 )cos()cos(4),( ||0 zqxqmpzxp  			 Eq.(5.4)	

where	 the	 normalised	 longitudinal	 and	 transverse	 components	 of	
lattice	 vectors	 (q   /dand	 q||   /d||)	 are	 obtained	 from	 lattice	
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constants	 d 	 and	 ||d 	 (Fig.	 5.3).	 The	 adimensional	 geometry	 factor	

can	be	thus	defined	as:	Q2q|| q
2 2d

2 d|| .		
The	noise	reduction	is	proved	by	introducing	a	noisy	beam	profile	as	
input.	The	profile	is	created	by	adding	multiplicative	white	noise	to	a	
Gaussian	beam	in	the	Fourier	space	:	

	 	 	 ))(1(
2
0

2

)0,( xeA w

x

zx 


 		 	 Eq.(	5.5)	

where	W0	is	the	beam	width	and	(x)	is	the	multiplicative	white	noise	
with	 random	 phase	 in	 the	 frequency	 space	 )(k 	 and	 constant	

amplitude	anoise	,
)()( ki

noiseeak   .	

The	 beam	 quality	 is	 usually	 defined	 by	 the	M2	 factor	 that	 denotes	
how	 small	 a	 beam	 can	 be	 focused.	 It	 reaches	 a	 minimum	 value	 of	
unity	for	the	Gaussian	beam.	The	typical	M2	values	for	beams	emitted	
by	BAS	 amplifiers	 are	 always	 above	10.	This	 factor	 is	 calculated	 as	
follows:	
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where	W0	is	beam	waist	W	at	focus	and	0	is	the	divergence			also	at	
focus	 and	 they	 can	 be	 calculated	 integrating	 the	 beam	 intensity	 in	
real	and	frequency	space	respectively.	
	The	 filtering	 effect	 can	 be	 first	 studied	 for	 a	 linear	 regime,	 i.e.	 for	
small	 field	 amplitudes.	 In	 this	 case,	 the	 field	 propagation	 along	 the	
crystal	is	simply:		
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allowing	a	simple	 linear	stability	analysis	 to	determine	 the	 filtering	
dependence	on	parameters.	
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On	 what	 follows:	 Section	 5.2.1	 describes	 the	 beam	 quality	
improvement	 for	 BAS	 amplifiers	 without	 linewidth	 enhancement	
factor	while	Section	5.2.2	describes	the	same	considering	the	typical	
linewidth	enhancement	factor	of	these	semiconductor	materials.	

	
5.2.1	BAS	with	linewidth	enhancement	factor	0	
The	linewidth	enhancement	factor		(Henry	factor)	is	defined	as	the	
ratio	 of	 imaginary	 and	 real	 part	 of	 the	 induced	 complex	 refractive	
index	(mi/mr).	For	a	material	with	0,	the	gain	is	introduced	by	the	
electric	pump	while	the	refractive	index	remains	unchanged	or	with	
very	 small	 variations	 that	 can	 be	 neglected.	 In	 the	 case	 of	 a	
structured	pump,	these	materials	would	only	exhibit	spatial	gain‐loss	
modulations	 and	 the	 effective	 complex	 refractive	 index	 of	 the	
material	 would	 only	 show	 real	 part	m=mr.	 Thus,	 BAS	 amplifiers	
with	 0	 present	 similar	 results	 to	 the	 ones	 shown	 by	 LMM	
materials	described	in	Chapter	3,	and	in	particular,	it	is	expected	that	
such	materials	 show	 flat	 lensing	and	spatial	 filtering	effects	around	
the	resonance	point	(here	Q=1).		

The	linearity	of	the	system	for	small	enough	field	amplitudes	allows	
a	 semi‐analytically	 treatment	 to	 obtain	 the	 spatial	 dispersion	
relations.	Parameters	are	tuned	near	the	resonance	to	reproduce	the	
filtering	 effect,	 already	 described	 in	 Chapter	 3	 complemented	 by	 a	
focusing	 effect	 associated	 to	 the	 particular	 diffraction	 of	 the	 most	
amplified	mode	inside	the	crystal.	

To	 visualize	 the	 filtering	 performance	 of	 the	 structure	 a	 noisy	
Gaussian	 beam	 is	 propagated	 through	 the	modulated	medium.	 The	
beam	experiences	the	typical	diffusive	square	root	broadening	with	
distance.	 The	 filtered	 beam	 at	 the	 output	 is	 focalized	 beyond	 the	
crystal	due	 to	 the	negative	phase	shift	accumulated	 in	propagation,	
see	Fig.	5.4a.	Intensity	profiles	measured	at	the	focal	plane	shows	the	
spatially	filtered	output	beam,	as	shown	in	Fig.	5.4b.			
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Fig.	5.4	a)	Spatial	filtering	effect	demonstrated	in	gain	modulated	BAS	with	complex	
refractive	 index	m=0.1	and	Q||=0.85.	 	b)	 Input	random	beam	 (blue),	output	beam	
exiting	the	crystal	(red)	and	beam	profile	at	the	focal	plane	(black).		

	
The	geometry	 factor	 is	 scanned	around	 the	 resonance	point	Q=1	 to	
see	the	effects	on	diffraction	and	spatial	filtering	(Fig.	5.5).		
Analogously	 to	 the	 results	 observed	 for	 LMM	 [Kum13,	 Kum14],	
Section	 3.2,	 a	 region	 of	 negative	 diffraction	 inside	 the	 crystal	 for	
Q<1	 is	 obtained	 and	 flat	 lensing	 is	 achieved.	 The	 corresponding	
positive	 focal	distance	can	be	 seen	 in	Fig.	5.5a.	At	 the	other	 side	of	
resonance,	Q>1,	the	beam	has	a	normal	diffraction	inside	the	crystal	
and	 the	 focal	 length	 becomes	 negative.	 The	 sign	 changes	 in	 the	
curvature	of	the	crystal	dispersion	has	been	already	explained	using	
mode	 coupling	 arguments	 in	 Section	 3.2.1.	 It	 can	 also	 be	 seen	 that	
near	resonance	(Q=1),	where	the	strongest	anisotropy	of	the	gain	is	
leading	the	beam	propagation	and	the	spatial	filtering	effect	becomes	
maximal,	 M2	 values	 approach	 unity	 and	 the	 beam	 amplification	
reaches	 the	highest	 values	 (Fig.	 5.5b).	 Larger	 crystal	 lengths	 create	
wider	filtering	windows	always	centred	at	resonance.	Figure	5.5	also	
demonstrates	 the	 small	 dependence	 of	 the	 filtering	 effect	 on	 the	
noise	 amplitude.	 This	 is	 well	 understood	 considering	 that	 the	
filtering	effect	is	based	on	the	anisotropic	gain.	It	is	also	remarkable	
the	small	number	of	necessary	periods	to	obtain	the	filtering.		
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Fig.	5.5	Variation	of	a)	focal	length	b)	M2	and	c)	intensity	at	the	focal	point	(in	terms	
of	 the	 input	 intensity	 I0)	 as	 a	 function	 of	 the	 geometry	 factor	 Q	 for	 a	 BAS	 with	
linewidth	 enhancement	 factor	 0.	 Solid	 (dashed)	 lines	 correspond	 to	 noise	
amplitudes	of	a0=0	(a0=1).	Black,	red	and	blue	colours	correspond	to	crystal	lengths	
of	2d||,	4d||,	8d||	respectively.		

	

5.2.2	 BAS	 amplifiers	 with	 linewidth	 enhancement	
factor	0	
Generally	BAS	amplifiers	will	have	a	nonzero	linewidth	enhancement	
with	 values	 of	 3<<8	 simultaneously	 appearing	 gain	 and	 index	
modulation	 in	 the	 semiconductor	 structure.	 It	 provides	 anisotropic	
gain	profiles	giving	 to	 the	semiconductor	 the	ability	 to	spatial	 filter	
the	 beam	 propagating	 through.	 Moreover,	 the	 diffraction	
management	is	also	feasible,	obtaining	negative	diffraction	and	non‐
diffractive	 propagation	 of	 the	 beam	 along	 the	 crystal.	 This	 kind	 of	
complex	refractive	index	modulations	and	the	associated	effects	are	
observed	 in	metallic	 photonic	 crystals	 and	 have	 been	 explained	 in	
Chapter	 4.	 There,	 a	 deeper	 study	has	 been	 carried	 out	 using	 FDTD	
simulations	in	metallic	PhCs	to	prove	these	effects	[Kum13].		

Here,	 we	 consider	 a	 typical	 =3	 scenario	 to	 compute	 the	 beam	
propagation	 properties	 in	 BAS	 amplifier.	 The	 complex	 refractive	
index	then	becomes	0.03+0.09i.	Propagation	along	a	BAS	amplifier	is	
shown	in	Fig.	5.6.	The	main	difference	with	the	=0	case	is	the	non‐
degenerated	 diffraction	 for	 the	 amplified	 and	 depleted	 mode	 (Fig.	
5.6c).		

	

Fig.	5.6	Beam	propagation	in	a	BAS.	The	inset	b)	shows	the	most	amplified	mode.	c)	
Real	and	 imaginary	part	of	dispersion.	The	dashed	 lines	 in	 the	 real	part	 show	 the	
dispersion	in	homogenous	media.		
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In	this	case,	the	output	beam	diverges	and	the	focalisation	behind	the	
crystal	is	not	seen,	so	in	order	to	measure	the	M2	value,	we	propagate	
the	beam	in	backward	direction	and	find	the	virtual	focal	point.		

The	focal	length	depends	on	the	structural	geometry	as	shown	in	Fig.	
5.7a,	 for	 a	 Gaussian	 beam	 with	 a0=1.	 	 The	 red	 and	 black	 curve	
represents	 propagation	 in	 a	 longer	 crystal	 with	 16	 periods	 and	
shorter	crystal	with	4	periods	respectively.	It	was	seen	that,	the	focal	
length	 of	 the	 beam	 exiting	 the	 crystal	 is	 always	 negative,	 implying	
that	 the	beam	 is	diverging	 in	most	of	 cases.	Scanning	 the	geometry	
factor	Q	a	regime	of	spatial	filtering	is	observed	just	after	resonance,	
Q>1	 (Fig.	 5.8b).	 	 It	 can	 be	 seen	 that	 the	 beam	 quality	 factor	 M2	

approaches	 1	 with	 a	 minimum	 value	 of	 1.006	 for	 a	 longer	 crystal	
while	for	the	shorter	crystal	the	minimum	value	is	1.15.	

	
Fig.	 5.7	 a)	 Dependence	 of	 the	 focal	 distance	 (a)	 and	 beam	 quality	 factor	 (b)	 on	
geometry	factor	Q	for	a	short	(L=4d||)	(in	red)	and	a	long	(L=	16d||)	(in	black).		

In	 the	 longer	crystal	 case	 the	M2	values	approaching	unity	even	 for	
larger	noise	amplitudes	introduced	in	the	input	beam	seems	to	point	
out	that	for	long	enough	crystal	lengths,	the	output	profile	is	strongly	
related	to	the	anisotropic	gain	and	has	almost	no	dependence	on	the	
input	beam.	The	different	transverse	modes	with	small	wavenumber	
are	 exponentially	 amplified	 along	 propagation	 with	 different	
strength	while	transverse	modes	associated	to	noise	and	with	 large	
wavenumbers	are	not	amplified.	

We	finally	note	that	this	the	presented	study	is	a	preliminary	study	
limited	to	small	field	amplitudes	and	the	considered	BAS	model	has	
been	reduced	to	only	one	field	equation.		
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ABSTRACT 

Broad area semiconductors lasers and amplifiers are of technological relevance because of their high conversion 
efficiency and high output power, in a wide range of wavelengths. However, due to their specific waveguiding planar 
geometry, which is unique to this kind of heterostructures, the beam is usually of low spatial and temporal quality. 
Therefore, the beam quality restricts their potential use. We propose to improve the beam quality semiconductors lasers 
and amplifiers using a two-dimensional spatial modulation of both the refractive index and the optical gain/loss, on the 
order of the wavelength. The modulation of the refractive index modifies the spatial dispersion, allowing the possibility 
to manage diffraction. Besides, the gain/loss modulation introduces anisotropic gain and the possibility to manage 
diffusion. As a result, the modified dispersion gives rise to interesting and technologically useful effects, such as spatial 
filtering or focalization behind the material. We show that such effects can be achieved considering a modulated 
injection current which imposes a periodic spatial modulation to the active layer of the semiconductor.  

Keywords:  broad emission area semiconductor laser, photonic crystals, gain-loss modulation; 

1. INTRODUCTION 

Propagation of light in structured materials has been very extensively studied in the last decade1-3. In the well known 
case of Photonic Crystals (PhC), where the refractive index is modulated on a wavelength scale, the modification of the 
spatial dispersion curves allows the management of effective diffraction. Effects such as self-collimation and negative 
diffraction are based upon this phenomenon4-9. Self-collimation effects were also predicted and observed in acoustics 10, 

11. Similar materials, where the gain/loss is modulated on the wavelength scale, known as Gain/Loss Modulated 
Materials (GLMMs), have just been recently studied showing other important spatial beam propagation effects 12, 13. 
While an angular dependence on phase and group velocity appears both in PhCs as well as in GLMMs, in the later case 
also an angular dependence of the wave amplification/attenuation arises. Such gain/loss anisotropy can be used for 
applications such as beam spatial filtering. The directional gain is attributed to the appearance of sharp peaks in the 
imaginary part of the eigenfrequencies, which corresponds to an anisotropic gain in k-space (in angular domain), arising 
from gain/loss modulation on a small spatial scale. We note that spatial filtering has also been proposed for PhCs14; 
however the first experimental evidences showed a relatively weak effect15.   

First studies involving two dimensional (2D) GLMM were performed using a paraxial model, in which different beam 
shaping effects such as self collimation, superdiffusion, focalization behind the crystal and high directivity of gain were 
shown12. A subsequent study, based on a plane wave expansion method, predicted the distortion of the spatial dispersion 

in both the real and the imaginary eigenfrequency components13. In a more recent study, the angular transmission 
response of a material with modulated loss was calculated and numerically proven using finite a difference time domain 
method16.   



One of the possible areas where we expect the concept of GLMM to be used to its full potential is Broad emission Area 
Semiconductor (BAS) lasers and amplifiers, which are important devices for technological applications. As amplifiers or 
lasers, they are utile in many applications due to their high power output, as e.g. to pump solid state lasers. BAS lasers 
are efficient light sources since their geometry allows an efficient access to pump to the entire material. On the other 
hand, the emitted radiation is usually strongly divergent due to the fact that many spatial modes are excited and  involved 
in the emitted beam. Additionally, in broad-area gain regions light can spread because of the lack of any lateral 
confinement. This allows local self-focusing effects due to local increments of refractive index or local amplifications of 
field intensity. Light dynamics in such lasers has been widely studied due to its interesting characteristics17-19.  

In fact, not only spatial patterns related to the simultaneous emission of many transverse modes, but also a complicated 
spatio-temporal dynamics is observed, which involves the presence of several longitudinal mode families. All these 
effects cause beam instabilities and filamentation which can easily take place in these devices, drastically decreasing the 
emitted output beam quality20, 21. Thus, applications of such devices are mainly restricted to situations that do not require 
high beam quality. 

In this work we consider a monochromatic beam passing through a BAS amplifier with a spatial modulation in both 
transversal and longitudinal directions. Different schemes can be considered to impose the spatial modulation. Here the 
modulation is imprinted by a spatially modulated pump through a modulated current injection using grid-like electrodes. 
In semiconductor materials, the effective gain depends on the injection current across the amplifying layer. Additionally, 
the current induces a refractive index variation, and both, the gain and index variations are related by the so called 
linewidth enhancement factor (α).  

2.  MODEL AND SETUP 

Different mathematical models have been developed for BAS lasers and amplifiers. Here we consider a simple static 
model consisting of two coupled equations which is commonly used for BAS heterostructures with or without current 
injection. The model considers the interaction of the slowly varying amplitude of field E and carrier density N 22,23. The 
electric field is modeled by its amplitude A in a paraxial approximation which also includes linear losses, η, and 
nonlinearities appearing due to the gain and refractive index dependence on the carrier density, which is considered to be 
linear in the model. The rate equation of the carrier density includes diffusion D, and spontaneous, B, and Auger, C, 
recombination coefficients. The model can be written in terms of normalized variables (keeping the usual notation 24):  
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where p(x,z) is the normalized pumping rate which is considered to be of a sinusoidal form 
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In the following, the recombination terms are neglected in the carrier rate equation (B=C=0). The carrier diffusion 
smooths the spatial variations of the carrier density. It results in a decrease in amplitude of a sinusoidal modulation and it 
is not considered here for simplicity (D=0). With this approximations and considering small electric field amplitudes, the 
normalized carrier density is given by the pumping rate N(x,y) = p(x,z) and the model is thereby reduced to the field 
equation: 
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The constant part (1+η)A, irrelevant for the spatial effects since it only introduces an exponential gain or loss, will not be 
considered in the following simulations. 

The studied setup consists on a semiconductor structure of 0.28mm
 
width and 2.5 mm length. The modulation period in 

the propagation direction  z varies around 200 µm and is fixed to  8.9 µm
 
in the transverse direction x. The amplitude of 

the gain modulation is 3980 m-1

 
obtained by a nonhomogeneous injection current and the enhancement factor of the 

semiconductor has a typical value of 3=α
 
that corresponds to a refractive index amplitude of 9.5 10-4. The structure is 

calculated for a wavelength λ=0.5mm and the input beams are considered to propagate along the long diagonal of the 
structure (in the z direction). 

 

 

 

 

 

Figure.1. BAS amplifier with grid-like electrodes. The non-homogeneous injection current generates a spatial modulation 
of gain and refractive index in the active layer of the semiconductor. A noisy beam injected at the entrance, is spatially 
filtered at the output. 

2.1 Linear analysis 

The problem can be analytically treated performing a harmonic expansion of the field, and just considering the three 
most relevant harmonics with periodicities of the gain/loss modulation.  
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Introducing eq. (5) is in eq. (4), we obtain the evolution of the three harmonics:  
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The constant complex gain g = p0 (1-h) -1 -α is irrelevant for the study of spatial propagation effects, and can be 
eliminated from eq.(5) by considering an exponentially growing/decaying field. Next, we perform a standard analysis 
looking for the exponentially growing eigenmodes: ( )zikaaa zexp,, 110 ∝−

, where the exponential growth is incorporated 
into the imaginary part of kz. This is essentially a linear stability analysis analogous to that performed for the pure GLM 
case13 and for the case of photonic crystals8. The analytic expressions for the propagation exponents are cumbersome; 
therefore the calculations are performed numerically.  

Eigenmodes with positive imaginary part of kz are amplified along propagation while negative ones are decaying. Thus, 
the beam shape behind the crystal is directly related with the branch of eigenmodes with the largest imaginary kz 
component. Fig.2 shows the eigenvalues for the parameters used. The angular dependence of the amplification (the 
imaginary part of kz) can act as a spatial low-pass filter and can eliminate the undesirable noise from the beam.  

 



 

Figure.2: a),b) Real and c),d) imaginary parts of eigenvalues for Q||=0.85 (a,c) and Q||=1.15 b),d). The negative and 
positive curvature of the curves in a),b) correspond to positive and negative diffraction regimes, and the flattening denotes 
self-collimation. c),d) show the angular profile of the eigenmodes which correspond to the field amplification.  

The eigenvalues describe the beam evolution along the crystal in a qualitative way. The real part of eigenvalues is related 
to the phase curvature accumulated during propagation, while the imaginary part corresponds to the amplification of the 
field. There are main differences to be notes between eigenvalues for the two Q|| values considered in Fig. 2. On one 
hand, it can be seen from the imaginary part (fig.2 c,d) that two eigenmodes are amplified in Q||=1.15 case, while only 
one mode is amplified for Q||=0.85; and this mode presents a wider lobe than the most amplified mode of Q||=1.15. 
Secondly, analyzing the real part (fig.2a,b), the most amplified mode of both cases presents a positive second derivative 
for small |kx| values that corresponds to a negative diffraction of light in propagation. The main difference for this real 
part is the stronger curvature observed for the Q||=1.15 case. The second amplified mode that appears for Q||=1.15 
presents a negative second derivative for small |kx| values that corresponds to a large positive diffraction.   

3. FILTERING 

Numerical calculations were performed in a simplified model, without linear absorption and carrier diffusion. The input 
beam is considered to be a monochromatic Gaussian beam with λ = 0.5µm and 14µm width, focalized at the entrance of 
the active media and propagating along the long diagonal (z direction). The input beam noisy profile is built by addition 
of multiplicative white noise, ξ . 
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A pseudospectral split-step method is used. The transverse space is discretized on a grid of 512 points. Fig.3 shows the 
integration of the beam along z direction inside the modulated semiconductor material and along the distance of 12.5 mm 
behind it, in free space. The beam broadening inside the material presents a square root dependence on the propagated 
distance that is characteristic of diffusive broadening (Fig.2 a,c). The spatial modulation observed inside the material 
indicates that the propagated beam is in fact the envelope of the amplified eigenmode.  

The negative diffraction obtained with these semiconductor parameters for small kx values (Fig.2.a), results in the beam 
focalization at some distance behind the material. The two sidebands correspond to large kx values that diverge rapidly 
behind the crystal. The energy distribution among the central mode and sidebands at the crystal output is very similar to 
GLMM materials: the energy in the central beam is approximately 50% of the total energy.  

The narrower gain lobe for Q||=1.15 corresponds to stronger diffusion of light inside the crystal (fig.2d). Negative 
diffraction of amplified modes inside the crystal accumulates a negative curvature in the wave-front that focalizes the 
output beam for both cases. The larger curvature in the dispersion curve observed for the Q||=1.15 amplified mode 
corresponds to a larger focalization distance (fig.3).The Q||=1.15 case presents a positive and a negative curvature for the 



two amplified eigenmodes, respectively. However, the output beam is mainly composed by the most amplified 
eigenmodes, with negative diffraction inside the crystal. For Q||=1.15 nearly the 64% of energy goes to the central beam 
while for Q||=0.85 this value is reduced to the 40%. 

 

Figure.3. Propagation of an incident Gaussian beam through the semiconductor 2D active layer for a) Q||=0.85, b) 
Q||=1.15. c) Noisy incident beam d) beam at the focal where the width reaches a minimum value for Q||=0.85 (thin line) b) 
Q||=1.15 (thick line).  

In order to quantify the evolution of beam quality, we calculate the normalized beam width W , given by the beam width 
W and the beam divergence θ   

    
∫

∫
∫

∫ ><−><−
===

dkkI

dkkkkI

dxxI

dxxxxIWWW
)(

)()(2

)(

)()(2 22

2
,

2
,2 θθ

λ          (8)  

At the focus of the beam, the normalized beam width is called 2M . The value of this factor is unity for a Gaussian beam 
at focus (flat wave front) and increases with the spatial modulation of the beam envelope. 

The value of W  for a noisy input beam is about 10, denoting a profile with large spatial noise (the spectrum is broadened 
≈ 10 times due to the noise). W  increases along the crystal in an oscillating way and, just behind the crystal, acquires 
large artificial values due to the diverging sidebands that are absorbed at the boundaries (Fig.3a). The central beam 
focalizes due to the negative curvature acquired inside the crystal, because of its negative diffraction. The W  value of 
the amplified and filtered beam reduces to values about 1.0 at the focal point. The lowest value found in the simulation is 
1.000777.   



 

Figure.4 Evolution of W along the propagated direction for Q||=0.85 and Q||=1.15. The inset shows a zoom in plot near 
the focal point where W  reaches the minimum value. In both cases 2M value approaches 1.

 
 

4. CONCLUSIONS 

We considered a simplified model to numerically simulate a BAS amplifier with a spatially modulated injection current. 
Such injection current introduces both a gain and a refractive index modulation in the material which amplitudes are 
linked by the so called α-factor of the semiconductor. In this way, the active 2D slice can be considered as a 2D gain/loss 
modulated material also exhibiting an index modulation on the wavelength scale. Our model considers an incident beam 
that propagating in-palne inside the active semiconductor slab, and along the largest diagonal of the rhombic structure. 
Integration is performed using paraxial approximation.  

Numerical results evidence filtering effects in a Gaussian beam with multiplicative white noise. The quantification of the 
beam improvement is estimated by means of the M2 coefficient which gives the relative distance between the evaluated 
profile and a perfect Gaussian beam. The M2 value of the amplified beam approaches 1, meaning that all noise is filtered 
out. 
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In	 this	 last	 chapter	 I	 summarize	 the	main	 results	 or	 achievements	
obtained	during	my	PhD.	Besides,	 I	will	also	briefly	report	on	some	
other	 works	 that	 appeared	 later	 or	 sometimes	 almost	 overlapping	
my	results,	some	of	which	represent	direct	extensions	of	results	here	
presented,	other	may	be	even	regarded	as	a	continuation	in	the	field,	
for	which	the	results	of	this	PhD	could	have	been	inspiring.	

My	first	study	[Kum12,	Bot11],	presented	in	Chapter	3,	provides	our	
initial	results	on	beam	propagation	in	Loss‐Modulated	Media	(LMM),	
as	 a	 particular	 case	 representative	 of	 Gain	 Loss	 Modulated	 Media	
(GLMM),	where,	ideally,	only	losses	are	considered	to	be	modulated	
on	the	wavelength	scale.	In	this	way,	we	provide	the	first	numerical	
confirmation	 on	 previous	 analytical	 predictions	 for	 GLMMs.	 We	
numerically	prove,	by	means	of	the	FDTD	method,	the	highly	angular	
gain/loss	 response	 of	 LMM	 structures.	 The	 result	 represents	 a	
confirmation	 of	 the	 predictions	 performed	 under	 paraxial	
approximation	of	ref.	[Sta09].	Close	to	the	edges	of	the	First	Brillouin	
Zone	 (FBZ)	 of	 a	 LMM,	 a	 narrowing	 of	 the	 spatial	 spectrum	 is	
observed.	 This	 effect	 can	 be	 related	 to	 the	 coupling	 and	 locking	 of	
spatial	 harmonic	 components	 propagating	 along	 M	 direction.	
Besides,	it	is	demonstrated	that	such	strong	anisotropy	of	losses	can	
be	used	for	spatial	filtering	purposes.	We	precisely	show	the	effect	by	
filtering	out	the	high	angular	components	from	the	transverse	profile	
of	 a	 noisy	 beam	 in	 relatively	 short	 propagation	 through	 the	 LMM.	
Although	 angular	 narrowing	 of	 the	 gain	 profile	 is	 found	 for	 both	
square	 and	 rhombic	 geometries,	 the	 spatial	 filtering	 results	 to	 be	
slightly	 more	 pronounced	 for	 a	 rhombic	 geometry	 and	 for	 light	
beams	 propagating	 along	 the	 long	 diagonal	 of	 the	 structure.	 The	
demonstrated	 filtering	 effect	 of	 LMM	 structures	 could	 be	 used,	 for	
instance,	to	amplify	and	filter	out,	by	means	of	optical	methods,	the	
information	 signals	 from	 the	 noisy	 background	 in	 optical	
communication	systems,	either	fiber	based	or	free	space.	Compared	
to	 conventional	 mechanisms,	 the	 main	 advantage	 of	 the	 spatial	
proposed	 filtering	 method	 is	 that	 it	 requires	 an	 extremely	 short	
propagation	distance	and,	therefore,	it	could	be	directly	integrated	in	
micro‐optical	systems.		

The	 second	milestone	of	my	phD,	 is	 the	 study	of	 the	 effect	 of	 LMM	
materials	 on	 the	 diffractive	 properties	 of	 light	 beams.	 The	 results	
presented	in	[Kum13,	Bot13]	show	that	LMM	materials	with	periodic	
modulations	 on	 the	 wavelength	 scale	 can	 lead	 to	 substantial	
focalization	of	a	beam	propagating	through	a	short	slab	with	flat–flat	
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interfaces,	 confirming	 the	 result	 also	 hinted	 in	 	 ref.	 [Sta09].	 In	 the	
study	 we	 consider	 three	 different	 structural	 geometries,	
corresponding	to	propagation	along	the	diagonals	of	a	rhombic	and	
square	 lattice,	and,	 in	all	 cases,	we	 find	analogous	results.	The	 light	
intensity	 map	 of	 a	 Gaussian	 beam	 exiting	 the	 structure	 exhibits	 a	
high‐transmission	window	for	 frequencies	close	 to	 the	edges	of	 the	
FBZ,	which	results	from	the	anisotropic	attenuation	provided	by	the	
periodicity.	 For	 LMM,	 such	 high	 transmittance	 occurs	 precisely	 at	
frequencies	where	a	low	transmission	or	photonic	bandgap	opens	in	
the	 case	 of	 Photonic	 Crystals	 (PhCs).	 The	 focusing	 after	 the	 crystal	
slab	with	 a	 thickness	 of	 ten	wavelengths	 is	 confirmed	 by	 a	 deeper	
analysis	 of	 the	 phase	 profile.	 For	 given	 frequencies,	 the	 phase	
curvature	 becomes	 positive,	 indicating	 negative	 diffraction,	 which	
provides	 focalization	 beyond	 the	 structure.	 Moreover,	 the	
numerically	 obtained	 curvature	 follows	 the	 analytical	 estimations	
based	 on	 the	 second	 derivative	 of	 the	 spatial	 dispersion	 diagrams.	
The	 control	 of	 light	 beam	 propagation	 by	 miniaturized	 devices	 is	
important	not	only	from	a	fundamental	point	of	view	but	also	as	an	
actual	 requirement	 for	 applications.	 The	 predicted	 phenomenon	 is	
expected	 to	 be	 generic	 for	 spatially	modulated	materials	 and	other	
kinds	 of	waves,	 such	 as,	 for	 instance,	 acoustic	waves	 in	 lossy	 sonic	
crystals.	 Indeed,	we	also	discuss	 for	 the	 first	 time,	 the	effect	of	 loss	
modulations	 in	 acoustic	 crystals.	 Angular	 transmission	 bands	were	
also	predicted	in	acoustic	LMM	crystals.	

The	results	reported	in	refs.	[Kum14,	Bot14],	Chapter	4,	represent	a	
more	 realistic	 scenario:	 beam	 propagation	 is	 investigated	 in	 an	
actual	 LMM.	 We	 investigate	 beam‐shaping	 effects	 in	 2D	 rhombic	
metallo‐dilectric	 crystals,	 made	 of	 gold	 cylinders	 embedded	 in	 air.	
For	given	frequencies,	a	clear	focalization	of	the	beams	behind	a	thin	
flat	 Metallic	 PhC	 (MPhC)	 slab	 is	 observed.	 It	 is	 shown	 that	 the	
focalization	 is	 due	 to	 negative	 diffraction	 propagation	 inside	 the	
crystals,	 accounted	 by	 convex	 spatial	 segments	 on	 the	 spatial	
dispersion,	 and	 then	 compensated	 in	 free	 space	 up	 to	 focus.	
Moreover,	 we	 prove	 another	 important	 unknown	 result:	 that	 the	
dependence	of	the	focal	position	on	frequency	is	clearly	explained	by	
the	 curvature	 of	 the	 spatial	 dispersion	 segments.	 Additionally,	
nondiffractive	 propagation	 through	 the	 structure	 is	 demonstrated;	
the	 spatial	 shape	 of	 the	 beams	 is	 kept	 constant	 with	 propagation	
within	the	structure,	in	this	case,	at	frequencies	for	which	the	spatial	
dispersion	 curve	 exhibits	 flat	 segments.	 Finally,	 we	 investigate	 the	
spatial	 filtering	 performance	 within	 this	 same	 structure.	 We	 show	
that	high	spatial	Fourier	harmonics	of	a	noisy	beam	are	removed	by	
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propagation	 through	 the	 MPhC,	 leading	 to	 an	 improvement	 of	 its	
spatial	 quality.	 The	 focusing	 performance	 of	 narrower	 beams	 is	
weaker	 than	 for	 broader	 ones.	 While	 the	 drawbacks	 of	 metal	
structures	are	 losses,	as	part	of	 light	 is	absorbed,	we	point	out	 that	
they	 provide	 new	 perspectives	 in	 light	 manipulation	 on	 the	
micrometer	 scale.	MPhCs	 are	miniaturized	devices	 that	 give	 spatial	
control	 over	 beam	 propagation,	 and	 their	 study	may	 be	 important	
from	the	fundamental	point	of	view	as	well	as	for	applications.		

As	 another	 possible	 direct	 application	 of	 the	 previous	 idea,	 we	
present	 some	 initial	 investigations	 in	 the	 conference	 proceedings	
[Her11,	Her12,	Her12‐2],	on	how	spatially	cleaning	of	beams	can	be	
achieved	in	Broad	Area	Semiconductor	Amplifiers	using	the	previous	
ideas,	 that	 is	 to	say,	 introducing	an	intrinsic	 filtering	mechanism	by	
modulating	 the	 gain/loss	 of	 the	 active	 material.	 We	 considered	 a	
simplified	model	reduced	to	only	one	 field	equation,	 to	numerically	
simulate	 a	 BAS	 amplifier	 with	 a	 spatially	 modulated	 injection	
current.	 Such	 injection	 current	 introduces	 both	 a	 gain	 and	 a	
refractive	 index	 modulation	 in	 the	 material	 which	 amplitudes	 are	
linked	by	the	so‐called	α‐factor	of	the	semiconductor.	In	this	way,	the	
active	 2D	 slice	 becomes	 a	 2D	 gain/loss	 modulated	 material	 also	
exhibiting	an	 index	modulation	on	the	wavelength	scale.	Our	model	
considers	 an	 incident	 beam	 that	 propagates	 in	 plane,	 inside	 the	
active	 semiconductor	 slab,	 and	 along	 the	 largest	 diagonal	 of	 the	
rhombic	 structure.	 Integration	 is	 performed	 using	 paraxial	
approximation.	 Numerical	 results	 present	 evidence	 of	 filtering	
effects	 in	 a	 Gaussian	 beam	 with	 multiplicative	 white	 noise.	 The	
quantification	 of	 the	 beam	 improvement	 is	 estimated	 by	means	 of	
the	 M2	 coefficient,	 which	 gives	 the	 relative	 distance	 between	 the	
evaluated	profile	and	a	perfect	Gaussian	beam.	The	M2	value	of	 the	
amplified	beam	approaches	1,	meaning	 that	all	noise	can	be	almost	
completely	filtered	out.	

While	systems	containing	gain	and/or	losses	have	previously	almost	
never	been	considered,	they	have,	however,	been	recently	attracting	
a	 huge	 interest	 in	 the	 last	 years. Such unconventional systems have 
shown to hold novel unconventional properties such us symmetry 
breaking, unidirectional invisibility, cloaking, etc. and are finding 
feasible realizations and therefore experimental demonstrations precisely 
either in the field of optics and acoustics [Guo09, Rüt10, Fleu09, Zhu14]. 
Some of the such complex systems belong to the particular class of 
Parity-Time symmetric systems [Ben98], where the real and	 the	
imaginary	modulations	of	the	potential	are	de‐phased	by	a	quarter	of	
the	period	of	 the	modulation,	 but	 belong	 to	 the	wider	 field	 of	non‐
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Hermitian	or	complex	potentials	[Hor15,	Ben15,	Mir16]	to	which	this	
thesis	belongs.		

In	 particular,	 complex	 optical	 crystals	 holding	 in‐phase	modulations	
of	 the	 gain	 and	 loss	 and	 index	 profile	 hold	 regimes	 of	 simultaneous	
non‐diffractive	 propagation	 and	 non‐diffusive	 beam	 broadening	
[Her14].	This	result	may	represent	a	direct	continuation	of	the	results	
presented	 in	 [Kum12,	 Kum14	 &	 Kum14].	 Such	 self‐collimation	
propagation,	 or	 dynamical	 localization,	 have	 more	 recently	 been	
demonstrated	 in	 complex	 2D	 lattices	 with	 PT‐symmetry	 [Bot15,	
Ahm17].	

The	work	[Kum12]	opened	new	perspectives	in	light	manipulation	on	
the	micrometer	scale	for	beams.	Such	effects	described	for	continuous	
beams	were	later	explored	for	the	case	of	optical	pulses	in	ref.	[Loi12];	
where	 the	 light	 beam	 shaping	 results	 in	 LMM	 form	 the	 basis	 of	
versatile	 and	 efficient	 technique	 for	 the	 formation	 of	 X‐pulses	 in	
GLMM.	

Also,	 some	 directly	 related	works	 have	 been	 reported	 in	 acoustics,	
where	1D	periodic	LMM	sonic	crystals	may	be	easily	constructed	by	
a	 layered	alignment	of	 lossy	structures	as	 refractive	media.	 In	 such	
configuration,	the	frequency‐selective	spatial	acoustic	filtering	effect	
was	investigated	[Ala16],	showing	that	a	sonic	crystal	flat	lens	can	be	
used	 for	 narrow‐band	 harmonic	 enhancement.	 There,	 the	 negative	
refraction	acts	on	the	spatial	filtering	of	acoustic	waves,	analogously	
as	 in	 [Kum13].	 Besides,	 an	 experimental	 confirmation	 of	 the	 high	
transmission	bands	predicted	in	ref.	[Kum12]	for	LMM	was	reported	
in	 ref.[Ceb14],	 related	 to	 a	 decrease	 of	 the	 absorption	 around	 the	
Bragg	frequencies	for	an	array	of	porous	layers	embedded	in	air.		

In	 parallel	metallo‐dielectric	 photonic	 crystals	 are	 nowadays	 being	
fabricated	 for	 a	 wide	 variety	 of	 applications,	 ranging	 from	 spatial	
diffraction	management	 [Zha15],	 to	 energy	 harvesting	 and	 thermal	
emission	 modification	 [Ino13],	 therefore	 a	 deep	 understanding	 of	
their	properties	at	optical	frequencies	stays	relevant.	

Finally,	 our	 initial	 ideas	and	 investigations	 in	 the	application	of	 the	
beam	 management	 in	 BAS	 amplifiers	 started	 in	 conference	
proceedings	 [Her11,	 Her12,	 Her12‐2]	 later	 lead	 to	 positive	 results	
either	in	amplifiers	and	in	lasers	[Her12‐3,	Rad13,	Her14‐2,	Rad15].	
In	 these	 cases	 the	 quality	 of	 the	 beam	 is	 improved	 while	 being	
amplified	in	edge	emitting	broad	area	semiconductor	amplifiers	with	
a	periodic	structuring	of	the	electrical	contacts,	 in	both	longitudinal	
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and	 lateral	 directions.	 Beyond	 these	 works	 it	 has	 also	 been	
demonstrated	 that	 two‐dimensional	 periodic	 modulations	 of	 the	
pump	 profile	 (modulation	 both	 along	 and	 perpendicular	 to	 the	
optical	 axis)	 improve	 the	 emission	 from	broad	 area	 semiconductor	
amplifiers	 by	 suppressing	 the	 modulation	 instability	 [Kuma14,	
Kuma16].	

Therefore,	 periodical	 complex	 structures	 nowadays	 represent	 a	
fruitful	playground	for	novel	physical	effects,	with	direct	applications	
in	 the	 fields	 of	 optics	 and	 acoustics,	 in	 which	 I	 expect	 to	 have	
contributed	by	means	of	my	PhD.	
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