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Abstract

Optical excitable systems that mimic neuronal behavior have potential to be
building-blocks of novel, ultra-fast, neuron-inspired photonic information pro-
cessing systems. In particular, semiconductor lasers with optical feedback (SLOF),
can emit optical spikes with temporal correlations resembling those present in
neuronal spike. SLOF can also generate a rich variety of dynamical behaviors,
and thus, are ideal testbeds for studying dynamical transitions and testing novel
analysis tools. In order to advance in the development of neuron-inspired laser
processors it is important to understand how SLOF represent (or encode), in the
sequence of spikes, an external input. It is also important to understand how the
different dynamic regimes develop, and how they are affected by external pertur-
bations.

Hence, the aim of this Thesis is the study of temporal correlations and dynam-
ical transitions in the dynamics of an SLOF. To do this, we perform experiments,
model simulations, and use a symbolic method to analyze the obtained intensity
time-series.

First, we investigate how the spiking laser output encodes a weak periodic in-
put that is implemented via direct modulation of the laser pump current. Ex-
perimental sequences of optical spikes were recorded and analyzed by using the
ordinal symbolic methodology that identifies and characterizes serial correlations
in data sets. When changing the frequency and amplitude of the modulation, tran-
sitions among different locking regimes are detected in the form of changes in the
statistics of the ordinal patterns. A good qualitative agreement is also found with
simulations of the Lang and Kobayashi model.

Second, we identify the onset of different dynamical regimes that occur as the
laser pump current increases. We apply three analysis tools that allow quantifying
various aspects of the dynamical regime transitions. The first method is based on
the analysis of the standard deviation of the intensity time-series, recorded with
different oscilloscope sampling rates. The second method relies on the analysis
of the number of spikes as a function of the threshold used to define the spikes.
The third method is based on the ordinal analysis of the inter-spike-intervals.
These tools allow us to quantitatively detect the onset of two different dynamical
regimes, know as low-frequency fluctuations (LFF), and coherence collapse (CC).

We also analyze the transition from a noise-dominated regime to a more deter-
ministic (less stochastic) dynamics. For this study, in addition to the experimen-
tal laser system (an SLOF), we used as numerical examples the logistic map and
the Rössler chaotic system. We find that, when the noise is strong, the permuta-
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iv ABSTRACT

tion entropy (computed from the probabilities of the ordinal patterns) increases
faster than linearly. By comparing the results of these three systems, we discuss
the possibility of determining, from time series analysis, whether the underlying
dynamics is dominated by noise or by deterministic processes.

The results reported in this Thesis are relevant in a number of ways. The
methodologies developed allow detecting parameter regions of noisy locking to
an external weak periodic input and may be useful to investigate other forced ex-
citable systems. In addition, the methods developed to detect the onset of different
regimes can be valuable for analyzing regime transitions in many real world sys-
tems. Finally, the methodology for determining, for observed data, whether the
underlying dynamic is mainly driven by noise or by deterministic effects can also
be used in multidisciplinary applications (finances, geosciences, social systems,
etc.).



Resumen

Los sistemas ópticos excitables capaces de imitar el comportamiento neuronal,
pueden contribuir al desarrollo de nuevos sistemas fotónicos de procesamiento
de información ultra-rápidos, inspirados en el procesamiento neuronal de infor-
mación. En particular, los láseres semiconductores con retroalimentación óptica
(LCRO), pueden emitir pulsos ópticos con correlaciones temporales similares a
las que presentan las series disparos neuronales. Un LCRO puede generar una
gran variedad de comportamientos dinámicos, por lo tanto, es ideal para estudiar
transiciones dinámicas y probar nuevas herramientas de análisis de datos. Para
avanzar en el desarrollo de procesadores basados en láseres de semiconductor que
emulen neuronas, es importante entender como estos láseres codifican un estimu-
lo externo en la secuencia de pulsos de intensidad emitidos; como se desarrollan
los diferentes regímenes dinámicos y como se ven afectados por perturbaciones
externas.

El objetivo de esta Tesis es el estudio de las correlaciones temporales y de las
transiciones dinámicas en un LCRO. Para ello se ha realizado experimentos y simu-
laciones, y se han analizado los datos obtenidos empleando una técnica de analisis
simbólico.

En primer lugar, investigamos como los pulsos emitidos por el láser codifican
una señal de entrada periódica débil, suministrada a través de modulación directa
de la corriente de inyección del láser.

Se han registrado secuencia experimentales de pulsos opticos y se han analiza-
do usando el analisis simbólico ordinal. Dicho método, las identifica y caracteri-
za a través de de un conjunto de datos. Las variaciones en frencuencia y ampli-
tud de modulación de la señal introducida producen transiciones entre diferentes
regímenes del láser, que se detectan mediante cambios en la estadística del análi-
sis simbólico. Los resultados obtenidos de las simulaciones usando el modelo de
Lang-Kobayashi, concuerdan cualitativamente con las observaciones experimen-
tales.

En segundo lugar, hemos aplicado tres herramientas de análisis que permiten
cuantificar diversos aspectos de las transiciones de régimen dinámico. De tal
modo, hemos identificado el inicio de diferentes regímenes que se producen al au-
mentar la corriente de inyección del láser. El primer método se basa en el análisis
de la desviación estándar de las series temporales de la intensidad, registradas con
diferentes frecuencias de muestreo del osciloscopio; el segundo método, se basa en
el análisis del número de pulsos que cruzan un determinado un umbral, en fun-
ción del umbral utilizado. El tercer método, consiste en el análisis ordinal de los
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distintos intervalos temporales entre pulsos. Estas herramientas detectan cuanti-
tativamente el inicio de dos regímenes dinámicos, conocidos como fluctuaciones
de baja frecuencia (LFF) y colapso de coherencia (CC).

También hemos analizado la transición de un régimen dominado por ruido
hacia una dinámica más determinista. Para este estudio, además del sistema ex-
perimental (un LCRO), hemos utilizado como ejemplos numéricos el mapa logís-
tico y el sistema de Rössler. Encontramos que, cuando el nivel de ruido es alto,
la entropía de permutación (calculada a partir de las probabilidades de patrones
ordinales) aumenta mas rápido que linealmente y discutimos la posibilidad de de-
terminar, a partir del análisis de series temporales, si la dinámica subyacente está
dominada por ruido o por un proceso determinísta.

Los resultados presentados en esta Tesis son relevantes en varios aspectos. Las
metodologías desarrolladas, pueden ser útiles para investigar otros sistemas ex-
citables porque permiten detectar regiones de “loking” producidos por una per-
turbación externa periódica y débil. Además, los métodos desarrollados, pueden
detectar cualitativamente el inicio de diferentes regímenes dinámicos y pueden ser
valiosos para analizar transiciones entre regímenes en otros sistemas. Por último,
la metodología propuesta para determinar en los datos observados, si la dinámica
subyacente es principalmente dominada por el ruido o por efectos deterministas,
puede también tener aplicaciones multidisiplinarias.
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Dynamics of semiconductor
lasers. 1
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Lasers (light amplification by stimulated emission of radiation) were initially
comfortably placed in the realms of science fiction; however, nowadays their
applications are present in all aspects of daily life from telecommunications to
biomedicine. In this Chapter we first describe general features of semiconductor
lasers and then focus in the dynamics of SLOF. We describe the low-frequency
fluctuations (LFF) and coherence colapse (CC) regimes that will be further inves-
tigated in Chapters 3 and 4. The Lang and Kobayashi model (LK model) is also
presented.

1.1 Historical Background.
The theories developed for understanding the quantum nature of radiation and

matter, in the first half of the twentieth century, established the basis to describe
the interaction between them. For instance, in 1900 Max Planck deduced the re-
lationship between energy and frequency of the radiation [1]. His ideas marked a
turning point in physics and motivated the work of forthcoming physicists such
as Albert Einstein, who published in 1905 his work on the photoelectric effect [2].
In a latter work (1917), Einstein suggested the process that makes a laser possible,
called stimulated emission [3]. He predicted that, besides absorbing and emit-
ting light spontaneously, electrons could be stimulated to emit light at a particular
wavelength. However, it would take nearly 40 years, before scientists were able
to demonstrate Einstein’s prediction, leading lasers to become the powerful and
omnipresent tools they are today.

Theodore H. Maiman, a researcher at Hughes Research Laboratories in Mal-
ibu, California, built the first ruby laser [4, 5] using a Fabry-Perot resonator and
photographic flashbulbs as the laser’s pump source. Since then, a huge variety of
different types of lasers followed [6, 7].

Particularly in the year 1962, three groups from General Electric Company
(GE), International Business Machines Corp. (IBM) and Lincoln Laboratory in
the Massachusetts Institute of Technology (MIT), simultaneously developed a
Gallium-Arsenide (GaAs) laser, a semiconductor device that converts electrical
energy directly into infrared light [8–10]. In the same year Nick Holonyak Jr., a
scientist from the laboratory GE in Syracuse, New York, published his work using
Gallium-Arsenide-Phosphide (GaAsP) developing the laser diode in "visible red"
light [11]. A compact and efficient source of coherent light, today semiconductor
lasers (also known as laser diodes) are used not only for optical communications,
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4 CHAPTER 1. DYNAMICS OF SEMICONDUCTOR LASERS.

but also, in a wide range of consumer products (CD players, laser printers, scan-
ners, etc.; semiconductor lasers can also be fabricated in arrays (1D and 2D) that
generate large output powers).

1.2 Physics of lasers.
The simplest description of a laser is a device that takes electromagnetic radia-

tion (light) and amplifies it. The source of this radiation are particles in an "active"
medium (for example atoms when their electrons jump through their possible en-
ergy levels). Typically, electrons are at the ground level, and if we inject just the
right amount of energy, this can displace an electron to a higher energy level. This
phenomenon is called absorption, and in this new state, the atom is excited, al-
though this excited state is unstable. Then, the atom returns to the ground state
by emitting the absorbed energy as a photon. This process of radiation is known as
spontaneous emission: the atom generates light (emitting radiation) spontaneously.

Figure 1.1: Schematic representation of the laser’s operation principles. (Left) Absorption:
inject energy into an atom and it can shift an electron from its ground state to an excited
state. (Middle) Spontaneous emission: an excited electron will drop back to the ground
state, emitting a photon. (Right) Stimulated emission: a photon triggers the emission of
identical photons.

However, the atoms do not usually emit spontaneously, since typically they
have more electrons in their ground states that in the excited states. If we want to
keep the production of photons, we have to pump energy to the atoms to hold the
electrons in their excited states. In this way, the "population" of excited electrons is
greater than the "population" of electrons in the ground state and this situation is
known as population inversion. In this situation, a photon with the right amount of
energy (∆E = hν)1, will make one of the excited electrons return to the ground state
by emitting an identical photon. This process is called stimulated emission. Now
these two photons can excite other atoms to emit more photons, and coherent2

light is generated. A schematic representation of these three process is shown in
Fig. 1.1. If the material is placed in a cavity with mirrors, the photons will go
back and forth inside the cavity, amplifying the process. Then, making one of the
mirrors slightly transparent, a beam of laser light is obtained.

Since there are many different types of atoms that can be excited in a variety of
ways, many different types of lasers can be developed [7, 12]. Currently, the most
common types of lasers which use different types of active medium are solid state,
gas, fiber, and semiconductors lasers [13].

1Where h is Planck’s constant and ν the photon’s frequency.
2This means the same features for all photons, i.e. the wavelength, phase, polarization, and prop-

agation direction.
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1.2.1 Physics of semiconductor lasers.

The simplest semiconductor laser consists of a p-n junction device known as
homo-junction, which essentially is a semiconductor wafer made from slices of a
material with different doping, as the one shown in Fig. 1.2. In the p-region, the
doping takes away electrons from the material and leaves behind "holes" where
electrons should be, and in the n-region the doping adds some extra electrons.

Figure 1.2: Schematic representation of the simplest semiconductor laser, a p-n junction.

In a small region near of the junction, some of the additional electrons in the n-
region will go through the junction and recombine with the holes in the p-region.
This region becomes a barrier between n-region and p-region and is called deple-
tion layer.

By applying an external voltage, the p-n junction allows the flow of the elec-
trical current in one direction (known as forward-biased operation). Under this
operation mode, the electrons and the holes recombine and release energy in the
form of photons. In a semiconductor laser, these photons interact with the incom-
ing flux of electrons, producing more photons as it occurs in other types of lasers.
The first generation of semiconductor lasers were homo-junctions. Nowadays, se-
miconductor lasers are fabricated with more advanced techniques that allows for
a much better confinement of electrons, holes, and photons (using, for example,
multiple quantum wells formed by different types of semiconductor materials as
the active region), known as hetero-junctions.

The type of laser presented in Fig. 1.2 is also known as an edge-emitting laser
(EEL) because light propagates in a direction along the junction. For semiconduc-
tor lasers, there are three main types of cavities: the Fabry-Pérot (FP) resonant cav-
ity consists of two cleaved end facets; the distributed Bragg reflector (DBR) with
Bragg reflectors3 as end mirrors; and the distributed feedback (DFB) with a peri-
odic structure in the active region. The cavity defines the modes ("frequencies")
that the laser can emit. Lasers with FP cavity typically emit multiple longitudinal
modes within the gain bandwidth with a mode spacing determined by the cavity
length and, certain modes, within the gain bandwidth of the active medium, are
more enhanced than others. The DFB and DBR can emit in a single mode with a
frequency directly related to the periodicity of the structure. Figure 1.3 shows a
representation of how the output modes are selected in an EEL. The black line in
Fig. 1.3 displays the modes of the cavity, a set of this modes are selected by the
optical gain (red curve) and then, by using the Bragg reflectivity (green curve), a

3It is a structure formed by multiple layers of alternating materials with varying refractive index,
or by periodic variation of some characteristic (such as thickness) of a dielectric waveguide [12].
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single mode can be selected.

Figure 1.3: Representation of how the output modes are selected in an edge-emitting laser.
Adapted from [14].

Another type of semiconductor laser is known as vertical cavity surface-
emitting laser (VCSEL, but these lasers are not studied in this Thesis). The main
difference between VCSELs and EELs is that in VCSELs the light propagates in the
direction perpendicular to the active region.

1.3 Emission characteristics of semiconductor lasers.
This Section describes some important characteristics of the semiconductor la-

sers, such as: the dependence of the emitted light with the pump current, the
relaxation oscillation, and the optical spectrum.

1.3.1 Light-current dependence.
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Figure 1.4: Output power as a function of the pump current (I [mA]). The laser used is a 658
nm AlGaInP semiconductor laser (Hitachi HL6501MG). For currents below the threshold
current (ITh), spontaneous emission dominate the output power, for currents higher than
the threshold, the stimulated emission dominates, and the laser starts to lase. Above the
threshold, the output power grows linearly with the injected current (for very high currents
the behavior is nonlinear, not shown).

As it was explained in the previous Section, a semiconductor laser converts
electrical energy into optical output. Therefore it is crucial to characterize the
amount of light that is emitted by a semiconductor laser at a given injected current.
This characterization usually is represented by the curve of the output power of
the laser vs. the pump current (also called as light vs. current characteristic, or L-I
curve). This curve is also employed to determine the efficiency of the laser as well
as the threshold current (current at which starts lasing). An L-I curve for a 658
nm AlGaInP semiconductor laser (Hitachi HL6501MG) at 18.5ºC is shown in Fig.
1.4. Here, when the pump current is increased, in the beginning, the laser shows
spontaneous emission and the output power grows very slowly (in the Figure it
appears almost like a flat line). At a certain value of the pump current (i.e., ITh),
the laser starts to emit stimulated light, and the output power increases linearly
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with the pump current.
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Figure 1.5: Different methods to define the threshold current: (a) the linear fit, (b) the
two-segment fit, (c) the first derivative technique, and (d) the second-derivative technique.

There are various ways to define the threshold current which are presented in
Fig. 1.5. The linear fit method (Fig. 1.5a) uses a linear fit of the high current
portion of the L-I curve and defines the threshold as the point where the linear fit
intercepts the X-axis corresponding to the zero optical power. The two-segment
fit method (Fig. 1.5b) uses two linear fits (the low and the high portions of the
L-I curve) and defines the threshold as the point where they intersect. In the first
derivative method, the value of the threshold is defined as the one-half the maxi-
mum of the rising edge of the dL/dI curve (Fig. 1.5c). Finally, in the second deriva-
tive method (Fig. 1.5d), the threshold is the point at which the d2L/d2I curve has a
maximum. Any of the four methods described can be used, and the first derivative
method is the one employed in this Thesis.

Figure 1.6: Variation of the threshold current for different operating temperatures in an
AlGaInP Fabry-Perot semiconductor laser (Hitachi HL6501MG). The solid red line indicates
the threshold current for distinct values of the temperature.

In semiconductor lasers the light emission does not only depends on the pump
current but also on the temperature. As the temperature increases the laser’s gain
spectrum moves, and also, changes in temperature affect the refractive index of the
active medium that produces a shift in the cavity modes. Due to theses two effects,
more current is required before the laser starts to lase [12]. In Fig. 1.6 a color-code
representation of the L-I curve for different values of the temperature is shown.
The solid red line shows how the threshold current varies with the temperature.

1.3.2 Relaxation Oscillations.

In semiconductor lasers, transient oscillations known as relaxation oscillations
occur during the turn-on due to the nonlinear coupling between photons and car-
riers (i.e., pairs of electrons and holes). A simple way to describe them is by con-
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sidering a situation in which the pump current abruptly increases as in a step-like
function. In this situation, the carrier density will grow rapidly and a pulse of light
is emitted. Due to the light emission, the carrier population decreases rapidly, and
in consequence the output power will drop till the carriers recover. This interplay
produces the relaxation oscillations between the optical field and the carriers.

Figure 1.7: Emitted output power of a laser subject to a step-like pump current. Simula-
tions of the rate equations presented in Section 1.4 with parameters: τp = 1.67 ps, τN = 1
ns, µ = 1.5, βsp = 10−4.

In other words, relaxation oscillations occur in a semiconductor laser because
carriers can not instantaneously follow the photons. The relaxation oscillation fre-
quency takes values of the order of a few GHz, and depends on the pump current,
and the life time of the photons, and of the the carriers [13]. Figure 1.7 presents the
simulated output power of a laser, when is subject to a step-like pump injection.
The model used to simulate the laser intensity is describe in Section 1.4.

1.3.3 Optical spectrum.

Edge-emitting lasers (EELs), which are the lasers studied in this Thesis are in
general multimode, although depending on the cavity design, the pump current,
and the temperature of operation, quasi-single mode emission can be obtained.

Figure 1.8 displays the optical spectrum of one of the lasers used in this Thesis.
We show two spectra when the current is just above and when it is well above
threshold. For low pump currents the emission is multimode (left panel), but as
the pump current is increased, one mode dominates the emission. As it can be
appreciated in the right panel (well above threshold) the emission is almost mono-
mode.

Figure 1.8: Optical spectrum for pump current just above (left) and well above (right) the
threshold. The spectrum is normalized to the maximum value and the laser is a Hitachi
HL6501MG.
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1.4 Semiconductor laser model.
Lasers can be described by employing three physical variables: the polarization

of the material, the carrier population, and the optical field. Haken [15] showed
that lasers are nonlinear systems and can display chaotic behavior on their output
power, because of the physical quantities mentioned above, correspond to three
coupled nonlinear degrees of freedom. The relation between the relaxation times
of the three variables is directly related to the possible dynamics presented by the
laser [6].

Arecchi et al. [16] investigated the role of the relaxation times of the three vari-
ables and categorized lasers in three classes: A, B, and C. Class-A lasers can be
characterized only by the optical field; Class-B lasers can be modeled by taking
into account the optical field and the carrier population. Finally, Class-C lasers
are described by the full set of variables, and consequently, they can exhibit cha-
otic behavior.

Semiconductor lasers are class-B lasers; they can be modeled by two coupled
rate equations that described how the slowly varying complex field amplitude, E,
and the carrier density, N evolve. The model equations (in adimensional form
[13]) are:

dE
dt

=
1

2τp
(1 +α)(G − 1)E +

√
2βsp ξ

dN
dt

=
1
τN

(
µ−N −G |E|2

) (1.1)

where τp and τN are the photon and carrier lifetimes respectively. The optical gain
is G = N/(1 + ε |E|2) here ε is a phenomenological coefficient that controls the gain
saturation, due to spatial inhomogeneities or thermal effects. µ is the normalized
pump current parameter, where µ = 1 is the lasing threshold. βsp is the coefficient
of spontaneous emissions and ξ is a white Gaussian noise that represents spon-
taneous emission. The linewidth enhancement factor, α [17], quantifies how the
refractive index of the semiconductor material changes with the carrier density:

α =
dnr

/
dN

dni
/
dN

(1.2)

where nr and ni are the real and the imaginary part of the refractive index. In
conventional EELs, α has typical values of 3–5 and is a relevant parameter in the
dynamics of the laser.

1.5 Optical feedback.
The optical feedback results from the reflection of the laser light, by a mirror

in front of the output facet as schematically represented in Fig. 1.9 (i.e. a laser
with an external cavity). The feedback configuration has three main parameters:
the length of the external cavity Lext (which give a feedback delay time τ = 2Lext

c ,
where c is the speed of light), the feedback strength, and the phase of the feedback
light.

Induced by the feedback, the laser presents a wide variety of dynamical behav-
iors [18]. An important consequence of optical feedback is the reduction of the
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SL M

Lext

τ

Figure 1.9: Sketch of the experimental setup of a semiconductor laser subjects to an optical
feedback. Lext is the length of the external laser cavity, τ is the time of flight of a photon
around the external cavity, and M is the outside mirror.

threshold current of the laser. The threshold decreases because, when the light
reenters the laser cavity and interacts coherently with the intra-cavity field, it re-
duces the cavity losses. The stronger the feedback, the larger the threshold reduc-
tion, as can be seen in Fig. 1.10. The feedback strength can be quantified through
the reduction of the threshold current, as

η% =
ITh − IfTh

ITh
(1.3)

where η% is the percentage reduction, ITh is the solitary laser threshold current

and IfTh is the threshold current of the laser with optical feedback. The threshold
reduction is a clear indicator of coherent feedback, if the feedback is incoherent
(because, for example, 2Lext es longer that the coherent length, or the polarization
of the re-injected light is orthogonal to the intra-cavity field) the feedback does not
produce any threshold reduction.

Figure 1.10: Experimental L-I curves displaying the effect of optical feedback in the las-
ing threshold of a semiconductor laser with different amounts of feedback for a Hitachi
HL6501MG laser. The thresholds are estimated employing the method presented in Fig.
1.5c. The inset indicates the percentage of threshold reduction.

1.5.1 The Lang-Kobayashi model.

In 1980, Lang and Kobayashi proposed a model to describe the effects of
weak to moderate optical feedback on single-mode diode lasers [19]. In the
Lang-Kobayashi (LK) model, the light feedback to the semiconductor cavity is
represented by a time delayed term added to the optical field rate equation (1.1):

dE
dt

=
1

2τp
(1 +α)(G − 1)E + ηE(t − τ)e−iω0τ +

√
2βsp ξ

dN
dt

=
1
τN

(
µ−N −G |E|2

) (1.4)
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where η is the feedback strength, τ is the feedback delay time, ω0 is the solitary
laser frequency, andω0τ is the feedback phase. The numerical results presented in
this Thesis (Chapters 3, 4 and 5) have been obtained with the model parameters,
unless otherwise stated, listed in Table 1.1.

Parameter Value
Photons lifetime (τp) 1.67 ps
Carriers lifetime (τN ) 1 ns
Feedback delay time (τ) 5 ns
Pump current (µ) 1.01
Coefficient of spontaneous emissions (βsp) 10−4

Linewidth enhancement factor (α) 4
Feedback strength (η) 10 ns−1

Coefficient of nonlinear gain (ε) 10−3

Table 1.1: Parameters used in the simulations, unless otherwise stated.

In order to study the laser dynamics under sinusoidal current modulation, the
pump current parameter is varied as:

µ = µ0 +Amod sin(2πfmodt) , (1.5)

where µ0 is the DC current, Amod is the modulation amplitude and fmod is the
modulation frequency.

The steady state solutions of the LK model are related to constructive and de-
structive interferences between the intra-cavity field and the feedback field. The
steady solutions are known as external cavity modes (ECMs) and we referred as
modes for the constructive interference and antimodes for the destructive interfer-
ence.

The LK model makes substantial simplifications:

• Assumes single mode emission, while feedback often induces multi-mode
emission.

• Assumes low or moderate feedback intensity and thus neglects multiple
round-trips of light in the external cavity.

• Neglects spatial and thermal effects.

Due to all these simplifications, only a qualitative accordance with empirical
measurements could be expected, but surprisingly, the LK model describes differ-
ent dynamics of a semiconductor laser. To name a few: low-frequency fluctuations
(LFF), coherence collapse (CC) and coexistence of LFF and stable emission. These
dynamical regimes are described in the following Subsection.

1.5.2 Dynamical regimes induced by optical feedback.

Semiconductor lasers with optical feedback (SLOF) have been the object of in-
tense experimental and numerical investigation in the last three decades [20–58].
In this Thesis we study the dynamics induced by moderate amount of feedback
(threshold reduction of the order of 5 ∼ 15%). SLOFs are time-delay systems and
(as we will discuss in Chapter 2) this type of systems are infinite dimensional,
therefore they can show chaotic behavior. The chaotic output generated by SLOFs
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has a wide range of applications (sensors, ultra-fast random number generation,
information processing, etc) [59–67].

The diagram of Tkach and Chraplyvy [68] (Fig. 1.11) has been the reference for
describing and classifying feedback effects in semiconductor laser. This diagram
points out five types of regimes induced by optical feedback. These regimes rely on
three factors: the feedback power ratio, the external cavity length, and the phase of
the incoming power. Each regime determines how a semiconductor laser operates

V

IV

III

II

IF
E

E
D

B
A

C
K

 P
O

W
E

R
 R

A
T

IO
 (

d
b
)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

EXTERNAL CAVITY LENGTH (cm)

10 20 40 80 160 320

Figure 1.11: Regimes according to the description of Tkach and Chraplyvy for an SLOF
varying the feedback strength, and the external cavity length. Adapted from [68].

under external optical feedback. Regime I: the laser linewidth is broadened or
narrowed, depending on the distance to the feedback reflector, which determines
the phase of the optical feedback. Regime II: mode hopping among external cavity
modes. Regime III: stable single mode operation with linewidth reduction, in this
regime the mode hopping is suppressed and the laser oscillates with a narrow
linewidth. Regime IV: unstable operation with coherence collapse, the relaxation
oscillations become undamped and the linewidth of the laser is highly broadened.
Regime V: stable operation with significant linewidth reduction, the internal and
external cavities turn into a composite cavity and the laser emits on a single mode
with a narrow linewidth.

The operational conditions studied in this Thesis correspond to moderate feed-
back (regime IV), and long cavity4. With this operational conditions, the dynami-
cal regimes of an SLOF as the pump current is increased are: noise stable emission,
low-frequency fluctuations (LFFs) and coherence collapse (CC) [20, 69, 70]. The
LFFs and CC regimes have been known for decades and their dynamical origin
and statistical properties have been intensively studied. However, to the best of
our knowledge, the transition points from noisy emission to LFFs, and from LFFs
to CC, occurring as the pump current increases, have not yet been quantified.

Very close to the threshold the laser intensity display noisy fluctuations,as
shown in the Fig. 1.12a. As the pump current increases the laser enters the LFF
regime. A typical intensity time trace is shown in Fig. 1.12b. In this regime,
the intensity exhibits abrupt dropouts that seems to occur at random times (the

4This case is when τ is much larger than the period of the relaxation oscillations, in our case τ ≈ 5ns
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Figure 1.12: Typical intensity time-series, normalized to zero mean and unit variance: (a)
noisy fluctuations, (b) dropouts in the LFF regime and (c) fast fluctuations in the CC regime.
The laser pump current, normalized to the threshold current of the solitary laser, are I/ITh =
0.95, 1.02 and 1.20, respectively. The horizontal axis is the same in the three panels. The
intensities were detected with a 1 GHz digital oscilloscope (Agilent Infiniium DSO9104A).
The properties of these regimes are discussed in Chapter 4.

time intervals are of the order of hundredths of nanoseconds between consecutive
drops). The drops are in fact the envelope of much faster optical pulses (pi-
coseconds) [71], hence this regime is known as low-frequency fluctuations (LFFs).
Because, in the LFF regime, the inverted time-series resembles the spikes of a
biological neurons, on this Thesis the intensity dropouts will also be referenced as
optical spikes. As the pump current continues increasing the LFF dropouts gradu-
ally become more frequent and more irregular as the laser enters in the so-called
CC regime.

In the CC regime (a typical intensity time trace is shown in Fig. 1.12c). The
spectral linewidth is increased several GHz, depending on the type of laser. The
widening of the linewidth is an outcome of chaotic emission [23, 72, 73], and dif-
ferent routes to chaos have been identified [22, 73].

In 1998, Heil et al. [70] presented a diagram showing the stable emission, LFF
and CC regions, when the pump current I and the ηf feedback strength are varied,
as shown in Fig 1.13. Here we see how the different regimes occur as the pump
current is increased. Also, intermediates states of coexistence also occur. Although
these regimes seem to be very well delimited, in this work the authors delimited
them in a qualitative way, because these transitions are smooth. In Chapter 4 we
present a methodology to quantitatively differentiate these regimes.

The LFF regime was first detected in 1977 by Risch and Voumard [74]. Fol-
lowing this work, several theoretical and empirical studies had tried to clarify the
underlying physical mechanism that trigger or induce the LFF dropouts. Henry
and Kazarinov [21] explained the LFF phenomena using a bistable model, where
spontaneous emission noise made the system escape from a stable state. Later, in
1988, a noise-driven multimode traveling wave model was introduced by Mørk et
al. [75]. They noted that if the noise was omitted in the model, LFFs were still ob-
served, which suggested that the phenomenon was deterministic. Sacher et al. [76]
confirmed this hypothesis and also classified the LFFs as a “time inverted type-II
intermittency.”
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[[ηf

Figure 1.13: From Heil et al. [70], diagram of the different dynamical regimes in the feed-
back strength - pump current parameter space.

A few years later, an alternative interpretation of the LFF phenomenon, based
on the analysis of the LK model [19], was introduced by Sano [24]. Sano showed
that the intensity dropouts were related to the crisis between chaotic attractors
and the anti-modes, which are unstable saddle-type solutions. The dropouts are
followed by an intensity recovery associated with a chaotic itinerancy with a bias
towards one of the stable external cavity modes, which is known as the maximum
gain mode (MGM). Before the system reaches the MGM, it is dragged through
different modes of the external cavity.

Since these early works, a lot of research has focused in the underlying mecha-
nisms responsible for triggering the LFF dropouts. The presence of noise [26, 45,
46, 77] and multimode competition [30, 32] have been proposed to be important
for triggering LFF dropouts.

1.5.3 Excitability of LFF dynamics.

Figure 1.14: From Giudici et al. [29], output intensity of the laser for small amplitude per-
turbations (width: 60 ps; period: 30 ns) added into the pumping current. Three different
amplitude of the pulse were used [2.6 mA; 3 mA; 10 mA], displayed in the panels (a),(b),
and (c) respectively.

It is possible to induce LFFs in an SLOF by perturbing the pump current, when
it is close to the laser threshold. This has been studied experimentally [29] (see Fig.
1.14) and numerically [77–79]. Giudici et al. [29] and Sukow and Gauthier [38]
showed that externals inputs with amplitudes below a certain critical value pro-
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duce small and linear reactions but perturbations higher than the critical value,
generates a nonlinear reaction that leads to an LFF. Heil et al. [33] and Mulet and
Mirasso [78] found that after a large perturbation, the system gradually recovers
to its equilibrium state and is not able to react to another perturbation during a
given time. These observations, the nonlinear reactions generated by perturba-
tions above certain critical value (Fig. 1.15b), and the inability to react during a
gradual recovery (Fig. 1.15c), are the definition of an excitable system [80, 81]. An-
other important motivation of the studies preformed in this Thesis is that optical
excitable systems, that mimic neuronal behavior, have potential to be building-
blocks of novel, ultra-fast, photonic information processing systems inspired by
the way biological neurons process external inputs [82–93].

Figure 1.15: From Lindner et al. [80], features of excitability: different kinds of inputs (left
column) cause different kinds of responses (right column) of the excitable dynamics (middle
column). The dashed line represents the system threshold.

1.5.4 Current modulation and optical feedback.

In this Section we discuss the behavior when the laser with feedback in the LFF
regime is also subject to a sinusoidal modulation in the pump current.

The dynamics induced by the interplay of feedback and modulation is rele-
vant because semiconductor lasers are widely employed in telecommunications,
where the information can be encoded by direct current modulation. It is also of
very interesting because of the various dynamical regimes that can occur due to
the interplay of nonlinearity, noise, periodic forcing and delayed feedback. The
LFF dynamics has been investigated in detail when the laser current is modulated
[29, 38, 39, 94–97]. It has been shown that the LFFs can be entrained and even
suppressed by current modulation [98]. In addition, because the laser intensity in
the LFF regime emulates the spiking behavior of neurons, this system allows to
understand how a spiking system encodes a weak external periodic signal into a
sequence of spikes.

The dynamics induced by increasing the modulation amplitude is shown in
Fig. 1.16, adapted from [99]. This figure presents the intensity time series of
a 650 nm laser (Hitachi HL6714G) (panels a,d,g,j), the probability distribution
functions (PDF) of the inter-dropout intervals ∆Ti (panels b,e,h,k), and the return
diagrams, ∆Ti vs ∆Ti+1 (panels c,f,i,l), using four different modulation amplitudes
[99]. When the modulation amplitude is increased, the inter-dropout intervals
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transform into smaller multiples of the modulation period. The return diagrams
show a grouped structure, like "islands", that correspond to the peaks in PDFs,
similar “islands” were observed in [29, 38]. The symmetry in the return diagrams
suggests that probability of ∆Ti+1 being greater or less than ∆Ti is the same; how-
ever, Aragoneses et al. [99] demonstrated that the modulation induces correlations
in the ∆Ti sequence, using a symbolic data analysis methodology that is used in
this Thesis and will be presented in the following Chapter.

Figure 1.16: Effect of direct current modulation in an SLOF in the LFF regime. Time traces
of the laser intensity (a,d,g,j), probability distribution functions (PDFs) of the inter-dropout
intervals ∆Ti (b,e,h,k), and return maps (∆Ti vs ∆Ti+1) (c,f,i,l) in units of the modulation
period (Tmod ) for increasing modulation amplitude: from top to bottom, no modulation,
1.2%, 1.6%, and 2% of the pump current. Adapted from [99].
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In this chapter, we review main concepts of non-linear dynamical systems and
symbolic analysis of time series. We present two well-known examples of non-
linear systems (the logistic map and the Rössler system) which are later used in
Chapter 5, to study the effects of noise on the permutation entropy and block en-
tropy, which are also presented in this Chapter.

2.1 Nonlinear Dynamical Systems
Nonlinear systems are everywhere in nature. One of the earliest studies fo-

cusing on nonlinear systems is attributed to Henri Poincaré in 1899 [100]. While
studying celestial mechanics, he realized that a slight change in the initial posi-
tion of a body could lead to dramatic differences in the following states of the
system. However, Poincaré’s findings went unnoticed for a long time; it took al-
most 70 years when the meteorologist Lorenz [101] in 1963, while studying the
evolution of a simple model of the atmosphere, rediscovered this sensitive on the
initial conditions, thanks to the development of computers. Nevertheless, as well
as Poincaré’s work, Lorenz’s article (whose importance is now widely recognized)
was not appreciated until many years after its publication.

Nowadays, a nonlinear system whose evolution is unpredictable but depends
on a relatively small number of variables is known as a chaotic dynamic system,
while if it depends on a large number of variables is known as a complex dynam-
ical system. The expansion of theoretical knowledge, the existence of high-speed
computers and the development of highly refined experimental techniques, have
shown that this phenomenon is abundant in nature and has applicability in many
branches of science. For example, many biological systems including neurons are
described by nonlinear equations. We now understand that most natural and ar-
tificial phenomena (human-made) are complex due to the ubiquity of the nonlin-
earity. Next, we give a brief description of two types of dynamic systems studied
in this Thesis.

2.1.1 Types of dynamical Systems

If iterative functions can describe a system, we say that it is a discrete dynami-
cal system in time. A classical example of how chaotic behaviors can be exhibited
by simple mathematical systems, is the Logistic Map [102]. An iterative unidimen-
sional map was introduced in 1976 by the biologist May, as a time-discrete analog

17
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of a model for populations dynamics it is described by the following equation:

xn+1 = rxn(1− xn), (2.1)

where xn is a number between zero and one that represents the ratio of existing
population to the maximum possible population and r ∈ (0,4] is a parameter that
represents the growth rate.

If the evolution of a dynamical system is described by differential equations, we
have a continuous-time dynamical system. An example of chaotic behavior, which
is studied in this Thesis (in Chapter 5), is the Rössler system. It was introduced
in 1976 by Otto Rössler [103] as a simplified version of the Lorenz system. The
equations of the Rössler system are

dx
dt

= −y − z

dy
dt

= x+ ay (2.2)

dz
dt

= b+ z(x − c),

where (x,y,z) are the three variables that evolve in the continuous time t and (a,b,c)
are three parameters.

The first two equations only contain linear terms, which create oscillations if
they are not coupled to the third one. However, the equation for the variable z
includes the nonlinear term that allows the system to evolve to chaotic behavior.
An example of the chaotic trajectory in the phase space for the parameters that we
use in Chapter 5 is presented in Fig. 2.1.

Figure 2.1: Attractor of the Rössler system. The values of the parameters {a,b,c} used are
{0.1, 0.1, 18.0} respectively.

Time-delay Systems.

Depending on the time scales, the velocity of propagation of the information
may be relevant to the dynamics. A simple example is when the equations govern-
ing the evolution of the system depend on the past state of some variables

dx
dt

= F (t,x (t) ,x (t − τ) ,β) , (2.3)
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where τ is the delay, x are the system states and β are system parameters. This type
of equations are also known as Delay Differential Equations (DDEs), and one of the
properties of this kind of system is that even with only one variable describing the
state of the system, it can generate a chaotic dynamic. This is because DDEs are
infinite dimensional because the initial conditions must be given as a function, i.e.
an infinite set of values. In the case of equation (2.3), the function that must be
provided is the value of x(t) in the time interval −τ ≤ t ≤ 0. Many processes include
this delay effect phenomena in their inner dynamics; different examples can be
found in the literature related to biology, chemistry and physics. One particular
example and the primary interest of this Thesis is the semiconductor laser with
optical feedback, where the time delay is due to the finite velocity of light and it is
equal to the flight time of light in the external cavity.

2.2 Symbolic Time-series Analysis
A typical starting point for the study of many natural systems is based on a set

of measurements or repeated observations of some system variables. The underly-
ing equations or even the mechanisms that rule the dynamics are often unknown,
and we want to obtain information about them from the set of observables that
capture dynamic phenomena. This set of measurements, obtained at discrete sam-
pling time, are given by a data set X ≡ {x1, · · · ,xi , · · · ,xN }, where N is the number of
observations.

These time series often seem irregular, very fluctuating, difficult to predict, and
some of this behavior might be due to noise (in the system or to the measurement
process). However, the concept of chaos has changed our way of understanding
and analyzing these observed data X(t) (time series), because we now know that
deterministic nonlinearity can lead to behaviors that seem impossible to predict or
that resemble noise. These time series, obtained from chaotic systems, occupy an
intermediate place between predictable (regular or almost periodic) signals and
completely stochastic signals (noise).

Nowadays, it is known that often, complex behaviors in nature can be under-
stood as the interplay of deterministic nonlinearity, stochasticity, and high dimen-
sionality. Then, a relevant question is: the underlying dynamics of a system is
(mainly) deterministic or stochastic? Answering this question is important for a
proper physical description of the system.

Distinguishing noise from deterministic dynamics is a challenging problem
that has attracted a lot of attention [51, 52, 104–109]. In this context, a useful
approach is based on Symbolic Time Series Analysis.

The idea behind this methodology is to transform a time-series, X = {x1,x2 . . .
xN }, into a sequence of symbols, s(t). There are many ways to do this [110], and
in this Thesis we are going to focus on two methods: the block patterns and the
Ordinal patterns.

2.2.1 Block patterns

Within this method, a time-series is discretized by dividing the phase space
into Q regions, and associating a symbol to each region [111]. Then, one needs to
choose a dimension D for defining vectors made up of consecutive symbols. For
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example, let us consider the time-series obtained from the logistic map, as shown
in Fig. 2.2a, but taking only a portion of this (Fig. 2.2b)

Figure 2.2: Illustration of block patterns symbolic encoding. Time series of the logistic map
when the system parameter r = 4 and the initial condition x0 = 0.003 is used. The dashed
lines in (b) represent the phase space partition {[0,0.33), [0.33,0.66), [0.66,1]}. Data inside
each partition are represented by the symbols [0,1,2] respectively. The original time se-
ries is represented by the symbol sequence, and finally block patterns of length D = 2 are
constructed.

X = {0.40,0.96,0.15,0.51,0.99,0.00,0.01,0.05,0.19,0.62,

0.93,0.25,0.75,0.74,0.76,0.72,0.79,0.65,0.90,0.34 } .
(2.4)

We divide the phase space into three regions [0,0.33), [0.33,0.66) and [0.66,1],
associating to them the symbols 0, 1 and 2 respectively. With D = 2, the blocks
associated to the time-series are:

{12,20,01,12,20,00,00,00,01,12,20,02,22,22,22,22,21,12,21} , (2.5)

as illustrated en Fig. 2.2.
The main drawback of this approach is that it is not obvious how to perform

phase-space partition, and the statistical properties of the symbolic sequence cru-
cially depend on the partition chosen.

2.2.2 Ordinal symbolic analysis

Bandt and Pompe introduced the ordinal symbolic analysis [112], as another
approach for investigating time-series. This method is based on the order rela-
tionship between successive values instead of the values themselves. Applications
to the analysis of real world time-series are provided by Amigó [113] and review
by Zanin et al. [108].

To construct the ordinal patterns (OP), in the same way as in the block pat-
terns (BP), one needs to choose the dimension D for defining vectors made up of
consecutive entries of the time-series. The ordinal patterns (of D entries of the
time-series) are defined, according to the ranking (from the largest to the smallest
value). The total number of ordinal patterns of length D, is equal to the number
of permutations, D!. Figure 2.3 displays all the possible patterns for D = 3 and
D = 4. If we retrieve the previous example, the time-series of the logistic map, and
we calculate the OPs with D = 3:
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Figure 2.3: Ordinal patterns for (a) D = 3 and (b) D = 4. For both cases, the D! possible
patterns for are shown. This can be easily extended for larger values of nwhere the possible
patterns will rapidly increase. Figure adapted from [114].

• {0.40, 0.96, 0.15}→ 0.15 < 0.40 < 0.96 ====⇒
pattern

120,

• {0.96, 0.15, 0.51}→ 0.15 < 0.51 < 0.96 ====⇒
pattern

201,

• {0.15, 0.51, 0.99}→ 0.15 < 0.51 < 0.99 ====⇒
pattern

012,

as shown in Fig. 2.4a, Fig. 2.4b, Fig. 2.4c respectively. The sequence of patterns
for the time series is

{120,201,012,120,201,012,012,012,012,

120,201,021,102,120,102,120,102,120} ,
(2.6)

as displayed in Fig. 2.4d.

Figure 2.4: An example of ordinal patterns, for a time series generated from the Logistic
map (solid black line) using D = 3. Panels (a),(b), and (c) display the patterns related to the
first three vectors made up of consecutive entries of the time series. Panel (d) shows the
sequence of patterns for this time series.

By calculating the probabilities of occurrence of the different patterns, more
and less frequent patterns can be found; also information about the existence of
missing, or forbidden patterns can be obtained [115–117], as an example, in the lo-
gistic map the pattern 210 is forbidden. A main advantage of the ordinal approach
is that it does not require to predefine a partition of the phase-space.

Another interpretation used to understand the symbolic analysis of time series
is to see symbols as letters of a language, patterns as their words. Therefore, calcu-
lating the probabilities for each pattern (word) will give us information about the
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“language” associated to the dynamics of the time series under study. In addition
to the probabilities of each word, another quantity that can give additional infor-
mation is the transition probability matrix (TP) from each pattern to each other.

In this Thesis, the TPs are normalized such that all possible transitions from
one pattern sum one; e.g. for D = 2,

TP01→01 + TP01→10 = 1, and,

TP10→01 + TP10→10 = 1.
(2.7)

2.2.3 Entropy

The entropy as defined by Shannon is a standard way to characterize the prob-
abilities of the different patterns [118]. The entropy measures the disorder or lack
of information in a system, and is defined, in its discrete form as:

HD = −
M∑
i

pi lnpi , (2.8)

where (in the case of symbolic analysis) pi is the frequency of occurrence of the pat-
tern ith in the time series andM is the number of possible patterns. The estimation
of the entropy based in the ordinal patterns probabilities is know as Permutation
entropy (PE) [112] and in the case of the block patterns, it is know as Block entropy
(BE) [119, 120] (for PE, M = D!, while for BE, M = QD ). With the development of
complex systems theory, other definitions for entropy have been proposed in the
literature [121], however, here we only consider the standard definition of entropy
as proposed originally by Shannon.

Given this growing interest, it is relevant to understand the relation be-
tween the PE and other complexity measures. In particular, a well-established
way to characterize the production of information of a dynamical system is the
Kolmogorov-Sinai entropy hks, see e.g. [119, 120]. The Kolmogorov-Sinai entropy
is obtained as the rate of growth of the BE, for D →∞ and in the limit of a very
refined partition.

Similarly to hks, one can introduce a permutation entropy rate as the rate of
growth for D → ∞ of the PE. The PE rate and hks are not only conceptually re-
lated: for piecewise monotone interval maps on the real line, they were shown
to be equal [122]. This result has been later extended to a broad class of dynam-
ics [123, 124]. This equivalence is non-trivial considering, for example, that the
number of total possible ordinal patterns grows with D as D!, while the number
of blocks grows as QD . The two quantities can be equal only thanks to the large
number of forbidden or missing ordinal patterns, strongly limiting the growth of
the PE as D is increased.

These mathematical results clarify that, under general hypotheses, PE and BE
share the same asymptotic behavior. However, due to difficulties in reaching the
asymptotic regime, this equivalence can be of little use in many practical cases.
For example, it has been noted [122] that the rate of convergence of the PE to
the Kolmogorov-Sinai entropy is extremely slow even for one-dimensional maps,
while on the contrary, BE converge very quickly, see e.g. [119].
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Figure 2.5: Variations of the permutation entropy with time for EEG signals of three differ-
ent patients [125].

Comparing the two analyses becomes even more problematic for high-
dimensional and/or noisy dynamics, such as typical experimental time-series.
Consider for example the extreme case of a time series dominated by noise, in
which all symbols are equally probable and temporal correlations are absent. In
this case, the BE of length D is equal to D ln(Q), while the PE with patterns of
length D is equal to ln(D!) ∼ D lnD. This means that the BE is linear in D, with
a slope ln(Q), explicitly dependent on the chosen partition, which diverges only
in the limit of a very refined partition, Q → ∞. In contrast, the PE grows more
than linearly, so that their asymptotic slope is infinite. In both cases, the result
is an infinite entropy rate. However, to discover it, in the first case one needs to
construct a very refined partition. In the second case, one needs to reach large
values of D to appreciate that the slope increases logarithmically. Both these
tasks can be very difficult when analyzing a finite time series due to statistical
limitations. In Chapter 5 we discuss the possibility of determining, by exploiting
this property, whether the underlying dynamics of a system is dominated by noise
or by a deterministic process.

2.2.4 Applications of the symbolic analysis

Ordinal patterns and permutation entropy have been widely used in many
fields since it was proposed in 2002, from neuroscience to economics, and even
in climatology [108, 126].

OPs have been employed to distinguish noise from chaos [52, 105–107], to de-
tect noise-induced order [127], time-delay signature of chaos [128], serial correla-
tions [47] and dependencies between two or more time series [129–135], among
many other examples. Applications to experimental time series analysis include
classification and discrimination of dynamical states in normal and epileptic EEG’s
[125, 136–139] and detection of heart rate variability under different physiological
and pathological conditions [114, 140, 141].

In 2004, Cao et al. [125] have shown that permutation entropy can be effectively
used to quantitatively detect dynamical changes. They analyzed EEG signals and
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noticed that slightly after the seizure, the PE has a sharp drop, followed by a grad-
ual increase, see Fig. 2.5. This indicates that the dynamics of the brain becomes
more regular right after the seizure, then its irregularity increases as it approaches
the normal state.

The dynamics of semiconductor lasers in the LFF regime has also been studied
by using the ordinal analysis in [47–49, 53, 54]. They unveiled spike correlations,
because the probabilities of OPs (constructed from consecutive inter-spike inter-
vals) were not consistent with the uniform distribution, as seen in Fig. 2.6. In

Figure 2.6: Probabilities of the six patterns vs. the laser pump current. A crossover in the
hierarchical organization of the words occurs at about 26.6 mA. At lower current values,
the word ’012’ (blue) is the most probable one, while at higher currents values, the word
’210’ (red) is the most probable one. Figure adapted from [53].

these works they also considered the influence of direct current modulation and
identified clear changes in the dynamics as the modulation amplitude increases,
as shown in Fig. 2.7.

Figure 2.7: Probabilities for the patterns of D = 2 (a) and D = 3 (b) versus the modulation
amplitude for the experimental data. The gray region indicates probability values consis-
tent with 95% confidence level with a uniform distribution. Figure adapted from [99].

These works have left some open questions, for example: how correlations in
the spiking laser output depend on frequency and amplitude of the modulation?
Is it possible to identify the onset of different dynamical regimes? Is it possible to
distinguish quantitatively different feedback-induced regimes? Hence, the follow-
ing Chapters 3, 4 and 5 of this Thesis present the results obtained from the studies
of time series from experimental and numerical SLOF using the method of ordinal
analysis, which were carried out motivated by these questions.
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3.1 Introduction
In this Chapter we study experimentally and numerically the dynamics of a

semiconductor laser with optical feedback in the LFF regime, under different con-
ditions of external forcing. This forcing was given to the system through the pump
current, which is sinusoidally modulated, with a modulation frequency that varies
over a comprehensive range encompassing the average LFF frequency without
modulation. We also consider different external cavity lengths and DC current, as
these two experimental parameters allow to vary the natural (unforced) frequency
of the LFF dropouts. We investigate the variation of the mean inter-spike-intervals
(ISI) and the ISI distribution with the modulation frequency. We also use ordinal
analysis presented in Section 2.2.2, to analyze the recorded intensity dynamics.

Ordinal analysis applied to the sequence of ISI allows us to uncover the re-
gions of noisy locking in which the frequency of the modulated LFF dropouts are
govern by the modulation frequency. We also performed simulations using the
Lang-Kobayashi model introduced in Subsection 1.5.1 and show that the simula-
tions are in good qualitative agreement with experimental observations.

The experiments presented in this chapter were performed in collaboration
with Dr. Taciano Sorrentino, a former PhD student of the group. The program for
automated data acquisition was developed by the author and the model simula-
tions were performed by Sorrentino. The results presented in this Chapter have
been summarized in [142, 143].

3.2 Experimental Setup
The experimental setup is depicted in Fig. 3.1 and uses a 650nm AlGaInP

semiconductor laser (SONY SLD1137VS) with optical feedback. The feedback was
given through a mirror placed 70 cm apart from the laser cavity, with a round trip
of ∼5 ns. We also consider other cavity lengths that give delay times of 2.5 ns, 7.5
ns, and 10 ns, unless otherwise explicitly stated the results are presented for τ =5
ns. The laser has a solitary threshold current of Ith = 28.4 mA. The temperature
and current of the laser were stabilized using a combi controller Thorlabs ITC501
with an accuracy of 0.01 C and 0.01 mA, respectively. The current used during
the experiment was I = 29.3 mA and the temperature was set at T = 17 C. The
setup was adjusted so that the threshold reduction due to feedback was about 7%.

27
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Figure 3.1: Schematics of the experimental setup. LD: laser diode; NDF: neutral density
filter; BS: beam-splitter; M: mirror; PD: photo-detector; A: fast amplifier; OSC: digital stor-
age oscilloscope; RFSA: radio frequency spectrum analyzer; COMP: computer; LCC: laser
combi controller; WG: waveform generator.

The signal was captured using a photodetector (Thorlabs DET210) connected to
a FEMTO HSA-Y-2-40 amplifier and registered with a 1 GHz digital oscilloscope
(Agilent Infiniium DSO9104A) with 0.2 ns of sampling.

3.3 Datasets
The experiment was controlled by a LabVIEW program that acquires the in-

tensity time series and detects the spikes. An optical spike is detected each time
the intensity decreases below a preselected threshold (in the following, referred
to as detection threshold). Because the depth of the spikes on the pump current, to
be able to use a criterion to define a spike that holds for all pump currents, each
intensity time series is normalized to unit variance. To avoid detecting as events
the fluctuations that occur during the recovery process (after a spike), a second
threshold is used: the intensity has to grow above the mean value (which is zero
due to the amplifier used in the setup) before another event can be detected. In
order to acquire a large number of spikes, the LabVIEW program runs until 60000
spikes are detected. Then, the program changes the modulation frequency and/or
amplitude, and/or the DC value of the pump current.

3.4 Results

3.4.1 Varying the modulation frequency.

Figure 3.2 displays the measured intensity time series and the ISIs distribution
for six values of the modulation frequency, fmod , when the modulation amplitude
is 1.2% of IDC . For each frequency 30 modulation cycles are shown. The ISI dis-
tribution is computed with bins centered at integer multiples of Tmod (with the
exception of the first bin, centered in 0). The modulation frequencies displayed
are chosen to highlight different behaviors: either n : 1 locking predominates (re-
vealed by a high peak in the ISI distribution at nTmod), or there is a transition from
n : 1 to n + 1 : 1 locking, revealed by the peaks at nTmod and (n + 1)Tmod having
nearly the same heights.

For fmod = 7 MHz (first row) the ISI distribution peaks at Tmod . The time series
reveals that the ISIs are in fact heterogeneous, as in this case the bin centered in
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Figure 3.2: Influence of the modulation frequency in the intensity dynamic. Experimental
time series of LFF intensity spikes (left column) and the corresponding ISIs (ISI) distribu-
tion (right column). The modulation amplitude is 1.2% of IDC and the modulation fre-
quency is 7 MHz (a-b); 14 MHz (c-d); 26 MHz (e-f); 31 MHz (g-h); 39 MHz (i-j); 49 MHz
(k-l). In the left panels only 30 modulation cycles are shown, but the ISI distributions in the
right panels are computed from 60000 ISIs.

Tmod is about 143 ns wide. As the modulation frequency increases, the peak in the
ISI distribution shifts to higher multiples of Tmod and the ISIs become more homo-
geneous. At 26 MHz (third row) phase locking 2:1 occurs with 3:1 intermittency.
In the time series, one can notice that, after a dropout occurs in a modulation
cycle, the next cycle takes place during the intensity recovery time, and the con-
secutive spike is separated in time by 2Tmod . A similar observation holds for higher
frequencies, now other modulation cycles being clearly visible in the intensity os-
cillations between consecutive spikes. For 39 MHz (fifth row) the 3:1 pattern is
dominant, and for 49 MHz (sixth row) we can see intermittent switching between
3:1 and 4:1. As the frequency increases and the modulation become faster, the
ISIs become larger multiples of Tmod as the dropouts are spaced by an increasing
number of cycles.

Figure 3.3a displays the variation of the mean ISI, < ∆T >, with the forcing
frequency for four modulation amplitudes (indicated as percentages of IDC). A
decreasing trend can be observed, interrupted by “plateaus” where < ∆T > oscil-
lates (at about 30 MHz) and remains nearly constant (at about 45 MHz) for the two
lower amplitudes, or continues to decrease for the higher amplitudes.

The origin of this behavior can be identified in Fig. 3.3b, where the ratio <
∆T > /Tmod is plotted vs. the modulation frequency for the same four modulation
amplitudes. After an initial almost linear increase, two plateaus occur at < ∆T >
/Tmod ∼ 2 and < ∆T > /Tmod ∼ 3. For strong modulation amplitude the plateaus are
clear, while for weak modulation, only signatures of the plateaus are seen.

To further investigate the changes in the ISI distribution induced by the varia-
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Figure 3.3: Influence of the modulation frequency in the mean ISI. (a) Mean ISI as a func-
tion of the modulation frequency for several modulation amplitudes. (b) Ratio between
the mean ISI and the modulation period, < ∆T > /Tmod , versus modulation frequency for
several modulation amplitudes.

tion of the modulation frequency, the probabilities of the first 5 bins [i.e., pn with
n = 0 . . .4, pn being the probability of an ISI interval being in the bin (nTmod −
Tmod /2,nTmod + Tmod /2)] are plotted vs. fmod . Figure 3.4 displays the results for
the modulation amplitude of 1.2% IDC . A smooth variation of the probabilities is
observed over the entire frequency range. For clarity we indicate with vertical ar-
rows the six frequencies corresponding to the panels in Fig. 3.2. It can be observed
that p1 displays a maximum (close to p1 = 1) at 7 MHz, p2, at 26 MHz and p3, at 39
MHz, while p1 ∼ p2 at 14 MHz, p2 ∼ p3 at 31 MHz and p3 ∼ p4 at 49 MHz.

Figure 3.5 displays the results of ordinal analysis applied to the ISI sequences,
for the modulation amplitude 1.2% IDC . We present results for D = 2 and D = 3.
For D = 2 [Fig. 3.5a] we plot simultaneously three probabilities: the probabil-
ity of one OP [‘01’, as the probability of ‘10’ is 1-P(‘01’)] and the probabilities of
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Figure 3.4: Probability, pn, that an ISI value is within the interval nTmod − Tmod /2,nTmod +
Tmod /2. n values in the legend. The first five probabilities for the modulation amplitude of
1.2% IDC .
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two transitions (from one OP to the same OP, as the other two TPs can also be
readily calculated from the normalization conditions: TP01→01+TP01→10 = 1 and
TP10→01+TP10→10 = 1). For D = 3 [Fig. 3.5b] we plot simultaneously the probabil-
ities of the 6 OPs.
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Figure 3.5: Ordinal analysis of the influence of the modulation frequency. (a) Probabilities
of D = 2 ordinal patterns and the transition probabilities. (b) D = 3 OPs probabilities. (c),
(d) Same as (a),(b) but when the OPs and TPs are computed from surrogate (shuffled) ISI
sequences.

We can see smooth changes in these probabilities as the modulation frequency
varies. The same type of smooth variation that was observed in the pn probabilities
(Fig. 3.4), is seen here, clearer in the TP01→01 and in the OP ‘210’ probability (red
curves). These probabilities are the ones that depart more from equiprobability
and are anti-correlated.

To demonstrate that these changes are indeed significant, Figs. 3.5(c,d) display
the same probabilities, but calculated after the ISIs series have been shuffled (sur-
rogate data). We can see that in these panels all the OPs and TPs are practically
equiprobable, as expected, as no correlations exist in the surrogate data.

Comparing Fig. 3.4 with panels (a,b) in Fig. 3.5, we see that at 7 MHz (when
p1 is maximum) and at 14 MHz (when p1 ∼ p2) nothing remarkable occurs in the
symbols’ statistics. However, for higher modulation frequencies, changes in the
ISI distributions manifest also in changes in the statistics of the OP probabilities
and transitions between OPs: the maximum of p2 and p3 (occurring at 26 MHz
and at 39 MHz respectively) are located just after the local maxima (minima) of
the TP01→01 (OP ‘210’ probability), and the “equilibrium” situations (p2 ∼ p3 at
31 MHz and p3 ∼ p4 and 49 MHz) occur just after the local minima (maxima) of
TP01→01 (OP ‘210’ probability).

To demonstrate that the above observations are robust, in Fig. 3.6 we plot the
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Figure 3.7: Ordinal analysis: comparison of experimental and numerical ISI data. First row:
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IDC for experiments and 0.8% µ0 for simulations. Legends as in Fig. 3.5.
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probabilities p0 . . .p4, as well as the OPs and TPs, for D = 2, for weaker and for
stronger modulation amplitudes. For the different amplitudes, above 20 MHz, the
maxima and minima of the TP01→01 curve precede the maxima and the “equi-
libria” of the pn probabilities. For strong amplitude we can see that, as p4 (pink
curve) vanishes (and therefore the “equilibrium point” between p3 and p4 also
disappears), the local maximum and minimum in the transition probability curve
also disappear. One remarkable feature is the structure that appears in the TPs in
the low frequencies (< 5 MHz) with the increasing amplitude. This structure does
not appear to be linked with changes in the ISI distribution, at least for the wide
bins (centered at nTmod) used in this analysis. We also did the experiment with
different external cavity lengths corresponding to feedback delays of 2.5 ns, 7.5 ns
and 10 ns. Qualitative similar behavior was observed, with similar structures also
appearing in the lower frequencies for delays of 2.5 ns and 7.5 ns.

3.4.2 Experiments-model comparison

Figure 3.7 shows a comparison between experimental and numerical OP and
transition probabilities for the lower experimental modulation amplitude. The
simulations were preformed using the LK model described in Subsection 1.5.1
with parameters, unless otherwise stated, given in Table 1.1. The modulation am-
plitude is 0.8% IDC for the experimental data, panels a and c in Fig. 3.7. In the
simulations, panels b and d in Fig. 3.7, the modulation amplitude parameter is
a = 0.004, corresponding to 0.8% of µ0, the DC current parameter. For the numer-
ical data, the effect of the modulation amplitude is less pronounced (the probabil-
ities vary less with the frequency than in the experimental data) but present the
same general trends. As discussed in Subsection 1.5.1, the model is quite simple
(it takes into account only one reflection in the external cavity and neglects multi-
mode emission, spatial and thermal effects) and thus, only a qualitative agree-
ment could be expected. Nevertheless it is remarkable that no re-scaling or major
changes in the parameters of the model are needed to reproduce the general be-
havior of the probabilities. More detailed numerical investigations are needed to
understand this.

3.4.3 Varying the feedback time delay and DC pump value.

The effects of varying the time delay and the pump current are shown in Fig.
3.8. These two parameters affects the natural spike rate of the laser (without
modulation). In these experiments the modulation amplitude is kept constant at
Amod = 1.6% of Ith. In panel 3.8a the mean ISI for three external cavities, corre-
sponding to time delays of 2.5, 5 and 7.5 ns, are plotted against the modulation
frequency. The curves for 5 and 7.5 ns present a plateau for low frequencies, fol-
lowed by a rapid decrease in the mean ISIs as the modulation frequency increases,
and a local minimum and maximum, after which the mean ISI varies little for 7.5
ns, and continue to decrease for 5 ns. The local minimum and maximum occur
for higher frequencies in the curve for 5 ns and are absent in the curve for 2.5 ns,
where the mean ISI decrease almost monotonically. When varying the current, Fig.
3.8b, the variations of the spike rate are more gradual. In panel 3.8b the curves
for low IDC resemble the curves for τ = 5, 7.5 ns in Fig. 3.8a. As the current in-
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Figure 3.8: Experimental results: influence of the delay time and the DC pump current
value in the mean ISI. a) Experimental mean ISI as function of the modulation frequency for
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Figure 3.9: Numerical results: influence of the delay time and the DC pump current value
in the mean ISI. a) Mean ISI from simulations as function of the modulation frequency
for three different time delays, µ0 = 1.01. b) Mean ISI from simulations as function of the
modulation frequency for three different DC current parameters, µ0, τ = 5 ns, Amod = 1.6%.
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creases, the plateau in the low-frequency region increases and local minimum and
maximum move to higher frequencies, while the curves become flattened.

Figure 3.9 presents the results of simulations. The mean ISI vs. modulation
frequency for different τ and µ0 is displayed. The numerical curves resemble the
experimental ones, the plateau for low frequency and the following rapid decrease
can be seen. The main difference is the oscillations that occur at intermediate and
high frequencies, much stronger in the experimental curves. We can see a small
oscillation in the curves for τ = 5, 7.5 ns in panel 3.9a and the curve for µ0 = 1.01
in panel 3.9b.

From Figs. 3.8 and 3.9 we can see that when the parameters are such that the
natural spike rate (without modulation) is slow (i.e., for long delay or low IDC)
then, the modulation frequency affects more strongly the mean ISI, that tents to
decrease with increasing modulation frequency. In other words, when the interval
spike rate is slow, a faster modulation produces faster spikes. On the contrary,
when the interval spike rate is already fast (for short delay or large IDC), the mod-
ulation frequency has a smaller effect on the spike rate and does not result in faster
spikes. These results can be interpreted as due to the excitable nature of the LFF
spikes and the refractory time, after each spike time during which, another spike
is not possible.

Although ordinal symbolic analysis does not take into account the exact du-
ration of the ISIs, it can capture subtle changes in time correlations among con-
secutive laser spikes. As the underlying correlations affect the probabilities of the
ordinal patterns (OPs): if no correlations are present in the spike sequence, all OPs
are equally probable; as there are D! possible OPs of dimension D, their expected
probability is 1/D!. Thus, if there are OPs whose probability is significantly dif-
ferent from 1/D!, they unveil the existence of serial correlations in the timing of
the laser spikes. The analysis of the significance of the OP probabilities is done
in Chapter 4, here we use a simple approach and compare with the probabilities
computed from surrogate (shuffled) data.

Figure 3.10 displays the results of the analysis of the experimental data: the
probability of the pattern ‘210’ is plotted for three delays and two modulation am-
plitudes. By analyzing the probability of this pattern, we investigate the existence
of time correlations among 4 consecutive spikes. We chose this pattern because
its probability is the one that differs the most from the 1/6 value expected if no
correlations are present in the spike sequence (i.e., if all the patterns are equally
probable). To demonstrate that the probability of this pattern indeed unveils the
presence of spike correlations, in Fig. 3.10 we also plot in empty symbols the
probability of ‘210’ computed from surrogate data, obtained by shuffling ISIs.

In panel a) of Fig. 3.10, there is an oscillation in the probability for intermediate
frequencies. Observation of the changes in this oscillation pattern along the two
columns (different amplitudes) and the three lines (different time delays), leads to
the following conclusions: i) the increase of the modulation amplitude increases
the differences between maxima and minima and moves the oscillation pattern to
higher frequencies; ii) the decrease in the time delay reduces the differences be-
tween maxima and minima and moves the oscillation pattern to higher frequen-
cies, in such a way that for 2.5 ns delay we can see only the first local minimum of
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Figure 3.10: Influence of the feedback delay time: ordinal analysis of experimental ISI data.
The ‘210’ probability is plotted against modulation frequency, for two modulation ampli-
tudes and three time delays. a-b: τ = 7.5 ns, IDC = 1.03Ith. c-d: τ = 5 ns, IDC = 1.024Ith,
threshold reduction: 7.1%. e-f: τ = 2.5 ns, IDC = 1.03Ith. a,c,e: Amod = 0.8% of Ith. b,e,f:
Amod = 1.6% of Ith. Full symbols: original data. Empty symbols: surrogate data.

the oscillation pattern.
In Fig. 3.11 we present the analysis of simulated data: the probability of ‘210’

for original and surrogate data. A good agreement with the experimental results
of Fig. 3.10 is observed.

A similar behavior is observed when the DC value of the injection current
changes. In Fig. 3.12 we plot, for experimental ISIs, the probability of the ‘210’ pat-
tern for five different DC currents for the same modulation amplitudes and time
delays as in Fig. 3.10. The variation of the oscillation pattern in the ‘210’ probabil-
ity when IDC increases is the same as in Fig. 3.10 when τ decreases, as in both cases
the intrinsic (without modulation) spike rate increases. For the higher amplitude
(1.6%, second column) maxima and minima are more pronounced, and they occur
at higher modulation frequencies. For increasing injection current (from top to
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Figure 3.11: As Fig. 3.10 but the analysis is performed over simulated ISI data. a-b: τ = 7.5
ns. c-d: τ = 5 ns. e-f: τ = 2.5 ns. a,c,e: Amod = 0.8% of µ0. b,e,f: Amod = 1.6% of µ0.
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bottom) the probability curve becomes more flat, as the oscillation pattern moves
to higher frequencies. These observations are also seen in simulated ISIs, Fig. 3.13,
where the probabilities for the pattern ‘210’ are plotted, for the same values of µ0
as in Fig. 3.9b.

From the results shown in Figs. 3.12 and 3.13 we can see that, as the dynamics
of the laser becomes faster and the spike rate increases (increasing the IDC), the
correlations among 4 consecutive spikes fades away, independently of the modu-
lation frequencies.
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Figure 3.13: As Fig. 3.12 but the ordinal analysis is performed over simulated ISI data. a-b:
µ0 = 1.01. c-d: µ0 = 1.02. e-f: µ0 = 1.03. a,c,e: Amod = 0.8%. b,d,f: Amod = 1.6%.
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Figure 3.14: Symbolic analysis of experimental ISI data varying IDC and modulation cur-
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e,f. In the left column the amplitude of modulation was about Amod = 0.8% of Ith; and in
the right column Amod = 1.6% of Ith. The color scale was selected such as the equiprobable
value is located at the center of the scale.

3.4.4 Noisy locking regions

Noisy locking display to simultaneously the influence of IDC (that affects the
natural ISIs frequency) and the forcing frequency. In Fig. 3.14, in color scale, are
represented the probabilities of the ‘10’ (top row), the ‘210’ (middle row) and the
‘3210’ (bottom row) patterns, for experimental data. In this Figure, the same gen-
eral behavior is found for ‘10’, 210’ and ‘3210’: as the injection current increases
the maxima and minima move to higher frequencies, these can be seen in the color
patterns moving to the right, and in the top, the differences between maxima and
minima diminish.

From the results shown above, we observe that the correlation among several
consecutive spikes are diminished when the dynamic of the laser becomes faster.
Well defined regions of (IDC ,fmod) are seen, where the probabilities are close to the

−2

0

2

F
req
2
1
M
H
z

a)

0 20 40 60 80 100
Time/Tmod

−2

0

2

F
req
3
7
M
H
z

b)

I
(a
rb
.u
n
it
s)

Figure 3.15: Experimental time series of LFF intensity spikes, for the set of parameters
marked on the panel f) of Fig. 3.14. The modulation amplitude is 1.6% of Ith the mod-
ulation frequency is 21MHz and the IDC = 1.02 Ith a); 37MHz and IDC = 1.02 Ith b). In the
panels only 100 modulation cycles are shown.
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1/D! value, expected for equally probable OPs. An inspection of the time series
in these regions, Fig.3.15 presents the experimental intensity time series for the
parameters marked in panel f) of Fig.3.14, for the same amplitude of modulation
1.6% of Ith and using different IDC and modulation frequencies; IDC = 1.02 Ith and
fmod = 21MHz in panel a) and IDC = 1.02 Ith and fmod = 37MHz in b). It is noted
the presence of different noisy locking of the spike rate due to the modulation
frequency, panel a uncovers noisy locking of type 2:1, and 3:1 in b). This results
allow us to conclude that the method of the ordinal patterns allows to detect these
locking regimes in the dynamics of modulated LFFs.

3.5 Summary
In this chapter, we have investigated how the spiking laser output represents

a weak periodic input that was implemented by direct modulation of the laser
pump current. We focused on understanding the influence of the modulation fre-
quency and amplitude, of the feedback delay time and of the DC value of the
pump current in the ISI sequences. We analyzed the datasets using the ordinal
symbolic methodology. We have identified changes in the statistics of the ordinal
patterns, which were related to specific changes in the ISI distribution. In addition,
the analysis of the probabilities of the ordinal patterns allowed to detect different
noisy locking regimes. A good qualitative agreement was also found between the
LK model simulations and observations.
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4.1 Introduction
In this Chapter, we use three diagnostic tools to analyze how noisy fluctuations

(close to threshold) gradually transform into well-defined dropouts (LFF regime,
at higher pump currents), which then merge into fast and irregular fluctuations
(CC regime, at even higher pump currents). As can be seen in the video [144],
in spite of the fact that the dynamical regimes are profoundly different, the tran-
sitions are gradual and an objective identification of the transition points is not
possible by a simple inspection of the time series. The diagnostic tools proposed
here allow us to delimit the coexistence region, where the dropouts alternate with
stable noisy emission [70, 145, 146] and find a region of pump currents where
occasionally, extremely depth dropouts occur. We demonstrate the robustness of
our results by presenting a second set of experiments and interpret our findings
concerning simulations of the LK model.

The experiments presented in this chapter were performed in collaboration
with Dr. Jordi Tiana-Alsina a researcher of the group and Jordi Romà a former
undergraduate student of the group, and the simulations with the Lang-Kobayashi
model were carried out by the author. The results presented in this Chapter have
been summarized in [147].

4.2 Experimental setup
The experimental setup is the same as the one used in the Chapter 3, with

the difference that we used a different laser, a 658 nm AlGaInP semiconductor
laser (Hitachi HL6501MG, threshold current Ith,sol = 43.14 mA) and used different
sampling frequencies of the oscilloscope. A LabVIEW program was used to control
the experiment. For each set of pump current and sampling frequency, 10 time
series with 107 intensity data points each, were recorded.

4.3 Intensity dynamics
Recording the intensity dynamics over long time intervals while keeping the

pump current constant, allows studying the alternation of noisy fluctuations and
LFFs, shown in Fig. 4.1. As discussed in Subsection 1.5.2, this coexistence was
first reported in [70] and has been interpreted, in the framework of the LK model,
as noise-induced escapes from a stable external cavity mode [45, 46]. The detec-
tion system uses an amplifier that removes the mean value of the signal, and thus,

41
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the zero intensity level is equal to the mean value of the intensity waveform. To
quantitatively characterize, as the pump current increases, the transitions between
these dynamical regimes, we use three diagnostic tools that capture different prop-
erties of the intensity time-series.

Figure 4.1: Intensity time-series (normalized to zero mean and unit variance) for I/Ith =
0.97 (a) and 0.98 (b). Note the different time-scale with respect to Fig. 1.12. In panel (a)
the depths of the dropouts are heterogeneous, and there are dropouts below −9σ . In panel
(b) the dropouts are of a similar depth, and they are less pronounced. The panels (c) and
(d) display a detail of a single dropout: it is abrupt in (d), while is more gradual in (c). The
horizontal dashed and solid lines in panels (c) and (d) stand for the 3σ level and the average
value respectively.

4.4 Methods and Results

4.4.1 First diagnostic tool

The first method is based on the analysis of the standard deviation, σ , of in-
tensity time-series recorded with different oscilloscope sampling rate. Figure 4.2
displays σ vs. the laser pump current, for three sampling rates. In panels (a)-(c),
for each pump current, ten σ values are displayed, computed from ten time se-
ries recorded under identical conditions; in panel (d), for each set (pump current,
sampling rate), the mean σ value is displayed, and in this plot we can identify five
behaviors as the pump current increases:

a) Close to the lasing threshold σ is small and shows a low variability. This
corresponds to stable noisy emission, shown in Fig. 1.12a.

b) For higher current, σ increases gradually and shows higher variability, cap-
turing the development of intensity dropouts (i.e., the onset of the LFF regime). A
typical intensity time trace is shown in Fig. 4.1a.

c) For slightly higher current there is a wide spread in the values of σ . This
captures the coexistence between stable noisy emission and well-defined LFF
dropouts [70, 145, 146]. A typical intensity time trace is shown in Fig. 4.1b.

d) For higher currents, there is an almost linear increase of σ , which captures
the increase of the depth and of the frequency of the dropouts. A typical intensity
time trace is shown in Fig. 1.12b. A similar linear growth was reported by Hong
and Shore [42].

e) Finally, for pump currents above I/Ith ∼1.08, σ saturates or decreases, de-
pending on the sampling frequency. This change, previously unrecognized, cap-
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Figure 4.2: Standard deviation of the intensity time series, σ , recorded using three different
sampling rates, vs. the laser pump current, normalized to the threshold value, I/Ith. In
panels (a)-(c), for each pump current and sampling rate, ten σ values are shown; in panel
(d), the average σ value is plotted vs. the normalized laser pump current, for the three
sampling rates. In this panel, the arrows indicate the current values where the behaviors
discussed in the text occur.

tures the fact that the dropouts become irregular and quantitatively identifies the
onset of coherence collapse. A typical intensity time trace is shown in Fig. 1.12c.

4.4.2 Second diagnostic tool

The second method is based on the analysis of the number of intensity
dropouts, as discussed in Chapter 3. Here we vary the detection threshold, in
order to detect ’dropout-like’ events, i.e. thresholds lower than -1 are used. We use
a sampling frequency of 5 GSa/s because it provides a good compromise between
a precise detection of the individual threshold-crossing events and detects a large
number of events.

In Fig. 4.3a the number of events (averaged over ten time-series, in logarithmic
scale) is plotted vs. the detection threshold, for different pump currents, which
correspond to the different behaviors identified in the previous analysis of σ (the
corresponding intensity probability distribution functions are shown in Appendix
4.5):

a) At low pump current [inverted triangles, the time-series was shown in Fig.
1.12a], the number of events decreases smoothly with the threshold, which is con-
sistent with Gaussian statistics.

b) At higher pump current [circles, the time-series was shown in Fig. 4.1a], the
number of events gradually decreases with the detection threshold, capturing the
fact that the intensity distribution develops a tail, due to the dropouts. While there
are about 106 events deeper than -1, few are deeper than -9 (∼100).

c) At slightly higher pump current [stars, the time-series was shown in
Fig. 4.1b] a plateau develops, which indicates that there is a range of thresh-
olds for which the number of events is robust with respect to the threshold
(thresholds in between -6 and -3 detect about 104 events). This plateau captures
the fact that many dropouts are of similar depth. We note that the dropouts are
less pronounced than those occurring at slightly lower pump current because no
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Figure 4.3: (a) Number of events (in logarithmic scale) as a function of the detection thresh-
old (in units of σ ), for different pump currents. (b) Number of events in color code (loga-
rithmic scale) vs. the pump current and the detection threshold. The white color indicates
that no events are detected. (c) Number of events in color code (logarithmic scale) vs. the
pump current for three detection thresholds. The arrow indicates the boundaries of the LFF
region, where the depth of the intensity dropouts is regular, and thus, the number of events
is the same for the three thresholds.

event crosses the -8 threshold.
d) At higher pump current [squares, the time-series was shown in Fig. 1.12b]

the plateau occurs in between -5 and -1 (thresholds in this range detect more than
104 events), capturing the fact that the dropouts become more frequent and less
depth in units of σ .

e) For the higher pump current [triangles, the time-series was shown in Fig.
1.12c] the plateau disappears, and the number of events decreases sharply with
the threshold, which indicates non-Gaussian statistics.
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These findings are summarized in Fig. 4.3b that displays the number of events
(in logarithmic color code) vs. the pump current and the detection threshold. The
plots shown in Fig. 4.3a are obtained by moving along the dashed vertical lines in
Fig. 4.3b. We note that at low pump current there are no events below -6 thresh-
old (the white color indicates that no threshold-crossings are detected), but as
the pump current increases, the detection threshold ‘grows’ (negatively), because
dropouts gradually emerge. Then, we observe a narrow region of pump currents,
0.96 < I/Ith < 0.99, where very few events (∼ 100) are detected with thresholds
below −8. Thus, this allows delimiting the pump current region where extremely
depth dropouts occur. A further increase of the pump current results in a gradual
increase of the detection threshold that captures the fact that the dropouts become
less pronounced. We also note that for pump currents above I/Ith ∼1.08, the num-
ber of events increases (note the change from dark to a lighter color). This captures
the fact that the dropouts occur more often, and quantitatively identifies the onset
of coherence collapse, in good agreement with the analysis of σ . The transitions
can also be observed when plotting the number of events vs. the pump current, for
different detection thresholds. As shown in Fig. 4.3c, there is a well-defined re-
gion where the number of detected events is the same for the different thresholds
considered. This reveals that in this region the depth of the intensity dropouts is
regular, and thus, quantitatively identifies the boundaries of the LFF region. In
contrast, outside this region the number of detected events varies with the thresh-
old, capturing the fact that the depth of the intensity dropouts is irregular.

4.4.3 Third diagnostic tool

The third method is based in the ordinal analysis. The different dynamical
regimes and transitions are characterized in terms of the probabilities of occur-
rence of the OPs in the ISI sequence.

The probability region consistent with the uniform distribution is estimated
with a binomial test: considering a confidence level of 95%, if all the OP proba-
bilities are within the range, p ± 3σp, where p = 1/6 and σp =

√
p(1− p)/N (with

N being the length of the dataset), the OP are equally probable. In contrast, if at
least one probability value is above p+3σp or below p−3σp, the OPs are not equally
probable, with 95% confidence level.

The statistical significance of the the OP probabilities, this means the con-
fidence that probabilities values that are not consistent with the uniform dis-
tribution, is estimated with a binomial test: considering a confidence level of
95%, if all the OP probabilities are within the range, p ± 3σp, where p = 1/6 and
σp =

√
p(1− p)/N (withN being the length of the dataset), the OP are equally prob-

able; in contrast, if at least one probability value is above p+ 3σp or below p − 3σp,
the OPs are not equally probable, with 95% confidence level.

To detect the events, we first consider a fixed threshold, equal to −3 because
it provides a good compromise between analyzing only the dropouts that are
sufficiently depth (filtering noisy fluctuations), while keeping a large number of
dropouts (needed to compute OP probabilities with good accuracy), in a wide
range of pump currents. As shown in Fig. 4.3b, the detection threshold varies in
a nontrivial way with the pump current. With −3, more than 75000 events are
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detected for all pump currents.
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Figure 4.4: (a) Probabilities of the six D = 3 ordinal patterns vs. the normalized pump
current, I/Ith. (b) Most probable OP [in the same color code as panel (a)] vs. the normalized
pump current and the detection threshold. In both panel the gray regions indicates that,
either the six OPs are equally probable, or the number of detected events is not enough to
compute the OP probabilities with robust statistics. The white color in panel (b) indicates
that no events are detected.

Figure 4.4a displays the six OP probabilities vs. the pump current. At low
pump current, the OPs are equally probably, which is consistent with uncorrelated
intensity fluctuations. At higher pump currents, large and abrupt variations of the
OP probabilities are seen. This is the pump current region where the dropouts
develop, they are heterogeneous, and few of them are very depth. The OP prob-
abilities uncover temporal correlations which are because, in this current region,
the -3 threshold detects events during the recovery process. It is worthwhile to
note that the shape of the dropout waveform changes in this current region [see
the panels (c) and (d) in Fig. 4.1], and the OP probabilities capture this change.

At higher pump currents the OP probabilities vary smoothly and pattern ‘210’
becomes the most probable pattern. We note that the value of the pump current
at which the probability of pattern ‘210’ is maximum, I/Ith=1.08, is also the one
where the onset of coherence collapse occurs, as identified by the other two di-
agnostic tools. For higher pump currents the OP probabilities detect additional
changes in the temporal correlations among consecutive events, as pattern ‘012’
becomes the most probable one, and then, for even higher pump currents, all pat-
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terns become about equally probable (consistent with no temporal correlations
among consecutive events).

Next, we analyze the influence of the detection threshold. Figure 4.4b dis-
plays, in color code, the most probable OP vs. the pump current and the detection
threshold. It can be observed that there is a range of pump currents where the most
probable pattern does not vary with the detection threshold (0.96 < I/Ith < 1.11).
In this region, the depth of the dropouts is regular; in contrast, for other pump
currents the most probable OP either varies with the detection threshold (because
the depth of the dropouts is irregular), or it is not defined (because the OP proba-
bilities are very similar).
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Figure 4.5: (a) Probability of the “decreasing trend” pattern of length D with D = 2 . . .7
(i.e., patterns 10, 210, 3210, . . . , 6543210) vs. the normalized pump current, I/Ith. For
easy comparison, each probability is normalized to the value expected if the patterns are
equally probable, 1/D!. (b) Permutation entropy, normalized to its max value, computed
from the probabilities of the patterns of length D (with D = 2 . . .7) vs. the normalized pump
current. In both panels (a) and (b) regime transition points are clearly identified, which are
consistent with the transition points that were detected in Fig. 4.4 with D = 3.

Lastly, we analyze the influence of the length of the ordinal pattern, D. Figure
4.5a displays the probability of the “decreasing trend” pattern of length D with
D = 2 . . .7 (i.e., the probability of pattern 10, 210, 3210, . . . , 6543210) vs. the nor-
malized pump current. For easy comparison, each probability is normalized to the
value expected if the patterns are equally probable, 1/D!. In this plot, the regime
transition points that were identified with D = 3 in Fig. 4.4 are also observed for
the other values of D considered. Moreover, permutation entropy, that was pre-
sented in Subsection 2.2.3, and will be analyzed in detail in the next Chapter, is
another diagnostic tool that also allows to identify the regime transition points, as
shown in Fig. 4.5b. The length N of the time series is 107 for all D values. The
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influence of N will be analyzed in the next Chapter.

4.5 Complementary information
Here we include multimedia information: we present a video of the experi-

mental dynamical transitions studied along this Chapter. We also complement
the analysis by presenting the characterization of the laser output intensity using
standard techniques: the light power vs. current characteristic (LI curve) and the
probability density function (PDF) of the laser intensity. We also demonstrate the
robustness of our findings by presenting a second set of experiments performed
with a different laser, under different feedback conditions. In addition, we present
simulations of the Lang-Kobayashi model, which show good qualitative agreement
with the observations.

4.5.1 LI curve and intensity PDF
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Figure 4.6: Output power (vertical right axis) and the standard deviation of the intensity
fluctuations (vertical left axis) vs. the pump current, normalized to the solitary laser thresh-
old current. The thin and thick lines represent the output power with and without optical
feedback respectively. The letters indicate the values of the pump current the where differ-
ent behaviors discussed in the text occur.

Figure 4.6 displays the light power vs. current characteristic (LI curve), and we
indicate the pump current values where the different regimes discussed in Sub-
section 4.4.1 occur. For easy comparison, we also show the standard deviation of
intensity fluctuations.
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Figure 4.7: Probability density function (PDF) of the laser output intensity for five values of
the normalized pump current, corresponding to the different dynamical regimes. For easy
comparison, in panel (a) the intensity is displayed in arbitrary units (raw data recorded by
the oscilloscope), in panel (b), it is normalized to the standard deviation, and in panel (c),
to the average output power (as shown in Fig.4.6).

As discussed previously, in the LFF regime, due to intensity dropouts, the prob-
ability density function (PDF) of the intensity fluctuations, shown in Fig. 4.7, de-
velops a tail in the left side of the distribution. In contrast, before the onset of the
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LFF regime (I/Ith = 0.95), and in the CC regime (I/Ith = 1.2), the intensity PDF has
a well defined cutoff. While at low current the PDF is Gaussian, in the CC regime
the PDF is not Gaussian.

0 20 40 60

Time[ns]

−5

−4

−3

−2

−1

0

1

N
or
m
al
iz
ed

L
as
er

In
te
n
si
ty

10-6 10-5 10-4 10-3 10-2 10-1

PDF

Figure 4.8: Detail of an intensity dropout when the laser pump current, normalized to the
solitary threshold, is I/Ith = 1.02.

We note that for I/Ith = 1.02 the PDF displays a nontrivial structure which is
due to the step-like recovery that occurs after a dropout, as shown in Fig. 4.8.
These observations are in agreement and consistent with previous findings [36,
55, 57, 148, 149].

4.5.2 Second set of experimental observations

Here, we present experiments performed with a different laser and feedback
conditions compared to those in the previous sections, and we find qualitatively
very similar results. The laser is a 685 nm HL6750MG semiconductor laser (Op-
next HL6750MG) with solitary threshold current of Ith = 28.29 mA. The feedback-
induced threshold reduction and the feedback delay time are 15.42% and 5.3 ns
respectively.

Figure 4.9 displays the standard deviation, σ , of the intensity time-series vs.
the laser pump current, for a sampling frequency of 5 GSa/s of the oscilloscope,
and a very good agreement is seen with Fig. 4.2. Figure 4.10a displays the number
of events vs. the detection threshold, and here again a qualitative good agree-
ment is found with Fig. 4.3a. It is worthwhile to note that the plateau also exists
with a different detection method, as shows Fig. 4.10c: instead of normalizing
the time series to standard deviation equal to one, we normalize in such way that
the maximum and minimum are equal to one and zero respectively. We note that
these two methods differ in the sense that with the second method any thresh-
old value within (0,1) will detect a certain number of events, while with the first
method (used in Subsection 4.4.2), the interval of detection thresholds depends on
the pump current [as shown in Fig. 4.10b and Fig. 4.10b]. Nevertheless, with this
alternative normalization one can also observe the existence of the plateau.

Figure 4.11 displays the six OP probabilities for D = 3 vs. the pump current.
We note a variation very similar to that shown in Fig. 4.4a.

4.5.3 Numerical results

In the framework of the LK model, it has been shown that the LFF intensity
dropouts can be either transient or sustained [145, 146], with the probability of
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Figure 4.9: Second set of experimental results: standard deviation of intensity time series,
σ , vs the normalized pump current, I/Ith. This plot is very similar to Fig. 4.2.
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Figure 4.10: Second set of experimental results: (a) Number of events (in logarithmic scale)
as a function of the detection threshold (in units of the standard deviation of the intensity
fluctuations), for five values of the normalized pump current. A qualitative good agree-
ment is seen with Fig. 4.3a. (b) Number of events in color code (logarithmic scale) vs. the
pump current and the detection threshold. (c) Number of events (in logarithmic scale) as
a function of the detection threshold (in this case the time series was normalize such that
the maximum and minimum are equal to one and zero respectively), for five values of the
normalized pump current.
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Figure 4.11: Second set of experimental results: (a) Probabilities of the six D = 3 ordinal
patterns vs. the normalized pump current, I/Ith. A qualitative good agreement with Fig.
4.4a can be observed. (b) Most probable OP vs. the normalized pump current and the
detection threshold.
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observing sustained LFFs or stable emission depending on the relative widths of
the windows where these regimes occur. For typical parameters, however, the LFF
are a transient dynamics with a duration that increases with the pump current
parameter [45, 46]. Typical intensity time-series are shown in Fig. 4.12.

To compare with experimental observations we need to generate a sufficiently
large number of dropouts, therefore, for each value of the pump current parame-
ter, 20 trajectories of 50 µs were generated from random initial conditions.

In Fig. 4.13 we show that, taken together, the results of the analysis of the
simulated data are in very good qualitative agreement with the experimental ob-
servations: the variation of the standard deviation, Fig. 4.13a, the variation of the
number of threshold-crossing, Fig. 4.13b, and the variation of the OP probabilities,
Fig. 4.13c, with the pump current parameter are very similar to those encountered
in the experimental data.

To conclude this comparison, Fig. 4.14 (left) displays the shape of the exper-
imental and simulated σ curve, allowed us to determine the five values of the
pump current parameter that correspond to the experimental pump currents an-
alyzed in Subsection 4.4.1. For those values, as shown in Fig. 4.13b, the variation
of the number of events is very similar to that seen in the experiments. However,
it is worthwhile to note that the agreement is only qualitative: we note that the
simulated dropouts are less depth than the experimental ones [in Fig. 4.13b the
lowest detection threshold is -4σ ]. A second discrepancy is seen in Fig. 4.14 (left),
where the experimental and simulated σ curves agree qualitatively well only if the
horizontal axes are shifted (i.e., µ = 1 is shifted with respect to I/Ith =1) and the
vertical axes are re-scaled. The origin of these discrepancies could be the fact that
in the simulations the LFFs are transient; also, the simple filtering used (a moving
average in a time-window of 5 ns) might play a role. We remark that our goal here
is only to demonstrate the robustness of our findings though a comparison with
model simulations.

In Fig. 4.14 (right) we present the equivalent of Fig. 4.6, computed from the
simulated time-series. Here again we observe a good qualitative agreement model
simulations – experimental observations.

4.6 Summary
In this chapter we have applied three analysis tools to quantify various aspects

of the dynamic transitions that occur as the laser pump current increases. These
tools allowed us to quantitatively distinguish among stable noisy emission, coexis-
tence between stable noisy emission and low-frequency fluctuations (LFFs), LFFs,
and coherence collapse (CC). A main conclusion of our analysis is that the change
in the shape of the curve of the standard deviation vs. the pump current, which
is accompanied by a maximum in the probability of pattern 210, quantitatively
determine the transition from LFFs to CC regime. We also found that at the onset
of LFFs, rare and extremely depth dropouts occur. We have demonstrated the ro-
bustness of these observations with a second set of experiments performed with a
different laser and feedback conditions, and we have also provided an interpreta-
tion of our findings in terms of simulations of the LK model.
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Figure 4.12: Simulated time series for three values of the pump current parameter, µ = 0.978
(a), 0.982 (b) and 1.032 (c)
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Figure 4.13: Results of numerical simulations. (a) Standard deviation of intensity time se-
ries, σ , vs the pump current parameter, µ. (b) Number of events (in logarithmic scale) as a
function of the detection threshold. (c) Probabilities of the six D = 3 ordinal patterns vs. µ.
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Figure 4.14: In the the left panel, the vertical left and bottom horizontal axis (in blue):
standard deviation of the experimental intensity time series, σ , vs. the normalized pump
current I/Ith; in the vertical right and upper horizontal axis (in red): standard deviation of
the simulated intensity time series vs. the pump current parameter, µ. In the right panel
same as Fig. 4.6 but computed from simulated data.
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Because the experimental datasets analyzed in the previous Chapters are very
noisy, in this Chapter we study how the presence of noise influences the ordinal
method of data analysis, in particular the permutation entropy. To this aim, we
first analyze time series generated from the logistic map and from the Rössler sys-
tem, where we can vary the noise level in the system. Then, we analyze experimen-
tal data from the output intensity of a semiconductor laser with optical feedback.
We also consider simulated data with the LK model. The datasets (experimen-
tal and numerical) are analyzed by using the two symbolic methods proposed in
Section 2.2: OPs and BPs.

The simulations presented in this chapter were performed in collaboration
with Dr. Simone Pigolotti, a former researcher in the group, and the experiments
were carried out by the author. The results presented in this Chapter have been
summarized in [150].

5.1 Datasets

5.1.1 Numerical data

We consider two dynamical systems: the one-dimensional logistic map and the
three-dimensional Rössler system, presented in Subsection 2.1.1. In both cases, we
study the effect of adding to the dynamical equations a Gaussian white noise, ξt ,
with 〈ξt〉 = 0 and temporal correlation 〈ξtξt′ 〉 = δt,t′ . We also considered the case
of observational noise, where the dynamic is deterministic but the noise affects the
observation, obtaining very similar results (not shown).

The equation of the Logistic map with additive noise is :

xt+1 = 4xt(1− xt) +αξt , (5.1)

where xt is the state of the system at iteration t and α is the noise strength. In
order to constrain the variable xt in the interval [0,1], the values of ξt that would
lead to xt+1 > 1 or xt+1 < 0 are simply discarded and redrawn. Thus, the noise
ξt is temporally uncorrelated, but not Gaussian due to this truncation effect. To
investigate the variation of the permutation entropy with the noise strength, we
computed the permutation entropy, for each value of α, from time series of length
N = 1.2× 107. We have also studied other nonlinear one-dimensional maps (Tent,
Bernoulli and Quadratic) and obtained very similar results to those of the logistic
map (not shown).

53
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Figure 5.1: Permutation entropy (HD ) as a function of the size of the ordinal pattern (D) and
the noise strength (α) for data generated from the Logistic map. (a)HD vsD for α = 1×10−4

(stars), α = 2 × 10−2 (triangles), α = 5 × 10−2 (inverted triangles), α = 0.1 (circles), α =1
(pentagons) andHmax = lnD! (solid line). (b)HD versus α forD = 2 (stars),D = 3 (triangles),
D = 4 (inverted triangles), D = 5 (circles), D = 6 (pentagons), D = 7 (squares) and D = 8
(diamonds).

In the case of the Rössler system, the Gaussian white noise was added to the X
variable as :

Ẋ = −Y −Z +αξ(t),

Ẏ = X + aY (5.2)

Ż = b+Z(X − c)

where {X,Y ,Z} are the states of the system at time t, α is the noise strength and
{a,b,c} are the parameters set at {0.1, 0.1, 18.0}, respectively.

To apply the symbolic methods (ordinal patterns or blocks) we need to dis-
cretize the dynamics. Instead of employing temporal sampling [151], we introduce
a Poincaré section at X = 0, and analyze the time intervals between consecutive
crossings of the Poincaré plane. The reason for this choice is that it is conceptu-
ally similar to how we discretize the experimental time series, as discussed in the
next subsection. For each value of α, the permutation entropy is computed from
time-series of N = 1.2× 107 data points.

5.1.2 Experimental data

The experimental setup is the same as in Section 3.2, without the waveform
generator, and uses a 650 nm AlGaInP semiconductor laser (SONY SLD1137VS)
and has a solitary threshold current of Ith = 28.4 mA. The intensity time series
were acquired from the oscilloscope by a LabVIEW program that uses a threshold
to detect the times when the intensity drops and calculates the time intervals be-
tween successive threshold crossings (in the following, referred to as inter-spike-
intervals, ISIs). We recorded in this way time series of ore than 105 consecutive
ISIs.

5.2 Results

5.2.1 Logistic map

Figure 5.1a displays the permutation entropy, HD , vs the dimension of the or-
dinal patterns, D, computed from time series of the logistic map at different noise
strengths. It can be observed that HD increases monotonically with D, regardless
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Figure 5.2: Comparison of the entropy computed from ordinal patterns, and the entropy
computed from the blocks, for the Logistic map. The difference HD −HD−1 is plotted vs.
the dimension of the ordinal patterns (a,c) and of the blocks (b,d) for various values of noise
strength [the noise strengths are as in Fig. 5.1a]. In panels (a) and (b) the solid lines indicate
the asymptotic values for low noise (thick) and high noise (thin). Panel (c) and (d) display a
detail of (a) and (b).

of the noise strength. As the noise increases, HD approaches its maximum value,
corresponding to equally probable ordinal patterns,Hmax = lnD! (solid black line).
Note that at α = 1 (pentagons) the values of HD is already very close to Hmax. Fig-
ure 5.1b displays HD as a function of the noise strength α. A clear transition from
low-noise to high-noise can be observed, for a value of the noise strength approx-
imately independent of D. The difference between the values of the entropies at
low and high noise becomes more pronounced as D increases.

To further investigate this transition, Fig. 5.2a displays the differenceHD−HD−1
as a function of D, for various values of noise strength. As before, we indicate with
a thin black line the noise-dominated limit in which all patterns are equiprobable,
HD −HD−1 = (lnD! − ln(D − 1)!). In the opposite limit of almost-deterministic, as
D grows, the expected value of HD −HD−1 is the Kolmogorov-Sinai entropy [122],
which for a one-dimensional chaotic map is equal to the Lyapunov exponent λ. In
the case of logistic map for a parameter set at four one has λ = ln2, indicated by
the thick black line. As shown in detail in Fig. 5.2c, we identify three possibilities:

• a almost-deterministic regime in which HD −HD−1 decreases for large D,

• a noise-dominated regime in which HD −HD−1 increases for large D,

• an intermediate regime in which HD −HD−1 remains nearly constant with D.

In principle, this qualitative feature of the permutation entropy can be applied
to experimental time series to assess whether the dynamic is dominated by noise
or by the deterministic dynamics.

We remind that this distinction can not be done for the block entropy, as in
this case HD −HD−1 is necessarily a decreasing function of D (see e.g.[118, 152]).



56 CHAPTER 5. EFFECTS OF NOISE ON THE PERMUTATION ENTROPY

This fundamental difference between permutation entropy and block entropy can
be appreciated by comparing the left and right panels of Fig. 5.2.

5.2.2 Rössler system

For the analysis of time series of the Rössler system, we considered the Poincaré
plane X = 0, shown in Fig. 5.3a, and analyzed the sequence of time intervals
between consecutive crossings. Figure 5.3b shows the difference HD −HD−1 vs D,
for different values of α. The solid line indicates the expected value if all ordinal
patterns were equally probable, HD − HD−1 = lnD! − ln(D − 1)!. Because of the
high level of stochasticity, we calculate the confidence interval that is consistent
with the null hypoThesis of equally probable ordinal patterns: in Fig. 5.3b the
gray region represents the expected value ±3σ , where σ is the standard deviation
calculated for a hundred surrogated (shuffle) time-series.
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Figure 5.3: (a) Rössler attractor and Poincaré section in X = 0. (b) Permutation entropy
difference, HD −HD−1, vs the dimension of the ordinal patterns, D, for noise strength α = [0
(star), 0.8 (triangle), 1.6 (inverted triangle), 2.4 (circle), 3.2 (pentagon), 4 (square)]. The
gray region indicates the values of HD −HD−1 that are consistent with equally probable
ordinal patterns (see text for details). For the smallest value of alpha, HD −HD−1 shows a
non-monotonic behavior, while for higher values of the noise strength, HD −HD−1 grows
monotonically with D.

Before testing the method in experimental data, we want to investigate how the
choice of the Poincaré section influences the results. We consider a Poincaré section
in the plane Z = β, as shown in Fig. 5.4a, and varying β in the range [0.05− 26.7],
for a fixed value of α = 0. In this case, to discretize the time series, we analyze the
time values when the trajectory intersects the Poincaré section and Z grows.

Figure 5.4b displays the difference HD −HD−1 vs. D, for different values of β.
We can see that the difference HD −HD−1 increases with β. This is due to the fact
that, as β is increased, consecutive values in the time-series become increasingly
uncorrelated, similarly to when increasing the noise strength. On the contrary, for
the minimum value of β, the variation of HD −HD−1 with D is resemblant to the
behavior under almost-deterministic observed in Fig. 5.3b.

5.2.3 Laser dynamics: experimental data and LK model data

Next, we analyze experimental data from the laser output intensity, displayed
in Fig. 5.5a. To discretized the data we consider, we used the same method as
in Section 3.3. Figure 5.5b displays the difference HD −HD−1 vs. D, for different
thresholds. Note that HD −HD−1 varies with the threshold in a similar way as in
Fig. 5.4b: as the threshold decreases, correlations between consecutive dropouts
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Figure 5.4: (a) Rössler attractor and Poincaré section placed in z = β. (b) Permutation en-
tropy difference,HD−HD−1, vs the dimension of the ordinal patterns,D, for β = 0.05 (stars),
β = 6.7 (triangles), β = 13.4 (inverted triangles), β = 20.0(circles), β = 26.7 (pentagons). The
behavior is qualitatively similar to the one observed in Fig. 5.3b.

are lost.
For all the thresholds, HD −HD−1 grows monotonically with D. The reason is

that the empirical time series is very noisy and the “almost-deterministic” regime
is not seen, not even for the highest threshold. Nevertheless, the values of HD −
HD−1 lie outside the gray region that indicates values consistent with equally prob-
able ordinal patterns. This reveals that the sequence of intensity dropouts are not
completely uncorrelated, and thus, this method can determine regularities also in
very noisy data.
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Figure 5.5: (a) Experimentally recorded time-series for the output intensity of a semicon-
ductor laser, which operates in the low-frequency fluctuations (LFFs) regime, induced by
self time-delayed optical feedback. The horizontal lines indicate the thresholds used to de-
tect the dropout times. (b) Permutation entropy difference, HD −HD−1, vs the dimension
of the ordinal patterns, for different thresholds: −0.5 (stars), −2 (inverted triangles) and −4
(pentagons).

The time-delayed Lang-Kobayashi model (Section 1.5.1) is used to compare
time-series generated by this model with the experimental ones. The parameters
are as in [143]. We use the same threshold value as with the experimental time
series. We calculated data sets of more than 106 consecutive time intervals. Results
are in Figure 5.6. One can observe a very good agreement with the experimental
results.

5.2.4 Influence of the length of the time series

Finally, we consider the issue of the length of the time series. If the time series
is too short, the statistics to compute the probabilities of patterns is insufficient,
and the entropy is underestimated. Figure 5.7 displays the estimated value of the
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Figure 5.6: As in Fig. 5.5 but the data are generated from simulations of the LK model,
with parameters as in Table 1.1.

permutation entropy vs. the length of the time series, for different dimensions of
the ordinal patterns. Notice that the data requirements increases with D. As the
number of possible patterns of length D is equal to D!, we analyzed time series of
length N = 300 Dmax for the simulations, where Dmax is the maximum dimension
considered D = 8; and for the experiment N = 10 Dmax with D = 7. The vertical
dotted line marks the length corresponding to this criterion and demonstrates that
the permutation entropy is computed with sufficient statistics.
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Figure 5.7: Dependence of the normalized permutation entropy, HD / logD!, on the length,
N , of the time-series. In panels (a),(b) the data was generated with the logistic map and
different noise levels (0.01, 0.2); in panel (c) the data is the inter-spike-intervals, recorded
experimentally (the data set is the same as that in Fig. 5.5 with threshold −0.5). The solid
lines represent the permutation entropy computed for the different dimensions (D); the
vertical dotted line indicates the length used in previous figures.

5.3 Summary
In this chapter we have studied the effect of noise in the permutation entropy

and we have compared with the effect of noise in the block entropy. We have
analyzed simulated data (generated with the Logistic map and the Rossler chaotic
system) and empirical data (the inter-spike intervals in the experimental output
intensity of a laser in the LFF regime). In the simulated data, when increasing the
noise strength, a transition between a almost-deterministic regime and a noise-
dominated regime was clearly observed. The noise value at which this transition
occurs is nearly independent of the size of the ordinal pattern. This transition was
not detected with the block entropy. In the experimental time series the “almost-
deterministic” regime was not observed, due to the fact that the data is very noisy;
however, the analysis allowed to detect regularities of the underlying dynamics,
and simulations of the LK model were found to be in good agreement with the
empirical data.
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In this Thesis, we have presented experimental and numerical studies of the
nonlinear dynamics of a semiconductor laser with optical feedback. We have in-
vestigated the role of the modulation frequency in the LFFs dynamics, we have
characterized the noise LFF-CC transition, and we haved analyzed the influence of
the noise in the ordinal method of time-series analysis, that was used to analyze
the lasers data.

6.1 Summary and conclusions
We can summarize the results presented in this Thesis as follow:

• In Chapter 3 we have experimentally investigated the spiking output of a
semiconductor laser with optical feedback in the LFF regime, under weak
current modulation. In this regime, the laser behaves as a weakly forced
excitable system. With increasing modulation frequency, the ISIs become
larger multiples of the modulation period. We found that the mean ISI does
not decrease monotonically as the modulation frequency increases, but dis-
plays smooth oscillations and plateau-like behavior due to noisy locking.
By using a ordinal analysis, we identified subtle changes in the correlations
present in the ISI sequence (revealed by variations in the probabilities of the
ordinal patterns and transitions), that complement the information extracted
from the ISI distribution. The smooth variations in the symbolic probabili-
ties were shown to be related to changes in the ISI distribution. For increas-
ing modulation amplitude we observed that the locking regions migrate to
higher frequencies, became wider and the locking became more clearer. We
have also shown that simulations of the Lang and Kobayashi model are in
good qualitative agreement with the experimental results.

• In Chapter 3 we have also studied how the external cavity length (i.e., the
feedback delay time, τ) and the DC value of the injection current, IDC , affect
the mean (ISI) and the spike correlations. When the laser spike rate, without
modulation, is slow (which occurs for large τ or for low IDC), increasing the
modulation frequency results in considerably faster spikes; on the contrary,
if the spike rate is fast (for short τ or for high IDC), the modulation frequency
has only a small effect on the spike rate, and fast modulation is unable to
produce much faster spikes.
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We have also studied how τ and IDC affect the probabilities of the OPs that
represent increasingly close spikes: ‘3210’, ‘210’ and ’10’. We used a clearly
visible oscillation in the OPs’ probability, when it is plotted against the mod-
ulation frequency. We found an equivalent effect when decreasing τ or when
increasing IDC , as the oscillation moves to higher modulation frequency and
the differences between maxima and minima fade out. As the intrinsic spik-
ing dynamics becomes faster, the effects of the current modulation become
less pronounced. Once again, simulations of the Lang and Kobayashi model
were found to be in a good qualitative agreement with the experimental ob-
servations.

• In Chapter 4 we have used three analysis tools to identify and character-
ize transitions between different dynamical regimes, as the laser pump cur-
rent increases. These tools capture different properties of these regimes and
quantitatively distinguish among stable noisy emission, coexistence between
stable noisy emission and low-frequency fluctuations (LFFs), LFFs, and co-
herence collapse (CC).

A main conclusion of our analysis is that the change in the shape of the curve
of the standard deviation vs. the pump current (shown in Fig. 4.2), which
is accompanied by a maximum in the probability of pattern ‘210’ (shown in
Fig. 4.4 and occurring at the same value of the laser pump current), quan-
titatively determine the transition from LFFs to CC regime. We also found
that, at the onset of LFFs, rare and extremely depth dropouts occur. These
analysis tools also provided objective measures for delimiting the borders of
the pump current region where stable emission and the LFF regime coexist.

• In Chapter 5 we have studied the influence of noise in the permutation en-
tropy, considering both, simulated data and experimental data. In the sim-
ulated data, when increasing the noise strength, a transition between an
almost-deterministic regime and a noise-dominated regime was clearly de-
tected. The noise value at which this transition occurs is roughly indepen-
dent of the size D of the ordinal pattern.

In the almost-deterministic regime, the permutation entropy grows almost
linearly or sub-linearly with D. This behavior is qualitatively similar to that
of the block entropy. However, to observe a quantitative equivalence, it is
often needed to analyze extremely long time series, which can be compu-
tationally unfeasible even for relatively simple dynamical systems. In the
noise-dominated regime, the growth is faster than linear, i.e. the differ-
ences HD −HD−1 increase with D. In principle, while this fact can be used
to determine whether a dynamical system is in a noise-dominated or in a
determinism-dominated regime, care must be taken in interpreting the re-
sults, because time series generated by purely deterministic systems can lead
to OPs which look effectively noisy, as we demonstrated in the example of the
Rössler system. This fact reflects the well-known difficulties of distinguish-
ing deterministic dynamics from noise.
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6.2 Perspectives for future work
From the results obtained in this Thesis, there are several open questions that

deserve to be addressed

• The feedback strength is an important parameter for the dynamics of the
system and it would be interesting a study of the effects of this parameter
on the spike correlations, i.e, its influence in the probabilities of the ordinal
patterns.

• In this Thesis, for the external perturbations given to the SLOF we have only
used a sinusoidal modulation. An interesting extension of this work would
be to change the type of perturbation by one which is, for example, aperi-
odic pulse. This research is being carried out by Dr. J. Tiana-Alsina and M.
Masoliver using a sequence of spikes generated from a neuron model.

• In Chapter 5 we focused on the study of the effect of Gaussian white (un-
correlated) noise. It would be interesting in a future study to consider a
time-correlated noise.

• It will be interesting to apply methods to detect dynamical transitions oc-
curring for increasing feedback strength (from regime I to regime V in the
diagram of Fig. 1.11), i.e., moving along a horizontal line in the Fig. 1.13.

• In the analysis carried out in Chapter 3, a fixed threshold was used to define
the spikes, however, in Chapter 4, we have seen that the threshold can signif-
icantly affect the number of spikes in lower current region, where the spikes
are of irregular depth. Therefore, it would be interesting to analyze the role
of the threshold used to define the spikes and how it affects the detection of
the noisy locking regimes.

• It will be interesting to extend the analysis of the influence of noise in the PE
to other definitions of entropy (e.g Tsallis entropy [121]).

• In the study of dynamical transitions (noise-LFFs-CC), the intensity time
series were recorded while keeping the pump current constant. It would
be interesting to explore the possible existence of a hysteresis by recording
the intensity dynamics, while simultaneously increasing and decreasing the
pump current, e.g., by using a triangular signal applied through the wave
form generator.

• It would also be interesting to study how the transition points depend on
the feedback delay time, and if similar transitions can be detected in the
dynamics of coupled lasers.
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